Process for recovering evolved hydrogen enriched with at least one heavy hydrogen isotope
Tanaka, John; Reilly, Jr., James J.
1978-01-01
This invention relates to a separation means and method for enriching a hydrogen atmosphere with at least one heavy hydrogen isotope by using a solid titaniun alloy hydride. To this end, the titanium alloy hydride containing at least one metal selected from the group consisting of vanadium, chromium, manganese, molybdenum, iron, cobalt and nickel is contacted with a circulating gaseous flow of hydrogen containing at least one heavy hydrogen isotope at a temperature in the range of -20.degree. to +40.degree. C and at a pressure above the dissociation pressure of the hydrided alloy selectively to concentrate at least one of the isotopes of hydrogen in the hydrided metal alloy. The contacting is continued until equilibrium is reached, and then the gaseous flow is isolated while the temperature and pressure of the enriched hydride remain undisturbed selectively to isolate the hydride. Thereafter, the enriched hydrogen is selectively recovered in accordance with the separation factor (S.F.) of the alloy hydride employed.
NASA Astrophysics Data System (ADS)
Bolea, E.; Laborda, F.; Castillo, J. R.; Sturgeon, R. E.
2004-04-01
Simultaneous measurements of As, Sb, Se, Sn and Ge were performed by inductively coupled plasma atomic emission spectrometry following their electrochemical hydride generation. An electrochemical hydride generator based on a concentric arrangement with a porous cathode, working in a continuous flow mode was used. The effects of sample flow rate, applied current and electrolytic solution concentration on response were studied and their influence on the mechanisms of hydride generation discussed. Four materials, particulate lead, reticulated vitreous carbon (RVC), silver and amalgamated silver were tested as cathode materials. The best results were achieved with particulate lead and RVC cathodes, wherein generation efficiencies higher than 80% were estimated for most of the analytes. In general, limits of detection between 0.1 and 3.6 ng ml -1 and a precision better than 5% were achieved using a lead cathode. The analysis of a marine sediment reference material (PACS-2, NRC) showed good agreement with the certified values for As and Se.
Development of metal hydride composites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Congdon, J.W.
1992-12-01
Most of current hydride technology at Savannah River Site is based on beds of metal hydride powders; the expansion upon hydridation and the cycling results in continued breakdown into finer particles. Goal is to develop a composite which will contain the fines in a dimensionally stable matrix, for use in processes which require a stable gas flow through a hydride bed. Metal hydride composites would benefit the advanced Thermal Cycling Absorption process (hydrogen isotope separation), and the Replacement Tritium Facility (storage, pumping, compression, purification of hydrogen isotopes). These composites were fabricated by cold compaction of a mixture of metal hydridemore » granules and coarse copper powder; the porosity in the granules was introduced by means of ammonium carbonate. The composite pellets were cycled 138 times in hydrogen with the loss of LANA0.75 (LaNi{sub 4.25}Al{sub 0.75}) limited to the surface. Vacuum sintering can provide additional strength at the edges. Without a coating, the metal hydride particles exposed at the pellet surface can be removed by cycling several times in hydrogen.« less
Gas-controlled dynamic vacuum insulation with gas gate
Benson, David K.; Potter, Thomas F.
1994-06-07
Disclosed is a dynamic vacuum insulation comprising sidewalls enclosing an evacuated chamber and gas control means for releasing hydrogen gas into a chamber to increase gas molecule conduction of heat across the chamber and retrieving hydrogen gas from the chamber. The gas control means includes a metal hydride that absorbs and retains hydrogen gas at cooler temperatures and releases hydrogen gas at hotter temperatures; a hydride heating means for selectively heating the metal hydride to temperatures high enough to release hydrogen gas from the metal hydride; and gate means positioned between the metal hydride and the chamber for selectively allowing hydrogen to flow or not to flow between said metal hydride and said chamber.
Gas-controlled dynamic vacuum insulation with gas gate
Benson, D.K.; Potter, T.F.
1994-06-07
Disclosed is a dynamic vacuum insulation comprising sidewalls enclosing an evacuated chamber and gas control means for releasing hydrogen gas into a chamber to increase gas molecule conduction of heat across the chamber and retrieving hydrogen gas from the chamber. The gas control means includes a metal hydride that absorbs and retains hydrogen gas at cooler temperatures and releases hydrogen gas at hotter temperatures; a hydride heating means for selectively heating the metal hydride to temperatures high enough to release hydrogen gas from the metal hydride; and gate means positioned between the metal hydride and the chamber for selectively allowing hydrogen to flow or not to flow between said metal hydride and said chamber. 25 figs.
Capillary electrophoresis (CE) was used to speciate four environmentally significant, toxic forms of arsenic: arsenite, arsenate, monomethylarsonic acid and dimethylarsinic acid. Hydride generation (HG) was used to convert the species into their respective hydrides. The hydride ...
Capillary electrophoresis (CE) was used to speciate four environmentally significant, toxic forms of arsenic: arsenite, arsenate, monomethylarsonic acid and dimethylarsinic acid. Hydride generation (HG) was used to convert the species into their respective hydrides. The hydride s...
Metal hydride composition and method of making
Congdon, James W.
1995-01-01
A dimensionally stable hydride composition and a method for making such a composition. The composition is made by forming particles of a metal hydride into porous granules, mixing the granules with a matrix material, forming the mixture into pellets, and sintering the pellets in the absence of oxygen. The ratio of matrix material to hydride is preferably between approximately 2:1 and 4:1 by volume. The porous structure of the granules accommodates the expansion that occurs when the metal hydride particles absorb hydrogen. The porous matrix allows the flow of hydrogen therethrough to contact the hydride particles, yet supports the granules and contains the hydride fines that result from repeated absorption/desorption cycles.
Pyrophoric behaviour of uranium hydride and uranium powders
NASA Astrophysics Data System (ADS)
Le Guyadec, F.; Génin, X.; Bayle, J. P.; Dugne, O.; Duhart-Barone, A.; Ablitzer, C.
2010-01-01
Thermal stability and spontaneous ignition conditions of uranium hydride and uranium metal fine powders have been studied and observed in an original and dedicated experimental device placed inside a glove box under flowing pure argon. Pure uranium hydride powder with low amount of oxide (<0.5 wt.%) was obtained by heat treatment at low temperature in flowing Ar/5%H2. Pure uranium powder was obtained by dehydration in flowing pure argon. Those fine powders showed spontaneous ignition at room temperature in air. An in situ CCD-camera displayed ignition associated with powder temperature measurement. Characterization of powders before and after ignition was performed by XRD measurements and SEM observations. Oxidation mechanisms are proposed.
Metal hydride composition and method of making
DOE Office of Scientific and Technical Information (OSTI.GOV)
Congdon, J.W.
1995-08-22
A dimensionally stable hydride composition and a method for making such a composition are disclosed. The composition is made by forming particles of a metal hydride into porous granules, mixing the granules with a matrix material, forming the mixture into pellets, and sintering the pellets in the absence of oxygen. The ratio of matrix material to hydride is preferably between approximately 2:1 and 4:1 by volume. The porous structure of the granules accommodates the expansion that occurs when the metal hydride particles absorb hydrogen. The porous matrix allows the flow of hydrogen there through to contact the hydride particles, yetmore » supports the granules and contains the hydride fines that result from repeated absorption/desorption cycles. 3 figs.« less
Yeşiller, Semira Unal; Yalçın, Serife
2013-04-03
A laser induced breakdown spectrometry hyphenated with on-line continuous flow hydride generation sample introduction system, HG-LIBS, has been used for the determination of arsenic, antimony, lead and germanium in aqueous environments. Optimum chemical and instrumental parameters governing chemical hydride generation, laser plasma formation and detection were investigated for each element under argon and nitrogen atmosphere. Arsenic, antimony and germanium have presented strong enhancement in signal strength under argon atmosphere while lead has shown no sensitivity to ambient gas type. Detection limits of 1.1 mg L(-1), 1.0 mg L(-1), 1.3 mg L(-1) and 0.2 mg L(-1) were obtained for As, Sb, Pb and Ge, respectively. Up to 77 times enhancement in detection limit of Pb were obtained, compared to the result obtained from the direct analysis of liquids by LIBS. Applicability of the technique to real water samples was tested through spiking experiments and recoveries higher than 80% were obtained. Results demonstrate that, HG-LIBS approach is suitable for quantitative analysis of toxic elements and sufficiently fast for real time continuous monitoring in aqueous environments. Copyright © 2013 Elsevier B.V. All rights reserved.
Tensile properties of titanium electrolytically charged with hydrogen
NASA Technical Reports Server (NTRS)
Smith, R. J.; Otterson, D. A.
1971-01-01
Yield strength, ultimate tensile strength, and elongation were studied for annealed titanium electrolytically charged with hydrogen. The hydrogen was present as a surface hydride layer. These tensile properties were generally lower for uncharged titanium than for titanium with a continuous surface hydride; they were greater for uncharged titanium than for titanium with an assumed discontinuous surface hydride. We suggest that the interface between titanium and titanium hydride is weak. And the hydride does not necessarily impair strength and ductility of annealed titanium. The possibility that oxygen and/or nitrogen can embrittle titanium hydride is discussed.
In-Bed Accountability Development for a Passively Cooled, Electrically Heated Hydride (PACE) Bed
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klein, J.E.
A nominal 1500 STP-L PAssively Cooled, Electrically heated hydride (PACE) Bed has been developed for implementation into a new Savannah River Site tritium project. The 1.2 meter (four-foot) long process vessel contains on internal 'U-tube' for tritium In-Bed Accountability (IBA) measurements. IBA will be performed on six, 12.6 kg production metal hydride storage beds.IBA tests were done on a prototype bed using electric heaters to simulate the radiolytic decay of tritium. Tests had gas flows from 10 to 100 SLPM through the U-tube or 100 SLPM through the bed's vacuum jacket. IBA inventory measurement errors at the 95% confidence levelmore » were calculated using the correlation of IBA gas temperature rise, or (hydride) bed temperature rise above ambient temperature, versus simulated tritium inventory.Prototype bed IBA inventory errors at 100 SLPM were the largest for gas flows through the vacuum jacket: 15.2 grams for the bed temperature rise and 11.5 grams for the gas temperature rise. For a 100 SLPM U-tube flow, the inventory error was 2.5 grams using bed temperature rise and 1.6 grams using gas temperature rise. For 50 to 100 SLPM U-tube flows, the IBA gas temperature rise inventory errors were nominally one to two grams that increased above four grams for flows less than 50 SLPM. For 50 to 100 SLPM U-tube flows, the IBA bed temperature rise inventory errors were greater than the gas temperature rise errors, but similar errors were found for both methods at gas flows of 20, 30, and 40 SLPM.Electric heater IBA tests were done for six production hydride beds using a 45 SLPM U-tube gas flow. Of the duplicate runs performed on these beds, five of the six beds produced IBA inventory errors of approximately three grams: consistent with results obtained in the laboratory prototype tests.« less
In-Bed Accountability Development for a Passively Cooled, Electrically Heated Hydride (PACE) Bed
DOE Office of Scientific and Technical Information (OSTI.GOV)
KLEIN, JAMES
A nominal 1500 STP-L PAssively Cooled, Electrically heated hydride (PACE) Bed has been developed for implementation into a new Savannah River Site tritium project. The 1.2 meter (four-foot) long process vessel contains an internal ''U-tube'' for tritium In-Bed Accountability (IBA) measurements. IBA will be performed on six, 12.6 kg production metal hydride storage beds. IBA tests were done on a prototype bed using electric heaters to simulate the radiolytic decay of tritium. Tests had gas flows from 10 to 100 SLPM through the U-tube or 100 SLPM through the bed's vacuum jacket. IBA inventory measurement errors at the 95 percentmore » confidence level were calculated using the correlation of IBA gas temperature rise, or (hydride) bed temperature rise above ambient temperature, versus simulated tritium inventory. Prototype bed IBA inventory errors at 100 SLPM were the largest for gas flows through the vacuum jacket: 15.2 grams for the bed temperature rise and 11.5 grams for the gas temperature rise. For a 100 SLPM U-tube flow, the inventory error was 2.5 grams using bed temperature rise and 1.6 grams using gas temperature rise. For 50 to 100 SLPM U-tube flows, the IBA gas temperature rise inventory errors were nominally one to two grams that increased above four grams for flows less than 50 SLPM. For 50 to 100 SLPM U-tube flows, the IBA bed temperature rise inventory errors were greater than the gas temperature rise errors, but similar errors were found for both methods at gas flows of 20, 30, and 40 SLPM. Electric heater IBA tests were done for six production hydride beds using a 45 SLPM U-tube gas flow. Of the duplicate runs performed on these beds, five of the six beds produced IBA inventory errors of approximately three grams: consistent with results obtained in the laboratory prototype tests.« less
NASA Astrophysics Data System (ADS)
Nilsson, Karl-Fredrik; Jakšić, Nikola; Vokál, Vratko
2010-01-01
This paper describes a finite element based fracture mechanics model to assess how hydrides affect the integrity of zircaloy cladding tubes. The hydrides are assumed to fracture at a low load whereas the propagation of the fractured hydrides in the matrix material and failure of the tube is controlled by non-linear fracture mechanics and plastic collapse of the ligaments between the hydrides. The paper quantifies the relative importance of hydride geometrical parameters such as size, orientation and location of individual hydrides and interaction between adjacent hydrides. The paper also presents analyses for some different and representative multi-hydride configurations. The model is adaptable to general and complex crack configurations and can therefore be used to assess realistic hydride configurations. The mechanism of cladding failure is by plastic collapse of ligaments between interacting fractured hydrides. The results show that the integrity can be drastically reduced when several radial hydrides form continuous patterns.
METHOD AND APPARATUS FOR MAKING URANIUM-HYDRIDE COMPACTS
Wellborn, W.; Armstrong, J.R.
1959-03-10
A method and apparatus are presented for making compacts of pyrophoric hydrides in a continuous operation out of contact with air. It is particularly useful for the preparation of a canned compact of uranium hydride possessing high density and purity. The metallic uranium is enclosed in a container, positioned in a die body evacuated and nvert the uranium to the hydride is admitted and the container sealed. Heat is applied to bring about the formation of the hydride, following which compression is used to form the compact sealed in a container ready for use.
High temperature metal hydrides as heat storage materials for solar and related applications.
Felderhoff, Michael; Bogdanović, Borislav
2009-01-01
For the continuous production of electricity with solar heat power plants the storage of heat at a temperature level around 400 degrees C is essential. High temperature metal hydrides offer high heat storage capacities around this temperature. Based on Mg-compounds, these hydrides are in principle low-cost materials with excellent cycling stability. Relevant properties of these hydrides and their possible applications as heat storage materials are described.
High Temperature Metal Hydrides as Heat Storage Materials for Solar and Related Applications
Felderhoff, Michael; Bogdanović, Borislav
2009-01-01
For the continuous production of electricity with solar heat power plants the storage of heat at a temperature level around 400 °C is essential. High temperature metal hydrides offer high heat storage capacities around this temperature. Based on Mg-compounds, these hydrides are in principle low-cost materials with excellent cycling stability. Relevant properties of these hydrides and their possible applications as heat storage materials are described. PMID:19333448
Methods for improved growth of group III nitride semiconductor compounds
Melnik, Yuriy; Chen, Lu; Kojiri, Hidehiro
2015-03-17
Methods are disclosed for growing group III-nitride semiconductor compounds with advanced buffer layer technique. In an embodiment, a method includes providing a suitable substrate in a processing chamber of a hydride vapor phase epitaxy processing system. The method includes forming an AlN buffer layer by flowing an ammonia gas into a growth zone of the processing chamber, flowing an aluminum halide containing precursor to the growth zone and at the same time flowing additional hydrogen halide or halogen gas into the growth zone of the processing chamber. The additional hydrogen halide or halogen gas that is flowed into the growth zone during buffer layer deposition suppresses homogeneous AlN particle formation. The hydrogen halide or halogen gas may continue flowing for a time period while the flow of the aluminum halide containing precursor is turned off.
Oxidation kinetics of hydride-bearing uranium metal corrosion products
NASA Astrophysics Data System (ADS)
Totemeier, Terry C.; Pahl, Robert G.; Frank, Steven M.
The oxidation behavior of hydride-bearing uranium metal corrosion products from Zero Power Physics Reactor (ZPPR) fuel plates was studied using thermo-gravimetric analysis (TGA) in environments of Ar-4%O 2, Ar-9%O 2, and Ar-20%O 2. Ignition of corrosion product samples from two moderately corroded plates was observed between 125°C and 150°C in all environments. The rate of oxidation above the ignition temperature was found to be dependent only on the net flow rate of oxygen in the reacting gas. Due to the higher net oxygen flow rate, burning rates increased with increasing oxygen concentration. Oxidation rates below the ignition temperature were much slower and decreased with increasing test time. The hydride contents of the TGA samples from the two moderately corroded plates, determined from the total weight gain achieved during burning, were 47-61 wt% and 29-39 wt%. Samples from a lightly corroded plate were not reactive; X-ray diffraction (XRD) confirmed that they contained little hydride.
Liquid suspensions of reversible metal hydrides
Reilly, J.J.; Grohse, E.W.; Winsche, W.E.
1983-12-08
The reversibility of the process M + x/2 H/sub 2/ ..-->.. MH/sub x/, where M is a metal hydride former that forms a hydride MH/sub x/ in the presence of H/sub 2/, generally used to store and recall H/sub 2/, is found to proceed under a liquid, thereby to reduce contamination, provide better temperature control and provide in situ mobility of the reactants. Thus, a slurry of particles of a metal hydride former with an inert solvent is subjected to temperature and pressure controlled atmosphere containing H/sub 2/, to store hydrogen (at high pressures) and to release (at low pressures) previously stored hydrogen. The direction of the flow of the H/sub 2/ through the liquid is dependent upon the H/sub 2/ pressure in the gas phase at a given temperature. When the former is above the equilibrium absorption pressure of the respective hydride the reaction proceeds to the right, i.e., the metal hydride is formed and hydrogen is stored in the solid particle. When the H/sub 2/ pressure in the gas phase is below the equilibrium dissociation pressure of the respective hydride the reaction proceeds to the left, the metal hydride is decomposed and hydrogen is released into the gas phase.
Modeling of Gallium Nitride Hydride Vapor Phase Epitaxy
NASA Technical Reports Server (NTRS)
Meyyappan, Meyya; Arnold, James O. (Technical Monitor)
1997-01-01
A reactor model for the hydride vapor phase epitaxy of GaN is presented. The governing flow, energy, and species conservation equations are solved in two dimensions to examine the growth characteristics as a function of process variables and reactor geometry. The growth rate varies with GaCl composition but independent of NH3 and H2 flow rates. A change in carrier gas for Ga source from H2 to N2 affects the growth rate and uniformity for a fixed reactor configuration. The model predictions are in general agreement with observed experimental behavior.
CO2 hydrogenation on a metal hydride surface.
Kato, Shunsuke; Borgschulte, Andreas; Ferri, Davide; Bielmann, Michael; Crivello, Jean-Claude; Wiedenmann, Daniel; Parlinska-Wojtan, Magdalena; Rossbach, Peggy; Lu, Ye; Remhof, Arndt; Züttel, Andreas
2012-04-28
The catalytic hydrogenation of CO(2) at the surface of a metal hydride and the corresponding surface segregation were investigated. The surface processes on Mg(2)NiH(4) were analyzed by in situ X-ray photoelectron spectroscopy (XPS) combined with thermal desorption spectroscopy (TDS) and mass spectrometry (MS), and time-of-flight secondary ion mass spectrometry (ToF-SIMS). CO(2) hydrogenation on the hydride surface during hydrogen desorption was analyzed by catalytic activity measurement with a flow reactor, a gas chromatograph (GC) and MS. We conclude that for the CO(2) methanation reaction, the dissociation of H(2) molecules at the surface is not the rate controlling step but the dissociative adsorption of CO(2) molecules on the hydride surface. This journal is © the Owner Societies 2012
Metal Hydrides for High-Temperature Power Generation
Ronnebro, Ewa; Whyatt, Greg A.; Powell, Michael R.; ...
2015-08-10
Metal hydrides can be utilized for hydrogen storage and for thermal energy storage (TES) applications. By using TES with solar technologies, heat can be stored from sun energy to be used later which enables continuous power generation. We are developing a TES technology based on a dual-bed metal hydride system, which has a high-temperature (HT) metal hydride operating reversibly at 600-800°C to generate heat as well as a low-temperature (LT) hydride near room temperature that is used for hydrogen storage during sun hours until there is a need to produce electricity, such as during night time, a cloudy day, ormore » during peak hours. We proceeded from selecting a high-energy density, low-cost HT-hydride based on performance characterization on gram size samples, to scale-up to kilogram quantities and design, fabrication and testing of a 1.5kWh, 200kWh/m 3 bench-scale TES prototype based on a HT-bed of titanium hydride and a hydrogen gas storage instead of a LT-hydride. COMSOL Multiphysics was used to make performance predictions for cylindrical hydride beds with varying diameters and thermal conductivities. Based on experimental and modeling results, a bench-scale prototype was designed and fabricated and we successfully showed feasibility to meet or exceed all performance targets.« less
NASA Astrophysics Data System (ADS)
Chen, Chih-Shyue; Jiang, Shiuh-Jen
1996-12-01
A simple and very inexpensive in-situ nebulizer/hydride generator was used with inductively coupled plasma mass spectrometry (ICP-MS) for the determination of As, Sb, Bi and Hg in water samples. The application of hydride generation ICP-MS alleviated the sensitivity problem of As, Sb, Bi and Hg determinations encountered when the conventional pneumatic nebulizer was used for sample introduction. The sample was introduced by flow injection to minimize the deposition of solids on the sampling orifice. The elements in the sample were reduced to the lower oxidation states with L-cysteine before being injected into the hydride generation system. This method has a detection limit of 0.003, 0.003, 0.017 and 0.17 ng ml -1 for As, Bi, Sb and Hg, respectively. This method was applied to determine As, Sb, Bi and Hg in a CASS-3 nearshore seawater reference sample, a SLRS-2 riverine water reference sample and a tap water collected from National Sun Yat-Sen University. The concentrations of the elements were determined by standard addition method. The precision was better than 20% for most of the determinations.
System for exchange of hydrogen between liquid and solid phases
Reilly, James J.; Grohse, Edward W.; Johnson, John R.; Winsche, deceased, Warren E.
1988-01-01
The reversible reaction M+x/2 H.sub.2 .rarw..fwdarw.MH.sub.x, wherein M is a reversible metal hydride former that forms a hydride MH.sub.x in the presence of H.sub.2, generally used to store and recall H.sub.2, is found to proceed under an inert liquid, thereby reducing contamination, providing better temperature control, providing in situ mobility of the reactants, and increasing flexibility in process design. Thus, a slurry of particles of a metal hydride former with an inert solvent is subjected to a temperature and pressure controlled atmosphere containing H.sub.2, to store hydrogen and to release previously stored hydrogen. The direction of the flow of the H.sub.2 through the liquid is dependent upon the H.sub.2 pressure in the gas phase at a given temperature. When the actual H.sub.2 pressure is above the equilibrium absorption pressure of the respective hydride the reaction proceeds to the right, i.e., the metal hydride is formed and hydrogen is stored in the solid particles. When the actual pressure in the gas phase is below the equilibrium dissociation pressure of the respective hydride the reaction proceeds to the left, the metal hydride is decomposed and hydrogen is released into the gas phase.
System for exchange of hydrogen between liquid and solid phases
Reilly, J.J.; Grohse, E.W.; Johnson, J.R.; Winsche, W.E.
1985-02-22
The reversible reaction M + x/2 H/sub 2/ reversible MH/sub x/, wherein M is a reversible metal hydride former that forms a hydride MH/sub x/ in the presence of H/sub 2/, generally used to store and recall H/sub 2/, is found to proceed under an inert liquid, thereby reducing contamination, providing better temperature control, providing in situ mobility of the reactants, and increasing flexibility in process design. Thus, a slurry of particles of a metal hydride former with an inert solvent is subjected to a temperature and pressure controlled atmosphere containing H/sub 2/, to store hydrogen and to release previously stored hydrogen. The direction of the flow of the H/sub 2/ through the liquid is dependent upon the H/sub 2/ pressure in the gas phase at a given temperature. When the actual H/sub 2/ pressure is above the equilibrium absorption pressure of the respective hydride the reaction proceeds to the right, i.e., the metal hydride is formed and hydrogen is stored in the solid particle. When the actual pressure in the gas phase is below the equilibrium dissociation pressure of the respective hydride the reaction proceeds to the left, the metal hydride is decomposed and hydrogen is released into the gas phase.
Capillary electrophoresis (CE) with hydride generation inductively coupled plasma mass spectrometry was used to determine four arsenicals and two selenium species. Selenate (SeVI) was reduced on-line to selenite (SeIV') by mixing the CE effluent with concentrated HCl. A microporo...
Cui, Jian; Zhao, Xue-Hong; Wang, Yan; Xiao, Ya-Bing; Jiang, Xue-Hui; Dai, Li
2014-01-01
Flow injection-hydride generation-atomic fluorescence spectrometry was a widely used method in the industries of health, environmental, geological and metallurgical fields for the merit of high sensitivity, wide measurement range and fast analytical speed. However, optimization of this method was too difficult as there exist so many parameters affecting the sensitivity and broadening. Generally, the optimal conditions were sought through several experiments. The present paper proposed a mathematical model between the parameters and sensitivity/broadening coefficients using the law of conservation of mass according to the characteristics of hydride chemical reaction and the composition of the system, which was proved to be accurate as comparing the theoretical simulation and experimental results through the test of arsanilic acid standard solution. Finally, this paper has put a relation map between the parameters and sensitivity/broadening coefficients, and summarized that GLS volume, carrier solution flow rate and sample loop volume were the most factors affecting sensitivity and broadening coefficients. Optimizing these three factors with this relation map, the relative sensitivity was advanced by 2.9 times and relative broadening was reduced by 0.76 times. This model can provide a theoretical guidance for the optimization of the experimental conditions.
Arsenic speciation continues to be important in assessing human and environmental exposure risk. Urinary arsenic analysis provides information on recent arsenic exposure. In this study, two sample introduction pathways: direct nebulization (DN) and hydride generation (HG) were ut...
Method and apparatus for thermal energy storage. [Patent application
Gruen, D.M.
1975-08-19
A method and apparatus for storing energy by converting thermal energy to potential chemically bound energy in which a first metal hydride is heated to dissociation temperature, liberating hydrogen gas which is compressed and reacted with a second metal to form a second metal hydride while releasing thermal energy. Cooling the first metal while warming the second metal hydride to dissociation temperature will reverse the flow of hydrogen gas back to the first metal, releasing additional thermal energy. The method and apparatus are particularly useful for the storage and conversion of thermal energy from solar heat sources and for the utilization of this energy for space heating purposes, such as for homes or offices.
Chemical Hydride Slurry for Hydrogen Production and Storage
DOE Office of Scientific and Technical Information (OSTI.GOV)
McClaine, Andrew W
2008-09-30
The purpose of this project was to investigate and evaluate the attractiveness of using a magnesium chemical hydride slurry as a hydrogen storage, delivery, and production medium for automobiles. To fully evaluate the potential for magnesium hydride slurry to act as a carrier of hydrogen, potential slurry compositions, potential hydrogen release techniques, and the processes (and their costs) that will be used to recycle the byproducts back to a high hydrogen content slurry were evaluated. A 75% MgH 2 slurry was demonstrated, which was just short of the 76% goal. This slurry is pumpable and storable for months at amore » time at room temperature and pressure conditions and it has the consistency of paint. Two techniques were demonstrated for reacting the slurry with water to release hydrogen. The first technique was a continuous mixing process that was tested for several hours at a time and demonstrated operation without external heat addition. Further work will be required to reduce this design to a reliable, robust system. The second technique was a semi-continuous process. It was demonstrated on a 2 kWh scale. This system operated continuously and reliably for hours at a time, including starts and stops. This process could be readily reduced to practice for commercial applications. The processes and costs associated with recycling the byproducts of the water/slurry reaction were also evaluated. This included recovering and recycling the oils of the slurry, reforming the magnesium hydroxide and magnesium oxide byproduct to magnesium metal, hydriding the magnesium metal with hydrogen to form magnesium hydride, and preparing the slurry. We found that the SOM process, under development by Boston University, offers the lowest cost alternative for producing and recycling the slurry. Using the H2A framework, a total cost of production, delivery, and distribution of $4.50/kg of hydrogen delivered or $4.50/gge was determined. Experiments performed at Boston University have demonstrated the technical viability of the process and have provided data for the cost analyses that have been performed. We also concluded that a carbothermic process could also produce magnesium at acceptable costs. The use of slurry as a medium to carry chemical hydrides has been shown during this project to offer significant advantages for storing, delivering, and distributing hydrogen: • Magnesium hydride slurry is stable for months and pumpable. • The oils of the slurry minimize the contact of oxygen and moisture in the air with the metal hydride in the slurry. Thus reactive chemicals, such as lithium hydride, can be handled safely in the air when encased in the oils of the slurry. • Though magnesium hydride offers an additional safety feature of not reacting readily with water at room temperatures, it does react readily with water at temperatures above the boiling point of water. Thus when hydrogen is needed, the slurry and water are heated until the reaction begins, then the reaction energy provides heat for more slurry and water to be heated. • The reaction system can be relatively small and light and the slurry can be stored in conventional liquid fuel tanks. When transported and stored, the conventional liquid fuel infrastructure can be used. • The particular metal hydride of interest in this project, magnesium hydride, forms benign byproducts, magnesium hydroxide (“Milk of Magnesia”) and magnesium oxide. • We have estimated that a magnesium hydride slurry system (including the mixer device and tanks) could meet the DOE 2010 energy density goals. During the investigation of hydriding techniques, we learned that magnesium hydride in a slurry can also be cycled in a rechargeable fashion. Thus, magnesium hydride slurry can act either as a chemical hydride storage medium or as a rechargeable hydride storage system. Hydrogen can be stored and delivered and then stored again thus significantly reducing the cost of storing and delivering hydrogen. Further evaluation and development of this concept will be performed as follow-on work under another project. However, since the cost of reducing magnesium from magnesium oxide makes up 85% of the cost of the slurry, if hydrogen can be stored many times in the slurry, then the cost of storing hydrogen can be spread over many units of hydrogen and can be significantly reduced from the costs of a chemical hydride system. This may be the most important finding of this project. If the slurry is used to carry a rechargeable hydride, the slurry can be stored in a conventional liquid fuel tank and delivered to a release system as hydrogen is needed. The release system will contain only the hydride needed to produce the hydrogen desired. This is in contrast to conventional designs proposed for other rechargeable hydride systems that store all the hydride in a large and heavy pressure and heat transfer vessel.« less
DEVELOPMENT OF A FABRICATION PROCESS FOR SOL-GEL/METAL HYDRIDE COMPOSITE GRANULES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hansen, E; Eric Frickey, E; Leung Heung, L
An external gelation process was developed to produce spherical granules that contain metal hydride particles in a sol-gel matrix. Dimensionally stable granules containing metal hydrides are needed for applications such as hydrogen separation and hydrogen purification that require columns containing metal hydrides. Gases must readily flow through the metal hydride beds in the columns. Metal hydrides reversibly absorb and desorb hydrogen and hydrogen isotopes. This is accompanied by significant volume changes that cause the metal hydride to break apart or decrepitate. Repeated cycling results in very fine metal hydride particles that are difficult to handle and contain. Fine particles tendmore » to settle and pack making it more difficult to flow gases through a metal hydride bed. Furthermore, the metal hydrides can exert a significant force on the containment vessel as they expand. These problems associated with metal hydrides can be eliminated with the granulation process described in this report. Small agglomerates of metal hydride particles and abietic acid (a pore former) were produced and dispersed in a colloidal silica/water suspension to form the feed slurry. Fumed silica was added to increase the viscosity of the feed slurry which helped to keep the agglomerates in suspension. Drops of the feed slurry were injected into a 27-foot tall column of hot ({approx}70 C), medium viscosity ({approx}3000 centistokes) silicone oil. Water was slowly evaporated from the drops as they settled. The drops gelled and eventually solidified to form spherical granules. This process is referred to as external gelation. Testing was completed to optimize the design of the column, the feed system, the feed slurry composition, and the operating parameters of the column. The critical process parameters can be controlled resulting in a reproducible fabrication technique. The residual silicone oil on the surface of the granules was removed by washing in mineral spirits. The granules were dried in air at 40 C. The granules were heated to 230 C for 30 minutes in argon to remove the remaining water and organic materials. The resulting product was spherical composite granules (100 to 2000 micron diameter) with a porous silica matrix containing small agglomerates of metal hydride particles. Open porosity in the silica matrix allows hydrogen to permeate rapidly through the matrix but the pores are small enough to contain the metal hydride particles. Additional porosity around the metal hydride particles, induced using abietic acid as a pore former, allows the particles to freely expand and contract without fracturing the brittle sol-gel matrix. It was demonstrated that the granules readily absorb and desorb hydrogen while remaining integral and dimensionally stable. Microcracking was observed after the granules were cycled in hydrogen five times. The strength of the granules was improved by coating them with a thin layer of a micro-porous polymer sol-gel that would allow hydrogen to freely pass through the coating but would filter out metal hydride poisons such as water and carbon monoxide. It was demonstrated that if a thin sol-gel coating was applied after the granules were cycled, the coating not only improved the strength of the granules but the coated granules retained their strength after additional hydrogen cycling tests. This additional strength is needed to extend the lifetime of the granules and to survive the compressive load in a large column of granules. Additional hydrogen adsorption tests are planned to evaluate the performance of coated granules after one hundred cycles. Tests will also be performed to determine the effects of metal hydride poisons on the granules. The results of these tests will be documented in a separate report. The process that was developed to form these granules could be scaled to a production process. The process to form granules from a mixture of metal hydride particles and pore former such as abietic acid can be scaled up using commercial granulators. The current laboratory-scale external gelation column produces approximately one gram of granules per hour. To increase the production output from a single column, multiple feed injection systems in a larger diameter column could be used.« less
Gadda, Giovanni; Yuan, Hongling
2017-11-15
Choline oxidase oxidizes choline to glycine betaine, with two flavin-mediated reactions to convert the alcohol substrate to the carbon acid product. Proton abstraction from choline or hydrated betaine aldehyde in the wild-type enzyme occurs in the mixing time of the stopped-flow spectrophotometer, thereby precluding a mechanistic investigation. Mutagenesis of S101 rendered the proton transfer reaction amenable to study. Here, we have investigated the aldehyde oxidation reaction catalyzed by the mutant enzymes using steady-state and rapid kinetics with betaine aldehyde. Stopped-flow traces for the reductive half-reaction of the S101T/V/C variants were biphasic, corresponding to the reactions of proton abstraction and hydride transfer. In contrast, the S101A enzyme yielded monophasic traces like wild-type choline oxidase. The rate constants for proton transfer in the S101T/C/V variants decreased logarithmically with increasing hydrophobicity of residue 101, indicating a behavior different from that seen previously with choline for which no correlation was determined. The rate constants for hydride transfer also showed a logarithmic decrease with increasing hydrophobicity at position 101, which was similar to previous results with choline as a substrate for the enzyme. Thus, the hydrophilic character of S101 is necessary not only for efficient hydride transfer but also for the proton abstraction reaction. Copyright © 2017. Published by Elsevier Inc.
Results of NDE Technique Evaluation of Clad Hydrides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kunerth, Dennis C.
2014-09-01
This report fulfills the M4 milestone, M4FT-14IN0805023, Results of NDE Technique Evaluation of Clad Hydrides, under Work Package Number FT-14IN080502. During service, zirconium alloy fuel cladding will degrade via corrosion/oxidation. Hydrogen, a byproduct of the oxidation process, will be absorbed into the cladding and eventually form hydrides due to low hydrogen solubility limits. The hydride phase is detrimental to the mechanical properties of the cladding and therefore it is important to be able to detect and characterize the presence of this constituent within the cladding. Presently, hydrides are evaluated using destructive examination. If nondestructive evaluation techniques can be used tomore » detect and characterize the hydrides, the potential exists to significantly increase test sample coverage while reducing evaluation time and cost. To demonstrate the viability this approach, an initial evaluation of eddy current and ultrasonic techniques were performed to demonstrate the basic ability to these techniques to detect hydrides or their effects on the microstructure. Conventional continuous wave eddy current techniques were applied to zirconium based cladding test samples thermally processed with hydrogen gas to promote the absorption of hydrogen and subsequent formation of hydrides. The results of the evaluation demonstrate that eddy current inspection approaches have the potential to detect both the physical damage induced by hydrides, e.g. blisters and cracking, as well as the combined effects of absorbed hydrogen and hydride precipitates on the electrical properties of the zirconium alloy. Similarly, measurements of ultrasonic wave velocities indicate changes in the elastic properties resulting from the combined effects of absorbed hydrogen and hydride precipitates as well as changes in geometry in regions of severe degradation. However, for both approaches, the signal responses intended to make the desired measurement incorporate a number of contributing parameters. These contributing factors need to be recognized and a means to control them or separate their contributions will be required to obtain the desired information.« less
Yuan, Hongling; Gadda, Giovanni
2011-02-08
Choline oxidase catalyzes the flavin-dependent, two-step oxidation of choline to glycine betaine with the formation of an aldehyde intermediate. In the first oxidation reaction, the alcohol substrate is initially activated to its alkoxide via proton abstraction. The substrate is oxidized via transfer of a hydride from the alkoxide α-carbon to the N(5) atom of the enzyme-bound flavin. In the wild-type enzyme, proton and hydride transfers are mechanistically and kinetically uncoupled. In this study, we have mutagenized an active site serine proximal to the C(4a) and N(5) atoms of the flavin and investigated the reactions of proton and hydride transfers by using substrate and solvent kinetic isotope effects. Replacement of Ser101 with threonine, alanine, cysteine, or valine resulted in biphasic traces in anaerobic reductions of the flavin with choline investigated in a stopped-flow spectrophotometer. Kinetic isotope effects established that the kinetic phases correspond to the proton and hydride transfer reactions catalyzed by the enzyme. Upon removal of Ser101, there is an at least 15-fold decrease in the rate constants for proton abstraction, irrespective of whether threonine, alanine, valine, or cysteine is present in the mutant enzyme. A logarithmic decrease spanning 4 orders of magnitude is seen in the rate constants for hydride transfer with increasing hydrophobicity of the side chain at position 101. This study shows that the hydrophilic character of a serine residue proximal to the C(4a) and N(5) flavin atoms is important for efficient hydride transfer.
Investigation of Lithium Metal Hydride Materials for Mitigation of Deep Space Radiation
NASA Technical Reports Server (NTRS)
Rojdev, Kristina; Atwell, William
2016-01-01
Radiation exposure to crew, electronics, and non-metallic materials is one of many concerns with long-term, deep space travel. Mitigating this exposure is approached via a multi-faceted methodology focusing on multi-functional materials, vehicle configuration, and operational or mission constraints. In this set of research, we are focusing on new multi-functional materials that may have advantages over traditional shielding materials, such as polyethylene. Metal hydride materials are of particular interest for deep space radiation shielding due to their ability to store hydrogen, a low-Z material known to be an excellent radiation mitigator and a potential fuel source. We have previously investigated 41 different metal hydrides for their radiation mitigation potential. Of these metal hydrides, we found a set of lithium hydrides to be of particular interest due to their excellent shielding of galactic cosmic radiation. Given these results, we will continue our investigation of lithium hydrides by expanding our data set to include dose equivalent and to further understand why these materials outperformed polyethylene in a heavy ion environment. For this study, we used HZETRN 2010, a one-dimensional transport code developed by NASA Langley Research Center, to simulate radiation transport through the lithium hydrides. We focused on the 1977 solar minimum Galactic Cosmic Radiation environment and thicknesses of 1, 5, 10, 20, 30, 50, and 100 g/cm2 to stay consistent with our previous studies. The details of this work and the subsequent results will be discussed in this paper.
Apparatus and methods for storing and releasing hydrogen
Heung, Leung K.
2001-01-01
A rechargeable device that stores and discharges hydrogen is described. The device stores hydrogen in a solid form and supplies hydrogen as a gas when needed. The solid storage medium may be metal hydride in a ground particle form that avoids the need for compaction or other treatment. Dividers partition a container into separate chambers, each provided with a matrix, formed from an appropriate material like a thermally-conductive aluminum foam, which forms a number of cells. For proper chamber size, the ratio of chamber length to container diameter should be between about 0.5 and 2. Metal hydride particles (or other hydrogen storage medium) may be placed within the cells, which help prevent excessive particle settling. The container is provided with a hydrogen transfer port through which hydrogen gas passes upon either discharging from or charging of the metal hydride particles. A filter may be placed within the port to allow hydrogen to flow but prevent particles from escaping. A heat transferring surface is formed by, for instance, a channel that is thermally coupled with the aluminum foam. Fluid flows through the channel to deliver or remove heat during the respective hydrogen discharging or charging processes.
Apparatus and methods for storing and releasing hydrogen
Heung, Leung K.
2000-01-01
A rechargeable device that stores and discharges hydrogen is described. The device stores hydrogen in a solid form and supplies hydrogen as a gas when needed. The solid storage medium may be metal hydride in a ground particle form that avoids the need for compaction or other treatment. Dividers partition a container into separate chambers, each provided with a matrix, formed from an appropriate material like a thermally-conductive aluminum foam, which forms a number of cells. For proper chamber size, the ratio of chamber length to container diameter should be between about 0.5 and 2. Metal hydride particles (or other hydrogen storage medium) may be placed within the cells, which help prevent excessive particle settling. The container is provided with a hydrogen transfer port through which hydrogen gas passes upon either discharging from or charging of the metal hydride particles. A filter may be placed within the port to allow hydrogen to flow but prevent particles from escaping. A heat transferring surface is formed by, for instance, a channel that is thermally coupled with the aluminum foam. Fluid flows through the channel to deliver or remove heat during the respective hydrogen discharging or charging processes.
NASA Astrophysics Data System (ADS)
Menegário, Amauri A.; Giné, Maria Fernanda
2000-04-01
A synchronised flow system with hydride generation coupled to ICP-MS is proposed for the sequential determination of As and Se in natural waters and plant digests. The alternated mixing of the sample solution with thiourea or HCl for the determination of As or Se under optimized conditions was achieved using a flow commutator before the reaction with NaBH 4. The on-line addition of thiourea promoted the quantitative reduction of As(V) to As(III), thus enhancing sensitivity and precision. The selenium pre-reduction from Se(VI) to Se(IV) was produced by heating the sample with HCl, and the hydride generation was performed in 4 mol l -1 HCl, thus avoiding interference from thiourea. The system allowed the analysis of 20 samples h -1 with LOD values of 0.02 μg l -1 As and 0.03 μg l -1 Se. Results were in agreement with the certified values at the 95% confidence level for reference waters from the Canadian National Water Research Institute and plant samples from the National Institute of Standards and Technology (NIST).
Interferences in electrochemical hydride generation of hydrogen selenide
NASA Astrophysics Data System (ADS)
Bolea, E.; Laborda, F.; Belarra, M. A.; Castillo, J. R.
2001-12-01
Interferences from Cu(II), Zn(II), Pt(IV), As(III) and nitrate on electrochemical hydride generation of hydrogen selenide were studied using a tubular flow-through generator, flow injection sample introduction and quartz tube atomic absorption spectrometry. Comparison with conventional chemical generation using tetrahydroborate was also performed. Lead and reticulated vitreous carbon (RVC), both in particulate form, were used as cathode materials. Signal supressions up to 60-75%, depending on the cathode material, were obtained in the presence of up to 200 mg l-1 of nitrate due to the competitive reduction of the anion. Interference from As(III) was similar in electrochemical and chemical generation, being related to the quartz tube atomization process. Zinc did not interfere up to Se/Zn ratios 1:100, whereas copper and platinum showed suppression levels up to 50% for Se/interferent ratios 1:100. Total signal suppression was observed in presence of Se/Cu ratios 1:100 when RVC cathodes were used. No memory effects were observed in any case. Scanning electron microscopy and squared wave voltametry studies supported the interference mechanism based on the decomposition of the hydride on the dispersed particles of the reduced metal.
Hydrogen storage systems based on magnesium hydride: from laboratory tests to fuel cell integration
NASA Astrophysics Data System (ADS)
de Rango, P.; Marty, P.; Fruchart, D.
2016-02-01
The paper reviews the state of the art of hydrogen storage systems based on magnesium hydride, emphasizing the role of thermal management, whose effectiveness depends on the effective thermal conductivity of the hydride, but also depends of other limiting factors such as wall contact resistance and convective exchanges with the heat transfer fluid. For daily cycles, the use of phase change material to store the heat of reaction appears to be the most effective solution. The integration with fuel cells (1 kWe proton exchange membrane fuel cell and solid oxide fuel cell) highlights the dynamic behaviour of these systems, which is related to the thermodynamic properties of MgH2. This allows for "self-adaptive" systems that do not require control of the hydrogen flow rate at the inlet of the fuel cell.
Composite Materials for Hazard Mitigation of Reactive Metal Hydrides.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pratt, Joseph William; Cordaro, Joseph Gabriel; Sartor, George B.
2012-02-01
In an attempt to mitigate the hazards associated with storing large quantities of reactive metal hydrides, polymer composite materials were synthesized and tested under simulated usage and accident conditions. The composites were made by polymerizing vinyl monomers using free-radical polymerization chemistry, in the presence of the metal hydride. Composites with vinyl-containing siloxane oligomers were also polymerized with and without added styrene and divinyl benzene. Hydrogen capacity measurements revealed that addition of the polymer to the metal hydride reduced the inherent hydrogen storage capacity of the material. The composites were found to be initially effective at reducing the amount of heatmore » released during oxidation. However, upon cycling the composites, the mitigating behavior was lost. While the polymer composites we investigated have mitigating potential and are physically robust, they undergo a chemical change upon cycling that makes them subsequently ineffective at mitigating heat release upon oxidation of the metal hydride. Acknowledgements The authors would like to thank the following people who participated in this project: Ned Stetson (U.S. Department of Energy) for sponsorship and support of the project. Ken Stewart (Sandia) for building the flow-through calorimeter and cycling test stations. Isidro Ruvalcaba, Jr. (Sandia) for qualitative experiments on the interaction of sodium alanate with water. Terry Johnson (Sandia) for sharing his expertise and knowledge of metal hydrides, and sodium alanate in particular. Marcina Moreno (Sandia) for programmatic assistance. John Khalil (United Technologies Research Corp) for insight into the hazards of reactive metal hydrides and real-world accident scenario experiments. Summary In an attempt to mitigate and/or manage hazards associated with storing bulk quantities of reactive metal hydrides, polymer composite materials (a mixture of a mitigating polymer and a metal hydride) were synthesized and tested under simulated usage and accident conditions. Mitigating the hazards associated with reactive metal hydrides during an accident while finding a way to keep the original capability of the active material intact during normal use has been the focus of this work. These composites were made by polymerizing vinyl monomers using free-radical polymerization chemistry, in the presence of the metal hydride, in this case a prepared sodium alanate (chosen as a representative reactive metal hydride). It was found that the polymerization of styrene and divinyl benzene could be initiated using AIBN in toluene at 70°C. The resulting composite materials can be either hard or brittle solids depending on the cross-linking density. Thermal decomposition of these styrene-based composite materials is lower than neat polystyrene indicating that the chemical nature of the polymer is affected by the formation of the composite. The char-forming nature of cross-linked polystyrene is low and therefore, not an ideal polymer for hazard mitigation. To obtain composite materials containing a polymer with higher char-forming potential, siloxane-based monomers were investigated. Four vinyl-containing siloxane oligomers were polymerized with and without added styrene and divinyl benzene. Like the styrene materials, these composite materials exhibited thermal decomposition behavior significantly different than the neat polymers. Specifically, the thermal decomposition temperature was shifted approximately 100 °C lower than the neat polymer signifying a major chemical change to the polymer network. Thermal analysis of the cycled samples was performed on the siloxane-based composite materials. It was found that after 30 cycles the siloxane-containing polymer composite material has similar TGA/DSC-MS traces as the virgin composite material indicating that the polymer is physically intact upon cycling. Hydrogen capacity measurements revealed that addition of the polymer to the metal hydride in the form of a composite material reduced the inherent hydrogen storage capacity of the material. This reduction in capacity was observed to be independent of the amount of charge/discharge cycles except for the composites containing siloxane, which showed less of an impact on hydrogen storage capacity as it was cycled further. While the reason for this is not clear, it may be due to a chemically stabilizing effect of the siloxane on the metal hydride. Flow-through calorimetry was used to characterize the mitigating effectiveness of the different composites relative to the neat (no polymer) material. The composites were found to be initially effective at reducing the amount of heat released during oxidation, and the best performing material was the siloxane-containing composite which reduced the heat release to less than 50% of the value of the neat material. However, upon cycling the composites, all mitigating behavior was lost. The combined results of the flow-through calorimetry, hydrogen capacity, and thermogravimetric analysis tests lead to the proposed conclusion that while the polymer composites have mitigating potential and are physically robust under cycling, they undergo a chemical change upon cycling that makes them ineffective at mitigating heat release upon oxidation of the metal hydride.« less
Ino, Shuichi; Sato, Mitsuru; Hosono, Minako; Nakajima, Sawako; Yamashita, Kazuhiko; Izumi, Takashi
2010-01-01
In an aging society, social demands for home-based rehabilitation and assistive technologies by healthcare and welfare services are globally increasing. The progress of quality-of-life technologies and rehabilitation science is a very important and urgent issue for elderly and disabled individuals as well as for their caregivers. Thus, there is a substantial need to develop simple bedside apparatuses for both continuous exercise of joints and for power assistance for standing to prevent and manage disuse syndromes (e.g., pressure ulcers, joint contractures and muscular atrophy). Unfortunately, there are currently no commercially-available actuators compatible with the human requirements of flexibility, quietness, lightness and a high power-to-weight ratio. To fulfill the above demands, we have developed a novel actuation device using a metal hydride (MH) alloy and a laminate film, called the flexible MH actuator, as a human-friendly force generator for healthcare and welfare services. In this paper, we show the basic structure and characteristics of the flexible MH actuator used to create a passive exercise system for preventing disuse syndromes. To evaluate the efficiency of passive exercise for bedsore prevention, subcutaneous blood flow during passive exercise at common pressure-ulcer sites is measured by a laser blood flow meter. The force and range-of-motion angle required for a passive exercise apparatus is also examined with the help of a professional physical therapist. Based on these findings, a prototype of a passive exercise apparatus is fabricated using the flexible MH actuator technology, and its operation characteristics are preliminarily verified using a thermoelectric control system.
Pyen, Grace S.; Browner, Richard F.; Long, Stephen
1986-01-01
A fixed-size simplex has been used to determine the optimum conditions for the simultaneous determination of arsenic, selenium, and antimony by hydride generation and inductively coupled plasma emission spectrometry. The variables selected for the simplex were carrier gas flow rate, rf power, viewing height, and reagent conditions. The detection limit for selenium was comparable to the preoptimized case, but there were twofold and fourfold improvements in the detection limits for arsenic and antimony, respectively. Precision of the technique was assessed with the use of artificially prepared water samples.
Hydrogen isotope exchange in a metal hydride tube
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robinson, David B.
2014-09-01
This report describes a model of the displacement of one hydrogen isotope within a metal hydride tube by a different isotope in the gas phase that is blown through the tube. The model incorporates only the most basic parameters to make a clear connection to the theory of open-tube gas chromatography, and to provide a simple description of how the behavior of the system scales with controllable parameters such as gas velocity and tube radius. A single tube can be seen as a building block for more complex architectures that provide higher molar flow rates or other advanced design goals.
Effects of outgassing of loader chamber walls on hydriding of thin films for commercial applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Provo, James L., E-mail: jlprovo@verizon.net
2014-07-01
An important aspect of understanding industrial processing is to know the characteristics of the materials used in such processes. A study was performed to determine the effects of hydriding chamber material on the degree of hydriding for the commercial production of thin film hydride targets for various research universities, commercial companies, and government national laboratories. The goal was to increase the degree of hydriding of various thin film hydrides and to study the vacuum environment during air-exposure hydriding. For this purpose, dynamic residual gas analysis during deuterium gas hydride processing was utilized with erbium thin films, employing a special set-upmore » for direct dynamic hydride gas sampling during processing at elevated temperature and full loading gas pressure. Complete process data for (1) a copper–(1.83 wt. %)beryllium wet hydrogen fired passivated (600 °C–1 h) externally heated pipe hydriding chamber are reported. Dynamic residual gas analysis comparisons during hydriding are presented for hydriding chambers made from (2) alumina (99.8 wt. %), (3) copper (with an interior aluminum coating ∼10 k Å thick, and (4) for a stainless-steel air-fired passivated (900 °C–1 h) chamber. Dynamic data with deuterium gas in the chamber at the hydriding temperature (450 °C) showed the presence and growth of water vapor (D{sub 2}O) and related mixed ion species(H{sub 2}O{sup +}, HDO{sup +}, D{sub 2}O{sup +}, and OD{sup +}) from hydrogen isotope exchange reactions during the 1 h process time. Peaks at mass-to-charge ratios (i.e., m/e) of 12(C{sup +}), 16(CD{sub 2}{sup +}), 17(CHD{sub 2}{sup +}), and 18(CD{sub 3}{sup +}, OD{sup +}) increased for approximately the first half hour of a 1 h hydriding process and then approach steady state. Mass-to-charge peaks at 19(HDO{sup +}) and 20(D{sub 2}O{sup +}) continue to increase throughout the process cycle. Using the m/e = 20 (D{sub 2}O{sup +}) peak intensity from chamber (1)–Cu(1.83 wt. %)Be as a standard, the peak intensity from chamber (4)—stainless-steel (air-fired) was 7.1× higher, indicating that the surface of stainless-steel had a larger concentration of reactive oxygen and/or water than hydrogen. The (D{sub 2}O{sup +}) peak intensity from chamber (3)—Cu (interior Al coating) was 1.55× larger and chamber (2)—alumina(99.8%) was 1.33× higher than Cu(1.83 wt. %)Be. Thus copper–(1.83 wt. %)beryllium was the best hydriding chamber material studied followed closely by the alumina (99.8 wt. %) chamber. Gas take-up by Er occluder targets processed in Cu(1.83 wt. %)Be hydriding chambers (i.e., gas/metal atomic ratios) correlate with the dynamic RGA data.« less
Fritz, Timothy A; Liu, Lu; Finer-Moore, Janet S; Stroud, Robert M
2002-06-04
Mutant forms of thymidylate synthase (TS) with substitutions at the conserved active site residue, Trp 80, are deficient in the hydride transfer step of the TS reaction. These mutants produce a beta-mercaptoethanol (beta-ME) adduct of the 2'-deoxyuridine-5'-monophosphate (dUMP) exocyclic methylene intermediate. Trp 80 has been proposed to assist hydride transfer by stabilizing a 5,6,7,8-tetrahydrofolate (THF) radical cation intermediate [Barrett, J. E., Lucero, C. M., and Schultz, P. G. (1999) J. Am. Chem. Soc. 121, 7965-7966.] formed after THF changes its binding from the cofactor pocket to a putative alternate site. To understand the molecular basis of hydride transfer deficiency in a mutant in which Trp 80 was changed to Gly, we determined the X-ray structures of this mutant Escherichia coli TS complexed with dUMP and the folate analogue 10-propargyl-5,8-dideazafolate (CB3717) and of the wild-type enzyme complexed with dUMP and THF. The mutant enzyme has a cavity in the active site continuous with bulk solvent. This cavity, sealed from bulk solvent in wild-type TS by Leu 143, would allow nucleophilic attack of beta-ME on the dUMP C5 exocyclic methylene. The structure of the wild-type enzyme/dUMP/THF complex shows that THF is bound in the cofactor binding pocket and is well positioned to transfer hydride to the dUMP exocyclic methylene. Together, these results suggest that THF does not reorient during hydride transfer and indicate that the role of Trp 80 may be to orient Leu 143 to shield the active site from bulk solvent and to optimally position the cofactor for hydride transfer.
Magnuson, M L; Creed, J T; Brockhoff, C A
1997-10-01
Capillary electrophoresis (CE) with hydride generation inductively coupled plasma mass spectrometry was used to determine four arsenicals and two selenium species. Selenate (SeVI) was reduced on-line to selenite (SeIV) by mixing the CE effluent with concentrated HCl. A microporous PTFE tube was used as a gas-liquid separator to eliminate the 40Ar37Cl and 40Ar35Cl interference from 77Se and 75As, respectively. The direction of the electroosmotic flow during CE was reversed with hydrodynamic pressure, which allowed increased freedom of buffer choice. For conventional pressure injection, method detection limits for SeIV and SeVI based on seven replicate injections were 10 and 24 pg, respectively. Recoveries of SeIV and SeVI in drinking water were measured.
Influence of uranium hydride oxidation on uranium metal behaviour
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patel, N.; Hambley, D.; Clarke, S.A.
2013-07-01
This work addresses concerns that the rapid, exothermic oxidation of active uranium hydride in air could stimulate an exothermic reaction (burning) involving any adjacent uranium metal, so as to increase the potential hazard arising from a hydride reaction. The effect of the thermal reaction of active uranium hydride, especially in contact with uranium metal, does not increase in proportion with hydride mass, particularly when considering large quantities of hydride. Whether uranium metal continues to burn in the long term is a function of the uranium metal and its surroundings. The source of the initial heat input to the uranium, ifmore » sufficient to cause ignition, is not important. Sustained burning of uranium requires the rate of heat generation to be sufficient to offset the total rate of heat loss so as to maintain an elevated temperature. For dense uranium, this is very difficult to achieve in naturally occurring circumstances. Areas of the uranium surface can lose heat but not generate heat. Heat can be lost by conduction, through contact with other materials, and by convection and radiation, e.g. from areas where the uranium surface is covered with a layer of oxidised material, such as burned-out hydride or from fuel cladding. These rates of heat loss are highly significant in relation to the rate of heat generation by sustained oxidation of uranium in air. Finite volume modelling has been used to examine the behaviour of a magnesium-clad uranium metal fuel element within a bottle surrounded by other un-bottled fuel elements. In the event that the bottle is breached, suddenly, in air, it can be concluded that the bulk uranium metal oxidation reaction will not reach a self-sustaining level and the mass of uranium oxidised will likely to be small in relation to mass of uranium hydride oxidised. (authors)« less
The Planck Sorption Cooler: Using Metal Hydrides to Produce 20 K
NASA Technical Reports Server (NTRS)
Pearson, David P.; Bowman, R.; Prina, M.; Wilson, P.
2006-01-01
The Jet Propulsion Laboratory has built and delivered two continuous closed cycle hydrogen Joule-Thomson (JT) cryocoolers for the ESA Planck mission, which will measure the anisotropy in the cosmic microwave background. The metal hydride compressor consists of six sorbent beds containing LaNi4.78Sn0.22 alloy and a low pressure storage bed of the same material. Each sorbent bed contains a separate gas-gap heat switch that couples or isolates the bed with radiators during the compressor operating cycle. ZrNiHx hydride is used in this heat switch. The Planck compressor produces hydrogen gas at a pressure of 48 Bar by heating the hydride to approx.450 K. This gas passes through a cryogenic cold end consisting of a tube-in-tube heat exchanger, three pre-cooling stages to bring the gas to nominally 52 K, a JT value to expand the gas into the two-phase regime at approx.20 K, and two liquid - vapor heat exchangers that must remove 190 and 646 mW of heat respectively.
A low tritium hydride bed inventory estimation technique
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klein, J.E.; Shanahan, K.L.; Baker, R.A.
2015-03-15
Low tritium hydride beds were developed and deployed into tritium service in Savannah River Site. Process beds to be used for low concentration tritium gas were not fitted with instrumentation to perform the steady-state, flowing gas calorimetric inventory measurement method. Low tritium beds contain less than the detection limit of the IBA (In-Bed Accountability) technique used for tritium inventory. This paper describes two techniques for estimating tritium content and uncertainty for low tritium content beds to be used in the facility's physical inventory (PI). PI are performed periodically to assess the quantity of nuclear material used in a facility. Themore » first approach (Mid-point approximation method - MPA) assumes the bed is half-full and uses a gas composition measurement to estimate the tritium inventory and uncertainty. The second approach utilizes the bed's hydride material pressure-composition-temperature (PCT) properties and a gas composition measurement to reduce the uncertainty in the calculated bed inventory.« less
Phase change thermal energy storage methods for combat vehicles, phase 1
NASA Astrophysics Data System (ADS)
Lynch, F. E.
1986-06-01
Three alternative cooling methods, based on latent heat absorption during phase changes, were studied for potential use in combat vehicle microclimate temperature control. Metal hydrides absorb heat as they release hydrogen gas. Plastic crystals change from one solid phase to another, absorbing heat in the process. Liquid air boils at cryogenic temperature and absorbs additional sensible heat as the cold gas mixes with the microclimate air flow. System designs were prepared for each of the three microclimate cooling concepts. These designs provide details about the three phase change materials, their containers and the auxiliary equipment needed to implement each option onboard a combat vehicle. The three concepts were compared on the basis of system mass, system volume and the energy required to regenerate them after use. Metal hydrides were found to be the lightest and smallest option by a large margin. The energy needed to regenerate a hydride thermal storage system can be extracted from the vehicle's exhaust gases.
NASA Astrophysics Data System (ADS)
Pitts, B. L.; Emerson, D. T.; Shealy, J. R.
1992-10-01
Using arsine and triethylgallium with flow modulation, organometallic vapor phase epitaxy can produce high purity GaAs layers with V/III molar ratios near unity. We have estimated that under appropriate growth conditions the arsine incorporation efficiency into epitaxial GaAs can exceed 30%. The arsine flow requirement for obtaining good morphology has been identified over a range of substrate temperatures using adduct-grade triethylgallium. The process described reduces the environmental impact and life safety risk of the hydride based organometallic vapor phase epitaxial method.
Solvent- and catalyst-free mechanochemical synthesis of alkali metal monohydrides
Hlova, Ihor Z.; Castle, Andra; Goldston, Jennifer F.; ...
2016-07-06
Alkali metal monohydrides, AH (A = Li–Cs) have been synthesized in quantitative yields at room temperature by reactive milling of alkali metals in the presence of hydrogen gas at 200 bar or less. The mechanochemical approach reported here eliminates problems associated with the malleability of alkali metals — especially Li, Na, and K — and promotes effective solid–gas reactions, ensuring their completion. This is achieved by incorporating a certain volume fraction of the corresponding hydride powder as a process control agent, which allows continuous and efficient milling primarily by coating the surface of metal particles, effectively blocking cold welding. Formationmore » of high-purity crystalline monohydrides has been confirmed by powder X-ray diffraction, solid-state NMR spectroscopy, and volumetric analyses of reactively desorbed H 2 from as-milled samples. The proposed synthesis method is scalable and particularly effective for extremely air-sensitive materials, such as alkali and alkaline earth metal hydrides. Furthermore, the technique may also be favorable for production in continuous reactors operating at room temperature, thereby reducing the total processing time, energy consumption and, hence, the cost of production of these hydrides or their derivatives and composites.« less
NASA Astrophysics Data System (ADS)
Burguera, J. L.; Carrero, P.; Burguera, M.; Rondon, C.; Brunetto, M. R.; Gallignani, M.
1996-12-01
An on-line flow injection system has been developed for the selective determination of Se(IV) and Se(VI) in citric fruit juices and geothermal waters by hydride generation atomic absorption spectrometry with microwave-aided heating prereduction of Se(VI) to Se(IV). The samples and the prereductant solutions (4 mol l -1 HCl for Se(IV) and 12 mol l -1 HCl for Se(VI)) which circulated in a closed-flow circuit were injected by means of a time-based injector. This mixture was displaced by a carrier solution of 1% v/v of hydrochloric acid through a PTFE coil located inside the focused microwave oven and mixed downstream with a borohydride solution to generate the hydride. The linear ranges were 0-120 and 0-100 μg l -1 of Se(IV) and Se(VI), respectively. The detection limits were 1.0 μg l -1 for Se(IV) and 1.5 μg l -1 for Se(VI). The precision (about 2.0-2.5% RSD) and recoveries (96-98% for Se(IV) and 94-98% for Se(VI)) were good. Total selenium values were also obtained by electrothermal atomic absorption spectrometry which agreed with the content of both selenium species. The sample throughput was about 50 measurements per hour. The main advantage of the method is that the selective determination of Se(IV) and Se(VI) in citric fruit juices and geothermal waters is performed in a closed system with a minimum sample manipulation, exposure to the environment, minimum sample waste and operator attention.
Greda, Krzysztof; Jamroz, Piotr; Jedryczko, Dominika; Pohl, Pawel
2015-05-01
The miniaturized atmospheric pressure glow discharge (APGD) sustained between a liquid flowing cathode and a He nozzle jet anode was combined with hydride generation (HG) to improve the performance of the determination of As, Sb and Se with optical emission spectrometry (OES). As(III), Sb(III) and Se(IV) species were converted into volatile hydrides in the reaction with NaBH4 and right after that they were delivered to the near-anode region of APGD through the nozzle. The transport efficiency of As, Sb and Se to the discharge was several times higher, while intensities of atomic emission lines of As, Sb and Se were improved 3 orders of magnitude (as compared to intensities acquired for the near-cathode region in a APGD system with a typical introduction of analytes through sputtering of the flowing liquid cathode). The effect of the concentration of NaBH4 and HCl in a sample solution, the discharge current, the flow rate of He carrier/jet-supporting and He shielding gases on the emission yield coming from As, Sb, Se, He and H atomic lines and OH and N2 band heads as well as the electron number density was thoroughly studied. Under compromised conditions, limits of detection (3σ criterion) of As, Sb and Se were respectively 4.2, 1.2 and 3.1 µg L(-1). Usefulness of the method was confirmed by the analysis of Sniadecki and Marchlewski highly mineralized spring waters (Kudowa Zdroj, Poland) on the content of As, Sb and Se. Recoveries of elements added to these spring waters were within 90.3-103.7% proving good accuracy of the HG-APGD-OES method. Copyright © 2015 Elsevier B.V. All rights reserved.
