Sample records for continuous flow mass

  1. High-bandwidth continuous-flow arc furnace

    DOEpatents

    Hardt, David E.; Lee, Steven G.

    1996-01-01

    A high-bandwidth continuous-flow arc furnace for stream welding applications includes a metal mass contained in a crucible having an orifice. A power source charges an electrode for generating an arc between the electrode and the mass. The arc heats the metal mass to a molten state. A pressurized gas source propels the molten metal mass through the crucible orifice in a continuous stream. As the metal is ejected, a metal feeder replenishes the molten metal bath. A control system regulates the electrode current, shielding gas pressure, and metal source to provide a continuous flow of molten metal at the crucible orifice. Independent control over the electrode current and shield gas pressure decouples the metal flow temperature and the molten metal flow rate, improving control over resultant weld characteristics.

  2. High-bandwidth continuous-flow arc furnace

    DOEpatents

    Hardt, D.E.; Lee, S.G.

    1996-08-06

    A high-bandwidth continuous-flow arc furnace for stream welding applications includes a metal mass contained in a crucible having an orifice. A power source charges an electrode for generating an arc between the electrode and the mass. The arc heats the metal mass to a molten state. A pressurized gas source propels the molten metal mass through the crucible orifice in a continuous stream. As the metal is ejected, a metal feeder replenishes the molten metal bath. A control system regulates the electrode current, shielding gas pressure, and metal source to provide a continuous flow of molten metal at the crucible orifice. Independent control over the electrode current and shield gas pressure decouples the metal flow temperature and the molten metal flow rate, improving control over resultant weld characteristics. 4 figs.

  3. 14 CFR 25.1443 - Minimum mass flow of supplemental oxygen.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Minimum mass flow of supplemental oxygen... § 25.1443 Minimum mass flow of supplemental oxygen. (a) If continuous flow equipment is installed for use by flight crewmembers, the minimum mass flow of supplemental oxygen required for each crewmember...

  4. 14 CFR 25.1443 - Minimum mass flow of supplemental oxygen.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Minimum mass flow of supplemental oxygen... § 25.1443 Minimum mass flow of supplemental oxygen. (a) If continuous flow equipment is installed for use by flight crewmembers, the minimum mass flow of supplemental oxygen required for each crewmember...

  5. 14 CFR 25.1443 - Minimum mass flow of supplemental oxygen.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Minimum mass flow of supplemental oxygen... § 25.1443 Minimum mass flow of supplemental oxygen. (a) If continuous flow equipment is installed for use by flight crewmembers, the minimum mass flow of supplemental oxygen required for each crewmember...

  6. 14 CFR 25.1443 - Minimum mass flow of supplemental oxygen.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Minimum mass flow of supplemental oxygen... § 25.1443 Minimum mass flow of supplemental oxygen. (a) If continuous flow equipment is installed for use by flight crewmembers, the minimum mass flow of supplemental oxygen required for each crewmember...

  7. Accuracy of delta 18O isotope ratio measurements on the same sample by continuous-flow isotope-ratio mass spectrometry

    USDA-ARS?s Scientific Manuscript database

    The doubly labeled water method is considered the reference method to measure energy expenditure. Conventional mass spectrometry requires a separate aliquot of the same sample to be prepared and analyzed separately. With continuous-flow isotope-ratio mass spectrometry, the same sample could be analy...

  8. Continuous Flow Science in an Undergraduate Teaching Laboratory: Bleach-Mediated Oxidation in a Biphasic System

    ERIC Educational Resources Information Center

    Kairouz, Vanessa; Collins, Shawn K.

    2018-01-01

    An undergraduate teaching laboratory experiment involving a continuous flow, bleach-mediated oxidation of aldehydes under biphasic conditions was developed that allowed students to explore concepts of mixing or mass transport, solvent sustainability, biphasic reactions, phase transfer catalysis, and continuous flow chemistry.

  9. 40 CFR Table 6 to Subpart Ppp of... - Process Vents From Continuous Unit Operations-Monitoring, Recordkeeping, and Reporting Requirements

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... operating—PR. d e Carbon Adsorber f Total regeneration stream mass or volumetric flow during carbon bed regeneration cycle(s), and 1. Record of total regeneration stream mass or volumetric flow for each carbon bed regeneration cycle.2. Record and report the total regeneration stream mass or volumetric flow during each...

  10. 40 CFR Table 6 to Subpart Ppp of... - Process Vents From Continuous Unit Operations-Monitoring, Recordkeeping, and Reporting Requirements

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... operating—PR. d,e Carbon Adsorber f Total regeneration stream mass or volumetric flow during carbon bed regeneration cycle(s), and 1. Record of total regeneration stream mass or volumetric flow for each carbon bed regeneration cycle.2. Record and report the total regeneration stream mass or volumetric flow during each...

  11. On-line Monitoring of Continuous Flow Chemical Synthesis Using a Portable, Small Footprint Mass Spectrometer

    NASA Astrophysics Data System (ADS)

    Bristow, Tony W. T.; Ray, Andrew D.; O'Kearney-McMullan, Anne; Lim, Louise; McCullough, Bryan; Zammataro, Alessio

    2014-10-01

    For on-line monitoring of chemical reactions (batch or continuous flow), mass spectrometry (MS) can provide data to (1) determine the fate of starting materials and reagents, (2) confirm the presence of the desired product, (3) identify intermediates and impurities, (4) determine steady state conditions and point of completion, and (5) speed up process optimization. Recent developments in small footprint atmospheric pressure ionization portable mass spectrometers further enable this coupling, as the mass spectrometer can be easily positioned with the reaction system to be studied. A major issue for this combination is the transfer of a sample that is representative of the reaction and also compatible with the mass spectrometer. This is particularly challenging as high concentrations of reagents and products can be encountered in organic synthesis. The application of a portable mass spectrometer for on-line characterization of flow chemical synthesis has been evaluated by coupling a Microsaic 4000 MiD to the Future Chemistry Flow Start EVO chemistry system. Specifically, the Hofmann rearrangement has been studied using the on-line mass spectrometry approach. Sample transfer from the flow reactor is achieved using a mass rate attenuator (MRA) and a sampling make-up flow from a high pressure pump. This enables the appropriate sample dilution, transfer, and preparation for electrospray ionization. The capability of this approach to provide process understanding is described using an industrial pharmaceutical process that is currently under development. The effect of a number of key experimental parameters, such as the composition of the sampling make-up flow and the dilution factor on the mass spectrometry data, is also discussed.

  12. Ambient infrared laser ablation mass spectrometry (AIRLAB-MS) with plume capture by continuous flow solvent probe

    DOEpatents

    O'Brien, Jeremy T.; Williams, Evan R.; Holman, Hoi-Ying N.

    2017-10-31

    A new experimental setup for spatially resolved ambient infrared laser ablation mass spectrometry (AIRLAB-MS) that uses an infrared microscope with an infinity-corrected reflective objective and a continuous flow solvent probe coupled to a Fourier transform ion cyclotron resonance mass spectrometer is described. The efficiency of material transfer from the sample to the electrospray ionization emitter was determined using glycerol/methanol droplets containing 1 mM nicotine and is .about.50%. This transfer efficiency is significantly higher than values reported for similar techniques.

  13. 40 CFR 75.72 - Determination of NOX mass emissions for common stack and multiple stack configurations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... the hourly stack flow rate (in scfh). Only one methodology for determining NOX mass emissions shall be...-diluent continuous emissions monitoring system and a flow monitoring system in the common stack, record... maintain a flow monitoring system and diluent monitor in the duct to the common stack from each unit; or...

  14. Evaluation of tunable diode laser absorption spectroscopy for in-process water vapor mass flux measurements during freeze drying.

    PubMed

    Gieseler, Henning; Kessler, William J; Finson, Michael; Davis, Steven J; Mulhall, Phillip A; Bons, Vincent; Debo, David J; Pikal, Michael J

    2007-07-01

    The goal of this work was to demonstrate the use of Tunable Diode Laser Absorption Spectroscopy (TDLAS) as a noninvasive method to continuously measure the water vapor concentration and the vapor flow velocity in the spool connecting a freeze-dryer chamber and condenser. The instantaneous measurements were used to determine the water vapor mass flow rate (g/s). The mass flow determinations provided a continuous measurement of the total amount of water removed. Full load runs of pure water at different pressure and shelf temperature settings and a 5% (w/w) mannitol product run were performed in both laboratory and pilot scale freeze dryers. The ratio of "gravimetric/TDLAS" measurements of water removed was 1.02 +/- 0.06. A theoretical heat transfer model was used to predict the mass flow rate and the model results were compared to both the gravimetric and TDLAS data. Good agreement was also observed in the "gravimetric/TDLAS" ratio for the 5% mannitol runs dried in both freeze dryers. The endpoints of primary and secondary drying for the product runs were clearly identified. Comparison of the velocity and mass flux profiles between the laboratory and pilot dryers indicated a higher restriction to mass flow for the lab scale freeze dryer. Copyright 2007 Wiley-Liss, Inc.

  15. Continuous esterification to produce biodiesel by SPES/PES/NWF composite catalytic membrane in flow-through membrane reactor: experimental and kinetic studies.

    PubMed

    Shi, Wenying; He, Benqiao; Cao, Yuping; Li, Jianxin; Yan, Feng; Cui, Zhenyu; Zou, Zhiqun; Guo, Shiwei; Qian, Xiaomin

    2013-02-01

    A novel composite catalytic membrane (CCM) was prepared from sulfonated polyethersulfone (SPES) and polyethersulfone (PES) blend supported by non-woven fabrics, as a heterogeneous catalyst to produce biodiesel from continuous esterification of oleic acid with methanol in a flow-through mode. A kinetic model of esterification was established based on a plug-flow assumption. The effects of the CCM structure (thickness, area, porosity, etc.), reaction temperature and the external and internal mass transfer resistances on esterification were investigated. The results showed that the CCM structure had a significant effect on the acid conversion. The external mass transfer resistance could be neglected when the flow rate was over 1.2 ml min(-1). The internal mass transfer resistance impacted on the conversion when membrane thickness was over 1.779 mm. An oleic acid conversion kept over 98.0% for 500 h of continuous running. The conversions obtained from the model are in good agreement with the experimental data. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Heat and mass exchanger

    DOEpatents

    Lowenstein, Andrew; Sibilia, Marc J.; Miller, Jeffrey A.; Tonon, Thomas

    2007-09-18

    A mass and heat exchanger includes at least one first substrate with a surface for supporting a continuous flow of a liquid thereon that either absorbs, desorbs, evaporates or condenses one or more gaseous species from or to a surrounding gas; and at least one second substrate operatively associated with the first substrate. The second substrate includes a surface for supporting the continuous flow of the liquid thereon and is adapted to carry a heat exchange fluid therethrough, wherein heat transfer occurs between the liquid and the heat exchange fluid.

  17. Heat and mass exchanger

    DOEpatents

    Lowenstein, Andrew [Princeton, NJ; Sibilia, Marc J [Princeton, NJ; Miller, Jeffrey A [Hopewell, NJ; Tonon, Thomas [Princeton, NJ

    2011-06-28

    A mass and heat exchanger includes at least one first substrate with a surface for supporting a continuous flow of a liquid thereon that either absorbs, desorbs, evaporates or condenses one or more gaseous species from or to a surrounding gas; and at least one second substrate operatively associated with the first substrate. The second substrate includes a surface for supporting the continuous flow of the liquid thereon and is adapted to carry a heat exchange fluid therethrough, wherein heat transfer occurs between the liquid and the heat exchange fluid.

  18. Continuous Flow Atmospheric Pressure Laser Desorption/Ionization Using a 6–7-µm-Band Mid-Infrared Tunable Laser for Biomolecular Mass Spectrometry

    PubMed Central

    Hiraguchi, Ryuji; Hazama, Hisanao; Senoo, Kenichirou; Yahata, Yukinori; Masuda, Katsuyoshi; Awazu, Kunio

    2014-01-01

    A continuous flow atmospheric pressure laser desorption/ionization technique using a porous stainless steel probe and a 6–7-µm-band mid-infrared tunable laser was developed. This ion source is capable of direct ionization from a continuous flow with a high temporal stability. The 6–7-µm wavelength region corresponds to the characteristic absorption bands of various molecular vibration modes, including O–H, C=O, CH3 and C–N bonds. Consequently, many organic compounds and solvents, including water, have characteristic absorption peaks in this region. This ion source requires no additional matrix, and utilizes water or acetonitrile as the solvent matrix at several absorption peak wavelengths (6.05 and 7.27 µm, respectively). The distribution of multiply-charged peptide ions is extremely sensitive to the temperature of the heated capillary, which is the inlet of the mass spectrometer. This ionization technique has potential for the interface of liquid chromatography/mass spectrometry (LC/MS). PMID:24937686

  19. Analysis of the cross flow in a radial inflow turbine scroll

    NASA Technical Reports Server (NTRS)

    Hamed, A.; Abdallah, S.; Tabakoff, W.

    1977-01-01

    Equations of motion were derived, and a computational procedure is presented, for determining the nonviscous flow characteristics in the cross-sectional planes of a curved channel due to continuous mass discharge or mass addition. An analysis was applied to the radial inflow turbine scroll to study the effects of scroll geometry and the through flow velocity profile on the flow behavior. The computed flow velocity component in the scroll cross-sectional plane, together with the through flow velocity profile which can be determined in a separate analysis, provide a complete description of the three dimensional flow in the scroll.

  20. 40 CFR Table 12 to Subpart G of... - Monitoring Requirements for Treatment Processes

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Appropriate methods as specified in § 63.143 and as approved by permitting authority. 2. Steam stripper (i... recorder. (ii) Wastewater feed mass flow rate; and Continuously Liquid flow meter installed at stripper... operating temperature Continuously (A) Liquid temperature monitoring device installed at stripper influent...

  1. 40 CFR Table 12 to Subpart G of... - Monitoring Requirements for Treatment Processes

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Appropriate methods as specified in § 63.143 and as approved by permitting authority. 2. Steam stripper (i... recorder. (ii) Wastewater feed mass flow rate; and Continuously Liquid flow meter installed at stripper... operating temperature Continuously (A) Liquid temperature monitoring device installed at stripper influent...

  2. 40 CFR Table 12 to Subpart G of... - Monitoring Requirements for Treatment Processes

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Appropriate methods as specified in § 63.143 and as approved by permitting authority. 2. Steam stripper (i... recorder. (ii) Wastewater feed mass flow rate; and Continuously Liquid flow meter installed at stripper... operating temperature Continuously (A) Liquid temperature monitoring device installed at stripper influent...

  3. 40 CFR Table 12 to Subpart G of... - Monitoring Requirements for Treatment Processes

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Appropriate methods as specified in § 63.143 and as approved by permitting authority. 2. Steam stripper (i... recorder. (ii) Wastewater feed mass flow rate; and Continuously Liquid flow meter installed at stripper... operating temperature Continuously (A) Liquid temperature monitoring device installed at stripper influent...

  4. 40 CFR Table 12 to Subpart G of... - Monitoring Requirements for Treatment Processes

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Appropriate methods as specified in § 63.143 and as approved by permitting authority. 2. Steam stripper (i... recorder. (ii) Wastewater feed mass flow rate; and Continuously Liquid flow meter installed at stripper... operating temperature Continuously (A) Liquid temperature monitoring device installed at stripper influent...

  5. Continuous-flow liquid microjunction surface sampling probe connected on-line with high-performance liquid chromatography/mass spectrometry for spatially resolved analysis of small molecules and proteins.

    PubMed

    Van Berkel, Gary J; Kertesz, Vilmos

    2013-06-30

    A continuous-flow liquid microjunction surface sampling probe extracts soluble material from surfaces for direct ionization and detection by mass spectrometry. Demonstrated here is the on-line coupling of such a probe with high-performance liquid chromatography/mass spectrometry (HPLC/MS) enabling extraction, separation and detection of small molecules and proteins from surfaces in a spatially resolved (~0.5 mm diameter spots) manner. A continuous-flow liquid microjunction surface sampling probe was connected to a six-port, two-position valve for extract collection and injection to an HPLC column. A QTRAP® 5500 hybrid triple quadrupole linear ion trap equipped with a Turbo V™ ion source operated in positive electrospray ionization (ESI) mode was used for all experiments. The system operation was tested with the extraction, separation and detection of propranolol and associated metabolites from drug dosed tissues, caffeine from a coffee bean, cocaine from paper currency, and proteins from dried sheep blood spots on paper. Confirmed in the tissue were the parent drug and two different hydroxypropranolol glucuronides. The mass spectrometric response for these compounds from different locations in the liver showed an increase with increasing extraction time (5, 20 and 40 s). For on-line separation and detection/identification of extracted proteins from dried sheep blood spots, two major protein peaks dominated the chromatogram and could be correlated with the expected masses for the hemoglobin α and β chains. Spatially resolved sampling, separation, and detection of small molecules and proteins from surfaces can be accomplished using a continuous-flow liquid microjunction surface sampling probe coupled on-line with HPLC/MS detection. Published in 2013. This article is a U.S. Government work and is in the public domain in the USA.

  6. Evaluation of the 34S/32S ratio of Soufre de Lacq elemental sulfur isotopic reference material by continuous flow isotope-ratio mass spectrometry

    USGS Publications Warehouse

    Qi, H.P.; Coplen, T.B.

    2003-01-01

    Soufre de Lacq elemental sulfur reference material (IAEA-S-4) isotopically is homogeneous in amounts as small as 41 ??g as determined by continuous flow isotope-ratio mass spectrometry. The ??34S value for this reference material is +16.90 ?? 0.12??? (1??) on a scale (Vienna Can??on Diablo troilite, VCDT) where IAEA-S-1 Ag2S is -0.3??? and IAEA-S-2 Ag2S is +22.67???. Published by Elsevier Science B.V.

  7. 40 CFR Table 14 to Subpart Xxxx of... - Continuous Compliance With the Emission Limitations for Puncture Sealant Application Affected...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... regeneration stream mass or volumetric flow, and the carbon bed temperature after each regeneration, and within 15 minutes of completing any cooling cycle, andb. Maintaining the total regeneration stream mass or volumetric flow, and the carbon bed temperature after each regeneration, and within 15 minutes of completing...

  8. 40 CFR Table 7 to Subpart Ppp of... - Process Vents From Continuous Unit Operations-Monitoring, Recordkeeping, and Reporting Requirements

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... absorbent is used. Condenser Exit temperature Maximum temperature. Carbon adsorber Total regeneration stream mass or volumetric flow during carbon bed regeneration cycle; and temperature of the carbon bed after regeneration (and within 15 minutes of completing any cooling cycle(s)) Maximum mass or volumetric flow; and...

  9. 40 CFR Table 14 to Subpart Xxxx of... - Continuous Compliance With the Emission Limitations for Puncture Sealant Application Affected...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Table 4 to this subpart a. Monitoring and recording every 15 minutes the total regeneration stream mass or volumetric flow, and the carbon bed temperature after each regeneration, and within 15 minutes of completing any cooling cycle, andb. Maintaining the total regeneration stream mass or volumetric flow, and...

  10. 40 CFR 63.4168 - What are the requirements for continuous parameter monitoring system installation, operation, and...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... add-on control device, you must monitor the total regeneration desorbing gas (e.g., steam or nitrogen) mass flow for each regeneration cycle, the carbon bed temperature after each regeneration and cooling... regeneration desorbing gas mass flow monitor must be an integrating device having a measurement sensitivity of...

  11. 40 CFR Table 14 to Subpart Xxxx of... - Continuous Compliance With the Emission Limitations for Puncture Sealant Application Affected...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Table 4 to this subpart a. Monitoring and recording every 15 minutes the total regeneration stream mass or volumetric flow, and the carbon bed temperature after each regeneration, and within 15 minutes of completing any cooling cycle, andb. Maintaining the total regeneration stream mass or volumetric flow, and...

  12. 40 CFR 63.3557 - What are the requirements for continuous parameter monitoring system installation, operation, and...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... monitor the total regeneration desorbing gas (e.g., steam or nitrogen) mass flow for each regeneration cycle, the carbon bed temperature after each regeneration and cooling cycle, and comply with paragraphs (a)(3) through (5) and (d)(1) and (2) of this section. (1) The regeneration desorbing gas mass flow...

  13. 40 CFR Table 7 to Subpart Ppp of... - Process Vents From Continuous Unit Operations-Monitoring, Recordkeeping, and Reporting Requirements

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... absorbent is used. Condenser Exit temperature Maximum temperature. Carbon adsorber Total regeneration stream mass or volumetric flow during carbon bed regeneration cycle; and temperature of the carbon bed after regeneration (and within 15 minutes of completing any cooling cycle(s)) Maximum mass or volumetric flow; and...

  14. 40 CFR Table 14 to Subpart Xxxx of... - Continuous Compliance With the Emission Limitations for Puncture Sealant Application Affected...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... total regeneration stream mass or volumetric flow, and the carbon bed temperature after each regeneration, and within 15 minutes of completing any cooling cycle, andb. Maintaining the total regeneration stream mass or volumetric flow, and the carbon bed temperature after each regeneration, and within 15...

  15. 40 CFR 63.3557 - What are the requirements for continuous parameter monitoring system installation, operation, and...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... monitor the total regeneration desorbing gas (e.g., steam or nitrogen) mass flow for each regeneration cycle, the carbon bed temperature after each regeneration and cooling cycle, and comply with paragraphs (a)(3) through (5) and (d)(1) and (2) of this section. (1) The regeneration desorbing gas mass flow...

  16. 40 CFR Table 7 to Subpart Ppp of... - Process Vents From Continuous Unit Operations-Monitoring, Recordkeeping, and Reporting Requirements

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... absorbent is used. Condenser Exit temperature Maximum temperature. Carbon adsorber Total regeneration stream mass or volumetric flow during carbon bed regeneration cycle; and temperature of the carbon bed after regeneration (and within 15 minutes of completing any cooling cycle(s)) Maximum mass or volumetric flow; and...

  17. 40 CFR 63.3557 - What are the requirements for continuous parameter monitoring system installation, operation, and...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... monitor the total regeneration desorbing gas (e.g., steam or nitrogen) mass flow for each regeneration cycle, the carbon bed temperature after each regeneration and cooling cycle, and comply with paragraphs (a)(3) through (5) and (d)(1) and (2) of this section. (1) The regeneration desorbing gas mass flow...

  18. 40 CFR Table 14 to Subpart Xxxx of... - Continuous Compliance With the Emission Limitations for Puncture Sealant Application Affected...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... total regeneration stream mass or volumetric flow, and the carbon bed temperature after each regeneration, and within 15 minutes of completing any cooling cycle, andb. Maintaining the total regeneration stream mass or volumetric flow, and the carbon bed temperature after each regeneration, and within 15...

  19. In-situ continuous water monitoring system

    DOEpatents

    Thompson, Cyril V.; Wise, Marcus B.

    1998-01-01

    An in-situ continuous liquid monitoring system for continuously analyzing volatile components contained in a water source comprises: a carrier gas supply, an extraction container and a mass spectrometer. The carrier gas supply continuously supplies the carrier gas to the extraction container and is mixed with a water sample that is continuously drawn into the extraction container by the flow of carrier gas into the liquid directing device. The carrier gas continuously extracts the volatile components out of the water sample. The water sample is returned to the water source after the volatile components are extracted from it. The extracted volatile components and the carrier gas are delivered continuously to the mass spectrometer and the volatile components are continuously analyzed by the mass spectrometer.

  20. In-situ continuous water monitoring system

    DOEpatents

    Thompson, C.V.; Wise, M.B.

