Low-flow characteristics of Indiana streams
Fowler, K.K.; Wilson, J.T.
1996-01-01
Knowledge of low-flow characteristics of streams is essential for management of water resources. Low-flow characteristics are presented for 229 continuous-record, streamflow-gaging stations and 285 partial-record stations in Indiana. Low- flow-frequency characteristics were computed for 210 continuous-record stations that had at least 10 years of record, and flow-duration curves were computed for all continuous-record stations. Low-flow-frequency and flow-duration analyses are based on available streamflow records through September 1993. Selected low-flow-frequency curves were computed for annual low flows and seasonal low flows. The four seasons are represented by the 3-month groups of March-May, June-August, September-November, and December- February. The 7-day, 10-year and the 7-day, 2 year low flows were estimated for 285 partial-record stations, which are ungaged sites where streamflow measurements were made at base flow. The same low-flow characteristics were estimated for 19 continuous-record stations where less than 10 years of record were available. Precipitation and geology directly influence the streams in Indiana. Streams in the northern, glaciated part of the State tend to have higher sustained base flows than those in the nonglaciated southern part. Flow at several of the continuous-record gaging stations is affected by some form of regulation or diversion. Low-flow characteristics for continuous-record stations at which flow is affected by regulation are determined using the period of record affected by regulation; natural flows prior to regulation are not used.
Cheng, Ji-Yen; Hsiung, Lo-Chang
2004-12-01
Electrowetting (EW)-based techniques have been widely used in manipulating discrete liquid. However, few articles discussed the controlling of continuous fluid flow by using EW-based techniques. In this paper, an EW-based valve combined with plasma-modified Teflon surface, which serves as a microfluidic guidance, in controlling continuous fluid flow has been demonstrated. The plasma-modified Teflon surface is firstly demonstrated for confining continuous fluid flow. The EW-based microfluidic device possesses the functions of a valve and a microchannel without complex moving parts and grooved microchannels. The quantitative characteristics of the EW-based valve are also studied. Propylene carbonate (PC) is firstly demonstrated as the working liquid in the EW-based device because of its applications in parallel oligonucleotide synthesis. It is found that lower valve actuation voltage reduces the deterioration of the valve and improves the valve stability.
Numerical optimization using flow equations.
Punk, Matthias
2014-12-01
We develop a method for multidimensional optimization using flow equations. This method is based on homotopy continuation in combination with a maximum entropy approach. Extrema of the optimizing functional correspond to fixed points of the flow equation. While ideas based on Bayesian inference such as the maximum entropy method always depend on a prior probability, the additional step in our approach is to perform a continuous update of the prior during the homotopy flow. The prior probability thus enters the flow equation only as an initial condition. We demonstrate the applicability of this optimization method for two paradigmatic problems in theoretical condensed matter physics: numerical analytic continuation from imaginary to real frequencies and finding (variational) ground states of frustrated (quantum) Ising models with random or long-range antiferromagnetic interactions.
Numerical optimization using flow equations
NASA Astrophysics Data System (ADS)
Punk, Matthias
2014-12-01
We develop a method for multidimensional optimization using flow equations. This method is based on homotopy continuation in combination with a maximum entropy approach. Extrema of the optimizing functional correspond to fixed points of the flow equation. While ideas based on Bayesian inference such as the maximum entropy method always depend on a prior probability, the additional step in our approach is to perform a continuous update of the prior during the homotopy flow. The prior probability thus enters the flow equation only as an initial condition. We demonstrate the applicability of this optimization method for two paradigmatic problems in theoretical condensed matter physics: numerical analytic continuation from imaginary to real frequencies and finding (variational) ground states of frustrated (quantum) Ising models with random or long-range antiferromagnetic interactions.
Redesigning flow injection after 40 years of development: Flow programming.
Ruzicka, Jaromir Jarda
2018-01-01
Automation of reagent based assays, by means of Flow Injection (FI), is based on sample processing, in which a sample flows continuously towards and through a detector for quantification of the target analyte. The Achilles heel of this methodology, the legacy of Auto Analyzer®, is continuous reagent consumption, and continuous generation of chemical waste. However, flow programming, assisted by recent advances in precise pumping, combined with the lab-on-valve technique, allows the FI manifold to be designed around a single confluence point through which sample and reagents are sequentially directed by means of a series of flow reversals. This approach results in sample/reagent mixing analogous to the traditional FI, reduces sample and reagent consumption, and uses the stop flow technique for enhancement of the yield of chemical reactions. The feasibility of programmable Flow Injection (pFI) is documented by example of commonly used spectrophotometric assays of, phosphate, nitrate, nitrite and glucose. Experimental details and additional information are available in online tutorial http://www.flowinjectiontutorial.com/. Copyright © 2017 Elsevier B.V. All rights reserved.
Gingerich, Stephen B.
2005-01-01
Flow-duration statistics under natural (undiverted) and diverted flow conditions were estimated for gaged and ungaged sites on 21 streams in northeast Maui, Hawaii. The estimates were made using the optimal combination of continuous-record gaging-station data, low-flow measurements, and values determined from regression equations developed as part of this study. Estimated 50- and 95-percent flow duration statistics for streams are presented and the analyses done to develop and evaluate the methods used in estimating the statistics are described. Estimated streamflow statistics are presented for sites where various amounts of streamflow data are available as well as for locations where no data are available. Daily mean flows were used to determine flow-duration statistics for continuous-record stream-gaging stations in the study area following U.S. Geological Survey established standard methods. Duration discharges of 50- and 95-percent were determined from total flow and base flow for each continuous-record station. The index-station method was used to adjust all of the streamflow records to a common, long-term period. The gaging station on West Wailuaiki Stream (16518000) was chosen as the index station because of its record length (1914-2003) and favorable geographic location. Adjustments based on the index-station method resulted in decreases to the 50-percent duration total flow, 50-percent duration base flow, 95-percent duration total flow, and 95-percent duration base flow computed on the basis of short-term records that averaged 7, 3, 4, and 1 percent, respectively. For the drainage basin of each continuous-record gaged site and selected ungaged sites, morphometric, geologic, soil, and rainfall characteristics were quantified using Geographic Information System techniques. Regression equations relating the non-diverted streamflow statistics to basin characteristics of the gaged basins were developed using ordinary-least-squares regression analyses. Rainfall rate, maximum basin elevation, and the elongation ratio of the basin were the basin characteristics used in the final regression equations for 50-percent duration total flow and base flow. Rainfall rate and maximum basin elevation were used in the final regression equations for the 95-percent duration total flow and base flow. The relative errors between observed and estimated flows ranged from 10 to 20 percent for the 50-percent duration total flow and base flow, and from 29 to 56 percent for the 95-percent duration total flow and base flow. The regression equations developed for this study were used to determine the 50-percent duration total flow, 50-percent duration base flow, 95-percent duration total flow, and 95-percent duration base flow at selected ungaged diverted and undiverted sites. Estimated streamflow, prediction intervals, and standard errors were determined for 48 ungaged sites in the study area and for three gaged sites west of the study area. Relative errors were determined for sites where measured values of 95-percent duration discharge of total flow were available. East of Keanae Valley, the 95-percent duration discharge equation generally underestimated flow, and within and west of Keanae Valley, the equation generally overestimated flow. Reduction in 50- and 95-percent flow-duration values in stream reaches affected by diversions throughout the study area average 58 to 60 percent.
Groundwater recharge in Wisconsin--Annual estimates for 1970-99 using streamflow data
Gebert, Warren A.; Walker, John F.; Hunt, Randall J.
2011-01-01
The groundwater component of streamflow is important because it is indicative of the sustained flow of a stream during dry periods, is often of better quality, and has a smaller range of temperatures, than surface contributions to streamflow. All three of these characteristics are important to the health of aquatic life in a stream. If recharge to the aquifers is to be preserved or enhanced, it is important to understand the present partitioning of total streamflow into base flow and stormflow. Additionally, an estimate of groundwater recharge is important for understanding the flows within a groundwater system-information important for water availability/sustainability or other assessments. The U.S. Geological Survey operates numerous continuous-record streamflow-gaging stations (Hirsch and Norris, 2001), which can be used to provide estimates of average annual base flow. In addition to these continuous record sites, Gebert and others (2007) showed that having a few streamflow measurements in a basin can appreciably reduce the error in a base-flow estimate for that basin. Therefore, in addition to the continuous-record gaging stations, a substantial number of low-flow partial-record sites (6 to 15 discharge measurements) and miscellaneous-measurement sites (1 to 3 discharge measurements) that were operated during 1964-90 throughout the State were included in this work to provide additional insight into spatial distribution of annual base flow and, in turn, groundwater recharge.
Thompson, Ronald E.; Hoffman, Scott A.
2006-01-01
A suite of 28 streamflow statistics, ranging from extreme low to high flows, was computed for 17 continuous-record streamflow-gaging stations and predicted for 20 partial-record stations in Monroe County and contiguous counties in north-eastern Pennsylvania. The predicted statistics for the partial-record stations were based on regression analyses relating inter-mittent flow measurements made at the partial-record stations indexed to concurrent daily mean flows at continuous-record stations during base-flow conditions. The same statistics also were predicted for 134 ungaged stream locations in Monroe County on the basis of regression analyses relating the statistics to GIS-determined basin characteristics for the continuous-record station drainage areas. The prediction methodology for developing the regression equations used to estimate statistics was developed for estimating low-flow frequencies. This study and a companion study found that the methodology also has application potential for predicting intermediate- and high-flow statistics. The statistics included mean monthly flows, mean annual flow, 7-day low flows for three recurrence intervals, nine flow durations, mean annual base flow, and annual mean base flows for two recurrence intervals. Low standard errors of prediction and high coefficients of determination (R2) indicated good results in using the regression equations to predict the statistics. Regression equations for the larger flow statistics tended to have lower standard errors of prediction and higher coefficients of determination (R2) than equations for the smaller flow statistics. The report discusses the methodologies used in determining the statistics and the limitations of the statistics and the equations used to predict the statistics. Caution is indicated in using the predicted statistics for small drainage area situations. Study results constitute input needed by water-resource managers in Monroe County for planning purposes and evaluation of water-resources availability.
Evaluation of a watershed model for estimating daily flow using limited flow measurements
USDA-ARS?s Scientific Manuscript database
The Soil and Water Assessment Tool (SWAT) model was evaluated for estimation of continuous daily flow based on limited flow measurements in the Upper Oyster Creek (UOC) watershed. SWAT was calibrated against limited measured flow data and then validated. The Nash-Sutcliffe model Efficiency (NSE) and...
Low-flow characteristics for selected streams in Indiana
Fowler, Kathleen K.; Wilson, John T.
2015-01-01
The management and availability of Indiana’s water resources increase in importance every year. Specifically, information on low-flow characteristics of streams is essential to State water-management agencies. These agencies need low-flow information when working with issues related to irrigation, municipal and industrial water supplies, fish and wildlife protection, and the dilution of waste. Industrial, municipal, and other facilities must obtain National Pollutant Discharge Elimination System (NPDES) permits if their discharges go directly to surface waters. The Indiana Department of Environmental Management (IDEM) requires low-flow statistics in order to administer the NPDES permit program. Low-flow-frequency characteristics were computed for 272 continuous-record stations. The information includes low-flow-frequency analysis, flow-duration analysis, and harmonic mean for the continuous-record stations. For those stations affected by some form of regulation, low-flow frequency curves are based on the longest period of homogeneous record under current conditions. Low-flow-frequency values and harmonic mean flow (if sufficient data were available) were estimated for the 166 partial-record stations. Partial-record stations are ungaged sites where streamflow measurements were made at base flow.
Zero entropy continuous interval maps and MMLS-MMA property
NASA Astrophysics Data System (ADS)
Jiang, Yunping
2018-06-01
We prove that the flow generated by any continuous interval map with zero topological entropy is minimally mean-attractable and minimally mean-L-stable. One of the consequences is that any oscillating sequence is linearly disjoint from all flows generated by all continuous interval maps with zero topological entropy. In particular, the Möbius function is linearly disjoint from all flows generated by all continuous interval maps with zero topological entropy (Sarnak’s conjecture for continuous interval maps). Another consequence is a non-trivial example of a flow having discrete spectrum. We also define a log-uniform oscillating sequence and show a result in ergodic theory for comparison. This material is based upon work supported by the National Science Foundation. It is also partially supported by a collaboration grant from the Simons Foundation (grant number 523341) and PSC-CUNY awards and a grant from NSFC (grant number 11571122).
Fürhacker, M; Pressl, A; Allabashi, R
2003-09-01
Mixtures of different amines including tertiary amines (methyldiethanolamine, MDEA) are commonly used for the removal of CO2 from gas mixtures or in gas sweetening processes for the extraction of CO2 and H2S. The absorber solutions used can be released into the industrial waste water due to continuous substitution of degraded MDEA, periodically cleaning processes or an accidental spill. In this study, the aerobic biodegradability of MDEA was investigated in a standardised batch test and a continuous flow experiment (40 l/d). The results of the batch test indicated that the MDEA-solution was non-biodegradable during the test period of 28 days, whereas the continuous flow experiments showed biodegradation of more than 96% based on TOC-measurements. This was probably due to the adaptation of the microorganisms to this particular waste water contamination during continuous flow experiment.
A Laminar Flow-Based Microfluidic Tesla Pump via Lithography Enabled 3D Printing.
Habhab, Mohammed-Baker; Ismail, Tania; Lo, Joe Fujiou
2016-11-23
Tesla turbine and its applications in power generation and fluid flow were demonstrated by Nicholas Tesla in 1913. However, its real-world implementations were limited by the difficulty to maintain laminar flow between rotor disks, transient efficiencies during rotor acceleration, and the lack of other applications that fully utilize the continuous flow outputs. All of the aforementioned limits of Tesla turbines can be addressed by scaling to the microfluidic flow regime. Demonstrated here is a microscale Tesla pump designed and fabricated using a Digital Light Processing (DLP) based 3D printer with 43 µm lateral and 30 µm thickness resolutions. The miniaturized pump is characterized by low Reynolds number of 1000 and a flow rate of up to 12.6 mL/min at 1200 rpm, unloaded. It is capable of driving a mixer network to generate microfluidic gradient. The continuous, laminar flow from Tesla turbines is well-suited to the needs of flow-sensitive microfluidics, where the integrated pump will enable numerous compact lab-on-a-chip applications.
Trends and shifts in streamflow in Hawaii, 1913-2008
Bassiouni, Maoya; Oki, Delwyn S.
2013-01-01
This study addresses a need to document changes in streamflow and base flow (groundwater discharge to streams) in Hawai'i during the past century. Statistically significant long-term (1913-2008) downward trends were detected (using the nonparametric Mann-Kendall test) in low-streamflow and base-flow records. These long-term downward trends are likely related to a statistically significant downward shift around 1943 detected (using the nonparametric Pettitt test) in index records of streamflow and base flow. The downward shift corresponds to a decrease of 22% in median streamflow and a decrease of 23% in median base flow between the periods 1913-1943 and 1943-2008. The shift coincides with other local and regional factors, including a change from a positive to a negative phase in the Pacific Decadal Oscillation, shifts in the direction of the trade winds over Hawai'i, and a reforestation programme. The detected shift and long-term trends reflect region-wide changes in climatic and land-cover factors. A weak pattern of downward trends in base flows during the period 1943-2008 may indicate a continued decrease in base flows after the 1943 shift. Downward trends were detected more commonly in base-flow records than in high-streamflow, peak-flow, and rainfall records. The decrease in base flow is likely related to a decrease in groundwater storage and recharge and therefore is a valuable indicator of decreasing water availability and watershed vulnerability to hydrologic changes. Whether the downward trends will continue is largely uncertain given the uncertainty in climate-change projections and watershed responses to changes.
Methylation of 2-Naphthol Using Dimethyl Carbonate under Continuous-Flow Gas-Phase Conditions
ERIC Educational Resources Information Center
Tundo, Pietro; Rosamilia, Anthony E.; Arico, Fabio
2010-01-01
This experiment investigates the methylation of 2-naphthol with dimethyl carbonate. The volatility of the substrates, products, and co-products allows the reaction to be performed using a continuous-flow gas-phase setup at ambient pressure. The reaction uses catalytic quantities of base, achieves high conversion, produces little waste, and…
The effect of small temperature gradients on flow in a continuous flow electrophoresis chamber
NASA Technical Reports Server (NTRS)
Rhodes, P. H.; Snyder, R. S.
1982-01-01
Continuous flow electrophoresis employs an electric field to separate biological cells suspended in a flowing liquid buffer solution. Good separations based on differences in electrophoretic mobility are obtained only when a unidirectional flow is maintained. The desired flow has a parabolic structure in the narrow dimension of the chamber and is uniform acros the width, except near the edges where the no-slip condition prevails. However, because of buoyancy, very small laterall or axial temperature gradients deform the flow significantly. The results of experiments conducted with a specially instrumented chamber show the origin and structure of the buoyancy-driven perturbations. It is found that very small temperature gradients can disturb the flow significantly, as was predicted by earlier theoretical work.
Low-flow characteristics of streams in Virginia
Hayes, Donald C.
1991-01-01
Streamflow data were collected and low-flow characteristics computed for 715 gaged sites in Virginia Annual minimum average 7-consecutive-day flows range from 0 to 2,195 cubic feet per second for a 2-year recurrence interval and from 0 to 1,423 cubic feet per second for a 10-year recurrence interval. Drainage areas range from 0.17 to 7,320 square miles. Existing and discontinued gaged sites are separated into three types: long-term continuous-record sites, short-term continuous-record sites, and partial-record sites. Low-flow characteristics for long-term continuous-record sites are determined from frequency curves of annual minimum average 7-consecutive-day flows . Low-flow characteristics for short-term continuous-record sites are estimated by relating daily mean base-flow discharge values at a short-term site to concurrent daily mean discharge values at nearby long-term continuous-record sites having similar basin characteristics . Low-flow characteristics for partial-record sites are estimated by relating base-flow measurements to daily mean discharge values at long-term continuous-record sites. Information from the continuous-record sites and partial-record sites in Virginia are used to develop two techniques for estimating low-flow characteristics at ungaged sites. A flow-routing method is developed to estimate low-flow values at ungaged sites on gaged streams. Regional regression equations are developed for estimating low-flow values at ungaged sites on ungaged streams. The flow-routing method consists of transferring low-flow characteristics from a gaged site, either upstream or downstream, to a desired ungaged site. A simple drainage-area proration is used to transfer values when there are no major tributaries between the gaged and ungaged sites. Standard errors of estimate for108 test sites are 19 percent of the mean for estimates of low-flow characteristics having a 2-year recurrence interval and 52 percent of the mean for estimates of low-flow characteristics having a 10-year recurrence interval . A more complex transfer method must be used when major tributaries enter the stream between the gaged and ungaged sites. Twenty-four stream networks are analyzed, and predictions are made for 84 sites. Standard errors of estimate are 15 percent of the mean for estimates of low-flow characteristics having a 2-year recurrence interval and 22 percent of the mean for estimates of low-flow characteristics having a 10-year recurrence interval. Regional regression equations were developed for estimating low-flow values at ungaged sites on ungaged streams. The State was divided into eight regions on the basis of physiography and geographic grouping of the residuals computed in regression analyses . Basin characteristics that were significant in the regression analysis were drainage area, rock type, and strip-mined area. Standard errors of prediction range from 60 to139 percent for estimates of low-flow characteristics having a 2-year recurrence interval and 90 percent to 172 percent for estimates of low-flow characteristics having a 10-year recurrence interval.
NASA Astrophysics Data System (ADS)
Shao, Zhongshi; Pi, Dechang; Shao, Weishi
2017-11-01
This article proposes an extended continuous estimation of distribution algorithm (ECEDA) to solve the permutation flow-shop scheduling problem (PFSP). In ECEDA, to make a continuous estimation of distribution algorithm (EDA) suitable for the PFSP, the largest order value rule is applied to convert continuous vectors to discrete job permutations. A probabilistic model based on a mixed Gaussian and Cauchy distribution is built to maintain the exploration ability of the EDA. Two effective local search methods, i.e. revolver-based variable neighbourhood search and Hénon chaotic-based local search, are designed and incorporated into the EDA to enhance the local exploitation. The parameters of the proposed ECEDA are calibrated by means of a design of experiments approach. Simulation results and comparisons based on some benchmark instances show the efficiency of the proposed algorithm for solving the PFSP.
Navigating the flow: individual and continuum models for homing in flowing environments
Painter, Kevin J.; Hillen, Thomas
2015-01-01
Navigation for aquatic and airborne species often takes place in the face of complicated flows, from persistent currents to highly unpredictable storms. Hydrodynamic models are capable of simulating flow dynamics and provide the impetus for much individual-based modelling, in which particle-sized individuals are immersed into a flowing medium. These models yield insights on the impact of currents on population distributions from fish eggs to large organisms, yet their computational demands and intractability reduce their capacity to generate the broader, less parameter-specific, insights allowed by traditional continuous approaches. In this paper, we formulate an individual-based model for navigation within a flowing field and apply scaling to derive its corresponding macroscopic and continuous model. We apply it to various movement classes, from drifters that simply go with the flow to navigators that respond to environmental orienteering cues. The utility of the model is demonstrated via its application to ‘homing’ problems and, in particular, the navigation of the marine green turtle Chelonia mydas to Ascension Island. PMID:26538557
Metabolic engineering: the ultimate paradigm for continuous pharmaceutical manufacturing.
Yadav, Vikramaditya G; Stephanopoulos, Gregory
2014-07-01
Research and development (R&D) expenditures by pharmaceutical companies doubled over the past decade, yet candidate attrition rates and development times rose markedly during this period. Understandably, companies have begun downsizing their pipelines and diverting investments away from R&D in favor of manufacturing. It is estimated that transitioning to continuous manufacturing could enable companies to compete for a share in emerging markets. Accordingly, the model for continuous manufacturing that has emerged commences with the conversion of late-stage intermediates into the active pharmaceutical ingredient (API) in a series of continuous flow reactors, followed by continuous solid processing to form finished tablets. The use of flow reactions for API synthesis will certainly generate purer products at higher yields in shorter times compared to equivalent batch reactions. However, transitioning from batch to flow configuration simply alleviates transport limitations within the reaction milieu. As the catalogue of reactions used in flow syntheses is a subset of batch-based chemistries, molecules such as natural products will continue to evade drug prospectors. Also, it is uncertain whether flow synthesis can deliver improvements in the atom and energy economies of API production at the scales that would achieve the levels of revenue growth targeted by companies. Instead, it is argued that implementing metabolic engineering for the production of oxidized scaffolds as gateway molecules for flow-based addition of electrophiles is a more effective and scalable strategy for accessing natural product chemical space. This new paradigm for manufacturing, with metabolic engineering as its engine, would also permit rapid optimization of production variables and allow facile scale-up from gram to ton scale to meet material requirements for clinical trials, thus recasting manufacturing as a tool for discovery. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Natural Length Scales Shape Liquid Phase Continuity in Unsaturated Flows
NASA Astrophysics Data System (ADS)
Assouline, S.; Lehmann, P. G.; Or, D.
2015-12-01
Unsaturated flows supporting soil evaporation and internal drainage play an important role in various hydrologic and climatic processes manifested at a wide range of scales. We study inherent natural length scales that govern these flow processes and constrain the spatial range of their representation by continuum models. These inherent length scales reflect interactions between intrinsic porous medium properties that affect liquid phase continuity, and the interplay among forces that drive and resist unsaturated flow. We have defined an intrinsic length scale for hydraulic continuity based on pore size distribution that controls soil evaporation dynamics (i.e., stage 1 to stage 2 transition). This simple metric may be used to delineate upper bounds for regional evaporative losses or the depth of soil-atmosphere interactions (in the absence of plants). A similar length scale governs the dynamics of internal redistribution towards attainment of field capacity, again through its effect on hydraulic continuity in the draining porous medium. The study provides a framework for guiding numerical and mathematical models for capillary flows across different scales considering the necessary conditions for coexistence of stationarity (REV), hydraulic continuity and intrinsic capillary gradients.
A Laminar Flow-Based Microfluidic Tesla Pump via Lithography Enabled 3D Printing
Habhab, Mohammed-Baker; Ismail, Tania; Lo, Joe Fujiou
2016-01-01
Tesla turbine and its applications in power generation and fluid flow were demonstrated by Nicholas Tesla in 1913. However, its real-world implementations were limited by the difficulty to maintain laminar flow between rotor disks, transient efficiencies during rotor acceleration, and the lack of other applications that fully utilize the continuous flow outputs. All of the aforementioned limits of Tesla turbines can be addressed by scaling to the microfluidic flow regime. Demonstrated here is a microscale Tesla pump designed and fabricated using a Digital Light Processing (DLP) based 3D printer with 43 µm lateral and 30 µm thickness resolutions. The miniaturized pump is characterized by low Reynolds number of 1000 and a flow rate of up to 12.6 mL/min at 1200 rpm, unloaded. It is capable of driving a mixer network to generate microfluidic gradient. The continuous, laminar flow from Tesla turbines is well-suited to the needs of flow-sensitive microfluidics, where the integrated pump will enable numerous compact lab-on-a-chip applications. PMID:27886051
Smart catheter flow sensor for real-time continuous regional cerebral blood flow monitoring
NASA Astrophysics Data System (ADS)
Li, Chunyan; Wu, Pei-Ming; Hartings, Jed A.; Wu, Zhizhen; Ahn, Chong H.; LeDoux, David; Shutter, Lori A.; Narayan, Raj K.
2011-12-01
We present a smart catheter flow sensor for real-time, continuous, and quantitative measurement of regional cerebral blood flow using in situ temperature and thermal conductivity compensation. The flow sensor operates in a constant-temperature mode and employs a periodic heating and cooling technique. This approach ensures zero drift and provides highly reliable data with microelectromechanical system-based thin film sensors. The developed flow sensor has a sensitivity of 0.973 mV/ml/100 g/min in the range from 0 to 160 ml/100 g/min with a linear correlation coefficient of R2 = 0.9953. It achieves a resolution of 0.25 ml/100 g/min and an accuracy better than 5 ml/100 g/min.
Koga, Hirotaka; Namba, Naoko; Takahashi, Tsukasa; Nogi, Masaya; Nishina, Yuta
2017-06-22
Continuous-flow nanocatalysis based on metal nanoparticle catalyst-anchored flow reactors has recently provided an excellent platform for effective chemical manufacturing. However, there has been limited progress in porous structure design and recycling systems for metal nanoparticle-anchored flow reactors to create more efficient and sustainable catalytic processes. In this study, traditional paper is used for a highly efficient, recyclable, and even renewable flow reactor by tailoring the ultrastructures of wood pulp. The "paper reactor" offers hierarchically interconnected micro- and nanoscale pores, which can act as convective-flow and rapid-diffusion channels, respectively, for efficient access of reactants to metal nanoparticle catalysts. In continuous-flow, aqueous, room-temperature catalytic reduction of 4-nitrophenol to 4-aminophenol, a gold nanoparticle (AuNP)-anchored paper reactor with hierarchical micro/nanopores provided higher reaction efficiency than state-of-the-art AuNP-anchored flow reactors. Inspired by traditional paper materials, successful recycling and renewal of AuNP-anchored paper reactors were also demonstrated while high reaction efficiency was maintained. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.
Gao, Zhong-Ke; Dang, Wei-Dong; Li, Shan; Yang, Yu-Xuan; Wang, Hong-Tao; Sheng, Jing-Ran; Wang, Xiao-Fan
2017-07-14
Numerous irregular flow structures exist in the complicated multiphase flow and result in lots of disparate spatial dynamical flow behaviors. The vertical oil-water slug flow continually attracts plenty of research interests on account of its significant importance. Based on the spatial transient flow information acquired through our designed double-layer distributed-sector conductance sensor, we construct multilayer modality-based network to encode the intricate spatial flow behavior. Particularly, we calculate the PageRank versatility and multilayer weighted clustering coefficient to quantitatively explore the inferred multilayer modality-based networks. Our analysis allows characterizing the complicated evolution of oil-water slug flow, from the opening formation of oil slugs, to the succedent inter-collision and coalescence among oil slugs, and then to the dispersed oil bubbles. These properties render our developed method particularly powerful for mining the essential flow features from the multilayer sensor measurements.
An Novel Continuation Power Flow Method Based on Line Voltage Stability Index
NASA Astrophysics Data System (ADS)
Zhou, Jianfang; He, Yuqing; He, Hongbin; Jiang, Zhuohan
2018-01-01
An novel continuation power flow method based on line voltage stability index is proposed in this paper. Line voltage stability index is used to determine the selection of parameterized lines, and constantly updated with the change of load parameterized lines. The calculation stages of the continuation power flow decided by the angle changes of the prediction of development trend equation direction vector are proposed in this paper. And, an adaptive step length control strategy is used to calculate the next prediction direction and value according to different calculation stages. The proposed method is applied clear physical concept, and the high computing speed, also considering the local characteristics of voltage instability which can reflect the weak nodes and weak area in a power system. Due to more fully to calculate the PV curves, the proposed method has certain advantages on analysing the voltage stability margin to large-scale power grid.
Low-flow, base-flow, and mean-flow regression equations for Pennsylvania streams
Stuckey, Marla H.
2006-01-01
Low-flow, base-flow, and mean-flow characteristics are an important part of assessing water resources in a watershed. These streamflow characteristics can be used by watershed planners and regulators to determine water availability, water-use allocations, assimilative capacities of streams, and aquatic-habitat needs. Streamflow characteristics are commonly predicted by use of regression equations when a nearby streamflow-gaging station is not available. Regression equations for predicting low-flow, base-flow, and mean-flow characteristics for Pennsylvania streams were developed from data collected at 293 continuous- and partial-record streamflow-gaging stations with flow unaffected by upstream regulation, diversion, or mining. Continuous-record stations used in the regression analysis had 9 years or more of data, and partial-record stations used had seven or more measurements collected during base-flow conditions. The state was divided into five low-flow regions and regional regression equations were developed for the 7-day, 10-year; 7-day, 2-year; 30-day, 10-year; 30-day, 2-year; and 90-day, 10-year low flows using generalized least-squares regression. Statewide regression equations were developed for the 10-year, 25-year, and 50-year base flows using generalized least-squares regression. Statewide regression equations were developed for harmonic mean and mean annual flow using weighted least-squares regression. Basin characteristics found to be significant explanatory variables at the 95-percent confidence level for one or more regression equations were drainage area, basin slope, thickness of soil, stream density, mean annual precipitation, mean elevation, and the percentage of glaciation, carbonate bedrock, forested area, and urban area within a basin. Standard errors of prediction ranged from 33 to 66 percent for the n-day, T-year low flows; 21 to 23 percent for the base flows; and 12 to 38 percent for the mean annual flow and harmonic mean, respectively. The regression equations are not valid in watersheds with upstream regulation, diversions, or mining activities. Watersheds with karst features need close examination as to the applicability of the regression-equation results.
Storage requirements for Arkansas streams
Patterson, James Lee
1968-01-01
The supply of good-quality surface water in Arkansas is abundant. owing to seasonal and annual variability of streamflow, however, storage must be provided to insure dependable year-round supplies in most of the State. Storage requirements for draft rates that are as much as 60 percent of the mean annual flow at 49 continuous-record gaging stations can be obtained from tabular data in this report. Through regional analyses of streamflow data, the State was divided into three regions. Draft-storage diagrams for each region provide a means of estimating storage requirements for sites on streams where data are scant, provided the drainage area, the mean annual flow, and the low-flow index are known. These data are tabulated for 53 gaging stations used in the analyses and for 132 partial-record sites where only base-flow measurements have been made. Mean annual flow can be determined for any stream whose drainage lies within the State by using the runoff map in this report. Low-flow indices can be estimated by correlating base flows, determined from several discharge measurements, with concurrent flows at nearby continuous-record gaging stations, whose low-flow indices have been determined.
Navigating the flow: individual and continuum models for homing in flowing environments.
Painter, Kevin J; Hillen, Thomas
2015-11-06
Navigation for aquatic and airborne species often takes place in the face of complicated flows, from persistent currents to highly unpredictable storms. Hydrodynamic models are capable of simulating flow dynamics and provide the impetus for much individual-based modelling, in which particle-sized individuals are immersed into a flowing medium. These models yield insights on the impact of currents on population distributions from fish eggs to large organisms, yet their computational demands and intractability reduce their capacity to generate the broader, less parameter-specific, insights allowed by traditional continuous approaches. In this paper, we formulate an individual-based model for navigation within a flowing field and apply scaling to derive its corresponding macroscopic and continuous model. We apply it to various movement classes, from drifters that simply go with the flow to navigators that respond to environmental orienteering cues. The utility of the model is demonstrated via its application to 'homing' problems and, in particular, the navigation of the marine green turtle Chelonia mydas to Ascension Island. © 2015 The Author(s).
NASA Astrophysics Data System (ADS)
Nardi, F.; Grimaldi, S.; Petroselli, A.
2012-12-01
Remotely sensed Digital Elevation Models (DEMs), largely available at high resolution, and advanced terrain analysis techniques built in Geographic Information Systems (GIS), provide unique opportunities for DEM-based hydrologic and hydraulic modelling in data-scarce river basins paving the way for flood mapping at the global scale. This research is based on the implementation of a fully continuous hydrologic-hydraulic modelling optimized for ungauged basins with limited river flow measurements. The proposed procedure is characterized by a rainfall generator that feeds a continuous rainfall-runoff model producing flow time series that are routed along the channel using a bidimensional hydraulic model for the detailed representation of the inundation process. The main advantage of the proposed approach is the characterization of the entire physical process during hydrologic extreme events of channel runoff generation, propagation, and overland flow within the floodplain domain. This physically-based model neglects the need for synthetic design hyetograph and hydrograph estimation that constitute the main source of subjective analysis and uncertainty of standard methods for flood mapping. Selected case studies show results and performances of the proposed procedure as respect to standard event-based approaches.
Baxter, John S. H.; Inoue, Jiro; Drangova, Maria; Peters, Terry M.
2016-01-01
Abstract. Optimization-based segmentation approaches deriving from discrete graph-cuts and continuous max-flow have become increasingly nuanced, allowing for topological and geometric constraints on the resulting segmentation while retaining global optimality. However, these two considerations, topological and geometric, have yet to be combined in a unified manner. The concept of “shape complexes,” which combine geodesic star convexity with extendable continuous max-flow solvers, is presented. These shape complexes allow more complicated shapes to be created through the use of multiple labels and super-labels, with geodesic star convexity governed by a topological ordering. These problems can be optimized using extendable continuous max-flow solvers. Previous approaches required computationally expensive coordinate system warping, which are ill-defined and ambiguous in the general case. These shape complexes are demonstrated in a set of synthetic images as well as vessel segmentation in ultrasound, valve segmentation in ultrasound, and atrial wall segmentation from contrast-enhanced CT. Shape complexes represent an extendable tool alongside other continuous max-flow methods that may be suitable for a wide range of medical image segmentation problems. PMID:28018937
System and method for continuous solids slurry depressurization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leininger, Thomas Frederick; Steele, Raymond Douglas; Cordes, Stephen Michael
A system includes a first pump having a first outlet and a first inlet, and a controller. The first pump is configured to continuously receive a flow of a slurry into the first outlet at a first pressure and to continuously discharge the flow of the slurry from the first inlet at a second pressure less than the first pressure. The controller is configured to control a first speed of the first pump against the flow of the slurry based at least in part on the first pressure, wherein the first speed of the first pump is configured to resistmore » a backflow of the slurry from the first outlet to the first inlet.« less
Continuous-flow free acid monitoring method and system
Strain, J.E.; Ross, H.H.
1980-01-11
A free acid monitoring method and apparatus is provided for continuously measuring the excess acid present in a process stream. The disclosed monitoring system and method is based on the relationship of the partial pressure ratio of water and acid in equilibrium with an acid solution at constant temperature. A portion of the process stream is pumped into and flows through the monitor under the influence of gravity and back to the process stream. A continuous flowing sample is vaporized at a constant temperature and the vapor is subsequently condensed. Conductivity measurements of the condensate produces a nonlinear response function from which the free acid molarity of the sample process stream is determined.
Continuous-flow free acid monitoring method and system
Strain, James E.; Ross, Harley H.
1981-01-01
A free acid monitoring method and apparatus is provided for continuously measuring the excess acid present in a process stream. The disclosed monitoring system and method is based on the relationship of the partial pressure ratio of water and acid in equilibrium with an acid solution at constant temperature. A portion of the process stream is pumped into and flows through the monitor under the influence of gravity and back to the process stream. A continuous flowing sample is vaporized at a constant temperature and the vapor is subsequently condensed. Conductivity measurements of the condensate produces a nonlinear response function from which the free acid molarity of the sample process stream is determined.
Yang, Ning; Deutsch, Steven; Paterson, Eric G.; Manning, Keefe B.
2013-01-01
Although there are many studies that focus on understanding the consequence of pumping mode (continuous vs. pulsatile) associated with ventricular assist devices (VADs) on pediatric vascular pulsatility, the impact on local hemodynamics has been largely ignored. Hence, we compare not only the hemodynamic parameters indicative of pulsatility but also the local flow fields in the aorta and the great vessels originating from the aortic arch. A physiologic graft anastomotic model is constructed based on a pediatric, patient specific, aorta with a graft attached on the ascending aorta. The flow is simulated using a previously validated second-order accurate Navier–Stokes flow solver based upon a finite volume approach. The major findings are: (1) pulsatile support provides a greater degree of vascular pulsatility when compared to continuous support, which, however, is still 20% less than pulsatility in the healthy aorta; (2) pulsatile support increases the flow in the great vessels, while continuous support decreases it; (3) complete VAD support results in turbulence in the aorta, with maximum principal Reynolds stresses for pulsatile support and continuous support of 7081 and 249 dyn/cm2, respectively; (4) complete pulsatile support results in a significant increase in predicted hemolysis in the aorta; and (5) pulsatile support causes both higher time-averaged wall shear stresses (WSS) and oscillatory shear indices (OSI) in the aorta than does continuous support. These findings will help to identify the risk of graft failure for pediatric patients with pulsatile and continuous VADs. PMID:24348881
NASA Astrophysics Data System (ADS)
Wu, Guanhao; Yang, Yan; Zeng, Lijiang
2006-11-01
A novel method based on video tracking system for simultaneous measurement of kinematics and flow in the wake of a freely swimming fish is described. Spontaneous and continuous swimming behaviors of a variegated carp (Cyprinus carpio) are recorded by two cameras mounted on a translation stage which is controlled to track the fish. By processing the images recorded during tracking, the detailed kinematics based on calculated midlines and quantitative analysis of the flow in the wake during a low-speed turn and burst-and-coast swimming are revealed. We also draw the trajectory of the fish during a continuous swimming bout containing several moderate maneuvers. The results prove that our method is effective for studying maneuvers of fish both from kinematic and hydrodynamic viewpoints.
NASA Astrophysics Data System (ADS)
Uchida, Taro; Sakurai, Wataru; Iuchi, Takuma; Izumiyama, Hiroaki; Borgatti, Lisa; Marcato, Gianluca; Pasuto, Alessandro
2018-04-01
Monitoring of sediment transport from hillslopes to channel networks as a consequence of floods with suspended and bedload transport, hyperconcentrated flows, debris and mud flows is essential not only for scientific issues, but also for prevention and mitigation of natural disasters, i.e. for hazard assessment, land use planning and design of torrent control interventions. In steep, potentially unstable terrains, ground-based continuous monitoring of hillslope and hydrological processes is still highly localized and expensive, especially in terms of manpower. In recent years, new seismic and acoustic methods have been developed for continuous bedload monitoring in mountain rivers. Since downstream bedload transport rate is controlled by upstream sediment supply from tributary channels and bed-external sources, continuous bedload monitoring might be an effective tool for detecting the sediments mobilized by debris flow processes in the upper catchment and thus represent an indirect method to monitor slope instability processes at the catchment scale. However, there is poor information about the effects of episodic sediment supply from upstream bed-external sources on downstream bedload transport rate at a single flood time scale. We have examined the effects of sediment supply due to upstream debris flow events on downstream bedload transport rate along the Yotagiri River, central Japan. To do this, we have conducted continuous bedload observations using a hydrophone (Japanese pipe microphone) located 6.4 km downstream the lower end of a tributary affected by debris flows. Two debris flows occurred during the two-years-long observation period. As expected, bedload transport rate for a given flow depth showed to be larger after storms triggering debris flows. That is, although the magnitude of sediment supply from debris flows is not large, their effect on bedload is propagating >6 km downstream at a single flood time scale. This indicates that continuous bedload observations could be effective for detecting sediment supply as a consequence of debris flow events.
USDA-ARS?s Scientific Manuscript database
A 4-unit dual-flow continuous culture fermentor system was used to assess the effect of supplementing 7-d sprouted barley (SB) or barley grain (BG) with an herbage-based or haylage-based diet on nutrient digestibility, volatile fatty acid (VFA) profiles, bacterial protein synthesis, and methane outp...
RTD-based Material Tracking in a Fully-Continuous Dry Granulation Tableting Line.
Martinetz, M C; Karttunen, A-P; Sacher, S; Wahl, P; Ketolainen, J; Khinast, J G; Korhonen, O
2018-06-06
Continuous manufacturing (CM) offers quality and cost-effectiveness benefits over currently dominating batch processing. One challenge that needs to be addressed when implementing CM is traceability of materials through the process, which is needed for the batch/lot definition and control strategy. In this work the residence time distributions (RTD) of single unit operations (blender, roller compactor and tablet press) of a continuous dry granulation tableting line were captured with NIR based methods at selected mass flow rates to create training data. RTD models for continuous operated unit operations and the entire line were developed based on transfer functions. For semi-continuously operated bucket conveyor and pneumatic transport an assumption based the operation frequency was used. For validation of the parametrized process model, a pre-defined API step change and its propagation through the manufacturing line was computed and compared to multi-scale experimental runs conducted with the fully assembled continuous operated manufacturing line. This novel approach showed a very good prediction power at the selected mass flow rates for a complete continuous dry granulation line. Furthermore, it shows and proves the capabilities of process simulation as a tool to support development and control of pharmaceutical manufacturing processes. Copyright © 2018. Published by Elsevier B.V.
NASA Technical Reports Server (NTRS)
Keyser, G.
1978-01-01
The design philosophy and performance characteristics of the continuous flow diffusion chamber developed for use in ground-based simulation of some of the experiments planned for the atmospheric cloud physics laboratory during the first Spacelab flight are discussed. Topics covered include principle of operation, thermal control, temperature measurement, tem-powered heat exchangers, wettable metal surfaces, sample injection system, and control electronics.
Regtmeier, Jan; Käsewieter, Jörg; Everwand, Martina; Anselmetti, Dario
2011-05-01
Continuous-flow separation of nanoparticles (NPs) (15 and 39 nm) is demonstrated based on electrostatic sieving at a micro-nanofluidic interface. The interface is realized in a poly(dimethylsiloxane) device with a nanoslit of 525 nm laterally spanning the microfluidic channel (aspect ratio of 540:1). Within this nanoslit, the Debye layers overlap and generate an electrostatic sieve. This was exploited to selectively deflect and sort NPs with a sorting purity of up to 97%. Because of the continuous-flow operation, the sample is continuously fed into the device, immediately separated, and the parameters can be adapted in real time. For bioanalytical purposes, we also demonstrate the deflection of proteins (longest axis 6.8 nm). The continuous operation mode and the general applicability of this separation concept make this method a valuable addition to the current Lab-on-a-Chip devices for continuous sorting of NPs and macromolecules. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Low flow vortex shedding flowmeter
NASA Technical Reports Server (NTRS)
Waugaman, Charles J.
1989-01-01
The purpose was to continue a development project on a no moving parts vortex shedding flowmeter used for flow measurement of hypergols. The project involved the design and construction of a test loop to evaluate the meter for flow of Freon which simulates the hypergol fluids. Results were obtained on the output frequency characteristics of the flow meter as a function of flow rate. A family of flow meters for larger size lines and ranges of flow was sized based on the results of the tested meter.
NASA Astrophysics Data System (ADS)
Lee, S. H.; Efendiev, Y.
2016-10-01
Three-phase flow in a reservoir model has been a major challenge in simulation studies due to slowly convergent iterations in Newton solution of nonlinear transport equations. In this paper, we examine the numerical characteristics of three-phase flow and propose a consistent, "C1-continuous discretization" (to be clarified later) of transport equations that ensures a convergent solution in finite difference approximation. First, we examine three-phase relative permeabilities that are critical in solving nonlinear transport equations. Three-phase relative permeabilities are difficult to measure in the laboratory, and they are often correlated with two-phase relative permeabilities (e.g., oil-gas and water-oil systems). Numerical convergence of non-linear transport equations entails that three-phase relative permeability correlations are a monotonically increasing function of the phase saturation and the consistency conditions of phase transitions are satisfied. The Modified Stone's Method II and the Linear Interpolation Method for three-phase relative permeability are closely examined for their mathematical properties. We show that the Linear Interpolation Method yields C1-continuous three-phase relative permeabilities for smooth solutions if the two phase relative permeabilities are monotonic and continuously differentiable. In the second part of the paper, we extend a Hybrid-Upwinding (HU) method of two-phase flow (Lee, Efendiev and Tchelepi, ADWR 82 (2015) 27-38) to three phase flow. In the HU method, the phase flux is divided into two parts based on the driving forces (in general, it can be divided into several parts): viscous and buoyancy. The viscous-driven and buoyancy-driven fluxes are upwinded differently. Specifically, the viscous flux, which is always co-current, is upwinded based on the direction of the total velocity. The pure buoyancy-induced flux is shown to be only dependent on saturation distributions and counter-current. In three-phase flow, the buoyancy effect can be expressed as a sum of two buoyancy effects from two-phase flows, i.e., oil-water and oil-gas systems. We propose an upwind scheme for the buoyancy flux term from three-phase flow as a sum of two buoyancy terms from two-phase flows. The upwind direction of the buoyancy flux in two phase flow is always fixed such that the heavier fluid goes downward and the lighter fluid goes upward. It is shown that the Implicit Hybrid-Upwinding (IHU) scheme for three-phase flow is locally conservative and produces physically-consistent numerical solutions. As in two phase flow, the primary advantage of the IHU scheme is that the flux of a fluid phase remains continuous and differentiable as the flow regime changes between co-current and counter-current conditions as a function of time, or (Newton) iterations. This is in contrast to the standard phase-potential-based upwinding scheme, in which the overall fractional-flow (flux) function is non-differentiable across the transition between co-current and counter-current flows.
Zhang, Hui Ling; Ding, Ya Li; Chen, Hong Song; Wang, Ke Lin; Nie, Yun Peng
2018-04-01
This study focused on bedrock outcrops, a very common habitat in karst region of southwest China. To reveal the responses of plant transpiration to natural rainfall and continuous drought, two tree species typical to this habitat, Radermachera sinica and Triadica rotundifolia, were selected as test materials. A rainout shelter was used to simulate continuous drought. The sap flow dynamics were monitored using the method of Granier's thermal dissipation probe (TDP). Our results showed that sap flow density increased to different degrees after rain in different stages of the growing season. Sap flow density of the deciduous species T. rotundifolia was always higher than that of the semi-deciduous species R. sinica. After two months without rainfall input, both species exhibited no obvious decrease in sap flow density, indicating that rainfall was not the dominant source for their water uptake, at least in the short-term. Based on the regression relationships between sap flow density and meteorological factors before and after rainfall, as well as at different stages of continuous drought, we found that the dynamics of meteorological factors contributed little to plant transpiration. The basic transpiration characteristics of both species were not changed in the circumstance of natural rainfall and short-term continuous drought, which would be closely related to the special water storage environments of bedrock outcrops and the reliance on deep water sources by tree species.
Streamflow characteristics and trends in New Jersey, water years 1897-2003
Watson, Kara M.; Reiser, Robert G.; Nieswand, Steven P.; Schopp, Robert D.
2005-01-01
Streamflow statistics were computed for 111 continuous-record streamflow-gaging stations with 20 or more years of continuous record and for 500 low-flow partial-record stations, including 66 gaging stations with less than 20 years of continuous record. Daily mean streamflow data from water year 1897 through water year 2001 were used for the computations at the gaging stations. (The water year is the 12-month period, October 1 through September 30, designated by the calendar year in which it ends). The characteristics presented for the long-term continuous-record stations are daily streamflow, harmonic mean flow, flow frequency, daily flow durations, trend analysis, and streamflow variability. Low-flow statistics for gaging stations with less than 20 years of record and for partial-record stations were estimated by correlating base-flow measurements with daily mean flows at long-term (more than 20 years) continuous-record stations. Instantaneous streamflow measurements through water year 2003 were used to estimate low-flow statistics at the partial-record stations. The characteristics presented for partial-record stations are mean annual flow; harmonic mean flow; and annual and winter low-flow frequency. The annual 1-, 7-, and 30-day low- and high-flow data sets were tested for trends. The results of trend tests for high flows indicate relations between upward trends for high flows and stream regulation, and high flows and development in the basin. The relation between development and low-flow trends does not appear to be as strong as for development and high-flow trends. Monthly, seasonal, and annual precipitation data for selected long-term meteorological stations also were tested for trends to analyze the effects of climate. A significant upward trend in precipitation in northern New Jersey, Climate Division 1 was identified. For Climate Division 2, no general increase in average precipitation was observed. Trend test results indicate that high flows at undeveloped, unregulated sites have not been affected by the increase in average precipitation. The ratio of instantaneous peak flow to 3-day mean flow, ratios of flow duration, ratios of high-flow/low-flow frequency, and coefficient of variation were used to define streamflow variability. Streamflow variability was significantly greater among the group of gaging stations located outside the Coastal Plain than among the group of gaging stations located in the Coastal Plain.
Gobalasingham, Nemal S; Carlé, Jon E; Krebs, Frederik C; Thompson, Barry C; Bundgaard, Eva; Helgesen, Martin
2017-11-01
Continuous flow methods are utilized in conjunction with direct arylation polymerization (DArP) for the scaled synthesis of the roll-to-roll compatible polymer, poly[(2,5-bis(2-hexyldecyloxy)phenylene)-alt-(4,7-di(thiophen-2-yl)-benzo[c][1,2,5]thiadiazole)] (PPDTBT). PPDTBT is based on simple, inexpensive, and scalable monomers using thienyl-flanked benzothiadiazole as the acceptor, which is the first β-unprotected substrate to be used in continuous flow via DArP, enabling critical evaluation of the suitability of this emerging synthetic method for minimizing defects and for the scaled synthesis of high-performance materials. To demonstrate the usefulness of the method, DArP-prepared PPDTBT via continuous flow synthesis is employed for the preparation of indium tin oxide (ITO)-free and flexible roll-coated solar cells to achieve a power conversion efficiency of 3.5% for 1 cm 2 devices, which is comparable to the performance of PPDTBT polymerized through Stille cross coupling. These efforts demonstrate the distinct advantages of the continuous flow protocol with DArP avoiding use of toxic tin chemicals, reducing the associated costs of polymer upscaling, and minimizing batch-to-batch variations for high-quality material. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Li, Michelle W; Martin, R Scott
2007-07-01
Here we describe a reversibly sealed microchip device that incorporates poly(dimethylsiloxane) (PDMS)-based valves for the rapid injection of analytes from a continuously flowing stream into a channel network for analysis with microchip electrophoresis. The microchip was reversibly sealed to a PDMS-coated glass substrate and microbore tubing was used for the introduction of gas and fluids to the microchip device. Two pneumatic valves were incorporated into the design and actuated on the order of hundreds of milliseconds, allowing analyte from a continuously flowing sampling stream to be injected into an electrophoresis separation channel. The device was characterized in terms of the valve actuation time and pushback voltage. It was also found that the addition of sodium dodecyl sulfate (SDS) to the buffer system greatly increased the reproducibility of the injection scheme and enabled the analysis of amino acids derivatized with naphthalene-2,3-dicarboxaldehyde/cyanide. Results from continuous injections of a 0.39 nL fluorescein plug into the optimized system showed that the injection process was reproducible (RSD of 0.7%, n = 10). Studies also showed that the device was capable of monitoring off-chip changes in concentration with a device lag time of 90 s. Finally, the ability of the device to rapidly monitor on-chip concentration changes was demonstrated by continually sampling from an analyte plug that was derivatized upstream from the electrophoresis/continuous flow interface. A reversibly sealed device of this type will be useful for the continuous monitoring and analysis of processes that occur either off-chip (such as microdialysis sampling) or on-chip from other integrated functions.
Formulation development and release studies of indomethacin suppositories.
Sah, M L; Saini, T R
2008-01-01
Indomethacin suppositories were prepared by using water-soluble and oil soluble suppository bases, and evaluated for in vitro release by USP I and modified continuous flow through bead bed apparatus. Effect of the Tween 80 (1% and 5%) was further studied on in vitro release of the medicament. Release rate was good in water-soluble suppositories bases in comparison to oil soluble suppositories bases. Release was found to be greater in modified continuous flow through bead bed apparatus. When surfactant was used in low concentration then release rate was much greater, as compared to high concentration. When stability studies were performed on the prepared indomethacin suppositories it was found that suppositories made by water-soluble base had no significant changes while suppositories prepared by oil soluble bases, had some signs of instability.
NASA Astrophysics Data System (ADS)
Ren, Lijiao; Ahn, Yongtae; Hou, Huijie; Zhang, Fang; Logan, Bruce E.
2014-07-01
Power production of four hydraulically connected microbial fuel cells (MFCs) was compared with the reactors operated using individual electrical circuits (individual), and when four anodes were wired together and connected to four cathodes all wired together (combined), in fed-batch or continuous flow conditions. Power production under these different conditions could not be made based on a single resistance, but instead required polarization tests to assess individual performance relative to the combined MFCs. Based on the power curves, power produced by the combined MFCs (2.12 ± 0.03 mW, 200 Ω) was the same as the summed power (2.13 mW, 50 Ω) produced by the four individual reactors in fed-batch mode. With continuous flow through the four MFCs, the maximum power (0.59 ± 0.01 mW) produced by the combined MFCs was slightly lower than the summed maximum power of the four individual reactors (0.68 ± 0.02 mW). There was a small parasitic current flow from adjacent anodes and cathodes, but overall performance was relatively unaffected. These findings demonstrate that optimal power production by reactors hydraulically and electrically connected can be predicted from performance by individual reactors.
NASA Technical Reports Server (NTRS)
Hymer, W. C.; Grindeland, R.; Hayes, C.; Lanham, J. W.; Cleveland, C.; Todd, P.; Morrison, Dennis R.
1988-01-01
The cell separation techniques of velocity sedimentation, flow cytometry and continuous flow electrophoresis were used to obtain enriched populations of growth hormone (GH) cells. The goal was to isolate a GH cell subpopulation which releases GH molecules which are very high in biological activity, it was important to use a method which was effective in processing large numbers of cells over a short time span. The techniques based on sedimentation are limited by cell density overlaps and streaming. While flow cytometry is useful in the analytical mode for objectively establishing cell purity, the numbers of cells which can be processed in the sort mode are so small as to make this approach ineffective in terms of the long term goals. It was shown that continuous flow electrophoresis systems (CFES) can separate GH cells from other cell types on the basis of differences in surface charge. The bioreactive producers appear to be more electrophoretically mobile than the low producers. Current ground based CFES efforts are hampered by cell clumping in low ionic strength buffers and poor cell recoveries from the CFES device.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roberts, Emily J.; Habas, Susan E.; Wang, Lu
2016-11-07
The translation of batch chemistries to high-throughput continuous flow methods dresses scaling, automation, and reproducibility concerns associated with the implementation of colloidally prepared nanoparticle (NP) catalysts for industrial catalytic processes. Nickel NPs were synthesized by the high-temperature amine reduction of a Ni2+ precursor using a continuous millifluidic (mF) flow method, achieving yields greater than 60%. The resulting Ni NP catalysts were compared against catalysts prepared in a batch reaction under conditions analogous to the continuous flow conditions with respect to total reaction volume, time, and temperature and by traditional incipient wetness (IW) impregnation for the hydrodeoxygenation (HDO) of guaiacol undermore » ex situ catalytic fast pyrolysis conditions. Compared to the IW method, the colloidally prepared NPs displayed increased morphological control and narrowed size distributions, and the NPs prepared by both methods showed similar size, shape, and crystallinity. The Ni NP catalyst synthesized by the continuous flow method exhibited similar H-adsorption site densities, site-time yields, and selectivities towards deoxygenated products as compared to the analogous batch reaction, and outperformed the IW catalyst with respect to higher selectivity to lower oxygen content products and a 6.9-fold slower deactivation rate. These results demonstrate the utility of synthesizing colloidal Ni NP catalysts using continuous flow methods while maintaining the catalytic properties displayed by the batch equivalent. Finally, this methodology can be extended to other catalytically relevant base metals for the high-throughput synthesis of metal NPs for the catalytic production of biofuels.« less
2006-04-17
of the droplet phase are then used for validation of theoretical models of the gas-droplet plume flow. Based on experimental and numerical results...with the continuous model adequately reproduces the Arrhenius rate at high temperatures but significantly underpredicts the theoretical rate at low...continuous model and discrete model of real gas effects, and the results on the shock -wave stand-off distance were compared with the experimental data of
Use and Availability of Continuous Streamflow Records in Tennessee
1988-01-01
which are operated for a water budget study of Reelfoot Lake and two stations for a base flow-groundwater study at the Department of Energy’s Oak...continuous lake stage; (3) 5 flood hydrograph; (4) 75 low-flow partial-record; (5) 84 crest-stage partial-record; and (6) 6 flood-profile partial...operated for planning or design purposes. There is one gage at each of three water-supply studies, five stations are used in a lake sedimentation
The role of continuity in residual-based variational multiscale modeling of turbulence
NASA Astrophysics Data System (ADS)
Akkerman, I.; Bazilevs, Y.; Calo, V. M.; Hughes, T. J. R.; Hulshoff, S.
2008-02-01
This paper examines the role of continuity of the basis in the computation of turbulent flows. We compare standard finite elements and non-uniform rational B-splines (NURBS) discretizations that are employed in Isogeometric Analysis (Hughes et al. in Comput Methods Appl Mech Eng, 194:4135 4195, 2005). We make use of quadratic discretizations that are C 0-continuous across element boundaries in standard finite elements, and C 1-continuous in the case of NURBS. The variational multiscale residual-based method (Bazilevs in Isogeometric analysis of turbulence and fluid-structure interaction, PhD thesis, ICES, UT Austin, 2006; Bazilevs et al. in Comput Methods Appl Mech Eng, submitted, 2007; Calo in Residual-based multiscale turbulence modeling: finite volume simulation of bypass transition. PhD thesis, Department of Civil and Environmental Engineering, Stanford University, 2004; Hughes et al. in proceedings of the XXI international congress of theoretical and applied mechanics (IUTAM), Kluwer, 2004; Scovazzi in Multiscale methods in science and engineering, PhD thesis, Department of Mechanical Engineering, Stanford Universty, 2004) is employed as a turbulence modeling technique. We find that C 1-continuous discretizations outperform their C 0-continuous counterparts on a per-degree-of-freedom basis. We also find that the effect of continuity is greater for higher Reynolds number flows.
Jeon, Hyungkook; Kim, Youngkyu; Lim, Geunbae
2016-01-28
In this paper, we introduce pressure-driven flow-induced miniaturizing free-flow electrophoresis (PDF-induced μ-FFE), a novel continuous separation method. In our separation system, the external flow and electric field are applied to particles, such that particle movement is affected by pressure-driven flow, electroosmosis, and electrophoresis. We then analyzed the hydrodynamic drag force and electrophoretic force applied to the particles in opposite directions. Based on this analysis, micro- and nano-sized particles were separated according to their electrophoretic mobilities with high separation efficiency. Because the separation can be achieved in a simple T-shaped microchannel, without the use of internal electrodes, it offers the advantages of low-cost, simple device fabrication and bubble-free operation, compared with conventional μ-FFE methods. Therefore, we expect the proposed separation method to have a wide range of filtering/separation applications in biochemical analysis.
Jeon, Hyungkook; Kim, Youngkyu; Lim, Geunbae
2016-01-01
In this paper, we introduce pressure-driven flow-induced miniaturizing free-flow electrophoresis (PDF-induced μ-FFE), a novel continuous separation method. In our separation system, the external flow and electric field are applied to particles, such that particle movement is affected by pressure-driven flow, electroosmosis, and electrophoresis. We then analyzed the hydrodynamic drag force and electrophoretic force applied to the particles in opposite directions. Based on this analysis, micro- and nano-sized particles were separated according to their electrophoretic mobilities with high separation efficiency. Because the separation can be achieved in a simple T-shaped microchannel, without the use of internal electrodes, it offers the advantages of low-cost, simple device fabrication and bubble-free operation, compared with conventional μ-FFE methods. Therefore, we expect the proposed separation method to have a wide range of filtering/separation applications in biochemical analysis. PMID:26819221
Location of acoustic emission sources generated by air flow
Kosel; Grabec; Muzic
2000-03-01
The location of continuous acoustic emission sources is a difficult problem of non-destructive testing. This article describes one-dimensional location of continuous acoustic emission sources by using an intelligent locator. The intelligent locator solves a location problem based on learning from examples. To verify whether continuous acoustic emission caused by leakage air flow can be located accurately by the intelligent locator, an experiment on a thin aluminum band was performed. Results show that it is possible to determine an accurate location by using a combination of a cross-correlation function with an appropriate bandpass filter. By using this combination, discrete and continuous acoustic emission sources can be located by using discrete acoustic emission sources for locator learning.
Meral, Ramazan; Cemek, Bilal; Apan, Mehmet; Merdun, Hasan
2006-10-01
The positive effects of Polyacrylamide (PAM), which is used as a soil conditioner in furrow irrigation, on sediment transport, erosion, and infiltration have been investigated intensively in recent years. However, the effects of PAM have not been considered enough in irrigation system planning and design. As a result of increased infiltration because of PAM, advance time may be inversely affected and deep percolation increases. However, advance time in furrow irrigation is a crucial parameter in order to get high application efficiency. In this study, inverse effects of PAM were discussed, and as an alternative solution, the applicability of surge flow was investigated. PAM application significantly increased the advance time at the rates of 41.3-56.3% in the first irrigation. The application of surge flow with PAM removed this negative effect on advance time, where there was no statistically significant difference according to normal continuous flow (without PAM). PAM applications significantly increased the deep percolation, 80.3-117.1%. Surge flow with PAM had significantly positive effect on the deep percolation compared to continuous flow with PAM but not compared to normal continuous flow. These results suggested that irrigation planning should me made based on the new soil and flow conditions because of PAM usage, and surge flow can be a solution to these problems.
Vargas, E; Ruiz, M A; Campuzano, S; Reviejo, A J; Pingarrón, J M
2016-03-31
A non-destructive, rapid and simple to use sensing method for direct determination of glucose in non-processed fruits is described. The strategy involved on-line microdialysis sampling coupled with a continuous flow system with amperometric detection at an enzymatic biosensor. Apart from direct determination of glucose in fruit juices and blended fruits, this work describes for the first time the successful application of an enzymatic biosensor-based electrochemical approach to the non-invasive determination of glucose in raw fruits. The methodology correlates, through previous calibration set-up, the amperometric signal generated from glucose in non-processed fruits with its content in % (w/w). The comparison of the obtained results using the proposed approach in different fruits with those provided by other method involving the same commercial biosensor as amperometric detector in stirred solutions pointed out that there were no significant differences. Moreover, in comparison with other available methodologies, this microdialysis-coupled continuous flow system amperometric biosensor-based procedure features straightforward sample preparation, low cost, reduced assay time (sampling rate of 7 h(-1)) and ease of automation. Copyright © 2016 Elsevier B.V. All rights reserved.
Li, Michelle W; Huynh, Bryan H; Hulvey, Matthew K; Lunte, Susan M; Martin, R Scott
2006-02-15
This work describes the fabrication and evaluation of a poly(dimethyl)siloxane (PDMS)-based device that enables the discrete injection of a sample plug from a continuous-flow stream into a microchannel for subsequent analysis by electrophoresis. Devices were fabricated by aligning valving and flow channel layers followed by plasma sealing the combined layers onto a glass plate that contained fittings for the introduction of liquid sample and nitrogen gas. The design incorporates a reduced-volume pneumatic valve that actuates (on the order of hundreds of milliseconds) to allow analyte from a continuously flowing sampling channel to be injected into a separation channel for electrophoresis. The injector design was optimized to include a pushback channel to flush away stagnant sample associated with the injector dead volume. The effect of the valve actuation time, the pushback voltage, and the sampling stream flow rate on the performance of the device was characterized. Using the optimized design and an injection frequency of 0.64 Hz showed that the injection process is reproducible (RSD of 1.77%, n = 15). Concentration change experiments using fluorescein as the analyte showed that the device could achieve a lag time as small as 14 s. Finally, to demonstrate the potential uses of this device, the microchip was coupled to a microdialysis probe to monitor a concentration change and sample a fluorescein dye mixture.
Graphene-based battery electrodes having continuous flow paths
Zhang, Jiguang; Xiao, Jie; Liu, Jun; Xu, Wu; Li, Xiaolin; Wang, Deyu
2014-05-24
Some batteries can exhibit greatly improved performance by utilizing electrodes having randomly arranged graphene nanosheets forming a network of channels defining continuous flow paths through the electrode. The network of channels can provide a diffusion pathway for the liquid electrolyte and/or for reactant gases. Metal-air batteries can benefit from such electrodes. In particular Li-air batteries show extremely high capacities, wherein the network of channels allow oxygen to diffuse through the electrode and mesopores in the electrode can store discharge products.
Continuous-Flow In-Line Solvent-Swap Crystallization of Vitamin D3
2017-01-01
A continuous tandem in-line evaporation–crystallization is presented. The process includes an in-line solvent-swap step, suitable to be coupled to a capillary based cooler. As a proof of concept, this setup is tested in a direct in-line acetonitrile mediated crystallization of Vitamin D3. This configuration is suitable to be coupled to a new end-to-end continuous microflow synthesis of Vitamin D3. By this procedure, vitamin particles can be crystallized in continuous flow and isolated using an in-line continuous filtration step. In one run in just 1 min of cooling time, ∼50% (w/w) crystals of Vitamin D3 are directly obtained. Furthermore, the polymorphic form as well as crystals shape and size properties are described in this paper.
Foundations of chaotic mixing.
Wiggins, Stephen; Ottino, Julio M
2004-05-15
The simplest mixing problem corresponds to the mixing of a fluid with itself; this case provides a foundation on which the subject rests. The objective here is to study mixing independently of the mechanisms used to create the motion and review elements of theory focusing mostly on mathematical foundations and minimal models. The flows under consideration will be of two types: two-dimensional (2D) 'blinking flows', or three-dimensional (3D) duct flows. Given that mixing in continuous 3D duct flows depends critically on cross-sectional mixing, and that many microfluidic applications involve continuous flows, we focus on the essential aspects of mixing in 2D flows, as they provide a foundation from which to base our understanding of more complex cases. The baker's transformation is taken as the centrepiece for describing the dynamical systems framework. In particular, a hierarchy of characterizations of mixing exist, Bernoulli --> mixing --> ergodic, ordered according to the quality of mixing (the strongest first). Most importantly for the design process, we show how the so-called linked twist maps function as a minimal picture of mixing, provide a mathematical structure for understanding the type of 2D flows that arise in many micromixers already built, and give conditions guaranteeing the best quality mixing. Extensions of these concepts lead to first-principle-based designs without resorting to lengthy computations.
NASA Astrophysics Data System (ADS)
Benyamine, Mebirika; Aussillous, Pascale; Dalloz-Dubrujeaud, Blanche
2017-06-01
Silos are widely used in the industry. While empirical predictions of the flow rate, based on scaling laws, have existed for more than a century (Hagen 1852, translated in [1] - Beverloo et al. [2]), recent advances have be made on the understanding of the control parameters of the flow. In particular, using continuous modeling together with a mu(I) granular rheology seem to be successful in predicting the flow rate for large numbers of beads at the aperture (Staron et al.[3], [4]). Moreover Janda et al.[5] have shown that the packing fraction at the outlet plays an important role when the number of beads at the apeture decreases. Based on these considerations, we have studied experimentally the discharge flow of a granular media from a rectangular silo. We have varied two main parameters: the angle of the hopper, and the bulk packing fraction of the granular material by using bidisperse mixtures. We propose a simple physical model to describe the effect of these parameters, considering a continuous granular media with a dilatancy law at the outlet. This model predicts well the dependance of the flow rate on the hopper angle as well as the dependance of the flow rate on the fine mass fraction of a bidisperse mixture.
Wang, Yuhe; Li, Yanbin; Wang, Ronghui; Wang, Maohua; Lin, Jianhan
2017-04-01
As a result of the low concentration of avian influenza viruses in samples for routine screening, the separation and concentration of these viruses are vital for their sensitive detection. We present a novel three-dimensional printed magnetophoretic system for the continuous flow separation of the viruses using aptamer-modified magnetic nanoparticles, a magnetophoretic chip, a magnetic field, and a fluidic controller. The magnetic field was designed based on finite element magnetic simulation and developed using neodymium magnets with a maximum intensity of 0.65 T and a gradient of 32 T/m for dragging the nanoparticle-virus complexes. The magnetophoretic chip was designed by SOLIDWORKS and fabricated by a three-dimensional printer with a magnetophoretic channel for the continuous flow separation of the viruses using phosphate-buffered saline as carrier flow. The fluidic controller was developed using a microcontroller and peristaltic pumps to inject the carrier flow and the viruses. The trajectory of the virus-nanoparticle complexes was simulated using COMSOL for optimization of the carrier flow and the magnetic field, respectively. The results showed that the H5N1 viruses could be captured, separated, and concentrated using the proposed magnetophoretic system with the separation efficiency up to 88% in a continuous flow separation time of 2 min for a sample volume of 200 μL. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Paramagnetic capture mode magnetophoretic microseparator for high efficiency blood cell separations.
Han, Ki-Ho; Frazier, A Bruno
2006-02-01
This paper presents the characterization of continuous single-stage and three-stage cascade paramagnetic capture (PMC) mode magnetophoretic microseparators for high efficiency separation of red and white blood cells from diluted whole blood based on their native magnetic properties. The separation mechanism for both PMC microseparators is based on a high gradient magnetic separation (HGMS) method. This approach enables separation of blood cells without the use of additives such as magnetic beads. Experimental results for the single-stage PMC microseparator show that 91.1% of red blood cells were continuously separated from the sample at a volumetric flow rate of 5 microl h-1. In addition, the three-stage cascade PMC microseparator continuously separated 93.5% of red blood cells and 97.4% of white blood cells from whole blood at a volumetric flow rate of 5 microl h-1.