Rapid plasma quenching for the production of ultrafine metal and ceramic powders
NASA Astrophysics Data System (ADS)
Donaldson, Alan; Cordes, Ronald A.
2005-04-01
The rapid plasma quench concept used to produce ultrafine titanium hydride, magnesium, and aluminum powders involves the thermal dissociation of liquid reactants into gaseous components followed by rapid quenching of the products of the subject reaction to prevent back reactions. For example, in the case of titanium hydride powder production, titanium tetrachloride dissociates into titanium and chlorine atoms at 5,000 K. Expansion through a Delaval nozzle accelerates the gas to supersonic speed, cooling it very rapidly at rates as high as 710 K/s. Injected hydrogen reacts with condensed titanium particles to form titanium hydride and with the chlorine to form hydrogen chloride. Titanium powder has been produced at 20 kg/h in a continuous reactor. Costs are projected to be lower than the Kroll process at a sufficiently large scale. Magnesium and aluminum production based upon the rapid plasma quench concept are also discussed.
Preparation and X-Ray diffraction studies of curium hydrides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gibson, J.K.; Maire, R.G.
Curium hydrides were prepared by reaction of curium-248 metal with hydrogen and characterized by X-ray powder diffraction. Several of the syntheses resulted in a hexagonal compound with average lattice parameters of a/sub 0/ = 0.3769(8) nm and c/sub 0/ = 0.6732(12) nm. These products are considere to be CmH/sub 3//sup -//sub 8/ by analogy with the behavior of lanthanide-hydrogen and lighter actinide-hydrogen systems. Face-centered cubic products with an average lattice parameter of a/sub 0/ = 0.5322(4) nm were obtained from other curium hydride preparations. This parameter is slightly smaller than that reported previously for cubic curium dihydride, CmH /SUB 2-x/more » (B.M. Bansal and D. Damien. Inorg. Nucl. Chem. Lett. 6 603, 1970). The present results established a continuation of typical heavy trivalent lanthanidelike behavior of the transuranium actinide-hydrogen systems through curium.« less
Preparation and X-ray diffraction studies of curium hydrides
NASA Astrophysics Data System (ADS)
Gibson, J. K.; Haire, R. G.
1985-10-01
Curium hydrides were prepared by reaction of curium-248 metal with hydrogen and characterized by X-ray powder diffraction. Several of the syntheses resulted in a hexagonal compound with average lattice parameters of a0 = 0.3769(8) nm and c0 = 0.6732(12) nm. These products are considered to be CmH 3-δ by analogy with the behavior of lanthanide-hydrogen and lighter actinide-hydrogen systems. Face-centered cubic products with an average lattice parameter of a0 = 0.5322(4) nm were obtained from other curium hydride preparations. This parameter is slightly smaller than that reported previously for cubic curium dihydride, CmH 2+ x (B. M. Bansal and D. Damien, Inorg. Nucl. Chem. Lett., 6, 603, 1970). The present results established a continuation of typical heavy trivalent lanthanide-like behavior of the transuranium actinide-hydrogen systems through curium.
NASA Astrophysics Data System (ADS)
Ward, Patrick A.; Corgnale, Claudio; Teprovich, Joseph A.; Motyka, Theodore; Hardy, Bruce; Sheppard, Drew; Buckley, Craig; Zidan, Ragaiy
2016-04-01
Recently, there has been increasing interest in thermal energy storage (TES) systems for concentrated solar power (CSP) plants, which allow for continuous operation when sunlight is unavailable. Thermochemical energy storage materials have the advantage of much higher energy densities than latent or sensible heat materials. Furthermore, thermochemical energy storage systems based on metal hydrides have been gaining great interest for having the advantage of higher energy densities, better reversibility, and high enthalpies. However, in order to achieve higher efficiencies desired of a thermal storage system by the US Department of Energy, the system is required to operate at temperatures >600 °C. Operation at temperatures >600 °C presents challenges including material selection, hydrogen embrittlement and permeation of containment vessels, appropriate selection of heat transfer fluids, and cost. Herein, the technical difficulties and proposed solutions associated with the use of metal hydrides as TES materials in CSP applications are discussed and evaluated.
A titanium hydride gun for plasma injection into the T2-reversed field pinch device
NASA Astrophysics Data System (ADS)
Voronin, A. V.; Hellblom, K. G.
1999-02-01
A study of a plasma gun (modified Bostic type) with titanium hydride electrodes has been carried out. The total number of released hydrogen atoms was in the range 1016-1018 and the maximum plasma flow velocity was 2.5×105 m s-1. The ion density near the gun edge reached 1.8×1020 m-3 and the electron temperature was around 40 eV as estimated from probe measurements. No species other than hydrogen or titanium were seen in the plasma line radiation. The plasma injector was successfully used for gas pre-ionization in the Extrap T2 reversed-field pinch device (ohmic heating toroidal experiment (OHTE)).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Terry A.; Bowman, Robert; Smith, Barton
Conventional hydrogen compressors often contribute over half of the cost of hydrogen stations, have poor reliability, and have insufficient flow rates for a mature FCEV market. Fatigue associated with their moving parts including cracking of diaphragms and failure of seal leads to failure in conventional compressors, which is exacerbated by the repeated starts and stops expected at fueling stations. Furthermore, the conventional lubrication of these compressors with oil is generally unacceptable at fueling stations due to potential fuel contamination. Metal hydride (MH) technology offers a very good alternative to both conventional (mechanical) and newly developed (electrochemical, ionic liquid pistons) methodsmore » of hydrogen compression. Advantages of MH compression include simplicity in design and operation, absence of moving parts, compactness, safety and reliability, and the possibility to utilize waste industrial heat to power the compressor. Beyond conventional H2 supplies of pipelines or tanker trucks, another attractive scenario is the on-site generating, pressuring and delivering pure H 2 at pressure (≥ 875 bar) for refueling vehicles at electrolysis, wind, or solar generating production facilities in distributed locations that are too remote or widely distributed for cost effective bulk transport. MH hydrogen compression utilizes a reversible heat-driven interaction of a hydride-forming metal alloy with hydrogen gas to form the MH phase and is a promising process for hydrogen energy applications [1,2]. To deliver hydrogen continuously, each stage of the compressor must consist of multiple MH beds with synchronized hydrogenation & dehydrogenation cycles. Multistage pressurization allows achievement of greater compression ratios using reduced temperature swings compared to single stage compressors. The objectives of this project are to investigate and demonstrate on a laboratory scale a two-stage MH hydrogen (H 2) gas compressor with a feed pressure of >50 bar and a delivery pressure ≥ 875 bar of high purity H 2 gas using the scheme shown in Figure 1. Progress to date includes the selection of two candidate metal hydrides for each compressor stage, supplier engagement and synthesis of small samples, and the beginning of in-depth characterization of their thermodynamics, kinetics, and hydrogen capacities for optimal performance with respect to energy requirements and efficiency. Additionally, bed design trade studies are underway and will be finalized in FY18. Subsequently, the prototype two-stage compressor will be fabricated, assembled and experimentally evaluated in FY19.« less
A Pulsed Power System Design Using Lithium-ion Batteries and One Charger per Battery
2009-12-01
zinc-bromine and vanadium redox batteries • NAS: high-temperature sodium batteries • EDLC: Electric Double-Layer Capacitors • SMES...terminology used in this figure. • Conventional: lead-acid, nickel-cadmium, and nickel-metal hydride batteries . • Lithium: lithium ion batteries . • Flow ...than the second stage due to less current flowing to the battery [5], [7], [8], [9]. Figure 4 shows typical current, voltage, and capacity curves
Hydrogen, lithium, and lithium hydride production
Brown, Sam W.; Spencer, Larry S.; Phillips, Michael R.; Powell, G. Louis; Campbell, Peggy J.
2017-06-20
A method is provided for extracting hydrogen from lithium hydride. The method includes (a) heating lithium hydride to form liquid-phase lithium hydride; (b) extracting hydrogen from the liquid-phase lithium hydride, leaving residual liquid-phase lithium metal; (c) hydriding the residual liquid-phase lithium metal to form refined lithium hydride; and repeating steps (a) and (b) on the refined lithium hydride.
Thermophysicochemical Reaction of ZrCo-Hydrogen-Helium System
NASA Astrophysics Data System (ADS)
Jung, Kwangjin; Kang, Hee-Seok; Yun, Sei-Hun; Chung, Hongsuk
2017-11-01
Nuclear fusion energy, which is clean and infinite, has been studied for more than half a century. Efforts are in progress worldwide for the demonstration and validation of nuclear fusion energy. Korea has been developing hydrogen isotope storage and delivery system (SDS) technologies including a basic scientific study on a hydrogen storage medium. An SDS bed, which is a key component of the SDS, is used for storing hydrogen isotopes in a metal hydride form and supplying them to a tokamak. Thermophysicochemical properties of the ZrCo-H2-He system are investigated for the practical utilization of a hydriding alloy system. The hydriding reaction, in which ZrCoHx is composed as ZrCo absorbing hydrogen, is exothermic. The dehydriding reaction, in which ZrCoHx decomposes into ZrCo and hydrogen, is endothermic. The heat generated through the hydriding reaction interrupts the hydriding progress. The heat loss by a dehydriding reaction impedes the dehydriding progress. The tritium decay product, helium-3, covers the ZrCo and keeps the hydrogen from contact with ZrCo in the SDS bed. In this study, we designed and fabricated a ZrCo bed and its performance test rig. The helium blanketing effect on a ZrCo hydrogen reaction with 0 % to 20 % helium content in a gaseous phase and a helium blanket removal method were studied experimentally. In addition, the volumetric flow rates and temperature at the beginning of a ZrCo hydrogen reaction in a hydrogen or helium atmosphere, and the cooling of the SDS bed by radiation only and by both radiation and natural convection related to the reuse cycle, were obtained.
Rezende, Helen Cristine; Coelho, Nivia Maria Melo
2014-01-01
An ultrasound-assisted extraction procedure was developed for determination of inorganic arsenic (As) in phosphate fertilizer by hydride generation atomic absorption spectrometry. The variables that affect the hydride generation step were optimized, including the reducer, acid, sample flow rate, and concentrations of the acid and reducer. The determination of As(lll) was performed through the simple control of solution pH with a 0.5 M citric acid-sodium citrate buffer solution at pH 4.5, and total As was determined after a pre-reduction reaction with 1.0% (w/v) thiourea. Ultrasound-assisted acid extraction was performed, and the parameters sonication time and acid and Triton X-114 concentrations were optimized using a 23 factorial design and central composite design. LODs for As(lll) and total As were 0.029 and 0.022 microg/L, respectively. The accuracy of the method was confirmed with certified reference materials. The method was successfully applied in the determination of inorganic As in phosphate fertilizer samples.
Alherz, Abdulaziz; Lim, Chern-Hooi; Hynes, James T; Musgrave, Charles B
2018-01-25
We propose a method to approximate the kinetic properties of hydride donor species by relating the nucleophilicity (N) of a hydride to the activation free energy ΔG ⧧ of its corresponding hydride transfer reaction. N is a kinetic parameter related to the hydride transfer rate constant that quantifies a nucleophilic hydridic species' tendency to donate. Our method estimates N using quantum chemical calculations to compute ΔG ⧧ for hydride transfers from hydride donors to CO 2 in solution. A linear correlation for each class of hydrides is then established between experimentally determined N values and the computationally predicted ΔG ⧧ ; this relationship can then be used to predict nucleophilicity for different hydride donors within each class. This approach is employed to determine N for four different classes of hydride donors: two organic (carbon-based and benzimidazole-based) and two inorganic (boron and silicon) hydride classes. We argue that silicon and boron hydrides are driven by the formation of the more stable Si-O or B-O bond. In contrast, the carbon-based hydrides considered herein are driven by the stability acquired upon rearomatization, a feature making these species of particular interest, because they both exhibit catalytic behavior and can be recycled.
The Oxidation Products of Aluminum Hydride and Boron Aluminum Hydride Clusters
2016-01-04
AFRL-AFOSR-VA-TR-2016-0075 The Oxidation Products of Aluminum Hydride and Boron Aluminum Hydride Clusters KIT BOWEN JOHNS HOPKINS UNIV BALTIMORE MD...Hydride and Boron Aluminum Hydride Clusters 5a. CONTRACT NUMBER 5b. GRANT NUMBER FA9550-14-1-0324 5c. PROGRAM ELEMENT NUMBER 61102F 6. AUTHOR(S) KIT...of both Aluminum Hydride Cluster Anions and Boron Aluminum Hydride Cluster Anions with Oxygen: Anionic Products The anionic products of reactions
Microstructural Modeling of Dynamic Intergranular and Transgranular Fracture Modes in Zircaloys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mohammed, I.; Zikry, M.A.; Ziaei, S.
2017-04-01
In this time period, we have continued to focus on (i) refining the thermo-mechanical fracture model for zirconium (Zr) alloys subjected to large deformations and high temperatures that accounts for the cracking of ZrH and ZrH2 hydrides, (ii) formulating a framework to account intergranular fracture due to iodine diffusion and pit formation in grain-boundaries (GBs). Our future objectives are focused on extending to a combined population of ZrH and ZrH2 populations and understanding how thermo-mechanical behavior affects hydride reorientation and cracking. We will also refine the intergranular failure mechanisms for grain boundaries with pits.
Fundamental experiments on hydride reorientation in zircaloy
NASA Astrophysics Data System (ADS)
Colas, Kimberly B.
In the current study, an in-situ X-ray diffraction technique using synchrotron radiation was used to follow directly the kinetics of hydride dissolution and precipitation during thermomechanical cycles. This technique was combined with conventional microscopy (optical, SEM and TEM) to gain an overall understanding of the process of hydride reorientation. Thus this part of the study emphasized the time-dependent nature of the process, studying large volume of hydrides in the material. In addition, a micro-diffraction technique was also used to study the spatial distribution of hydrides near stress concentrations. This part of the study emphasized the spatial variation of hydride characteristics such as strain and morphology. Hydrided samples in the shape of tensile dog-bones were used in the time-dependent part of the study. Compact tension specimens were used during the spatial dependence part of the study. The hydride elastic strains from peak shift and size and strain broadening were studied as a function of time for precipitating hydrides. The hydrides precipitate in a very compressed state of stress, as measured by the shift in lattice spacing. As precipitation proceeds the average shift decreases, indicating average stress is reduced, likely due to plastic deformation and morphology changes. When nucleation ends the hydrides follow the zirconium matrix thermal contraction. When stress is applied below the threshold stress for reorientation, hydrides first nucleate in a very compressed state similar to that of unstressed hydrides. After reducing the average strain similarly to unstressed hydrides, the average hydride strain reaches a constant value during cool-down to room temperature. This could be due to a greater ease of deforming the matrix due to the applied far-field strain which would compensate for the strains due to thermal contraction. Finally when hydrides reorient, the average hydride strains become tensile during the first precipitation regime and remain constant in the tensile direction during the second precipitation regime. This could be due to the fact that the face of reoriented hydride platelet is in compression once these platelets have grown to a sufficient size. The second goal of this study was to perform a spatially resolved study of the effect of a stress concentration such as a notch or a crack on hydride reorientation. Using SEM and image analysis, it was found that a sharp crack induces a different hydride microstructure than a blunt notch. In the case of sharp crack, hydrides are more localized and align more with the defect than for blunt notches. The hydride connectivity also increases close to a stress concentration which will assist in crack propagation during DHC. Using TEM, the microstructure of hydrides grown near crack tips were observed to be similar to that of circumferential hydrides grown in the bulk. The orientation relationship studied with SEM and micro-X-ray diffraction was found to be in most cases δ(111)// α(0002) for hydrides grown both near and far from stress concentrations. Using the same micro-X-ray diffraction technique local hydride and matrix elastic strains were measured and observed to vary significantly from grain to grain. It was however observed that hydrides grown close to the stress concentration are in tension in the face of the platelet, similar to reoriented hydrides, while those grown far from the stress concentration are in tension, similar to circumferential hydrides. The orders of magnitude of the measured strains in the hydrides and the zirconium matrix compared well to those predicted by finite element models. This study shows that it is possible to study hydride dissolution and precipitation in-situ using time-dependent techniques. It was found that the precipitation temperature is lowered by hydride reorientation. The evolution of hydride strains during precipitation was found to be different for unstressed, stressed and reoriented hydrides. The reoriented hydride fraction and connectivity increase with number of cycles which could lead to more dangerous microstructure for storage of spent fuel. Pre-existing cracks were also found to affect hydride connectivity and morphology which directly impacts DHC and fuel integrity. (Abstract shortened by UMI.).
Method for preparing porous metal hydride compacts
Ron, M.; Gruen, D.M.; Mendelsohn, M.H.; Sheft, I.
1980-01-21
A method for preparing porous metallic-matrix hydride compacts which can be repeatedly hydrided and dehydrided without disintegration. A mixture of a finely divided metal hydride and a finely divided matrix metal is contacted with a poison which prevents the metal hydride from dehydriding at room temperature and atmospheric pressure. The mixture of matrix metal and poisoned metal hydride is then compacted under pressure at room temperature to form porous metallic-matrix hydride compacts.
Method for preparing porous metal hydride compacts
Ron, Moshe; Gruen, Dieter M.; Mendelsohn, Marshall H.; Sheft, Irving
1981-01-01
A method for preparing porous metallic-matrix hydride compacts which can be repeatedly hydrided and dehydrided without disintegration. A mixture of a finely divided metal hydride and a finely divided matrix metal is contacted with a poison which prevents the metal hydride from dehydriding at room temperature and atmospheric pressure. The mixture of matrix metal and poisoned metal hydride is then compacted under pressure at room temperature to form porous metallic-matrix hydride compacts.
Nelson, Paul A.; Horowitz, Jeffrey S.
1983-01-01
A heat pump apparatus including a compact arrangement of individual tubular reactors containing hydride-dehydride beds in opposite end sections, each pair of beds in each reactor being operable by sequential and coordinated treatment with a plurality of heat transfer fluids in a plurality of processing stages, and first and second valves located adjacent the reactor end sections with rotatable members having multiple ports and associated portions for separating the hydride beds at each of the end sections into groups and for simultaneously directing a plurality of heat transfer fluids to the different groups. As heat is being generated by a group of beds, others are being regenerated so that heat is continuously available for space heating. As each of the processing stages is completed for a hydride bed or group of beds, each valve member is rotated causing the heat transfer fluid for the heat processing stage to be directed to that bed or group of beds. Each of the end sections are arranged to form a closed perimeter and the valve member may be rotated repeatedly about the perimeter to provide a continuous operation. Both valves are driven by a common motor to provide a coordinated treatment of beds in the same reactors. The heat pump apparatus is particularly suitable for the utilization of thermal energy supplied by solar collectors and concentrators but may be used with any source of heat, including a source of low-grade heat.
A classical but new kinetic equation for hydride transfer reactions.
Zhu, Xiao-Qing; Deng, Fei-Huang; Yang, Jin-Dong; Li, Xiu-Tao; Chen, Qiang; Lei, Nan-Ping; Meng, Fan-Kun; Zhao, Xiao-Peng; Han, Su-Hui; Hao, Er-Jun; Mu, Yuan-Yuan
2013-09-28
A classical but new kinetic equation to estimate activation energies of various hydride transfer reactions was developed according to transition state theory using the Morse-type free energy curves of hydride donors to release a hydride anion and hydride acceptors to capture a hydride anion and by which the activation energies of 187 typical hydride self-exchange reactions and more than thirty thousand hydride cross transfer reactions in acetonitrile were safely estimated in this work. Since the development of the kinetic equation is only on the basis of the related chemical bond changes of the hydride transfer reactants, the kinetic equation should be also suitable for proton transfer reactions, hydrogen atom transfer reactions and all the other chemical reactions involved with breaking and formation of chemical bonds. One of the most important contributions of this work is to have achieved the perfect unity of the kinetic equation and thermodynamic equation for hydride transfer reactions.
System for thermal energy storage, space heating and cooling and power conversion
Gruen, Dieter M.; Fields, Paul R.
1981-04-21
An integrated system for storing thermal energy, for space heating and cong and for power conversion is described which utilizes the reversible thermal decomposition characteristics of two hydrides having different decomposition pressures at the same temperature for energy storage and space conditioning and the expansion of high-pressure hydrogen for power conversion. The system consists of a plurality of reaction vessels, at least one containing each of the different hydrides, three loops of circulating heat transfer fluid which can be selectively coupled to the vessels for supplying the heat of decomposition from any appropriate source of thermal energy from the outside ambient environment or from the spaces to be cooled and for removing the heat of reaction to the outside ambient environment or to the spaces to be heated, and a hydrogen loop for directing the flow of hydrogen gas between the vessels. When used for power conversion, at least two vessels contain the same hydride and the hydrogen loop contains an expansion engine. The system is particularly suitable for the utilization of thermal energy supplied by solar collectors and concentrators, but may be used with any source of heat, including a source of low-grade heat.
Heat exchanger selection and design analyses for metal hydride heat pump systems
Mazzucco, Andrea; Voskuilen, Tyler G.; Waters, Essene L.; ...
2016-01-01
This paper presents a design analysis for the development of highly efficient heat exchangers within stationary metal hydride heat pumps. The design constraints and selected performance criteria are applied to three representative heat exchangers. The proposed thermal model can be applied to select the most efficient heat exchanger design and provides outcomes generally valid in a pre-design stage. Heat transfer effectiveness is the principal performance parameter guiding the selection analysis, the results of which appear to be mildly (up to 13%) affected by the specific Nusselt correlation used. The thermo-physical properties of the heat transfer medium and geometrical parameters aremore » varied in the sensitivity analysis, suggesting that the length of independent tubes is the physical parameter that influences the performance of the heat exchangers the most. The practical operative regions for each heat exchanger are identified by finding the conditions over which the heat removal from the solid bed enables a complete and continuous hydriding reaction. The most efficient solution is a design example that achieves the target effectiveness of 95%.« less
Marschner, Karel; Musil, Stanislav; Dědina, Jiří
2016-04-05
An experimental setup consisting of a flow injection hydride generator coupled to an atomic fluorescence spectrometer was optimized in order to generate arsanes from tri- and pentavalent inorganic arsenic species (iAs(III), iAs(V)), monomethylarsonic acid (MAs(V)), and dimethylarsinic acid (DMAs(V)) with 100% efficiency with the use of only HCl and NaBH4 as the reagents. The optimal concentration of HCl was 2 mol L(-1); the optimal concentration of NaBH4 was 2.5% (m/v), and the volume of the reaction coil was 8.9 mL. To prevent excessive signal noise due to fluctuations of hydride supply to an atomizer, a new design of a gas-liquid separator was implemented. The optimized experimental setup was subsequently interfaced to HPLC and employed for speciation analysis of arsenic. Two chromatography columns were tested: (i) ion-pair chromatography and (ii) ion exchange chromatography. The latter offered much better results for human urine samples without a need for sample dilution. Due to the equal hydride generation efficiency (and thus the sensitivities) of all As species, a single species standardization by DMAs(V) standard was feasible. The limits of detection for iAs(III), iAs(V), MAs(V), and DMAs(V) were 40, 97, 57, and 55 pg mL(-1), respectively. Accuracy of the method was tested by the analysis of the standard reference material (human urine NIST 2669), and the method was also verified by the comparative analyses of human urine samples collected from five individuals with an independent reference method.
NASA Astrophysics Data System (ADS)
Fujikura, Hajime; Hayashi, Kentaro; Horikiri, Fumimasa; Narita, Yoshinobu; Konno, Taichiro; Yoshida, Takehiro; Ohta, Hiroshi; Mishima, Tomoyoshi
2018-04-01
In vertical GaN PN diodes (PNDs) grown entirely by metal–organic chemical vapor deposition (MOCVD), large current nonuniformity was observed. This nonuniformity was induced by macrosteps on the GaN surface through modulation of carbon incorporation into the n-GaN crystal. It was eliminated in a hybrid PND consisting of a carbon-free n-GaN layer grown by hydride vapor phase epitaxy (HVPE) and an MOCVD-regrown p-GaN layer. The hybrid PND showed a fairly low on-resistance (2 mΩ cm2) and high breakdown voltage (2 kV) even without a field plate electrode. These results clearly indicated the strong advantages of the HVPE-grown drift layer for improving power device performance, uniformity, and yield.
Cyclopentadiene-mediated hydride transfer from rhodium complexes.
Pitman, C L; Finster, O N L; Miller, A J M
2016-07-12
Attempts to generate a proposed rhodium hydride catalytic intermediate instead resulted in isolation of (Cp*H)Rh(bpy)Cl (1), a pentamethylcyclopentadiene complex, formed by C-H bond-forming reductive elimination from the fleeting rhodium hydride. The hydride transfer ability of diene 1 was explored through thermochemistry and hydride transfer reactions, including the reduction of NAD(+).
Quantifying the stress fields due to a delta-hydride precipitate in alpha-Zr matrix
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tummala, Hareesh; Capolungo, Laurent; Tome, Carlos N.
This report is a preliminary study on δ-hydride precipitate in zirconium alloy performed using 3D discrete dislocation dynamics simulations. The ability of dislocations in modifying the largely anisotropic stress fields developed by the hydride particle in a matrix phase is addressed for a specific dimension of the hydride. The influential role of probable dislocation nucleation at the hydride-matrix interface is reported. Dislocation nucleation around a hydride was found to decrease the shear stress (S 13) and also increase the normal stresses inside the hydride. We derive conclusions on the formation of stacks of hydrides in zirconium alloys. The contribution ofmore » mechanical fields due to dislocations was found to have a non-negligible effect on such process.« less
Boron hydride polymer coated substrates
Pearson, R.K.; Bystroff, R.I.; Miller, D.E.
1986-08-27
A method is disclosed for coating a substrate with a uniformly smooth layer of a boron hydride polymer. The method comprises providing a reaction chamber which contains the substrate and the boron hydride plasma. A boron hydride feed stock is introduced into the chamber simultaneously with the generation of a plasma discharge within the chamber. A boron hydride plasma of ions, electrons and free radicals which is generated by the plasma discharge interacts to form a uniformly smooth boron hydride polymer which is deposited on the substrate.
Boron hydride polymer coated substrates
Pearson, Richard K.; Bystroff, Roman I.; Miller, Dale E.
1987-01-01
A method is disclosed for coating a substrate with a uniformly smooth layer of a boron hydride polymer. The method comprises providing a reaction chamber which contains the substrate and the boron hydride plasma. A boron hydride feed stock is introduced into the chamber simultaneously with the generation of a plasma discharge within the chamber. A boron hydride plasma of ions, electrons and free radicals which is generated by the plasma discharge interacts to form a uniformly smooth boron hydride polymer which is deposited on the substrate.
NASA Astrophysics Data System (ADS)
Menegário, Amauri A.; Silva, Ariovaldo José; Pozzi, Eloísa; Durrant, Steven F.; Abreu, Cassio H.
2006-09-01
The yeast Saccharomyces cerevisiae was immobilized in cubes of polyurethane foam and the ability of this immobilized material to separate Sb(III) and Sb(V) was investigated. A method based on sequential determination of total Sb (after on-line reduction of Sb(V) to Sb(III) with thiourea) and Sb(III) (after on-line solid-liquid phase extraction) by hydride generation inductively coupled plasma optical emission spectrometry is proposed. A flow system assembled with solenoid valves was used to manage all stages of the process. The effects of pH, sample loading and elution flow rates on solid-liquid phase extraction of Sb(III) were evaluated. Also, the parameters related to on-line pre-reduction (reaction coil and flow rates) were optimized. Detection limits of 0.8 and 0.15 μg L - 1 were obtained for total Sb and Sb(III), respectively. The proposed method was applied to the analysis of river water and effluent samples. The results obtained for the determination of total Sb were in agreement with expected values, including the river water Standard Reference Material 1640 certified by the National Institute of Standards and Technology (NIST). Recoveries of Sb(III) and Sb(V) in spiked samples were between 81 ± 19 and 111 ±15% when 120 s of sample loading were used.
Gas absorption/desorption temperature-differential engine
NASA Technical Reports Server (NTRS)
Miller, C. G.
1981-01-01
Continuously operating compressor system converts 90 percent of gas-turbine plant energy to electricity. Conventional plants work in batch mode, operating at 40 percent efficiency. Compressor uses metal hydride matrix on outside of rotating drum to generate working gas, hydrogen. Rolling valve seals allow continuous work. During operation, gas is absorbed, releasing heat, and desorbed with heat gain. System conserves nuclear and fossil fuels, reducing powerplant capital and operating costs.
Thermodynamic Hydricity of Transition Metal Hydrides
Wiedner, Eric S.; Chambers, Matthew B.; Pitman, Catherine L.; ...
2016-08-02
Transition metal hydrides play a critical role in stoichiometric and catalytic transformations. Knowledge of free energies for cleaving metal hydride bonds enables the prediction of chemical reactivity, such as for the bond-forming and bondbreaking events that occur in a catalytic reaction. Thermodynamic hydricity is the free energy required to cleave an M-H bond to generate a hydride ion (H -). Three primary methods have been developed for hydricity determination: the hydride transfer method establishes hydride transfer equilibrium with a hydride donor/acceptor pair of known hydricity, the H 2 heterolysis method involves measuring the equilibrium of heterolytic cleavage of H 2more » in the presence of a base, and the potential-pK a method considers stepwise transfer of a proton and two electrons to give a net hydride transfer. Using these methods, over 100 thermodynamic hydricity values for transition metal hydrides have been determined in acetonitrile or water. In acetonitrile, the hydricity of metal hydrides spans a range of more than 50 kcal/mol. Finally, methods for using hydricity values to predict chemical reactivity are also discussed, including organic transformations, the reduction of CO 2, and the production and oxidation of hydrogen.« less
1. VIEW OF A PORTION OF THE HYDRIDE PROCESSING LABORATORY. ...
1. VIEW OF A PORTION OF THE HYDRIDE PROCESSING LABORATORY. OPERATIONS IN THE GLOVE BOX IN THE BACKGROUND OF THE PHOTOGRAPH INCLUDED HYDRIDING OF PLUTONIUM AND HYDRIDE SEPARATION. IN THE FOREGROUND, THE VACUUM MONITOR CONTROL PANEL MEASURED TEMPERATURES WITHIN THE GLOVEBOX. THE CENTER CONTROL PANEL REGULATED THE FURNACE INSIDE THE GLOVE BOX USED IN THE HYDRIDING PROCESSES. THIS EQUIPMENT WAS ESSENTIAL TO THE HYDRIDING PROCESS, AS WELL AS OTHER GLOVE BOX OPERATIONS. - Rocky Flats Plant, Plutonium Laboratory, North-central section of industrial area at 79 Drive, Golden, Jefferson County, CO
NASA Astrophysics Data System (ADS)
Muta, Hiroaki; Nishikane, Ryoji; Ando, Yusuke; Matsunaga, Junji; Sakamoto, Kan; Harjo, Stefanus; Kawasaki, Takuro; Ohishi, Yuji; Kurosaki, Ken; Yamanaka, Shinsuke
2018-03-01
Precipitation of brittle zirconium hydrides deteriorate the fracture toughness of the fuel cladding tubes of light water reactor. Although the hydride embrittlement has been studied extensively, little is known about physical properties of the hydride due to the experimental difficulties. In the present study, to elucidate relationship between mechanical properties and microstructure, two δ-phase zirconium hydrides and one ε-phase zirconium hydride were carefully fabricated considering volume changes at the metal-to-hydride transformation. The δ-hydride that was fabricated from α-zirconium exhibits numerous inner cracks due to the large volume change. Analyses of the neutron diffraction pattern and electron backscatter diffraction (EBSD) data show that the sample displays significant stacking faults in the {111} plane and in the pseudo-layered microstructure. On the other hand, the δ-hydride sample fabricated from β-zirconium at a higher temperature displays equiaxed grains and no cracks. The strong crystal orientation dependence of mechanical properties were confirmed by indentation test and EBSD observation. The δ-hydride hydrogenated from α-zirconium displays a lower Young's modulus than that prepared from β-zirconium. The difference is attributed to stacking faults within the {111} plane, for which the Young's modulus exhibits the highest value in the perpendicular direction. The strong influence of the crystal orientation and dislocation density on the mechanical properties should be considered when evaluating hydride precipitates in nuclear fuel cladding.
High pressure hydriding of sponge-Zr in steam-hydrogen mixtures
NASA Astrophysics Data System (ADS)
Soo Kim, Yeon; Wang, Wei-E.; Olander, D. R.; Yagnik, S. K.
1997-07-01
Hydriding kinetics of thin sponge-Zr layers metallurgically bonded to a Zircaloy disk has been studied by thermogravimetry in the temperature range 350-400°C in 7 MPa hydrogen-steam mixtures. Some specimens were prefilmed with a thin oxide layer prior to exposure to the reactant gas; all were coated with a thin layer of gold to avoid premature reaction at edges. Two types of hydriding were observed in prefilmed specimens, viz., a slow hydrogen absorption process that precedes an accelerated (massive) hydriding. At 7 MPa total pressure, the critical ratio of H 2/H 2O above which massive hydriding occurs at 400°C is ˜ 200. The critical H 2/H 20 ratio is shifted to ˜2.5 × 103 at 350°C. The slow hydriding process occurs only when conditions for hydriding and oxidation are approximately equally favorable. Based on maximum weight gain, the specimen is completely converted to δ-ZrH 2 by massive hydriding in ˜5 h at a hydriding rate of ˜10 -6 mol H/cm 2 s. Incubation times of 10-20 h prior to the onset of massive hydriding increases with prefilm oxide thickness in the range of 0-10 μm. By changing to a steam-enriched gas, massive hydriding that initially started in a steam-starved condition was arrested by re-formation of a protective oxide scale.
Activated aluminum hydride hydrogen storage compositions and uses thereof
Sandrock, Gary; Reilly, James; Graetz, Jason; Wegrzyn, James E.
2010-11-23
In one aspect, the invention relates to activated aluminum hydride hydrogen storage compositions containing aluminum hydride in the presence of, or absence of, hydrogen desorption stimulants. The invention particularly relates to such compositions having one or more hydrogen desorption stimulants selected from metal hydrides and metal aluminum hydrides. In another aspect, the invention relates to methods for generating hydrogen from such hydrogen storage compositions.
Raymond, J.W.; Taketani, H.
1973-12-01
BS>A method is described for hydriding a body of a Group IV-B metal, preferably zirconium, to produce a crack-free metal-hydride bedy of high hydrogen content by cooling the body at the beta to beta + delta boundary, without further addition of hydrogen, to precipitate a fine-grained delta-phase metal hydride in the beta + delta phase region and then resuming the hydriding, preferably preceded by a reheating step. (Official Gazette)
Low-Cost Metal Hydride Thermal Energy Storage System for Concentrating Solar Power Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zidan, Ragaiy; Hardy, B. J.; Corgnale, C.
2016-01-31
The objective of this research was to evaluate and demonstrate a metal hydride-based TES system for use with a CSP system. A unique approach has been applied to this project that combines our modeling experience with the extensive material knowledge and expertise at both SRNL and Curtin University (CU). Because of their high energy capacity and reasonable kinetics many metal hydride systems can be charged rapidly. Metal hydrides for vehicle applications have demonstrated charging rates in minutes and tens of minutes as opposed to hours. This coupled with high heat of reaction allows metal hydride TES systems to produce verymore » high thermal power rates (approx. 1kW per 6-8 kg of material). A major objective of this work is to evaluate some of the new metal hydride materials that have recently become available. A problem with metal hydride TES systems in the past has been selecting a suitable high capacity low temperature metal hydride material to pair with the high temperature material. A unique aspect of metal hydride TES systems is that many of these systems can be located on or near dish/engine collectors due to their high thermal capacity and small size. The primary objective of this work is to develop a high enthalpy metal hydride that is capable of reversibly storing hydrogen at high temperatures (> 650 °C) and that can be paired with a suitable low enthalpy metal hydride with low cost materials. Furthermore, a demonstration of hydrogen cycling between the two hydride beds is desired.« less
NASA Astrophysics Data System (ADS)
Laborda, Francisco; Medrano, Jesús; Cortés, José I.; Mir, José M.; Castillo, Juan R.
1999-02-01
Zirconium treated graphite tubes were investigated and compared with non-treated and palladium coated ones for in situ trapping of selenium hydride generated in a flow injection system. Selenium was effectively trapped on zirconium treated tubes at trapping temperatures of 300-600°C, similar to those observed for palladium, whereas trapping temperatures higher than 600°C had to be used with non-treated tubes. Zirconium treated tubes used in this work showed good stability up to 300 trapping/atomization cycles, with precision better than 5%, characteristic masses of 42 (peak height) and 133 pg (peak area) of selenium were obtained. Sensitivity of zirconium and palladium treatments were similar, but zirconium offered the advantage of a single application per tube. Detection limits were 0.11 (peak height) and 0.23 ng (peak area) for a 1 ml sample volume.
Hydrogen, lithium, and lithium hydride production
Brown, Sam W; Spencer, Larry S; Phillips, Michael R; Powell, G. Louis; Campbell, Peggy J
2014-03-25
A method of producing high purity lithium metal is provided, where gaseous-phase lithium metal is extracted from lithium hydride and condensed to form solid high purity lithium metal. The high purity lithium metal may be hydrided to provide high purity lithium hydride.
Uranium Hydride Nucleation and Growth Model FY'16 ESC Annual Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hill, Mary Ann; Richards, Andrew Walter; Holby, Edward F.
2016-12-20
Uranium hydride corrosion is of great interest to the nuclear industry. Uranium reacts with water and/or hydrogen to form uranium hydride which adversely affects material performance. Hydride nucleation is influenced by thermal history, mechanical defects, oxide thickness, and chemical defects. Information has been gathered from past hydride experiments to formulate a uranium hydride model to be used in a Canned Subassembly (CSA) lifetime prediction model. This multi-scale computer modeling effort started in FY’13, and the fourth generation model is now complete. Additional high-resolution experiments will be run to further test the model.
In situ hydride formation in titanium during focused ion milling.
Ding, Rengen; Jones, Ian P
2011-01-01
It is well known that titanium and its alloys are sensitive to electrolytes and thus hydrides are commonly observed in electropolished foils. In this study, focused ion beam (FIB) milling was used to prepare thin foils of titanium and its alloys for transmission electron microscopy. The results show the following: (i) titanium hydrides were observed in pure titanium, (ii) the preparation of a bulk sample in water or acid solution resulted in the formation of more hydrides and (iii) FIB milling aids the precipitation of hydrides, but there were never any hydrides in Ti64 and Ti5553.
Hydrides of Alkaline Earth–Tetrel (AeTt) Zintl Phases: Covalent Tt–H Bonds from Silicon to Tin
DOE Office of Scientific and Technical Information (OSTI.GOV)
Auer, Henry; Guehne, Robin; Bertmer, Marko
Zintl phases form hydrides either by incorporating hydride anions (interstitial hydrides) or by covalent bonding of H to the polyanion (polyanionic hydrides), which yields a variety of different compositions and bonding situations. Hydrides (deuterides) of SrGe, BaSi, and BaSn were prepared by hydrogenation (deuteration) of the CrB-type Zintl phases AeTt and characterized by laboratory X-ray, synchrotron, and neutron diffraction, NMR spectroscopy, and quantum-chemical calculations. SrGeD4/3–x and BaSnD4/3–x show condensed boatlike six-membered rings of Tt atoms, formed by joining three of the zigzag chains contained in the Zintl phase. These new polyanionic motifs are terminated by covalently bound H atoms withmore » d(Ge–D) = 1.521(9) Å and d(Sn–D) = 1.858(8) Å. Additional hydride anions are located in Ae4 tetrahedra; thus, the features of both interstitial hydrides and polyanionic hydrides are represented. BaSiD2–x retains the zigzag Si chain as in the parent Zintl phase, but in the hydride (deuteride), it is terminated by H (D) atoms, thus forming a linear (SiD) chain with d(Si–D) = 1.641(5) Å.« less
17. VIEW OF HYDRIDING SYSTEM IN BUILDING 881. THE HYDRIDING ...
17. VIEW OF HYDRIDING SYSTEM IN BUILDING 881. THE HYDRIDING SYSTEM WAS PART OF THE FAST ENRICHED URANIUM RECOVERY PROCESS. (11/11/59) - Rocky Flats Plant, General Manufacturing, Support, Records-Central Computing, Southern portion of Plant, Golden, Jefferson County, CO
Rechargeable metal hydrides for spacecraft application
NASA Technical Reports Server (NTRS)
Perry, J. L.
1988-01-01
Storing hydrogen on board the Space Station presents both safety and logistics problems. Conventional storage using pressurized bottles requires large masses, pressures, and volumes to handle the hydrogen to be used in experiments in the U.S. Laboratory Module and residual hydrogen generated by the ECLSS. Rechargeable metal hydrides may be competitive with conventional storage techniques. The basic theory of hydride behavior is presented and the engineering properties of LaNi5 are discussed to gain a clear understanding of the potential of metal hydrides for handling spacecraft hydrogen resources. Applications to Space Station and the safety of metal hydrides are presented and compared to conventional hydride storage. This comparison indicates that metal hydrides may be safer and require lower pressures, less volume, and less mass to store an equivalent mass of hydrogen.
2012-05-30
shifts that cannot be merely explained hydride formation. These unexpected LSPR shifts may be explained by Au/Pd interdiffusion or silicide formation...photocurrent on a chemically modified gold thin film of metal -semiconductor (TiO2) Schottky diodes. • Intrinsic correlation between the hot electron flow...reaction to study catalyst nanoparticles at the single particle level. As hydrogen gas dissociates and intercalates into Pd, Pd changes from a metal to
Metal hydride compositions and lithium ion batteries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Young, Kwo; Nei, Jean
Heterogeneous metal hydride (MH) compositions comprising a main region comprising a first metal hydride and a secondary region comprising one or more additional components selected from the group consisting of second metal hydrides, metals, metal alloys and further metal compounds are suitable as anode materials for lithium ion cells. The first metal hydride is for example MgH.sub.2. Methods for preparing the composition include coating, mechanical grinding, sintering, heat treatment and quenching techniques.
Nanoindentation study of bulk zirconium hydrides at elevated temperatures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cinbiz, Mahmut Nedim; Balooch, Mehdi; Hu, Xunxiang
Here, the mechanical properties of zirconium hydrides was studied using nano-indentation technique at a temperature range of 25 – 400 °C. Temperature dependency of reduced elastic modulus and hardness of δ- and ε-zirconium hydrides were obtained by conducting nanoindentation experiments on the bulk hydride samples with independently heating capability of indenter and heating stage. The reduced elastic modulus of δ-zirconium hydride (H/Zr ratio =1.61) decreased from ~113 GPa to ~109 GPa while temperature increased from room temperature to 400°C. For ε-zirconium hydrides (H/Zr ratio=1.79), the reduced elastic modulus decreased from 61 GPa to 54 GPa as temperature increased from roommore » temperature to 300 °C. Whereas, hardness of δ-zirconium hydride significantly decreased from 4.1 GPa to 2.41 GPa when temperature increased from room temperature to 400 °C. Similarly, hardness of ε-zirconium hydride decreased from 3.06 GPa to 2.19 GPa with temperature increase from room temperature to 300°C.« less
Nanoindentation study of bulk zirconium hydrides at elevated temperatures
Cinbiz, Mahmut Nedim; Balooch, Mehdi; Hu, Xunxiang; ...
2017-08-02
Here, the mechanical properties of zirconium hydrides was studied using nano-indentation technique at a temperature range of 25 – 400 °C. Temperature dependency of reduced elastic modulus and hardness of δ- and ε-zirconium hydrides were obtained by conducting nanoindentation experiments on the bulk hydride samples with independently heating capability of indenter and heating stage. The reduced elastic modulus of δ-zirconium hydride (H/Zr ratio =1.61) decreased from ~113 GPa to ~109 GPa while temperature increased from room temperature to 400°C. For ε-zirconium hydrides (H/Zr ratio=1.79), the reduced elastic modulus decreased from 61 GPa to 54 GPa as temperature increased from roommore » temperature to 300 °C. Whereas, hardness of δ-zirconium hydride significantly decreased from 4.1 GPa to 2.41 GPa when temperature increased from room temperature to 400 °C. Similarly, hardness of ε-zirconium hydride decreased from 3.06 GPa to 2.19 GPa with temperature increase from room temperature to 300°C.« less
Development of a component design tool for metal hydride heat pumps
NASA Astrophysics Data System (ADS)
Waters, Essene L.
Given current demands for more efficient and environmentally friendly energy sources, hydrogen based energy systems are an increasingly popular field of interest. Within the field, metal hydrides have become a prominent focus of research due to their large hydrogen storage capacity and relative system simplicity and safety. Metal hydride heat pumps constitute one such application, in which heat and hydrogen are transferred to and from metal hydrides. While a significant amount of work has been done to study such systems, the scope of materials selection has been quite limited. Typical studies compare only a few metal hydride materials and provide limited justification for the choice of those few. In this work, a metal hydride component design tool has been developed to enable the targeted down-selection of an extensive database of metal hydrides to identify the most promising materials for use in metal hydride thermal systems. The material database contains over 300 metal hydrides with various physical and thermodynamic properties included for each material. Sub-models for equilibrium pressure, thermophysical data, and default properties are used to predict the behavior of each material within the given system. For a given thermal system, this tool can be used to identify optimal materials out of over 100,000 possible hydride combinations. The selection tool described herein has been applied to a stationary combined heat and power system containing a high-temperature proton exchange membrane (PEM) fuel cell, a hot water tank, and two metal hydride beds used as a heat pump. A variety of factors can be used to select materials including efficiency, maximum and minimum system pressures, pressure difference, coefficient of performance (COP), and COP sensitivity. The targeted down-selection of metal hydrides for this system focuses on the system's COP for each potential pair. The values of COP and COP sensitivity have been used to identify pairs of highest interest for use in this application. The metal hydride component design tool developed in this work selects between metal hydride materials on an unprecedented scale. It can be easily applied to other hydrogen-based thermal systems, making it a powerful and versatile tool.
NASA Astrophysics Data System (ADS)
Lin, Jun-Li; Zhong, Weicheng; Bilheux, Hassina Z.; Heuser, Brent J.
2017-12-01
High-resolution neutron radiography has been used to image bulk circumferential hydride lens particles in unirradiated Zircaloy 4 tubing cross section specimens. Zircaloy 4 is a common light water nuclear reactor (LWR) fuel cladding; hydrogen pickup, hydride formation, and the concomitant effect on the mechanical response are important for LWR applications. Ring cross section specimens with three hydrogen concentrations (460, 950, and 2830 parts per million by weight) and an as-received reference specimen were imaged. Azimuthally anisotropic hydride lens particles were observed at 950 and 2830 wppm. The BISON finite element analysis nuclear fuel performance code was used to model the system elastic response induced by hydride volumetric dilatation. The compressive hoop stress within the lens structure becomes azimuthally anisotropic at high hydrogen concentrations or high hydride phase fraction. This compressive stress anisotropy matches the observed lens anisotropy, implicating the effect of stress on hydride formation as the cause of the observed lens azimuthal asymmetry. The cause and effect relation between compressive stress and hydride lens anisotropy represents an indirect validation of a key BISON output, the evolved hoop stress associated with hydride formation.
Method of producing a chemical hydride
Klingler, Kerry M.; Zollinger, William T.; Wilding, Bruce M.; Bingham, Dennis N.; Wendt, Kraig M.
2007-11-13
A method of producing a chemical hydride is described and which includes selecting a composition having chemical bonds and which is capable of forming a chemical hydride; providing a source of a hydrocarbon; and reacting the composition with the source of the hydrocarbon to generate a chemical hydride.
49 CFR 173.311 - Metal hydride storage systems.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 2 2013-10-01 2013-10-01 false Metal hydride storage systems. 173.311 Section 173... REQUIREMENTS FOR SHIPMENTS AND PACKAGINGS Gases; Preparation and Packaging § 173.311 Metal hydride storage systems. The following packing instruction is applicable to transportable UN Metal hydride storage systems...
49 CFR 173.311 - Metal hydride storage systems.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 2 2011-10-01 2011-10-01 false Metal hydride storage systems. 173.311 Section 173... REQUIREMENTS FOR SHIPMENTS AND PACKAGINGS Gases; Preparation and Packaging § 173.311 Metal hydride storage systems. The following packing instruction is applicable to transportable UN Metal hydride storage systems...
49 CFR 173.311 - Metal hydride storage systems.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 49 Transportation 2 2014-10-01 2014-10-01 false Metal hydride storage systems. 173.311 Section 173... REQUIREMENTS FOR SHIPMENTS AND PACKAGINGS Gases; Preparation and Packaging § 173.311 Metal hydride storage systems. The following packing instruction is applicable to transportable UN Metal hydride storage systems...
Zhang, Yongfeng; Bai, Xian-Ming; Yu, Jianguo; ...
2016-06-01
A formation path for homogeneous γ hydride formation in hcp α-Zr, from solid solution to the ζ and then the γ hydride, was demonstrated using molecular static calculations and molecular dynamic simulations with the charge-optimized many-body (COMB) potential. Hydrogen has limited solubility in α-Zr. Once the solubility limit is exceeded, the stability of solid solution gives way to that of coherent hydride phases such as the ζ hydride by planar precipitation of hydrogen. At finite temperatures, the ζ hydride goes through a partial hcp-fcc transformation via 1/3 <1¯100> slip on the basal plane, and transforms into a mixture of γmore » hydride and α-Zr. In the ζ hydride, slip on the basal plane is favored thermodynamically with negligible barrier, and is therefore feasible at finite temperatures without mechanical loading. The transformation process involves slips of three equivalent shear partials, in contrast to that proposed in the literature where only a single shear partial was involved. The adoption of multiple slip partials minimizes the macroscopic shape change of embedded hydride clusters and the shear strain accumulation in the matrix, and thus reduces the overall barrier needed for homogeneous γ hydride formation. In conclusion, this formation path requires finite temperatures for hydrogen diffusion without mechanical loading. Therefore, it should be effective at the cladding operating conditions.« less
2015-01-01
The role of twist-boat conformers of cyclohexanones in hydride reductions was explored. The hydride reductions of a cis-2,6-disubstituted N-acylpiperidone, an N-acyltropinone, and tert-butylcyclohexanone by lithium aluminum hydride and by a bulky borohydride reagent were investigated computationally and compared to experiment. Our results indicate that in certain cases, factors such as substrate conformation, nucleophile bulkiness, and remote steric features can affect stereoselectivity in ways that are difficult to predict by the general Felkin–Anh model. In particular, we have calculated that a twist-boat conformation is relevant to the reactivity and facial selectivity of hydride reduction of cis-2,6-disubstituted N-acylpiperidones with a small hydride reagent (LiAlH4) but not with a bulky hydride (lithium triisopropylborohydride). PMID:25372509
Hydride affinity scale of various substituted arylcarbeniums in acetonitrile.
Zhu, Xiao-Qing; Wang, Chun-Hua
2010-12-23
Combined with the integral equation formalism polarized continuum model (IEFPCM), the hydride affinities of 96 various acylcarbenium ions in the gas phase and CH(3)CN were estimated by using the B3LYP/6-31+G(d)//B3LYP/6-31+G(d), B3LYP/6-311++G(2df,2p)//B3LYP/6-31+G(d), and BLYP/6-311++G(2df,2p)//B3LYP/6-31+G(d) methods for the first time. The results show that the combination of the BLYP/6-311++G(2df,2p)//B3LYP/6-31+G(d) method and IEFPCM could successfully predict the hydride affinities of arylcarbeniums in MeCN with a precision of about 3 kcal/mol. On the basis of the calculated results from the BLYP method, it can be found that the hydride affinity scale of the 96 arylcarbeniums in MeCN ranges from -130.76 kcal/mol for NO(2)-PhCH(+)-CN to -63.02 kcal/mol for p-(Me)(2)N-PhCH(+)-N(Me)(2), suggesting most of the arylcarbeniums are good hydride acceptors. Examination of the effect of the number of phenyl rings attached to the carbeniums on the hydride affinities shows that the increase of the hydride affinities takes place linearly with increasing number of benzene rings in the arylcarbeniums. Analyzing the effect of the substituents on the hydride affinities of arylcarbeniums indicates that electron-donating groups decrease the hydride affinities and electron-withdrawing groups show the opposite effect. The hydride affinities of arylcarbeniums are linearly dependent on the sum of the Hammett substituent parameters σ(p)(+). Inspection of the correlation of the solution-phase hydride affinities with gas-phase hydride affinities and aqueous-phase pK(R)(+) values reveals a remarkably good correspondence of ΔG(H(-)A)(R(+)) with both the gas-phase relative hydride affinities only if the α substituents X have no large electron-donating or -withdrawing properties and the pK(R)(+) values even though the media are dramatically different. The solution-phase hydride affinities also have a linear relationship with the electrophilicity parameter E, and this dependence can certainly serve as one of the most effective ways to estimate the new E values from ΔG(H(-)A)(R(+)) or vice versa. Combining the hydride affinities and the reduction potentials of the arylcarbeniums, we obtained the bond homolytic dissociation Gibbs free energy changes of the C-H bonds in the corresponding hydride adducts in acetonitrile, ΔG(HD)(RH), and found that the effects of the substituent on ΔG(HD)(RH) are very small. Simple thermodynamic analytic platforms for the three C-H cleavage modes were constructed. It is evident that the present work would be helpful in understanding the nature of the stabilities of the carbeniums and mechanisms of the hydride transfers between carbeniums and other hydride donors.
Zhu, Xiao-Qing; Li, Xiu-Tao; Han, Su-Hui; Mei, Lian-Rui
2012-05-18
The effects of substituents on the temperature dependences of kinetic isotope effect (KIE) for the reactions of the hydride transfer from the substituted 5-methyl-6-phenyl-5,6-dihydrophenanthridine (G-PDH) to thioxanthylium (TX(+)) in acetonitrile were examined, and the results show that the temperature dependences of KIE for the hydride transfer reactions can be converted by adjusting the nature of the substituents in the molecule of the hydride donor. In general, electron-withdrawing groups can make the KIE to have normal temperature dependence, but electron-donating groups can make the KIE to have abnormal temperature dependence. Thermodynamic analysis on the possible pathways of the hydride transfer from G-PDH to TX(+) in acetonitrile suggests that the transfers of the hydride anion in the reactions are all carried out by the concerted one-step mechanism whether the substituent is an electron-withdrawing group or an electron-donating group. But the examination of Hammett-type free energy analysis on the hydride transfer reactions supports that the concerted one-step hydride transfer is not due to an elementary chemical reaction. The experimental values of KIE at different temperatures for the hydride transfer reactions were modeled by using a kinetic equation formed according to a multistage mechanism of the hydride transfer including a returnable charge-transfer complex as the reaction intermediate; the real mechanism of the hydride transfer and the root that why the temperature dependences of KIE can be converted as the nature of the substituents are changed were discovered.
Hanna, C P; Tyson, J F; McIntosh, S
1993-08-01
A method has been developed for the determination of inorganic arsenic [As(III) and As(V)] and its organic metabolites (monomethylarsenic and dimethylarsenic) in urine by flow-injection hydride generation atomic absorption spectrometry. The nontoxic seafood-derived arsenobetaine and arsenocholine species were first separated by a solid-phase extraction procedure. The remaining sample was digested with a mixture of nitric and sulfuric acids and potassium dichromate, followed by attack with hydrogen peroxide. The resulting As(V) was reduced to As(III) with potassium iodide in hydrochloric acid before injection into the flow-injection manifold. The percentage analytical recoveries (mean +/- 95% confidence interval) of various arsenic species added to a urine specimen at 250 micrograms/L were 108 +/- 2, 112 +/- 11, 104 +/- 7, and 95 +/- 5 for As(III), As(V), monomethylarsenic, and dimethylarsenic, respectively. For the determination of arsenic in Standard Reference Material 2670 (toxic metals in human urine), results agreed with the certified value (480 +/- 100 micrograms/L). Analyses of samples for the Centre de Toxicologie du Quebec, containing seafood-derived species, demonstrated the viability of the separation procedure. Detection limits were between 0.1 and 0.2 microgram/L in the solution injected into the manifold, and precision at 10 micrograms/L was between 2% and 3% (CV). These preliminary results show that the method might be applicable to determinations of arsenic in a range of clinical urine specimens.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chassery, A.; Universite de Toulouse, Laboratoire de Genie Chimique, Toulouse; CNRS, Laboratoire de Genie Chimique, Toulouse
Within the framework of the dismantling of fast breeder reactors in France several processes are under investigation regarding sodium disposal. One of them, called ELA (radioactive sodium waste treatment process), is based on the implementation of the sodium-water reaction, in a controlled and progressive way, to remove residual sodium. This sodium contains impurities such as sodium hydride, sodium oxide and tritiated sodium hydride. The hydrolysis of these various chemical species leads to the production of a liquid effluent, mainly composed of an aqueous solution of sodium hydroxide, and a gaseous effluent, mainly composed of nitrogen (inert gas), hydrogen and steam.more » The tritium is distributed between these effluents, and, within the gaseous effluent, according to its forms HT and HTO (tritiated water). HTO being 10,000 times more radio-toxic than HT, a precise knowledge of the mechanisms governing the phase distribution of tritium is necessary. This paper presents the first experimental results from a parametric study on the tritium distribution between the various effluents generated during hydrolysis operations. A series of experiments have been performed in order to study the influence of water flow rate, argon flow rate, initial mass and specific activity of the hydrolyzed sodium sample. An important influence of the total tritium concentration in the hydrolyzed sample has been highlighted. As for the phenomena suspected to be responsible for the phase change of tritiated water, in the studied range of parameters, vaporization induced by the heat of reactions seems to be dominant over the evaporation induced by the inert gas flow rate.« less
Pistón, Mariela; Knochen, Moisés
2012-01-01
Two flow methods, based, respectively, on flow-injection analysis (FIA) and on multicommutated flow analysis (MCFA), were compared with regard to their use for the determination of total selenium in infant formulas by hydride-generation atomic absorption spectrometry. The method based on multicommutation provided lower detection and quantification limits (0.08 and 0.27 μg L−1 compared to 0.59 and 1.95 μ L−1, resp.), higher sampling frequency (160 versus. 70 samples per hour), and reduced reagent consumption. Linearity, precision, and accuracy were similar for the two methods compared. It was concluded that, while both methods proved to be appropriate for the purpose, the MCFA-based method exhibited a better performance. PMID:22505923
Storing hydrogen in the form of light alloy hydrides
NASA Technical Reports Server (NTRS)
Freund, E.; Gillerm, C.
1981-01-01
Different hydrides are investigated to find a system with a sufficiently high storage density (at least 3%). The formation of hydrides with light alloys is examined. Reaction kinetics for hydride formation were defined and applied to the systems Mg-Al-H, Mg-Al-Cu-H, Ti-Al-H, Ti-Al-Cu-H, and Ti-Al-Ni-H. Results indicate that the addition of Al destabilizes MgH2 and TiH2 hydrides while having only a limited effect on the storage density.
Continuous/Batch Mg/MgH2/H2O-Based Hydrogen Generator
NASA Technical Reports Server (NTRS)
Kindler, Andrew; Huang, Yuhong
2010-01-01
A proposed apparatus for generating hydrogen by means of chemical reactions of magnesium and magnesium hydride with steam would exploit the same basic principles as those discussed in the immediately preceding article, but would be designed to implement a hybrid continuous/batch mode of operation. The design concept would simplify the problem of optimizing thermal management and would help to minimize the size and weight necessary for generating a given amount of hydrogen.
Hydrogen storage materials and method of making by dry homogenation
Jensen, Craig M.; Zidan, Ragaiy A.
2002-01-01
Dry homogenized metal hydrides, in particular aluminum hydride compounds, as a material for reversible hydrogen storage is provided. The reversible hydrogen storage material comprises a dry homogenized material having transition metal catalytic sites on a metal aluminum hydride compound, or mixtures of metal aluminum hydride compounds. A method of making such reversible hydrogen storage materials by dry doping is also provided and comprises the steps of dry homogenizing metal hydrides by mechanical mixing, such as be crushing or ball milling a powder, of a metal aluminum hydride with a transition metal catalyst. In another aspect of the invention, a method of powering a vehicle apparatus with the reversible hydrogen storage material is provided.
Porous metal hydride composite and preparation and uses thereof
Steyert, W.A.; Olsen, C.E.
1980-03-12
A composite formed from large pieces of aggregate formed from (1) metal hydride (or hydride-former) powder and (2) either metal powder or plastic powder or both is prepared. The composite has large macroscopic interconnected pores (much larger than the sizes of the powders which are used) and will have a very fast heat transfer rate and low windage loss. It will be useful, for example, in heat engines, hydrogen storage devices, and refrigerator components which depend for their utility upon both a fast rate of hydriding and dehydriding. Additionally, a method of preparing the composite and a method of increasing the rates of hydriding and dehydriding of metal hydrides are also given.
Porous metal hydride composite and preparation and uses thereof
Steyert, William A.; Olsen, Clayton E.
1982-01-01
A composite formed from large pieces of aggregate formed from (1) metal hydride (or hydride-former) powder and (2) either metal powder or plastic powder or both is prepared. The composite has large macroscopic interconnected pores (much larger than the sizes of the powders which are used) and will have a very fast heat transfer rate and low windage loss. It will be useful, for example, in heat engines, hydrogen storage devices, and refrigerator components which depend for their utility upon both a fast rate of hydriding and dehydriding. Additionally, a method of preparing the composite and a method of increasing the rates of hydriding and dehydriding of metal hydrides are also given.
The free-energy barrier to hydride transfer across a dipalladium complex
Ramirez-Cuesta, Anibal J.
2015-01-01
We use density-functional theory molecular dynamics (DFT-MD) simulations to determine the hydride transfer coordinate between palladium centres of the crystallographically observed terminal hydride locations, Pd-Pd-H, originally postulated for the solution dynamics of the complex bis-NHC dipalladium hydride [{(MesIm)(2)CH2}(2)Pd2H][PF6], and then calculate the free-energy along this coordinate. We estimate the transfer barrier-height to be about 20 kcal mol(-1) with a hydride transfer rate in the order of seconds at room temperature. We validate our DFT-MD modelling using inelastic neutron scattering which reveals anharmonicity of the hydride environment that is so pronounced that there is complete failure of the harmonic model formore » the hydride ligand. The simulations are extended to high temperature to bring the H-transfer to a rate that is accessible to the simulation technique.« less
Cinbiz, Mahmut N.; Koss, Donald A.; Motta, Arthur T.; ...
2017-02-20
The d-spacing evolution of both in-plane and out-of-plane hydrides has been studied using in situ synchrotron radiation X-ray diffraction during thermo-mechanical cycling of cold-worked stress-relieved Zircaloy-4. The structure of the hydride precipitates is such that the δ{111} d-spacing of the planes aligned with the hydride platelet face is greater than the d-spacing of the 111 planes aligned with the platelet edges. Upon heating from room temperature, the δ{111} planes aligned with hydride plate edges exhibit bi-linear thermally-induced expansion. In contrast, the d-spacing of the (111) plane aligned with the hydride plate face initially contracts upon heating. Furthermore, these experimental resultsmore » can be understood in terms of a reversal of stress state associated with precipitating or dissolving hydride platelets within the α-zirconium matrix.« less
METHOD OF FABRICATING A URANIUM-ZIRCONIUM HYDRIDE REACTOR CORE
Weeks, I.F.; Goeddel, W.V.
1960-03-22
A method is described of evenly dispersing uranlum metal in a zirconium hydride moderator to produce a fuel element for nuclear reactors. According to the invention enriched uranium hydride and zirconium hydride powders of 200 mesh particle size are thoroughly admixed to form a mixture containing 0.1 to 3% by weight of U/sup 235/ hydride. The mixed powders are placed in a die and pressed at 100 tons per square inch at room temperature. The resultant compacts are heated in a vacuum to 300 deg C, whereby the uranium hydride deoomposes into uranium metal and hydrogen gas. The escaping hydrogen gas forms a porous matrix of zirconium hydride, with uramum metal evenly dispersed therethrough. The advantage of the invention is that the porosity and uranium distribution of the final fuel element can be more closely determined and controlled than was possible using prior methods of producing such fuel ele- ments.
Z-H Bond Activation in (Di)hydrogen Bonding as a Way to Proton/Hydride Transfer and H2 Evolution.
Belkova, Natalia V; Filippov, Oleg A; Shubina, Elena S
2018-02-01
The ability of neutral transition-metal hydrides to serve as a source of hydride ion H - or proton H + is well appreciated. The hydride ligands possessing a partly negative charge are proton accepting sites, forming a dihydrogen bond, M-H δ- ⋅⋅⋅ δ+ HX (M=transition metal or metalloid). On the other hand, some metal hydrides are able to serve as a proton source and give hydrogen bond of M-H δ+ ⋅⋅⋅X type (X=organic base). In this paper we analyse recent works on transition-metal and boron hydrides showing i) how formation of an intermolecular complex between the reactants changes the Z-H (M-H and X-H) bond polarity and ii) what is the implication of such activation in the mechanisms of hydrides reactions. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Hammes-Schiffer, Sharon; Watney, James B
2006-08-29
This paper reviews the results from hybrid quantum/classical molecular dynamics simulations of the hydride transfer reaction catalysed by wild-type (WT) and mutant Escherichia coli and WT Bacillus subtilis dihydrofolate reductase (DHFR). Nuclear quantum effects such as zero point energy and hydrogen tunnelling are significant in these reactions and substantially decrease the free energy barrier. The donor-acceptor distance decreases to ca 2.7 A at transition-state configurations to enable the hydride transfer. A network of coupled motions representing conformational changes along the collective reaction coordinate facilitates the hydride transfer reaction by decreasing the donor-acceptor distance and providing a favourable geometric and electrostatic environment. Recent single-molecule experiments confirm that at least some of these thermally averaged equilibrium conformational changes occur on the millisecond time-scale of the hydride transfer. Distal mutations can lead to non-local structural changes and significantly impact the probability of sampling configurations conducive to the hydride transfer, thereby altering the free-energy barrier and the rate of hydride transfer. E. coli and B. subtilis DHFR enzymes, which have similar tertiary structures and hydride transfer rates with 44% sequence identity, exhibit both similarities and differences in the equilibrium motions and conformational changes correlated to hydride transfer, suggesting a balance of conservation and flexibility across species.