    1998-03-31

    An in-situ continuous liquid monitoring system for continuously analyzing volatile components contained in a water source comprises: a carrier gas supply, an extraction container and a mass spectrometer. The carrier gas supply continuously supplies the carrier gas to the extraction container and is mixed with a water sample that is continuously drawn into the extraction container by the flow of carrier gas into the liquid directing device. The carrier gas continuously extracts the volatile components out of the water sample. The water sample is returned to the water source after the volatile components are extracted from it. The extracted volatile components and the carrier gas are delivered continuously to the mass spectrometer and the volatile components are continuously analyzed by the mass spectrometer. 2 figs.

  1. 40 CFR Table 6 to Subpart Ppp of... - Process Vents From Continuous Unit Operations-Monitoring, Recordkeeping, and Reporting Requirements

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... temperature established in the NCS or operating—PR. d,e Carbon Adsorber f Total regeneration stream mass or volumetric flow during carbon bed regeneration cycle(s), and 1. Record of total regeneration stream mass or volumetric flow for each carbon bed regeneration cycle.2. Record and report the total regeneration stream...

  2. 40 CFR 63.3547 - What are the requirements for continuous parameter monitoring system installation, operation, and...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... adsorber as an add-on control device, you must monitor the total regeneration desorbing gas (e.g., steam or nitrogen) mass flow for each regeneration cycle, the carbon bed temperature after each regeneration and... regeneration desorbing gas mass flow monitor must be an integrating device having an accuracy of ±10 percent...

  3. 40 CFR 63.3547 - What are the requirements for continuous parameter monitoring system installation, operation, and...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... adsorber as an add-on control device, you must monitor the total regeneration desorbing gas (e.g., steam or nitrogen) mass flow for each regeneration cycle, the carbon bed temperature after each regeneration and... regeneration desorbing gas mass flow monitor must be an integrating device having an accuracy of ±10 percent...

  4. 40 CFR 63.3547 - What are the requirements for continuous parameter monitoring system installation, operation, and...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... adsorber as an add-on control device, you must monitor the total regeneration desorbing gas (e.g., steam or nitrogen) mass flow for each regeneration cycle, the carbon bed temperature after each regeneration and... regeneration desorbing gas mass flow monitor must be an integrating device having an accuracy of ±10 percent...

  5. 40 CFR Table 6 to Subpart Ppp of... - Process Vents From Continuous Unit Operations-Monitoring, Recordkeeping, and Reporting Requirements

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... temperature established in the NCS or operating—PR. d,e Carbon Adsorber f Total regeneration stream mass or volumetric flow during carbon bed regeneration cycle(s), and 1. Record of total regeneration stream mass or volumetric flow for each carbon bed regeneration cycle.2. Record and report the total regeneration stream...

  6. 40 CFR Table 6 to Subpart Ppp of... - Process Vents From Continuous Unit Operations-Monitoring, Recordkeeping, and Reporting Requirements

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... temperature established in the NCS or operating—PR. d,e Carbon Adsorber f Total regeneration stream mass or volumetric flow during carbon bed regeneration cycle(s), and 1. Record of total regeneration stream mass or volumetric flow for each carbon bed regeneration cycle.2. Record and report the total regeneration stream...

  7. Continuous high-frequency dissolved O2/Ar measurements by equilibrator inlet mass spectrometry.

    PubMed

    Cassar, Nicolas; Barnett, Bruce A; Bender, Michael L; Kaiser, Jan; Hamme, Roberta C; Tilbrook, Bronte

    2009-03-01

    The oxygen (O(2)) concentration in the surface ocean is influenced by biological and physical processes. With concurrent measurements of argon (Ar), which has similar solubility properties as oxygen, we can remove the physical contribution to O(2) supersaturation and determine the biological oxygen supersaturation. Biological O(2) supersaturation in the surface ocean reflects the net metabolic balance between photosynthesis and respiration, i.e., the net community productivity (NCP). We present a new method for continuous shipboard measurements of O(2)/Ar by equilibrator inlet mass spectrometry (EIMS). From these measurements and an appropriate gas exchange parametrization, NCP can be estimated at high spatial and temporal resolution. In the EIMS configuration, seawater from the ship's continuous intake flows through a cartridge enclosing a gas-permeable microporous membrane contactor. Gases in the headspace of the cartridge equilibrate with dissolved gases in the flowing seawater. A fused-silica capillary continuously samples headspace gases, and the O(2)/Ar ratio is measured by mass spectrometry. The ion current measurements on the mass spectrometer reflect the partial pressures of dissolved gases in the water flowing through the equilibrator. Calibration of the O(2)/Ar ion current ratio (32/40) is performed automatically every 2 h by sampling ambient air through a second capillary. A conceptual model demonstrates that the ratio of gases reaching the mass spectrometer is dependent on several parameters, such as the differences in molecular diffusivities and solubilities of the gases. Laboratory experiments and field observations performed by EIMS are discussed. We also present preliminary evidence that other gas measurements, such as N(2)/Ar and pCO(2) measurements, may potentially be performed with EIMS. Finally, we compare the characteristics of the EIMS with the previously described membrane inlet mass spectrometry (MIMS) approach.

  8. Performance analysis of a continuous serpentine flow reactor for electrochemical oxidation of synthetic and real textile wastewater: Energy consumption, mass transfer coefficient and economic analysis.

    PubMed

    Pillai, Indu M Sasidharan; Gupta, Ashok K

    2017-05-15

    A continuous flow electrochemical reactor was developed, and its application was tested for the treatment of textile wastewater. A parallel plate configuration with serpentine flow was chosen for the continuous flow reactor. Uniparameter optimization was carried out for electrochemical oxidation of synthetic and real textile wastewater (collected from the inlet of the effluent treatment plant). Chemical Oxygen Demand (COD) removal efficiency of 90% was achieved for synthetic textile wastewater (initial COD - 780 mg L -1 ) at a flow rate of 500 mL h -1 (retention time of 6 h) and a current density of 1.15 mA cm -2 and the energy consumption for the degradation was 9.2 kWh (kg COD) -1 . The complete degradation of real textile wastewater (initial COD of 368 mg L -1 ) was obtained at a current density of 1.15 mA cm -2 , NaCl concentration of 1 g L -1 and retention time of 6 h. Energy consumption and mass transfer coefficient of the reactions were calculated. The continuous flow reactor performed better than batch reactor with reference to energy consumption and economy. The overall treatment cost for complete COD removal of real textile wastewater was 5.83 USD m -3 . Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Influence of different heating types on the pumping performance of a bubble pump

    NASA Astrophysics Data System (ADS)

    Bierling, Bernd; Schmid, Fabian; Spindler, Klaus

    2017-11-01

    This study presents an experimental investigation of the influence of different heating types on the pumping performance of a bubble pump. A test rig was set up at the Institute of Thermodynamics and Thermal Engineering (ITW), University of Stuttgart. The vertical lift tube is made of copper with an inner diameter of 8 mm and a length of 1.91 m. The working fluid is demineralized water. The test rig offers the possibility to vary the supplied heat flow (0 W - 750 W), the resulting supplied heat flux and the location of the heating. Investigations were carried out using spot heating, partial-length heating and full-length heating. A Coriolis mass flowmeter was successfully implemented which measures the vapor mass flow rate continuously. The improvement of the vapor mass flow rate measurement by using the continuous measurement method compared to a discontinuous one is discussed. Furthermore, the influence of an unstable inlet temperature of the working fluid entering the lift tube on the pumping performance is investigated. The focus of this publication lies on the build-up of the test rig with the measurement setup and the analysis of the pumping performance for the three heating types. The measurement results show a big influence of the heating type on the pumping performance. The lower the relative length of the heating, the higher is the pumping ratio which is defined as the lifted liquid mass flow rate in relation to the generated vapor mass flow rate.

  10. Performance evaluation of the active-flow personal DataRAM PM 2.5 mass monitor (Thermo Anderson pDR-1200) designed for continuous personal exposure measurements

    NASA Astrophysics Data System (ADS)

    Chakrabarti, Bhabesh; Fine, Philip M.; Delfino, Ralph; Sioutas, Constantinos

    The need for continuous personal monitoring for exposure to particulate matter has been demonstrated by recent health studies showing effects of PM exposure on time scales of less than a few hours. Filter-based methods cannot measure this short-term variation of PM levels, which can be quite significant considering human activity patterns. The goal of this study was to evaluate the active-flow personal DataRAM for PM 2.5 (MIE pDR-1200; Thermo Electron Corp., Franklin, MA) designed as a wearable monitor to continuously measure particle exposure. The instrument precision was found to be good (2.1%) and significantly higher than the passive pDR configuration tested previously. A comparison to other proven continuous monitors resulted in good agreement at low relative humidities. Results at higher humidity followed predictable trends and provided a correction scheme that improved the accuracy of pDR readings. The pDR response to particle size also corresponded to previously observed and theoretical errors. The active flow feature of the pDR allows collection of the sampled particles on a back-up filter. The 24-h mass measured on this filter was found to compare very well with a Federal Reference Method for PM 2.5 mass.

  11. Superamphiphobic Silicon-Nanowire-Embedded Microsystem and In-Contact Flow Performance of Gas and Liquid Streams.

    PubMed

    Ko, Dong-Hyeon; Ren, Wurong; Kim, Jin-Oh; Wang, Jun; Wang, Hao; Sharma, Siddharth; Faustini, Marco; Kim, Dong-Pyo

    2016-01-26

    Gas and liquid streams are invariably separated either by a solid wall or by a membrane for heat or mass transfer between the gas and liquid streams. Without the separating wall, the gas phase is present as bubbles in liquid or, in a microsystem, as gas plugs between slugs of liquid. Continuous and direct contact between the two moving streams of gas and liquid is quite an efficient way of achieving heat or mass transfer between the two phases. Here, we report a silicon nanowire built-in microsystem in which a liquid stream flows in contact with an underlying gas stream. The upper liquid stream does not penetrate into the lower gas stream due to the superamphiphobic nature of the silicon nanowires built into the bottom wall, thereby preserving the integrity of continuous gas and liquid streams, although they are flowing in contact. Due to the superamphiphobic nature of silicon nanowires, the microsystem provides the best possible interfacial mass transfer known to date between flowing gas and liquid phases, which can achieve excellent chemical performance in two-phase organic syntheses.

  12. Application of two-component phase Doppler interferometry to the measurement of particle size, mass flux, and velocities in two-phase flows

    NASA Technical Reports Server (NTRS)

    Mcdonell, V. G.; Samuelsen, G. S.

    1989-01-01

    Two-component phase Doppler interferometry is described, along with its application for the spatially-resolved measurements of particle size, velocity, and mass flux as well as continuous phase velocity. This technique measures single particle events at a point in the flow; droplet size is deduced from the spatial phase shift of the Doppler signal. Particle size influence and discrimination of continuous and discrete phases are among issues covered. Applications are presented for four cases: an example of the discrimination of two sizes of glass beads in a jet flow; a demonstration of the discrimination of phases in a spray field; an assessment of atomizer symmetry with respect to fuel distribution; and a characterization of a droplet field in a reacting spray. It is noted that the above technique is especially powerful in delineating droplet interactions in the swirling, complex flows typical of realistic systems.

  13. Effect of oxidation of carbon material on suspension electrodes for flow electrode capacitive deionization.

    PubMed

    Hatzell, Kelsey B; Hatzell, Marta C; Cook, Kevin M; Boota, Muhammad; Housel, Gabrielle M; McBride, Alexander; Kumbur, E Caglan; Gogotsi, Yury

    2015-03-03

    Flow electrode deionization (FCDI) is an emerging area for continuous and scalable deionization, but the electrochemical and flow properties of the flow electrode need to be improved to minimize energy consumption. Chemical oxidation of granular activated carbon (AC) was examined here to study the role of surface heteroatoms on rheology and electrochemical performance of a flow electrode (carbon slurry) for deionization processes. Moreover, it was demonstrated that higher mass densities could be used without increasing energy for pumping when using oxidized active material. High mass-loaded flow electrodes (28% carbon content) based on oxidized AC displayed similar viscosities (∼21 Pa s) to lower mass-loaded flow electrodes (20% carbon content) based on nonoxidized AC. The 40% increased mass loading (from 20% to 28%) resulted in a 25% increase in flow electrode gravimetric capacitance (from 65 to 83 F g(-1)) without sacrificing flowability (viscosity). The electrical energy required to remove ∼18% of the ions (desalt) from of the feed solution was observed to be significantly dependent on the mass loading and decreased (∼60%) from 92 ± 7 to 28 ± 2.7 J with increased mass densities from 5 to 23 wt %. It is shown that the surface chemistry of the active material in a flow electrode effects the electrical and pumping energy requirements of a FCDI system.

  14. Effect of oxidation of carbon material on suspension electrodes for flow electrode capacitive deionization

    DOE PAGES

    Hatzell, Kelsey B.; Hatzell, Marta C.; Cook, Kevin M.; ...

    2015-01-29

    Flow electrode deionization (FCDI) is an emerging area for continuous and scalable deionization, but the electrochemical and flow properties of the flow electrode need to be improved to minimize energy consumption. We examine chemical oxidation of granular activated carbon (AC) here to study the role of surface heteroatoms on rheology and electrochemical performance of a flow electrode (carbon slurry) for deionization processes. Moreover, it was demonstrated that higher mass densities could be used without increasing energy for pumping when using oxidized active material. High mass-loaded flow electrodes (28% carbon content) based on oxidized AC displayed similar viscosities (~21 Pa s)more » to lower mass-loaded flow electrodes (20% carbon content) based on nonoxidized AC. The 40% increased mass loading (from 20% to 28%) resulted in a 25% increase in flow electrode gravimetric capacitance (from 65 to 83 F g –1) without sacrificing flowability (viscosity). The electrical energy required to remove ~18% of the ions (desalt) from of the feed solution was observed to be significantly dependent on the mass loading and decreased (~60%) from 92 ± 7 to 28 ± 2.7 J with increased mass densities from 5 to 23 wt %. Finally, it is shown that the surface chemistry of the active material in a flow electrode effects the electrical and pumping energy requirements of a FCDI system.« less

  15. Atomizing, continuous, water monitoring module

    DOEpatents

    Thompson, C.V.; Wise, M.B.

    1997-07-08

    A system for continuously analyzing volatile constituents of a liquid is described. The system contains a pump for continuously pumping the liquid to be tested at a predetermined flow rate into an extracting container through a liquid directing tube having an orifice at one end and positioned to direct the liquid into the extracting container at a flow rate sufficient to atomize the liquid within the extracting container. A continuous supply of helium carrier gas at a predetermined flow rate is directed through a tube into the extracting container and co-mingled with the atomized liquid to extract the volatile constituents contained within the atomized liquid. The helium containing the extracted volatile constituents flows out of the extracting container into a mass spectrometer for an analysis of the volatile constituents of the liquid. 3 figs.

  16. Atomizing, continuous, water monitoring module

    DOEpatents

    Thompson, Cyril V.; Wise, Marcus B.

    1997-01-01

    A system for continuously analyzing volatile constituents of a liquid is described. The system contains a pump for continuously pumping the liquid to be tested at a predetermined flow rate into an extracting container through a liquid directing tube having an orifice at one end and positioned to direct the liquid into the extracting container at a flow rate sufficient to atomize the liquid within the extracting container. A continuous supply of helium carrier gas at a predetermined flow rate is directed through a tube into the extracting container and co-mingled with the atomized liquid to extract the volatile constituents contained within the atomized liquid. The helium containing the extracted volatile constituents flows out of the extracting container into a mass spectrometer for an analysis of the volatile constituents of the liquid.

  17. Experimental study on flowing burning behaviors of a pool fire with dripping of melted thermoplastics.

    PubMed

    Xie, Qiyuan; Tu, Ran; Wang, Nan; Ma, Xin; Jiang, Xi

    2014-02-28

    The objective of this work is to quantitatively investigate the dripping-burning and flowing fire of thermoplastics. A new experimental setup is developed with a heating vessel and a T-trough. Hot thermoplastic liquids are generated in the vessel by electric heating. N2 gas is continuously injected into the vessel to avoid a sudden ignition of fuel in it. The detailed flowing burning behaviors of pool fire in the T-trough are analyzed through the measurements of the mass, heat flux and temperatures etc. The experimental results suggest that a continuous dripping of melted thermoplastic liquids in a nearly constant mass rate can be successfully made in the new setup. It also shows that the mass dripping rate of melted PS liquid is smaller than PP and PE since its large viscosity. In addition, the flame spread velocities of hot liquids of PS in the T-trough are also smaller than that of PP and PE because of its large viscosity. The mass burning rate of the PP and PE pool fire in T-trough are smaller than PS. Finally, considering the heating, melting, dripping and flowing burning behaviors of these polymers, it is suggested that the fire hazard of PE and PP are obviously higher than PS for their faster flowing burning. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. 40 CFR Table 3 to Subpart Ttttt of... - Initial Compliance With Emission Limits

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED) National Emissions Standards for Hazardous Air Pollutants for Primary Magnesium... dryer stack a. The average mass flow of particulate matter from the control system applied to emissions...

  19. An Integrated Instrumentation System for Velocity, Concentration and Mass Flow Rate Measurement of Solid Particles Based on Electrostatic and Capacitance Sensors.

    PubMed

    Li, Jian; Kong, Ming; Xu, Chuanlong; Wang, Shimin; Fan, Ying

    2015-12-10

    The online and continuous measurement of velocity, concentration and mass flow rate of pneumatically conveyed solid particles for the high-efficiency utilization of energy and raw materials has become increasingly significant. In this paper, an integrated instrumentation system for the velocity, concentration and mass flow rate measurement of dense phase pneumatically conveyed solid particles based on electrostatic and capacitance sensorsis developed. The electrostatic sensors are used for particle mean velocity measurement in combination with the cross-correlation technique, while the capacitance sensor with helical surface-plate electrodes, which has relatively homogeneous sensitivity distribution, is employed for the measurement of particle concentration and its capacitance is measured by an electrostatic-immune AC-based circuit. The solid mass flow rate can be further calculated from the measured velocity and concentration. The developed instrumentation system for velocity and concentration measurement is verified and calibrated on a pulley rig and through static experiments, respectively. Finally the system is evaluated with glass beads on a gravity-fed rig. The experimental results demonstrate that the system is capable of the accurate solid mass flow rate measurement, and the relative error is within -3%-8% for glass bead mass flow rates ranging from 0.13 kg/s to 0.9 kg/s.

  20. Continuous-flow mass production of silicon nanowires via substrate-enhanced metal-catalyzed electroless etching of silicon with dissolved oxygen as an oxidant.

    PubMed

    Hu, Ya; Peng, Kui-Qing; Liu, Lin; Qiao, Zhen; Huang, Xing; Wu, Xiao-Ling; Meng, Xiang-Min; Lee, Shuit-Tong

    2014-01-13

    Silicon nanowires (SiNWs) are attracting growing interest due to their unique properties and promising applications in photovoltaic devices, thermoelectric devices, lithium-ion batteries, and biotechnology. Low-cost mass production of SiNWs is essential for SiNWs-based nanotechnology commercialization. However, economic, controlled large-scale production of SiNWs remains challenging and rarely attainable. Here, we demonstrate a facile strategy capable of low-cost, continuous-flow mass production of SiNWs on an industrial scale. The strategy relies on substrate-enhanced metal-catalyzed electroless etching (MCEE) of silicon using dissolved oxygen in aqueous hydrofluoric acid (HF) solution as an oxidant. The distinct advantages of this novel MCEE approach, such as simplicity, scalability and flexibility, make it an attractive alternative to conventional MCEE methods.

  1. Optimization of information content in a mass spectrometry based flow-chemistry system by investigating different ionization approaches.

    PubMed

    Martha, Cornelius T; Hoogendoorn, Jan-Carel; Irth, Hubertus; Niessen, Wilfried M A

    2011-05-15

    Current development in catalyst discovery includes combinatorial synthesis methods for the rapid generation of compound libraries combined with high-throughput performance-screening methods to determine the associated activities. Of these novel methodologies, mass spectrometry (MS) based flow chemistry methods are especially attractive due to the ability to combine sensitive detection of the formed reaction product with identification of introduced catalyst complexes. Recently, such a mass spectrometry based continuous-flow reaction detection system was utilized to screen silver-adducted ferrocenyl bidentate catalyst complexes for activity in a multicomponent synthesis of a substituted 2-imidazoline. Here, we determine the merits of different ionization approaches by studying the combination of sensitive detection of product formation in the continuous-flow system with the ability to simultaneous characterize the introduced [ferrocenyl bidentate+Ag](+) catalyst complexes. To this end, we study the ionization characteristics of electrospray ionization (ESI), atmospheric-pressure chemical ionization (APCI), no-discharge APCI, dual ESI/APCI, and dual APCI/no-discharge APCI. Finally, we investigated the application potential of the different ionization approaches by the investigation of ferrocenyl bidentate catalyst complex responses in different solvents. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. 40 CFR Table 7 to Subpart Ppp of... - Process Vents From Continuous Unit Operations-Monitoring, Recordkeeping, and Reporting Requirements

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... regeneration stream mass or volumetric flow during carbon bed regeneration cycle; and temperature of the carbon bed after regeneration (and within 15 minutes of completing any cooling cycle(s)) Maximum mass or...

  3. A simple mass-conserved level set method for simulation of multiphase flows

    NASA Astrophysics Data System (ADS)

    Yuan, H.-Z.; Shu, C.; Wang, Y.; Shu, S.

    2018-04-01

    In this paper, a modified level set method is proposed for simulation of multiphase flows with large density ratio and high Reynolds number. The present method simply introduces a source or sink term into the level set equation to compensate the mass loss or offset the mass increase. The source or sink term is derived analytically by applying the mass conservation principle with the level set equation and the continuity equation of flow field. Since only a source term is introduced, the application of the present method is as simple as the original level set method, but it can guarantee the overall mass conservation. To validate the present method, the vortex flow problem is first considered. The simulation results are compared with those from the original level set method, which demonstrates that the modified level set method has the capability of accurately capturing the interface and keeping the mass conservation. Then, the proposed method is further validated by simulating the Laplace law, the merging of two bubbles, a bubble rising with high density ratio, and Rayleigh-Taylor instability with high Reynolds number. Numerical results show that the mass is a well-conserved by the present method.

  4. Interplay of Coulomb interactions and disorder in three-dimensional quadratic band crossings without time-reversal symmetry and with unequal masses for conduction and valence bands

    NASA Astrophysics Data System (ADS)

    Mandal, Ipsita; Nandkishore, Rahul M.

    2018-03-01

    Coulomb interactions famously drive three-dimensional quadratic band crossing semimetals into a non-Fermi liquid phase of matter. In a previous work [Nandkishore and Parameswaran, Phys. Rev. B 95, 205106 (2017), 10.1103/PhysRevB.95.205106], the effect of disorder on this non-Fermi liquid phase was investigated, assuming that the band structure was isotropic, assuming that the conduction and valence bands had the same band mass, and assuming that the disorder preserved exact time-reversal symmetry and statistical isotropy. It was shown that the non-Fermi liquid fixed point is unstable to disorder and that a runaway flow to strong disorder occurs. In this paper, we extend that analysis by relaxing the assumption of time-reversal symmetry and allowing the electron and hole masses to differ (but continuing to assume isotropy of the low energy band structure). We first incorporate time-reversal symmetry breaking disorder and demonstrate that there do not appear any new fixed points. Moreover, while the system continues to flow to strong disorder, time-reversal-symmetry-breaking disorder grows asymptotically more slowly than time-reversal-symmetry-preserving disorder, which we therefore expect should dominate the strong-coupling phase. We then allow for unequal electron and hole masses. We show that whereas asymmetry in the two masses is irrelevant in the clean system, it is relevant in the presence of disorder, such that the `effective masses' of the conduction and valence bands should become sharply distinct in the low-energy limit. We calculate the RG flow equations for the disordered interacting system with unequal band masses and demonstrate that the problem exhibits a runaway flow to strong disorder. Along the runaway flow, time-reversal-symmetry-preserving disorder grows asymptotically more rapidly than both time-reversal-symmetry-breaking disorder and the Coulomb interaction.