Pirotte, Geert; Kesters, Jurgen; Verstappen, Pieter; Govaerts, Sanne; Manca, Jean; Lutsen, Laurence; Vanderzande, Dirk; Maes, Wouter
2015-10-12
Organic photovoltaics (OPV) have attracted great interest as a solar cell technology with appealing mechanical, aesthetical, and economies-of-scale features. To drive OPV toward economic viability, low-cost, large-scale module production has to be realized in combination with increased top-quality material availability and minimal batch-to-batch variation. To this extent, continuous flow chemistry can serve as a powerful tool. In this contribution, a flow protocol is optimized for the high performance benzodithiophene-thienopyrroledione copolymer PBDTTPD and the material quality is probed through systematic solar-cell evaluation. A stepwise approach is adopted to turn the batch process into a reproducible and scalable continuous flow procedure. Solar cell devices fabricated using the obtained polymer batches deliver an average power conversion efficiency of 7.2 %. Upon incorporation of an ionic polythiophene-based cathodic interlayer, the photovoltaic performance could be enhanced to a maximum efficiency of 9.1 %. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Continuation Power Flow Analysis for PV Integration Studies at Distribution Feeders
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Jiyu; Zhu, Xiangqi; Lubkeman, David L.
2017-10-30
This paper presents a method for conducting continuation power flow simulation on high-solar penetration distribution feeders. A load disaggregation method is developed to disaggregate the daily feeder load profiles collected in substations down to each load node, where the electricity consumption of residential houses and commercial buildings are modeled using actual data collected from single family houses and commercial buildings. This allows the modeling of power flow and voltage profile along a distribution feeder on a continuing fashion for a 24- hour period at minute-by-minute resolution. By separating the feeder into load zones based on the distance between the loadmore » node and the feeder head, we studied the impact of PV penetration on distribution grid operation in different seasons and under different weather conditions for different PV placements.« less
USDA-ARS?s Scientific Manuscript database
Data from modern soil water contents probes can be used for data assimilation in soil water flow modeling, i.e. continual correction of the flow model performance based on observations. The ensemble Kalman filter appears to be an appropriate method for that. The method requires estimates of the unce...
Li, Hui; Sheeran, Jillian W; Clausen, Andrew M; Fang, Yuan-Qing; Bio, Matthew M; Bader, Scott
2017-08-01
The development of a flow chemistry process for asymmetric propargylation using allene gas as a reagent is reported. The connected continuous process of allene dissolution, lithiation, Li-Zn transmetallation, and asymmetric propargylation provides homopropargyl β-amino alcohol 1 with high regio- and diastereoselectivity in high yield. This flow process enables practical use of an unstable allenyllithium intermediate. The process uses the commercially available and recyclable (1S,2R)-N-pyrrolidinyl norephedrine as a ligand to promote the highly diastereoselective (32:1) propargylation. Judicious selection of mixers based on the chemistry requirement and real-time monitoring of the process using process analytical technology (PAT) enabled stable and scalable flow chemistry runs. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Low-flow characteristics of streams in Ohio through water year 1997
Straub, David E.
2001-01-01
This report presents selected low-flow and flow-duration characteristics for 386 sites throughout Ohio. These sites include 195 long-term continuous-record stations with streamflow data through water year 1997 (October 1 to September 30) and for 191 low-flow partial-record stations with measurements into water year 1999. The characteristics presented for the long-term continuous-record stations are minimum daily streamflow; average daily streamflow; harmonic mean flow; 1-, 7-, 30-, and 90-day minimum average low flow with 2-, 5-, 10-, 20-, and 50-year recurrence intervals; and 98-, 95-, 90-, 85-, 80-, 75-, 70-, 60-, 50-, 40-, 30-, 20-, and 10-percent daily duration flows. The characteristics presented for the low-flow partial-record stations are minimum observed streamflow; estimated 1-, 7-, 30-, and 90-day minimum average low flow with 2-, 10-, and 20-year recurrence intervals; and estimated 98-, 95-, 90-, 85- and 80-percent daily duration flows. The low-flow frequency and duration analyses were done for three seasonal periods (warm weather, May 1 to November 30; winter, December 1 to February 28/29; and autumn, September 1 to November 30), plus the annual period based on the climatic year (April 1 to March 31).
Brinley, T A; Dock, C N; Truong, V-D; Coronel, P; Kumar, P; Simunovic, J; Sandeep, K P; Cartwright, G D; Swartzel, K R; Jaykus, L-A
2007-06-01
Continuous-flow microwave heating has potential in aseptic processing of various food products, including purees from sweetpotatoes and other vegetables. Establishing the feasibility of a new processing technology for achieving commercial sterility requires evaluating microbial inactivation. This study aimed to assess the feasibility of using commercially available plastic pouches of bioindicators containing spores of Geobacillius stearothermophilus ATCC 7953 and Bacillus subtilis ATCC 35021 for evaluating the degree of microbial inactivation achieved in vegetable purees processed in a continuous-flow microwave heating unit. Sweetpotato puree seeded with the bioindicators was subjected to 3 levels of processing based on the fastest particles: undertarget process (F(0) approximately 0.65), target process (F(0) approximately 2.8), and overtarget process (F(0) approximately 10.10). After initial experiments, we found it was necessary to engineer a setup with 2 removable tubes connected to the continuous-flow microwave system to facilitate the injection of indicators into the unit without interrupting the puree flow. Using this approach, 60% of the indicators injected into the system could be recovered postprocess. Spore survival after processing, as evaluated by use of growth indicator dyes and standard plating methods, verified inactivation of the spores in sweetpotato puree. The log reduction results for B. subtilis were equivalent to the predesigned degrees of sterilization (F(0)). This study presents the first report suggesting that bioindicators such as the flexible, food-grade plastic pouches can be used for microbial validation of commercial sterilization in aseptic processing of foods using a continuous-flow microwave system.
GIS-based channel flow and sediment transport simulation using CCHE1D coupled with AnnAGNPS
USDA-ARS?s Scientific Manuscript database
CCHE1D (Center for Computational Hydroscience and Engineering 1-Dimensional model) simulates unsteady free-surface flows with nonequilibrium, nonuniform sediment transport in dendritic channel networks. Since early 1990’s, the model and its software packages have been developed and continuously main...
USDA-ARS?s Scientific Manuscript database
Increasing urbanization changes runoff patterns to be flashy and instantaneous with decreased base flow. A model with the ability to simulate sub-daily rainfall–runoff processes and continuous simulation capability is required to realistically capture the long-term flow and water quality trends in w...
Rapid identification of Yersinia pestis and Brucella melitensis by chip-based continuous flow PCR
NASA Astrophysics Data System (ADS)
Dietzsch, Michael; Hlawatsch, Nadine; Melzer, Falk; Tomaso, Herbert; Gärtner, Claudia; Neubauer, Heinrich
2012-06-01
To combat the threat of biological agents like Yersinia pestis and Brucella melitensis in bioterroristic scenarios requires fast, easy-to-use and safe identification systems. In this study we describe a system for rapid amplification of specific genetic markers for the identification of Yersinia pestis and Brucella melitensis. Using chip based PCR and continuous flow technology we were able to amplify the targets simultaneously with a 2-step reaction profile within 20 minutes. The subsequent analysis of amplified fragments by standard gel electrophoresis requires another 45 minutes. We were able to detect both pathogens within 75 minutes being much faster than most other nucleic acid amplification technologies.
Martha, Cornelius T; Hoogendoorn, Jan-Carel; Irth, Hubertus; Niessen, Wilfried M A
2011-05-15
Current development in catalyst discovery includes combinatorial synthesis methods for the rapid generation of compound libraries combined with high-throughput performance-screening methods to determine the associated activities. Of these novel methodologies, mass spectrometry (MS) based flow chemistry methods are especially attractive due to the ability to combine sensitive detection of the formed reaction product with identification of introduced catalyst complexes. Recently, such a mass spectrometry based continuous-flow reaction detection system was utilized to screen silver-adducted ferrocenyl bidentate catalyst complexes for activity in a multicomponent synthesis of a substituted 2-imidazoline. Here, we determine the merits of different ionization approaches by studying the combination of sensitive detection of product formation in the continuous-flow system with the ability to simultaneous characterize the introduced [ferrocenyl bidentate+Ag](+) catalyst complexes. To this end, we study the ionization characteristics of electrospray ionization (ESI), atmospheric-pressure chemical ionization (APCI), no-discharge APCI, dual ESI/APCI, and dual APCI/no-discharge APCI. Finally, we investigated the application potential of the different ionization approaches by the investigation of ferrocenyl bidentate catalyst complex responses in different solvents. Copyright © 2011 Elsevier B.V. All rights reserved.
Low-flow frequency analyses for streams in west-central Florida
Hammett, K.M.
1985-01-01
The log-Pearson type III distribution was used for defining low-flow frequency at 116 continuous-record streamflow stations in west-central Florida. Frequency distributions were calculated for 1, 3, 7, 14, 30, 60, 90, 120, and 183 consecutive-day periods for recurrence intervals of 2, 5, 10, and 20 years. Discharge measurements at more than 100 low-flow partial-record stations and miscellaneous discharge-measurement stations were correlated with concurrent daily mean discharge at continuous-record stations. Estimates of the 7-day, 2-year; 7-day, 10-year; 30-day, 2-year; and 30-day, 10-year discharges were made for most of the low-flow partial-record and miscellaneous discharge-measurement stations based on those correlations. Multiple linear-regression analysis was used in an attempt to mathematically relate low-flow frequency data to basin characteristics. The resulting equations showed an apparent bias and were considered unsatisfactory for use in estimating low-flow characteristics. Maps of the 7-day, 10-year and 30-day, 10-year low flows are presented. Techniques that can be used to estimate low-flow characteristics at an ungaged site are also provided. (USGS)
Wisconsin Recertification Manual for Public Librarians.
ERIC Educational Resources Information Center
Fox, Robert; And Others
Designed to assist public librarians certified after May 1, 1979, this manual explains Wisconsin recertification requirements based on continuing education. It provides continuing education guidelines, a flow chart of the recertification process, an individual learning activity form, an annual report form, a conversion chart for assignment of…
Estimated flow-duration curves for selected ungaged sites in Kansas
Studley, S.E.
2001-01-01
Flow-duration curves for 1968-98 were estimated for 32 ungaged sites in the Missouri, Smoky Hill-Saline, Solomon, Marais des Cygnes, Walnut, Verdigris, and Neosho River Basins in Kansas. Also included from a previous report are estimated flow-duration curves for 16 ungaged sites in the Cimarron and lower Arkansas River Basins in Kansas. The method of estimation used six unique factors of flow duration: (1) mean streamflow and percentage duration of mean streamflow, (2) ratio of 1-percent-duration streamflow to mean streamflow, (3) ratio of 0.1-percent-duration streamflow to 1-percent-duration streamflow, (4) ratio of 50-percent-duration streamflow to mean streamflow, (5) percentage duration of appreciable streamflow (0.10 cubic foot per second), and (6) average slope of the flow-duration curve. These factors were previously developed from a regionalized study of flow-duration curves using streamflow data for 1921-76 from streamflow-gaging stations with drainage areas of 100 to 3,000 square miles. The method was tested on a currently (2001) measured, continuous-record streamflow-gaging station on Salt Creek near Lyndon, Kansas, with a drainage area of 111 square miles and was found to adequately estimate the computed flow-duration curve for the station. The method also was tested on a currently (2001) measured, continuous-record, streamflow-gaging station on Soldier Creek near Circleville, Kansas, with a drainage area of 49.3 square miles. The results of the test on Soldier Creek near Circleville indicated that the method could adequately estimate flow-duration curves for sites with drainage areas of less than 100 square miles. The low-flow parts of the estimated flow-duration curves were verified or revised using 137 base-flow discharge measurements made during 1999-2000 at the 32 ungaged sites that were correlated with base-flow measurements and flow-duration analyses performed at nearby, long-term, continuous-record, streamflow-gaging stations (index stations). The method did not adequately estimate the flow-duration curves for two sites in the western one-third of the State because of substantial changes in farming practices (terracing and intensive ground-water withdrawal) that were not accounted for in the two previous studies (Furness, 1959; Jordan, 1983). For these two sites, there was enough historic, continuous-streamflow record available to perform record-extension techniques correlated to their respective index stations for the development of the estimated flow-duration curves. The estimated flow-duration curves at the ungaged sites can be used for projecting future flow frequencies for assessment of total maximum daily loads (TMDLs) or other water-quality constituents, water-availability studies, and for basin-characteristic studies.
Poppenga, Sandra K.; Worstell, Bruce B.; Stoker, Jason M.; Greenlee, Susan K.
2010-01-01
Digital elevation data commonly are used to extract surface flow features. One source for high-resolution elevation data is light detection and ranging (lidar). Lidar can capture a vast amount of topographic detail because of its fine-scale ability to digitally capture the surface of the earth. Because elevation is a key factor in extracting surface flow features, high-resolution lidar-derived digital elevation models (DEMs) provide the detail needed to consistently integrate hydrography with elevation, land cover, structures, and other geospatial features. The U.S. Geological Survey has developed selective drainage methods to extract continuous surface flow from high-resolution lidar-derived digital elevation data. The lidar-derived continuous surface flow network contains valuable information for water resource management involving flood hazard mapping, flood inundation, and coastal erosion. DEMs used in hydrologic applications typically are processed to remove depressions by filling them. High-resolution DEMs derived from lidar can capture much more detail of the land surface than courser elevation data. Therefore, high-resolution DEMs contain more depressions because of obstructions such as roads, railroads, and other elevated structures. The filling of these depressions can significantly affect the DEM-derived surface flow routing and terrain characteristics in an adverse way. In this report, selective draining methods that modify the elevation surface to drain a depression through an obstruction are presented. If such obstructions are not removed from the elevation data, the filling of depressions to create continuous surface flow can cause the flow to spill over an obstruction in the wrong location. Using this modified elevation surface improves the quality of derived surface flow and retains more of the true surface characteristics by correcting large filled depressions. A reliable flow surface is necessary for deriving a consistently connected drainage network, which is important in understanding surface water movement and developing applications for surface water runoff, flood inundation, and erosion. Improved methods are needed to extract continuous surface flow features from high-resolution elevation data based on lidar.
State of the art of aerobic granulation in continuous flow bioreactors.
Kent, Timothy R; Bott, Charles B; Wang, Zhi-Wu
In the wake of the success of aerobic granulation in sequential batch reactors (SBRs) for treating wastewater, attention is beginning to turn to continuous flow applications. This is a necessary step given the advantages of continuous flow treatment processes and the fact that the majority of full-scale wastewater treatment plants across the world are operated with aeration tanks and clarifiers in a continuous flow mode. As in SBRs, applying a selection pressure, based on differences in either settling velocity or the size of the biomass, is essential for successful granulation in continuous flow reactors (CFRs). CFRs employed for aerobic granulation come in multiple configurations, each with their own means of achieving such a selection pressure. Other factors, such as bioaugmentation and hydraulic shear force, also contribute to aerobic granulation to some extent. Besides the formation of aerobic granules, long-term stability of aerobic granules is also a critical issue to be addressed. Inorganic precipitation, special inocula, and various operational optimization strategies have been used to improve granule long-term structural integrity. Accumulated studies reviewed in this work demonstrate that aerobic granulation in CFRs is capable of removing a wide spectrum of contaminants and achieving properties generally comparable to those in SBRs. Despite the notable research progress made toward successful aerobic granulation in lab-scale CFRs, to the best of our knowledge, there are only three full-scale tests of the technique, two being seeded with anammox-supported aerobic granules and the other with conventional aerobic granules; two other process alternatives are currently in development. Application of settling- or size-based selection pressures and feast/famine conditions are especially difficult to implement to these and similar mainstream systems. Future research efforts needs to be focused on the optimization of the granule-to-floc ratio, enhancement of granule activity, improvement of long-term granule stability, and a better understanding of aerobic granulation mechanisms in CFRs, especially in full-scale applications. Copyright © 2018 Elsevier Inc. All rights reserved.
Thermographic venous blood flow characterization with external cooling stimulation
NASA Astrophysics Data System (ADS)
Saxena, Ashish; Ng, E. Y. K.; Raman, Vignesh
2018-05-01
Experimental characterization of blood flow in a human forearm is done with the application of continuous external cooling based active thermography method. Qualitative and quantitative detection of the blood vessel in a thermal image is done, along with the evaluation of blood vessel diameter, blood flow direction, and velocity in the target blood vessel. Subtraction based image manipulation is performed to enhance the feature contrast of the thermal image acquired after the removal of external cooling. To demonstrate the effect of occlusion diseases (obstruction), an external cuff based occlusion is applied after the removal of cooling and its effect on the skin rewarming is studied. Using external cooling, a transit time method based blood flow velocity estimation is done. From the results obtained, it is evident that an external cooling based active thermography method can be used to develop a diagnosis tool for superficial blood vessel diseases.
NASA Astrophysics Data System (ADS)
Dunne, Peter W.; Starkey, Chris L.; Gimeno-Fabra, Miquel; Lester, Edward H.
2014-01-01
Continuous flow hydrothermal synthesis offers a cheap, green and highly scalable route for the preparation of inorganic nanomaterials which has predominantly been applied to metal oxide based materials. In this work we report the first continuous flow hydrothermal synthesis of metal sulphide nanomaterials. A wide range of binary metal sulphides, ZnS, CdS, PbS, CuS, Fe(1-x)S and Bi2S3, have been synthesised. By varying the reaction conditions two different mechanisms may be invoked; a growth dominated route which permits the formation of nanostructured sulphide materials, and a nucleation driven process which produces nanoparticles with temperature dependent size control. This offers a new and industrially viable route to a wide range of metal sulphide nanoparticles with facile size and shape control.Continuous flow hydrothermal synthesis offers a cheap, green and highly scalable route for the preparation of inorganic nanomaterials which has predominantly been applied to metal oxide based materials. In this work we report the first continuous flow hydrothermal synthesis of metal sulphide nanomaterials. A wide range of binary metal sulphides, ZnS, CdS, PbS, CuS, Fe(1-x)S and Bi2S3, have been synthesised. By varying the reaction conditions two different mechanisms may be invoked; a growth dominated route which permits the formation of nanostructured sulphide materials, and a nucleation driven process which produces nanoparticles with temperature dependent size control. This offers a new and industrially viable route to a wide range of metal sulphide nanoparticles with facile size and shape control. Electronic supplementary information (ESI) available: Experimental details, refinement procedure, fluorescence spectra of ZnS samples. See DOI: 10.1039/c3nr05749f
Continuous real-time measurement of aqueous cyanide
Rosentreter, Jeffrey J.; Gering, Kevin L.
2007-03-06
This invention provides a method and system capable of the continuous, real-time measurement of low concentrations of aqueous free cyanide (CN) using an on-line, flow through system. The system is based on the selective reactivity of cyanide anions and the characteristically nonreactive nature of metallic gold films, wherein this selective reactivity is exploited as an indirect measurement for aqueous cyanide. In the present invention the dissolution of gold, due to the solubilization reaction with the analyte cyanide anion, is monitored using a piezoelectric microbalance contained within a flow cell.
On the continuity of mean total normal stress in geometrical multiscale cardiovascular problems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blanco, Pablo J., E-mail: pjblanco@lncc.br; INCT-MACC, Instituto Nacional de Ciência e Tecnologia em Medicina Assistida por Computação Científica, Petrópolis; Deparis, Simone, E-mail: simone.deparis@epfl.ch
2013-10-15
In this work an iterative strategy to implicitly couple dimensionally-heterogeneous blood flow models accounting for the continuity of mean total normal stress at interface boundaries is developed. Conservation of mean total normal stress in the coupling of heterogeneous models is mandatory to satisfy energetic consistency between them. Nevertheless, existing methodologies are based on modifications of the Navier–Stokes variational formulation, which are undesired when dealing with fluid–structure interaction or black box codes. The proposed methodology makes possible to couple one-dimensional and three-dimensional fluid–structure interaction models, enforcing the continuity of mean total normal stress while just imposing flow rate data or evenmore » the classical Neumann boundary data to the models. This is accomplished by modifying an existing iterative algorithm, which is also able to account for the continuity of the vessel area, when required. Comparisons are performed to assess differences in the convergence properties of the algorithms when considering the continuity of mean normal stress and the continuity of mean total normal stress for a wide range of flow regimes. Finally, examples in the physiological regime are shown to evaluate the importance, or not, of considering the continuity of mean total normal stress in hemodynamics simulations.« less
Shape-controlled continuous synthesis of metal nanostructures
NASA Astrophysics Data System (ADS)
Sebastian, Victor; Smith, Christopher D.; Jensen, Klavs F.
2016-03-01
A segmented flow-based microreactor is used for the continuous production of faceted nanocrystals. Flow segmentation is proposed as a versatile tool to manipulate the reduction kinetics and control the growth of faceted nanostructures; tuning the size and shape. Switching the gas from oxygen to carbon monoxide permits the adjustment in nanostructure growth from 1D (nanorods) to 2D (nanosheets). CO is a key factor in the formation of Pd nanosheets and Pt nanocubes; operating as a second phase, a reductant, and a capping agent. This combination confines the growth to specific structures. In addition, the segmented flow microfluidic reactor inherently has the ability to operate in a reproducible manner at elevated temperatures and pressures whilst confining potentially toxic reactants, such as CO, in nanoliter slugs. This continuous system successfully synthesised Pd nanorods with an aspect ratio of 6; thin palladium nanosheets with a thickness of 1.5 nm; and Pt nanocubes with a 5.6 nm edge length, all in a synthesis time as low as 150 s.A segmented flow-based microreactor is used for the continuous production of faceted nanocrystals. Flow segmentation is proposed as a versatile tool to manipulate the reduction kinetics and control the growth of faceted nanostructures; tuning the size and shape. Switching the gas from oxygen to carbon monoxide permits the adjustment in nanostructure growth from 1D (nanorods) to 2D (nanosheets). CO is a key factor in the formation of Pd nanosheets and Pt nanocubes; operating as a second phase, a reductant, and a capping agent. This combination confines the growth to specific structures. In addition, the segmented flow microfluidic reactor inherently has the ability to operate in a reproducible manner at elevated temperatures and pressures whilst confining potentially toxic reactants, such as CO, in nanoliter slugs. This continuous system successfully synthesised Pd nanorods with an aspect ratio of 6; thin palladium nanosheets with a thickness of 1.5 nm; and Pt nanocubes with a 5.6 nm edge length, all in a synthesis time as low as 150 s. Electronic supplementary information (ESI) available: ESI Fig. S1-S8. See DOI: 10.1039/c5nr08531d
Behaviour and design considerations for continuous flow closed-open-closed liquid microchannels.
Melin, Jessica; van der Wijngaart, Wouter; Stemme, Göran
2005-06-01
This paper introduces a method of combining open and closed microchannels in a single component in a novel way which couples the benefits of both open and closed microfluidic systems and introduces interesting on-chip microfluidic behaviour. Fluid behaviour in such a component, based on continuous pressure driven flow and surface tension, is discussed in terms of cross sectional flow behaviour, robustness, flow-pressure performance, and its application to microfluidic interfacing. The closed-open-closed microchannel possesses the versatility of upstream and downstream closed microfluidics along with open fluidic direct access. The device has the advantage of eliminating gas bubbles present upstream when these enter the open channel section. The unique behaviour of this device opens the door to applications including direct liquid sample interfacing without the need for additional and bulky sample tubing.
2016-03-14
flows , or continuous state changes, with feedback loops and lags modeled in the flow system. Agent based simulations operate using a discrete event...DeLand, S. M., Rutherford, B . M., Diegert, K. V., & Alvin, K. F. (2002). Error and uncertainty in modeling and simulation . Reliability Engineering...intrinsic complexity of the underlying social systems fundamentally limits the ability to make
Dynamical and fractal properties in periodically forced stretch-twist-fold (STF) flow
NASA Astrophysics Data System (ADS)
Aqeel, Muhammad; Ahmad, Salman; Azam, Anam; Ahmed, Faizan
2017-05-01
The periodically forced stretch-twist-fold (STF) flow is introduced in this article. The nonlinear behavior of the STF flow with periodic force along the y -axis is investigated analytically and numerically. The STF flow is a prototype of the dynamo theory that proposes a mechanism of magnetic field generation continuously. The stability analysis is done by Routh Huwritz criteria and Cardano method. Chasing chaos through numerical simulation is determined to demonstrate the chaotic behavior of the forced STF flow. With the help of fractal processes based on the forced STF flow, a multi-wing forced STF flow is obtained that gives a n -wing forced STF flow system.
Bayes to the Rescue: Continuous Positive Airway Pressure Has Less Mortality Than High-Flow Oxygen.
Modesto I Alapont, Vicent; Khemani, Robinder G; Medina, Alberto; Del Villar Guerra, Pablo; Molina Cambra, Alfred
2017-02-01
The merits of high-flow nasal cannula oxygen versus bubble continuous positive airway pressure are debated in children with pneumonia, with suggestions that randomized controlled trials are needed. In light of a previous randomized controlled trial showing a trend for lower mortality with bubble continuous positive airway pressure, we sought to determine the probability that a new randomized controlled trial would find high-flow nasal cannula oxygen superior to bubble continuous positive airway pressure through a "robust" Bayesian analysis. Sample data were extracted from the trial by Chisti et al, and requisite to "robust" Bayesian analysis, we specified three prior distributions to represent clinically meaningful assumptions. These priors (reference, pessimistic, and optimistic) were used to generate three scenarios to represent the range of possible hypotheses. 1) "Reference": we believe bubble continuous positive airway pressure and high-flow nasal cannula oxygen are equally effective with the same uninformative reference priors; 2) "Sceptic on high-flow nasal cannula oxygen": we believe that bubble continuous positive airway pressure is better than high-flow nasal cannula oxygen (bubble continuous positive airway pressure has an optimistic prior and high-flow nasal cannula oxygen has a pessimistic prior); and 3) "Enthusiastic on high-flow nasal cannula oxygen": we believe that high-flow nasal cannula oxygen is better than bubble continuous positive airway pressure (high-flow nasal cannula oxygen has an optimistic prior and bubble continuous positive airway pressure has a pessimistic prior). Finally, posterior empiric Bayesian distributions were obtained through 100,000 Markov Chain Monte Carlo simulations. In all three scenarios, there was a high probability for more death from high-flow nasal cannula oxygen compared with bubble continuous positive airway pressure (reference, 0.98; sceptic on high-flow nasal cannula oxygen, 0.982; enthusiastic on high-flow nasal cannula oxygen, 0.742). The posterior 95% credible interval on the difference in mortality identified a future randomized controlled trial would be extremely unlikely to find a mortality benefit for high-flow nasal cannula oxygen over bubble continuous positive airway pressure, regardless of the scenario. Interpreting these findings using the "range of practical equivalence" framework would recommend rejecting the hypothesis that high-flow nasal cannula oxygen is superior to bubble continuous positive airway pressure for these children. For children younger than 5 years with pneumonia, high-flow nasal cannula oxygen has higher mortality than bubble continuous positive airway pressure. A future randomized controlled trial in this population is unlikely to find high-flow nasal cannula oxygen superior to bubble continuous positive airway pressure.
Continuation through Singularity of Continuum Multiphase Algorithms
2013-03-01
capturing simulation of two-phase flow ; a singularity- free mesoscopic simulation that bridges atomic and continuum scales; and a physics-based closure...for free surface flow . The full two-way coupling was found to be irrelevant to the overall objective of developing a closure model to allow...The method can be used for the study of single species free - surface flow , for instance, in the case of pinch-off of a liquid thread during the
Cottle, Daniel; Mousdale, Stephen; Waqar-Uddin, Haroon; Tully, Redmond; Taylor, Benjamin
2016-02-01
Transferring the theoretical aspect of continuous renal replacement therapy to the bedside and delivering a given "dose" can be difficult. In research, the "dose" of renal replacement therapy is given as effluent flow rate in ml kg -1 h -1 . Unfortunately, most machines require other information when they are initiating therapy, including blood flow rate, pre-blood pump flow rate, dialysate flow rate, etc. This can lead to confusion, resulting in patients receiving inappropriate doses of renal replacement therapy. Our aim was to design an excel calculator which would personalise patient's treatment, deliver an effective, evidence-based dose of renal replacement therapy without large variations in practice and prolong filter life. Our calculator prescribes a haemodialfiltration dose of 25 ml kg -1 h -1 whilst limiting the filtration fraction to 15%. We compared the episodes of renal replacement therapy received by a historical group of patients, by retrieving their data stored on the haemofiltration machines, to a group where the calculator was used. In the second group, the data were gathered prospectively. The median delivered dose reduced from 41.0 ml kg -1 h -1 to 26.8 ml kg -1 h -1 with reduced variability that was significantly closer to the aim of 25 ml kg -1 .h -1 ( p < 0.0001). The median treatment time increased from 8.5 h to 22.2 h ( p = 0.00001). Our calculator significantly reduces variation in prescriptions of continuous veno-venous haemodiafiltration and provides an evidence-based dose. It is easy to use and provides personal care for patients whilst optimizing continuous veno-venous haemodiafiltration delivery and treatment times.
Mobile magnetic particles as solid-supports for rapid surface-based bioanalysis in continuous flow.
Peyman, Sally A; Iles, Alexander; Pamme, Nicole
2009-11-07
An extremely versatile microfluidic device is demonstrated in which multi-step (bio)chemical procedures can be performed in continuous flow. The system operates by generating several co-laminar flow streams, which contain reagents for specific (bio)reactions across a rectangular reaction chamber. Functionalized magnetic microparticles are employed as mobile solid-supports and are pulled from one side of the reaction chamber to the other by use of an external magnetic field. As the particles traverse the co-laminar reagent streams, binding and washing steps are performed on their surface in one operation in continuous flow. The applicability of the platform was first demonstrated by performing a proof-of-principle binding assay between streptavidin coated magnetic particles and biotin in free solution with a limit of detection of 20 ng mL(-1) of free biotin. The system was then applied to a mouse IgG sandwich immunoassay as a first example of a process involving two binding steps and two washing steps, all performed within 60 s, a fraction of the time required for conventional testing.
Shi, Wenying; He, Benqiao; Cao, Yuping; Li, Jianxin; Yan, Feng; Cui, Zhenyu; Zou, Zhiqun; Guo, Shiwei; Qian, Xiaomin
2013-02-01
A novel composite catalytic membrane (CCM) was prepared from sulfonated polyethersulfone (SPES) and polyethersulfone (PES) blend supported by non-woven fabrics, as a heterogeneous catalyst to produce biodiesel from continuous esterification of oleic acid with methanol in a flow-through mode. A kinetic model of esterification was established based on a plug-flow assumption. The effects of the CCM structure (thickness, area, porosity, etc.), reaction temperature and the external and internal mass transfer resistances on esterification were investigated. The results showed that the CCM structure had a significant effect on the acid conversion. The external mass transfer resistance could be neglected when the flow rate was over 1.2 ml min(-1). The internal mass transfer resistance impacted on the conversion when membrane thickness was over 1.779 mm. An oleic acid conversion kept over 98.0% for 500 h of continuous running. The conversions obtained from the model are in good agreement with the experimental data. Copyright © 2012 Elsevier Ltd. All rights reserved.
An Interactive Tool for Discrete Phase Analysis in Two-Phase Flows
NASA Technical Reports Server (NTRS)
Dejong, Frederik J.; Thoren, Stephen J.
1993-01-01
Under a NASA MSFC SBIR Phase 1 effort an interactive software package has been developed for the analysis of discrete (particulate) phase dynamics in two-phase flows in which the discrete phase does not significantly affect the continuous phase. This package contains a Graphical User Interface (based on the X Window system and the Motif tool kit) coupled to a particle tracing program, which allows the user to interactively set up and run a case for which a continuous phase grid and flow field are available. The software has been applied to a solid rocket motor problem, to demonstrate its ease of use and its suitability for problems of engineering interest, and has been delivered to NASA Marshall Space Flight Center.
Continuous flow real-time PCR device using multi-channel fluorescence excitation and detection.
Hatch, Andrew C; Ray, Tathagata; Lintecum, Kelly; Youngbull, Cody
2014-02-07
High throughput automation is greatly enhanced using techniques that employ conveyor belt strategies with un-interrupted streams of flow. We have developed a 'conveyor belt' analog for high throughput real-time quantitative Polymerase Chain Reaction (qPCR) using droplet emulsion technology. We developed a low power, portable device that employs LED and fiber optic fluorescence excitation in conjunction with a continuous flow thermal cycler to achieve multi-channel fluorescence detection for real-time fluorescence measurements. Continuously streaming fluid plugs or droplets pass through tubing wrapped around a two-temperature zone thermal block with each wrap of tubing fluorescently coupled to a 64-channel multi-anode PMT. This work demonstrates real-time qPCR of 0.1-10 μL droplets or fluid plugs over a range of 7 orders of magnitude concentration from 1 × 10(1) to 1 × 10(7). The real-time qPCR analysis allows dynamic range quantification as high as 1 × 10(7) copies per 10 μL reaction, with PCR efficiencies within the range of 90-110% based on serial dilution assays and a limit of detection of 10 copies per rxn. The combined functionality of continuous flow, low power thermal cycling, high throughput sample processing, and real-time qPCR improves the rates at which biological or environmental samples can be continuously sampled and analyzed.
Nelms, D.L.; Harlow, G.E.; Hayes, Donald C.
1995-01-01
Growth within the Valley and Ridge, Blue Ridge, and Piedmont Physiographic Provinces of Virginia has focussed concern about allocation of surface-water flow and increased demands on the ground-water resources. The purpose of this report is to (1) describe the base-flow characteristics of streams, (2) identify regional differences in these flow characteristics, and (3) describe, if possible, the potential surface-water and ground-water yields of basins on the basis of the base-flow character- istics. Base-flow characteristics are presented for streams in the Valley and Ridge, Blue Ridge, and Piedmont Physiographic Provinces of Virginia. The provinces are separated into five regions: (1) Valley and Ridge, (2) Blue Ridge, (3) Piedmont/Blue Ridge transition, (4) Piedmont northern, and (5) Piedmont southern. Different flow statistics, which represent streamflows predominantly comprised of base flow, were determined for 217 continuous-record streamflow-gaging stations from historical mean daily discharge and for 192 partial-record streamflow-gaging stations by means of correlation of discharge measurements. Variability of base flow is represented by a duration ratio developed during this investigation. Effective recharge rates were also calculated. Median values for the different flow statistics range from 0.05 cubic foot per second per square mile for the 90-percent discharge on the streamflow-duration curve to 0.61 cubic foot per second per square mile for mean base flow. An excellent estimator of mean base flow for the Piedmont/Blue Ridge transition region and Piedmont southern region is the 50-percent discharge on the streamflow-duration curve, but tends to under- estimate mean base flow for the remaining regions. The base-flow variability index ranges from 0.07 to 2.27, with a median value of 0.55. Effective recharge rates range from 0.07 to 33.07 inches per year, with a median value of 8.32 inches per year. Differences in the base-flow characteristics exist between regions. The median discharges for the Valley and Ridge, Blue Ridge, and Piedmont/Blue Ridge transition regions are higher than those for the Piedmont regions. Results from statistical analysis indicate that the regions can be ranked in terms of base-flow characteristics from highest to lowest as follows: (1) Piedmont/Blue Ridge transition, (2) Valley and Ridge and Blue Ridge, (3) Piedmont southern, and (4) Piedmont northern. The flow statistics are consistently higher and the values for base-flow variability are lower for basins within the Piedmont/Blue Ridge transition region relative to those from the other regions, whereas the basins within the Piedmont northern region show the opposite pattern. The group rankings of the base-flow characteristics were used to designate the potential surface-water yield for the regions. In addition, an approach developed for this investigation assigns a rank for potential surface- water yield to a basin according to the quartiles in which the values for the base-flow character- istics are located. Both procedures indicate that the Valley and Ridge, Blue Ridge, and Piedmont/Blue Ridge transition regions have moderate-to-high potential surface-water yield and the Piedmont regions have low-to-moderate potential surface- water yield. In order to indicate potential ground-water yield from base-flow characteristics, aquifer properties for 51 streamflow-gaging stations with continuous record of streamflow data were determined by methods that use streamflow records and basin characteristics. Areal diffusivity ranges from 17,100 to 88,400 feet squared per day, with a median value of 38,400 feet squared per day. Areal transmissivity ranges from 63 to 830 feet squared per day, with a median value of 270 feet squared per day. Storage coefficients, which were estimated by dividing areal transmissivity by areal diffusivity, range from approximately 0.001 to 0.019 (dimensionless), with a median value of 0.007. The median value for areal diffus
Space-based laser-driven MHD generator: Feasibility study
NASA Technical Reports Server (NTRS)
Choi, S. H.
1986-01-01
The feasibility of a laser-driven MHD generator, as a candidate receiver for a space-based laser power transmission system, was investigated. On the basis of reasonable parameters obtained in the literature, a model of the laser-driven MHD generator was developed with the assumptions of a steady, turbulent, two-dimensional flow. These assumptions were based on the continuous and steady generation of plasmas by the exposure of the continuous wave laser beam thus inducing a steady back pressure that enables the medium to flow steadily. The model considered here took the turbulent nature of plasmas into account in the two-dimensional geometry of the generator. For these conditions with the plasma parameters defining the thermal conductivity, viscosity, electrical conductivity for the plasma flow, a generator efficiency of 53.3% was calculated. If turbulent effects and nonequilibrium ionization are taken into account, the efficiency is 43.2%. The study shows that the laser-driven MHD system has potential as a laser power receiver for space applications because of its high energy conversion efficiency, high energy density and relatively simple mechanism as compared to other energy conversion cycles.
Image processing via level set curvature flow
DOE Office of Scientific and Technical Information (OSTI.GOV)
Malladi, R.; Sethian, J.A.
We present a controlled image smoothing and enhancement method based on a curvature flow interpretation of the geometric heat equation. Compared to existing techniques, the model has several distinct advantages. (i) It contains just one enhancement parameter. (ii) The scheme naturally inherits a stopping criterion from the image; continued application of the scheme produces no further change. (iii) The method is one of the fastest possible schemes based on a curvature-controlled approach. 15 ref., 6 figs.
Design considerations of a thermally stabilized continuous flow electrophoresis chamber 2
NASA Technical Reports Server (NTRS)
Jandebeur, T. S.
1982-01-01
The basic adjustable parameters of a Beckman Continouous Particle Electrophoresis (CPE) Apparatus are investigated to determine the optimum conditions for ground based operation for comparison with space experiments. The possible application of electrically insulated copper/aluminum chamber walls is evaluated as a means to thermally stabilize or equilibrate lateral temperature gradients which exist on the walls of conventional plastic chambers and which distort the rectilinear base flow of buffer through the chamber, significantly affecting sample resolution.
NASA Astrophysics Data System (ADS)
Itatani, Keiichi; Okada, Takashi; Uejima, Tokuhisa; Tanaka, Tomohiko; Ono, Minoru; Miyaji, Kagami; Takenaka, Katsu
2013-07-01
We have developed a system to estimate velocity vector fields inside the cardiac ventricle by echocardiography and to evaluate several flow dynamical parameters to assess the pathophysiology of cardiovascular diseases. A two-dimensional continuity equation was applied to color Doppler data using speckle tracking data as boundary conditions, and the velocity component perpendicular to the echo beam line was obtained. We determined the optimal smoothing method of the color Doppler data, and the 8-pixel standard deviation of the Gaussian filter provided vorticity without nonphysiological stripe shape noise. We also determined the weight function at the bilateral boundaries given by the speckle tracking data of the ventricle or vascular wall motion, and the weight function linear to the distance from the boundary provided accurate flow velocities not only inside the vortex flow but also around near-wall regions on the basis of the results of the validation of a digital phantom of a pipe flow model.
On-chip determination of C-reactive protein using magnetic particles in continuous flow.
Phurimsak, Chayakom; Tarn, Mark D; Peyman, Sally A; Greenman, John; Pamme, Nicole
2014-11-04
We demonstrate the application of a multilaminar flow platform, in which functionalized magnetic particles are deflected through alternating laminar flow streams of reagents and washing solutions via an external magnet, for the rapid detection of the inflammatory biomarker, C-reactive protein (CRP). The two-step sandwich immunoassay was accomplished in less than 60 s, a vast improvement on the 80-300 min time frame required for enzyme-linked immunosorbent assays (ELISA) and the 50 min necessary for off-chip magnetic particle-based assays. The combination of continuous flow and a stationary magnet enables a degree of autonomy in the system, while a detection limit of 0.87 μg mL(-1) makes it suitable for the determination of CRP concentrations in clinical diagnostics. Its applicability was further proven by assaying real human serum samples and comparing those results to values obtained using standard ELISA tests.
The fluid mechanics of continuous flow electrophoresis
NASA Technical Reports Server (NTRS)
Saville, D. A.
1990-01-01
The overall objective is to establish theoretically and confirm experimentally the ultimate capabilities of continuous flow electrophoresis chambers operating in an environment essentially free of particle sedimentation and buoyancy. The efforts are devoted to: (1) studying the effects of particle concentration on sample conductivity and dielectric constant. The dielectric constant and conductivity were identified as playing crucial roles in the behavior of the sample and on the resolving power and throughput of continuous flow devices; and (2) improving the extant mathematical models to predict flow fields and particle trajectories in continuous flow electrophoresis. A dielectric spectrometer was designed and built to measure the complex dielectric constant of a colloidal dispersion as a function of frequency between 500 Hz and 200 kHz. The real part of the signal can be related to the sample's conductivity and the imaginary part to its dielectric constant. Measurements of the dielectric constants of several different dispersions disclosed that the dielectric constants of dilute systems of the sort encountered in particle electrophoresis are much larger than would be expected based on the extant theory. Experiments were carried out to show that, in many cases, this behavior is due to the presence of a filamentary structure of small hairs on the particle surface. A technique for producing electrokinetically ideal synthetic latex particles by heat treating was developed. Given the ubiquitous nature of hairy surfaces with both cells and synthetic particles, it was deemed necessary to develop a theory to explain their behavior. A theory for electrophoretic mobility of hairy particles was developed. Finally, the extant computer programs for predicting the structure of electro-osmotically driven flows were extended to encompass flow channels with variable wall mobilities.
NASA Astrophysics Data System (ADS)
Chen, Zhengwei; Wang, Yueshe; Hao, Yun; Wang, Qizhi
2013-07-01
The solar cavity receiver is an important light-energy to thermal-energy convector in the tower solar thermal power plant system. The heat flux in the inner surface of the cavity will show the characteristics of non-continuous step change especially in non-normal and transient weather conditions, which may result in a continuous dynamic variation of the characteristic parameters. Therefore, the research of dynamic characteristics of the receiver plays a very important role in the operation and the control safely in solar cavity receiver system. In this paper, based on the non-continuous step change of radiation flux, a non-linear dynamic model is put forward to obtain the effects of the non-continuous step change radiation flux and step change feed water flow on the receiver performance by sequential modular approach. The subject investigated in our study is a 1MW solar power station constructed in Yanqing County, Beijing. This study has obtained the dynamic responses of the characteristic parameters in the cavity receiver, such as drum pressure, drum water level, main steam flow and main steam enthalpy under step change radiation flux. And the influence law of step-change feed water flow to the dynamic characteristics in the receiver also has been analyzed. The results have a reference value for the safe operation and the control in solar cavity receiver system.
Ferrofluid-in-oil two-phase flow patterns in a flow-focusing microchannel
NASA Astrophysics Data System (ADS)
Sheu, T. S.; Chen, Y. T.; Lih, F. L.; Miao, J. M.
This study investigates the two-phase flow formation process of water-based Fe3O4 ferrofluid (dispersed phase) in a silicon oil (continuous phase) flow in the microfluidic flow-focusing microchannel under various operational conditions. With transparent PDMS chip and optical microscope, four main two-phase flow patterns as droplet flow, slug flow, ring flow and churn flow are observed. The droplet shape, size, and formation mechanism were also investigated under different Ca numbers and intended to find out the empirical relations. The paper marks an original flow pattern map of the ferrofluid-in-oil flows in the microfluidic flow-focusing microchannels. The flow pattern transiting from droplet flow to slug flow appears for an operational conditions of QR < 1 and Lf / W < 1. The power law index that related Lf / W to QR was 0.36 in present device.
Hernandez-Perez, Augusto C; Caron, Antoine; Collins, Shawn K
2015-11-09
An evaluation of both a visible-light- and UV-light-mediated synthesis of carbazoles from various triarylamines with differing electronic properties under continuous-flow conditions has been conducted. In general, triarylamines bearing electron-rich groups tend to produce higher yields than triarylamines possessing electron-withdrawing groups. The incorporation of nitrogen-based heterocycles, as well as halogen-containing arenes in carbazole skeletons, was well tolerated, and often synthetically useful complementarity was observed between the UV-light and visible-light (photoredox) methods. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Wesselbaum, Sebastian; Hintermair, Ulrich; Leitner, Walter
2012-08-20
Dual role for CO(2): Pure formic acid can be obtained continuously by hydrogenation of CO(2) in a single processing unit. An immobilized ruthenium organometallic catalyst and a nonvolatile base in an ionic liquid (IL) are combined with supercritical CO(2) as both reactant and extractive phase. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
The assembly and use of continuous flow systems for chemical synthesis.
Britton, Joshua; Jamison, Timothy F
2017-11-01
The adoption of and opportunities in continuous flow synthesis ('flow chemistry') have increased significantly over the past several years. Continuous flow systems provide improved reaction safety and accelerated reaction kinetics, and have synthesised several active pharmaceutical ingredients in automated reconfigurable systems. Although continuous flow platforms are commercially available, systems constructed 'in-lab' provide researchers with a flexible, versatile, and cost-effective alternative. Herein, we describe the assembly and use of a modular continuous flow apparatus from readily available and affordable parts in as little as 30 min. Once assembled, the synthesis of a sulfonamide by reacting 4-chlorobenzenesulfonyl chloride with dibenzylamine in a single reactor coil with an in-line quench is presented. This example reaction offers the opportunity to learn several important skills including reactor construction, charging of a back-pressure regulator, assembly of stainless-steel syringes, assembly of a continuous flow system with multiple junctions, and yield determination. From our extensive experience of single-step and multistep continuous flow synthesis, we also describe solutions to commonly encountered technical problems such as precipitation of solids ('clogging') and reactor failure. Following this protocol, a nonspecialist can assemble a continuous flow system from reactor coils, syringes, pumps, in-line liquid-liquid separators, drying columns, back-pressure regulators, static mixers, and packed-bed reactors.
Brenna, Davide; Pirola, Margherita; Raimondi, Laura; Burke, Anthony J; Benaglia, Maurizio
2017-12-01
The diastereoselective, trichlorosilane-mediate reduction of imines, bearing different and removable chiral auxiliaries, in combination either with achiral bases or catalytic amounts of chiral Lewis bases, was investigated to afford immediate precursors of chiral APIs (Active Pharmaceutical Ingredients). The carbon-nitrogen double bond reduction was successfully performed in batch and in flow mode, in high yields and almost complete stereocontrol. By this metal-free approach, the formal synthesis of rasagiline and tamsulosin was successfully accomplished in micro(meso) flow reactors, under continuous flow conditions. The results of these explorative studies represent a new, important step towards the development of automated processes for the preparation of enantiopure biologically active compounds. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Timmel, K.; Kratzsch, C.; Asad, A.; Schurmann, D.; Schwarze, R.; Eckert, S.
2017-07-01
The present paper reports about numerical simulations and model experiments concerned with the fluid flow in the continuous casting process of steel. This work was carried out in the LIMMCAST project in the framework of the Helmholtz alliance LIMTECH. A brief description of the LIMMCAST facilities used for the experimental modeling at HZDR is given here. Ultrasonic and inductive techniques and the X-ray radioscopy were employed for flow measurements or visualizations of two-phase flow regimes occurring in the submerged entry nozzle and the mold. Corresponding numerical simulations were performed at TUBAF taking into account the dimensions and properties of the model experiments. Numerical models were successfully validated using the experimental data base. The reasonable and in many cases excellent agreement of numerical with experimental data allows to extrapolate the models to real casting configurations. Exemplary results will be presented here showing the effect of electromagnetic brakes or electromagnetic stirrers on the flow in the mold or illustrating the properties of two-phase flows resulting from an Ar injection through the stopper rod.
NASA Astrophysics Data System (ADS)
Tao, Ye; Ren, Yukun; Yan, Hui; Jiang, Hongyuan
2016-03-01
The need to continuously separate multiple microparticles is required for the recent development of lab-on-chip technology. Dielectrophoresis(DEP)-based separation device is extensively used in kinds of microfluidic applications. However, such conventional DEP-based device is relatively complicated and difficult for fabrication. A concise microfluidic device is presented for effective continuous separation of multiple size particle mixtures. A pair of acupuncture needle electrodes are creatively employed and embedded in a PDMS(poly-dimethylsiloxane) hurdle for generating non-uniform electric field thereby achieving a continuous DEP separation. The separation mechanism is that the incoming particle samples with different sizes experience different negative DEP(nDEP) forces and then they can be transported into different downstream outlets. The DEP characterizations of particles are calculated, and their trajectories are numerically predicted by considering the combined action of the incoming laminar flow and the nDEP force field for guiding the separation experiments. The device performance is verified by successfully separating a three-sized particle mixture, including polystyrene microspheres with diameters of 3 μm, 10 μm and 25 μm. The separation purity is below 70% when the flow rate ratio is less than 3.5 or more than 5.1, while the separation purity can be up to more than 90% when the flow rate ratio is between 3.5 and 5.1 and meanwhile ensure the voltage output falls in between 120 V and 150 V. Such simple DEP-based separation device has extensive applications in future microfluidic systems.
Storage requirements for Georgia streams
Carter, Robert F.
1983-01-01
The suitability of a stream as a source of water supply or for waste disposal may be severely limited by low flow during certain periods. A water user may be forced to provide storage facilities to supplement the natural flow if the low flow is insufficient for his needs. This report provides data for evaluating the feasibility of augmenting low streamflow by means of storage facilities. It contains tabular data on storage requirements for draft rates that are as much as 60 percent of the mean annual flow at 99 continuous-record gaging stations, and draft-storage diagrams for estimating storage requirements at many additional sites. Through analyses of streamflow data, the State was divided into four regions. Draft-storage diagrams for each region provide a means of estimating storage requirements for sites on streams where data are scant, provided the drainage area, mean annual flow, and the 7-day, 10-year low flow are known or can be estimated. These data are tabulated for the 99 gaging stations used in the analyses and for 102 partial-record sites where only base-flow measurements have been made. The draft-storage diagrams are useful not only for estimating in-channel storage required for low-flow augmentation, but also can be used for estimating the volume of off-channel storage required to retain wastewater during low-flow periods for later release. In addition, these relationships can be helpful in estimating the volume of wastewater to be disposed of by spraying on land, provided that the water disposed of in this manner is only that for which streamflow dilution water is not currently available. Mean annual flow can be determined for any stream within the State by using the runoff map in this report. Low-flow indices can be estimated by several methods, including correlation of base-flow measurements with concurrent flow at nearby continuous-record gaging stations where low-flow indices have been determined.
Dense Pyroclastic Flows of the 16 -17 August 2006 Eruption of Tungurahua Volcano, Ecuador
NASA Astrophysics Data System (ADS)
Hall, M. L.; Mothes, P. A.; Ramon, P.; Arellano, S.; Barba, D.; Palacios, P.
2007-05-01
The 16-17 August 2006 eruption of Tungurahua volcano in central Ecuador was preceded by 7 years of threatening activity and finally a VEI=2 eruption on 14-15 July 2006. The larger August eruption witnessed tens of pyroclastic flows that descended 17 different channels up to 8.5 km to the volcano's base on the NW, N, W, and SW sides. Tungurahua (5023m) is a steep-sided, low SiO2 andesitic volcano with 2600 to 3200m of relief. The initial, small nuee ardentes began around 1700hr (local time), the larger flows occurred between 2147hr and 0100hr (17 Aug.), and a total of 31 events were indicated by seismic signals. The deposits of three distinct flow cycles are recognized at the NW base of the cone. On the Los Pajaros depositional fan, deposits of flows 1 and 2 are widespread laterally (<600m) and have low-aspect morphologies with low snouts and without levees. Their outer surfaces are covered with accessory > juvenile clasts that mainly range from 15 to 25cm in diameter, conversely their interiors are comprised of 40-42% clasts of 1-25cm size and a matrix (58-60%) of sand-size grains. The earlier flow 1 was accompanied by an ash cloud surge that leveled, but did not scorch, all trees, brush, even metal antenna posts, leaving a 1-10cm thick sandy ash layer upon flow 1's deposit. On the fan as well as in gullies on the upper flanks, flow 3 deposits form long narrow lobes with 1-2m high frontal snouts that are followed by empty flow channels, 5-15m wide, bounded by parallel levees 1-1.5m high. Within these channels subsequent flow lobes are found as remnant pulses. Unlike flows 1 and 2, flow 3 lobes are covered with 0.5-3m cauliflower-shaped, slightly vesiculated bombs that are rarely abraded; the deposit's interior has a 45% sandy matrix. During the climatic eruptive phase continuous lava fountaining, 500-700m high, and crater spilling likely fed a continual stream of fragmented lava onto the cone's upper steep flanks, from which dense pyroclastic mass flows were initiated by gravity. Flows 1 and 2 were more fluidized (due to entrained air and fines), faster, and had wider lateral extents. Flow 3 was poorly fluidized, highly channelized, and behaved more like an inertial granular flow that formed as a continuous avalanche stream that separated into consecutive pulses along the runout channel.
Alpha-environmental continuous air monitor inlet
Rodgers, John C.
2003-01-01
A wind deceleration and protective shroud that provides representative samples of ambient aerosols to an environmental continuous air monitor (ECAM) has a cylindrical enclosure mounted to an input on the continuous air monitor, the cylindrical enclosure having shrouded nozzles located radially about its periphery. Ambient air flows, often along with rainwater flows into the nozzles in a sampling flow generated by a pump in the continuous air monitor. The sampling flow of air creates a cyclonic flow in the enclosure that flows up through the cylindrical enclosure until the flow of air reaches the top of the cylindrical enclosure and then is directed downward to the continuous air monitor. A sloped platform located inside the cylindrical enclosure supports the nozzles and causes any moisture entering through the nozzle to drain out through the nozzles.
Continuation Power Flow with Variable-Step Variable-Order Nonlinear Predictor
NASA Astrophysics Data System (ADS)
Kojima, Takayuki; Mori, Hiroyuki
This paper proposes a new continuation power flow calculation method for drawing a P-V curve in power systems. The continuation power flow calculation successively evaluates power flow solutions through changing a specified value of the power flow calculation. In recent years, power system operators are quite concerned with voltage instability due to the appearance of deregulated and competitive power markets. The continuation power flow calculation plays an important role to understand the load characteristics in a sense of static voltage instability. In this paper, a new continuation power flow with a variable-step variable-order (VSVO) nonlinear predictor is proposed. The proposed method evaluates optimal predicted points confirming with the feature of P-V curves. The proposed method is successfully applied to IEEE 118-bus and IEEE 300-bus systems.
An angiographic technique for coronary fractional flow reserve measurement: in vivo validation.
Takarada, Shigeho; Zhang, Zhang; Molloi, Sabee
2013-03-01
Fractional flow reserve (FFR) is an important prognostic determinant in a clinical setting. However, its measurement currently requires the use of invasive pressure wire, while an angiographic technique based on first-pass distribution analysis and scaling laws can be used to measure FFR using only image data. Eight anesthetized swine were instrumented with flow probe on the proximal segment of the left anterior descending (LAD) coronary arteries. Volumetric blood flow from the flow probe (Qp), coronary pressure (Pa) and right atrium pressure (Pv) were continuously recorded. Flow probe-based FFR (FFRq) was measured from the ratio of flow with and without stenosis. To determine the angiography-based FFR (FFRa), the ratio of blood flow in the presence of a stenosis (QS) to theoretically normal blood flow (QN) was calculated. A region of interest in the LAD arterial bed was drawn to generate time-density curves using angiographic images. QS was measured using a time-density curve and the assumption that blood was momentarily replaced with contrast agent during the injection. QN was estimated from the total coronary arterial volume using scaling laws. Pressure-wire measurements of FFR (FFRp), which was calculated from the ratio of distal coronary pressure (Pd) divided by proximal pressure (Pa), were continuously obtained during the study. A total of 54 measurements of FFRa, FFRp, and FFRq were taken. FFRa showed a good correlation with FFRq (FFRa = 0.97 FFRq +0.06, r(2) = 0.80, p < 0.001), although FFRp overestimated the FFRq (FFRp = 0.657 FFRq + 0.313, r(2) = 0.710, p < 0.0001). Additionally, the Bland-Altman analysis showed a close agreement between FFRa and FFRq. This angiographic technique to measure FFR can potentially be used to evaluate both anatomical and physiological assessments of a coronary stenosis during routine diagnostic cardiac catheterization that requires no pressure wires.
NASA Astrophysics Data System (ADS)
Li, Long; Solana, Carmen; Canters, Frank; Kervyn, Matthieu
2017-10-01
Mapping lava flows using satellite images is an important application of remote sensing in volcanology. Several volcanoes have been mapped through remote sensing using a wide range of data, from optical to thermal infrared and radar images, using techniques such as manual mapping, supervised/unsupervised classification, and elevation subtraction. So far, spectral-based mapping applications mainly focus on the use of traditional pixel-based classifiers, without much investigation into the added value of object-based approaches and into advantages of using machine learning algorithms. In this study, Nyamuragira, characterized by a series of > 20 overlapping lava flows erupted over the last century, was used as a case study. The random forest classifier was tested to map lava flows based on pixels and objects. Image classification was conducted for the 20 individual flows and for 8 groups of flows of similar age using a Landsat 8 image and a DEM of the volcano, both at 30-meter spatial resolution. Results show that object-based classification produces maps with continuous and homogeneous lava surfaces, in agreement with the physical characteristics of lava flows, while lava flows mapped through the pixel-based classification are heterogeneous and fragmented including much "salt and pepper noise". In terms of accuracy, both pixel-based and object-based classification performs well but the former results in higher accuracies than the latter except for mapping lava flow age groups without using topographic features. It is concluded that despite spectral similarity, lava flows of contrasting age can be well discriminated and mapped by means of image classification. The classification approach demonstrated in this study only requires easily accessible image data and can be applied to other volcanoes as well if there is sufficient information to calibrate the mapping.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alhroob, M.; Boyd, G.; Hasib, A.
Precision ultrasonic measurements in binary gas systems provide continuous real-time monitoring of mixture composition and flow. Using custom micro-controller-based electronics, we have developed an ultrasonic instrument, with numerous potential applications, capable of making continuous high-precision sound velocity measurements. The instrument measures sound transit times along two opposite directions aligned parallel to - or obliquely crossing - the gas flow. The difference between the two measured times yields the gas flow rate while their average gives the sound velocity, which can be compared with a sound velocity vs. molar composition look-up table for the binary mixture at a given temperature andmore » pressure. The look-up table may be generated from prior measurements in known mixtures of the two components, from theoretical calculations, or from a combination of the two. We describe the instrument and its performance within numerous applications in the ATLAS experiment at the CERN Large Hadron Collider (LHC). The instrument can be of interest in other areas where continuous in-situ binary gas analysis and flowmetry are required. (authors)« less
Stable aerobic granules in continuous-flow bioreactor with self-forming dynamic membrane.
Liu, Hongbo; Li, Yajie; Yang, Changzhu; Pu, Wenhong; He, Liu; Bo, Fu
2012-10-01
A novel continuous-flow bioreactor with aerobic granular sludge and self-forming dynamic membrane (CGSFDMBR) was developed for efficient wastewater treatment. Under continuous-flow operation, aerobic granular sludge was successfully cultivated and characterized with small particle size of about 0.1-1.0mm, low settling velocity of about 15-25 m/h, loose structure and high water content of about 96-98%. To maintain the stability of aerobic granular sludge, strategies based on the differences of settling velocity and particle-size between granular and flocculent sludge were implemented. Moreover, in CGSFDMBR, membrane fouling was greatly relieved. Dynamic membrane was just cleaned once in more than 45 days' operation. CGSFDMBR presented good performance in treating septic tank wastewater, obtaining average COD, NH(4)(+)-N, TN and TP removal rates of 83.3%, 73.3%, 67.3% and 60%, respectively, which was more efficient than conventional bioreactors since that carbon, nitrogen and phosphorus were simultaneously removed in a single aerobic reactor. Copyright © 2012 Elsevier Ltd. All rights reserved.
Precessing rotating flows with additional shear: stability analysis.
Salhi, A; Cambon, C
2009-03-01
We consider unbounded precessing rotating flows in which vertical or horizontal shear is induced by the interaction between the solid-body rotation (with angular velocity Omega(0)) and the additional "precessing" Coriolis force (with angular velocity -epsilonOmega(0)), normal to it. A "weak" shear flow, with rate 2epsilon of the same order of the Poincaré "small" ratio epsilon , is needed for balancing the gyroscopic torque, so that the whole flow satisfies Euler's equations in the precessing frame (the so-called admissibility conditions). The base flow case with vertical shear (its cross-gradient direction is aligned with the main angular velocity) corresponds to Mahalov's [Phys. Fluids A 5, 891 (1993)] precessing infinite cylinder base flow (ignoring boundary conditions), while the base flow case with horizontal shear (its cross-gradient direction is normal to both main and precessing angular velocities) corresponds to the unbounded precessing rotating shear flow considered by Kerswell [Geophys. Astrophys. Fluid Dyn. 72, 107 (1993)]. We show that both these base flows satisfy the admissibility conditions and can support disturbances in terms of advected Fourier modes. Because the admissibility conditions cannot select one case with respect to the other, a more physical derivation is sought: Both flows are deduced from Poincaré's [Bull. Astron. 27, 321 (1910)] basic state of a precessing spheroidal container, in the limit of small epsilon . A Rapid distortion theory (RDT) type of stability analysis is then performed for the previously mentioned disturbances, for both base flows. The stability analysis of the Kerswell base flow, using Floquet's theory, is recovered, and its counterpart for the Mahalov base flow is presented. Typical growth rates are found to be the same for both flows at very small epsilon , but significant differences are obtained regarding growth rates and widths of instability bands, if larger epsilon values, up to 0.2, are considered. Finally, both flow cases are briefly discussed in view of a subsequent nonlinear study using pseudospectral direct numerical simulations, which is a natural continuation of RDT.
Flow Cytometry and Solid Organ Transplantation: A Perfect Match
Maguire, Orla; Tario, Joseph D.; Shanahan, Thomas C.; Wallace, Paul K.; Minderman, Hans
2015-01-01
In the field of transplantation, flow cytometry serves a well-established role in pre-transplant crossmatching and monitoring immune reconstitution following hematopoietic stem cell transplantation. The capabilities of flow cytometers have continuously expanded and this combined with more detailed knowledge of the constituents of the immune system, their function and interaction and newly developed reagents to study these parameters have led to additional utility of flow cytometry-based analyses, particularly in the post-transplant setting. This review discusses the impact of flow cytometry on managing alloantigen reactions, monitoring opportunistic infections and graft rejection and gauging immunosuppression in the context of solid organ transplantation. PMID:25296232
Hu, Shengyang; Wen, Libai; Wang, Yun; Zheng, Xinsheng; Han, Heyou
2012-11-01
A continuous-flow integration process was developed for biodiesel production using rapeseed oil as feedstock, based on the countercurrent contact reaction between gas and liquid, separation of glycerol on-line and cyclic utilization of methanol. Orthogonal experimental design and response surface methodology were adopted to optimize technological parameters. A second-order polynomial model for the biodiesel yield was established and validated experimentally. The high determination coefficient (R(2)=98.98%) and the low probability value (Pr<0.0001) proved that the model matched the experimental data, and had a high predictive ability. The optimal technological parameters were: 81.5°C reaction temperature, 51.7cm fill height of catalyst KF/CaO and 105.98kPa system pressure. Under these conditions, the average yield of triplicate experiments was 93.7%, indicating the continuous-flow process has good potential in the manufacture of biodiesel. Copyright © 2012 Elsevier Ltd. All rights reserved.
Weaver, J. Curtis; Fine, Jason M.
2003-01-01
An understanding of the magnitude and frequency of low-flow discharges is an important part of protecting surface-water resources and planning for municipal and industrial economic expansion. Low-flow characteristics are summarized for 12 continuous-record gaging stations and 44 partial-record measuring sites in the Rocky River basin in North Carolina. Records of discharge collected through the 2002 water year at continuous-record gaging stations and through the 2001 water year at partial-record measuring sites were used. Flow characteristics included in the summary are (1) average annual unit flow; (2) 7Q10 low-flow discharge, the minimum average discharge for a 7-consecutive-day period occurring, on average, once in 10 years; (3) 30Q2 low-flow discharge; (4) W7Q10 low-flow discharge, which is similar to 7Q10 discharge but is based only on flow during the winter months of November through March; and (5) 7Q2 low-flow discharge. The Rocky River basin drains 1,413 square miles (mi2) of the southern Piedmont Province in North Carolina. The Rocky River is about 91 miles long and merges with the Yadkin River in eastern Stanly County to form the Pee Dee River, which discharges into the Atlantic Ocean in South Carolina. Low-flow characteristics compiled for selected sites in the Rocky River basin indicated that the potential for sustained base flows in the upper half of the basin is relatively higher than for streams in the lower half of the basin. The upper half of the basin is underlain by the Charlotte Belt, where streams have been identified as having moderate potentials for sustained base flows. In the lower half of the basin, many streams were noted as having little to no potential for sustained base flows. Much of the decrease in base-flow potential is attributed to the underlying rock types of the Carolina Slate Belt. Of the 19 sites in the basin having minimal (defined as less than 0.05 cubic foot per second) or zero 7Q10 discharges, 18 sites are located in the lower half of the basin underlain by the Carolina Slate Belt. Assessment of these 18 sites indicates that streams that have drainage areas less than about 25 square miles are likely to have minimal or zero 7Q10 discharges. No drainage-area threshold for minimal or zero 7Q10 discharges was identified for the upper half of the basin, which is underlain by the Charlotte Belt. Tributaries to the Rocky River include the West Branch Rocky River (22.8 mi2), Clarke Creek (28.2 mi2), Mallard Creek (41.2 mi2), Coddle Creek (78.8 mi2), Reedy Creek (43.0 mi2), Irish Buffalo/Coldwater Creeks (110 mi2), Dutch Buffalo Creek (99 mi2), Long Creek (200 mi2), Richardson Creek (234 mi2), and Lanes Creek (135 mi2). In the 20-mile reach upstream from the mouth (about 22 percent of the river length), the drainage area increases by 648 mi2, or about 46 percent of the total drainage area as a result of the confluences with Long Creek, Richardson Creek, and Lanes Creek. Low-flow discharge profiles for the Rocky River include 7Q10, 30Q2, W7Q10, and 7Q2 discharges in a continuous profile with contributions from major tributaries included. At the gaging stations above Irish Buffalo Creek and near Stanfield, the 7Q10 discharges are 25.2 and 42.3 cubic feet per second, corresponding to 0.09 and 0.07 cubic feet per second per square mile, respectively. At the gaging station near Norwood, the 7Q10 discharge is 45.8 cubic feet per second, equivalent to 0.03 cubic foot per second per square mile. Low-flow discharge profiles reflect the presence of several major flow diversions in the reaches upstream from Stanfield and an apparent losing reach between the continuous-record gaging stations near Stanfield and Norwood, North Carolina.
Kubicka, Zuzanna J; Limauro, Joseph; Darnall, Robert A
2008-01-01
The goal was to estimate the level of delivered continuous positive airway pressure by measuring oral cavity pressure with the mouth closed in infants of various weights and ages treated with heated, humidified high-flow nasal cannula at flow rates of 1-5 L/minute. We hypothesized that clinically relevant levels of continuous positive airway pressure would not be achieved if a nasal leak is maintained. After performing bench measurements and demonstrating that oral cavity pressure closely approximated levels of traditionally applied nasal continuous positive airway pressure, we successfully measured oral cavity pressure during heated, humidified, high-flow nasal cannula treatment in 27 infants. Small (outer diameter: 0.2 cm) cannulae were used for all infants, and flow rates were left as ordered by providers. Bench measurements showed that, for any given leak size, there was a nearly linear relationship between flow rate and pressure. The highest pressure achieved was 4.5 cmH2O (flow rate: 8 L/minute; leak: 3 mm). In our study infants (postmenstrual age: 29.1-44.7 weeks; weight: 835-3735 g; flow rate: 1-5 L/minute), no pressure was generated with the mouth open at any flow rate. With the mouth closed, the oral cavity pressure was related to both flow rate and weight. For infants of < or = 1500 g, there was a linear relationship between flow rate and oral cavity pressure. Oral cavity pressure can estimate the level of continuous positive airway pressure. Continuous positive airway pressure generated with heated, humidified, high-flow nasal cannula treatment depends on the flow rate and weight. Only in the smallest infants with the highest flow rates, with the mouth fully closed, can clinically significant but unpredictable levels of continuous positive airway pressure be achieved. We conclude that heated, humidified high-flow nasal cannula should not be used as a replacement for delivering continuous positive airway pressure.
NASA Astrophysics Data System (ADS)
Tauro, Flavia; Grimaldi, Salvatore
2017-04-01
Recently, several efforts have been devoted to the design and development of innovative, and often unintended, approaches for the acquisition of hydrological data. Among such pioneering techniques, this presentation reports recent advancements towards the establishment of a novel noninvasive and potentially continuous methodology based on the acquisition and analysis of images for spatially distributed observations of the kinematics of surface waters. The approach aims at enabling rapid, affordable, and accurate surface flow monitoring of natural streams. Flow monitoring is an integral part of hydrological sciences and is essential for disaster risk reduction and the comprehension of natural phenomena. However, water processes are inherently complex to observe: they are characterized by multiscale and highly heterogeneous phenomena which have traditionally demanded sophisticated and costly measurement techniques. Challenges in the implementation of such techniques have also resulted in lack of hydrological data during extreme events, in difficult-to-access environments, and at high temporal resolution. By combining low-cost yet high-resolution images and several velocimetry algorithms, noninvasive flow monitoring has been successfully conducted at highly heterogeneous scales, spanning from rills to highly turbulent streams, and medium-scale rivers, with minimal supervision by external users. Noninvasive image data acquisition has also afforded observations in high flow conditions. Latest novelties towards continuous flow monitoring at the catchment scale have entailed the development of a remote gauge-cam station on the Tiber River and integration of flow monitoring through image analysis with unmanned aerial systems (UASs) technology. The gauge-cam station and the UAS platform both afford noninvasive image acquisition and calibration through an innovative laser-based setup. Compared to traditional point-based instrumentation, images allow for generating surface flow velocity maps which fully describe the kinematics of the velocity field in natural streams. Also, continuous observations provide a close picture of the evolving dynamics of natural water bodies. Despite such promising achievements, dealing with images also involves coping with adverse illumination, massive data handling and storage, and data-intensive computing. Most importantly, establishing a novel observational technique requires estimation of the uncertainty associated to measurements and thorough comparison to existing benchmark approaches. In this presentation, we provide answers to some of these issues and perspectives for future research.