Sensitivity Analysis of Algan/GAN High Electron Mobility Transistors to Process Variation
2008-02-01
delivery system gas panel including both hydride and alkyl delivery modules and the vent/valve configurations [14...Reactor Gas Delivery Systems A basic schematic diagram of an MOCVD reactor delivery gas panel is shown in Figure 13. The reactor gas delivery...system, or gas panel , consists of a network of stainless steel tubing, automatic valves and electronic mass flow controllers (MFC). There are separate
Battery Technology Stores Clean Energy
NASA Technical Reports Server (NTRS)
2008-01-01
Headquartered in Fremont, California, Deeya Energy Inc. is now bringing its flow batteries to commercial customers around the world after working with former Marshall Space Flight Center scientist, Lawrence Thaller. Deeya's liquid-cell batteries have higher power capability than Thaller's original design, are less expensive than lead-acid batteries, are a clean energy alternative, and are 10 to 20 times less expensive than nickel-metal hydride batteries, lithium-ion batteries, and fuel cell options.
Chaparro, L L; Ferrer, L; Cerdà, V; Leal, L O
2012-09-01
A multisyringe flow-injection approach has been coupled to hydride generation-atomic fluorescence spectrometry (HG-AFS) with UV photo-oxidation for dimethylarsinic (DMA), inorganic As and total As determination, depending on the pre-treatment given to the sample (extraction or digestion). The implementation of a UV lamp allows on-line photo-oxidation of DMA and the following arsenic detection, whereas a bypass leads the flow directly to the HG-AFS system, performing inorganic arsenic determination. DMA concentration is calculated by the difference of total inorganic arsenic and measurement of the photo-oxidation step. The detection limits for DMA and inorganic arsenic were 0.09 and 0.47 μg L(-1), respectively. The repeatability values accomplished were of 2.4 and 1.8%, whereas the injection frequencies were 24 and 28 injections per hour for DMA and inorganic arsenic, respectively. This method was validated by means of a solid reference material BCR-627 (muscle of tuna) with good agreement with the certified values. Satisfactory results for DMA and inorganic arsenic determination were obtained in several water matrices. The proposed method offers several advantages, such as increasing the sampling frequency, low detection limits and decreasing reagents and sample consumption, which leads to lower waste generation.
Zhang, Yanlin; Adeloju, Samuel B
2008-08-15
A simple and robust flow injection system which permits low sample and reagent consumption is described for rapid and reliable hydride generation atomic absorption spectrometric determination of selenium, arsenic and bismuth. The system, which composed of one peristaltic pump and one four channel solenoid valve, used water as the carrier streams for both sample and NaBH(4) solution. Rapid off-line pre-reduction of the analytes was achieved by using hydroxylamine hydrochloride for selenium and a mixture of potassium iodide and ascorbic acid for arsenic and bismuth. Transition metal interference was eliminated with the addition of thiourea and EDTA into the NaBH(4) solution and significant sensitivity enhancement was observed for selenium in the presence of thiourea in the reductant solution. Under optimised conditions, the method achieved detection limits of 0.2 ng mL(-1) for Se, 0.5 ng mL(-1) for As and 0.3 ng mL(-1) for Bi. The method was very reproducible, achieving relative standard deviations of 6.3% for Se, 3.6% for As and 4.7% for Bi, and has a sample throughput of 360 h(-1). Successful application of the method to the quantification of selenium, arsenic and bismuth in a certified reference river sediment sample is reported.
The effect of stress state on zirconium hydride reorientation
NASA Astrophysics Data System (ADS)
Cinbiz, Mahmut Nedim
Prior to storage in a dry-cask facility, spent nuclear fuel must undergo a vacuum drying cycle during which the spent fuel rods are heated up to elevated temperatures of ≤ 400°C to remove moisture the canisters within the cask. As temperature increases during heating, some of the hydride particles within the cladding dissolve while the internal gas pressure in fuel rods increases generating multi-axial hoop and axial stresses in the closed-end thin-walled cladding tubes. As cool-down starts, the hydrogen in solid solution precipitates as hydride platelets, and if the multiaxial stresses are sufficiently large, the precipitating hydrides reorient from their initial circumferential orientation to radial orientation. Radial hydrides can severely embrittle the spent nuclear fuel cladding at low temperature in response to hoop stress loading. Because the cladding can experience a range of stress states during the thermo-mechanical treatment induced during vacuum drying, this study has investigated the effect of stress state on the process of hydride reorientation during controlled thermo-mechanical treatments utilizing the combination of in situ X-ray diffraction and novel mechanical testing analyzed by the combination of metallography and finite element analysis. The study used cold worked and stress relieved Zircaloy-4 sheet containing approx. 180 wt. ppm hydrogen as its material basis. The failure behavior of this material containing radial hydrides was also studied over a range of temperatures. Finally, samples from reactor-irradiated cladding tubes were examined by X-ray diffraction using synchrotron radiation. To reveal the stress state effect on hydride reorientation, the critical threshold stress to reorient hydrides was determined by designing novel mechanical test samples which produce a range of stress states from uniaxial to "near-equibiaxial" tension when a load is applied. The threshold stress was determined after thermo-mechanical treatments by correlating the finite element stress-state results with the spatial distribution of hydride microstructures observed within the optical micrographs for each sample. Experiments showed that the hydride reorientation was enhanced as the stress biaxiality increased. The threshold stress decreased from 150 MPa to 80 MPa when stress biaxiality ratio increased from uniaxial tension to near-equibiaxial tension. This behavior was also predicted by classical nucleation theory based on the Gibbs free energy of transformation being assisted by the far-field stress. An analysis of in situ X-ray diffraction data obtained during a thermo-mechanical cycle typical of vacuum drying showed a complex lattice-spacing behavior of the hydride phase during the dissolution and precipitation. The in-plane hydrides showed bilinear lattice expansion during heating with the intrinsic thermal expansion rate of the hydrides being observed only at elevated temperatures as they dissolve. For radial hydrides that precipitate during cooling under stress, the spacing of the close-packed {111} planes oriented normal to the maximum applied stress was permanently higher than the corresponding {111} plane spacing in the other directions. This behavior is believed to be a result of a complex stress state within the precipitating plate-like hydrides that induces a strain component within the hydrides normal to its "plate" face (i.e., the applied stress direction) that exceeds the lattice spacing strains in the other directions. During heat-up, the lattice spacing of these same "plate" planes actually contract due to the reversion of the stress state within the plate-like hydrides as they dissolve. The presence of radial hydrides and their connectivity with in-plane hydrides was shown to increase the ductile-to-brittle transition temperature during tensile testing. This behavior can be understood in terms of the role of radial hydrides in promoting the initiation of a long crack that subsequently propagates under fracture mechanics conditions. Finally, the d-spacing of irradiated Zircaloy-4 and M5 cladding tubes was measured at room temperature and compared to that of unirradiated samples.
DeAngelis, Andrew; Panish, Robert; Fox, Joseph M
2016-01-19
Rh-carbenes derived from α-diazocarbonyl compounds have found broad utility across a remarkable range of reactivity, including cyclopropanation, cyclopropenation, C-H insertions, heteroatom-hydrogen insertions, and ylide forming reactions. However, in contrast to α-aryl or α-vinyl-α-diazocarbonyl compounds, the utility of α-alkyl-α-diazocarbonyl compounds had been moderated by the propensity of such compounds to undergo intramolecular β-hydride migration to give alkene products. Especially challenging had been intermolecular reactions involving α-alkyl-α-diazocarbonyl compounds. This Account discusses the historical context and prior limitations of Rh-catalyzed reactions involving α-alkyl-α-diazocarbonyl compounds. Early studies demonstrated that ligand and temperature effects could influence chemoselectivity over β-hydride migration. However, effects were modest and conflicting conclusions had been drawn about the influence of sterically demanding ligands on β-hydride migration. More recent advances have led to a more detailed understanding of the reaction conditions that can promote intermolecular reactivity in preference to β-hydride migration. In particular, the use of bulky carboxylate ligands and low reaction temperatures have been key to enabling intermolecular cyclopropenation, cyclopropanation, carbonyl ylide formation/dipolar cycloaddition, indole C-H functionalization, and intramolecular bicyclobutanation with high chemoselectivity over β-hydride migration. Cyclic α-diazocarbonyl compounds have been shown to be particularly resilient toward β-hydride migration and are the first class of compounds that can engage in intermolecular reactivity in the presence of tertiary β-hydrogens. DFT calculations were used to propose that for cyclic α-diazocarbonyl compounds, ring constraints relieve steric interaction for intermolecular reactions and thereby accelerate the rate of intermolecular reactivity relative to intramolecular β-hydride migration. Enantioselective reactions of α-alkyl-α-diazocarbonyl compounds have been developed using bimetallic N-imido-tert-leucinate-derived complexes. The most effective complexes were found by computation and X-ray crystallography to adopt a "chiral crown" conformation in which all of the imido groups are presented on one face of the paddlewheel complex in a chiral arrangement. Insight from computational studies guided the design and synthesis of a mixed ligand paddlewheel complex, Rh2(S-PTTL)3TPA, the structure of which bears similarity to the chiral crown complex Rh2(S-PTTL)4. Rh2(S-PTTL)3TPA engages substrate classes (aliphatic alkynes, silylacetylenes, α-olefins) that are especially challenging in intermolecular reactions of α-alkyl-α-diazoesters and catalyzes enantioselective cyclopropanation, cyclopropenation, and indole C-H functionalization with yields and enantioselectivities that are comparable or superior to Rh2(S-PTTL)4. The work detailed in this Account describes progress toward enabling a more general utility for α-alkyl-α-diazo compounds in Rh-catalyzed carbene reactions. Further studies on ligand design and synthesis will continue to broaden the scope of their selective reactions.
Vanadium hydride deuterium-tritium generator
Christensen, Leslie D.
1982-01-01
A pressure controlled vanadium hydride gas generator to provide deuterium-tritium gas in a series of pressure increments. A high pressure chamber filled with vanadium-deuterium-tritium hydride is surrounded by a heater which controls the hydride temperature. The heater is actuated by a power controller which responds to the difference signal between the actual pressure signal and a programmed pressure signal.
Brooks, Kriston P; Holladay, Jamelyn D; Simmons, Kevin L; Herling, Darrell R
2014-11-18
An on-board hydride storage system and process are described. The system includes a slurry storage system that includes a slurry reactor and a variable concentration slurry. In one preferred configuration, the storage system stores a slurry containing a hydride storage material in a carrier fluid at a first concentration of hydride solids. The slurry reactor receives the slurry containing a second concentration of the hydride storage material and releases hydrogen as a fuel to hydrogen-power devices and vehicles.
Fogle, Emily J.
2008-01-01
Phosphite dehydrogenase (PTDH)1 is a unique NAD-dependent enzyme that catalyzes the oxidation of inorganic phosphite to phosphate. The enzyme has great potential for cofactor regeneration and mechanistic studies have provided some insight into the residues that are important for catalysis. In this investigation, pre-steady state studies were performed on the His6-tagged wild type (WT) enzyme, several active site mutants, a thermostable mutant (12X-PTDH), and a thermostable mutant with dual cofactor specificity (NADP-12X-PTDH). Stopped-flow kinetic experiments indicate that slow steps after hydride transfer do not significantly limit the rate of reaction for WT, the active site mutants, or the thermostable mutant. Pre-steady state kinetic isotope effects (KIEs) and single turn-over experiments further confirm that slow steps after the chemical step do not significantly limit the rate of reaction for any of these proteins. Collectively, these results suggest that the hydride transfer step is fully rate determining in PTDH and that the observed KIE on kcat is the intrinsic effect in WT PTDH and the mutants examined. In contrast, a slow step after catalysis may partially limit the rate of phosphite oxidation by NADP-12X-PTDH with NADP as cofactor. Finally, site directed mutagenesis of Asp79 indicates that this residue is important in orienting Arg237 for proper interaction with phosphite. PMID:17949110
Inhibited solid propellant composition containing beryllium hydride
NASA Technical Reports Server (NTRS)
Thompson, W. W. (Inventor)
1978-01-01
An object of this invention is to provide a composition of beryllium hydride and carboxy-terminated polybutadiene which is stable. Another object of this invention is to provide a method for inhibiting the reactivity of beryllium hydride toward carboxy-terminated polybutadiene. It was found that a small amount of lecithin inhibits the reaction of beryllium hydride with the acid groups in carboxy terminated polybutadiene.
Hydrogen /Hydride/-air secondary battery
NASA Technical Reports Server (NTRS)
Sarradin, J.; Bronoel, G.; Percheron-Guegan, A.; Achard, J. C.
1979-01-01
The use of metal hydrides as negative electrodes in a hydrogen-air secondary battery seems promising. However, in an unpressurized cell, more stable hydrides that LaNi5H6 must be selected. Partial substitutions of nickel by aluminium or manganese increase the stability of hydrides. Combined with an air reversible electrode, a specific energy close to 100 Wh/kg can be expected.
Hydridable material for the negative electrode in a nickel-metal hydride storage battery
Knosp, Bernard; Bouet, Jacques; Jordy, Christian; Mimoun, Michel; Gicquel, Daniel
1997-01-01
A monophase hydridable material for the negative electrode of a nickel-metal hydride storage battery with a "Lave's phase" structure of hexagonal C14 type (MgZn.sub.2) has the general formula: Zr.sub.1-x Ti.sub.x Ni.sub.a Mn.sub.b Al.sub.c Co.sub.d V.sub.e where ##EQU1##
Vanadium hydride deuterium-tritium generator
Christensen, L.D.
1980-03-13
A pressure controlled vanadium hydride gas generator was designed to provide deuterium-tritium gas in a series of pressure increments. A high pressure chamber filled with vanadium-deuterium-tritium hydride is surrounded by a heater which controls the hydride temperature. The heater is actuated by a power controller which responds to the difference signal between the actual pressure signal and a programmed pressure signal.
Aqueous Hydricity of Late Metal Catalysts as a Continuum Tuned by Ligands and the Medium.
Pitman, Catherine L; Brereton, Kelsey R; Miller, Alexander J M
2016-02-24
Aqueous hydride transfer is a fundamental step in emerging alternative energy transformations such as H2 evolution and CO2 reduction. "Hydricity," the hydride donor ability of a species, is a key metric for understanding transition metal hydride reactivity, but comprehensive studies of aqueous hydricity are scarce. An extensive and self-consistent aqueous hydricity scale is constructed for a family of Ru and Ir hydrides that are key intermediates in aqueous catalysis. A reference hydricity is determined using redox potentiometry and spectrophotometric titration for a particularly water-soluble species. Then, relative hydricity values for a range of species are measured using hydride transfer equilibria, taking advantage of expedient new synthetic procedures for Ru and Ir hydrides. This large collection of hydricity values provides the most comprehensive picture so far of how ligands impact hydricity in water. Strikingly, we also find that hydricity can be viewed as a continuum in water: the free energy of hydride transfer changes with pH, buffer composition, and salts present in solution.
Lee, Myung W.
1995-01-01
A composition for use in storing hydrogen, and a method for making the composition. The composition comprises a mixture of two or more hydrides, each hydride having a different series of hydrogen sorption isotherms that contribute to the overall isotherms of the mixture. The hydrides are chosen so that the isotherms of the mixture have regions wherein the hydrogen equilibrium pressure increases with increasing hydrogen, preferably linearly. The isotherms of the mixture can be adjusted by selecting hydrides with different isotherms and by varying the amounts of the individual hydrides, or both. Preferably, the mixture is made up of hydrides that have isotherms with substantially flat plateaus and in nearly equimolar amounts. The composition is activated by degassing, exposing to hydrogen and then heating at a temperature below the softening temperature of any of the. constituents so that their chemical and structural integrity is preserved. When the composition is used to store hydrogen, its hydrogen content can be found simply by measuring P.sub.H.sbsb.2 and determining H/M from the isothermic function of the composition.
On the Chemistry of Hydrides of N Atoms and O+ Ions
NASA Astrophysics Data System (ADS)
Awad, Zainab; Viti, Serena; Williams, David A.
2016-08-01
Previous work by various authors has suggested that the detection by Herschel/HIFI of nitrogen hydrides along the low-density lines of sight toward G10.6-0.4 (W31C) cannot be accounted for by gas-phase chemical models. In this paper we investigate the role of surface reactions on dust grains in diffuse regions, and we find that formation of the hydrides by surface reactions on dust grains with efficiency comparable to that for H2 formation reconciles models with observations of nitrogen hydrides. However, similar surface reactions do not contribute significantly to the hydrides of O+ ions detected by Herschel/HIFI that are present along many sight lines in the Galaxy. The O+ hydrides can be accounted for by conventional gas-phase chemistry either in diffuse clouds of very low density with normal cosmic-ray fluxes or in somewhat denser diffuse clouds with high cosmic-ray fluxes. Hydride chemistry in dense dark clouds appears to be dominated by gas-phase ion-molecule reactions.
Lee, Myung, W.
1994-01-01
Disclosed are a composition for use in storing hydrogen and a method for making the composition. The composition comprises a mixture of two or more hydrides, each hydride having a different series of hydrogen sorption isotherms that contribute to the overall isotherms of the mixture. The hydrides are chosen so that the isotherms of the mixture have regions wherein the H equilibrium pressure increases with increasing hydrogen, preferably linearly. The isotherms of the mixture can be adjusted by selecting hydrides with different isotherms and by varying the amounts of the individual hydrides, or both. Preferably, the mixture is made up of hydrides that have isotherms with substantially flat plateaus and in nearly equimolar amounts. The composition is activated by degassing, exposing to H, and then heating below the softening temperature of any of the constituents. When the composition is used to store hydrogen, its hydrogen content can be found simply by measuring P{sub H}{sub 2} and determining H/M from the isothermic function of the composition.
Direct synthesis of catalyzed hydride compounds
Gross, Karl J.; Majzoub, Eric
2004-09-21
A method is disclosed for directly preparing alkali metal aluminum hydrides such as NaAlH.sub.4 and Na.sub.3 AlH.sub.6 from either the alkali metal or its hydride, and aluminum. The hydride thus prepared is doped with a small portion of a transition metal catalyst compound, such as TiCl.sub.3, TiF.sub.3, or a mixture of these materials, in order to render them reversibly hydridable. The process provides for mechanically mixing the dry reagents under an inert atmosphere followed by charging the mixed materials with high pressure hydrogen while heating the mixture to about 125.degree. C. The method is relatively simple and inexpensive and provides reversible hydride compounds which are free of the usual contamination introduced by prior art wet chemical methods.
Yang, Xinzheng
2013-09-07
Density functional theory calculations reveal a complete reaction mechanism with detailed energy profiles and transition state structures for the dehydrogenation of formic acid catalyzed by an iron complex, [P(CH2CH2PPh2)3FeH](+). In the cationic reaction pathway, a β-hydride elimination process is confirmed to be the rate-determining step in this catalytic reaction. A potential reaction pathway starting with a direct hydride transfer from HCOO(-) to Fe is found to be possible, but slightly less favorable than the catalytic cycle with a β-hydride elimination step.
Hydride Microstructure at the Metal-Oxide Interface of Zircaloy-4 from H.B. Robinson Nuclear Reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cinbiz, Mahmut N; Edmondson, Philip D; Terrani, Kurt A
2017-01-01
This study investigates the hydride rim microstructure at the metal-oxide interface of Zircaloy-4 cladding segment removed from H.B. Robinson Nuclear Reactor by utilizing high resolution electron microscopy techniques with energy dispersive x-ray spectroscopy at Oak Ridge National Laboratory under the NSUF Rapid Turnout Experiment program. A complex stacking and orientation of hydride platelets has been observed below the sub-oxide layer. Furthermore, radial hydride platelets have been observed. EDS signals of both Fe and Cr has been reduced within hydrides whereas EDS signal of Sn is unaffected.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Semenenko, K.N.; Klyamkin, S.N.
1993-11-01
Novel hydride phases with H/M > 1 based on Zr{sub 2}Pd, Hf{sub 2}Pd, and Hf{sub 2}Cu (structures of the MoSi{sub 2} type) have been synthesized at high H{sub 2} pressures. The X-ray diffraction investigations of the resulting hydrides have been carried out. Some factors determining the maximum hydrogen content in the hydrides of intermetallic compounds are discussed. A model structure of the hydrides obtained is proposed, which assumes the possibility of direct H-H interactions when the interatomic distances are less than 1 {angstrom}.
Dhayal, Rajendra S; van Zyl, Werner E; Liu, C W
2016-01-19
Metal hydride clusters have historically been studied to unravel their aesthetically pleasing molecular structures and interesting properties, especially toward hydrogen related applications. Central to this work is the hydride ligand, H¯, the smallest closed-shell spherical anion known. Two new developments in polyhydrido nanocluster chemistry include the determination of heretofore unknown hydride coordination modes and novel structural constructs, and conversion from the molecular entities to rhombus-shaped copper nanoparticles (CuNPs). These advances, together with hydrogen evolution and catalysis, have provided both experimentalists and theorists with a rich scientific directive to further explore. The isolation of hexameric [{(Ph3P)CuH}6] (Stryker reagent) could be regarded as the springboard for the recent emergence of polyhydrido copper cluster chemistry due to its utilization in a variety of organic chemical transformations. The stability of clusters of various nuclearity was improved through phosphine, pyridine, and carbene type ligands. Our focus lies with the isolation of novel copper (poly)hydride clusters using mostly the phosphor-1,1-dithiolato type ligands. We found such chalcogen-stabilized clusters to be exceptionally air and moisture stable over a wide range of nuclearities (Cu7 to Cu32). In this Account, we (i) report on state-of-the-art copper hydride cluster chemistry, especially with regards to the diverse and novel structural types generally, and newly discovered hydride coordination modes in particular, (ii) demonstrate the indispensable power of neutron diffraction for the unambiguous assignment and location of hydride ligand(s) within a cluster, and (iii) prove unique transformations that can occur not only between well characterized high nuclearity clusters, but also how such clusters can transform to uniquely shaped nanoparticles of several nanometers in diameter through copper hydride reduction. The increase in the number of low- to high-nuclearity hydride clusters allows for different means by which they can be classified. We chose a classification based on the coordination mode of hydride ligand within the cluster. This includes copper clusters associated with bridging (μ2-H) and capping (μ3-H) hydride modes, followed by an interstitial (μ4-H) hydride mode that was introduced for the first time into octa- and hepta-nuclear copper clusters stabilized by dichalcogen-type ligands. This breakthrough provided a means to explore higher nuclearity polyhydrido nanoclusters, which contain both capping (μ3-H) and interstitial (μ(4-6)-H) hydrides. The presence of bidentate ligands having mixed S/P dative sites led to air- and moisture-stable copper hydride nanoclusters. The formation of rhombus-shaped nanoparticles (CuNPs) from copper polyhydrides in the presence of excess borohydrides suggests the presence of metal hydrides as intermediates during the formation of nanoparticles.
Structural Characterization of Metal Hydrides for Energy Applications
NASA Astrophysics Data System (ADS)
George, Lyci
Hydrogen can be an unlimited source of clean energy for future because of its very high energy density compared to the conventional fuels like gasoline. An efficient and safer way of storing hydrogen is in metals and alloys as hydrides. Light metal hydrides, alanates and borohydrides have very good hydrogen storage capacity, but high operation temperatures hinder their application. Improvement of thermodynamic properties of these hydrides is important for their commercial use as a source of energy. Application of pressure on materials can have influence on their properties favoring hydrogen storage. Hydrogen desorption in many complex hydrides occurs above the transition temperature. Therefore, it is important to study the physical properties of the hydride compounds at ambient and high pressure and/or high temperature conditions, which can assist in the design of suitable storage materials with desired thermodynamic properties. The high pressure-temperature phase diagram, thermal expansion and compressibility have only been evaluated for a limited number of hydrides so far. This situation serves as a main motivation for studying such properties of a number of technologically important hydrides. Focus of this dissertation was on X-ray diffraction and Raman spectroscopy studies of Mg2FeH6, Ca(BH4) 2, Mg(BH4)2, NaBH4, NaAlH4, LiAlH4, LiNH2BH3 and mixture of MgH 2 with AlH3 or Si, at different conditions of pressure and temperature, to obtain their bulk modulus and thermal expansion coefficient. These data are potential source of information regarding inter-atomic forces and also serve as a basis for developing theoretical models. Some high pressure phases were identified for the complex hydrides in this study which may have better hydrogen storage properties than the ambient phase. The results showed that the highly compressible B-H or Al-H bonds and the associated bond disordering under pressure is responsible for phase transitions observed in brorohydrides or alanates. Complex hydrides exhibited very high compressibility suggesting possibility to destabilize them with pressure. With high capacity and favorable thermodynamics, complex hydrides are suitable for reversible storage. Further studies are required to overcome the kinetic barriers in complex hydrides by catalytic addition. A comparative study of the hydride properties with that of the constituting metal, and their inter relationships were carried out with many interesting features.
Use of triammonium salt of aurin tricarboxylic acid as risk mitigant for aluminum hydride
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cortes-Concepcion, Jose A.; Anton, Donald L.
2017-08-08
A process and a resulting product by process of an aluminum hydride which is modified with by physically combining in a ball milling process an aluminum hydride with a triammonium salt of aurin tricarboxylic acid. The resulting product is an aluminum hydride which is resistant to air, ambient moisture, and liquid water while maintaining useful hydrogen storage and release kinetics.
Landingham, Richard L.
1985-01-01
Porous metallic bodies having a substantially uniform pore size of less than about 200 microns and a density of less than about 25 percent theoretical, as well as the method for making them, are disclosed. Group IIA, IIIB, IVB, VB, and rare earth metal hydrides are heated in a confining container at a controlled rate to a temperature of about greater than the temperature at which the hydride decomposes. Hydrogen is removed from the container and the remaining metal is heated during a second stage to a temperature greater than the temperature at which it was previously heated but not greater than the temperature of 1/2 to 2/3 the temperature at which the metal melts at a controlled rate. The resulting porous metallic body produced has a density less than about 25 percent theoretical and a pore size of less than about 200 microns. The metallic particles of the present invention have high inner surface area and possess minimum resistance to gas flow.
Method for controlled hydrogen charging of metals
Cheng, Bo-Ching; Adamson, Ronald B.
1984-05-29
A method for controlling hydrogen charging of hydride forming metals through a window of a superimposed layer of a non-hydriding metal overlying the portion of the hydride forming metals to be charged.
Use of reversible hydrides for hydrogen storage
NASA Technical Reports Server (NTRS)
Darriet, B.; Pezat, M.; Hagenmuller, P.
1980-01-01
The addition of metals or alloys whose hydrides have a high dissociation pressure allows a considerable increase in the hydrogenation rate of magnesium. The influence of temperature and hydrogen pressure on the reaction rate were studied. Results concerning the hydriding of magnesium rich alloys such as Mg2Ca, La2Mg17 and CeMg12 are presented. The hydriding mechanism of La2Mg17 and CeMg12 alloys is given.
Sodium-based hydrides for thermal energy applications
NASA Astrophysics Data System (ADS)
Sheppard, D. A.; Humphries, T. D.; Buckley, C. E.
2016-04-01
Concentrating solar-thermal power (CSP) with thermal energy storage (TES) represents an attractive alternative to conventional fossil fuels for base-load power generation. Sodium alanate (NaAlH4) is a well-known sodium-based complex metal hydride but, more recently, high-temperature sodium-based complex metal hydrides have been considered for TES. This review considers the current state of the art for NaH, NaMgH3- x F x , Na-based transition metal hydrides, NaBH4 and Na3AlH6 for TES and heat pumping applications. These metal hydrides have a number of advantages over other classes of heat storage materials such as high thermal energy storage capacity, low volume, relatively low cost and a wide range of operating temperatures (100 °C to more than 650 °C). Potential safety issues associated with the use of high-temperature sodium-based hydrides are also addressed.
Dimensionally stable metallic hydride composition
Heung, Leung K.
1994-01-01
A stable, metallic hydride composition and a process for making such a composition. The composition comprises a uniformly blended mixture of a metal hydride, kieselguhr, and a ballast metal, all in the form of particles. The composition is made by subjecting a metal hydride to one or more hydrogen absorption/desorption cycles to disintegrate the hydride particles to less than approximately 100 microns in size. The particles are partly oxidized, then blended with the ballast metal and the kieselguhr to form a uniform mixture. The mixture is compressed into pellets and calcined. Preferably, the mixture includes approximately 10 vol. % or more kieselguhr and approximately 50 vol. % or more ballast. Metal hydrides that can be used in the composition include Zr, Ti, V, Nb, Pd, as well as binary, tertiary, and more complex alloys of La, Al, Cu, Ti, Co, Ni, Fe, Zr, Mg, Ca, Mn, and mixtures and other combinations thereof. Ballast metals include Al, Cu and Ni.
ORNL Interim Progress Report on Hydride Reorientation CIRFT Tests
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Jy-An John; Yan, Yong; Wang, Hong
A systematic study of H. B. Robinson (HBR) high burnup spent nuclear fuel (SNF) vibration integrity was performed in Phase I project under simulated transportation environments, using the Cyclic Integrated Reversible-Bending Fatigue Tester (CIRFT) hot cell testing technology developed at Oak Ridge National Laboratory in 2013–14. The data analysis on the as-irradiated HBR SNF rods demonstrated that the load amplitude is the dominant factor that controls the fatigue life of bending rods. However, previous studies have shown that the hydrogen content and hydride morphology has an important effect on zirconium alloy mechanical properties. To address the effect of radial hydridesmore » in SNF rods, in Phase II a test procedure was developed to simulate the effects of elevated temperatures, pressures, and stresses during transfer-drying operations. Pressurized and sealed fuel segments were heated to the target temperature for a preset hold time and slow-cooled at a controlled rate. The procedure was applied to both non-irradiated/prehydrided and high-burnup Zircaloy-4 fueled cladding segments using the Nuclear Regulatory Commission-recommended 400°C maximum temperature limit at various cooling rates. Before testing high-burnup cladding, four out-of-cell tests were conducted to optimize the hydride reorientation (R) test condition with pre-hydride Zircaloy-4 cladding, which has the same geometry as the high burnup fuel samples. Test HR-HBR#1 was conducted at the maximum hoop stress of 145 MPa, at a 400°C maximum temperature and a 5°C/h cooling rate. On the other hand, thermal cycling was performed for tests HR-HBR#2, HR-HBR#3, and HR-HBR#4 to generate more radial hydrides. It is clear that thermal cycling increases the ratio of the radial hydride to circumferential hydrides. The internal pressure also has a significant effect on the radial hydride morphology. This report describes a procedure and experimental results of the four out-of-cell hydride reorientation tests of hydrided Zircaloy-4 cladding, which served as a guideline to prepare in-cell hydride reorientation samples with high burnup HBR fuel segments. This report also provides the Phase II CIRFT test data for the hydride reorientation irradiated samples. The variations in fatigue life are provided in terms of moment, equivalent stress, curvature, and equivalent strain for the tested SNFs. The CIRFT results appear to indicate that hydride reoriented treatment (HRT) have a negative effect on fatigue life, in addition to hydride reorientation effect. For HR4 specimen that had no pressurization procedure applied, the thermal annealing treatment alone showed a negative impact on the fatigue life compared to the HBR rod.« less
Alajarin, Mateo; Bonillo, Baltasar; Ortin, Maria-Mar; Sanchez-Andrada, Pilar; Vidal, Angel; Orenes, Raul-Angel
2010-10-21
The ability of triarylmethane and diarylmethane fragments to behave as hydride donors participating in thermal [1,5]-H shift/6π-ERC tandem processes involving ketenimine and carbodiimide functions is disclosed. C-Alkyl-C-phenyl ketenimines N-substituted by a triarylmethane substructure convert into a variety of 3,3,4,4-tetrasubstituted-3,4-dihydroquinolines, as structurally related carbodiimides transform into 3,4,4-trisubstituted-3,4-dihydroquinazolines via transient ortho-azaxylylenes. The first step of these one-pot conversions, the [1,5]-H shift, is considered to be a hydride migration on the basis of the known hydricity of the tri(di)arylmethane fragment and the electrophilicity of the central heterocumulenic carbon atom, whereas the final electrocyclization involves the formation of a sterically congested C-C or C-N bond. In the cases of C,C-diphenyl substituted triarylmethane-ketenimines the usual 6π-ERC becomes prohibited by the presence of two phenyl rings at each end of the azatrienic system. This situation opens new reaction channels: (a) following the initial hydride shift, the tandem sequence continues with an alternative electrocyclization mode to give 9,10-dihydroacridines, (b) the full sequence is initiated by a rare 1,5 migration of an electron-rich aryl group, followed by a 6π-ERC which leads to 2-aryl-3,4-dihydroquinolines, or (c) a different [1,5]-H shift/6π-ERC sequence involving the initial migration of a hydrogen atom from a methyl group at the ortho position to the nitrogen atom of the ketenimine function. Diarylmethane-ketenimines bearing a methyl group at the benzylic carbon atom experience a tandem double [1,5]-H shift, the first one being the usual benzylic hydride transfer whereas the second one involves the methyl group at the initial benzylic carbon atom, the reaction products being 2-aminostyrenes. Diarylmethane-ketenimines lacking such a methyl group convert into 3,4-dihydroquinolines by the habitual tandem [1,5]-H shift/6π-ERC processes.
Continuous and Periodic Sorption Cryocoolers for 10 K and Below
NASA Technical Reports Server (NTRS)
Bard, S.; Wade, L.; Karlmann, P.
1996-01-01
A novel system is described for Sorption Cryocooling to 10 K, using hydrogen as refrigerant fluid, sorbent beds of metal hydride powders, and thermal compression and expansion. Current status is summarized of sorption cryocooler development for space applications requiring cooling of infrared and submillimeter sensors to 10 K and below. Several design variations, challenges, and predictions are discussed.
Materials science with muon spin rotation
NASA Technical Reports Server (NTRS)
1988-01-01
During this reporting period, the focus of activity in the Materials Science with Muon Spin Rotation (MSMSR) program was muon spin rotation studies of superconducting materials, in particular the high critical temperature and heavy-fermion materials. Apart from these studies, work was continued on the analysis of muon motion in metal hydrides. Results of these experiments are described in six papers included as appendices.
A study on the reaction of Zircaloy-4 tube with hydrogen/steam mixture
NASA Astrophysics Data System (ADS)
Lee, Ji-Min; Kook, Dong-Hak; Cho, Il-Je; Kim, Yong-Soo
2017-08-01
In order to fundamentally understand the secondary hydriding mechanism of zirconium alloy cladding, the reaction of commercial Zircaloy-4 tubes with hydrogen and steam mixture was studied using a thermo-gravimetric analyser with two variables, H2/H2O ratio and temperature. Phenomenological analysis revealed that in the steam starvation condition, i.e., when the H2/H2O ratio is greater than 104, hydriding is the dominant reaction and the weight gain increases linearly after a short incubation time. On the other hand, when the gas ratio is 5 × 102 or 103, both hydriding and oxidation reactions take place simultaneously, leading to three distinct regimes: primary hydriding, enhanced oxidation, and massive hydriding. Microstructural changes of oxide demonstrate that when the weight gain exceeds a certain critical value, massive hydriding takes place due to the significant localized crack development within the oxide, which possibly simulates the secondary hydriding failure in a defective fuel operation. This study reveals that the steam starvation condition above the critical H2/H2O ratio is only a necessary condition for the secondary hydriding failure and, as a sufficient condition, oxide needs to grow sufficiently to reach the critical thickness that produces substantial crack development. In other words, in a real defective fuel operation incident, the secondary failure is initiated only when both steam starvation and oxide degradation conditions are simultaneously met. Therefore, it is concluded that the indispensable time for the critical oxide growth primarily determines the triggering time of massive hydriding failure.
Scully, N M; Ashu-Arrah, B A; Nagle, A P; Omamogho, J O; O'Sullivan, G P; Friebolin, V; Dietrich, B; Albert, K; Glennon, J D
2011-04-15
Investigations into the preparation of silica hydride intermediate in supercritical carbon dioxide (sc-CO(2)) that avoids the use of organic solvents such as toluene or dioxane are described. The effects of reaction temperature, pressure and time on the surface coverage of the supercritical fluid generated silica hydride intermediate were studied. Under optimised supercritical conditions of 120°C, 483 bar and 3 h reaction time, silica hydride (Si-H) conversion efficiencies of ca. 40% were achieved for the hydride intermediate prepared from a monofunctional silane reagent (dimethylmethoxysilane). Si-H conversion efficiencies (as determined from (29)Si CP-MAS NMR spectral analysis) for the hydride intermediate prepared from triethoxysilane (TES) in sc-CO(2) were found to be comparable to those obtained using a TES silanisation approach in an organic solvent. (13)C and (29)Si CP-MAS-NMR spectroscopy was employed to provide a complete structural assignment of the silica hydride intermediates. Furthermore, supercritical CO(2) was subsequently employed as a reaction medium for the heterogenous hydrosilation of silica hydride with octadecene and with styrene, in the presence of a free radical initiator. These supercritical fluid generated reversed-phase materials were prepared in a substantially reduced reaction time (3 h) compared to organic solvent based methods (100 h reaction time). Silica functionalisation in sc-CO(2) presents an efficient and clean alternative to organic solvent based methods for the preparation of important silica hydride intermediate and silica bonded stationary phases via a hydrosilation approach. Copyright © 2010 Elsevier B.V. All rights reserved.
Sealed aerospace metal-hydride batteries
NASA Technical Reports Server (NTRS)
Coates, Dwaine
1992-01-01
Nickel metal hydride and silver metal hydride batteries are being developed for aerospace applications. There is a growing market for smaller, lower cost satellites which require higher energy density power sources than aerospace nickel-cadmium at a lower cost than space nickel-hydrogen. These include small LEO satellites, tactical military satellites and satellite constellation programs such as Iridium and Brilliant Pebbles. Small satellites typically do not have the spacecraft volume or the budget required for nickel-hydrogen batteries. NiCd's do not have adequate energy density as well as other problems such as overcharge capability and memory effort. Metal hydride batteries provide the ideal solution for these applications. Metal hydride batteries offer a number of advantages over other aerospace battery systems.
Precipitation of hydrides in high purity niobium after different treatments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barkov, F.; Romanenko, A.; Trenikhina, Y.
Precipitation of lossy non-superconducting niobium hydrides represents a known problem for high purity niobium in superconducting applications. Using cryogenic optical and laser confocal scanning microscopy we have directly observed surface precipitation and evolution of niobium hydrides in samples after different treatments used for superconducting RF cavities for particle acceleration. Precipitation is shown to occur throughout the sample volume, and the growth of hydrides is well described by the fast diffusion-controlled process in which almost all hydrogen is precipitated atmore » $T=140$~K within $$\\sim30$$~min. 120$$^{\\circ}$$C baking and mechanical deformation are found to affect hydride precipitation through their influence on the number of nucleation and trapping centers.« less
Correia, A; Galesio, M; Santos, H; Rial-Otero, R; Lodeiro, C; Oehmen, A; Conceição, Antonio C L; Capelo, J L
2007-05-15
Two advanced oxidation processes (AOPs), based on high-intensity focused ultrasound (HIFU), namely, KMnO(4)/HCl/HIFU and H(2)O(2)/HCl/HIFU are studied and compared for the determination of toxic arsenic in human urine [As(III)+As(V)+MMA+DMA] by flow-injection hydride-generation atomic absorption spectrometry (FI-HG-AAS). The KMnO(4)/HCl/HIFU procedure was found to be adequate for organic matter degradation in human urine. l-cysteine (letra minuscula) was used for As reduction to the trivalent state. The new procedure was assessed with seven urines certified in different As species. Results revealed that with KMnO(4)/HCl/HIFU plus l-cysteine the toxic arsenic can be accurately measured in human urine whilst the H(2)O(2)/HCl/HIFU procedure underestimates toxic As. DMA and MMA degradation in urine were observed, due to the effects of the ultrasonic field. Recoveries for As(III), As(V), MMA and DMA were within the certified ranges. Arsenobetaine was not degraded by the AOPs. The new procedure adheres well to the principles of analytical minimalism: (i) low reagent consumption, (ii) low reagent concentration, (iii) low waste production and (iv) low amount of time required for sample preparation and analysis.
NASA Astrophysics Data System (ADS)
Maratta Martínez, Ariel; Vázquez, Sandra; Lara, Rodolfo; Martínez, Luis Dante; Pacheco, Pablo
2018-02-01
An integrated microwave assisted digestion (MW-AD) - needle trap device (NTD) for selenium determination in grape pomace samples is presented. The NTD was filled with oxidized multiwall carbon nanotubes (oxMWCNTS) where Se hydrides were preconcentrated. Determination was carried out by flow injection-electrothermal atomic absorption spectrometry (FI-ETAAS). The variables affecting the system were established by a multivariate design (Plackett Burman), indicating that the following variables significantly affect the system: sample amount, HNO3 digestion solution concentration, NaBH4 volume and elution volume. A Box-Behnken design was implemented to determine the optimized values of these variables. The system improved Se atomization in the graphite furnace, since only trapped hydrides reached the graphite furnace, and the pyrolysis stage was eliminated according to the aqueous matrix of the eluate. Under optimized conditions the system reached a limit of quantification of 0.11 μg kg- 1, a detection limit of 0.032 μg kg- 1, a relative standard deviation of 4% and a preconcentration factor (PF) of 100, reaching a throughput sample of 5 samples per hour. Sample analysis show Se concentrations between 0.34 ± 0.03 μg kg- 1 to 0.48 ± 0.03 μg kg- 1 in grape pomace. This system provides minimal reagents and sample consumption, eliminates discontinuous stages between samples processing reaching a simpler and faster Se analysis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klein, J.E.; Estochen, E.G.
The Savannah River Site (SRS) tritium facilities have used first generation (Gen1) LaNi{sub 4.25}Al{sub 0.75} (LANA0.75) metal hydride storage beds for tritium absorption, storage, and desorption. The Gen1 design utilizes hot and cold nitrogen supplies to thermally cycle these beds. Second and third generation (Gen2 and Gen3) storage bed designs include heat conducting foam and divider plates to spatially fix the hydride within the bed. For thermal cycling, the Gen2 and Gen3 beds utilize internal electric heaters and glovebox atmosphere flow over the bed inside the bed external jacket for cooling. The currently installed Gen1 beds require replacement due tomore » tritium aging effects on the LANA0.75 material, and cannot be replaced with Gen2 or Gen3 beds due to different designs of these beds. At the end of service life, Gen1 bed desorption efficiencies are limited by the upper temperature of hot nitrogen supply. To increase end-of-life desorption efficiency, the Gen1 bed design was modified, and a Thermal Enhancement Cartridge Heater Modified (TECH Mod) bed was developed. Internal electric cartridge heaters in the new design to improve end-of-life desorption, and also permit in-bed tritium accountability (IBA) calibration measurements to be made without the use of process tritium. Additional enhancements implemented into the TECH Mod design are also discussed. (authors)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klein, J.; Estochen, E.
The Savannah River Site (SRS) tritium facilities have used 1{sup st} generation (Gen1) LaNi{sub 4.25}Al{sub 0.75} (LANA0.75) metal hydride storage beds for tritium absorption, storage, and desorption. The Gen1 design utilizes hot and cold nitrogen supplies to thermally cycle these beds. Second and 3{sup rd} generation (Gen2 and Gen3) storage bed designs include heat conducting foam and divider plates to spatially fix the hydride within the bed. For thermal cycling, the Gen2 and Gen 3 beds utilize internal electric heaters and glovebox atmosphere flow over the bed inside the bed external jacket for cooling. The currently installed Gen1 beds requiremore » replacement due to tritium aging effects on the LANA0.75 material, and cannot be replaced with Gen2 or Gen3 beds due to different designs of these beds. At the end of service life, Gen1 bed desorption efficiencies are limited by the upper temperature of hot nitrogen supply. To increase end-of-life desorption efficiency, the Gen1 bed design was modified, and a Thermal Enhancement Cartridge Heater Modified (TECH Mod) bed was developed. Internal electric cartridge heaters in the new design to improve end-of-life desorption, and also permit in-bed tritium accountability (IBA) calibration measurements to be made without the use of process tritium. Additional enhancements implemented into the TECH Mod design are also discussed.« less
Hydrolysis reactor for hydrogen production
Davis, Thomas A.; Matthews, Michael A.
2012-12-04
In accordance with certain embodiments of the present disclosure, a method for hydrolysis of a chemical hydride is provided. The method includes adding a chemical hydride to a reaction chamber and exposing the chemical hydride in the reaction chamber to a temperature of at least about 100.degree. C. in the presence of water and in the absence of an acid or a heterogeneous catalyst, wherein the chemical hydride undergoes hydrolysis to form hydrogen gas and a byproduct material.
NASA Astrophysics Data System (ADS)
Ganda, Francesco
The first part of the work presents the neutronic results of a detailed and comprehensive study of the feasibility of using hydride fuel in pressurized water reactors (PWR). The primary hydride fuel examined is U-ZrH1.6 having 45w/o uranium: two acceptable design approaches were identified: (1) use of erbium as a burnable poison; (2) replacement of a fraction of the ZrH1.6 by thorium hydride along with addition of some IFBA. The replacement of 25 v/o of ZrH 1.6 by ThH2 along with use of IFBA was identified as the preferred design approach as it gives a slight cycle length gain whereas use of erbium burnable poison results in a cycle length penalty. The feasibility of a single recycling plutonium in PWR in the form of U-PuH2-ZrH1.6 has also been assessed. This fuel was found superior to MOX in terms of the TRU fractional transmutation---53% for U-PuH2-ZrH1.6 versus 29% for MOX---and proliferation resistance. A thorough investigation of physics characteristics of hydride fuels has been performed to understand the reasons of the trends in the reactivity coefficients. The second part of this work assessed the feasibility of multi-recycling plutonium in PWR using hydride fuel. It was found that the fertile-free hydride fuel PuH2-ZrH1.6, enables multi-recycling of Pu in PWR an unlimited number of times. This unique feature of hydride fuels is due to the incorporation of a significant fraction of the hydrogen moderator in the fuel, thereby mitigating the effect of spectrum hardening due to coolant voiding accidents. An equivalent oxide fuel PuO2-ZrO2 was investigated as well and found to enable up to 10 recycles. The feasibility of recycling Pu and all the TRU using hydride fuels were investigated as well. It was found that hydride fuels allow recycling of Pu+Np at least 6 times. If it was desired to recycle all the TRU in PWR using hydrides, the number of possible recycles is limited to 3; the limit is imposed by positive large void reactivity feedback.
Hydrogen storage as a hydride. Citations from the International Aerospace Abstracts data base
NASA Technical Reports Server (NTRS)
Zollars, G. F.
1980-01-01
These citations from the international literature concern the storage of hydrogen in various metal hydrides. Binary and intermetallic hydrides are considered. Specific alloys discussed are iron titanium, lanthanium nickel, magnesium copper and magnesium nickel among others.
Shafaat, Hannah S; Weber, Katharina; Petrenko, Taras; Neese, Frank; Lubitz, Wolfgang
2012-11-05
Hydrogenase proteins catalyze the reversible conversion of molecular hydrogen to protons and electrons. While many enzymatic states of the [NiFe] hydrogenase have been studied extensively, there are multiple catalytically relevant EPR-silent states that remain poorly characterized. Analysis of model compounds using new spectroscopic techniques can provide a framework for the study of these elusive states within the protein. We obtained optical absorption and resonance Raman (RR) spectra of (dppe)Ni(μ-pdt)Fe(CO)(3) and [(dppe)Ni(μ-pdt)(μ-H)Fe(CO)(3)][BF(4)], which are structural and functional model compounds for the EPR-silent Ni-SI and Ni-R states of the [NiFe] hydrogenase active site. The studies presented here use RR spectroscopy to probe vibrational modes of the active site, including metal-hydride stretching vibrations along with bridging ligand-metal and Fe-CO bending vibrations, with isotopic substitution used to identify key metal-hydride modes. The metal-hydride vibrations are essentially uncoupled and represent isolated, localized stretching modes; the iron-hydride vibration occurs at 1530 cm(-1), while the nickel-hydride vibration is observed at 945 cm(-1). The significant discrepancy between the metal-hydride vibrational frequencies reflects the slight asymmetry in the metal-hydride bond lengths. Additionally, time-dependent density functional theory (TD-DFT) calculations were carried out to obtain theoretical RR spectra of these compounds. On the basis of the detailed comparison of theory and experiment, the dominant electronic transitions and significant normal modes probed in the RR experiments were assigned; the primary transitions in the visible wavelengths represent metal-to-metal and metal-to-ligand charge transfer bands. Inherent properties of metal-hydride vibrational modes in resonance Raman spectra and DFT calculations are discussed together with the prospects of observing such vibrational modes in metal-hydride-containing proteins. Such a combined theoretical and experimental approach may be valuable for characterization of analogous redox states in the [NiFe] hydrogenases.
Metastable Metal Hydrides for Hydrogen Storage
Graetz, Jason
2012-01-01
The possibility of using hydrogen as a reliable energy carrier for both stationary and mobile applications has gained renewed interest in recent years due to improvements in high temperature fuel cells and a reduction in hydrogen production costs. However, a number of challenges remain and new media are needed that are capable of safely storing hydrogen with high gravimetric and volumetric densities. Metal hydrides and complex metal hydrides offer some hope of overcoming these challenges; however, many of the high capacity “reversible” hydrides exhibit a large endothermic decomposition enthalpy making it difficult to release the hydrogen at low temperatures. Onmore » the other hand, the metastable hydrides are characterized by a low reaction enthalpy and a decomposition reaction that is thermodynamically favorable under ambient conditions. The rapid, low temperature hydrogen evolution rates that can be achieved with these materials offer much promise for mobile PEM fuel cell applications. However, a critical challenge exists to develop new methods to regenerate these hydrides directly from the reactants and hydrogen gas. This spotlight paper presents an overview of some of the metastable metal hydrides for hydrogen storage and a few new approaches being investigated to address the key challenges associated with these materials.« less
Investigation of the reaction of 5Al-2.5Sn titanium with hydrogen at subzero temperature
NASA Technical Reports Server (NTRS)
Williams, D. N.; Wood, R. A.
1972-01-01
An investigation of the effect of temperature on the surface hydriding reaction of 5Al-2.5Sn titanium exposed to hydrogen at 250 psig was made. The temperature range studied extended from 160 F to -160 F. Reaction conditions were controlled so as to expose a vacuum-cleaned, oxide-free alloy surface to an ultrapure hydrogen atmosphere. Reaction times up to 1458 hours were studied. The hydriding reaction was extremely sensitive to experimental variables and the reproducibility of reaction behavior was poor. However, it was demonstrated that the reaction proceeded quite rapidly at 160 F; as much as 1 mil surface hydriding being observed after exposure for 162 hours. The amount of hydriding appeared to decrease with decreasing temperature at 75 F, -36 F, and -76 F. No surface hydriding was detected either by vacuum fusion analysis or by metallographic examination after exposure for 1458 hours at -110 F or -160 F. Tensile properties were unaffected by surface hydriding of the severity developed in this program (up to 1 mil thick) as determined by slow strain rate testing of hydrided sheet tensile samples.
Method of making crack-free zirconium hydride
Sullivan, Richard W.
1980-01-01
Crack-free hydrides of zirconium and zirconium-uranium alloys are produced by alloying the zirconium or zirconium-uranium alloy with beryllium, or nickel, or beryllium and scandium, or nickel and scandium, or beryllium and nickel, or beryllium, nickel and scandium and thereafter hydriding.
Apparatus for chemical synthesis
Kong, Peter C [Idaho Falls, ID; Herring, J Stephen [Idaho Falls, ID; Grandy, Jon D [Idaho Falls, ID
2011-05-10
A method and apparatus for forming a chemical hydride is described and which includes a pseudo-plasma-electrolysis reactor which is operable to receive a solution capable of forming a chemical hydride and which further includes a cathode and a movable anode, and wherein the anode is moved into and out of fluidic, ohmic electrical contact with the solution capable of forming a chemical hydride and which further, when energized produces an oxygen plasma which facilitates the formation of a chemical hydride in the solution.
Method and apparatus for chemical synthesis
Kong; Peter C. , Herring; J. Stephen , Grandy; Jon D.
2007-12-04
A method and apparatus for forming a chemical hydride is described and which includes a pseudo-plasma-electrolysis reactor which is operable to receive a solution capable of forming a chemical hydride and which further includes a cathode and a movable anode, and wherein the anode is moved into and out of fluidic, ohmic electrical contact with the solution capable of forming a chemical hydride and which further, when energized produces an oxygen plasma which facilitates the formation of a chemical hydride in the solution.
The Crystal Structure of Thorium and Zirconium Dihydrides by X-ray and Neutron Diffraction
DOE R&D Accomplishments Database
Rundle, R.E.; Shull, C.G.; Wollan, E.O.
1951-04-20
Thorium forms a tetragonal lower hydride of composition ThH{sub 2}. The hydrides ThH{sub 2}, ThD{sub 2}, and ZrD{sub 2} have been studied by neutron diffraction in order that hydrogen positions could be determined. The hydrides are isomorphous, and have a deformed fluorite structure. Metal-hydrogen distances in thorium hydride are unusually large, as in UH{sub 3}. Thorium and zirconium scattering amplitudes and a revised scattering amplitude for deuterium are reported.
Iron hydrides formation in interstellar clouds
NASA Astrophysics Data System (ADS)
Bar-Nun, A.; Pasternak, M.; Barrett, P. H.
1980-07-01
A recent Moessbauer study with Fe-57 in a solid hydrogen or hydrogen-argon matrix demonstrated the formation of an iron hydride molecule (FeH2) at 2.5-5 K. Following this and other studies, the possible existence of iron hydride molecules in interstellar clouds is proposed. In clouds, the iron hydrides FeH and FeH2 would be formed only on grains, by encounters of H atoms or H2 molecules with Fe atoms which are adsorbed on the grains. The other transition metals, Sc, Ti, V, Cr, Mn, Co, N, Cd and also Cu and Ca form hydrides of the type M-H, which could be responsible, at least in part, for the depletion of these metals in clouds.
High-Frequency Fe-H Vibrations in a Bridging Hydride Complex Characterized by NRVS and DFT.
Pelmenschikov, Vladimir; Gee, Leland B; Wang, Hongxin; MacLeod, K Cory; McWilliams, Sean F; Skubi, Kazimer L; Cramer, Stephen P; Holland, Patrick L
2018-05-30
High-spin iron species with bridging hydrides have been detected in species trapped during nitrogenase catalysis, but there are few general methods of evaluating Fe-H bonds in high-spin multinuclear iron systems. An 57 Fe nuclear resonance vibrational spectroscopy (NRVS) study on an Fe(μ-H) 2 Fe model complex reveals Fe-H stretching vibrations for bridging hydrides at frequencies greater than 1200 cm -1 . These isotope-sensitive vibrational bands are not evident in infrared (IR) spectra, showing the power of NRVS for identifying hydrides in this high-spin iron system. Complementary density functional theory (DFT) calculations elucidate the normal modes of the rhomboidal iron hydride core. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Rongeat, Carine; Llamas-Jansa, Isabel; Doppiu, Stefania; Deledda, Stefano; Borgschulte, Andreas; Schultz, Ludwig; Gutfleisch, Oliver
2007-11-22
Among the thermodynamic properties of novel materials for solid-state hydrogen storage, the heat of formation/decomposition of hydrides is the most important parameter to evaluate the stability of the compound and its temperature and pressure of operation. In this work, the desorption and absorption behaviors of three different classes of hydrides are investigated under different hydrogen pressures using high-pressure differential scanning calorimetry (HP-DSC). The HP-DSC technique is used to estimate the equilibrium pressures as a function of temperature, from which the heat of formation is derived. The relevance of this procedure is demonstrated for (i) magnesium-based compounds (Ni-doped MgH2), (ii) Mg-Co-based ternary hydrides (Mg-CoHx) and (iii) Alanate complex hydrides (Ti-doped NaAlH4). From these results, it can be concluded that HP-DSC is a powerful tool to obtain a good approximation of the thermodynamic properties of hydride compounds by a simple and fast study of desorption and absorption properties under different pressures.
Pang, Yuepeng; Liu, Yongfeng; Gao, Mingxia; Ouyang, Liuzhang; Liu, Jiangwen; Wang, Hui; Zhu, Min; Pan, Hongge
2014-03-24
Nanoscale hydrides desorb and absorb hydrogen at faster rates and lower temperatures than bulk hydrides because of their high surface areas, abundant grain boundaries and short diffusion distances. No current methods exist for the direct fabrication of nanoscale complex hydrides (for example, alanates, borohydrides) with unique morphologies because of their extremely high reducibility, relatively low thermodynamic stability and complicated elemental composition. Here, we demonstrate a mechanical-force-driven physical vapour deposition procedure for preparing nanoscale complex hydrides without scaffolds or supports. Magnesium alanate nanorods measuring 20-40 nm in diameter and lithium borohydride nanobelts measuring 10-40 nm in width are successfully synthesised on the basis of the one-dimensional structure of the corresponding organic coordination polymers. The dehydrogenation kinetics of the magnesium alanate nanorods are improved, and the nanorod morphology persists through the dehydrogenation-hydrogenation process. Our findings may facilitate the fabrication of such hydrides with improved hydrogen storage properties for practical applications.
NASA Astrophysics Data System (ADS)
Pang, Yuepeng; Liu, Yongfeng; Gao, Mingxia; Ouyang, Liuzhang; Liu, Jiangwen; Wang, Hui; Zhu, Min; Pan, Hongge
2014-03-01
Nanoscale hydrides desorb and absorb hydrogen at faster rates and lower temperatures than bulk hydrides because of their high surface areas, abundant grain boundaries and short diffusion distances. No current methods exist for the direct fabrication of nanoscale complex hydrides (for example, alanates, borohydrides) with unique morphologies because of their extremely high reducibility, relatively low thermodynamic stability and complicated elemental composition. Here, we demonstrate a mechanical-force-driven physical vapour deposition procedure for preparing nanoscale complex hydrides without scaffolds or supports. Magnesium alanate nanorods measuring 20-40 nm in diameter and lithium borohydride nanobelts measuring 10-40 nm in width are successfully synthesised on the basis of the one-dimensional structure of the corresponding organic coordination polymers. The dehydrogenation kinetics of the magnesium alanate nanorods are improved, and the nanorod morphology persists through the dehydrogenation-hydrogenation process. Our findings may facilitate the fabrication of such hydrides with improved hydrogen storage properties for practical applications.
Dzierlenga, Michael W; Antoniou, Dimitri; Schwartz, Steven D
2015-04-02
The mechanisms involved in enzymatic hydride transfer have been studied for years, but questions remain due, in part, to the difficulty of probing the effects of protein motion and hydrogen tunneling. In this study, we use transition path sampling (TPS) with normal mode centroid molecular dynamics (CMD) to calculate the barrier to hydride transfer in yeast alcohol dehydrogenase (YADH) and human heart lactate dehydrogenase (LDH). Calculation of the work applied to the hydride allowed for observation of the change in barrier height upon inclusion of quantum dynamics. Similar calculations were performed using deuterium as the transferring particle in order to approximate kinetic isotope effects (KIEs). The change in barrier height in YADH is indicative of a zero-point energy (ZPE) contribution and is evidence that catalysis occurs via a protein compression that mediates a near-barrierless hydride transfer. Calculation of the KIE using the difference in barrier height between the hydride and deuteride agreed well with experimental results.
Thermal desorption of hydrogen from Mg2Ni hydrogen storage materials.
Hur, Tae Hong; Han, Jeong Seb; Kim, Jin Ho; Kim, Byung Kwan
2011-07-01
In order to investigate the influence of HCS on the hydrogen occupation site of Mg2Ni alloy, the thermal desorption technique has been applied to Mg2Ni hydride made by hydriding combustion synthesis (HCS). Mg2Ni was made under low temperature in a short time by the HCS compared to conventional melting process. At various initial hydride wt% from 0.91 to 3.52, the sample was heated to 623 K at a rate of 1.0 K/min. The starting temperature of the evolution of hydrogen goes higher as the initial hydride wt% increases. Only one peak is shown in the case of the small initial hydride wt%. But two peaks appeared with increasing initial hydride wt%. The activation energies obtained by the first and second peaks are 113.0 and 99.5 kJ/mol respectively. The two site occupation model by Darriet et al. was proved. The influence of HCS on the hydrogen occupation site of Mg2Ni alloy is nonexistent.
Rieger, Paul-Gerhard; Sinnwell, Volker; Preuß, Andrea; Francke, Wittko; Knackmuss, Hans-Joachim
1999-01-01
Biodegradation of 2,4,6-trinitrophenol (picric acid) by Rhodococcus erythropolis HLPM-1 proceeds via initial hydrogenation of the aromatic ring system. Here we present evidence for the formation of a hydride-Meisenheimer complex (anionic ς-complex) of picric acid and its protonated form under physiological conditions. These complexes are key intermediates of denitration and productive microbial degradation of picric acid. For comparative spectroscopic identification of the hydride complex, it was necessary to synthesize this complex for the first time. Spectroscopic data revealed the initial addition of a hydride ion at position 3 of picric acid. This hydride complex readily picks up a proton at position 2, thus forming a reactive species for the elimination of nitrite. Cell extracts of R. erythropolis HLPM-1 transform the chemically synthesized hydride complex into 2,4-dinitrophenol. Picric acid is used as the sole carbon, nitrogen, and energy source by R. erythropolis HLPM-1. PMID:9973345
NASA Astrophysics Data System (ADS)
Sharma, Rishi K.; Sunil, Saurav; Kumawat, B. K.; Singh, R. N.; Tewari, Asim; Kashyap, B. P.
2017-05-01
An experimental setup was designed, fabricated and used to form radial hydrides in Zr-2.5%Nb alloy pressure tube spool. The design of setup was based on ensuring a hoop stress in the spool greater than threshold stress for reorientation of hydrides in this alloy, which was achieved by manipulating the thermal expansion coefficient of the plunger and pressure tube material and diametral interference between them. The experimental setup was loaded on a universal testing machine (UTM) fitted with an environmental chamber and subjected to a temperature cycle for the stress reorientation treatment. The metallographic examination of the hydrogen charged spools subjected to stress re-orientation treatment using this set up revealed formation of predominantly radial hydrides. The variation of fracture toughness of material containing radial hydride with test temperature showed typical 'S' curve behavior with transition temperatures more than that of the material containing circumferential hydride.
Hydrogen storage in the form of metal hydrides
NASA Technical Reports Server (NTRS)
Zwanziger, M. G.; Santana, C. C.; Santos, S. C.
1984-01-01
Reversible reactions between hydrogen and such materials as iron/titanium and magnesium/ nickel alloy may provide a means for storing hydrogen fuel. A demonstration model of an iron/titanium hydride storage bed is described. Hydrogen from the hydride storage bed powers a converted gasoline electric generator.
High energy density battery based on complex hydrides
Zidan, Ragaiy
2016-04-26
A battery and process of operating a battery system is provided using high hydrogen capacity complex hydrides in an organic non-aqueous solvent that allows the transport of hydride ions such as AlH.sub.4.sup.- and metal ions during respective discharging and charging steps.
Metal Alkoxides - Models for Metal Oxides.
1982-07-29
molybdenum, tungsten, pi-donor ligands, carbon-monoxide, hydride, alkyne, catalysis V 20. ABSTRACT (Continue an reverve side it neceser mnd identify by... heterobimetallic activation of small but "tough" molecules such as CO has gained much attention in homogeneous organometallic chemistry within the last...34Organometallic Mechanisms and Catalysis " Academic Press: New York, 1974. 3. Catalytic Activation of Carbon Monoxide, ACS Sym. Ser. 1981, 152. Ford, P.C
The Current Status of Hydrogen Storage Alloy Development for Electrochemical Applications.
Young, Kwo-Hsiung; Nei, Jean
2013-10-17
In this review article, the fundamentals of electrochemical reactions involving metal hydrides are explained, followed by a report of recent progress in hydrogen storage alloys for electrochemical applications. The status of various alloy systems, including AB₅, AB₂, A₂B₇-type, Ti-Ni-based, Mg-Ni-based, BCC, and Zr-Ni-based metal hydride alloys, for their most important electrochemical application, the nickel metal hydride battery, is summarized. Other electrochemical applications, such as Ni-hydrogen, fuel cell, Li-ion battery, air-metal hydride, and hybrid battery systems, also have been mentioned.
Technical and economic aspects of hydrogen storage in metal hydrides
NASA Technical Reports Server (NTRS)
Schmitt, R.
1981-01-01
The recovery of hydrogen from such metal hydrides as LiH, MgH2, TiH2, CaH2 and FeTiH compounds is studied, with the aim of evaluating the viability of the technique for the storage of hydrogen fuel. The pressure-temperature dependence of the reactions, enthalpies of formation, the kinetics of the hydrogen absorption and desorption, and the mechanical and chemical stability of the metal hydrides are taken into account in the evaluation. Economic aspects are considered. Development of portable metal hydride hydrogen storage reservoirs is also mentioned.
The storage of hydrogen in the form of metal hydrides: An application to thermal engines
NASA Technical Reports Server (NTRS)
Gales, C.; Perroud, P.
1981-01-01
The possibility of using LaNi56, FeTiH2, or MgH2 as metal hydride storage sytems for hydrogen fueled automobile engines is discussed. Magnesium copper and magnesium nickel hydrides studies indicate that they provide more stable storage systems than pure magnesium hydrides. Several test engines employing hydrogen fuel have been developed: a single cylinder motor originally designed for use with air gasoline mixture; a four-cylinder engine modified to run on an air hydrogen mixture; and a gas turbine.
Method for converting uranium oxides to uranium metal
Duerksen, Walter K.