  5. Continuous Purification of Colloidal Quantum Dots in Large-Scale Using Porous Electrodes in Flow Channel.

    PubMed

    Lim, Hosub; Woo, Ju Young; Lee, Doh C; Lee, Jinkee; Jeong, Sohee; Kim, Duckjong

    2017-02-27

    Colloidal quantum dots (QDs) afford huge potential in numerous applications owing to their excellent optical and electronic properties. After the synthesis of QDs, separating QDs from unreacted impurities in large scale is one of the biggest issues to achieve scalable and high performance optoelectronic applications. Thus far, however, continuous purification method, which is essential for mass production, has rarely been reported. In this study, we developed a new continuous purification process that is suitable to the mass production of high-quality QDs. As-synthesized QDs are driven by electrophoresis in a flow channel and captured by porous electrodes and finally separated from the unreacted impurities. Nuclear magnetic resonance and ultraviolet/visible/near-infrared absorption spectroscopic data clearly showed that the impurities were efficiently removed from QDs with the purification yield, defined as the ratio of the mass of purified QDs to that of QDs in the crude solution, up to 87%. Also, we could successfully predict the purification yield depending on purification conditions with a simple theoretical model. The proposed large-scale purification process could be an important cornerstone for the mass production and industrial use of high-quality QDs.

  6. Continuous Purification of Colloidal Quantum Dots in Large-Scale Using Porous Electrodes in Flow Channel

    NASA Astrophysics Data System (ADS)

    Lim, Hosub; Woo, Ju Young; Lee, Doh Chang; Lee, Jinkee; Jeong, Sohee; Kim, Duckjong

    2017-11-01

    Colloidal Quantum dots (QDs) afford huge potential in numerous applications owing to their excellent optical and electronic properties. After the synthesis of QDs, separating QDs from unreacted impurities in large scale is one of the biggest issues to achieve scalable and high performance optoelectronic applications. Thus far, however, continuous purification method, which is essential for mass production, has rarely been reported. In this study, we developed a new continuous purification process that is suitable to the mass production of high-quality QDs. As-synthesized QDs are driven by electrophoresis in a flow channel and captured by porous electrodes and finally separated from the unreacted impurities. Nuclear magnetic resonance and ultraviolet/visible/near-infrared absorption spectroscopic data clearly showed that the impurities were efficiently removed from QDs with the purification yield, defined as the ratio of the mass of purified QDs to that of QDs in the crude solution, up to 87%. Also, we could successfully predict the purification yield depending on purification conditions with a simple theoretical model. The proposed large-scale purification process could be an important cornerstone for the mass production and industrial use of high-quality QDs.

  7. Transitioning of power flow in beam models with bends

    NASA Technical Reports Server (NTRS)

    Hambric, Stephen A.

    1990-01-01

    The propagation of power flow through a dynamically loaded beam model with 90 degree bends is investigated using NASTRAN and McPOW. The transitioning of power flow types (axial, torsional, and flexural) is observed throughout the structure. To get accurate calculations of the torsional response of beams using NASTRAN, torsional inertia effects had to be added to the mass matrix calculation section of the program. Also, mass effects were included in the calculation of BAR forces to improve the continuity of power flow between elements. The importance of including all types of power flow in an analysis, rather than only flexural power, is indicated by the example. Trying to interpret power flow results that only consider flexural components in even a moderately complex problem will result in incorrect conclusions concerning the total power flow field.

  8. 40 CFR 63.605 - Monitoring requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants From Phosphoric Acid Manufacturing Plants § 63.605... the mass flow of phosphorus-bearing feed material to the process. The monitoring system shall have an...

  9. Characterization of vitamin D3 metabolites using continuous-flow fast atom bombardment tandem mass spectrometry and high-performance liquid chromatography.

    PubMed

    Yeung, B; Vouros, P; Reddy, G S

    1993-08-13

    A mass spectrometric method for the detection of vitamin D3 metabolites is described. This method involves the derivatization of the metabolites by cycloaddition with 4-phenyl-1,2,4-triazoline-3,5-dione, followed by their characterization by continuous-flow fast atom bombardment (CF-FAB) tandem mass spectrometry (MS-MS) and high-performance liquid chromatography (HPLC). Using HPLC, this derivatization has been shown to increase the UV detectability of 25-hydroxyvitamin D3 by about 5-fold. The FAB spectra of the adducts are dominated by peaks corresponding to a protonated molecule and a fragment ion derived in part from the loss of the side chain. Multiple reaction monitoring (MRM) of this transition by MS-MS may be utilized for trace level analysis of vitamin D metabolites. Sample introduction by flow injection yields detection limits in the low nanogram to high picogram range, whereas the use of on-line capillary LC has been found to decrease the detection limits to the low picogram level.

  10. Mass spectrometric real-time monitoring of an enzymatic phosphorylation assay using internal standards and data-handling freeware.

    PubMed

    Krappmann, Michael; de Boer, Arjen R; Kool, Daniël R W; Irth, Hubertus; Letzel, Thomas

    2016-04-30

    Continuous-flow reaction detection systems (monitoring enzymatic reactions with mass spectrometry (MS)) lack quantitative values so far. Therefore, two independent internal standards (IS) are implemented in a way that the online system stability can be observed, quantitative conversion values for substrate and product can be obtained and they can be used as mass calibration standards for high MS accuracy. An application previously developed for the MS detection of peptide phosphorylation by cAMP-dependent protein kinase A (PKA) (De Boer et al., Anal. Bioanal. Chem. 2005, 381, 647-655) was transferred to a continuous-flow reaction detection system. This enzymatic reaction, involving enzyme activation as well as the transfer of a phosphate group from ATP to a peptide substrate, was used to prove the compatibility of a quantitative enzymatic assay in a continuous-flow real-time system (connected to MS). Moreover (using internal standards), the critical parameter reaction temperature (including solution density variations depending on temperature) was studied in the continuous-flow mixing system. Furthermore, two substrates (malantide and kemptide), two enzyme types (catalytic subunit of PKA and complete PKA) and one inhibitor were tested to determine system robustness and long-term availability. Even spraying solutions that contained significant amount of MS contaminants (e.g. the polluted catalytic subunit) resulted in quantifiable MS signal intensities. Subsequent recalculations using the internal standards led to results representing the power of this application. The presented methodology and the data evaluation with available Achroma freeware enable the direct coupling of biochemical assays with quantitative MS detection. Monitoring changes such as temperature, reaction time, inhibition, or compound concentrations can be observed quantitatively and thus enzymatic activity can be calculated. Copyright © 2016 John Wiley & Sons, Ltd.

  11. Flow study in the cross sectional planes of a turbine scroll

    NASA Technical Reports Server (NTRS)

    Hamed, A.; Abdallah, S.; Tabakoff, W.

    1977-01-01

    A numerical study of the nonviscous flow characteristics in the cross-sectional planes of a radial inflow turbine scroll is presented. The velocity potential is used in the formulation to determine the flow velocity in these planes resulting from the continuous mass discharge. The effect of the through flow velocity is simulated by a continuous distribution of source/sink in the cross-section. A special iterative procedure is devised to handle the solution of the resulting Poisson's differential equation with Neumann boundary conditions in a domain with generally curved boundaries. The analysis is used to determine the effects of the radius of curvature, the location of the scroll section and its geometry on the flow characteristics in the turbine scroll.

  12. Mass spectrometric directed system for the continuous-flow synthesis and purification of diphenhydramine† †Electronic supplementary information (ESI) available: NMR spectra of selected product, mass spectra of selected products, crystallization information, and experimental procedures are supplied. See DOI: 10.1039/c7sc00905d Click here for additional data file.

    PubMed Central

    Loren, Bradley P.; Wleklinski, Michael; Koswara, Andy; Yammine, Kathryn; Hu, Yanyang

    2017-01-01

    A highly integrated approach to the development of a process for the continuous synthesis and purification of diphenhydramine is reported. Mass spectrometry (MS) is utilized throughout the system for on-line reaction monitoring, off-line yield quantitation, and as a reaction screening module that exploits reaction acceleration in charged microdroplets for high throughput route screening. This effort has enabled the discovery and optimization of multiple routes to diphenhydramine in glass microreactors using MS as a process analytical tool (PAT). The ability to rapidly screen conditions in charged microdroplets was used to guide optimization of the process in a microfluidic reactor. A quantitative MS method was developed and used to measure the reaction kinetics. Integration of the continuous-flow reactor/on-line MS methodology with a miniaturized crystallization platform for continuous reaction monitoring and controlled crystallization of diphenhydramine was also achieved. Our findings suggest a robust approach for the continuous manufacture of pharmaceutical drug products, exemplified in the particular case of diphenhydramine, and optimized for efficiency and crystal size, and guided by real-time analytics to produce the agent in a form that is readily adapted to continuous synthesis. PMID:28979759

  13. Debris flows: behavior and hazard assessment

    USGS Publications Warehouse

    Iverson, Richard M.

    2014-01-01

    Debris flows are water-laden masses of soil and fragmented rock that rush down mountainsides, funnel into stream channels, entrain objects in their paths, and form lobate deposits when they spill onto valley floors. Because they have volumetric sediment concentrations that exceed 40 percent, maximum speeds that surpass 10 m/s, and sizes that can range up to ~109 m3, debris flows can denude slopes, bury floodplains, and devastate people and property. Computational models can accurately represent the physics of debris-flow initiation, motion and deposition by simulating evolution of flow mass and momentum while accounting for interactions of debris' solid and fluid constituents. The use of physically based models for hazard forecasting can be limited by imprecise knowledge of initial and boundary conditions and material properties, however. Therefore, empirical methods continue to play an important role in debris-flow hazard assessment.

  14. Highlights of the high-temperature falling particle receiver project: 2012 - 2016

    NASA Astrophysics Data System (ADS)

    Ho, C. K.; Christian, J.; Yellowhair, J.; Jeter, S.; Golob, M.; Nguyen, C.; Repole, K.; Abdel-Khalik, S.; Siegel, N.; Al-Ansary, H.; El-Leathy, A.; Gobereit, B.

    2017-06-01

    A 1 MWt continuously recirculating falling particle receiver has been demonstrated at Sandia National Laboratories. Free-fall and obstructed-flow receiver designs were tested with particle mass flow rates of ˜1 - 7 kg/s and average irradiances up to 1,000 suns. Average particle outlet temperatures exceeded 700 °C for the free-fall tests and reached nearly 800 °C for the obstructed-flow tests, with peak particle temperatures exceeding 900 °C. High particle heating rates of ˜50 to 200 °C per meter of illuminated drop length were achieved for the free-fall tests with mass flow rates ranging from 1 - 7 kg/s and for average irradiances up to ˜ 700 kW/m2. Higher temperatures were achieved at the lower particle mass flow rates due to less shading. The obstructed-flow design yielded particle heating rates over 300 °C per meter of illuminated drop length for mass flow rates of 1 - 3 kg/s for irradiances up to ˜1,000 kW/m2. The thermal efficiency was determined to be ˜60 - 70% for the free-falling particle tests and up to ˜80% for the obstructed-flow tests. Challenges encountered during the tests include particle attrition and particle loss through the aperture, reduced particle mass flow rates at high temperatures due to slot aperture narrowing and increased friction, and deterioration of the obstructed-flow structures due to wear and oxidation. Computational models were validated using the test data and will be used in future studies to design receiver configurations that can increase the thermal efficiency.

  15. Multiple-Point Mass Flux Measurement System Using Rayleigh Scattering

    NASA Technical Reports Server (NTRS)

    Mielke, Amy F.; Elam, Kristie A.; Clem, Michelle M.

    2009-01-01

    A multiple-point Rayleigh scattering diagnostic is being developed to provide mass flux measurements in gas flows. Spectroscopic Rayleigh scattering is an established flow diagnostic that has the ability to provide simultaneous density, temperature, and velocity measurements. Rayleigh scattered light from a focused 18 Watt continuous-wave laser beam is directly imaged through a solid Fabry-Perot etalon onto a CCD detector which permits spectral analysis of the light. The spatial resolution of the measurements is governed by the locations of interference fringes, which can be changed by altering the etalon characteristics. A prototype system has been used to acquire data in a Mach 0.56 flow to demonstrate feasibility of using this system to provide mass flux measurements. Estimates of measurement uncertainty and recommendations for system improvements are presented

  16. Gas Flows in Rocket Motors. Volume 2. Appendix C. Time Iterative Solution of Viscous Supersonic Flow

    DTIC Science & Technology

    1989-08-01

    by b!ock number) FIELD GROUP SUB- GROUP nozzle analysis, Navier-Stokes, turbulent flow, equilibrium S 20 04 chemistry 19. ABSTRACT (Continue on reverse... quasi -conservative formulations lead to unacrepilably large mass conservation errors. Along with the investigations of Navier-Stkes algorithins...Characteristics Splitting ................................... 125 4.2.3 Non -Iterative PNS Procedure ............................... 125 4.2.4 Comparisons of

  17. Isotope ratio mass spectrometry in nutrition research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luke, A.H.

    Many of the biochemical pathways and processes that form the foundation of modern nutrition research was elucidated using stable isotopes as physiological tracers. Since the discovery of stable isotopes, improvements and innovations in mass spectrometry and chromatography have led to greatly expanded applications. This research project was designed to evaluate gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS) as a tool for isotopic tracer studies and to delineate the operational parameters for the analysis of {sup 13}C-labeled cholesterol, leucine and {alpha}-ketoisocaproate. The same isotope ratio mass spectrometer was then used as the base instrument for the ratio mass spectrometer was then usedmore » as the base instrument for the development of two additional inlet systems: a continuous-flow inlet for the analyses of {sup 13}C and {sup 18}O as CO{sub 2} and a filament inlet for on-line combustion and isotopic analysis of non-volatile organic compounds. Each of these three inlets was evaluated and their utility in nutrition research illustrated. GC/C/IRMS was used to analyze cholesterol, leucine and {alpha}-ketoisocaproate with good accuracy, precision and little isotopic memory. For all three compounds the detection limits achieved well surpassed currently used technologies. For compounds that can be well separated by GC, GC/C/IRMS is a valuable analytical tool. The continuous-flow inlet provided good accuracy and precision for measurements of {sup 13}CO{sub 2} from breath tests and {sup 18}O as CO{sub 2} from total energy expenditure tests. Most importantly, the continuous-flow inlet increased sample throughput by at least a factor of three over conventional analytical techniques. The filament inlet provided accurate and precise {sup 13}C ratio measurements of both natural abundance and enriched standards of non-volatile organic compounds of physiological interest.« less

  18. Analysis on the Upwelling of the Anoxic Water Mass in Inner Tokyo Bay

    NASA Astrophysics Data System (ADS)

    Kitahara, Kouichi; Wada, Akira; Kawanaga, Mitsuhito; Fukuoka, Ippei; Takano, Tairyu

    In the period of strong density stratification from early summer through early fall, the supply of oxygen from the sea surface to the deeper water is cut off. At the same time, organic matter decomposes near the ocean bottom, so that the anoxic water mass forms. In inner Tokyo Bay, when a northeasterly wind(directed from the inner bay toward the mouth of the bay)blows, the anoxic water mass upwells(an “Aoshio” occurs). In some cases fishes and shellfish die along the coast. Based on the report of results of continuous observations of water temperature, salinity and dissolved oxygen content presented by Fukuoka et al, 2005, here we have used an improved fluid flow model to carry out 3-dimensional calculations of the water level, water temperature, salinity and flow distributions. The computational results have reproduced the observational results well. The calculations showed that upwelling of the anoxic water mass that forms during the stratified period is not only affected by the continuously blowing northeasterly wind, but also by a continuous southwesterly wind that blew several days previously. Surface water blown against the coast by this continuous southwesterly wind is pushed downward; the calculations reproduced the process by which the rising force of this previously downwelled surface water also affects the phenomenon of anoxia. Furthermore, we presented the results of time dependent analysis of quantities relevant to water quality, including dissolved oxygen, which is closely related to the Aoshio, using the flow and diffusion model and a primary ecological model during the stratified ocean period, the sinking period and the upwelling period. We have compared the computed results to the results of continuous observations of dissolved oxygen during occurrence of an Aoshio in 1992 at observation point D-2, and confirmed that this model is an appropriate one to describe this phenomenon.

  19. Continuous monitoring of blood volume changes in humans

    NASA Technical Reports Server (NTRS)

    Hinghofer-Szalkay, H.; Greenleaf, J. E.

    1987-01-01

    Use of on-line high-precision mass densitometry for the continuous monitoring of blood volume changes in humans was demonstrated by recording short-term blood volume alterations produced by changes in body position. The mass density of antecubital venous blood was measured continuously for 80 min per session with 0.1 g/l precision at a flow rate of 1.5 ml/min. Additional discrete plasma density and hematocrit measurements gave linear relations between all possible combinations of blood density, plasma density, and hematocrit. Transient filtration phenomena were revealed that are not amenable to discontinuous measurements.

  20. Determination of gas & liquid two-phase flow regime transitions in wellbore annulus by virtual mass force coefficient when gas cut

    NASA Astrophysics Data System (ADS)

    Qu, Junbo; Yan, Tie; Sun, Xiaofeng; Chen, Ye; Pan, Yi

    2017-10-01

    With the development of drilling technology to deeper stratum, overflowing especially gas cut occurs frequently, and then flow regime in wellbore annulus is from the original drilling fluid single-phase flow into gas & liquid two-phase flow. By using averaged two-fluid model equations and the basic principle of fluid mechanics to establish the continuity equations and momentum conservation equations of gas phase & liquid phase respectively. Relationship between pressure and density of gas & liquid was introduced to obtain hyperbolic equation, and get the expression of the dimensionless eigenvalue of the equation by using the characteristic line method, and analyze wellbore flow regime to get the critical gas content under different virtual mass force coefficients. Results show that the range of equation eigenvalues is getting smaller and smaller with the increase of gas content. When gas content reaches the critical point, the dimensionless eigenvalue of equation has no real solution, and the wellbore flow regime changed from bubble flow to bomb flow. When virtual mass force coefficients are 0.50, 0.60, 0.70 and 0.80 respectively, the critical gas contents are 0.32, 0.34, 0.37 and 0.39 respectively. The higher the coefficient of virtual mass force, the higher gas content in wellbore corresponding to the critical point of transition flow regime, which is in good agreement with previous experimental results. Therefore, it is possible to determine whether there is a real solution of the dimensionless eigenvalue of equation by virtual mass force coefficient and wellbore gas content, from which we can obtain the critical condition of wellbore flow regime transformation. It can provide theoretical support for the accurate judgment of the annular flow regime.

  1. 40 CFR 63.993 - Absorbers, condensers, carbon adsorbers and other recovery devices used as final recovery devices.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... providing a continuous record or an integrating regeneration stream flow monitoring device having an accuracy of ±10 percent or better, capable of recording the total regeneration stream mass or volumetric flow for each regeneration cycle; and a carbon-bed temperature monitoring device, capable of recording...

  2. 40 CFR 63.5995 - What are my monitoring installation, operation, and maintenance requirements?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... for continuity, oxidation, and galvanic corrosion. (c) For each integrating regeneration stream flow... a device that is capable of recording the total regeneration stream mass or volumetric flow for each regeneration cycle. (d) For any other control device, or for other capture systems, ensure that the CPMS is...

  3. 40 CFR 63.5995 - What are my monitoring installation, operation, and maintenance requirements?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... for continuity, oxidation, and galvanic corrosion. (c) For each integrating regeneration stream flow... a device that is capable of recording the total regeneration stream mass or volumetric flow for each regeneration cycle. (d) For any other control device, or for other capture systems, ensure that the CPMS is...

  4. 40 CFR 63.5995 - What are my monitoring installation, operation, and maintenance requirements?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... for continuity, oxidation, and galvanic corrosion. (c) For each integrating regeneration stream flow... a device that is capable of recording the total regeneration stream mass or volumetric flow for each regeneration cycle. (d) For any other control device, or for other capture systems, ensure that the CPMS is...

  5. 40 CFR 63.993 - Absorbers, condensers, carbon adsorbers and other recovery devices used as final recovery devices.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... providing a continuous record or an integrating regeneration stream flow monitoring device having an accuracy of ±10 percent or better, capable of recording the total regeneration stream mass or volumetric flow for each regeneration cycle; and a carbon-bed temperature monitoring device, capable of recording...

  6. 40 CFR 63.11940 - What continuous monitoring requirements must I meet for control devices required to install CPMS...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... non-vacuum regeneration systems, an integrating regeneration stream flow monitoring device having an accuracy of ±10 percent, capable of recording the total regeneration stream mass for each regeneration cycle. For non-vacuum regeneration systems, an integrating regeneration stream flow monitoring device...

  7. 40 CFR 63.993 - Absorbers, condensers, carbon adsorbers and other recovery devices used as final recovery devices.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... providing a continuous record or an integrating regeneration stream flow monitoring device having an accuracy of ±10 percent or better, capable of recording the total regeneration stream mass or volumetric flow for each regeneration cycle; and a carbon-bed temperature monitoring device, capable of recording...

  8. 40 CFR 63.993 - Absorbers, condensers, carbon adsorbers and other recovery devices used as final recovery devices.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... providing a continuous record or an integrating regeneration stream flow monitoring device having an accuracy of ±10 percent or better, capable of recording the total regeneration stream mass or volumetric flow for each regeneration cycle; and a carbon-bed temperature monitoring device, capable of recording...

  9. 40 CFR 63.11940 - What continuous monitoring requirements must I meet for control devices required to install CPMS...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... non-vacuum regeneration systems, an integrating regeneration stream flow monitoring device having an accuracy of ±10 percent, capable of recording the total regeneration stream mass for each regeneration cycle. For non-vacuum regeneration systems, an integrating regeneration stream flow monitoring device...

  10. 40 CFR 63.993 - Absorbers, condensers, carbon adsorbers and other recovery devices used as final recovery devices.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... providing a continuous record or an integrating regeneration stream flow monitoring device having an accuracy of ±10 percent or better, capable of recording the total regeneration stream mass or volumetric flow for each regeneration cycle; and a carbon-bed temperature monitoring device, capable of recording...

  11. Mass spectrometric directed system for the continuous-flow synthesis and purification of diphenhydramine.

    PubMed

    Loren, Bradley P; Wleklinski, Michael; Koswara, Andy; Yammine, Kathryn; Hu, Yanyang; Nagy, Zoltan K; Thompson, David H; Cooks, R Graham

    2017-06-01

    A highly integrated approach to the development of a process for the continuous synthesis and purification of diphenhydramine is reported. Mass spectrometry (MS) is utilized throughout the system for on-line reaction monitoring, off-line yield quantitation, and as a reaction screening module that exploits reaction acceleration in charged microdroplets for high throughput route screening. This effort has enabled the discovery and optimization of multiple routes to diphenhydramine in glass microreactors using MS as a process analytical tool (PAT). The ability to rapidly screen conditions in charged microdroplets was used to guide optimization of the process in a microfluidic reactor. A quantitative MS method was developed and used to measure the reaction kinetics. Integration of the continuous-flow reactor/on-line MS methodology with a miniaturized crystallization platform for continuous reaction monitoring and controlled crystallization of diphenhydramine was also achieved. Our findings suggest a robust approach for the continuous manufacture of pharmaceutical drug products, exemplified in the particular case of diphenhydramine, and optimized for efficiency and crystal size, and guided by real-time analytics to produce the agent in a form that is readily adapted to continuous synthesis.