A continuous high-throughput bioparticle sorter based on 3D traveling-wave dielectrophoresis.
Cheng, I-Fang; Froude, Victoria E; Zhu, Yingxi; Chang, Hsueh-Chia; Chang, Hsien-Chang
2009-11-21
We present a high throughput (maximum flow rate approximately 10 microl/min or linear velocity approximately 3 mm/s) continuous bio-particle sorter based on 3D traveling-wave dielectrophoresis (twDEP) at an optimum AC frequency of 500 kHz. The high throughput sorting is achieved with a sustained twDEP particle force normal to the continuous through-flow, which is applied over the entire chip by a single 3D electrode array. The design allows continuous fractionation of micron-sized particles into different downstream sub-channels based on differences in their twDEP mobility on both sides of the cross-over. Conventional DEP is integrated upstream to focus the particles into a single levitated queue to allow twDEP sorting by mobility difference and to minimize sedimentation and field-induced lysis. The 3D electrode array design minimizes the offsetting effect of nDEP (negative DEP with particle force towards regions with weak fields) on twDEP such that both forces increase monotonically with voltage to further increase the throughput. Effective focusing and separation of red blood cells from debris-filled heterogeneous samples are demonstrated, as well as size-based separation of poly-dispersed liposome suspensions into two distinct bands at 2.3 to 4.6 microm and 1.5 to 2.7 microm, at the highest throughput recorded in hand-held chips of 6 microl/min.
NASA Astrophysics Data System (ADS)
Liu, Zhiyuan; Meng, Qiang
2014-05-01
This paper focuses on modelling the network flow equilibrium problem on a multimodal transport network with bus-based park-and-ride (P&R) system and congestion pricing charges. The multimodal network has three travel modes: auto mode, transit mode and P&R mode. A continuously distributed value-of-time is assumed to convert toll charges and transit fares to time unit, and the users' route choice behaviour is assumed to follow the probit-based stochastic user equilibrium principle with elastic demand. These two assumptions have caused randomness to the users' generalised travel times on the multimodal network. A comprehensive network framework is first defined for the flow equilibrium problem with consideration of interactions between auto flows and transit (bus) flows. Then, a fixed-point model with unique solution is proposed for the equilibrium flows, which can be solved by a convergent cost averaging method. Finally, the proposed methodology is tested by a network example.
USDA-ARS?s Scientific Manuscript database
A 4-unit dual-flow continuous culture fermentor system was used to assess the effect of increasing flax supplementation of an herbage-based diet on nutrient digestibility, bacterial N synthesis and methane output. Treatments were randomly assigned to fermentors in a 4 x 4 Latin square design with 7 ...
Analysis of Developing Gas/liquid Two-Phase Flows
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elena A. Tselishcheva; Michael Z. Podowski; Steven P. Antal
The goal of this work is to develop a mechanistically based CFD model that can be used to simulate process equipment operating in the churn-turbulent regime. The simulations were performed using a state-of-the-art computational multiphase fluid dynamics code, NPHASE–CMFD [Antal et al,2000]. A complete four-field model, including the continuous liquid field and three dispersed gas fields representing bubbles of different sizes, was first carefully tested for numerical convergence and accuracy, and then used to reproduce the experimental results from the TOPFLOW test facility at Forschungszentrum Dresden-Rossendorf e.V. Institute of Safety Research [Prasser et al,2007]. Good progress has been made inmore » simulating the churn-turbulent flows and comparison the NPHASE-CMFD simulations with TOPFLOW experimental data. The main objective of the paper is to demonstrate capability to predict the evolution of adiabatic churn-turbulent gas/liquid flows. The proposed modelling concept uses transport equations for the continuous liquid field and for dispersed bubble fields [Tselishcheva et al, 2009]. Along with closure laws based on interaction between bubbles and continuous liquid, the effect of height on air density has been included in the model. The figure below presents the developing flow results of the study, namely total void fraction at different axial locations along the TOPFLOW facility test section. The complete model description, as well as results of simulations and validation will be presented in the full paper.« less
Droplet-based microfluidic washing module for magnetic particle-based assays
Lee, Hun; Xu, Linfeng; Oh, Kwang W.
2014-01-01
In this paper, we propose a continuous flow droplet-based microfluidic platform for magnetic particle-based assays by employing in-droplet washing. The droplet-based washing was implemented by traversing functionalized magnetic particles across a laterally merged droplet from one side (containing sample and reagent) to the other (containing buffer) by an external magnetic field. Consequently, the magnetic particles were extracted to a parallel-synchronized train of washing buffer droplets, and unbound reagents were left in an original train of sample droplets. To realize the droplet-based washing function, the following four procedures were sequentially carried in a droplet-based microfluidic device: parallel synchronization of two trains of droplets by using a ladder-like channel network; lateral electrocoalescence by an electric field; magnetic particle manipulation by a magnetic field; and asymmetrical splitting of merged droplets. For the stable droplet synchronization and electrocoalescence, we optimized droplet generation conditions by varying the flow rate ratio (or droplet size). Image analysis was carried out to determine the fluorescent intensity of reagents before and after the washing step. As a result, the unbound reagents in sample droplets were significantly removed by more than a factor of 25 in the single washing step, while the magnetic particles were successfully extracted into washing buffer droplets. As a proof-of-principle, we demonstrate a magnetic particle-based immunoassay with streptavidin-coated magnetic particles and fluorescently labelled biotin in the proposed continuous flow droplet-based microfluidic platform. PMID:25379098
21 CFR 862.2150 - Continuous flow sequential multiple chemistry analyzer for clinical use.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Continuous flow sequential multiple chemistry..., DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Laboratory Instruments § 862.2150 Continuous flow sequential multiple chemistry...
A simple and rapid one-step continuous-flow synthesis route has been developed for the preparation of chromene derivatives from the reaction of aromatic aldehydes, α-cyanomethylene compounds and naphthols. In this contribution, a one-step continuous-flow protocol in a continuous ...
21 CFR 862.2150 - Continuous flow sequential multiple chemistry analyzer for clinical use.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Continuous flow sequential multiple chemistry..., DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Laboratory Instruments § 862.2150 Continuous flow sequential multiple chemistry...
21 CFR 862.2150 - Continuous flow sequential multiple chemistry analyzer for clinical use.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Continuous flow sequential multiple chemistry..., DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Laboratory Instruments § 862.2150 Continuous flow sequential multiple chemistry...
21 CFR 862.2150 - Continuous flow sequential multiple chemistry analyzer for clinical use.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Continuous flow sequential multiple chemistry..., DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Laboratory Instruments § 862.2150 Continuous flow sequential multiple chemistry...
21 CFR 862.2150 - Continuous flow sequential multiple chemistry analyzer for clinical use.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Continuous flow sequential multiple chemistry..., DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Laboratory Instruments § 862.2150 Continuous flow sequential multiple chemistry...
Laser manipulation of atomic and molecular flows
NASA Astrophysics Data System (ADS)
Lilly, Taylor C.
The continuing advance of laser technology enables a range of broadly applicable, laser-based flow manipulation techniques. The characteristics of these laser-based flow manipulations suggest that they may augment, or be superior to, such traditional electro-mechanical methods as ionic flow control, shock tubes, and small scale wind tunnels. In this study, methodology was developed for investigating laser flow manipulation techniques, and testing their feasibility for a number of aerospace, basic physics, and micro technology applications. Theories for laser-atom and laser-molecule interactions have been under development since the advent of laser technology. The theories have yet to be adequately integrated into kinetic flow solvers. Realizing this integration would greatly enhance the scaling of laser-species interactions beyond the realm of ultra-cold atomic physics. This goal was realized in the present study. A representative numerical investigation, of laser-based neutral atomic and molecular flow manipulations, was conducted using near-resonant and non-resonant laser fields. To simulate the laser interactions over a range of laser and flow conditions, the following tools were employed: a custom collisionless gas particle trajectory code and a specifically modified version of the Direct Simulation Monte Carlo statistical kinetic solver known as SMILE. In addition to the numerical investigations, a validating experiment was conducted. The experimental results showed good agreement with the numerical simulations when experimental parameters, such as finite laser line width, were taken into account. Several areas of interest were addressed: laser induced neutral flow steering, collimation, direct flow acceleration, and neutral gas heating. Near-resonant continuous wave laser, and non-resonant pulsed laser, interactions with cesium and nitrogen were simulated. These simulations showed trends and some limitations associated with these interactions, used for flow steering and collimation. The use of one of these interactions, the induced dipole force, was extended beyond a single Gaussian laser field. The interference patterns associated with counter-propagating laser fields, or "optical lattices," were shown to be capable of both direct species acceleration and gas heating. This study resulted in predictions for a continuous, resonant laser-cesium flow with accelerations of 106 m/s2. For this circumstance, a future straightforward proof of principle experiment has been identified. To demonstrate non-resonant gas heating, a series of pulsed optical lattices were simulated interacting with neutral non-polar species. An optimum time between pulses was identified as a function of the collisional relaxation time. Using the optimum time between pulses, molecular nitrogen simulations showed an increase in gas temperature from 300 K to 2470 K at 1 atm, for 50 successive optical lattice pulses. A second proof of principle experiment was identified for future investigation.
NASA Astrophysics Data System (ADS)
Jin, Kai
Continuous casting produces over 95% of steel in the world today, hence even small improvements to this important industrial process can have large economic impact. In the continuous casting of steel process, argon gas is usually injected at the slide gate or stopper rod to prevent clogging, but entrapped bubbles may cause defects in the final product. Many defects in this process are related to the transient fluid flow in the mold region of the caster. Electromagnetic braking (EMBr) device is often used at high casting speed to modify the mold flow, reduce the surface velocity and fluctuation. This work studies the physics in continuous casting process including effects of EMBr on the motion of fluid flow in the mold region, and transport and capture of bubbles in the solidification processes. A computational effective Reynolds-averaged Navier-Stokes (RANS) model and a high fidelity Large Eddy Simulation (LES) model are used to understand the motion of the molten steel flow. A general purpose multi-GPU Navier-Stokes solver, CUFLOW, is developed. A Coherent-Structure Smagorinsky LES model is implemented to model the turbulent flow. A two-way coupled Lagrangian particle tracking model is added to track the motion of argon bubbles. A particle/bubble capture model based on force balance at dendrite tips is validated and used to study the capture of argon bubbles by the solidifying steel shell. To investigate the effects of EMBr on the turbulent molten steel flow and bubble transport, an electrical potential method is implemented to solve the magnetohydrodynamics equations. Volume of Fluid (VOF) simulations are carried out to understand the additional resistance force on moving argon bubbles caused by adding transverse magnetic field. A modified drag coefficient is extrapolated from the results and used in the two-way coupled Eulerian-Lagrangian model to predict the argon bubble transport in a caster with EMBr. A hook capture model is developed to understand the effects of hooks on argon bubble capture.
78 FR 65306 - Best Practices for Continuous Monitoring of Temperature and Flow in Wadeable Streams
Federal Register 2010, 2011, 2012, 2013, 2014
2013-10-31
... Practices for Continuous Monitoring of Temperature and Flow in Wadeable Streams AGENCY: Environmental... Monitoring of Temperature and Flow in Wadeable Streams'' (EPA/600/R-13/170). The EPA also is announcing that... Development. The report describes best practices for the deployment of continuous temperature and flow sensors...
Fast incorporation of optical flow into active polygons.
Unal, Gozde; Krim, Hamid; Yezzi, Anthony
2005-06-01
In this paper, we first reconsider, in a different light, the addition of a prediction step to active contour-based visual tracking using an optical flow and clarify the local computation of the latter along the boundaries of continuous active contours with appropriate regularizers. We subsequently detail our contribution of computing an optical flow-based prediction step directly from the parameters of an active polygon, and of exploiting it in object tracking. This is in contrast to an explicitly separate computation of the optical flow and its ad hoc application. It also provides an inherent regularization effect resulting from integrating measurements along polygon edges. As a result, we completely avoid the need of adding ad hoc regularizing terms to the optical flow computations, and the inevitably arbitrary associated weighting parameters. This direct integration of optical flow into the active polygon framework distinguishes this technique from most previous contour-based approaches, where regularization terms are theoretically, as well as practically, essential. The greater robustness and speed due to a reduced number of parameters of this technique are additional and appealing features.
Modeling of the flow behavior of SAE 8620H combing microstructure evolution in hot forming
NASA Astrophysics Data System (ADS)
Fu, Xiaobin; Wang, Baoyu; Tang, Xuefeng
2017-10-01
With the development of net-shape forming technology, hot forming process is widely applied to manufacturing gear parts, during which, materials suffer severe plastic distortion and microstructure changes continually. In this paper, to understand and model the flow behavior and microstructure evolution, SAE 8620H, a widely used gear steel, is selected as the object and the flow behavior and microstructure evolution are observed by an isothermal hot compression tests at 1273-1373 K with a strain rate of 0.1-10 s-1. Depending on the results of the compression test, a set of internal-state-variable based unified constitutive equations is put forward to describe the flow behavior and microstructure evaluation of SAE 8620H. Moreover, the evaluation of the dislocation density and the fraction of dynamic recrystallization based on the theory of thermal activation is modeled and reincorporated into the constitutive law. The material parameters in the constitutive model are calculated based on the measured flow stress and dynamic recrystallization fraction. The predicted flow stress under different deformation conditions has a good agreement with the measured results.
NASA Astrophysics Data System (ADS)
Vermeul, V.; McKinley, J. P.; Newcomer, D.; Fritz, B. G.; Mackley, R.; Zachara, J. M.
2010-12-01
Previously published field investigations and modeling studies have demonstrated the potential for sample bias associated with vertical wellbore flow in conventional monitoring wells constructed with long-screened intervals. In this study, simultaneous measurement of 1) wellbore flow using an electromagnetic borehole flowmeter (EBF), 2) depth discrete hydraulic head, and 3) aqueous uranium concentrations were used to quantify wellbore flow and assess the associated impacts on measured aqueous concentrations. Monitoring results demonstrate the utility of continuous (i.e., hourly measurements for ~ one month) ambient wellbore flow monitoring and show that relatively large wellbore flows (up to 4 LPM) can be induced by aquifer hydrodynamics associated with a fluctuating river boundary located approximately 250 m from the test well. The observed vertical wellbore flows were strongly correlated with fluctuations in river stage, alternating between upward and downward flow throughout the monitoring period in response to changes in river stage. Continuous monitoring of ambient wellbore flows using an EBF system allowed these effects to be evaluated in concert with continuously monitored river stage elevations (hourly) and aqueous uranium concentrations (daily) in a long-screen well and an adjacent multi-level well cluster. This study demonstrates that when contaminant concentrations within the aquifer vary significantly over the depth interval interrogated, river-induced vertical wellbore flow can result in variations in measured concentration that nearly encompass the full range of variation in aquifer contaminant concentration with depth. In addition, observed variability in aqueous concentrations measured during active tracer transport experiments provided additional evidence of wellbore flow impacts and showed that the magnitude and direction of wellbore flow varied spatially across the wellfield. An approach to mitigate these effects based on increasing hydraulic resistance within the wellbore was evaluated. This research is part of the ERSP Hanford IFRC at Pacific Northwest National Laboratory.
Dunne, Peter W; Starkey, Chris L; Gimeno-Fabra, Miquel; Lester, Edward H
2014-02-21
Continuous flow hydrothermal synthesis offers a cheap, green and highly scalable route for the preparation of inorganic nanomaterials which has predominantly been applied to metal oxide based materials. In this work we report the first continuous flow hydrothermal synthesis of metal sulphide nanomaterials. A wide range of binary metal sulphides, ZnS, CdS, PbS, CuS, Fe(1-x)S and Bi2S3, have been synthesised. By varying the reaction conditions two different mechanisms may be invoked; a growth dominated route which permits the formation of nanostructured sulphide materials, and a nucleation driven process which produces nanoparticles with temperature dependent size control. This offers a new and industrially viable route to a wide range of metal sulphide nanoparticles with facile size and shape control.
Gene delivery by microfluidic flow-through electroporation based on constant DC and AC field.
Geng, Tao; Zhan, Yihong; Lu, Chang
2012-01-01
Electroporation is one of the most widely used physical methods to deliver exogenous nucleic acids into cells with high efficiency and low toxicity. Conventional electroporation systems typically require expensive pulse generators to provide short electrical pulses at high voltage. In this work, we demonstrate a flow-through electroporation method for continuous transfection of cells based on disposable chips, a syringe pump, and a low-cost power supply that provides a constant voltage. We successfully transfect cells using either DC or AC voltage with high flow rates (ranging from 40 µl/min to 20 ml/min) and high efficiency (up to 75%). We also enable the entire cell membrane to be uniformly permeabilized and dramatically improve gene delivery by inducing complex migrations of cells during the flow.
Parameterizing Coefficients of a POD-Based Dynamical System
NASA Technical Reports Server (NTRS)
Kalb, Virginia L.
2010-01-01
A method of parameterizing the coefficients of a dynamical system based of a proper orthogonal decomposition (POD) representing the flow dynamics of a viscous fluid has been introduced. (A brief description of POD is presented in the immediately preceding article.) The present parameterization method is intended to enable construction of the dynamical system to accurately represent the temporal evolution of the flow dynamics over a range of Reynolds numbers. The need for this or a similar method arises as follows: A procedure that includes direct numerical simulation followed by POD, followed by Galerkin projection to a dynamical system has been proven to enable representation of flow dynamics by a low-dimensional model at the Reynolds number of the simulation. However, a more difficult task is to obtain models that are valid over a range of Reynolds numbers. Extrapolation of low-dimensional models by use of straightforward Reynolds-number-based parameter continuation has proven to be inadequate for successful prediction of flows. A key part of the problem of constructing a dynamical system to accurately represent the temporal evolution of the flow dynamics over a range of Reynolds numbers is the problem of understanding and providing for the variation of the coefficients of the dynamical system with the Reynolds number. Prior methods do not enable capture of temporal dynamics over ranges of Reynolds numbers in low-dimensional models, and are not even satisfactory when large numbers of modes are used. The basic idea of the present method is to solve the problem through a suitable parameterization of the coefficients of the dynamical system. The parameterization computations involve utilization of the transfer of kinetic energy between modes as a function of Reynolds number. The thus-parameterized dynamical system accurately predicts the flow dynamics and is applicable to a range of flow problems in the dynamical regime around the Hopf bifurcation. Parameter-continuation software can be used on the parameterized dynamical system to derive a bifurcation diagram that accurately predicts the temporal flow behavior.
Real-time segmentation in 4D ultrasound with continuous max-flow
NASA Astrophysics Data System (ADS)
Rajchl, M.; Yuan, J.; Peters, T. M.
2012-02-01
We present a novel continuous Max-Flow based method to segment the inner left ventricular wall from 3D trans-esophageal echocardiography image sequences, which minimizes an energy functional encoding two Fisher-Tippett distributions and a geometrical constraint in form of a Euclidean distance map in a numerically efficient and accurate way. After initialization the method is fully automatic and is able to perform at up to 10Hz making it available for image-guided interventions. Results are shown on 4D TEE data sets from 18 patients with pathological cardiac conditions and the speed of the algorithm is assessed under a variety of conditions.
Analysis of pressure-flow data in terms of computer-derived urethral resistance parameters.
van Mastrigt, R; Kranse, M
1995-01-01
The simultaneous measurement of detrusor pressure and flow rate during voiding is at present the only way to measure or grade infravesical obstruction objectively. Numerous methods have been introduced to analyze the resulting data. These methods differ in aim (measurement of urethral resistance and/or diagnosis of obstruction), method (manual versus computerized data processing), theory or model used, and resolution (continuously variable parameters or a limited number of classes, the so-called monogram). In this paper, some aspects of these fundamental differences are discussed and illustrated. Subsequently, the properties and clinical performance of two computer-based methods for deriving continuous urethral resistance parameters are treated.
NASA Astrophysics Data System (ADS)
Fagbohun, Babatunde Joseph; Olabode, Oluwaseun Franklin; Adebola, Abiodun Olufemi; Akinluyi, Francis Omowonuola
2017-12-01
Identifying landscapes having comparable hydrological characteristics is valuable for the determination of dominant runoff process (DRP) and prediction of flood. Several approaches used for DRP-mapping vary in relation to data and time requirement. Manual approaches which are based on field investigation and expert knowledge are time demanding and difficult to implement at regional scale. Automatic GIS-based approach on the other hand require simplification of data but is easier to implement and it is applicable on a regional scale. In this study, GIS-based automated approach was used to identify the DRPs in Anambra area. The result showed that Hortonian overland flow (HOF) has the highest coverage of 1508.3 km2 (33.5%) followed by deep percolation (DP) with coverage of 1455.3 km2 (32.3%). Subsurface flow (SSF) is the third dominant runoff process covering 920.6 km2 (20.4%) while saturated overland flow (SOF) covers the least area of 618.4 km2 (13.7%) of the study area. The result reveal that considerable amount of precipitated water would be infiltrated into the subsurface through deep percolation process contributing to groundwater recharge in the study area. However, it is envisaged that HOF and SOF will continue to increase due to the continuous expansion of built-up area. With the expected increase in HOF and SOF, and the change in rainfall pattern associated with perpetual problem of climate change, it is paramount that groundwater conservation practices should be considered to ensure continued sustainable utilization of groundwater in the study area.
OPTICAL FIBER SENSOR TECHNOLOGIES FOR EFFICIENT AND ECONOMICAL OIL RECOVERY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kristie Cooper; Gary Pickrell; Anbo Wang
2003-04-01
This report summarizes technical progress over the fourth year of the ''Optical Fiber Sensor Technologies for Efficient and Economical Oil Recovery'' program, funded by the Federal Energy Technology Center of the U.S. Department of Energy, and performed by the Center for Photonics Technology of the Bradley Department of Electrical and Computer Engineering at Virginia Tech. During the reporting period, research efforts under the program were focused on the development and evaluation of the fiber optic flow sensor system, and field testing in Tulsa, OK and the second field test of the pressure and temperature sensors in Coalinga, CA. The feasibilitymore » of a self-compensating fiber optic flow sensor based on a cantilever beam and interferometer for real-time flow rate measurements in the fluid filled pipes of oil field was clearly demonstrated. In addition, field testing of the pressure and temperature sensors deployed downhole continued. These accomplishments are summarized here: (1) Theoretical analysis and simulations were performed to ensure performance of the design. (2) The sensor fabrication and packaging techniques were investigated and improved. (3) Prototype flow sensors were fabricated based on the fabrication experience of hundreds of test sensors. (4) A lab-scale flow testing system was constructed and used for sensor evaluation. (5) Field-testing was performed in both the indoor and outdoor flow testing facility at the University of Tulsa, OK. (6) Testing of a multimode white light pressure and temperature sensor system continued at the oil site of Chevron/Texaco Company (Coalinga CA).« less
Erin L. Landguth; Bradley C. Fedy; Sara J. Oyler-McCance; Andrew L. Garey; Sarah L. Emel; Matthew Mumma; Helene H. Wagner; Marie-Josee Fortin; Samuel A. Cushman
2012-01-01
The influence of study design on the ability to detect the effects of landscape pattern on gene flow is one of the most pressing methodological gaps in landscape genetic research. To investigate the effect of study design on landscape genetics inference, we used a spatially-explicit, individual-based program to simulate gene flow in a spatially continuous population...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-04
... (cfs), beginning immediately after Commission approval until December 31, 2012. Under normal operation Alabama Power is required to release 2,000 cfs from Jordan Dam July 1 through March 31 and release a continuous base flow of 4,000 cfs for 18 hours/day and an 8,000 cfs pulse flow for 6 hours/ day from April 1...
Lacour, C; Joannis, C; Gromaire, M-C; Chebbo, G
2009-01-01
Turbidity sensors can be used to continuously monitor the evolution of pollutant mass discharge. For two sites within the Paris combined sewer system, continuous turbidity, conductivity and flow data were recorded at one-minute time intervals over a one-year period. This paper is intended to highlight the variability in turbidity dynamics during wet weather. For each storm event, turbidity response aspects were analysed through different classifications. The correlation between classification and common parameters, such as the antecedent dry weather period, total event volume per impervious hectare and both the mean and maximum hydraulic flow for each event, was also studied. Moreover, the dynamics of flow and turbidity signals were compared at the event scale. No simple relation between turbidity responses, hydraulic flow dynamics and the chosen parameters was derived from this effort. Knowledge of turbidity dynamics could therefore potentially improve wet weather management, especially when using pollution-based real-time control (P-RTC) since turbidity contains information not included in hydraulic flow dynamics and not readily predictable from such dynamics.
A computer code for multiphase all-speed transient flows in complex geometries. MAST version 1.0
NASA Technical Reports Server (NTRS)
Chen, C. P.; Jiang, Y.; Kim, Y. M.; Shang, H. M.
1991-01-01
The operation of the MAST code, which computes transient solutions to the multiphase flow equations applicable to all-speed flows, is described. Two-phase flows are formulated based on the Eulerian-Lagrange scheme in which the continuous phase is described by the Navier-Stokes equation (or Reynolds equations for turbulent flows). Dispersed phase is formulated by a Lagrangian tracking scheme. The numerical solution algorithms utilized for fluid flows is a newly developed pressure-implicit algorithm based on the operator-splitting technique in generalized nonorthogonal coordinates. This operator split allows separate operation on each of the variable fields to handle pressure-velocity coupling. The obtained pressure correction equation has the hyperbolic nature and is effective for Mach numbers ranging from the incompressible limit to supersonic flow regimes. The present code adopts a nonstaggered grid arrangement; thus, the velocity components and other dependent variables are collocated at the same grid. A sequence of benchmark-quality problems, including incompressible, subsonic, transonic, supersonic, gas-droplet two-phase flows, as well as spray-combustion problems, were performed to demonstrate the robustness and accuracy of the present code.
Identifying the Oscillatory Mechanism of the Glucose Oxidase-Catalase Coupled Enzyme System.
Muzika, František; Jurašek, Radovan; Schreiberová, Lenka; Radojković, Vuk; Schreiber, Igor
2017-10-12
We provide experimental evidence of periodic and aperiodic oscillations in an enzymatic system of glucose oxidase-catalase in a continuous-flow stirred reactor coupled by a membrane with a continuous-flow reservoir supplied with hydrogen peroxide. To describe such dynamics, we formulate a detailed mechanism based on partial results in the literature. Finally, we introduce a novel method for estimation of unknown kinetic parameters. The method is based on matching experimental data at an oscillatory instability with stoichiometric constraints of the mechanism formulated by applying the stability theory of reaction networks. This approach has been used to estimate rate coefficients in the catalase part of the mechanism. Remarkably, model simulations show good agreement with the observed oscillatory dynamics, including apparently chaotic intermittent behavior. Our method can be applied to any reaction system with an experimentally observable dynamical instability.
ERIC Educational Resources Information Center
Santandrea, Jeffrey; Kairouz, Vanessa; Collins, Shawn K.
2018-01-01
An undergraduate teaching laboratory experiment involving a continuous flow, photocatalytic thiol-ene reaction using visible-light irradiation is described that allows students to explore concepts of green chemistry, photochemistry, photocatalysis, and continuous flow chemistry.
NASA Astrophysics Data System (ADS)
von Boetticher, Albrecht; Rickenmann, Dieter; McArdell, Brian; Kirchner, James W.
2017-04-01
Debris flows are dense flowing mixtures of water, clay, silt, sand and coarser particles. They are a common natural hazard in mountain regions and frequently cause severe damage. Modeling debris flows to design protection measures is still challenging due to the complex interactions within the inhomogeneous material mixture, and the sensitivity of the flow process to the channel geometry. The open-source, OpenFOAM-based finite-volume debris flow model debrisInterMixing (von Boetticher et al, 2016) defines rheology parameters based on the material properties of the debris flow mixture to reduce the number of free model parameters. As a simplification in this first model version, gravel was treated as a Coulomb-viscoplastic fluid, neglecting grain-to-grain collisions and the coupling between the coarser gravel grains and the interstitial fluid. Here we present an extension of that solver, accounting for the particle-to-particle and particle-to-boundary contacts with a Lagrangian Particle Simulation composed of spherical grains and a user-defined grain size distribution. The grain collisions of the Lagrangian particles add granular flow behavior to the finite-volume simulation of the continuous phases. The two-way coupling exchanges momentum between the phase-averaged flow in a finite volume cell, and among all individual particles contained in that cell, allowing the user to choose from a number of different drag models. The momentum exchange is implemented in the momentum equation and in the pressure equation (ensuring continuity) of the so-called PISO-loop, resulting in a stable 4-way coupling (particle-to-particle, particle-to-boundary, particle-to-fluid and fluid-to-particle) that represents the granular and viscous flow behavior of debris flow material. We will present simulations that illustrate the relative benefits and drawbacks of explicitly representing grain collisions, compared to the original debrisInterMixing solver.
On the stability analysis of sharply stratified shear flows
NASA Astrophysics Data System (ADS)
Churilov, Semyon
2018-05-01
When the stability of a sharply stratified shear flow is studied, the density profile is usually taken stepwise and a weak stratification between pycnoclines is neglected. As a consequence, in the instability domain of the flow two-sided neutral curves appear such that the waves corresponding to them are neutrally stable, whereas the neighboring waves on either side of the curve are unstable, in contrast with the classical result of Miles (J Fluid Mech 16:209-227, 1963) who proved that in stratified flows unstable oscillations can be only on one side of the neutral curve. In the paper, the contradiction is resolved and changes in the flow stability pattern under transition from a model stepwise to a continuous density profile are analyzed. On this basis, a simple self-consistent algorithm is proposed for studying the stability of sharply stratified shear flows with a continuous density variation and an arbitrary monotonic velocity profile without inflection points. Because our calculations and the algorithm are both based on the method of stability analysis (Churilov J Fluid Mech 539:25-55, 2005; ibid, 617, 301-326, 2008), which differs essentially from usually used, the paper starts with a brief review of the method and results obtained with it.
Compound Capillary Flows in Complex Containers: Drop Tower Test Results
NASA Astrophysics Data System (ADS)
Bolleddula, Daniel A.; Chen, Yongkang; Semerjian, Ben; Tavan, Noël; Weislogel, Mark M.
2010-10-01
Drop towers continue to provide unique capabilities to investigate capillary flow phenomena relevant to terrestrial and space-based capillary fluidics applications. In this study certain `capillary rise' flows and the value of drop tower experimental investigations are briefly reviewed. A new analytic solution for flows along planar interior edges is presented. A selection of test cell geometries are then discussed where compound capillary flows occur spontaneously and simultaneously over local and global length scales. Sample experimental results are provided. Tertiary experiments on a family of asymmetric geometries that isolate the global component of such flows are then presented along with a qualitative analysis that may be used to either avoid or exploit such flows. The latter may also serve as a design tool with which to assess the impact of inadvertent container asymmetry.
Fast blood flow monitoring in deep tissues with real-time software correlators
Wang, Detian; Parthasarathy, Ashwin B.; Baker, Wesley B.; Gannon, Kimberly; Kavuri, Venki; Ko, Tiffany; Schenkel, Steven; Li, Zhe; Li, Zeren; Mullen, Michael T.; Detre, John A.; Yodh, Arjun G.
2016-01-01
We introduce, validate and demonstrate a new software correlator for high-speed measurement of blood flow in deep tissues based on diffuse correlation spectroscopy (DCS). The software correlator scheme employs standard PC-based data acquisition boards to measure temporal intensity autocorrelation functions continuously at 50 – 100 Hz, the fastest blood flow measurements reported with DCS to date. The data streams, obtained in vivo for typical source-detector separations of 2.5 cm, easily resolve pulsatile heart-beat fluctuations in blood flow which were previously considered to be noise. We employ the device to separate tissue blood flow from tissue absorption/scattering dynamics and thereby show that the origin of the pulsatile DCS signal is primarily flow, and we monitor cerebral autoregulation dynamics in healthy volunteers more accurately than with traditional instrumentation as a result of increased data acquisition rates. Finally, we characterize measurement signal-to-noise ratio and identify count rate and averaging parameters needed for optimal performance. PMID:27231588
Kish, G.R.; Stringer, C.E.; Stewart, M.T.; Rains, M.C.; Torres, A.E.
2010-01-01
Geochemical mass-balance (GMB) and conductivity mass-balance (CMB) methods for hydrograph separation were used to determine the contribution of base flow to total stormflow at two sites in the upper Hillsborough River watershed in west-central Florida from 2003-2005 and at one site in 2009. The chemical and isotopic composition of streamflow and precipitation was measured during selected local and frontal low- and high-intensity storm events and compared to the geochemical and isotopic composition of groundwater. Input for the GMB method included cation, anion, and stable isotope concentrations of surface water and groundwater, whereas input for the CMB method included continuous or point-sample measurement of specific conductance. The surface water is a calcium-bicarbonate type water, which closely resembles groundwater geochemically, indicating that much of the surface water in the upper Hillsborough River basin is derived from local groundwater discharge. This discharge into the Hillsborough River at State Road 39 and at Hillsborough River State Park becomes diluted by precipitation and runoff during the wet season, but retains the calcium-bicarbonate characteristics of Upper Floridan aquifer water. Field conditions limited the application of the GMB method to low-intensity storms but the CMB method was applied to both low-intensity and high-intensity storms. The average contribution of base flow to total discharge for all storms ranged from 31 to 100 percent, whereas the contribution of base flow to total discharge during peak discharge periods ranged from less than 10 percent to 100 percent. Although calcium, magnesium, and silica were consistent markers of Upper Floridan aquifer chemistry, their use in calculating base flow by the GMB method was limited because the frequency of point data collected in this study was not sufficient to capture the complete hydrograph from pre-event base-flow to post-event base-flow concentrations. In this study, pre-event water represented somewhat diluted groundwater. Streamflow conductivity integrates the concentrations of the major ions, and the logistics of acquiring specific conductance at frequent time intervals are less complicated than data collection, sample processing, shipment, and analysis of water samples in a laboratory. The acquisition of continuous specific conductance data reduces uncertainty associated with less-frequently collected geochemical point data.
Qiao, Yanhui; Teng, Junjiang; Wang, Shuangfei; Ma, Hao
2017-12-24
A biomass-based catalyst with amine groups (-NH₂), viz., amine-functionalized sugarcane bagasse (SCB-NH₂), was prepared through the amination of sugarcane bagasse (SCB) in a two-step process. The physicochemical properties of the catalyst were characterized through FT-IR, elemental analysis, XRD, TG, and SEM-EDX techniques, which confirmed the -NH₂ group was grafted onto SCB successfully. The catalytic performance of SCB-NH₂ in Knoevenagel condensation reaction was tested in the batch and continuous flow reactions. Significantly, it was found that the catalytic performance of SCB-NH₂ is better in flow system than that in batch system. Moreover, the SCB-NH₂ presented an excellent catalytic activity and stability at the high flow rate. When the flow rate is at the 1.5 mL/min, no obvious deactivation was observed and the product yield and selectivity are more than 97% and 99% after 80 h of continuous reaction time, respectively. After the recovery of solvent from the resulting solution, a white solid was obtained as a target product. As a result, the SCB-NH₂ is a promising catalyst for the synthesis of fine chemicals by Knoevenagel condensation reaction in large scale, and the modification of the renewable SCB with -NH₂ group is a potential avenue for the preparation of amine-functionalized catalytic materials in industry.
Regenerating oak-dominated forests using irregular, gap-based silvicultural systems
John M. Lhotka; Michael R. Saunders; John M. Kabrick; Daniel C. Dey
2013-01-01
Throughout the Eastern United States, practitioners have primarily focused on using uniformly applied even-aged approaches to regenerate oak species. Irregular, gap-based silvicultural systems offer an alternative that retains continuous canopy cover, creates heterogeneous forest structure, and provides multiple income flows over a rotation. Although commonly used in...
NASA Astrophysics Data System (ADS)
Geng, X.; Kreyns, P.; Koneshloo, M.; Michael, H. A.
2017-12-01
Groundwater flow and salt transport processes are important for protection of coastal water resources and ecosystems. Geological heterogeneity has been recognized as a key factor affecting rates and patterns of groundwater flow and the evolution of subsurface salinity distributions in coastal aquifers. The hydrogeologic system of the volcanic Hawaiian Islands is characterized by lava flows that can form continuous, connected geologic structures in subsurface. Understanding the role of geological heterogeneity in aquifer salinization and water exchange between aquifers and the ocean is essential for effective assessment and management of water resources in the Hawaii islands. In this study, surface-based geostatistical techniques were adopted to generate geologically-realistic, statistically equivalent model realizations of the hydrogeologic system on the Big Island of Hawaii. The density-dependent groundwater flow and solute transport code SEAWAT was used to perform 3D simulations to investigate subsurface flow and salt transport through these random realizations. Flux across the aquifer-ocean interface, aquifer salinization, and groundwater flow pathways and associated transit times were quantified. Numerical simulations of groundwater pumping at various positions in the aquifers were also conducted, and associated impacts on saltwater intrusion rates were evaluated. Results indicate the impacts of continuous geologic features on large-scale groundwater processes in coastal aquifers.
Curran, Christopher A.; Eng, Ken; Konrad, Christopher P.
2012-01-01
Regional low-flow regression models for estimating Q7,10 at ungaged stream sites are developed from the records of daily discharge at 65 continuous gaging stations (including 22 discontinued gaging stations) for the purpose of evaluating explanatory variables. By incorporating the base-flow recession time constant τ as an explanatory variable in the regression model, the root-mean square error for estimating Q7,10 at ungaged sites can be lowered to 72 percent (for known values of τ), which is 42 percent less than if only basin area and mean annual precipitation are used as explanatory variables. If partial-record sites are included in the regression data set, τ must be estimated from pairs of discharge measurements made during continuous periods of declining low flows. Eight measurement pairs are optimal for estimating τ at partial-record sites, and result in a lowering of the root-mean square error by 25 percent. A low-flow survey strategy that includes paired measurements at partial-record sites requires additional effort and planning beyond a standard strategy, but could be used to enhance regional estimates of τ and potentially reduce the error of regional regression models for estimating low-flow characteristics at ungaged sites.
Exploring Flow Procedures for Diazonium Formation.
Hu, Te; Baxendale, Ian R; Baumann, Marcus
2016-07-14
The synthesis of diazonium salts is historically an important transformation extensively utilized in dye manufacture. However the highly reactive nature of the diazonium functionality has additionally led to the development of many new reactions including several carbon-carbon bond forming processes. It is therefore highly desirable to determine optimum conditions for the formation of diazonium compounds utilizing the latest processing tools such as flow chemistry to take advantage of the increased safety and continuous manufacturing capabilities. Herein we report a series of flow-based procedures to prepare diazonium salts for subsequent in-situ consumption.
Li, Jianan; Zhou, Qizhi; Campos, Luiza C
2017-12-01
Greater duckweed (Spirodela polyrhiza) based lab-scale free water constructed wetland (CW) was employed for removing four emerging pharmaceuticals and personal care products (PPCPs) (i.e. DEET, paracetamol, caffeine and triclosan). Orthogonal design was used to test the effect of light intensity, aeration, E.coli abundance and plant biomass on the target compounds. Synthetic wastewater contaminated with the target compounds at concentration of 25 μg/L was prepared, and both batch and continuous flow experiments were conducted. Up to 100% removals were achieved for paracetamol (PAR), caffeine (CAF) and tricolsan (TCS) while the highest removal for DEET was 32.2% in batch tests. Based on orthogonal Duncan analysis, high light intensity (240 μmolmm -2 s -1 ), full aeration, high plant biomass (1.00 kg/m 2 ) and high E.coli abundance (1.0 × 10 6 CFU/100 mL) favoured elimination of the PPCPs. Batch verification test achieved removals of 17.1%, 98.8%, 96.4% and 95.4% for DEET, PAR, CAF and TCS respectively. Continuous flow tests with CW only and CW followed by stabilization tank (CW-ST) were carried out. Final removals of the PPCP contaminants were 32.6%, 97.7%, 98.0% and 100% for DEET, PAR, CAF and TCS, respectively, by CW system alone, while 43.3%, 97.5%, 98.2% and 100%, respectively, were achieved by CW-ST system. By adding the ST tank, PPCP concentrations decreased significantly faster (p < 0.05) compared with continuous flow CW alone. In addition, after removing aerators during continuous flow CW experiments, the treatment systems presented good stability for the PPCP removals. CW-ST showed better chemical oxygen demand (COD) and total organic carbon (TOC) removals (89.3%, 91.2%, respectively) than CW only (79.4%, 85.2%, respectively). However, poor DEET removal (<50%) and high E.coli abundance (up to 1.7 log increase) in the final treated water indicated further treatment processes may be required. Statistical analysis showed significant correlations (p < 0.05) between PPCPs and water quality parameters (e.g. COD, nitrate, phosphate), and between the four PPCP compounds for the continuous flow CW and CW-ST systems. Positive results encourage further test of Greater duckweed at pilot scale CW using real wastewater. Copyright © 2017 Elsevier Ltd. All rights reserved.
Reconstruction of lava fields based on 3D and conventional images. Arenal volcano, Costa Rica.
NASA Astrophysics Data System (ADS)
Horvath, S.; Duarte, E.; Fernandez, E.
2007-05-01
Conventional air photographs, multi-spectral images and a map scale 1:10 000 were used to upgrade Arenal volcano's lava field. Arenal volcano located in NW Costa Rica has been active for 39 years. Fifty two days after the initial explosive events that opened three craters on the west flank, lava flows were erupted from crater A (1050 m) in September, 1968 and continued flowing until November, 1973. These lavas were the most voluminous of the eruption and the effusion rate of lava was relatively high in this period. In April, 1974 lava flows were erupted from crater C (1460 m) and continue to present time. Younger lava flows extended over uncovered ground to the south and southwest in the 1980s and early 1990s and onto the northern slopes in the 1990s and 2000s. Lava flows are becoming shorter and narrower with time. Therefore, the centre of mass of the whole lava flow-field has migrated closer to the vent. Above crater C a cone has been growing steadily, reaching a height of 1670 m, 36 m higher than the prehistoric Arenal cone by 2004. After 39 years of continuous emission of lava flows, the profile of Arenal volcano consists of a duplet of cones whose summits are separated by less than 500 meters. Most of the build up around the new cone comes from varied lava flows. For near 30 years volcano monitoring staff (from OVSICORI-UNA) has recorded field observations of regular and extraordinary events, in paper. Several drafts maps have been used for teaching, academic presentations and for graphic explanations to specific audiences and to the general public. An upgraded version was needed. The purpose of this work is to present the most recent lava flows giving a visual presentation of them by computer methods. Combined SIG techniques (Arc View 3.3) and ERDAS produced a base map in which layers containing the recorded lava flows from the recent 16 years, were depicted. Each lava flow has its own characteristics: direction, year of origin, width, length, surface texture, chemical composition, type of lava, velocity, etc. With all this information and photographs; real, visual and topographic images of the position and characters of the 1990s and 2000s lava flows, were obtained . An illustrative poster will be presented along with this abstract to show the construction process of such tool. Moreover, 3D animations will be present in the mentioned poster.
Biochemical separations by continuous-bed chromatography.
Tisch, T L; Frost, R; Liao, J L; Lam, W K; Remy, A; Scheinpflug, E; Siebert, C; Song, H; Stapleton, A
1998-08-07
Innovations in column-packing media for biomolecule purification have progressed from large spherical, porous polysaccharide beads to advanced polymeric supports. Continuous-bed technology is a radical new technology for chromatography based on the polymerization of advanced monomers and ionomers directly in the chromatographic column. The polymer chains form aggregates which coalesce into a dense, homogeneous network of interconnected nodules consisting of microparticles with an average diameter of 3000 A. The voids or channels between the nodules are large enough to permit a high hydrodynamic flow. Due to the high cross-linking of the polymer matrix, the surface of each nodule is nonporous yet the polymeric microparticles provide a very large surface area for high binding capacity. This paper will demonstrate the properties and advantages of using a continuous bed support for high resolution biomolecule separations at high flow-rates without sacrificing capacity.
Large-scale horizontal flows from SOUP observations of solar granulation
NASA Technical Reports Server (NTRS)
November, L. J.; Simon, G. W.; Tarbell, T. D.; Title, A. M.; Ferguson, S. H.
1987-01-01
Using high resolution time sequence photographs of solar granulation from the SOUP experiment on Spacelab 2, large scale horizontal flows were observed in the solar surface. The measurement method is based upon a local spatial cross correlation analysis. The horizontal motions have amplitudes in the range 300 to 1000 m/s. Radial outflow of granulation from a sunspot penumbra into surrounding photosphere is a striking new discovery. Both the supergranulation pattern and cellular structures having the scale of mesogranulation are seen. The vertical flows that are inferred by continuity of mass from these observed horizontal flows have larger upflow amplitudes in cell centers than downflow amplitudes at cell boundaries.
Jin, Wenfei; Wang, Sijia; Wang, Haifeng; Jin, Li; Xu, Shuhua
2012-01-01
The processes of genetic admixture determine the haplotype structure and linkage disequilibrium patterns of the admixed population, which is important for medical and evolutionary studies. However, most previous studies do not consider the inherent complexity of admixture processes. Here we proposed two approaches to explore population admixture dynamics, and we demonstrated, by analyzing genome-wide empirical and simulated data, that the approach based on the distribution of chromosomal segments of distinct ancestry (CSDAs) was more powerful than that based on the distribution of individual ancestry proportions. Analysis of 1,890 African Americans showed that a continuous gene flow model, in which the African American population continuously received gene flow from European populations over about 14 generations, best explained the admixture dynamics of African Americans among several putative models. Interestingly, we observed that some African Americans had much more European ancestry than the simulated samples, indicating substructures of local ancestries in African Americans that could have been caused by individuals from some particular lineages having repeatedly admixed with people of European ancestry. In contrast, the admixture dynamics of Mexicans could be explained by a gradual admixture model in which the Mexican population continuously received gene flow from both European and Amerindian populations over about 24 generations. Our results also indicated that recent gene flows from Sub-Saharan Africans have contributed to the gene pool of Middle Eastern populations such as Mozabite, Bedouin, and Palestinian. In summary, this study not only provides approaches to explore population admixture dynamics, but also advances our understanding on population history of African Americans, Mexicans, and Middle Eastern populations. PMID:23103229
This dataset represents the base flow index values within individual, local NHDPlusV2 catchments and upstream, contributing watersheds. Attributes of the landscape layer were calculated for every local NHDPlusV2 catchment and accumulated to provide watershed-level metrics. (See Supplementary Info for Glossary of Terms) The base-flow index (BFI) grid for the conterminous United States was developed to estimate (1) BFI values for ungaged streams, and (2) ground-water recharge throughout the conterminous United States (see Source_Information). Estimates of BFI values at ungaged streams and BFI-based ground-water recharge estimates are useful for interpreting relations between land use and water quality in surface and ground water. The bfi (%) was summarized by local catchment and by watershed to produce local catchment-level and watershed-level metrics as a continuous data type (see Data Structure and Attribute Information for a description).
Continuous-Flow Detector for Rapid Pathogen Identification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barrett, Louise M.; Skulan, Andrew J.; Singh, Anup K.
2006-09-01
This report describes the continued development of a low-power, portable detector for the rapid identification of pathogens such as B. anthracis and smallpox. Based on our successful demonstration of the continuous filter/concentrator inlet, we believe strongly that the inlet section will enable differentiation between viable and non-viable populations, between types of cells, and between pathogens and background contamination. Selective, continuous focusing of particles in a microstream enables highly selective and sensitive identification using fluorescently labeled antibodies and other receptors such as peptides, aptamers, or small ligands to minimize false positives. Processes such as mixing and lysing will also benefit frommore » the highly localized particle streams. The concentrator is based on faceted prisms to contract microfluidic flows while maintaining uniform flowfields. The resulting interfaces, capable of high throughput, serve as high-, low-, and band-pass filters to direct selected bioparticles to a rapid, affinity-based detection system. The proposed device is superior to existing array-based detectors as antibody-pathogen binding can be accomplished in seconds rather than tens of minutes or even hours. The system is being designed to interface with aerosol collectors under development by the National Laboratories or commercial systems. The focused stream is designed to be interrogated using diode lasers to differentiate pathogens by light scattering. Identification of particles is done using fluorescently labeled antibodies to tag the particles, followed by multiplexed laser-induced fluorescence (LIF) detection (achieved by labeling each antibody with a different dye).« less
NASA Astrophysics Data System (ADS)
Alawadi, Wisam; Al-Rekabi, Wisam S.; Al-Aboodi, Ali H.
2018-03-01
The Shiono and Knight Method (SKM) is widely used to predict the lateral distribution of depth-averaged velocity and boundary shear stress for flows in compound channels. Three calibrating coefficients need to be estimated for applying the SKM, namely eddy viscosity coefficient ( λ), friction factor ( f) and secondary flow coefficient ( k). There are several tested methods which can satisfactorily be used to estimate λ, f. However, the calibration of secondary flow coefficients k to account for secondary flow effects correctly is still problematic. In this paper, the calibration of secondary flow coefficients is established by employing two approaches to estimate correct values of k for simulating asymmetric compound channel with different side slopes of the internal wall. The first approach is based on Abril and Knight (2004) who suggest fixed values for main channel and floodplain regions. In the second approach, the equations developed by Devi and Khatua (2017) that relate the variation of the secondary flow coefficients with the relative depth ( β) and width ratio ( α) are used. The results indicate that the calibration method developed by Devi and Khatua (2017) is a better choice for calibrating the secondary flow coefficients than using the first approach which assumes a fixed value of k for different flow depths. The results also indicate that the boundary condition based on the shear force continuity can successfully be used for simulating rectangular compound channels, while the continuity of depth-averaged velocity and its gradient is accepted boundary condition in simulations of trapezoidal compound channels. However, the SKM performance for predicting the boundary shear stress over the shear layer region may not be improved by only imposing the suitable calibrated values of secondary flow coefficients. This is because difficulties of modelling the complex interaction that develops between the flows in the main channel and on the floodplain in this region.
Gohean, Jeffrey R; George, Mitchell J; Pate, Thomas D; Kurusz, Mark; Longoria, Raul G; Smalling, Richard W
2013-01-01
The purpose of this investigation is to use a computational model to compare a synchronized valveless pulsatile left ventricular assist device with continuous flow left ventricular assist devices at the same level of device flow, and to verify the model with in vivo porcine data. A dynamic system model of the human cardiovascular system was developed to simulate the support of a healthy or failing native heart from a continuous flow left ventricular assist device or a synchronous pulsatile valveless dual-piston positive displacement pump. These results were compared with measurements made during in vivo porcine experiments. Results from the simulation model and from the in vivo counterpart show that the pulsatile pump provides higher cardiac output, left ventricular unloading, cardiac pulsatility, and aortic valve flow as compared with the continuous flow model at the same level of support. The dynamic system model developed for this investigation can effectively simulate human cardiovascular support by a synchronous pulsatile or continuous flow ventricular assist device.
Gohean, Jeffrey R.; George, Mitchell J.; Pate, Thomas D.; Kurusz, Mark; Longoria, Raul G.; Smalling, Richard W.
2012-01-01
The purpose of this investigation is to utilize a computational model to compare a synchronized valveless pulsatile left ventricular assist device to continuous flow left ventricular assist devices at the same level of device flow, and to verify the model with in vivo porcine data. A dynamic system model of the human cardiovascular system was developed to simulate support of a healthy or failing native heart from a continuous flow left ventricular assist device or a synchronous, pulsatile, valveless, dual piston positive displacement pump. These results were compared to measurements made during in vivo porcine experiments. Results from the simulation model and from the in vivo counterpart show that the pulsatile pump provides higher cardiac output, left ventricular unloading, cardiac pulsatility, and aortic valve flow as compared to the continuous flow model at the same level of support. The dynamic system model developed for this investigation can effectively simulate human cardiovascular support by a synchronous pulsatile or continuous flow ventricular assist device. PMID:23438771
Efficient 3D multi-region prostate MRI segmentation using dual optimization.
Qiu, Wu; Yuan, Jing; Ukwatta, Eranga; Sun, Yue; Rajchl, Martin; Fenster, Aaron
2013-01-01
Efficient and accurate extraction of the prostate, in particular its clinically meaningful sub-regions from 3D MR images, is of great interest in image-guided prostate interventions and diagnosis of prostate cancer. In this work, we propose a novel multi-region segmentation approach to simultaneously locating the boundaries of the prostate and its two major sub-regions: the central gland and the peripheral zone. The proposed method utilizes the prior knowledge of the spatial region consistency and employs a customized prostate appearance model to simultaneously segment multiple clinically meaningful regions. We solve the resulted challenging combinatorial optimization problem by means of convex relaxation, for which we introduce a novel spatially continuous flow-maximization model and demonstrate its duality to the investigated convex relaxed optimization problem with the region consistency constraint. Moreover, the proposed continuous max-flow model naturally leads to a new and efficient continuous max-flow based algorithm, which enjoys great advantages in numerics and can be readily implemented on GPUs. Experiments using 15 T2-weighted 3D prostate MR images, by inter- and intra-operator variability, demonstrate the promising performance of the proposed approach.
Unified approach for incompressible flows
NASA Astrophysics Data System (ADS)
Chang, Tyne-Hsien
1993-12-01
An unified approach for solving both compressible and incompressible flows was investigated in this study. The difference in CFD code development between incompressible and compressible flows is due to the mathematical characteristics. However, if one can modify the continuity equation for incompressible flows by introducing pseudocompressibility, the governing equations for incompressible flows would have the same mathematical characters as compressible flows. The application of a compressible flow code to solve incompressible flows becomes feasible. Among numerical algorithms developed for compressible flows, the Centered Total Variation Diminishing (CTVD) schemes possess better mathematical properties to damp out the spurious oscillations while providing high-order accuracy for high speed flows. It leads us to believe that CTVD schemes can equally well solve incompressible flows. In this study, the governing equations for incompressible flows include the continuity equation and momentum equations. The continuity equation is modified by adding a time-derivative of the pressure term containing the artificial compressibility. The modified continuity equation together with the unsteady momentum equations forms a hyperbolic-parabolic type of time-dependent system of equations. The continuity equation is modified by adding a time-derivative of the pressure term containing the artificial compressibility. The modified continuity equation together with the unsteady momentum equations forms a hyperbolic-parabolic type of time-dependent system of equations. Thus, the CTVD schemes can be implemented. In addition, the boundary conditions including physical and numerical boundary conditions must be properly specified to obtain accurate solution. The CFD code for this research is currently in progress. Flow past a circular cylinder will be used for numerical experiments to determine the accuracy and efficiency of the code before applying this code to more specific applications.
Extensional channel flow revisited: a dynamical systems perspective
Meseguer, Alvaro; Mellibovsky, Fernando; Weidman, Patrick D.
2017-01-01
Extensional self-similar flows in a channel are explored numerically for arbitrary stretching–shrinking rates of the confining parallel walls. The present analysis embraces time integrations, and continuations of steady and periodic solutions unfolded in the parameter space. Previous studies focused on the analysis of branches of steady solutions for particular stretching–shrinking rates, although recent studies focused also on the dynamical aspects of the problems. We have adopted a dynamical systems perspective, analysing the instabilities and bifurcations the base state undergoes when increasing the Reynolds number. It has been found that the base state becomes unstable for small Reynolds numbers, and a transitional region including complex dynamics takes place at intermediate Reynolds numbers, depending on the wall acceleration values. The base flow instabilities are constitutive parts of different codimension-two bifurcations that control the dynamics in parameter space. For large Reynolds numbers, the restriction to self-similarity results in simple flows with no realistic behaviour, but the flows obtained in the transition region can be a valuable tool for the understanding of the dynamics of realistic Navier–Stokes solutions. PMID:28690413
NASA Astrophysics Data System (ADS)
Sek Tee, Kian; Sharil Saripan, Muhammad; Yap, Hiung Yin; Fhong Soon, Chin
2017-08-01
With the advancement in microfluidic technology, fluid flow control for syringe pump is always essential. In this paper, a mechatronic syringe pump will be developed and customized to control the fluid flow in a poly-dimethylsiloxane (PDMS) microfluidic device based on a polyimide laminating film. The syringe pump is designed to drive fluid with flow rates of 100 and 1000 μl/min which intended to drive continuous fluid in a polyimide based microfluidic device. The electronic system consists of an Arduino microcontroller board and a uni-polar stepper motor. In the system, the uni-polar stepper motor was coupled to a linear slider attached to the plunger of a syringe pump. As the motor rotates, the plunger pumps the liquid out of the syringe. The accuracy of the fluid flow rate was determined by adjusting the number of micro-step/revolution to drive the stepper motor to infuse fluid into the microfluidic device. With the precise control of the electronic system, the syringe pump could accurately inject fluid volume at 100 and 1000 μl/min into a microfluidic device.
ERIC Educational Resources Information Center
Kairouz, Vanessa; Collins, Shawn K.
2018-01-01
An undergraduate teaching laboratory experiment involving a continuous flow, bleach-mediated oxidation of aldehydes under biphasic conditions was developed that allowed students to explore concepts of mixing or mass transport, solvent sustainability, biphasic reactions, phase transfer catalysis, and continuous flow chemistry.
Simulant Gas Test Technique Feasibility
1990-05-01
DY’NAMICS LABORATORY WRIGHT RESEARCH AND DEVELOPMENT CENTER AIR FORCE SYSTEMS COMMAND WRIGHT-PATTERSON AIR FORCE BASE, OHIO 45433-6553 NOTIr’ When...TERMS (Continue on reverse if necessary and identify by block number) FIELD GROUP SUB-GROUP Hypersonic-test Air -chemistry Non-equilibrium-flow 0g...ABSTRACT (Continue on reverse if necessary and identify by block number) ’[lie Ulcertaillty engendered by non-equilibrium air effects on hypersonic
Cambié, Dario; Bottecchia, Cecilia; Straathof, Natan J W; Hessel, Volker; Noël, Timothy
2016-09-14
Continuous-flow photochemistry in microreactors receives a lot of attention from researchers in academia and industry as this technology provides reduced reaction times, higher selectivities, straightforward scalability, and the possibility to safely use hazardous intermediates and gaseous reactants. In this review, an up-to-date overview is given of photochemical transformations in continuous-flow reactors, including applications in organic synthesis, material science, and water treatment. In addition, the advantages of continuous-flow photochemistry are pointed out and a thorough comparison with batch processing is presented.
Insoo Kim; Bhagat, Yusuf A
2016-08-01
The standard in noninvasive blood pressure (BP) measurement is an inflatable cuff device based on the oscillometric method, which poses several practical challenges for continuous BP monitoring. Here, we present a novel ultra-wide band RF Doppler radar sensor for next-generation mobile interface for the purpose of characterizing fluid flow speeds, and for ultimately measuring cuffless blood flow in the human wrist. The system takes advantage of the 7.1~10.5 GHz ultra-wide band signals which can reduce transceiver complexity and power consumption overhead. Moreover, results obtained from hardware development, antenna design and human wrist modeling, and subsequent phantom development are reported. Our comprehensive lab bench system setup with a peristaltic pump was capable of characterizing various speed flow components during a linear velocity sweep of 5~62 cm/s. The sensor holds potential for providing estimates of heart rate and blood pressure.
Winterstein, Thomas A.; Arntson, Allan D.; Mitton, Gregory B.
2007-01-01
The 1-, 7-, and 30-day low-flow series were determined for 120 continuous-record streamflow stations in Minnesota having at least 20 years of continuous record. The 2-, 5-, 10-, 50-, and 100-year statistics were determined for each series by fitting a log Pearson type III distribution to the data. The methods used to determine the low-flow statistics and to construct the plots of the low-flow frequency curves are described. The low-flow series and the low-flow statistics are presented in tables and graphs.
Optimum aerobic volume control based on continuous in-line oxygen uptake monitoring.
Svardal, K; Lindtner, S; Winkler, S
2003-01-01
Dynamic adaptation of the aerated volume to changing load conditions is essential to maximise the nitrogen removal performance and to minimise energy consumption. A control strategy is presented which provides optimum aerobic volume control (OAV-control concept) based on continuous in-line oxygen uptake monitoring. For ammonium concentrations below 1 mg/l the oxygen uptake rate shows a strong and almost linear dependency on the ammonium concentration. Therefore, the oxygen uptake rate is an ideal indicator for the nitrification performance in activated sludge systems. The OAV-control concept provides dynamic variation of the minimum aerobic volume required for complete nitrification and therefore maximises the denitrification performance. In-line oxygen uptake monitoring is carried out by controlling the oxygen concentration in a continuous aerated zone of the aeration tank and measuring the total air flow to the aeration tank. The total air flow to the aeration tank is directly proportional to the current oxygen uptake rate and can therefore be used as an indicator for the required aerobic volume. The instrumentation requirements for installation of the OAV-control are relatively low, oxygen sensors in the aeration tank and an on-line air flow measurement are needed. This enables individual control of aeration tanks operated in parallel at low investment costs. The OAV-control concept is installed at the WWTP Linz-Asten (1 Mio PE) and shows very good results. Full scale results are presented.
Identification of vortices in complex flows
NASA Astrophysics Data System (ADS)
Chakraborty, P.; Balachandar, S.; Adrian, R. J.
2007-12-01
Dating back to Leonardo da Vinci's famous sketches of vortices in turbulent flows, fluid dynamicists for over five centuries have continued to visualize and interpret complex flows in terms of motion of vortices. Nevertheless, much debate surrounds the question of how to unambiguously define vortices in complex flows. This debate has resulted in the availability of many vortex identification criteria---mathematical statements of what constitutes a vortex. Here we review the popularly used local or point- wise vortex identification criteria. Based on local flow kinematics, we describe a unified framework to interpret the similarities and differences in the usage of these criteria. We discuss the limitations on the applicability of these criteria when there is a significant component of vortex interactions. Finally, we provide guidelines for applying these criteria to geophysical flows.
Fast globally optimal segmentation of 3D prostate MRI with axial symmetry prior.
Qiu, Wu; Yuan, Jing; Ukwatta, Eranga; Sun, Yue; Rajchl, Martin; Fenster, Aaron
2013-01-01
We propose a novel global optimization approach to segmenting a given 3D prostate T2w magnetic resonance (MR) image, which enforces the inherent axial symmetry of the prostate shape and simultaneously performs a sequence of 2D axial slice-wise segmentations with a global 3D coherence prior. We show that the proposed challenging combinatorial optimization problem can be solved globally and exactly by means of convex relaxation. With this regard, we introduce a novel coupled continuous max-flow model, which is dual to the studied convex relaxed optimization formulation and leads to an efficient multiplier augmented algorithm based on the modern convex optimization theory. Moreover, the new continuous max-flow based algorithm was implemented on GPUs to achieve a substantial improvement in computation. Experimental results using public and in-house datasets demonstrate great advantages of the proposed method in terms of both accuracy and efficiency.
NASA Astrophysics Data System (ADS)
Vattré, A.; Devincre, B.; Feyel, F.; Gatti, R.; Groh, S.; Jamond, O.; Roos, A.
2014-02-01
A unified model coupling 3D dislocation dynamics (DD) simulations with the finite element (FE) method is revisited. The so-called Discrete-Continuous Model (DCM) aims to predict plastic flow at the (sub-)micron length scale of materials with complex boundary conditions. The evolution of the dislocation microstructure and the short-range dislocation-dislocation interactions are calculated with a DD code. The long-range mechanical fields due to the dislocations are calculated by a FE code, taking into account the boundary conditions. The coupling procedure is based on eigenstrain theory, and the precise manner in which the plastic slip, i.e. the dislocation glide as calculated by the DD code, is transferred to the integration points of the FE mesh is described in full detail. Several test cases are presented, and the DCM is applied to plastic flow in a single-crystal Nickel-based superalloy.
Electropermanent magnet actuation for droplet ferromicrofluidics
Padovani, José I.; Jeffrey, Stefanie S.; Howe, Roger T.
2016-01-01
Droplet actuation is an essential mechanism for droplet-based microfluidic systems. On-demand electromagnetic actuation is used in a ferrofluid-based microfluidic system for water droplet displacement. Electropermanent magnets (EPMs) are used to induce 50 mT magnetic fields in a ferrofluid filled microchannel with gradients up to 6.4 × 104 kA/m2. Short 50 µs current pulses activate the electropermanent magnets and generate negative magnetophoretic forces that range from 10 to 70 nN on 40 to 80 µm water-in-ferrofluid droplets. Maximum droplet displacement velocities of up to 300 µm/s are obtained under flow and no-flow conditions. Electropermanent magnet-activated droplet sorting under continuous flow is demonstrated using a split-junction microfluidic design. PMID:27583301
Hellman, Yaron; Malik, Adnan S; Lane, Kathleen A; Shen, Changyu; Wang, I-Wen; Wozniak, Thomas C; Hashmi, Zubair A; Munson, Sarah D; Pickrell, Jeanette; Caccamo, Marco A; Gradus-Pizlo, Irmina; Hadi, Azam
2017-05-01
Currently, blood pressure (BP) measurement is obtained noninvasively in patients with continuous flow left ventricular assist device (LVAD) by placing a Doppler probe over the brachial or radial artery with inflation and deflation of a manual BP cuff. We hypothesized that replacing the Doppler probe with a finger-based pulse oximeter can yield BP measurements similar to the Doppler derived mean arterial pressure (MAP). We conducted a prospective study consisting of patients with contemporary continuous flow LVADs. In a small pilot phase I inpatient study, we compared direct arterial line measurements with an automated blood pressure (ABP) cuff, Doppler and pulse oximeter derived MAP. Our main phase II study included LVAD outpatients with a comparison between Doppler, ABP, and pulse oximeter derived MAP. A total of five phase I and 36 phase II patients were recruited during February-June 2014. In phase I, the average MAP measured by pulse oximeter was closer to arterial line MAP rather than Doppler (P = 0.06) or ABP (P < 0.01). In phase II, pulse oximeter MAP (96.6 mm Hg) was significantly closer to Doppler MAP (96.5 mm Hg) when compared to ABP (82.1 mm Hg) (P = 0.0001). Pulse oximeter derived blood pressure measurement may be as reliable as Doppler in patients with continuous flow LVADs. © 2016 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Zhang, Xiaofei; Su, Xiaowen; Gao, Wenqiang; Wang, Fulei; Liu, Zhihe; Zhan, Jie; Liu, Baishan; Wang, Ruosong; Liu, Hong; Sang, Yuanhua
2018-06-01
Immobility of photocatalysts on substrates is a vital factor for the practical application of photocatalysis in polluted water/air treatment. In this study, TiO2 homogenously loaded quartz fiber felt was prepared by assembling of carboxyl-contained organic molecules functionalized TiO2 nanoparticles on the surface of amino group-modified quartz fiber by electrostatic adsorption between them and followed by an anneal process. The immobilization of TiO2 nanoparticles overcomes one main obstacle of the photocatalysts recycling in photocatalysis application. In addition, a plasma treatment endowed the hybrid photocatalyst a high hydrophilic property. Due to the homogeneous distribution of TiO2, charge carriers' separation by carbon, and full contact between water and the photocatalyst derived from the high hydrophilia, the TiO2/quartz fiber felt shows excellent photocatalytic performance. Based on the stable loading and the capillarity effect of the contacted fibers photocatalyst, a demo capillarity-driven continuous-flow water treatment photocatalysis reactor was designed and built up. The TiO2 nanoparticle/quartz fiber hybrid photocatalyst can disposal organic contaminants in actual industrial waste water from a dyeing factory in the continuous-flow reactor. The chemical oxygen demand (COD) of the industrial waste water was decreased from 104 to 45 mg/L, overcoming the problem of deep water treatment which is difficult to solve by other methods. This study provides a new photocatalyst and reaction mode for the continuous-flow photocatalysis application.
Gruber, Pia; Carvalho, Filipe; Marques, Marco P C; O'Sullivan, Brian; Subrizi, Fabiana; Dobrijevic, Dragana; Ward, John; Hailes, Helen C; Fernandes, Pedro; Wohlgemuth, Roland; Baganz, Frank; Szita, Nicolas
2018-03-01
Rapid biocatalytic process development and intensification continues to be challenging with currently available methods. Chiral amino-alcohols are of particular interest as they represent key industrial synthons for the production of complex molecules and optically pure pharmaceuticals. (2S,3R)-2-amino-1,3,4-butanetriol (ABT), a building block for the synthesis of protease inhibitors and detoxifying agents, can be synthesized from simple, non-chiral starting materials, by coupling a transketolase- and a transaminase-catalyzed reaction. However, until today, full conversion has not been shown and, typically, long reaction times are reported, making process modifications and improvement challenging. In this contribution, we present a novel microreactor-based approach based on free enzymes, and we report for the first time full conversion of ABT in a coupled enzyme cascade for both batch and continuous-flow systems. Using the compartmentalization of the reactions afforded by the microreactor cascade, we overcame inhibitory effects, increased the activity per unit volume, and optimized individual reaction conditions. The transketolase-catalyzed reaction was completed in under 10 min with a volumetric activity of 3.25 U ml -1 . Following optimization of the transaminase-catalyzed reaction, a volumetric activity of 10.8 U ml -1 was attained which led to full conversion of the coupled reaction in 2 hr. The presented approach illustrates how continuous-flow microreactors can be applied for the design and optimization of biocatalytic processes. © 2017 The Authors. Biotechnology and Bioengineering Published by Wiley Periodicals, Inc.
Depth discrimination in acousto-optic cerebral blood flow measurement simulation
NASA Astrophysics Data System (ADS)
Tsalach, A.; Schiffer, Z.; Ratner, E.; Breskin, I.; Zeitak, R.; Shechter, R.; Balberg, M.