1988-01-01
A process is described for converting scrap and waste uranium oxide to uranium metal. The uranium oxide is sequentially reduced with a suitable reducing agent to a mixture of uranium metal and oxide products. The uranium metal is then converted to uranium hydride and the uranium hydride-containing mixture is then cooled to a temperature less than -100.degree. C. in an inert liquid which renders the uranium hydride ferromagnetic. The uranium hydride is then magnetically separated from the cooled mixture. The separated uranium hydride is readily converted to uranium metal by heating in an inert atmosphere. This process is environmentally acceptable and eliminates the use of hydrogen fluoride as well as the explosive conditions encountered in the previously employed bomb-reduction processes utilized for converting uranium oxides to uranium metal.
NASA Astrophysics Data System (ADS)
Zhou, Chengshang
Metal hydrides are a group of important materials known as energy carriers for renewable energy and thermal energy storage. A concept of thermal battery based on advanced metal hydrides is studied for heating and cooling of cabins in electric vehicles. The system utilizes a pair of thermodynamically matched metal hydrides as energy storage media. The hot hydride that is identified and developed is catalyzed MgH2 due to its high energy density and enhanced kinetics. TiV0.62Mn1.5, TiMn2, and LaNi5 alloys are selected as the matching cold hydride. A systematic experimental survey is carried out in this study to compare a wide range of additives including transitions metals, transition metal oxides, hydrides, intermetallic compounds, and carbon materials, with respect to their effects on dehydrogenation properties of MgH2. The results show that additives such as Ti and V-based metals, hydride, and certain intermetallic compounds have strong catalytic effects. Solid solution alloys of magnesium are exploited as a way to destabilize magnesium hydride thermodynamically. Various elements are alloyed with magnesium to form solid solutions, including indium and aluminum. Thermodynamic properties of the reactions between the magnesium solid solution alloys and hydrogen are investigated, showing that all the solid solution alloys that are investigated in this work have higher equilibrium hydrogen pressures than that of pure magnesium. Cyclic stability of catalyzed MgH2 is characterized and analyzed using a PCT Sievert-type apparatus. Three systems, including MgH2-TiH 2, MgH2-TiMn2, and MgH2-VTiCr, are examined. The hydrogenating and dehydrogenating kinetics at 300°C are stable after 100 cycles. However, the low temperature (25°C to 150°C) hydrogenation kinetics suffer a severe degradation during hydrogen cycling. Further experiments confirm that the low temperature kinetic degradation can be mainly related the extended hydrogenation-dehydrogenation reactions. Proof-of-concept prototypes are built and tested, demonstrating the potential of the system as HVAC for transportation vehicles. The performance of the concept-demonstration-unit show both high heating/cooling power and high energy densities. An extended cycling test shows degradation on the performance of the system. To solve this problem, a metal hydride hydrogen compressor is proposed for aiding the recharge process of the system.
Metal hydrides: an innovative and challenging conversion reaction anode for lithium-ion batteries
Oumellal, Yassine; Bonnet, Jean-Pierre
2015-01-01
Summary The state of the art of conversion reactions of metal hydrides (MH) with lithium is presented and discussed in this review with regard to the use of these hydrides as anode materials for lithium-ion batteries. A focus on the gravimetric and volumetric storage capacities for different examples from binary, ternary and complex hydrides is presented, with a comparison between thermodynamic prediction and experimental results. MgH2 constitutes one of the most attractive metal hydrides with a reversible capacity of 1480 mA·h·g−1 at a suitable potential (0.5 V vs Li+/Li0) and the lowest electrode polarization (<0.2 V) for conversion materials. Conversion process reaction mechanisms with lithium are subsequently detailed for MgH2, TiH2, complex hydrides Mg2MHx and other Mg-based hydrides. The reversible conversion reaction mechanism of MgH2, which is lithium-controlled, can be extended to others hydrides as: MHx + xLi+ + xe− in equilibrium with M + xLiH. Other reaction paths—involving solid solutions, metastable distorted phases, and phases with low hydrogen content—were recently reported for TiH2 and Mg2FeH6, Mg2CoH5 and Mg2NiH4. The importance of fundamental aspects to overcome technological difficulties is discussed with a focus on conversion reaction limitations in the case of MgH2. The influence of MgH2 particle size, mechanical grinding, hydrogen sorption cycles, grinding with carbon, reactive milling under hydrogen, and metal and catalyst addition to the MgH2/carbon composite on kinetics improvement and reversibility is presented. Drastic technological improvement in order to the enhance conversion process efficiencies is needed for practical applications. The main goals are minimizing the impact of electrode volume variation during lithium extraction and overcoming the poor electronic conductivity of LiH. To use polymer binders to improve the cycle life of the hydride-based electrode and to synthesize nanoscale composite hydride can be helpful to address these drawbacks. The development of high-capacity hydride anodes should be inspired by the emergent nano-research prospects which share the knowledge of both hydrogen-storage and lithium-anode communities. PMID:26425434
CO2 Reduction Catalyzed by Nitrogenase: Pathways to Formate, Carbon Monoxide, and Methane.
Khadka, Nimesh; Dean, Dennis R; Smith, Dayle; Hoffman, Brian M; Raugei, Simone; Seefeldt, Lance C
2016-09-06
The reduction of N2 to NH3 by Mo-dependent nitrogenase at its active-site metal cluster FeMo-cofactor utilizes reductive elimination of Fe-bound hydrides with obligatory loss of H2 to activate the enzyme for binding/reduction of N2. Earlier work showed that wild-type nitrogenase and a nitrogenase with amino acid substitutions in the MoFe protein near FeMo-cofactor can catalytically reduce CO2 by two or eight electrons/protons to carbon monoxide (CO) and methane (CH4) at low rates. Here, it is demonstrated that nitrogenase preferentially reduces CO2 by two electrons/protons to formate (HCOO(-)) at rates >10 times higher than rates of CO2 reduction to CO and CH4. Quantum mechanical calculations on the doubly reduced FeMo-cofactor with a Fe-bound hydride and S-bound proton (E2(2H) state) favor a direct reaction of CO2 with the hydride ("direct hydride transfer" reaction pathway), with facile hydride transfer to CO2 yielding formate. In contrast, a significant barrier is observed for reaction of Fe-bound CO2 with the hydride ("associative" reaction pathway), which leads to CO and CH4. Remarkably, in the direct hydride transfer pathway, the Fe-H behaves as a hydridic hydrogen, whereas in the associative pathway it acts as a protic hydrogen. MoFe proteins with amino acid substitutions near FeMo-cofactor (α-70(Val→Ala), α-195(His→Gln)) are found to significantly alter the distribution of products between formate and CO/CH4.
Exploring hydride-π interactions and their tuning by σ-hole bonds: an ab initio study
NASA Astrophysics Data System (ADS)
Esrafili, Mehdi D.; Asadollahi, Soheila; Mousavian, Parisasadat
2018-01-01
In the present work, ab initio calculations are performed to investigate the geometry, interaction energy and bonding properties of binary complexes formed between metal-hydrides HMX (M = Be, Mg, Zn and X = H, F, CH3) and a series of π-acidic heteroaromatic rings. In all the resulting complexes, the heteroaromatic ring acts as a Lewis acid (electron acceptor), while the H atom of the HMX molecule acts as a Lewis base (electron donor). The nature of this interaction, called 'hydride-π' interaction, is explored in terms of molecular electrostatic potential, non-covalent interaction, quantum theory of atoms in molecules and natural bond orbital analyses. The results show that the interaction energies of these hydride-π interactions are between -1.24 and -2.72 kcal/mol. Furthermore, mutual influence between the hydride-π and halogen- or pnicogen-bonding interactions is studied in complexes in which these interactions coexist. For a given π-acidic ring, the formation of the pnicogen-bonding induces a larger enhancing effect on the strength of hydride-π bond than the halogen-bonding.
de la Calle, Maria B; Devesa, Vicenta; Fiamegos, Yiannis; Vélez, Dinoraz
2017-09-01
The European Food Safety Authority (EFSA) underlined in its Scientific Opinion on Arsenic in Food that in order to support a sound exposure assessment to inorganic arsenic through diet, information about distribution of arsenic species in various food types must be generated. A method, previously validated in a collaborative trial, has been applied to determine inorganic arsenic in a wide variety of food matrices, covering grains, mushrooms and food of marine origin (31 samples in total). The method is based on detection by flow injection-hydride generation-atomic absorption spectrometry of the iAs selectively extracted into chloroform after digestion of the proteins with concentrated HCl. The method is characterized by a limit of quantification of 10 µg/kg dry weight, which allowed quantification of inorganic arsenic in a large amount of food matrices. Information is provided about performance scores given to results obtained with this method and which were reported by different laboratories in several proficiency tests. The percentage of satisfactory results obtained with the discussed method is higher than that of the results obtained with other analytical approaches.
Zurynková, Pavla; Dědina, Jiří; Kratzer, Jan
2018-06-20
Atomization conditions for antimony hydride in the plasma atomizer based on a dielectric barrier discharge (DBD) with atomic absorption spectrometric detection were optimized. Argon was found as the best discharge gas under a flow rate of 50 mL min - 1 while the DBD power was optimum at 30 W. Analytical figures of merit including interference study of As, Se and Bi have been subsequently investigated and the results compared to those found in an externally heated quartz tube atomizer (QTA). The limit of detection (LOD) reached in DBD (0.15 ng mL -1 Sb) is comparable to that observed in QTA (0.14 ng mL -1 Sb). Finally, possibility of Sb preconcentration by stibane in situ trapping in a DBD atomizer was studied. For trapping time of 300 s, the preconcentration efficiency and LOD, respectively, were 103 ± 2% and 0.02 ng mL -1 . Copyright © 2018 Elsevier B.V. All rights reserved.
Hydrogen generation using silicon nanoparticles and their mixtures with alkali metal hydrides
NASA Astrophysics Data System (ADS)
Patki, Gauri Dilip
Hydrogen is a promising energy carrier, for use in fuel cells, engines, and turbines for transportation or mobile applications. Hydrogen is desirable as an energy carrier, because its oxidation by air releases substantial energy (thermally or electrochemically) and produces only water as a product. In contrast, hydrocarbon energy carriers inevitably produce CO2, contributing to global warming. While CO2 capture may prove feasible in large stationary applications, implementing it in transportation and mobile applications is a daunting challenge. Thus a zero-emission energy carrier like hydrogen is especially needed in these cases. Use of H2 as an energy carrier also brings new challenges such as safe handling of compressed hydrogen and implementation of new transport, storage, and delivery processes and infrastructure. With current storage technologies, hydrogen's energy per volume is very low compared to other automobile fuels. High density storage of compressed hydrogen requires combinations of high pressure and/or low temperature that are not very practical. An alternative for storage is use of solid light weight hydrogenous material systems which have long durability, good adsorption properties and high activity. Substantial research has been conducted on carbon materials like activated carbon, carbon nanofibers, and carbon nanotubes due to their high theoretical hydrogen capacities. However, the theoretical values have not been achieved, and hydrogen uptake capacities in these materials are below 10 wt. %. In this thesis we investigated the use of silicon for hydrogen generation. Hydrogen generation via water oxidation of silicon had been ignored due to slow reaction kinetics. We hypothesized that the hydrogen generation rate could be improved by using high surface area silicon nanoparticles. Our laser-pyrolysis-produced nanoparticles showed surprisingly rapid hydrogen generation and high hydrogen yield, exceeding the theoretical maximum of two moles of H2 per mole of Si. We compare our silicon nanoparticles (˜10nm diameter) with commercial silicon nanopowder (<100nm diameter) and ball-milled silicon powder (325 mesh). The increase in rate upon decreasing the particle size to 10 nm was even greater than would be expected based upon the increase in surface area. While specific surface area increased by a factor of 6 in going from <100 nm to ˜10 nm particles, the hydrogen production rate increased by a factor of 150. However, in all cases, silicon requires a base (e.g. NaOH, KOH, hydrazine) to catalyze its reaction with water. Metal hydrides are also promising hydrogen storage materials. The optimum metal hydride would possess high hydrogen storage density at moderate temperature and pressure, release hydrogen safely and controllably, and be stable in air. Alkali metal hydrides have high hydrogen storage density, but exhibit high uncontrollable reactivity with water. In an attempt to control this explosive nature while maintaining high storage capacity, we mixed our silicon nanoparticles with the hydrides. This has dual benefits: (1) the hydride- water reaction produces the alkali hydroxide needed for base-catalyzed silicon oxidation, and (2) dilution with 10nm coating by, the silicon may temper the reactivity of the hydride, making the process more controllable. Initially, we analyzed hydrolysis of pure alkali metal hydrides and alkaline earth metal hydrides. Lithium hydride has particularly high hydrogen gravimetric density, along with faster reaction kinetics than sodium hydride or magnesium hydride. On analysis of hydrogen production we found higher hydrogen yield from the silicon nanoparticle—metal hydride mixture than from pure hydride hydrolysis. The silicon-hydride mixtures using our 10nm silicon nanoparticles produced high hydrogen yield, exceeding the theoretical yield. Some evidence of slowing of the hydride reaction rate upon addition of silicon nanoparticles was observed.
Hydrogen absorption properties of Mg-Ni alloys prepared by bulk mechanical alloying
NASA Astrophysics Data System (ADS)
Kuji, Toshiro
2001-04-01
The thermodynamic properties of the hydrides of Mg2-xNi (x=0-0.5) alloys produced by bulk mechanical alloying (BMA) were determined from pressure-composition (PC) isotherms for absorption over temperatures from 623 to 423 K. The vant Hoff plot for the plateau pressures of isotherms clearly indicated the existence of high and low temperature hydrides with different entropy and enthalpy for hydride formation. It was found that both the entropy and enthalpy values for the high temperature hydride were more negative than for the low temperature hydride. The phase transition temperature was 525 K for Mg2.0Ni and decreased while increasing the value of x. This allotropic transformation was well confirmed by in-situ XRD observations from RT to 673 K under hydrogen atmosphere or in vacuum.
Effect of delivery condition on desorption rate of ZrCo metal hydride bed for fusion fuel cycle
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kang, H.G.; Yun, S.H.; Chung, D.
2015-03-15
For the safety of fusion fuel cycle, hydrogen isotope gases including tritium are stored as metal hydride form. To satisfy fueling requirement of fusion machine, rapid delivery from metal hydride bed is one of major factors for the development of tritium storage and delivery system. Desorption from metal hydride depends on the operation scenario by pressure and temperature control of the bed. The effect of operation scenario and pump performance on desorption rate of metal hydride bed was experimentally investigated using ZrCo bed. The results showed that the condition of pre-heating scenario before actual delivery of gas affected the deliverymore » performance. Different pumps were connected to desorption line from bed and the effect of pump capacity on desorption rate were also found to be significant. (authors)« less
Low-valent group 14 element hydride chemistry: towards catalysis.
Hadlington, Terrance J; Driess, Matthias; Jones, Cameron
2018-06-05
The chemistry of group 14 element(ii) hydride complexes has rapidly expanded since the first stable example of such a compound was reported in 2000. Since that time it has become apparent that these systems display remarkable reactivity patterns, in some cases mimicking those of late transition-metal (TM) hydride compounds. This is especially so for the hydroelementation of unsaturated organic substrates. Recently, this aspect of their reactivity has been extended to the use of group 14 element(ii) hydrides as efficient, "TM-like" catalysts in organic synthesis. This review will detail how the chemistry of these hydride compounds has advanced since their early development. Throughout, there is a focus on the importance of ligand effects in these systems, and how ligand design can greatly modify a coordinated complex's electronic structure, reactivity, and catalytic efficiency.
Simultaneous plate forming and hydriding of La(Fe, Si)13 magnetocaloric powders
NASA Astrophysics Data System (ADS)
Yang, Nannan; You, Caiyin; Tian, Na; Zhang, Yue; Leng, Haiyan; He, Jun
2018-04-01
In this work, we propose a way to simultaneously realize the plate forming and hydriding of La(Fe, Si)13 powders by mixing hydride MgNiYHx and solder powders Sn3.0Ag0.5Cu. Under the annealing of the green compact, the hydriding of La(Fe, Si)13 was realized through absorbing the released hydrogen from the metallic hydride MgNiYHx. The Curie temperature of La(Fe, Si)13 alloy increased from 213 K to 333 K and hysteresis reduced from 3.3 J/kg·K to 1.33 J/kg·K. Due to the bonding of Sn3.0Ag0.5Cu powders, the mechanical strength of the composite compact was highly improved in comparison to the compact of La(Fe, Si)13 powders alone.
Bipolar Nickel-Metal Hydride Battery Being Developed
NASA Technical Reports Server (NTRS)
Manzo, Michelle A.
1998-01-01
The NASA Lewis Research Center has contracted with Electro Energy, Inc., to develop a bipolar nickel-metal hydride battery design for energy storage on low-Earth-orbit satellites. The objective of the bipolar nickel-metal hydride battery development program is to approach advanced battery development from a systems level while incorporating technology advances from the lightweight nickel electrode field, hydride development, and design developments from nickel-hydrogen systems. This will result in a low-volume, simplified, less-expensive battery system that is ideal for small spacecraft applications. The goals of the program are to develop a 1-kilowatt, 28-volt (V), bipolar nickel-metal hydride battery with a specific energy of 100 watt-hours per kilogram (W-hr/kg), an energy density of 250 W-hr/liter and a 5-year life in low Earth orbit at 40-percent depth-of-discharge.
Microstructural studies of hydrogen damage in metastable stainless steels. Ph.D. Thesis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, S.
1994-12-31
The primary objective of this dissertation is to determine the role of microstructure in hydrogen-induced damage in austenitic stainless steels. Specific attention was focused on the interactions between hydrogen and the austenitic grain, twin boundaries and the matrix, and the associated phase transformations. An experimental program of research was conducted to determine the phase transformation and cracking path in hydrogen charged stainless steels. Normal-purity AISI 304 (Fe18CrYNi) and high-purity 305 (Fe18Cr12Ni) solution-annealet stainless steels were examined. The steels were cathodically charged with hydrogen at 1, 10 and 100 mA/sq cm at room temperature for 5 min. to 32 hours, inmore » an 1N H2SO4 solution with 0.25 g/l of NaAsO2 added as a hydrogen recombination poison. Resultant changes in microstructure and hydrogen damage due to charging and subsequent room temperature aging were studied by x-ray diffraction, optical microscope (in the Nomarski mode), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). A new phase in 305 stainless steel was observed, and was identified as an epsilon(*) (hcp) hydride due to hydrogen charging. Two new phases in 304 stainless steel were found as gamma(*) (fcc) and epsilon(*) hydrides from hydrogen charging. The hydride formation mechanisms during charging were: (1) gamma yields gamma(*) hydride and (2) gamma yields epsilon yields epsilon(*) hydride. These hydrides are unstable and decomposed during room temperature aging in air. The decomposition mechanisms were: (1) epsilon(*) hydride (hcp) yields expanded epsilon (hcp) phase yields a (bcc) phase; (2) gamma(*) hydride yields gamma phase. The grain and twin boundary cracks were the results of charging and identified as the preferred cracking sites. Transgranular crack initiation and growth accompanied the decomposition of hydrides and were controlled by hydrogen outgassing during room temperature aging.« less
The Current Status of Hydrogen Storage Alloy Development for Electrochemical Applications
Young, Kwo-hsiung; Nei, Jean
2013-01-01
In this review article, the fundamentals of electrochemical reactions involving metal hydrides are explained, followed by a report of recent progress in hydrogen storage alloys for electrochemical applications. The status of various alloy systems, including AB5, AB2, A2B7-type, Ti-Ni-based, Mg-Ni-based, BCC, and Zr-Ni-based metal hydride alloys, for their most important electrochemical application, the nickel metal hydride battery, is summarized. Other electrochemical applications, such as Ni-hydrogen, fuel cell, Li-ion battery, air-metal hydride, and hybrid battery systems, also have been mentioned. PMID:28788349
AIR PASSIVATION OF METAL HYDRIDE BEDS FOR WASTE DISPOSAL
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klein, J; R. H. Hsu, R
2007-07-02
Metal hydride beds offer compact, safe storage of tritium. After metal hydride beds have reached the end of their useful life, the beds will replaced with new beds and the old beds prepared for disposal. One acceptance criteria for hydride bed waste disposal is that the material inside the bed not be pyrophoric. To determine the pyrophoric nature of spent metal hydride beds, controlled air ingress tests were performed. A simple gas handling manifold fitted with pressure transducers and a calibrated volume were used to introduce controlled quantities of air into a metal hydride bed and the bed temperature risemore » monitored for reactivity with the air. A desorbed, 4.4 kg titanium prototype hydride storage vessel (HSV) produced a 4.4 C internal temperature rise upon the first air exposure cycle and a 0.1 C temperature rise upon a second air exposure. A total of 346 scc air was consumed by the bed (0.08 scc per gram Ti). A desorbed, 9.66 kg LaNi{sub 4.25}Al{sub 0.75} prototype storage bed experienced larger temperature rises over successive cycles of air ingress and evacuation. The cycles were performed over a period of days with the bed effectively passivated after the 12th cycle. Nine to ten STP-L of air reacted with the bed producing both oxidized metal and water.« less
Yan, Y.; Qian, S.; Littrell, K.; ...
2015-02-13
A non-destructive neutron scattering method to precisely measure the uptake of hydrogen and the distribution of hydride precipitates in light water reactor (LWR) fuel cladding was developed. Zircaloy-4 cladding used in commercial LWRs was used to produce hydrided specimens. The hydriding apparatus consists of a closed stainless steel vessel that contains Zr alloy specimens and hydrogen gas. Following hydrogen charging, the hydrogen content of the hydrided specimens was measured using the vacuum hot extraction method, by which the samples with desired hydrogen concentration were selected for the neutron study. Optical microscopy shows that our hydriding procedure results in uniform distributionmore » of circumferential hydrides across the wall. Small angle neutron incoherent scattering was performed in the High Flux Isotope Reactor at Oak Ridge National Laboratory. This study demonstrates that the hydrogen in commercial Zircaloy-4 cladding can be measured very accurately in minutes by this nondestructive method over a wide range of hydrogen concentrations from a very small amount ( 20 ppm) to over 1000 ppm. The hydrogen distribution in a tube sample was obtained by scaling the neutron scattering rate with a factor determined by a calibration process using standard, destructive direct chemical analysis methods on the specimens. This scale factor will be used in future tests with unknown hydrogen concentrations, thus providing a nondestructive method for absolute hydrogen concentration determination.« less
Wang, Jiandi; Wang, Wenmin; Huang, Liangfang; Yang, Xiaodi; Wei, Haiyan
2015-04-07
In this study, we theoretically investigated the mechanism underlying the high-valent mono-oxo-rhenium(V) hydride Re(O)HCl2(PPh3)2 (1) catalyzed hydrosilylation of C=N functionalities. Our results suggest that an ionic S(N)2-Si outer-sphere pathway involving the heterolytic cleavage of the Si-H bond competes with the hydride pathway involving the C=N bond inserted into the Re-H bond for the rhenium hydride (1) catalyzed hydrosilylation of the less steric C=N functionalities (phenylmethanimine, PhCH=NH, and N-phenylbenzylideneimine, PhCH=NPh). The rate-determining free-energy barriers for the ionic outer-sphere pathway are calculated to be ∼28.1 and 27.6 kcal mol(-1), respectively. These values are slightly more favorable than those obtained for the hydride pathway (by ∼1-3 kcal mol(-1)), whereas for the large steric C=N functionality of N,1,1-tri(phenyl)methanimine (PhCPh=NPh), the ionic outer-sphere pathway (33.1 kcal mol(-1)) is more favorable than the hydride pathway by as much as 11.5 kcal mol(-1). Along the ionic outer-sphere pathway, neither the multiply bonded oxo ligand nor the inherent hydride moiety participate in the activation of the Si-H bond. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Humphries, T D; Sheppard, D A; Buckley, C E
2015-06-30
For homoleptic 18-electron complex hydrides, an inverse linear correlation has been established between the T-deuterium bond length (T = Fe, Co, Ni) and the average electronegativity of the metal countercations. This relationship can be further employed towards aiding structural solutions and predicting physical properties of novel complex transition metal hydrides.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ting, Jason
1999-02-12
Numerous researchers have studied the relevant material properties of so-called AB 5 alloys for battery applications. These studies involved LaNi 5 substituted alloys which were prepared using conventional cast and crush alloying techniques. While valuable to the understanding of metal hydride effects, the previous work nearly ignored the potential for alternative direct powder production methods, like high pressure gas atomization (HPGA). Thus, there is a need to understand the relationship between gas atomization processes, powder particle solidification phases, and hydrogen absorption properties of ultra fine (< 25 μm) atomized powders with high surface area for enhanced battery performance. Concurrently, developmentmore » of a gas atomization nozzle that is more efficient than all current designs is needed to increase the yield of ultrafine AB 5 alloy powder for further processing advantage. Gas atomization processing of the AB 5 alloys was demonstrated to be effective in producing ultrafine spherical powders that were resilient to hydrogen cycling for the benefit of improving corrosion resistance in battery application. These ultrafine powders benefited from the rapid solidification process by having refined solute segregation in the microstructure of the gas atomized powders which enabled a rapid anneal treatment of the powders. The author has demonstrated the ability to produce high yields of ultrafine powder efficiently and cost effectively, using the new HPGA-III technology. Thus, the potential benefits of processing AB 5 alloys using the new HPGA technology could reduce manufacturing cost of nickel-metal hydride powder. In the near future, the manufacture of AB 5 alloy powders could become a continuous and rapid production process. The economic benefit of an improved AB 5 production process may thereby encourage the use of nickel-metal hydride rechargeable batteries in electrical vehicle applications in the foreseeable future.« less
The increase in fatigue crack growth rates observed for Zircaloy-4 in a PWR environment
NASA Astrophysics Data System (ADS)
Cockeram, B. V.; Kammenzind, B. F.
2018-02-01
Cyclic stresses produced during the operation of nuclear reactors can result in the extension of cracks by processes of fatigue. Although fatigue crack growth rate (FCGR) data for Zircaloy-4 in air are available, little testing has been performed in a PWR primary water environment. Test programs have been performed by Gee et al., in 1989 and Picker and Pickles in 1984 by the UK Atomic Energy Authority, and by Wisner et al., in 1994, that have shown an enhancement in FCGR for Zircaloy-2 and Zircaloy-4 in high-temperature water. In this work, FCGR testing is performed on Zircaloy-4 in a PWR environment in the hydrided and non-hydrided condition over a range of stress-intensity. Measurements of crack extension are performed using a direct current potential drop (DCPD) method. The cyclic rate in the PWR primary water environment is varied between 1 cycle per minute to 0.1 cycle per minute. Faster FCGR rates are observed in water in comparison to FCGR testing performed in air for the hydrided material. Hydrided and non-hydrided materials had similar FCGR values in air, but the non-hydrided material exhibited much lower rates of FCGR in a PWR primary water environment than for hydrided material. Hydrides are shown to exhibit an increased tendency for cracking or decohesion in a PWR primary water environment that results in an enhancement in FCGR values. The FCGR in the PWR primary water only increased slightly with decreasing cycle frequency in the range of 1 cycle per minute to 0.1 cycle per minute. Comparisons between the FCGR in water and air show the enhancement from the PWR environment is affected by the applied stress intensity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nimlos, Mark R.; Chang, Christopher H.; Curtis, Calvin J.
2008-07-07
Density functional theory (BLYP and B3LYP) and the polarized continuum model (PCM-UA0) for solvation have been used to investigate the effect of bite angle (P-M-P) of diphosphine ligands and the dihedral or twist angle between diphosphine ligands on the hydride donor abilities of Ni, Pd, and Pt [HM(diphosphine)2]+ complexes. It is found that an increased bite angle for a given transition metal atom results in poorer hydride donor abilities. However, hydride donor abilities for these complexes also decrease as the size of the alkyl side groups on the phosphorus atom increase (Et > Me > H) and with the lengthmore » of the metal phosphorus bond (Ni > Pd = Pt). These trends correlate with an increase in the twist angle between the two diphosphine ligands, which increases from 0° for a square-planar configuration to 90° for a tetrahedral geometry. Shorter M-P bonds, larger substituents on the diphosphine ligands, and larger bite angles all result in increased steric interactions between diphosphine ligands and larger dihedral or twist angles between the diphosphine ligands. The twist angle correlates much more strongly with hydride donor abilities than do bite angles alone. As the twist angle increases, the hydride donor ability decreases in a linear fashion. A frontier orbital analysis has been carried out, and it is shown that the hydride donor ability of [HM(diphosphine)2]+ complexes is largely determined by the energy of the lowest unoccupied molecular orbital of the corresponding [M(diphosphine)2]2+ complex. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nimlos, Mark; Chang, Christopher H.; Curtis, Calvin J.
2008-06-23
Density functional theory (BLYP and B3LYP) and the polarized continuum model (PCM-UA0) for solvation have been used to investigate the effect of bite angle (P-M-P) of diphosphine ligands and the dihedral or twist angle between diphosphine ligands on the hydride donor abilities of Ni, Pd, and Pt [HM(diphosphine)2]+ complexes. It is found that an increased bite angle for a given transition metal atom results in poorer hydride donor abilities. However, hydride donor abilities for these complexes also decrease as the size of the alkyl side groups on the phosphorus atom increase (Et > Me > H) and with the lengthmore » of the metal phosphorus bond (Ni > Pd = Pt). These trends correlate with an increase in the twist angle between the two diphosphine ligands, which increases from 0° for a square-planar configuration to 90° for a tetrahedral geometry. Shorter M-P bonds, larger substituents on the diphosphine ligands, and larger bite angles all result in increased steric interactions between diphosphine ligands and larger dihedral or twist angles between the diphosphine ligands. The twist angle correlates much more strongly with hydride donor abilities than do bite angles alone. As the twist angle increases, the hydride donor ability decreases in a linear fashion. A frontier orbital analysis has been carried out, and it is shown that the hydride donor ability of [HM(diphosphine)2]+ complexes is largely determined by the energy of the lowest unoccupied molecular orbital of the corresponding [M(diphosphine)2]2+ complex. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy.« less
Synthesis and hydriding properties of Li 2Mg(NH) 2
NASA Astrophysics Data System (ADS)
Markmaitree, Tippawan; Shaw, Leon L.
The phase pure Li 2Mg(NH) 2 has been synthesized via a dehydriding treatment of a ball milled 2LiNH 2 + MgH 2 mixture. This phase pure Li 2Mg(NH) 2 has been utilized to investigate its hydriding kinetics at the temperature range 180-220 °C. It is found that the hydriding process of Li 2Mg(NH) 2 is very sluggish even though it has favorable thermodynamic properties for near the ambient temperature operation. Holding at 200 °C for 10 h only results in 3.75 wt.% H 2 uptake. The detailed kinetic analysis reveals that the hydriding process of Li 2Mg(NH) 2 is diffusion-controlled. Thus, this study unambiguously indicates that the future direction to enhance the hydriding kinetics of this promising hydrogen storage material system should be to minimize the diffusion distance and increase the diffusion rate.
Effect of hydrogen on fatigue crack propagation in vanadium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chung, D.W.; Stoloff, N.S.
The influence of hydrogen on fatigue crack propagation in unalloyed vanadium and several hydrogen-charged vanadium alloys has been investigated. The Paris--Erdogan equation, da/dN = C(..delta..K)/sup m/, was approximately obeyed for all alloys. Crack growth rates were lowest in vanadium and dilute vanadium-hydrogen alloys, and were not very sensitive to volume fraction of hydrides in more concentrated alloys. The crack growth exponent, m, is inversely proportional to the cyclic strain hardening rate, n', and the rate constant C is inversely proportional to the square of the ultimate tensile stress, sigma/sub UTS/: metallographic examination showed hydride reorientation and growth in the originallymore » hydrided alloys. No stress-induced hydrides were observed in V-H solid-solution alloys. Fractures in hydrided materials exhibited cleavage-like features, while striations were noted in unalloyed vanadium and dilute solid-solution alloys.« less
Effect of hydrogen on fatigue crack propagation in vanadium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chung, D.W.; Stoloff, N.S.
The influence of hydrogen on fatigue crack propagation in unalloyed vanadium and several hydrogen-charged vanadium alloys has been investigated. The Paris--Erdogan equation, da/dN = C(..delta..K)/sup m/, was approximately obeyed for all alloys. Crack growth rates were lowest in vanadium and dilute vanadium--hydrogen alloys, and were not very sensitive to volume fraction of hydrides in more concentrated alloys. The crack growth exponent, m, is inversely proportional to the cyclic strain hardening rate, n', and the rate constant C is inversely proportional to the square of the ultimate tensile stress, sigma/sub UTS/: metallographic examination showed hydride reorientation and growth in the originallymore » hydrided alloys. No stress-induced hydrides were observed in V--H solid-solution alloys. Fractures in hydrided materials exhibited cleavage-like features, while striations were noted in unalloyed vanadium and dilute solid-solution alloys.« less
Wang, Zhen; Antoniou, Dimitri; Schwartz, Steven D.; Schramm, Vern L.
2016-01-01
Escherichia coli dihydrofolate reductase (ecDHFR) is used to study fundamental principles of enzyme catalysis. It remains controversial whether fast protein motions are coupled to the hydride transfer catalyzed by ecDHFR. Previous studies with heavy ecDHFR proteins labeled with 13C, 15N, and nonexchangeable 2H reported enzyme mass-dependent hydride transfer kinetics for ecDHFR. Here, we report refined experimental and computational studies to establish that hydride transfer is independent of protein mass. Instead, we found the rate constant for substrate dissociation to be faster for heavy DHFR. Previously reported kinetic differences between light and heavy DHFRs likely arise from kinetic steps other than the chemical step. This study confirms that fast (femtosecond to picosecond) protein motions in ecDHFR are not coupled to hydride transfer and provides an integrative computational and experimental approach to resolve fast dynamics coupled to chemical steps in enzyme catalysis. PMID:26652185
NASA Technical Reports Server (NTRS)
Greenwood, Zachary W.; Abney, Morgan B.; Perry, Jay L.; Miller, Lee A.; Dahl, Roger W.; Hadley, Neal M.; Wambolt, Spencer R.; Wheeler, Richard R.
2015-01-01
State-of-the-art life support carbon dioxide (CO2) reduction technology is based on the Sabatier reaction where less than 50% of the oxygen required for the crew is recovered from metabolic CO2. The reaction produces water as the primary product and methane as a byproduct. Oxygen recovery is constrained by the limited availability of reactant hydrogen. This is further exacerbated when Sabatier methane (CH4) is vented as a waste product resulting in a continuous loss of reactant hydrogen. Post-processing methane with the Plasma Pyrolysis Assembly (PPA) to recover hydrogen has the potential to dramatically increase oxygen recovery and thus drastically reduce the logistical challenges associated with oxygen resupply. The PPA decomposes methane into predominantly hydrogen and acetylene. Due to the highly unstable nature of acetylene, a separation system is necessary to purify hydrogen before it is recycled back to the Sabatier reactor. Testing and evaluation of a full-scale Third Generation PPA is reported and investigations into metal hydride hydrogen separation technology is discussed.
Destabilisation of complex hydrides through size effects.
Christian, Meganne; Aguey-Zinsou, Kondo-Francois
2010-12-01
Nanoparticles of NaAlH4, LiAlH4 and LiBH4 were prepared by encapsulating their respective hydrides within carbon nanotubes by a wet chemical approach. The resulting confinement had a profound effect on the overall hydrogen storage properties of these hydrides, with NaAlH4 and LiAlH4 releasing hydrogen from room temperature, for example.
Wafer-Fused Orientation-Patterned GaAs
2008-02-13
frequencies utilizing existing industrial foundries. 15. SUBJECT TERMS Orientation-patterned Gallium Arsenide, hydride vapor phase epitaxy, quasi-phase... Gallium Arsenide, hydride vapor phase epitaxy, quasi-phase-matching, nonlinear frequency conversion 1. INTRODUCTION Quasi-phase-matching (QPM)1...and E. Lallier, “Second harmonic generation of CO2 laser using thick quasi-phase-matched GaAs layer grown by hydride vapour phase epitaxy
Method of selective reduction of halodisilanes with alkyltin hydrides
D'Errico, John J.; Sharp, Kenneth G.
1989-01-01
The invention relates to the selective and sequential reduction of halodisilanes by reacting these compounds at room temperature or below with trialkyltin hydrides or dialkyltin dihydrides without the use of free radical intermediates. The alkyltin hydrides selectively and sequentially reduce the Si-Cl, Si-Br or Si-I bonds while leaving intact the Si-Si and Si-F bonds present.
Determination of hydride affinities of various aldehydes and ketones in acetonitrile.
Zhu, Xiao-Qing; Chen, Xi; Mei, Lian-Rui
2011-05-06
The hydride affinities of 21 typical aldehydes and ketones in acetonitrile were determined by using an experimental method, which is valuable for chemists choosing suitable reducing agents to reduce them. The focus of this paper is to introduce a very facile experimental method, which can be used to determine the hydride affinities of various carbonyl compounds in solution.
Hydride heat pump with heat regenerator
NASA Technical Reports Server (NTRS)
Jones, Jack A. (Inventor)
1991-01-01
A regenerative hydride heat pump process and system is provided which can regenerate a high percentage of the sensible heat of the system. A series of at least four canisters containing a lower temperature performing hydride and a series of at least four canisters containing a higher temperature performing hydride is provided. Each canister contains a heat conductive passageway through which a heat transfer fluid is circulated so that sensible heat is regenerated. The process and system are useful for air conditioning rooms, providing room heat in the winter or for hot water heating throughout the year, and, in general, for pumping heat from a lower temperature to a higher temperature.
High H⁻ ionic conductivity in barium hydride.
Verbraeken, Maarten C; Cheung, Chaksum; Suard, Emmanuelle; Irvine, John T S
2015-01-01
With hydrogen being seen as a key renewable energy vector, the search for materials exhibiting fast hydrogen transport becomes ever more important. Not only do hydrogen storage materials require high mobility of hydrogen in the solid state, but the efficiency of electrochemical devices is also largely determined by fast ionic transport. Although the heavy alkaline-earth hydrides are of limited interest for their hydrogen storage potential, owing to low gravimetric densities, their ionic nature may prove useful in new electrochemical applications, especially as an ionically conducting electrolyte material. Here we show that barium hydride shows fast pure ionic transport of hydride ions (H(-)) in the high-temperature, high-symmetry phase. Although some conductivity studies have been reported on related materials previously, the nature of the charge carriers has not been determined. BaH2 gives rise to hydride ion conductivity of 0.2 S cm(-1) at 630 °C. This is an order of magnitude larger than that of state-of-the-art proton-conducting perovskites or oxide ion conductors at this temperature. These results suggest that the alkaline-earth hydrides form an important new family of materials, with potential use in a number of applications, such as separation membranes, electrochemical reactors and so on.
NASA Astrophysics Data System (ADS)
Wang, Linbo; Bai, Zhonglian; Shen, Hailong; Wang, Chenxi; Liu, Tong
2017-05-01
In order to prohibit the formation of large Y-Al-O precipitates, Ti hydride nanoparticles (NPs) were prepared and used to replace Ti as raw particles to fabricate the oxide dispersion strengthened (ODS) Fe-14Cr-3Al-2W-0.35Y2O3 steels by mechanical alloying (MA) and hot isostatic pressing (HIP). As the content of Ti hydride increases from 0.1 to 0.5 and 1.0 wt%, the oxide nanoprecipitates in the ODS steels changes from Y3Al5O12 phase to Y2Ti2O7 phase (semicoherent with the matrix), and the particle size is successfully reduced. The tensile strength of the ODS steel increases remarkably with increasing Ti hydride content. The sample with 1.0 wt% Ti hydride exhibits a high strength of 1049 MPa at 25 °C and 278 MPa at 700 °C. The creation of Y2Ti2O7 nanoprecipitates by adding Ti hydride NPs opens a new way to control the structure and size of the oxide precipitates in the ODS steels.
Reactivity of yttrium carboxylates toward alkylaluminum hydrides.
Schädle, Christoph; Fischbach, Andreas; Herdtweck, Eberhardt; Törnroos, Karl W; Anwander, Reiner
2013-11-25
Yttrocene-carboxylate complex [Cp*2Y(OOCAr(Me))] (Cp*=C5Me5, Ar(Me) =C6H2Me3-2,4,6) was synthesized as a spectroscopically versatile model system for investigating the reactivity of alkylaluminum hydrides towards rare-earth-metal carboxylates. Equimolar reactions with bis-neosilylaluminum hydride and dimethylaluminum hydride gave adduct complexes of the general formula [Cp*2Y(μ-OOCAr(Me))(μ-H)AlR2] (R=CH2SiMe3, Me). The use of an excess of the respective aluminum hydride led to the formation of product mixtures, from which the yttrium-aluminum-hydride complex [{Cp*2Y(μ-H)AlMe2(μ-H)AlMe2(μ-CH3)}2] could be isolated, which features a 12-membered-ring structure. The adduct complexes [Cp*2Y(μ-OOCAr(Me))(μ-H)AlR2] display identical (1)J(Y,H) coupling constants of 24.5 Hz for the bridging hydrido ligands and similar (89)Y NMR shifts of δ=-88.1 ppm (R=CH2SiMe3) and δ=-86.3 ppm (R=Me) in the (89)Y DEPT45 NMR experiments. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ford, Denise C.; Cooley, Lance D.; Seidman, David N.
Niobium hydride is suspected to be a major contributor to degradation of the quality factor of niobium superconducting radio-frequency (SRF) cavities. In this study, we connect the fundamental properties of hydrogen in niobium to SRF cavity performance and processing. We modeled several of the niobium hydride phases relevant to SRF cavities and present their thermodynamic, electronic, and geometric properties determined from calculations based on density-functional theory. We find that the absorption of hydrogen from the gas phase into niobium is exothermic and hydrogen becomes somewhat anionic. The absorption of hydrogen by niobium lattice vacancies is strongly preferred over absorption intomore » interstitial sites. A single vacancy can accommodate six hydrogen atoms in the symmetrically equivalent lowest-energy sites and additional hydrogen in the nearby interstitial sites affected by the strain field: this indicates that a vacancy can serve as a nucleation center for hydride phase formation. Small hydride precipitates may then occur near lattice vacancies upon cooling. Vacancy clusters and extended defects should also be enriched in hydrogen, potentially resulting in extended hydride phase regions upon cooling. We also assess the phase changes in the niobium-hydrogen system based on charge transfer between niobium and hydrogen, the strain field associated with interstitial hydrogen, and the geometry of the hydride phases. The results of this study stress the importance of not only the hydrogen content in niobium, but also the recovery state of niobium for the performance of SRF cavities.« less
CERDEC Fuel Cell Team: Military Transitions for Soldier Fuel Cells
2008-10-27
Fuel Cell (DMFC) (PEO Soldier) Samsung: 20W DMFC (CRADA) General Atomics & Jadoo: 50W Ammonia Borane Fueled PEMFC Current Fuel Cell Team Efforts...Continued Ardica: 20W Wearable PEMFC operating on Chemical Hydrides Spectrum Brands w/ Rayovac: Hydrogen Generators and Alkaline Fuel Cells for AA...100W Ammonia Borane fueled PEMFC Ultralife: 150W sodium borohydride fueled PEMFC Protonex: 250W RMFC and Power Manager (ARO) NanoDynamics: 250W SOFC
Cottingham, James G.
1977-01-01
Method and apparatus for the use of hydrides to exhaust heat from one temperature source and deliver the thermal energy extracted for use at a higher temperature, thereby acting as a heat pump. For this purpose there are employed a pair of hydridable metal compounds having different characteristics working together in a closed pressure system employing a high temperature source to upgrade the heat supplied from a low temperature source.
Hydrogen storage material and process using graphite additive with metal-doped complex hydrides
Zidan, Ragaiy [Aiken, SC; Ritter, James A [Lexington, SC; Ebner, Armin D [Lexington, SC; Wang, Jun [Columbia, SC; Holland, Charles E [Cayce, SC
2008-06-10
A hydrogen storage material having improved hydrogen absorbtion and desorption kinetics is provided by adding graphite to a complex hydride such as a metal-doped alanate, i.e., NaAlH.sub.4. The incorporation of graphite into the complex hydride significantly enhances the rate of hydrogen absorbtion and desorption and lowers the desorption temperature needed to release stored hydrogen.
NASA Astrophysics Data System (ADS)
Auzoux, Q.; Bouffioux, P.; Machiels, A.; Yagnik, S.; Bourdiliau, B.; Mallet, C.; Mozzani, N.; Colas, K.
2017-10-01
Precipitation of radial hydrides in zirconium-based alloy cladding concomitant with the cooling of spent nuclear fuel during dry storage can potentially compromise cladding integrity during its subsequent handling and transportation. This paper investigates hydride reorientation and its impact on ductility in unirradiated and irradiated recrystallized Zircaloy-2 cladding with an inner liner (cladding for boiling water reactors) subjected to hydride reorientation treatments. Cooling from 400 °C, hydride reorientation occurs in recrystallized Zircaloy-2 with liner at a lower effective stress in irradiated samples (below 40 MPa) than in unirradiated specimens (between 40 and 80 MPa). Despite significant hydride reorientation, unirradiated recrystallized Zircaloy-2 with liner cladding containing ∼200 wppm hydrogen shows a high diametral strain at fracture (>15%) during burst tests at ambient temperature. This ductile behavior is due to (1) the lower yield stress of the recrystallized cladding materials in comparison to hydride fracture strength (corrected by the compression stress arising from the precipitation) and (2) the hydride or hydrogen-depleted zone as a result of segregation of hydrogen into the liner layer. In irradiated Zircaloy-2 with liner cladding containing ∼340 wppm hydrogen, the conservation of some ductility during ring tensile tests at ambient temperature after reorientation treatment at 400 °C with cooling rates of ∼60 °C/h is also attributed to the existence of a hydride-depleted zone. Treatments at lower cooling rates (∼6 °C/h and 0.6 °C/h) promote greater levels of hydrogen segregation into the liner and allow for increased irradiation defect annealing, both of which result in a significant increase in ductility. Based on this investigation, given the very low cooling rates typical of dry storage systems, it can be concluded that the thermal transients associated with dry storage should not degrade, and more likely should actually improve, ductility of recrystallized Zircaloy-2 cladding with inner liner with such hydrogen content.
Findlater, Michael; Cartwright-Sykes, Alison; White, Peter S; Schauer, Cynthia K; Brookhart, Maurice
2011-08-10
Syntheses of the olefin hydride complexes [(POCOP)M(H)(olefin)][BAr(f)(4)] (6a-M, M = Ir or Rh, olefin = C(2)H(4); 6b-M, M = Ir or Rh, olefin = C(3)H(6); POCOP = 2,6-bis(di-tert-butylphosphinito)benzene; BAr(f) = tetrakis(3,5-trifluoromethylphenyl)borate) are reported. A single-crystal X-ray structure determination of 6b-Ir shows a square-pyramidal coordination geometry for Ir, with the hydride ligand occupying the apical position. Dynamic NMR techniques were used to characterize these complexes. The rates of site exchange between the hydride and the olefinic hydrogens yielded ΔG(++) = 15.6 (6a-Ir), 16.8 (6b-Ir), 12.0 (6a-Rh), and 13.7 (6b-Rh) kcal/mol. The NMR exchange data also established that hydride migration in the propylene complexes yields exclusively the primary alkyl intermediate arising from 1,2-insertion. Unexpectedly, no averaging of the top and bottom faces of the square-pyramidal complexes is observed in the NMR spectra at high temperatures, indicating that the barrier for facial equilibration is >20 kcal/mol for both the Ir and Rh complexes. A DFT computational study was used to characterize the free energy surface for the hydride migration reactions. The classical terminal hydride complexes, [M(POCOP)(olefin)H](+), are calculated to be the global minima for both Rh and Ir, in accord with experimental results. In both the Rh ethylene and propylene complexes, the transition state for hydride migration (TS1) to form the agostic species is higher on the energy surface than the transition state for in-place rotation of the coordinated C-H bond (TS2), while for Ir, TS2 is the high point on the energy surface. Therefore, only for the case of the Rh complexes is the NMR exchange rate a direct measure of the hydride migration barrier. The trends in the experimental barriers as a function of M and olefin are in good agreement with the trends in the calculated exchange barriers. The calculated barriers for the hydride migration reaction in the Rh complexes are ∼2 kcal/mol higher than for the Ir complexes, despite the fact that the energy difference between the olefin hydride ground state and the agostic alkyl structure is ∼4 kcal/mol larger for Ir than for Rh. This feature, together with the high barrier for interchange of the top and bottom faces of the complexes, is proposed to arise from the unique coordination geometry of the agostic complexes and the strong preference for a cis-divacant octahedral geometry in four-coordinate intermediates. © 2011 American Chemical Society
A nickel metal hydride battery for electric vehicles
NASA Astrophysics Data System (ADS)
Ovshinsky, S. R.; Fetcenko, M. A.; Ross, J.
1993-04-01
An efficient battery is the key technological element to the development of practical electric vehicles. The science and technology of a nickel metal hydride battery, which stores hydrogen in the solid hydride phase and has high energy density, high power, long life, tolerance to abuse, a wide range of operating temperature, quick-charge capability, and totally sealed maintenance-free operation, is described. A broad range of multi-element metal hydride materials that use structural and compositional disorder on several scales of length has been engineered for use as the negative electrode in this battery. The battery operates at ambient temperature, is made of nontoxic materials, and is recyclable. Demonstration of the manufacturing technology has been achieved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schwarz, R.B.; Bach, H.T.; Harms, U.
We used a resonant-ultrasound-spectroscopy technique to measure the three independent elastic constants of PdH{sub x}, PdD{sub x}, and PdT{sub x} single crystals at 300 K. For 0.1x0.62 our PdH{sub x} crystals are two-phase mixtures of coherent {alpha} and {beta} hydride phases. For increasing x in this range, C{sub 44} decreases monotonically whereas C'=12(C11-C12) has a concave parabolic dependence. This difference is because C' is softened by an anelastic relaxation resulting from acoustic-stress-induced changes in the shape of the coherent lenticular-shape precipitates ({beta}-hydride precipitates in {alpha}-hydride matrix and {alpha}-hydride precipitates in {beta}-hydride matrix). In the {beta}-phase C' and C{sub 44} decreasemore » with increasing hydrogen (or deuterium or tritium) content. Furthermore, C' exhibits a strong isotope effect whereas C{sub 44} does not. This effect is attributed to differences in the excitation of optical phonons in Pd-H, Pd-D and Pd-T.« less
Barreiro, M M; Grana, D R; Kokubu, G A; Luppo, M I; Mintzer, S; Vigna, G
2010-04-01
Titanium powder production by the hydride-dehydride method has been developed as a non-expensive process. In this work, commercially pure grade two Ti specimens were hydrogenated. The hydrided material was milled in a planetary mill. The hydrided titanium powder was dehydrided and then sieved to obtain a particle size between 37 and 125 microm in order to compare it with a commercial powder produced by chemical reduction with a particle size lower than 150 microm. Cylindrical green compacts were obtained by uniaxial pressing of the powders at 343 MPa and sintering in vacuum. The powders and the density of sintered compacts were characterized, the oxygen content was measured and in vivo tests were performed in the tibia bones of Wistar rats in order to evaluate their biocompatibility. No differences were observed between the materials which were produced either with powders obtained by the hydride-dehydride method or with commercial powders produced by chemical reduction regarding modifications in compactation, sintering and biological behaviour.
Hydrogen interactions with metals
NASA Technical Reports Server (NTRS)
Mclellan, R. B.; Harkins, C. G.
1975-01-01
Review of the literature on the nature and extent of hydrogen interactions with metals and the role of hydrogen in metal failure. The classification of hydrogen-containing systems is discussed, including such categories as covalent hydrides, volatile hydrides, polymeric hydrides, and transition metal hydride complexes. The use of electronegativity as a correlating parameter in determining hydride type is evaluated. A detailed study is made of the thermodynamics of metal-hydrogen systems, touching upon such aspects as hydrogen solubility, the positions occupied by hydrogen atoms within the solvent metal lattice, the derivation of thermodynamic functions of solid solutions from solubility data, and the construction of statistical models for hydrogen-metal solutions. A number of theories of hydrogen-metal bonding are reviewed, including the rigid-band model, the screened-proton model, and an approach employing the augmented plane wave method to solve the one-electron energy band problem. Finally, the mechanism of hydrogen embrittlement is investigated on the basis of literature data concerning stress effects and the kinetics of hydrogen transport to critical sites.
Advanced nickel-metal hydride cell development at Hughes: A joint work with US government
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lim, H.S.; Pickett, D.F.; Stockel, J.F.
1995-07-01
Hughes is currently engaged in the development of an advanced nickel-metal hydride (Ni/MHx) cell for spacecraft application with performance goals of 15 years of operation in a geosynchronous earth orbit at 805 depth of discharge and over 30,000 cycles of life at 30% depth of discharge in a typical low earth orbit. The authors have developed the basic fabrication technique for a lightweight and potentially long life nickel electrode which is usable in space Ni/MHx cells. The authors have developed several attractive hydride alloys which are usable in hydride electrodes and basic fabrication techniques for lightweight, inexpensive, and potentially longmore » life hydride electrodes for a Ni/MHx cell. Utilizing Hughes extensive experiences in development of advanced Ni/Cd and Ni/H{sub 2} cells, the authors plan to develop a first generation space Ni/MHx cell design by 1995 and have the cell flight ready by 1997.« less
Wong, Kim F; Selzer, Tzvia; Benkovic, Stephen J; Hammes-Schiffer, Sharon
2005-05-10
A comprehensive analysis of the network of coupled motions correlated to hydride transfer in dihydrofolate reductase is presented. Hybrid quantum/classical molecular dynamics simulations are combined with a rank correlation analysis method to extract thermally averaged properties that vary along the collective reaction coordinate according to a prescribed target model. Coupled motions correlated to hydride transfer are identified throughout the enzyme. Calculations for wild-type dihydrofolate reductase and a triple mutant, along with the associated single and double mutants, indicate that each enzyme system samples a unique distribution of coupled motions correlated to hydride transfer. These coupled motions provide an explanation for the experimentally measured nonadditivity effects in the hydride transfer rates for these mutants. This analysis illustrates that mutations distal to the active site can introduce nonlocal structural perturbations and significantly impact the catalytic rate by altering the conformational motions of the entire enzyme and the probability of sampling conformations conducive to the catalyzed reaction.
The development of nickel-metal hydride technology for use in aerospace applications
NASA Technical Reports Server (NTRS)
Rampel, Guy; Johnson, Herschel; Dell, Dan; Wu, Tony; Puglisi, Vince
1992-01-01
The nickel metal hydride technology for battery application is relatively immature even though this technology was made widely known by Philips' scientists as long ago as 1970. Recently, because of the international environmental regulatory pressures being placed on cadmium in the workplace and in disposal practices, battery companies have initiated extensive development programs to make this technology a viable commercial operation. These hydrides do not pose a toxilogical threat as does cadmium. Also, they provide a higher energy density and specific energy when compared to the other nickel based battery technologies. For these reasons, the nickel metal hydride electrochemisty is being evaluated as the next power source for varied applications such as laptop computers, cellular telephones, electric vehicles, and satellites. A parallel development effort is under way to look at aerospace applications for nickel metal hydride cells. This effort is focused on life testing of small wound cells of the commercial type to validate design options and development of prismatic design cells for aerospace applications.
Hydrogen and dihydrogen bonding of transition metal hydrides
NASA Astrophysics Data System (ADS)
Jacobsen, Heiko
2008-04-01
Intermolecular interactions between a prototypical transition metal hydride WH(CO) 2NO(PH 3) 2 and a small proton donor H 2O have been studied using DFT methodology. The hydride, nitrosyl and carbonyl ligand have been considered as site of protonation. Further, DFT-D calculations in which empirical corrections for the dispersion energy are included, have been carried out. A variety of pure and hybrid density functionals (BP86, PW91, PBE, BLYP, OLYP, B3LYP, B1PW91, PBE0, X3LYP) have been considered, and our calculations indicate the PBE functional and its hybrid variation are well suited for the calculation of transition metal hydride hydrogen and dihydrogen bonding. Dispersive interactions make up for a sizeable portion of the intermolecular interaction, and amount to 20-30% of the bond energy and to 30-40% of the bond enthalpy. An energy decomposition analysis reveals that the H⋯H bond of transition metal hydrides contains both covalent and electrostatic contributions.
Neutron diffraction studies of a four-coordinated hydride in near square-planar geometry
Liao, Jian -Hong; Dhayal, Rajendra Singh; Wang, Xiaoping; ...
2014-10-07
The structure of a nanospheric polyhydrido copper cluster, [Cu 20(H) 11{S 2P(O iPr) 2} 9], was determined by single-crystal neutron diffraction. Cu 20 cluster consists of an elongated triangular orthobicupola constructed from 18 Cu atoms that encapsulate a [Cu 2H 5} 3- ion in the center with an exceptionally short Cu-Cu distance. The eleven hydrides in the cluster display three different coordination modes to the Cu atoms: Six μ 3-hydrides in pyramidal geometry, two μ 4-hydrides in tetrahedral cavity, and three μ 4-hydrides in an unprecedented near square-planar geometry. The neutron data set was collected on a small crystal ofmore » the size 0.20 mm x 0.50 mm x 0.65 mm for seven days using the Spallation Neutron Source TOPAZ single-crystal time-of-flight Laue diffractometer at the Oak Ridge National Laboratory. Furthermore, the final R-factor is 8.64% for 16014 reflections.« less
A review of catalyst-enhanced magnesium hydride as a hydrogen storage material
NASA Astrophysics Data System (ADS)
Webb, C. J.
2015-09-01
Magnesium hydride remains an attractive hydrogen storage material due to the high hydrogen capacity and low cost of production. A high activation energy and poor kinetics at practical temperatures for the pure material have driven research into different additives to improve the sorption properties. This review details the development of catalytic additives and their effect on the activation energy, kinetics and thermodynamic properties of magnesium hydride.
Neutron diffraction investigation of γ manganese hydride
NASA Astrophysics Data System (ADS)
Fedotov, V. K.; Antonov, V. E.; Kolesnikov, A. I.; Beskrovnyi, A. I.; Grosse, G.; Wagner, F. E.
1998-08-01
A profile analysis of the neutron diffraction spectrum of the fcc high pressure hydride λ-MnH 0.41 measured under ambient conditions showed that hydrogen is randomly distributed over the octahedral interstices of the fcc metal lattice and that the hydride is an antiferromagnet with the same collinear spin structure as pure λ-Mn, but with a smaller magnetic moment of about 1.9 Bohr magnetons per Mn atom.
Cryo-Milling and the Hydrogen Storage Properties of NaAlH4
NASA Astrophysics Data System (ADS)
Feller, Kevin; Dobbins, Tabbetha
2013-03-01
High energy ball milling of metal hydrides is a common way to both introduce catalysts (e.g. TiCl3) and to simultaneously increase the surface area. Both catalysis and increased surface area improve hydrogen storage capacity of the material. Nanostructuring of hydrides by depositing them into mesoporous templates (such as anodized alumina, MOFs, and SBA-15) has become a common way to increase surface area. However, the mesoporous template does not add hydrogen storage capacity--and thus, tends to decreased overall storage weight percent for the nanostructured hydride material. As with most materials, hydrides become brittle at low temperatures and will tend to fracture more readily. We will process Sodium Aluminum Hydride (NaAlH4) using cryogenic high energy ball milling using an in-house modified chamber SPEX Certiprep M8000 mixer/mill in order to gain a nanostructured hydride without mesoporous template material. Details of the modified mixer mill design will be presented. Ultimately, our planned future work is to study the resultant material using x-ray diffraction (Scherrer method for crystallite size), absorption/desorption temperature programmed desorption (TPD), and ultrasmall-angle x-ray scattering (USAXS) microstructural quantification to understand the role of cryomilling on enhancing the material's ability to store (and release) hydrogen.
d'Entremont, A.; Corgnale, C.; Sulic, M.; ...
2017-08-31
Concentrating solar power plants represent low cost and efficient solutions for renewable electricity production only if adequate thermal energy storage systems are included. Metal hydride thermal energy storage systems have demonstrated the potential to achieve very high volumetric energy densities, high exergetic efficiencies, and low costs. The current work analyzes the technical feasibility and the performance of a storage system based on the high temperature Mg 2FeH 6 hydride coupled with the low temperature Na 3AlH 6 hydride. To accomplish this, a detailed transport model has been set up and the coupled metal hydride system has been simulated based onmore » a laboratory scale experimental configuration. Proper kinetics expressions have been developed and included in the model to replicate the absorption and desorption process in the high temperature and low temperature hydride materials. The system showed adequate hydrogen transfer between the two metal hydrides, with almost complete charging and discharging, during both thermal energy storage and thermal energy release. The system operating temperatures varied from 450°C to 500°C, with hydrogen pressures between 30 bar and 70 bar. This makes the thermal energy storage system a suitable candidate for pairing with a solar driven steam power plant. The model results, obtained for the selected experimental configuration, showed an actual thermal energy storage system volumetric energy density of about 132 kWh/m 3, which is more than 5 times the U.S. Department of Energy SunShot target (25 kWh/m 3).« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
d'Entremont, A.; Corgnale, C.; Sulic, M.
Concentrating solar power plants represent low cost and efficient solutions for renewable electricity production only if adequate thermal energy storage systems are included. Metal hydride thermal energy storage systems have demonstrated the potential to achieve very high volumetric energy densities, high exergetic efficiencies, and low costs. The current work analyzes the technical feasibility and the performance of a storage system based on the high temperature Mg 2FeH 6 hydride coupled with the low temperature Na 3AlH 6 hydride. To accomplish this, a detailed transport model has been set up and the coupled metal hydride system has been simulated based onmore » a laboratory scale experimental configuration. Proper kinetics expressions have been developed and included in the model to replicate the absorption and desorption process in the high temperature and low temperature hydride materials. The system showed adequate hydrogen transfer between the two metal hydrides, with almost complete charging and discharging, during both thermal energy storage and thermal energy release. The system operating temperatures varied from 450°C to 500°C, with hydrogen pressures between 30 bar and 70 bar. This makes the thermal energy storage system a suitable candidate for pairing with a solar driven steam power plant. The model results, obtained for the selected experimental configuration, showed an actual thermal energy storage system volumetric energy density of about 132 kWh/m 3, which is more than 5 times the U.S. Department of Energy SunShot target (25 kWh/m 3).« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu Tangkui, E-mail: zhutangkui@sohu.com; Li, Miaoquan, E-mail: honeymli@nwpu.edu.cn
Effect of hydrogen content on the lattice parameter of Ti-6Al-4V alloy has been investigated by X-ray diffraction. The experimental results show that the solution of hydrogen in the Ti-6Al-4V alloy affects significantly on the lattice parameters of {alpha}, {beta} and {delta} phases, especially the {beta} phase. Furthermore, the critical hydrogen content of {delta} hydride formation for Ti-6Al-4V alloy is 0.385 wt.%. When the hydrogen content is lower than the critical hydrogen content, the {delta} hydride cannot precipitate and the lattice parameter ({alpha}) of {beta} phase linearly increases with the increasing of hydrogen content. When the hydrogen content is higher thanmore » the critical hydrogen content, the {delta} hydride precipitates and the lattice parameter ({alpha}) of {beta} phase varies inconspicuously with hydrogen content. In addition, the effects of lattice variations and {delta} hydride formation on microstructure are discussed. The {alpha}/{beta} interfaces of lamellar transformed {beta} phase become fuzzy with the increasing of hydrogen content because of the lattice expansion of {beta} phase. Compared with that of the Ti-6Al-4V alloy at low hydrogen content ({<=} 0.385 wt.%), the contrasts of primary {alpha} phase and transformed {beta} phase of Ti-6Al-4V alloy at high hydrogen content ({>=} 0.385 wt.%) were completely reversed due to the formation of {delta} hydride. - Research Highlights: {yields} A novel method for determining {delta} hydride in Ti-6Al-4V alloy is presented. {yields} The critical hydrogen content of {delta} hydride formation is 0.385 wt.%. {yields} The lattice parameter of {beta} phase can be expressed as follows: a=0.323(1+9.9x10{sup -2}C{sub H}) . {yields} Precipitation of {delta} hydride has a significant influence on the microstructure. {yields} The {alpha}/{beta} interfaces of transformed {beta} phase became fuzzy in the hydrogenated alloy.« less
Carbon quantum dots and a method of making the same
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zidan, Ragaiy; Teprovich, Joseph A.; Washington, Aaron L.
The present invention is directed to a method of preparing a carbon quantum dot. The carbon quantum dot can be prepared from a carbon precursor, such as a fullerene, and a complex metal hydride. The present invention also discloses a carbon quantum dot made by reacting a carbon precursor with a complex metal hydride and a polymer containing a carbon quantum dot made by reacting a carbon precursor with a complex metal hydride.
Method of selective reduction of polyhalosilanes with alkyltin hydrides
Sharp, Kenneth G.; D'Errico, John J.
1989-01-01
The invention relates to the selective and stepwise reduction of polyhalosilanes by reacting at room temperature or below with alkyltin hydrides without the use of free radical intermediates. Alkyltin hydrides selectively and stepwise reduce the Si--Br, Si--Cl, or Si--I bonds while leaving intact any Si--F bonds. When two or more different halogens are present on the polyhalosilane, the halogen with the highest atomic weight is preferentially reduced.
Bingham, Dennis N.; Klingler, Kerry M.; Wilding, Bruce M.; Zollinger, William T.
2006-12-26
A method of producing hydrogen is disclosed and which includes providing a first composition; providing a second composition; reacting the first and second compositions together to produce a chemical hydride; providing a liquid and reacting the chemical hydride with the liquid in a manner to produce a high pressure hydrogen gas and a byproduct which includes the first composition; and reusing the first composition formed as a byproduct in a subsequent chemical reaction to form additional chemical hydride.
Low density metal hydride foams
Maienschein, Jon L.; Barry, Patrick E.