  12. Smoothed particle hydrodynamics method for evaporating multiphase flows.

    PubMed

    Yang, Xiufeng; Kong, Song-Charng

    2017-09-01

    The smoothed particle hydrodynamics (SPH) method has been increasingly used for simulating fluid flows; however, its ability to simulate evaporating flow requires significant improvements. This paper proposes an SPH method for evaporating multiphase flows. The present SPH method can simulate the heat and mass transfers across the liquid-gas interfaces. The conservation equations of mass, momentum, and energy were reformulated based on SPH, then were used to govern the fluid flow and heat transfer in both the liquid and gas phases. The continuity equation of the vapor species was employed to simulate the vapor mass fraction in the gas phase. The vapor mass fraction at the interface was predicted by the Clausius-Clapeyron correlation. An evaporation rate was derived to predict the mass transfer from the liquid phase to the gas phase at the interface. Because of the mass transfer across the liquid-gas interface, the mass of an SPH particle was allowed to change. Alternative particle splitting and merging techniques were developed to avoid large mass difference between SPH particles of the same phase. The proposed method was tested by simulating three problems, including the Stefan problem, evaporation of a static drop, and evaporation of a drop impacting a hot surface. For the Stefan problem, the SPH results of the evaporation rate at the interface agreed well with the analytical solution. For drop evaporation, the SPH result was compared with the result predicted by a level-set method from the literature. In the case of drop impact on a hot surface, the evolution of the shape of the drop, temperature, and vapor mass fraction were predicted.

  13. 40 CFR 60.203 - Monitoring of operations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for the Phosphate..., calibrate, maintain, and operate a monitoring device which can be used to determine the mass flow of... maintain a daily record of equivalent P2O5 feed by first determining the total mass rate in Mg/hr of...

  14. A modified dodge algorithm for the parabolized Navier-Stokes equations and compressible duct flows

    NASA Technical Reports Server (NTRS)

    Cooke, C. H.

    1981-01-01

    A revised version of a split-velocity method for numerical calculation of compressible duct flow was developed. The revision incorporates balancing of mass flow rates on each marching step in order to maintain front-to-back continuity during the calculation. The (checkerboard) zebra algorithm is applied to solution of the three-dimensional continuity equation in conservative form. A second-order A-stable linear multistep method is employed in effecting a marching solution of the parabolized momentum equations. A checkerboard successive overrelaxation iteration is used to solve the resulting implicit nonlinear systems of finite-difference equations which govern stepwise transition.

  15. Orthogonal time-of-flight mass spectrometry of an ion beam with a broad kinetic energy profile.

    PubMed

    Miller, S W; Prince, B D; Bemish, R J

    2017-10-01

    A combined experimental and modeling effort is undertaken to assess a detection system composed of an orthogonal extraction time-of-flight (TOF) mass spectrometer coupled to a continuous ion source emitting an ion beam with kinetic energy of several hundred eV. The continuous ion source comprises an electrospray capillary system employing an undiluted ionic liquid emitting directly into vacuum. The resulting ion beam consists of ions with kinetic energy distributions of width greater than a hundred of eV and mass-to-charge (m/q) ratios ranging from 111 to 500 000 amu/q. In particular, the investigation aims to demonstrate the kinetic energy resolution along the ion beam axis (axial) of orthogonally extracted ions in measurements of the axial kinetic energy-specific mass spectrum, mass flow rate, and total ion current. The described instrument is capable of simultaneous measurement of a broad m/q range in a single acquisition cycle with approximately 25 eV/q axial kinetic energy resolution. Mass resolutions of ∼340 (M/ΔM, FWHM) were obtained for ions at m/q = 1974. Comparison of the orthogonally extracted TOF mass spectrum to mass flow and ion current measurements obtained with a quartz-crystal microbalance and Faraday cup, respectively, shows reasonable numeric agreement and qualitative agreement in the trend as a function of energy defect.

  16. A modified Dodge algorithm for the parabolized Navier-Stokes equation and compressible duct flows

    NASA Technical Reports Server (NTRS)

    Cooke, C. H.

    1981-01-01

    A revised version of Dodge's split-velocity method for numerical calculation of compressible duct flow was developed. The revision incorporates balancing of mass flow rates on each marching step in order to maintain front-to-back continuity during the calculation. The (checkerboard) zebra algorithm is applied to solution of the three dimensional continuity equation in conservative form. A second-order A-stable linear multistep method is employed in effecting a marching solution of the parabolized momentum equations. A checkerboard iteration is used to solve the resulting implicit nonlinear systems of finite-difference equations which govern stepwise transition. Qualitive agreement with analytical predictions and experimental results was obtained for some flows with well-known solutions.

  17. Multivariate statistical process control of a continuous pharmaceutical twin-screw granulation and fluid bed drying process.

    PubMed

    Silva, A F; Sarraguça, M C; Fonteyne, M; Vercruysse, J; De Leersnyder, F; Vanhoorne, V; Bostijn, N; Verstraeten, M; Vervaet, C; Remon, J P; De Beer, T; Lopes, J A

    2017-08-07

    A multivariate statistical process control (MSPC) strategy was developed for the monitoring of the ConsiGma™-25 continuous tablet manufacturing line. Thirty-five logged variables encompassing three major units, being a twin screw high shear granulator, a fluid bed dryer and a product control unit, were used to monitor the process. The MSPC strategy was based on principal component analysis of data acquired under normal operating conditions using a series of four process runs. Runs with imposed disturbances in the dryer air flow and temperature, in the granulator barrel temperature, speed and liquid mass flow and in the powder dosing unit mass flow were utilized to evaluate the model's monitoring performance. The impact of the imposed deviations to the process continuity was also evaluated using Hotelling's T 2 and Q residuals statistics control charts. The influence of the individual process variables was assessed by analyzing contribution plots at specific time points. Results show that the imposed disturbances were all detected in both control charts. Overall, the MSPC strategy was successfully developed and applied. Additionally, deviations not associated with the imposed changes were detected, mainly in the granulator barrel temperature control. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Numerical studies of asymmetric adiabatic accretion flow - The effect of velocity gradients

    NASA Technical Reports Server (NTRS)

    Taam, Ronald E.; Fryxell, B. A.

    1989-01-01

    A numerical study of the time variation of the angular momentum and mass capture rates for a central object accreting from a uniform medium with a velocity gradient transverse to the direction of the mean flow is presented, covering a range of velocity asymmetries and Mach numbers in the incident flow. It is found that the mass accretion rate in a given evolutionary sequence varies in an irregular manner, with the matter accreting onto the central object from either a continuously moving accretion wake or from an accretion disk. The implications of the results from the study of short-term fluctuations observed in the pulse period and luminosity of X-ray pulsars are discussed.

  19. RTD-based Material Tracking in a Fully-Continuous Dry Granulation Tableting Line.

    PubMed

    Martinetz, M C; Karttunen, A-P; Sacher, S; Wahl, P; Ketolainen, J; Khinast, J G; Korhonen, O

    2018-06-06

    Continuous manufacturing (CM) offers quality and cost-effectiveness benefits over currently dominating batch processing. One challenge that needs to be addressed when implementing CM is traceability of materials through the process, which is needed for the batch/lot definition and control strategy. In this work the residence time distributions (RTD) of single unit operations (blender, roller compactor and tablet press) of a continuous dry granulation tableting line were captured with NIR based methods at selected mass flow rates to create training data. RTD models for continuous operated unit operations and the entire line were developed based on transfer functions. For semi-continuously operated bucket conveyor and pneumatic transport an assumption based the operation frequency was used. For validation of the parametrized process model, a pre-defined API step change and its propagation through the manufacturing line was computed and compared to multi-scale experimental runs conducted with the fully assembled continuous operated manufacturing line. This novel approach showed a very good prediction power at the selected mass flow rates for a complete continuous dry granulation line. Furthermore, it shows and proves the capabilities of process simulation as a tool to support development and control of pharmaceutical manufacturing processes. Copyright © 2018. Published by Elsevier B.V.

  20. A near-infrared spectroscopic survey of massive jets towards extended green objects

    NASA Astrophysics Data System (ADS)

    Caratti o Garatti, A.; Stecklum, B.; Linz, H.; Garcia Lopez, R.; Sanna, A.

    2015-01-01

    Context. Protostellar jets and outflows are the main outcome of the star formation process, and their analysis can provide us with major clues about the ejection and accretion history of young stellar objects (YSOs). Aims: We aim at deriving the main physical properties of massive jets from near-infrared (NIR) observations, comparing them to those of a large sample of jets from low-mass YSOs, and relating them to the main features of their driving sources. Methods: We present a NIR imaging (H2 and Ks) and low-resolution spectroscopic (0.95-2.50 μm) survey of 18 massive jets towards GLIMPSE extended green objects (EGOs), driven by intermediate- and high-mass YSOs, which have bolometric luminosities (Lbol) between 4 × 102 and 1.3 × 105 L⊙. Results: As in low-mass jets, H2 is the primary NIR coolant, detected in all the analysed flows, whereas the most important ionic tracer is [Fe ii], detected in half of the sampled jets. Our analysis indicates that the emission lines originate from shocks at high temperatures and densities. No fluorescent emission is detected along the flows, regardless of the source bolometric luminosity. On average, the physical parameters of these massive jets (i.e. visual extinction, temperature, column density, mass, and luminosity) have higher values than those measured in their low-mass counterparts. The morphology of the H2 flows is varied, mostly depending on the complex, dynamic, and inhomogeneous environment in which these massive jets form and propagate. All flows and jets in our sample are collimated, showing large precession angles. Additionally, the presence of both knots and jets suggests that the ejection process is continuous with burst episodes, as in low-mass YSOs. We compare the flow H2 luminosity with the source bolometric luminosity confirming the tight correlation between these two quantities. Five sources, however, display a lower LH2/Lbol efficiency, which might be related to YSO evolution. Most important, the inferred LH2 vs. Lbol relationship agrees well with the correlation between the momentum flux of the CO outflows and the bolometric luminosities of high-mass YSOs indicating that outflows from high-mass YSOs are momentum driven, as are their low-mass counterparts. We also derive a less stringent correlation between the inferred mass of the H2 flows and Lbol of the YSOs, indicating that the mass of the flow depends on the driving source mass. Conclusions: By comparing the physical properties of jets in the NIR, a continuity from low- to high-mass jets is identified. Massive jets appear as a scaled-up version of their low-mass counterparts in terms of their physical parameters and origin. Nevertheless, there are consistent differences such as a more variegated morphology and, on average, stronger shock conditions, which are likely due to the different environment in which high-mass stars form. Based on observations collected at the European Southern Observatory La Silla, Chile, 080.C-0573(A), 083.C-0846(A).Appendices are available in electronic form at http://www.aanda.org

  1. Small Scale Mass Flow Plug Calibration

    NASA Technical Reports Server (NTRS)

    Sasson, Jonathan

    2015-01-01

    A simple control volume model has been developed to calculate the discharge coefficient through a mass flow plug (MFP) and validated with a calibration experiment. The maximum error of the model in the operating region of the MFP is 0.54%. The model uses the MFP geometry and operating pressure and temperature to couple continuity, momentum, energy, an equation of state, and wall shear. Effects of boundary layer growth and the reduction in cross-sectional flow area are calculated using an in- integral method. A CFD calibration is shown to be of lower accuracy with a maximum error of 1.35%, and slower by a factor of 100. Effects of total pressure distortion are taken into account in the experiment. Distortion creates a loss in flow rate and can be characterized by two different distortion descriptors.

  2. Flank collapse at Mount Wrangell, Alaska, recorded by volcanic mass-flow deposits in the Copper River lowland

    USGS Publications Warehouse

    Waythomas, C.F.; Wallace, K.L.

    2002-01-01

    An areally extensive volcanic mass-flow deposit of Pleistocene age, known as the Chetaslina volcanic mass-flow deposit, is a prominent and visually striking deposit in the southeastern Copper River lowland of south-central Alaska. The mass-flow deposit consists of a diverse mixture of colorful, variably altered volcanic rocks, lahar deposits, glaciolacustrine diamicton, and till that record a major flank collapse on the southwest flank of Mount Wrangell. The deposit is well exposed near its presumed source, and thick, continuous, stratigraphic exposures have permitted us to study its sedimentary characteristics as a means of better understanding the origin, significance, and evolution of the deposit. Deposits of the Chetaslina volcanic mass flow in the Chetaslina River drainage are primary debris-avalanche deposits and consist of two principal facies types, a near-source block facies and a distal mixed facies. The block facies is composed entirely of block-supported, shattered and fractured blocks with individual blocks up to 40 m in diameter. The mixed facies consists of block-sized particles in a matrix of poorly sorted rock rubble, sand, and silt generated by the comminution of larger blocks. Deposits of the Chetaslina volcanic mass flow exposed along the Copper, Tonsina, and Chitina rivers are debris-flow deposits that evolved from the debris-avalanche component of the flow and from erosion and entrainment of local glacial and glaciolacustrine diamicton in the Copper River lowland. The debris-flow deposits were probably generated through mixing of the distal debris avalanche with the ancestral Copper River, or through breaching of a debris-avalanche dam across the ancestral river. The distribution of facies types and major-element chemistry of clasts in the deposit indicate that its source was an ancestral volcanic edifice, informally known as the Chetaslina vent, on the southwest side of Mount Wrangell. A major sector collapse of the Chetaslina vent initiated the Chetaslina volcanic mass flow forming a debris avalanche of about 4 km3 that subsequently transformed to a debris flow of unknown volume.

  3. A robust and fast method of sampling and analysis of delta13C of dissolved inorganic carbon in ground waters.

    PubMed

    Spötl, Christoph

    2005-09-01

    The stable carbon isotopic composition of dissolved inorganic carbon (delta13C(DIC)) is traditionally determined using either direct precipitation or gas evolution methods in conjunction with offline gas preparation and measurement in a dual-inlet isotope ratio mass spectrometer. A gas evolution method based on continuous-flow technology is described here, which is easy to use and robust. Water samples (100-1500 microl depending on the carbonate alkalinity) are injected into He-filled autosampler vials in the field and analysed on an automated continuous-flow gas preparation system interfaced to an isotope ratio mass spectrometer. Sample analysis time including online preparation is 10 min and overall precision is 0.1 per thousand. This method is thus fast and can easily be automated for handling large sample batches.

  4. Star Formation Rates in Cooling Flow Clusters: A UV Pilot Study with Archival XMM-Newton Optical Monitor Data

    NASA Technical Reports Server (NTRS)

    Hicks, A. K.; Mushotzky, R.

    2006-01-01

    We have analyzed XMM-Newton Optical Monitor (OM) UV (180-400 nm) data for a sample of 33 galaxies. 30 are cluster member galaxies, and nine of these are central cluster galaxies (CCGs) in cooling flow clusters having mass deposition rates which span a range of 8 - 525 Solar Mass/yr. By comparing the ratio of UV to 2MASS J band fluxes, we find a significant UV excess in many, but not all, cooling flow CCGs, a finding consistent with the outcome of previous studies based on optical imaging data (McNamara & O'Connell 1989; Cardiel, Gorgas, & Aragon-Salamanca 1998; Crawford et al. 1999). This UV excess is a direct indication of the presence of young massive stars, and therefore recent star formation, in these galaxies. Using the Starburst99 spectral energy distribution (SED) model of continuous star formation over a 900 Myr period, we derive star formation rates of 0.2 - 219 solar Mass/yr for the cooling flow sample. For 2/3 of this sample it is possible to equate Chandra/XMM cooling flow mass deposition rates with UV inferred star formation rates, for a combination of starburst lifetime and IMF slope. This is a pilot study of the well populated XMM UV cluster archive and a more extensive follow up study is currently underway.

  5. A modified Dodge algorithm for the parabolized Navier-Stokes equations and compressible duct flows

    NASA Technical Reports Server (NTRS)

    Cooke, C. H.; Dwoyer, D. M.

    1983-01-01

    A revised version of Dodge's split-velocity method for numerical calculation of compressible duct flow was developed. The revision incorporates balancing of mass flow rates on each marching step in order to maintain front-to-back continuity during the calculation. The (checkerboard) zebra algorithm is applied to solution of the three dimensional continuity equation in conservative form. A second-order A-stable linear multistep method is employed in effecting a marching solution of the parabolized momentum equations. A checkerboard iteration is used to solve the resulting implicit nonlinear systems of finite-difference equations which govern stepwise transition. Qualitative agreement with analytical predictions and experimental results was obtained for some flows with well-known solutions. Previously announced in STAR as N82-16363

  6. Seismic responses and controlling factors of Miocene deepwater gravity-flow deposits in Block A, Lower Congo Basin

    NASA Astrophysics Data System (ADS)

    Wang, Linlin; Wang, Zhenqi; Yu, Shui; Ngia, Ngong Roger

    2016-08-01

    The Miocene deepwater gravity-flow sedimentary system in Block A of the southwestern part of the Lower Congo Basin was identified and interpreted using high-resolution 3-D seismic, drilling and logging data to reveal development characteristics and main controlling factors. Five types of deepwater gravity-flow sedimentary units have been identified in the Miocene section of Block A, including mass transport, deepwater channel, levee, abandoned channel and sedimentary lobe deposits. Each type of sedimentary unit has distinct external features, internal structures and lateral characteristics in seismic profiles. Mass transport deposits (MTDs) in particular correspond to chaotic low-amplitude reflections in contact with mutants on both sides. The cross section of deepwater channel deposits in the seismic profile is in U- or V-shape. The channel deposits change in ascending order from low-amplitude, poor-continuity, chaotic filling reflections at the bottom, to high-amplitude, moderate to poor continuity, chaotic or sub-parallel reflections in the middle section and to moderate-weak amplitude, good continuity, parallel or sub-parallel reflections in the upper section. The sedimentary lobes are laterally lobate, which corresponds to high-amplitude, good-continuity, moundy reflection signatures in the seismic profile. Due to sediment flux, faults, and inherited terrain, few mass transport deposits occur in the northeastern part of the study area. The front of MTDs is mainly composed of channel-levee complex deposits, while abandoned-channel and lobe-deposits are usually developed in high-curvature channel sections and the channel terminals, respectively. The distribution of deepwater channel, levee, abandoned channel and sedimentary lobe deposits is predominantly controlled by relative sea level fluctuations and to a lesser extent by tectonism and inherited terrain.

  7. Continuous Flow Liquid Microjunction Surface Sampling Probe Connected On-line with HPLC/MS for Spatially Resolved Analysis of Small Molecules and Proteins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Berkel, Gary J; Kertesz, Vilmos

    RATIONALE: A continuous flow liquid microjunction surface sampling probe extracts soluble material from surfaces for direct ionization and detection by MS. Demonstrated here is the on-line coupling of such a probe with HPLC/MS enabling extraction, separation and detection of small molecules and proteins from surfaces in a spatially resolved (~0.5 mm diameter spots) manner. Methods: A continuous flow liquid microjunction surface sampling probe was connected to a 6-port, 2-position valve for extract collection and injection to an HPLC column. A QTRAP 5500 hybrid triple quadrupole linear ion trap equipped with a Turbo V ion source operated in positive ESI modemore » was used for all experiments. System operation was tested with extraction, separation and detection of propranolol and associated metabolites from drug dosed tissues and proteins from dried sheep blood spots on paper. Results: Confirmed in the tissue were the parent drug and two different hydroxypropranolol glucuronides. The mass spectrometric response for these compounds from different locations in the liver showed an increase with increasing extraction time (5, 20 and 40 s extractions). For on-line separation and detection/identification of extracted proteins from dried sheep blood spots, two major protein peaks dominated the chromatogram and could be correlated with the expected masses for the hemoglobin and chains. Conclusions: Spatially resolved sampling, separation, and detection of small molecules and proteins from surfaces can be accomplished using a continuous flow liquid microjunction surface sampling probe coupled on-line with HPLC/MS detection.« less

  8. Hypervelocity atmospheric flight: Real gas flow fields

    NASA Technical Reports Server (NTRS)

    Howe, John T.

    1990-01-01

    Flight in the atmosphere is examined from the viewpoint of including real gas phenomena in the flow field about a vehicle flying at hypervelocity. That is to say, the flow field is subject not only to compressible phenomena, but is dominated by energetic phenomena. There are several significant features of such a flow field. Spatially, its composition can vary by both chemical and elemental species. The equations which describe the flow field include equations of state and mass, species, elemental, and electric charge continuity; momentum; and energy equations. These are nonlinear, coupled, partial differential equations that were reduced to a relatively compact set of equations of a self-consistent manner (which allows mass addition at the surface at a rate comparable to the free-stream mass flux). The equations and their inputs allow for transport of these quantities relative to the mass-averaged behavior of the flow field. Thus transport of mass by chemical, thermal, pressure, and forced diffusion; transport of momentum by viscosity; and transport of energy by conduction, chemical considerations, viscosity, and radiative transfer are included. The last of these complicate the set of equations by making the energy equation a partial integrodifferential equation. Each phenomenon is considered and represented mathematically by one or more developments. The coefficients which pertain are both thermodynamically and chemically dependent. Solutions of the equations are presented and discussed in considerable detail, with emphasis on severe energetic flow fields. For hypervelocity flight in low-density environments where gaseous reactions proceed at finite rates, chemical nonequilibrium is considered and some illustrations are presented. Finally, flight where the flow field may be out of equilibrium, both chemically and thermodynamically, is presented briefly.

  9. Hypervelocity atmospheric flight: Real gas flow fields

    NASA Technical Reports Server (NTRS)

    Howe, John T.

    1989-01-01

    Flight in the atmosphere is examined from the viewpoint of including real gas phenomena in the flow field about a vehicle flying at hypervelocity. That is to say, the flow field is subject not only to compressible phenomena, but is dominated by energetic phenomena. There are several significant features of such a flow field. Spatially, its composition can vary by both chemical and elemental species. The equations which describe the flow field include equations of state and mass, species, elemental, and electric charge continuity; momentum; and energy equations. These are nonlinear, coupled, partial differential equations that have been reduced to a relatively compact set of equations in a self-consistent manner (which allows mass addition at the surface at a rate comparable to the free-stream mass flux). The equations and their inputs allow for transport of these quantities relative to the mass-average behavior of the flow field. Thus transport of mass by chemical, thermal, pressure, and forced diffusion; transport of momentum by viscosity; and transport of energy by conduction, chemical considerations, viscosity, and radiative transfer are included. The last of these complicate the set of equations by making the energy equations a partial integrodifferential equation. Each phenomenon is considered and represented mathematically by one or more developments. The coefficients which pertain are both thermodynamically and chemically dependent. Solutions of the equations are presented and discussed in considerable detail, with emphasis on severe energetic flow fields. Hypervelocity flight in low-density environments where gaseous reactions proceed at finite rates chemical nonequilibrium is considered, and some illustrations are presented. Finally, flight where the flow field may be out of equilibrium, both chemically and thermodynamically, is presented briefly.