2016-03-01
Monitoring cerebral blood flow (CBF) is crucial, as inadequate perfusion, even for relatively short periods of time, may lead to brain damage or even death. Thus, significant research efforts are directed at developing reliable monitoring tools that will enable continuous, bed side, simple and cost-effective monitoring of CBF. All existing non invasive bed side monitoring methods, which are mostly NIRS based, such as Laser Doppler or DCS, tend to underestimate CBF in adults, due to the indefinite effect of extra-cerebral tissues on the obtained signal. If those are to find place in day to day clinical practice, the contribution of extra-cerebral tissues must be eliminated and data from the depth (brain) should be extracted and discriminated. Recently, a novel technique, based on ultrasound modulation of light was developed for non-invasive, continuous CBF monitoring (termed ultrasound-tagged light (UTL or UT-NIRS)), and shown to correlate with readings of 133Xe SPECT and laser Doppler. We have assembled a comprehensive computerized simulation, modeling this acousto-optic technique in a highly scattering media. Using the combination of light and ultrasound, we show how depth information may be extracted, thus distinguishing between flow patterns taking place at different depths. Our algorithm, based on the analysis of light modulated by ultrasound, is presented and examined in a computerized simulation. Distinct depth discrimination ability is presented, suggesting that using such method one can effectively nullify the extra-cerebral tissues influence on the obtained signals, and specifically extract cerebral flow data.
NASA Astrophysics Data System (ADS)
Olender, M.; Krenczyk, D.
2016-08-01
Modern enterprises have to react quickly to dynamic changes in the market, due to changing customer requirements and expectations. One of the key area of production management, that must continuously evolve by searching for new methods and tools for increasing the efficiency of manufacturing systems is the area of production flow planning and control. These aspects are closely connected with the ability to implement the concept of Virtual Enterprises (VE) and Virtual Manufacturing Network (VMN) in which integrated infrastructure of flexible resources are created. In the proposed approach, the players role perform the objects associated with the objective functions, allowing to solve the multiobjective production flow planning problems based on the game theory, which is based on the theory of the strategic situation. For defined production system and production order models ways of solving the problem of production route planning in VMN on computational examples for different variants of production flow is presented. Possible decision strategy to use together with an analysis of calculation results is shown.
Good, Bryan C.; Deutsch, Steven; Manning, Keefe B.
2015-01-01
Purpose To investigate the effects of pulsatile and continuous pediatric ventricular assist (PVAD) flow and pediatric blood viscoelasticity on hemodynamics in a pediatric aortic graft model. Methods Hemodynamic parameters of pulsatility, along with velocity and wall shear stress (WSS), are analyzed and compared between Newtonian and viscoelastic blood models at a range of physiological pediatric hematocrits using computational fluid dynamics. Results Both pulsatile and continuous PVAD flow lead to a decrease in pulsatility (surplus hemodynamic energy (SHE), ergs/cm3) compared to healthy aortic flow but with continuous PVAD pulsatility up to 2.4 times lower than pulsatile PVAD pulsatility at each aortic outlet. Significant differences are also seen between the two flow modes in velocity and WSS. The higher velocity jet during systole with pulsatile flow leads to higher WSSs at the anastomotic toe and at the aortic branch bifurcations. The lower velocity but continuous flow jet leads to a much different flow field and higher WSSs into diastole. Under a range of physiological pediatric hematocrit (20-60%), both velocity and WSS can vary significantly with the higher hematocrit blood model generally leading to higher peak WSSs but also lower WSSs in regions of flow separation. Conclusions The large decrease in pulsatility seen from continuous PVAD flow could lead to complications in pediatric vascular development while the high WSSs during peak systole from pulsatile PVAD flow could lead to blood damage. Both flow modes lead to similar regions prone to intimal hyperplasia (IH) resulting from low time-averaged WSS (TAWSS) and high oscillatory shear index (OSI). PMID:26643646
Flow chemistry vs. flow analysis.
Trojanowicz, Marek
2016-01-01
The flow mode of conducting chemical syntheses facilitates chemical processes through the use of on-line analytical monitoring of occurring reactions, the application of solid-supported reagents to minimize downstream processing and computerized control systems to perform multi-step sequences. They are exactly the same attributes as those of flow analysis, which has solid place in modern analytical chemistry in several last decades. The following review paper, based on 131 references to original papers as well as pre-selected reviews, presents basic aspects, selected instrumental achievements and developmental directions of a rapidly growing field of continuous flow chemical synthesis. Interestingly, many of them might be potentially employed in the development of new methods in flow analysis too. In this paper, examples of application of flow analytical measurements for on-line monitoring of flow syntheses have been indicated and perspectives for a wider application of real-time analytical measurements have been discussed. Copyright © 2015 Elsevier B.V. All rights reserved.
Traffic flow collection wireless sensor network node for intersection light control
NASA Astrophysics Data System (ADS)
Li, Xu; Li, Xue
2011-10-01
Wireless sensor network (WSN) is expected to be deployed in intersection to monitor the traffic flow continuously, and the monitoring datum can be used as the foundation of traffic light control. In this paper, a WSN based on ZigBee protocol for monitoring traffic flow is proposed. Structure, hardware and work flow of WSN nodes are designed. CC2431 from Texas Instrument is chosen as the main computational and transmission unit, and CC2591 as the amplification unit. The stability experiment and the actual environment experiment are carried out in the last of the paper. The results of experiments show that WSN has the ability to collect traffic flow information quickly and transmit the datum to the processing center in real time.
NASA Technical Reports Server (NTRS)
Wieber, P. R.
1973-01-01
A numerical program was developed to compute transient compressible and incompressible laminar flows in two dimensions with multicomponent mixing and chemical reaction. The algorithm used the Los Alamos Scientific Laboratory ICE (Implicit Continuous-Fluid Eulerian) method as its base. The program can compute both high and low speed compressible flows. The numerical program incorporating the stabilization techniques was quite successful in treating both old and new problems. Detailed calculations of coaxial flow very close to the entry plane were possible. The program treated complex flows such as the formation and downstream growth of a recirculation cell. An implicit solution of the species equation predicted mixing and reaction rates which compared favorably with the literature.
Patil, Narendra G; Rebrov, Evgeny V; Eränen, Kari; Benaskar, Faysal; Meuldijk, Jan; Mikkola, Jyri-Pekka; Hessel, Volker; Hulshof, Lumbertus A; Murzin, Dmitry Yu; Schouten, Jaap C
2012-01-01
A novel heating efficiency analysis of the microwave heated stop-flow (i.e. stagnant liquid) and continuous-flow reactors has been presented. The thermal losses to the surrounding air by natural convection have been taken into account for heating efficiency calculation of the microwave heating process. The effect of the load diameter in the range of 4-29 mm on the heating efficiency of ethylene glycol was studied in a single mode microwave cavity under continuous flow and stop-flow conditions. The variation of the microwave absorbing properties of the load with temperature was estimated. Under stop-flow conditions, the heating efficiency depends on the load diameter. The highest heating efficiency has been observed at the load diameter close to the half wavelength of the electromagnetic field in the corresponding medium. Under continuous-flow conditions, the heating efficiency increased linearly. However, microwave leakage above the propagation diameter restricted further experimentation at higher load diameters. Contrary to the stop-flow conditions, the load temperature did not raise monotonously from the inlet to outlet under continuous-flow conditions. This was due to the combined effect of lagging convective heat fluxes in comparison to volumetric heating. This severely disturbs the uniformity of the electromagnetic field in the axial direction and creates areas of high and low field intensity along the load Length decreasing the heating efficiency as compared to stop-flow conditions.
The twenty-first century Colorado River hot drought and implications for the future
NASA Astrophysics Data System (ADS)
Udall, Bradley; Overpeck, Jonathan
2017-03-01
Between 2000 and 2014, annual Colorado River flows averaged 19% below the 1906-1999 average, the worst 15-year drought on record. At least one-sixth to one-half (average at one-third) of this loss is due to unprecedented temperatures (0.9°C above the 1906-1999 average), confirming model-based analysis that continued warming will likely further reduce flows. Whereas it is virtually certain that warming will continue with additional emissions of greenhouse gases to the atmosphere, there has been no observed trend toward greater precipitation in the Colorado Basin, nor are climate models in agreement that there should be a trend. Moreover, there is a significant risk of decadal and multidecadal drought in the coming century, indicating that any increase in mean precipitation will likely be offset during periods of prolonged drought. Recently published estimates of Colorado River flow sensitivity to temperature combined with a large number of recent climate model-based temperature projections indicate that continued business-as-usual warming will drive temperature-induced declines in river flow, conservatively -20% by midcentury and -35% by end-century, with support for losses exceeding -30% at midcentury and -55% at end-century. Precipitation increases may moderate these declines somewhat, but to date no such increases are evident and there is no model agreement on future precipitation changes. These results, combined with the increasing likelihood of prolonged drought in the river basin, suggest that future climate change impacts on the Colorado River flows will be much more serious than currently assumed, especially if substantial reductions in greenhouse gas emissions do not occur.
Xaplanteris, Panagiotis; Fournier, Stephane; Keulards, Daniëlle C J; Adjedj, Julien; Ciccarelli, Giovanni; Milkas, Anastasios; Pellicano, Mariano; Van't Veer, Marcel; Barbato, Emanuele; Pijls, Nico H J; De Bruyne, Bernard
2018-03-01
The principle of continuous thermodilution can be used to calculate absolute coronary blood flow and microvascular resistance (R). The aim of the study is to explore the safety, feasibility, and reproducibility of coronary blood flow and R measurements as measured by continuous thermodilution in humans. Absolute coronary flow and R can be calculated by thermodilution by infusing saline at room temperature through a dedicated monorail catheter. The temperature of saline as it enters the vessel, the temperature of blood and saline mixed in the distal part of the vessel, and the distal coronary pressure were measured by a pressure/temperature sensor-tipped guidewire. The feasibility and safety of the method were tested in 135 patients who were referred for coronary angiography. No significant adverse events were observed; in 11 (8.1%) patients, bradycardia and concomitant atrioventricular block appeared transiently and were reversed immediately on interruption of the infusion. The reproducibility of measurements was tested in a subgroup of 80 patients (129 arteries). Duplicate measurements had a strong correlation both for coronary blood flow (ρ=0.841, P <0.001; intraclass correlation coefficient=0.89, P <0.001) and R (ρ=0.780, P <0.001; intraclass correlation coefficient=0.89, P <0.001). In Bland-Altman plots, there was no significant bias or asymmetry. Absolute coronary blood flow (in L/min) and R (in mm Hg/L/min or Wood units) can be safely and reproducibly measured with continuous thermodilution. This approach constitutes a new opportunity for the study of the coronary microcirculation. © 2018 American Heart Association, Inc.
Cheng, Chui Ling
2016-08-03
Statistical models were developed to estimate natural streamflow under low-flow conditions for streams with existing streamflow data at measurement sites on the Islands of Kauaʻi, Oʻahu, Molokaʻi, Maui, and Hawaiʻi. Streamflow statistics used to describe the low-flow characteristics are flow-duration discharges that are equaled or exceeded between 50 and 95 percent of the time during the 30-year base period 1984–2013. Record-augmentation techniques were applied to develop statistical models relating concurrent streamflow data at the measurement sites and long-term data from nearby continuous-record streamflow-gaging stations that were in operation during the base period and were selected as index stations. Existing data and subsequent low-flow analyses of the available data help to identify streams in under-represented geographic areas and hydrogeologic settings where additional data collection is suggested.Low-flow duration discharges were estimated for 107 measurement sites (including long-term and short-term continuous-record streamflow-gaging stations, and partial-record stations) and 27 index stations. The adequacy of statistical models was evaluated with correlation coefficients and modified Nash-Sutcliff coefficients of efficiency, and a majority of the low-flow duration-discharge estimates are satisfactory based on these regression statistics.Molokaʻi and Hawaiʻi have the fewest number of measurement sites (that are not located on ephemeral stream reaches) at which flow-duration discharges were estimated, which can be partially explained by the limited number of index stations available on these islands that could be used for record augmentation. At measurement sites on some tributary streams, low-flow duration discharges could not be estimated because no adequate correlations could be developed with the index stations. These measurement sites are located on streams where duration-discharge estimates are available at long-term stations at other locations on the main stream channel to provide at least some definition of low-flow characteristics on that stream. In terms of general natural streamflow data availability, data are scarce in the leeward areas for all five islands as many leeward streams are dry or have minimal flow. Other under-represented areas include central Oʻahu, central Maui, and southeastern Maui.
Code of Federal Regulations, 2013 CFR
2013-07-01
... conductivity Continuous Every 15 minutes 3-hour block average. Regenerative Adsorber Regeneration stream flow. Minimum total flow per regeneration cycle Continuous N/A Total flow for each regeneration cycle. Adsorber bed temperature. Maximum temperature Continuously after regeneration and within 15 minutes of...
Code of Federal Regulations, 2014 CFR
2014-07-01
... conductivity Continuous Every 15 minutes 3-hour block average. Regenerative Adsorber Regeneration stream flow. Minimum total flow per regeneration cycle Continuous N/A Total flow for each regeneration cycle. Adsorber bed temperature. Maximum temperature Continuously after regeneration and within 15 minutes of...
López-Alías, José F; Martinez-Gomis, Jordi; Anglada, Josep M; Peraire, Maria
2006-09-01
The aims of this study were to quantify the metallic ions released by various dental alloys subjected to a continuous flow of saliva and to estimate the nutritional and toxicological implications of such a release. Four pieces of three nickel-based, one noble, one high-noble and two copper-aluminum alloys were cast and then immersed in a continuous flow of artificial saliva for 15 days. To simulate three meals a day, casts were subjected to thrice-daily episodes, lasting 30 min each and consisting of pH decreases and salinity increases. After 15 days, the metallic ions in the artificial saliva were analyzed. Data were expressed as averaged release rate: microg/cm2/day of ion released for each alloy. The highest value of 95% Cl of each ion was adapted to a hypothetical worst scenario of a subject with 100 cm2 of exposed metal surface. The results were compared with the tolerable upper daily intake level of each ion. The copper-aluminum alloys released copper, aluminum, nickel, manganese and iron. The nickel-based alloys essentially released nickel and chromium, while the beryllium-containing alloy released beryllium and significantly more nickel. The noble and high-noble alloys were very resistant to corrosion. The amount of ions released remained far below the upper tolerable intake level, with the exception of nickel, released by beryllium-containing nickel-based alloy, whose levels approach 50% of this threshold. The daily amount of ions released seems to be far below the tolerable upper intake levels for each ion.
NASA Astrophysics Data System (ADS)
Chakrabarti, Bhabesh; Fine, Philip M.; Delfino, Ralph; Sioutas, Constantinos
The need for continuous personal monitoring for exposure to particulate matter has been demonstrated by recent health studies showing effects of PM exposure on time scales of less than a few hours. Filter-based methods cannot measure this short-term variation of PM levels, which can be quite significant considering human activity patterns. The goal of this study was to evaluate the active-flow personal DataRAM for PM 2.5 (MIE pDR-1200; Thermo Electron Corp., Franklin, MA) designed as a wearable monitor to continuously measure particle exposure. The instrument precision was found to be good (2.1%) and significantly higher than the passive pDR configuration tested previously. A comparison to other proven continuous monitors resulted in good agreement at low relative humidities. Results at higher humidity followed predictable trends and provided a correction scheme that improved the accuracy of pDR readings. The pDR response to particle size also corresponded to previously observed and theoretical errors. The active flow feature of the pDR allows collection of the sampled particles on a back-up filter. The 24-h mass measured on this filter was found to compare very well with a Federal Reference Method for PM 2.5 mass.
Casado-Sánchez, Antonio; Gómez-Ballesteros, Rocío; Tato, Francisco; Soriano, Francisco J; Pascual-Coca, Gustavo; Cabrera, Silvia; Alemán, José
2016-07-12
A new catalytic system for the photooxidation of sulfides based on Pt(ii) complexes is presented. The catalyst is capable of oxidizing a large number of sulfides containing aryl, alkyl, allyl, benzyl, as well as more complex structures such as heterocycles and methionine amino acid, with complete chemoselectivity. In addition, the first sulfur oxidation in a continuous flow process has been developed.
Analytical Model for Mean Flow and Fluxes of Momentum and Energy in Very Large Wind Farms
NASA Astrophysics Data System (ADS)
Markfort, Corey D.; Zhang, Wei; Porté-Agel, Fernando
2018-01-01
As wind-turbine arrays continue to be installed and the array size continues to grow, there is an increasing need to represent very large wind-turbine arrays in numerical weather prediction models, for wind-farm optimization, and for environmental assessment. We propose a simple analytical model for boundary-layer flow in fully-developed wind-turbine arrays, based on the concept of sparsely-obstructed shear flows. In describing the vertical distribution of the mean wind speed and shear stress within wind farms, our model estimates the mean kinetic energy harvested from the atmospheric boundary layer, and determines the partitioning between the wind power captured by the wind turbines and that absorbed by the underlying land or water. A length scale based on the turbine geometry, spacing, and performance characteristics, is able to estimate the asymptotic limit for the fully-developed flow through wind-turbine arrays, and thereby determine if the wind-farm flow is fully developed for very large turbine arrays. Our model is validated using data collected in controlled wind-tunnel experiments, and its usefulness for the prediction of wind-farm performance and optimization of turbine-array spacing are described. Our model may also be useful for assessing the extent to which the extraction of wind power affects the land-atmosphere coupling or air-water exchange of momentum, with implications for the transport of heat, moisture, trace gases such as carbon dioxide, methane, and nitrous oxide, and ecologically important oxygen.
The Continuous Monitoring of Flash Flood Velocity Field based on an Automated LSPIV System
NASA Astrophysics Data System (ADS)
Li, W.; Ran, Q.; Liao, Q.
2014-12-01
Large-scale particle image velocimetry (LSPIV) is a non-intrusive tool for flow velocity field measurement and has more advantages against traditional techniques, with its applications on river, lake and ocean, especially under extreme conditions. An automated LSPIV system is presented in this study, which can be easily set up and executed for continuous monitoring of flash flood. The experiment site is Longchi village, Sichuan Province, where 8.0 magnitude earthquake occurred in 2008 and debris flow happens every year since then. The interest of area is about 30m*40m of the channel which has been heavily destroyed by debris flow. Series of videos obtained during the flood season indicates that flood outbreaks after rainstorm just for several hours. Measurement is complete without being influenced by this extreme weather condition and results are more reliable and accurate due to high soil concentration. Compared with direct measurement by impellor flow meter, we validated that LSPIV works well at mountain stream, with index of 6.7% (Average Relative Error) and 95% (Nash-Sutcliffe Coefficient). On Jun 26, the maximum flood surface velocity reached 4.26 m/s, and the discharge based on velocity-area method was also decided. Overall, this system is safe, non-contact and can be adjusted according to our requirement flexibly. We can get valuable data of flood which is scarce before, which will make a great contribution to the analysis of flood and debris flow mechanism.
Asymmetric reactions in continuous flow
Mak, Xiao Yin; Laurino, Paola
2009-01-01
Summary An overview of asymmetric synthesis in continuous flow and microreactors is presented in this review. Applications of homogeneous and heterogeneous asymmetric catalysis as well as biocatalysis in flow are discussed. PMID:19478913
Lobate impact melt flows within the extended ejecta blanket of Pierazzo crater
NASA Astrophysics Data System (ADS)
Bray, Veronica J.; Atwood-Stone, Corwin; Neish, Catherine D.; Artemieva, Natalia A.; McEwen, Alfred S.; McElwaine, Jim N.
2018-02-01
Impact melt flows are observed within the continuous and discontinuous ejecta blanket of the 9 km lunar crater Pierazzo, from the crater rim to more than 40 km away from the center of the crater. Our mapping, fractal analysis, and thermal modeling suggest that melt can be emplaced ballistically and, upon landing, can become separated from solid ejecta to form the observed flow features. Our analysis is based on the identification of established melt morphology for these in-ejecta flows and supported by fractal analysis and thermal modeling. We computed the fractal dimension for the flow boundaries and found values of D = 1.05-1.17. These are consistent with terrestrial basaltic lava flows (D = 1.06-1.2) and established lunar impact melt flows (D = 1.06-1.18), but inconsistent with lunar dry granular flows (D = 1.31-1.34). Melt flows within discontinuous ejecta deposits are noted within just 1.5% of the mapping area, suggesting that the surface expression of impact melt in the extended ejecta around craters of this size is rare, most likely due to the efficient mixing of melts with solid ejecta and local target rocks. However, if the ejected fragments (both, molten and solid) are large enough, segregation of melt and its consequent flow is possible. As most of the flows mapped in this work occur on crater-facing slopes, the development of defined melt flows within ejecta deposits might be facilitated by high crater-facing topography restricting the flow of ejecta soon after it makes ground contact, limiting the quenching of molten ejecta through turbulent mixing with solid debris. Our study confirms the idea that impact melt can travel far beyond the continuous ejecta blanket, adding to the lunar regolith over an extensive area.
van 't Veer, Marcel; Adjedj, Julien; Wijnbergen, Inge; Tóth, Gabor G; Rutten, Marcel C M; Barbato, Emanuele; van Nunen, Lokien X; Pijls, Nico H J; De Bruyne, Bernard
2016-08-20
The aim of this study is to validate a novel monorail infusion catheter for thermodilution-based quantitative coronary flow measurements. Based on the principles of thermodilution, volumetric coronary flow can be determined from the flow rate of a continuous saline infusion, the temperature of saline when it enters the coronary artery, and the temperature of the blood mixed with the saline in the distal part of the coronary artery. In an in vitro set-up of the systemic and coronary circulation at body temperature, coronary flow values were varied from 50-300 ml/min in steps of 50 ml/min. At each coronary flow value, thermodilution-based measurements were performed at infusion rates of 15, 20, and 30 ml/min. Temperatures and pressures were simultaneously measured with a pressure/temperature sensor-tipped guidewire. Agreement of the calculated flow and the measured flow as well as repeatability were assessed. A total of five catheters were tested, with a total of 180 measurements. A strong correlation (ρ=0.976, p<0.0001) and a difference of -6.5±15.5 ml/min were found between measured and calculated flow. The difference between two repeated measures was 0.2%±8.0%. This novel infusion catheter used in combination with a pressure/temperature sensor-tipped guidewire allows accurate and repeatable absolute coronary flow measurements. This opens a window to a better understanding of the coronary microcirculation.
A novel, microscope based, non invasive Laser Doppler flowmeter for choroidal blood flow assessment
Strohmaier, C; Werkmeister, RM; Bogner, B; Runge, C; Schroedl, F; Brandtner, H; Radner, W; Schmetterer, L; Kiel, JW; Grabnerand, G; Reitsamer, HA
2015-01-01
Impaired ocular blood flow is involved in the pathogenesis of numerous ocular diseases like glaucoma or AMD. The purpose of the present study was to introduce and validate a novel, microscope based, non invasive laser Doppler flowmeter (NILDF) for measurement of blood flow in the choroid. The custom made NI-LDF was compared with a commercial fiber optic based laser Doppler flowmeter (Perimed PF4000). Linearity and stability of the NI-LDF were assessed in a silastic tubing model (i.d. 0.3 mm) at different flow rates (range 0.4 – 3 ml/h). In a rabbit model continuous choroidal blood flow measurements were performed with both instruments simultaneously. During blood flow measurements ocular perfusion pressure was changed by manipulations of intraocular pressure via intravitreal saline infusions. The NILDF measurement correlated linearly to intraluminal flow rates in the perfused tubing model (r = 0.99, p<0.05) and remained stable during a 1 hour measurement at a constant flow rate. Rabbit choroidal blood flow measured by the PF4000 and the NI-LDF linearly correlated with each other over the entire measurement range (r = 0.99, y = x* 1,01 – 12,35 P.U., p < 0,001). In conclusion, the NI-LDF provides valid, semi quantitative measurements of capillary blood flow in comparison to an established LDF instrument and is suitable for measurements at the posterior pole of the eye. PMID:21443871
Simulation and analysis of traffic flow based on cellular automaton
NASA Astrophysics Data System (ADS)
Ren, Xianping; Liu, Xia
2018-03-01
In this paper, single-lane and two-lane traffic model are established based on cellular automaton. Different values of vehicle arrival rate at the entrance and vehicle departure rate at the exit are set to analyze their effects on density, average speed and traffic flow. If the road exit is unblocked, vehicles can pass through the road smoothly despite of the arrival rate at the entrance. If vehicles enter into the road continuously, the traffic condition is varied with the departure rate at the exit. To avoid traffic jam, reasonable vehicle departure rate should be adopted.
Measurement Of Multiphase Flow Water Fraction And Water-cut
NASA Astrophysics Data System (ADS)
Xie, Cheng-gang
2007-06-01
This paper describes a microwave transmission multiphase flow water-cut meter that measures the amplitude attenuation and phase shift across a pipe diameter at multiple frequencies using cavity-backed antennas. The multiphase flow mixture permittivity and conductivity are derived from a unified microwave transmission model for both water- and oil-continuous flows over a wide water-conductivity range; this is far beyond the capability of microwave-resonance-based sensors currently on the market. The water fraction and water cut are derived from a three-component gas-oil-water mixing model using the mixture permittivity or the mixture conductivity and an independently measured mixture density. Water salinity variations caused, for example, by changing formation water or formation/injection water breakthrough can be detected and corrected using an online water-conductivity tracking technique based on the interpretation of the mixture permittivity and conductivity, simultaneously measured by a single-modality microwave sensor.
A Continuous-Flow Polymerase Chain Reaction Microchip With Regional Velocity Control
Li, Shifeng; Fozdar, David Y.; Ali, Mehnaaz F.; Li, Hao; Shao, Dongbing; Vykoukal, Daynene M.; Vykoukal, Jody; Floriano, Pierre N.; Olsen, Michael; McDevitt, John T.; Gascoyne, Peter R.C.; Chen, Shaochen
2009-01-01
This paper presents a continuous-flow polymerase chain reaction (PCR) microchip with a serpentine microchannel of varying width for “regional velocity control.” Varying the channel width by incorporating expanding and contracting conduits made it possible to control DNA sample velocities for the optimization of the exposure times of the sample to each temperature phase while minimizing the transitional periods during temperature transitions. A finite element analysis (FEA) and semi-analytical heat transfer model was used to determine the distances between the three heating assemblies that are responsible for creating the denaturation (96 °C), hybridization (60 °C), and extension (72 °C) temperature zones within the microchip. Predictions from the thermal FEA and semi-analytical model were compared with temperature measurements obtained from an infrared (IR) camera. Flow-field FEAs were also performed to predict the velocity distributions in the regions of the expanding and contracting conduits to study the effects of the microchannel geometry on flow recirculation and bubble nucleation. The flow fields were empirically studied using micro particle image velocimetry (μ-PIV) to validate the flow-field FEA’s and to determine experimental velocities in each of the regions of different width. Successful amplification of a 90 base pair (bp) bacillus anthracis DNA fragment was achieved. PMID:19829760
Changes in Black Carbon Deposition to Antarctica from Two Ice Core Records, A.D. 1850-2000
NASA Technical Reports Server (NTRS)
Bisiaux, Marion M.; Edward, Ross; McConnell, Joseph R.; Curran, Mark A. J.; VanOmmen, Tas D.; Smith, Andrew M.; Neumann, Thomas A.; Pasteris, Daniel R.; Penner, Joyce E.; Taylor, Kendrick
2012-01-01
Continuous flow analysis was based on a steady sample flow and in-line detection of BC and other chemical substances as described in McConnell et al. (2007). In the cold room, previously cut one meter ice core sticks of 3x3cm, are melted continuously on a heated melter head specifically designed to eliminate contamination from the atmosphere or by the external parts of the ice. The melted ice from the most inner part of the ice stick is continuously pumped by a peristaltic pump and carried to a clean lab by Teflon lines. The recorded signal is continuous, integrating a sample volume of about 0.05 mL, for which the temporal resolution depends on the speed of melting, ice density and snow accumulation rate at the ice core drilling site. For annual accumulation derived from the WAIS and Law Dome ice cores, we assumed 3.1 cm water equivalent uncertainty in each year's accumulation from short scale spatial variability (glaciological noise) which was determined from several measurements of annual accumulation in multiple parallel ice cores notably from the WAIS Divide ice core site (Banta et al., 2008) and from South Pole site (McConnell et al., 1997; McConnell et al., 2000). Refractory black carbon (rBC) concentrations were determined using the same method as in (Bisiaux et al., 2011) and adapted to continuous flow measurements as described by (McConnell et al., 2007). The technique uses a single particle intracavity laser induced incandescence photometer (SP2, Droplet Measurement Technologies, Boulder, Colorado) coupled to an ultrasonic nebulizer/desolvation (CETAC UT5000) Flow Injection Analysis (FIA). All analyses, sample preparation etc, were performed in a class 100 cleanroom using anti contamination "clean techniques". The samples were not acidified.
Applications of immobilized catalysts in continuous flow processes.
Kirschning, Andreas; Jas, Gerhard
2004-01-01
As part of the dramatic changes associated with automation in pharmaceutical and agrochemical research laboratories, the search for new technologies has become a major topic in the chemical community. Commonly, high-throughput chemistry is still carried out in batches whereas flow-through processes are rather restricted to production processes, despite the fact that the latter concept allows facile automation, reproducibility, safety, and process reliability. Indeed, methods and technologies are missing that allow rapid transfer from the research level to process development. Continuous flow processes are considered as a universal lever to overcome these restrictions and only recently, joint efforts between synthetic and polymer chemists and chemical engineers have resulted in the first continuous flow devices and microreactors which allow rapid preparation of compounds with minimum workup. Importantly, more and more developments combine the use of immobilized reagents and catalysts with the concept of structured continuous flow reactors. Consequently, the present article focuses on this new research field, which is located at the interface of continuous flow processes and solid-phase-bound catalysts.
Materiel management and radiology: building a teamwork relationship.
Burke, M D; Cirino, J C
1991-01-01
Mr. Burke and Mr. Cirino explain how a teamwork relationship between radiology and materiel management can serve both well--radiology can continually strive to provide high quality diagnostic data and superior patient care, while materiel management can provide a continuous flow of supplies and services, keep inventory investment low, and develop a competent supplier base. Effective communication is the necessary element that will allow each to achieve its respective goals.
Risser, Dennis W.; Thompson, Ronald E.; Stuckey, Marla H.
2008-01-01
A method was developed for making estimates of long-term, mean annual ground-water recharge from streamflow data at 80 streamflow-gaging stations in Pennsylvania. The method relates mean annual base-flow yield derived from the streamflow data (as a proxy for recharge) to the climatic, geologic, hydrologic, and physiographic characteristics of the basins (basin characteristics) by use of a regression equation. Base-flow yield is the base flow of a stream divided by the drainage area of the basin, expressed in inches of water basinwide. Mean annual base-flow yield was computed for the period of available streamflow record at continuous streamflow-gaging stations by use of the computer program PART, which separates base flow from direct runoff on the streamflow hydrograph. Base flow provides a reasonable estimate of recharge for basins where streamflow is mostly unaffected by upstream regulation, diversion, or mining. Twenty-eight basin characteristics were included in the exploratory regression analysis as possible predictors of base-flow yield. Basin characteristics found to be statistically significant predictors of mean annual base-flow yield during 1971-2000 at the 95-percent confidence level were (1) mean annual precipitation, (2) average maximum daily temperature, (3) percentage of sand in the soil, (4) percentage of carbonate bedrock in the basin, and (5) stream channel slope. The equation for predicting recharge was developed using ordinary least-squares regression. The standard error of prediction for the equation on log-transformed data was 9.7 percent, and the coefficient of determination was 0.80. The equation can be used to predict long-term, mean annual recharge rates for ungaged basins, providing that the explanatory basin characteristics can be determined and that the underlying assumption is accepted that base-flow yield derived from PART is a reasonable estimate of ground-water recharge rates. For example, application of the equation for 370 hydrologic units in Pennsylvania predicted a range of ground-water recharge from about 6.0 to 22 inches per year. A map of the predicted recharge illustrates the general magnitude and variability of recharge throughout Pennsylvania.
Ionic Liquid Droplet Microreactor for Catalysis Reactions Not at Equilibrium.
Zhang, Ming; Ettelaie, Rammile; Yan, Tao; Zhang, Suojiang; Cheng, Fangqin; Binks, Bernard P; Yang, Hengquan
2017-12-06
We develop a novel strategy to more effectively and controllably process continuous enzymatic or homogeneous catalysis reactions based on nonaqueous Pickering emulsions. A key element of this strategy is "bottom-up" construction of a macroscale continuous flow reaction system through packing catalyst-containing micron-sized ionic liquid (IL) droplet in oil in a column reactor. Due to the continuous influx of reactants into the droplet microreactors and the continuous release of products from the droplet microreactors, catalysis reactions in such a system can take place without limitations arising from establishment of the reaction equilibrium and catalyst separation, inherent in conventional batch reactions. As proof of the concept, enzymatic enantioselective trans-esterification and CuI-catalyzed cycloaddition reactions using this IL droplet-based flow system both exhibit 8 to 25-fold enhancement in catalysis efficiency compared to their batch counterparts, and a durability of at least 4000 h for the enantioselective trans-esterification of 1-phenylethyl alcohol, otherwise unattainable in their batch counterparts. We further establish a theoretical model for such a catalysis system working under nonequilibrium conditions, which not only supports the experimental results but also helps to predict reaction progress at a microscale level. Being operationally simple, efficient, and adaptive, this strategy provides an unprecedented platform for practical applications of enzymes and homogeneous catalysts even at a controllable level.
Modeling Electrokinetic Flows by the Smoothed Profile Method
Luo, Xian; Beskok, Ali; Karniadakis, George Em
2010-01-01
We propose an efficient modeling method for electrokinetic flows based on the Smoothed Profile Method (SPM) [1–4] and spectral element discretizations. The new method allows for arbitrary differences in the electrical conductivities between the charged surfaces and the the surrounding electrolyte solution. The electrokinetic forces are included into the flow equations so that the Poisson-Boltzmann and electric charge continuity equations are cast into forms suitable for SPM. The method is validated by benchmark problems of electroosmotic flow in straight channels and electrophoresis of charged cylinders. We also present simulation results of electrophoresis of charged microtubules, and show that the simulated electrophoretic mobility and anisotropy agree with the experimental values. PMID:20352076
Large-scale horizontal flows from SOUP observations of solar granulation
NASA Astrophysics Data System (ADS)
November, L. J.; Simon, G. W.; Tarbell, T. D.; Title, A. M.; Ferguson, S. H.
1987-09-01
Using high-resolution time-sequence photographs of solar granulation from the SOUP experiment on Spacelab 2 the authors observed large-scale horizontal flows in the solar surface. The measurement method is based upon a local spatial cross correlation analysis. The horizontal motions have amplitudes in the range 300 to 1000 m/s. Radial outflow of granulation from a sunspot penumbra into the surrounding photosphere is a striking new discovery. Both the supergranulation pattern and cellular structures having the scale of mesogranulation are seen. The vertical flows that are inferred by continuity of mass from these observed horizontal flows have larger upflow amplitudes in cell centers than downflow amplitudes at cell boundaries.
Ötvös, Sándor B; Mándity, István M; Fülöp, Ferenc
2011-08-01
A simple and efficient flow-based technique is reported for the catalytic deuteration of several model nitrogen-containing heterocyclic compounds which are important building blocks of pharmacologically active materials. A continuous flow reactor was used in combination with on-demand pressure-controlled electrolytic D(2) production. The D(2) source was D(2)O, the consumption of which was very low. The experimental set-up allows the fine-tuning of pressure, temperature, and flow rate so as to determine the optimal conditions for the deuteration reactions. The described procedure lacks most of the drawbacks of the conventional batch deuteration techniques, and additionally is highly selective and reproducible.
Gong, An; Gu, Shuang-Shuang; Wang, Jun; Sheng, Sheng; Wu, Fu-An
2015-10-01
A segmented flow containing a buffer-ionic liquid/solvent in a micro-channel reactor was applied to synthesize isoquercitrin by the hesperidinase-catalyzed selective hydrolysis of rutin, based on a novel system of reaction coupling with separation. Within the developed microchannel reactor with one T-shaped inlet and outlet, the maximum isoquercitrin yield (101.7 ± 2.6%) was achieved in 20 min at 30 °C and 4 μL/min. Compared with a continuous-flow reactor, reaction rate was increased 4-fold due to a glycine-sodium hydroxide:[Bmim][BF4]/glycerol triacetate (1:1, v/v) system that formed a slug flow in microchannel and significantly increased mass transfer rates. The mass transfer coefficient significantly increased and exhibited a linear relationship with the flow rate. Hesperidinase could be efficiently reused at least 5 times, without losing any activity. The bonding mechanism and secondary structure of hesperidinase indicated that hesperidinase had a greater affinity to rutin at a production rate of 4 μL/min in this segmented flow microreactor. Copyright © 2015 Elsevier Ltd. All rights reserved.
Continuous surface force based lattice Boltzmann equation method for simulating thermocapillary flow
NASA Astrophysics Data System (ADS)
Zheng, Lin; Zheng, Song; Zhai, Qinglan
2016-02-01
In this paper, we extend a lattice Boltzmann equation (LBE) with continuous surface force (CSF) to simulate thermocapillary flows. The model is designed on our previous CSF LBE for athermal two phase flow, in which the interfacial tension forces and the Marangoni stresses as the results of the interface interactions between different phases are described by a conception of CSF. In this model, the sharp interfaces between different phases are separated by a narrow transition layers, and the kinetics and morphology evolution of phase separation would be characterized by an order parameter via Cahn-Hilliard equation which is solved in the frame work of LBE. The scalar convection-diffusion equation for temperature field is resolved by thermal LBE. The models are validated by thermal two layered Poiseuille flow, and two superimposed planar fluids at negligibly small Reynolds and Marangoni numbers for the thermocapillary driven convection, which have analytical solutions for the velocity and temperature. Then thermocapillary migration of two/three dimensional deformable droplet are simulated. Numerical results show that the predictions of present LBE agreed with the analytical solution/other numerical results.
40 CFR 89.416 - Raw exhaust gas flow.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Raw exhaust gas flow. 89.416 Section 89.416 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED... Procedures § 89.416 Raw exhaust gas flow. The exhaust gas flow shall be determined by one of the methods...
40 CFR 89.416 - Raw exhaust gas flow.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Raw exhaust gas flow. 89.416 Section 89.416 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED... Procedures § 89.416 Raw exhaust gas flow. The exhaust gas flow shall be determined by one of the methods...
Sample stream distortion modeled in continuous-flow electrophoresis
NASA Technical Reports Server (NTRS)
Rhodes, P. H.
1979-01-01
Buoyancy-induced disturbances in an electrophoresis-type chamber were investigated. Five tracer streams (latex) were used to visualize the flows while a nine-thermistor array sensed the temperature field. The internal heating to the chamber was provided by a 400 Hz electrical field. Cooling to the chamber was provided on the front and back faces and, in addition, on both chamber side walls. Disturbances to the symmetric base flow in the chamber occurred in the broad plane of the chamber and resulted from the formation of lateral and axial temperature gradients. The effect of these gradients was to retard or increase local flow velocities at different positions in the chamber cross section, which resulted in lateral secondary flows being induced in the broad plane of the chamber. As the adverse temperature gradients increased in magnitude, the critical Rayleigh number was approached and reverse (separated) flow became apparent, which, subsequently, led to the onset of time variant secondary flows.
Quantity and sources of base flow in the San Pedro River near Tombstone, Arizona
Kennedy, Jeffrey R.; Gungle, Bruce
2010-01-01
Base flow in the upper San Pedro River at the gaging station (USGS station 09471550) near Tombstone, Arizona, is an important factor in the long-term sustainability of the river's riparian ecosystem. Most base flow occurs during the non-summer months (typically, from November to May), because evapotranspiration (ET) is greater than groundwater discharge to the riparian zone during the growing season and typically causes periods of zero flow in the spring and fall. Streamflow during the summer months occurs only as a result of rainfall and runoff. Using a hydrograph separation technique that partitions streamflow into stormflow and base flow, based on the change in runoff from the previous day, median base flow at the Tombstone gage from 1968 to 2009 (1987 to 1996 data absent) is 4,890 acre-ft/yr. Median base flow for the earlier period of record, 1968 to 1986, is 5,830 acre-ft/yr and for the later period, 1997 to 2009, is 2,880 acre-ft/yr. Base flow in the upper San Pedro River is derived from groundwater discharge to the river from the regional and alluvial aquifer. The regional aquifer is defined as having recharge zones away from the river, primarily at mountain fronts and along ephemeral channels. The alluvial aquifer is recharged mainly from stormflow. Based on environmental isotope data, the composition of base flow in the upper San Pedro River at the gaging station near Tombstone is 74 +/- 10 percent regional groundwater and 26 +/- 10 percent summer storm runoff stored as alluvial groundwater for the 2000 to 2009 period. The volume of base flow in a given year is well explained, using multiple regression, by mean daily flow during the previous October and by rainfall during the months of December and January (R2 = 0.9). This does not suggest that streamflow is composed only of these two sources; rather, these two sources control the degree of saturation of the near-stream alluvial aquifer and, therefore, the amount of winter base-flow infiltration that is possible upstream of the Tombstone gaging station. Because of losing conditions upstream of the Tombstone gage, there is no minimum amount of base flow that would be expected in any given year. The regression equation was used to adjust the measured base flow to account for year-to-year variation in precipitation. Adjusted base flows decreased, independent of climate, from the early period of record to the late period of record. In addition to total base flow, other metrics were considered, including the start and end dates of base flow, the number of days of base flow, the 25th percentile mean daily flow, and the number of days of zero flow. Each of these showed a decline in base flow between the early period of record and the late period. The available evidence to evaluate this decrease - hydraulic gradients in the alluvial and regional aquifers and a 10-yr record of streamflow environmental isotope samples - indicates that no reduction in groundwater discharge has occurred over this period of record. Continued regional groundwater pumping will, however, eventually lead to a decline in the contribution of regional groundwater to base flow.
Debris flows: behavior and hazard assessment
Iverson, Richard M.
2014-01-01
Debris flows are water-laden masses of soil and fragmented rock that rush down mountainsides, funnel into stream channels, entrain objects in their paths, and form lobate deposits when they spill onto valley floors. Because they have volumetric sediment concentrations that exceed 40 percent, maximum speeds that surpass 10 m/s, and sizes that can range up to ~109 m3, debris flows can denude slopes, bury floodplains, and devastate people and property. Computational models can accurately represent the physics of debris-flow initiation, motion and deposition by simulating evolution of flow mass and momentum while accounting for interactions of debris' solid and fluid constituents. The use of physically based models for hazard forecasting can be limited by imprecise knowledge of initial and boundary conditions and material properties, however. Therefore, empirical methods continue to play an important role in debris-flow hazard assessment.
Gu, Herong; Guan, Yajuan; Wang, Huaibao; Wei, Baoze; Guo, Xiaoqiang
2014-01-01
Microgrid is an effective way to integrate the distributed energy resources into the utility networks. One of the most important issues is the power flow control of grid-connected voltage-source inverter in microgrid. In this paper, the small-signal model of the power flow control for the grid-connected inverter is established, from which it can be observed that the conventional power flow control may suffer from the poor damping and slow transient response. While the new power flow control can mitigate these problems without affecting the steady-state power flow regulation. Results of continuous-domain simulations in MATLAB and digital control experiments based on a 32-bit fixed-point TMS320F2812 DSP are in good agreement, which verify the small signal model analysis and effectiveness of the proposed method.
Microwave and continuous flow technologies in drug discovery.
Sadler, Sara; Moeller, Alexander R; Jones, Graham B
2012-12-01
Microwave and continuous flow microreactors have become mainstream heating sources in contemporary pharmaceutical company laboratories. Such technologies will continue to benefit from design and engineering improvements, and now play a key role in the drug discovery process. The authors review the applications of flow- and microwave-mediated heating in library, combinatorial, solid-phase, metal-assisted, and protein chemistries. Additionally, the authors provide a description of the combination of microwave and continuous flow platforms, with applications in the preparation of radiopharmaceuticals and in drug candidate development. Literature reviewed is chiefly 2000 - 2012, plus key citations from earlier reports. With the advent of microwave irradiation, reactions that normally took days to complete can now be performed in a matter of minutes. Coupled with the introduction of continuous flow microreactors, pharmaceutical companies have an easy way to improve the greenness and efficiency of many synthetic operations. The combined force of these technologies offers the potential to revolutionize discovery and manufacturing processes.
Storage capacity in hot dry rock reservoirs
Brown, D.W.
1997-11-11
A method is described for extracting thermal energy, in a cyclic manner, from geologic strata which may be termed hot dry rock. A reservoir comprised of hot fractured rock is established and water or other liquid is passed through the reservoir. The water is heated by the hot rock, recovered from the reservoir, cooled by extraction of heat by means of heat exchange apparatus on the surface, and then re-injected into the reservoir to be heated again. Water is added to the reservoir by means of an injection well and recovered from the reservoir by means of a production well. Water is continuously provided to the reservoir and continuously withdrawn from the reservoir at two different flow rates, a base rate and a peak rate. Increasing water flow from the base rate to the peak rate is accomplished by rapidly decreasing backpressure at the outlet of the production well in order to meet periodic needs for amounts of thermal energy greater than a baseload amount, such as to generate additional electric power to meet peak demands. The rate of flow of water provided to the hot dry rock reservoir is maintained at a value effective to prevent depletion of the liquid inventory of the reservoir. 4 figs.
Storage capacity in hot dry rock reservoirs
Brown, Donald W.
1997-01-01
A method of extracting thermal energy, in a cyclic manner, from geologic strata which may be termed hot dry rock. A reservoir comprised of hot fractured rock is established and water or other liquid is passed through the reservoir. The water is heated by the hot rock, recovered from the reservoir, cooled by extraction of heat by means of heat exchange apparatus on the surface, and then re-injected into the reservoir to be heated again. Water is added to the reservoir by means of an injection well and recovered from the reservoir by means of a production well. Water is continuously provided to the reservoir and continuously withdrawn from the reservoir at two different flow rates, a base rate and a peak rate. Increasing water flow from the base rate to the peak rate is accomplished by rapidly decreasing backpressure at the outlet of the production well in order to meet periodic needs for amounts of thermal energy greater than a baseload amount, such as to generate additional electric power to meet peak demands. The rate of flow of water provided to the hot dry rock reservoir is maintained at a value effective to prevent depletion of the liquid
Wu, Zhenlong; Chen, Yu; Wang, Moran; Chung, Aram J
2016-02-07
Fluid inertia which has conventionally been neglected in microfluidics has been gaining much attention for particle and cell manipulation because inertia-based methods inherently provide simple, passive, precise and high-throughput characteristics. Particularly, the inertial approach has been applied to blood separation for various biomedical research studies mainly using spiral microchannels. For higher throughput, parallelization is essential; however, it is difficult to realize using spiral channels because of their large two dimensional layouts. In this work, we present a novel inertial platform for continuous sheathless particle and blood cell separation in straight microchannels containing microstructures. Microstructures within straight channels exert secondary flows to manipulate particle positions similar to Dean flow in curved channels but with higher controllability. Through a balance between inertial lift force and microstructure-induced secondary flow, we deterministically position microspheres and cells based on their sizes to be separated downstream. Using our inertial platform, we successfully sorted microparticles and fractionized blood cells with high separation efficiencies, high purities and high throughputs. The inertial separation platform developed here can be operated to process diluted blood with a throughput of 10.8 mL min(-1)via radially arrayed single channels with one inlet and two rings of outlets.
Rapid Flow-Based Peptide Synthesis
Simon, Mark D.; Heider, Patrick L.; Adamo, Andrea; Vinogradov, Alexander A.; Mong, Surin K.; Li, Xiyuan; Berger, Tatiana; Policarpo, Rocco L.; Zhang, Chi; Zou, Yekui; Liao, Xiaoli; Spokoyny, Alexander M.; Jensen, Klavs F.
2014-01-01
A flow-based solid phase peptide synthesis methodology that enables the incorporation of an amino acid residue every 1.8 minutes under automatic control, or every three minutes under manual control, is described. This is accomplished by passing a stream of reagent through a heat exchanger, into a low volume, low backpressure reaction vessel, and through a UV detector. These features enable the continuous delivery of heated solvents and reagents to the solid support at high flow rate, maintaining a maximal concentration of reagents in the reaction vessel, quickly exchanging reagents, and eliminating the need to rapidly heat reagents after they have been added to the vessel. The UV detector enables continuous monitoring of the process. To demonstrate the broad applicability and reliability of this method, it was employed in the total synthesis of a small protein, as well as dozens of peptides. The quality of the material obtained with this method is comparable to traditional batch methods, and, in all cases, the desired material was readily purifiable via RP-HPLC. The application of this method to the synthesis of the 113 residue B. amyloliquefaciens RNase and the 130 residue pE59 DARPin is described in the accompanying manuscript. PMID:24616230
Talarico, Daria; Cinti, Stefano; Arduini, Fabiana; Amine, Aziz; Moscone, Danila; Palleschi, Giuseppe
2015-07-07
An automatable flow system for the continuous and long-term monitoring of the phosphate level has been developed using an amperometric detection method based on the use of a miniaturized sensor. This method is based on the monitoring of an electroactive complex obtained by the reaction between phosphate and molybdate that is consequently reduced at the electrode surface. The use of a screen-printed electrode modified with carbon black nanoparticles (CBNPs) leads to the quantification of the complex at low potential, because CBNPs are capable of electrocatalitically enhancing the phosphomolybdate complex reduction at +125 mV versus Ag/AgCl without fouling problems. The developed system also incorporates reagents and waste storage and is connected to a portable potentiostat for rapid detection and quantification of phosphate. Main analytical parameters, such as working potential, reagent concentration, type of cell, and flow rate, were evaluated and optimized. This system was characterized by a low detection limit (6 μM). Interference studies were carried out. Good recovery percentages comprised between 89 and 131.5% were achieved in different water sources, highlighting its suitability for field measurements.
NASA Astrophysics Data System (ADS)
Kim, Sungtae; Lee, Soogab; Kim, Kyu Hong
2008-04-01
A new numerical method toward accurate and efficient aeroacoustic computations of multi-dimensional compressible flows has been developed. The core idea of the developed scheme is to unite the advantages of the wavenumber-extended optimized scheme and M-AUSMPW+/MLP schemes by predicting a physical distribution of flow variables more accurately in multi-space dimensions. The wavenumber-extended optimization procedure for the finite volume approach based on the conservative requirement is newly proposed for accuracy enhancement, which is required to capture the acoustic portion of the solution in the smooth region. Furthermore, the new distinguishing mechanism which is based on the Gibbs phenomenon in discontinuity, between continuous and discontinuous regions is introduced to eliminate the excessive numerical dissipation in the continuous region by the restricted application of MLP according to the decision of the distinguishing function. To investigate the effectiveness of the developed method, a sequence of benchmark simulations such as spherical wave propagation, nonlinear wave propagation, shock tube problem and vortex preservation test problem are executed. Also, throughout more realistic shock-vortex interaction and muzzle blast flow problems, the utility of the new method for aeroacoustic applications is verified by comparing with the previous numerical or experimental results.
Galaxy Feeds Off Gas Artist Concept
2011-09-13
In this artist conception based on data from ESA Herschel observatory, a galaxy accretes mass from rapid, narrow streams of cold gas. These filaments provide the galaxy with continuous flows of raw material to feed its star-forming at a leisurely pace
Selected low-flow frequency statistics for continuous-record streamgage locations in Maryland, 2010
Doheny, Edward J.; Banks, William S.L.
2010-01-01
According to a 2008 report by the Governor's Advisory Committee on the Management and Protection of the State's Water Resources, Maryland's population grew by 35 percent between 1970 and 2000, and is expected to increase by an additional 27 percent between 2000 and 2030. Because domestic water demand generally increases in proportion to population growth, Maryland will be facing increased pressure on water resources over the next 20 years. Water-resources decisions should be based on sound, comprehensive, long-term data and low-flow frequency statistics from all available streamgage locations with unregulated streamflow and adequate record lengths. To provide the Maryland Department of the Environment with tools for making future water-resources decisions, the U.S. Geological Survey initiated a study in October 2009 to compute low-flow frequency statistics for selected streamgage locations in Maryland with 10 or more years of continuous streamflow records. This report presents low-flow frequency statistics for 114 continuous-record streamgage locations in Maryland. The computed statistics presented for each streamgage location include the mean 7-, 14-, and 30-consecutive day minimum daily low-flow dischages for recurrence intervals of 2, 10, and 20 years, and are based on approved streamflow records that include a minimum of 10 complete climatic years of record as of June 2010. Descriptive information for each of these streamgage locations, including the station number, station name, latitude, longitude, county, physiographic province, and drainage area, also is presented. The statistics are planned for incorporation into StreamStats, which is a U.S. Geological Survey Web application for obtaining stream information, and is being used by water-resource managers and decision makers in Maryland to address water-supply planning and management, water-use appropriation and permitting, wastewater and industrial discharge permitting, and setting minimum required streamflows to protect freshwater biota and ecosystems.
RENEWABLE LIQUID GETTERING PUMP
Batzer, T.H.
1962-08-21
A method and structure were developed for pumping gases by simple absorption into a liquid gettering material. The invention comprises means ror continuously pumping a liquid getterrng material from a reservoir to the top of a generally vertical surface disposed in a vacuum pumping chamber to receive gaseous and other particles in the liquid gettering material which continuously flows downward over the vertical suiface. Means are provided for continuous removal, degassing, and return of a portion of the liquid gettering material from the reservoir connected with collectrng means at the base of the generally vertical plate. (AEC)
De Gaetano, Francesco; Serrani, Marta; Bagnoli, Paola; Brubert, Jacob; Stasiak, Joanna; Moggridge, Geoff D.; Costantino, Maria Laura
2016-01-01
Introduction Only mechanical and biological heart valve prostheses are currently commercially available. The former show longer durability but require anticoagulant therapy, the latter display better fluid dynamic behaviour but do not have adequate durability. New Polymeric Heart Valves (PHVs) could potentially combine the haemodynamic properties of biological valves with the durability of mechanical valves. This work presents a hydrodynamic evaluation of two groups of newly developed supra-annular tri-leaflet prosthetic heart valves made from styrenic block copolymers (SBC): Poli-Valves. Methods Two types of Poli-Valves made of SBC differing in polystyrene fraction content were tested under continuous and pulsatile flow conditions as prescribed by ISO 5840 Standard. An ad - hoc designed pulse duplicator allowed the valve prototypes to be tested at different flow rates and frequencies. Pressure and flow were recorded; pressure drops, effective orifice area (EOA), and regurgitant volume were computed to assess the valve’s behaviour. Results Both types Poli-Valves met the minimum requirements in terms of regurgitation and EOA as specified by ISO 5840 Standard. Results were compared with five mechanical heart valves (MHVs) and five tissue heart valves (THVs), currently available on the market. Conclusion Based on these results, polymeric heart valves based on styrenic block copolymers, as Poli-Valves are, can be considered as promising alternative for heart valve replacement in near future. PMID:26689146
De Gaetano, Francesco; Serrani, Marta; Bagnoli, Paola; Brubert, Jacob; Stasiak, Joanna; Moggridge, Geoff D; Costantino, Maria Laura
2015-11-01
Only mechanical and biological heart valve prostheses are currently commercially available. The former show longer durability but require anticoagulant therapy; the latter display better fluid dynamic behavior but do not have adequate durability. New Polymeric Heart Valves (PHVs) could potentially combine the hemodynamic properties of biological valves with the durability of mechanical valves. This work presents a hydrodynamic evaluation of 2 groups of newly developed supra-annular, trileaflet prosthetic heart valves made from styrenic block copolymers (SBC): Poli-Valves. 2 types of Poli-Valves made of SBC and differing in polystyrene fraction content were tested under continuous and pulsatile flow conditions as prescribed by ISO 5840 Standard. A pulse duplicator designed ad hoc allowed the valve prototypes to be tested at different flow rates and frequencies. Pressure and flow were recorded; pressure drops, effective orifice area (EOA), and regurgitant volume were computed to assess the behavior of the valve. Both types of Poli-Valves met the minimum requirements in terms of regurgitation and EOA as specified by the ISO 5840 Standard. Results were compared with 5 mechanical heart valves (MHVs) and 5 tissue heart valves (THVs), currently available on the market. Based on these results, PHVs based on styrenic block copolymers, as are Poli-Valves, can be considered a promising alternative for heart valve replacement in the near future.
Lenz, Bernard N.; Saad, David A.; Fitzpatrick, Faith A.
2003-01-01
The effects of land cover on flooding and base-flow characteristics of Whittlesey Creek, Bayfield County, Wis., were examined in a study that involved ground-water-flow and rainfall-runoff modeling. Field data were collected during 1999-2001 for synoptic base flow, streambed head and temperature, precipitation, continuous streamflow and stream stage, and other physical characteristics. Well logs provided data for potentiometric-surface altitudes and stratigraphic descriptions. Geologic, soil, hydrography, altitude, and historical land-cover data were compiled into a geographic information system and used in two ground-water-flow models (GFLOW and MODFLOW) and a rainfall-runoff model (SWAT). A deep ground-water system intersects Whittlesey Creek near the confluence with the North Fork, producing a steady base flow of 17?18 cubic feet per second. Upstream from the confluence, the creek has little or no base flow; flow is from surface runoff and a small amount of perched ground water. Most of the base flow to Whittlesey Creek originates as recharge through the permeable sands in the center of the Bayfield Peninsula to the northwest of the surface-water-contributing basin. Based on simulations, model-wide changes in recharge caused a proportional change in simulated base flow for Whittlesey Creek. Changing the simulated amount of recharge by 25 to 50 percent in only the ground-water-contributing area results in relatively small changes in base flow to Whittlesey Creek (about 2?11 percent). Simulated changes in land cover within the Whittlesey Creek surface-water-contributing basin would have minimal effects on base flow and average annual runoff, but flood peaks (based on daily mean flows on peak-flow days) could be affected. Based on the simulations, changing the basin land cover to a reforested condition results in a reduction in flood peaks of about 12 to 14 percent for up to a 100-yr flood. Changing the basin land cover to 25 percent urban land or returning basin land cover to the intensive row-crop agriculture of the 1920s results in flood peaks increasing by as much as 18 percent. The SWAT model is limited to a daily time step, which is adequate for describing the surface-water/ground-water interaction and percentage changes. It may not, however, be adequate in describing peak flow because the instantaneous peak flow in Whittlesey Creek during a flood can be more than twice the magnitude of the daily mean flow during that same flood. In addition, the storage and infiltration capacities of wetlands in the basin are not fully understood and need further study.
NASA Astrophysics Data System (ADS)
Oumaya, Toru; Nakamura, Akira; Onojima, Daisuke; Takenaka, Nobuyuki
The pressurizer spray line of PWR plants cools reactor coolant by injecting water into pressurizer. Since the continuous spray flow rate during commercial operation of the plant is considered insufficient to fill the pipe completely, there is a concern that a water surface exists in the pipe and may periodically sway. In order to identify the flow regimes in spray line piping and assess their impact on pipe structure, a flow visualization experiment was conducted. In the experiment, air was used substituted for steam to simulate the gas phase of the pressurizer, and the flow instability causing swaying without condensation was investigated. With a full-scale mock-up made of acrylic, flow under room temperature and atmospheric pressure conditions was visualized, and possible flow regimes were identified based on the results of the experiment. Three representative patterns of swaying of water surface were assumed, and the range of thermal stress fluctuation, when the surface swayed instantaneously, was calculated. With the three patterns of swaying assumed based on the visualization experiment, it was confirmed that the thermal stress amplitude would not exceed the fatigue endurance limit prescribed in the Japanese Design and Construction Code.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-15
... Airworthiness Directives; B/E Aerospace, Continuous Flow Passenger Oxygen Mask Assembly, Part Numbers 174006... to prevent the in-line flow indicators of the oxygen mask assembly from fracturing and separating, which could inhibit oxygen flow to the masks. This condition could consequently result in occupants...
Huang, Song-Bin; Wu, Min-Hsien; Lin, Yen-Heng; Hsieh, Chia-Hsun; Yang, Chih-Liang; Lin, Hung-Chih; Tseng, Ching-Ping; Lee, Gwo-Bin
2013-04-07
Negative selection-based circulating tumor cell (CTC) isolation is believed valuable to harvest more native, and in particular all possible CTCs without biases relevant to the properties of surface antigens on the CTCs. Under such a cell isolation strategy, however, the CTC purity is normally compromised. To address this issue, this study reports the integration of optically-induced-dielectrophoretic (ODEP) force-based cell manipulation, and a laminar flow regime in a microfluidic platform for the isolation of untreated, and highly pure CTCs after conventional negative selection-based CTC isolation. In the design, six sections of moving light-bar screens were continuously and simultaneously exerted in two parallel laminar flows to concurrently separate the cancer cells from the leukocytes based on their size difference and electric properties. The separated cell populations were further partitioned, delivered, and collected through the two flows. With this approach, the cancer cells can be isolated in a continuous, effective, and efficient manner. In this study, the operating conditions of ODEP for the manipulation of prostate cancer (PC-3) and human oral cancer (OEC-M1) cells, and leukocytes with minor cell aggregation phenomenon were first characterized. Moreover, performances of the proposed method for the isolation of cancer cells were experimentally investigated. The results showed that the presented CTC isolation scheme was able to isolate PC-3 cells or OEC-M1 cells from a leukocyte background with high recovery rate (PC-3 cells: 76-83%, OEC-M1 cells: 61-68%), and high purity (PC-3 cells: 74-82%, OEC-M1 cells: 64-66%) (set flow rate: 0.1 μl min(-1) and sample volume: 1 μl). The latter is beyond what is currently possible in the conventional CTC isolations. Moreover, the viability of isolated cancer cells was evaluated to be as high as 94 ± 2%, and 95 ± 3% for the PC-3, and OEC-M1 cells, respectively. Furthermore, the isolated cancer cells were also shown to preserve their proliferative capability. As a whole, this study has presented an ODEP-based microfluidic platform that is capable of isolating CTCs in a continuous, label-free, cell-friendly, and particularly highly pure manner. All these traits are found particularly meaningful for exploiting the harvested CTCs for the subsequent cell-based, or biochemical assays.
NASA Technical Reports Server (NTRS)
Kuhn, Reinhard; Wagner, Horst; Mosher, Richard A.; Thormann, Wolfgang
1987-01-01
Isoelectric focusing in the continuous flow mode can be more quickly and economically performed by admitting a stepwise pH gradient composed of simple buffers instead of uniform mixtures of synthetic carrier ampholytes. The time-consuming formation of the pH gradient by the electric field is thereby omitted. The stability of a three-step system with arginine - morpholinoethanesulfonic acid/glycylglycine - aspartic acid is analyzed theoretically by one-dimensional computer simulation as well as experimentally at various flow rates in a continuous flow apparatus. Excellent agreement between experimental and theoretical data was obtained. This metastable configuration was found to be suitable for focusing of proteins under continuous flow conditions. The influence of various combinations of electrolytes and membranes between electrophoresis chamber and electrode compartments is also discussed.
High-bandwidth continuous-flow arc furnace
Hardt, David E.; Lee, Steven G.
1996-01-01
A high-bandwidth continuous-flow arc furnace for stream welding applications includes a metal mass contained in a crucible having an orifice. A power source charges an electrode for generating an arc between the electrode and the mass. The arc heats the metal mass to a molten state. A pressurized gas source propels the molten metal mass through the crucible orifice in a continuous stream. As the metal is ejected, a metal feeder replenishes the molten metal bath. A control system regulates the electrode current, shielding gas pressure, and metal source to provide a continuous flow of molten metal at the crucible orifice. Independent control over the electrode current and shield gas pressure decouples the metal flow temperature and the molten metal flow rate, improving control over resultant weld characteristics.
High-bandwidth continuous-flow arc furnace
Hardt, D.E.; Lee, S.G.
1996-08-06
A high-bandwidth continuous-flow arc furnace for stream welding applications includes a metal mass contained in a crucible having an orifice. A power source charges an electrode for generating an arc between the electrode and the mass. The arc heats the metal mass to a molten state. A pressurized gas source propels the molten metal mass through the crucible orifice in a continuous stream. As the metal is ejected, a metal feeder replenishes the molten metal bath. A control system regulates the electrode current, shielding gas pressure, and metal source to provide a continuous flow of molten metal at the crucible orifice. Independent control over the electrode current and shield gas pressure decouples the metal flow temperature and the molten metal flow rate, improving control over resultant weld characteristics. 4 figs.
NASA Astrophysics Data System (ADS)
Ke, Xinyou; Alexander, J. Iwan D.; Prahl, Joseph M.; Savinell, Robert F.
2015-08-01
A simple analytical model of a layered system comprised of a single passage of a serpentine flow channel and a parallel underlying porous electrode (or porous layer) is proposed. This analytical model is derived from Navier-Stokes motion in the flow channel and Darcy-Brinkman model in the porous layer. The continuities of flow velocity and normal stress are applied at the interface between the flow channel and the porous layer. The effects of the inlet volumetric flow rate, thickness of the flow channel and thickness of a typical carbon fiber paper porous layer on the volumetric flow rate within this porous layer are studied. The maximum current density based on the electrolyte volumetric flow rate is predicted, and found to be consistent with reported numerical simulation. It is found that, for a mean inlet flow velocity of 33.3 cm s-1, the analytical maximum current density is estimated to be 377 mA cm-2, which compares favorably with experimental result reported by others of ∼400 mA cm-2.
Silva, A F; Sarraguça, M C; Fonteyne, M; Vercruysse, J; De Leersnyder, F; Vanhoorne, V; Bostijn, N; Verstraeten, M; Vervaet, C; Remon, J P; De Beer, T; Lopes, J A
2017-08-07
A multivariate statistical process control (MSPC) strategy was developed for the monitoring of the ConsiGma™-25 continuous tablet manufacturing line. Thirty-five logged variables encompassing three major units, being a twin screw high shear granulator, a fluid bed dryer and a product control unit, were used to monitor the process. The MSPC strategy was based on principal component analysis of data acquired under normal operating conditions using a series of four process runs. Runs with imposed disturbances in the dryer air flow and temperature, in the granulator barrel temperature, speed and liquid mass flow and in the powder dosing unit mass flow were utilized to evaluate the model's monitoring performance. The impact of the imposed deviations to the process continuity was also evaluated using Hotelling's T 2 and Q residuals statistics control charts. The influence of the individual process variables was assessed by analyzing contribution plots at specific time points. Results show that the imposed disturbances were all detected in both control charts. Overall, the MSPC strategy was successfully developed and applied. Additionally, deviations not associated with the imposed changes were detected, mainly in the granulator barrel temperature control. Copyright © 2017 Elsevier B.V. All rights reserved.
The stochastic dynamics of intermittent porescale particle motion
NASA Astrophysics Data System (ADS)
Dentz, Marco; Morales, Veronica; Puyguiraud, Alexandre; Gouze, Philippe; Willmann, Matthias; Holzner, Markus
2017-04-01
Numerical and experimental data for porescale particle dynamics show intermittent patterns in Lagrangian velocities and accelerations, which manifest in long time intervals of low and short durations of high velocities [1, 2]. This phenomenon is due to the spatial persistence of particle velocities on characteristic heterogeneity length scales. In order to systematically quantify these behaviors and extract the stochastic dynamics of particle motion, we focus on the analysis of Lagrangian velocities sampled equidistantly along trajectories [3]. This method removes the intermittency observed under isochrone sampling. The space-Lagrangian velocity series can be quantified by a Markov process that is continuous in distance along streamline. It is fully parameterized in terms of the flux-weighted Eulerian velocity PDF and the characteristic pore-length. The resulting stochastic particle motion describes a continuous time random walk (CTRW). This approach allows for the process based interpretation of experimental and numerical porescale velocity, acceleration and displacement data. It provides a framework for the characterization and upscaling of particle transport and dispersion from the pore to the Darcy-scale based on the medium geometry and Eulerian flow attributes. [1] P. De Anna, T. Le Borgne, M. Dentz, A.M. Tartakovsky, D. Bolster, and P. Davy, "Flow intermittency, dispersion, and correlated continuous time random walks in porous media," Phys. Rev. Lett. 110, 184502 (2013). [2] M. Holzner, V. L. Morales, M. Willmann, and M. Dentz, "Intermittent Lagrangian velocities and accelerations in three- dimensional porous medium flow," Phys. Rev. E 92, 013015 (2015). [3] M. Dentz, P. K. Kang, A. Comolli, T. Le Borgne, and D. R. Lester, "Continuous time random walks for the evolution of Lagrangian velocities," Phys. Rev. Fluids (2016).
Ultrafast Ultrasound Imaging of Ocular Anatomy and Blood Flow
Urs, Raksha; Ketterling, Jeffrey A.; Silverman, Ronald H.
2016-01-01
Purpose Ophthalmic ultrasound imaging is currently performed with mechanically scanned single-element probes. These probes have limited capabilities overall and lack the ability to image blood flow. Linear-array systems are able to detect blood flow, but these systems exceed ophthalmic acoustic intensity safety guidelines. Our aim was to implement and evaluate a new linear-array–based technology, compound coherent plane-wave ultrasound, which offers ultrafast imaging and depiction of blood flow at safe acoustic intensity levels. Methods We compared acoustic intensity generated by a 128-element, 18-MHz linear array operated in conventionally focused and plane-wave modes and characterized signal-to-noise ratio (SNR) and lateral resolution. We developed plane-wave B-mode, real-time color-flow, and high-resolution depiction of slow flow in postprocessed data collected continuously at a rate of 20,000 frames/s. We acquired in vivo images of the posterior pole of the eye by compounding plane-wave images acquired over ±10° and produced images depicting orbital and choroidal blood flow. Results With the array operated conventionally, Doppler modes exceeded Food and Drug Administration safety guidelines, but plane-wave modalities were well within guidelines. Plane-wave data allowed generation of high-quality compound B-mode images, with SNR increasing with the number of compounded frames. Real-time color-flow Doppler readily visualized orbital blood flow. Postprocessing of continuously acquired data blocks of 1.6-second duration allowed high-resolution depiction of orbital and choroidal flow over the cardiac cycle. Conclusions Newly developed high-frequency linear arrays in combination with plane-wave techniques present opportunities for the evaluation of ocular anatomy and blood flow, as well as visualization and analysis of other transient phenomena such as vessel wall motion over the cardiac cycle and saccade-induced vitreous motion. PMID:27428169
Traffic and Driving Simulator Based on Architecture of Interactive Motion.