1991-01-01
Disclosed is a low density foam having a porosity of from 0 to 98% and a density less than about 0.67 gm/cc, prepared by heating a mixture of powered lithium hydride and beryllium hydride in an inert atmosphere at a temperature ranging from about 455 to about 490 K for a period of time sufficient to cause foaming of said mixture, and cooling the foam thus produced. Also disclosed is the process of making the foam.
Pulsed laser deposition of air-sensitive hydride epitaxial thin films: LiH
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oguchi, Hiroyuki, E-mail: oguchi@nanosys.mech.tohoku.ac.jp; Micro System Integration Center; Isobe, Shigehito
2015-09-01
We report on the epitaxial thin film growth of an air-sensitive hydride, lithium hydride (LiH), using pulsed laser deposition (PLD). We first synthesized a dense LiH target, which is key for PLD growth of high-quality hydride films. Then, we obtained epitaxial thin films of [100]-oriented LiH on a MgO(100) substrate at 250 °C under a hydrogen pressure of 1.3 × 10{sup −2} Pa. Atomic force microscopy revealed that the film demonstrates a Stranski-Krastanov growth mode and that the film with a thickness of ∼10 nm has a good surface flatness, with root-mean-square roughness R{sub RMS} of ∼0.4 nm.
A study of H+ production using metal hydride and other compounds by means of laser ion source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sekine M.; Kondo K.; Okamura, M.
2012-02-22
A laser ion source can provide wide variety of ion beams from solid target materials, however, it has been difficult to create proton beam efficiently. We examined capability of proton production using beeswax, polyethylene, and metal hydrides (MgH2 and ZrH2) as target materials. The results showed that beeswax and polyethylene could not be used to produce protons because these targets are transparent to the laser wavelength of 1064 nm. On the other hand, the metal hydrides could supply protons. Although the obtained particle numbers of protons were less than those of the metal ions, the metal hydrides could be usedmore » as a target for proton laser ion source.« less
Reduction of Carbon Monoxide. Past Research Summary
DOE R&D Accomplishments Database
Schrock, R. R.
1982-01-01
Research programs for the year on the preparation, characterization, and reactions of binuclear tantalum complexes are described. All evidence to date suggest the following of these dimeric molecules: (1) the dimer does not break into monomers under mild conditions; (2) intermolecular hydride exchange is not negligible, but it is slow; (3) intermolecular non-ionic halide exchange is fast; (4) the ends of the dimers can rotate partially with respect to one another. The binuclear tantalum hydride complexes were found to react with carbon monoxide to give a molecule which is the only example of reduction of CO by a transition metal hydride to give a complex containing a CHO ligand. Isonitrides also reacted in a similar manner with dimeric tantalum hydride. (ATT)
Robinson, David B.; Luo, Weifang; Cai, Trevor Y.; ...
2015-09-26
Gaseous mixtures of diatomic hydrogen isotopologues and helium are often encountered in the nuclear energy industry and in analytical chemistry. Compositions of stored mixtures can vary due to interactions with storage and handling materials. When tritium is present, it decays to form ions and helium-3, both of which can lead to further compositional variation. Monitoring of composition is typically achieved by mass spectrometry, a method that is bulky and energy-intensive. Mass spectrometers disperse sample material through vacuum pumps, which is especially troublesome if tritium is present. Moreover, our ultimate goal is to create a compact, fast, low-power sensor that canmore » determine composition with minimal gas consumption and waste generation, as a complement to mass spectrometry that can be instantiated more widely. We propose calorimetry of metal hydrides as an approach to this, due to the strong isotope effect on gas absorption, and demonstrate the sensitivity of measured heat flow to atomic composition of the gas. Peak shifts are discernible when mole fractions change by at least 1%. A mass flow restriction results in a unique dependence of the measurement on helium concentration. We present a mathematical model as a first step toward prediction of the peak shapes and positions. The model includes a useful method to compute estimates of phase diagrams for palladium in the presence of arbitrary mixtures of hydrogen isotopologues. As a result, we expect that this approach can be used to deduce unknown atomic compositions from measured calorimetric data over a useful range of partial pressures of each component.« less
Self-catalyzed GaAs nanowires on silicon by hydride vapor phase epitaxy.
Dong, Zhenning; André, Yamina; Dubrovskii, Vladimir G; Bougerol, Catherine; Leroux, Christine; Ramdani, Mohammed R; Monier, Guillaume; Trassoudaine, Agnès; Castelluci, Dominique; Gil, Evelyne
2017-03-24
Gold-free GaAs nanowires on silicon substrates can pave the way for monolithic integration of photonic nanodevices with silicon electronic platforms. It is extensively documented that the self-catalyzed approach works well in molecular beam epitaxy but is much more difficult to implement in vapor phase epitaxies. Here, we report the first gallium-catalyzed hydride vapor phase epitaxy growth of long (more than 10 μm) GaAs nanowires on Si(111) substrates with a high integrated growth rate up to 60 μm h -1 and pure zincblende crystal structure. The growth is achieved by combining a low temperature of 600 °C with high gaseous GaCl/As flow ratios to enable dechlorination and formation of gallium droplets. GaAs nanowires exhibit an interesting bottle-like shape with strongly tapered bases, followed by straight tops with radii as small as 5 nm. We present a model that explains the peculiar growth mechanism in which the gallium droplets nucleate and rapidly swell on the silicon surface but then are gradually consumed to reach a stationary size. Our results unravel the necessary conditions for obtaining gallium-catalyzed GaAs nanowires by vapor phase epitaxy techniques.
Crack growth through the thickness of thin-sheet Hydrided Zircaloy-4
NASA Astrophysics Data System (ADS)
Raynaud, Patrick A. C.
In recent years, the limits on fuel burnup have been increased to allow an increase in the amount of energy produced by a nuclear fuel assembly thus reducing waste volume and allowing greater capacity factors. As a result, it is paramount to ensure safety after longer reactor exposure times in the case of design-basis accidents, such as reactivity-initiated accidents (RIA). Previously proposed failure criteria do not directly address the particular cladding failure mechanism during a RIA, in which crack initiation in brittle outer-layers is immediately followed by crack growth through the thickness of the thin-wall tubing. In such a case, the fracture toughness of hydrided thin-wall cladding material must be known for the conditions of through-thickness crack growth in order to predict the failure of high-burnup cladding. The fracture toughness of hydrided Zircaloy-4 in the form of thin-sheet has been examined for the condition of through-thickness crack growth as a function of hydride content and distribution at 25°C, 300°C, and 375°C. To achieve this goal, an experimental procedure was developed in which a linear hydride blister formed across the width of a four-point bend specimen was used to inject a sharp crack that was subsequently extended by fatigue pre-cracking. The electrical potential drop method was used to monitor the crack length during fracture toughness testing, thus allowing for correlation of the load-displacement record with the crack length. Elastic-plastic fracture mechanics were used to interpret the experimental test results in terms of fracture toughness, and J-R crack growth resistance curves were generated. Finite element modeling was performed to adapt the classic theories of fracture mechanics applicable to thick-plate specimens to the case of through-thickness crack growth in thin-sheet materials, and to account for non-uniform crack fronts. Finally, the hydride microstructure was characterized in the vicinity of the crack tip by means of digital image processing, so as to understand the influence of the hydride microstructure on fracture toughness, at the various test temperatures. Crack growth occurred through a microstructure which varied within the thickness of the thin-sheet Zircaloy-4 such that the hydrogen concentration and the radial hydride content decreased with increasing distance from the hydride blister. At 25°C, the fracture toughness was sensitive to the changes in hydride microstructure, such that the toughness KJi decreased from 39 MPa√m to 24 MPa√m with increasing hydrogen content and increasing the fraction of radial hydrides. The hydride particles present in the Zircaloy-4 substrate fractured ahead of the crack tip, and crack growth occurred by linking the crack-tip with the next hydride-induced primary void ahead of it. Unstable crack growth was observed at 25°C prior to any stable crack growth in the specimens where the hydrogen content was the highest. At 375°C as well as in most cases at 300°C, the hydride particles were resistant to cracking and the resistance to crack-growth initiation was very high. As a result, for this bend test procedure, crack extension was solely due to crack-tip blunting instead of crack growth in all tests at 375°C and in most cases at 300°C. The lower bound for fracture toughness at these temperatures, the parameter KJPmax, had values of K JPmax˜54MPa√m at both 300°C and 375°C. For cases where stable crack growth occurred at 300°C, the fracture toughness was K Ji˜58MPa√m and the tearing modulus was twice as high as that at 25°C. It is believed that the failure of hydrided Zircaloy-4 thin-wall cladding can be predicted using fracture mechanics analyses when failure occurs by crack growth. This failure mechanism was observed to occur in all cases at 25°C and in some cases at 300°C. However, at more elevated temperatures, such as 375°C, failure will likely occur by a mechanism other than crack growth, possibly by an imperfection-induced shear instability.
Wen, Mingwei; Huang, Fang; Lu, Gang; Wang, Zhi-Xiang
2013-10-21
Density functional theory computations have been applied to gain insight into the CO2 reduction to CH4 with Et3SiH, catalyzed by ammonium hydridoborate 1 ([TMPH](+)[HB(C6F5)3](-), where TMP = 2,2,6,6-tetramethylpiperidine) and B(C6F5)3. The study shows that CO2 is activated through the concerted transfer of H(δ+) and H(δ-) of 1 to CO2, giving a complex (IM2) with a well-formed HCOOH entity, followed by breaking of the O-H bond of the HCOOH entity to return H(δ+) to TMP, resulting in an intermediate 2 ([TMPH](+)[HC(═O)OB(C6F5)3)](-)), with CO2 being inserted into the B-H bond of 1. However, unlike CO2 insertion into transition-metal hydrides, the direct insertion of CO2 into the B-H bond of 1 is inoperative. The computed CO2 activation mechanism agrees with the experimental synthesis of 2 via reacting HCOOH with TMP/B(C6F5)3. Subsequent to the CO2 activation and B(C6F5)3-mediated hydrosilylation of 2 to regenerate the catalyst (1), giving HC(═O)OSiEt3 (5), three hydride-transfer steps take place, sequentially transferring H(δ-) of Et3SiH to 5 to (Et3SiO)2CH2 (6, the product of the first hydride-transfer step) to Et3SiOCH3 (7, the product of the second hydride-transfer step) and finally resulting in CH4. These hydride transfers are mediated by B(C6F5)3 via two SN2 processes without involving 1. B(C6F5)3 acts as a hydride carrier that, with the assistance of a nucleophilic attack of 5-7, first grabs H(δ-) from Et3SiH (the first SN2 process), giving HB(C6F5)3(-), and then leave H(δ-) of HB(C6F5)3(-) to the electrophilic C center of 5-7 (the second SN2 process). The SN2 processes utilize the electrophilic and nucleophilic characteristics possessed by the hydride acceptors (5-7). The hydride-transfer mechanism is different from that in the CO2 reduction to methanol catalyzed by N-heterocyclic carbene (NHC) and PCP-pincer nickel hydride ([Ni]H), where the characteristic of possessing a C═O double bond of the hydride acceptors is utilized for hydride transfer. The mechanistic differences elucidate why the present system can completely reduce CO2 to CH4, whereas NHC and [Ni]H catalysts can only mediate the reduction of CO2 to [Si]OCH3 and catBOCH3, respectively. Understanding this could help in the development of catalysts for selective CO2 reduction to CH4 or methanol.
2011-12-01
Wronski: Particle size, grain size and gamma-MgH2 effects on the desorption properties of nanocrystal- line commercial magnesium hydride processed...Catalytic effects of various forms of nickel on the synthesis rate and hydrogen desorption properties of nanocrystalline magnesium hydride (MgH2...dehydrogenation reaction. 15. SUBJECT TERMS magnesium hydride , MgH, thermal energy storage materials, endothermic reaction 16. SECURITY CLASSIFICATION
Lih thermal energy storage device
Olszewski, Mitchell; Morris, David G.
1994-01-01
A thermal energy storage device for use in a pulsed power supply to store waste heat produced in a high-power burst operation utilizes lithium hydride as the phase change thermal energy storage material. The device includes an outer container encapsulating the lithium hydride and an inner container supporting a hydrogen sorbing sponge material such as activated carbon. The inner container is in communication with the interior of the outer container to receive hydrogen dissociated from the lithium hydride at elevated temperatures.
Hydrogen transmission/storage with a metal hydride/organic slurry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Breault, R.W.; Rolfe, J.; McClaine, A.
1998-08-01
Thermo Power Corporation has developed a new approach for the production, transmission, and storage of hydrogen. In this approach, a chemical hydride slurry is used as the hydrogen carrier and storage media. The slurry protects the hydride from unanticipated contact with moisture in the air and makes the hydride pumpable. At the point of storage and use, a chemical hydride/water reaction is used to produce high-purity hydrogen. An essential feature of this approach is the recovery and recycle of the spent hydride at centralized processing plants, resulting in an overall low cost for hydrogen. This approach has two clear benefits:more » it greatly improves energy transmission and storage characteristics of hydrogen as a fuel, and it produces the hydrogen carrier efficiently and economically from a low cost carbon source. The preliminary economic analysis of the process indicates that hydrogen can be produced for $3.85 per million Btu based on a carbon cost of $1.42 per million Btu and a plant sized to serve a million cars per day. This compares to current costs of approximately $9.00 per million Btu to produce hydrogen from $3.00 per million Btu natural gas, and $25 per million Btu to produce hydrogen by electrolysis from $0.05 per Kwh electricity. The present standard for production of hydrogen from renewable energy is photovoltaic-electrolysis at $100 to $150 per million Btu.« less
NASA Technical Reports Server (NTRS)
Liebert, B. E.
1986-01-01
A metal-hydride heat pump (HHP) has been proposed to provide an advanced regenerable nonventing thermal sink for the liquid-cooled garment worn during an extravehicular activity (EVA). The conceptual design indicates that there is a potential for significant advantages over the one presently being used by shuttle crew personnel as well as those that have been proposed for future use with the space station. Compared to other heat pump designs, a HHP offers the potential for extended use with no electrical power requirements during the EVA. In addition, a reliable, compact design is possible due to the absence of moving parts other than high-reliability check valves. Because there are many subtleties in the properties of metal hydrides for heat pump applications, it is essential that a prototype hydride heat pump be constructed with the selected materials before a committment is made for the final design. Particular care must be given to the evaporator heat exchanger worn by the astronaut since the performance of hydride heat pumps is generally heat transfer limited.
Tan, XueHai; Wang, Liya; Holt, Chris M B; Zahiri, Beniamin; Eikerling, Michael H; Mitlin, David
2012-08-21
We have synthesized a new metastable metal hydride with promising hydrogen storage properties. Body centered cubic (bcc) magnesium niobium hydride (Mg(0.75)Nb(0.25))H(2) possesses 4.5 wt% hydrogen gravimetric density, with 4 wt% being reversible. Volumetric hydrogen absorption measurements yield an enthalpy of hydride formation of -53 kJ mol(-1) H(2), which indicates a significant thermodynamic destabilization relative to the baseline -77 kJ mol(-1) H(2) for rutile MgH(2). The hydrogenation cycling kinetics are remarkable. At room temperature and 1 bar hydrogen it takes 30 minutes to absorb a 1.5 μm thick film at sorption cycle 1, and 1 minute at cycle 5. Reversible desorption is achieved in about 60 minutes at 175 °C. Using ab initio calculations we have examined the thermodynamic stability of metallic alloys with hexagonal close packed (hcp) versus bcc crystal structure. Moreover we have analyzed the formation energies of the alloy hydrides that are bcc, rutile or fluorite.
Storing energy in metal hydrides - A review of the physical metallurgy
NASA Astrophysics Data System (ADS)
Ivey, D. G.; Northwood, D. O.
1983-02-01
The properties of metal hydrides, which are significant in terms of their potential as a hydrogen storage medium, are discussed. Attention is given to bonding and electronic factors of metal hydrides, which, when combined with hydrogen, form saline, ionic, metallic, and covalent bonds, with the resultant materials being either solid, liquid, or gaseous. Metallic bonds are the most promising for hydrogen storage, and involve most of the elements of groups IIIA-VIIIA in the periodic table. An analysis of the thermodynamics and kinetics of metal hydrides is presented, noting the effects of alloy composition, crystal structure, and contaminants on the effectiveness of the materials as hydrides. Hysteresis has been found to occur when the transition pressure in a pressure-composition-temperature curve is higher for absorption than for desorption, although the actual causes for hysteresis are not understood. The AB group of intermetallics has been determined to store hydrogen at the lowest cost. Examples from tests using the AB compounds are outlined, and attempts to rectify storage requirement deficiencies by adjusting the alloy compositions are described.
Wiedner, Eric; Linehan, John
2018-06-06
Molecular catalysts for hydrogenation of CO₂ are widely studied as a means of chemical hydrogen storage. Catalysts are traditionally designed from the perspective of controlling the ligands bound to the metal. In recent years, studies have shown that the solvent can also play a key role in the mechanism of CO₂ hydrogenation. A prominent example is the impact of the solvent on the thermodynamic hydride donor ability, or hydricity, of metal hydride complexes relative to the hydride acceptor ability of CO₂. In some cases, simply changing from an organic solvent to water can reverse the direction of hydride transfer between a metal hydride and CO₂. Additionally, the solvent can impact catalysis by converting CO₂ into carbonate species, as well as activate intermediate products for hydrogenation to more reduced products. By understanding the substrate and product speciation, as well as the reactivity of the catalyst towards the substrate, the solvent can be used as a central design component for the rational development of new catalytic systems. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Pagano, Justin K.; Dorhout, Jacquelyn M.; Czerwinski, Kenneth R.; ...
2016-03-18
Here, this work demonstrates that the oxidation state and chemistry of uranium hydrides can be tuned with temperature and the stoichiometry of phenylsilane. The trivalent uranium hydride [(C 5Me 5) 2U–H] x (5) was found to be comprised of an equilibrium mixture of U(III) hydrides in solution at ambient temperature. A single U(III) species can be selectively prepared by treating (C 5Me5)2UMe2 (4) with 2 equiv of phenylsilane at 50 °C. The U(III) system is a potent reducing agent and displayed chemistry distinct from the U(IV) system [(C 5Me 5) 2U(H)(μ-H)] 2 (2), which was harnessed to prepare a varietymore » of organometallic complexes, including (C 5Me 5) 2U(dmpe)(H) (6), and the novel uranium(IV) metallacyclopentadiene complex (C 5Me 5) 2U(C 4Me 4) (11).« less
NASA Astrophysics Data System (ADS)
Baricco, Marcello; Bang, Mads; Fichtner, Maximilian; Hauback, Bjorn; Linder, Marc; Luetto, Carlo; Moretto, Pietro; Sgroi, Mauro
2017-02-01
The main objective of the SSH2S (Fuel Cell Coupled Solid State Hydrogen Storage Tank) project was to develop a solid state hydrogen storage tank based on complex hydrides and to fully integrate it with a High Temperature Proton Exchange Membrane (HT-PEM) fuel cell stack. A mixed lithium amide/magnesium hydride system was used as the main storage material for the tank, due to its high gravimetric storage capacity and relatively low hydrogen desorption temperature. The mixed lithium amide/magnesium hydride system was coupled with a standard intermetallic compound to take advantage of its capability to release hydrogen at ambient temperature and to ensure a fast start-up of the system. The hydrogen storage tank was designed to feed a 1 kW HT-PEM stack for 2 h to be used for an Auxiliary Power Unit (APU). A full thermal integration was possible thanks to the high operation temperature of the fuel cell and to the relative low temperature (170 °C) for hydrogen release from the mixed lithium amide/magnesium hydride system.
NASA Astrophysics Data System (ADS)
Vaibhaw, Kumar; Rao, S. V. R.; Jha, S. K.; Saibaba, N.; Jayaraj, R. N.
2008-12-01
Zircaloy-4 material is used for cladding tube in pressurized heavy water reactors (PHWRs) of 220 MWe and 540 MWe capacity in India. These tubes are fabricated by using various combinations of thermo-mechanical processes to achieve desired mechanical and corrosion properties. Cladding tube develops crystallographic texture during its fabrication, which has significant influence on its in-reactor performance. Due to radiolytic decomposition of water Zircaloy-4 picks-up hydrogen. This hydrogen in excess of its maximum solubility in reactor operating condition (˜300 °C), precipitates as zirconium hydrides causing embrittlement of cladding tube. Hydride orientation in the radial direction of the tube limits the service life and lowers the fuel burn-up in reactor. The orientation of the hydride primarily depends on texture developed during fabrication. A correlation between hydride orientation ( F n) with the texture in the tube during its fabrication has been developed using a second order polynomial. The present work is aimed at quantification and correlation of texture evolved in Zircaloy-4 cladding tube using Kearn's f-parameter during its fabrication process.
The development of reactive fuel grains for pyrophoric relight of in-space hybrid rocket thrusters
NASA Astrophysics Data System (ADS)
Steiner, Matthew Wellington
This study presents and investigates a novel hybrid fuel grain that reacts pyrophorically with gaseous oxidizer to achieve restart of a hybrid rocket motor propulsion system while reducing cost and handling concerns. This reactive fuel grain (RFG) relies on the pyrophoric nature of finely divided metal particles dispersed in a solid dicyclopentadiene (DCPD) binder, which has been shown to encapsulate air-sensitive additives until they are exposed to combustion gases. An RFG is thus effectively inert in open air in the absence of an ignition source, though the particles encapsulated within remain pyrophoric. In practice, this means that an RFG that is ignited in the vacuum of space and then extinguished will expose unoxidized pyrophoric particles, which can be used to generate sufficient heat to relight the propellant when oxidizer is flowed. The experiments outlined in this work aim to develop a suitable pyrophoric material for use in an RFG, demonstrate pyrophoric relight, and characterize performance under conditions relevant to a hybrid rocket thruster. Magnesium, lithium, calcium, and an alloy of titanium, chromium, and manganese (TiCrMn) were investigated to determine suitability of pure metals as RFG additives. Additionally, aluminum hydride (AlH3), lithium aluminum hydride (LiAlH4), lithium borohydride (LiBH4), and magnesium hydride (MgH2) were investigated to determine suitability of metals hydrides as RFG additives or as precursors for pure-metal RFG additives. Pyrophoric metals have been previously investigated as additives for increasing the regression rate of hybrid fuels, but to the author's knowledge, these materials have not been specifically investigated for their ability to ignite a propellant pyrophorically. Commercial research-grade metals were obtained as coarse powders, then ball-milled to attempt to reduce particle size below a critical diameter needed for pyrophoricity. Magnesium hydride was ball-milled and then cycled in a hydride cycling apparatus to attempt to fracture the particles through hydrogen sorption and thermal stresses. These powders were then tested for pyrophoricity with atmospheric and pure concentrations of oxygen. The TiCrMn powder was chosen as the material for evaluation of propellant performance, and was mixed with DCPD in various weight ratios to determine the required additive loading needed for pyrophoricity of the bulk propellant. Weight percentages of 10, 20, 30, and 50 wt.% TiCrMn were used to evaluate relight capability and propellant performance, and weight loadings of 50, 70, and 90 wt.% TiCrMn were used to evaluate approximate maximum loading possible without rendering the propellant structurally unsound. Propellant tests were conducted in an opposed flow burner apparatus for sub-scale regression rate and relight experiments, and an optically accessible cylindrical combustion chamber (OCC) that allows high speed cameras to record the regressing propellant surface during combustion. Gaseous oxygen (GOX) was used as an oxidizer for all tests due to its ready availability and common use as a hybrid rocket oxidizer. Opposed flow burner experiments are an inexpensive means of rapidly testing various propellant formulations at different conditions, whereas OCC tests are useful for obtaining realistic data on how an RFG would likely operate as part of a propulsion system. Relight in the opposed flow burner was attempted by cycling oxygen and nitrogen flows with carefully timed solenoid valves to initiate and extinguish combustion, and to control the slow diffusion of oxygen to the surface of the propellant, which would render the TiCrMn non-pyrophoric. The opposed flow burner experiments did not conclusively demonstrate the pyrophoric relight capability of the RFG propellant due in part to the persistence of hot spots between oxygen and purge nitrogen cycles, as determined by high-speed imaging in the near infrared range. An opposed flow burner apparatus was then constructed within a vacuum chamber assembly thus preventing atmospheric oxygen from diffusing to the propellant surface, but these tests did not demonstrate pyrophoric relight. Future work is proposed to evaluate the effect of pyrophoric particle size in order to determine the role ignition delay of each particle has in the relight capability of RFGs. OCC experiments were conducted at a low and high GOX mass flux of approximately 150 and 300 kg/s/m2, respectively, at a nominal chamber pressure of 150 psia. Four strand compositions were used: pure DCPD, 30 wt.% pyrophoric TiCrMn powder with average particle diameters of approximately 1-10 microns, 30 wt.% oxidized TiCrMn powder with average particle diameters of approximately 1-10 microns, and 30 wt.% TiCrMn powder with average particle diameters of approximately 1-4 mm. Regression rate was measure by weight loss, average web thickness change at three axial locations on the strand, and through time-resolved tracking of the regressing propellant surface via high speed video. While visual observations suggest that the addition of TiCrMn significantly increases regression rate, initial data do not show a significant trend. Additionally, it is observed that the oxidized TiCrMn strands regress at the same rate as those loaded with pyrophoric TiCrMn, suggesting that erosive burning and heat addition of the added metal may be the cause of the observed increase in regression rate. The data are too sparse to make conclusions about the effect of particle size on regression rate, so further tests are recommended to develop a significant data set for the effect of pyrophoricity and particle size on regression rate. The test article was damaged at the end of the regression rate experimental campaign, which precluded the collection of relight data that was planned for strands loaded with 50 wt.% TiCrMn particles with an average diameter of approximately 1-4 mm. Though further tests are needed to demonstrate pyrophoric relight of an RFG, the current work establishes a baseline for RFG performance and suggests that pyrophoric relight is possible by tailoring the particle size of the pyrophoric metal additive to control heat release and ignition delay.
Regenerative Hydride Heat Pump
NASA Technical Reports Server (NTRS)
Jones, Jack A.
1992-01-01
Hydride heat pump features regenerative heating and single circulation loop. Counterflow heat exchangers accommodate different temperatures of FeTi and LaNi4.7Al0.3 subloops. Heating scheme increases efficiency.
Stitt, C A; Harker, N J; Hallam, K R; Paraskevoulakos, C; Banos, A; Rennie, S; Jowsey, J; Scott, T B
2015-01-01
Synchrotron X-rays have been used to study the oxidation of uranium and uranium hydride when encapsulated in grout and stored in de-ionised water for 10 months. Periodic synchrotron X-ray tomography and X-ray powder diffraction have allowed measurement and identification of the arising corrosion products and the rates of corrosion. The oxidation rates of the uranium metal and uranium hydride were slower than empirically derived rates previously reported for each reactant in an anoxic water system, but without encapsulation in grout. This was attributed to the grout acting as a physical barrier limiting the access of oxidising species to the uranium surface. Uranium hydride was observed to persist throughout the 10 month storage period and industrial consequences of this observed persistence are discussed.
Hicken, Alexandra; White, Andrew J P; Crimmin, Mark R
2017-11-20
A series of heterobimetallic complexes containing three-center, two-electron Au-H-Cu bonds have been prepared from addition of a parent gold hydride to a bent d 10 copper(I) fragment. These highly unusual heterobimetallic complexes represent a missing link in the widely investigated series of neutral and cationic coinage metal hydride complexes containing Cu-H-Cu and M-H-M + moieties (M=Cu, Ag). The well-defined heterobimetallic hydride complexes act as precatalysts for the conversion of CO 2 into HCO 2 Bpin with HBpin as the reductant. The selectivity of the heterobimetallic complexes for the catalytic production of a formate equivalent surpasses that of the parent monomeric Group 11 complexes. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Atom Probe Analysis of Ex Situ Gas-Charged Stable Hydrides.
Haley, Daniel; Bagot, Paul A J; Moody, Michael P
2017-04-01
In this work, we report on the atom probe tomography analysis of two metallic hydrides formed by pressurized charging using an ex situ hydrogen charging cell, in the pressure range of 200-500 kPa (2-5 bar). Specifically we report on the deuterium charging of Pd/Rh and V systems. Using this ex situ system, we demonstrate the successful loading and subsequent atom probe analysis of deuterium within a Pd/Rh alloy, and demonstrate that deuterium is likely present within the oxide-metal interface of a native oxide formed on vanadium. Through these experiments, we demonstrate the feasibility of ex situ hydrogen analysis for hydrides via atom probe tomography, and thus a practical route to three-dimensional imaging of hydrogen in hydrides at the atomic scale.
Harker, N. J.; Hallam, K. R.; Paraskevoulakos, C.; Banos, A.; Rennie, S.; Jowsey, J.
2015-01-01
Synchrotron X-rays have been used to study the oxidation of uranium and uranium hydride when encapsulated in grout and stored in de-ionised water for 10 months. Periodic synchrotron X-ray tomography and X-ray powder diffraction have allowed measurement and identification of the arising corrosion products and the rates of corrosion. The oxidation rates of the uranium metal and uranium hydride were slower than empirically derived rates previously reported for each reactant in an anoxic water system, but without encapsulation in grout. This was attributed to the grout acting as a physical barrier limiting the access of oxidising species to the uranium surface. Uranium hydride was observed to persist throughout the 10 month storage period and industrial consequences of this observed persistence are discussed. PMID:26176551
Upright and Inverted Single-Junction GaAs Solar Cells Grown by Hydride Vapor Phase Epitaxy
Simon, John; Schulte, Kevin L.; Jain, Nikhil; ...
2016-10-19
Hydride vapor phase epitaxy (HVPE) is a low-cost alternative to conventional metal-organic vapor phase epitaxy (MOVPE) growth of III-V solar cells. In this work, we show continued improvement of the performance of HVPE-grown single-junction GaAs solar cells. We show over an order of magnitude improvement in the interface recombination velocity between GaAs and GaInP layers through the elimination of growth interrupts, leading to increased short-circuit current density and open-circuit voltage compared with cells with interrupts. One-sun conversion efficiencies as high as 20.6% were achieved with this improved growth process. Solar cells grown in an inverted configuration that were removed frommore » the substrate showed nearly identical performance to on-wafer cells, demonstrating the viability of HVPE to be used together with conventional wafer reuse techniques for further cost reduction. As a result, these devices utilized multiple heterointerfaces, showing the potential of HVPE for the growth of complex and high-quality III-V devices.« less
Method of forming a chemical composition
Bingham, Dennis N.; Wilding, Bruce M.; Klingler, Kerry M.; Zollinger, William T.; Wendt, Kraig M.
2007-10-09
A method of forming a chemical composition such as a chemical hydride is described and which includes the steps of selecting a composition having chemical bonds and which is capable of forming a chemical hydride; providing a source of hydrogen; and exposing the selected composition to an amount of ionizing radiation to encourage the changing of the chemical bonds of the selected composition, and chemically reacting the selected composition with the source of hydrogen to facilitate the formation of a chemical hydride.
An all-solid-state metal hydride - Sulfur lithium-ion battery
NASA Astrophysics Data System (ADS)
López-Aranguren, Pedro; Berti, Nicola; Dao, Anh Ha; Zhang, Junxian; Cuevas, Fermín; Latroche, Michel; Jordy, Christian
2017-07-01
A metal hydride is used for the first time as anode in a complete all-solid-state battery with sulfur as cathode and LiBH4 as solid electrolyte. The hydride is a nanocomposite made of MgH2 and TiH2 counterparts. The battery exhibits a high reversible capacity of 910 mAh g-1 with discharge plateaus at 1.8 V and 1.4 V. Moreover, the capacity remains to 85% of the initial value over the 25 first charge/discharge cycles.
Method of production of pure hydrogen near room temperature from aluminum-based hydride materials
Pecharsky, Vitalij K.; Balema, Viktor P.
2004-08-10
The present invention provides a cost-effective method of producing pure hydrogen gas from hydride-based solid materials. The hydride-based solid material is mechanically processed in the presence of a catalyst to obtain pure gaseous hydrogen. Unlike previous methods, hydrogen may be obtained from the solid material without heating, and without the addition of a solvent during processing. The described method of hydrogen production is useful for energy conversion and production technologies that consume pure gaseous hydrogen as a fuel.
LiH thermal energy storage device
Olszewski, M.; Morris, D.G.
1994-06-28
A thermal energy storage device for use in a pulsed power supply to store waste heat produced in a high-power burst operation utilizes lithium hydride as the phase change thermal energy storage material. The device includes an outer container encapsulating the lithium hydride and an inner container supporting a hydrogen sorbing sponge material such as activated carbon. The inner container is in communication with the interior of the outer container to receive hydrogen dissociated from the lithium hydride at elevated temperatures. 5 figures.
Method for preparing hydride configurations and reactive metal surfaces
Silver, G.L.
1984-05-18
A method for preparing reactive metal surfaces, particularly uranium surfaces is disclosed, whereby the metal is immediately reactive to hydrogen gas at room temperature and low pressure. The metal surfaces are first pretreated by exposure to an acid which forms an adherent hydride-bearing composition on the metal surface. Subsequent heating of the pretreated metal at a temperature sufficient to decompose the hydride coating in vacuum or inert gas renders the metal surface instantaneously reactive to hydrogen gas at room temperature and low pressure.
Phase I. Lanthanum-based Start Materials for Hydride Batteries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gschneidner, K. A.; Schmidt, F. A.; Frerichs, A. E.
The purpose of Phase I of this work is to focus on developing a La-based start material for making nickel-metal (lanthanum)-hydride batteries based on our carbothermic-silicon process. The goal is to develop a protocol for the manufacture of (La 1-xR x)(Ni 1-yM y)(Si z), where R is a rare earth metal and M is a non-rare earth metal, to be utilized as the negative electrode in nickel-metal hydride (NiMH) rechargeable batteries.
METHOD OF PREPARING URANIUM, THORIUM, OR PLUTONIUM OXIDES IN LIQUID BISMUTH
Davidson, J.K.; Robb, W.L.; Salmon, O.N.
1960-11-22
A method is given for forming compositions, as well as the compositions themselves, employing uranium hydride in a liquid bismuth composition to increase the solubility of uranium, plutonium and thorium oxides in the liquid bismuth. The finely divided oxide of uranium, plutonium. or thorium is mixed with the liquid bismuth and uranium hydride, the hydride being present in an amount equal to about 3 at. %, heated to about 5OO deg C, agitated and thereafter cooled and excess resultant hydrogen removed therefrom.
Glass-wool study of laser-induced spin currents en route to hyperpolarized Cs salt
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ishikawa, Kiyoshi
2011-07-15
The nuclear spin polarization of optically pumped Cs atoms flows to the surface of Cs hydride in a vapor cell. A fine glass wool lightly coated with the salt helps greatly increase the surface area in contact with the pumped atoms and enhance the spin polarization of the salt nuclei. Even though the glass wool randomly scatters the pump light, the atomic vapor can be polarized with unpolarized light in a magnetic field. The measured enhancement in the salt enables study of the polarizations of light and atomic nuclei very near the salt surface.
Zhang, Guiqiu; Li, Hong; Weinhold, Frank; Chen, Dezhan
2016-03-21
Noble-gas hydrides HNgY are frequently described as a single ionic form (H-Ng)(+)Y(-). We apply natural bond orbital (NBO) and natural resonance theory (NRT) analyses to a series of noble-gas hydrides HNgY (Ng = He, Ne, Ar, Kr, Xe, Rn; Y = F, Cl, Br, I) to gain quantitative insight into the resonance bonding of these hypervalent molecules. We find that each of the studied species should be better represented as a resonance hybrid of three leading resonance structures, namely, H-Ng(+ -):Y (I), H:(- +)Ng-Y (II), and H^Y (III), in which the "ω-bonded" structures I and II arise from the complementary donor-acceptor interactions nY → σ*HNg and nH → σ*NgY, while the "long-bond" ([small sigma, Greek, circumflex]-type) structure III arises from the nNg → [small sigma, Greek, circumflex]*HY/[small sigma, Greek, circumflex]HY interaction. The bonding for all of the studied molecules can be well described in terms of the continuously variable resonance weightings of 3c/4e ω-bonding and [small sigma, Greek, circumflex]-type long-bonding motifs. Furthermore, we find that the calculated bond orders satisfy a generalized form of "conservation of bond order" that incorporates both ω-bonding and long-bonding contributions [viz., (bHNg + bNgY) + bHY = bω-bonding + blong-bonding = 1]. Such "conservation" throughout the title series implies a competitive relationship between ω-bonding and [small sigma, Greek, circumflex]-type long-bonding, whose variations are found to depend in a chemically reasonable manner on the electronegativity of Y and the outer valence-shell character of the central Ng atom. The calculated bond orders are also found to exhibit chemically reasonable correlations with bond lengths, vibrational frequencies, and bond dissociation energies, in accord with Badger's rule and related empirical relationships. Overall, the results provide electronic principles and chemical insight that may prove useful in the rational design of noble-gas hydrides of technological interest.
Magnesium, zinc, aluminium and gallium hydride complexes of the transition metals.
Butler, Michael J; Crimmin, Mark R
2017-01-24
The preparation and applications of heterobimetallic complexes continue to occupy researchers in the fields of organometallic, main group, and coordination chemistry. This interest stems from the promise these complexes hold as precursors to materials, reagents in synthesis and as new catalysis. Here we survey and organise the state-of-the-art understanding of the TM-H-M linkage (M = Mg, Zn, Al, Ga). We discuss the structure and bonding in these complexes, their known reactivity, and their largely unrealised potential in catalysis.
A study of hydriding kinetics of metal hydrides using a physically based model
NASA Astrophysics Data System (ADS)
Voskuilen, Tyler G.
The reaction of hydrogen with metals to form metal hydrides has numerous potential energy storage and management applications. The metal hydrogen system has a high volumetric energy density and is often reversible with a high cycle life. The stored hydrogen can be used to produce energy through combustion, reaction in a fuel cell, or electrochemically in metal hydride batteries. The high enthalpy of the metal-hydrogen reaction can also be used for rapid heat removal or delivery. However, improving the often poor gravimetric performance of such systems through the use of lightweight metals usually comes at the cost of reduced reaction rates or the requirement of pressure and temperature conditions far from the desired operating conditions. In this work, a 700 bar Sievert system was developed at the Purdue Hydrogen Systems Laboratory to study the kinetic and thermodynamic behavior of high pressure hydrogen absorption under near-ambient temperatures. This system was used to determine the kinetic and thermodynamic properties of TiCrMn, an intermetallic metal hydride of interest due to its ambient temperature performance for vehicular applications. A commonly studied intermetallic hydride, LaNi5, was also characterized as a base case for the phase field model. The analysis of the data obtained from such a system necessitate the use of specialized techniques to decouple the measured reaction rates from experimental conditions. These techniques were also developed as a part of this work. Finally, a phase field model of metal hydride formation in mass-transport limited interstitial solute reactions based on the regular solution model was developed and compared with measured kinetics of LaNi5 and TiCrMn. This model aided in the identification of key reaction features and was used to verify the proposed technique for the analysis of gas-solid reaction rates determined volumetrically. Additionally, the phase field model provided detailed quantitative predictions of the effects of multidimensional phase growth and transitions between rate-limiting processes on the experimentally determined reaction rates. Unlike conventional solid state reaction analysis methods, this model relies fully on rate parameters based on the physical mechanisms occurring in the hydride reaction and can be extended to reactions in any dimension.
Pudney, Christopher R; McGrory, Tom; Lafite, Pierre; Pang, Jiayun; Hay, Sam; Leys, David; Sutcliffe, Michael J; Scrutton, Nigel S
2009-05-25
Mutation of an active-site residue in morphinone reductase leads to a conformationally rich landscape that enhances the rate of hydride transfer from NADH to FMN at standard pressure (1 bar). Increasing the pressure causes interconversion between different conformational substates in the mutant enzyme. While high pressure reduces the donor-acceptor distance in the wild-type enzyme, increased conformational freedom "dampens" its effect in the mutant.We show that hydride transfer from NADH to FMN catalysed by the N189A mutant of morphinone reductase occurs along parallel "chemical" pathways in a conformationally rich free-energy landscape. We have developed experimental kinetic and spectroscopic tools by using hydrostatic pressure to explore this free-energy landscape. The crystal structure of the N189A mutant enzyme in complex with the unreactive coenzyme analogue NADH(4) indicates that the nicotinamide moiety of the analogue is conformationally less restrained than the corresponding structure of the wild-type NADH(4) complex. This increased degree of conformational freedom in the N189A enzyme gives rise to the concept of multiple reactive configurations (MRCs), and we show that the relative population of these states across the free-energy landscape can be perturbed experimentally as a function of pressure. Specifically, the amplitudes of individual kinetic phases that were observed in stopped-flow studies of the hydride transfer reaction are sensitive to pressure; this indicates that pressure drives an altered distribution across the energy landscape. We show by absorbance spectroscopy that the loss of charge-transfer character of the enzyme-coenzyme complex is attributed to the altered population of MRCs on the landscape. The existence of a conformationally rich landscape in the N189A mutant is supported by molecular dynamics simulations at low and high pressure. The work provides firm experimental and computational support for the existence of parallel pathways arising from multiple conformational states of the enzyme-coenzyme complex. Hydrostatic pressure is a powerful and general probe of multidimensional energy landscapes that can be used to analyse experimentally parallel pathways for enzyme-catalysed reactions. We suggest that this is especially the case following directed mutation of a protein, which can lead to increased population of reactant states that are essentially inaccessible in the free-energy landscape of wild-type enzyme.
Nonaqueous actinide hydride dissolution and production of actinide $beta$- diketonates
Crisler, L.R.
1975-11-11
Actinide beta-diketonate complex molecular compounds are produced by reacting a beta-diketone compound with a hydride of the actinide material in a mixture of carbon tetrachloride and methanol. (auth)
NASA Astrophysics Data System (ADS)
Zhu, Wenhua; Zhu, Ying; Tatarchuk, Bruce
2013-04-01
Nickel metal hydride battery packs have been found wide applications in the HEVs (hybrid electric vehicles) through the on-board rapid energy conservation and efficient storage to decrease the fossil fuel consumption rate and reduce CO2 emissions as well as other harmful exhaust gases. In comparison to the conventional Ni-Cd battery, the Ni-MH battery exhibits a relatively higher self-discharge rate. In general, there are quite a few factors that speed up the self-discharge of the electrodes in the sealed nickel metal hydride batteries. This disadvantage eventually reduces the overall efficiency of the energy conversion and storage system. In this work, ac impedance data were collected from the nickel metal hydride batteries. The self-discharge mechanism and battery capacity degradation were analyzed and discussed for further performance improvement.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Santhosh, M.; Rajeswarapalanichamy, R., E-mail: rrpalanichamy@gmail.com; Manikandan, M.
2016-05-06
Ab initio calculations are performed to investigate the structural stability, electronic structure and mechanical properties of alkali gallium hydrides AGaH{sub 4} (A = Li, Na) for three different crystal structures, namely tetragonal (P42{sub 1}c), tetragonal (P4{sub 2}/nmc) and monoclinic (P2{sub 1}/c). Among the considered structures, tetragonal (P42{sub 1}c) phase is found to be the most stable phase for these hydrides at normal pressure. A pressure induced structural phase transition from tetragonal (P42{sub 1}c) to tetragonal (P4{sub 2}/nmc) is observed. The electronic structure reveals that these hydrides are insulators. The calculated elastic constants indicate that these ternary imides are mechanically stablemore » at normal pressure.« less
High Density Hydrogen Storage System Demonstration Using NaAlH4 Based Complex Compound Hydrides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daniel A. Mosher; Xia Tang; Ronald J. Brown
2007-07-27
This final report describes the motivations, activities and results of the hydrogen storage independent project "High Density Hydrogen Storage System Demonstration Using NaAlH4 Based Complex Compound Hydrides" performed by the United Technologies Research Center under the Department of Energy Hydrogen Program, contract # DE-FC36-02AL67610. The objectives of the project were to identify and address the key systems technologies associated with applying complex hydride materials, particularly ones which differ from those for conventional metal hydride based storage. This involved the design, fabrication and testing of two prototype systems based on the hydrogen storage material NaAlH4. Safety testing, catalysis studies, heat exchangermore » optimization, reaction kinetics modeling, thermochemical finite element analysis, powder densification development and material neutralization were elements included in the effort.« less
Interaction of electrons with light metal hydrides in the transmission electron microscope.
Wang, Yongming; Wakasugi, Takenobu; Isobe, Shigehito; Hashimoto, Naoyuki; Ohnuki, Somei
2014-12-01
Transmission electron microscope (TEM) observation of light metal hydrides is complicated by the instability of these materials under electron irradiation. In this study, the electron kinetic energy dependences of the interactions of incident electrons with lithium, sodium and magnesium hydrides, as well as the constituting element effect on the interactions, were theoretically discussed, and electron irradiation damage to these hydrides was examined using in situ TEM. The results indicate that high incident electron kinetic energy helps alleviate the irradiation damage resulting from inelastic or elastic scattering of the incident electrons in the TEM. Therefore, observations and characterizations of these materials would benefit from increased, instead decreased, TEM operating voltage. © The Author 2014. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
NASA Technical Reports Server (NTRS)
Lahti, G. P.; Mueller, R. A.
1973-01-01
Measurements of MeV neutron were made at the surface of a lithium hydride and depleted uranium shielded reactor. Four shield configurations were considered: these were assembled progressively with cylindrical shells of 5-centimeter-thick depleted uranium, 13-centimeter-thick lithium hydride, 5-centimeter-thick depleted uranium, 13-centimeter-thick lithium hydride, 5-centimeter-thick depleted uranium, and 3-centimeter-thick depleted uranium. Measurements were made with a NE-218 scintillation spectrometer; proton pulse height distributions were differentiated to obtain neutron spectra. Calculations were made using the two-dimensional discrete ordinates code DOT and ENDF/B (version 3) cross sections. Good agreement between measured and calculated spectral shape was observed. Absolute measured and calculated fluxes were within 50 percent of one another; observed discrepancies in absolute flux may be due to cross section errors.
Effects of electron doping on the stability of the metal hydride NaH
NASA Astrophysics Data System (ADS)
Olea-Amezcua, M. A.; Rivas-Silva, J. F.; de la Peña-Seaman, O.; Heid, R.; Bohnen, K. P.
2017-04-01
Alkali and alkali-earth metal hydrides have high volumetric and gravimetric hydrogen densities, but due to their high thermodynamic stability, they possess high dehydrogenation temperatures which may be reduced by transforming these compounds into less stable states/configurations. We present a systematic computational study of the electron doping effects on the stability of the alkali metal hydride NaH substituted with Mg, using the self-consistent version of the virtual crystal approximation to model the alloy Na1-x Mg x H. The phonon dispersions were studied paying special attention to the crystal stability and the correlations with the electronic structure taking into account the zero point energy contribution. We found that substitution of Na by Mg in the hydride invokes a reduction of the frequencies, leading to dynamical instabilities for Mg content of 25%. The microscopic origin of these instabilities could be related to the formation of ellipsoidal Fermi surfaces centered at the L point due to the metallization of the hydride by the Mg substitution. Applying the quasiharmonic approximation, thermodynamic properties like heat capacities, vibrational entropies and vibrational free energies as a function of temperature at zero pressure are obtained. These properties determine an upper temperature for the thermodynamic stability of the hydride, which decreases from 600 K for NaH to 300 K at 20% Mg concentration. This significant reduction of the stability range indicates that dehydrogenation could be favoured by electron doping of NaH.
Calculation of thermodynamic hydricities and the design of hydride donors for CO2 reduction
Muckerman, James T.; Achord, Patrick; Creutz, Carol; Polyansky, Dmitry E.; Fujita, Etsuko
2012-01-01
We have developed a correlation between experimental and density functional theory-derived results of the hydride-donating power, or “hydricity”, of various ruthenium, rhenium, and organic hydride donors. This approach utilizes the correlation between experimental hydricity values and their corresponding calculated free-energy differences between the hydride donors and their conjugate acceptors in acetonitrile, and leads to an extrapolated value of the absolute free energy of the hydride ion without the necessity to calculate it directly. We then use this correlation to predict, from density functional theory-calculated data, hydricity values of ruthenium and rhenium complexes that incorporate the pbnHH ligand—pbnHH = 1,5-dihydro-2-(2-pyridyl)-benzo[b]-1,5-naphthyridine—to model the function of NADPH. These visible light-generated, photocatalytic complexes produced by disproportionation of a protonated-photoreduced dimer of a metal-pbn complex may be valuable for use in reducing CO2 to fuels such as methanol. The excited-state lifetime of photoexcited [Ru(bpy)2(pbnHH)]2+ is found to be about 70 ns, and this excited state can be reductively quenched by triethylamine or 1,4-diazabicyclo[2.2.2]octane to produce the one-electron-reduced [Ru(bpy)2(pbnHH)]+ species with half-life exceeding 50 μs, thus opening the door to new opportunities for hydride-transfer reactions leading to CO2 reduction by producing a species with much increased hydricity. PMID:22826261
Mössbauer studies of iron hydride at high pressure
NASA Astrophysics Data System (ADS)
Choe, I.; Ingalls, R.; Brown, J. M.; Sato-Sorensen, Y.; Mills, R.
1991-07-01
We have measured in situ Mössbauer spectra of iron hydride made in a diamond anvil cell at high pressure and room temperature. The spectra show a sudden change at 3.5+/-0.5 GPa from a single hyperfine pattern to a superposition of three. The former pattern results from normal α-iron with negligible hydrogen content, and the latter from residual α-iron plus newly formed iron hydride. Between 3.5 and 10.4 GPa, the extra hydride pattern have hyperfine fields for one ranging from 276 to 263 kOe, and the other, from 317 to 309 kOe. Both have isomer shifts of about 0.4 mm/sec, and negligible quadrupole splittings. X-ray studies on quenched samples have shown that iron hydride is of double hexagonal close-packed structure, whose two nonequivalent iron sites may account for the observation of two different patterns. Even allowing for the effect of volume expansion, the observed isomer shifts for the hydride are considerably more positive than those of other metallic phases of iron. At the same time, the hyperfine fields are slightly smaller than that of α-iron. As a possible explanation, one may expect a bonding of hydrogen with iron, which would result in a small reduction of 4s electrons, possibly accompanied by a small increase of 3d electrons compared with the neutral atom in metallic iron. The difference between the hyperfine fields in the two spectra are presumably due to the different symmetry at the two iron sites.
White Paper Summary of 2nd ASTM International Workshop on Hydrides in Zirconium Alloy Cladding
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sindelar, R.; Louthan, M.; PNNL, B.
2015-05-29
This white paper recommends that ASTM International develop standards to address the potential impact of hydrides on the long term performance of irradiated zirconium alloys. The need for such standards was apparent during the 2nd ASTM International Workshop on Hydrides in Zirconium Alloy Cladding and Assembly Components, sponsored by ASTM International Committee C26.13 and held on June 10-12, 2014, in Jackson, Wyoming. The potentially adverse impacts of hydrogen and hydrides on the long term performance of irradiated zirconium-alloy cladding on used fuel were shown to depend on multiple factors such as alloy chemistry and processing, irradiation and post irradiation history,more » residual and applied stresses and stress states, and the service environment. These factors determine the hydrogen content and hydride morphology in the alloy, which, in turn, influence the response of the alloy to the thermo-mechanical conditions imposed (and anticipated) during storage, transport and disposal of used nuclear fuel. Workshop presentations and discussions showed that although hydrogen/hydride induced degradation of zirconium alloys may be of concern, the potential for occurrence and the extent of anticipated degradation vary throughout the nuclear industry because of the variations in hydrogen content, hydride morphology, alloy chemistry and irradiation conditions. The tools and techniques used to characterize hydrides and hydride morphologies and their impacts on material performance also vary. Such variations make site-to-site comparisons of test results and observations difficult. There is no consensus that a single material or system characteristic (e.g., reactor type, burnup, hydrogen content, end-of life stress, alloy type, drying temperature, etc.) is an effective predictor of material response during long term storage or of performance after long term storage. Multi-variable correlations made for one alloy may not represent the behavior of another alloy exposed to identical conditions and the material responses to thermo-mechanical exposures will be different depending on the materials and systems used. The discussions at the workshop showed several gaps in the standardization of processes and techniques necessary to assess the long term performance of irradiated zirconium alloy cladding during dry storage and transport. The development of, and adherence to, standards to help bridge these gaps will strengthen the technical basis for long term storage and post-storage operations, provide consistency across the nuclear industry, maximize the value of most observations, and enhance the understanding of behavioral differences among alloys. The need for, and potential benefits of, developing the recommended standards are illustrated in the various sections of this report.« less
Synthesis and structural study of Ti-rich Mg-Ti hydrides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Asano, Kohta; Kim, Hyunjeong; Sakaki, Kouji
2014-02-26
Mg xTi 1-x (x = 0.15, 0.25, 0.35) alloys were synthesized by means of ball milling. Under a hydrogen pressure of 8 MPa at 423 K these Mg–Ti alloys formed a hydride phase with a face centered cubic (FCC) structure. The hydride for x = 0.25 consisted of single Mg 0.25Ti 0.75H 1.62 FCC phase but TiH 2 and MgH 2 phases were also formed in the hydrides for x = 0.15 and 0.35, respectively. X-ray diffraction patterns and the atomic pair distribution function indicated that numbers of stacking faults were introduced. There was no sign of segregation between Mgmore » and Ti in Mg 0.25Ti 0.75H 1.62. Electronic structure of Mg 0.25Ti 0.75H 1.62 was different from those of MgH 2 and TiH 2, which was demonstrated by 1H nuclear magnetic resonance. This strongly suggested that stable Mg–Ti hydride phase was formed in the metal composition of Mg 0.25Ti 0.75 without disproportion into MgH 2 and TiH 2.« less
Biomimetics of [NiFe]-Hydrogenase: Nickel- or Iron-Centered Proton Reduction Catalysis?
Tang, Hao; Hall, Michael B
2017-12-13
The [NiFe] hydrogenase (H2ase) has been characterized in the Ni-R state with a hydride bridging between Fe and Ni but displaced toward the Ni. In nearly all of the synthetic Ni-R models reported so far, the hydride ligand is either displaced toward Fe, or terminally bound to Fe. Recently, a structural and functional [NiFe]-H2ase mimic ( Nat. Chem. 2016 , 8 , 1054 - 1060 ) was reported to produce H 2 catalytically via EECC mechanism through a Ni-centered hydride intermediate like the enzyme. Here, a comprehensive DFT study shows a much lower energy route via an E[ECEC] mechanism through an Fe-centered hydride intermediate. Although catalytic H 2 production occurs at the potential corresponding to the complex's second reduction, a third electron is needed to induce the second proton addition from the weak acid. The first two-electron reductions and a proton addition produce a semibridging hydride with a short Fe-H bond like other structured [NiFe]-biomimetics, but this species is not basic enough to add another proton from the weak acid without the third electron. The calculated mechanism provides insight into the origin of this structure in the enzyme.
Formation of novel transition metal hydride complexes with ninefold hydrogen coordination
Takagi, Shigeyuki; Iijima, Yuki; Sato, Toyoto; Saitoh, Hiroyuki; Ikeda, Kazutaka; Otomo, Toshiya; Miwa, Kazutoshi; Ikeshoji, Tamio; Orimo, Shin-ichi
2017-01-01
Ninefold coordination of hydrogen is very rare, and has been observed in two different hydride complexes comprising rhenium and technetium. Herein, based on a theoretical/experimental approach, we present evidence for the formation of ninefold H- coordination hydride complexes of molybdenum ([MoH9]3−), tungsten ([WH9]3−), niobium ([NbH9]4−) and tantalum ([TaH9]4−) in novel complex transition-metal hydrides, Li5MoH11, Li5WH11, Li6NbH11 and Li6TaH11, respectively. All of the synthesized materials are insulated with band gaps of approximately 4 eV, but contain a sufficient amount of hydrogen to cause the H 1s-derived states to reach the Fermi level. Such hydrogen-rich materials might be of interest for high-critical-temperature superconductivity if the gaps close under compression. Furthermore, the hydride complexes exhibit significant rotational motions associated with anharmonic librations at room temperature, which are often discussed in relation to the translational diffusion of cations in alkali-metal dodecahydro-closo-dodecaborates and strongly point to the emergence of a fast lithium conduction even at room temperature. PMID:28287143
Synthesis of bulk chromium hydrides under pressure of up to 120 GPa
NASA Astrophysics Data System (ADS)
Marizy, Adrien; Geneste, Grégory; Loubeyre, Paul; Guigue, Bastien; Garbarino, Gaston
2018-05-01
Stable compounds in the Cr-H system have been synthesized through a direct reaction of chromium and hydrogen in a laser-heated diamond-anvil cell and investigated using synchrotron x-ray diffraction up to 120 GPa . The sequence of hydrides CrH, Cr2H3 , and CrH2 has been observed by increasing pressure. The known ɛ -h c p -CrH hydride is formed above 3 GPa . A Cr2H3 hydride with a C 2 /m structure appears spontaneously above 19 GPa , as a result of the filling of the tetrahedral sites of ɛ -CrH. YAG laser heating helps dissolve more hydrogen inside the h c p chromium structure to synthesize a CrH2 compound with a P n m a structure from 30 GPa on. The volume expansion per hydrogen atom in octahedral and tetrahedral sites is measured up to the 100-GPa pressure range. The formation pressures and structures of these chromium interstitial hydrides are in very good agreement with DFT calculations. However, despite multiple heating attempts up to 100 GPa , no evidence of the stability of the predicted CrH3 compound could be found.
Identification of a catalytic iron-hydride at the H-cluster of [FeFe]-hydrogenase
Mulder, David W.; Guo, Yisong; Ratzloff, Michael W.; ...
2016-12-14
Hydrogenases couple electrochemical potential to the reversible chemical transformation of H 2 and protons, yet the reaction mechanism and composition of intermediates are not fully understood. In this Communication we describe the biophysical properties of a hydride-bound state (H hyd) of the [FeFe]-hydrogenase from Chlamydomonas reinhardtii. The catalytic H-cluster of [FeFe]-hydrogenase consists of a [4Fe-4S] subcluster ([4Fe-4S] H) linked by a cysteine thiol to an azadithiolate-bridged 2Fe subcluster ([2Fe] H) with CO and CN- ligands. Mossbauer analysis and density functional theory (DFT) calculations show that H hyd consists of a reduced [4Fe-4S] H + coupled to a diferrous [2Fe] Hmore » with a terminally bound Fe-hydride. The existence of the Fe-hydride in Hhyd was demonstrated by an unusually low Mossbauer isomer shift of the distal Fe of the [2Fe] H subcluster. As a result, a DFT model of H hyd shows that the Fe-hydride is part of a H-bonding network with the nearby bridging azadithiolate to facilitate fast proton exchange and catalytic turnover.« less
Metal hydrides as negative electrode materials for Ni- MH batteries
NASA Astrophysics Data System (ADS)
Yartys, V.; Noreus, D.; Latroche, M.
2016-01-01
Structural, thermodynamical and electrochemical properties of metallic hydrides belonging to the pseudo-binary family A-Mg-Ni ( A: rare earths) are reviewed and compared. Technology aspects of bipolar cells are also discussed.
Self-Consistent-Field Calculation on Lithium Hydride for Undergraduates.
ERIC Educational Resources Information Center
Rioux, Frank; Harriss, Donald K.
1980-01-01
Describes a self-consistent-field-linear combination of atomic orbitals-molecular orbital calculation on the valence electrons of lithium hydride using the method of Roothaan. This description is intended for undergraduate physics students.
NASA Technical Reports Server (NTRS)
Easter, R. W.
1974-01-01
Simplified design concepts were used to estimate gravimetric and volumetric energy densities for metal hydrogen battery cells for assessing the characteristics of cells containing metal hydrides as compared to gaseous storage cells, and for comparing nickel cathode and silver cathode systems. The silver cathode was found to yield superior energy densities in all cases considered. The inclusion of hydride forming materials yields cells with very high volumetric energy densities that also retain gravimetric energy densities nearly as high as those of gaseous storage cells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Degtyarenko, N. N.; Mazur, E. A., E-mail: eugen-mazur@mail.ru
The structural, electronic, phonon, and other characteristics of the normal phases of phosphorus hydrides with stoichiometry PH{sub k} are analyzed. The properties of the initial substance, namely, diphosphine are calculated. In contrast to phosphorus hydrides with stoichiometry PH{sub 3}, a quasi-two-dimensional phosphorus-stabilized lattice of metallic hydrogen can be formed in this substance during hydrostatic compression at a high pressure. The formed structure with H–P–H elements is shown to be locally stable in phonon spectrum, i.e., to be metastable. The properties of diphosphine are compared with the properties of similar structures of sulfur hydrides.
DOE R&D Accomplishments Database
Woods, A. D. B.; Brockhouse, Bertram N.; Sakamoto, M.; Sinclair, R. N.
1960-09-12
Energy distributions of neutrons scattered from various moderators and from several hydrogenous substances were measured at energy transfers of 0.02 to 0.24 ev. Results from experiments on graphite, light and heavy water, ice, ZrH, LiH, NaH, and NH4Cl are included. It is noted that the results are of a preliminary character; however, they are probably the most accurate measurements of high-energy transfers yet made. (J.R.D.)
Narcise, Cristine Ingrid S; Coo, Lilibeth Dlc; Del Mundo, Florian R
2005-12-15
A flow injection-column preconcentration-hydride generation atomic absorption spectrophotometric (FI-column-HGAAS) method was developed for determining mug/l levels of As(III) and As(V) in water samples, with simultaneous preconcentration and speciation. The speciation scheme involved determining As(V) at neutral pH and As(III+V) at pH 12, with As(III) obtained by difference. The enrichment factor (EF) increased with increase in sample loading volume from 2.5 to 10ml, and for preconcentration using the chloride-form anion exchange column, EFs ranged from 5 to 48 for As(V) and 4 to 24 for As(III+V), with corresponding detection limits of 0.03-0.3 and 0.07-0.3mug/l. Linear concentration range (LCR) also varied with sample loading volume, and for a 5-ml sample was 0.3-5 and 0.2-8mug/l for As(V) and As(III+V), respectively. Sample throughput, which decreased with increase in sample volume, was 8-17 samples/h. For the hydroxide-form column, the EFS for 2.5-10ml samples were 3-23 for As(V) and 2-15 for As(III+V), with corresponding detection limits of 0.07-0.4 and 0.1-0.5mug/l. The LCR for a 5-ml sample was 0.3-10mug/l for As(V) and 0.2-20mug/l for As(III+V). Sample throughput was 10-20 samples/h. The developed method has been effectively applied to tap water and mineral water samples, with recoveries ranging from 90 to 102% for 5-ml samples passed through the two columns.
Lukoyanov, Dmitriy A; Khadka, Nimesh; Yang, Zhi-Yong; Dean, Dennis R; Seefeldt, Lance C; Hoffman, Brian M
2018-03-24
Early studies in which nitrogenase was freeze-trapped during enzymatic turnover revealed the presence of high-spin ( S = 3 / 2 ) electron paramagnetic resonance (EPR) signals from the active-site FeMo-cofactor (FeMo-co) in electron-reduced intermediates of the MoFe protein. Historically denoted as 1b and 1c, each of the signals is describable as a fictitious spin system, S' = 1 / 2 , with anisotropic g' tensor, 1b with g' = [4.21, 3.76, ?] and 1c with g' = [4.69, ∼3.20, ?]. A clear discrepancy between the magnetic properties of 1b and 1c and the kinetic analysis of their appearance during pre-steady-state turnover left their identities in doubt, however. We subsequently associated 1b with the state having accumulated 2[e - /H + ], denoted as E 2 (2H), and suggested that the reducing equivalents are stored on the catalytic FeMo-co cluster as an iron hydride, likely an [Fe-H-Fe] hydride bridge. Intra-EPR cavity photolysis (450 nm; temperature-independent from 4 to 12 K) of the E 2 (2H)/1b state now corroborates the identification of this state as storing two reducing equivalents as a hydride. Photolysis converts E 2 (2H)/1b to a state with the same EPR spectrum, and thus the same cofactor structure as pre-steady-state turnover 1c, but with a different active-site environment. Upon annealing of the photogenerated state at temperature T = 145 K, it relaxes back to E 2 (2H)/1b. This implies that the 1c signal comes from an E 2 (2H) hydride isomer of E 2 (2H)/1b that stores its two reducing equivalents either as a hydride bridge between a different pair of iron atoms or an Fe-H terminal hydride.
Quantification of Lewis acid induced Brønsted acidity of protogenic Lewis bases.
Lathem, A Paige; Heiden, Zachariah M
2017-05-09
Proton transfer promoted by the coordination of protogenic Lewis bases to a Lewis acid is a critical step in catalytic transformations. Although the acidification of water upon coordination to a Lewis acid has been known for decades, no attempts have been made to correlate the Brønsted acidity of the coordinated water molecule with Lewis acid strength. To probe this effect, the pK a 's (estimated error of 1.3 pK a units) in acetonitrile of ten protogenic Lewis bases coordinated to seven Lewis acids containing Lewis acidities varying 70 kcal mol -1 , were computed. To quantify Lewis acid strength, the ability to transfer a hydride (hydride donor ability) from the respective main group hydride was used. Coordination of a Lewis acid to water increased the acidity of the bound water molecule between 20 and 50 pK a units. A linear correlation exhibiting a 2.6 pK a unit change of the Lewis acid-water adduct per ten kcal mol -1 change in hydride donor ability of the respective main group hydride was obtained. For the ten protogenic Lewis bases studied, the coordinated protogenic Lewis bases were acidified between 10 and 50 pK a units. On average, a ten kcal mol -1 change in hydride donor ability of the respective main group hydride resulted in about a 2.8 pK a unit change in the Brønsted acidity of the Lewis acid-Lewis base adducts. Since attempts to computationally investigate the pK a of main group dihydrogen complexes were unsuccessful, experimental determination of the first reported pK a of a main group dihydrogen complex is described. The pK a of H 2 -B(C 6 F 5 ) 3 was determined to be 5.8 ± 0.2 in acetonitrile.