  10. Continuous flow synthesis of ZSM-5 zeolite on the order of seconds

    PubMed Central

    Liu, Zhendong; Okabe, Kotatsu; Anand, Chokkalingam; Yonezawa, Yasuo; Zhu, Jie; Yamada, Hiroki; Endo, Akira; Yanaba, Yutaka; Yoshikawa, Takeshi; Ohara, Koji; Okubo, Tatsuya; Wakihara, Toru

    2016-01-01

    The hydrothermal synthesis of zeolites carried out in batch reactors takes a time so long (typically, on the order of days) that the crystallization of zeolites has long been believed to be very slow in nature. We herein present a synthetic process for ZSM-5, an industrially important zeolite, on the order of seconds in a continuous flow reactor using pressurized hot water as a heating medium. Direct mixing of a well-tuned precursor (90 °C) with the pressurized water preheated to extremely high temperature (370 °C) in the millimeter-sized continuous flow reactor resulted in immediate heating to high temperatures (240–300 °C); consequently, the crystallization of ZSM-5 in a seed-free system proceeded to completion within tens of or even several seconds. These results indicate that the crystallization of zeolites can complete in a period on the order of seconds. The subtle design combining a continuous flow reactor with pressurized hot water can greatly facilitate the mass production of zeolites in the future. PMID:27911823

  11. Progress on a Rayleigh Scattering Mass Flux Measurement Technique

    NASA Technical Reports Server (NTRS)

    Mielke-Fagan, Amy F.; Clem, Michelle M.; Elam, Kristie A.; Hirt, Stefanie M.

    2010-01-01

    A Rayleigh scattering diagnostic has been developed to provide mass flux measurements in wind tunnel flows. Spectroscopic molecular Rayleigh scattering is an established flow diagnostic tool that has the ability to provide simultaneous density and velocity measurements in gaseous flows. Rayleigh scattered light from a focused 10 Watt continuous-wave laser beam is collected and fiber-optically transmitted to a solid Fabry-Perot etalon for spectral analysis. The circular interference pattern that contains the spectral information that is needed to determine the flow properties is imaged onto a CCD detector. Baseline measurements of density and velocity in the test section of the 15 cm x 15 cm Supersonic Wind Tunnel at NASA Glenn Research Center are presented as well as velocity measurements within a supersonic combustion ramjet engine isolator model installed in the tunnel test section.

  12. Mathematical Model for Collision-Coalescence Among Inclusions in the Bloom Continuous Caster with M-EMS

    NASA Astrophysics Data System (ADS)

    Lei, Hong; Jiang, Jimin; Yang, Bin; Zhao, Yan; Zhang, Hongwei; Wang, Weixian; Dong, Guiwen

    2018-04-01

    Mathematical simulation is an effective tool to analyze the fluid flow and the inclusion behavior in the bloom continuous caster with mold electromagnetic stirring (M-EMS). The mathematical model is applied to the modeling of magnetic field, flow field, and inclusion field. Due to the introduction of Archimedes force, the collision mechanism and inclusion's slipping velocity should be modified in the inclusion mass and population conservation model. Numerically predicted magnetic field, flow field, and the inclusion spatial distribution conform to the experimental results in the existing literature. Lorentz force plays an important role in the fluid flow, and Archimedes force plays an important role in the inclusion distribution in the continuous caster. Due to Brownian collision, Stokes collision, Archimedes collision, and turbulent collision, the coalescence among inclusions occurs in the bloom continuous caster with M-EMS. Among the four types of collisions, turbulent collision occurs most frequently, followed by Archimedes collision and Stokes collision. The frequency of Brownian collision is several orders of magnitudes smaller and is therefore negligible. The inclusion volume concentration, number density, and characteristic radius exhibit a U-shape in the continuous caster without M-EMS. However, with M-EMS, they exhibit an inverted U-shape.

  13. Further development and testing of the metabolic gas analyzer

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Continued development of a metabolic monitor utilizing a mass spectrometer and digital computer to perform measurements and data reduction, is reported. The device prints-out breath-by-breath values for 02 consumption, C02 production, minute volume and tidal volume. The flow is measured by introduction of a tracer gas to the expired gas stream. Design modifications to reduce pressure drop in the flow splitter to one inch of water at 600 liters/min flow and to extend the range of linear flow measurement to 1000 liters/min are discussed.

  14. Analysis of trickle-bed reactor for ethanol production from syngas using Clostridium ragsdalei

    NASA Astrophysics Data System (ADS)

    Devarapalli, Mamatha

    The conversion of syngas components (CO, CO2 and H2) to liquid fuels such as ethanol involves complex biochemical reactions catalyzed by a group of acetogens such as Clostridium ljungdahlii, Clostridium carboxidivorans and Clostridium ragsdalei. The low ethanol productivity in this process is associated with the low solubility of gaseous substrates CO and H2 in the fermentation medium. In the present study, a 1-L trickle-bed reactor (TBR) was analyzed to understand its capabilities to improve the mass transfer of syngas in fermentation medium. Further, semi-continuous and continuous syngas fermentations were performed using C. ragsdalei to evaluate the ability of the TBR for ethanol production. In the mass transfer studies, using 6-mm glass beads, it was found that the overall mass transfer coefficient (kLa/V L) increased with the increase in gas flow rate from 5.5 to 130.5 sccm. Further, an increase in the liquid flow rate in the TBR decreased the kLa/VL due to the increase in liquid hold up volume (VL) in the packing. The highest kLa/VL values of 421 h-1 and 178 h-1 were achieved at a gas flow rate of 130.5 sccm for 6-mm and 3-mm glass beads, respectively. Semi-continuous fermentations were performed with repetitive medium replacement in counter-current and co-current modes. In semi-continuous fermentations with syngas consisting of 38% CO, 5% N2, 28.5% CO2 and 28.5% H2 (by volume), the increase in H2 conversion (from 18 to 55%) and uptake (from 0.7 to 2.2 mmol/h) were observed. This increase was attributed to more cell attachment in the packing that reduced CO inhibition to hydrogenase along the column length and increased the H2 uptake. The maximum ethanol produced during counter-current and co-current modes were 3.0 g/L and 5.7 g/L, respectively. In continuous syngas fermentation, the TBR was operated at dilution rates between 0.006 h-1and 0.012 h -1 and gas flow rates between 1.5 sccm and 18.9 sccm. The highest ethanol concentration of 13 g/L was achieved at dilution and gas flow rates of 0.012 h-1 and 18.9 sccm, respectively. The molar ratio of ethanol to acetic acid of 4:1 was obtained during continuous fermentation which was 7.7 times higher than in semi-continuous fermentations. The improvement of the reactor performance in continuous mode gives scope to explore the TBR as a potential bioreactor design for large scale biofuels production.

  15. Effect of Flow Rate Controller on Liquid Steel Flow in Continuous Casting Mold using Numerical Modeling

    NASA Astrophysics Data System (ADS)

    Gursoy, Kadir Ali; Yavuz, Mehmet Metin

    2014-11-01

    In continuous casting operation of steel, the flow through tundish to the mold can be controlled by different flow rate control systems including stopper rod and slide-gate. Ladle changes in continuous casting machines result in liquid steel level changes in tundishes. During this transient event of production, the flow rate controller opening is increased to reduce the pressure drop across the opening which helps to keep the mass flow rate at the desired level for the reduced liquid steel level in tundish. In the present study, computational fluid dynamic (CFD) models are developed to investigate the effect of flow rate controller on mold flow structure, and particularly to understand the effect of flow controller opening on meniscus flow. First, a detailed validation of the CFD models is conducted using available experimental data and the performances of different turbulence models are compared. Then, the constant throughput casting operations for different flow rate controller openings are simulated to quantify the opening effect on meniscus region. The results indicate that the meniscus velocities are significantly affected by the flow rate controller and its opening level. The steady state operations, specified as constant throughput casting, do not provide the same mold flow if the controller opening is altered. Thus, for quality and castability purposes, adjusting the flow controller opening to obtain the fixed mold flow structure is proposed. Supported by Middle East Technical University (METU) BAP (Scientific Research Projects) Coordination.

  16. Global spatial indexing of the human impact on Al, Cu, Fe, and Zn mobilization.

    PubMed

    Rauch, Jason N

    2010-08-01

    With increasing consumption of material by human activity, the extent of human influence relative to nature in the mobilization of metals and other elements on Earth continues to grow. Recognizing people as modern geomorphic agents, I produced global data layers at 1 degreesx1 degrees of human-mediated mass flows (coal combustion, biomass burning, and mining) and nature-mediated mass flows (net primary productivity, sea salt aerosol emission, and denudation to the oceans) for the industrial metals of aluminum, iron, copper, and zinc for the year 2000. The major mobilization processes are denudation (natural) and mining (anthropic), though net primary productivity for Zn and Cu and coal combustion for Al are nearly as significant. All flows are subsequently combined into an index representing human versus nature flow dominance. As the first maps of mobilization flows of metals widely used by modern technology, they reveal that approximately 1-5% (depending upon the metal) of Earth's land surface now has metal flow dominated by human activity.

  17. Apparatus for diffusion separation

    DOEpatents

    Nierenberg, William A.; Pontius, Rex B.

    1976-08-10

    1. The method of testing the separation efficiency of porous permeable membranes which comprises causing a stream of a gaseous mixture to flow into contact with one face of a finely porous permeable membrane under such conditions that a major fraction of the mixture diffuses through the membrane, maintaining a rectangular cross section of the gaseous stream so flowing past said membrane, continuously recirculating the gas that diffuses through said membrane and continuously withdrawing the gas that does not diffuse through said membrane and maintaining the volume of said recirculating gas constant by continuously introducing into said continuously recirculating gas stream a mass of gas equivalent to that which is continuously withdrawn from said gas stream and comparing the concentrations of the light component in the entering gas, the withdrawn gas and the recirculated gas in order to determine the efficiency of said membrane.

  18. Ablation in the slit in combustion

    NASA Astrophysics Data System (ADS)

    Tairova, A. A.; Belyakov, G. V.; Chervinchuk, S. Yu.

    2017-12-01

    The understanding of the patterns of the front of exothermic reaction propagation in permeable media is necessary for a correct description of both natural and technological processes. The study of mechanisms of combustion and filtration flow in the slit consists in determining the conditions of propagation of melting waves and evaporation in a cocurrent gas flow as well the associated mass loss of the surface material. This paper presents the heat flow effect on the hydrocarbon reservoir model. The poly methyl methacrylate with the boiling point Tboil = 200°C and sublimation heat ΔHsubl = 40.29 kJ/mol was chosen as the model of the hydrocarbon layer, which on heating becomes liquid and gaseous (ethers and methyl methacrylate pairs). Heated gas flows along the slit preliminary created. The flow was maintained by a pump. The gas burner was installed at the entrance to the slit. The heat flow was constant. The impulse of gas flow and the mass loss of the material from the surface of the gap were continuously measured with scales. The pressure in the flow was controlled by the manometer.

  19. Quantification aspects of constant pressure (ultra) high pressure liquid chromatography using mass-sensitive detectors with a nebulizing interface.

    PubMed

    Verstraeten, M; Broeckhoven, K; Lynen, F; Choikhet, K; Landt, K; Dittmann, M; Witt, K; Sandra, P; Desmet, G

    2013-01-25

    The present contribution investigates the quantitation aspects of mass-sensitive detectors with nebulizing interface (ESI-MSD, ELSD, CAD) in the constant pressure gradient elution mode. In this operation mode, the pressure is controlled and maintained at a set value and the liquid flow rate will vary according to the inverse mobile phase viscosity. As the pressure is continuously kept at the allowable maximum during the entire gradient run, the average liquid flow rate is higher compared to that in the conventional constant flow rate operation mode, thus shortening the analysis time. The following three mass-sensitive detectors were investigated: mass spectrometry detector (MS), evaporative light scattering detector (ELSD) and charged aerosol detector (CAD) and a wide variety of samples (phenones, polyaromatic hydrocarbons, wine, cocoa butter) has been considered. It was found that the nebulizing efficiency of the LC-interfaces of the three detectors under consideration changes with the increasing liquid flow rate. For the MS, the increasing flow rate leads to a lower peak area whereas for the ELSD the peak area increases compared to the constant flow rate mode. The peak area obtained with a CAD is rather insensitive to the liquid flow rate. The reproducibility of the peak area remains similar in both modes, although variation in system permeability compromises the 'long-term' reproducibility. This problem can however be overcome by running a flow rate program with an optimized flow rate and composition profile obtained from the constant pressure mode. In this case, the quantification remains reproducibile, despite any occuring variations of the system permeability. Furthermore, the same fragmentation pattern (MS) has been found in the constant pressure mode compared to the customary constant flow rate mode. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Transition of basaltic lava from pahoehoe to aa, Kilauea Volcano, Hawaii: Field observations and key factors

    USGS Publications Warehouse

    Peterson, Donald W.; Tilling, Robert I.

    1980-01-01

    Nearly all Hawaiian basaltic lava erupts as pahoehoe, and some changes to aa during flowage and cooling; factors governing the transition involve certain critical relations between viscosity and rate of shear strain. If the lava slows, cools, and stops in direct response to concomitant increase in viscosity before these critical relations are reached, it remains pahoehoe. But, if flow mechanics (flow rate, flow dimensions, slope, momentum, etc.) impel the lava to continue to move and deform even after it has become highly viscous, the critical relations may be reached and the lava changes to aa.Typical modes of transition from pahoehoe to aa include: (1) spontaneous formation of relatively stiff clots in parts of the flowing lava where shear rate is highest; these clots grow into discrete, rough, sticky masses to which the remaining fluid lava incrementally adheres; (2) fragmentation and immersion of solid or semi-solid surface crusts of pahoehoe by roiling movements of the flow, forming cores of discrete, tacky masses; (3) sudden renewed movement of lava stored and cooled within surface reservoirs to form clots. The masses, fragments, and clots in these transition modes are characterized by spinose, granulated surfaces; as flow movement continues, the masses and fragments aggregate, fracture, and grind together, completing the transition to aa.Observations show that the critical relation between viscosity and rate of shear strain is inverse: if viscosity is low, a high rate of shear is required to begin the transition to aa; conversely, if viscosity is high, a much lower rate of shear will induce the transition. These relations can be demonstrated qualitatively with simple graphs, which can be used to examine the flow history of any selected finite lava element by tracing the path represented by its changing viscosity and shear rate. A broad, diffuse “transition threshold zone” in these graphs portrays the inverse critical relation between viscosity and shear rate; the transition to aa is represented by the path of the lava element crossing this zone.Moving lava flows can be regarded as natural viscometers, by which shear stress and rate of shear strain at selected points can be determined and viscosity can be computed. By making such determinations under a wide range of conditions on pahoehoe, aa, and transitional flow types, the critical relations that control the pahoehoe-aa transition can be quantified.

  1. Generalized derivation of the added-mass and circulatory forces for viscous flows

    NASA Astrophysics Data System (ADS)

    Limacher, Eric; Morton, Chris; Wood, David

    2018-01-01

    The concept of added mass arises from potential flow analysis and is associated with the acceleration of a body in an inviscid irrotational fluid. When shed vorticity is modeled as vortex singularities embedded in this irrotational flow, the associated force can be superimposed onto the added-mass force due to the linearity of the governing Laplace equation. This decomposition of force into added-mass and circulatory components remains common in modern aerodynamic models, but its applicability to viscous separated flows remains unclear. The present work addresses this knowledge gap by presenting a generalized derivation of the added-mass and circulatory force decomposition which is valid for a body of arbitrary shape in an unbounded, incompressible fluid domain, in both two and three dimensions, undergoing arbitrary motions amid continuous distributions of vorticity. From the general expression, the classical added-mass force is rederived for well-known canonical cases and is seen to be additive to the circulatory force for any flow. The formulation is shown to be equivalent to existing theoretical work under the specific conditions and assumptions of previous studies. It is also validated using a numerical simulation of a pitching plate in a steady freestream flow, conducted by Wang and Eldredge [Theor. Comput. Fluid Dyn. 27, 577 (2013), 10.1007/s00162-012-0279-5]. In response to persistent confusion in the literature, a discussion of the most appropriate physical interpretation of added mass is included, informed by inspection of the derived equations. The added-mass force is seen to account for the dynamic effect of near-body vorticity and is not (as is commonly claimed) associated with the acceleration of near-body fluid which "must" somehow move with the body. Various other consequences of the derivation are discussed, including a concept which has been labeled the conservation of image-vorticity impulse.

  2. A modified commercial gas chromatograph for the continuous monitoring of the thermal degradation of sunflower oil and off-line solid phase extraction gas-chromatography-mass spectrometry characterization of released volatiles.

    PubMed

    Ontañon, I; Sanz, J; Escudero, A; de Marcos, S; Ferreira, V; Galbán, J

    2015-04-03

    A homemade flow cell attached to a commercial Gas Chromatograph equipped with a Flame Ionization Detector (FID) has been designed for the continuous monitoring of volatile compounds released during heating edible oils. Analytical parameters such as mass of sample, temperature and flow rates have been optimized and the obtained results have been compared with the corresponding thermographs from standard TG systems. Results show that under optimum conditions, the profiles of volatiles released upon heating are comparable to the profiles of TG curves, suggesting that the FID based system could be an alternative to TGA. Additionally, volatiles have been retained in a Lichrolut EN(®) resin, eluted and analyzed by Gas Chromatography-Mass Spectrometry. In this case, forty five compounds have been identified (acids, alcohols, alkanes, aldehydes, ketones and furans) and compared with the FID signals, working both in air or nitrogen atmosphere. It has been concluded that the oxidative thermal degradation is prevented in the presence of a nitrogen atmosphere. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. An All-vanadium Continuous-flow Photoelectrochemical Cell for Extending State-of-charge in Solar Energy Storage.

    PubMed

    Wei, Zi; Shen, Yi; Liu, Dong; Liu, Fuqiang

    2017-04-04

    Greater levels of solar energy storage provide an effective solution to the inherent nature of intermittency, and can substantially improve reliability, availability, and quality of the renewable energy source. Here we demonstrated an all-vanadium (all-V) continuous-flow photoelectrochemical storage cell (PESC) to achieve efficient and high-capacity storage of solar energy, through improving both photocurrent and photocharging depth. It was discovered that forced convective flow of electrolytes greatly enhanced the photocurrent by 5 times comparing to that with stagnant electrolytes. Electrochemical impedance spectroscopy (EIS) study revealed a great reduction of charge transfer resistance with forced convective flow of electrolytes as a result of better mass transport at U-turns of the tortuous serpentine flow channel of the cell. Taking advantage of the improved photocurrent and diminished charge transfer resistance, the all-V continuous-flow PESC was capable of producing ~20% gain in state of charge (SOC) under AM1.5 illumination for ca. 1.7 hours without any external bias. This gain of SOC was surprisingly three times more than that with stagnant electrolytes during a 25-hour period of photocharge.

  4. Numerical research of parameters of interaction of the gas flow with rotary valve of the gas pipeline

    NASA Astrophysics Data System (ADS)

    Boldyrev, A. V.; Karelin, D. L.; Muljukin, V. L.

    2016-11-01

    Conducted numerical research of static characteristics of the rotary gate valve at different angles of its deviation. for this purpose were set different values of pressure differential on the valve depending on which, was determined the mass flow and torque on valve axes. The mathematical model is provided by continuity equations, average on Reynolds, Navier-Stokes and energy, the equation of the perfect gas, the equations of two-layer k-e of model of turbulence. When calculating the current near walls are used Wolfstein's model and the hybrid wall functions of Reichardt for the speed and temperature. The task is solved in three-dimensional statement with use of conditions of symmetry. The structure of the current is analyzed: zones of acceleration and flow separation, whirlwinds, etc. Noted growth of hydraulic resistance of the valve with reduction of slope angle of the valve and with the increase in mass flow. Established increase of torque with reduction of the deviation angle of the valve and with increase in the mass expense.

  5. Continuous formation of N-chloro-N,N-dialkylamine solutions in well-mixed meso-scale flow reactors

    PubMed Central

    Jolley, Katherine E

    2015-01-01

    Summary The continuous flow synthesis of a range of organic solutions of N,N-dialkyl-N-chloramines is described using either a bespoke meso-scale tubular reactor with static mixers or a continuous stirred tank reactor. Both reactors promote the efficient mixing of a biphasic solution of N,N-dialkylamine in organic solvent, and aqueous sodium hypochlorite to achieve near quantitative conversions, in 72–100% in situ yields, and useful productivities of around 0.05 mol/h with residence times from 3 to 20 minutes. Initial calorimetric studies have been carried out to inform on reaction exotherms, rates and safe operation. Amines which partition mainly in the organic phase require longer reaction times, provided by the CSTR, to compensate for low mass transfer rates in the biphasic system. The green metrics of the reaction have been assessed and compared to existing procedures and have shown the continuous process is improved over previous procedures. The organic solutions of N,N-dialkyl-N-chloramines produced continuously will enable their use in tandem flow reactions with a range of nucleophilic substrates. PMID:26734089

  6. A novel method to measure regional muscle blood flow continuously using NIRS kinetics information

    PubMed Central

    Nioka, Shoko; Kime, Ryotaro; Sunar, Ulas; Im, Joohee; Izzetoglu, Meltem; Zhang, Jun; Alacam, Burak; Chance, Britton

    2006-01-01

    Background This article introduces a novel method to continuously monitor regional muscle blood flow by using Near Infrared Spectroscopy (NIRS). We demonstrate the feasibility of the new method in two ways: (1) by applying this new method of determining blood flow to experimental NIRS data during exercise and ischemia; and, (2) by simulating muscle oxygenation and blood flow values using these newly developed equations during recovery from exercise and ischemia. Methods Deoxy (Hb) and oxyhemoglobin (HbO2), located in the blood ofthe skeletal muscle, carry two internal relationships between blood flow and oxygen consumption. One is a mass transfer principle and the other describes a relationship between oxygen consumption and Hb kinetics in a two-compartment model. To monitor blood flow continuously, we transfer these two relationships into two equations and calculate the blood flow with the differential information of HbO2 and Hb. In addition, these equations are used to simulate the relationship between blood flow and reoxygenation kinetics after cuff ischemia and a light exercise. Nine healthy subjects volunteered for the cuff ischemia, light arm exercise and arm exercise with cuff ischemia for the experimental study. Results Analysis of experimental data of both cuff ischemia and light exercise using the new equations show greater blood flow (four to six times more than resting values) during recovery, agreeing with previous findings. Further, the simulation and experimental studies of cuff ischemia and light exercise agree with each other. Conclusion We demonstrate the accuracy of this new method by showing that the blood flow obtained from the method agrees with previous data as well as with simulated data. We conclude that this novel continuous blood flow monitoring method can provide blood flow information non-invasively with NIRS. PMID:16704736

  7. LONG-TERM MECHANICAL CIRCULATORY SUPPORT (DESTINATION THERAPY): ON TRACK TO COMPETE WITH HEART TRANSPLANTATIO?

    PubMed Central

    Kirklin, James K.; Naftel, David C.; Pagani, Francis D.; Kormos, Robert L.; Stevenson, Lynne; Miller, Marissa; Young, James B.