Paz, Alexander; Veeramisti, Naveen; Khaddar, Romesh; de la Fuente-Mella, Hanns; Modorcea, Luiza
2015-01-01
This study proposes an architecture for an interactive motion-based traffic simulation environment. In order to enhance modeling realism involving actual human beings, the proposed architecture integrates multiple types of simulation, including: (i) motion-based driving simulation, (ii) pedestrian simulation, (iii) motorcycling and bicycling simulation, and (iv) traffic flow simulation. The architecture has been designed to enable the simulation of the entire network; as a result, the actual driver, pedestrian, and bike rider can navigate anywhere in the system. In addition, the background traffic interacts with the actual human beings. This is accomplished by using a hybrid mesomicroscopic traffic flow simulation modeling approach. The mesoscopic traffic flow simulation model loads the results of a user equilibrium traffic assignment solution and propagates the corresponding traffic through the entire system. The microscopic traffic flow simulation model provides background traffic around the vicinities where actual human beings are navigating the system. The two traffic flow simulation models interact continuously to update system conditions based on the interactions between actual humans and the fully simulated entities. Implementation efforts are currently in progress and some preliminary tests of individual components have been conducted. The implementation of the proposed architecture faces significant challenges ranging from multiplatform and multilanguage integration to multievent communication and coordination.
Traffic and Driving Simulator Based on Architecture of Interactive Motion
Paz, Alexander; Veeramisti, Naveen; Khaddar, Romesh; de la Fuente-Mella, Hanns; Modorcea, Luiza
2015-01-01
This study proposes an architecture for an interactive motion-based traffic simulation environment. In order to enhance modeling realism involving actual human beings, the proposed architecture integrates multiple types of simulation, including: (i) motion-based driving simulation, (ii) pedestrian simulation, (iii) motorcycling and bicycling simulation, and (iv) traffic flow simulation. The architecture has been designed to enable the simulation of the entire network; as a result, the actual driver, pedestrian, and bike rider can navigate anywhere in the system. In addition, the background traffic interacts with the actual human beings. This is accomplished by using a hybrid mesomicroscopic traffic flow simulation modeling approach. The mesoscopic traffic flow simulation model loads the results of a user equilibrium traffic assignment solution and propagates the corresponding traffic through the entire system. The microscopic traffic flow simulation model provides background traffic around the vicinities where actual human beings are navigating the system. The two traffic flow simulation models interact continuously to update system conditions based on the interactions between actual humans and the fully simulated entities. Implementation efforts are currently in progress and some preliminary tests of individual components have been conducted. The implementation of the proposed architecture faces significant challenges ranging from multiplatform and multilanguage integration to multievent communication and coordination. PMID:26491711
NASA Astrophysics Data System (ADS)
Fan, Xiaofeng; Wang, Jiangfeng
2016-06-01
The atomization of liquid fuel is a kind of intricate dynamic process from continuous phase to discrete phase. Procedures of fuel spray in supersonic flow are modeled with an Eulerian-Lagrangian computational fluid dynamics methodology. The method combines two distinct techniques and develops an integrated numerical simulation method to simulate the atomization processes. The traditional finite volume method based on stationary (Eulerian) Cartesian grid is used to resolve the flow field, and multi-component Navier-Stokes equations are adopted in present work, with accounting for the mass exchange and heat transfer occupied by vaporization process. The marker-based moving (Lagrangian) grid is utilized to depict the behavior of atomized liquid sprays injected into a gaseous environment, and discrete droplet model 13 is adopted. To verify the current approach, the proposed method is applied to simulate processes of liquid atomization in supersonic cross flow. Three classic breakup models, TAB model, wave model and K-H/R-T hybrid model, are discussed. The numerical results are compared with multiple perspectives quantitatively, including spray penetration height and droplet size distribution. In addition, the complex flow field structures induced by the presence of liquid spray are illustrated and discussed. It is validated that the maker-based Eulerian-Lagrangian method is effective and reliable.
Wu, Yupan; Ren, Yukun; Jiang, Hongyuan
2017-01-01
We propose a 3D microfluidic mixer based on the alternating current electrothermal (ACET) flow. The ACET vortex is produced by 3D electrodes embedded in the sidewall of the microchannel and is used to stir the fluidic sample throughout the entire channel depth. An optimized geometrical structure of the proposed 3D micromixer device is obtained based on the enhanced theoretical model of ACET flow and natural convection. We quantitatively analyze the flow field driven by the ACET, and a pattern of electrothermal microvortex is visualized by the micro-particle imaging velocimetry. Then, the mixing experiment is conducted using dye solutions with varying solution conductivities. Mixing efficiency can exceed 90% for electrolytes with 0.2 S/m (1 S/m) when the flow rate is 0.364 μL/min (0.728 μL/min) and the imposed peak-to-peak voltage is 52.5 V (35 V). A critical analysis of our micromixer in comparison with different mixer designs using a comparative mixing index is also performed. The ACET micromixer embedded with sidewall 3D electrodes can achieve a highly effective mixing performance and can generate high throughput in the continuous-flow condition. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Li, Jian; Kong, Ming; Xu, Chuanlong; Wang, Shimin; Fan, Ying
2015-12-10
The online and continuous measurement of velocity, concentration and mass flow rate of pneumatically conveyed solid particles for the high-efficiency utilization of energy and raw materials has become increasingly significant. In this paper, an integrated instrumentation system for the velocity, concentration and mass flow rate measurement of dense phase pneumatically conveyed solid particles based on electrostatic and capacitance sensorsis developed. The electrostatic sensors are used for particle mean velocity measurement in combination with the cross-correlation technique, while the capacitance sensor with helical surface-plate electrodes, which has relatively homogeneous sensitivity distribution, is employed for the measurement of particle concentration and its capacitance is measured by an electrostatic-immune AC-based circuit. The solid mass flow rate can be further calculated from the measured velocity and concentration. The developed instrumentation system for velocity and concentration measurement is verified and calibrated on a pulley rig and through static experiments, respectively. Finally the system is evaluated with glass beads on a gravity-fed rig. The experimental results demonstrate that the system is capable of the accurate solid mass flow rate measurement, and the relative error is within -3%-8% for glass bead mass flow rates ranging from 0.13 kg/s to 0.9 kg/s.
Sepúlveda, Nicasio
2002-01-01
A numerical model of the intermediate and Floridan aquifer systems in peninsular Florida was used to (1) test and refine the conceptual understanding of the regional ground-water flow system; (2) develop a data base to support subregional ground-water flow modeling; and (3) evaluate effects of projected 2020 ground-water withdrawals on ground-water levels. The four-layer model was based on the computer code MODFLOW-96, developed by the U.S. Geological Survey. The top layer consists of specified-head cells simulating the surficial aquifer system as a source-sink layer. The second layer simulates the intermediate aquifer system in southwest Florida and the intermediate confining unit where it is present. The third and fourth layers simulate the Upper and Lower Floridan aquifers, respectively. Steady-state ground-water flow conditions were approximated for time-averaged hydrologic conditions from August 1993 through July 1994 (1993-94). This period was selected based on data from Upper Floridan a quifer wells equipped with continuous water-level recorders. The grid used for the ground-water flow model was uniform and composed of square 5,000-foot cells, with 210 columns and 300 rows.
NASA Astrophysics Data System (ADS)
Baratian-Ghorghi, Z.; Kaye, N. B.
2013-07-01
An experimental study is presented to investigate the mechanism of flushing a trapped dense contaminant from a canyon by turbulent boundary layer flow. The results of a series of steady-state experiments are used to parameterize the flushing mechanisms. The steady-state experimental results for a canyon with aspect ratio one indicate that dense fluid is removed from the canyon by two different processes, skimming of dense fluid from the top of the dense layer; and by an interfacial mixing flow that mixes fresh fluid down into the dense lower layer (entrainment) while mixing dense fluid into the flow above the canyon (detrainment). A model is developed for the time varying buoyancy profile within the canyon as a function of the Richardson number which parameterizes both the interfacial mixing and skimming processes observed. The continuous release steady-state experiments allowed for the direct measurement of the skimming and interfacial mixing flow rates for any layer depth and Richardson number. Both the skimming rate and the interfacial mixing rate were found to be power-law functions of the Richardson number of the layer. The model results were compared to the results of previously published finite release experiments [Z. Baratian-Ghorghi and N. B. Kaye, Atmos. Environ. 60, 392-402 (2012)], 10.1016/j.atmosenv.2012.06.077. A high degree of consistency was found between the finite release data and the continuous release data. This agreement acts as an excellent check on the measurement techniques used, as the finite release data was based on curve fitting through buoyancy versus time data, while the continuous release data was calculated directly by measuring the rate of addition of volume and buoyancy once a steady-state was established. Finally, a system of ordinary differential equations is presented to model the removal of dense fluid from the canyon based on empirical correlations of the skimming and interfacial mixing taken form the steady-state experiments. The ODE model predicts well the time taken for a finite volume of dense fluid to be flushed from a canyon.
Demongeot, Jacques; Fouquet, Yannick; Tayyab, Muhammad; Vuillerme, Nicolas
2009-01-01
Background Dynamical systems like neural networks based on lateral inhibition have a large field of applications in image processing, robotics and morphogenesis modeling. In this paper, we will propose some examples of dynamical flows used in image contrasting and contouring. Methodology First we present the physiological basis of the retina function by showing the role of the lateral inhibition in the optical illusions and pathologic processes generation. Then, based on these biological considerations about the real vision mechanisms, we study an enhancement method for contrasting medical images, using either a discrete neural network approach, or its continuous version, i.e. a non-isotropic diffusion reaction partial differential system. Following this, we introduce other continuous operators based on similar biomimetic approaches: a chemotactic contrasting method, a viability contouring algorithm and an attentional focus operator. Then, we introduce the new notion of mixed potential Hamiltonian flows; we compare it with the watershed method and we use it for contouring. Conclusions We conclude by showing the utility of these biomimetic methods with some examples of application in medical imaging and computed assisted surgery. PMID:19547712
A novel, microscope based, non-invasive laser Doppler flowmeter for choroidal blood flow assessment.
Strohmaier, C; Werkmeister, R M; Bogner, B; Runge, C; Schroedl, F; Brandtner, H; Radner, W; Schmetterer, L; Kiel, J W; Grabner, G; Reitsamer, H A
2011-06-01
Impaired ocular blood flow is involved in the pathogenesis of numerous ocular diseases like glaucoma or AMD. The purpose of the present study was to introduce and validate a novel, microscope based, non-invasive Laser Doppler Flowmeter (NI-LDF) for measurement of blood flow in the choroid. The custom made NI-LDF was compared with a commercial fiber optic based laser Doppler flowmeter (Perimed PF4000). Linearity and stability of the NI-LDF were assessed in a silastic tubing model (i.d. 0.3 mm) at different flow rates (range 0.4-3 ml/h). In a rabbit model continuous choroidal blood flow measurements were performed with both instruments simultaneously. During blood flow measurements ocular perfusion pressure was changed by manipulations of intraocular pressure via intravitreal saline infusions. The NI-LDF measurement correlated linearly to intraluminal flow rates in the perfused tubing model (r = 0.99, p < 0.05) and remained stable during a 1 h measurement at a constant flow rate. Rabbit choroidal blood flow measured by the PF4000 and the NI-LDF linearly correlated with each other over the entire measurement range (r = 0.99, y = x∗1.01-12.35 P.U., p < 0.001). In conclusion, the NI-LDF provides valid, semi quantitative measurements of capillary blood flow in comparison to an established LDF instrument and is suitable for measurements at the posterior pole of the eye. Copyright © 2011 Elsevier Ltd. All rights reserved.
Nojavan, Saeed; Sirani, Mahsa; Asadi, Sakine
2017-10-01
In this study, electromembrane extraction from a flowing sample solution, termed as continuous-flow electromembrane extraction, was developed and compared with conventional procedures for the determination of four basic drugs in real samples. Experimental parameters affecting the extraction efficiency were further studied and optimized. Under optimum conditions, linearity of continuous-flow procedure was within 8.0-500 ng/mL, while it was wider for conventional procedures (2.0-500 ng/mL). Moreover, repeatability (percentage relative standard deviation) was found to range between 5.6 and 10.4% (n = 3) for the continuous-flow procedure, with a better repeatability than that of conventional procedures (2.3-5.5% (n = 3)). Also, for the continuous-flow procedure, the estimated detection limit (signal-to-noise ratio = 3) was less than 2.4 ng/mL and extraction recoveries were within 8-10%, while the corresponding figures for conventional procedures were less than 0.6 ng/mL and 42-60%, respectively. Thus, the results showed that both continuous flow and conventional procedures were applicable for the extraction of model compounds. However, the conventional procedure was more convenient to use, and thus it was applied to determine sample drugs in real urine and wastewater samples. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Golmohammadi, A.; Jafarpour, B.; M Khaninezhad, M. R.
2017-12-01
Calibration of heterogeneous subsurface flow models leads to ill-posed nonlinear inverse problems, where too many unknown parameters are estimated from limited response measurements. When the underlying parameters form complex (non-Gaussian) structured spatial connectivity patterns, classical variogram-based geostatistical techniques cannot describe the underlying connectivity patterns. Modern pattern-based geostatistical methods that incorporate higher-order spatial statistics are more suitable for describing such complex spatial patterns. Moreover, when the underlying unknown parameters are discrete (geologic facies distribution), conventional model calibration techniques that are designed for continuous parameters cannot be applied directly. In this paper, we introduce a novel pattern-based model calibration method to reconstruct discrete and spatially complex facies distributions from dynamic flow response data. To reproduce complex connectivity patterns during model calibration, we impose a feasibility constraint to ensure that the solution follows the expected higher-order spatial statistics. For model calibration, we adopt a regularized least-squares formulation, involving data mismatch, pattern connectivity, and feasibility constraint terms. Using an alternating directions optimization algorithm, the regularized objective function is divided into a continuous model calibration problem, followed by mapping the solution onto the feasible set. The feasibility constraint to honor the expected spatial statistics is implemented using a supervised machine learning algorithm. The two steps of the model calibration formulation are repeated until the convergence criterion is met. Several numerical examples are used to evaluate the performance of the developed method.
Lombard, Pamela J.; Hodgkins, Glenn A.
2015-01-01
Regression equations to estimate peak streamflows with 1- to 500-year recurrence intervals (annual exceedance probabilities from 99 to 0.2 percent, respectively) were developed for small, ungaged streams in Maine. Equations presented here are the best available equations for estimating peak flows at ungaged basins in Maine with drainage areas from 0.3 to 12 square miles (mi2). Previously developed equations continue to be the best available equations for estimating peak flows for basin areas greater than 12 mi2. New equations presented here are based on streamflow records at 40 U.S. Geological Survey streamgages with a minimum of 10 years of recorded peak flows between 1963 and 2012. Ordinary least-squares regression techniques were used to determine the best explanatory variables for the regression equations. Traditional map-based explanatory variables were compared to variables requiring field measurements. Two field-based variables—culvert rust lines and bankfull channel widths—either were not commonly found or did not explain enough of the variability in the peak flows to warrant inclusion in the equations. The best explanatory variables were drainage area and percent basin wetlands; values for these variables were determined with a geographic information system. Generalized least-squares regression was used with these two variables to determine the equation coefficients and estimates of accuracy for the final equations.
A Depth-Averaged 2-D Simulation for Coastal Barrier Breaching Processes
2011-05-01
including bed change and variable flow density in the flow continuity and momentum equations. The model adopts the HLL approximate Riemann solver to handle...flow density in the flow continuity and momentum equations. The model adopts the HLL approximate Riemann solver to handle the mixed-regime flows near...18 547 Keulegan equation or the Bernoulli equation, and the breach morphological change is determined using simplified sediment transport models
Chang, Dwayne; Manecksha, Rustom P; Syrrakos, Konstantinos; Lawrentschuk, Nathan
2012-01-01
To investigate the effects of height, external pressure, and bladder fullness on the flow rate in continuous, non-continuous cystoscopy and the automated irrigation fluid pumping system (AIFPS). Each experiment had two 2-litre 0.9% saline bags connected to a continuous, non-continuous cystoscope or AIFPS via irrigation tubing. Other equipment included height-adjustable drip poles, uroflowmetry devices, and model bladders. In Experiment 1, saline bags were elevated to measure the increment in flow rate. In Experiment 2, saline bags were placed under external pressures to evaluate the effect on flow rate. In Experiment 3, flow rate changes in response to variable bladder fullness were measured. Elevating saline bags caused an increase in flow rates, however the increment slowed down beyond a height of 80 cm. Increase in external pressure on saline bags elevated flow rates, but inconsistently. A fuller bladder led to a decrease in flow rates. In all experiments, the AIFPS posted consistent flow rates. Traditional irrigation systems were susceptible to changes in height of irrigation solution, external pressure application, and bladder fullness thus creating inconsistent flow rates. The AIFPS produced consistent flow rates and was not affected by any of the factors investigated in the study.
NASA Astrophysics Data System (ADS)
Żymełka, Piotr; Nabagło, Daniel; Janda, Tomasz; Madejski, Paweł
2017-12-01
Balanced distribution of air in coal-fired boiler is one of the most important factors in the combustion process and is strongly connected to the overall system efficiency. Reliable and continuous information about combustion airflow and fuel rate is essential for achieving optimal stoichiometric ratio as well as efficient and safe operation of a boiler. Imbalances in air distribution result in reduced boiler efficiency, increased gas pollutant emission and operating problems, such as corrosion, slagging or fouling. Monitoring of air flow trends in boiler is an effective method for further analysis and can help to appoint important dependences and start optimization actions. Accurate real-time monitoring of the air distribution in boiler can bring economical, environmental and operational benefits. The paper presents a novel concept for online monitoring system of air distribution in coal-fired boiler based on real-time numerical calculations. The proposed mathematical model allows for identification of mass flow rates of secondary air to individual burners and to overfire air (OFA) nozzles. Numerical models of air and flue gas system were developed using software for power plant simulation. The correctness of the developed model was verified and validated with the reference measurement values. The presented numerical model for real-time monitoring of air distribution is capable of giving continuous determination of the complete air flows based on available digital communication system (DCS) data.
NASA Astrophysics Data System (ADS)
McDermid, J. R.; Zurob, H. S.; Bian, Y.
2011-12-01
Two galvanizable high-Al, low-Si transformation-induced plasticity (TRIP)-assisted steels were subjected to isothermal bainitic transformation (IBT) temperatures compatible with the continuous galvanizing (CGL) process and the kinetics of the retained austenite (RA) to martensite transformation during room temperature deformation studied as a function of heat treatment parameters. It was determined that there was a direct relationship between the rate of strain-induced transformation and optimal mechanical properties, with more gradual transformation rates being favored. The RA to martensite transformation kinetics were successfully modeled using two methodologies: (1) the strain-based model of Olsen and Cohen and (2) a simple relationship with the normalized flow stress, ( {{{σ_{{flow}} - σ_{YS} }/{σ_{YS }}}} ) . For the strain-based model, it was determined that the model parameters were a strong function of strain and alloy thermal processing history and a weak function of alloy chemistry. It was verified that the strain-based model in the present work agrees well with those derived by previous workers using TRIP-assisted steels of similar composition. It was further determined that the RA to martensite transformation kinetics for all alloys and heat treatments could be described using a simple model vs the normalized flow stress, indicating that the RA to martensite transformation is stress-induced rather than strain-induced for temperatures above the Ms^{σ }.
Estimating 1970-99 average annual groundwater recharge in Wisconsin using streamflow data
Gebert, Warren A.; Walker, John F.; Kennedy, James L.
2011-01-01
Average annual recharge in Wisconsin for the period 1970-99 was estimated using streamflow data from U.S. Geological Survey continuous-record streamflow-gaging stations and partial-record sites. Partial-record sites have discharge measurements collected during low-flow conditions. The average annual base flow of a stream divided by the drainage area is a good approximation of the recharge rate; therefore, once average annual base flow is determined recharge can be calculated. Estimates of recharge for nearly 72 percent of the surface area of the State are provided. The results illustrate substantial spatial variability of recharge across the State, ranging from less than 1 inch to more than 12 inches per year. The average basin size for partial-record sites (50 square miles) was less than the average basin size for the gaging stations (305 square miles). Including results for smaller basins reveals a spatial variability that otherwise would be smoothed out using only estimates for larger basins. An error analysis indicates that the techniques used provide base flow estimates with standard errors ranging from 5.4 to 14 percent.
Topology of three-dimensional separated flows
NASA Technical Reports Server (NTRS)
Tobak, M.; Peake, D. J.
1981-01-01
Based on the hypothesis that patterns of skin-friction lines and external streamlines reflect the properties of continuous vector fields, topology rules define a small number of singular points (nodes, saddle points, and foci) that characterize the patterns on the surface and on particular projections of the flow (e.g., the crossflow plane). The restricted number of singular points and the rules that they obey are considered as an organizing principle whose finite number of elements can be combined in various ways to connect together the properties common to all steady three dimensional viscous flows. Introduction of a distinction between local and global properties of the flow resolves an ambiguity in the proper definition of a three dimensional separated flow. Adoption of the notions of topological structure, structural stability, and bifurcation provides a framework to describe how three dimensional separated flows originate and succeed each other as the relevant parameters of the problem are varied.
Gu, Herong; Guan, Yajuan; Wang, Huaibao; Wei, Baoze; Guo, Xiaoqiang
2014-01-01
Microgrid is an effective way to integrate the distributed energy resources into the utility networks. One of the most important issues is the power flow control of grid-connected voltage-source inverter in microgrid. In this paper, the small-signal model of the power flow control for the grid-connected inverter is established, from which it can be observed that the conventional power flow control may suffer from the poor damping and slow transient response. While the new power flow control can mitigate these problems without affecting the steady-state power flow regulation. Results of continuous-domain simulations in MATLAB and digital control experiments based on a 32-bit fixed-point TMS320F2812 DSP are in good agreement, which verify the small signal model analysis and effectiveness of the proposed method. PMID:24672304
In vitro characterization of a magnetically suspended continuous flow ventricular assist device.
Kim, H C; Bearnson, G B; Khanwilkar, P S; Olsen, D B; Maslen, E H; Allaire, P E
1995-01-01
A magnetically suspended continuous flow ventricular assist device using magnetic bearings was developed aiming at an implantable ventricular assist device. The main advantage of this device includes no mechanical wear and minimal chance of blood trauma such, as thrombosis and hemolysis, because there is no mechanical contact between the stationary and rotating parts. The total system consists of two subsystems: the centrifugal pump and the magnetic bearing. The centrifugal pump is comprised of a 4 vane logarithmic spiral radial flow impeller and a brushless DC motor with slotless stator, driven by the back emf commutation scheme. Two radial and one thrust magnetic bearing that dynamically controls the position of the rotor in a radial and axial direction, respectively, contains magnetic coils, the rotor's position sensors, and feedback electronic control system. The magnetic bearing system was able to successfully suspend a 365.5g rotating part in space and sustain it for up to 5000 rpm of rotation. Average force-current square factor of the magnetic bearing was measured as 0.48 and 0.44 (kg-f/Amp2) for radial and thrust bearing, respectively. The integrated system demonstrated adequate performance in mock circulation tests by providing a 6 L/min flow rate against 100 mmHg differential pressure at 2300 rpm. Based on these in vitro performance test results, long-term clinical application of the magnetically suspended continuous flow ventricular assist device is very promising after system optimization with a hybrid system using both active (electromagnet) and passive (permanent magnets) magnet bearings.
NASA Astrophysics Data System (ADS)
Jin, Kai; Vanka, Surya P.; Thomas, Brian G.
2018-02-01
In continuous casting of steel, argon gas is often injected to prevent clogging of the nozzle, but the bubbles affect the flow pattern, and may become entrapped to form defects in the final product. Further, an electromagnetic field is frequently applied to induce a braking effect on the flow field and modify the inclusion transport. In this study, a previously validated GPU-based in-house code CUFLOW is used to investigate the effect of electromagnetic braking on turbulent flow, bubble transport, and capture. Well-resolved large eddy simulations are combined with two-way coupled Lagrangian computations of the bubbles. The drag coefficient on the bubbles is modified to account for the effects of the magnetic field. The distribution of the argon bubbles, capture, and escape rates, are presented and compared with and without the magnetic field. The bubble capture patterns are also compared with results of a previous RANS model as well as with plant measurements.
NASA Astrophysics Data System (ADS)
Jin, Kai; Vanka, Surya P.; Thomas, Brian G.
2018-06-01
In continuous casting of steel, argon gas is often injected to prevent clogging of the nozzle, but the bubbles affect the flow pattern, and may become entrapped to form defects in the final product. Further, an electromagnetic field is frequently applied to induce a braking effect on the flow field and modify the inclusion transport. In this study, a previously validated GPU-based in-house code CUFLOW is used to investigate the effect of electromagnetic braking on turbulent flow, bubble transport, and capture. Well-resolved large eddy simulations are combined with two-way coupled Lagrangian computations of the bubbles. The drag coefficient on the bubbles is modified to account for the effects of the magnetic field. The distribution of the argon bubbles, capture, and escape rates, are presented and compared with and without the magnetic field. The bubble capture patterns are also compared with results of a previous RANS model as well as with plant measurements.
Numerical simulations of incompressible laminar flows using viscous-inviscid interaction procedures
NASA Astrophysics Data System (ADS)
Shatalov, Alexander V.
The present method is based on Helmholtz velocity decomposition where velocity is written as a sum of irrotational (gradient of a potential) and rotational (correction due to vorticity) components. Substitution of the velocity decomposition into the continuity equation yields an equation for the potential, while substitution into the momentum equations yields equations for the velocity corrections. A continuation approach is used to relate the pressure to the gradient of the potential through a modified Bernoulli's law, which allows the elimination of the pressure variable from the momentum equations. The present work considers steady and unsteady two-dimensional incompressible flows over an infinite cylinder and NACA 0012 airfoil shape. The numerical results are compared against standard methods (stream function-vorticity and SMAC methods) and data available in literature. The results demonstrate that the proposed formulation leads to a good approximation with some possible benefits compared to the available formulations. The method is not restricted to two-dimensional flows and can be used for viscous-inviscid domain decomposition calculations.
NASA Astrophysics Data System (ADS)
Deng, Q.; Ginting, V.; McCaskill, B.; Torsu, P.
2017-10-01
We study the application of a stabilized continuous Galerkin finite element method (CGFEM) in the simulation of multiphase flow in poroelastic subsurfaces. The system involves a nonlinear coupling between the fluid pressure, subsurface's deformation, and the fluid phase saturation, and as such, we represent this coupling through an iterative procedure. Spatial discretization of the poroelastic system employs the standard linear finite element in combination with a numerical diffusion term to maintain stability of the algebraic system. Furthermore, direct calculation of the normal velocities from pressure and deformation does not entail a locally conservative field. To alleviate this drawback, we propose an element based post-processing technique through which local conservation can be established. The performance of the method is validated through several examples illustrating the convergence of the method, the effectivity of the stabilization term, and the ability to achieve locally conservative normal velocities. Finally, the efficacy of the method is demonstrated through simulations of realistic multiphase flow in poroelastic subsurfaces.
Pulsed laser fluorometry for environmental monitoring
NASA Astrophysics Data System (ADS)
Saunders, G. C.; Martin, J. C.; Jett, J. H.; Wilder, M. E.; Martinez, A.; Bentley, B. F.; Lopez, J.; Hutson, L.
A compact pulsed laser fluorometer has been incorporated into a continuous flow system developed to detect acetylcholinesterase (AChE) inhibitors and/or primary amine compounds in air and water. A pulsed nitrogen laser pumped dye laser excites fluorescent reactants which flow continuously through a quartz flow cell. Data are collected, analyzed, and displayed using a Macintosh II personal computer. For detection of cholinesterase inhibitors the fluorogenic substrate N methylindoxyl acetate is used to monitor the activity of immobilized enzyme. Presence of inhibitors results in a decrease of steady state fluorescence. Detection of compounds containing primary amines is based on their reaction with fluorescamine to rapidly produce intensely fluorescent products. Compounds of interest to our research were amino acids, peptides, and proteins. An increase in steady state fluorescence could be cause to evaluate the reasons for the change. The detection limit of the protein, bovine serum albumin (BSA) in water, is 10 ppT. Nebulized BSA concentrated by the LANL air sampler can be detected at sub ppT original air concentration.
Kinetics of antigen binding to arrays of antibodies in different sized spots
NASA Technical Reports Server (NTRS)
Sapsford, K. E.; Liron, Z.; Shubin, Y. S.; Ligler, F. S.
2001-01-01
A fluorescence-based array biosensor has been developed which can measure the binding kinetics of an antigen to an immobilized antibody in real time. A patterned array of antibodies immobilized on the surface of a planar waveguide was used to capture a Cy5-labeled antigen present in a solution that was continuously flowed over the surface. The CCD image of the waveguide was monitored continuously for 25 min. The resulting exponential rise in fluorescence signal was determined by image analysis software and fitted to a reaction-limited kinetics model, giving a kf of 3.6 x 10(5) M(-1) s(-1). Different spot sizes were then patterned on the surface of the waveguide using either a PDMS flow cell or laser exposure, producing width sizes ranging from 80 to 1145 microm. It was demonstrated that under flow conditions, the reduction of spot size did not alter the association rate of the antigen with immobilized antibody; however, as the spot width decreased to < 200 nm, the signal intensity also decreased.
Flow analysis for efficient design of wavy structured microchannel mixing devices
NASA Astrophysics Data System (ADS)
Kanchan, Mithun; Maniyeri, Ranjith
2018-04-01
Microfluidics is a rapidly growing field of applied research which is strongly driven by demands of bio-technology and medical innovation. Lab-on-chip (LOC) is one such application which deals with integrating bio-laboratory on micro-channel based single fluidic chip. Since fluid flow in such devices is restricted to laminar regime, designing an efficient passive modulator to induce chaotic mixing for such diffusion based flow is a major challenge. In the present work two-dimensional numerical simulation of viscous incompressible flow is carried out using immersed boundary method (IBM) to obtain an efficient design for wavy structured micro-channel mixing devices. The continuity and Navier-Stokes equations governing the flow are solved by fractional step based finite volume method on a staggered Cartesian grid system. IBM uses Eulerian co-ordinates to describe fluid flow and Lagrangian co-ordinates to describe solid boundary. Dirac delta function is used to couple both these co-ordinate variables. A tether forcing term is used to impose the no-slip boundary condition on the wavy structure and fluid interface. Fluid flow analysis by varying Reynolds number is carried out for four wavy structure models and one straight line model. By analyzing fluid accumulation zones and flow velocities, it can be concluded that straight line structure performs better mixing for low Reynolds number and Model 2 for higher Reynolds number. Thus wavy structures can be incorporated in micro-channels to improve mixing efficiency.
NASA Astrophysics Data System (ADS)
Oliveira, R.; Bijeljic, B.; Blunt, M. J.; Colbourne, A.; Sederman, A. J.; Mantle, M. D.; Gladden, L. F.
2017-12-01
Mixing and reactive processes have a large impact on the viability of enhanced oil and gas recovery projects that involve acid stimulation and CO2 injection. To achieve a successful design of the injection schemes an accurate understanding of the interplay between pore structure, flow and reactive transport is necessary. Dependent on transport and reactive conditions, this complex coupling can also be dependent on initial rock heterogeneity across a variety of scales. To address these issues, we devise a new method to study transport and reactive flow in porous media at multiple scales. The transport model is based on an efficient Particle Tracking Method based on Continuous Time Random Walks (CTRW-PTM) on a lattice. Transport is modelled using an algorithm described in Rhodes and Blunt (2006) and Srinivasan et al. (2010); this model is expanded to enable for reactive flow predictions in subsurface rock undergoing a first-order fluid/solid chemical reaction. The reaction-induced alteration in fluid/solid interface is accommodated in the model through changes in porosity and flow field, leading to time dependent transport characteristics in the form of transit time distributions which account for rock heterogeneity change. This also enables the study of concentration profiles at the scale of interest. Firstly, we validate transport model by comparing the probability of molecular displacement (propagators) measured by Nuclear Magnetic Resonance (NMR) with our modelled predictions for concentration profiles. The experimental propagators for three different porous media of increasing complexity, a beadpack, a Bentheimer sandstone and a Portland carbonate, show a good agreement with the model. Next, we capture the time evolution of the propagators distribution in a reactive flow experiment, where hydrochloric acid is injected into a limestone rock. We analyse the time-evolving non-Fickian signatures for the transport during reactive flow and observe an increase in transport heterogeneity at latter times, representing the increase in rock heterogeneity. Evolution of transit time distribution is associated with the evolution of concentration profiles, thus highlighting the impact of initial rock structure on the reactive transport for a range of Pe and Da numbers.
Electrohydrodynamic effects in continuous flow electrophoresis
NASA Technical Reports Server (NTRS)
Rhodes, P. H.; Snyder, R. S.; Roberts, G. O.; Baygents, J. C.
1991-01-01
We demonstrate experimentally and theoretically the importance of electrohydrodynamic (EHD) flows in continuous-flow electrophoresis (CFE) separations. These flows are associated with variations in the conductivity or dielectric constant, and are quadratic in the field strength. They appear to be the main cause of extraneous and undesired flows in CFE which have degraded separation performance and have until now not been explained. We discuss the importance of EHD flows relative to other effects. We also describe possible techniques for reducing the associated degradation of CFE separations.
NASA Astrophysics Data System (ADS)
Sleep, Norman H.
2008-08-01
Chains of volcanic edifices lie along flow lines between plume-fed hot spots and the thin lithosphere at ridge axes. Discovery and Euterpe/Musicians Seamounts are two examples. An attractive hypothesis is that buoyant plume material flows along the base of the lithosphere perpendicular to isochrons. The plume material may conceivably flow in a broad front or flow within channels convectively eroded into the base to the lithosphere. A necessary but not sufficient condition for convective channeling is that the expected stagnant-lid heat flow for the maximum temperature of the plume material is comparable to the half-space surface heat flow of the oceanic lithosphere. Two-dimensional and three-dimensional numerical calculations confirm this inference. A second criterion for significant convective erosion is that it needs to occur before the plume material thins by lateral spreading. Scaling relationships indicate spreading and convection are closely related. Mathematically, the Nusselt number (ratio of convective to conductive heat flow in the plume material) scales with the flux (volume per time per length of flow front) of the plume material. A blob of unconfined plume material thus spreads before the lithosphere thins much and evolves to a slowly spreading and slowly convecting warm region in equilibrium with conduction into the base of the overlying lithosphere. Three-dimensional calculations illustrate this long-lasting (and hence observable) state of plume material away from its plume source. A different flow domain occurs around a stationary hot plume that continuously supplies hot material. The plume convectively erodes the overlying lithosphere, trapping the plume material near its orifice. The region of lithosphere underlain by plume material grows toward the ridge axis and laterally by convective thinning of the lithosphere at its edges. The hottest plume material channels along flow lines. Geologically, the regions of lithosphere underlain by either warm or hot plume material are likely to extend laterally away from the volcanic edifices whether or not channeling occurs.
Liu, Weiyu; Shao, Jinyou; Ren, Yukun; Liu, Jiangwei; Tao, Ye; Jiang, Hongyuan; Ding, Yucheng
2016-01-01
By imposing a biased gate voltage to a center metal strip, arbitrary symmetry breaking in induced-charge electroosmotic flow occurs on the surface of this planar gate electrode, a phenomenon termed as AC-flow field effect transistor (AC-FFET). In this work, the potential of AC-FFET with a shiftable flow stagnation line to flexibly manipulate micro-nano particle samples in both a static and continuous flow condition is demonstrated via theoretical analysis and experimental validation. The effect of finite Debye length of induced double-layer and applied field frequency on the manipulating flexibility factor for static condition is investigated, which indicates AC-FFET turns out to be more effective for achieving a position-controllable concentrating of target nanoparticle samples in nanofluidics compared to the previous trial in microfluidics. Besides, a continuous microfluidics-based particle concentrator/director is developed to deal with incoming analytes in dynamic condition, which exploits a design of tandem electrode configuration to consecutively flow focus and divert incoming particle samples to a desired downstream branch channel, as prerequisite for a following biochemical analysis. Our physical demonstrations with AC-FFET prove valuable for innovative designs of flexible electrokinetic frameworks, which can be conveniently integrated with other microfluidic or nanofluidic components into a complete lab-on-chip diagnostic platform due to a simple electrode structure. PMID:27190570
Liu, Weiyu; Shao, Jinyou; Ren, Yukun; Liu, Jiangwei; Tao, Ye; Jiang, Hongyuan; Ding, Yucheng
2016-05-01
By imposing a biased gate voltage to a center metal strip, arbitrary symmetry breaking in induced-charge electroosmotic flow occurs on the surface of this planar gate electrode, a phenomenon termed as AC-flow field effect transistor (AC-FFET). In this work, the potential of AC-FFET with a shiftable flow stagnation line to flexibly manipulate micro-nano particle samples in both a static and continuous flow condition is demonstrated via theoretical analysis and experimental validation. The effect of finite Debye length of induced double-layer and applied field frequency on the manipulating flexibility factor for static condition is investigated, which indicates AC-FFET turns out to be more effective for achieving a position-controllable concentrating of target nanoparticle samples in nanofluidics compared to the previous trial in microfluidics. Besides, a continuous microfluidics-based particle concentrator/director is developed to deal with incoming analytes in dynamic condition, which exploits a design of tandem electrode configuration to consecutively flow focus and divert incoming particle samples to a desired downstream branch channel, as prerequisite for a following biochemical analysis. Our physical demonstrations with AC-FFET prove valuable for innovative designs of flexible electrokinetic frameworks, which can be conveniently integrated with other microfluidic or nanofluidic components into a complete lab-on-chip diagnostic platform due to a simple electrode structure.
Multiphase Fluid Dynamics for Spacecraft Applications
NASA Astrophysics Data System (ADS)
Shyy, W.; Sim, J.
2011-09-01
Multiphase flows involving moving interfaces between different fluids/phases are observed in nature as well as in a wide range of engineering applications. With the recent development of high fidelity computational techniques, a number of challenging multiphase flow problems can now be computed. We introduce the basic notion of the main categories of multiphase flow computation; Lagrangian, Eulerian, and Eulerian-Lagrangian techniques to represent and follow interface, and sharp and continuous interface methods to model interfacial dynamics. The marker-based adaptive Eulerian-Lagrangian method, which is one of the most popular methods, is highlighted with microgravity and space applications including droplet collision and spacecraft liquid fuel tank surface stability.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Joseph M. Fenelon; Randell J. Laczniak; and Keith J. Halford
2008-06-24
Contaminants introduced into the subsurface of the Nevada Test Site at Rainier Mesa and Shoshone Mountain by underground nuclear testing are of concern to the U.S. Department of Energy and regulators responsible for protecting human health and safety. Although contaminants were introduced into low-permeability rocks above the regional flow system, the potential for contaminant movement away from the underground test areas and into the accessible environment is greatest by ground-water transport. The primary hydrologic control on this transport is evaluated and examined through a series of contour maps developed to represent the water-level distribution within each of the major aquifersmore » underlying the area. Aquifers were identified and their extents delineated by merging and analyzing multiple hydrostratigraphic framework models developed by other investigators from existing geologic information. The contoured water-level distribution in each major aquifer was developed from a detailed evaluation and assessment of available water-level measurements. Multiple spreadsheets that accompany this report provide pertinent water-level and geologic data by well or drill hole. Aquifers are mapped, presented, and discussed in general terms as being one of three aquifer types—volcanic aquifer, upper carbonate aquifer, or lower carbonate aquifer. Each of these aquifer types was subdivided and mapped as independent continuous and isolated aquifers, based on the continuity of its component rock. Ground-water flow directions, as related to the transport of test-generated contaminants, were developed from water-level contours and are presented and discussed for each of the continuous aquifers. Contoured water-level altitudes vary across the study area and range from more than 5,000 feet in the volcanic aquifer beneath a recharge area in the northern part of the study area to less than 2,450 feet in the lower carbonate aquifer in the southern part of the study area. Variations in water-level altitudes within any single continuous aquifer range from a few hundred feet in a lower carbonate aquifer to just more than 1,100 feet in a volcanic aquifer. Flow directions throughout the study area are dominantly southward with minor eastward or westward deviations. Primary exceptions are westward flow in the northern part of the volcanic aquifer and eastward flow in the eastern part of the lower carbonate aquifer. Northward flow in the upper and lower carbonate aquifers in the northern part of the study area is possible but cannot be substantiated because data are lacking. Interflow between continuous aquifers is evaluated and mapped to define major flow paths. These flow paths delineate tributary flow systems, which converge to form the regional ground-water flow system. The implications of these tributary flow paths in controlling transport away from the underground test areas at Rainier Mesa and Shoshone Mountain are discussed. The obvious data gaps contributing to uncertainties in the delineation of aquifers and development of water-level contours are identified and evaluated.« less
Fenelon, Joseph M.; Laczniak, Randell J.; Halford, Keith J.
2008-01-01
Contaminants introduced into the subsurface of the Nevada Test Site at Rainier Mesa and Shoshone Mountain by underground nuclear testing are of concern to the U.S. Department of Energy and regulators responsible for protecting human health and safety. Although contaminants were introduced into low-permeability rocks above the regional flow system, the potential for contaminant movement away from the underground test areas and into the accessible environment is greatest by ground-water transport. The primary hydrologic control on this transport is evaluated and examined through a series of contour maps developed to represent the water-level distribution within each of the major aquifers underlying the area. Aquifers were identified and their extents delineated by merging and analyzing multiple hydrostratigraphic framework models developed by other investigators from existing geologic information. The contoured water-level distribution in each major aquifer was developed from a detailed evaluation and assessment of available water-level measurements. Multiple spreadsheets that accompany this report provide pertinent water-level and geologic data by well or drill hole. Aquifers are mapped, presented, and discussed in general terms as being one of three aquifer types?volcanic aquifer, upper carbonate aquifer, or lower carbonate aquifer. Each of these aquifer types was subdivided and mapped as independent continuous and isolated aquifers, based on the continuity of its component rock. Ground-water flow directions, as related to the transport of test-generated contaminants, were developed from water-level contours and are presented and discussed for each of the continuous aquifers. Contoured water-level altitudes vary across the study area and range from more than 5,000 feet in the volcanic aquifer beneath a recharge area in the northern part of the study area to less than 2,450 feet in the lower carbonate aquifer in the southern part of the study area. Variations in water-level altitudes within any single continuous aquifer range from a few hundred feet in a lower carbonate aquifer to just more than 1,100 feet in a volcanic aquifer. Flow directions throughout the study area are dominantly southward with minor eastward or westward deviations. Primary exceptions are westward flow in the northern part of the volcanic aquifer and eastward flow in the eastern part of the lower carbonate aquifer. Northward flow in the upper and lower carbonate aquifers in the northern part of the study area is possible but cannot be substantiated because data are lacking. Interflow between continuous aquifers is evaluated and mapped to define major flow paths. These flow paths delineate tributary flow systems, which converge to form the regional ground-water flow system. The implications of these tributary flow paths in controlling transport away from the underground test areas at Rainier Mesa and Shoshone Mountain are discussed. The obvious data gaps contributing to uncertainties in the delineation of aquifers and development of water-level contours are identified and evaluated.
An economically viable and environmentally benign continuous flow intensified process has been developed to demonstrate the ability to upgrade biomass into potential biofuels, solvents, and pharmaceutical feedstocks using a bimetallic AgPd@g-C3N4 catalyst.
Higher modes of the Orr-Sommerfeld problem for boundary layer flows
NASA Technical Reports Server (NTRS)
Lakin, W. D.; Grosch, C. E.
1983-01-01
The discrete spectrum of the Orr-Sommerfeld problem of hydrodynamic stability for boundary layer flows in semi-infinite regions is examined. Related questions concerning the continuous spectrum are also addressed. Emphasis is placed on the stability problem for the Blasius boundary layer profile. A general theoretical result is given which proves that the discrete spectrum of the Orr-Sommerfeld problem for boundary layer profiles (U(y), 0,0) has only a finite number of discrete modes when U(y) has derivatives of all orders. Details are given of a highly accurate numerical technique based on collocation with splines for the calculation of stability characteristics. The technique includes replacement of 'outer' boundary conditions by asymptotic forms based on the proper large parameter in the stability problem. Implementation of the asymptotic boundary conditions is such that there is no need to make apriori distinctions between subcases of the discrete spectrum or between the discrete and continuous spectrums. Typical calculations for the usual Blasius problem are presented.
Sequential continuous flow processes for the oxidation of amines and azides by using HOF·MeCN.
McPake, Christopher B; Murray, Christopher B; Sandford, Graham
2012-02-13
The generation and use of the highly potent oxidising agent HOF·MeCN in a controlled single continuous flow process is described. Oxidations of amines and azides to corresponding nitrated systems by using fluorine gas, water and acetonitrile by sequential gas-liquid/liquid-liquid continuous flow procedures are reported. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 42 Public Health 1 2011-10-01 2011-10-01 false Man test for gases and vapors; Type C respirators, continuous-flow class and Type CE supplied-air respirators; test requirements. 84.162 Section 84.162 Public....162 Man test for gases and vapors; Type C respirators, continuous-flow class and Type CE supplied-air...
Code of Federal Regulations, 2014 CFR
2014-10-01
... 42 Public Health 1 2014-10-01 2014-10-01 false Man test for gases and vapors; Type C respirators, continuous-flow class and Type CE supplied-air respirators; test requirements. 84.162 Section 84.162 Public....162 Man test for gases and vapors; Type C respirators, continuous-flow class and Type CE supplied-air...
Code of Federal Regulations, 2013 CFR
2013-10-01
... 42 Public Health 1 2013-10-01 2013-10-01 false Man test for gases and vapors; Type C respirators, continuous-flow class and Type CE supplied-air respirators; test requirements. 84.162 Section 84.162 Public....162 Man test for gases and vapors; Type C respirators, continuous-flow class and Type CE supplied-air...
Code of Federal Regulations, 2012 CFR
2012-10-01
... 42 Public Health 1 2012-10-01 2012-10-01 false Man test for gases and vapors; Type C respirators, continuous-flow class and Type CE supplied-air respirators; test requirements. 84.162 Section 84.162 Public....162 Man test for gases and vapors; Type C respirators, continuous-flow class and Type CE supplied-air...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dall'Anese, Emiliano; Simonetto, Andrea
This paper considers distribution networks featuring inverter-interfaced distributed energy resources, and develops distributed feedback controllers that continuously drive the inverter output powers to solutions of AC optimal power flow (OPF) problems. Particularly, the controllers update the power setpoints based on voltage measurements as well as given (time-varying) OPF targets, and entail elementary operations implementable onto low-cost microcontrollers that accompany power-electronics interfaces of gateways and inverters. The design of the control framework is based on suitable linear approximations of the AC power-flow equations as well as Lagrangian regularization methods. Convergence and OPF-target tracking capabilities of the controllers are analytically established. Overall,more » the proposed method allows to bypass traditional hierarchical setups where feedback control and optimization operate at distinct time scales, and to enable real-time optimization of distribution systems.« less
Funkhouser, Jaysson E.; Eng, Ken; Moix, Matthew W.
2008-01-01
Water use in Arkansas has increased dramatically in recent years. Since 1990, the use of water for all purposes except power generation has increased 53 percent (4,004 cubic feet per second in 1990 to 6,113 cubic feet per second in 2005). The biggest users are agriculture (90 percent), municipal water supply (4 percent) and industrial supply (2 percent). As the population of the State continues to grow, so does the demand for the State's water resources. The low-flow characteristics of a stream ultimately affect its utilization by humans. Specific information on the low-flow characteristics of streams is essential to State water-management agencies such as the Arkansas Department of Environmental Quality, the Arkansas Natural Resources Commission, and the Arkansas Game and Fish Commission when dealing with problems related to irrigation, municipal and industrial water supplies, fish and wildlife conservation, and dilution of waste. Low-flow frequency data are of particular value to management agencies responsible for the development and management of the State's water resources. This report contains the low-flow characteristics for 70 active continuous-streamflow record gaging stations, 59 inactive continuous-streamflow record stations, and 101 partial-record gaging stations. These characteristics are the annual 7-day, 10-year low flow and the annual 7-day, 2-year low flow, and the seasonal, bimonthly, and monthly 7-day, 10-year low flow for the 129 active and inactive continuous-streamflow record and 101 partial-record gaging stations. Low-flow characteristics were computed on the basis of streamflow data for the period of record through September 2005 for the continuous-streamflow record and partial-record streamflow gaging stations. The low-flow characteristics of these continuous- and partial-record streamflow gaging stations were utilized in a regional regression analysis to produce equations for estimating the annual, seasonal, bimonthly, and monthly (November through April) 7-day, 10-year low flows and the annual 7-day, 2-year low flow for ungaged streams in the western two-thirds of Arkansas.
Modelling atmospheric flows with adaptive moving meshes
NASA Astrophysics Data System (ADS)
Kühnlein, Christian; Smolarkiewicz, Piotr K.; Dörnbrack, Andreas
2012-04-01
An anelastic atmospheric flow solver has been developed that combines semi-implicit non-oscillatory forward-in-time numerics with a solution-adaptive mesh capability. A key feature of the solver is the unification of a mesh adaptation apparatus, based on moving mesh partial differential equations (PDEs), with the rigorous formulation of the governing anelastic PDEs in generalised time-dependent curvilinear coordinates. The solver development includes an enhancement of the flux-form multidimensional positive definite advection transport algorithm (MPDATA) - employed in the integration of the underlying anelastic PDEs - that ensures full compatibility with mass continuity under moving meshes. In addition, to satisfy the geometric conservation law (GCL) tensor identity under general moving meshes, a diagnostic approach is proposed based on the treatment of the GCL as an elliptic problem. The benefits of the solution-adaptive moving mesh technique for the simulation of multiscale atmospheric flows are demonstrated. The developed solver is verified for two idealised flow problems with distinct levels of complexity: passive scalar advection in a prescribed deformational flow, and the life cycle of a large-scale atmospheric baroclinic wave instability showing fine-scale phenomena of fronts and internal gravity waves.
NASA Astrophysics Data System (ADS)
Vishwakarma, Niraj K.; Singh, Ajay K.; Hwang, Yoon-Ho; Ko, Dong-Hyeon; Kim, Jin-Oh; Babu, A. Giridhar; Kim, Dong-Pyo
2017-03-01
Simultaneous capture of carbon dioxide (CO2) and its utilization with subsequent work-up would significantly enhance the competitiveness of CO2-based sustainable chemistry over petroleum-based chemistry. Here we report an interfacial catalytic reaction platform for an integrated autonomous process of simultaneously capturing/fixing CO2 in gas-liquid laminar flow with subsequently providing a work-up step. The continuous-flow microreactor has built-in silicon nanowires (SiNWs) with immobilized ionic liquid catalysts on tips of cone-shaped nanowire bundles. Because of the superamphiphobic SiNWs, a stable gas-liquid interface maintains between liquid flow of organoamines in upper part and gas flow of CO2 in bottom part of channel. The intimate and direct contact of the binary reagents leads to enhanced mass transfer and facilitating reactions. The autonomous integrated platform produces and isolates 2-oxazolidinones and quinazolines-2,4(1H,3H)-diones with 81-97% yields under mild conditions. The platform would enable direct CO2 utilization to produce high-valued specialty chemicals from flue gases without pre-separation and work-up steps.
Vishwakarma, Niraj K; Singh, Ajay K; Hwang, Yoon-Ho; Ko, Dong-Hyeon; Kim, Jin-Oh; Babu, A Giridhar; Kim, Dong-Pyo
2017-03-06
Simultaneous capture of carbon dioxide (CO 2 ) and its utilization with subsequent work-up would significantly enhance the competitiveness of CO 2 -based sustainable chemistry over petroleum-based chemistry. Here we report an interfacial catalytic reaction platform for an integrated autonomous process of simultaneously capturing/fixing CO 2 in gas-liquid laminar flow with subsequently providing a work-up step. The continuous-flow microreactor has built-in silicon nanowires (SiNWs) with immobilized ionic liquid catalysts on tips of cone-shaped nanowire bundles. Because of the superamphiphobic SiNWs, a stable gas-liquid interface maintains between liquid flow of organoamines in upper part and gas flow of CO 2 in bottom part of channel. The intimate and direct contact of the binary reagents leads to enhanced mass transfer and facilitating reactions. The autonomous integrated platform produces and isolates 2-oxazolidinones and quinazolines-2,4(1H,3H)-diones with 81-97% yields under mild conditions. The platform would enable direct CO 2 utilization to produce high-valued specialty chemicals from flue gases without pre-separation and work-up steps.
Vishwakarma, Niraj K.; Singh, Ajay K.; Hwang, Yoon-Ho; Ko, Dong-Hyeon; Kim, Jin-Oh; Babu, A. Giridhar; Kim, Dong-Pyo
2017-01-01
Simultaneous capture of carbon dioxide (CO2) and its utilization with subsequent work-up would significantly enhance the competitiveness of CO2-based sustainable chemistry over petroleum-based chemistry. Here we report an interfacial catalytic reaction platform for an integrated autonomous process of simultaneously capturing/fixing CO2 in gas–liquid laminar flow with subsequently providing a work-up step. The continuous-flow microreactor has built-in silicon nanowires (SiNWs) with immobilized ionic liquid catalysts on tips of cone-shaped nanowire bundles. Because of the superamphiphobic SiNWs, a stable gas–liquid interface maintains between liquid flow of organoamines in upper part and gas flow of CO2 in bottom part of channel. The intimate and direct contact of the binary reagents leads to enhanced mass transfer and facilitating reactions. The autonomous integrated platform produces and isolates 2-oxazolidinones and quinazolines-2,4(1H,3H)-diones with 81–97% yields under mild conditions. The platform would enable direct CO2 utilization to produce high-valued specialty chemicals from flue gases without pre-separation and work-up steps. PMID:28262667
NASA Astrophysics Data System (ADS)
Patel, D.; Ein-Mozaffari, F.; Mehrvar, M.
2013-05-01
The identification of non-ideal flows in a continuous-flow mixing of non-Newtonian fluids is a challenging task for various chemical industries: plastic manufacturing, water and wastewater treatment, and pulp and paper manufacturing. Non-ideal flows such as channelling, recirculation, and dead zones significantly affect the performance of continuous-flow mixing systems. Therefore, the main objective of this paper was to develop an identification protocol to measure non-ideal flows in the continuous-flow mixing system. The extent of non-ideal flows was quantified using a dynamic model that incorporated channelling, recirculation, and dead volume in the mixing vessel. To estimate the dynamic model parameters, the system was excited using a frequency-modulated random binary input by injecting the saline solution (as a tracer) into the fresh feed stream prior to being pumped into the mixing vessel. The injection of the tracer was controlled by a computer-controlled on-off solenoid valve. Using the trace technique, the extent of channelling and the effective mixed volume were successfully determined and used as mixing quality criteria. Such identification procedures can be applied at various areas of chemical engineering in order to improve the mixing quality.
Photochemical Dual-Catalytic Synthesis of Alkynyl Sulfides.
Santandrea, Jeffrey; Minozzi, Clémentine; Cruché, Corentin; Collins, Shawn K
2017-09-25
A photochemical dual-catalytic cross-coupling to form alkynyl sulfides via C(sp)-S bond formation is described. The cross-coupling of thiols and bromoalkynes is promoted by a soluble organic carbazole-based photocatalyst using continuous flow techniques. Synthesis of alkynyl sulfides bearing a wide range of electronically and sterically diverse aromatic alkynes and thiols can be achieved in good to excellent yields (50-96 %). The simple continuous flow setup also allows for short reaction times (30 min) and high reproducibility on gram scale. In addition, we report the first application of photoredox/nickel dual catalysis towards macrocyclization, as well as the first example of the incorporation of an alkynyl sulfide functional group into a macrocyclic scaffold. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Utilization of Stop-flow Micro-tubing Reactors for the Development of Organic Transformations.
Toh, Ren Wei; Li, Jie Sheng; Wu, Jie
2018-01-04
A new reaction screening technology for organic synthesis was recently demonstrated by combining elements from both continuous micro-flow and conventional batch reactors, coined stop-flow micro-tubing (SFMT) reactors. In SFMT, chemical reactions that require high pressure can be screened in parallel through a safer and convenient way. Cross-contamination, which is a common problem in reaction screening for continuous flow reactors, is avoided in SFMT. Moreover, the commercially available light-permeable micro-tubing can be incorporated into SFMT, serving as an excellent choice for light-mediated reactions due to a more effective uniform light exposure, compared to batch reactors. Overall, the SFMT reactor system is similar to continuous flow reactors and more superior than batch reactors for reactions that incorporate gas reagents and/or require light-illumination, which enables a simple but highly efficient reaction screening system. Furthermore, any successfully developed reaction in the SFMT reactor system can be conveniently translated to continuous-flow synthesis for large scale production.
Mathematical models of continuous flow electrophoresis: Electrophoresis technology
NASA Technical Reports Server (NTRS)
Saville, Dudley A.
1986-01-01
Two aspects of continuous flow electrophoresis were studied: (1) the structure of the flow field in continuous flow devices; and (2) the electrokinetic properties of suspended particles relevant to electrophoretic separations. Mathematical models were developed to describe flow structure and stability, with particular emphasis on effects due to buoyancy. To describe the fractionation of an arbitrary particulate sample by continuous flow electrophoresis, a general mathematical model was constructed. In this model, chamber dimensions, field strength, buffer composition, and other design variables can be altered at will to study their effects on resolution and throughput. All these mathematical models were implemented on a digital computer and the codes are available for general use. Experimental and theoretical work with particulate samples probed how particle mobility is related to buffer composition. It was found that ions on the surface of small particles are mobile, contrary to the widely accepted view. This influences particle mobility and suspension conductivity. A novel technique was used to measure the mobility of particles in concentrated suspensions.
Estimated Perennial Streams of Idaho and Related Geospatial Datasets
Rea, Alan; Skinner, Kenneth D.
2009-01-01
The perennial or intermittent status of a stream has bearing on many regulatory requirements. Because of changing technologies over time, cartographic representation of perennial/intermittent status of streams on U.S. Geological Survey (USGS) topographic maps is not always accurate and (or) consistent from one map sheet to another. Idaho Administrative Code defines an intermittent stream as one having a 7-day, 2-year low flow (7Q2) less than 0.1 cubic feet per second. To establish consistency with the Idaho Administrative Code, the USGS developed regional regression equations for Idaho streams for several low-flow statistics, including 7Q2. Using these regression equations, the 7Q2 streamflow may be estimated for naturally flowing streams anywhere in Idaho to help determine perennial/intermittent status of streams. Using these equations in conjunction with a Geographic Information System (GIS) technique known as weighted flow accumulation allows for an automated and continuous estimation of 7Q2 streamflow at all points along a stream, which in turn can be used to determine if a stream is intermittent or perennial according to the Idaho Administrative Code operational definition. The selected regression equations were applied to create continuous grids of 7Q2 estimates for the eight low-flow regression regions of Idaho. By applying the 0.1 ft3/s criterion, the perennial streams have been estimated in each low-flow region. Uncertainty in the estimates is shown by identifying a 'transitional' zone, corresponding to flow estimates of 0.1 ft3/s plus and minus one standard error. Considerable additional uncertainty exists in the model of perennial streams presented in this report. The regression models provide overall estimates based on general trends within each regression region. These models do not include local factors such as a large spring or a losing reach that may greatly affect flows at any given point. Site-specific flow data, assuming a sufficient period of record, generally would be considered to represent flow conditions better at a given site than flow estimates based on regionalized regression models. The geospatial datasets of modeled perennial streams are considered a first-cut estimate, and should not be construed to override site-specific flow data.
Low-flow-frequency characteristics for continuous-record streamflow stations in Minnesota
Arntson, A.D.; Lorenz, D.L.
1987-01-01
Annual and summer (May 1 to September 30) low-flow frequency curves are presented for 175 continuous-record streamflow stations in Minnesota. The curves were developed for all stations with 10 or more years of continuous record. The 1-, 7-, and 30-day low-flow discharges at selected recurrence intervals obtained from these curves are listed. Low-flow characteristics can and will vary for a station depending upon the number of years of record and the period gaged. When comparing low-flow characteristics between two or more stations, it should be remembered that no provisions were made to use concurrent periods of record for stations along the same stream.
Huber, Christoph H; Tozzi, Piergiorgio; Hurni, Michel; von Segesser, Ludwig K
2004-06-01
The new magnetically suspended axial pump is free of seals, bearings, mechanical friction and wear. In the absence of a drive shaft or flow meter, pump flow assessment is made with an algorithm based on currents required for impeller rotation and stabilization. The aim of this study is to validate pump performance, algorithm-based flow and effective flow. A series of bovine experiments was realized after equipment with pressure transducers, continuous-cardiac-output-catheter, intracardiac ultrasound (AcuNav) over 6 h. Pump implantation was through a median sternotomy (LV-->VAD-->calibrated transonic-flow-probe-->aorta). A transonic-HT311-flow-probe was fixed onto the outflow cannula for flow comparison. Animals were electively sacrificed and at necropsy systematic pump inspection and renal embolus score was realized. Observation period was 340+/-62.4 min. The axial pump generated a mean arterial pressure of 58.8+/-14.3 mmHg (max 117 mmHg) running at a speed of 6591.3+/-1395.4 rev./min (min 5000/max 8500 rev./min) and generating 2.5+/-1.0 l/min (min 1.4/max 6.0 l/min) of flow. Correlation between the results of the pump flow algorithm and measured pump flow was linear (y=1.0339x, R2=0.9357). VAD explants were free of macroscopic thrombi. Renal embolus score was 0+/-0. The magnetically suspended axial flow pump provides excellent left ventricular support. The pump flow algorithm used is accurate and reliable. Therefore, there is no need for direct flow measurement.
Continuous-Wave Cavity Ring-Down Spectroscopy in a Pulsed Uniform Supersonic Flow
NASA Astrophysics Data System (ADS)
Thawoos, Shameemah; Suas-David, Nicolas; Suits, Arthur
2017-06-01
We introduce a new approach that couples a pulsed uniform supersonic flow with high sensitivity continuous wave cavity ringdown spectroscopy (UF-CRDS) operated in the near infrared (NIR). This combination is related to the CRESU technique developed in France and used for many years to study reaction kinetics at low temperature, and to the microwave based chirped-pulse uniform supersonic flow spectrometer (CPUF) developed in our group which has successfully demonstrated the use of pulsed uniform supersonic flow to probe reaction dynamics at temperatures as low as 22 K. CRDS operated with NIR permits access to the first overtones of C-H and O-H stretching/bending which, in combination with its extraordinary sensitivity opens new experiments complementary to the CPUF technique. The UF-CRDS apparatus (Figure) utilizes the pulsed uniform flow produced by means of a piezo-electric stack valve in combination with a Laval nozzle. At present, two machined aluminum Laval nozzles designed for carrier gases Ar and He generate flows with a temperature of approximately 25 K and pressure around 0.15 mbar. This flow is probed by an external cavity diode laser in the NIR (1280-1380 nm). Laval nozzles designed using a newly developed MATLAB-based program will be used in the future. A detailed illustration of the novel UF-CRDS instrumentation and its performance will be presented along with future directions and applications. I. Sims, J. L. Queffelec, A. Defrance, C. Rebrion-Rowe, D. Travers, P. Bocherel, B. Rowe, I. W. Smith, J. Chem. Phys. 100, 4229-4241, (1994). C. Abeysekera, B. Joalland, N. Ariyasingha, L. N. Zack, I. R. Sims, R. W. Field, A. G. Suits, J. Phys. Chem. Lett. 6, 1599-1604, (2015). N. Suas-David, T. Vanfleteren, T. Foldes, S. Kassi, R. Georges, M. Herman, J. Phys. Chem.A, 119, 10022-10034, (2015). C. Abeysekera, B. Joalland, Y. Shi, A. Kamasah, J. M. Oldham, A. G. Suits, Rev. Sci. Instrum. 85, 116107, (2014).
Hatzell, Kelsey B; Hatzell, Marta C; Cook, Kevin M; Boota, Muhammad; Housel, Gabrielle M; McBride, Alexander; Kumbur, E Caglan; Gogotsi, Yury
2015-03-03
Flow electrode deionization (FCDI) is an emerging area for continuous and scalable deionization, but the electrochemical and flow properties of the flow electrode need to be improved to minimize energy consumption. Chemical oxidation of granular activated carbon (AC) was examined here to study the role of surface heteroatoms on rheology and electrochemical performance of a flow electrode (carbon slurry) for deionization processes. Moreover, it was demonstrated that higher mass densities could be used without increasing energy for pumping when using oxidized active material. High mass-loaded flow electrodes (28% carbon content) based on oxidized AC displayed similar viscosities (∼21 Pa s) to lower mass-loaded flow electrodes (20% carbon content) based on nonoxidized AC. The 40% increased mass loading (from 20% to 28%) resulted in a 25% increase in flow electrode gravimetric capacitance (from 65 to 83 F g(-1)) without sacrificing flowability (viscosity). The electrical energy required to remove ∼18% of the ions (desalt) from of the feed solution was observed to be significantly dependent on the mass loading and decreased (∼60%) from 92 ± 7 to 28 ± 2.7 J with increased mass densities from 5 to 23 wt %. It is shown that the surface chemistry of the active material in a flow electrode effects the electrical and pumping energy requirements of a FCDI system.
Hatzell, Kelsey B.; Hatzell, Marta C.; Cook, Kevin M.; ...
2015-01-29
Flow electrode deionization (FCDI) is an emerging area for continuous and scalable deionization, but the electrochemical and flow properties of the flow electrode need to be improved to minimize energy consumption. We examine chemical oxidation of granular activated carbon (AC) here to study the role of surface heteroatoms on rheology and electrochemical performance of a flow electrode (carbon slurry) for deionization processes. Moreover, it was demonstrated that higher mass densities could be used without increasing energy for pumping when using oxidized active material. High mass-loaded flow electrodes (28% carbon content) based on oxidized AC displayed similar viscosities (~21 Pa s)more » to lower mass-loaded flow electrodes (20% carbon content) based on nonoxidized AC. The 40% increased mass loading (from 20% to 28%) resulted in a 25% increase in flow electrode gravimetric capacitance (from 65 to 83 F g –1) without sacrificing flowability (viscosity). The electrical energy required to remove ~18% of the ions (desalt) from of the feed solution was observed to be significantly dependent on the mass loading and decreased (~60%) from 92 ± 7 to 28 ± 2.7 J with increased mass densities from 5 to 23 wt %. Finally, it is shown that the surface chemistry of the active material in a flow electrode effects the electrical and pumping energy requirements of a FCDI system.« less
Aanes, Magne; Kippersund, Remi Andre; Lohne, Kjetil Daae; Frøysa, Kjell-Eivind; Lunde, Per
2017-08-01
Transit-time flow meters based on guided ultrasonic wave propagation in the pipe spool have several advantages compared to traditional inline ultrasonic flow metering. The extended interrogation field, obtained by continuous leakage from guided waves traveling in the pipe wall, increases robustness toward entrained particles or gas in the flow. In reflective-path guided-wave ultrasonic flow meters (GW-UFMs), the flow equations are derived from signals propagating solely in the pipe wall and from signals passing twice through the fluid. In addition to the time-of-flight (TOF) through the fluid, the fluid path experiences an additional time delay upon reflection at the opposite pipe wall due to specular and non-specular reflections. The present work investigates the influence of these reflections on the TOF in a reflective-path GW-UFM as a function of transducer separation distance at zero flow conditions. Two models are used to describe the signal propagation through the system: (i) a transient full-wave finite element model, and (ii) a combined plane-wave and ray-tracing model. The study shows that a range-dependent time delay is associated with the reflection of the fluid path, introducing transmitter-receiver distance dependence. Based on these results, the applicability of the flow equations derived using model (ii) is discussed.
ten Brink, Fia; Duke, Trevor; Evans, Janine
2013-09-01
The aim of this study was to compare the use of high-flow nasal prong oxygen therapy to nasopharyngeal continuous positive airway pressure in a PICU at a tertiary hospital; to understand the safety and effectiveness of high-flow nasal prong therapy; in particular, what proportion of children require escalation of therapy, whether any bedside monitoring data predict stability or need for escalation, and complications of the therapies. This was a prospective observational study of the first 6 months after the introduction of high-flow nasal prong oxygen therapy at the Royal Children's Hospital in Melbourne. Data were collected on all children who were managed with either high-flow nasal prong oxygen therapy or nasopharyngeal continuous positive airway pressure. The mode of respiratory support was determined by the treating medical staff. Data were collected on each patient before the use of high-flow nasal prong or nasopharyngeal continuous positive airway pressure, at 2 hours after starting the therapy, and the children were monitored and data collected until discharge from the ICU. Therapy was considered to be escalated if children on high-flow nasal prong required a more invasive form or higher level of respiratory support, including nasopharyngeal continuous positive airway pressure or mask bilevel positive airway pressure or endotracheal intubation and mechanical ventilation. Therapy was considered to be escalated if children on nasopharyngeal continuous positive airway pressure required bilevel positive airway pressure or intubation and mechanical ventilation. As the first mode of respiratory support, 72 children received high-flow nasal prong therapy and 37 received nasopharyngeal continuous positive airway pressure. Forty-four patients (61%) who received high-flow nasal prong first were weaned to low-flow oxygen or to room air and 21 (29%) required escalation of respiratory support, compared with children on nasopharyngeal continuous positive airway pressure: 21 (57%) weaned successfully and 9 (24%) required escalation. Repeated treatment and crossover were common in this cohort. Throughout the study duration, escalation to a higher level of respiratory support was needed in 26 of 100 high-flow nasal prong treatment episodes (26%) and in 10 of 55 continuous positive airway pressure episodes (18%; p = 0.27). The need for escalation could be predicted by two of failure of normalization of heart rate and respiratory rate, and if the FIO2 did not fall to lower than 0.5, 2 hours after starting high-flow nasal prong therapy. Nasopharyngeal continuous positive airway pressure was required for significantly longer periods than high-flow nasal prong (median 48 and 18 hours, respectively; p ≤ 0.001). High-flow nasal prong therapy is a safe form of respiratory support for children with moderate-to-severe respiratory distress, across a large range of diagnoses, whose increased work of breathing or hypoxemia is not relieved by standard oxygen therapy. About one quarter of all children will require escalation to another form of respiratory support. This can be predicted by simple bedside observations.