Method of making alkali metal hydrides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pecharsky, Vitalij K.; Gupta, Shalabh; Pruski, Marek
A method is provided for making alkali metal hydrides by mechanochemically reacting alkali metal and hydrogen gas under mild temperature (e.g room temperature) and hydrogen pressure conditions without the need for catalyst, solvent, and intentional heating or cooling.
Pressure-induced effects and phase relations in Mg2NiH4
NASA Astrophysics Data System (ADS)
Gavra, Z.; Kimmel, G.; Gefen, Y.; Mintz, Moshe H.
1985-05-01
The low-temperature (<210 °C) crystallographic structure, electrical conductivity, and thermal stability of Mg2NiH4 powders compacted under isostatic pressures of up to 10 kbar were studied. A comparison is made with the corresponding properties of the noncompressed material. It has been concluded that under stress-free hydriding conditions performed below 210 °C, a two-phase hydride mixture is formed. Each of the hydride particles consists of an inner core composed of an hydrogen-deficient monoclinic phase coated by a layer of a stoichiometric orthorhombic phase. The monoclinic phase has a metalliclike electrical conductivity while the orthorhombic phase is insulating. High compaction pressures cause the transformation of the orthorhombic structure into the monoclinic one, thereby resulting in a pressure-induced insulator-to-conductor transition. Reduced decomposition temperatures are obtained for the compressed hydrides. This reduction is attributed to kinetic factors rather than to a reduced thermodynamic stability.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ebner, M.A.
1996-08-01
Physical/chemical factors in U metal and hydride combustion, particularly pyrophoricity in ambient environment, were evaluated for BMI-SPEC and UAl{sub x} plate fuels. Some metal fuels may be highly reactive (spontaneously igniting in air) due to high specific surface area, high decay heat, or a high U hydride content from corrosion during underwater storage. However, for the BMI-SPEC and the aluminum plate fuels, this reactivity is too low to present a realistic threat of uncontrolled spontaneous combustion at ambient conditions. While residual U hydride is expected in these corroded fuels, the hydride levels are expected to be too low and themore » configuration too unfavorable to ignite the fuel meat when the fuels are retrieved from the basin and dried. Furthermore the composition and microstructure of the UAl{sub x} fuels further mitigate that risk.« less
Metal hydride hydrogen compression: Recent advances and future prospects
Bowman, Jr., Robert C.; Yartys, Volodymyr A.; Lototskyy, Mykhaylo V.; ...
2016-03-17
Metal hydride (MH) thermal sorption compression is one of the more important applications of the metal hydrides. The present paper reviews recent advances in the field based on the analysis of the fundamental principles of this technology. The performances when boosting hydrogen pressure, along with two- and three-step compression units are analyzed. The paper includes also a theoretical modeling of a two-stage compressor aimed at both describing the performance of the experimentally studied systems, but, also, on their optimization and design of more advanced MH compressors. Business developments in the field are reviewed for the Norwegian company HYSTORSYS AS andmore » the South African Institute for Advanced Materials Chemistry. Finally, future prospects are outlined presenting the role of the metal hydride compression in the overall development of the hydrogen driven energy systems. Lastly, the work is based on the analysis of the development of the technology in Europe, USA and South Africa.« less
Reversible hydrogen storage materials
Ritter, James A [Lexington, SC; Wang, Tao [Columbia, SC; Ebner, Armin D [Lexington, SC; Holland, Charles E [Cayce, SC
2012-04-10
In accordance with the present disclosure, a process for synthesis of a complex hydride material for hydrogen storage is provided. The process includes mixing a borohydride with at least one additive agent and at least one catalyst and heating the mixture at a temperature of less than about 600.degree. C. and a pressure of H.sub.2 gas to form a complex hydride material. The complex hydride material comprises MAl.sub.xB.sub.yH.sub.z, wherein M is an alkali metal or group IIA metal, Al is the element aluminum, x is any number from 0 to 1, B is the element boron, y is a number from 0 to 13, and z is a number from 4 to 57 with the additive agent and catalyst still being present. The complex hydride material is capable of cyclic dehydrogenation and rehydrogenation and has a hydrogen capacity of at least about 4 weight percent.
Formation of superconducting platinum hydride under pressure: an ab initio approach
NASA Astrophysics Data System (ADS)
Kim, Duck Young; Scheicher, Ralph; Pickard, Chris; Needs, Richard; Ahuja, Rajeev
2012-02-01
Noble metals such as Pt, Au, or Re are commonly used for electrodes and gaskets in diamond anvil cells for high-pressure research because they are expected to rarely undergo structural transformation and possess simple equation of states. Specifically Pt has been used widely for high-pressure experiments and has been considered to resist hydride formation under pressure. Pressure-induced reactions of metals with hydrogen are in fact quite likely because hydrogen atoms can occupy interstitial positions in the metal lattice, which can lead to unexpected effects in experiments. In our study, PRL 107 117002 (2011), we investigated crystal structures using ab initio random structure searching (AIRSS) and predicted the formation of platinum mono-hydride above 22 GPa and superconductivity Tc was estimated to be 10 -- 25 K above around 80 GPa. Furthermore, we showed that the formation of fcc noble metal hydrides under pressure is common and examined the possibility of superconductivity in these materials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Jun-li; Han, Xiaochun; Heuser, Brent J.
2016-04-01
High-energy synchrotron X-ray diffraction was utilized to study the mechanical response of the f.c.c delta hydride phase, the intermetallic precipitation with hexagonal C14 lave phase and the alpha-Zr phase in the Zircaloy-4 materials with a hydride rim/blister structure near one surface of the material during in-situ uniaxial tension experiment at 200 degrees C. The f.c.c delta was the only hydride phase observed in the rim/blister structure. The conventional Rietveld refinement was applied to measure the macro-strain equivalent response of the three phases. Two regions were delineated in the applied load versus lattice strain measurement: a linear elastic strain region andmore » region that exhibited load partitioning. Load partitioning was quantified by von Mises analysis. The three phases were observed to have similar elastic modulus at 200 degrees C.« less
Advanced nickel-metal hydride cell development at Hughes: A joint work with US government
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lim, H.S.; Pickett, D.F.; Stockel, J.F.
1995-01-25
Hughes is currently engaged in the development of an advanced nickel-metal hydride (Ni/MHx) cell for spacecraft application with performance goals of 15 years of opertion in a geosynchronous earth orbit at 80% depth of discharge and over 30,000 cycles of life at 30% depth of discharge in a typical low earth orbit. We have developed the basic fabrication technique for a lightweight and potentially long life nickel electrode which is useable in space Ni/MHx cells. We have developed several attractive hydride alloys which are useable in hydride electrodes and basic fabrication techniques for lightweight, inexpensive, and potentially long life hydridemore » electrodes for a Ni/MHx cell. Utilizing Hughes extensive experiences in development of advanced Ni/Cd and Ni/H{sub 2} cells, we plan to develop a first generation space Ni/MHx cell design by 1995 and have the cell flight ready by 1997.« less
(abstract) Studies on AB(sub 5) Metal Hydride Alloys with Sn Additives
NASA Technical Reports Server (NTRS)
Ratnakumar, B. V.; Surampudi, S.; Stefano, S. Di; Halpert, G.; Witham, C.; Fultz, B.
1994-01-01
The use of metal hydrides as negative electrodes in alkaline rechargeable cells is becoming increasingly popular, due to several advantages offered by the metal hydrides over conventional anode materials (such as Zn, Cd) in terms of specific energy environmental cycle life and compatibility. Besides, the similarities in the cell voltage pressure characteristics, and charge control methods of the Ni-MH cells to the commonly used Ni-Cd point to a projected take over of 25% of the Ni-Cd market for consumer electronics by the Ni-MH cells in the next couple of years. Two classes of metal hydrides alloys based on rare earth metals (AB(sub 5)) and titanium (AB(sub 2)) are being currently developed at various laboratories. AB(sub 2) alloys exhibit higher specific energy than the AB(sub 5) alloys but the state of the art commercial Ni-MH cells are predominately manufactured using AB(sub 5) alloys.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lim, H.S.; Zelter, G.R.; Allison, D.U.
1997-12-01
Multi-component AB{sub 5} hydrides are attractive replacements for the cadmium electrode in nickel-cadmium batteries. The archetype compound of the AB{sub 5} alloy class is LaNi{sub 5}, but in a typical battery electrode mischmetal is substituted for La and Ni is substituted in part by variety of metals. This paper deals with the effect on cycle life upon the partial substitution of various lanthanides for La and Sn, In, Al, Co, and Mn for Ni. The presence of Ce was shown to enhance cycle life as did Sn in some cases. An electrode of La{sub 0.67}Ce{sub 0.33}B{sub 5} alloy gave overmore » 3,500 cycles (to specific capacity of 200 mAh/g), indicating that it is a very attractive alloy for a practical Ni/MH{sub x} cell.« less
Development of Hydrogen Storage Tank Systems Based on Complex Metal Hydrides
Ley, Morten B.; Meggouh, Mariem; Moury, Romain; Peinecke, Kateryna; Felderhoff, Michael
2015-01-01
This review describes recent research in the development of tank systems based on complex metal hydrides for thermolysis and hydrolysis. Commercial applications using complex metal hydrides are limited, especially for thermolysis-based systems where so far only demonstration projects have been performed. Hydrolysis-based systems find their way in space, naval, military and defense applications due to their compatibility with proton exchange membrane (PEM) fuel cells. Tank design, modeling, and development for thermolysis and hydrolysis systems as well as commercial applications of hydrolysis systems are described in more detail in this review. For thermolysis, mostly sodium aluminum hydride containing tanks were developed, and only a few examples with nitrides, ammonia borane and alane. For hydrolysis, sodium borohydride was the preferred material whereas ammonia borane found less popularity. Recycling of the sodium borohydride spent fuel remains an important part for their commercial viability. PMID:28793541
Chemical reactivity testing for the National Spent Nuclear Fuel Program. Revision 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koester, L.W.
This quality assurance project plan (QAPjP) summarizes requirements used by Lockheed Martin Energy Systems, Incorporated (LMES) Development Division at Y-12 for conducting chemical reactivity testing of Department of Energy (DOE) owned spent nuclear fuel, sponsored by the National Spent Nuclear Fuel Program (NSNFP). The requirements are based on the NSNFP Statement of work PRO-007 (Statement of Work for Laboratory Determination of Uranium Hydride Oxidation Reaction Kinetics.) This QAPjP will utilize the quality assurance program at Y-12, Y60-101PD, Quality Program Description, and existing implementing procedures for the most part in meeting the NSNFP Statement of Work PRO-007 requirements, exceptions will bemore » noted. The project consists of conducting three separate series of related experiments, ''Passivation of Uranium Hydride Powder With Oxygen and Water'', '''Passivation of Uranium Hydride Powder with Surface Characterization'', and ''Electrochemical Measure of Uranium Hydride Corrosion Rate''.« less
NASA Astrophysics Data System (ADS)
Karadjova, Irina B.; Petrov, Panayot K.; Serafimovski, Ivan; Stafilov, Trajče; Tsalev, Dimiter L.
2007-03-01
Analytical problems in determination of arsenic in marine tissues are addressed. Procedures for the determination of total As in solubilized or extracted tissues with tetramethylammonium hydroxide and methanol have been elaborated. Several typical lyophilized tissues were used: NIST SRM 1566a 'Oyster Tissue', BCR-60 CRM 'Trace Elements in an Aquatic Plant ( Lagarosiphon major)', BCR-627 'Forms of As in Tuna Fish Tissue', IAEA-140/TM 'Sea Plant Homogenate', NRCC DOLT-1 'Dogfish Liver' and two representatives of the Black Sea biota, Mediterranean mussel ( Mytilus galloprovincialis) and Brown algae ( Cystoseira barbata). Tissues (nominal 0.3 g) were extracted in tetramethylammonium hydroxide (TMAH) 1 ml of 25% m/v TMAH and 2 ml of water) or 5 ml of aqueous 80% v/v methanol (MeOH) in closed vessels in a microwave oven at 50 °C for 30 min. Arsenic in solubilized or extracted tissues was determined by electrothermal atomic absorption spectrometry (ETAAS) after appropriate dilution (nominally to 25 ml, with further dilution as required) under optimal instrumental parameters (pyrolysis temperature 900 °C and atomization temperature 2100 °C) with 1.5 μg Pd as modifier on Zr-Ir treated platform. Platforms have been pre-treated with 2.7 μmol of zirconium and then with 0.10 μmol of iridium which served as a permanent chemical modifier in direct ETAAS measurements and as an efficient hydride sequestration medium in flow injection hydride generation (FI-HG)-ETAAS. TMAH and methanol extract 96-108% and 51-100% of As from CRMs. Various calibration approaches have been considered and critically evaluated. The effect of species-dependent slope of calibration graph or standard additions plot for total As determination in a sample comprising of several individual As species with different ETAAS behavior has been considered as a kind of 'intrinsic element speciation interference' that cannot be completely overcome by standard additions technique. Calibration by means of CRMs has given only semi-quantitative results. The limits of detection (3 σ) were in the range 0.5-1.2 mg kg - 1 As dry weight (wt.) for direct ETAAS analysis of extracts in both TMAH and MeOH. Within-run precision (RSD%) was 5-15% and 7-20% for TMAH and MeOH extracts at As levels 4-50 mg kg - 1 dry wt., respectively. The hydride active fraction of As species in extracts, i.e. the sum of toxicologically-relevant arsenic species (inorganic As(III), inorganic As(V), monomethylarsonate (MMA) and dimethylarsinate (DMA)) was determined by FI-HG-ETAAS in diluted tissue extracts. Arsine, monomethylarsine and dimethylarsine were generated from diluted TMAH and MeOH extracts in the presence of 0.06-0.09 mol l - 1 hydrochloric acid and 0.075 mol l - 1 L-cysteine. Collection, pyrolysis and atomization temperatures were 450, 500, 2100 and 2150 °C, respectively. The LODs for the determination of hydride forming fraction (arsenite + arsenate + MMA + DMA) in TMAH and MeOH extracts were in the range 0.003-0.02 mg kg - 1 As dry wt. Within-run precision (RSD%) was 3-12% and 3-7% for TMAH and methanol extracts at As levels 0.15-2.4 mg kg - 1 dry wt., respectively. Results for the hydride forming fraction of As in TMAH and MeOH extract as % from the certified value for total As (for CRMs) or vs. the total As in TMAH extract (for real marine samples) are generally in agreement.
Thermal to Electric Energy Conversion for Cyclic Heat Loads
NASA Astrophysics Data System (ADS)
Whitehead, Benjamin E.
Today, we find cyclic heat loads almost everywhere. When we drive our cars, the engines heat up while we are driving and cool while parked. Processors heat while the computer is in use at the office and cool when idle at night. The sun heats the earth during the day and the earth radiates that heat into space at night. With modern technology, we have access to a number of methods to take that heat and convert it into electricity, but, before selecting one, we need to identify the parameters that inform decision making. The majority of the parameters for most systems include duty cycle, total cost, weight, size, thermal efficiency, and electrical efficiency. However, the importance of each of these will depend on the application. Size and weight take priority in a handheld device, while efficiency dominates in a power plant, and duty cycle is likely to dominate in highly demanding heat pump applications. Over the past decade, developments in semiconductor technology has led to the creation of the thermoelectric generator. With no moving parts and a nearly endlessly scalable nature, these generators present interesting opportunities for taking advantage of any source of waste heat. However, these generators are typically only capable of 5-8% efficiency from conversion of thermal to electric energy. [1]. Similarly, advancements in photovoltaic cells has led to the development of thermophotovoltaics. By heating an emitter to a temperature so it radiates light, a thermophotovoltaic cell then converts that light into electricity. By selecting materials that emit light in the optimal ranges of the appropriate photovoltaic cells, thermophotovoltaic systems can potentially exceed the current maximum of 10% efficiency. [2]. By pressurizing certain metal powders with hydrogen, hydrogen can be bound to the metal, creating a metal hydride, from which hydrogen can be later re-extracted under the correct pressure and temperature conditions. Since this hydriding reaction is exothermic, and dehydriding is endothermic, we can use the reaction to control temperature and store or release energy as desired. Connecting the liberated hydrogen gas to a hydrogen/air or hydrogen/oxygen fuel cell can then generate useful electrical power. A fuel cell operates by flowing hydrogen and oxygen over a membrane that only allows protons through. This process creates a voltage through the separation of the negatively charged electrons and positively charged water. Typical fuel cells operate at 30-40% efficiency with research aiming to increase that number to 65% with solid oxide fuel cells. [3]. In this thesis, I develop several models to size metal hydride systems, identify the critical design parameters of a metal hydride system, and predict hydrogen production for a given heat source. The first model consists of a lumped parameter treatment that analyzes how the effects of varying metal hydrides and heat source values change the dehydriding process. The second model uses COMSOLRTM Multiphysics to create a higher fidelity simulation of the heat transfer within a metal hydride bed by calculating the spatial heat transfer as well as the porous nature of the system. The Comsol model shows that thermal conductivity is the highest sensitivity parameter of those studied, and therefore should be the primary focus for system design. The model also shows that the efficiency of the system is relatively independent of the duty cycle of the heat source.
NASA Astrophysics Data System (ADS)
Singh, Tejinder; Valipa, Mayur S.; Mountziaris, T. J.; Maroudas, Dimitrios
2007-11-01
We report results from a detailed analysis of the fundamental silicon hydride dissociation processes on silicon surfaces and discuss their implications for the surface chemical composition of plasma-deposited hydrogenated amorphous silicon (a-Si:H) thin films. The analysis is based on a synergistic combination of first-principles density functional theory (DFT) calculations of hydride dissociation on the hydrogen-terminated Si(001)-(2×1) surface and molecular-dynamics (MD) simulations of adsorbed SiH3 radical precursor dissociation on surfaces of MD-grown a-Si :H films. Our DFT calculations reveal that, in the presence of fivefold coordinated surface Si atoms, surface trihydride species dissociate sequentially to form surface dihydrides and surface monohydrides via thermally activated pathways with reaction barriers of 0.40-0.55eV. The presence of dangling bonds (DBs) results in lowering the activation barrier for hydride dissociation to 0.15-0.20eV, but such DB-mediated reactions are infrequent. Our MD simulations on a-Si :H film growth surfaces indicate that surface hydride dissociation reactions are predominantly mediated by fivefold coordinated surface Si atoms, with resulting activation barriers of 0.35-0.50eV. The results are consistent with experimental measurements of a-Si :H film surface composition using in situ attenuated total reflection Fourier transform infrared spectroscopy, which indicate that the a-Si :H surface is predominantly covered with the higher hydrides at low temperatures, while the surface monohydride, SiH(s ), becomes increasingly more dominant as the temperature is increased.
Ti(Ni,Cu) pseudobinary compounds as efficient negative electrodes for Ni-MH batteries
NASA Astrophysics Data System (ADS)
Emami, Hoda; Cuevas, Fermin; Latroche, Michel
2014-11-01
The effect of Ni by Cu substitution on the structural, solid-gas and electrochemical hydrogenation properties of TiNi has been investigated. Pseudo-binary TiNi1-xCux (x ≤ 0.5) compounds have been synthesized by induction melting. They crystallize in B2 structure above 350 K and either in B19‧ (x < 0.1) or B19 (0.2 ≤ x ≤ 0.5) at room temperature (RT). For all compounds, Pressure-Composition Isotherms at 423 K exhibit a single slopping plateau pressure within the range 10-3-1 MPa of hydrogen pressure revealing a metal to hydride transformation. Both the hydrogenation capacity and the hydride stability decrease with Cu-content. The hydrided pseudobinary compounds crystallize in the tetragonal S.G. I4/mmm structure as for TiNi hydride. The electrochemical discharge capacity increases with Cu content from 150 mAh g-1 for TiNi up to 300 mAh g-1 for TiNi0.8Cu0.2 and then decreases again for larger Cu amounts. Electrochemical isotherms and in-situ neutron diffraction measurements at RT demonstrate that such a capacity increase results from a metal to hydride phase transformation in which the hydride phase is destabilized by Cu substitution. The TiNi0.8Cu0.2 compound exhibits interesting cycling stability for 30 cycles and good high-rate capability at D/2 rate. This compound has promising electrochemical properties as compared to commercial LaNi5-type alloys with the advantage of being rare-earth metal free.
Advanced chemical hydride-based hydrogen generation/storage system for fuel cell vehicles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Breault, R.W.; Rolfe, J.
1998-08-01
Because of the inherent advantages of high efficiency, environmental acceptability, and high modularity, fuel cells are potentially attractive power supplies. Worldwide concerns over clean environments have revitalized research efforts on developing fuel cell vehicles (FCV). As a result of intensive research efforts, most of the subsystem technology for FCV`s are currently well established. These include: high power density PEM fuel cells, control systems, thermal management technology, and secondary power sources for hybrid operation. For mobile applications, however, supply of hydrogen or fuel for fuel cell operation poses a significant logistic problem. To supply high purity hydrogen for FCV operation, Thermomore » Power`s Advanced Technology Group is developing an advanced hydrogen storage technology. In this approach, a metal hydride/organic slurry is used as the hydrogen carrier and storage media. At the point of use, high purity hydrogen will be produced by reacting the metal hydride/organic slurry with water. In addition, Thermo Power has conceived the paths for recovery and regeneration of the spent hydride (practically metal hydroxide). The fluid-like nature of the spent hydride/organic slurry will provide a unique opportunity for pumping, transporting, and storing these materials. The final product of the program will be a user-friendly and relatively high energy storage density hydrogen supply system for fuel cell operation. In addition, the spent hydride can relatively easily be collected at the pumping station and regenerated utilizing renewable sources, such as biomass, natural, or coal, at the central processing plants. Therefore, the entire process will be economically favorable and environmentally friendly.« less
Huang, Ke; Xu, Kailai; Zhu, Wei; Yang, Lu; Hou, Xiandeng; Zheng, Chengbin
2016-01-05
A low-cost, simple, and highly selective analytical method was developed for sensitive visual detection of selenium in human urine both outdoors and at home, by coupling hydride generation with headspace solid-phase extraction using quantum dots (QDs) immobilized on paper. The visible fluorescence from the CdTe QDs immobilized on paper was quenched by H2Se from hydride generation reaction and headspace solid-phase extraction. The potential mechanism was investigated by using X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) as well as Density Functional Theory (DFT). Potential interferences from coexisting ions, particularly Ag(+), Cu(2+), and Zn(2+), were eliminated. The selectivity was significantly increased because the selenium hydride was effectively separated from sample matrices by hydride generation. Moreover, due to the high sampling efficiency of hydride generation and headspace solid phase extraction, the sensitivity and the limit of detection (LOD) were significantly improved compared to conventional methods. A LOD of 0.1 μg L(-1) and a relative standard deviation (RSD, n = 7) of 2.4% at a concentration of 20 μg L(-1) were obtained when using a commercial spectrofluorometer as the detector. Furthermore, a visual assay based on the proposed method was developed for the detection of Se, 5 μg L(-1) of selenium in urine can be discriminated from the blank solution with the naked eye. The proposed method was validated by analysis of certified reference materials and human urine samples with satisfactory results.
A Kinetic Model for GaAs Growth by Hydride Vapor Phase Epitaxy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schulte, Kevin L.; Simon, John; Jain, Nikhil
2016-11-21
Precise control of the growth of III-V materials by hydride vapor phase epitaxy (HVPE) is complicated by the fact that the growth rate depends on the concentrations of nearly all inputs to the reactor and also the reaction temperature. This behavior is in contrast to metalorganic vapor phase epitaxy (MOVPE), which in common practice operates in a mass transport limited regime where growth rate and alloy composition are controlled almost exclusively by flow of the Group III precursor. In HVPE, the growth rate and alloy compositions are very sensitive to temperature and reactant concentrations, which are strong functions of themore » reactor geometry. HVPE growth, particularly the growth of large area materials and devices, will benefit from the development of a growth model that can eventually be coupled with a computational fluid dynamics (CFD) model of a specific reactor geometry. In this work, we develop a growth rate law using a Langmuir-Hinshelwood (L-H) analysis, fitting unknown parameters to growth rate data from the literature that captures the relevant kinetic and thermodynamic phenomena of the HVPE process. We compare the L-H rate law to growth rate data from our custom HVPE reactor, and develop quantitative insight into reactor performance, demonstrating the utility of the growth model.« less
Process for massively hydriding zirconium--uranium fuel elements
Katz, N.H.
1973-12-01
A method is described of hydriding uranium-zirconium alloy by heating the alloy in a vacuum, introducing hydrogen and maintaining an elevated temperature until occurrence of the beta--delta phase transformation and isobarically cooling the composition. (Official Gazette)
Storing and transporting energy
McClaine, Andrew W.; Brown, Kenneth
2010-09-07
Among other things, hydrogen is released from water at a first location using energy from a first energy source; the released hydrogen is stored in a metal hydride slurry; and the metal hydride slurry is transported to a second location remote from the first location.
40 CFR Appendix V to Part 265 - Examples of Potentially Incompatible Waste
Code of Federal Regulations, 2013 CFR
2013-07-01
... Calcium Lithium Magnesium Potassium Sodium Zinc powder Other reactive metals and metal hydrides Potential... concentrated waste in Groups 1-A or 1-B Water Calcium Lithium Metal hydrides Potassium SO2Cl2, SOCl2, PCl3...
40 CFR Appendix V to Part 265 - Examples of Potentially Incompatible Waste
Code of Federal Regulations, 2012 CFR
2012-07-01
... Calcium Lithium Magnesium Potassium Sodium Zinc powder Other reactive metals and metal hydrides Potential... concentrated waste in Groups 1-A or 1-B Water Calcium Lithium Metal hydrides Potassium SO2Cl2, SOCl2, PCl3...
40 CFR Appendix V to Part 265 - Examples of Potentially Incompatible Waste
Code of Federal Regulations, 2014 CFR
2014-07-01
... Calcium Lithium Magnesium Potassium Sodium Zinc powder Other reactive metals and metal hydrides Potential... concentrated waste in Groups 1-A or 1-B Water Calcium Lithium Metal hydrides Potassium SO2Cl2, SOCl2, PCl3...
Method and apparatus for regenerating cold traps within liquid-metal systems
McKee, Jr., John M.
1976-01-01
Oxide and hydride impurities of a liquid metal such as sodium are removed from a cold trap by heating to a temperature at which the metal hydroxide is stable in a molten state. The partial pressure of hydrogen within the system is measured to determine if excess hydride or oxide is present. Excess hydride is removed by venting hydrogen gas while excess oxide can be converted to molten hydroxide through the addition of hydrogen. The resulting, molten hydroxide is drained from the trap which is then returned to service at cold trap temperatures within the liquid-metal system.
Shield materials recommended for space power nuclear reactors
NASA Technical Reports Server (NTRS)
Kaszubinski, L. J.
1973-01-01
Lithium hydride is recommended for neutron attenuation and depleted uranium is recommended for gamma ray attenuation. For minimum shield weights these materials must be arranged in alternate layers to attenuate the secondary gamma rays efficiently. In the regions of the shield near the reactor, where excessive fissioning occurs in the uranium, a tungsten alloy is used instead. Alloys of uranium such as either the U-0.5Ti or U-8Mo are available to accommodate structural requirements. The zone-cooled casting process is recommended for lithium hydride fabrication. Internal honeycomb reinforcement to control cracks in the lithium hydride is recommended.
Metal hydride reasearch and development program at Brookhaven National Laboratory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, J.R.; Reilly, J.J.
1978-01-01
A progress report is presented covering work performed in the hydrogen materials development program at Brookhaven National Laboratory (BNL) for FY78 which encompasses the time period from October 1, 1977 through September 30, 1978. The subjects to be discussed here concern properties of importance in the utilization of metal hydrides as energy storage media. Most of the areas of research were initiated prior to FY78, however all of the results contained in this manuscript were obtained during the aforementioned period of time. The following subjects will be discussed: the properties of ferro-titanium and chrome-titanium alloy hydrides.
NASA Astrophysics Data System (ADS)
Denisov, E. A.; Kompaniets, T. N.; Voyt, A. P.
2018-05-01
The hydrogen permeation technique in the surface-limited regime (SLR) was first used to study the isothermal decomposition of zirconium hydride. It is shown that under isothermal conditions, the hydrogen terminal solid solubility in the α-phase for hydride precipitation (TSSp) and dissolution (TSSd) differ only by 6%, in contrast to the 20-30% indicated in the available literature. It is demonstrated that even the minimum heating/cooling rate (1 C/min) used in the traditional methods of studying TSSp and TSSd is too high to exclude the effect of kinetics on the results obtained.
d'Entremont, Anna; Corgnale, Claudio; Hardy, Bruce; ...
2018-01-11
Concentrating solar power plants can achieve low cost and efficient renewable electricity production if equipped with adequate thermal energy storage systems. Metal hydride based thermal energy storage systems are appealing candidates due to their demonstrated potential for very high volumetric energy densities, high exergetic efficiencies, and low costs. The feasibility and performance of a thermal energy storage system based on NaMgH 2F hydride paired with TiCr 1.6Mn 0.2 is examined, discussing its integration with a solar-driven ultra-supercritical steam power plant. The simulated storage system is based on a laboratory-scale experimental apparatus. It is analyzed using a detailed transport model accountingmore » for the thermochemical hydrogen absorption and desorption reactions, including kinetics expressions adequate for the current metal hydride system. The results show that the proposed metal hydride pair can suitably be integrated with a high temperature steam power plant. The thermal energy storage system achieves output energy densities of 226 kWh/m 3, 9 times the DOE SunShot target, with moderate temperature and pressure swings. Also, simulations indicate that there is significant scope for performance improvement via heat-transfer enhancement strategies.« less
Mortazavi, Bohayra; Makaremi, Meysam; Shahrokhi, Masoud; Raeisi, Mostafa; Singh, Chandra Veer; Rabczuk, Timon; Pereira, Luiz Felipe C
2018-02-22
Two-dimensional (2D) structures of boron atoms, so-called borophene, have recently attracted remarkable attention. In a recent exciting experimental study, a hydrogenated borophene structure was realized. Motivated by this success, we conducted extensive first-principles calculations to explore the mechanical, thermal conduction, electronic and optical responses of borophene hydride. The mechanical response of borophene hydride was found to be anisotropic, with an elastic modulus of 131 N m -1 and a high tensile strength of 19.9 N m -1 along the armchair direction. Notably, it was shown that by applying mechanical loading the metallic electronic character of borophene hydride can be altered to direct band-gap semiconducting, very appealing for application in nanoelectronics. The absorption edge of the imaginary part of the dielectric function was found to occur in the visible range of light for parallel polarization. Finally, it was estimated that this novel 2D structure at room temperature can exhibit high thermal conductivities of 335 W mK -1 and 293 W mK -1 along the zigzag and armchair directions, respectively. Our study confirms that borophene hydride shows an outstanding combination of interesting mechanical, electronic, optical and thermal conduction properties, which are promising for the design of novel nanodevices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
d'Entremont, Anna; Corgnale, Claudio; Hardy, Bruce
Concentrating solar power plants can achieve low cost and efficient renewable electricity production if equipped with adequate thermal energy storage systems. Metal hydride based thermal energy storage systems are appealing candidates due to their demonstrated potential for very high volumetric energy densities, high exergetic efficiencies, and low costs. The feasibility and performance of a thermal energy storage system based on NaMgH 2F hydride paired with TiCr 1.6Mn 0.2 is examined, discussing its integration with a solar-driven ultra-supercritical steam power plant. The simulated storage system is based on a laboratory-scale experimental apparatus. It is analyzed using a detailed transport model accountingmore » for the thermochemical hydrogen absorption and desorption reactions, including kinetics expressions adequate for the current metal hydride system. The results show that the proposed metal hydride pair can suitably be integrated with a high temperature steam power plant. The thermal energy storage system achieves output energy densities of 226 kWh/m 3, 9 times the DOE SunShot target, with moderate temperature and pressure swings. Also, simulations indicate that there is significant scope for performance improvement via heat-transfer enhancement strategies.« less
The Role of Large-Scale Motions in Catalysis by Dihydrofolate Reductase
2011-01-01
Dihydrofolate reductase has long been used as a model system to study the coupling of protein motions to enzymatic hydride transfer. By studying environmental effects on hydride transfer in dihydrofolate reductase (DHFR) from the cold-adapted bacterium Moritella profunda (MpDHFR) and comparing the flexibility of this enzyme to that of DHFR from Escherichia coli (EcDHFR), we demonstrate that factors that affect large-scale (i.e., long-range, but not necessarily large amplitude) protein motions have no effect on the kinetic isotope effect on hydride transfer or its temperature dependence, although the rates of the catalyzed reaction are affected. Hydrogen/deuterium exchange studies by NMR-spectroscopy show that MpDHFR is a more flexible enzyme than EcDHFR. NMR experiments with EcDHFR in the presence of cosolvents suggest differences in the conformational ensemble of the enzyme. The fact that enzymes from different environmental niches and with different flexibilities display the same behavior of the kinetic isotope effect on hydride transfer strongly suggests that, while protein motions are important to generate the reaction ready conformation, an optimal conformation with the correct electrostatics and geometry for the reaction to occur, they do not influence the nature of the chemical step itself; large-scale motions do not couple directly to hydride transfer proper in DHFR. PMID:22060818
Release of hydrogen from nanoconfined hydrides by application of microwaves
NASA Astrophysics Data System (ADS)
Sanz-Moral, Luis Miguel; Navarrete, Alexander; Sturm, Guido; Link, Guido; Rueda, Miriam; Stefanidis, Georgios; Martín, Ángel
2017-06-01
The release of hydrogen from solid hydrides by thermolysis can be improved by nanoconfinement of the hydride in a suitable micro/mesoporous support, but the slow heat transfer by conduction through the support can be a limitation. In this work, a C/SiO2 mesoporous material has been synthesized and employed as matrix for nanoconfinement of hydrides. The matrix showed high surface area and pore volume (386 m2/g and 1.41 cm3/g), which enabled the confinement of high concentrations of hydride. Furthermore, by modification of the proportion between C and SiO2, the dielectric properties of the complex could be modified, making it susceptible to microwave heating. As with this heating method the entire sample is heated simultaneously, the heat transfer resistances associated to conduction were eliminated. To demonstrate this possibility, ethane 1,2-diaminoborane (EDAB) was embedded on the C/SiO2 matrix at concentrations ranging from 11 to 31%wt using a wet impregnation method, and a device appropriate for hydrogen release from this material by application of microwaves was designed with the aid of a numerical simulation. Hydrogen liberation tests by conventional heating and microwaves were compared, showing that by microwave heating hydrogen release can be initiated and stopped in shorter times.
Direct hydride shift mechanism and stereoselectivity of P450nor confirmed by QM/MM calculations.
Krámos, Balázs; Menyhárd, Dóra K; Oláh, Julianna
2012-01-19
Nitric oxide reductase (P450(nor)) found in Fusarium oxysporum catalyzes the reduction of nitric oxide to N(2)O in a multistep process. The reducing agent, NADH, is bound in the distal pocket of the enzyme, and direct hydride transfer occurs from NADH to the nitric oxide bound heme enzyme, forming intermediate I. Here we studied the possibility of hydride transfer from NADH to both the nitrogen and oxygen of the heme-bound nitric oxide, using quantum chemical and combined quantum mechanics/molecular mechanics (QM/MM) calculations, on two different protein models, representing both possible stereochemistries, a syn- and an anti-NADH arrangement. All calculations clearly favor hydride transfer to the nitrogen of nitric oxide, and the QM-only barrier and kinetic isotope effects are good agreement with the experimental values of intermediate I formation. We obtained higher barriers in the QM/MM calculations for both pathways, but hydride transfer to the nitrogen of nitric oxide is still clearly favored. The barriers obtained for the syn, Pro-R conformation of NADH are lower and show significantly less variation than the barriers obtained in the case of anti conformation. The effect of basis set and wide range of functionals on the obtained results are also discussed.
Model for the Prediction of the Hydriding Thermodynamics of Pd-Rh-Co Ternary Alloys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Teter, D.F.; Thoma, D.J.
1999-03-01
A dilute solution model (with respect to the substitutional alloying elements) has been developed, which accurately predicts the hydride formation and decomposition thermodynamics and the storage capacities of dilute ternary Pd-Rh-Co alloys. The effect of varying the rhodium and cobalt compositions on the thermodynamics of hydride formation and decomposition and hydrogen capacity of several palladium-rhodium-cobalt ternary alloys has been investigated using pressure-composition (PC) isotherms. Alloying in the dilute regime (<10 at.%) causes the enthalpy for hydride formation to linearly decrease with increasing alloying content. Cobalt has a stronger effect on the reduction in enthalpy than rhodium for equivalent alloying amounts.more » Also, cobalt reduces the hydrogen storage capacity with increasing alloying content. The plateau thermodynamics are strongly linked to the lattice parameters of the alloys. A near-linear dependence of the enthalpy of hydride formation on the lattice parameter was observed for both the binary Pd-Rh and Pd-Co alloys, as well as for the ternary Pd-Rh-Co alloys. The Pd-5Rh-3Co (at. %) alloy was found to have similar plateau thermodynamics as a Pd-10Rh alloy, however, this ternary alloy had a diminished hydrogen storage capacity relative to Pd-10Rh.« less
Reinhardt, Clorice R; Jaglinski, Tanner C; Kastenschmidt, Ashly M; Song, Eun H; Gross, Adam K; Krause, Alyssa J; Gollmar, Jonathan M; Meise, Kristin J; Stenerson, Zachary S; Weibel, Tyler J; Dison, Andrew; Finnegan, Mackenzie R; Griesi, Daniel S; Heltne, Michael D; Hughes, Tom G; Hunt, Connor D; Jansen, Kayla A; Xiong, Adam H; Hati, Sanchita; Bhattacharyya, Sudeep
2016-09-01
The kinetics and equilibrium of the hydride transfer reaction between lumiflavin and a number of substituted quinones was studied using density functional theory. The impact of electron withdrawing/donating substituents on the redox potentials of quinones was studied. In addition, the role of these substituents on the kinetics of the hydride transfer reaction with lumiflavin was investigated in detail under the transition state (TS) theory assumption. The hydride transfer reactions were found to be more favorable for an electron-withdrawing substituent. The activation barrier exhibited a quadratic relationship with the driving force of these reactions as derived under the formalism of modified Marcus theory. The present study found a significant extent of electron delocalization in the TS that is stabilized by enhanced electrostatic, polarization, and exchange interactions. Analysis of geometry, bond-orders, and energetics revealed a predominant parallel (Leffler-Hammond) effect on the TS. Closer scrutiny reveals that electron-withdrawing substituents, although located on the acceptor ring, reduce the N-H bond order of the donor fragment in the precursor complex. Carried out in the gas-phase, this is the first ever report of a theoretical study of flavin's hydride transfer reactions with quinones, providing an unfiltered view of the electronic effect on the nuclear reorganization of donor-acceptor complexes.
Crystal growth of HVPE-GaN doped with germanium
NASA Astrophysics Data System (ADS)
Iwinska, M.; Takekawa, N.; Ivanov, V. Yu.; Amilusik, M.; Kruszewski, P.; Piotrzkowski, R.; Litwin-Staszewska, E.; Lucznik, B.; Fijalkowski, M.; Sochacki, T.; Teisseyre, H.; Murakami, H.; Bockowski, M.
2017-12-01
Crystallization by hydride vapor phase epitaxy method of gallium nitride single crystals doped with germanium and properties of the obtained material are described in this paper. Growth was performed in hydrogen and nitrogen carrier gas. The results were studied and compared. Influence of different flows of germanium tetrachloride, precursor of germanium, on the grown crystals was investigated. Ammonothermal GaN substrates were used as seeds for crystallization. Structural, electrical, and optical properties of HVPE-GaN doped with germanium are presented and discussed in detail. They were compared to properties of HVPE-GaN doped with silicon and also grown on native seeds of high quality.
Spedding, F.H.; Butler, T.A.
1962-05-15
A process is given for separating fission products from uranium by extracting the former into molten aluminum. Phase isolation can be accomplished by selectively hydriding the uranium at between 200 and 300 deg C and separating the hydride powder from coarse particles of fissionproduct-containing aluminum. (AEC)
Reilly, James J.; Adzic, Gordana D.; Johnson, John R.; Vogt, Thomas; McBreen, James
2003-09-02
A method is provided for producing electrodes using microscale and nanoscale metal materials formed from hydrogen driven metallurgical processes; such a the HD (hydriding, dehydriding) process, the HDDR (hydriding, dehydriding, disproportionation, and recombination) process, and variants thereof.
Hydrogen: the future energy carrier.
Züttel, Andreas; Remhof, Arndt; Borgschulte, Andreas; Friedrichs, Oliver
2010-07-28
Since the beginning of the twenty-first century the limitations of the fossil age with regard to the continuing growth of energy demand, the peaking mining rate of oil, the growing impact of CO2 emissions on the environment and the dependency of the economy in the industrialized world on the availability of fossil fuels became very obvious. A major change in the energy economy from fossil energy carriers to renewable energy fluxes is necessary. The main challenge is to efficiently convert renewable energy into electricity and the storage of electricity or the production of a synthetic fuel. Hydrogen is produced from water by electricity through an electrolyser. The storage of hydrogen in its molecular or atomic form is a materials challenge. Some hydrides are known to exhibit a hydrogen density comparable to oil; however, these hydrides require a sophisticated storage system. The system energy density is significantly smaller than the energy density of fossil fuels. An interesting alternative to the direct storage of hydrogen are synthetic hydrocarbons produced from hydrogen and CO2 extracted from the atmosphere. They are CO2 neutral and stored like fossil fuels. Conventional combustion engines and turbines can be used in order to convert the stored energy into work and heat.
Nondestructive hydrogen analysis of steam-oxidized Zircaloy-4 by wide-angle neutron scattering
NASA Astrophysics Data System (ADS)
Yan, Yong; Qian, Shuo; Garrison, Ben; Smith, Tyler; Kim, Peter
2018-04-01
A nondestructive neutron scattering method to precisely measure the hydrogen content in high-temperature steam-oxidized Zircaloy-4 cladding was developed. Zircaloy-4 cladding was used to produce hydrided specimens with hydrogen content up to ≈500 wppm. Following hydrogen charging, the hydrogen content of the hydrided specimens was measured using the vacuum hot extraction method, by which the samples with desired hydrogen concentrations were selected for the neutron study. The hydrided samples were then oxidized in steam up to ≈6.0 wt. % at 1100 °C. Optical microscopy shows that our hydriding procedure results in uniform distribution of circumferential hydrides across the wall thickness, and uniform oxide layers were formed on the sample surfaces by the steam oxidation. Small- and wide-angle neutron scattering were simultaneously performed to provide a quick (less than an hour per sample) measurement of the hydrogen content in various types of hydrided and oxidized Zircaloy-4. Our study demonstrates that the hydrogen in pre-oxidized Zircaloy-4 cladding can be measured very accurately by both small- and wide-angle neutron scattering. For steam-oxidized samples, the small-angle neutron scattering is contaminated with coherent scattering from additional structural features induced by the steam oxidation. However, the scattering intensity of the wide-angle neutron scattering increases proportionally with the hydrogen charged in the samples. The hydrogen content and wide-angle neutron scattering intensity are highly linearly correlated for the oxidized cladding samples examined in this work, and can be used to precisely determine the hydrogen content in steam-oxidized Zircaloy-4 samples. Hydrogen contents determined by neutron scattering of oxidation samples were also found to be consistent with the results of chemical analysis within acceptable margins for error.
Investigation of Y6Mn23 and YMn12 intermetallic alloys under high hydrogen pressure
NASA Astrophysics Data System (ADS)
Filipek, S. M.; Sato, R.; Kuriyama, N.; Tanaka, H.; Takeichi, N.
2010-03-01
Among three intermetallic compounds existing in Y-Mn system the YMn2 and Y6Mn23 can easily form interstitial hydrides while for YMn12 existence of hydride has never been reported. At moderate hydrogen pressure YMn2 and Y6Mn23 transform into YMn2H4.5 and Y6Mn23H25 respectively. At high hydrogen pressure the YMn2 (C15 or C14 parent structure) forms a unique YMn2H6 (s.g. Fm3m) complex hydride of fluorite structure in which one Mn atom Mn(1) and Y randomly occupy the 8c sites while second manganese (Mn2) in position 4a forms complex anion with 6 hydrogen atoms located in positions 24e. Formation of YMn2H6 independently of the structure of parent phase (C14 or C15) as well as occupation of the same site (8c) by Y and Mn(1) atoms suggested that also Y6Mn23 and YMn12 could transform into YMn2H6 - type hydride in which suitable number of Y atoms will be substituted by Mn(1) in the 8c positions. This assumption was confirmed by exposing R6Mn23 and RMn12 to 1 GPa of hydrogen pressure at 1000C. Formation of (RxMn2-x)MnH6 (where x = 18/29 or 3/13 for R6Mn23 and RMn12 hydrides respectively) was confirmed by XRD. Hydrogen concentration in both R6Mn23 and RMn12 based hydrides reached H/Me = 2 thus value two times higher than in R6Mn23H25.
Nondestructive hydrogen analysis of steam-oxidized Zircaloy-4 by wide-angle neutron scattering
Yan, Yong; Qian, Shuo; Garrison, Ben; ...
2018-04-15
In this study, a nondestructive neutron scattering method to precisely measure the hydrogen content in high-temperature steam-oxidized Zircaloy-4 cladding was developed. Zircaloy-4 cladding was used to produce hydrided specimens with hydrogen content up to ≈500 wppm. Following hydrogen charging, the hydrogen content of the hydrided specimens was measured using the vacuum hot extraction method, by which the samples with desired hydrogen concentrations were selected for the neutron study. The hydrided samples were then oxidized in steam up to ≈6.0wt. % at 1100°C. Optical microscopy shows that our hydriding procedure results in uniform distribution of circumferential hydrides across the wall thickness,more » and uniform oxide layers were formed on the sample surfaces by the steam oxidation. Small- and wide-angle neutron scattering were simultaneously performed to provide a quick (less than an hour per sample) measurement of the hydrogen content in various types of hydrided and oxidized Zircaloy-4. Our study demonstrates that the hydrogen in pre-oxidized Zircaloy-4 cladding can be measured very accurately by both small- and wide-angle neutron scattering. For steam-oxidized samples, the small-angle neutron scattering is contaminated with coherent scattering from additional structural features induced by the steam oxidation. However, the scattering intensity of the wide-angle neutron scattering increases proportionally with the hydrogen charged in the samples. The hydrogen content and wide-angle neutron scattering intensity are highly linearly correlated for the oxidized cladding samples examined in this work, and can be used to precisely determine the hydrogen content in steam-oxidized Zircaloy-4 samples. Hydrogen contents determined by neutron scattering of oxidation samples were also found to be consistent with the results of chemical analysis within acceptable margins for error.« less
Nondestructive hydrogen analysis of steam-oxidized Zircaloy-4 by wide-angle neutron scattering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yan, Yong; Qian, Shuo; Garrison, Ben
In this study, a nondestructive neutron scattering method to precisely measure the hydrogen content in high-temperature steam-oxidized Zircaloy-4 cladding was developed. Zircaloy-4 cladding was used to produce hydrided specimens with hydrogen content up to ≈500 wppm. Following hydrogen charging, the hydrogen content of the hydrided specimens was measured using the vacuum hot extraction method, by which the samples with desired hydrogen concentrations were selected for the neutron study. The hydrided samples were then oxidized in steam up to ≈6.0wt. % at 1100°C. Optical microscopy shows that our hydriding procedure results in uniform distribution of circumferential hydrides across the wall thickness,more » and uniform oxide layers were formed on the sample surfaces by the steam oxidation. Small- and wide-angle neutron scattering were simultaneously performed to provide a quick (less than an hour per sample) measurement of the hydrogen content in various types of hydrided and oxidized Zircaloy-4. Our study demonstrates that the hydrogen in pre-oxidized Zircaloy-4 cladding can be measured very accurately by both small- and wide-angle neutron scattering. For steam-oxidized samples, the small-angle neutron scattering is contaminated with coherent scattering from additional structural features induced by the steam oxidation. However, the scattering intensity of the wide-angle neutron scattering increases proportionally with the hydrogen charged in the samples. The hydrogen content and wide-angle neutron scattering intensity are highly linearly correlated for the oxidized cladding samples examined in this work, and can be used to precisely determine the hydrogen content in steam-oxidized Zircaloy-4 samples. Hydrogen contents determined by neutron scattering of oxidation samples were also found to be consistent with the results of chemical analysis within acceptable margins for error.« less
PLUTONIUM-HYDROGEN REACTION PRODUCT, METHOD OF PREPARING SAME AND PLUTONIUM POWDER THEREFROM
Fried, S.; Baumbach, H.L.
1959-12-01
A process is described for forming plutonlum hydride powder by reacting hydrogen with massive plutonium metal at room temperature and the product obtained. The plutonium hydride powder can be converted to plutonium powder by heating to above 200 deg C.
NASA Astrophysics Data System (ADS)
Wu, Zhen; Zhu, Luying; Yang, Fusheng; Zhang, Zaoxiao; Nyamsi, Serge N.
2018-04-01
Mg-based metal hydride is one of the most promising materials for hydrogen energy storage. However, the high thermal stability due to strong bonding effects between the atoms limits its practical application. In order to reduce the thermal stability, a method of doping double nonmetals into Mg-based system was proposed in this study. The density functional theory (DFT) calculation results showed that the thermal stabilities of both the B-N co-doped Mg-based alloy and its hydride are reduced compared with pure Mg-based system. The relative formation enthalpies of the alloy and its hydride are 0.323 and 0.595 eV atom-1, respectively. The values are much higher than those for either singly B- or N-doped Mg-based system. The more significant destabilization by doping double nonmetal elements than single element is mainly attributed to a dual effect in weakening Mg-Ni/NiH4 bonds, caused by criss-cross interactions between B-Ni and N-Mg bonds.
NASA Astrophysics Data System (ADS)
Xu, Yang; Song, Kai; Shi, Qiang
2018-03-01
The hydride transfer reaction catalyzed by dihydrofolate reductase is studied using a recently developed mixed quantum-classical method to investigate the nuclear quantum effects on the reaction. Molecular dynamics simulation is first performed based on a two-state empirical valence bond potential to map the atomistic model to an effective double-well potential coupled to a harmonic bath. In the mixed quantum-classical simulation, the hydride degree of freedom is quantized, and the effective harmonic oscillator modes are treated classically. It is shown that the hydride transfer reaction rate using the mapped effective double-well/harmonic-bath model is dominated by the contribution from the ground vibrational state. Further comparison with the adiabatic reaction rate constant based on the Kramers theory confirms that the reaction is primarily vibrationally adiabatic, which agrees well with the high transmission coefficients found in previous theoretical studies. The calculated kinetic isotope effect is also consistent with the experimental and recent theoretical results.
NASA Astrophysics Data System (ADS)
Zhang, Ziying; Zhang, Huizhen; Zhao, Hui; Yu, Zhishui; He, Liang; Li, Jin
2015-04-01
The crystal structures, electronic structures, thermodynamic and mechanical properties of Mg2Ni alloy and its saturated hydride with different Mn-doping contents are investigated using first-principles density functional theory. The lattice parameters for the Mn-doped Mg2Ni alloys and their saturated hydrides decreased with an increasing Mn-doping content because of the smaller atomic size of Mn compared with that of Mg. Analysis of the formation enthalpies and electronic structures reveal that the partial substitution of Mg with Mn reduces the stability of Mg2Ni alloy and its saturated hydride. The calculated elastic constants indicate that, although the partial substitution of Mg with Mn lowers the toughness of the hexagonal Mg2Ni alloy, the charge/discharge cycles are elevated when the Mn-doping content is high enough to form the predicted intermetallic compound Mg3MnNi2.
Superconductivity in Hydrides Doped with Main Group Elements Under Pressure
NASA Astrophysics Data System (ADS)
Shamp, Andrew; Zurek, Eva
2017-01-01
A priori crystal structure prediction techniques have been used to explore the phase diagrams of hydrides of main group elements under pressure. A number of novel phases with the chemical formulas MHn, n > 1 and M = Li, Na, K, Rb, Cs; MHn, n > 2 and M= Mg, Ca, Sr, Ba; HnI with n > 1 and PH, PH2, PH3 have been predicted to be stable at pressures achievable in diamond anvil cells. The hydrogenic lattices within these phases display a number of structural motifs including H2δ- , H-, H-3 , as well as one-dimensional and three-dimensional extended structures. A wide range of superconducting critical temperatures, Tcs, are predicted for these hydrides. The mechanism of metallization and the propensity for superconductivity are dependent upon the structural motifs present in these phases, and in particular on their hydrogenic sublattices. Phases that are thermodynamically unstable, but dynamically stable, are accessible experimentally. The observed trends provide insight on how to design hydrides that are superconducting at high temperatures.
Effect of cathodic polarization on coating doxycycline on titanium surfaces.
Geißler, Sebastian; Tiainen, Hanna; Haugen, Håvard J
2016-06-01
Cathodic polarization has been reported to enhance the ability of titanium based implant materials to interact with biomolecules by forming titanium hydride at the outermost surface layer. Although this hydride layer has recently been suggested to allow the immobilization of the broad spectrum antibiotic doxycycline on titanium surfaces, the involvement of hydride in binding the biomolecule onto titanium remains poorly understood. To gain better understanding of the influence this immobilization process has on titanium surfaces, mirror-polished commercially pure titanium surfaces were cathodically polarized in the presence of doxycycline and the modified surfaces were thoroughly characterized using atomic force microscopy, electron microscopy, secondary ion mass spectrometry, and angle-resolved X-ray spectroscopy. We demonstrated that no hydride was created during the polarization process. Doxycycline was found to be attached to an oxide layer that was modified during the electrochemical process. A bacterial assay using bioluminescent Staphylococcus epidermidis Xen43 showed the ability of the coating to reduce bacterial colonization and planktonic bacterial growth. Copyright © 2016 Elsevier B.V. All rights reserved.
CO Reduction to CH3OSiMe3: Electrophile-Promoted Hydride Migration at a Single Fe Site.
Deegan, Meaghan M; Peters, Jonas C
2017-02-22
One of the major challenges associated with developing molecular Fischer-Tropsch catalysts is the design of systems that promote the formation of C-H bonds from H 2 and CO while also facilitating the release of the resulting CO-derived organic products. To this end, we describe the synthesis of reduced iron-hydride/carbonyl complexes that enable an electrophile-promoted hydride migration process, resulting in the reduction of coordinated CO to a siloxymethyl (L n Fe-CH 2 OSiMe 3 ) group. Intramolecular hydride-to-CO migrations are extremely rare, and to our knowledge the system described herein is the first example where such a process can be accessed from a thermally stable M(CO)(H) complex. Further addition of H 2 to L n Fe-CH 2 OSiMe 3 releases CH 3 OSiMe 3 , demonstrating net four-electron reduction of CO to CH 3 OSiMe 3 at a single Fe site.
Metal hydride-based thermal energy storage systems
Vajo, John J.; Fang, Zhigang
2017-10-03
The invention provides a thermal energy storage system comprising a metal-containing first material with a thermal energy storage density of about 1300 kJ/kg to about 2200 kJ/kg based on hydrogenation; a metal-containing second material with a thermal energy storage density of about 200 kJ/kg to about 1000 kJ/kg based on hydrogenation; and a hydrogen conduit for reversibly transporting hydrogen between the first material and the second material. At a temperature of 20.degree. C. and in 1 hour, at least 90% of the metal is converted to the hydride. At a temperature of 0.degree. C. and in 1 hour, at least 90% of the metal hydride is converted to the metal and hydrogen. The disclosed metal hydride materials have a combination of thermodynamic energy storage densities and kinetic power capabilities that previously have not been demonstrated. This performance enables practical use of thermal energy storage systems for electric vehicle heating and cooling.
Wise, Anna M.; Richardson, Peter W.; Price, Stephen W. T.; ...
2017-12-27
In situ EXAFS and XRD have been used to study the electrochemical formation of hydride phases, H abs, in 0.5 M H 2SO 4 for a Pd/C catalyst and a series of Pd@Pt core-shell catalysts with varying Pt shell thickness, from 0.5 to 4 monolayers. Based on the XRD data a 3% lattice expansion is observed for the Pd/C core catalyst upon hydride formation at 0.0 V. In contrast, the expansion was ≤0.6% for all of the core-shell catalysts. The limited extent of the lattice expansion observed suggests that hydride formation, which may occur during periodic active surface area measurementsmore » conducting during accelerated aging tests or driven by H 2 crossover in PEM fuel cells, is unlikely to contribute significantly to the degradation of Pd@Pt core-shell electrocatalysts in contrast to the effects of oxide formation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wise, Anna M.; Richardson, Peter W.; Price, Stephen W. T.
In situ EXAFS and XRD have been used to study the electrochemical formation of hydride phases, H abs, in 0.5 M H 2SO 4 for a Pd/C catalyst and a series of Pd@Pt core-shell catalysts with varying Pt shell thickness, from 0.5 to 4 monolayers. Based on the XRD data a 3% lattice expansion is observed for the Pd/C core catalyst upon hydride formation at 0.0 V. In contrast, the expansion was ≤0.6% for all of the core-shell catalysts. The limited extent of the lattice expansion observed suggests that hydride formation, which may occur during periodic active surface area measurementsmore » conducting during accelerated aging tests or driven by H 2 crossover in PEM fuel cells, is unlikely to contribute significantly to the degradation of Pd@Pt core-shell electrocatalysts in contrast to the effects of oxide formation.« less
Tailoring Thermodynamics and Kinetics for Hydrogen Storage in Complex Hydrides towards Applications.
Liu, Yongfeng; Yang, Yaxiong; Gao, Mingxia; Pan, Hongge
2016-02-01
Solid-state hydrogen storage using various materials is expected to provide the ultimate solution for safe and efficient on-board storage. Complex hydrides have attracted increasing attention over the past two decades due to their high gravimetric and volumetric hydrogen densities. In this account, we review studies from our lab on tailoring the thermodynamics and kinetics for hydrogen storage in complex hydrides, including metal alanates, borohydrides and amides. By changing the material composition and structure, developing feasible preparation methods, doping high-performance catalysts, optimizing multifunctional additives, creating nanostructures and understanding the interaction mechanisms with hydrogen, the operating temperatures for hydrogen storage in metal amides, alanates and borohydrides are remarkably reduced. This temperature reduction is associated with enhanced reaction kinetics and improved reversibility. The examples discussed in this review are expected to provide new inspiration for the development of complex hydrides with high hydrogen capacity and appropriate thermodynamics and kinetics for hydrogen storage. © 2015 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Hydrogen Storage Engineering Center of Excellence Metal Hydride Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Motyka, T.
2014-05-31
The Hydrogen Storage Engineering Center of Excellence (HSECoE) was established in 2009 by the U.S. Department of Energy (DOE) to advance the development of materials-based hydrogen storage systems for hydrogen-fueled light-duty vehicles. The overall objective of the HSECoE is to develop complete, integrated system concepts that utilize reversible metal hydrides, adsorbents, and chemical hydrogen storage materials through the use of advanced engineering concepts and designs that can simultaneously meet or exceed all the DOE targets. This report describes the activities and accomplishments during Phase 1 of the reversible metal hydride portion of the HSECoE, which lasted 30 months from Februarymore » 2009 to August 2011. A complete list of all the HSECoE partners can be found later in this report but for the reversible metal hydride portion of the HSECoE work the major contributing organizations to this effort were the United Technology Research Center (UTRC), General Motors (GM), Pacific Northwest National Laboratory (PNNL), the National Renewable Energy Laboratory (NREL) and the Savannah River National Laboratory (SRNL). Specific individuals from these and other institutions that supported this effort and the writing of this report are included in the list of contributors and in the acknowledgement sections of this report. The efforts of the HSECoE are organized into three phases each approximately 2 years in duration. In Phase I, comprehensive system engineering analyses and assessments were made of the three classes of storage media that included development of system level transport and thermal models of alternative conceptual storage configurations to permit detailed comparisons against the DOE performance targets for light-duty vehicles. Phase 1 tasks also included identification and technical justifications for candidate storage media and configurations that should be capable of reaching or exceeding the DOE targets. Phase 2 involved bench-level testing and evaluation of system configurations, including material packaging and balance-of-plant components, and conceptual design validation. Phase 3 includes fabrication and testing of the selected prototype storage system(s) for model validation and performance evaluation against the DOE targets. A DOE decision was needed for the HSECoE to advance to each phase and work on some classes of storage materials were recommended not to continue.« less
METHOD OF PREPARING SINTERED ZIRCONIUM METAL FROM ITS HYDRIDES
Angier, R.P.
1958-02-11
The invention relates to the preparation of metal shapes from zirconium hydride by powder metallurgical techniques. The zirconium hydride powder which is to be used for this purpose can be prepared by rendering massive pieces of crystal bar zirconium friable by heat treatment in purified hydrogen. This any then be ground into powder and powder can be handled in the air without danger of it igniting. It may then be compacted in the normal manner by being piaced in a die. The compact is sintered under vacuum conditions preferably at a temperature ranging from 1200 to 1300 deg C and for periods of one to three hours.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chakraborty, Pritam; Sabharwall, Piyush; Spears, Robert Edward
2015-09-30
The objective of this work is to understand the integrity of Used Nuclear Fuel (UNF) during transportation. Previous analysis work has been performed to look at the integrity of UNF during transportation but these analyses have neglected to analyze the effect of hydrides and flaws (fracture mechanics models to capture radial cracking in the cladding). In this study, the clad regions of interest are near the pellet-pellet interfaces. These regions can experience more complex stress-states than the rest of the clad during cooling and have a greater possibility to develop radially reoriented hydrides during vacuum drying.
2014-06-30
The aim of this study is to develop metal hydride-carbon nanomaterial based nanocomposites as anode electrode materials for high capacity lithium ion battery and...henceforth to develop high energy density, and good cyclic stability lithium ion battery .
40 CFR 420.81 - Specialized definitions.
Code of Federal Regulations, 2013 CFR
2013-07-01
...-finished steel products by the action of molten salt baths other than those containing sodium hydride. (b... the action of molten salt baths containing sodium hydride. (c) The term batch, sheet and plate means... STANDARDS IRON AND STEEL MANUFACTURING POINT SOURCE CATEGORY Salt Bath Descaling Subcategory § 420.81...
40 CFR 420.81 - Specialized definitions.
Code of Federal Regulations, 2014 CFR
2014-07-01
...-finished steel products by the action of molten salt baths other than those containing sodium hydride. (b... the action of molten salt baths containing sodium hydride. (c) The term batch, sheet and plate means... STANDARDS IRON AND STEEL MANUFACTURING POINT SOURCE CATEGORY Salt Bath Descaling Subcategory § 420.81...
Aluminum-titanium hydride-boron carbide composite provides lightweight neutron shield material
NASA Technical Reports Server (NTRS)
Poindexter, A. M.
1967-01-01
Inexpensive lightweight neutron shield material has high strength and ductility and withstands high internal heat generation rates without excessive thermal stress. This composite material combines structural and thermal properties of aluminum, neutron moderating properties of titanium hydride, and neutron absorbing characteristics of boron carbide.
The Synthesis and Organic Chemistry of the Boron-Silicon Bond.
1985-12-12
o . ikaline hydrogen peroxide and slowly in air, but was Inert to methanol, water, bromine and tributyltin hydride. In addition it . did not...with methanol, water, bromine or tributyltin hydride. Interestingly 2 did react with organolithium and organomagnesium reagents to give the B-alkyl-9
Effect of amorphous Mg{sub 50}Ni{sub 50} on hydriding and dehydriding behavior of Mg{sub 2}Ni alloy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guzman, D., E-mail: danny.guzman@uda.cl; Ordonez, S.; Fernandez, J.F.
Composite Mg{sub 2}Ni (25 wt.%) amorphous Mg{sub 50}Ni{sub 50} was prepared by mechanical milling starting with nanocrystalline Mg{sub 2}Ni and amorphous Mg{sub 50}Ni{sub 50} powders, by using a SPEX 8000 D mill. The morphological and microstructural characterization of the powders was performed via scanning electron microscopy and X-ray diffraction. The hydriding characterization of the composite was performed via a solid gas reaction method in a Sievert's-type apparatus at 363 K under an initial hydrogen pressure of 2 MPa. The dehydriding behavior was studied by differential thermogravimetry. On the basis of the results, it is possible to conclude that amorphous Mg{submore » 50}Ni{sub 50} improved the hydriding and dehydriding kinetics of Mg{sub 2}Ni alloy upon cycling. A tentative rationalization of experimental observations is proposed. - Research Highlights: {yields} First study of the hydriding behavior of composite Mg{sub 2}Ni (25 wt.%) amorphous Mg{sub 50}Ni{sub 50}. {yields} Microstructural characterization of composite material using XRD and SEM was obtained. {yields} An improved effect of Mg{sub 50}Ni{sub 50} on the Mg{sub 2}Ni hydriding behavior was verified. {yields} The apparent activation energy for the hydrogen desorption of composite was obtained.« less
Micro reactor integrated μ-PEM fuel cell system: a feed connector and flow field free approach
NASA Astrophysics Data System (ADS)
Balakrishnan, A.; Mueller, C.; Reinecke, H.
2013-12-01
A system level microreactor concept for hydrogen generation with Sodium Borohydride (NaBH4) is demonstrated. The uniqueness of the system is the transport and distribution feature of fuel (hydrogen) to the anode of the fuel cell without any external feed connectors and flow fields. The approach here is to use palladium film instead of feed connectors and the flow fields; palladium's property to adsorb and desorb the hydrogen at ambient and elevated condition. The proof of concept is demonstrated with a polymethyl methacrylate (PMMA) based complete system integration which includes microreactor, palladium transport layer and the self-breathing polymer electrolyte membrane (PEM) fuel cell. The hydrolysis of NaBH4 was carried out in the presence of platinum supported by nickel (NiPt). The prototype functionality is tested with NaBH4 chemical hydride. The characterization of the integrated palladium layer and fuel cell is tested with constant and switching load. The presented integrated fuel cell is observed to have a maximum power output and current of 60 mW and 280 mA respectively.