    2012-01-01

    Objective(s) Average two-year survival following cardiac transplantation is approximately 80%. The evolution and subsequent approval of larger pulsatile and, more recently, continuous flow mechanical circulatory support (MCS) technology for destination therapy (DT) offers the potential for triage of some patients awaiting cardiac transplantation to DT. Methods The National Heart, Lung and Blood Institute Interagency Registry for Mechanically Assisted Circulatory Support (INTERMACS) is a national multi-institutional study of chronic mechanical circulatory support. Between June 2006 and December 2011, 127 pulsatile and 1160 continuous flow pumps (24% of total primary LVADs) carried an initial strategy of DT therapy. Results By multivariable analysis, risk factors (p<0.05) for mortality following DT included older age, larger body mass index, history of cancer, history of cardiac surgery, INTERMACS level I (cardiogenic shock), dialysis, increased BUN, use of a pulsatile flow device and use of a RVAD. Among continuous flow LVAD patients who were not in cardiogenic shock, a particularly favorable survival was associated with no cancer, patients not in cardiogenic shock, and BUN < 50, resulting in one and two year survival of 88 and 80%. Conclusions 1) Evolution from pulsatile to continuous flow technology has dramatically improved one and two year survival; 2) Destination Therapy is not appropriate for patients with rapid hemodynamic deterioration; or severe right ventricular failure 4) Important subsets of continuous flow DT patients now enjoy survival which is competitive with heart transplantation out to about two years. PMID:22795459

  8. Liquid hydrogen mass flow through a multiple orifice Joule-Thomson device

    NASA Astrophysics Data System (ADS)

    Papell, S. Stephen; Nyland, Ted W.; Saiyed, Naseem H.

    Liquid hydrogen mass flow rate, pressure drop, and temperature drop data were obtained for a number of multiple orifice Joule-Thomas devices known as visco jets. The present investigation continues a study to develop an equation for predicting two phase flow of cryogens through these devices. The test apparatus design allowed isenthalpic expansion of the cryogen through the visco jets. The data covered a range of inlet and outlet operating conditions. The mass flow rate range single phase or two phase was 0.015 to 0.98 lbm/hr. The manufacturer's equation was found to overpredict the single phase hydrogen data by 10 percent and the two phase data by as much as 27 percent. Two modifications of the equation resulted in a data correlation that predicts both the single and two phase flow across the visco jet. The first modification was of a theoretical nature, and the second strictly empirical. The former reduced the spread in the two phase data. It was a multiplication factor of 1 - X applied to the manufacturer's equation. The parameter X is the flow quality downstream of the visco jet based on isenthalpic expansion across the device. The latter modification was a 10 percent correction term that correlated 90 percent of the single and two phase data to within +/- 10 percent scatter band.

  9. Liquid hydrogen mass flow through a multiple orifice Joule-Thomson device

    NASA Technical Reports Server (NTRS)

    Papell, S. S.; Nyland, Ted W.; Saiyed, Naseem H.

    1992-01-01

    Liquid hydrogen mass flow rate, pressure drop, and temperature drop data were obtained for a number of multiple orifice Joule-Thomson devices known as visco jets. The present investigation continues a study to develop an equation for predicting two phase flow of cryogens through these devices. The test apparatus design allowed isenthalpic expansion of the cryogen through the visco jets. The data covered a range of inlet and outlet operating conditions. The mass flow rate range single phase or two phase was 0.015 to 0.98 lbm/hr. The manufacturer's equation was found to overpredict the single phase hydrogen data by 10 percent and the two phase data by as much as 27 percent. Two modifications of the equation resulted in a data correlation that predicts both the single and two phase flow across the visco jet. The first modification was of a theoretical nature, and the second strictly empirical. The former reduced the spread in the two phase data. It was a multiplication factor of 1-X applied to the manufacturer's equation. The parameter X is the flow quality downstream of the visco jet based on isenthalpic expansion across the device. The latter modification was a 10 percent correction term that correlated 90 percent of the single and two phase data to within +/- 10 percent scatter band.

  10. Liquid hydrogen mass flow through a multiple orifice Joule-Thomson device

    NASA Technical Reports Server (NTRS)

    Papell, S. Stephen; Nyland, Ted W.; Saiyed, Naseem H.

    1992-01-01

    Liquid hydrogen mass flow rate, pressure drop, and temperature drop data were obtained for a number of multiple orifice Joule-Thomas devices known as visco jets. The present investigation continues a study to develop an equation for predicting two phase flow of cryogens through these devices. The test apparatus design allowed isenthalpic expansion of the cryogen through the visco jets. The data covered a range of inlet and outlet operating conditions. The mass flow rate range single phase or two phase was 0.015 to 0.98 lbm/hr. The manufacturer's equation was found to overpredict the single phase hydrogen data by 10 percent and the two phase data by as much as 27 percent. Two modifications of the equation resulted in a data correlation that predicts both the single and two phase flow across the visco jet. The first modification was of a theoretical nature, and the second strictly empirical. The former reduced the spread in the two phase data. It was a multiplication factor of 1 - X applied to the manufacturer's equation. The parameter X is the flow quality downstream of the visco jet based on isenthalpic expansion across the device. The latter modification was a 10 percent correction term that correlated 90 percent of the single and two phase data to within +/- 10 percent scatter band.

  11. Liquid hydrogen mass flow through a multiple orifice Joule-Thomson device

    NASA Astrophysics Data System (ADS)

    Papell, S. S.; Nyland, Ted W.; Saiyed, Naseem H.

    1992-07-01

    Liquid hydrogen mass flow rate, pressure drop, and temperature drop data were obtained for a number of multiple orifice Joule-Thomson devices known as visco jets. The present investigation continues a study to develop an equation for predicting two phase flow of cryogens through these devices. The test apparatus design allowed isenthalpic expansion of the cryogen through the visco jets. The data covered a range of inlet and outlet operating conditions. The mass flow rate range single phase or two phase was 0.015 to 0.98 lbm/hr. The manufacturer's equation was found to overpredict the single phase hydrogen data by 10 percent and the two phase data by as much as 27 percent. Two modifications of the equation resulted in a data correlation that predicts both the single and two phase flow across the visco jet. The first modification was of a theoretical nature, and the second strictly empirical. The former reduced the spread in the two phase data. It was a multiplication factor of 1-X applied to the manufacturer's equation. The parameter X is the flow quality downstream of the visco jet based on isenthalpic expansion across the device. The latter modification was a 10 percent correction term that correlated 90 percent of the single and two phase data to within +/- 10 percent scatter band.

  12. Development of a locally mass flux conservative computer code for calculating 3-D viscous flow in turbomachines

    NASA Technical Reports Server (NTRS)

    Walitt, L.

    1982-01-01

    The VANS successive approximation numerical method was extended to the computation of three dimensional, viscous, transonic flows in turbomachines. A cross-sectional computer code, which conserves mass flux at each point of the cross-sectional surface of computation was developed. In the VANS numerical method, the cross-sectional computation follows a blade-to-blade calculation. Numerical calculations were made for an axial annular turbine cascade and a transonic, centrifugal impeller with splitter vanes. The subsonic turbine cascade computation was generated in blade-to-blade surface to evaluate the accuracy of the blade-to-blade mode of marching. Calculated blade pressures at the hub, mid, and tip radii of the cascade agreed with corresponding measurements. The transonic impeller computation was conducted to test the newly developed locally mass flux conservative cross-sectional computer code. Both blade-to-blade and cross sectional modes of calculation were implemented for this problem. A triplet point shock structure was computed in the inducer region of the impeller. In addition, time-averaged shroud static pressures generally agreed with measured shroud pressures. It is concluded that the blade-to-blade computation produces a useful engineering flow field in regions of subsonic relative flow; and cross-sectional computation, with a locally mass flux conservative continuity equation, is required to compute the shock waves in regions of supersonic relative flow.

  13. Enhanced basal lubrication and the contribution of the Greenland ice sheet to future sea-level rise

    PubMed Central

    Shannon, Sarah R.; Payne, Antony J.; Bartholomew, Ian D.; van den Broeke, Michiel R.; Edwards, Tamsin L.; Fettweis, Xavier; Gagliardini, Olivier; Gillet-Chaulet, Fabien; Goelzer, Heiko; Hoffman, Matthew J.; Huybrechts, Philippe; Mair, Douglas W. F.; Nienow, Peter W.; Perego, Mauro; Price, Stephen F.; Smeets, C. J. P. Paul; Sole, Andrew J.; van de Wal, Roderik S. W.; Zwinger, Thomas

    2013-01-01

    We assess the effect of enhanced basal sliding on the flow and mass budget of the Greenland ice sheet, using a newly developed parameterization of the relation between meltwater runoff and ice flow. A wide range of observations suggest that water generated by melt at the surface of the ice sheet reaches its bed by both fracture and drainage through moulins. Once at the bed, this water is likely to affect lubrication, although current observations are insufficient to determine whether changes in subglacial hydraulics will limit the potential for the speedup of flow. An uncertainty analysis based on our best-fit parameterization admits both possibilities: continuously increasing or bounded lubrication. We apply the parameterization to four higher-order ice-sheet models in a series of experiments forced by changes in both lubrication and surface mass budget and determine the additional mass loss brought about by lubrication in comparison with experiments forced only by changes in surface mass balance. We use forcing from a regional climate model, itself forced by output from the European Centre Hamburg Model (ECHAM5) global climate model run under scenario A1B. Although changes in lubrication generate widespread effects on the flow and form of the ice sheet, they do not affect substantial net mass loss; increase in the ice sheet’s contribution to sea-level rise from basal lubrication is projected by all models to be no more than 5% of the contribution from surface mass budget forcing alone. PMID:23940337

  14. Enhanced basal lubrication and the contribution of the Greenland ice sheet to future sea-level rise.

    PubMed

    Shannon, Sarah R; Payne, Antony J; Bartholomew, Ian D; van den Broeke, Michiel R; Edwards, Tamsin L; Fettweis, Xavier; Gagliardini, Olivier; Gillet-Chaulet, Fabien; Goelzer, Heiko; Hoffman, Matthew J; Huybrechts, Philippe; Mair, Douglas W F; Nienow, Peter W; Perego, Mauro; Price, Stephen F; Smeets, C J P Paul; Sole, Andrew J; van de Wal, Roderik S W; Zwinger, Thomas

    2013-08-27

    We assess the effect of enhanced basal sliding on the flow and mass budget of the Greenland ice sheet, using a newly developed parameterization of the relation between meltwater runoff and ice flow. A wide range of observations suggest that water generated by melt at the surface of the ice sheet reaches its bed by both fracture and drainage through moulins. Once at the bed, this water is likely to affect lubrication, although current observations are insufficient to determine whether changes in subglacial hydraulics will limit the potential for the speedup of flow. An uncertainty analysis based on our best-fit parameterization admits both possibilities: continuously increasing or bounded lubrication. We apply the parameterization to four higher-order ice-sheet models in a series of experiments forced by changes in both lubrication and surface mass budget and determine the additional mass loss brought about by lubrication in comparison with experiments forced only by changes in surface mass balance. We use forcing from a regional climate model, itself forced by output from the European Centre Hamburg Model (ECHAM5) global climate model run under scenario A1B. Although changes in lubrication generate widespread effects on the flow and form of the ice sheet, they do not affect substantial net mass loss; increase in the ice sheet's contribution to sea-level rise from basal lubrication is projected by all models to be no more than 5% of the contribution from surface mass budget forcing alone.

  15. Nanofiltration-Enabled In Situ Solvent and Reagent Recycle for Sustainable Continuous-Flow Synthesis.

    PubMed

    Fodi, Tamas; Didaskalou, Christos; Kupai, Jozsef; Balogh, Gyorgy T; Huszthy, Peter; Szekely, Gyorgy

    2017-09-11

    Solvent usage in the pharmaceutical sector accounts for as much as 90 % of the overall mass during manufacturing processes. Consequently, solvent consumption poses significant costs and environmental burdens. Continuous processing, in particular continuous-flow reactors, have great potential for the sustainable production of pharmaceuticals but subsequent downstream processing remains challenging. Separation processes for concentrating and purifying chemicals can account for as much as 80 % of the total manufacturing costs. In this work, a nanofiltration unit was coupled to a continuous-flow rector for in situ solvent and reagent recycling. The nanofiltration unit is straightforward to implement and simple to control during continuous operation. The hybrid process operated continuously over six weeks, recycling about 90 % of the solvent and reagent. Consequently, the E-factor and the carbon footprint were reduced by 91 % and 19 %, respectively. Moreover, the nanofiltration unit led to a solution of the product eleven times more concentrated than the reaction mixture and increased the purity from 52.4 % to 91.5 %. The boundaries for process conditions were investigated to facilitate implementation of the methodology by the pharmaceutical sector. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Galaxy Feeds Off Gas Artist Concept

    NASA Image and Video Library

    2011-09-13

    In this artist conception based on data from ESA Herschel observatory, a galaxy accretes mass from rapid, narrow streams of cold gas. These filaments provide the galaxy with continuous flows of raw material to feed its star-forming at a leisurely pace

  17. The Early Development of Programmable Machinery.

    ERIC Educational Resources Information Center

    Collins, Martin D.

    1985-01-01

    Programmable equipment innovations, precursors of today's technology, are examined, including the development of the binary code and feedback control systems, such as temperature sensing devices, interchangeable parts, punched cards carrying instructions, continuous flow oil refining process, assembly lines for mass production, and the…

  18. Switch of flow direction in an Antarctic ice stream.

    PubMed

    Conway, H; Catania, G; Raymond, C F; Gades, A M; Scambos, T A; Engelhardt, H

    2002-10-03

    Fast-flowing ice streams transport ice from the interior of West Antarctica to the ocean, and fluctuations in their activity control the mass balance of the ice sheet. The mass balance of the Ross Sea sector of the West Antarctic ice sheet is now positive--that is, it is growing--mainly because one of the ice streams (ice stream C) slowed down about 150 years ago. Here we present evidence from both surface measurements and remote sensing that demonstrates the highly dynamic nature of the Ross drainage system. We show that the flow in an area that once discharged into ice stream C has changed direction, now draining into the Whillans ice stream (formerly ice stream B). This switch in flow direction is a result of continuing thinning of the Whillans ice stream and recent thickening of ice stream C. Further abrupt reorganization of the activity and configuration of the ice streams over short timescales is to be expected in the future as the surface topography of the ice sheet responds to the combined effects of internal dynamics and long-term climate change. We suggest that caution is needed when using observations of short-term mass changes to draw conclusions about the large-scale mass balance of the ice sheet.

  19. Design of a mesoscale continuous flow route towards lithiated methoxyallene.

    PubMed

    Seghers, Sofie; Heugebaert, Thomas S A; Moens, Matthias; Sonck, Jolien; Thybaut, Joris; Stevens, Chris Victor

    2018-05-11

    The unique nucleophilic properties of lithiated methoxyallene allow for C-C bond formation with a wide variety of electrophiles, thus introducing an allenic group for further functionalization. This approach has yielded a tremendously broad range of (hetero)cyclic scaffolds, including API precursors. To date, however, its valorization at scale is hampered by the batch synthesis protocol which suffers from serious safety issues. Hence, the attractive heat and mass transfer properties of flow technology were exploited to establish a mesoscale continuous flow route towards lithiated methoxyallene. An excellent conversion of 94% was obtained, corresponding to a methoxyallene throughput of 8.2 g/h. The process is characterized by short reaction times, mild reaction conditions and a stoichiometric use of reagents. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. A peculiar segmented flow microfluidics for isoquercitrin biosynthesis based on coupling of reaction and separation.

    PubMed

    Gong, An; Gu, Shuang-Shuang; Wang, Jun; Sheng, Sheng; Wu, Fu-An

    2015-10-01

    A segmented flow containing a buffer-ionic liquid/solvent in a micro-channel reactor was applied to synthesize isoquercitrin by the hesperidinase-catalyzed selective hydrolysis of rutin, based on a novel system of reaction coupling with separation. Within the developed microchannel reactor with one T-shaped inlet and outlet, the maximum isoquercitrin yield (101.7 ± 2.6%) was achieved in 20 min at 30 °C and 4 μL/min. Compared with a continuous-flow reactor, reaction rate was increased 4-fold due to a glycine-sodium hydroxide:[Bmim][BF4]/glycerol triacetate (1:1, v/v) system that formed a slug flow in microchannel and significantly increased mass transfer rates. The mass transfer coefficient significantly increased and exhibited a linear relationship with the flow rate. Hesperidinase could be efficiently reused at least 5 times, without losing any activity. The bonding mechanism and secondary structure of hesperidinase indicated that hesperidinase had a greater affinity to rutin at a production rate of 4 μL/min in this segmented flow microreactor. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Performance evaluation of different horizontal subsurface flow wetland types by characterization of flow behavior, mass removal and depth-dependent contaminant load.

    PubMed

    Seeger, Eva M; Maier, Uli; Grathwohl, Peter; Kuschk, Peter; Kaestner, Matthias

    2013-02-01

    For several pilot-scale constructed wetlands (CWs: a planted and unplanted gravel filter) and a hydroponic plant root mat (operating at two water levels), used for treating groundwater contaminated with BTEX, the fuel additive MTBE and ammonium, the hydrodynamic behavior was evaluated by means of temporal moment analysis of outlet tracer breakthrough curves (BTCs): hydraulic indices were related to contaminant mass removal. Detailed investigation of flow within the model gravel CWs allowed estimation of local flow rates and contaminant loads within the CWs. Best hydraulics were observed for the planted gravel filter (number of continuously stirred tank reactors N = 11.3, dispersion number = 0.04, Péclet number = 23). The hydroponic plant root mat revealed lower N and pronounced dispersion tendencies, whereby an elevated water table considerably impaired flow characteristics and treatment efficiencies. Highest mass removals were achieved by the plant root mat at low level: 98% (544 mg m⁻² d⁻¹), 78% (54 mg m⁻² d⁻¹) and 74% (893 mg m⁻² d⁻¹) for benzene, MTBE and ammonium-nitrogen, respectively. Within the CWs the flow behavior was depth-dependent, with the planting and the position of the outlet tube being key factors resulting in elevated flow rate and contaminant flux immediately below the densely rooted porous media zone in the planted CW, and fast bottom flow in the unplanted reference. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Computing wheat nitrogen requirements from grain yield and protein maps

    USDA-ARS?s Scientific Manuscript database

    Optical protein sensors and mass-flow yield monitors provide the opportunity to continuously measure grain quality and quantity during harvesting. This chapter illustrates how yield monitor and grain protein measurements may provide useful postharvest information for evaluating water or nitrogen (N)...

  3. Computing wheat nitrogen requirements from grain yield and protein maps

    USDA-ARS?s Scientific Manuscript database

    Optical protein sensors and mass-flow yield monitors provide the opportunity to continuously measure grain quality and quantity during harvesting. This chapter illustrates how yield monitor and grain protein measurements may provide useful post-harvest information for evaluating water or nitrogen (...

  4. Organic Synthesis in a Spinning Tube-in-Tube (STT¢) Reactor

    EPA Science Inventory

    Continuous-flow reactors have been designed to minimize and potentially overcome the limitations of heat and mass transfer that are encountered in chemical reactors and further experienced upon scale up of a reaction. With process intensification, optimization of the reaction i...

  5. IN SITU OXIDATION AND ASSOCIATED MASS-FLUX-REDUCTION/MASS-REMOVAL BEHAVIOR FOR SYSTEMS WITH ORGANIC LIQUID LOCATED IN LOWER-PERMEABILITY SEDIMENTS

    PubMed Central

    Marble, Justin C.; Carroll, Kenneth C.; Janousek, Hilary; Brusseau, Mark L.

    2010-01-01

    The effectiveness of permanganate for in situ chemical oxidation of organic liquid (trichloroethene) trapped in lower-permeability (K) zones located within a higher-permeability matrix was examined in a series of flow-cell experiments. The permanganate solution was applied in both continuous and pulsed-injection modes. Manganese-oxide precipitation, as confirmed by use of SEM-EDS, occurred within, adjacent to, and downgradient of the lower-K zones, reflective of trichloroethene oxidation. During flow interruptions, precipitate formed within the surrounding higher-permeability matrix, indicating diffusive flux of aqueous-phase trichloroethene from the lower-K zones. The impact of permanganate treatment on mass flux behavior was examined by conducting water floods after permanganate injection. The results were compared to those of water-flood control experiments. The amount of water flushing required for complete contaminant mass removal was reduced for all permanganate treatments for which complete removal was characterized. However, the nature of the mass-flux-reduction/mass-removal relationship observed during water flooding varied as a function of the specific permanganate treatment. PMID:20685008

  6. Insights in the Diffusion Controlled Interfacial Flow Synthesis of Au Nanostructures in a Microfluidic System.

    PubMed

    Kulkarni, Amol A; Sebastian Cabeza, Victor

    2017-12-19

    Continuous segmented flow interfacial synthesis of Au nanostructures is demonstrated in a microchannel reactor. This study brings new insights into the growth of nanostructures at continuous interfaces. The size as well as the shape of the nanostructures showed significant dependence on the reactant concentrations, reaction time, temperature, and surface tension, which actually controlled the interfacial mass transfer. The microchannel reactor assisted in achieving a high interfacial area, as well as uniformity in mass transfer effects. Hexagonal nanostructures were seen to be formed in synthesis times as short as 10 min. The wettability of the channel showed significant effect on the particle size as well as the actual shape. The hydrophobic channel yielded hexagonal structures of relatively smaller size than the hydrophilic microchannel, which yielded sharp hexagonal bipyramidal particles (diagonal distance of 30 nm). The evolution of particle size and shape for the case of hydrophilic microchannel is also shown as a function of the residence time. The interfacial synthesis approach based on a stable segmented flow promoted an excellent control on the reaction extent, reduction in axial dispersion as well as the particle size distribution.

  7. Loop Heat Pipe Temperature Oscillation Induced by Gravity Assist and Reservoir Heating

    NASA Technical Reports Server (NTRS)

    Ku, Jentung; Garrison, Matthew; Patel, Deepak; Robinson, Franklin; Ottenstein, Laura

    2015-01-01

    The Laser Thermal Control System (LCTS) for the Advanced Topographic Laser Altimeter System (ATLAS) to be installed on NASA's Ice, Cloud, and Land Elevation Satellite (ICESat-2) consists of a constant conductance heat pipe and a loop heat pipe (LHP) with an associated radiator. During the recent thermal vacuum testing of the LTCS where the LHP condenser/radiator was placed in a vertical position above the evaporator and reservoir, it was found that the LHP reservoir control heater power requirement was much higher than the analytical model had predicted. Even with the control heater turned on continuously at its full power, the reservoir could not be maintained at its desired set point temperature. An investigation of the LHP behaviors found that the root cause of the problem was fluid flow and reservoir temperature oscillations, which led to persistent alternate forward and reversed flow along the liquid line and an imbalance between the vapor mass flow rate in the vapor line and liquid mass flow rate in the liquid line. The flow and temperature oscillations were caused by an interaction between gravity and reservoir heating, and were exacerbated by the large thermal mass of the instrument simulator which modulated the net heat load to the evaporator, and the vertical radiator/condenser which induced a variable gravitational pressure head. Furthermore, causes and effects of the contributing factors to flow and temperature oscillations intermingled.

  8. MONITORING POLYCHLORINATED BIPHENYLS (PCBS) BIODEGRADATION USING CONTINUOUS-FLOW ISOTOPE RATIO MASS SPECTROMETRY

    EPA Science Inventory

    Research has shown that polychlorinated biphenyls (PCBs) in some cases can be removed from the environment by biodegradation. Aerobic and anaerobic biological processes have been determined in previous research to be capable of degrading PCBs. During the aerobic and anaerobic d...