A paradigm for modeling and computation of gas dynamics
NASA Astrophysics Data System (ADS)
Xu, Kun; Liu, Chang
2017-02-01
In the continuum flow regime, the Navier-Stokes (NS) equations are usually used for the description of gas dynamics. On the other hand, the Boltzmann equation is applied for the rarefied flow. These two equations are based on distinguishable modeling scales for flow physics. Fortunately, due to the scale separation, i.e., the hydrodynamic and kinetic ones, both the Navier-Stokes equations and the Boltzmann equation are applicable in their respective domains. However, in real science and engineering applications, they may not have such a distinctive scale separation. For example, around a hypersonic flying vehicle, the flow physics at different regions may correspond to different regimes, where the local Knudsen number can be changed significantly in several orders of magnitude. With a variation of flow physics, theoretically a continuous governing equation from the kinetic Boltzmann modeling to the hydrodynamic Navier-Stokes dynamics should be used for its efficient description. However, due to the difficulties of a direct modeling of flow physics in the scale between the kinetic and hydrodynamic ones, there is basically no reliable theory or valid governing equations to cover the whole transition regime, except resolving flow physics always down to the mean free path scale, such as the direct Boltzmann solver and the Direct Simulation Monte Carlo (DSMC) method. In fact, it is an unresolved problem about the exact scale for the validity of the NS equations, especially in the small Reynolds number cases. The computational fluid dynamics (CFD) is usually based on the numerical solution of partial differential equations (PDEs), and it targets on the recovering of the exact solution of the PDEs as mesh size and time step converging to zero. This methodology can be hardly applied to solve the multiple scale problem efficiently because there is no such a complete PDE for flow physics through a continuous variation of scales. For the non-equilibrium flow study, the direct modeling methods, such as DSMC, particle in cell, and smooth particle hydrodynamics, play a dominant role to incorporate the flow physics into the algorithm construction directly. It is fully legitimate to combine the modeling and computation together without going through the process of constructing PDEs. In other words, the CFD research is not only to obtain the numerical solution of governing equations but to model flow dynamics as well. This methodology leads to the unified gas-kinetic scheme (UGKS) for flow simulation in all flow regimes. Based on UGKS, the boundary for the validation of the Navier-Stokes equations can be quantitatively evaluated. The combination of modeling and computation provides a paradigm for the description of multiscale transport process.
KINEROS2 – AGWA Suite of Modeling Tools
KINEROS2 (K2) originated in the 1960s as a distributed event-based rainfall-runoff erosion model abstracting the watershed as a cascade of overland flow elements contributing to channel model elements. Development and improvement of K2 has continued for a variety of projects and ...
Continuous-flow biosynthesis of Au-Ag bimetallic nanoparticles in a microreactor
NASA Astrophysics Data System (ADS)
Liu, Hongyu; Huang, Jiale; Sun, Daohua; Odoom-Wubah, Tareque; Li, Jun; Li, Qingbiao
2014-11-01
Herein, a microfluidic biosynthesis of Au-Ag bimetallic nanoparticle (NP) in a tubular microreactor, based on simultaneous reduction of HAuCl4 and AgNO3 precursors in the presence of Cacumen Platycladi ( C. Platycladi) extract was studied. The flow velocity profile was numerically analyzed with computational fluid dynamics. Au-Ag bimetallic NPs with Ag/Au molar ratios of 1:1 and 2:1 were synthesized, respectively. The alloy formation, morphology, structure, and size were investigated by UV-Vis spectra analysis, transmission electron microscopy (TEM), high resolution TEM, scanning TEM, and energy-dispersive X-ray analysis. In addition, the effects of volumetric flow rate, reaction temperature, and concentration of C. Platycladi extract and NaOH on the properties of the as-synthesized Au-Ag bimetallic NPs were investigated. The results indicated that these factors could not only affect the molar ratios of the two elements in the Au-Ag bimetallic NPs, but also affect particle size which can be adjusted from 3.3 to 5.6 nm. The process was very rapid and green, since a microreactor was employed with no additional synthetic reagents used. This work is anticipated to provide useful parameters for continuous-flow biosynthesis of bimetallic NPs in microreactors.
Continuous flow nitration in miniaturized devices
2014-01-01
Summary This review highlights the state of the art in the field of continuous flow nitration with miniaturized devices. Although nitration has been one of the oldest and most important unit reactions, the advent of miniaturized devices has paved the way for new opportunities to reconsider the conventional approach for exothermic and selectivity sensitive nitration reactions. Four different approaches to flow nitration with microreactors are presented herein and discussed in view of their advantages, limitations and applicability of the information towards scale-up. Selected recent patents that disclose scale-up methodologies for continuous flow nitration are also briefly reviewed. PMID:24605161
Digital microfluidics: Droplet based logic gates
NASA Astrophysics Data System (ADS)
Cheow, Lih Feng; Yobas, Levent; Kwong, Dim-Lee
2007-01-01
The authors present microfluidic logic gates based on two-phase flows at low Reynold's number. The presence and the absence of a dispersed phase liquid (slug) in a continuous phase liquid represent 1 and 0, respectively. The working principle of these devices is based on the change in hydrodynamic resistance for a channel containing droplets. Logical operations including AND, OR, and NOT are demonstrated, and may pave the way for microfludic system automation and computation.
Characterization of a continuous agitated cell reactor for oxygen dependent biocatalysis.
Toftgaard Pedersen, Asbjørn; de Carvalho, Teresa Melo; Sutherland, Euan; Rehn, Gustav; Ashe, Robert; Woodley, John M
2017-06-01
Biocatalytic oxidation reactions employing molecular oxygen as the electron acceptor are difficult to conduct in a continuous flow reactor because of the requirement for high oxygen transfer rates. In this paper, the oxidation of glucose to glucono-1,5-lactone by glucose oxidase was used as a model reaction to study a novel continuous agitated cell reactor (ACR). The ACR consists of ten cells interconnected by small channels. An agitator is placed in each cell, which mixes the content of the cell when the reactor body is shaken by lateral movement. Based on tracer experiments, a hydrodynamic model for the ACR was developed. The model consisted of ten tanks-in-series with back-mixing occurring within and between each cell. The back-mixing was a necessary addition to the model in order to explain the observed phenomenon that the ACR behaved as two continuous stirred tank reactors (CSTRs) at low flow rates, while it at high flow rates behaved as the expected ten CSTRs in series. The performance of the ACR was evaluated by comparing the steady state conversion at varying residence times with the conversion observed in a stirred batch reactor of comparable size. It was found that the ACR could more than double the overall reaction rate, which was solely due to an increased oxygen transfer rate in the ACR caused by the intense mixing as a result of the spring agitators. The volumetric oxygen transfer coefficient, k L a, was estimated to be 344 h -1 in the 100 mL ACR, opposed to only 104 h -1 in a batch reactor of comparable working volume. Interestingly, the large deviation from plug flow behavior seen in the tracer experiments was found to have little influence on the conversion in the ACR, since both a plug flow reactor (PFR) model and the backflow cell model described the data sufficiently well. Biotechnol. Bioeng. 2017;114: 1222-1230. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Unified approach for incompressible flows
NASA Astrophysics Data System (ADS)
Chang, Tyne-Hsien
1995-07-01
A unified approach for solving incompressible flows has been investigated in this study. The numerical CTVD (Centered Total Variation Diminishing) scheme used in this study was successfully developed by Sanders and Li for compressible flows, especially for the high speed. The CTVD scheme possesses better mathematical properties to damp out the spurious oscillations while providing high-order accuracy for high speed flows. It leads us to believe that the CTVD scheme can equally well apply to solve incompressible flows. Because of the mathematical difference between the governing equations for incompressible and compressible flows, the scheme can not directly apply to the incompressible flows. However, if one can modify the continuity equation for incompressible flows by introducing pseudo-compressibility, the governing equations for incompressible flows would have the same mathematical characters as compressible flows. The application of the algorithm to incompressible flows thus becomes feasible. In this study, the governing equations for incompressible flows comprise continuity equation and momentum equations. The continuity equation is modified by adding a time-derivative of the pressure term containing the artificial compressibility. The modified continuity equation together with the unsteady momentum equations forms a hyperbolic-parabolic type of time-dependent system of equations. Thus, the CTVD schemes can be implemented. In addition, the physical and numerical boundary conditions are properly implemented by the characteristic boundary conditions. Accordingly, a CFD code has been developed for this research and is currently under testing. Flow past a circular cylinder was chosen for numerical experiments to determine the accuracy and efficiency of the code. The code has shown some promising results.
Unified approach for incompressible flows
NASA Technical Reports Server (NTRS)
Chang, Tyne-Hsien
1995-01-01
A unified approach for solving incompressible flows has been investigated in this study. The numerical CTVD (Centered Total Variation Diminishing) scheme used in this study was successfully developed by Sanders and Li for compressible flows, especially for the high speed. The CTVD scheme possesses better mathematical properties to damp out the spurious oscillations while providing high-order accuracy for high speed flows. It leads us to believe that the CTVD scheme can equally well apply to solve incompressible flows. Because of the mathematical difference between the governing equations for incompressible and compressible flows, the scheme can not directly apply to the incompressible flows. However, if one can modify the continuity equation for incompressible flows by introducing pseudo-compressibility, the governing equations for incompressible flows would have the same mathematical characters as compressible flows. The application of the algorithm to incompressible flows thus becomes feasible. In this study, the governing equations for incompressible flows comprise continuity equation and momentum equations. The continuity equation is modified by adding a time-derivative of the pressure term containing the artificial compressibility. The modified continuity equation together with the unsteady momentum equations forms a hyperbolic-parabolic type of time-dependent system of equations. Thus, the CTVD schemes can be implemented. In addition, the physical and numerical boundary conditions are properly implemented by the characteristic boundary conditions. Accordingly, a CFD code has been developed for this research and is currently under testing. Flow past a circular cylinder was chosen for numerical experiments to determine the accuracy and efficiency of the code. The code has shown some promising results.
Flow induced protein nucleation: Insulin oligomerization under shear.
NASA Astrophysics Data System (ADS)
Dexter, Andrew; Azadani, Ali; Sorci, Mirco; Belfort, Georges; Hirsa, Amir
2007-11-01
A large number of diseases are associated with protein aggregation and misfolding, such as Alzheimer's, Parkinson's and human prion diseases such as Creutzveld-Jakob disease. Characteristic of these diseases is the presence of amyloid fibrils and their precursors, oligomers and protofibrils. Considerable evidence exists that a shearing flow strongly influences amyloid formation both in vitro and in vivo. Furthermore, the stability of protein-based pharmaceuticals is essential for conventional therapeutic preparations and drug delivery systems. By studying the nucleation and growth of insulin fibrils in a well-defined flow system, we expect to identify the flow conditions that impact protein aggregation kinetics and which lead to protein destabilization. The present flow system consists of an annular region bounded by stationary inner and outer cylinders and is driven by rotation of the floor. Preliminary results indicate that a continuous shearing flow can accelerate the aggregation process. The interfacial shear viscosity was found to drastically increase during aggregation and appears to be a useful parameter to probe protein oligomerization and the effects of flow.
A new link between the retrograde actin flow and focal adhesions.
Yamashiro, Sawako; Watanabe, Naoki
2014-11-01
The retrograde actin flow, continuous centripetal movement of the cell peripheral actin networks, is widely observed in adherent cells. The retrograde flow is believed to facilitate cell migration when linked to cell adhesion molecules. In this review, we summarize our current knowledge regarding the functional relationship between the retrograde actin flow and focal adhesions (FAs). We also introduce our recent study in which single-molecule speckle (SiMS) microscopy dissected the complex interactions between FAs and the local actin flow. FAs do not simply impede the actin flow, but actively attract and remodel the local actin network. Our findings provide a new insight into the mechanisms for protrusion and traction force generation at the cell leading edge. Furthermore, we discuss possible roles of the actin flow-FA interaction based on the accumulated knowledge and our SiMS study. © The Authors 2014. Published by Oxford University Press on behalf of the Japanese Biochemical Society. All rights reserved.
Low-flow characteristics of Virginia streams
Austin, Samuel H.; Krstolic, Jennifer L.; Wiegand, Ute
2011-01-01
Low-flow annual non-exceedance probabilities (ANEP), called probability-percent chance (P-percent chance) flow estimates, regional regression equations, and transfer methods are provided describing the low-flow characteristics of Virginia streams. Statistical methods are used to evaluate streamflow data. Analysis of Virginia streamflow data collected from 1895 through 2007 is summarized. Methods are provided for estimating low-flow characteristics of gaged and ungaged streams. The 1-, 4-, 7-, and 30-day average streamgaging station low-flow characteristics for 290 long-term, continuous-record, streamgaging stations are determined, adjusted for instances of zero flow using a conditional probability adjustment method, and presented for non-exceedance probabilities of 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1, 0.05, 0.02, 0.01, and 0.005. Stream basin characteristics computed using spatial data and a geographic information system are used as explanatory variables in regional regression equations to estimate annual non-exceedance probabilities at gaged and ungaged sites and are summarized for 290 long-term, continuous-record streamgaging stations, 136 short-term, continuous-record streamgaging stations, and 613 partial-record streamgaging stations. Regional regression equations for six physiographic regions use basin characteristics to estimate 1-, 4-, 7-, and 30-day average low-flow annual non-exceedance probabilities at gaged and ungaged sites. Weighted low-flow values that combine computed streamgaging station low-flow characteristics and annual non-exceedance probabilities from regional regression equations provide improved low-flow estimates. Regression equations developed using the Maintenance of Variance with Extension (MOVE.1) method describe the line of organic correlation (LOC) with an appropriate index site for low-flow characteristics at 136 short-term, continuous-record streamgaging stations and 613 partial-record streamgaging stations. Monthly streamflow statistics computed on the individual daily mean streamflows of selected continuous-record streamgaging stations and curves describing flow-duration are presented. Text, figures, and lists are provided summarizing low-flow estimates, selected low-flow sites, delineated physiographic regions, basin characteristics, regression equations, error estimates, definitions, and data sources. This study supersedes previous studies of low flows in Virginia.
Electrohydrodynamics and other hydrodynamic phenomena in continuous flow electrophoresis
NASA Technical Reports Server (NTRS)
Saville, D. A.
1982-01-01
The process known as continuous flow electrophoresis employs an electric field to separate the constituents of particulate samples suspended in a liquid. Complications arise because the electric field generates temperature gradients due to Joule heating and derives an electrohydrodynamic crossflow. Several aspects of the flow are discussed including entrance effects, hydrodynamic stability and a flow restructuring due to the combined effects of buoyancy and the crossflow.
Multianalyte detection using a capillary-based flow immunosensor.
Narang, U; Gauger, P R; Kusterbeck, A W; Ligler, F S
1998-01-01
A highly sensitive, dual-analyte detection system using capillary-based immunosensors has been designed for explosive detection. This model system consists of two capillaries, one coated with antibodies specific for 2,4,6-trinitrotoluene (TNT) and the other specific for hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) combined into a single device. The fused silica capillaries are prepared by coating anti-TNT and anti-RDX antibodies onto the silanized inner walls using a hetero-bifunctional crosslinker. After immobilization, the antibodies are saturated with a suitable fluorophorelabeled antigen. A "T" connector is used to continuously flow the buffer solution through the individual capillaries. To perform the assay, an aliquot of TNT or RDX or a mixture of the two analytes is injected into the continuous flow stream. In each capillary, the target analyte displaces the fluorophore-labeled antigen from the binding pocket of the antibody. The labeled antigen displaced from either capillary is detected downstream using two portable spectrofluorometers. The limits of detection for TNT and RDX in the multi-analyte formate are 44 fmol (100 microliters of 0.1 ng/ml TNT solution) and 224 fmol (100 microliters of 0.5 ng/ml RDX solution), respectively. The entire assay for both analytes can be performed in less than 3 min.
Baxendale, Ian R; Braatz, Richard D; Hodnett, Benjamin K; Jensen, Klavs F; Johnson, Martin D; Sharratt, Paul; Sherlock, Jon-Paul; Florence, Alastair J
2015-03-01
This whitepaper highlights current challenges and opportunities associated with continuous synthesis, workup, and crystallization of active pharmaceutical ingredients (drug substances). We describe the technologies and requirements at each stage and emphasize the different considerations for developing continuous processes compared with batch. In addition to the specific sequence of operations required to deliver the necessary chemical and physical transformations for continuous drug substance manufacture, consideration is also given to how adoption of continuous technologies may impact different manufacturing stages in development from discovery, process development, through scale-up and into full scale production. The impact of continuous manufacture on drug substance quality and the associated challenges for control and for process safety are also emphasized. In addition to the technology and operational considerations necessary for the adoption of continuous manufacturing (CM), this whitepaper also addresses the cultural, as well as skills and training, challenges that will need to be met by support from organizations in order to accommodate the new work flows. Specific action items for industry leaders are: Develop flow chemistry toolboxes, exploiting the advantages of flow processing and including highly selective chemistries that allow use of simple and effective continuous workup technologies. Availability of modular or plug and play type equipment especially for workup to assist in straightforward deployment in the laboratory. As with learning from other industries, standardization is highly desirable and will require cooperation across industry and academia to develop and implement. Implement and exploit process analytical technologies (PAT) for real-time dynamic control of continuous processes. Develop modeling and simulation techniques to support continuous process development and control. Progress is required in multiphase systems such as crystallization. Involve all parts of the organization from discovery, research and development, and manufacturing in the implementation of CM. Engage with academia to develop the training provision to support the skills base for CM, particularly in flow chemistry, physical chemistry, and chemical engineering skills at the chemistry-process interface. Promote and encourage publication and dissemination of examples of CM across the sector to demonstrate capability, engage with regulatory comment, and establish benchmarks for performance and highlight challenges. Develop the economic case for CM of drug substance. This will involve various stakeholders at project and business level, however establishing the critical economic drivers is critical to driving the transformation in manufacturing. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.
Bit Threads and Holographic Entanglement
NASA Astrophysics Data System (ADS)
Freedman, Michael; Headrick, Matthew
2017-05-01
The Ryu-Takayanagi (RT) formula relates the entanglement entropy of a region in a holographic theory to the area of a corresponding bulk minimal surface. Using the max flow-min cut principle, a theorem from network theory, we rewrite the RT formula in a way that does not make reference to the minimal surface. Instead, we invoke the notion of a "flow", defined as a divergenceless norm-bounded vector field, or equivalently a set of Planck-thickness "bit threads". The entanglement entropy of a boundary region is given by the maximum flux out of it of any flow, or equivalently the maximum number of bit threads that can emanate from it. The threads thus represent entanglement between points on the boundary, and naturally implement the holographic principle. As we explain, this new picture clarifies several conceptual puzzles surrounding the RT formula. We give flow-based proofs of strong subadditivity and related properties; unlike the ones based on minimal surfaces, these proofs correspond in a transparent manner to the properties' information-theoretic meanings. We also briefly discuss certain technical advantages that the flows offer over minimal surfaces. In a mathematical appendix, we review the max flow-min cut theorem on networks and on Riemannian manifolds, and prove in the network case that the set of max flows varies Lipshitz continuously in the network parameters.
Park, Sung-Hong; Wang, Danny J J; Duong, Timothy Q
2013-09-01
We implemented pseudo-continuous ASL (pCASL) with 2D and 3D balanced steady state free precession (bSSFP) readout for mapping blood flow in the human brain, retina, and kidney, free of distortion and signal dropout, which are typically observed in the most commonly used echo-planar imaging acquisition. High resolution functional brain imaging in the human visual cortex was feasible with 3D bSSFP pCASL. Blood flow of the human retina could be imaged with pCASL and bSSFP in conjunction with a phase cycling approach to suppress the banding artifacts associated with bSSFP. Furthermore, bSSFP based pCASL enabled us to map renal blood flow within a single breath hold. Control and test-retest experiments suggested that the measured blood flow values in retina and kidney were reliable. Because there is no specific imaging tool for mapping human retina blood flow and the standard contrast agent technique for mapping renal blood flow can cause problems for patients with kidney dysfunction, bSSFP based pCASL may provide a useful tool for the diagnosis of retinal and renal diseases and can complement existing imaging techniques. Copyright © 2013 Elsevier Inc. All rights reserved.
Wavelet analysis of hemispheroid flow separation toward understanding human vocal fold pathologies
NASA Astrophysics Data System (ADS)
Plesniak, Daniel H.; Carr, Ian A.; Bulusu, Kartik V.; Plesniak, Michael W.
2014-11-01
Physiological flows observed in human vocal fold pathologies, such as polyps and nodules, can be modeled by flow over a wall-mounted protuberance. The experimental investigation of flow separation over a surface-mounted hemispheroid was performed using particle image velocimetry (PIV) and measurements of surface pressure in a low-speed wind tunnel. This study builds on the hypothesis that the signatures of vortical structures associated with flow separation are imprinted on the surface pressure distributions. Wavelet decomposition methods in one- and two-dimensions were utilized to elucidate the flow behavior. First, a complex Gaussian wavelet was used for the reconstruction of surface pressure time series from static pressure measurements acquired from ports upstream, downstream, and on the surface of the hemispheroid. This was followed by the application of a novel continuous wavelet transform algorithm (PIVlet 1.2) using a 2D-Ricker wavelet for coherent structure detection on instantaneous PIV-data. The goal of this study is to correlate phase shifts in surface pressure with Strouhal numbers associated with the vortex shedding. Ultimately, the wavelet-based analytical framework will be aimed at addressing pulsatile flows. This material is based in part upon work supported by the National Science Foundation under Grant Number CBET-1236351, and GW Center for Biomimetics and Bioinspired Engineering (COBRE).
Increasing Sensitivity In Continuous-Flow Electrophoresis
NASA Technical Reports Server (NTRS)
Sharnez, Rizwan; Sammons, David W.
1994-01-01
Sensitivity of continuous-flow electrophoresis (CFE) chamber increased by introducing lateral gradients in concentration of buffer solution and thickness of chamber. Such gradients, with resulting enhanced separation, achieved in CFE chamber with wedge-shaped cross section and collateral flow. Enables improved separations of homogeneous components of mixtures of variety of biologically important substances.
Moitra, Nirmalya; Fukumoto, Shotaro; Reboul, Julien; Sumida, Kenji; Zhu, Yang; Nakanishi, Kazuki; Furukawa, Shuhei; Kitagawa, Susumu; Kanamori, Kazuyoshi
2015-02-28
The synthesis of highly crystalline macro-meso-microporous monolithic Cu3(btc)2 (HKUST-1; btc(3-) = benzene-1,3,5-tricarboxylate) is demonstrated by direct conversion of Cu(OH)2-based monoliths while preserving the characteristic macroporous structure. The high mechanical strength of the monoliths is promising for possible applications to continuous flow reactors.
Zhang, Junyong; Chang, Shaoqing; Suryanto, Bryan H R; Gong, Chunhua; Zeng, Xianghua; Zhao, Chuan; Zeng, Qingdao; Xie, Jingli
2016-06-06
Taking advantage of a continuous-flow apparatus, the iridium(III)-containing polytungstate cluster K12Na2H2[Ir2Cl8P2W20O72]·37H2O (1) was obtained in a reasonable yield (13% based on IrCl3·H2O). Compound 1 was characterized by Fourier transform IR, UV-visible, (31)P NMR, electrospray ionization mass spectrometry (ESI-MS), and thermogravimetric analysis measurements. (31)P NMR, ESI-MS, and elemental analysis all indicated 1 was a new polytungstate cluster compared with the reported K14[(IrCl4)KP2W20O72] compound. Intriguingly, the successful isolation of 1 relied on the custom-built flow apparatus, demonstrating the uniqueness of continuous-flow chemistry to achieve crystalline materials. The catalytic properties of 1 were assessed by investigating the activity on catalyzing the electro-oxidation of ruthenium tris-2,2'-bipyridine [Ru(bpy)3](2+/3+). The voltammetric behavior suggested a coupled catalytic behavior between [Ru(bpy)3](3+/2+) and 1. Furthermore, on the highly oriented pyrolytic graphite surface, 1,3,5-tris(10-carboxydecyloxy) benzene (TCDB) was used as the two-dimensional host network to coassemble cluster 1; the surface morphology was observed by scanning tunneling microscope technique. "S"-shape of 1 was observed, indicating that the cluster could be accommodated in the cavity formed by two TCDB host molecules, leading to a TCDB/cluster binary structure.
Lau, Phei Li; Allen, Ray W K
2013-01-01
Summary The palladium metal catalysed Heck reaction of 4-iodoanisole with styrene or methyl acrylate has been studied in a continuous plug flow reactor (PFR) using supercritical carbon dioxide (scCO2) as the solvent, with THF and methanol as modifiers. The catalyst was 2% palladium on silica and the base was diisopropylethylamine due to its solubility in the reaction solvent. No phosphine co-catalysts were used so the work-up procedure was simplified and the green credentials of the reaction were enhanced. The reactions were studied as a function of temperature, pressure and flow rate and in the case of the reaction with styrene compared against a standard, stirred autoclave reaction. Conversion was determined and, in the case of the reaction with styrene, the isomeric product distribution was monitored by GC. In the case of the reaction with methyl acrylate the reactor was scaled from a 1.0 mm to 3.9 mm internal diameter and the conversion and turnover frequency determined. The results show that the Heck reaction can be effectively performed in scCO2 under continuous flow conditions with a palladium metal, phosphine-free catalyst, but care must be taken when selecting the reaction temperature in order to ensure the appropriate isomer distribution is achieved. Higher reaction temperatures were found to enhance formation of the branched terminal alkene isomer as opposed to the linear trans-isomer. PMID:24367454
Determination of High-affinity Antibody-antigen Binding Kinetics Using Four Biosensor Platforms.
Yang, Danlin; Singh, Ajit; Wu, Helen; Kroe-Barrett, Rachel
2017-04-17
Label-free optical biosensors are powerful tools in drug discovery for the characterization of biomolecular interactions. In this study, we describe the use of four routinely used biosensor platforms in our laboratory to evaluate the binding affinity and kinetics of ten high-affinity monoclonal antibodies (mAbs) against human proprotein convertase subtilisin kexin type 9 (PCSK9). While both Biacore T100 and ProteOn XPR36 are derived from the well-established Surface Plasmon Resonance (SPR) technology, the former has four flow cells connected by serial flow configuration, whereas the latter presents 36 reaction spots in parallel through an improvised 6 x 6 crisscross microfluidic channel configuration. The IBIS MX96 also operates based on the SPR sensor technology, with an additional imaging feature that provides detection in spatial orientation. This detection technique coupled with the Continuous Flow Microspotter (CFM) expands the throughput significantly by enabling multiplex array printing and detection of 96 reaction sports simultaneously. In contrast, the Octet RED384 is based on the BioLayer Interferometry (BLI) optical principle, with fiber-optic probes acting as the biosensor to detect interference pattern changes upon binding interactions at the tip surface. Unlike the SPR-based platforms, the BLI system does not rely on continuous flow fluidics; instead, the sensor tips collect readings while they are immersed in analyte solutions of a 384-well microplate during orbital agitation. Each of these biosensor platforms has its own advantages and disadvantages. To provide a direct comparison of these instruments' ability to provide quality kinetic data, the described protocols illustrate experiments that use the same assay format and the same high-quality reagents to characterize antibody-antigen kinetics that fit the simple 1:1 molecular interaction model.
Pressurized tundish for controlling a continuous flow of molten metal
Lewis, T.W.; Hamill, P.E. Jr.; Ozgu, M.R.; Padfield, R.C.; Rego, D.N.; Brita, G.P.
1990-07-24
A pressurized tundish for controlling a continuous flow of molten metal is characterized by having a pair of principal compartments, one being essentially unpressurized and receiving molten metal introduced thereto, and the other being adapted for maintaining a controlled gaseous pressure over the surface of the fluid metal therein, whereby, by controlling the pressure within the pressurized chamber, metal exiting from the tundish is made to flow continually and at a controlled rate. 1 fig.
Experimental investigation of fluvial dike breaching due to flow overtopping
NASA Astrophysics Data System (ADS)
El Kadi Abderrezzak, K.; Rifai, I.; Erpicum, S.; Archambeau, P.; Violeau, D.; Pirotton, M.; Dewals, B.
2017-12-01
The failure of fluvial dikes (levees) often leads to devastating floods that cause loss of life and damages to public infrastructure. Overtopping flows have been recognized as one of the most frequent cause of dike erosion and breaching. Fluvial dike breaching is different from frontal dike (embankments) breaching, because of specific geometry and boundary conditions. The current knowledge on the physical processes underpinning fluvial dike failure due to overtopping remains limited. In addition, there is a lack of a continuous monitoring of the 3D breach formation, limiting the analysis of the key mechanisms governing the breach development and the validation of conceptual or physically-based models. Laboratory tests on breach growth in homogeneous, non-cohesive sandy fluvial dikes due to flow overtopping have been performed. Two experimental setups have been constructed, permitting the investigation of various hydraulic and geometric parameters. Each experimental setup includes a main channel, separated from a floodplain by a dike. A rectangular initial notch is cut in the crest to initiate dike breaching. The breach development is monitored continuously using a specific developed laser profilometry technique. The observations have shown that the breach develops in two stages: first the breach deepens and widens with the breach centerline being gradually shifted toward the downstream side of the main channel. This behavior underlines the influence of the flow momentum component parallel to the dike crest. Second, the dike geometry upstream of the breach stops evolving and the breach widening continues only toward the downstream side of the main channel. The breach evolution has been found strongly affected by the flow conditions (i.e. inflow discharge in the main channel, downstream boundary condition) and floodplain confinement. The findings of this work shed light on key mechanisms of fluvial dike breaching, which differ substantially from those of dam breaching. These specific features need to be incorporated in flood risk analyses involving fluvial dike breach and failure. In addition, a well-documented, reliable data set, with a continuous high resolution monitoring of the 3D breach evolution under various flow conditions, has been gathered, which can be used for validating numerical models.
Kostelnik, K.M.; Durlin, R.R.
1989-01-01
Streamflow and water quality data were collected throughout the Little Clearfield Creek basin, Clearfield County, Pennsylvania, from December 1987 through November 1988, to determine the existing quality of surface water over a range of hydrologic conditions. This data will assist the Pennsylvania Department of Environmental Resources during its review of coal mine permit applications. A water quality station near the mouth of Little Clearfield Creek provided continuous record of stream stage, pH, specific conductance, and water temperature. Monthly water quality samples collected at this station were analyzed for total and dissolved metals, nutrients, major cations, and suspended sediment concentrations. Seventeen partial record sites, located throughout the basin, were similarly sampled four times during the study. Streamflow and water quality data obtained at these sites during a winter base flow, a spring storm event, a low summer base flow, and a more moderate summer base flow also are presented. (Author 's abstract)
Dataflow computing approach in high-speed digital simulation
NASA Technical Reports Server (NTRS)
Ercegovac, M. D.; Karplus, W. J.
1984-01-01
New computational tools and methodologies for the digital simulation of continuous systems were explored. Programmability, and cost effective performance in multiprocessor organizations for real time simulation was investigated. Approach is based on functional style languages and data flow computing principles, which allow for the natural representation of parallelism in algorithms and provides a suitable basis for the design of cost effective high performance distributed systems. The objectives of this research are to: (1) perform comparative evaluation of several existing data flow languages and develop an experimental data flow language suitable for real time simulation using multiprocessor systems; (2) investigate the main issues that arise in the architecture and organization of data flow multiprocessors for real time simulation; and (3) develop and apply performance evaluation models in typical applications.
Continuously tunable microdroplet-laser in a microfluidic channel.
Tang, Sindy K Y; Derda, Ratmir; Quan, Qimin; Lončar, Marko; Whitesides, George M
2011-01-31
This paper describes the generation and optical characterization of a series of dye-doped droplet-based optical microcavities with continuously decreasing radius in a microfluidic channel. A flow-focusing nozzle generated the droplets (~21 μm in radius) using benzyl alcohol as the disperse phase and water as the continuous phase. As these drops moved down the channel, they dissolved, and their size decreased. The emission characteristics from the drops could be matched to the whispering gallery modes from spherical micro-cavities. The wavelength of emission from the drops changed from 700 to 620 nm as the radius of the drops decreased from 21 μm to 7 μm. This range of tunability in wavelengths was larger than that reported in previous work on droplet-based cavities.
Bandla, Aishwarya; Sundar, Raghav; Liao, Lun-De; Sze Hui Tan, Stacey; Lee, Soo-Chin; Thakor, Nitish V; Wilder-Smith, Einar P V
2016-01-01
Chemotherapy-induced peripheral neuropathy (CIPN) is a major dose-limiting side effect of several chemotherapeutic agents, often leading to treatment discontinuation. Up to 20% of patients treated with weekly paclitaxel experience severe CIPN and no effective treatment has been established so far. The mechanisms of CIPN damage are unclear, but are directly dose-related. We had earlier demonstrated, in rats, the influence of hypothermia in reducing nerve blood flow. Here, we hypothesize that continuous flow limb hypothermia during chemotherapy reduces the incidence and severity of CIPN, by limiting deliverance of the neurotoxic drug to the peripheral nerves. In this study, prior to assessing the effect of hypothermia in preventing CIPN in cancer subjects undergoing paclitaxel chemotherapy, we assess the safety and tolerable temperatures for limb hypothermia in healthy human subjects. In 15 healthy human subjects, hypothermia was administered as continuous flow cooling, unilaterally, via a thermoregulator setup covering the digits up to the elbow/knee, along with continuous skin temperature monitoring. Thermoregulator coolant temperatures between 25 °C and 20 °C were tested for tolerability, based on a carefully designed temperature regulation protocol, and maintained for three hours mimicking the duration of chemotherapy. Tolerability was evaluated using various safety and tolerability scores to monitor the subjects. At the end of the cooling session the healthy subjects presented without significant adverse effects, the main being brief mild skin erythema and transient numbness. Coolant temperatures as low as 22 °C were well tolerated continuously over three hours. Our results confirm the safety and tolerability of continuous flow limb hypothermia in healthy subjects. Further studies will use 22 °C thermoregulator temperature to investigate hypothermia in preventing CIPN in breast cancer patients receiving adjuvant weekly paclitaxel. This pilot study may contribute to alleviating chemotherapy dose limitation due to CIPN and increase the likelihood of success of chemotherapy.
CAE for Injection Molding — Past, Present and the Future
NASA Astrophysics Data System (ADS)
Wang, Kuo K.
2004-06-01
It is well known that injection molding is the most effective process for mass-producing discrete plastic parts of complex shape to the highest precision at the lowest cost. However, due to the complex property of polymeric materials undergoing a transient non-isothermal process, it is equally well recognized that the quality of final products is often difficult to be assured. This is particularly true when a new mold or material is encountered. As a result, injection molding has often been viewed as an art than a science. During the past few decades, numerical simulation of injection molding process based on analytic models has become feasible for practical use as computers became faster and cheaper continually. A research effort was initiated at the Cornell Injection Molding Program (CIMP) in 1974 under a grant from the National Science Foundation. Over a quarter of the century, CIMP has established some scientific bases ranging from materials characterization, flow analysis, to prediction of part quality. Use of such CAE tools has become common place today in industry. Present effort has been primarily aimed at refinements of many aspects of the process. Computational efficiency and user-interface have been main thrusts by commercial software developers. Extension to 3-dimensional flow analysis for certain parts has drawn some attention. Research activities are continuing on molding of fiber-filled materials and reactive polymers. Expanded molding processes such as gas-assisted, co-injection, micro-molding and many others are continually being investigated. In the future, improvements in simulation accuracy and efficiency will continue. This will include in-depth studies on materials characterization. Intelligent on-line process control may draw more attention in order to achieve higher degree of automation. As Internet technology continues to evolve, Web-based CAE tools for design, production, remote process monitoring and control can come to path. The CAE tools will eventually be integrated into an Enterprise Resources Planning (ERP) system as the trend of enterprise globalization continues.
Oscillatory multiphase flow strategy for chemistry and biology.
Abolhasani, Milad; Jensen, Klavs F
2016-07-19
Continuous multiphase flow strategies are commonly employed for high-throughput parameter screening of physical, chemical, and biological processes as well as continuous preparation of a wide range of fine chemicals and micro/nano particles with processing times up to 10 min. The inter-dependency of mixing and residence times, and their direct correlation with reactor length have limited the adaptation of multiphase flow strategies for studies of processes with relatively long processing times (0.5-24 h). In this frontier article, we describe an oscillatory multiphase flow strategy to decouple mixing and residence times and enable investigation of longer timescale experiments than typically feasible with conventional continuous multiphase flow approaches. We review current oscillatory multiphase flow technologies, provide an overview of the advancements of this relatively new strategy in chemistry and biology, and close with a perspective on future opportunities.
Gilfedder, B S; Hofmann, H; Cartwright, I
2013-01-15
There is little known about the short-term dynamics of groundwater-surface water exchange in losing rivers. This is partly due to the paucity of chemical techniques that can autonomously collect high-frequency data in groundwater bores. Here we present two new instruments for continuous in situ (222)Rn measurement in bores for quantifying the surface water infiltration rate into an underlying or adjacent aquifer. These instruments are based on (222)Rn diffusion through silicone tube membranes, either wrapped around a pole (MonoRad) or strung between two hollow end pieces (OctoRad). They are combined with novel, robust, low-cost Geiger counter (222)Rn detectors which are ideal for long-term autonomous measurement. The down-hole instruments have a quantitative response time of about a day during low flow, but this decreases to <12 h during high-flow events. The setup was able to trace river water bank infiltration during moderate to high river flow during two field experiments. Mass-balance calculations using the (222)Rn data gave a maximum infiltration rate of 2 m d(-1). These instruments offer the first easily constructible system for continuous (222)Rn analysis in groundwater, and could be used to trace surface water infiltration in many environments including rivers, lakes, wetlands, and coastal settings.
Guar gum coupled microscale ZVI for in situ treatment of CAHs: continuous-flow column study.
Velimirovic, Milica; Simons, Queenie; Bastiaens, Leen
2014-01-30
A column study was performed under in situ conditions to evaluate to which extend the inactivation of the microscale zerovalent iron (mZVI) by guar gum occurs under continuous flow conditions. Five aquifer containing columns were set up under different conditions. Efficient removal of trichloroethene was observed for the column amended by mZVI. Stabilization of the mZVI with guar gum led to slightly reduced activity. More reduced reactivity was observed in the poisoned column containing guar gum stabilized mZVI. This confirms that soil microorganisms can degrade guar gum and that subsequent removal of the oligosaccharides by the groundwater flow (flushing effect) can reactivate the mZVI. After more than six months of continuous operation the columns were dismantled. DNA-based qPCR analysis revealed that mZVI does not significantly affect the bacterial community, while guar gum stabilized mZVI particles can even induce bacterial growth. Overall, this study suggests that the temporarily decreased mZVI reactivity due to guar gum, has a rather limited impact on the performance of in situ reactive zones. The presence of guar gum slightly reduced the reactivity of iron, but also slowed down the iron corrosion rate which prolongs the life time of reactive zone. Copyright © 2013 Elsevier B.V. All rights reserved.
Continuous protein concentration via free-flow moving reaction boundary electrophoresis.
Kong, Fanzhi; Zhang, Min; Chen, Jingjing; Fan, Liuyin; Xiao, Hua; Liu, Shaorong; Cao, Chengxi
2017-07-28
In this work, we developed the model and theory of free-flow moving reaction boundary electrophoresis (FFMRB) for continuous protein concentration for the first time. The theoretical results indicated that (i) the moving reaction boundary (MRB) can be quantitatively designed in free-flow electrophoresis (FFE) system; (ii) charge-to-mass ratio (Z/M) analysis could provide guidance for protein concentration optimization; and (iii) the maximum processing capacity could be predicted. To demonstrate the model and theory, three model proteins of hemoglobin (Hb), cytochrome C (Cyt C) and C-phycocyanin (C-PC) were chosen for the experiments. The experimental results verified that (i) stable MRBs with different velocities could be established in FFE apparatus with weak acid/weak base neutralization reaction system; (ii) proteins of Hb, Cyt C and C-PC were well concentrated with FFMRB; and (iii) a maximum processing capacity and recovery ratio of Cyt C enrichment were 126mL/h and 95.5% respectively, and a maximum enrichment factor was achieved 12.6 times for Hb. All of the experiments demonstrated the protein concentration model and theory. In contrast to other methods, the continuous processing ability enables FFMRB to efficiently enrich diluted protein or peptide in large volume solution. Copyright © 2017 Elsevier B.V. All rights reserved.
The KINEROS2 – AGWA Suite of modeling tools
USDA-ARS?s Scientific Manuscript database
KINEROS2 (K2) originated in the 1960s as a distributed event-based rainfall-runoff erosion model abstracting the watershed as a cascade of overland flow elements contributing to channel model elements. Development and improvement of K2 has continued for a variety of projects and purposes resulting i...
NASA Technical Reports Server (NTRS)
1975-01-01
The use of information from space systems in the operation of extractive industries, particularly in exploration for mineral and fuel resources was reviewed. Conclusions and recommendations reported are based on the fundamental premise that survival of modern industrial society requires a continuing secure flow of resources for energy, construction and manufacturing, and for use as plant foods.
Using Statistical Process Control to Make Data-Based Clinical Decisions.
ERIC Educational Resources Information Center
Pfadt, Al; Wheeler, Donald J.
1995-01-01
Statistical process control (SPC), which employs simple statistical tools and problem-solving techniques such as histograms, control charts, flow charts, and Pareto charts to implement continual product improvement procedures, can be incorporated into human service organizations. Examples illustrate use of SPC procedures to analyze behavioral data…
A sustainable approach to empower the bio-based future ...
An economically viable and environmentally benign continuous flow intensified process has been developed to demonstrate the ability to upgrade biomass into potential biofuels, solvents, and pharmaceutical feedstocks using a bimetallic AgPd@g-C3N4 catalyst. Prepared for submission to Royal Society of Chemistry (RSC) journal, Green Chemistry.
The 96-h LC50 values for 16 acetylenic alcohols in the fathead minnow (Pimephales promelas) were determined using continuous-flow diluters. The measured LC50 values for seven tertiary propargylic alcohols agreed closely with the QSAR predictions based upon data for other organic ...
1990-05-01
Officer •" COSATI CODES 18. SUBJECT TERMS (Conrrnue on ,....e._ r# ,.cesury •trd .O.nrrfy 0, OJoclr number/ . I FIELD GROUP SUB- GROUP TN’I...hazardous waste. Cost-effectiveness of carbon adsorption is reduced both by the cost of such disposal and by the continuing replacement cost of virgin ...preferential adsorption of component groups . Based on these criteria, two carbon types were selected for continuous flow pilot testing. Groundwater
Streamflow characteristics and trends along Soldier Creek, Northeast Kansas
Juracek, Kyle E.
2017-08-16
Historical data for six selected U.S. Geological Survey streamgages along Soldier Creek in northeast Kansas were used in an assessment of streamflow characteristics and trends. This information is required by the Prairie Band Potawatomi Nation for the effective management of tribal water resources, including drought contingency planning. Streamflow data for the period of record at each streamgage were used to assess annual mean streamflow, annual mean base flow, mean monthly flow, annual peak flow, and annual minimum flow.Annual mean streamflows along Soldier Creek were characterized by substantial year-to-year variability with no pronounced long-term trends. On average, annual mean base flow accounted for about 20 percent of annual mean streamflow. Mean monthly flows followed a general seasonal pattern that included peak values in spring and low values in winter. Annual peak flows, which were characterized by considerable year-to-year variability, were most likely to occur in May and June and least likely to occur during November through February. With the exception of a weak yet statistically significant increasing trend at the Soldier Creek near Topeka, Kansas, streamgage, there were no pronounced long-term trends in annual peak flows. Annual 1-day, 30-day, and 90-day mean minimum flows were characterized by considerable year-to-year variability with no pronounced long-term trend. During an extreme drought, as was the case in the mid-1950s, there may be zero flow in Soldier Creek continuously for a period of one to several months.
Brake, D W; Titgemeyer, E C; Bailey, E A; Anderson, D E
2014-09-01
Six duodenally and ileally cannulated steers were used in 3 sequential studies to measure 1) basal nutrient flows from a soybean hull-based diet, 2) small intestinal digestibility of raw cornstarch continuously infused into the duodenum, and 3) responses of small intestinal starch digestion to duodenal infusion of 200 or 400 g/d casein. Our objective was to evaluate responses in small intestinal starch digestion in cattle over time and to measure responses in small intestinal starch digestion to increasing amounts of MP. On average, cattle consumed 3.7 kg/d DM, 68 g/d dietary N, and 70 g/d dietary starch. Starch flow to the duodenum was small (38 g/d), and N flow was 91 g/d. Small intestinal digestibility of duodenal N was 57%, and small intestinal digestion of duodenal starch flow was extensive (92%). Small intestinal starch digestibility was 34% when 1.5 kg/d raw cornstarch was continuously infused into the duodenum. Subsequently, cattle were placed in 1 of 2 replicated Latin squares that were balanced for carryover effects to determine response to casein infusions and time required for adaptation. Duodenal infusion of casein linearly increased (P ≤ 0.05) small intestinal starch digestibility, and small intestinal starch digestion adapted to infusion of casein in 6 d. Ethanol-soluble starch and unpolymerized glucose flowing to the ileum increased linearly (P ≤ 0.05) with increasing infusion of casein. Plasma cholecystokinin was not affected by casein infusion, but circulating levels of glucose were increased by casein supplementation (P ≤ 0.05). Responses in small intestinal starch digestion in cattle adapted to casein within 6 d, and increases in duodenal supply of casein up to 400 g/d increased small intestinal starch digestion in cattle.
Continuous-flow water sampler for real-time isotopic water measurements
NASA Astrophysics Data System (ADS)
Carter, J.; Dennis, K.
2013-12-01
Measuring the stable isotopes of liquid water (δ18O and δD) is a tool familiar to many Earth scientists, but most current techniques require discrete sampling. For example, isotope ratio mass spectrometry requires the collection of aliquots of water that are then converted to CO2, CO or H2 for analysis. Similarly, laser-based techniques, such as Cavity Ring-Down Spectroscopy (CRDS) convert discrete samples (typically < 2μL) of liquid water to water vapor using a flash vaporization process. By requiring the use of discrete samples fine-scale spatial and temporal studies of changes in δ18O and δD are limited. Here we present a continuous-flow water sampler that will enable scientists to probe isotopic changes in real-time, with applications including, but not limited to, quantification of the 'amount effect' (Dansgaard, 1964) during an individual precipitation event or storm track, real-time mixing of water in river systems, and shipboard continuous water measurements (Munksgaard et al., 2012). Due to the inherent ability of CRDS to measure a continuous flow of water vapor it is an ideal candidate for interfacing with a continuous water sampling system. Here we present results from the first commercially available continuous-flow water sampler, developed by engineers at Picarro. This peripheral device is compatible with Picarro CRDS isotopic water analyzers, allowing real-time, continuous isotopic measurements of liquid water. The new device, which expands upon the design of Munskgaard et al. (2011), utilizes expanded polytetrafluoroethylene (ePTFE) membrane technology to continuously generate gas-phase water, while liquid water is pumped through the system. The water vapor subsequently travels to the CRDS analyzer where the isotopic ratios are measured and recorded. The generation of water vapor using membrane technology is sensitive to environmental conditions, which if not actively control, lead to sustainable experimental noise and drift. Consequently, our continuous-flow water sample employs active control for all pertinent parameters, significantly increasing its stability and usability. We will present data from controlled laboratory experiments demonstrating sample-to-sample precision and long-term stability. We will also show experimental data that highlights the instrumental sample-to-sample memory, which we have decreased significantly from previous implementations of this technology. Additionally, we will present field results from the Sacramento River, CA. Dansgaard, W. (1964) 'Stable isotopes in precipitation', Tellus, 16(4), p. 436-468. Munksgaard, N.C., Wurster, C.M., Bass, A., Zagorskis, I., and Bird, M.I. (2012) 'First continuous shipboard d18O and dD measurements in seawater by diffusion sampling--cavity ring-down spectrometry', Environmental Chemistry Letters, 10, p.301-307. Munksgaard, N.C., Wurster, C.M., and Bird, M.I., (2011), 'Continuous analysis of δ18O and δD values of water by diffusion sampling cavity ring-down spectrometry: a novel sampling device for unattended field monitoring of precipitation, ground and surface waters', Rapid Communications in Mass Spectrometry, 25, p. 3706-3712.
Atomizing, continuous, water monitoring module
Thompson, C.V.; Wise, M.B.
1997-07-08
A system for continuously analyzing volatile constituents of a liquid is described. The system contains a pump for continuously pumping the liquid to be tested at a predetermined flow rate into an extracting container through a liquid directing tube having an orifice at one end and positioned to direct the liquid into the extracting container at a flow rate sufficient to atomize the liquid within the extracting container. A continuous supply of helium carrier gas at a predetermined flow rate is directed through a tube into the extracting container and co-mingled with the atomized liquid to extract the volatile constituents contained within the atomized liquid. The helium containing the extracted volatile constituents flows out of the extracting container into a mass spectrometer for an analysis of the volatile constituents of the liquid. 3 figs.
Atomizing, continuous, water monitoring module
Thompson, Cyril V.; Wise, Marcus B.
1997-01-01
A system for continuously analyzing volatile constituents of a liquid is described. The system contains a pump for continuously pumping the liquid to be tested at a predetermined flow rate into an extracting container through a liquid directing tube having an orifice at one end and positioned to direct the liquid into the extracting container at a flow rate sufficient to atomize the liquid within the extracting container. A continuous supply of helium carrier gas at a predetermined flow rate is directed through a tube into the extracting container and co-mingled with the atomized liquid to extract the volatile constituents contained within the atomized liquid. The helium containing the extracted volatile constituents flows out of the extracting container into a mass spectrometer for an analysis of the volatile constituents of the liquid.
Scalable Methods for Eulerian-Lagrangian Simulation Applied to Compressible Multiphase Flows
NASA Astrophysics Data System (ADS)
Zwick, David; Hackl, Jason; Balachandar, S.
2017-11-01
Multiphase flows can be found in countless areas of physics and engineering. Many of these flows can be classified as dispersed two-phase flows, meaning that there are solid particles dispersed in a continuous fluid phase. A common technique for simulating such flow is the Eulerian-Lagrangian method. While useful, this method can suffer from scaling issues on larger problem sizes that are typical of many realistic geometries. Here we present scalable techniques for Eulerian-Lagrangian simulations and apply it to the simulation of a particle bed subjected to expansion waves in a shock tube. The results show that the methods presented here are viable for simulation of larger problems on modern supercomputers. This material is based upon work supported by the National Science Foundation Graduate Research Fellowship under Grant No. DGE-1315138. This work was supported in part by the U.S. Department of Energy under Contract No. DE-NA0002378.
Jobson, Harvey E.; Keefer, Thomas N.
1979-01-01
A coupled flow-temperature model has been developed and verified for a 27.9-km reach of the Chattahoochee River between Buford Dam and Norcross, Ga. Flow in this reach of the Chattahoochee is continuous but highly regulated by Buford Dam, a flood-control and hydroelectric facility located near Buford, Ga. Calibration and verification utilized two sets of data collected under highly unsteady discharge conditions. Existing solution techniques, with certain minor improvements, were applied to verify the existing technology of flow and transport modeling. A linear, implicit finite-difference flow model was coupled with implicit, finite-difference transport and temperature models. Both the conservative and nonconservative forms of the transport equation were solved, and the difference in the predicted concentrations of dye were found to be insignificant. The temperature model, therefore, was based on the simpler nonconservative form of the transport equation. (Woodard-USGS)
Transient response in granular bounded heap flows
NASA Astrophysics Data System (ADS)
Xiao, Hongyi; Ottino, Julio M.; Lueptow, Richard M.; Umbanhowar, Paul B.
2017-11-01
Heap formation, a canonical granular flow, is common in industry and is also found in nature. Here, we study the transition between steady flow states in quasi-2D bounded heaps by suddenly changing the feed rate from one fixed value to another. During the transition, in both experiments and discrete element method simulations, an additional wedge of flowing particles propagates over the rising free surface. The downstream edge of the wedge - the wedge front - moves downstream with velocity inversely proportional to the square root of time. An additional longer duration transient process continues after the wedge front reaches the downstream wall. The transient flux profile during the entire transition is well modeled by a diffusion-like equation derived from local mass balance and a local linear relation between the flux and the surface slope. Scalings for the transient kinematics during the flow transitions are developed based on the flux profiles. Funded by NSF Grant CBET-1511450.
Material point method of modelling and simulation of reacting flow of oxygen
NASA Astrophysics Data System (ADS)
Mason, Matthew; Chen, Kuan; Hu, Patrick G.
2014-07-01
Aerospace vehicles are continually being designed to sustain flight at higher speeds and higher altitudes than previously attainable. At hypersonic speeds, gases within a flow begin to chemically react and the fluid's physical properties are modified. It is desirable to model these effects within the Material Point Method (MPM). The MPM is a combined Eulerian-Lagrangian particle-based solver that calculates the physical properties of individual particles and uses a background grid for information storage and exchange. This study introduces chemically reacting flow modelling within the MPM numerical algorithm and illustrates a simple application using the AeroElastic Material Point Method (AEMPM) code. The governing equations of reacting flows are introduced and their direct application within an MPM code is discussed. A flow of 100% oxygen is illustrated and the results are compared with independently developed computational non-equilibrium algorithms. Observed trends agree well with results from an independently developed source.
Highly conductive composites for fuel cell flow field plates and bipolar plates
Jang, Bor Z; Zhamu, Aruna; Song, Lulu
2014-10-21
This invention provides a fuel cell flow field plate or bipolar plate having flow channels on faces of the plate, comprising an electrically conductive polymer composite. The composite is composed of (A) at least 50% by weight of a conductive filler, comprising at least 5% by weight reinforcement fibers, expanded graphite platelets, graphitic nano-fibers, and/or carbon nano-tubes; (B) polymer matrix material at 1 to 49.9% by weight; and (C) a polymer binder at 0.1 to 10% by weight; wherein the sum of the conductive filler weight %, polymer matrix weight % and polymer binder weight % equals 100% and the bulk electrical conductivity of the flow field or bipolar plate is at least 100 S/cm. The invention also provides a continuous process for cost-effective mass production of the conductive composite-based flow field or bipolar plate.
Statistical parameters of thermally driven turbulent anabatic flow
NASA Astrophysics Data System (ADS)
Hilel, Roni; Liberzon, Dan
2016-11-01
Field measurements of thermally driven turbulent anabatic flow over a moderate slope are reported. A collocated hot-films-sonic anemometer (Combo) obtained the finer scales of the flow by implementing a Neural Networks based in-situ calibration technique. Eight days of continuous measurements of the wind and temperature fluctuations reviled a diurnal pattern of unstable stratification that forced development of highly turbulent unidirectional up slope flow. Empirical fits of important turbulence statistics were obtained from velocity fluctuations' time series alongside fully resolved spectra of velocity field components and characteristic length scales. TKE and TI showed linear dependence on Re, while velocity derivative skewness and dissipation rates indicated the anisotropic nature of the flow. Empirical fits of normalized velocity fluctuations power density spectra were derived as spectral shapes exhibited high level of similarity. Bursting phenomenon was detected at 15% of the total time. Frequency of occurrence, spectral characteristics and possible generation mechanism are discussed. BSF Grant #2014075.
Lei, M H; Chen, J J; Ko, Y L; Cheng, J J; Kuan, P; Lien, W P
1995-01-01
This study assessed the usefulness of continuous wave Doppler echocardiography and color flow mapping in evaluating pulmonary regurgitation (PR) and estimating pulmonary artery (PA) pressure. Forty-three patients were examined, and high quality Doppler spectral recordings of PR were obtained in 32. All patients underwent cardiac catheterization, and simultaneous PA and right ventricular (RV) pressures were recorded in 17. Four Doppler regurgitant flow velocity patterns were observed: pandiastolic plateau, biphasic, peak and plateau, and early diastolic triangular types. The peak diastolic and end-diastolic PA-to-RV pressure gradients derived from the Doppler flow profiles correlated well with the catheter measurements (r = 0.95 and r = 0.95, respectively). As PA pressure increased, the PR flow velocity became higher; a linear relationship between either systolic or mean PA pressure and Doppler-derived peak diastolic pressure gradient was noted (r = 0.90 and 0.94, respectively). Based on peak diastolic gradients of < 15, 15-30 or > 30 mm Hg, patients could be separated as those with mild, moderate or severe pulmonary hypertension, respectively (p < 0.05). A correlation was also observed between PA diastolic pressure and Doppler-derived end-diastolic pressure gradient (r = 0.91). Moreover, the Doppler velocity decay slope of PR closely correlated with that derived from the catheter method (r = 0.98). The decay slope tended to be steeper with the increment in regurgitant jet area and length obtained from color flow mapping. In conclusion, continuous wave Doppler evaluation of PR is a useful means for noninvasive estimation of PA pressure, and the Doppler velocity decay slope seems to reflect the severity of PR.
NASA Astrophysics Data System (ADS)
Horikoshi, Satoshi; Abe, Hideki; Torigoe, Kanjiro; Abe, Masahiko; Serpone, Nick
2010-08-01
This article examines the effect(s) of the 2.45-GHz microwave (MW) radiation in the synthesis of silver nanoparticles in aqueous media by reduction of the diaminesilver(i) complex, [Ag(NH3)2]+, with carboxymethylcellulose (CMC) in both batch-type and continuous-flow reactor systems with a particular emphasis on the characteristics of the microwaves in this process and the size distributions. This microwave thermally-assisted synthesis is compared to a conventional heating (CH) method, both requiring a reaction temperature of 100 °C to produce the nanoparticles, in both cases leading to the formation of silver colloids with different size distributions. Reduction of the diaminesilver(i) precursor complex, [Ag(NH3)2]+, by CMC depended on the solution temperature. Cooling the reactor during the heating process driven with 390-Watt microwaves (MW-390W/Cool protocol) yielded silver nanoparticles with sizes spanning the range 1-2 nm. By contrast, the size distribution of Ag nanoparticles with 170-Watt microwaves (no cooling; MW-170W protocol) was in the range 1.4-3.6 nm (average size ~3 nm). The overall results suggest the potential for a scale-up process in the microwave-assisted synthesis of nanoparticles. Based on the present data, a flow-through microwave reactor system is herein proposed for the continuous production of silver nanoparticles. The novel flow reactor system (flow rate, 600 mL min-1) coupled to 1200-Watt microwave radiation generated silver nanoparticles with a size distribution 0.7-2.8 nm (average size ca. 1.5 nm).
Global regularizing flows with topology preservation for active contours and polygons.
Sundaramoorthi, Ganesh; Yezzi, Anthony
2007-03-01
Active contour and active polygon models have been used widely for image segmentation. In some applications, the topology of the object(s) to be detected from an image is known a priori, despite a complex unknown geometry, and it is important that the active contour or polygon maintain the desired topology. In this work, we construct a novel geometric flow that can be added to image-based evolutions of active contours and polygons in order to preserve the topology of the initial contour or polygon. We emphasize that, unlike other methods for topology preservation, the proposed geometric flow continually adjusts the geometry of the original evolution in a gradual and graceful manner so as to prevent a topology change long before the curve or polygon becomes close to topology change. The flow also serves as a global regularity term for the evolving contour, and has smoothness properties similar to curvature flow. These properties of gradually adjusting the original flow and global regularization prevent geometrical inaccuracies common with simple discrete topology preservation schemes. The proposed topology preserving geometric flow is the gradient flow arising from an energy that is based on electrostatic principles. The evolution of a single point on the contour depends on all other points of the contour, which is different from traditional curve evolutions in the computer vision literature.
A Leaf-Inspired Luminescent Solar Concentrator for Energy-Efficient Continuous-Flow Photochemistry.
Cambié, Dario; Zhao, Fang; Hessel, Volker; Debije, Michael G; Noël, Timothy
2017-01-19
The use of solar light to promote chemical reactions holds significant potential with regard to sustainable energy solutions. While the number of visible light-induced transformations has increased significantly, the use of abundant solar light has been extremely limited. We report a leaf-inspired photomicroreactor that constitutes a merger between luminescent solar concentrators (LSCs) and flow photochemistry to enable green and efficient reactions powered by solar irradiation. This device based on fluorescent dye-doped polydimethylsiloxane collects sunlight, focuses the energy to a narrow wavelength region, and then transports that energy to embedded microchannels where the flowing reactants are converted. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Effect of film slicks on near-surface wind
NASA Astrophysics Data System (ADS)
Charnotskii, Mikhail; Ermakov, Stanislav; Ostrovsky, Lev; Shomina, Olga
2016-09-01
The transient effects of horizontal variation of sea-surface wave roughness due to surfactant films on near-surface turbulent wind are studied theoretically and experimentally. Here we suggest two practical schemes for calculating variations of wind velocity profiles near the water surface, the average short-wave roughness of which is varying in space and time when a film slick is present. The schemes are based on a generalized two-layer model of turbulent air flow over a rough surface and on the solution of the continuous model involving the equation for turbulent kinetic energy of the air flow. Wave tank studies of wind flow over wind waves in the presence of film slicks are described and compared with theory.
Hormone purification by isoelectric focusing in space
NASA Technical Reports Server (NTRS)
Bier, M.
1988-01-01
The objective of the program was the definition and development of optimal methods for electrophoretic separations in microgravity. The approach is based on a triad consisting of ground based experiments, mathematical modeling and experiments in microgravity. Zone electrophoresis is a rate process, where separation is achieved in uniform buffers on the basis of differences in electrophoretic mobilities. Optimization and modeling of continuous flow electrophoresis mainly concern the hydrodynamics of the flow process, including gravity dependent fluid convection due to density gradients and gravity independent electroosmosis. Optimization of focusing requires a more complex model describing the molecular transport processes involved in electrophoresis of interacting systems. Three different focusing instruments were designed, embodying novel principles of fluid stabilization. Fluid stability was achieved by: (1) flow streamlining by means of membrane elements in combination with rapid fluid recycling; (2) apparatus rotation in combination with said membrane elements; and (3) shear stress induced by rapid recycling through a narrow gap channel.
Computational fluid dynamics: Transition to design applications
NASA Technical Reports Server (NTRS)
Bradley, R. G.; Bhateley, I. C.; Howell, G. A.
1987-01-01
The development of aerospace vehicles, over the years, was an evolutionary process in which engineering progress in the aerospace community was based, generally, on prior experience and data bases obtained through wind tunnel and flight testing. Advances in the fundamental understanding of flow physics, wind tunnel and flight test capability, and mathematical insights into the governing flow equations were translated into improved air vehicle design. The modern day field of Computational Fluid Dynamics (CFD) is a continuation of the growth in analytical capability and the digital mathematics needed to solve the more rigorous form of the flow equations. Some of the technical and managerial challenges that result from rapidly developing CFD capabilites, some of the steps being taken by the Fort Worth Division of General Dynamics to meet these challenges, and some of the specific areas of application for high performance air vehicles are presented.
Reference NO2 calibration system for ground-based intercomparisons during NASA's GTE/CITE 2 mission
NASA Technical Reports Server (NTRS)
Fried, Alan; Nunnermacker, Linda; Cadoff, Barry; Sams, Robert; Yates, Nathan
1990-01-01
An NO2 calibration system, based on a permeation device and a two-stage dynamic dilution system, was designed, constructed, and characterized at the National Bureau of Standards. In this system, calibrant flow entering the second stage was controlled without contacting a metal flow controller, and permeation oven temperature and flow were continuously maintained, even during transport. The system performance and the permeation emission rate were characterized by extensive laboratory tests. This system was capable of accurately delivering known NO2 concentrations in the ppbv and sub-ppbv concentration range with a total uncertainty of approximately 10 percent. The calibration system was placed on board NASA research aircraft at both the Wallops Island and Ames research facilities. There it was employed as the reference standard in NASA's Global Tropospheric Experiment/Chemical Instrumental Test and Evaluation 2 mission in August 1986.
Engineering fluidic delays in paper-based devices using laser direct-writing.
He, P J W; Katis, I N; Eason, R W; Sones, C L
2015-10-21
We report the use of a new laser-based direct-write technique that allows programmable and timed fluid delivery in channels within a paper substrate which enables implementation of multi-step analytical assays. The technique is based on laser-induced photo-polymerisation, and through adjustment of the laser writing parameters such as the laser power and scan speed we can control the depth and/or the porosity of hydrophobic barriers which, when fabricated in the fluid path, produce controllable fluid delay. We have patterned these flow delaying barriers at pre-defined locations in the fluidic channels using either a continuous wave laser at 405 nm, or a pulsed laser operating at 266 nm. Using this delay patterning protocol we generated flow delays spanning from a few minutes to over half an hour. Since the channels and flow delay barriers can be written via a common laser-writing process, this is a distinct improvement over other methods that require specialist operating environments, or custom-designed equipment. This technique can therefore be used for rapid fabrication of paper-based microfluidic devices that can perform single or multistep analytical assays.
Karimov, Jamshid H; Horvath, David; Sunagawa, Gengo; Byram, Nicole; Moazami, Nader; Golding, Leonard A R; Fukamachi, Kiyotaka
2015-12-01
Post-explant evaluation of the continuous-flow total artificial heart in preclinical studies can be extremely challenging because of the device's unique architecture. Determining the exact location of tissue regeneration, neointima formation, and thrombus is particularly important. In this report, we describe our first successful experience with visualizing the Cleveland Clinic continuous-flow total artificial heart using a custom-made high-definition miniature camera.
Holtschlag, D.J.; Koschik, J.A.
2001-01-01
St. Clair and Detroit Rivers are connecting channels between Lake Huron and Lake Erie in the Great Lakes waterway, and form part of the boundary between the United States and Canada. St. Clair River, the upper connecting channel, drains 222,400 square miles and has an average flow of about 182,000 cubic feet per second. Water from St. Clair River combines with local inflows and discharges into Lake St. Clair before flowing into Detroit River. In some reaches of St. Clair and Detroit Rivers, islands and dikes split the flow into two to four branches. Even when the flow in a reach is known, proportions of flows within individual branches of a reach are uncertain. Simple linear regression equations, subject to a flow continuity constraint, are developed to provide estimators of these proportions and flows. The equations are based on 533 paired measurements of flow in 13 reaches forming 31 branches. The equations provide a means for computing the expected values and uncertainties of steady-state flows on the basis of flow conditions specified at the upstream boundaries of the waterway. In 7 upstream reaches, flow is considered fixed because it can be determined on the basis of flows specified at waterway boundaries and flow continuity. In these reaches, the uncertainties of flow proportions indicated by the regression equations can be used directly to determine the uncertainties of the corresponding flows. In the remaining 6 downstream reaches, flow is considered uncertain because these reaches do not receive flow from all the branches of an upstream reach, or they receive flow from some branches of more than one upstream reach. Monte Carlo simulation analysis is used to quantify this increase in uncertainty associated with the propagation of uncertainties from upstream reaches to downstream reaches. To eliminate the need for Monte Carlo simulations for routine calculations, polynomial regression equations are developed to approximate the variation in uncertainties as a function of flow at the headwaters of St. Clair River. Finally, monthly flow-duration data on the main channels of St. Clair and Detroit Rivers are used with the equations developed in this report to estimate the steady-state flow-duration characteristics of selected branches.
Steady viscous flow past a circular cylinder
NASA Technical Reports Server (NTRS)
Fornberg, B.
1984-01-01
Viscous flow past a circular cylinder becomes unstable around Reynolds number Re = 40. With a numerical technique based on Newton's method and made possible by the use of a supercomputer, steady (but unstable) solutions have been calculated up to Re = 400. It is found that the wake continues to grow in length approximately linearly with Re. However, in conflict with available asymptotic predictions, the width starts to increase very rapidly around Re = 300. All numerical calculations have been performed on the CDC CYBER 205 at the CDC Service Center in Arden Hills, Minnesota.
Development of Fundamental Technologies for Micro Bioreactors
NASA Astrophysics Data System (ADS)
Sato, Kiichi; Kitamori, Takehiko
This chapter reviews the development of fundamental technologies required for microchip-based bioreactors utilizing living mammalian cells and pressure driven flow. The most important factor in the bioreactor is the cell culture. For proper cell culturing, continuous medium supply from a microfluidic channel and appropriate modification of the channel surface to accommodate cell attachment is required. Moreover, the medium flow rate should be chosen carefully, because shear stress affects cell activity. The techniques presented here could be applied to the development of micro bioreactors such as microlivers, pigment production by plant cells, and artificial insemination.
Control system of an excitation power supply for fast axial flow CO2 lasersupda
NASA Astrophysics Data System (ADS)
Li, Bo; Jia, Xinting; Yuan, Hao; Gao, Yuhu; Wang, Youqing
2009-08-01
A switching power control system of fast axial flow CO2 lasers based on DSP is presented. The key techniques are described in detail, include the control principle, realization method and program design. The experiment showed that the system make the laser discharge stably and work in multi-mode. The discharge current can be adjusted from 3mA to 85mA continuously. 20-2000Hz frequency, 0-100% duty cycle laser pulse is achieved. The power supply can improve the processing efficiency and quality.
Yeung, E.S.; Woodruff, S.D.
1984-06-19
A refractive index and absorption detector are disclosed for liquid chromatography. It is based in part on a Fabry-Perot interferometer and is used for the improved detection of refractive index and absorption. It includes a Fabry-Perot interferometer having a normally fixed first partially reflecting mirror and a movable second partially reflecting mirror. A chromatographic flow-cell is positioned between the mirrors along the optical axis of a monochromatic laser beam passing through the interferometer. A means for deriving information about the interference fringes coming out of the interferometer is used with a mini-computer to compute the refractive index of the specimen injected into the flow cell. The minicomputer continuously scans the interferometer for continuous refractive index readings and outputs the continuous results of the scans on a chart recorder. The absorption of the specimen can concurrently be scanned by including a second optical path for an excitation laser which will not interfere with the first laser, but will affect the specimen so that absorption properties can be detected. By first scanning for the refractive index of the specimen, and then immediately adding the excitation laser and subsequently scanning for the refractive index again, the absorption of the specimen can be computed and recorded. 10 figs.
Yeung, Edward S.; Woodruff, Steven D.
1984-06-19
A refractive index and absorption detector for liquid chromatography. It is based in part on a Fabry-Perot interferometer and is used for the improved detection of refractive index and absorption. It includes a Fabry-Perot interferometer having a normally fixed first partially reflecting mirror and a movable second partially reflecting mirror. A chromatographic flow-cell is positioned between the mirrors along the optical axis of a monochromatic laser beam passing through the interferometer. A means for deriving information about the interference fringes coming out of the interferometer is used with a mini-computer to compute the refractive index of the specimen injected into the flow cell. The minicomputer continuously scans the interferometer for continuous refractive index readings and outputs the continuous results of the scans on a chart recorder. The absorption of the specimen can concurrently be scanned by including a second optical path for an excitation laser which will not interfere with the first laser, but will affect the specimen so that absorption properties can be detected. By first scanning for the refractive index of the specimen, and then immediately adding the excitation laser and subsequently scanning for the refractive index again, the absorption of the specimen can be computed and recorded.