Häller, L Jonas L; Mas-Marzá, Elena; Cybulski, Mateusz K; Sanguramath, Rajashekharayya A; Macgregor, Stuart A; Mahon, Mary F; Raynaud, Christophe; Russell, Christopher A; Whittlesey, Michael K
2017-02-28
Relativistic density functional theory calculations, both with and without the effects of spin-orbit coupling, have been employed to model hydride NMR chemical shifts for a series of [Ru(NHC) 4 (L)H] 0/+ species (NHC = N-heterocyclic carbene; L = vacant, H 2 , N 2 , CO, MeCN, O 2 , P 4 , SO 2 , H - , F - and Cl - ), as well as selected phosphine analogues [Ru(R 2 PCH 2 CH 2 PR 2 ) 2 (L)H] + (R = i Pr, Cy; L = vacant, O 2 ). Inclusion of spin-orbit coupling provides good agreement with the experimental data. For the NHC systems large variations in hydride chemical shift are shown to arise from the paramagnetic term, with high net shielding (L = vacant, Cl - , F - ) being reinforced by the contribution from spin-orbit coupling. Natural chemical shift analysis highlights the major orbital contributions to the paramagnetic term and rationalizes trends via changes in the energies of the occupied Ru d π orbitals and the unoccupied σ* Ru-H orbital. In [Ru(NHC) 4 (η 2 -O 2 )H] + a δ-interaction with the O 2 ligand results in a low-lying LUMO of d π character. As a result this orbital can no longer contribute to the paramagnetic shielding, but instead provides additional deshielding via overlap with the remaining (occupied) d π orbital under the L z angular momentum operator. These two effects account for the unusual hydride chemical shift of +4.8 ppm observed experimentally for this species. Calculations reproduce hydride chemical shift data observed for [Ru( i Pr 2 PCH 2 CH 2 P i Pr 2 ) 2 (η 2 -O 2 )H] + (δ = -6.2 ppm) and [Ru(R 2 PCH 2 CH 2 PR 2 ) 2 H] + (ca. -32 ppm, R = i Pr, Cy). For the latter, the presence of a weak agostic interaction trans to the hydride ligand is significant, as in its absence (R = Me) calculations predict a chemical shift of -41 ppm, similar to the [Ru(NHC) 4 H] + analogues. Depending on the strength of the agostic interaction a variation of up to 18 ppm in hydride chemical shift is possible and this factor (that is not necessarily readily detected experimentally) can aid in the interpretation of hydride chemical shift data for nominally unsaturated hydride-containing species. The synthesis and crystallographic characterization of the BAr F 4 - salts of [Ru(IMe 4 ) 4 (L)H] + (IMe 4 = 1,3,4,5-tetramethylimidazol-2-ylidene; L = P 4 , SO 2 ; Ar F = 3,5-(CF 3 ) 2 C 6 H 3 ) and [Ru(IMe 4 ) 4 (Cl)H] are also reported.
A method based on pH-selective generation and separation of arsines is commonly used for analysis of inorganic, methylated, and dimethylated trivalent and pentavalent arsenicals by hydride generation-atomic absorption spectrometry (HG-AAS). We have optimized this method to pe...
Process of forming a sol-gel/metal hydride composite
Congdon, James W [Aiken, SC
2009-03-17
An external gelation process is described which produces granules of metal hydride particles contained within a sol-gel matrix. The resulting granules are dimensionally stable and are useful for applications such as hydrogen separation and hydrogen purification. An additional coating technique for strengthening the granules is also provided.
This paper describes an automated system for the oxidation state specific speciation of inorganic and methylated arsenicals by selective hydride generation - cryotrapping- gas chromatography - atomic absorption spectrometry with the multiatomizer. The corresponding arsines are ge...
USDA-ARS?s Scientific Manuscript database
The peels of different pomegranate cultivars (Molla Nepes, Parfianka, Purple Heart, Wonderful and Vkunsyi) were compared in terms of phenolic composition and total phenolics. Analyses were performed on two silica hydride-based stationary phases: phenyl and undecenoic acid columns. Quantitation was ...
Electrochemical hydrogen Storage Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dr. Digby Macdonald
2010-08-09
As the global need for energy increases, scientists and engineers have found a possible solution by using hydrogen to power our world. Although hydrogen can be combusted as a fuel, it is considered an energy carrier for use in fuel cells wherein it is consumed (oxidized) without the production of greenhouse gases and produces electrical energy with high efficiency. Chemical storage of hydrogen involves release of hydrogen in a controlled manner from materials in which the hydrogen is covalently bound. Sodium borohydride and aminoborane are two materials given consideration as chemical hydrogen storage materials by the US Department of Energy.more » A very significant barrier to adoption of these materials as hydrogen carriers is their regeneration from 'spent fuel,' i.e., the material remaining after discharge of hydrogen. The U.S. Department of Energy (DOE) formed a Center of Excellence for Chemical Hydrogen Storage, and this work stems from that project. The DOE has identified boron hydrides as being the main compounds of interest as hydrogen storage materials. The various boron hydrides are then oxidized to release their hydrogen, thereby forming a 'spent fuel' in the form of a lower boron hydride or even a boron oxide. The ultimate goal of this project is to take the oxidized boron hydrides as the spent fuel and hydrogenate them back to their original form so they can be used again as a fuel. Thus this research is essentially a boron hydride recycling project. In this report, research directed at regeneration of sodium borohydride and aminoborane is described. For sodium borohydride, electrochemical reduction of boric acid and sodium metaborate (representing spent fuel) in alkaline, aqueous solution has been investigated. Similarly to literature reports (primarily patents), a variety of cathode materials were tried in these experiments. Additionally, approaches directed at overcoming electrostatic repulsion of borate anion from the cathode, not described in the previous literature for electrochemical reduction of spent fuels, have been attempted. A quantitative analytical method for measuring the concentration of sodium borohydride in alkaline aqueous solution has been developed as part of this work and is described herein. Finally, findings from stability tests for sodium borohydride in aqueous solutions of several different compositions are reported. For aminoborane, other research institutes have developed regeneration schemes involving tributyltin hydride. In this report, electrochemical reduction experiments attempting to regenerate tributyltin hydride from tributyltin chloride (a representative by-product of the regeneration scheme) are described. These experiments were performed in the non-aqueous solvents acetonitrile and 1,2-dimethoxyethane. A non-aqueous reference electrode for electrolysis experiments in acetonitrile was developed and is described. One class of boron hydrides, called polyhedral boranes, became of interest to the DOE due to their ability to contain a sufficient amount of hydrogen to meet program goals and because of their physical and chemical safety attributes. Unfortunately, the research performed here has shown that polyhedral boranes do not react in such a way as to allow enough hydrogen to be released, nor do they appear to undergo hydrogenation from the spent fuel form back to the original hydride. After the polyhedral boranes were investigated, the project goals remained the same but the hydrogen storage material was switched by the DOE to ammonia borane. Ammonia borane was found to undergo an irreversible hydrogen release process, so a direct hydrogenation was not able to occur. To achieve the hydrogenation of the spent ammonia borane fuel, an indirect hydrogenation reaction is possible by using compounds called organotin hydrides. In this process, the organotin hydrides will hydrogenate the spent ammonia borane fuel at the cost of their own oxidation, which forms organotin halides. To enable a closed-loop cycle, our task was then to be able to hydrogenate the organotin halides back to their hydride form. In addition to this experimental work, a parallel project was carried out to develop a new model of electrochemical impedance spectroscopy (EIS) that could be used to define the mechanisms of the electrochemical hydrogenation reactions. The EIS technique is capable of probing complex chemical and electrochemical reactions, and our model was written into a computer code that allowed the input of experimental EIS data and the extraction of kinetic parameters based on a best-fit analysis of theoretical reaction schemes. Finally, electrochemical methods for hydrogenating organic and metallo-organic materials have been explored.« less
Lunar-derived titanium alloys for hydrogen storage
NASA Technical Reports Server (NTRS)
Love, S.; Hertzberg, A.; Woodcock, G.
1992-01-01
Hydrogen gas, which plays an important role in many projected lunar power systems and industrial processes, can be stored in metallic titanium and in certain titanium alloys as an interstitial hydride compound. Storing and retrieving hydrogen with titanium-iron alloy requires substantially less energy investment than storage by liquefaction. Metal hydride storage systems can be designed to operate at a wide range of temperatures and pressures. A few such systems have been developed for terrestrial applications. A drawback of metal hydride storage for lunar applications is the system's large mass per mole of hydrogen stored, which rules out transporting it from earth. The transportation problem can be solved by using native lunar materials, which are rich in titanium and iron.
Method and composition in which metal hydride particles are embedded in a silica network
Heung, Leung K.
1999-01-01
A silica embedded metal hydride composition and a method for making such a composition. The composition is made via the following process: A quantity of fumed silica is blended with water to make a paste. After adding metal hydride particles, the paste is dried to form a solid. According to one embodiment of the invention, the solid is ground into granules for use of the product in hydrogen storage. Alternatively, the paste can be molded into plates or cylinders and then dried for use of the product as a hydrogen filter. Where mechanical strength is required, the paste can be impregnated in a porous substrate or wire network.
Hydrogen storage properties of nano-structural carbon and metal hydrides composites
NASA Astrophysics Data System (ADS)
Miyaoka, Hiroki; Ichikawa, Takayuki; Isobe, Shigehito; Fujii, Hironobu
2006-08-01
Thermodynamic and structural properties of some ball-milled mixtures composed of the hydrogenated nanostructural carbon (C nanoH x) and metal hydride (MH; M=Li, Na, Mg and Ca) were examined from thermal desoroption mass spectroscopy and powder X-ray diffraction, respectively. The results showed that the hydrogen desorption temperatures are significantly lowered from those of each hydride (C nanoH x, MH) in the composites. This indicates that a new type of interaction exists between C nanoH x and MH, which destabilizes C-H and/or M-H bonding as well. Therefore, the above Metal-C-H system would be recognized as a new family of hydrogen storage materials.
Li, Wen; Vajo, John J.; Cumberland, Robert W.; Liu, Ping
2011-04-19
Compositions for hydrogen storage and methods of making such compositions employ an alloy that exhibits reversible formation/deformation of BH.sub.4.sup.- anions. The composition includes a ternary alloy including magnesium, boron and a metal and a metal hydride. The ternary alloy and the metal hydride are present in an amount sufficient to render the composition capable of hydrogen storage. The molar ratio of the metal to magnesium and boron in the alloy is such that the alloy exhibits reversible formation/deformation of BH.sub.4.sup.- anions. The hydrogen storage composition is prepared by combining magnesium, boron and a metal to prepare a ternary alloy and combining the ternary alloy with a metal hydride to form the hydrogen storage composition.
Manna, Manash Kumar; Hossian, Asik; Jana, Ranjan
2015-02-06
A palladium-catalyzed 1,2-carboamination through C-H activation at room temperature is reported for the synthesis of 2-arylindoles, and indolines from readily available, inexpensive aryl ureas and vinyl arenes. The reaction initiates with a urea-directed electrophilic ortho palladation, alkene insertion, and β-hydride elimination sequences to provide the Fujiwara-Moritani arylation product. Subsequently, aza-Wacker cyclization, and β-hydride elimination provide the 2-arylindoles in high yields. Intercepting the common σ-alkyl-Pd intermediate, corresponding indolines are also achieved. The indoline formation is attributed to the generation of stabilized, cationic π-benzyl-Pd species to suppress β-hydride elimination.
Method to predict relative hydriding within a group of zirconium alloys under nuclear irradiation
Johnson, A.B. Jr.; Levy, I.S.; Trimble, D.J.; Lanning, D.D.; Gerber, F.S.
1990-04-10
An out-of-reactor method for screening to predict relative in-reactor hydriding behavior of zirconium-based materials is disclosed. Samples of zirconium-based materials having different compositions and/or fabrication methods are autoclaved in a relatively concentrated (0.3 to 1.0M) aqueous lithium hydroxide solution at constant temperatures within the water reactor coolant temperature range (280 to 316 C). Samples tested by this out-of-reactor procedure, when compared on the basis of the ratio of hydrogen weight gain to oxide weight gain, accurately predict the relative rate of hydriding for the same materials when subject to in-reactor (irradiated) corrosion. 1 figure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ambrose, T.W.
1965-06-04
Process and development activities reported include: depleted uranium irradiations, thoria irradiation, and hot die sizing. Reactor engineering activities include: brittle fracture of 190-C tanks, increased graphite temperature limits for the F reactor, VSR channel caulking, K reactor downcomer flow, zircaloy hydriding, and ribbed zircaloy process tubes. Reactor physics activities include: thoria irradiations, E-D irradiations, boiling protection with the high speed scanner, and in-core flux monitoring. Radiological engineering activities include: radiation control, classification, radiation occurrences, effluent activity data, and well car shielding. Process standards are listed, along with audits, and fuel failure experience. Operational physics and process physics studies are presented.more » Lastly, testing activities are detailed.« less
Electrochromic materials, devices and process of making
Richardson, Thomas J.
2003-11-11
Thin films of transition metal compositions formed with magnesium that are metals, alloys, hydrides or mixtures of alloys, metals and/or hydrides exhibit reversible color changes on application of electric current or hydrogen. Thin films of these materials are suitable for optical switching elements, thin film displays, sun roofs, rear-view mirrors and architectural glass.
Edge profiles in K shell photoabsorption spectra of gaseous hydrides of 3p elements and homologues
NASA Astrophysics Data System (ADS)
Hauko, R.; Gomilšek, J. Padežnik; Kodre, A.; Arčon, I.; Aquilanti, G.
2017-10-01
Photoabsorption spectra of gaseous hydrides of 3p elements (PH3, H2S, HCl) are measured in the energy region of photoexcitations pertaining to K edge. The analysis of the edge profile is extended to hydrides of 4p series (GeH4, AsH3, H2Se, HBr) from an earlier experiment, and to published spectra of 2p hydrides (CH4, NH3, H2O, HF) and noble gases Ar, Kr and Ne and SiH4. The edge profiles are modelled with a linear combination of lorentzian components, describing excitations to individual bound states and to continuum. Transition energies and probabilities are also calculated in the non-relativistic molecular model of the ORCA code, in good agreement with the experiment. Edge profiles in the heavier homologues are closely similar, the symmetry of the molecule governs the transitions to the lowest unoccupied orbitals. In 2p series the effect of the strong nuclear potential prevails. Transitions to higher, atomic-like levels remain very much the same as in free atoms.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, J.; Jiang, C.; Zhang, Y.
This report summarizes the progress on modeling hydrogen diffusivity in Zr-based alloys. The presence of hydrogen (H) can detrimentally affect the mechanical properties of many metals and alloys. To mitigate these detrimental effects requires fundamental understanding of the thermodynamics and kinetics governing H pickup and hydride formation. In this work, we focus on H diffusion in Zr-based alloys by studying the effects of alloying elements and stress, factors that have been shown to strongly affect H pickup and hydride formation in nuclear fuel claddings. A recently developed accelerated kinetic Monte Carlo method is used for the study. It is foundmore » that for the alloys considered here, H diffusivity depends weakly on composition, with negligible effect at high temperatures in the range of 600-1200 K. Therefore, the small variation in compositions of these alloys is likely not a major cause of the very different H pickup rates. In contrast, stress strongly affects H diffusivity. This effect needs to be considered for studying hydride formation and delayed hydride cracking.« less
Atomic-scale study of stacking faults in Zr hydrides and implications on hydride formation.
Besson, Remy; Thuinet, L; Louchez, Marc-Antoine
2018-06-25
We performed atomic-scale ab initio calculations to investigate the stacking fault (SF) properties of the metastable zeta-Zr2H zirconium hydride. The effect of H near the SF was found to entail the existence of negative SF energies, showing that the zeta compound is probably unstable with respect to shearing in the basal plane. The effect of temperature on SFs was investigated by means of free energy calculations in the quasiharmonic approximation. This evidenced unexpectedly large temperature effects, confirming the main conclusions drawn at 0 K, in particular the zeta mechanical instability. The complex behaviour of H atoms during the shear process suggested zeta-hcp --> Zr2H[111]-fcc as a plausible shear path leading to an fcc compound with same composition as zeta. Finally, as shown by an analysis based on microelasticity, this Zr2H[111]-fcc intermediate compound may be relevant for better interpreting the currently intricate issue of hydride habit planes in zirconium. © 2018 IOP Publishing Ltd.
Superconductivity of novel tin hydrides (Sn(n)H(m)) under pressure.
Mahdi Davari Esfahani, M; Wang, Zhenhai; Oganov, Artem R; Dong, Huafeng; Zhu, Qiang; Wang, Shengnan; Rakitin, Maksim S; Zhou, Xiang-Feng
2016-03-11
With the motivation of discovering high-temperature superconductors, evolutionary algorithm USPEX is employed to search for all stable compounds in the Sn-H system. In addition to the traditional SnH4, new hydrides SnH8, SnH12 and SnH14 are found to be thermodynamically stable at high pressure. Dynamical stability and superconductivity of tin hydrides are systematically investigated. I4m2-SnH8, C2/m-SnH12 and C2/m-SnH14 exhibit higher superconducting transition temperatures of 81, 93 and 97 K compared to the traditional compound SnH4 with Tc of 52 K at 200 GPa. An interesting bent H3-group in I4m2-SnH8 and novel linear H in C2/m-SnH12 are observed. All the new tin hydrides remain metallic over their predicted range of stability. The intermediate-frequency wagging and bending vibrations have more contribution to electron-phonon coupling parameter than high-frequency stretching vibrations of H2 and H3.
Cammarota, Ryan C; Vollmer, Matthew V; Xie, Jing; Ye, Jingyun; Linehan, John C; Burgess, Samantha A; Appel, Aaron M; Gagliardi, Laura; Lu, Connie C
2017-10-11
Large-scale CO 2 hydrogenation could offer a renewable stream of industrially important C 1 chemicals while reducing CO 2 emissions. Critical to this opportunity is the requirement for inexpensive catalysts based on earth-abundant metals instead of precious metals. We report a nickel-gallium complex featuring a Ni(0)→Ga(III) bond that shows remarkable catalytic activity for hydrogenating CO 2 to formate at ambient temperature (3150 turnovers, turnover frequency = 9700 h -1 ), compared with prior homogeneous Ni-centered catalysts. The Lewis acidic Ga(III) ion plays a pivotal role in stabilizing catalytic intermediates, including a rare anionic d 10 Ni hydride. Structural and in situ characterization of this reactive intermediate support a terminal Ni-H moiety, for which the thermodynamic hydride donor strength rivals those of precious metal hydrides. Collectively, our experimental and computational results demonstrate that modulating a transition metal center via a direct interaction with a Lewis acidic support can be a powerful strategy for promoting new reactivity paradigms in base-metal catalysis.
Structure and Thermodynamical Properties of Zirconium Hydrides from First-Principle
NASA Astrophysics Data System (ADS)
Blomqvist, Jakob; Olofsson, Johan; Alvarez, Anna-Maria; Bjerkén, Christina
Zirconium alloys are used as nuclear fuel cladding material due to their mechanical and corrosion resistant properties together with their favorable cross-section for neutron scattering. At running conditions, however, there will be an increase of hydrogen in the vicinity of the cladding surface at the water side of the fuel. The hydrogen will diffuse into the cladding material and at certain conditions, such as lower temperatures and external load, hydrides will precipitate out in the material and cause well known embrittlement, blistering and other unwanted effects. Using phase-field methods it is now possible to model precipitation buildup in metals, for example as a function of hydrogen concentration, temperature and external load, but the technique relies on input of parameters, such as the formation energy of the hydrides and matrix. To that end, we have computed, using the density functional theory (DFT) code GPAW, the latent heat of fusion as well as solved the crystal structure for three zirconium hydride polymorphs: δ-ZrH1.6, γ-ZrH, and Є-ZrH2.
Ebert, Sybille; Rieger, Paul-Gerhard; Knackmuss, Hans-Joachim
1999-01-01
2,4,6-Trinitrophenol (picric acid) and 2,4-dinitrophenol were readily biodegraded by the strain Nocardioides simplex FJ2-1A. Aerobic bacterial degradation of these π-electron-deficient aromatic compounds is initiated by hydrogenation at the aromatic ring. A two-component enzyme system was identified which catalyzes hydride transfer to picric acid and 2,4-dinitrophenol. Enzymatic activity was dependent on NADPH and coenzyme F420. The latter could be replaced by an authentic preparation of coenzyme F420 from Methanobacterium thermoautotrophicum. One of the protein components functions as a NADPH-dependent F420 reductase. A second component is a hydride transferase which transfers hydride from reduced coenzyme F420 to the aromatic system of the nitrophenols. The N-terminal sequence of the F420 reductase showed high homology with an F420-dependent NADP reductase found in archaea. In contrast, no N-terminal similarity to any known protein was found for the hydride-transferring enzyme. PMID:10217752
Laboratory Rotational Spectroscopy of the Interstellar Diatomic Hydride Ion SH+ (X 3Σ-)
NASA Astrophysics Data System (ADS)
Halfen, DeWayne; Ziurys, Lucy M.
2016-06-01
Diatomic hydride are among the most common molecular species in the interstellar medium (ISM). The low molecular mass and thus moments of inertia cause their rotational spectra to lie principally in the submillimeter and far-infrared regions. Diatomic hydrides, both neutral (MH) and ionic (MH+) forms, are also basic building blocks of interstellar chemistry. In ionic form, they may be the “hidden” carriers of refractory elements in dense gas. They are therefore extremely good targets for space-borne and airborne platforms such as Herschel, SOFIA, and SAFIR. However, in order to detect these species in the ISM, their rotational spectra must first be measured in the laboratory. To date, there is very little high resolution data available for many hydride species, in particular the ionic form. Using submillimeter/THz direct absorption methods in the Ziurys laboratory, spectra of the interstellar diatomic hydride SH+ (X 3Σ-) have been recorded. Recent work has concerned measurement of all three fine structure components of the fundamental rotational transition N = 1 ← 0 in the range 345 - 683 GHz. SH+ was generated from H2S and argon in an AC discharge. The data have been analyzed, and spectroscopic constants for this species have been refined. SH+ is found in Photon Dominated Regions (PDRs) and X-ray Dominated Regions (XDRs) and is thought to trace energetic processes in the ISM. These current measurements confirm recent observations of this species at submillimeter/THz wavelengths with ALMA and other ground-based telescopes.
NASA Astrophysics Data System (ADS)
Sung, Z.-H.; Wang, M.; Polyanskii, A. A.; Santosh, C.; Balachandran, S.; Compton, C.; Larbalestier, D. C.; Bieler, T. R.; Lee, P. J.
2017-05-01
This study shows that low angle grain boundaries (LAGBs) can be created by small 5% strains in high purity (residual resistivity ratio ≥ 200) superconducting radio frequency (SRF)-grade single crystalline niobium (Nb) and that these boundaries act as hydrogen traps as indicated by the distribution of niobium hydrides (Nb1-xHx). Nb1-xHx is detrimental to SRF Nb cavities due to its normal conducting properties at cavity operating temperatures. By designing a single crystal tensile sample extracted from a large grain (>5 cm) Nb ingot slice for preferred slip on one slip plane, LAGBs and dense dislocation boundaries developed. With chemical surface treatments following standard SRF cavity fabrication practice, Nb1-xHx phases were densely precipitated at the LAGBs upon cryogenic cooling (8-10 K/min). Micro-crystallographic analysis confirmed heterogeneous hydride precipitation, which included significant hydrogen atom accumulation in LAGBs. Magneto-optical imaging analysis showed that these sites can then act as sites for both premature flux penetration and eventually flux trapping. However, this hydrogen related degradation at LAGBs did not completely disappear even after an 800 °C/2 h anneal typically used for hydrogen removal in SRF Nb cavities. These findings suggest that hydride precipitation at an LAGB is facilitated by a non-equilibrium concentration of vacancy-hydrogen (H) complexes aided by mechanical deformation and the hydride phase interferes with the recovery process under 800 °C annealing.
The crystallography of hydride formation in zirconium: II. the δ → ɛ transformation
NASA Astrophysics Data System (ADS)
Cassidy, M. P.; Wayman, C. M.
1980-12-01
The phenomenological crystallographic theory of martensitic transformations has been applied to the transformation from δ (fcc) to ɛ (fct) zirconium hydride, using published lattice parameters. The habit plane, orientation relationship, lattice invariant shear, and interface characteristics were determined by transmission electron microscopy and diffraction. The shape strain was observed by interference microscopy. Good agreement between the predictions of the theory and the measured crystallography was obtained. The predicted and observed lattice invariant shear was twinning on 101. These twins which are found within alternating bands of hydride variants produce a herringbone morphology, and the bands produce a roof gable type of surface relief. For a given plate, the measured habit plane, twin plane, unique Bain contraction axis, and orientation relationship were mutually consistent with the respective predictions for a single variant. The magnitude of the lattice invariant shear was in excellent agreement with the predicted value. The interfaces separating the e hydride bands were found to be of two types, which alternated, often filling an entire grain. One of these, termed a spear interface, was found to be a twin plane, across which the twinned regions of the two bands “matched-up”. The other, termed an impingement interface, was found to have twin regions which did not “match-up”. This morphology can be explained as a pair of ɛ-hydride plates which share a spear interface. When two growing spears impinge, the resulting impingement interface is of the second type.
Gómez, Jorge E.; Navarro, Fabián H.; Sandoval, Junior E.
2015-01-01
A novel 3-hydroxypropyl (propanol) bonded silica phase has been prepared by hydrosilylation of allyl alcohol on a hydride silica intermediate, in the presence of platinum (0)-divinyltetramethyldisiloxane (Karstedt's catalyst). The regio-selectivity of this synthetic approach had been correctly predicted by previous reports involving octakis(dimethylsiloxy)octasilsesquioxane (Q8M8H) and hydrogen silsesquioxane (T8H8), as molecular analogs of hydride amorphous silica. Thus, C-silylation predominated (~ 94%) over O-silylation, and high surface coverages of propanol groups (5±1 µmol/m2) were typically obtained in this work. The propanol-bonded phase was characterized by spectroscopic (IR and solid state NMR on silica microparticles), contact angle (on fused-silica wafers) and CE (on fused-silica tubes) techniques. CE studies of the migration behavior of pyridine, caffeine, tris(2,2’-bipyridine)Ru(II) chloride and lysozyme on propanol-modified capillaries were carried out. The adsorption properties of these select silanol-sensitive solutes were compared to those on the unmodified and hydride-modified tubes. It was found that hydrolysis of the SiH species underlying the immobilized propanol moieties leads mainly to strong ion-exchange based interactions with the basic solutes at pH 4, particularly with lysozyme. Interestingly, and in agreement with water contact angle and electroosmotic mobility figures, the silanol-probe interactions on the buffer-exposed (hydrolyzed) hydride surface are quite different from those of the original unmodified tube. PMID:24934906
Price, Jeffrey S; Emslie, David J H; Britten, James F
2017-05-22
Reaction of the ethylene hydride complex trans-[(dmpe) 2 MnH(C 2 H 4 )] (1) with Et 2 SiH 2 at 20 °C afforded the silylene hydride [(dmpe) 2 MnH(=SiEt 2 )] (2 a) as the trans-isomer. By contrast, reaction of 1 with Ph 2 SiH 2 at 60 °C afforded [(dmpe) 2 MnH(=SiPh 2 )] (2 b) as a mixture of the cis (major) and trans (minor) isomers, featuring a Mn-H-Si interaction in the former. The reaction to form 2 b also yielded [(dmpe) 2 MnH 2 (SiHPh 2 )] (3 b); [(dmpe) 2 MnH 2 (SiHR 2 )] (R=Et (3 a) and Ph (3 b)) were accessed cleanly by reaction of 2 a and 2 b with H 2 , and the analogous reactions with D 2 afforded [(dmpe) 2 MnD 2 (SiHR 2 )] exclusively. Both 2 a and 2 b engaged in unique reactivity with ethylene, generating the silene hydride complexes cis-[(dmpe) 2 MnH(R 2 Si=CHMe)] (R=Et (4 a), Ph (4 b)). Compounds trans-2 a, cis-2 b, 3 b, and 4 b were crystallographically characterized, and bonding in 2 a, 2 b, 4 a, and 4 b was probed computationally. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
High growth rate hydride vapor phase epitaxy at low temperature through use of uncracked hydrides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schulte, Kevin L.; Braun, Anna; Simon, John
We demonstrate hydride vapor phase epitaxy (HVPE) of GaAs with unusually high growth rates (RG) at low temperature and atmospheric pressure by employing a hydride-enhanced growth mechanism. Under traditional HVPE growth conditions that involve growth from Asx species, RG exhibits a strong temperature dependence due to slow kinetics at the surface, and growth temperatures >750 degrees C are required to obtain RG > 60 um/h. We demonstrate that when the group V element reaches the surface in a hydride, the kinetic barrier is dramatically reduced and surface kinetics no longer limit RG. In this regime, RG is dependent on massmore » transport of uncracked AsH3 to the surface. By controlling the AsH3 velocity and temperature profile of the reactor, which both affect the degree of AsH3 decomposition, we demonstrate tuning of RG. We achieve RG above 60 um/h at temperatures as low as 560 degrees C and up to 110 um/h at 650 degrees C. We incorporate high-RG GaAs into solar cell devices to verify that the electronic quality does not deteriorate as RG is increased. The open circuit voltage (VOC), which is a strong function of non-radiative recombination in the bulk material, exhibits negligible variance in a series of devices grown at 650 degrees C with RG = 55-110 um/h. The implications of low temperature growth for the formation of complex heterostructure devices by HVPE are discussed.« less
Sung, Z. -H.; Wang, M.; Polyanskii, A. A.; ...
2017-05-19
This study shows that low angle grain boundaries (LAGBs) can be created by small 5% strains in high purity (RRR ≥ 200) SRF-grade single crystalline niobium (Nb) and that these boundaries act as hydrogen traps as indicated by the distribution of niobium hydrides (Nb 1-xH x). Nb 1-xH x is detrimental to superconducting radio frequency (SRF) Nb cavities due to its normal conducting properties at cavity operating temperatures. By designing a single crystal tensile sample extracted from a large grain (>5 cm) Nb ingot slice for preferred slip on one slip plane, LAGBs and dense dislocation boundaries developed. With chemicalmore » surface treatments following standard SRF cavity fabrication practice, Nb1-xHx phases were densely precipitated at the LAGBs upon cryogenic cooling (8-10 K/min). Micro-crystallographic analysis confirmed heterogeneous hydride precipitation, which included significant hydrogen atom accumulation in LAGBs. Magneto-optical imaging (MOI) analysis showed that these sites can then act as sites for both premature flux penetration and eventually flux trapping. However, this hydrogen related degradation at LAGBs did not completely disappear even after a 800 °C/2hrs anneal typically used for hydrogen removal in SRF Nb cavities. These findings suggest that hydride precipitation at a LAGB is facilitated by a non-equilibrium concentration of vacancy-hydrogen (H) complexes aided by mechanical deformation and the hydride phase interferes with the recovery process under 800°C annealing.« less
High growth rate hydride vapor phase epitaxy at low temperature through use of uncracked hydrides
Schulte, Kevin L.; Braun, Anna; Simon, John; ...
2018-01-22
We demonstrate hydride vapor phase epitaxy (HVPE) of GaAs with unusually high growth rates (RG) at low temperature and atmospheric pressure by employing a hydride-enhanced growth mechanism. Under traditional HVPE growth conditions that involve growth from Asx species, RG exhibits a strong temperature dependence due to slow kinetics at the surface, and growth temperatures >750 degrees C are required to obtain RG > 60 um/h. We demonstrate that when the group V element reaches the surface in a hydride, the kinetic barrier is dramatically reduced and surface kinetics no longer limit RG. In this regime, RG is dependent on massmore » transport of uncracked AsH3 to the surface. By controlling the AsH3 velocity and temperature profile of the reactor, which both affect the degree of AsH3 decomposition, we demonstrate tuning of RG. We achieve RG above 60 um/h at temperatures as low as 560 degrees C and up to 110 um/h at 650 degrees C. We incorporate high-RG GaAs into solar cell devices to verify that the electronic quality does not deteriorate as RG is increased. The open circuit voltage (VOC), which is a strong function of non-radiative recombination in the bulk material, exhibits negligible variance in a series of devices grown at 650 degrees C with RG = 55-110 um/h. The implications of low temperature growth for the formation of complex heterostructure devices by HVPE are discussed.« less
Alloys for hydrogen storage in nickel/hydrogen and nickel/metal hydride batteries
NASA Technical Reports Server (NTRS)
Anani, Anaba; Visintin, Arnaldo; Petrov, Konstantin; Srinivasan, Supramaniam; Reilly, James J.; Johnson, John R.; Schwarz, Ricardo B.; Desch, Paul B.
1993-01-01
Since 1990, there has been an ongoing collaboration among the authors in the three laboratories to (1) prepare alloys of the AB(sub 5) and AB(sub 2) types, using arc-melting/annealing and mechanical alloying/annealing techniques; (2) examine their physico-chemical characteristics (morphology, composition); (3) determine the hydrogen absorption/desorption behavior (pressure-composition isotherms as a function of temperature); and (4) evaluate their performance characteristics as hydride electrodes (charge/discharge, capacity retention, cycle life, high rate capability). The work carried out on representative AB(sub 5) and AB(sub 2) type modified alloys (by partial substitution or with small additives of other elements) is presented. The purpose of the modification was to optimize the thermodynamics and kinetics of the hydriding/dehydriding reactions and enhance the stabilities of the alloys for the desired battery applications. The results of our collaboration, to date, demonstrate that (1) alloys prepared by arc melting/annealing and mechanical alloying/annealing techniques exhibit similar morphology, composition and hydriding/dehydriding characteristics; (2) alloys with the appropriate small amounts of substituent or additive elements: (1) retain the single phase structure, (2) improve the hydriding/dehydriding reactions for the battery applications, and (3) enhance the stability in the battery environment; and (3) the AB(sub 2) type alloys exhibit higher energy densities than the AB(sub 5) type alloys but the state-of-the-art, commercialized batteries are predominantly manufactured using Ab(sub 5) type alloys.
Storage and production of hydrogen for fuel cell applications
NASA Astrophysics Data System (ADS)
Aiello, Rita
The increased utilization of proton-exchange membrane (PEM) fuel cells as an alternative to internal combustion engines is expected to increase the demand for hydrogen, which is used as the energy source in these systems. The objective of this work is to develop and test new methods for the storage and production of hydrogen for fuel cells. Six ligand-stabilized hydrides were synthesized and tested as hydrogen storage media for use in portable fuel cells. These novel compounds are more stable than classical hydrides (e.g., NaBH4, LiAlH4) and react to release hydrogen less exothermically upon hydrolysis with water. Three of the compounds produced hydrogen in high yield (88 to 100 percent of the theoretical) and at significantly lower temperatures than those required for the hydrolysis of NaBH4 and LiAlH4. However, a large excess of water and acid were required to completely wet the hydride and keep the pH of the reaction medium neutral. The hydrolysis of the classical hydrides with steam can overcome these limitations. This reaction was studied in a flow reactor and the results indicate that classical hydrides can be hydrolyzed with steam in high yields at low temperatures (110 to 123°C) and in the absence of acid. Although excess steam was required, the pH of the condensed steam was neutral. Consequently, steam could be recycled back to the reactor. Production of hydrogen for large-scale transportation fuel cells is primarily achieved via the steam reforming, partial oxidation or autothermal reforming of natural gas or the steam reforming of methanol. However, in all of these processes CO is a by-product that must be subsequently removed because the Pt-based electrocatalyst used in the fuel cells is poisoned by its presence. The direct cracking of methane over a Ni/SiO2 catalyst can produce CO-free hydrogen. In addition to hydrogen, filamentous carbon is also produced. This material accumulates on the catalyst and eventually deactivates it. The Ni/SiO2 catalyst can be repeatedly regenerated with steam for at least 10 successive cracking/regeneration cycles with no loss of activity during repeated cycles. Kinetic studies of the gasification of filamentous carbon indicate that several independent catalytic reactions take place during this process. These include the reactions of filamentous carbon with steam and with the CO2 produced in the previous step, as well as the reverse water-gas shift and methanation reactions. Each of these reactions was studied independently to determine the effect of the operating conditions (i.e., temperature, space velocity and gas composition) on its rate. Of particular interest is the effect of these parameters on the rate of formation of CO. A mathematical model was developed based on the proposed sequence of independent reactions. Kinetic parameters extracted from the study of the independent reactions were used in this model. Furthermore, two kinetic rate constants for reactions that could not be independently studied were used as adjustable parameters. An excellent agreement was achieved between model predictions and experimental results obtained at different temperatures, space velocities and steam concentration.
Butler, Michael J.
2017-01-01
The preparation and applications of heterobimetallic complexes continue to occupy researchers in the fields of organometallic, main group, and coordination chemistry. This interest stems from the promise these complexes hold as precursors to materials, reagents in synthesis and as new catalysis. Here we survey and organise the state-of-the-art understanding of the TM–H–M linkage (M = Mg, Zn, Al, Ga). We discuss the structure and bonding in these complexes, their known reactivity, and their largely unrealised potential in catalysis. PMID:28070586
Hydrogen storage and evolution catalysed by metal hydride complexes.
Fukuzumi, Shunichi; Suenobu, Tomoyoshi
2013-01-07
The storage and evolution of hydrogen are catalysed by appropriate metal hydride complexes. Hydrogenation of carbon dioxide by hydrogen is catalysed by a [C,N] cyclometalated organoiridium complex, [Ir(III)(Cp*)(4-(1H-pyrazol-1-yl-κN(2))benzoic acid-κC(3))(OH(2))](2)SO(4) [Ir-OH(2)](2)SO(4), under atmospheric pressure of H(2) and CO(2) in weakly basic water (pH 7.5) at room temperature. The reverse reaction, i.e., hydrogen evolution from formate, is also catalysed by [Ir-OH(2)](+) in acidic water (pH 2.8) at room temperature. Thus, interconversion between hydrogen and formic acid in water at ambient temperature and pressure has been achieved by using [Ir-OH(2)](+) as an efficient catalyst in both directions depending on pH. The Ir complex [Ir-OH(2)](+) also catalyses regioselective hydrogenation of the oxidised form of β-nicotinamide adenine dinucleotide (NAD(+)) to produce the 1,4-reduced form (NADH) under atmospheric pressure of H(2) at room temperature in weakly basic water. In weakly acidic water, the complex [Ir-OH(2)](+) also catalyses the reverse reaction, i.e., hydrogen evolution from NADH to produce NAD(+) at room temperature. Thus, interconversion between NADH (and H(+)) and NAD(+) (and H(2)) has also been achieved by using [Ir-OH(2)](+) as an efficient catalyst and by changing pH. The iridium hydride complex formed by the reduction of [Ir-OH(2)](+) by H(2) and NADH is responsible for the hydrogen evolution. Photoirradiation (λ > 330 nm) of an aqueous solution of the Ir-hydride complex produced by the reduction of [Ir-OH(2)](+) with alcohols resulted in the quantitative conversion to a unique [C,C] cyclometalated Ir-hydride complex, which can catalyse hydrogen evolution from alcohols in a basic aqueous solution (pH 11.9). The catalytic mechanisms of the hydrogen storage and evolution are discussed by focusing on the reactivity of Ir-hydride complexes.
EuNi 5 InH 1.5-x (x = 0–1.5): hydrogen induced structural and magnetic transitions
Bigun, Inna; Smetana, Volodymyr; Mudryk, Yaroslav; ...
2017-01-01
The new quaternary hydride EuNi 5InH 1.5 has been obtained by hydrogenation of the intermetallic parent EuNi5In under extremely mild conditions, hence, at room temperature and low hydrogen pressure. Hydrogenation at slightly elevated temperatures and pressures allows for the growth of large crystals, which is a rare observation for intermetallic hydrides. EuNi 5InH 1.5 crystallizes in its own structure type ( hP17, P6¯m2, a = 4.9437(6), c = 10.643(1) Å) with a unique arrangement of the intermetallic host. The hydrogen atoms prefer Ni-surrounded positions, occupying {EuNi 3} and {Eu 2Ni 2} tetrahedral voids in the structure. Upon hydrogenation of EuNimore » 5In an anisotropic volume expansion accompanied with a decrease of symmetry is observed. Magnetic measurements reveal antiferromagnetic ordering in the hydride below 4 K and indicate an intermediate +II/+III oxidation state for Eu both in the intermetallic phase and the hydride. X-ray photoemission spectroscopy confirms the existence of the two different oxidation states of Eu. The hydrogenation does not affect the oxidation state of Eu and the type of magnetic ordering, but exerts a strong influence on the transition temperature, crystal structure, mechanical and electrical properties. Crystallographic analysis suggests that Eu(II) and Eu(III) do not order but rather mix homogeneously on crystallographic sites. Electronic structure calculations reveal the metallic character of the hydride with several different types of chemical bonding interactions being present in the compound ranging from the formally ionic Eu–H to covalent Ni–H and delocalized metal–metal. As a result, geometry optimization confirm the thermodynamic instability of the intermetallic host lattice for the hydride and supports a transformation into the parental structure as observed experimentally.« less
Trincone, A; Lama, L; Rella, R; D'Auria, S; Raia, C A; Nicolaus, B
1990-10-18
This paper describes the determination of stereospecificity of hydride transfer reaction of an alcohol dehydrogenase isolated from the archaebacterium Sulfolobus solfataricus. The 1H-NMR and EI-MS data indicate that the enzyme transfers the pro-R hydrogen from coenzyme to substrate and is therefore an A-specific dehydrogenase.
Hydrides and Borohydrides of Light Elements
1947-12-04
Troy, Attn: Inst. of Naval Science (30) Solar Aircraft Cu,, San Diego, Attn: Dr. M. A. Williamson " (31) INSMAT. N. J. for Itandard Oil Co., Esso Lab...with the other# iLD F.Re p. 8 ilt -ms" #61ggSotod that.. ir addition to thc impurity in the t~y..thr, an impurkty, prosumably aluminum hydride, in
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jason D. Hales; Veena Tikare
2014-04-01
The Used Fuel Disposition (UFD) program has initiated a project to develop a hydride formation modeling tool using a hybrid Pottsphase field approach. The Potts model is incorporated in the SPPARKS code from Sandia National Laboratories. The phase field model is provided through MARMOT from Idaho National Laboratory.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zidan, Ragaiy
A process of using an electrochemical cell to generate aluminum hydride (AlH.sub.3) and other high capacity hydrides is provided. The electrolytic cell uses an electro-catalytic-additive within a polar non-salt containing solvent to solubilize an ionic hydride such as NaAlH.sub.4 or LiAlH.sub.4. The resulting electrochemical process results in the formation of AlH.sub.3 adduct. AlH.sub.3 is obtained from the adduct by heating under vacuum. The AlH.sub.3 can be recovered and used as a source of hydrogen for the automotive industry. The resulting spent aluminum can be regenerated into NaAlH.sub.4 or LiAlH.sub.4 as part of a closed loop process of AlH.sub.3 generation.
Cesium Platinide Hydride 4Cs 2 Pt-CsH: An Intermetallic Double Salt Featuring Metal Anions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smetana, Volodymyr; Mudring, Anja-Verena
2016-10-24
With Cs9Pt4H a new representative of ionic compounds featuring metal anions can be added to this rare-membered family. Cs 9Pt 4H exhibits a complex crystal structure containing Cs + cations, Pt 2- and H - anions. Being a red, transparent compound its band gap is in the visible range of the electromagnetic spectrum and the ionic type of bonding is confirmed by quantum chemical calculations. This cesium platinide hydride can formally be considered as a double salt of the “alloy” cesium–platinum, or better cesium platinide, Cs2Pt, and the salt cesium hydride CsH according to Cs 9Pt 4H≡4 Cs 2Pt∙CsH.
Brown, G.E.; McLain, B.J.
1994-01-01
The analysis of natural-water samples for antimony by automated-hydride atomic absorption spectrophotometry is described. Samples are prepared for analysis by addition of potassium and hydrochloric acid followed by an autoclave digestion. After the digestion, potassium iodide and sodium borohydride are added automatically. Antimony hydride (stibine) gas is generated, then swept into a heated quartz cell for determination of antimony by atomic absorption spectrophotometry. Precision and accuracy data are presented. Results obtained on standard reference water samples agree with means established by interlaboratory studies. Spike recoveries for actual samples range from 90 to 114 percent. Replicate analyses of water samples of varying matrices give relative standard deviations from 3 to 10 percent.
Electrochemical properties of LaNi{sub 5{minus}x}Ge{sub x} alloys in Ni-MH batteries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Witham, C.; Hightower, A.; Fultz, B.
1997-11-01
Electrochemical studies were performed on LaNi{sub 5{minus}x}Ge{sub x} metal hydride alloys with 0 {le} x {le} 0.5. The authors carried out single-electrode studies to understand the effects of the Ge substituent on the hydrogen absorption characteristics, the electrochemical capacity, and the electrochemical kinetics of hydrogen absorption and desorption. The electrochemical characteristics of the Ge-substituted alloys are compared to those of the Sn-substituted alloys reported earlier. LaNi{sub 5{minus}x}Ge{sub x} alloys show compositional trends similar to LaNi{sub 5{minus}x}Sn{sub x} alloys, but unlike the Sn-substituted alloys, Ge-substituted alloys continue to exhibit facile kinetics for hydrogen absorption/desorption at high solute concentrations. Cycle lives ofmore » LaNi{sub 5{minus}x}Ge{sub x} electrodes were measured in 300 mAh laboratory test cells and were found to be superior to the Sn-substituted LaNi{sub 5} and comparable to a Mm(Ni, Co, Mn, Al){sub 5} alloy. The optimum Ge content for LaNi{sub 5{minus}x}Ge{sub x} metal hydride alloys in alkaline rechargeable cells is in the range 0.4 {le} x {le} 0.5.« less
Olabe, José A; Estiú, Guillermina L
2003-08-11
The addition of nitrogen hydrides (hydrazine, hydroxylamine, ammonia, azide) to the pentacyanonitrosylferrate(II) ion has been analyzed by means of density functional calculations, focusing on the identification of stable intermediates along the reaction paths. Initial reversible adduct formation and further decomposition lead to the eta(1)- and eta(2)-linkage isomers of N(2)O and N(2), depending on the nucleophile. The intermediates (adducts and gas-releasing precursors) have been characterized at the B3LYP/6-31G level of theory through the calculation of their structural and spectroscopic properties, modeling the solvent by means of a continuous approach. The eta(2)-N(2)O isomer is formed at an initial stage of adduct decompositions with the hydrazine and azide adducts. Further conversion to the eta(1)-N(2)O isomer is followed by Fe-N(2)O dissociation. Only the eta(1)-N(2)O isomer is predicted for the reaction with hydroxylamine, revealing a kinetically controlled N(2)O formation. eta(1)-N(2) and eta(2)-N(2) isomers are also predicted as stable species.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Summers, W.A.
1998-08-01
The H2Fuel Bus is the world`s first hybrid hydrogen electric transit bus. It was developed through a public/private partnership involving several leading technology and industrial organizations in the Southeast, with primary funding and program management provided by the Department of Energy. The primary goals of the project are to gain valuable information on the technical readiness and economic viability of hydrogen buses and to enhance the public awareness and acceptance of emerging hydrogen technologies. The bus has been operated by the transit agency in Augusta, Georgia since April, 1997. It employs a hybrid IC engine/battery/electric drive system, with onboard hydrogenmore » fuel storage based on the use of metal hydrides. Initial operating results have demonstrated an overall energy efficiency (miles per Btu) of twice that of a similar diesel-fueled bus and an operating range twice that of an all-battery powered electric bus. Tailpipe emissions are negligible, with NOx less than 0.2 ppm. Permitting, liability and insurance issues were addressed on the basis of extensive risk assessment and safety analyses, with the inherent safety characteristic of metal hydride storage playing a major role in minimizing these concerns. Future plans for the bus include continued transit operation and use as a national testbed, with potential modifications to demonstrate other hydrogen technologies, including fuel cells.« less
Engel, Hamutal; Doron, Dvir; Kohen, Amnon; Major, Dan Thomas
2012-04-10
The inclusion of nuclear quantum effects such as zero-point energy and tunneling is of great importance in studying condensed phase chemical reactions involving the transfer of protons, hydrogen atoms, and hydride ions. In the current work, we derive an efficient quantum simulation approach for the computation of the momentum distribution in condensed phase chemical reactions. The method is based on a quantum-classical approach wherein quantum and classical simulations are performed separately. The classical simulations use standard sampling techniques, whereas the quantum simulations employ an open polymer chain path integral formulation which is computed using an efficient Monte Carlo staging algorithm. The approach is validated by applying it to a one-dimensional harmonic oscillator and symmetric double-well potential. Subsequently, the method is applied to the dihydrofolate reductase (DHFR) catalyzed reduction of 7,8-dihydrofolate by nicotinamide adenine dinucleotide phosphate hydride (NADPH) to yield S-5,6,7,8-tetrahydrofolate and NADP(+). The key chemical step in the catalytic cycle of DHFR involves a stereospecific hydride transfer. In order to estimate the amount of quantum delocalization, we compute the position and momentum distributions for the transferring hydride ion in the reactant state (RS) and transition state (TS) using a recently developed hybrid semiempirical quantum mechanics-molecular mechanics potential energy surface. Additionally, we examine the effect of compression of the donor-acceptor distance (DAD) in the TS on the momentum distribution. The present results suggest differential quantum delocalization in the RS and TS, as well as reduced tunneling upon DAD compression.
Lactate Racemase Nickel-Pincer Cofactor Operates by a Proton-Coupled Hydride Transfer Mechanism.
Rankin, Joel A; Mauban, Robert C; Fellner, Matthias; Desguin, Benoît; McCracken, John; Hu, Jian; Varganov, Sergey A; Hausinger, Robert P
2018-03-09
Lactate racemase (LarA) of Lactobacillus plantarum contains a novel organometallic cofactor with nickel coordinated to a covalently tethered pincer ligand, pyridinium-3-thioamide-5-thiocarboxylic acid mononucleotide, but its function in the enzyme mechanism has not been elucidated. This study presents direct evidence that the nickel-pincer cofactor facilitates a proton-coupled hydride transfer (PCHT) mechanism during LarA-catalyzed lactate racemization. No signal was detected by electron paramagnetic resonance spectroscopy for LarA in the absence or presence of substrate, consistent with a +2 metal oxidation state and inconsistent with a previously proposed proton-coupled electron transfer mechanism. Pyruvate, the predicted intermediate for a PCHT mechanism, was observed in quenched solutions of LarA. A normal substrate kinetic isotope effect ( k H / k D of 3.11 ± 0.17) was established using 2-α- 2 H-lactate, further supporting a PCHT mechanism. UV-visible spectroscopy revealed a lactate-induced perturbation of the cofactor spectrum, notably increasing the absorbance at 340 nm, and demonstrated an interaction of the cofactor with the inhibitor sulfite. A crystal structure of LarA provided greater resolution (2.4 Å) than previously reported and revealed sulfite binding to the pyridinium C4 atom of the reduced pincer cofactor, mimicking hydride reduction during a PCHT catalytic cycle. Finally, computational modeling supports hydride transfer to the cofactor at the C4 position or to the nickel atom, but with formation of a nickel-hydride species requiring dissociation of the His200 metal ligand. In aggregate, these studies provide compelling evidence that the nickel-pincer cofactor acts by a PCHT mechanism.
USDA-ARS?s Scientific Manuscript database
Accurate, stable and fast analysis of toxic inorganic arsenic (iAs) in complicated and arsenosugar-rich algae matrix is always a challenge. Herein, a novel analytical method for iAs in algae was reported, using bromine halogenation and on-line nonpolar solid phase extraction (SPE) followed by hydrid...
Regeneration of polyborazylene
Davis, Benjamin L.; Gordon, John C.
2010-12-07
Method of producing ammonia borane, comprising providing polyborazylene; digesting the polyborazylene with a dithiol-containing agent to produce a boro-sulfide compound and a byproduct; converting the byproduct to the boro-sulfide product of step (b) by reaction with a first alkyl-tin hydride; and, converting the boro-sulfide compound produced in steps (b) and (c) to ammonia borane by reaction with a second alkyl-tin hydride.
Electronic structure and magnetic ordering in manganese hydride
NASA Astrophysics Data System (ADS)
Magnitskaya, M. V.; Kulikov, N. I.
1991-03-01
The self-consistent electron energy bands of antiferromagnetic (AFM) and non-magnetic manganese hydride are calculated using the linear muffintin orbital method (LMTO). The calculated values of equilibrium volume and of magnetic moment on the manganese site are in good agreement with experiment. The Fermi surface of paramagnetic MnH contains two nesting parts, and their superposition gives rise to AFM gap.
1978-12-12
hydri de and its integration with the fuel cell. I The combination of the SPE cel l with a hydride fuel offers -- comparedto batteries -- increased...demand changes without intermediate storage of hydrogen gas. In order to control the reacti on with water the hydri de is contained in a cartridge. The use
A pre-oxidation procedure which converts arsenite (AS(III)) to arsenate (As(VVV)) was investigated in urinary arsenic speciation prior to on-line photo-oxidation hydride-generation with ICP-MS detection. This sample pre-oxidation method eliminates As(III) and As(V) preservation c...
Hanusek, Jirí; Russell, Mark A; Laws, Andrew P; Jansa, Petr; Atherton, John H; Fettes, Kevin; Page, Michael I
2007-02-07
Contrary to a previous report, the sulfurisation of phosphorus(III) derivatives by 3-amino-1,2,4-dithiazole-5-thione (xanthane hydride) does not yield carbon disulfide and cyanamide as the additional reaction products. The reaction of xanthane hydride with triphenyl phosphine or trimethyl phosphite yields triphenyl phosphine sulfide or trimethyl thiophosphate, respectively, and thiocarbamoyl isothiocyanate which has been trapped with nucleophiles. The reaction pathway involves initial nucleophilic attack of the phosphorus at sulfur next to the thiocarbonyl group of xanthane hydride followed by decomposition of the phosphonium intermediate formed to products. The Hammett rho-values for the sulfurisation of substituted triphenyl phosphines and triphenyl phosphites in acetonitrile are approximately -1.0. The entropies of activation are very negative (-114+/-15 J mol-1 K-1) with little dependence on solvent which is consistent with a bimolecular association step leading to the transition state. The negative values of DeltaS(not equal) and rho values indicate that the rate limiting step of the sulfurisation reaction is formation of the phosphonium ion intermediate which has an early transition state with little covalent bond formation. The site of nucleophilic attack has been also confirmed using computational calculations.
Hydrogen mobility in the lightest reversible metal hydride, LiBeH 3
Mamontov, Eugene; Kolesnikov, Alexander I.; Sampath, Sujatha; ...
2017-11-24
Lithium-beryllium metal hydrides, which are structurally related to their parent compound, BeH 2, offer the highest hydrogen storage capacity by weight among the metal hydrides (15.93 wt. % of hydrogen for LiBeH 3). Challenging synthesis protocols have precluded conclusive determination of their crystallographic structure to date, but here we analyze directly the hydrogen hopping mechanisms in BeH 2 and LiBeH 3 using quasielastic neutron scattering, which is especially sensitive to single-particle dynamics of hydrogen. We find that, unlike its parent compound BeH 2, lithium-beryllium hydride LiBeH 3 exhibits a sharp increase in hydrogen mobility above 265 K, so dramatic thatmore » it can be viewed as melting of hydrogen sublattice. We perform comparative analysis of hydrogen jump mechanisms observed in BeH 2 and LiBeH 3 over a broad temperature range. As microscopic diffusivity of hydrogen is directly related to its macroscopic kinetics, a transition in LiBeH 3 so close to ambient temperature may offer a straightforward and effective mechanism to influence hydrogen uptake and release in this very lightweight hydrogen storage compound.« less
NASA Astrophysics Data System (ADS)
Tyburska, Anna; Jankowski, Krzysztof; Rodzik, Agnieszka
2011-07-01
A hydride generation headspace solid phase microextraction technique has been developed in combination with optical emission spectrometry for determination of total arsenic and selenium. Hydrides were generated in a 10 mL volume septum-sealed vial and subsequently collected onto a polydimethylsiloxane/Carboxen solid phase microextraction fiber from the headspace of sample solution. After completion of the sorption, the fiber was transferred into a thermal desorption unit and the analytes were vaporized and directly introduced into argon inductively coupled plasma or helium microwave induced plasma radiation source. Experimental conditions of hydride formation reaction as well as sorption and desorption of analytes have been optimized showing the significant effect of the type of the solid phase microextraction fiber coating, the sorption time and hydrochloric acid concentration of the sample solution on analytical characteristics of the method developed. The limits of detection of arsenic and selenium were 0.1 and 0.8 ng mL - 1 , respectively. The limit of detection of selenium could be improved further using biosorption with baker's yeast Saccharomyces cerevisiae for analyte preconcentration. The technique was applied for the determination of total As and Se in real samples.
Weck, Philippe F.; Kim, Eunja; Tikare, Veena; ...
2015-10-13
Here, the elastic properties and mechanical stability of zirconium alloys and zirconium hydrides have been investigated within the framework of density functional perturbation theory. Results show that the lowest-energy cubic Pn-3m with combining macron]m polymorph of δ-ZrH 1.5 does not satisfy all the Born requirements for mechanical stability, unlike its nearly degenerate tetragonal P4 2/ mcm polymorph. Elastic moduli predicted with the Voigt–Reuss–Hill approximations suggest that mechanical stability of α-Zr, Zr-alloy and Zr-hydride polycrystalline aggregates is limited by the shear modulus. According to both Pugh's and Poisson's ratios, α-Zr, Zr-alloy and Zr-hydride polycrystalline aggregates can be considered ductile. The Debyemore » temperatures predicted for γ-ZrH, δ-ZrH 1.5 and ε-ZrH 2 are θ D = 299.7, 415.6 and 356.9 K, respectively, while θ D = 273.6, 284.2, 264.1 and 257.1 K for the α-Zr, Zry-4, ZIRLO and M5 matrices, i.e. suggesting that Zry-4 possesses the highest micro-hardness among Zr matrices.« less
Cubic and orthorhombic structures of aluminum hydride Al H3 predicted by a first-principles study
NASA Astrophysics Data System (ADS)
Ke, Xuezhi; Kuwabara, Akihide; Tanaka, Isao
2005-05-01
The most stable structure of aluminum hydride AlH3 is believed to be a hexagonal symmetry. However, using the density functional theory, we have identified two more stable structures for the AlH3 with the cubic and orthorhombic symmetries. Based on the quasiharmonic approximation, the cubic and orthorhombic AlH3 are almost degenerate when the zero-point energies are included. The geometric and electronic structures, the phonon, and the thermodynamic properties for the hexagonal, cubic, and orthorhombic AlH3 have been studied by means of density functional theory and direct ab initio force constant approach. The calculated electronic structures, phonon density of states, and thermodynamic functions [including S(T) and H(T)-H(0) ] for the three hydrides are similar. The results show that these three hydrides have negative enthalpies of formation, but positive free energies of formation. This conclusion is the same as that made by Wolverton for the hexagonal AlH3 [Phys. Rev. B 69, 144109 (2004)]. The thermodynamic properties indicate that the orthorhombic and cubic AlH3 should be more difficult to dissociate than the hexagonal AlH3 .
Nanometer-scale hydrogen 'portals' for the control of magnesium hydride formation.
Chung, Chia-Jung; Nivargi, Chinmay; Clemens, Bruce
2015-11-21
Magnesium and Mg-based material systems are attractive candidates for hydrogen storage but limited by unsuitable thermodynamic and kinetic properties. In particular, the kinetics are too slow at room temperature and atmospheric pressure. To study the hydride formation kinetics in a controlled way, we have designed a unique 'nanoportal' structure of Pd nanoparticles deposited on epitaxial Mg thin films, through which the hydride will nucleate only under Pd nanoparticles. We propose a growth mechanism for the hydrogenation reaction in the nanoportal structure, which is supported by scanning electron microscopy (SEM) images of hydrogenated samples exhibiting consistent results. Interestingly, the grain boundaries of Mg films play an important role in hydride nucleation and growth processes. Kinetic modeling based on the Johnson-Mehl-Avrami-Kolmogorov (JMAK) formalism seems to agree with the two-dimensional nucleation and growth mechanism hypothesized and the overall reaction rate is limited by hydrogen flux through the interface between the Pd nanoparticle and the underlying Mg film. The fact that in our structure Mg can be transformed completely into MgH2 with only a small percentage of Pd nanoparticles offers possibilities for future on-board storage applications.
Analysis of Ni-HYDRIDE Thin Film after Surface Plasmon Generation by Laser Technique
NASA Astrophysics Data System (ADS)
Violante, V.; Castagna, E.; Sibilia, C.; Paoloni, S.; Sarto, F.
2005-12-01
A nickel hydride thin film was studied by the attenuated total reflection method. The differences in behavior between a "black" film, and a pure nickel film "blank," are shown. The black nickel hydride film has been obtained by a short electrolysis with 1 M Li2SO4 electrolyte in light water, A shift in the minimum of the observed reflected light occurs, together with a change in the minimum shape (i.e. its half-height width increases). These two phenomenon are due to the change in the electronic band structure of the metal induced by electrons added to the lattice by hydrogen. The change of the electronic structure, revealed by the laser coupling conditions, leads us to consider that a hydride phase was created. Both the blank (not hydrogenated) and black (hydrogenated) specimens were taken under He-Ne laser beam at the reflectance minimum angle for about three hours. A SIMS analysis was also implemented to reveal differences in the isotopic composition of Cu, as marker element between the blank and black films, in order to study the coupled effect of electrolysis and plasmon-polariton excitation on LENR processes in condensed matter.
Hydrogen mobility in the lightest reversible metal hydride, LiBeH 3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mamontov, Eugene; Kolesnikov, Alexander I.; Sampath, Sujatha
Lithium-beryllium metal hydrides, which are structurally related to their parent compound, BeH 2, offer the highest hydrogen storage capacity by weight among the metal hydrides (15.93 wt. % of hydrogen for LiBeH 3). Challenging synthesis protocols have precluded conclusive determination of their crystallographic structure to date, but here we analyze directly the hydrogen hopping mechanisms in BeH 2 and LiBeH 3 using quasielastic neutron scattering, which is especially sensitive to single-particle dynamics of hydrogen. We find that, unlike its parent compound BeH 2, lithium-beryllium hydride LiBeH 3 exhibits a sharp increase in hydrogen mobility above 265 K, so dramatic thatmore » it can be viewed as melting of hydrogen sublattice. We perform comparative analysis of hydrogen jump mechanisms observed in BeH 2 and LiBeH 3 over a broad temperature range. As microscopic diffusivity of hydrogen is directly related to its macroscopic kinetics, a transition in LiBeH 3 so close to ambient temperature may offer a straightforward and effective mechanism to influence hydrogen uptake and release in this very lightweight hydrogen storage compound.« less
NASA Technical Reports Server (NTRS)
Oesterreicher, H.; Clinton, J.; Misroch, M.
1977-01-01
In order to gain a better insight into both the unusual composition of ThH15 and its superconductivity, an experimental study was conducted to assess the influence of partial replacement of Th in Th4H15 by elements which allow for a systematic alteration of spatial and electronic effects. For this purpose, substituent elements with the same number of valence electrons (4) but of smaller size (Zr) as well as elements with a smaller number of valence electrons (3) and either larger (La) or smaller size (Y) were selected. A few data with Ce and Bi as substituent atoms are also included. The matrix alloys for hydriding were obtained by induction melting under Ar in water-cooled Cu boats. Superconducting transition temperatures are found to decrease on substitution for Th in Th4H15. Hydrides derived from LaH3 by substitution for La by Th do not become superconducting. It is suggested that superconductivity in Th4H15 is connected with a deviation from the exact stoichiometry of Th4H15. A model of unsatisfied valencies may be of more general validity in predicting superconductivity.
Investigation of long term stability in metal hydrides
NASA Technical Reports Server (NTRS)
Marmaro, Roger W.; Lynch, Franklin E.; Chandra, Dhanesh; Lambert, Steve; Sharma, Archana
1991-01-01
It is apparent from the literature and the results of this study that cyclic degradation of AB(5) type metal hydrides varies widely according to the details of how the specimens are cycled. The Rapid Cycle Apparatus (RCA) used produced less degradation in 5000 to 10000 cycles than earlier work with a Slow Cycle Apparatus (SCA) produced in 1500 cycles. Evidence is presented that the 453 K (356 F) Thermal Aging (TA) time spent in the saturated condition causes hydride degradation. But increasing the cooling (saturation) period in the RCA did not greatly increase the rate of degradation. It appears that TA type degradation is secondary at low temperatures to another degradation mechanism. If rapid cycles are less damaging than slow cycles when the saturation time is equal, the rate of hydriding/dehydriding may be an important factor. The peak temperatures in the RCA were about 30 C lower than the SCA. The difference in peak cycle temperatures (125 C in the SCA, 95 C in RCA) cannot explain the differences in degradation. TA type degradation is similar to cyclic degradation in that nickel peaks and line broadening are observed in X ray diffraction patterns after either form of degradation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, N. K., E-mail: naikunsun@163.com; Guo, J.; Zhao, X. G., E-mail: xgzhao@imr.ac.cn
2015-03-02
La(Fe, Si){sub 13} hydride is regarded as one of the most promising room-temperature refrigerants. However, to use the alloys in an active magnetic regenerator machine, it is vital to prepare thin refrigerants. In this work, a high H{sub 2} gas pressure of 50 MPa was employed to suppress the desorption of hydrogen atoms during the sintering process of plate-shaped La{sub 0.5}Pr{sub 0.5}Fe{sub 11.4}Si{sub 1.6} hydrides. At 330 K, a high-density sintered thin plate shows a large magnetic-entropy change ΔS{sub m} of 15.5 J/kg K (106 mJ/cm{sup 3 }K) for a field change of 2 T. The volumetric ΔS{sub m} is almost twice as large as that ofmore » bonded La(Fe,Si){sub 13} hydrides. Favorably, hysteresis is almost absent due to the existence of micropores with a porosity of 0.69% which has been analyzed with high-resolution X-ray microtomography.« less
Effect of the oxidation front penetration on in-clad hydrogen migration
NASA Astrophysics Data System (ADS)
Feria, F.; Herranz, L. E.