  9. Comparison of performance of shell-and-tube heat exchangers with conventional segmental baffles and continuous helical baffle

    NASA Astrophysics Data System (ADS)

    Ahmed, Asif; Ferdous, Imam Ul.; Saha, Sumon

    2017-06-01

    In the present study, three-dimensional numerical simulation of two shell-and-tube heat exchangers (STHXs) with conventional segmental baffles (STHXsSB) and continuous helical baffle (STHXsHB) is carried out and a comparative study is performed based on the simulation results. Both of the STHXs contain 37 tubes inside a 500 mm long and 200 mm diameter shell and mass flow rate of shell-side fluid is varied from 0.5 kg/s to 2 kg/s. At first, physical and mathematical models are developed and numerically simulated using finite element method (FEM). For the validation of the computational model, shell-side average nusselt number (Nus) is calculated from the simulation results and compared with the available experimental results. The comparative study shows that STHXsHB has 72-127% higher heat transfer coefficient per unit pressure drop compared to the conventional STHXsSB for the same shell-side mass flow rate. Moreover, STHXsHB has 59-63% lower shell-side pressure drop than STHXsSB.

  10. Large-scale horizontal flows from SOUP observations of solar granulation

    NASA Technical Reports Server (NTRS)

    November, L. J.; Simon, G. W.; Tarbell, T. D.; Title, A. M.; Ferguson, S. H.

    1987-01-01

    Using high resolution time sequence photographs of solar granulation from the SOUP experiment on Spacelab 2, large scale horizontal flows were observed in the solar surface. The measurement method is based upon a local spatial cross correlation analysis. The horizontal motions have amplitudes in the range 300 to 1000 m/s. Radial outflow of granulation from a sunspot penumbra into surrounding photosphere is a striking new discovery. Both the supergranulation pattern and cellular structures having the scale of mesogranulation are seen. The vertical flows that are inferred by continuity of mass from these observed horizontal flows have larger upflow amplitudes in cell centers than downflow amplitudes at cell boundaries.

  11. Continuous-flow technology—a tool for the safe manufacturing of active pharmaceutical ingredients.

    PubMed

    Gutmann, Bernhard; Cantillo, David; Kappe, C Oliver

    2015-06-01

    In the past few years, continuous-flow reactors with channel dimensions in the micro- or millimeter region have found widespread application in organic synthesis. The characteristic properties of these reactors are their exceptionally fast heat and mass transfer. In microstructured devices of this type, virtually instantaneous mixing can be achieved for all but the fastest reactions. Similarly, the accumulation of heat, formation of hot spots, and dangers of thermal runaways can be prevented. As a result of the small reactor volumes, the overall safety of the process is significantly improved, even when harsh reaction conditions are used. Thus, microreactor technology offers a unique way to perform ultrafast, exothermic reactions, and allows the execution of reactions which proceed via highly unstable or even explosive intermediates. This Review discusses recent literature examples of continuous-flow organic synthesis where hazardous reactions or extreme process windows have been employed, with a focus on applications of relevance to the preparation of pharmaceuticals. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Photochemical transformations accelerated in continuous-flow reactors: basic concepts and applications.

    PubMed

    Su, Yuanhai; Straathof, Natan J W; Hessel, Volker; Noël, Timothy

    2014-08-18

    Continuous-flow photochemistry is used increasingly by researchers in academia and industry to facilitate photochemical processes and their subsequent scale-up. However, without detailed knowledge concerning the engineering aspects of photochemistry, it can be quite challenging to develop a suitable photochemical microreactor for a given reaction. In this review, we provide an up-to-date overview of both technological and chemical aspects associated with photochemical processes in microreactors. Important design considerations, such as light sources, material selection, and solvent constraints are discussed. In addition, a detailed description of photon and mass-transfer phenomena in microreactors is made and fundamental principles are deduced for making a judicious choice for a suitable photomicroreactor. The advantages of microreactor technology for photochemistry are described for UV and visible-light driven photochemical processes and are compared with their batch counterparts. In addition, different scale-up strategies and limitations of continuous-flow microreactors are discussed. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. On Driving AGB Mass-Loss from Core-Contraction

    NASA Astrophysics Data System (ADS)

    Lewis, B. M.

    1997-12-01

    A bulk movement of mass constitutes a momentum flow. An instructive instance occurs in the radial pulsation of stars and white dwarfs, where a symmetric contraction phase implies the existence of an inwardly- directed radial momentum flow, that is followed during the subsequent expansion by an outwardly-directed flow. The key notion here is that an inward flow is effectively transmitted through the center to become in turn an outward flow: in adiabatic processes the momentum flux is not cancelled simply because it arrives at the center. However, during the radial pulsation of AGB stars momentum is cancelled in atmospheric shock-waves and consumed in work against gravity while mass is lifted far enough away from the star for dust to form, whereon radiation pressure drives it away. These momentum-dissipative conditions at the outer boundary therefore require a stellar source of radially directed momentum if pulsation is to continue in an AGB star. A sufficient source is found in the contraction of the whole of the electron-degenerate core of an AGB star under the addition of He ashes from shell-hydrogen burning. This produces an inwardly- directed radial momentum flow that must reach the center. Lewis quantifies the resulting momentum flux (http://xxx.lanl.gov/ps/astro-ph /9707233), and finds that it easily suffices to support the mass-loss of every AGB star. But it is necessary to assume that most of the inwardly directed flux is transmitted through the center to become in turn an outwardly directed flux. The AGB core maintains its virial equilibrium by exporting its excess momentum flux to the stellar envelope. This mechanism explains the dependence of the mass-loss rate from AGB stars on core mass; its generalization to objects with angular momentum and/or strong magnetic fields suggests a novel explanation for the axial symmetry exhibited by most planetary nebulae and proto planetary nebulae. Gravitational contraction can also account for the momentum flux in the solar wind.

  14. Hydraulic modeling of unsteady debris-flow surges with solid-fluid interactions

    USGS Publications Warehouse

    Iverson, Richard M.

    1997-01-01

    Interactions of solid and fluid constituents produce the unique style of motion that typifies debris flows. To simulate this motion, a new hydraulic model represents debris flows as deforming masses of granular solids variably liquefied by viscous pore fluid. The momentum equation of the model describes how internal and boundary forces change as coarse-grained surge heads dominated by grain-contact friction grade into muddy debris-flow bodies more strongly influenced by fluid viscosity and pressure. Scaling analysis reveals that pore-pressure variations can cause flow resistance in surge heads to surpass that in debris-flow bodies by orders of magnitude. Numerical solutions of the coupled momentum and continuity equations provide good predictions of unsteady, nonuniform motion of experimental debris flows from initiation through deposition.

  15. Device for accurately measuring mass flow of gases

    DOEpatents

    Hylton, J.O.; Remenyik, C.J.

    1994-08-09

    A device for measuring mass flow of gases which utilizes a substantially buoyant pressure vessel suspended within a fluid/liquid in an enclosure is disclosed. The pressure vessel is connected to a weighing device for continuously determining weight change of the vessel as a function of the amount of gas within the pressure vessel. In the preferred embodiment, this pressure vessel is formed from inner and outer right circular cylindrical hulls, with a volume between the hulls being vented to the atmosphere external the enclosure. The fluid/liquid, normally in the form of water typically with an added detergent, is contained within an enclosure with the fluid/liquid being at a level such that the pressure vessel is suspended beneath this level but above a bottom of the enclosure. The buoyant pressure vessel can be interconnected with selected valves to an auxiliary pressure vessel so that initial flow can be established to or from the auxiliary pressure vessel prior to flow to or from the buoyant pressure vessel. 5 figs.

  16. Device for accurately measuring mass flow of gases

    DOEpatents

    Hylton, James O.; Remenyik, Carl J.

    1994-01-01

    A device for measuring mass flow of gases which utilizes a substantially buoyant pressure vessel suspended within a fluid/liquid in an enclosure. The pressure vessel is connected to a weighing device for continuously determining weight change of the vessel as a function of the amount of gas within the pressure vessel. In the preferred embodiment, this pressure vessel is formed from inner and outer right circular cylindrical hulls, with a volume between the hulls being vented to the atmosphere external the enclosure. The fluid/liquid, normally in the form of water typically with an added detergent, is contained within an enclosure with the fluid/liquid being at a level such that the pressure vessel is suspended beneath this level but above a bottom of the enclosure. The buoyant pressure vessel can be interconnected with selected valves to an auxiliary pressure vessel so that initial flow can be established to or from the auxiliary pressure vessel prior to flow to or from the buoyant pressure vessel.

  17. Internal hydraulic control in the Little Belt, Denmark - observations of flow configurations and water mass formation

    NASA Astrophysics Data System (ADS)

    Holtegaard Nielsen, Morten; Vang, Torben; Chresten Lund-Hansen, Lars

    2017-12-01

    Internal hydraulic control, which occurs when stratified water masses are forced through an abrupt constriction, plays an enormous role in nature on both large and regional scales with respect to dynamics, circulation, and water mass formation. Despite a growing literature on this subject surprisingly few direct observations have been made that conclusively show the existence of and the circumstances related to internal hydraulic control in nature. In this study we present observations from the Little Belt, Denmark, one of three narrow straits connecting the Baltic Sea and the North Sea. The observations (comprised primarily of along-strait, detailed transects of salinity and temperature; continuous observations of flow velocity, salinity, and temperature at a permanent station; and numerous vertical profiles of salinity, temperature, fluorescence, and flow velocity in various locations) show that internal hydraulic control is a frequently occurring phenomenon in the Little Belt. The observations, which are limited to south-going flows of approximately two-layered water masses, show that internal hydraulic control may take either of two configurations, i.e. the lower or the upper layer being the active, accelerating one. This is connected to the depth of the pycnocline on the upstream side and the topography, which is both deepening and contracting toward the narrow part of the Little Belt. The existence of two possible flow configurations is known from theoretical and laboratory studies, but we believe that this has never been observed in nature and reported before. The water masses formed by the intense mixing, which is tightly connected with the presence of control, may be found far downstream of the point of control. The observations show that these particular water masses are associated with chlorophyll concentrations that are considerably higher than in adjacent water masses, showing that control has a considerable influence on the primary production and hence the ecosystem in the area.

  18. 40 CFR Table 13 to Subpart Xxxx of... - Minimum Data for Continuous Compliance With the Emission Limitations for Puncture Sealant...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... regeneration stream mass or volumetric flow for each regeneration cycle for 100 percent of the hours during which the process was operated, and a record of the carbon bed temperature after each regeneration, and...

  19. 40 CFR Table 13 to Subpart Xxxx of... - Minimum Data for Continuous Compliance With the Emission Limitations for Puncture Sealant...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... regeneration stream mass or volumetric flow for each regeneration cycle for 100 percent of the hours during which the process was operated, and a record of the carbon bed temperature after each regeneration, and...

  20. Numerical simulation for the influence of laser-induced plasmas addition on air mass capture of hypersonic inlet

    NASA Astrophysics Data System (ADS)

    Zhao, Wei; Dou, Zhiguo; Li, Qian

    2012-03-01

    The theory of laser-induced plasmas addition to hypersonic airflow off a vehicle to increase air mass capture and improve the performance of hypersonic inlets at Mach numbers below the design value is explored. For hypersonic vehicles, when flying at mach numbers lower than the design one, we can increase the mass capture ratio of inlet through laser-induced plasmas injection to the hypersonic flow upstream of cowl lip to form a virtual cowl. Based on the theory, the model of interaction between laser-induced plasmas and hypersonic flow was established. The influence on the effect of increasing mass capture ratio was studied at different positions of laser-induced plasmas region for the external compression hypersonic inlet at Mach 5 while the design value is 6, the power of plasmas was in the range of 1-8mJ. The main results are as follows: 1. the best location of the plasma addition region is near the intersection of the nose shock of the vehicle with the continuation of the cowl line, and slightly below that line. In that case, the shock generated by the heating is close to the shock that is a reflection of the vehicle nose shock off the imaginary solid surface-extension of the cowl. 2. Plasma addition does increase mass capture, and the effect becomes stronger as more energy is added, the peak value appeared when the power of plasma was about 4mJ, when the plasma energy continues to get stronger, the mass capture will decline slowly.

  1. Numerical simulation for the influence of laser-induced plasmas addition on air mass capture of hypersonic inlet

    NASA Astrophysics Data System (ADS)

    Zhao, Wei; Dou, Zhiguo; Li, Qian

    2011-11-01

    The theory of laser-induced plasmas addition to hypersonic airflow off a vehicle to increase air mass capture and improve the performance of hypersonic inlets at Mach numbers below the design value is explored. For hypersonic vehicles, when flying at mach numbers lower than the design one, we can increase the mass capture ratio of inlet through laser-induced plasmas injection to the hypersonic flow upstream of cowl lip to form a virtual cowl. Based on the theory, the model of interaction between laser-induced plasmas and hypersonic flow was established. The influence on the effect of increasing mass capture ratio was studied at different positions of laser-induced plasmas region for the external compression hypersonic inlet at Mach 5 while the design value is 6, the power of plasmas was in the range of 1-8mJ. The main results are as follows: 1. the best location of the plasma addition region is near the intersection of the nose shock of the vehicle with the continuation of the cowl line, and slightly below that line. In that case, the shock generated by the heating is close to the shock that is a reflection of the vehicle nose shock off the imaginary solid surface-extension of the cowl. 2. Plasma addition does increase mass capture, and the effect becomes stronger as more energy is added, the peak value appeared when the power of plasma was about 4mJ, when the plasma energy continues to get stronger, the mass capture will decline slowly.

  2. Spray and High-Pressure Flow Computations in the National Combustion Code (NCC) Improved

    NASA Technical Reports Server (NTRS)

    Raju, Manthena S.

    2002-01-01

    Sprays occur in a wide variety of industrial and power applications and in materials processing. A liquid spray is a two-phase flow with a gas as the continuous phase and a liquid as the dispersed phase in the form of droplets or ligaments. The interactions between the two phases--which are coupled through exchanges of mass, momentum, and energy--can occur in different ways at disparate time and length scales involving various thermal, mass, and fluid dynamic factors. An understanding of the flow, combustion, and thermal properties of a rapidly vaporizing spray requires careful modeling of the ratecontrolling processes associated with turbulent transport, mixing, chemical kinetics, evaporation, and spreading rates of the spray, among many other factors. With the aim of developing an efficient solution procedure for use in multidimensional combustor modeling, researchers at the NASA Glenn Research Center have advanced the state-of-the-art in spray computations in several important ways.

  3. Comparison of secondary ion mass spectrometry and micromilling/continuous flow isotope ratio mass spectrometry techniques used to acquire intra-otolith delta18O values of wild Atlantic salmon (Salmo salar).

    PubMed

    Hanson, N N; Wurster, C M; Todd, C D

    2010-09-15

    The chemical signals in the sequential layers of fish otoliths have the potential to provide fisheries biologists with temporal and spatial details of migration which are difficult to obtain without expensive tracking methods. Signal resolution depends, however, on the extraction technique used. We compared the use of mechanical micromilling and continuous flow isotope ratio mass spectrometry (CF-IRMS) methods with secondary ion mass spectrometry (SIMS) to obtain delta(18)O profiles from otoliths of wild Atlantic salmon (Salmo salar) and used these to corroborate the time of freshwater emigration of the juvenile with macroscopic patterns within the otolith. Both techniques showed the transition occurring at the same visible feature on the otolith, allowing future analyses to easily identify the juvenile (freshwater) versus adult (marine) life-stages. However, SIMS showed a rapid and abrupt transition whereas micromilling provided a less distinct signal. The number of samples that could be obtained per unit area sampled using SIMS was 2 to 3 times greater than that when using micromilling/CF-IRMS although the delta(18)O values and analytical precisions (approximately 0.2 per thousand) of the two methods were comparable. In addition, SIMS delta(18)O results were used to compare otolith aragonite values with predicted values calculated using various isotope fractionation equations. Copyright 2010 John Wiley & Sons, Ltd.

  4. Mass flow and energy balance plus economic analysis of a full-scale biogas plant in the rice-wine-pig system.

    PubMed

    Li, Jiang; Kong, Chuixue; Duan, Qiwu; Luo, Tao; Mei, Zili; Lei, Yunhui

    2015-10-01

    This paper presents mass flow and energy balance as well as an economic analysis for a biogas plant in a rice-wine-pig system at a practical rather than laboratory scale. Results showed feeding amount was 65.30 t d(-1) (total solid matter (TSM) 1.3%) for the normal temperature continuous stirred tank reactor (CSTR), and 16.20 t d(-1) (TSM 8.4%) for the mesophilic CSTR. The digestion produced 80.50 t d(-1) of mass, with 76.41 t d(-1) flowing into rice fields and 4.49 t d(-1) into composting. Energy consumption of this plant fluctuated with seasons, and surplus energy was 823, 221 kWh/year. Thus, biogas plant was critical for material recycling and energy transformation of this agro-ecosystem. The economic analysis showed that the payback time of the plant was 10.9 years. It also revealed application of biogas as a conventional energy replacement would be attractive for a crop-wine-livestock ecosystem with anaerobic digestion of manure. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Silylated Derivatives Retain Carbon and Alter Expected 13C-Tracer Enrichments Using Continuous Flow-Combustion-Isotope Ratio Mass Spectrometry

    PubMed Central

    Shinebarger, Steven R.; Haisch, Michael; Matthews, Dwight E.

    2008-01-01

    Continuous-flow inlets from oxidation reactors are commonly used systems for biological sample introduction into isotope ratio mass spectrometers (IRMS) to measure 13C enrichment above natural abundance. Because the samples must be volatile enough to pass through a gas chromatograph, silylated derivatization reactions are commonly used to modify biological molecules to add the necessary volatility. Addition of a t-butyldimethylsilyl (TBDMS) group is a common derivatization approach. However, we have found that samples do not produce the expected increment in measured 13C abundance as the TBDMS derivatives. We have made measurements of 13C enrichment of leucine and glutamate standards of known 13C enrichment using derivatives without silicon (N-acetyl n-propyl ester), with silicon (TBDMS), and an intermediate case. The measurements of 13C in amino acids derivatized without silicon were as expected. The 13C enrichment measurements using the TBDMS derivative were higher than expected, but could be corrected to produce the expected 13C enrichment measurement by IRMS if one carbon was removed per silicon. We postulate that the silicon in the derivative forms silicon carbide compounds in the heated cupric oxide reactor, rather than forming silicon dioxide. Doing so reduces the amount of CO2 formed from the carbon in the sample. Silylated derivatives retain carbon with the silicon and must be used carefully and with correction factors to measure 13C enrichments by continuous-flow IRMS. PMID:12510745

  6. Determination of compound-specific Hg isotope ratios from transient signals using gas chromatography coupled to multicollector inductively coupled plasma mass spectrometry (MC-ICP/MS).

    PubMed

    Dzurko, Mark; Foucher, Delphine; Hintelmann, Holger

    2009-01-01

    MeHg and inorganic Hg compounds were measured in aqueous media for isotope ratio analysis using aqueous phase derivatization, followed by purge-and-trap preconcentration. Compound-specific isotope ratio measurements were performed by gas chromatography interfaced to MC-ICP/MS. Several methods of calculating isotope ratios were evaluated for their precision and accuracy and compared with conventional continuous flow cold vapor measurements. An apparent fractionation of Hg isotopes was observed during the GC elution process for all isotope pairs, which necessitated integration of signals prior to the isotope ratio calculation. A newly developed average peak ratio method yielded the most accurate isotope ratio in relation to values obtained by a continuous flow technique and the best reproducibility. Compound-specific isotope ratios obtained after GC separation were statistically not different from ratios measured by continuous flow cold vapor measurements. Typical external uncertainties were 0.16 per thousand RSD (n = 8) for the (202)Hg(/198)Hg ratio of MeHg and 0.18 per thousand RSD for the same ratio in inorganic Hg using the optimized operating conditions. Using a newly developed reference standard addition method, the isotopic composition of inorganic Hg and MeHg synthesized from this inorganic Hg was measured in the same run, obtaining a value of delta (202)Hg = -1.49 +/- 0.47 (2SD; n = 10). For optimum performance a minimum mass of 2 ng per Hg species should be introduced onto the column.

  7. 40 CFR 60.423 - Monitoring of operations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Ammonium Sulfate Manufacture § 60.423 Monitoring of operations. (a) The owner or operator of any ammonium sulfate manufacturing... monitoring devices which can be used to determine the mass flow of ammonium sulfate feed material streams to...

  8. 40 CFR 60.423 - Monitoring of operations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Ammonium Sulfate Manufacture § 60.423 Monitoring of operations. (a) The owner or operator of any ammonium sulfate manufacturing... monitoring devices which can be used to determine the mass flow of ammonium sulfate feed material streams to...

  9. 40 CFR 60.423 - Monitoring of operations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Ammonium Sulfate Manufacture § 60.423 Monitoring of operations. (a) The owner or operator of any ammonium sulfate manufacturing... monitoring devices which can be used to determine the mass flow of ammonium sulfate feed material streams to...

  10. 40 CFR 60.423 - Monitoring of operations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Ammonium Sulfate Manufacture § 60.423 Monitoring of operations. (a) The owner or operator of any ammonium sulfate manufacturing... monitoring devices which can be used to determine the mass flow of ammonium sulfate feed material streams to...

  11. 40 CFR 60.423 - Monitoring of operations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Ammonium Sulfate Manufacture § 60.423 Monitoring of operations. (a) The owner or operator of any ammonium sulfate manufacturing... monitoring devices which can be used to determine the mass flow of ammonium sulfate feed material streams to...

  12. 40 CFR Table 3 to Subpart Ttttt of... - Initial Compliance With Emission Limits

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... CATEGORIES (CONTINUED) National Emissions Standards for Hazardous Air Pollutants for Primary Magnesium...), did not exceed 200 lbs/hr. 2. Each magnesium chloride storage bin scrubber stack a. The average mass flow of hydrochloric acid from the control system applied to the magnesium chloride storage bins...

  13. 40 CFR Table 3 to Subpart Ttttt of... - Initial Compliance With Emission Limits

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... CATEGORIES (CONTINUED) National Emissions Standards for Hazardous Air Pollutants for Primary Magnesium...), did not exceed 200 lbs/hr. 2. Each magnesium chloride storage bin scrubber stack a. The average mass flow of hydrochloric acid from the control system applied to the magnesium chloride storage bins...

  14. 40 CFR Table 3 to Subpart Ttttt of... - Initial Compliance With Emission Limits

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... CATEGORIES (CONTINUED) National Emissions Standards for Hazardous Air Pollutants for Primary Magnesium...), did not exceed 200 lbs/hr. 2. Each magnesium chloride storage bin scrubber stack a. The average mass flow of hydrochloric acid from the control system applied to the magnesium chloride storage bins...

  15. 40 CFR Table 3 to Subpart Ttttt of... - Initial Compliance With Emission Limits

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... CATEGORIES (CONTINUED) National Emissions Standards for Hazardous Air Pollutants for Primary Magnesium...), did not exceed 200 lbs/hr. 2. Each magnesium chloride storage bin scrubber stack a. The average mass flow of hydrochloric acid from the control system applied to the magnesium chloride storage bins...

  16. 40 CFR Table 6 to Subpart Uuuu of... - Continuous Compliance With Operating Limits

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    .... 7. carbon absorber maintain the regeneration frequency, total regeneration stream mass or volumetric flow during carbon bed regeneration and temperature of the carbon bed after regeneration (and within 15 minutes of completing any cooling cycle(s)) for each regeneration cycle within the values established...

  17. 40 CFR Table 6 to Subpart Uuuu of... - Continuous Compliance With Operating Limits

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    .... 7. carbon absorber maintain the regeneration frequency, total regeneration stream mass or volumetric flow during carbon bed regeneration and temperature of the carbon bed after regeneration (and within 15 minutes of completing any cooling cycle(s)) for each regeneration cycle within the values established...