Hu, Ya; Peng, Kui-Qing; Liu, Lin; Qiao, Zhen; Huang, Xing; Wu, Xiao-Ling; Meng, Xiang-Min; Lee, Shuit-Tong
2014-01-13
Silicon nanowires (SiNWs) are attracting growing interest due to their unique properties and promising applications in photovoltaic devices, thermoelectric devices, lithium-ion batteries, and biotechnology. Low-cost mass production of SiNWs is essential for SiNWs-based nanotechnology commercialization. However, economic, controlled large-scale production of SiNWs remains challenging and rarely attainable. Here, we demonstrate a facile strategy capable of low-cost, continuous-flow mass production of SiNWs on an industrial scale. The strategy relies on substrate-enhanced metal-catalyzed electroless etching (MCEE) of silicon using dissolved oxygen in aqueous hydrofluoric acid (HF) solution as an oxidant. The distinct advantages of this novel MCEE approach, such as simplicity, scalability and flexibility, make it an attractive alternative to conventional MCEE methods.
Spötl, Christoph
2005-09-01
The stable carbon isotopic composition of dissolved inorganic carbon (delta13C(DIC)) is traditionally determined using either direct precipitation or gas evolution methods in conjunction with offline gas preparation and measurement in a dual-inlet isotope ratio mass spectrometer. A gas evolution method based on continuous-flow technology is described here, which is easy to use and robust. Water samples (100-1500 microl depending on the carbonate alkalinity) are injected into He-filled autosampler vials in the field and analysed on an automated continuous-flow gas preparation system interfaced to an isotope ratio mass spectrometer. Sample analysis time including online preparation is 10 min and overall precision is 0.1 per thousand. This method is thus fast and can easily be automated for handling large sample batches.
Thin layer drying of cassava starch using continuous vibrated fluidized bed dryer
NASA Astrophysics Data System (ADS)
Suherman, Trisnaningtyas, Rona
2015-12-01
This paper present the experimental work and thin layer modelling of cassava starch drying in continuous vibrated fluidized bed dryer. The experimental data was used to validate nine thin layer models of drying curve. Cassava starch with 0.21 initial moisture content was dried in different air drying temperature (50°C, 55°C, 60°C, 65°C, 70°C), different weir height in bed (0 and 1 cm), and different solid feed flow (10 and 30 gr.minute-1). The result showed air dryer temperature has a significant effect on drying curve, while the weir height and solid flow rate are slightly. Based on value of R2, χ2, and RMSE, Page Model is the most accurate simulation for thin layer drying model of cassava starch.
Continuous-flow cardiac assistance: effects on aortic valve function in a mock loop.
Tuzun, Egemen; Rutten, Marcel; Dat, Marco; van de Vosse, Frans; Kadipasaoglu, Cihan; de Mol, Bas
2011-12-01
As the use of left ventricular assist devices (LVADs) to treat end-stage heart failure has become more widespread, leaflet fusion--with resul-tant aortic regurgitation--has been observed more frequently. To quantitatively assess the effects of nonpulsatile flow on aortic valve function, we tested a continuous-flow LVAD in a mock circulatory system (MCS) with an interposed valve. To mimic the hemodynamic characteristics of LVAD patients, we utilized an MCS in which a Jarvik 2000 LVAD was positioned at the base of a servomotor-operated piston pump (left ventricular chamber). We operated the LVAD at 8000 to 12,000 rpm, changing the speed in 1000-rpm increments. At each speed, we first varied the outflow resistance at a constant stroke volume, then varied the stroke volume at a constant outflow resistance. We measured the left ventricular pressure, aortic pressure, pump flow, and total flow, and used these values to compute the change, if any, in the aortic duty cycle (aortic valve open time) and transvalvular aortic pressure loads. Validation of the MCS was demonstrated by the simulation of physiologic pressure and flow waveforms. At increasing LVAD speeds, the mean aortic pressure load steadily increased, while the aortic duty cycle steadily decreased. Changes were consistent for each MCS experimental setting, despite variations in stroke volume and outflow resistance. Increased LVAD flow results in an impaired aortic valve-open time due to a pressure overload above the aortic valve. Such an overload may initiate structural changes, causing aortic leaflet fusion and/or regurgitation. Copyright © 2011 Elsevier Inc. All rights reserved.
Low-flow characteristics of Indiana streams
Stewart, J.A.
1983-01-01
Knowledge of low-flow data for Indiana streams is essential to the planners and developers of water resources for municipal, industrial, and recreational uses in the State. Low-flow data for 219 continuous-record gaging stations through the 1978 water year and for some stations since then are presented in tables and curves. Flow-duration and low-flow-frequency data were estimated or determined for continuous-record stations having more than 10 years of record. In addition, low-flow-frequency data were estimated for 248 partial-record stations. Methods for estimating these data are included in the report. (USGS)
Elasto-inertial microfluidics for bacteria separation from whole blood for sepsis diagnostics.
Faridi, Muhammad Asim; Ramachandraiah, Harisha; Banerjee, Indradumna; Ardabili, Sahar; Zelenin, Sergey; Russom, Aman
2017-01-04
Bloodstream infections (BSI) remain a major challenge with high mortality rate, with an incidence that is increasing worldwide. Early treatment with appropriate therapy can reduce BSI-related morbidity and mortality. However, despite recent progress in molecular based assays, complex sample preparation steps have become critical roadblock for a greater expansion of molecular assays. Here, we report a size based, label-free, bacteria separation from whole blood using elasto-inertial microfluidics. In elasto-inertial microfluidics, the viscoelastic flow enables size based migration of blood cells into a non-Newtonian solution, while smaller bacteria remain in the streamline of the blood sample entrance and can be separated. We first optimized the flow conditions using particles, and show continuous separation of 5 μm particles from 2 μm at a yield of 95% for 5 µm particle and 93% for 2 µm particles at respective outlets. Next, bacteria were continuously separated at an efficiency of 76% from undiluted whole blood sample. We demonstrate separation of bacteria from undiluted while blood using elasto-inertial microfluidics. The label-free, passive bacteria preparation method has a great potential for downstream phenotypic and molecular analysis of bacteria.
Moon, Hui-Sung; Kwon, Kiho; Kim, Seung-Il; Han, Hyunju; Sohn, Joohyuk; Lee, Soohyeon; Jung, Hyo-Il
2011-03-21
Circulating tumor cells (CTCs) are highly correlated with the invasive behavior of cancer, so their isolations and quantifications are important for biomedical applications such as cancer prognosis and measuring the responses to drug treatments. In this paper, we present the development of a microfluidic device for the separation of CTCs from blood cells based on the physical properties of cells. For use as a CTC model, we successfully separated human breast cancer cells (MCF-7) from a spiked blood cell sample by combining multi-orifice flow fractionation (MOFF) and dielectrophoretic (DEP) cell separation technique. Hydrodynamic separation takes advantage of the massive and high-throughput filtration of blood cells as it can accommodate a very high flow rate. DEP separation plays a role in precise post-processing to enhance the efficiency of the separation. The serial combination of these two different sorting techniques enabled high-speed continuous flow-through separation without labeling. We observed up to a 162-fold increase in MCF-7 cells at a 126 µL min(-1) flow rate. Red and white blood cells were efficiently removed with separation efficiencies of 99.24% and 94.23% respectively. Therefore, we suggest that our system could be used for separation and detection of CTCs from blood cells for biomedical applications. This journal is © The Royal Society of Chemistry 2011
NASA Astrophysics Data System (ADS)
Liu, Zhongqiu; Li, Linmin; Li, Baokuan; Jiang, Maofa
2014-07-01
The current study developed a coupled computational model to simulate the transient fluid flow, solidification, and particle transport processes in a slab continuous-casting mold. Transient flow of molten steel in the mold is calculated using the large eddy simulation. An enthalpy-porosity approach is used for the analysis of solidification processes. The transport of bubble and non-metallic inclusion inside the liquid pool is calculated using the Lagrangian approach based on the transient flow field. A criterion of particle entrapment in the solidified shell is developed using the user-defined functions of FLUENT software (ANSYS, Inc., Canonsburg, PA). The predicted results of this model are compared with the measurements of the ultrasonic testing of the rolled steel plates and the water model experiments. The transient asymmetrical flow pattern inside the liquid pool exhibits quite satisfactory agreement with the corresponding measurements. The predicted complex instantaneous velocity field is composed of various small recirculation zones and multiple vortices. The transport of particles inside the liquid pool and the entrapment of particles in the solidified shell are not symmetric. The Magnus force can reduce the entrapment ratio of particles in the solidified shell, especially for smaller particles, but the effect is not obvious. The Marangoni force can play an important role in controlling the motion of particles, which increases the entrapment ratio of particles in the solidified shell obviously.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, Punit; Nestmann, Franz
2010-09-15
A detailed experimental investigation of the effects of exit blade geometry on the part-load performance of low-head, axial flow propeller turbines is presented. Even as these turbines find important applications in small-scale energy generation using micro-hydro, the relationship between the layout of blade profile, geometry and turbine performance continues to be poorly characterized. The experimental results presented here help understand the relationship between exit tip angle, discharge through the turbine, shaft power, and efficiency. The modification was implemented on two different propeller runners and it was found that the power and efficiency gains from decreasing the exit tip angle couldmore » be explained by a theoretical model presented here based on classical theory of turbomachines. In particular, the focus is on the behaviour of internal parameters like the runner loss coefficient, relative flow angle at exit, mean axial flow velocity and net tangential flow velocity. The study concluded that the effects of exit tip modification were significant. The introspective discussion on the theoretical model's limitation and test facility suggests wider and continued experimentation pertaining to the internal parameters like inlet vortex profile and exit swirl profile. It also recommends thorough validation of the model and its improvement so that it can be made capable for accurate characterization of blade geometric effects. (author)« less
NASA Technical Reports Server (NTRS)
Williams, G., Jr.
1982-01-01
The continuous flow electrophoresis system makes electrophoresis possible in a free-flowing film of aqueous electrolyte medium. The sample continuously enters the electrolyte at the top of the chamber and is subjected to the action of a lateral dc field. This divides the sample into fractions since each component has a distinctive electrophoretic mobility. Tests were made using monodisperse polystyrene latex microspheres to determine optimum sample conductivity, insertion rates and optimum electric field applications as baseline data for future STS flight experiments. Optimum sample flow rates for the selected samples were determined to be approximately 26 micro-liters/min. Experiments with samples in deionized water yielded best results and voltages in the 20 V/cm to 30 V/cm range were optimum. Deflections of formaldehyde fixed turkey and bovine erythrocytes were determined using the continuous flow electrophoresis system. The effects of particle interactions on sample resolution and migration in the chamber was also evaluated.
de Miranda, Amanda S; Miranda, Leandro S M; de Souza, Rodrigo O M A
2013-05-28
The synthesis of chiral amines is still a challenge for organic synthesis since optically pure amines are of great importance for the pharmaceutical and agrochemical industries. Among all the methodologies developed until now, chemoenzymatic dynamic kinetic resolution has proven to be useful for the preparation of enantioenriched primary chiral amines. In our continuous efforts toward the development of a continuous flow process, herein we report our results on the continuous flow kinetic resolution of (±)-1-phenylethylamine leading to the desired products with high enantiomeric ratios (>200) and short residence times (40 minutes) using ethyl acetate as the acyl donor.
Hardware solution for continuous time-resolved burst detection of single molecules in flow
NASA Astrophysics Data System (ADS)
Wahl, Michael; Erdmann, Rainer; Lauritsen, Kristian; Rahn, Hans-Juergen
1998-04-01
Time Correlated Single Photon Counting (TCSPC) is a valuable tool for Single Molecule Detection (SMD). However, existing TCSPC systems did not support continuous data collection and processing as is desirable for applications such as SMD for e.g. DNA-sequencing in a liquid flow. First attempts at using existing instrumentation in this kind of operation mode required additional routing hardware to switch between several memory banks and were not truly continuous. We have designed a hard- and software system to perform continuous real-time TCSPC based upon a modern solid state Time to Digital Converter (TDC). Short dead times of the fully digital TDC design combined with fast Field Programmable Gay Array logic permit a continuous data throughput as high as 3 Mcounts/sec. The histogramming time may be set as short as 100 microsecond(s) . Every histogram or every single fluorescence photon can be real-time tagged at 200 ns resolution in addition to recording its arrival time relative to the excitation pulse. Continuous switching between memory banks permits concurrent histogramming and data read-out. The instrument provides a time resolution of 60 ps and up to 4096 histogram channels. The overall instrument response function in combination with a low cost picosecond diode laser and an inexpensive photomultiplier tube was found to be 180 ps and well sufficient to measure sub-nanosecond fluorescence lifetimes.
Lin, Ming Xian; Hyun, Kyung-A; Moon, Hui-Sung; Sim, Tae Seok; Lee, Jeong-Gun; Park, Jae Chan; Lee, Soo Suk; Jung, Hyo-Il
2013-02-15
Circulating tumor cells (CTCs) are identified in transit within the blood stream of cancer patients and have been proven to be a main cause of metastatic disease. Current approaches for the size-based isolation of CTCs have encountered technical challenges as some of the CTCs have a size similar to that of leukocytes and therefore CTCs are often lost in the process. Here, we propose a novel strategy where most of the CTCs are coated by a large number of microbeads to amplify their size to enable complete discrimination from leukocytes. In addition, all of the microbead labeling processes are carried out in a continuous manner to prevent any loss of CTCs during the isolation process. Thus, a microfluidic mixer was employed to facilitate the efficient and selective labeling of CTCs from peripheral blood samples. By generating secondary vortex flows called Taylor-Gortler vortices perpendicular to the main flow direction in our microfluidic device, CTCs were continuously and successfully coated with anti-epithelial cell adhesion molecule-conjugated beads. After the continuous labeling, the enlarged CTCs were perfectly trapped in a micro-filter whereas all of the leukocytes escaped. Copyright © 2012 Elsevier B.V. All rights reserved.
Pant, H J; Sharma, V K; Shenoy, K T; Sreenivas, T
2015-03-01
An alkaline based continuous leaching process is commonly used for extraction of uranium from uranium ore. The reactor in which the leaching process is carried out is called a continuous leaching reactor (CLR) and is expected to behave as a continuously stirred tank reactor (CSTR) for the liquid phase. A pilot-scale CLR used in a Technology Demonstration Pilot Plant (TDPP) was designed, installed and operated; and thus needed to be tested for its hydrodynamic behavior. A radiotracer investigation was carried out in the CLR for measurement of residence time distribution (RTD) of liquid phase with specific objectives to characterize the flow behavior of the reactor and validate its design. Bromine-82 as ammonium bromide was used as a radiotracer and about 40-60MBq activity was used in each run. The measured RTD curves were treated and mean residence times were determined and simulated using a tanks-in-series model. The result of simulation indicated no flow abnormality and the reactor behaved as an ideal CSTR for the range of the operating conditions used in the investigation. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Kaloko, Bambang Sri; Atsari, Erinna Dyah
2017-03-01
Electric motive force which flows into the iron core continuously on a plate - plate iron isolated may cause heat posed by current eddy (eddy current). No water loss occurs due to detainees on the circuit at the the flow of current load because this loss happened on the entanglement of the transformer is made of copper. Continuously Transposed Conductors (CTC) consist of a number of enameled rectangular wires (5-84 strands) made into an assembly. Each strand is transposed in turn to each position in the cable and is then covered with layers of insulation paper. Continuously Transposed Conductors are used in winding wires for medium and ultra high power transformers. CTC is manufactured by OFHC copper and indeed, is able to supply polyester roped. CTC which has been designed to reduce production cost, oil pocket and improve cooling efficiency. Hardened type CTC (CPR1, CPR2, and CPR3: BS1432) and Self-bonding CTC which can be used to improve mechanical and electrical strength are also available. This analysis is performed using the methods of fuzzy logic in taking account of the resources.
Digital flow model of the Chowan River estuary, North Carolina
Daniel, C.C.
1977-01-01
A one-dimensional deterministic flow model based on the continuity equation had been developed to provide estimates of daily flow past a number of points on the Chowan River estuary of northeast North Carolina. The digital model, programmed in Fortran IV, computes daily average discharge for nine sites; four of these represent inflow at the mouths of major tributaries, the five other sites are at stage stations along the estuary. Because flows within the Chowan River and the lower reaches of its tributaries are tidally affected, flows occur in both upstream and downstream directions. The period of record generated by the model extends from April 1, 1974, to March 31, 1976. During the two years of model operation the average discharge at Edenhouse near the mouth of the estuary was 5,830 cfs (cubic feet per second). Daily average flows during this period ranged from 55,900 cfs in the downstream direction on July 17, 1975, to 14,200 cfs in the upstream direction on November 30, 1974
NASA Technical Reports Server (NTRS)
Seasholtz, Richard G.; Buggele, Alvin E.
2002-01-01
A laser light scattering diagnostic for measurement of dynamic flow velocity at a point is described. The instrument is being developed for use in the study of propagating shock waves and detonation waves in pulse detonation engines under development at the NASA Glenn Research Center (GRC). The approach uses a Fabry-Perot interferometer to measure the Doppler shift of laser light scattered from small (submicron) particles in the flow. The high-speed detection system required to resolve the transient response as a shock wave crosses the probe volume uses fast response photodetectors, and a PC based data acquisition system. Preliminary results of measurements made in the GRC Mach 4, 10 by 25 cm supersonic wind tunnel are presented. Spontaneous condensation of water vapor in the flow is used as seed. The tunnel is supplied with continuous air flow at up to 45 psia and the flow is exhausted into the GRC laboratory-wide altitude exhaust system at pressures down to 0.3 psia.
Polystyrene latex separations by continuous flow electrophoresis on the Space Shuttle
NASA Technical Reports Server (NTRS)
Snyder, R. S.; Rhodes, P. H.; Miller, T. Y.; Micale, F. J.; Mann, R. V.
1986-01-01
The seventh mission of the Space Shuttle carried two NASA experiments in the McDonnell Douglas Astronautics Corporation continuous flow electrophoresis system. The objectives were to test the operation of continuous flow electrophoresis in a reduced gravity environment using stable particles with established electrokinetic properties and specifically to evaluate the influence of the electrical properties of the sample constituents on the resolution of the continuous flow electrophoretic device. Polystrene latex microspheres dispersed in a solution with three times the electrical conductivity of the curtain buffer separated with a significantly larger band spread compared to the second experiment under matched conductivity conditions. It is proposed that the sample of higher electrical conductivity distorted the electric field near the sample stream so that the polystyrene latex particles migrated toward the chamber walls where electroosmosis retarded and spread the sample.
40 CFR 75.33 - Standard missing data procedures for SO2, NOX, Hg, and flow rate.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 16 2010-07-01 2010-07-01 false Standard missing data procedures for... AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTINUOUS EMISSION MONITORING Missing Data Substitution Procedures § 75.33 Standard missing data procedures for SO2, NOX, Hg, and flow rate. (a) Following initial...
40 CFR 75.33 - Standard missing data procedures for SO2, NOX, and flow rate.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 16 2011-07-01 2011-07-01 false Standard missing data procedures for... (CONTINUED) AIR PROGRAMS (CONTINUED) CONTINUOUS EMISSION MONITORING Missing Data Substitution Procedures § 75.33 Standard missing data procedures for SO2, NOX, and flow rate. (a) Following initial certification...
40 CFR 75.33 - Standard missing data procedures for SO2, NOX, and flow rate.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 17 2012-07-01 2012-07-01 false Standard missing data procedures for... (CONTINUED) AIR PROGRAMS (CONTINUED) CONTINUOUS EMISSION MONITORING Missing Data Substitution Procedures § 75.33 Standard missing data procedures for SO2, NOX, and flow rate. (a) Following initial certification...
40 CFR 75.33 - Standard missing data procedures for SO2, NOX, and flow rate.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 17 2013-07-01 2013-07-01 false Standard missing data procedures for... (CONTINUED) AIR PROGRAMS (CONTINUED) CONTINUOUS EMISSION MONITORING Missing Data Substitution Procedures § 75.33 Standard missing data procedures for SO2, NOX, and flow rate. (a) Following initial certification...
40 CFR 75.33 - Standard missing data procedures for SO2, NOX, and flow rate.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 17 2014-07-01 2014-07-01 false Standard missing data procedures for... (CONTINUED) AIR PROGRAMS (CONTINUED) CONTINUOUS EMISSION MONITORING Missing Data Substitution Procedures § 75.33 Standard missing data procedures for SO2, NOX, and flow rate. (a) Following initial certification...
The fluid mechanics of continuous flow electrophoresis in perspective
NASA Technical Reports Server (NTRS)
Saville, D. A.
1980-01-01
Buoyancy alters the flow in continuous flow electrophoresis chambers through the mechanism of hydrodynamic instability and, when the instability is supressed by careful cooling of the chamber boundaries, by restructuring the axial flow. The expanded roles of buoyancy follow upon adapting the size of the chamber and the electric field so as to fractionate certain sorts of cell populations. Scale-up problems, hydrodynamic stability and the altered flow fields are discussed to show how phenomena overlooked in the design and operations of narrow-gap devices take on an overwhelming importance in wide-gap chambers
Response of the Cardiovascular System to Vibration and Combined Stresses
1975-08-31
Canines were chronically instrumented for continuous measurements of ascending aortic flow ( Zepeda ), left ventricular pressure (Konigsberg), circum- flex...different animals. Each dog was chronically instrumented for continuous measuremernt of ascending aortic flow ( Zepeda ), left ventricular pressure...vibration protocol as those animals restrained vertically. METHODS Canines (16 to 22 kg) were chronically instrumented with electromagnetic flow cuffs ( Zepeda
A novel method to measure regional muscle blood flow continuously using NIRS kinetics information
Nioka, Shoko; Kime, Ryotaro; Sunar, Ulas; Im, Joohee; Izzetoglu, Meltem; Zhang, Jun; Alacam, Burak; Chance, Britton
2006-01-01
Background This article introduces a novel method to continuously monitor regional muscle blood flow by using Near Infrared Spectroscopy (NIRS). We demonstrate the feasibility of the new method in two ways: (1) by applying this new method of determining blood flow to experimental NIRS data during exercise and ischemia; and, (2) by simulating muscle oxygenation and blood flow values using these newly developed equations during recovery from exercise and ischemia. Methods Deoxy (Hb) and oxyhemoglobin (HbO2), located in the blood ofthe skeletal muscle, carry two internal relationships between blood flow and oxygen consumption. One is a mass transfer principle and the other describes a relationship between oxygen consumption and Hb kinetics in a two-compartment model. To monitor blood flow continuously, we transfer these two relationships into two equations and calculate the blood flow with the differential information of HbO2 and Hb. In addition, these equations are used to simulate the relationship between blood flow and reoxygenation kinetics after cuff ischemia and a light exercise. Nine healthy subjects volunteered for the cuff ischemia, light arm exercise and arm exercise with cuff ischemia for the experimental study. Results Analysis of experimental data of both cuff ischemia and light exercise using the new equations show greater blood flow (four to six times more than resting values) during recovery, agreeing with previous findings. Further, the simulation and experimental studies of cuff ischemia and light exercise agree with each other. Conclusion We demonstrate the accuracy of this new method by showing that the blood flow obtained from the method agrees with previous data as well as with simulated data. We conclude that this novel continuous blood flow monitoring method can provide blood flow information non-invasively with NIRS. PMID:16704736
Fang, Hui; Xiao, Qing; Wu, Fanghui; Floreancig, Paul E.; Weber, Stephen G.
2010-01-01
A high-throughput screening system for homogeneous catalyst discovery has been developed by integrating a continuous-flow capillary-based microreactor with ultra-high pressure liquid chromatography (UHPLC) for fast online analysis. Reactions are conducted in distinct and stable zones in a flow stream that allows for time and temperature regulation. UHPLC detection at high temperature allows high throughput online determination of substrate, product, and byproduct concentrations. We evaluated the efficacies of a series of soluble acid catalysts for an intramolecular Friedel-Crafts addition into an acyliminium ion intermediate within one day and with minimal material investment. The effects of catalyst loading, reaction time, and reaction temperature were also screened. This system exhibited high reproducibility for high-throughput catalyst screening and allowed several acid catalysts for the reaction to be identified. Major side products from the reactions were determined through off-line mass spectrometric detection. Er(OTf)3, the catalyst that showed optimal efficiency in the screening, was shown to be effective at promoting the cyclization reaction on a preparative scale. PMID:20666502
Moving zone Marangoni drying of wet objects using naturally evaporated solvent vapor
Britten, Jerald A.
1997-01-01
A surface tension gradient driven flow (a Marangoni flow) is used to remove the thin film of water remaining on the surface of an object following rinsing. The process passively introduces by natural evaporation and diffusion of minute amounts of alcohol (or other suitable material) vapor in the immediate vicinity of a continuously refreshed meniscus of deionized water or another aqueous-based, nonsurfactant rinsing agent. Used in conjunction with cleaning, developing or wet etching application, rinsing coupled with Marangoni drying provides a single-step process for 1) cleaning, developing or etching, 2) rinsing, and 3) drying objects such as flat substrates or coatings on flat substrates without necessarily using heat, forced air flow, contact wiping, centrifugation or large amounts of flammable solvents. This process is useful in one-step cleaning and drying of large flat optical substrates, one-step developing/rinsing and drying or etching/rinsing/drying of large flat patterned substrates and flat panel displays during lithographic processing, and room-temperature rinsing/drying of other large parts, sheets or continuous rolls of material.
Moving zone Marangoni drying of wet objects using naturally evaporated solvent vapor
Britten, J.A.
1997-08-26
A surface tension gradient driven flow (a Marangoni flow) is used to remove the thin film of water remaining on the surface of an object following rinsing. The process passively introduces by natural evaporation and diffusion of minute amounts of alcohol (or other suitable material) vapor in the immediate vicinity of a continuously refreshed meniscus of deionized water or another aqueous-based, nonsurfactant rinsing agent. Used in conjunction with cleaning, developing or wet etching application, rinsing coupled with Marangoni drying provides a single-step process for (1) cleaning, developing or etching, (2) rinsing, and (3) drying objects such as flat substrates or coatings on flat substrates without necessarily using heat, forced air flow, contact wiping, centrifugation or large amounts of flammable solvents. This process is useful in one-step cleaning and drying of large flat optical substrates, one-step developing/rinsing and drying or etching/rinsing/drying of large flat patterned substrates and flat panel displays during lithographic processing, and room-temperature rinsing/drying of other large parts, sheets or continuous rolls of material. 5 figs.
Post-operative blood loss monitoring device: a new tool for nursing activities.
Logier, R; Carette, D; Sozanski, J P; Jeanne, M; Jounwaz, R; De Jonckheere, J
2012-01-01
In most medical specialties, after surgery, it is usual to place a drain at the operative site level, in order to assist the blood flow-out if necessary. This drainage allows avoiding the formation of hematomas and contributes to tissues recovery. However, postoperative blood loss can lead to serious consequences. Also, it is necessary to continuously check the blood output volume in order to be able to intervene quickly in case of too significant losses. In daily clinical practice, this task is due to the nursing staff that periodically records the blood level inside the supple bag connected to the drain. However, this method is not accurate about the volume of lost blood and does not reflect the flow of losses which is an important parameter regarding the evolution of the patient setting. We have designed and developed a prototype of a blood loss monitoring device based on the continuous weight measurement of the blood bag connected to the drain. This device is fixed on the bed and is able to instantaneously alert the medical staff in case of abnormal blood flow-out.
Investigation of Spray Cooling Schemes for Dynamic Thermal Management
NASA Astrophysics Data System (ADS)
Yata, Vishnu Vardhan Reddy
This study aims to investigate variable flow and intermittent flow spray cooling characteristics for efficiency improvement in active two-phase thermal management systems. Variable flow spray cooling scheme requires control of pump input voltage (or speed), while intermittent flow spray cooling scheme requires control of solenoid valve duty cycle and frequency. Several testing scenarios representing dynamic heat load conditions are implemented to characterize the overall performance of variable flow and intermittent flow spray cooling cases in comparison with the reference, steady flow spray cooling case with constant flowrate, continuous spray cooling. Tests are conducted on a small-scale, closed loop spray cooling system featuring a pressure atomized spray nozzle. HFE-7100 dielectric liquid is selected as the working fluid. Two types of test samples are prepared on 10 mm x 10 mm x 2 mm copper substrates with matching size thick film resistors attached onto the opposite side, to generate heat and simulate high heat flux electronic devices. The test samples include: (i) plain, smooth surface, and (ii) microporous surface featuring 100 ?m thick copper-based coating prepared by dual stage electroplating technique. Experimental conditions involve HFE-7100 at atmospheric pressure and 30°C and 10°C subcooling. Steady flow spray cooling tests are conducted at flow rates of 2-5 ml/cm2.s, by controlling the heat flux in increasing steps, and recording the corresponding steady-state temperatures to obtain cooling curves in the form of surface superheat vs. heat flux. Variable flow and intermittent flow spray cooling tests are done at selected flowrate and subcooling conditions to investigate the effects of dynamic flow conditions on maintaining the target surface temperatures defined based on reference steady flow spray cooling performance.
NASA Astrophysics Data System (ADS)
Bingham, R. G.; Rippin, D. M.; Karlsson, N. B.; Corr, H.; Ferraccioli, F.; Jordan, T. A.; Le Brocq, A.; Ross, N.; Wright, A.; Siegert, M. J.
2012-12-01
Radio-echo sounding (RES) across polar ice sheets reveals extensive, isochronous internal layers, whose stratigraphy, and especially their degree of continuity over multi-km distances, can inform us about both present ice flow and past ice-flow histories. Here, we bring together for the first time two recent advances in this field of cryospheric remote sensing to analyse ice flow into the Weddell Sea sector of West Antarctica. Firstly, we have developed a new quantitative routine for analysing the continuity of internal layers obtained over large areas of ice by airborne RES surveys - we term this routine the "Internal-Layering Continuity-Index (ILCI)". Secondly, in the austral season 2010-11 we acquired, by airborne RES survey, the first comprehensive dataset of deep internal layering across Institute and Möller Ice Streams, two of the more significant feeders of ice into the Filchner-Ronne Ice Shelf. Applying the ILCI to SAR-processed (migrated) RES profiles across Institute Ice Stream's catchment reveals two contrasting regions of internal-layering continuity behaviour. In the western portion of the catchment, where ice-stream tributaries incise deeply through the Ellsworth Subglacial Highlands, the continuity of internal layers is most disrupted across the present ice streams. We therefore interpret the ice-flow configuration in this western region as predominantly spatially stable over the lifetime of the ice. Further east, towards Möller Ice Stream, and towards the interior of the ice sheet, the ILCI does not closely match the present ice flow configuration, while across most of present-day Möller Ice Stream itself, the continuity of internal layers is generally low. We propose that the variation in continuity of internal layering across eastern Institute Ice Stream and the neighbouring Möller results primarily from two factors. Firstly, the noncorrespondence of some inland tributaries with internal-layering continuity acts as evidence for past spatial migration of those tributaries, with likely consequences for the relative positions of Institute and Möller Ice Streams over recent history. Secondly, the subglacial roughness, in part a function of the underlying geology across the region, imposes a strong influence on the continuity of the overlying deep internal layers, though whether it controls, or is a function of, ice flow, remains undetermined. We conclude that in the subglacially mountainous Ellsworth Subglacial Highlands sector, there is long-term stability in the spatial configuration of ice flow, but that elsewhere across Insitute and Möller Ice Streams, the ice-flow configuration has the potential to switch.
Optimization of an electrokinetic mixer for microfluidic applications.
Bockelmann, Hendryk; Heuveline, Vincent; Barz, Dominik P J
2012-06-01
This work is concerned with the investigation of the concentration fields in an electrokinetic micromixer and its optimization in order to achieve high mixing rates. The mixing concept is based on the combination of an alternating electrical excitation applied to a pressure-driven base flow in a meandering microchannel geometry. The electrical excitation induces a secondary electrokinetic velocity component, which results in a complex flow field within the meander bends. A mathematical model describing the physicochemical phenomena present within the micromixer is implemented in an in-house finite-element-method code. We first perform simulations comparable to experiments concerned with the investigation of the flow field in the bends. The comparison of the complex flow topology found in simulation and experiment reveals excellent agreement. Hence, the validated model and numerical schemes are employed for a numerical optimization of the micromixer performance. In detail, we optimize the secondary electrokinetic flow by finding the best electrical excitation parameters, i.e., frequency and amplitude, for a given waveform. Two optimized electrical excitations featuring a discrete and a continuous waveform are discussed with respect to characteristic time scales of our mixing problem. The results demonstrate that the micromixer is able to achieve high mixing degrees very rapidly.
Optimization of an electrokinetic mixer for microfluidic applications
Bockelmann, Hendryk; Heuveline, Vincent; Barz, Dominik P. J.
2012-01-01
This work is concerned with the investigation of the concentration fields in an electrokinetic micromixer and its optimization in order to achieve high mixing rates. The mixing concept is based on the combination of an alternating electrical excitation applied to a pressure-driven base flow in a meandering microchannel geometry. The electrical excitation induces a secondary electrokinetic velocity component, which results in a complex flow field within the meander bends. A mathematical model describing the physicochemical phenomena present within the micromixer is implemented in an in-house finite-element-method code. We first perform simulations comparable to experiments concerned with the investigation of the flow field in the bends. The comparison of the complex flow topology found in simulation and experiment reveals excellent agreement. Hence, the validated model and numerical schemes are employed for a numerical optimization of the micromixer performance. In detail, we optimize the secondary electrokinetic flow by finding the best electrical excitation parameters, i.e., frequency and amplitude, for a given waveform. Two optimized electrical excitations featuring a discrete and a continuous waveform are discussed with respect to characteristic time scales of our mixing problem. The results demonstrate that the micromixer is able to achieve high mixing degrees very rapidly. PMID:22712034
Osborne Reynolds pipe flow: direct numerical simulation from laminar to fully-developed turbulence
NASA Astrophysics Data System (ADS)
Adrian, R. J.; Wu, X.; Moin, P.; Baltzer, J. R.
2014-11-01
Osborne Reynolds' pipe experiment marked the onset of modern viscous flow research, yet the detailed mechanism carrying the laminar state to fully-developed turbulence has been quite elusive, despite notable progress related to dynamic edge-state theory. Here, we continue our direct numerical simulation study on this problem using a 250R long, spatially-developing pipe configuration with various Reynolds numbers, inflow disturbances, and inlet base flow states. For the inlet base flow, both fully-developed laminar profile and the uniform plug profile are considered. Inlet disturbances consist of rings of turbulence of different width and radial location. In all the six cases examined so far, energy norms show exponential growth with axial distance until transition after an initial decay near the inlet. Skin-friction overshoots the Moody's correlation in most, but not all, the cases. Another common theme is that lambda vortices amplified out of susceptible elements in the inlet disturbances trigger rapidly growing hairpin packets at random locations and times, after which infant turbulent spots appear. Mature turbulent spots in the pipe transition are actually tight concentrations of hairpin packets looking like a hairpin forest. The plug flow inlet profile requires much stronger disturbances to transition than the parabolic profile.
Peña, N; Reviejo, A J; Pingarrón, J M
2001-08-03
The fabrication and performance of a reticulated vitreous carbon (RVC)-based tyrosinase flow-through electrode, in which the enzyme was covalently immobilized, is reported. The bioelectrode was tested as an amperometric detector for phenolic compounds. Variables affecting the construction of the enzyme flow-through electrode such as the RVC chemical pretreatment procedure, the enzyme immobilization method in the RVC matrix, the enzyme loading and the pH value of the buffer solution used, were optimized by flow-injection with amperometric detection. A good immobilization of the enzyme in the RVC matrix, in spite of the hydrodynamic conditions, was found. The same tyrosinase-RVC electrode could be used with no significant loss of the amperometric response for around 20 days, and reproducible responses could be achieved with different electrodes constructed in the same manner. Moreover, the operational stability of the bioelectrode was tested under continuous monitorization conditions. Calibration plots by flow injection with amperometric detection at -0.20 V were obtained for phenol, 2,4-dimethylphenol; 3-chlorophenol; 4-chlorophenol; 4-chloro-3-methylphenol and 2-aminophenol, with detection limits ranging from 2 mug l(-1) (4-chloro-3-methylphenol) to 2 mg l(-1).
NASA Astrophysics Data System (ADS)
Wu, T.; Li, T.; Li, J.; Wang, G.
2017-12-01
Improved drainage network extraction can be achieved by flow enforcement whereby information of known river maps is imposed to the flow-path modeling process. However, the common elevation-based stream burning method can sometimes cause unintended topological errors and misinterpret the overall drainage pattern. We presented an enhanced flow enforcement method to facilitate accurate and efficient process of drainage network extraction. Both the topology of the mapped hydrography and the initial landscape of the DEM are well preserved and fully utilized in the proposed method. An improved stream rasterization is achieved here, yielding continuous, unambiguous and stream-collision-free raster equivalent of stream vectors for flow enforcement. By imposing priority-based enforcement with a complementary flow direction enhancement procedure, the drainage patterns of the mapped hydrography are fully represented in the derived results. The proposed method was tested over the Rogue River Basin, using DEMs with various resolutions. As indicated by the visual and statistical analyses, the proposed method has three major advantages: (1) it significantly reduces the occurrences of topological errors, yielding very accurate watershed partition and channel delineation, (2) it ensures scale-consistent performance at DEMs of various resolutions, and (3) the entire extraction process is well-designed to achieve great computational efficiency.
Micromixer-based time-resolved NMR: applications to ubiquitin protein conformation.
Kakuta, Masaya; Jayawickrama, Dimuthu A; Wolters, Andrew M; Manz, Andreas; Sweedler, Jonathan V
2003-02-15
Time-resolved NMR spectroscopy is used to studychanges in protein conformation based on the elapsed time after a change in the solvent composition of a protein solution. The use of a micromixer and a continuous-flow method is described where the contents of two capillary flows are mixed rapidly, and then the NMR spectra of the combined flow are recorded at precise time points. The distance after mixing the two fluids and flow rates define the solvent-protein interaction time; this method allows the measurement of NMR spectra at precise mixing time points independent of spectral acquisition time. Integration of a micromixer and a microcoil NMR probe enables low-microliter volumes to be used without losing significant sensitivity in the NMR measurement. Ubiquitin, the model compound, changes its conformation from native to A-state at low pH and in 40% or higher methanol/water solvents. Proton NMR resonances of the His-68 and the Tyr-59 of ubiquitin are used to probe the conformational changes. Mixing ubiquitin and methanol solutions under low pH at microliter per minute flow rates yields both native and A-states. As the flow rate decreases, yielding longer reaction times, the population of the A-state increases. The micromixer-NMR system can probe reaction kinetics on a time scale of seconds.
NASA Astrophysics Data System (ADS)
Zeng, Y. K.; Zhao, T. S.; Zhou, X. L.; Zou, J.; Ren, Y. X.
2017-06-01
To eliminate the adverse impacts of hydrogen evolution on the capacity of iron-chromium redox flow batteries (ICRFBs) during the long-term operation and ensure the safe operation of the battery, a rebalance cell that reduces the excessive Fe(III) ions at the positive electrolyte by using the hydrogen evolved from the negative electrolyte is designed, fabricated and tested. The effects of the flow field, hydrogen concentration and H2/N2 mixture gas flow rate on the performance of the hydrogen-ferric ion rebalance cell have been investigated. Results show that: i) an interdigitated flow field based rebalance cell delivers higher limiting current densities than serpentine flow field based one does; ii) the hydrogen utilization can approach 100% at low hydrogen concentrations (≤5%); iii) the apparent exchange current density of hydrogen oxidation reaction in the rebalance cell is proportional to the square root of the hydrogen concentration at the hydrogen concentration from 1.3% to 50%; iv) a continuous rebalance process is demonstrated at the current density of 60 mA cm-2 and hydrogen concentration of 2.5%. Moreover, the cost analysis shows that the rebalance cell is just approximately 1% of an ICRFB system cost.
High-repetition-rate interferometric Rayleigh scattering for flow-velocity measurements
NASA Astrophysics Data System (ADS)
Estevadeordal, Jordi; Jiang, Naibo; Cutler, Andrew D.; Felver, Josef J.; Slipchenko, Mikhail N.; Danehy, Paul M.; Gord, James R.; Roy, Sukesh
2018-03-01
High-repetition-rate interferometric-Rayleigh-scattering (IRS) velocimetry is demonstrated for non-intrusive, high-speed flow-velocity measurements. High temporal resolution is obtained with a quasi-continuous burst-mode laser that is capable of operating at 10-100 kHz, providing 10-ms bursts with pulse widths of 5-1000 ns and pulse energy > 100 mJ at 532 nm. Coupled with a high-speed camera system, the IRS method is based on imaging the flow field through an etalon with 8-GHz free spectral range and capturing the Doppler shift of the Rayleigh-scattered light from the flow at multiple points having constructive interference. The seed-laser linewidth permits a laser linewidth of < 150 MHz at 532 nm. The technique is demonstrated in a high-speed jet, and high-repetition-rate image sequences are shown.
Selective sequential precipitation of dissolved metals in mine drainage from coal mine
NASA Astrophysics Data System (ADS)
Yim, Giljae; Bok, Songmin; Ji, Sangwoo; Oh, Chamteut; Cheong, Youngwook; Han, Youngsoo; Ahn, Joosung
2017-04-01
In abandoned mines in Korea, a large amount of mine drainage continues to flow out and spread pollution. In purification of the mine drainage a massive amount of sludge is generated as waste. Since this metal sludge contains high Fe, Al and Mn oxides, developing the treatment method to recover homogeneous individual metal with high purity may beneficial to recycle waste metals as useful resources and reduce the amount of sludge production. In this regard, we established a dissolved metals selective precipitation process to treat Waryong Industry's mine drainage. The process that selectively precipitates metals dissolved in mine drainage is a continuous Fe-buffer-Al process, and each process consists of the neutralization tank, the coagulation tank, and the settling tank. Based on this process, this study verified the operational applicability of the Fe and Al selective precipitation. Our previous study revealed that high-purity Fe and Al precipitates could be recovered at a flow rate of 1.5 ton/day, while the lower purity was achieved when the rate was increased to about 3 ton/day due to the difficulty in reagent dosage control. In the current study was conducted to increase the capacity of the system to recover Fe and Al as high-purity precipitates at a flow rate of 10 ton/day with the ensured continuous operations by introducing an automatic reagent injection system. The previous study had a difficulty in controlling the pH and operating system continuously due to the manually controlled reagent injection system. To upgrade this and ensure the optimal pH in a stable way, a continuous reagent injection system was installed. The result of operation of the 10 ton/day system confirmed that the scaled-up process could maintain the stable recovery rates and purities of precipitates on site.
Split and flow: reconfigurable capillary connection for digital microfluidic devices.
Lapierre, Florian; Harnois, Maxime; Coffinier, Yannick; Boukherroub, Rabah; Thomy, Vincent
2014-09-21
Supplying liquid to droplet-based microfluidic microsystems remains a delicate task facing the problems of coupling continuous to digital or macro- to microfluidic systems. Here, we take advantage of superhydrophobic microgrids to address this problem. Insertion of a capillary tube inside a microgrid aperture leads to a simple and reconfigurable droplet generation setup.
Model-based flow rate control for an orfice-type low-volume air sampler
USDA-ARS?s Scientific Manuscript database
The standard method of measuring air suspended particulate matter concentration per volume of air consists of continuously drawing a defined volume of air across a filter over an extended period of time, then measuring the mass of the filtered particles and dividing it by the total volume sampled ov...
Electrophoretic separator for purifying biologicals, part 1
NASA Technical Reports Server (NTRS)
Mccreight, L. R.
1978-01-01
A program to develop an engineering model of an electrophoretic separator for purifying biologicals is summarized. An extensive mathematical modeling study and numerous ground based tests were included. Focus was placed on developing an actual electrophoretic separator of the continuous flow type, configured and suitable for flight testing as a space processing applications rocket payload.
Creating Electronic Learning Environments: Games, Flow, and the User Interface.
ERIC Educational Resources Information Center
Jones, Marshall G.
A difficult task in creating rich, exploratory interactive learning environments is building an environment that is truly engaging. Engagement can be defined as the nexus of intrinsic knowledge and/or interest and external stimuli that promote the initial interest in, and continued use of a computer-based learning environment. Complete and total…
Cardio-Pulmonary Function Testing. Continuing Education Curriculum for Respiratory Therapy.
ERIC Educational Resources Information Center
Saint Paul Technical Vocational Inst., MN.
Compiled from interviews with personnel in pulmonary function testing (PFT) laboratories in the Minneapolis/St. Paul area, this competency-based curriculum guide is intended to provide a knowledge of PFT for persons who provide respiratory care. The guide contains 20 sections covering the following topics: vital capacity, flow measurements,…
One-step synthesis of pyridines and dihydropyridines in a continuous flow microwave reactor
Fusillo, Vincenzo; Jenkins, Robert L; Lubinu, M Caterina; Mason, Christopher
2013-01-01
Summary The Bohlmann–Rahtz pyridine synthesis and the Hantzsch dihydropyridine synthesis can be carried out in a microwave flow reactor or using a conductive heating flow platform for the continuous processing of material. In the Bohlmann–Rahtz reaction, the use of a Brønsted acid catalyst allows Michael addition and cyclodehydration to be carried out in a single step without isolation of intermediates to give the corresponding trisubstituted pyridine as a single regioisomer in good yield. Furthermore, 3-substituted propargyl aldehydes undergo Hantzsch dihydropyridine synthesis in preference to Bohlmann–Rahtz reaction in a very high yielding process that is readily transferred to continuous flow processing. PMID:24204407
Initial in vitro testing of a paediatric continuous-flow total artificial heart.
Fukamachi, Kiyotaka; Karimov, Jamshid H; Horvath, David J; Sunagawa, Gengo; Byram, Nicole A; Kuban, Barry D; Moazami, Nader
2018-06-01
Mechanical circulatory support has become standard therapy for adult patients with end-stage heart failure; however, in paediatric patients with congenital heart disease, the options for chronic mechanical circulatory support are limited to paracorporeal devices or off-label use of devices intended for implantation in adults. Congenital heart disease and cardiomyopathy often involve both the left and right ventricles; in such cases, heart transplantation, a biventricular assist device or a total artificial heart is needed to adequately sustain both pulmonary and systemic circulations. We aimed to evaluate the in vitro performance of the initial prototype of our paediatric continuous-flow total artificial heart. The paediatric continuous-flow total artificial heart pump was downsized from the adult continuous-flow total artificial heart configuration by a scale factor of 0.70 (1/3 of total volume) to enable implantation in infants. System performance of this prototype was evaluated using the continuous-flow total artificial heart mock loop set to mimic paediatric circulation. We generated maps of pump performance and atrial pressure differences over a wide range of systemic vascular resistance/pulmonary vascular resistance and pump speeds. Performance data indicated left pump flow range of 0.4-4.7 l/min at 100 mmHg delta pressure. The left/right atrial pressure difference was maintained within ±5 mmHg with systemic vascular resistance/pulmonary vascular resistance ratios between 1.4 and 35, with/without pump speed modulation, verifying expected passive self-regulation of atrial pressure balance. The paediatric continuous-flow total artificial heart prototype met design requirements for self-regulation and performance; in vivo pump performance studies are ongoing.
Medhi, Biswajit; Hegde, Gopalakrishna M; Gorthi, Sai Siva; Reddy, Kalidevapura Jagannath; Roy, Debasish; Vasu, Ram Mohan
2016-08-01
A simple noninterferometric optical probe is developed to estimate wavefront distortion suffered by a plane wave in its passage through density variations in a hypersonic flow obstructed by a test model in a typical shock tunnel. The probe has a plane light wave trans-illuminating the flow and casting a shadow of a continuous-tone sinusoidal grating. Through a geometrical optics, eikonal approximation to the distorted wavefront, a bilinear approximation to it is related to the location-dependent shift (distortion) suffered by the grating, which can be read out space-continuously from the projected grating image. The processing of the grating shadow is done through an efficient Fourier fringe analysis scheme, either with a windowed or global Fourier transform (WFT and FT). For comparison, wavefront slopes are also estimated from shadows of random-dot patterns, processed through cross correlation. The measured slopes are suitably unwrapped by using a discrete cosine transform (DCT)-based phase unwrapping procedure, and also through iterative procedures. The unwrapped phase information is used in an iterative scheme, for a full quantitative recovery of density distribution in the shock around the model, through refraction tomographic inversion. Hypersonic flow field parameters around a missile-shaped body at a free-stream Mach number of ∼8 measured using this technique are compared with the numerically estimated values. It is shown that, while processing a wavefront with small space-bandwidth product (SBP) the FT inversion gave accurate results with computational efficiency; computation-intensive WFT was needed for similar results when dealing with larger SBP wavefronts.
NASA Astrophysics Data System (ADS)
Gursoy, Kadir Ali; Yavuz, Mehmet Metin
2014-11-01
In continuous casting operation of steel, the flow through tundish to the mold can be controlled by different flow rate control systems including stopper rod and slide-gate. Ladle changes in continuous casting machines result in liquid steel level changes in tundishes. During this transient event of production, the flow rate controller opening is increased to reduce the pressure drop across the opening which helps to keep the mass flow rate at the desired level for the reduced liquid steel level in tundish. In the present study, computational fluid dynamic (CFD) models are developed to investigate the effect of flow rate controller on mold flow structure, and particularly to understand the effect of flow controller opening on meniscus flow. First, a detailed validation of the CFD models is conducted using available experimental data and the performances of different turbulence models are compared. Then, the constant throughput casting operations for different flow rate controller openings are simulated to quantify the opening effect on meniscus region. The results indicate that the meniscus velocities are significantly affected by the flow rate controller and its opening level. The steady state operations, specified as constant throughput casting, do not provide the same mold flow if the controller opening is altered. Thus, for quality and castability purposes, adjusting the flow controller opening to obtain the fixed mold flow structure is proposed. Supported by Middle East Technical University (METU) BAP (Scientific Research Projects) Coordination.
Comparison of non-invasive MRI measurements of cerebral blood flow in a large multisite cohort.
Dolui, Sudipto; Wang, Ze; Wang, Danny Jj; Mattay, Raghav; Finkel, Mack; Elliott, Mark; Desiderio, Lisa; Inglis, Ben; Mueller, Bryon; Stafford, Randall B; Launer, Lenore J; Jacobs, David R; Bryan, R Nick; Detre, John A
2016-07-01
Arterial spin labeling and phase contrast magnetic resonance imaging provide independent non-invasive methods for measuring cerebral blood flow. We compared global cerebral blood flow measurements obtained using pseudo-continuous arterial spin labeling and phase contrast in 436 middle-aged subjects acquired at two sites in the NHLBI CARDIA multisite study. Cerebral blood flow measured by phase contrast (CBFPC: 55.76 ± 12.05 ml/100 g/min) was systematically higher (p < 0.001) and more variable than cerebral blood flow measured by pseudo-continuous arterial spin labeling (CBFPCASL: 47.70 ± 9.75). The correlation between global cerebral blood flow values obtained from the two modalities was 0.59 (p < 0.001), explaining less than half of the observed variance in cerebral blood flow estimates. Well-established correlations of global cerebral blood flow with age and sex were similarly observed in both CBFPCASL and CBFPC CBFPC also demonstrated statistically significant site differences, whereas no such differences were observed in CBFPCASL No consistent velocity-dependent effects on pseudo-continuous arterial spin labeling were observed, suggesting that pseudo-continuous labeling efficiency does not vary substantially across typical adult carotid and vertebral velocities, as has previously been suggested. Although CBFPCASL and CBFPC values show substantial similarity across the entire cohort, these data do not support calibration of CBFPCASL using CBFPC in individual subjects. The wide-ranging cerebral blood flow values obtained by both methods suggest that cerebral blood flow values are highly variable in the general population. © The Author(s) 2016.
Emelianov, I; Hernandes-Lopez, A; Torrence, M; Watts, N
2011-01-01
Studying host-based divergence naturally maintained by a balance between selection and gene flow can provide valuable insights into genetic underpinnings of host adaptation and ecological speciation in parasites. Selection-gene flow balance is often postulated in sympatric host races, but direct experimental evidence is scarce. In this study, we present such evidence obtained in host races of Aphidius ervi, an important hymenopteran agent of biological control of aphids in agriculture, using a novel fusion–fission method of gene flow perturbation. In our study, between-race genetic divergence was obliterated by means of advanced hybridisation, followed by a multi-generation exposure of the resulting genetically uniform hybrid swarm to a two-host environment. This fusion–fission procedure was implemented under two contrasting regimes of between-host gene flow in two replicated experiments involving different racial pairs. Host-based genetic fission in response to environmental bimodality occurred in both experiments in as little as six generations of divergent adaptation despite continuous gene flow. We demonstrate that fission recovery of host-based divergence evolved faster and hybridisation-induced linkage disequilibrium decayed slower under restricted (6.7%) compared with unrestricted gene flow, directly pointing at a balance between gene flow and divergent selection. We also show, in four separate tests, that random drift had no or little role in the observed genetic split. Rates and patterns of fission divergence differed between racial pairs. Comparative linkage analysis of these differences is currently under way to test for the role of genomic architecture of adaptation in ecology-driven divergent evolution. PMID:20924399
Groundwater/surface-water interaction in central Sevier County, Tennessee, October 2015–2016
Carmichael, John K.; Johnson, Gregory C.
2017-12-14
The U.S. Geological Survey evaluated the interaction of groundwater and surface water in the central part of Sevier County, Tennessee, from October 2015 through October 2016. Stream base flow was surveyed in December 2015 and in July and October 2016 to evaluate losing and gaining stream reaches along three streams in the area. During a July 2016 synoptic survey, groundwater levels were measured in wells screened in the Cambrian-Ordovician aquifer to define the potentiometric surface in the area. The middle and lower reaches of the Little Pigeon River and the middle reaches of Middle Creek and the West Prong Little Pigeon River were gaining streams at base-flow conditions. The lower segments of the West Prong Little Pigeon River and Middle Creek were losing reaches under base-flow conditions, with substantial flow losses in the West Prong Little Pigeon River and complete subsurface diversion of flow in Middle Creek through a series of sinkholes that developed in the streambed and adjacent flood plain beginning in 2010. The potentiometric surface of the Cambrian-Ordovician aquifer showed depressed water levels in the area where loss of flow occurred in the lower reaches of West Prong Little Pigeon River and Middle Creek. Continuous dewatering activities at a rock quarry located in this area appear to have lowered groundwater levels by as much as 180 feet, which likely is the cause of flow losses observed in the two streams, and a contributing factor to the development of sinkholes at Middle Creek near Collier Drive.
Jenkins, Paul A; Song, Yun S; Brem, Rachel B
2012-01-01
Genetic exchange between isolated populations, or introgression between species, serves as a key source of novel genetic material on which natural selection can act. While detecting historical gene flow from DNA sequence data is of much interest, many existing methods can be limited by requirements for deep population genomic sampling. In this paper, we develop a scalable genealogy-based method to detect candidate signatures of gene flow into a given population when the source of the alleles is unknown. Our method does not require sequenced samples from the source population, provided that the alleles have not reached fixation in the sampled recipient population. The method utilizes recent advances in algorithms for the efficient reconstruction of ancestral recombination graphs, which encode genealogical histories of DNA sequence data at each site, and is capable of detecting the signatures of gene flow whose footprints are of length up to single genes. Further, we employ a theoretical framework based on coalescent theory to test for statistical significance of certain recombination patterns consistent with gene flow from divergent sources. Implementing these methods for application to whole-genome sequences of environmental yeast isolates, we illustrate the power of our approach to highlight loci with unusual recombination histories. By developing innovative theory and methods to analyze signatures of gene flow from population sequence data, our work establishes a foundation for the continued study of introgression and its evolutionary relevance.
Jenkins, Paul A.; Song, Yun S.; Brem, Rachel B.
2012-01-01
Genetic exchange between isolated populations, or introgression between species, serves as a key source of novel genetic material on which natural selection can act. While detecting historical gene flow from DNA sequence data is of much interest, many existing methods can be limited by requirements for deep population genomic sampling. In this paper, we develop a scalable genealogy-based method to detect candidate signatures of gene flow into a given population when the source of the alleles is unknown. Our method does not require sequenced samples from the source population, provided that the alleles have not reached fixation in the sampled recipient population. The method utilizes recent advances in algorithms for the efficient reconstruction of ancestral recombination graphs, which encode genealogical histories of DNA sequence data at each site, and is capable of detecting the signatures of gene flow whose footprints are of length up to single genes. Further, we employ a theoretical framework based on coalescent theory to test for statistical significance of certain recombination patterns consistent with gene flow from divergent sources. Implementing these methods for application to whole-genome sequences of environmental yeast isolates, we illustrate the power of our approach to highlight loci with unusual recombination histories. By developing innovative theory and methods to analyze signatures of gene flow from population sequence data, our work establishes a foundation for the continued study of introgression and its evolutionary relevance. PMID:23226196
NASA Astrophysics Data System (ADS)
Blender, R.
2009-04-01
An approach for the reconstruction of atmospheric flow is presented which uses space- and time-dependent fields of density ?, potential vorticity Q and potential temperature Î& cedil;[J. Phys. A, 38, 6419 (2005)]. The method is based on the fundamental equations without approximation. The basic idea is to consider the time-dependent continuity equation as a condition for zero divergence of momentum in four dimensions (time and space, with unit velocity in time). This continuity equation is solved by an ansatz for the four-dimensional momentum using three conserved stream functions, the potential vorticity, potential temperature and a third field, denoted as ?-potential. In zonal flows, the ?-potential identifies the initial longitude of particles, whereas potential vorticity and potential temperature identify mainly meridional and vertical positions. Since the Lagrangian tracers Q, Î&,cedil; and ? determine the Eulerian velocity field, the reconstruction combines the Eulerian and the Lagrangian view of hydrodynamics. In stationary flows, the ?-potential is related to the Bernoulli function. The approach requires that the gradients of the potential vorticity and potential temperature do not vanish when the velocity remains finite. This behavior indicates a possible interrelation with stability conditions. Examples with analytical solutions are presented for a Rossby wave and zonal and rotational shear flows.
Retrieval-travel-time model for free-fall-flow-rack automated storage and retrieval system
NASA Astrophysics Data System (ADS)
Metahri, Dhiyaeddine; Hachemi, Khalid
2018-03-01
Automated storage and retrieval systems (AS/RSs) are material handling systems that are frequently used in manufacturing and distribution centers. The modelling of the retrieval-travel time of an AS/RS (expected product delivery time) is practically important, because it allows us to evaluate and improve the system throughput. The free-fall-flow-rack AS/RS has emerged as a new technology for drug distribution. This system is a new variation of flow-rack AS/RS that uses an operator or a single machine for storage operations, and uses a combination between the free-fall movement and a transport conveyor for retrieval operations. The main contribution of this paper is to develop an analytical model of the expected retrieval-travel time for the free-fall flow-rack under a dedicated storage assignment policy. The proposed model, which is based on a continuous approach, is compared for accuracy, via simulation, with discrete model. The obtained results show that the maximum deviation between the continuous model and the simulation is less than 5%, which shows the accuracy of our model to estimate the retrieval time. The analytical model is useful to optimise the dimensions of the rack, assess the system throughput, and evaluate different storage policies.
Magnitude and frequency of low flows in the Suwannee River Water Management District, Florida
Giese, G.L.; Franklin, M.A.
1996-01-01
Low-flow frequency statistics for 20 gaging stations having at least 10 years of continuous record and 31 other stations having less than 10 years of continu ous record or a series of at least two low- flow measurements are presented for unregulated streams in the Suwannee River Water Management District in north-central Florida. Statistics for the 20 continuous-record stations included are the annual and monthly minimum consecutive-day average low- flow magnitudes for 1, 3, 7, 14, and 30 consecutive days for recurrence intervals of 2, 5, 10, 20, and, for some long-term stations, 50 years, based on records available through the 1994 climatic year.Only theannual statistics are given for the 31 other stations; these are for the 7- and 30-consecutive day periods only and for recurrence intervals of 2 and 10 years only. Annual low-flow frequency statistics range from zero for many small streams to 5,500 cubic feet per second for the annual 30- consecutive-day average flow with a recurrenceinterval of 2 years for the Suwannee River near Wilcox (station 02323500). Monthly low-flow frequency statistics range from zero for many small streams to 13,800 cubic feet per second for the minimum 30-consecutive-day average flow with a 2-year recurrence interval for the month of March for the same station. Generally, low-flow characteristics of streams in the Suwannee River Water Management District are controlled by climatic, topographic, and geologic fac tors. The carbonate Floridan aquifer system underlies, or is at the surface of, the entire District. The terrane's karstic nature results in manysinkholes and springs. In some places, springs may contribute greatly to low streamflow and the contributing areas of such springs may include areasoutside the presumed surface drainage area of the springs. In other places, water may enter sinkholes within a drainage basin, then reappear in springs downstream from a gage. Many of the smaller streams in the District go dry or have no flow forseveral months in many years. In addition to the low-flow statistics, four synoptic low-flow measurement surveys were conducted on 161 sites during 1990, 1995, and 1996. Themeasurements were made to provide "snapshots" of flow conditions of streams throughout the Suwannee River Water Management District. Magnitudes of low flows during the 1990 series of measurements were in the range associated withminimum 7-consecutive-day 50-year recurrence interval to the minimum 7-consecutive-day 20-year recurrence interval, except in Taylor and Dixie Counties, where the magnitudes ranged from the minimum 7-consecutive-day 5-year flow level to the7-consecutive-day 2-year flow level. The magnitudes were all greater than the minimum 7- consecutive-day 2-year flow level during 1995 and 1996. Observations of no flow were recorded at many of the sites for all four series of measurements.
Estimating Selected Streamflow Statistics Representative of 1930-2002 in West Virginia
Wiley, Jeffrey B.
2008-01-01
Regional equations and procedures were developed for estimating 1-, 3-, 7-, 14-, and 30-day 2-year; 1-, 3-, 7-, 14-, and 30-day 5-year; and 1-, 3-, 7-, 14-, and 30-day 10-year hydrologically based low-flow frequency values for unregulated streams in West Virginia. Regional equations and procedures also were developed for estimating the 1-day, 3-year and 4-day, 3-year biologically based low-flow frequency values; the U.S. Environmental Protection Agency harmonic-mean flows; and the 10-, 25-, 50-, 75-, and 90-percent flow-duration values. Regional equations were developed using ordinary least-squares regression using statistics from 117 U.S. Geological Survey continuous streamflow-gaging stations as dependent variables and basin characteristics as independent variables. Equations for three regions in West Virginia - North, South-Central, and Eastern Panhandle - were determined. Drainage area, precipitation, and longitude of the basin centroid are significant independent variables in one or more of the equations. Estimating procedures are presented for determining statistics at a gaging station, a partial-record station, and an ungaged location. Examples of some estimating procedures are presented.
Annular-Cross-Section CFE Chamber
NASA Technical Reports Server (NTRS)
Sharnez, Rizwan; Sammons, David W.
1994-01-01
Proposed continuous-flow-electrophoresis (CFE) chamber of annular cross section offers advantages over conventional CFE chamber, and wedge-cross-section chamber described in "Increasing Sensitivity in Continuous-Flow Electrophoresis" (MFS-26176). In comparison with wedge-shaped chamber, chamber of annular cross section virtually eliminates such wall effects as electro-osmosis and transverse gradients of velocity. Sensitivity enhanced by incorporating gradient maker and radial (collateral) flow.
Code of Federal Regulations, 2010 CFR
2010-07-01
... maintain an SO2 continuous emission monitoring system and flow monitoring system in the duct to the common... emission monitoring system and flow monitoring system in the common stack and combine emissions for the... continuous emission monitoring system and flow monitoring system in the duct to the common stack from each...
Kim, Jeong Chul; Cruz, Dinna; Garzotto, Francesco; Kaushik, Manish; Teixeria, Catarina; Baldwin, Marie; Baldwin, Ian; Nalesso, Federico; Kim, Ji Hyun; Kang, Eungtaek; Kim, Hee Chan; Ronco, Claudio
2013-01-01
Continuous renal replacement therapy (CRRT) is commonly used for critically ill patients with acute kidney injury. During treatment, a slow dialysate flow rate can be applied to enhance diffusive solute removal. However, due to the lack of the rationale of the dialysate flow configuration (countercurrent or concurrent to blood flow), in clinical practice, the connection settings of a hemodiafilter are done depending on nurse preference or at random. In this study, we investigated the effects of flow configurations in a hemodiafilter during continuous venovenous hemodialysis on solute removal and fluid transport using computational fluid dynamic modeling. We solved the momentum equation coupling solute transport to predict quantitative diffusion and convection phenomena in a simplified hemodiafilter model. Computational modeling results showed superior solute removal (clearance of urea: 67.8 vs. 45.1 ml/min) and convection (filtration volume: 29.0 vs. 25.7 ml/min) performances for the countercurrent flow configuration. Countercurrent flow configuration enhances convection and diffusion compared to concurrent flow configuration by increasing filtration volume and equilibrium concentration in the proximal part of a hemodiafilter and backfiltration of pure dialysate in the distal part. In clinical practice, the countercurrent dialysate flow configuration of a hemodiafilter could increase solute removal in CRRT. Nevertheless, while this configuration may become mandatory for high-efficiency treatments, the impact of differences in solute removal observed in slow continuous therapies may be less important. Under these circumstances, if continuous therapies are prescribed, some of the advantages of the concurrent configuration in terms of simpler circuit layout and simpler machine design may overcome the advantages in terms of solute clearance. Different dialysate flow configurations influence solute clearance and change major solute removal mechanisms in the proximal and distal parts of a hemodiafilter. Advantages of each configuration should be balanced against the overall performance of the treatment and its simplicity in terms of treatment delivery and circuit handling procedures. Copyright © 2013 S. Karger AG, Basel.
Continuous-flow electrophoresis: Membrane-associated deviations of buffer pH and conductivity
NASA Technical Reports Server (NTRS)
Smolka, A. J. K.; Mcguire, J. K.
1978-01-01
The deviations in buffer pH and conductivity which occur near the electrode membranes in continuous-flow electrophoresis were studied in the Beckman charged particle electrophoresis system and the Hanning FF-5 preparative electrophoresis instrument. The nature of the membranes separating the electrode compartments from the electrophoresis chamber, the electric field strength, and the flow rate of electrophoresis buffer were all found to influence the formation of the pH and conductivity gradients. Variations in electrode buffer flow rate and the time of electrophoresis were less important. The results obtained supported the hypothesis that a combination of Donnan membrane effects and the differing ionic mobilities in the electrophoresis buffer was responsible for the formation of the gradients. The significance of the results for the design and stable operation of continuous-flow electrophoresis apparatus was discussed.
Microfluidic paper-based biomolecule preconcentrator based on ion concentration polarization.
Han, Sung Il; Hwang, Kyo Seon; Kwak, Rhokyun; Lee, Jeong Hoon
2016-06-21
Microfluidic paper-based analytical devices (μPADs) for molecular detection have great potential in the field of point-of-care diagnostics. Currently, a critical problem being faced by μPADs is improving their detection sensitivity. Various preconcentration processes have been developed, but they still have complicated structures and fabrication processes to integrate into μPADs. To address this issue, we have developed a novel paper-based preconcentrator utilizing ion concentration polarization (ICP) with minimal addition on lateral-flow paper. The cation selective membrane (i.e., Nafion) is patterned on adhesive tape, and this tape is then attached to paper-based channels. When an electric field is applied across the Nafion, ICP is initiated to preconcentrate the biomolecules in the paper channel. Departing from previous paper-based preconcentrators, we maintain steady lateral fluid flow with the separated Nafion layer; as a result, fluorescent dyes and proteins (FITC-albumin and bovine serum albumin) are continuously delivered to the preconcentration zone, achieving high preconcentration performance up to 1000-fold. In addition, we demonstrate that the Nafion-patterned tape can be integrated with various geometries (multiplexed preconcentrator) and platforms (string and polymer microfluidic channel). This work would facilitate integration of various ICP devices, including preconcentrators, pH/concentration modulators, and micro mixers, with steady lateral flows in paper-based platforms.
Multigrid Method for Modeling Multi-Dimensional Combustion with Detailed Chemistry
NASA Technical Reports Server (NTRS)
Zheng, Xiaoqing; Liu, Chaoqun; Liao, Changming; Liu, Zhining; McCormick, Steve
1996-01-01
A highly accurate and efficient numerical method is developed for modeling 3-D reacting flows with detailed chemistry. A contravariant velocity-based governing system is developed for general curvilinear coordinates to maintain simplicity of the continuity equation and compactness of the discretization stencil. A fully-implicit backward Euler technique and a third-order monotone upwind-biased scheme on a staggered grid are used for the respective temporal and spatial terms. An efficient semi-coarsening multigrid method based on line-distributive relaxation is used as the flow solver. The species equations are solved in a fully coupled way and the chemical reaction source terms are treated implicitly. Example results are shown for a 3-D gas turbine combustor with strong swirling inflows.
Influence of pressure driven secondary flows on the behavior of turbofan forced mixers
NASA Technical Reports Server (NTRS)
Anderson, B.; Povinelli, L.; Gerstenmaier, W.
1980-01-01
A finite difference procedure was developed to analyze the three dimensional subsonic turbulent flows in turbofan forced mixer nozzles. The method is based on a decomposition of the velocity field into primary and secondary flow components which are determined by solution of the equations governing primary momentum, secondary vorticity, thermal energy, and continuity. Experimentally, a strong secondary flow pattern was identified which is associated with the radial inflow and outflow characteristics of the core and fan streams and forms a very strong vortex system aligned with the radial interface between the core and fan regions. A procedure was developed to generate a similar generic secondary flow pattern in terms of two constants representing the average radial outflow or inflow in the core and fan streams as a percentage of the local streamwise velocity. This description of the initial secondary flow gave excellent agreement with experimental data. By identifying the nature of large scale secondary flow structure and associating it with characteristic mixer nozzle behavior, it is felt that the cause and effect relationship between lobe design and nozzle performance can be understood.