2018-03-01
In LWR fuel claddings the embrittlement due to hydrogen precipitates (i.e., hydrides) is a degrading mechanism that concerns in nuclear safety, particularly in dry storage. A relevant factor is the radial distribution of the hydrogen absorbed, especially the hydride rim formed. Thus, a reliable assessment of fuel performance should account for hydrogen migration. Based on the current state of modelling of hydrogen dynamics in the cladding, a 1D radial model has been derived and coupled with the FRAPCON code. The model includes the effect of the oxidation front progression on in-clad hydrogen migration, based on experimental observations found (i.e., dissolution/diffusion/re-precipitation of the hydrogen in the matrix ahead of the oxidation front). A remarkable quantitative impact of this new contribution has been shown by analyzing the hydrogen profile across the cladding of several high burnup fuel scenarios (>60 GW d/tU); other potential contributions like thermodiffusion and diffusion in the hydride phase hardly make any difference. Comparisons against PIE measurements allow concluding that the model accuracy notably increases when the effect of the oxidation front is accounted for in the hydride rim formation. In spite of the promising results, further validation would be needed.
Capture of Hydrogen Using ZrNi
NASA Technical Reports Server (NTRS)
Patton, Lisa; Wales, Joshua; Lynch, David; Parrish, Clyde
2005-01-01
Water, as ice, is thought to reside in craters at the lunar poles along with CH4 and H2 . A proposed robotic mission for 2012 will utilize metal/metal hydrides for H2 recovery. Specifications are 99% capture of H2 initially at 5 bar and 100C (or greater), and degassing completely at 300C. Of 47-systems examined using the van't Hoff equation, 4 systems, Mg/MgH2, Mg2Ni/Mg2NiH4, ZrNi/ZrNiH2.8, and Pd/PdH0.77, were considered likely candidates for further examination. It is essential, when selecting a system, to also examine questions regarding activation, kinetics, cyclic stability, and gas impurity effects. After considering those issues, ZrN1 was selected as the most promising candidate, as it is easily activated and rapidly forms ZrNiH 2.8 . In addition, it resists oxide poisoning by CO2, and H2O, while some oxidation by O2 is recommended for improved activation . The presence of hydrogen in the as received Zr-Ni alloy from Alfa Aesar posed additional technical problems. X-ray diffraction of the Zr-Ni powder (-325 mesh), with a Zr:Ni wt% ratio of 70:30, was found to consist of ZrH2, ZrNiH2.8, and ZrNi. ZrH2 in the alloy presented the risk that after degassing that both Zr and ZrNi would be present, and thus lead to erroneous results regarding the reactivity of ZrNi with H2 . Fortunately, ZrH2 is a highly stable hydride that does not degas H2 to any significant extent at temperatures below 300C. Based on equilibrium calculations for the decomposition of ZrH2, only 1 millionth of the hydride decomposed at 300C under a N2 atmosphere flowing at 25 ccm for 64 hours, the longest time for pretreatment employed in the investigation. It was possible, from the X-ray results and knowledge of the Zr:Ni ratio, to compute the composition of a pretreated specimen as being 76 wt% ZrNi and the balance ZrH2.
Jiang, Li-Xue; Zhao, Chongyang; Li, Xiao-Na; Chen, Hui; He, Sheng-Gui
2017-04-03
The hydrogenation of carbon dioxide involves the activation of the thermodynamically very stable molecule CO 2 and formation of a C-H bond. Herein, we report that HCO 2 - and CO can be formed in the thermal reaction of CO 2 with a diatomic metal hydride species, FeH - . The FeH - anions were produced by laser ablation, and the reaction with CO 2 was analyzed by mass spectrometry and quantum-chemical calculations. Gas-phase HCO 2 - was observed directly as a product, and its formation was predicted to proceed by facile hydride transfer. The mechanism of CO 2 hydrogenation in this gas-phase study parallels similar behavior of a condensed-phase iron catalyst. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Stress corrosion cracking of titanium alloys
NASA Technical Reports Server (NTRS)
May, R. C.; Beck, F. H.; Fontana, M. G.
1971-01-01
Experiments were conducted to study (1) the basic electrochemical behavior of titanium in acid chloride solutions and (2) the response of the metal to dynamic straining in the same evironment. The aim of this group of experiments was to simulate, as nearly as possible, the actual conditions which exist at the tip of a crack. One of the foremost theories proposed to explain the propagation of stress corrosion cracks is a hydrogen embrittlement theory involving the precipitation of embrittling titanium hydrides inside the metal near the crack tip. An initial survey of the basic electrochemical literature indicated that surface hydrides play a critical role in the electrochemistry of titanium in acid solutions. A comprehensive analysis of the effect of surface films, particularly hydrides, on the electrochemical behavior of titanium in these solution is presented.
Mechanistic Studies at the Interface Between Organometallic Chemistry and Homogeneous Catalysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Casey, Charles P
Mechanistic Studies at the Interface Between Organometallic Chemistry and Homogeneous Catalysis Charles P. Casey, Principal Investigator Department of Chemistry, University of Wisconsin - Madison, Madison, Wisconsin 53706 Phone 608-262-0584 FAX: 608-262-7144 Email: casey@chem.wisc.edu http://www.chem.wisc.edu/main/people/faculty/casey.html Executive Summary. Our goal was to learn the intimate mechanistic details of reactions involved in homogeneous catalysis and to use the insight we gain to develop new and improved catalysts. Our work centered on the hydrogenation of polar functional groups such as aldehydes and ketones and on hydroformylation. Specifically, we concentrated on catalysts capable of simultaneously transferring hydride from a metal center and a proton frommore » an acidic oxygen or nitrogen center to an aldehyde or ketone. An economical iron based catalyst was developed and patented. Better understanding of fundamental organometallic reactions and catalytic processes enabled design of energy and material efficient chemical processes. Our work contributed to the development of catalysts for the selective and mild hydrogenation of ketones and aldehydes; this will provide a modern green alternative to reductions by LiAlH4 and NaBH4, which require extensive work-up procedures and produce waste streams. (C5R4OH)Ru(CO)2H Hydrogenation Catalysts. Youval Shvo described a remarkable catalytic system in which the key intermediate (C5R4OH)Ru(CO)2H (1) has an electronically coupled acidic OH unit and a hydridic RuH unit. Our efforts centered on understanding and improving upon this important catalyst for reduction of aldehydes and ketones. Our mechanistic studies established that the reduction of aldehydes by 1 to produce alcohols and a diruthenium bridging hydride species occurs much more rapidly than regeneration of the ruthenium hydride from the diruthenium bridging hydride species. Our mechanistic studies require simultaneous transfer of hydride from ruthenium to the aldehyde carbon and of a proton from the CpOH unit to the aldehyde oxygen and support reduction of the aldehyde without its prior coordination to ruthenium. Another important step in the catalysis is the regeneration of 1 from reaction of H2 with the stable diruthenium bridging hydride complex 2. Studies of the microscopic reverse of this process (hydrogen evolution from 1 which occurs at 80°C) in the presence of alcohol (the product of aldehyde hydrogenation) have shown that a dihydrogen complex is formed reversibly at a rate much faster than hydrogen evolution. Kinetic and theoretical studies in collaboration with Professor Qiang Cui of Wisconsin indicated an important role for alcohol in mediating transfer of hydrogen to ruthenium. One key to developing more active catalysts was to destabilize the bridging hydride intermediate 2 to prevent its formation or to speed its conversion to a reactive monohydride 1 by reaction with H2. We found several successful ways to destabilize the bridging hydride and to obtain more active catalysts. Most recently, we discovered related iron catalysts for hydrogenation that do not form dimers; the cost advantage of iron catalysts is spectacular. Iron Catalysts. In an exciting development, we found that a related iron complex is also a very active ketone hydrogenation catalyst. This hydrogenation catalyst shows high chemoselectivity for aldehydes, ketones, and imines and isolated C=C, CºC, C-X, -NO2, epoxides, and ester functions are unaffected by the hydrogenation conditions. Mechanistic studies have established a reversible hydrogen transfer step followed by rapid dihydrogen activation. The same iron complex also catalyzes transfer hydrogenation of ketones.« less
Blechta, Vratislav; Kurfürst, Milan; Sýkora, Jan; Schraml, Jan
2007-03-23
LC-NMR utilizing (1)H and (29)Si NMR spectroscopy is ideally suited for the analysis of silicones. It is shown that reversed phase gradient LC-NMR surpasses standard gel permeation chromatography (GPC) and diffusion ordered spectroscopy (DOSY) in the analysis of model hydride terminated polydimethylsiloxane. (1)H and (29)Si NMR in the stopped-flow arrangement leads to full identification of the components. Concentration gradient introduces a dependence of the (29)Si shifts on solvent composition, this dependence can be substantially reduced by a proposed method of referencing. It is shown that the ADEQUATE version of powerful but insensitive 2D INADEQUATE experiment can be used for complete line assignment.
Complex hydrides for hydrogen storage
Zidan, Ragaiy
2006-08-22
A hydrogen storage material and process of forming the material is provided in which complex hydrides are combined under conditions of elevated temperatures and/or elevated temperature and pressure with a titanium metal such as titanium butoxide. The resulting fused product exhibits hydrogen desorption kinetics having a first hydrogen release point which occurs at normal atmospheres and at a temperature between 50.degree. C. and 90.degree. C.
Arrested α-hydride migration activates a phosphido ligand for C–H insertion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hickey, Anne K.; Muñoz, Salvador B.; Lutz, Sean A.
Bulky tris(carbene)borate ligands provide access to high spin iron(II) phosphido complexes. The complex PhB(MesIm) 3FeP(H)Ph is thermally unstable, and we observed [PPh] group insertion into a C–H bond of the supporting ligand. An arrested α-hydride migration mechanism suggests increased nucleophilicity of the phosphorus atom facilitates [PPh] group transfer reactivity.
Buchholz, Herwig A.; Prakash, G. K. Surya; Deffieux, Denis; Olah, George A.
1999-01-01
Electrochemical reductive tert-butyldimethylsilylation of tetrachlorocyclopropene to 1,2,3-tris(tert-butyldimethylsilyl)cyclopropene, a potential strained precursor for Diels–Alder and related cycloaddition reactions, is described. By hydride abstraction with nitrosonium tetrafluoroborate, 1,2,3-tris(tert-butyldimethylsilyl)cyclopropene is ionized quantitatively to Hückeloid 2π aromatic tris(tert-butyldimethylsilyl)cyclopropenium tetrafluoroborate. PMID:10468551
Low-pressure Structural Modification of Aluminum Hydride
2011-02-01
Acknowledgments Use of the National Synchrotron Light Source (NSLS), Brookhaven National Laboratory ( BNL ) was supported by the U.S. Department of Energy...National Synchrotron Light Source (NSLS) of Brookhaven National Laboratory ( BNL ). The spectral resolution of ±4 cm–1 was used for all IR measurements...12 List of Symbols, Abbreviations, and Acronyms Al aluminum AlH3 aluminum hydride BNL Brookhaven National Laboratory EOS equation of
The Hall Effect in Hydrided Rare Earth Films
NASA Astrophysics Data System (ADS)
Koon, D. W.; Azofeifa, D. E.; Clark, N.
We describe two new techniques for measuring the Hall effect in capped rare earth films during hydriding. In one, we simultaneously measure resistivity and the Hall coefficient for a rare earth film covered with four different thicknesses of Pd, recovering the charge transport quantities for both materials. In the second technique, we replace Pd with Mn as the covering layer. We will present results from both techniques.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sato, T.; Ramirez-Cuesta, Anibal J.; Daemen, Luke L.
2016-08-31
Hydrogen release from Al-based complex hydrides composed of metal cation(s) and [AlH4] – was investigated using inelastic neutron scattering viewed from vibrational dynamics. Here, the hydrogen release followed the softening of translational and [AlH4] – librational modes, which was enhanced by vibrational dynamics and the valence(s) of the metal cation(s).
Johns, I.B.; Newton, A.S.
1958-09-01
A method is described for detecting pin hole imperfections in coatings on uranium-metal objects. Such coated objects are contacted with a heated atmosphere of gaseous hydrogen and imperfections present in the coatings will allow the uranlum to react with the hydrogen to form uranium hydride. Since uranium hydride is less dense than uranium metal it will swell, causing enlargement of the coating defeot and rendering it visible.
NASA Astrophysics Data System (ADS)
Ford, Denise Christine
Insights to the fundamental processes that occur during the manufacturing of niobium superconducting radio-frequency (SRF) cavities are provided via analyses of density functional theory calculations and Raman, infrared, and nuclear magnetic resonance (NMR) spectra. I show that during electropolishing fluorine is bound and released by the reaction of the acid components in the solution: HF + H2SO4 <-> HFSO3 + H2O. This result implies that new recipes can possibly be developed on the principle of controlled release of fluorine by a chemical reaction. I also show that NMR or Raman spectroscopy can be used to monitor the free fluorine when polishing with the standard electropolishing recipe. Density functional theory was applied to calculate the properties of common processing impurities---hydrogen, oxygen, nitrogen, and carbon---in the niobium. These impurities lower the superconducting transition temperature of niobium, and hydride precipitates are at best weakly superconducting. I modeled several of the niobium hydride phases relevant to SRF cavities, and explain the phase changes in the niobium hydrogen system based on the charge transfer between niobium and hydrogen and the strain field inside of the niobium. I also present evidence for a niobium lattice vacancy serving as a nucleation center for hydride phase formation. In considering the other chemical impurities in niobium, I show that the absorption of oxygen into a niobium lattice vacancy is preferred over the absorption of hydrogen, which indicates that oxygen can block these phase nucleation centers. I also show that dissolved oxygen atoms can trap dissolved hydrogen atoms to prevent niobium hydride phase formation. Nitrogen and carbon were studied in less depth, but behaved similarly to oxygen. Based on these results and a literature survey, I propose a mechanism for the success of the low-temperature anneal applied to niobium SRF cavities. Finally, I present the beginning of a model to describe magnetic impurities in niobium SRF cavities, which can cause a loss of local superconductivity. I calculated magnetic configurations of niobium hydrides and oxides, and show that stoichiometric hydride and oxide structures are nonmagnetic, but defective oxide structures retain local magnetic moments.
Wright, Robert J; Zhang, Wei; Yang, Xinzheng; Fasulo, Meg; Tilley, T Don
2012-01-07
Proposed electrocatalytic proton reduction intermediates of hydrogenase mimics were synthesized, observed, and studied computationally. A new mechanism for H(2) generation appears to involve Fe(2)(CO)(6)(1,2-S(2)C(6)H(4)) (3), the dianions {[1,2-S(2)C(6)H(4)][Fe(CO)(3)(μ-CO)Fe(CO)(2)](2-) (3(2-)), the bridging hydride {[1,2-S(2)C(6)H(4)][Fe(CO)(3)(μ-CO)(μ-H)Fe(CO)(2)]}(-), 3H(-)(bridging), and the terminal hydride 3H(-)(term-stag), {[1,2-S(2)C(6)H(4)][HFe(CO)(3)Fe(CO)(3)]}(-), as intermediates. The dimeric sodium derivative of 3(2-), {[Na(2)(THF)(OEt(2))(3)][3(2-)]}(2) (4) was isolated from reaction of Fe(2)(CO)(6)(1,2-S(2)C(6)H(4)) (3) with excess sodium and was characterized by X-ray crystallography. It possesses a bridging CO and an unsymmetrically bridging dithiolate ligand. Complex 4 reacts with 4 equiv. of triflic or benzoic acid (2 equiv. per Fe center) to generate H(2) and 3 in 75% and 60% yields, respectively. Reaction of 4 with 2 equiv. of benzoic acid generated two hydrides in a 1.7 : 1 ratio (by (1)H NMR spectroscopy). Chemical shift calculations on geometry optimized structures of possible hydride isomers strongly suggest that the main product, 3H(-)(bridging), possesses a bridging hydride ligand, while the minor product is a terminal hydride, 3H(-)(term-stag). Computational studies support a catalytic proton reduction mechanism involving a two-electron reduction of 3 that severs an Fe-S bond to generate a dangling thiolate and an electron rich Fe center. The latter iron center is the initial site of protonation, and this event is followed by protonation at the dangling thiolate to give the thiol thiolate [Fe(2)H(CO)(6)(1,2-SHSC(6)H(4))]. This species then undergoes an intramolecular acid-base reaction to form a dihydrogen complex that loses H(2) and regenerates 3.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wolverton, Christopher; Ozolins, Vidvuds; Kung, Harold H.
The objective of the proposed program is to discover novel mixed hydrides for hydrogen storage, which enable the DOE 2010 system-level goals. Our goal is to find a material that desorbs 8.5 wt.% H 2 or more at temperatures below 85°C. The research program will combine first-principles calculations of reaction thermodynamics and kinetics with material and catalyst synthesis, testing, and characterization. We will combine materials from distinct categories (e.g., chemical and complex hydrides) to form novel multicomponent reactions. Systems to be studied include mixtures of complex hydrides and chemical hydrides [e.g. LiNH 2+NH 3BH 3] and nitrogen-hydrogen based borohydrides [e.g.more » Al(BH 4) 3(NH 3) 3]. The 2010 and 2015 FreedomCAR/DOE targets for hydrogen storage systems are very challenging, and cannot be met with existing materials. The vast majority of the work to date has delineated materials into various classes, e.g., complex and metal hydrides, chemical hydrides, and sorbents. However, very recent studies indicate that mixtures of storage materials, particularly mixtures between various classes, hold promise to achieve technological attributes that materials within an individual class cannot reach. Our project involves a systematic, rational approach to designing novel multicomponent mixtures of materials with fast hydrogenation/dehydrogenation kinetics and favorable thermodynamics using a combination of state-of-the-art scientific computing and experimentation. We will use the accurate predictive power of first-principles modeling to understand the thermodynamic and microscopic kinetic processes involved in hydrogen release and uptake and to design new material/catalyst systems with improved properties. Detailed characterization and atomic-scale catalysis experiments will elucidate the effect of dopants and nanoscale catalysts in achieving fast kinetics and reversibility. And, state-of-the-art storage experiments will give key storage attributes of the investigated reactions, validate computational predictions, and help guide and improve computational methods. In sum, our approach involves a powerful blend of: 1) H2 Storage measurements and characterization, 2) State-of-the-art computational modeling, 3) Detailed catalysis experiments, 4) In-depth automotive perspective.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ford, Denise Christine
Insights to the fundamental processes that occur during the manufacturing of niobium superconducting radio-frequency (SRF) cavities are provided via analyses of density functional theory calculations and Raman, infrared, and nuclear magnetic resonance (NMR) spectra. I show that during electropolishing fluorine is bound and released by the reaction of the acid components in the solution: HF + H 2SO 4 <-> HFSO 3 + H 2O. This result implies that new recipes can possibly be developed on the principle of controlled release of fluorine by a chemical reaction. I also show that NMR or Raman spectroscopy can be used to monitormore » the free fluorine when polishing with the standard electropolishing recipe. Density functional theory was applied to calculate the properties of common processing impurities – hydrogen, oxygen, nitrogen, and carbon – in the niobium. These impurities lower the superconducting transition temperature of niobium, and hydride precipitates are at best weakly superconducting. I modeled several of the niobium hydride phases relevant to SRF cavities, and explain the phase changes in the niobium hydrogen system based on the charge transfer between niobium and hydrogen and the strain field inside of the niobium. I also present evidence for a niobium lattice vacancy serving as a nucleation center for hydride phase formation. In considering the other chemical impurities in niobium, I show that the absorption of oxygen into a niobium lattice vacancy is preferred over the absorption of hydrogen, which indicates that oxygen can block these phase nucleation centers. I also show that dissolved oxygen atoms can trap dissolved hydrogen atoms to prevent niobium hydride phase formation. Nitrogen and carbon were studied in less depth, but behaved similarly to oxygen. Based on these results and a literature survey, I propose a mechanism for the success of the low-temperature anneal applied to niobium SRF cavities. Finally, I present the beginning of a model to describe magnetic impurities in niobium SRF cavities, which can cause a loss of local superconductivity. I calculated magnetic configurations of niobium hydrides and oxides, and show that stoichiometric hydride and oxide structures are nonmagnetic, but defective oxide structures retain local magnetic moments.« less
Kleckner, Amy E.; Kakouros, Evangelos; Stewart, A. Robin
2017-01-01
A safe, practical, and accurate method for the determination of selenium (Se) in range of environmental samples was developed. Small sample masses, 5–20 mg, were amended with 82Se enriched isotope for the isotope dilution (ID), preceding a multi-step wet digestion with nitric acid (HNO3) and hydrogen peroxide (H2O2). Samples were incubated in an autoclave for 3 h at 20 psi and 126°C. Digestates were subsequently reduced with concentrated hydrochloric acid to Se(IV) the most favorable valence for hydride generation (HG). The solutions were then analyzed on an ICP-MS equipped with Flow Injection system (FIAS-400). Polyatomic, isobaric, and background interferences were removed through the use of HG and ID with an 82Se enriched isotope spike. Recoveries for certified reference materials were determined and averaged 96% for biological tissues (NRCC DOLT3, DOLT4, DORM2, TORT2, and TORT3, and NIST 2976) and 108% for estuarine sediment (NRCC PACS2) with an average coefficient of variation for replicate measurements of ∼ 3.5%. Limit of detection was 0.13 ng Se g−1 dry weight or 0.19 ng Se L−1. This method can be broadly applied to biological tissues, sediments, suspended particulates, and water samples with minimal modifications making this method highly useful for assessing the ecotoxicology of total Se in aquatic ecosystems.
Elwaer, Nagmeddin; Hintelmann, Holger
2007-11-01
The analytical performance of five sample introduction systems, a cross flow nebulizer spray chamber, two different solvent desolvation systems, a multi-mode sample introduction system (MSIS), and a hydride generation (LI2) system were compared for the determination of Se isotope ratio measurements using multi-collector inductively coupled plasma mass spectrometry (MC-ICP/MS). The optimal operating parameters for obtaining the highest Se signal-to-noise (S/N) ratios and isotope ratio precision for each sample introduction were determined. The hydride generation (LI2) system was identified as the most suitable sample introduction method yielding maximum sensitivity and precision for Se isotope ratio measurement. It provided five times higher S/N ratios for all Se isotopes compared to the MSIS, 20 times the S/N ratios of both desolvation units, and 100 times the S/N ratios produced by the conventional spray chamber sample introduction method. The internal precision achieved for the (78)Se/(82)Se ratio at 100 ng mL(-1) Se with the spray chamber, two desolvation, MSIS, and the LI2 systems coupled to MC-ICP/MS was 150, 125, 114, 13, and 7 ppm, respectively. Instrument mass bias factors (K) were calculated using an exponential law correction function. Among the five studied sample introduction systems the LI2 showed the lowest mass bias of -0.0265 and the desolvation system showed the largest bias with -0.0321.
Quantum fluctuations and the closing of the Coulomb gap in a correlated insulator.
Roy, A S; Hoekstra, A F Th; Rosenbaum, T F; Griessen, R
2002-12-30
The "switchable mirror" yttrium hydride is one of the few strongly correlated systems with a continuous Mott-Hubbard metal-insulator transition. We systematically map out the low temperature electrical transport from deep in the insulator to the quantum critical point using persistent photoconductivity as a drive parameter. Both activated hopping over a Coulomb gap and power-law quantum fluctuations must be included to describe the data. Collapse of the data onto a universal curve within a dynamical scaling framework (with corrections) requires znu=6.0+/-0.5, where nu and z are the static and dynamical critical exponents, respectively.
Phase Equilibria, Crystal Structure and Hydriding/Dehydriding Mechanism of Nd4Mg80Ni8 Compound
Luo, Qun; Gu, Qin-Fen; Zhang, Jie-Yu; Chen, Shuang-Lin; Chou, Kuo-Chih; Li, Qian
2015-01-01
In order to find out the optimal composition of novel Nd-Mg-Ni alloys for hydrogen storage, the isothermal section of Nd-Mg-Ni system at 400 °C is established by examining the equilibrated alloys. A new ternary compound Nd4Mg80Ni8 is discovered in the Mg-rich corner. It has the crystal structure of space group I41/amd with lattice parameters of a = b = 11.2743(1) Å and c = 15.9170(2) Å, characterized by the synchrotron powder X-ray diffraction (SR-PXRD). High-resolution transmission electron microscopy (HR-TEM) is used to investigate the microstructure of Nd4Mg80Ni8 and its hydrogen-induced microstructure evolution. The hydrogenation leads to Nd4Mg80Ni8 decomposing into NdH2.61-MgH2-Mg2NiH0.3 nanocomposites, where the high density phase boundaries provide a great deal of hydrogen atoms diffusion channels and nucleation sites of hydrides, which greatly enhances the hydriding/dehydriding (H/D) properties. The Nd4Mg80Ni8 exhibits a good cycle ability. The kinetic mechanisms of H/D reactions are studied by Real Physical Picture (RPP) model. The rate controlling steps are diffusion for hydriding reaction in the temperature range of 100 ~ 350 °C and surface penetration for dehydriding reaction at 291 ~ 347 °C. In-situ SR-PXRD results reveal the phase transformations of Mg to MgH2 and Mg2Ni to Mg2NiH4 as functions of hydrogen pressure and hydriding time. PMID:26471964
NASA Astrophysics Data System (ADS)
Song, Myoung Youp; Lee, DongSub; Kwon, IkHyun
2004-02-01
We attempted to improve the H2-sorption properties of Mg by mechanical grinding under H2 (reactive grinding) with Co (with various particle sizes) and with CoO. The thermodynamic stabilities of the added Co and CoO were also investigated. CoO addition has the best influence and addition of smaller particles of Co (0.5-1.5 μm) has a better effect than the addition of larger particles of Co on the H2-sorption properties of Mg. The activated Mg+10 wt.% CoO sample has about 5.54 wt% hydrogen-storage capacity at 598 K and the highest hydriding rate, showing an Ha value of 2.39 wt.% after 60 min at 598 K, 11.2 bar H2. The order of the hydriding rates after activation is the same as that of the specific surface areas of the samples. The reactive grinding of Mg with Co or CoO and hydriding-dehydriding cycling increase the H2-sorption rates by facilitating nucleation of magnesium hydride or α solid solution of Mg and H (by creating defects on the surface of the Mg particles and by the additive), and by making cracks on the surface of Mg particles and reducing the particle size of Mg, thus shortening the diffusion distances of hydrogen atoms. The cobalt oxide is stable even after 14 hydriding cycles at 598 K under 11.2 bar H2. Discharge capacities are measured for the sampple Mg+10 wt.%CoO and Mg+10wt.%Co (0.5-1.5 μm) with good hydrogen-storage properties.
NASA Astrophysics Data System (ADS)
Yang, Xiao Guang; Liaw, Bor Yann
Although large ampere hour nickel-metal hydride (Ni-MH) traction batteries are in the stage of being commercialized for electric and hybrid vehicle applications, little is known about their performance characteristics. By using a standard Hg/HgO reference electrode in a commercial Ni-MH battery, we were able to conduct in situ measurements to determine both kinetic and thermodynamic properties of the system, including the characteristics of individual electrodes. Using the galvanostatic intermittent titration technique (GITT), we simultaneously and effectively determined the open-circuit voltage of the battery, the equilibrium electrode potentials, and the diffusion coefficient of proton and hydrogen in the nickel and metal hydride electrode, respectively, as a function of the states of charge (SOC). Using the current-step excitation technique, we found that the internal resistance of the battery primarily comes from the metal hydride electrode, which is greater by one order of magnitude than that of the Ni electrode. The cyclic linear micro-polarization experiments, on the other hand, showed that the charge-transfer resistance of the electrochemical reaction at the metal hydride electrode is about twice larger than that of the Ni counterpart above 20% SOC. In comparison, the internal resistance is an order of magnitude smaller than those of the electrochemical charge-transfer reactions. The micro-polarization technique also allowed us to calculate the exchange current densities of the respective electrode electrochemical reactions and the associated specific exchange current densities. These in situ, simple but detailed, characterizations of the thermodynamic and kinetic properties of the Ni-MH system provided valuable information for better understanding of the battery performance.
NASA Astrophysics Data System (ADS)
Jokisaari, Andrea M.
Hydride precipitation in zirconium is a significant factor limiting the lifetime of nuclear fuel cladding, because hydride microstructures play a key role in the degradation of fuel cladding. However, the behavior of hydrogen in zirconium has typically been modeled using mean field approaches, which do not consider microstructural evolution. This thesis describes a quantitative microstructural evolution model for the alpha-zirconium/delta-hydride system and the associated numerical methods and algorithms that were developed. The multiphysics, phase field-based model incorporates CALPHAD free energy descriptions, linear elastic solid mechanics, and classical nucleation theory. A flexible simulation software implementing the model, Hyrax, is built on the Multiphysics Object Oriented Simulation Environment (MOOSE) finite element framework. Hyrax is open-source and freely available; moreover, the numerical methods and algorithms that have been developed are generalizable to other systems. The algorithms are described in detail, and verification studies for each are discussed. In addition, analyses of the sensitivity of the simulation results to the choice of numerical parameters are presented. For example, threshold values for the CALPHAD free energy algorithm and the use of mesh and time adaptivity when employing the nucleation algorithm are studied. Furthermore, preliminary insights into the nucleation behavior of delta-hydrides are described. These include a) the sensitivities of the nucleation rate to temperature, interfacial energy, composition and elastic energy, b) the spatial variation of the nucleation rate around a single precipitate, and c) the effect of interfacial energy and nucleation rate on the precipitate microstructure. Finally, several avenues for future work are discussed. Topics encompass the terminal solid solubility hysteresis of hydrogen in zirconium and the effects of the alpha/delta interfacial energy, as well as thermodiffusion, plasticity, and irradiation, which are not yet accounted for in the model.
In operando neutron diffraction study of LaNdMgNi9H13 as a metal hydride battery anode
NASA Astrophysics Data System (ADS)
Nazer, N. S.; Denys, R. V.; Yartys, V. A.; Hu, Wei-Kang; Latroche, M.; Cuevas, F.; Hauback, B. C.; Henry, P. F.; Arnberg, L.
2017-03-01
La2MgNi9-related alloys are superior metal hydride battery anodes as compared to the commercial AB5 alloys. Nd-substituted La2-yNdyMgNi9 intermetallics are of particular interest because of increased diffusion rate of hydrogen and thus improved performance at high discharge currents. The present work presents in operando characterization of the LaNdMgNi9 intermetallic as anode for the nickel metal hydride (Ni-MH) battery. We have studied the structural evolution of LaNdMgNi9 during its charge and discharge using in situ neutron powder diffraction. The work included experiments using deuterium gas and electrochemical charge-discharge measurements. The alloy exhibited a high electrochemical discharge capacity (373 mAh/g) which is 20% higher than the AB5 type alloys. A saturated β-deuteride synthesized by solid-gas reaction at PD2 = 1.6 MPa contained 12.9 deuterium atoms per formula unit (D/f.u.) which resulted in a volume expansion of 26.1%. During the electrochemical charging, the volume expansion (23.4%) and D-contents were found to be slightly reduced. The reversible electrochemical cycling is performed through the formation of a two-phase mixture of the α-solid solution and β-hydride phases. Nd substitution contributes to the high-rate dischargeability, while maintaining a good cyclic stability. Electrochemical Impedance Spectroscopy (EIS) was used to characterize the anode electrode on cycling. A mathematical model for the impedance response of a porous electrode was utilized. The EIS showed a decreased hydrogen transport rate during the long-term cycling, which indicated a corresponding slowing down of the electrochemical processes at the surface of the metal hydride anode.
Hydride Molecules towards Nearby Galaxies
NASA Astrophysics Data System (ADS)
Monje, Raquel R.; La, Ngoc; Goldsmith, Paul
2018-06-01
Observations carried out by the Herschel Space Observatory revealed strong spectroscopic signatures from light hydride molecules within the Milky Way and nearby active galaxies. To better understand the chemical and physical conditions of the interstellar medium, we conducted the first comprehensive survey of hydrogen fluoride (HF) and water molecular lines observed through the SPIRE Fourier Transform Spectrometer. By collecting and analyzing the sub-millimeter spectra of over two hundred sources, we found that the HF J = 1 - 0 rotational transition which occurs at approximately 1232 GHz was detected in a total of 39 nearby galaxies both in absorption and emission. The analysis will determine the main excitation mechanism of HF in nearby galaxies and provide steady templates of the chemistry and physical conditions of the ISM to be used in the early universe, where observations of hydrides are more scarce.
Calcium hydride synthesis of Ti-Nb-based alloy powders
NASA Astrophysics Data System (ADS)
Kasimtsev, A. V.; Shuitsev, A. V.; Yudin, S. N.; Levinskii, Yu. V.; Sviridova, T. A.; Alpatov, A. V.; Novosvetlova, E. E.
2017-09-01
The metallothermic (calcium hydride) synthesis of Ti-Nb alloy powders alloyed with tantalum and zirconium is experimentally studied under various conditions. Chemical, X-ray diffraction, and metallographic analyses of the synthesized products show that initial oxides are completely reduced and a homogeneous β-Ti-based alloy powder forms under the optimum synthesis conditions at a temperature of 1200°C. At a lower synthesis temperature, the end products have a high oxygen content. The experimental results are used to plot the thermokinetic dependences o formation of a bcc solid solution at various times of isothermal holding of Ti-22Nb-6Ta and Ti-22Nb-6Zr (at %) alloys. The physicochemical and technological properties of the Ti-22Nb-6Ta and Ti-22Nb-6Zr alloy powders synthesized by calcium hydride reduction under the optimum conditions are determined.
An allowable cladding peak temperature for spent nuclear fuels in interim dry storage
NASA Astrophysics Data System (ADS)
Cha, Hyun-Jin; Jang, Ki-Nam; Kim, Kyu-Tae
2018-01-01
Allowable cladding peak temperatures for spent fuel cladding integrity in interim dry storage were investigated, considering hydride reorientation and mechanical property degradation behaviors of unirradiated and neutron irradiated Zr-Nb cladding tubes. Cladding tube specimens were heated up to various temperatures and then cooled down under tensile hoop stresses. Cool-down specimens indicate that higher heat-up temperature and larger tensile hoop stress generated larger radial hydride precipitation and smaller tensile strength and plastic hoop strain. Unirradiated specimens generated relatively larger radial hydride precipitation and plastic strain than did neutron irradiated specimens. Assuming a minimum plastic strain requirement of 5% for cladding integrity maintenance in interim dry storage, it is proposed that a cladding peak temperature during the interim dry storage is to keep below 250 °C if cladding tubes are cooled down to room temperature.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bernard, P.
1998-02-01
Effects of corrosion of MmNi{sub 4.3{minus}x}Mn{sub 0.3}Al{sub 0.4}Co{sub x} alloys (where Mm = Ce 50%, La 30%, Nd 15%, Pr 5%) are evaluated in nickel-metal-hydride (Ni-MH) cells. Particularly, it is shown how Al released by the corroded alloys pollutes the positive electrode, which endures a loss of charging efficiency, due to the formation of a hydrotalcite-like phase stabilized with Al. Furthermore, since Al is eluted from the hydride electrode and is completely trapped in the positive active material, the titration of this element in the positive electrode is a powerful technique for quantification of the corrosion of AB{sub 5} alloysmore » in Ni-MH cells.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bragdon, Robert W.
1950-11-08
(1) A comprehensive investigation of methods for the preparation of hydrides of wolfram has been made. A wolfram (IV) hydride-aluminum hydride mixture has been prepared and its N{sub H} and thermal stability determined for its evaluation as a nuclear radiation shield material. Aluminum borohydride has been shown to reduce wolfram (VI) chloride to a subchloride. The alkali borohydrides also reduce hexavalent wolfram, but in no case has a wolfram borohydride been isolated. (2) An investigation of the chemical and physical properties of thorium borohydride, which pertain to its use as alow-temperature nuclear radiatin shield, is presented. Values are taken frommore » the literature when available and are supplemented where necessary by our experimental investigation.« less
Apparatus for separating and recovering hydrogen isotopes
Heung, Leung K.
1994-01-01
An apparatus for recovering hydrogen and separating its isotopes. The apparatus includes a housing bearing at least a fluid inlet and a fluid outlet. A baffle is disposed within the housing, attached thereto by a bracket. A hollow conduit is coiled about the baffle, in spaced relation to the baffle and the housing. The coiled conduit is at least partially filled with a hydride. The hydride can be heated to a high temperature and cooled to a low temperature quickly by circulating a heat transfer fluid in the housing. The spacing between the baffle and the housing maximizes the heat exchange rate between the fluid in the housing and the hydride in the conduit. The apparatus can be used to recover hydrogen isotopes (protium, deuterium and tritium) from gaseous mixtures, or to separate hydrogen isotopes from each other.
Performance Versus Safety of Some Primary and Rechargeable Lithium Batteries
2004-12-01
which can ignite during abuse. At the same time, manganese dioxide is an oxidising agent and it decomposes at 535oC, giving off oxygen, thus...is endothermic for nicad but exothermic for nickel- metal hydride. Therefore, nickel-metal hydride cells are more prone to damage from...With nail penetration, Figure 6. Photograph showing damage inflicted onto a lithium-ion gel-polymer cell by several hammer blows
Fuels and Lubricants for Aircraft
1975-02-27
probable but fundamentally possible is the use of hydrides, i.e., compounds of hydrogen "with other elements .(boranes, hydra-zine, ammonia ), alcohols...mixtures; 24. Liquid hydrogen; 25. Nitrogen hydrides and their derivatives ( ammonia , hydrazine, amines, DMH); 26. Boron, Al, Mg, Li, Be and other metals... method . For inflammation to occur, it is necessary that th’e rate of liberation of heat due to exochermic reactions in an initially heated volume of
Hydricity-promoted [1,5]-H shifts in acetalic ketenimines and carbodiimides.
Alajarín, Mateo; Bonillo, Baltasar; Ortín, María-Mar; Sánchez-Andrada, Pilar; Vidal, Angel
2006-11-23
2-monosubstituted 1,3-dioxolanes and dithiolanes act as hydride-releasing fragments, transferring intramolecularly their acetalic H atom to the central carbon of ketenimine functions. The presumed products of these migrations, o-quinomethanimines, undergo in situ 6pi-electrocyclization. A computational study supports this mechanism and the hydride-shift character of the first step. Carbodiimides were also suitable substrates, although less reactive. [reaction: see text].
Rapid determination of nanogram amounts of tellurium in silicate rocks
Greenland, L.P.; Campbell, E.Y.
1976-01-01
A hydride-generation flameless atomic-absorption technique is used to determine as little as 5 ng g-1 tellurium in 0.25 g of silicate rock. After acid decomposition of the sample, tellurium hydride is generated with sodium borohydride and the vapor passed directly to a resistance-heated quartz cell mounted in an atomic-absorption spectrophotometer. Analyses of 11 U.S. Geological Survey standard rocks are presented. ?? 1976.
PREPARATION OF METAL POWDER COMPACTS PRIOR TO PRESSING
Mansfield, H.
1958-08-26
A method of fabricating uranium by a powder metallurgical technique is described. It consists in introducing powdered uranium hydride into a receptacle shaped to coincide with the coatour of the die cavity and heating the hydride so that it decomposes to uranium metal. The metal particles cohere in the shapw of the receptacle and thereafter the prefurmed metal powder is pressed and sintered to obtain a dense compact.
New chemistry of transition metal oxyhydrides
Kobayashi, Yoji; Hernandez, Olivier; Tassel, Cédric; Kageyama, Hiroshi
2017-01-01
Abstract In this review we describe recent advances in transition metal oxyhydride chemistry obtained by topochemical routes, such as low temperature reduction with metal hydrides, or high-pressure solid-state reactions. Besides the crystal chemistry, magnetic and transport properties of the bulk powder and epitaxial thin film samples, the remarkable lability of the hydride anion is particularly highlighted as a new strategy to discover unprecedented mixed anion materials. PMID:29383042
Nanosizing and nanoconfinement: new strategies towards meeting hydrogen storage goals.
de Jongh, Petra E; Adelhelm, Philipp
2010-12-17
Hydrogen is expected to play an important role as an energy carrier in a future, more sustainable society. However, its compact, efficient, and safe storage is an unresolved issue. One of the main options is solid-state storage in hydrides. Unfortunately, no binary metal hydride satisfies all requirements regarding storage density and hydrogen release and uptake. Increasingly complex hydride systems are investigated, but high thermodynamic stabilities as well as slow kinetics and poor reversibility are important barriers for practical application. Nanostructuring by ball-milling is an established method to reduce crystallite sizes and increase reaction rates. Since five years attention has also turned to alternative preparation techniques that enable particle sizes below 10 nanometers and are often used in conjunction with porous supports or scaffolds. In this Review we discuss the large impact of nanosizing and -confinement on the hydrogen sorption properties of metal hydrides. We illustrate possible preparation strategies, provide insight into the reasons for changes in kinetics, reversibility and thermodynamics, and highlight important progress in this field. All in all we provide the reader with a clear view of how nanosizing and -confinement can beneficially affect the hydrogen sorption properties of the most prominent materials that are currently considered for solid-state hydrogen storage.
Maity, Niladri; Barman, Samir; Callens, Emmanuel; ...
2015-11-30
The well-defined single-site silica-supported tungsten complex [(Si–O–)W(Me) 5], 1, is an excellent precatalyst for alkane metathesis. The unique structure of 1 allows the synthesis of unprecedented tungsten hydrido methyl surface complexes via a controlled hydrogenolysis. Specifically, in the presence of molecular hydrogen, 1 is quickly transformed at -78 °C into a partially alkylated tungsten hydride, 4, as characterized by 1H solid-state NMR and IR spectroscopies. Species 4, upon warming to 150 °C, displays the highest catalytic activity for propane metathesis yet reported. DFT calculations using model systems support the formation of [(Si–O–)WH 3(Me) 2], as the predominant species at -78more » °C following several elementary steps of hydrogen addition (by σ-bond metathesis or α-hydrogen transfer). Rearrangement of 4 occuring between -78 °C and room temperature leads to the formation of an unique methylidene tungsten hydride [(Si–O–)WH 3(CH 2)], as determined by solid-state 1H and 13C NMR spectroscopies and supported by DFT. Thus for the first time, a coordination sphere that incorporates both carbene and hydride functionalities has been observed.« less
Materials for Hydrogen Storage: From Nanostructures to Complex Hydrides
NASA Astrophysics Data System (ADS)
Jena, Puru
2006-03-01
The limited supply of fossil fuels, its adverse effect on the environment, and growing worldwide demand for energy has necessitated the search for new and clean sources of energy. The possibility of using hydrogen to meet this growing energy need has rekindled interest in the study of safe, efficient, and economical storage of hydrogen. This talk will discuss the issues and challenges in storing hydrogen in light complex hydrides and discuss the role of nanostructuring and catalysts that can improve the thermodynamics and kinetics of hydrogen. In particular, we will discuss how studies of clusters can help elucidate the fundamental mechanisms for hydrogen storage and how these can be applied in Boron Nitride and Carbon nanocages and how metallization of these nanostructures is necessary to store hydrogen with large gravimetric density. We will also discuss the properties of complex light metal hydrides such as alanates and magnesium hydrides that can store up to 18 wt % hydrogen, although the temperature where hydrogen desorbs is rather high. Using first principles calculations, we will provide a fundamental understanding of the electronic structure and stability of these systems and how it is affected due to catalysts. It is hoped that the understanding gained here can be useful in designing better catalysts as well as hosts for hydrogen storage.
Using the electrochemical dimension to build water/Ru(0001) phase diagram
NASA Astrophysics Data System (ADS)
Lespes, Nicolas; Filhol, Jean-Sébastien
2015-01-01
The water monolayer/Ru(0001) electrochemical phase diagram as a function of surface potential and temperature is built using a DFT approach. The monolayer structure with temperature is extracted following the zero-charge line in good agreement with experiments. Below 140 K, a mix of oppositely charged hydroxyl/water and hydride/water domains is found stable; above 140 K, water molecules desorb from the hydride phase leading to a mixture of oppositely charged surface hydride and hydroxyl/water phases; above 280 K, all the residual adsorbed water desorbs. For undissociated water, a Chain structure is found stable and desorbs above 150 K. The observed nano-sized domains are suggested to be the balance between hydroxyl/hydride repulsion that tends to create two well separated domains and opposite charging that tends to favor a domain mix. An isotopic effect is computed to reduce by a factor of 160 the kinetic rate of D2O dissociation (compared to H2O) and is linked to the reduction of the ZPE in the transition state caused by a proton transport chain. Water monolayer/Ru(0001) has a specific reactivity and its organization is highly sensitive to the surface potential suggesting that under electrochemical conditions, the potential is not only tuning directly the chemical reactivity but also indirectly through the solvent structure.
NASA Astrophysics Data System (ADS)
Börries, S.; Metz, O.; Pranzas, P. K.; Bellosta von Colbe, J. M.; Bücherl, T.; Dornheim, M.; Klassen, T.; Schreyer, A.
2016-10-01
For the storage of hydrogen, complex metal hydrides are considered as highly promising with respect to capacity, reversibility and safety. The optimization of corresponding storage tanks demands a precise and time-resolved investigation of the hydrogen distribution in scaled-up metal hydride beds. In this study it is shown that in situ fission Neutron Radiography provides unique insights into the spatial distribution of hydrogen even for scaled-up compacts and therewith enables a direct study of hydrogen storage tanks. A technique is introduced for the precise quantification of both time-resolved data and a priori material distribution, allowing inter alia for an optimization of compacts manufacturing process. For the first time, several macroscopic fields are combined which elucidates the great potential of Neutron Imaging for investigations of metal hydrides by going further than solely 'imaging' the system: A combination of in-situ Neutron Radiography, IR-Thermography and thermodynamic quantities can reveal the interdependency of different driving forces for a scaled-up sodium alanate pellet by means of a multi-correlation analysis. A decisive and time-resolved, complex influence of material packing density is derived. The results of this study enable a variety of new investigation possibilities that provide essential information on the optimization of future hydrogen storage tanks.
Alternative group V precursors for CVD applications
NASA Astrophysics Data System (ADS)
Lum, R. M.; Klingert, J. K.
1991-01-01
The chemical vapor deposition (CVD) techniques used to grow III/V semiconductors films, such as metalorganic vapor phase epitaxy (MOVPE), hydride VPE, chemical beam epitaxy (CBE) and gas source molecular beam epitaxy (GS-MBE), all use hydrides (AsH 3 and PH 3) as the Group V source. However, the hydrides are extremely toxic gases which are stored under high pressure (200-2000 psi). To reduce the safety hazards associated with these gases, alternative Group V precursors have been investigated. Organoarsenic and phosphorous compounds have received the most attention as replacements for AsH 3 and PH 3 because they are typically low vapor pressure liquids, and thus present significantly lower exposure risks than the hydrides. For AsH 3 these have included the methyl, ethyl and butyl-based derivatives RnAsH 3- n, with varying degrees ( n = 1-3) of hydrogen atom substitution. In this paper the growth properties, thermochemistry and toxicity of the various alkylarsine precursors are compared with arsine. Data are presented on the impact of the thermochemistry of these compounds on film electrical properties, and on the effects of precursor composition and purity on overall film quality. The suitability of alternative As-precursors for device applications is demonstrated, and selection criteria are presented for the most effective alkylarsine compound for a particular CVD growth process.
Oriented xenon hydride molecules in the gas phase
NASA Astrophysics Data System (ADS)
Buck, Udo; Fárník, Michal
The production of the xenon hydride molecules HXeX with X = I and Cl in the gas phase is reviewed. These molecules are generated by the photolysis of the hydrogen halide HI and HCl molecules on the surface of large xenon Xen clusters. Molecular dynamics simulations show that the flexible H atoms react with the heavy XeX moiety and form the desired molecules with nearly no rotational motion. They are observed by photodissociation with subsequent detection of the kinetic energy of the H atom fragment. During the generating process, the cluster starts to evaporate and the hydride molecule is left essentially free. For further discrimination against the H atom fragments from HX, the HXeX molecules are oriented in a combined pulsed laser field and a weak electrostatic field. The three topics which represent the background of our experiments are briefly reviewed: the nature and generation of rare gas hydrides, the alignment and orientation of molecules in electric fields, and the photodissociation of selected molecules in rare gas clusters. The conditions for detecting them in the gas phase are discussed. This is the trade off between the stability, which requires high electron affinity, and the conditions for orientation, which necessitate large polarizability anisotropies and dipole moments. Finally the prospects of detecting other classes of molecules are discussed.
Metal hydride and pyrophoric fuel additives for dicyclopentadiene based hybrid propellants
NASA Astrophysics Data System (ADS)
Shark, Steven C.
The purpose of this study is to investigate the use of reactive energetic fuel additives that have the potential to increase the combustion performance of hybrid rocket propellants in terms of solid fuel regression rate and combustion efficiency. Additives that can augment the combustion flame zone in a hybrid rocket motor by means of increased energy feedback to the fuel grain surface are of great interest. Metal hydrides have large volumetric hydrogen densities, which gives these materials high performance potential as fuel additives in terms of specifc impulse. The excess hydrogen and corresponding base metal may also cause an increase in the hybrid rocket solid fuel regression rate. Pyrophoric additives also have potential to increase the solid fuel regression rate by reacting more readily near the burning fuel surface providing rapid energy feedback. An experimental performance evaluation of metal hydride fuel additives for hybrid rocket motor propulsion systems is examined in this study. Hypergolic ignition droplet tests and an accelerated aging study revealed the protection capabilities of Dicyclopentadiene (DCPD) as a fuel binder, and the ability for unaided ignition. Static hybrid rocket motor experiments were conducted using DCPD as the fuel. Sodium borohydride (NabH4) and aluminum hydride (AlH3) were examined as fuel additives. Ninety percent rocket grade hydrogen peroxide (RGHP) was used as the oxidizer. In this study, the sensitivity of solid fuel regression rate and characteristic velocity (C*) efficiency to total fuel grain port mass flux and particle loading is examined. These results were compared to HTPB combustion performance as a baseline. Chamber pressure histories revealed steady motor operation in most tests, with reduced ignition delays when using NabH4 as a fuel additive. The addition of NabH4 and AlH3 produced up to a 47% and 85% increase in regression rate over neat DCPD, respectively. For all test conditions examined C* efficiency ranges between 80% and 90%. The regression rate and C* efficiency mass flux dependence indicate a shift towards a more diffusion controlled system with metal hydride particle addition. Although these types of energetic particles have potential as high performing fuel additives, they can be in low supply and expensive. An opposed flow burner was investigated as a means to screen and characterize hybrid rocket fuels prior to full scale rocket motor testing. Although this type of configuration has been investigated in the past, no comparison has been made to hybrid rocket motor operation in terms of mass flux. Polymeric fuels and low melt temperature fuels with and without additives were investigated via an opposed flow burner. The effects of laminar and turbulent flow regimes on the convective heat transfer in the opposed flow system was depicted in the regression rate trends of these fuels. Regression rate trends similar to hybrid rocket motor operation were depicted, including the entrainment mechanism for paran fuel. However, there was a shift in overall magnitude of these results. A decrease in regression rate occurred for HTPB loaded with passivated nano-aluminum, due to low resonance time in the reaction zone. Previous results have shown that pyrophoric additives can cause an increase in regression rate in the opposed flow burner configuration. It is proposed that the opposed burner is useful as a screening and characterization tool for some propellant combinations. Gaseous oxygen (GOX) was investigated as an oxidizer for similar fuels evaluated with RGHP. Specifically, combustion performance sensitivity to mass flux and MH particle size was investigated. Similar results to the RGHP experiments were observed for the regression rate tends of HTPB, DPCD, and NabH 4 addition. Kinetically limited regression rate dependence on mass flux was observed at the higher mass flux levels. No major increase in C* efficiency was observed for MH addition. The C* efficiency varied with equivalence ratio by approximately 10 percentage points, which was not observed in the RGHP experiments. A 10 percentage point decrease in C* efficiency was observed with increasing mass flux in the system. This was most likely due to poorly mixed fuel and oxidizer in center of the combustion chamber at the higher mass flux levels. Detailed measurements of the hybrid rocket combustion zone is useful for understanding the mechanisms governing performance, but can be difficult to obtain. Traditional slab burner configurations have proven useful but are operationally limited in pressure and mass flux ranges. A new optical cylindrical combustor (OCC) design is presented that allows surface and flame zone imaging and tracking during hybrid rocket motor operation at appreciable mass flux and pressure levels, > 100 kg/s/m2 and > 0.69 MPa. The flame height and regression rate sensitivity to mass flux and chamber pressure was examined for the same fuels examined in the GOX hybrid rocket motor, with the addition of DCPD fuel loaded with Al and unpassivated mechanically activated Al-PTFE. The regression rate trends were on the same order of magnitude of traditional hybrid rocket motor results. A flame height decrease was observed for increased mass flux. The flame height increased with NabH 4 addition, which is most likely a function of increased blowing at the surface. There was no appreciable flame height sensitivity to NabH4 particle size. There was no relative change in flame height or regression rate between the Al and AL-PTFE addition. The OCC allowed visualization of the hybrid rocket fuel flame zone at mass flux and pressure levels that are not known to be report for traditional slab burner configurations in literature. The OCC proved to be a new useful tool for investigated hybrid rocket propellant combustion characteristics.
NASA Astrophysics Data System (ADS)
El-Eskandarany, M. Sherif; Shaban, Ehab; Ali, Naser; Aldakheel, Fahad; Alkandary, Abdullah
2016-11-01
One practical solution for utilizing hydrogen in vehicles with proton-exchange fuel cells membranes is storing hydrogen in metal hydrides nanocrystalline powders. According to its high hydrogen capacity and low cost of production, magnesium hydride (MgH2) is a desired hydrogen storage system. Its slow hydrogenation/dehydrogenation kinetics and high thermal stability are the major barriers restricting its usage in real applications. Amongst the several methods used for enhancing the kinetics behaviors of MgH2 powders, mechanically milling the powders with one or more catalyst species has shown obvious advantages. Here we are proposing a new approach for gradual doping MgH2 powders with Ni particles upon ball milling the powders with Ni-balls milling media. This proposed is-situ method showed mutually beneficial for overcoming the agglomeration of catalysts and the formation of undesired Mg2NiH4 phase. Moreover, the decomposition temperature and the corresponding activation energy showed low values of 218 °C and 75 kJ/mol, respectively. The hydrogenation/dehydrogenation kinetics examined at 275 °C of the powders milled for 25 h took place within 2.5 min and 8 min, respectively. These powders containing 5.5 wt.% Ni performed 100-continuous cycle-life time of hydrogen charging/discharging at 275 °C within 56 h without failure or degradation.
ERIC Educational Resources Information Center
Glazier, Samantha; Marano, Nadia; Eisen, Laura
2010-01-01
We describe how we use boiling-point trends of group IV-VII hydrides to introduce intermolecular forces in our first-year general chemistry classes. Starting with the idea that molecules in the liquid state are held together by some kind of force that must be overcome for boiling to take place, students use data analysis and critical reasoning to…
Roake, W.E.
1960-09-13
A process is given for producing uranium dioxide material of great density by preparing a compacted mixture of uranium dioxide and from 1 to 3 wt.% of calcium hydride, heating the mixture to at least 675 deg C for decomposition of the hydride and then for sintering, preferably in a vacuum, at from 1550 to 2000 deg C. Calcium metal is formed, some uranium is reduced by the calcium to the metal and a product of high density is obtained.
Preparation of A356 Foam Aluminum by Means of Titanium Hydride
NASA Astrophysics Data System (ADS)
Sarajan, Zohair
2017-09-01
The effect of heating temperature and stirring time during preparation of foam aluminum alloy A356 on its relative porosity is studied. The optimum amount of the foam-forming agent, i.e., titanium hydride TiH2, facilitating uniform distribution of pores throughout the whole cross section of a hardened casting is determined. Optimum conditions are established for foam formation in a melt during stirring using a mixer are described.
Improved Density Functional Tight Binding Potentials for Metalloid Aluminum Clusters
2016-06-01
simulations of the oxidation of Al4Cp * 4 show reasonable comparison with a DFT-based Car -Parrinello method, including correct prediction of hydride transfers...comparison with a DFT-based Car -Parrinello method, including correct prediction of hydride transfers from Cp* to the metal centers during the...initio molecular dynamics of the oxidation of Al4Cp * 4 using a DFT-based Car -Parrinello method. This simulation, which 43 several months on the
Degradation behavior at elevated temperature of LaNisub5-xSnsubxHsubz for x between 0.20 and 0.25
NASA Technical Reports Server (NTRS)
Bowman, R. C., Jr.; Lindensmith, C. A.; Luo, S.; Flanagan, T. B.; Vogt, T.
2000-01-01
Systematic studies of the hydriding behavior of LaNi(sub 5-x)Sn(sub x)H(sub z) alloys with tin contents in the range between 0.20 and 0.25 have revealed changes in the pressure-composition-temperature (PCT) isotherms measured after heating the hydrides above 450 K. These changes are indications of degradation processes and increased disorder within the alloy structure.
Electrolytic hydriding of LaFe(13-x)Si(x) alloys for energy efficient magnetic cooling.
Lyubina, Julia; Hannemann, Ullrich; Ryan, Mary P; Cohen, Lesley F
2012-04-17
An effective, low-temperature and readily available electrochemical method for tuning the operation temperature of LaFe(13-x)Si(x)-type alloys is demonstrated. Electrolytically hydrided materials have the same high level magnetic properties as in high temperature gas-phase processed materials and offer an advantage of higher hydrogen absorption rate in the ferromagnetic state. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
EFFECTS OF EXTREME AND UNUSUAL CONDITIONS ON LANA ALLOYS: INTERIM REPORT, FY14 (U)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shanahan, Kirk L.
2014-04-25
The TTP proposed research aimed at determining: a) the rate at which these changes occurred and the effect of initial conditions, especially in the early phases of Hydrogen Heat Treatment (HHT), b) whether or not different LANA alloys would show similar effects, and c) whether common contaminants/poisons impacted LANA alloy hydride chemistry similarly to what had been found for Pd and Pd-alloy hydride chemistry.
Hydrogen Storage in Metal Hydrides
1990-08-01
TitlePage 1. Properties of Reticulated Carbon Foam 26 2. Hydrogen Storage Capacity of Various Metal Hydrides 27 iv INTRODUCTION This is the final technical...pores, and results in coating of only the surface. The substrate for the fabrication of the magnesium foam was a reticulated carbon foam. This...material is an open-pore foam composed solely of vitreous carbon . It has an exceptionally high void volume (97%) and a high surface area, combined with self
Fabrication of Aluminum Foams with Small Pore Size by Melt Foaming Method
NASA Astrophysics Data System (ADS)
Cheng, Ying; Li, Yanxiang; Chen, Xiang; Shi, Tong; Liu, Zhiyong; Wang, Ningzhen
2017-04-01
This article introduces an improvement to the fabrication of aluminum foams with small pore size by melt foaming method. Before added to the melt, the foaming agent (titanium hydride) was pretreated in two steps. It firstly went through the traditional pre-oxidation treatment, which delayed the decomposition of titanium hydride and made sure the dispersion stage was controllable. Then such pre-oxidized titanium hydride powder was mixed with copper powder in a planetary ball mill. This treatment can not only increase the number of foaming agent particles and make them easier to disperse in the melt, which helps to increase the number of pores, but also reduce the amount of hydrogen released in the foaming stage. Therefore, the pore size could be decreased. Using such a ball-milled foaming agent in melt foaming method, aluminum foams with small pore size (average size of 1.6 mm) were successfully fabricated.
Tuning the Hydrogen Storage in Magnesium Alloys
NASA Astrophysics Data System (ADS)
Er, Suleyman; de Wijs, Gilles A.; Brocks, Geert
2011-03-01
We investigate the hydrogen storage properties of promising magnesium alloys. Mg H2 (7.6 wt % H) would be a very useful storage material if the (de)hydrogenation kinetics can be improved and the desorption temperature is markedly lowered. Using first principles calculations, we show that hydrides of Mg-transition metal (TM) alloys adopt a structure that promotes faster (de)hydrogenation kinetics, as is also observed in experiment. Within the lightweight TMs, the most promising alloying element is titanium. Alloying Mg with Ti alone, however, is not sufficient to decrease the stability of the hydride phases, which is necessary to reduce the hydrogen desorption temperature. We find that adding aluminium or silicon markedly destabilizes Mg-Ti hydrides and stabilizes Mg-Ti alloys. Finally, we show that controlling the structure of Mg-Ti-Al(Si) system by growing it as multilayers, has a beneficial influence on the thermodynamic properties and makes it a stronger candidate for hydrogen storage.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trenikhina, Y.; Romanenko, A.; Kwon, J.
Nanoscale defect structure within the magnetic penetration depth of ~100 nm is key to the performance limitations of niobium superconducting radio frequency cavities. Using a unique combination of advanced thermometry during cavity RF measurements, and TEM structural and compositional characterization of the samples extracted from cavity walls, we discover the existence of nanoscale hydrides in electropolished cavities limited by the high field Q slope, and show the decreased hydride formation in the electropolished cavity after 120°C baking. Furthermore, we demonstrate that adding 800°C hydrogen degassing followed by light buffered chemical polishing restores the hydride formation to the pre-120°C bake level.more » We also show absence of niobium oxides along the grain boundaries and the modifications of the surface oxide upon 120°C bake.« less
Trenikhina, Y.; Romanenko, A.; Kwon, J.; ...
2015-04-21
Nanoscale defect structure within the magnetic penetration depth of ~100 nm is key to the performance limitations of niobium superconducting radio frequency cavities. Using a unique combination of advanced thermometry during cavity RF measurements, and TEM structural and compositional characterization of the samples extracted from cavity walls, we discover the existence of nanoscale hydrides in electropolished cavities limited by the high field Q slope, and show the decreased hydride formation in the electropolished cavity after 120°C baking. Furthermore, we demonstrate that adding 800°C hydrogen degassing followed by light buffered chemical polishing restores the hydride formation to the pre-120°C bake level.more » We also show absence of niobium oxides along the grain boundaries and the modifications of the surface oxide upon 120°C bake.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trenikhina, Y., E-mail: yuliatr@fnal.gov; Fermi National Accelerator Laboratory, Batavia, Illinois 60510; Romanenko, A., E-mail: aroman@fnal.gov
Nanoscale defect structure within the magnetic penetration depth of ∼100 nm is key to the performance limitations of niobium superconducting radio frequency cavities. Using a unique combination of advanced thermometry during cavity RF measurements, and TEM structural and compositional characterization of the samples extracted from cavity walls, we discover the existence of nanoscale hydrides in electropolished cavities limited by the high field Q slope, and show the decreased hydride formation in the electropolished cavity after 120 °C baking. Furthermore, we demonstrate that adding 800 °C hydrogen degassing followed by light buffered chemical polishing restores the hydride formation to the pre-120 °C bake level. Wemore » also show absence of niobium oxides along the grain boundaries and the modifications of the surface oxide upon 120 °C bake.« less
NASA Astrophysics Data System (ADS)
Morimoto, Katsuya; Nagashima, Ikuo; Matsui, Masaki; Maki, Hideshi; Mizuhata, Minoru
2018-06-01
The deterioration mechanisms of a Ni-metal hydride (Ni-MH) battery system during operation is investigated. A decrease of the discharge voltage is observed at the early stage of the cycle, which indicates the possible occurrence of an unexpected system shutdown of the battery at low state of charge. Cyclic voltammetry and surface examination are used to investigate the causes of this phenomenon. The elution of elements such as Al and Mn from the metal hydride negative electrodes is shown to affect the oxidation/reduction behavior of Co, the conductive material of the positive electrode. Furthermore, the possible methods to strengthen the conductive network of Co, including pretreatment of the positive electrode, addition of conductive material, and precipitation of the elution elements as insoluble compounds to reduce their effect are also investigated. By combining these strategies, deterioration of the conductive network can be prevented in the early stage.
Dhayal, Rajendra S.; Liao, Jian-Hong; Kahlal, Samia; ...
2015-04-20
An air- and moisture-stable nanoscale polyhydrido copper cluster [Cu 32(H) 20{S 2P(O i Pr) 2 } 12 ] (1 H) was synthesized and structurally characterized. The molecular structure of 1 H exhibits a hexacapped pseudo-rhombohedral core of 14 Cu atoms sandwiched between two nestlike triangular cupola fragments of (2x9) Cu atoms in an elongated triangular gyrobicupola polyhedron. The discrete Cu 32 cluster is stabilized by 12 dithiophosphate ligands and a record number of 20 hydride ligands, which were found by high-resolution neutron diffraction to exhibit tri-, tetra-, and pentacoordinated hydrides in capping and interstitial modes. We conclude that this resultmore » was further supported by a density functional theory investigation on the simplified model [Cu 32(H) 20(S 2PH 2) 12].« less
High Resolution Neutron Radiography and Tomography of Hydrided Zircaloy-4 Cladding Materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, Tyler S; Bilheux, Hassina Z; Ray, Holly B
2015-01-01
Neutron radiography for hydrogen analysis was performed with several Zircaloy-4 cladding samples with controlled hydrogen concentrations up to 1100 ppm. Hydrogen charging was performed in a process tube that was heated to facilitate hydrogen absorption by the metal. A correlation between the hydrogen concentration in the hydrided tubes and the neutron intensity was established, by which hydrogen content can be determined precisely in a small area (55 m x 55 m). Radiography analysis was also performed to evaluate the heating rate and its correlation with the hydrogen distribution through hydrided materials. In addition to radiography analysis, tomography experiments were performedmore » on Zircaloy-4 tube samples to study the local hydrogen distribution. Through tomography analysis a 3D reconstruction of the tube was evaluated in which an uneven hydrogen distribution in the circumferential direction can be observed.« less