Prediction of the low-velocity distribution from the pore structure in simple porous media
NASA Astrophysics Data System (ADS)
de Anna, Pietro; Quaife, Bryan; Biros, George; Juanes, Ruben
2017-12-01
The macroscopic properties of fluid flow and transport through porous media are a direct consequence of the underlying pore structure. However, precise relations that characterize flow and transport from the statistics of pore-scale disorder have remained elusive. Here we investigate the relationship between pore structure and the resulting fluid flow and asymptotic transport behavior in two-dimensional geometries of nonoverlapping circular posts. We derive an analytical relationship between the pore throat size distribution fλ˜λ-β and the distribution of the low fluid velocities fu˜u-β /2 , based on a conceptual model of porelets (the flow established within each pore throat, here a Hagen-Poiseuille flow). Our model allows us to make predictions, within a continuous-time random-walk framework, for the asymptotic statistics of the spreading of fluid particles along their own trajectories. These predictions are confirmed by high-fidelity simulations of Stokes flow and advective transport. The proposed framework can be extended to other configurations which can be represented as a collection of known flow distributions.
Smoothed particle hydrodynamics method for simulating waterfall flow
NASA Astrophysics Data System (ADS)
Suwardi, M. G.; Jondri; Tarwidi, D.
2018-03-01
The existence of waterfall in many nations, such as Indonesia has a potential to develop and to fulfill the electricity demand in the nation. By utilizing mechanical flow energy of the waterfall, it would be able to generate electricity. The study of mechanical energy could be done by simulating waterfall flow using 2-D smoothed particle hydrodynamics (SPH) method. The SPH method is suitable to simulate the flow of the waterfall, because it has an advantage which could form particles movement that mimic the characteristics of fluid. In this paper, the SPH method is used to solve Navier-Stokes and continuity equation which are the main cores of fluid motion. The governing equations of fluid flow are used to obtain the acceleration, velocity, density, and position of the SPH particles as well as the completion of Leapfrog time-stepping method. With these equations, simulating a waterfall flow would be more attractive and able to complete the analysis of mechanical energy as desired. The mechanical energy that generated from the waterfall flow is calculated and analyzed based on the mass, height, and velocity of each SPH particle.
Isotope ratio mass spectrometry in nutrition research
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luke, A.H.
Many of the biochemical pathways and processes that form the foundation of modern nutrition research was elucidated using stable isotopes as physiological tracers. Since the discovery of stable isotopes, improvements and innovations in mass spectrometry and chromatography have led to greatly expanded applications. This research project was designed to evaluate gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS) as a tool for isotopic tracer studies and to delineate the operational parameters for the analysis of {sup 13}C-labeled cholesterol, leucine and {alpha}-ketoisocaproate. The same isotope ratio mass spectrometer was then used as the base instrument for the ratio mass spectrometer was then usedmore » as the base instrument for the development of two additional inlet systems: a continuous-flow inlet for the analyses of {sup 13}C and {sup 18}O as CO{sub 2} and a filament inlet for on-line combustion and isotopic analysis of non-volatile organic compounds. Each of these three inlets was evaluated and their utility in nutrition research illustrated. GC/C/IRMS was used to analyze cholesterol, leucine and {alpha}-ketoisocaproate with good accuracy, precision and little isotopic memory. For all three compounds the detection limits achieved well surpassed currently used technologies. For compounds that can be well separated by GC, GC/C/IRMS is a valuable analytical tool. The continuous-flow inlet provided good accuracy and precision for measurements of {sup 13}CO{sub 2} from breath tests and {sup 18}O as CO{sub 2} from total energy expenditure tests. Most importantly, the continuous-flow inlet increased sample throughput by at least a factor of three over conventional analytical techniques. The filament inlet provided accurate and precise {sup 13}C ratio measurements of both natural abundance and enriched standards of non-volatile organic compounds of physiological interest.« less
NASA Astrophysics Data System (ADS)
Alhroob, M.; Battistin, M.; Berry, S.; Bitadze, A.; Bonneau, P.; Boyd, G.; Crespo-Lopez, O.; Degeorge, C.; Deterre, C.; Di Girolamo, B.; Doubek, M.; Favre, G.; Hallewell, G.; Katunin, S.; Lombard, D.; Madsen, A.; McMahon, S.; Nagai, K.; O'Rourke, A.; Pearson, B.; Robinson, D.; Rossi, C.; Rozanov, A.; Stanecka, E.; Strauss, M.; Vacek, V.; Vaglio, R.; Young, J.; Zwalinski, L.
2017-01-01
The development of custom ultrasonic instrumentation was motivated by the need for continuous real-time monitoring of possible leaks and mass flow measurement in the evaporative cooling systems of the ATLAS silicon trackers. The instruments use pairs of ultrasonic transducers transmitting sound bursts and measuring transit times in opposite directions. The gas flow rate is calculated from the difference in transit times, while the sound velocity is deduced from their average. The gas composition is then evaluated by comparison with a molar composition vs. sound velocity database, based on the direct dependence between sound velocity and component molar concentration in a gas mixture at a known temperature and pressure. The instrumentation has been developed in several geometries, with five instruments now integrated and in continuous operation within the ATLAS Detector Control System (DCS) and its finite state machine. One instrument monitors C3F8 coolant leaks into the Pixel detector N2 envelope with a molar resolution better than 2ṡ 10-5, and has indicated a level of 0.14 % when all the cooling loops of the recently re-installed Pixel detector are operational. Another instrument monitors air ingress into the C3F8 condenser of the new C3F8 thermosiphon coolant recirculator, with sub-percent precision. The recent effect of the introduction of a small quantity of N2 volume into the 9.5 m3 total volume of the thermosiphon system was clearly seen with this instrument. Custom microcontroller-based readout has been developed for the instruments, allowing readout into the ATLAS DCS via Modbus TCP/IP on Ethernet. The instrumentation has many potential applications where continuous binary gas composition is required, including in hydrocarbon and anaesthetic gas mixtures.
NASA Astrophysics Data System (ADS)
Tirandazi, Pooyan; Hidrovo, Carlos
2015-11-01
Over the last few years, microfluidic systems known as Lab-on-a-Chip (LOC) and micro total analysis systems (μTAS) have been increasingly developed as essential components for numerous biochemical applications. Droplet microfluidics, however, provides a distinctive attribute for delivering and processing discrete as well as ultrasmall volumes of fluid, which make droplet-based systems more beneficial over their continuous-phase counterparts. Droplet generation in its conventional scheme usually incorporates the injection of a liquid (water) into a continuous immiscible liquid (oil) medium. In this study we demonstrate a novel scheme for controlled generation of monodisperse droplets in confined gas-liquid microflows. We experimentally investigate the manipulation of water droplets in flow-focusing configurations using a high inertial air stream. Different flow regimes are observed by varying the gas and liquid flow rates, among which, the ``dripping regime'' where monodisperse droplets are generated is of great importance. The controlled size and generation rate of droplets in this region provide the capability for precise and contaminant-free delivery of microliter to nanoliter volumes of fluid. Furthermore, the high speed droplets generated in this method represent the basis for a new approach based on droplet pair collisions for fast efficient micromixing which provides a significant development in modern LOC and μTAS devices. This project is currently being supported by an NSF CAREER Award grant CBET-1151091.
Continuous flow measurements using fixed ultrasonic meters
Oltmann, Rick
1993-01-01
USGS has or soon will be installing four continuous flow-monitoring stations in the delta that will use ultrasonic velocity meters (DVM). Funding for the stations has been provided by USGS, DWR, USBR, and Contra Costa Water District.
Géczi, Gábor; Horváth, Márk; Kaszab, Tímea; Alemany, Gonzalo Garnacho
2013-01-01
Extension of shelf life and preservation of products are both very important for the food industry. However, just as with other processes, speed and higher manufacturing performance are also beneficial. Although microwave heating is utilized in a number of industrial processes, there are many unanswered questions about its effects on foods. Here we analyze whether the effects of microwave heating with continuous flow are equivalent to those of traditional heat transfer methods. In our study, the effects of heating of liquid foods by conventional and continuous flow microwave heating were studied. Among other properties, we compared the stability of the liquid foods between the two heat treatments. Our goal was to determine whether the continuous flow microwave heating and the conventional heating methods have the same effects on the liquid foods, and, therefore, whether microwave heat treatment can effectively replace conventional heat treatments. We have compared the colour, separation phenomena of the samples treated by different methods. For milk, we also monitored the total viable cell count, for orange juice, vitamin C contents in addition to the taste of the product by sensory analysis. The majority of the results indicate that the circulating coil microwave method used here is equivalent to the conventional heating method based on thermal conduction and convection. However, some results in the analysis of the milk samples show clear differences between heat transfer methods. According to our results, the colour parameters (lightness, red-green and blue-yellow values) of the microwave treated samples differed not only from the untreated control, but also from the traditional heat treated samples. The differences are visually undetectable, however, they become evident through analytical measurement with spectrophotometer. This finding suggests that besides thermal effects, microwave-based food treatment can alter product properties in other ways as well.
Géczi, Gábor; Horváth, Márk; Kaszab, Tímea; Alemany, Gonzalo Garnacho
2013-01-01
Extension of shelf life and preservation of products are both very important for the food industry. However, just as with other processes, speed and higher manufacturing performance are also beneficial. Although microwave heating is utilized in a number of industrial processes, there are many unanswered questions about its effects on foods. Here we analyze whether the effects of microwave heating with continuous flow are equivalent to those of traditional heat transfer methods. In our study, the effects of heating of liquid foods by conventional and continuous flow microwave heating were studied. Among other properties, we compared the stability of the liquid foods between the two heat treatments. Our goal was to determine whether the continuous flow microwave heating and the conventional heating methods have the same effects on the liquid foods, and, therefore, whether microwave heat treatment can effectively replace conventional heat treatments. We have compared the colour, separation phenomena of the samples treated by different methods. For milk, we also monitored the total viable cell count, for orange juice, vitamin C contents in addition to the taste of the product by sensory analysis. The majority of the results indicate that the circulating coil microwave method used here is equivalent to the conventional heating method based on thermal conduction and convection. However, some results in the analysis of the milk samples show clear differences between heat transfer methods. According to our results, the colour parameters (lightness, red-green and blue-yellow values) of the microwave treated samples differed not only from the untreated control, but also from the traditional heat treated samples. The differences are visually undetectable, however, they become evident through analytical measurement with spectrophotometer. This finding suggests that besides thermal effects, microwave-based food treatment can alter product properties in other ways as well. PMID:23341982
The cryogenic wind tunnel for high Reynolds number testing. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Kilgore, R. A.
1974-01-01
Experiments performed at the NASA Langley Research Center in a cryogenic low-speed continuous-flow tunnel and in a cryogenic transonic continuous-flow pressure tunnel have demonstrated the predicted changes in Reynolds number, drive power, and fan speed with temperature, while operating with nitrogen as the test gas. The experiments have also demonstrated that cooling to cryogenic temperatures by spraying liquid nitrogen directly into the tunnel circuit is practical and that tunnel temperature can be controlled within very close limits. Whereas most types of wind tunnel could operate with advantage at cryogenic temperatures, the continuous-flow fan-driven tunnel is particularly well suited to take full advantage of operating at these temperatures. A continuous-flow fan-driven cryogenic tunnel to satisfy current requirements for test Reynolds number can be constructed and operated using existing techniques. Both capital and operating costs appear acceptable.
O'Shea, Genevieve; Teuteberg, Jeffrey J; Severyn, Donald A
2013-03-01
Ventricular assist devices provide therapeutic options for patients with severe heart failure who have exhausted available medical therapies. With restoration of organ perfusion with ventricular assist devices, the heart failure resolves and quality of life and functional status improve. The current generation of continuous-flow devices present novel challenges to the clinical assessment of patients by substantially reducing or nearly eliminating any palpable pulse. Patients therefore generally have inadequate arterial pulsatility for most noninvasive monitoring devices such as pulse oximeters or automated blood pressure cuffs to work accurately. This article describes the function of continuous-flow devices and how this function affects common monitoring options, as well as how to clinically assess recipients of continuous-flow devices to promptly identify those whose condition may be deteriorating or who may be receiving inadequate perfusion.
NASA Astrophysics Data System (ADS)
Lebedeva, Luidmila; Semenova, Olga
2015-04-01
Frozen ground distribution and its properties control the presence of aquifuge and aquifers. Correct representation of interactions between infiltrating water, ground ice, permafrost or seasonal freezing table and river flow is challenging for hydrological modelling in cold regions. Observational data of ground water levels, thawing depths in different landscapes or topographical units and meteorological information with high temporal and spatial resolution are required to analyze seasonal and interannual evolution of groundwater in active layer and its linkage to river flow. Such data are extremely rare in vast and remote regions of Russia. There are few historical datasets inherited from former USSR containing unique collection of long-term daily observations of water fluxes, frozen ground characteristics and groundwater levels. The data from three water balance stations were employed in our study with overall goal to analyze co-evolution of thawing layer, shallow groundwater and river flow by data processing and process-based modelling. Three instrumented small watersheds are situated in continuous, discontinuous permafrost zones and at the territory with seasonally frozen ground. They present different climates, landscapes and geology. The Kolyma water-balance station is located in mountainous region of continuous permafrost in North-Eastern Russia. The watershed area of 22 km2 is covered by bare rocks, mountain tundra, sparse larch forest and wet larch forest depending on slope aspect and inclination. The Bomnak water-balance station (22 km2) is situated in discontinuous permafrost zone in upper part of the Amur River basin and characterized by unmerged permafrost. Dominant landscapes are birch forest and bogs. The Pribaltiyskaya water-balance station (40 km2) located in Latvia is characterized by seasonally frozen ground and is covered by mixed forest and arable land. Process-based Hydrograph model was employed in the study. The model was developed specifically for cold regions. It describes all essential processes of land hydrological cycle including detailed algorithm of water and heat dynamics in soil accounting for water phase change. The model parameters relate to basin characteristics and could be assessed in the field. It allows avoiding parameters calibration and transferring model parameterization schemes to ungauged basins in similar conditions. The model was applied and tested against internal states of watersheds (snow, soil thawing/freezing, etc.) and runoff. Different role of frozen ground in formation of shallow groundwater and river flow in continuous, discontinuous and non-permafrost area is highlighted by comparative analysis of observations and simulations in three studied basins. The changes of fractional input of surface and subsurface components into river flow during warm seasons were assessed for each watershed. We concluded that verified hydrological model with meaningful parameters that adequately describe river flow formation and internal hydrological processes and ground freezing/thawing in the catchment could be used in scenario simulations, future predictions and transferring the results between scales.
Kosaka, Ryo; Fukuda, Kyohei; Nishida, Masahiro; Maruyama, Osamu; Yamane, Takashi
2013-01-01
In order to monitor the condition of a patient using a left ventricular assist system (LVAS), blood flow should be measured. However, the reliable determination of blood-flow rate has not been established. The purpose of the present study is to develop a noninvasive blood-flow meter using a curved cannula with zero compensation for an axial flow blood pump. The flow meter uses the centrifugal force generated by the flow rate in the curved cannula. Two strain gauges served as sensors. The first gauges were attached to the curved area to measure static pressure and centrifugal force, and the second gauges were attached to straight area to measure static pressure. The flow rate was determined by the differences in output from the two gauges. The zero compensation was constructed based on the consideration that the flow rate could be estimated during the initial driving condition and the ventricular suction condition without using the flow meter. A mock circulation loop was constructed in order to evaluate the measurement performance of the developed flow meter with zero compensation. As a result, the zero compensation worked effectively for the initial calibration and the zero-drift of the measured flow rate. We confirmed that the developed flow meter using a curved cannula with zero compensation was able to accurately measure the flow rate continuously and noninvasively.
Continuous flow chemistry: a discovery tool for new chemical reactivity patterns.
Hartwig, Jan; Metternich, Jan B; Nikbin, Nikzad; Kirschning, Andreas; Ley, Steven V
2014-06-14
Continuous flow chemistry as a process intensification tool is well known. However, its ability to enable chemists to perform reactions which are not possible in batch is less well studied or understood. Here we present an example, where a new reactivity pattern and extended reaction scope has been achieved by transferring a reaction from batch mode to flow. This new reactivity can be explained by suppressing back mixing and precise control of temperature in a flow reactor set up.
Inactivation of Bacteria in Oil Field Injected Water by a Pulsed Plasma Discharge Process
NASA Astrophysics Data System (ADS)
Xin, Qing; Li, Zhongjian; Lei, Lecheng; Yang, Bin
2016-09-01
Pulsed plasma discharge was employed to inactivate bacteria in the injection water for an oil field. The effects of water conductivity and initial concentration of bacteria on elimination efficiency were investigated in the batch and continuous flow modes. It was demonstrated that Fe2+ contained in injection water could enhance the elimination efficiency greatly. The addition of reducing agent glutathione (GSH) indicated that active radicals generated by pulsed plasma discharges played an important role in the inactivation of bacteria. Moreover, it was found that the microbial inactivation process for both batch and continuous flow mode well fitted the model based on the Weibull's survival function. supported by Zhejiang Province Welfare Technology Applied Research Project of China (No. 2014C31137), National Natural Science Foundation of China (Nos. 21436007 and U1462201), and the Fundamental Research Funds for the Central Universities of China (No. 2015QNA4032)
Control system of water flow and casting speed in continuous steel casting
NASA Astrophysics Data System (ADS)
Tirian, G. O.; Gheorghiu, C. A.; Hepuţ, T.; Chioncel, C.
2017-05-01
This paper presents the results of research based on real data taken from the installation process at Arcelor Mittal Hunedoara. Using Matlab Simulink an intelligent system is made that takes in data from the process and makes real time adjustments in the rate of flow of the cooling water and the speed of casting that eliminates fissures in the poured material from the secondary cooling of steel. Using Matlab Simulink simulation environment allowed for qualitative analysis for various real world situations. Thus, compared to the old method of approach for the problem of cracks forming in the crust of the steel in the continuous casting, this new method, proposed and developed, brings safety and precision in this complex process, thus removing any doubt on the existence or non-existence of cracks and takes the necessary steps to prevent and correct them.
[Design and Optimization of Microfluidic Chips Used for Mixing Cryoprotectants].
Zhou, Xinli; Yi, Xingyue; Zhou, Nanfeng; Yang, Yun
2016-06-01
Microfluidic chips can be used to realize continuous cryoprotectants(CPA)loading/unloading for oocytes,reducing osmotic damage and chemical toxicity of CPA.In this study,five different Y-shape microfluidic chips were fabricated to realize the continuous CPA loading/unloading.The effects of flow rate,entrance angle,aspect ratio and turning radius of microchannels on the mixing efficiency of microfluidic chips were analyzed quantitatively.The experimental results showed that with the decrease of flow rates,the increase of aspect ratios and the decrease of turning raradius of microchannel,the mixing length decreased and the mixing velocity was promoted,while the entrance angle had little effect on the mixing efficiency.However,the operating conditions and structural parameters of the chips in practical application should be determined based on an overall consideration of CPA loading/unloading time and machining accuracy.These results would provide a reference to the application of microfluidic chip in CPA mixing.
Ahmed, Husnain; Destgeer, Ghulam; Park, Jinsoo; Afzal, Muhammad; Sung, Hyung Jin
2018-06-18
The sheathless focusing and separation of microparticles is an important pre-processing step in various biochemical assays in which enriched sample isolation is critical. Most previous microfluidic particle separation techniques have used a sheath flow to achieve efficient sample focusing. The sheath flow diluted the analyte, and required additional microchannels and accurate flow control. We demonstrated a tilted angle travelling surface acoustic wave (taTSAW)-based sheathless focusing and separation of particles in a continuous flow. The proposed device consisted of a piezoelectric substrate with a pair of interdigitated transducers (IDTs) deposited at two different angles relative to the flow direction. A Y-shaped polydimethylsiloxane (PDMS) microchannel having one inlet and two outlet ports was positioned on top of the IDTs such that the acoustic energy coupling into the fluid was maximized and wave attenuation by the PDMS walls was minimized. The two IDTs independently produced high-frequency taTSAWs, which propagated at ±30° with respect to the flow direction and imparted a direct acoustic radiation force onto the target particles. A sample mixture containing 4.8 and 3.2 µm particles was focused and then separated by the actuation of the IDTs at 194 and 136 MHz frequencies, respectively, without using an additional sheath flow. The proposed taTSAW-based particle separation device offered a high purity > 99% at the both outlets over a wide range of flow speeds (up to 83.3 mm/s).
Cryotherapy Treatment After Unicompartmental and Total Knee Arthroplasty: A Review.
Chughtai, Morad; Sodhi, Nipun; Jawad, Michael; Newman, Jared M; Khlopas, Anton; Bhave, Anil; Mont, Michael A
2017-12-01
Cryotherapy is widely utilized to enhance recovery after knee surgeries. However, the outcome parameters often vary between studies. Therefore, the purpose of this review is to compare (1) no cryotherapy vs cryotherapy; (2) cold pack cryotherapy vs continuous flow device cryotherapy; (3) various protocols of application of these cryotherapy methods; and (4) cost-benefit analysis in patients who had unicompartmental knee arthroplasty (UKA) or total knee arthroplasty (TKA). A search for "knee" and "cryotherapy" using PubMed, EBSCO Host, and SCOPUS was performed, yielding 187 initial reports. After selecting for RCTs relevant to our study, 16 studies were included. Of the 8 studies that compared the immediate postoperative outcomes between patients who did and did not receive cryotherapy, 5 studies favored cryotherapy (2 cold packs and 3 continuous cold flow devices). Of the 6 studies comparing the use of cold packs and continuous cold flow devices in patients who underwent UKA or TKA, 3 favor the use of continuous flow devices. There was no difference in pain, postoperative opioid consumption, or drain output between 2 different temperature settings of continuous cold flow device. The optimal device to use may be one that offers continuous circulating cold flow, as there were more studies demonstrating better outcomes. In addition, the pain relieving effects of cryotherapy may help minimize pain medication use, such as with opioids, which are associated with numerous potential side effects as well as dependence and addiction. Meta-analysis on the most recent RCTs should be performed next. Copyright © 2017 Elsevier Inc. All rights reserved.
Reeder, G S; Currie, P J; Fyfe, D A; Hagler, D J; Seward, J B; Tajik, A J
1984-11-01
Extracardiac valved conduits are often employed in the repair of certain complex congenital heart defects; late obstruction is a well recognized problem that usually requires catheterization for definitive diagnosis. A reliable noninvasive method for detecting conduit stenosis would be clinically useful in identifying the small proportion of patients who develop this problem. Continuous wave Doppler echocardiography has been used successfully to estimate cardiac valvular obstructive lesions noninvasively. Twenty-three patients with prior extracardiac conduit placement for complex congenital heart disease underwent echocardiographic and continuous wave Doppler echocardiographic examinations to determine the presence and severity of conduit stenosis. In 20 of the 23 patients, an adequate conduit flow velocity profile was obtained, and in 10 an abnormally increased conduit flow velocity was present. All but one patient had significant obstruction proven at surgery and in one patient, surgery was planned. In three patients, an adequate conduit flow velocity profile could not be obtained but obstruction was still suspected based on high velocity tricuspid regurgitant Doppler signals. In these three patients, subsequent surgery also proved that conduit stenosis was present. Doppler-predicted gradients and right ventricular pressures showed an overall good correlation (r = 0.90) with measurements at subsequent cardiac catheterization. Continuous wave Doppler echocardiography appears to be a useful noninvasive tool for the detection and semiquantitation of extracardiac conduit stenosis.
Continuous Passive Sampling of Solutes from Agricultural Subsurface Drainage Tubes
NASA Astrophysics Data System (ADS)
Lindblad Vendelboe, Anders; de Jonge, Hubert; Rozemeijer, Joachim; Wollesen de Jonge, Lis
2015-04-01
Agricultural subsurface tube drain systems play an important role in water and solute transport. One study, focusing on lowland agricultural catchments, showed that subsurface tube drainage contributed up to 80% of the annual discharge and 90% of the annual NO3 load from agricultural fields to the receiving water bodies. Knowledge of e.g. nutrient loads and drainage volumes, based on measurements and modelling, are important for adequate water quality management. Despite the importance of tube drain transport of solutes, monitoring data are scarce. This scarcity is a result of the existing monitoring techniques for flow and contaminant load from tube drains being expensive and labor-extensive. The study presented here aimed at developing a cheap, simple, and robust method to monitor solute loads from tube drains. The method is based on the newly developed Flowcap, which can be attached to existing tube drain outlets and can measure total flow, contaminant load and flow-averaged concentrations of solutes in the drainage. The Flowcap builds on the existing Sorbicell principle, a passive sampling system that measures average concentrations over longer periods of time (days to months) for various compounds. The Sorbicell consists of two compartments permeable to water. One compartment contains an adsorbent and one contains a tracer. When water passes through the Sorbicell the compound of interest is absorbed while a tracer is released. Using the tracer loss to calculate the volume of water that has passed the Sorbicell it is possible to calculate the average concentration of the compound. When mounting Sorbicells in the Flowcap, a flow-proportional part of the drainage is sampled from the main stream. To accommodate the wide range of drainage flow rates two Flowcaps with different capacities were tested in the laboratory: one with a capacity of 25 L min-1 (Q25) and one with a capacity of 256 L min-1 (Q256). In addition, Sorbicells with two different hydraulic resistances were tested, again to accommodate a large range of potential drainage flows rates. The experiment was continued until the Sorbicell's capacity was exhausted, which gave experimentation times from 6 to 34 days, while continuously changing the drainage flow rate to simulate field drainage conditions, and to test the range of the Flowcap. The laboratory testing yielded a very good linear correlation between drainage flow rates and Sorbicell sampling rates, giving r = 0.99 for both the Q25 and the Q256 Flowcap. The Sorbicells in this experiment were designed to measure NO3, but the Flowcap can be used with any Sorbicell and thus be used to measure any compound of interest. The Flowcap does not need housing, electricity, or maintenance and continuously register drainage volumes and contaminant loads for periods up to one month. This, in addition to the low cost of the monitoring system, enables large-scale monitoring of contaminant loads via tube drains, giving valuable data for the improvement of contaminant transport models. Further, these data will help select and evaluate the different mitigation option to improve water quality.
Towards enhancing and delaying disturbances in free shear flows
NASA Technical Reports Server (NTRS)
Criminale, W. O.; Jackson, T. L.; Lasseigne, D. G.
1994-01-01
The family of shear flows comprising the jet, wake, and the mixing layer are subjected to perturbations in an inviscid incompressible fluid. By modeling the basic mean flows as parallel with piecewise linear variations for the velocities, complete and general solutions to the linearized equations of motion can be obtained in closed form as functions of all space variables and time when posed as an initial value problem. The results show that there is a continuous as well as the discrete spectrum that is more familiar in stability theory and therefore there can be both algebraic and exponential growth of disturbances in time. These bases make it feasible to consider control of such flows. To this end, the possibility of enhancing the disturbances in the mixing layer and delaying the onset in the jet and wake is investigated. It is found that growth of perturbations can be delayed to a considerable degree for the jet and the wake but, by comparison, cannot be enhanced in the mixing layer. By using moving coordinates, a method for demonstrating the predominant early and long time behavior of disturbances in these flows is given for continuous velocity profiles. It is shown that the early time transients are always algebraic whereas the asymptotic limit is that of an exponential normal mode. Numerical treatment of the new governing equations confirm the conclusions reached by use of the piecewise linear basic models. Although not pursued here, feedback mechanisms designed for control of the flow could be devised using the results of this work.
"Ladder" structure in tonal noise generated by laminar flow around an airfoil.
Chong, Tze Pei; Joseph, Phillip
2012-06-01
The presence of a "ladder" structure in the airfoil tonal noise was discovered in the 1970s, but its mechanism hitherto remains a subject of continual investigation in the research community. Based on the measured noise results and some numerical analysis presented in this letter, the variations of four types of airfoil tonal noise frequencies with the flow velocity were analyzed individually. The ladder structure is proposed to be caused by the acoustic/hydrodynamic frequency lag between the scattering of the boundary layer instability noise and the discrete noise produced by an aeroacoustic feedback loop.
Extinction and recolonization of local populations on a growing shield volcano.
Carson, H L; Lockwood, J P; Craddock, E M
1990-09-01
Volcanic action has resulted in the burial of the surfaces of Mauna Loa and Kilauea, Hawaii, by new lava flows at rates as high as 90% per 1000 years. Local populations of organisms on such volcanoes are continually being exterminated; survival of the species requires colonization of younger flows. Certain populations of the endemic Hawaiian species Drosophila silvestris exemplify such events in microcosm. Local populations at the base of an altitudinal cline were destroyed by two explosive eruptions within the last 2100 years. Natural recolonization restored the cline except for one young population that is genetically discordant with altitude.
Wave Number Selection for Incompressible Parallel Jet Flows Periodic in Space
NASA Technical Reports Server (NTRS)
Miles, Jeffrey Hilton
1997-01-01
The temporal instability of a spatially periodic parallel flow of an incompressible inviscid fluid for various jet velocity profiles is studied numerically using Floquet Analysis. The transition matrix at the end of a period is evaluated by direct numerical integration. For verification, a method based on approximating a continuous function by a series of step functions was used. Unstable solutions were found only over a limited range of wave numbers and have a band type structure. The results obtained are analogous to the behavior observed in systems exhibiting complexity at the edge of order and chaos.
Currens, J.C.
1999-01-01
Analytical data for nitrate and triazines from 566 samples collected over a 3-year period at Pleasant Grove Spring, Logan County, KY, were statistically analyzed to determine the minimum data set needed to calculate meaningful yearly averages for a conduit-flow karst spring. Results indicate that a biweekly sampling schedule augmented with bihourly samples from high-flow events will provide meaningful suspended-constituent and dissolved-constituent statistics. Unless collected over an extensive period of time, daily samples may not be representative and may also be autocorrelated. All high-flow events resulting in a significant deflection of a constituent from base-line concentrations should be sampled. Either the geometric mean or the flow-weighted average of the suspended constituents should be used. If automatic samplers are used, then they may be programmed to collect storm samples as frequently as every few minutes to provide details on the arrival time of constituents of interest. However, only samples collected bihourly should be used to calculate averages. By adopting a biweekly sampling schedule augmented with high-flow samples, the need to continuously monitor discharge, or to search for and analyze existing data to develop a statistically valid monitoring plan, is lessened.Analytical data for nitrate and triazines from 566 samples collected over a 3-year period at Pleasant Grove Spring, Logan County, KY, were statistically analyzed to determine the minimum data set needed to calculate meaningful yearly averages for a conduit-flow karst spring. Results indicate that a biweekly sampling schedule augmented with bihourly samples from high-flow events will provide meaningful suspended-constituent and dissolved-constituent statistics. Unless collected over an extensive period of time, daily samples may not be representative and may also be autocorrelated. All high-flow events resulting in a significant deflection of a constituent from base-line concentrations should be sampled. Either the geometric mean or the flow-weighted average of the suspended constituents should be used. If automatic samplers are used, then they may be programmed to collect storm samples as frequently as every few minutes to provide details on the arrival time of constituents of interest. However, only samples collected bihourly should be used to calculate averages. By adopting a biweekly sampling schedule augmented with high-flow samples, the need to continuously monitor discharge, or to search for and analyze existing data to develop a statistically valid monitoring plan, is lessened.
TNT and RDX degradation and extraction from contaminated soil using subcritical water.
Islam, Mohammad Nazrul; Shin, Moon-Su; Jo, Young-Tae; Park, Jeong-Hun
2015-01-01
The use of explosives either for industrial or military operations have resulted in the environmental pollution, poses ecological and health hazard. In this work, a subcritical water extraction (SCWE) process at laboratory scale was used at varying water temperature (100-175 °C) and flow rate (0.5-1.5 mL min(-1)), to treat 2,4,6-trinitrotoluene (TNT) and hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) contaminated soil, to reveal information with respect to the explosives removal (based on the analyses of soil residue after extraction), and degradation performance (based on the analyses of water extracts) of this process. Continuous flow subcritical water has been considered on removal of explosives to avoid the repartitioning of non-degraded compounds to the soil upon cooling which usually occurs in the batch system. In the SCWE experiments, near complete degradation of both TNT and RDX was observed at 175 °C based on analysis of water extracts and soil. Test results also indicated that TNT removal of >99% and a complete RDX removal were achieved by this process, when the operating conditions were 1 mL min(-1), and treatment time of 20 min, after the temperature reached 175 °C. HPLC-UV and ion chromatography analysis confirmed that the explosives underwent for degradation. The low concentration of explosives found in the process wastewater indicates that water recycling may be viable, to treat additional soil. Our results have shown in the remediation of explosives contaminated soil, the effectiveness of the continuous flow SCWE process. Copyright © 2014 Elsevier Ltd. All rights reserved.
Microfluidic magnetic fluidized bed for DNA analysis in continuous flow mode.
Hernández-Neuta, Iván; Pereiro, Iago; Ahlford, Annika; Ferraro, Davide; Zhang, Qiongdi; Viovy, Jean-Louis; Descroix, Stéphanie; Nilsson, Mats
2018-04-15
Magnetic solid phase substrates for biomolecule manipulation have become a valuable tool for simplification and automation of molecular biology protocols. However, the handling of magnetic particles inside microfluidic chips for miniaturized assays is often challenging due to inefficient mixing, aggregation, and the advanced instrumentation required for effective actuation. Here, we describe the use of a microfluidic magnetic fluidized bed approach that enables dynamic, highly efficient and simplified magnetic bead actuation for DNA analysis in a continuous flow platform with minimal technical requirements. We evaluate the performance of this approach by testing the efficiency of individual steps of a DNA assay based on padlock probes and rolling circle amplification. This assay comprises common nucleic acid analysis principles, such as hybridization, ligation, amplification and restriction digestion. We obtained efficiencies of up to 90% for these reactions with high throughput processing up to 120μL of DNA dilution at flow rates ranging from 1 to 5μL/min without compromising performance. The fluidized bed was 20-50% more efficient than a commercially available solution for microfluidic manipulation of magnetic beads. Moreover, to demonstrate the potential of this approach for integration into micro-total analysis systems, we optimized the production of a low-cost polymer based microarray and tested its analytical performance for integrated single-molecule digital read-out. Finally, we provide the proof-of-concept for a single-chamber microfluidic chip that combines the fluidized bed with the polymer microarray for a highly simplified and integrated magnetic bead-based DNA analyzer, with potential applications in diagnostics. Copyright © 2017 Elsevier B.V. All rights reserved.
Fortin, Nicolas; Klok, Harm-Anton
2015-03-04
Tight regulation of blood glucose levels of diabetic patients requires durable and robust continuous glucose sensing schemes. This manuscript reports the fabrication of ultrathin, phenylboronic acid (PBA) functionalized polymer brushes that swell upon glucose binding and which were integrated as the sensing interface in a new polypropylene hollow fiber (PPHF)-based hydraulic flow glucose sensor prototype. The polymer brushes were prepared via surface-initiated atom transfer radical polymerization of sodium methacrylate followed by postpolymerization modification with 3-aminophenyl boronic acid. In a first series of experiments, the glucose-response of PBA-functionalized poly(methacrylic acid) (PMAA) brushes grafted from planar silicon surfaces was investigated by quartz crystal microbalance with dissipation (QCM-D) and atomic force microscopy (AFM) experiments. The QCM-D experiments revealed a more or less linear change of the frequency shift for glucose concentrations up to ∼10 mM and demonstrated that glucose binding was completely reversible for up to seven switching cycles. The AFM experiments indicated that glucose binding was accompanied by an increase in the film thickness of the PBA functionalized PMAA brushes. The PBA functionalized PMAA brushes were subsequently grafted from the surface of PPHF membranes. The hydraulic permeability of these porous fibers depends on the thickness and swelling of the PMAA brush coating. PBA functionalized brush-coated PPHFs showed a decrease in flux upon exposure to glucose, which is consistent with swelling of the brush coating. Because they avoid the use of enzymes and do not rely on an electrochemical transduction scheme, these PPHF-based hydraulic flow sensors could represent an interesting alternative class of continuous glucose sensors.
The synthesis of active pharmaceutical ingredients (APIs) using continuous flow chemistry
2015-01-01
Summary The implementation of continuous flow processing as a key enabling technology has transformed the way we conduct chemistry and has expanded our synthetic capabilities. As a result many new preparative routes have been designed towards commercially relevant drug compounds achieving more efficient and reproducible manufacture. This review article aims to illustrate the holistic systems approach and diverse applications of flow chemistry to the preparation of pharmaceutically active molecules, demonstrating the value of this strategy towards every aspect ranging from synthesis, in-line analysis and purification to final formulation and tableting. Although this review will primarily concentrate on large scale continuous processing, additional selected syntheses using micro or meso-scaled flow reactors will be exemplified for key transformations and process control. It is hoped that the reader will gain an appreciation of the innovative technology and transformational nature that flow chemistry can leverage to an overall process. PMID:26425178
The synthesis of active pharmaceutical ingredients (APIs) using continuous flow chemistry.
Baumann, Marcus; Baxendale, Ian R
2015-01-01
The implementation of continuous flow processing as a key enabling technology has transformed the way we conduct chemistry and has expanded our synthetic capabilities. As a result many new preparative routes have been designed towards commercially relevant drug compounds achieving more efficient and reproducible manufacture. This review article aims to illustrate the holistic systems approach and diverse applications of flow chemistry to the preparation of pharmaceutically active molecules, demonstrating the value of this strategy towards every aspect ranging from synthesis, in-line analysis and purification to final formulation and tableting. Although this review will primarily concentrate on large scale continuous processing, additional selected syntheses using micro or meso-scaled flow reactors will be exemplified for key transformations and process control. It is hoped that the reader will gain an appreciation of the innovative technology and transformational nature that flow chemistry can leverage to an overall process.
The synthesis of cadmium sulfide nanoplatelets using a novel continuous flow sonochemical reactor
Palanisamy, Barath; Paul, Brian; Chang, Chih -hung
2015-01-21
A continuous flow sonochemical reactor was developed capable of producing metastable cadmium sulfide (CdS) nanoplatelets with thicknesses at or below 10 nm. The continuous flow sonochemical reactor included the passive in-line micromixing of reagents prior to sonochemical reaction. Synthesis results were compared with those from reactors involving batch conventional heating and batch ultrasound-induced heating. The continuous sonochemical synthesis was found to result in high aspect ratio hexagonal platelets of CdS possessing cubic crystal structures with thicknesses well below 10 nm. The unique shape and crystal structure of the nanoplatelets are suggestive of high localized temperatures within the sonochemical process. Asmore » a result, the particle size uniformity and product throughput are much higher for the continuous sonochemical process in comparison to the batch sonochemical process and conventional synthesis processes.« less
Radar-imaged internal layering in the Weddell Sea sector of West Antarctica
NASA Astrophysics Data System (ADS)
Bingham, Robert G.; Rippin, David M.; Karlsson, Nanna B.; Corr, Hugh F. J.; Ferraccioli, Fausto; Jordan, Tom A.; Le Brocq, Anne M.; Ross, Neil; Wright, Andrew P.; Siegert, Martin J.
2013-04-01
Radio-echo sounding (RES) across polar ice sheets reveals extensive, isochronous internal layers, whose stratigraphy, and especially their degree of continuity over multi-km distances, can inform us about both present ice flow and past ice-flow histories. Here, we bring together for the first time two recent advances in this field of cryospheric remote sensing to analyse ice flow into the Weddell Sea sector of West Antarctica. Firstly, we have developed a new quantitative routine for analysing the continuity of internal layers obtained over large areas of ice by airborne RES surveys - we term this routine the "Internal-Layering Continuity-Index (ILCI)". Secondly, in the austral season 2010-11 we acquired, by airborne RES survey, the first comprehensive dataset of deep internal layering across Institute and Möller Ice Streams, two of the more significant feeders of ice into the Filchner-Ronne Ice Shelf. Applying the ILCI to SAR-processed (migrated) RES profiles across Institute Ice Stream's catchment reveals two contrasting regions of internal-layering continuity behaviour. In the western portion of the catchment, where ice-stream tributaries incise deeply through the Ellsworth Subglacial Highlands, the continuity of internal layers is most disrupted across the present ice streams. We therefore interpret the ice-flow configuration in this western region as predominantly spatially stable over the lifetime of the ice. Further east, towards Möller Ice Stream, and towards the interior of the ice sheet, the ILCI does not closely match the present ice flow configuration, while across most of present-day Möller Ice Stream itself, the continuity of internal layers is generally low. We propose that the variation in continuity of internal layering across eastern Institute Ice Stream and the neighbouring Möller results primarily from two factors. Firstly, the noncorrespondence of some inland tributaries with internal-layering continuity acts as evidence for past spatial migration of those tributaries, with likely consequences for the relative positions of Institute and Möller Ice Streams over recent history. Secondly, the subglacial roughness, in part a function of the underlying geology across the region, imposes a strong influence on the continuity of the overlying deep internal layers, though whether it controls, or is a function of, ice flow, remains undetermined. We conclude that in the subglacially mountainous Ellsworth Subglacial Highlands sector, there is long-term stability in the spatial configuration of ice flow, but that elsewhere across Insitute and Möller Ice Streams, the ice-flow configuration is not stable.
Stone, Mandy L.; Graham, Jennifer L.; Gatotho, Jackline W.
2013-01-01
Cheney Reservoir, located in south-central Kansas, is the primary water supply for the city of Wichita. The U.S. Geological Survey has operated a continuous real-time water-quality monitoring station since 1998 on the North Fork Ninnescah River, the main source of inflow to Cheney Reservoir. Continuously measured water-quality physical properties include streamflow, specific conductance, pH, water temperature, dissolved oxygen, and turbidity. Discrete water-quality samples were collected during 1999 through 2009 and analyzed for sediment, nutrients, bacteria, and other water-quality constituents. Regression models were developed to establish relations between discretely sampled constituent concentrations and continuously measured physical properties to compute concentrations of those constituents of interest that are not easily measured in real time because of limitations in sensor technology and fiscal constraints. Regression models were published in 2006 that were based on data collected during 1997 through 2003. This report updates those models using discrete and continuous data collected during January 1999 through December 2009. Models also were developed for four new constituents, including additional nutrient species and indicator bacteria. In addition, a conversion factor of 0.68 was established to convert the Yellow Springs Instruments (YSI) model 6026 turbidity sensor measurements to the newer YSI model 6136 sensor at the North Ninnescah River upstream from Cheney Reservoir site. Newly developed models and 14 years of hourly continuously measured data were used to calculate selected constituent concentrations and loads during January 1999 through December 2012. The water-quality information in this report is important to the city of Wichita because it allows the concentrations of many potential pollutants of interest to Cheney Reservoir, including nutrients and sediment, to be estimated in real time and characterized over conditions and time scales that would not be possible otherwise. In general, model forms and the amount of variance explained by the models was similar between the original and updated models. The amount of variance explained by the updated models changed by 10 percent or less relative to the original models. Total nitrogen, nitrate, organic nitrogen, E. coli bacteria, and total organic carbon models were newly developed for this report. Additional data collection over a wider range of hydrological conditions facilitated the development of these models. The nitrate model is particularly important because it allows for comparison to Cheney Reservoir Task Force goals. Mean hourly computed total suspended solids concentration during 1999 through 2012 was 54 milligrams per liter (mg/L). The total suspended solids load during 1999 through 2012 was 174,031 tons. On an average annual basis, the Cheney Reservoir Task Force runoff (550 mg/L) and long-term (100 mg/L) total suspended solids goals were never exceeded, but the base flow goal was exceeded every year during 1999 through 2012. Mean hourly computed nitrate concentration was 1.08 mg/L during 1999 through 2012. The total nitrate load during 1999 through 2012 was 1,361 tons. On an annual average basis, the Cheney Reservoir Task Force runoff (6.60 mg/L) nitrate goal was never exceeded, the long-term goal (1.20 mg/L) was exceeded only in 2012, and the base flow goal of 0.25 mg/L was exceeded every year. Mean nitrate concentrations that were higher during base flow, rather than during runoff conditions, suggest that groundwater sources are the main contributors of nitrate to the North Fork Ninnescah River above Cheney Reservoir. Mean hourly computed phosphorus concentration was 0.14 mg/L during 1999 through 2012. The total phosphorus load during 1999 through 2012 was 328 tons. On an average annual basis, the Cheney Reservoir Task Force runoff goal of 0.40 mg/L for total phosphorus was exceeded in 2002, the year with the largest yearly mean turbidity, and the long-term goal (0.10 mg/L) was exceeded in every year except 2011 and 2012, the years with the smallest mean streamflows. The total phosphorus base flow goal of 0.05 mg/L was exceeded every year. Given that base flow goals for total suspended solids, nitrate, and total phosphorus were exceeded every year despite hydrologic conditions, the established base flow goals are either unattainable or substantially more best management practices will need to be implemented to attain them. On an annual average basis, no discernible patterns were evident in total suspended sediment, nitrate, and total phosphorus concentrations or loads over time, in large part because of hydrologic variability. However, more rigorous statistical analyses are required to evaluate temporal trends. A more rigorous analysis of temporal trends will allow evaluation of watershed investments in best management practices.
Souza, Juliana M DE; Galaverna, Renan; Souza, Aline A N DE; Brocksom, Timothy J; Pastre, Julio C; Souza, Rodrigo O M A DE; Oliveira, Kleber T DE
2018-01-01
We present a comprehensive review of the advent and impact of continuous flow chemistry with regard to the synthesis of natural products and drugs, important pharmaceutical products and definitely responsible for a revolution in modern healthcare. We detail the beginnings of modern drugs and the large scale batch mode of production, both chemical and microbiological. The introduction of modern continuous flow chemistry is then presented, both as a technological tool for enabling organic chemistry, and as a fundamental research endeavor. This part details the syntheses of bioactive natural products and commercial drugs.
Hatamoto, Masashi; Kimura, Masafumi; Sato, Takafumi; Koizumi, Masato; Takahashi, Masanobu; Kawakami, Shuji; Araki, Nobuo; Yamaguchi, Takashi
2014-01-01
Denitrifying anaerobic methane oxidizing (DAMO) microorganisms were enriched from paddy field soils using continuous-flow and batch cultures fed with nitrate or nitrite as a sole electron acceptor. After several months of cultivation, the continuous-flow cultures using nitrite showed remarkable simultaneous methane oxidation and nitrite reduction and DAMO bacteria belonging to phylum NC10 were enriched. A maximum volumetric nitrite consumption rate of 70.4±3.4 mg-N·L(-1)·day(-1) was achieved with very short hydraulic retention time of 2.1 hour. In the culture, about 68% of total microbial cells were bacteria and no archaeal cells were detected by fluorescence in situ hybridization. In the nitrate-fed continuous-flow cultures, 58% of total microbial cells were bacteria while archaeal cells accounted for 7% of total cell numbers. Phylogenetic analysis of pmoA gene sequence showed that enriched DAMO bacteria in the continuous-flow cultivation had over 98% sequence similarity to DAMO bacteria in the inoculum. In contrast, for batch culture, the enriched pmoA gene sequences had 89-91% sequence similarity to DAMO bacteria in the inoculum. These results indicate that electron acceptor and cultivation method strongly affect the microbial community structures of DAMO consortia.
Harold F. Haupt
1969-01-01
A simple gage on the lysimeter principle has been developed to provide continuous readings of the volume of water flowing from the base of a snowpack in the form of surface melt alone or rain percolate and surface melt combined. The data obtained show promise, after two seasons of being applicable in river flood forecasting, as well as in studies of snow hydrology....
Multistep continuous-flow synthesis of (R)- and (S)-rolipram using heterogeneous catalysts
NASA Astrophysics Data System (ADS)
Tsubogo, Tetsu; Oyamada, Hidekazu; Kobayashi, Shū
2015-04-01
Chemical manufacturing is conducted using either batch systems or continuous-flow systems. Flow systems have several advantages over batch systems, particularly in terms of productivity, heat and mixing efficiency, safety, and reproducibility. However, for over half a century, pharmaceutical manufacturing has used batch systems because the synthesis of complex molecules such as drugs has been difficult to achieve with continuous-flow systems. Here we describe the continuous-flow synthesis of drugs using only columns packed with heterogeneous catalysts. Commercially available starting materials were successively passed through four columns containing achiral and chiral heterogeneous catalysts to produce (R)-rolipram, an anti-inflammatory drug and one of the family of γ-aminobutyric acid (GABA) derivatives. In addition, simply by replacing a column packed with a chiral heterogeneous catalyst with another column packed with the opposing enantiomer, we obtained antipole (S)-rolipram. Similarly, we also synthesized (R)-phenibut, another drug belonging to the GABA family. These flow systems are simple and stable with no leaching of metal catalysts. Our results demonstrate that multistep (eight steps in this case) chemical transformations for drug synthesis can proceed smoothly under flow conditions using only heterogeneous catalysts, without the isolation of any intermediates and without the separation of any catalysts, co-products, by-products, and excess reagents. We anticipate that such syntheses will be useful in pharmaceutical manufacturing.
Chattoraj, Sayantan; Sun, Changquan Calvin
2018-04-01
Continuous manufacturing of tablets has many advantages, including batch size flexibility, demand-adaptive scale up or scale down, consistent product quality, small operational foot print, and increased manufacturing efficiency. Simplicity makes direct compression the most suitable process for continuous tablet manufacturing. However, deficiencies in powder flow and compression of active pharmaceutical ingredients (APIs) limit the range of drug loading that can routinely be considered for direct compression. For the widespread adoption of continuous direct compression, effective API engineering strategies to address power flow and compression problems are needed. Appropriate implementation of these strategies would facilitate the design of high-quality robust drug products, as stipulated by the Quality-by-Design framework. Here, several crystal and particle engineering strategies for improving powder flow and compression properties are summarized. The focus is on the underlying materials science, which is the foundation for effective API engineering to enable successful continuous manufacturing by the direct compression process. Copyright © 2018 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
Flow status of three transboundary rivers in Northern Greece as a tool for hydro-diplomacy
NASA Astrophysics Data System (ADS)
Hatzigiannakis, Eyaggelos; Hatzispiroglou, Ioannis; Arampatzis, Georgios; Ilia, Andreas; Pantelakis, Dimitrios; Filintas, Agathos; Panagopoulos, Andreas
2015-04-01
The aim of this paper is to examine how the river flow monitoring consists a tool for hydro-diplomacy. Management of transboundary catchments and the demand of common water resources, often comprise the cause of conflicts and tension threatening the peaceful coexistence of nations. The Water Framework Directive 2000/60/EU sets a base for water management contributing to common approaches, common goals, common principles as well as providing new definitions and measures for Europe's water resources. In northern Greece the main renewable resources are "imported" (over 25% of its water reserves) and for this reason the implementation of continuous flow measurements throughout the year is necessary, even though difficult to achieve. This paper focuses on the three largest transboundary rivers in Northern Greece. Axios and Strymonas river flow across the region of Central Macedonia in Northern Greece. Axios flows from FYROM to Greece, and Strymonas from Bulgaria to Greece. Nestos river flows from Bulgaria to Greece. The Greek part is in the region of Eastern Macedonia and Thrace in Northern Greece. Significant productive agricultural areas around these rivers are irrigated from them so they are very important for the local society. Measurements of the river flow velocity and the flow depth have been made at bridges. The frequency of the measurements is roughly monthly, because it is expected a significant change in the depth flow and discharge. A series of continuously flow measure-ments were performed during 2013 and 2014 using flowmeters (Valeport and OTT type). The cross-section characteristics, the river flow velocity of segments and the mean water flow velocity and discharge total profile were measured and calculated re-spectively. Measurements are conducted in the framework of the national water resources monitoring network, which is realised in compliance to the Water Framework Directive under the supervision and coordination of the Hellenic Ministry for the Environment and Climate Change. This project is elaborated in the framework of the operational program "Environment and Sustainable Development" which is co-funded by the National Strategic Reference Framework (NSRF) and the Public Investment Program (PIP).
The Hawaiian Volcano Observatory's current approach to forecasting lava flow hazards (Invited)
NASA Astrophysics Data System (ADS)
Kauahikaua, J. P.
2013-12-01
Hawaiian Volcanoes are best known for their frequent basaltic eruptions, which typically start with fast-moving channelized `a`a flows fed by high eruptions rates. If the flows continue, they generally transition into pahoehoe flows, fed by lower eruption rates, after a few days to weeks. Kilauea Volcano's ongoing eruption illustrates this--since 1986, effusion at Kilauea has mostly produced pahoehoe. The current state of lava flow simulation is quite advanced, but the simplicity of the models mean that they are most appropriately used during the first, most vigorous, days to weeks of an eruption - during the effusion of `a`a flows. Colleagues at INGV in Catania have shown decisively that MAGFLOW simulations utilizing satellite-derived eruption rates can be effective at estimating hazards during the initial periods of an eruption crisis. However, the algorithms do not simulate the complexity of pahoehoe flows. Forecasts of lava flow hazards are the most common form of volcanic hazard assessments made in Hawai`i. Communications with emergency managers over the last decade have relied on simple steepest-descent line maps, coupled with empirical lava flow advance rate information, to portray the imminence of lava flow hazard to nearby communities. Lavasheds, calculated as watersheds, are used as a broader context for the future flow paths and to advise on the utility of diversion efforts, should they be contemplated. The key is to communicate the uncertainty of any approach used to formulate a forecast and, if the forecast uses simple tools, these communications can be fairly straightforward. The calculation of steepest-descent paths and lavasheds relies on the accuracy of the digital elevation model (DEM) used, so the choice of DEM is critical. In Hawai`i, the best choice is not the most recent but is a 1980s-vintage 10-m DEM--more recent LIDAR and satellite radar DEM are referenced to the ellipsoid and include vegetation effects. On low-slope terrain, steepest descent lines calculated on a geoid-based DEM may differ significantly from those calculated on an ellipsoid-based DEM. Good estimates of lava flow advance rates can be obtained from empirical compilations of historical advance rates of Hawaiian lava flows. In this way, rates appropriate for observed flow types (`a`a or pahoehoe, channelized or not) can be applied. Eruption rate is arguably the most important factor, while slope is also significant for low eruption rates. Eruption rate, however, remains the most difficult parameter to estimate during an active eruption. The simplicity of the HVO approach is its major benefit. How much better can lava-flow advance be forecast for all types of lava flows? Will the improvements outweigh the increased uncertainty propagated through the simulation calculations? HVO continues to improve and evaluate its lava flow forecasting tools to provide better hazard assessments to emergency personnel.
Hazard Monitoring of Growing Lava Flow Fields Using Seismic Tremor
NASA Astrophysics Data System (ADS)
Eibl, E. P. S.; Bean, C. J.; Jónsdottir, I.; Hoskuldsson, A.; Thordarson, T.; Coppola, D.; Witt, T.; Walter, T. R.
2017-12-01
An effusive eruption in 2014/15 created a 85 km2 large lava flow field in a remote location in the Icelandic highlands. The lava flows did not threaten any settlements or paved roads but they were nevertheless interdisciplinarily monitored in detail. Images from satellites and aircraft, ground based video monitoring, GPS and seismic recordings allowed the monitoring and reconstruction of a detailed time series of the growing lava flow field. While the use of satellite images and probabilistic modelling of lava flows are quite common tools to monitor the current and forecast the future growth direction, here we show that seismic recordings can be of use too. We installed a cluster of seismometers at 15 km from the vents and recorded the ground vibrations associated with the eruption. This seismic tremor was not only generated below the vents, but also at the edges of the growing lava flow field and indicated the parts of the lava flow field that were most actively growing. Whilst the time resolution is in the range of days for satellites, seismic stations easily sample continuously at 100 Hz and could therefore provide a much better resolution and estimate of the lava flow hazard in real-time.
Dynamic Transitions and Baroclinic Instability for 3D Continuously Stratified Boussinesq Flows
NASA Astrophysics Data System (ADS)
Şengül, Taylan; Wang, Shouhong
2018-02-01
The main objective of this article is to study the nonlinear stability and dynamic transitions of the basic (zonal) shear flows for the three-dimensional continuously stratified rotating Boussinesq model. The model equations are fundamental equations in geophysical fluid dynamics, and dynamics associated with their basic zonal shear flows play a crucial role in understanding many important geophysical fluid dynamical processes, such as the meridional overturning oceanic circulation and the geophysical baroclinic instability. In this paper, first we derive a threshold for the energy stability of the basic shear flow, and obtain a criterion for local nonlinear stability in terms of the critical horizontal wavenumbers and the system parameters such as the Froude number, the Rossby number, the Prandtl number and the strength of the shear flow. Next, we demonstrate that the system always undergoes a dynamic transition from the basic shear flow to either a spatiotemporal oscillatory pattern or circle of steady states, as the shear strength of the basic flow crosses a critical threshold. Also, we show that the dynamic transition can be either continuous or catastrophic, and is dictated by the sign of a transition number, fully characterizing the nonlinear interactions of different modes. Both the critical shear strength and the transition number are functions of the system parameters. A systematic numerical method is carried out to explore transition in different flow parameter regimes. In particular, our numerical investigations show the existence of a hypersurface which separates the parameter space into regions where the basic shear flow is stable and unstable. Numerical investigations also yield that the selection of horizontal wave indices is determined only by the aspect ratio of the box. We find that the system admits only critical eigenmodes with roll patterns aligned with the x-axis. Furthermore, numerically we encountered continuous transitions to multiple steady states, as well as continuous and catastrophic transitions to spatiotemporal oscillations.
NASA Astrophysics Data System (ADS)
Mei, Guohui; Zhang, Jiu; Zhao, Shumao; Xie, Zhi
2017-03-01
Fume exhaust system is the main component of the novel blackbody cavity sensor with a single layer tube, which removes the fume by gas flow along the exhaust pipe to keep the light path clean. However, the gas flow may break the conditions of blackbody cavity and results in the poor measurement accuracy. In this paper, we analyzed the influence of the gas flow on the temperature distribution of the measuring cavity, and then calculated the integrated effective emissivity of the non-isothermal cavity based on Monte-Carlo method, accordingly evaluated the sensor measurement accuracy, finally obtained the maximum allowable flow rate for various length of the exhaust pipe to meet the measurement accuracy. These results will help optimize the novel blackbody cavity sensor design and use it better for measuring the temperature of molten steel.
Shear Wave Wavefront Mapping Using Ultrasound Color Flow Imaging.
Yamakoshi, Yoshiki; Kasahara, Toshihiro; Iijima, Tomohiro; Yuminaka, Yasushi
2015-10-01
A wavefront reconstruction method for a continuous shear wave is proposed. The method uses ultrasound color flow imaging (CFI) to detect the shear wave's wavefront. When the shear wave vibration frequency satisfies the required frequency condition and the displacement amplitude satisfies the displacement amplitude condition, zero and maximum flow velocities appear at the shear wave vibration phases of zero and π rad, respectively. These specific flow velocities produce the shear wave's wavefront map in CFI. An important feature of this method is that the shear wave propagation is observed in real time without addition of extra functions to the ultrasound imaging system. The experiments are performed using a 6.5 MHz CFI system. The shear wave is excited by a multilayer piezoelectric actuator. In a phantom experiment, the shear wave velocities estimated using the proposed method and those estimated using a system based on displacement measurement show good agreement. © The Author(s) 2015.
Suspended-sediment dynamics in the tidal reach of a San Francisco Bay tributary
Shellenbarger, Gregory; Downing-Kunz, Maureen; Schoellhamer, David H.
2015-01-01
To better understand suspended-sediment transport in a tidal slough adjacent to a large wetland restoration project, we deployed continuously-measuring temperature, salinity, depth, turbidity, and velocity sensors since 2010, and added a dissolved-oxygen sensor in 2012, at a near-bottom location in Alviso Slough (Alviso, California USA). Alviso Slough is the downstream reach of the Guadalupe River and flows into the far southern end of San Francisco Bay. River flow is influenced by the Mediterranean climate, with high flows correlated to episodic winter storms (~85 m3 s-1) and low base flow during the summer (~0.85 m3 s-1). Storms and associated runoff have the greatest influence on sediment flux. Strong spring tides promote upstream sediment flux and weak neap tides have only a small net flux. During neap tides, stratification likely suppresses sediment transport during weaker flood and ebb tides.
SHEAR ACCELERATION IN EXPANDING FLOWS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rieger, F. M.; Duffy, P., E-mail: frank.rieger@mpi-hd.mpg.de, E-mail: peter.duffy@ucd.ie
Shear flows are naturally expected to occur in astrophysical environments and potential sites of continuous non-thermal Fermi-type particle acceleration. Here we investigate the efficiency of expanding relativistic outflows to facilitate the acceleration of energetic charged particles to higher energies. To this end, the gradual shear acceleration coefficient is derived based on an analytical treatment. The results are applied to the context of the relativistic jets from active galactic nuclei. The inferred acceleration timescale is investigated for a variety of conical flow profiles (i.e., power law, Gaussian, Fermi–Dirac) and compared to the relevant radiative and non-radiative loss timescales. The results exemplifymore » that relativistic shear flows are capable of boosting cosmic-rays to extreme energies. Efficient electron acceleration, on the other hand, requires weak magnetic fields and may thus be accompanied by a delayed onset of particle energization and affect the overall jet appearance (e.g., core, ridge line, and limb-brightening).« less
[Economical benefit of continuous total intravenous anesthesia].
Onaka, M; Yamamoto, H; Akatsuka, M; Mori, H
1999-05-01
Total intravenous anesthesia (TIVA) has been recommended in view of avoiding air pollution. However, intermittent administration of anesthetic agents has a large disadvantage of delayed emergence. We reported that continuous TIVA with propofol, ketamine, vecuronium and buprenorphine (PKBp) could bring rapid emergence. In this study, we calculated and compared the cost of anesthesia in the subjects who had undergone general anesthesia either with continuous PKBp or nitrous oxide-oxygen-sevoflurane. In group PKBp subjects, after induction with propofol, ketamine, vecuronium and buprenorphine, anesthesia was maintained with continuous intravenous administration of propofol corresponding to the patient's age using twice step down method; ketamine (240 micrograms.kg-1.h-1), vecuronium (80 micrograms.kg-1.h-1) and buprenorphine (0.4 microgram.kg-1.h-1). Group GOS subjects, after the same induction method, received nitrous oxide, sevoflurane and vecuronium. Moreover, the group GOS subjects were divided to two groups; the high flow GOS (N2O:O2:sevoflurane = 4 l:2 l:30 ml) and the low flow GOS (N2O:O2:sevoflurane = 2 l:1 l:15 ml). Continuous PKBp group showed lower cost than the high flow GOS group. The PKBp group showed lower cost than the low flow GOS group except in patients weighing more than 100 kg. Furthermore, we calculated the cost of continuous PKBp anesthesia in Japan, U.S.A. and U.K. The U.S.A. cost of PKBp was higher than the Japanese and the U.K., because the cost of ketamine in U.S.A. is higher than in the other countries. Continuous PKBp is more economical than the high flow GOS, and continuous PKBp in Japan is more economical than in U.S.A.
A continuous-flow capillary mixing method to monitor reactions on the microsecond time scale.
Shastry, M C; Luck, S D; Roder, H
1998-01-01
A continuous-flow capillary mixing apparatus, based on the original design of Regenfuss et al. (Regenfuss, P., R. M. Clegg, M. J. Fulwyler, F. J. Barrantes, and T. M. Jovin. 1985. Rev. Sci. Instrum. 56:283-290), has been developed with significant advances in mixer design, detection method and data analysis. To overcome the problems associated with the free-flowing jet used for observation in the original design (instability, optical artifacts due to scattering, poor definition of the geometry), the solution emerging from the capillary is injected directly into a flow-cell joined to the tip of the outer capillary via a ground-glass joint. The reaction kinetics are followed by measuring fluorescence versus distance downstream from the mixer, using an Hg(Xe) arc lamp for excitation and a digital camera with a UV-sensitized CCD detector for detection. Test reactions involving fluorescent dyes indicate that mixing is completed within 15 micros of its initiation and that the dead time of the measurement is 45 +/- 5 micros, which represents a >30-fold improvement in time resolution over conventional stopped-flow instruments. The high sensitivity and linearity of the CCD camera have been instrumental in obtaining artifact-free kinetic data over the time window from approximately 45 micros to a few milliseconds with signal-to-noise levels comparable to those of conventional methods. The scope of the method is discussed and illustrated with an example of a protein folding reaction. PMID:9591695
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seyedein, S.H.; Hasan, H.
1997-03-01
Controlled flow and heat transfer are important for the quality of a strip in a twin-roll continuous casting process. A numerical study was carried out to investigate the two-dimensional turbulent flow and heat transfer in the liquid stainless-steel-filled wedge-shaped cavity formed by the two counterrotating rolls in a twin-roll continuous casting system. The turbulent characteristics of the flow were modeled using a low-Reynolds-number {kappa}-{epsilon} turbulence model due to Launder and Sharma. The arbitrary nature of the computational domain was accounted for through the use of a nonorthogonal boundary-fitted coordinate system on a staggered grid. A control-volume-based finite difference scheme wasmore » used to solve the transformed transport equations. This study is primarily focused on elucidating the inlet superheat dissipation in the melt pool with the rolls being maintained at a constant liquidus temperature of the steel. A parametric study was carried out to ascertain the effect of the inlet superheat, the casting speed, and the roll gap at the nip of the rotating rolls on the flow and heat transfer characteristics. The velocity fields show two counterrotating recirculation zones in the upstream region. The local Nusselt number on the roll surface shows significant variations. The contours of temperature and turbulent viscosity show the complex nature of the turbulent transport phenomena to be expected in a twin-roll casting process.« less
Mwashote, B.M.; Burnett, W.C.; Chanton, J.; Santos, I.R.; Dimova, N.; Swarzenski, P.W.
2010-01-01
Submarine groundwater discharge (SGD) assessments were conducted both in the laboratory and at a field site in the northeastern Gulf of Mexico, using a continuous heat-type automated seepage meter (seepmeter). The functioning of the seepmeter is based on measurements of a temperature gradient in the water between downstream and upstream positions in its flow pipe. The device has the potential of providing long-term, high-resolution measurements of SGD. Using a simple inexpensive laboratory set-up, we have shown that connecting an extension cable to the seepmeter has a negligible effect on its measuring capability. Similarly, the observed influence of very low temperature (???3 ??C) on seepmeter measurements can be accounted for by conducting calibrations at such temperatures prior to field deployments. Compared to manual volumetric measurements, calibration experiments showed that at higher water flow rates (>28 cm day-1 or cm3 cm-2 day-1) an analog flowmeter overestimated flow rates by ???7%. This was apparently due to flow resistance, turbulence and formation of air bubbles in the seepmeter water flow tubes. Salinity had no significant effect on the performance of the seepmeter. Calibration results from fresh water and sea water showed close agreement at a 95% confidence level significance between the data sets from the two media (R2 = 0.98). Comparatively, the seepmeter SGD measurements provided data that are comparable to manually-operated seepage meters, the radon geochemical tracer approach, and an electromagnetic (EM) seepage meter. ?? 2009 Elsevier Ltd.
Vishnuganth, M A; Remya, Neelancherry; Kumar, Mathava; Selvaraju, N
2017-05-04
Carbofuran (CBF) removal in a continuous-flow photocatalytic reactor with granular activated carbon supported titanium dioxide (GAC-TiO 2 ) catalyst was investigated. The effects of feed flow rate, TiO 2 concentration and addition of supplementary oxidants on CBF removal were investigated. The central composite design (CCD) was used to design the experiments and to estimate the effects of feed flow rate and TiO 2 concentration on CBF removal. The outcome of CCD experiments demonstrated that reactor performance was influenced mainly by feed flow rate compared to TiO 2 concentration. A second-order polynomial model developed based on CCD experiments fitted the experimental data with good correlation (R 2 ∼ 0.964). The addition of 1 mL min -1 hydrogen peroxide has shown complete CBF degradation and 76% chemical oxygen demand removal under the following operating conditions of CBF ∼50 mg L -1 , TiO 2 ∼5 mg L -1 and feed flow rate ∼82.5 mL min -1 . Rate constant of the photodegradation process was also calculated by applying the kinetic data in pseudo-first-order kinetics. Four major degradation intermediates of CBF were identified using GC-MS analysis. As a whole, the reactor system and GAC-TiO 2 catalyst used could be constructive in cost-effective CBF removal with no impact to receiving environment through getaway of photocatalyst.
Effective star tracking method based on optical flow analysis for star trackers.
Sun, Ting; Xing, Fei; Wang, Xiaochu; Li, Jin; Wei, Minsong; You, Zheng
2016-12-20
Benefiting from rapid development of imaging sensor technology, modern optical technology, and a high-speed computing chip, the star tracker's accuracy, dynamic performance, and update rate have been greatly improved with low power consumption and miniature size. The star tracker is currently one of the most competitive attitude measurement sensors. However, due to restrictions of the optical imaging system, difficulties still exist in moving star spot detection and star tracking when in special motion conditions. An effective star tracking method based on optical flow analysis for star trackers is proposed in this paper. Spot-based optical flow, based on a gray gradient between two adjacent star images, is analyzed to distinguish the star spot region and obtain an accurate star spot position so that the star tracking can keep continuous under high dynamic conditions. The obtained star vectors and extended Kalman filter (EKF) are then combined to conduct an angular velocity estimation to ensure region prediction of the star spot; this can be combined with the optical flow analysis result. Experiment results show that the method proposed in this paper has advantages in conditions of large angular velocity and large angular acceleration, despite the presence of noise. Higher functional density and better performance can be achieved; thus, the star tracker can be more widely applied in small satellites, remote sensing, and other complex space missions.
Modelling vortex-induced fluid-structure interaction.
Benaroya, Haym; Gabbai, Rene D
2008-04-13
The principal goal of this research is developing physics-based, reduced-order, analytical models of nonlinear fluid-structure interactions associated with offshore structures. Our primary focus is to generalize the Hamilton's variational framework so that systems of flow-oscillator equations can be derived from first principles. This is an extension of earlier work that led to a single energy equation describing the fluid-structure interaction. It is demonstrated here that flow-oscillator models are a subclass of the general, physical-based framework. A flow-oscillator model is a reduced-order mechanical model, generally comprising two mechanical oscillators, one modelling the structural oscillation and the other a nonlinear oscillator representing the fluid behaviour coupled to the structural motion.Reduced-order analytical model development continues to be carried out using a Hamilton's principle-based variational approach. This provides flexibility in the long run for generalizing the modelling paradigm to complex, three-dimensional problems with multiple degrees of freedom, although such extension is very difficult. As both experimental and analytical capabilities advance, the critical research path to developing and implementing fluid-structure interaction models entails-formulating generalized equations of motion, as a superset of the flow-oscillator models; and-developing experimentally derived, semi-analytical functions to describe key terms in the governing equations of motion. The developed variational approach yields a system of governing equations. This will allow modelling of multiple d.f. systems. The extensions derived generalize the Hamilton's variational formulation for such problems. The Navier-Stokes equations are derived and coupled to the structural oscillator. This general model has been shown to be a superset of the flow-oscillator model. Based on different assumptions, one can derive a variety of flow-oscillator models.