  18. 40 CFR Table 6 to Subpart Uuuu of... - Continuous Compliance With Operating Limits

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    .... 7. carbon absorber maintain the regeneration frequency, total regeneration stream mass or volumetric flow during carbon bed regeneration and temperature of the carbon bed after regeneration (and within 15 minutes of completing any cooling cycle(s)) for each regeneration cycle within the values established...

  19. 40 CFR Table 6 to Subpart Uuuu of... - Continuous Compliance With Operating Limits

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    .... 7. carbon absorber maintain the regeneration frequency, total regeneration stream mass or volumetric flow during carbon bed regeneration and temperature of the carbon bed after regeneration (and within 15 minutes of completing any cooling cycle(s)) for each regeneration cycle within the values established...

  20. 40 CFR Table 6 to Subpart Uuuu of... - Continuous Compliance With Operating Limits

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    .... 7. carbon absorber maintain the regeneration frequency, total regeneration stream mass or volumetric flow during carbon bed regeneration and temperature of the carbon bed after regeneration (and within 15 minutes of completing any cooling cycle(s)) for each regeneration cycle within the values established...

  1. Space shuttle orbiter rear mounted reaction control system jet interaction study. [hypersonic wind tunnel tests

    NASA Technical Reports Server (NTRS)

    Rausch, J. R.

    1977-01-01

    The effect of interaction between the reaction control system (RCS) jets and the flow over the space shuttle orbiter in the atmosphere was investigated in the NASA Langley 31-inch continuous flow hypersonic tunnel at a nominal Mach number of 10.3 and in the AEDC continuous flow hypersonic tunnel B at a nominal Mach number of 6, using 0.01 and .0125 scale force models with aft RCS nozzles mounted both on the model and on the sting of the force model balance. The data show that RCS nozzle exit momentum ratio is the primary correlating parameter for effects where the plume impinges on an adjacent surface and mass flow ratio is the parameter when the plume interaction is primarily with the external stream. An analytic model of aft mounted RCS units was developed in which the total reaction control moments are the sum of thrust, impingement, interaction, and cross-coupling terms.

  2. Multigrid calculation of internal flows in complex geometries

    NASA Technical Reports Server (NTRS)

    Smith, K. M.; Vanka, S. P.

    1992-01-01

    The development, validation, and application of a general purpose multigrid solution algorithm and computer program for the computation of elliptic flows in complex geometries is presented. This computer program combines several desirable features including a curvilinear coordinate system, collocated arrangement of the variables, and Full Multi-Grid/Full Approximation Scheme (FMG/FAS). Provisions are made for the inclusion of embedded obstacles and baffles inside the flow domain. The momentum and continuity equations are solved in a decoupled manner and a pressure corrective equation is used to update the pressures such that the fluxes at the cell faces satisfy local mass continuity. Despite the computational overhead required in the restriction and prolongation phases of the multigrid cycling, the superior convergence results in reduced overall CPU time. The numerical scheme and selected results of several validation flows are presented. Finally, the procedure is applied to study the flowfield in a side-inlet dump combustor and twin jet impingement from a simulated aircraft fuselage.

  3. Becoming angular momentum density flow through nonlinear mass transfer into a gravitating spheroidal body

    NASA Astrophysics Data System (ADS)

    Krot, A. M.

    2009-04-01

    A statistical theory for a cosmological body forming based on the spheroidal body model has been proposed in the works [1]-[4]. This work studies a slowly evolving process of gravitational condensation of a spheroidal body from an infinitely distributed gas-dust substance in space. The equation for an initial evolution of mass density function of a gas-dust cloud is considered here. It is found this equation coincides completely with the analogous equation for a slowly gravitational compressed spheroidal body [5]. A conductive flow in dissipative systems was investigated by I. Prigogine in his works (see, for example, [6], [7]). As it has been found in [2], [5], there exists a conductive antidiffusion flow in a slowly compressible gravitating spheroidal body. Applying the equation of continuity to this conductive flow density we obtain a linear antidiffusion equation [5]. However, if an intensity of conductive flow density increases sharply then the linear antidiffusion equation becomes a nonlinear one. Really, it was pointed to [6] analogous linear equations of diffusion or thermal conductivity transform in nonlinear equations respectively. In this case, the equation of continuity describes a nonlinear mass flow being a source of instabilities into a gravitating spheroidal body because the gravitational compression factor G is a function of not only time but a mass density. Using integral substitution we can reduce a nonlinear antidiffusion equation to the linear antidiffusion equation relative to a new function. If the factor G can be considered as a specific angular momentum then the new function is an angular momentum density. Thus, a nonlinear momentum density flow induces a flow of angular momentum density because streamlines of moving continuous substance come close into a gravitating spheroidal body. Really, the streamline approach leads to more tight interactions of "liquid particles" that implies a superposition of their specific angular momentums. This superposition forms an antidiffusion flow of an angular momentum density into a gravitating spheroidal body. References: [1] Krot, A.M. The statistical model of gravitational interaction of particles. Achievement in Modern Radioelectronics (spec.issue"Cosmic Radiophysics", Moscow), 1996, no.8, pp. 66-81 (in Russian). [2] Krot, A.M. Statistical description of gravitational field: a new approach. Proc. SPIE's 14th Annual Intern.Symp. "AeroSense", Orlando, Florida, USA, 2000, vol.4038, pp.1318-1329. [3] Krot, A.M. The statistical model of rotating and gravitating spheroidal body with the point of view of general relativity. Proc.35th COSPAR Scientific Assembly, Paris, France, 2004, Abstract A-00162. [4] Krot, A. The statistical approach to exploring formation of Solar system. Proc.EGU General Assembly, Vienna, Austria, 2006, Geophys.Res.Abstracts, vol.8, A-00216; SRef-ID: 1607-7962/gra/. [5] Krot, A.M. A statistical approach to investigate the formation of the solar system. Chaos, Solitons and Fractals, 2008, doi:10.1016/j.chaos.2008.06.014. [6] Glansdorff, P. and Prigogine, I. Thermodynamic Theory of Structure, Stability and Fluctuations. London, 1971. [7] Nicolis, G. and Prigogine, I. Self-organization in Nonequilibrium Systems:From Dissipative Structures to Order through Fluctuation. John Willey and Sons, New York etc., 1977.

  4. Nanofiber adsorbents for high productivity continuous downstream processing.

    PubMed

    Hardick, Oliver; Dods, Stewart; Stevens, Bob; Bracewell, Daniel G

    2015-11-10

    An ever increasing focus is being placed on the manufacturing costs of biotherapeutics. The drive towards continuous processing offers one opportunity to address these costs through the advantages it offers. Continuous operation presents opportunities for real-time process monitoring and automated control with potential benefits including predictable product specification, reduced labour costs, and integration with other continuous processes. Specifically to chromatographic operations continuous processing presents an opportunity to use expensive media more efficiently while reducing their size and therefore cost. Here for the first time we show how a new adsorbent material (cellulosic nanofibers) having advantageous convective mass transfer properties can be combined with a high frequency simulated moving bed (SMB) design to provide superior productivity in a simple bioseparation. Electrospun polymeric nanofiber adsorbents offer an alternative ligand support surface for bioseparations. Their non-woven fiber structure with diameters in the sub-micron range creates a remarkably high surface area material that allows for rapid convective flow operations. A proof of concept study demonstrated the performance of an anion exchange nanofiber adsorbent based on criteria including flow and mass transfer properties, binding capacity, reproducibility and life-cycle performance. Binding capacities of the DEAE adsorbents were demonstrated to be 10mg/mL, this is indeed only a fraction of what is achievable from porous bead resins but in combination with a very high flowrate, the productivity of the nanofiber system is shown to be significant. Suitable packing into a flow distribution device has allowed for reproducible bind-elute operations at flowrates of 2,400 cm/h, many times greater than those used in typical beaded systems. These characteristics make them ideal candidates for operation in continuous chromatography systems. A SMB system was developed and optimised to demonstrate the productivity of nanofiber adsorbents through rapid bind-elute cycle times of 7s which resulted in a 15-fold increase in productivity compared with packed bed resins. Reproducible performance of BSA purification was demonstrated using a 2-component protein solution of BSA and cytochrome c. The SMB system exploits the advantageous convective mass transfer properties of nanofiber adsorbents to provide productivities much greater than those achievable with conventional chromatography media. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  5. Gas propagation in a liquid helium cooled vacuum tube following a sudden vacuum loss

    NASA Astrophysics Data System (ADS)

    Dhuley, Ram C.

    This dissertation describes the propagation of near atmospheric nitrogen gas that rushes into a liquid helium cooled vacuum tube after the tube suddenly loses vacuum. The loss-of-vacuum scenario resembles accidental venting of atmospheric air to the beam-line of a superconducting radio frequency particle accelerator and is investigated to understand how in the presence of condensation, the in-flowing air will propagate in such geometry. In a series of controlled experiments, room temperature nitrogen gas (a substitute for air) at a variety of mass flow rates was vented to a high vacuum tube immersed in a bath of liquid helium. Pressure probes and thermometers installed on the tube along its length measured respectively the tube pressure and tube wall temperature rise due to gas flooding and condensation. At high mass in-flow rates a gas front propagated down the vacuum tube but with a continuously decreasing speed. Regression analysis of the measured front arrival times indicates that the speed decreases nearly exponentially with the travel length. At low enough mass in-flow rates, no front propagated in the vacuum tube. Instead, the in-flowing gas steadily condensed over a short section of the tube near its entrance and the front appeared to `freeze-out'. An analytical expression is derived for gas front propagation speed in a vacuum tube in the presence of condensation. The analytical model qualitatively explains the front deceleration and flow freeze-out. The model is then simplified and supplemented with condensation heat/mass transfer data to again find the front to decelerate exponentially while going away from the tube entrance. Within the experimental and procedural uncertainty, the exponential decay length-scales obtained from the front arrival time regression and from the simplified model agree.

  6. Large-scale horizontal flows from SOUP observations of solar granulation

    NASA Astrophysics Data System (ADS)

    November, L. J.; Simon, G. W.; Tarbell, T. D.; Title, A. M.; Ferguson, S. H.

    1987-09-01

    Using high-resolution time-sequence photographs of solar granulation from the SOUP experiment on Spacelab 2 the authors observed large-scale horizontal flows in the solar surface. The measurement method is based upon a local spatial cross correlation analysis. The horizontal motions have amplitudes in the range 300 to 1000 m/s. Radial outflow of granulation from a sunspot penumbra into the surrounding photosphere is a striking new discovery. Both the supergranulation pattern and cellular structures having the scale of mesogranulation are seen. The vertical flows that are inferred by continuity of mass from these observed horizontal flows have larger upflow amplitudes in cell centers than downflow amplitudes at cell boundaries.

  7. Cruise control for segmented flow.

    PubMed

    Abolhasani, Milad; Singh, Mayank; Kumacheva, Eugenia; Günther, Axel

    2012-11-21

    Capitalizing on the benefits of microscale segmented flows, e.g., enhanced mixing and reduced sample dispersion, so far requires specialist training and accommodating a few experimental inconveniences. For instance, microscale gas-liquid flows in many current setups take at least 10 min to stabilize and iterative manual adjustments are needed to achieve or maintain desired mixing or residence times. Here, we report a cruise control strategy that overcomes these limitations and allows microscale gas-liquid (bubble) and liquid-liquid (droplet) flow conditions to be rapidly "adjusted" and maintained. Using this strategy we consistently establish bubble and droplet flows with dispersed phase (plug) velocities of 5-300 mm s(-1), plug lengths of 0.6-5 mm and continuous phase (slug) lengths of 0.5-3 mm. The mixing times (1-5 s), mass transfer times (33-250 ms) and residence times (3-300 s) can therefore be directly imposed by dynamically controlling the supply of the dispersed and the continuous liquids either from external pumps or from local pressurized reservoirs. In the latter case, no chip-external pumps, liquid-perfused tubes or valves are necessary while unwanted dead volumes are significantly reduced.

  8. Potential of turbidity monitoring for real time control of pollutant discharge in sewers during rainfall events.

    PubMed

    Lacour, C; Joannis, C; Gromaire, M-C; Chebbo, G

    2009-01-01

    Turbidity sensors can be used to continuously monitor the evolution of pollutant mass discharge. For two sites within the Paris combined sewer system, continuous turbidity, conductivity and flow data were recorded at one-minute time intervals over a one-year period. This paper is intended to highlight the variability in turbidity dynamics during wet weather. For each storm event, turbidity response aspects were analysed through different classifications. The correlation between classification and common parameters, such as the antecedent dry weather period, total event volume per impervious hectare and both the mean and maximum hydraulic flow for each event, was also studied. Moreover, the dynamics of flow and turbidity signals were compared at the event scale. No simple relation between turbidity responses, hydraulic flow dynamics and the chosen parameters was derived from this effort. Knowledge of turbidity dynamics could therefore potentially improve wet weather management, especially when using pollution-based real-time control (P-RTC) since turbidity contains information not included in hydraulic flow dynamics and not readily predictable from such dynamics.

  9. A Massive, Cooling-Flow-Induced Starburst in the Core of a Highly Luminous Galaxy Cluster

    NASA Technical Reports Server (NTRS)

    McDonald, M.; Bayliss, M.; Benson, B. A.; Foley, R. J.; Ruel, J.; Sullivan, P.; Veilleux, S.; Aird, K. A.; Ashby, M. L. N.; Bautz, M.; hide

    2012-01-01

    In the cores of some galaxy clusters the hot intracluster plasma is dense enough that it should cool radiatively in the cluster s lifetime, leading to continuous "cooling flows" of gas sinking towards the cluster center, yet no such cooling flow has been observed. The low observed star formation rates and cool gas masses for these "cool core" clusters suggest that much of the cooling must be offset by astrophysical feedback to prevent the formation of a runaway cooling flow. Here we report X-ray, optical, and infrared observations of the galaxy cluster SPT-CLJ2344-4243 at z = 0.596. These observations reveal an exceptionally luminous (L(sub 2-10 keV) = 8.2 10(exp 45) erg/s) galaxy cluster which hosts an extremely strong cooling flow (M(sub cool) = 3820 +/- 530 Stellar Mass/yr). Further, the central galaxy in this cluster appears to be experiencing a massive starburst (740 +/- 160 Stellar Mass/ yr), which suggests that the feedback source responsible for preventing runaway cooling in nearby cool core clusters may not yet be fully established in SPT-CLJ2344-4243. This large star formation rate implies that a significant fraction of the stars in the central galaxy of this cluster may form via accretion of the intracluster medium, rather than the current picture of central galaxies assembling entirely via mergers.

  10. Accelerated gas-liquid visible light photoredox catalysis with continuous-flow photochemical microreactors.

    PubMed

    Straathof, Natan J W; Su, Yuanhai; Hessel, Volker; Noël, Timothy

    2016-01-01

    In this protocol, we describe the construction and use of an operationally simple photochemical microreactor for gas-liquid photoredox catalysis using visible light. The general procedure includes details on how to set up the microreactor appropriately with inlets for gaseous reagents and organic starting materials, and it includes examples of how to use it to achieve continuous-flow preparation of disulfides or trifluoromethylated heterocycles and thiols. The reported photomicroreactors are modular, inexpensive and can be prepared rapidly from commercially available parts within 1 h even by nonspecialists. Interestingly, typical reaction times of gas-liquid visible light photocatalytic reactions performed in microflow are lower (in the minute range) than comparable reactions performed as a batch process (in the hour range). This can be attributed to the improved irradiation efficiency of the reaction mixture and the enhanced gas-liquid mass transfer in the segmented gas-liquid flow regime.

  11. Field continuous measurement of dissolved gases with a CF-MIMS: Applications to the physics and biogeochemistry of groundwater flow

    NASA Astrophysics Data System (ADS)

    Chatton, Eliot; Labasque, Thierry; de La Bernardie, Jérôme; Guihéneuf, Nicolas; Bour, Olivier; Aquilina, Luc

    2017-04-01

    In the perspective of a temporal and spatial exploration of aquatic environments (surface and ground water), we developed a technique for precise field continuous measurements of dissolved gases (N2, O2, CO2, CH4, N2O, H2, He, Ne, Ar, Kr, Xe). With a large resolution (from 1×10-9 to 1×10-2 ccSTP/g) and a capability of high frequency analysis (1 measure every 2 seconds), the CF-MIMS (Continuous Flow Membrane Inlet Mass Spectrometer) is an innovative tool allowing the investigation of a large panel of hydrological and biogeochemical processes in aquatic systems. Based on the available MIMS technology, this study introduces the development of the CF-MIMS (conception for field experiments, membrane choices, ionisation) and an original calibration procedure allowing the quantification of mass spectral overlaps and temperature effects on membrane permeability. This study also presents two field applications of the CF-MIMS (Chatton et al, 2016) involving the well-logging of dissolved gases and the implementation of groundwater tracer tests with dissolved 4He. The results demonstrate the analytical capabilities of the CF-MIMS in the field. Therefore, the CF-MIMS is a valuable tool for the field characterisation of biogeochemical reactivity, aquifer transport properties, groundwater recharge, groundwater residence time and aquifer-river exchanges from few hours to several weeks experiments. Eliot Chatton, Thierry Labasque, Jérôme de La Bernardie, Nicolas Guihéneuf, Olivier Bour and Luc Aquilina; Field Continuous Measurement of Dissolved Gases with a CF-MIMS: Applications to the Physics and Biogeochemistry of Groundwater Flow; Environmental Science & Technology, in press, 2016.

  12. Thermospheric wind effects on the global distribution of helium in the earth's upper atmosphere. Ph.D. Thesis - Michigan Univ., Ann Arbor

    NASA Technical Reports Server (NTRS)

    Reber, C. A.

    1973-01-01

    The momentum and continuity equations for a minor gas are combined with the momentum equation for the major constituents to obtain the time dependent continuity equation for the minor species reflecting a wind field in the background gas. This equation is used to study the distributions of helium and argon at times of low, medium, and high solar activity for a variety of latitudinal-seasonal wind cells. For helium, the exospheric return flow at the higher thermospheric temperatures dominates the distribution to the extent that much larger latitudinal gradients can be maintained during periods of low solar activity than during periods of high activity. By comparison to the exospheric flow, the smoothing effect of horizontal diffusion is almost negligible. The latitudinal variation of helium observed by satellite mass spectrometers can be reproduced by the effect of a wind system of air rising in the summer hemisphere, flowing across the equator with speeds on the order of 100 to 200 m/sec, and descending in the winter hemisphere. Argon, being heavier than the mean mass in the lower thermosphere, reacts oppositely to helium in that it is enhanced in the summer hemisphere and depleted in the winter.

  13. Self-Pressurization and Spray Cooling Simulations of the Multipurpose Hydrogen Test Bed (MHTB) Ground-Based Experiment

    NASA Technical Reports Server (NTRS)

    Kartuzova, O.; Kassemi, M.; Agui, J.; Moder, J.

    2014-01-01

    This paper presents a CFD (computational fluid dynamics) model for simulating the self-pressurization of a large scale liquid hydrogen storage tank. In this model, the kinetics-based Schrage equation is used to account for the evaporative and condensing interfacial mass flows. Laminar and turbulent approaches to modeling natural convection in the tank and heat and mass transfer at the interface are compared. The flow, temperature, and interfacial mass fluxes predicted by these two approaches during tank self-pressurization are compared against each other. The ullage pressure and vapor temperature evolutions are also compared against experimental data obtained from the MHTB (Multipuprpose Hydrogen Test Bed) self-pressurization experiment. A CFD model for cooling cryogenic storage tanks by spraying cold liquid in the ullage is also presented. The Euler- Lagrange approach is utilized for tracking the spray droplets and for modeling interaction between the droplets and the continuous phase (ullage). The spray model is coupled with the VOF (volume of fluid) model by performing particle tracking in the ullage, removing particles from the ullage when they reach the interface, and then adding their contributions to the liquid. Droplet ullage heat and mass transfer are modeled. The flow, temperature, and interfacial mass flux predicted by the model are presented. The ullage pressure is compared with experimental data obtained from the MHTB spray bar mixing experiment. The results of the models with only droplet/ullage heat transfer and with heat and mass transfer between the droplets and ullage are compared.

  14. Continuous-flow water sampler for real-time isotopic water measurements

    NASA Astrophysics Data System (ADS)

    Carter, J.; Dennis, K.

    2013-12-01

    Measuring the stable isotopes of liquid water (δ18O and δD) is a tool familiar to many Earth scientists, but most current techniques require discrete sampling. For example, isotope ratio mass spectrometry requires the collection of aliquots of water that are then converted to CO2, CO or H2 for analysis. Similarly, laser-based techniques, such as Cavity Ring-Down Spectroscopy (CRDS) convert discrete samples (typically < 2μL) of liquid water to water vapor using a flash vaporization process. By requiring the use of discrete samples fine-scale spatial and temporal studies of changes in δ18O and δD are limited. Here we present a continuous-flow water sampler that will enable scientists to probe isotopic changes in real-time, with applications including, but not limited to, quantification of the 'amount effect' (Dansgaard, 1964) during an individual precipitation event or storm track, real-time mixing of water in river systems, and shipboard continuous water measurements (Munksgaard et al., 2012). Due to the inherent ability of CRDS to measure a continuous flow of water vapor it is an ideal candidate for interfacing with a continuous water sampling system. Here we present results from the first commercially available continuous-flow water sampler, developed by engineers at Picarro. This peripheral device is compatible with Picarro CRDS isotopic water analyzers, allowing real-time, continuous isotopic measurements of liquid water. The new device, which expands upon the design of Munskgaard et al. (2011), utilizes expanded polytetrafluoroethylene (ePTFE) membrane technology to continuously generate gas-phase water, while liquid water is pumped through the system. The water vapor subsequently travels to the CRDS analyzer where the isotopic ratios are measured and recorded. The generation of water vapor using membrane technology is sensitive to environmental conditions, which if not actively control, lead to sustainable experimental noise and drift. Consequently, our continuous-flow water sample employs active control for all pertinent parameters, significantly increasing its stability and usability. We will present data from controlled laboratory experiments demonstrating sample-to-sample precision and long-term stability. We will also show experimental data that highlights the instrumental sample-to-sample memory, which we have decreased significantly from previous implementations of this technology. Additionally, we will present field results from the Sacramento River, CA. Dansgaard, W. (1964) 'Stable isotopes in precipitation', Tellus, 16(4), p. 436-468. Munksgaard, N.C., Wurster, C.M., Bass, A., Zagorskis, I., and Bird, M.I. (2012) 'First continuous shipboard d18O and dD measurements in seawater by diffusion sampling--cavity ring-down spectrometry', Environmental Chemistry Letters, 10, p.301-307. Munksgaard, N.C., Wurster, C.M., and Bird, M.I., (2011), 'Continuous analysis of δ18O and δD values of water by diffusion sampling cavity ring-down spectrometry: a novel sampling device for unattended field monitoring of precipitation, ground and surface waters', Rapid Communications in Mass Spectrometry, 25, p. 3706-3712.

  15. Frequency-Modulated Continuous Flow Analysis Electrospray Ionization Mass Spectrometry (FM-CFA-ESI-MS) for Sample Multiplexing.

    PubMed

    Filla, Robert T; Schrell, Adrian M; Coulton, John B; Edwards, James L; Roper, Michael G

    2018-02-20

    A method for multiplexed sample analysis by mass spectrometry without the need for chemical tagging is presented. In this new method, each sample is pulsed at unique frequencies, mixed, and delivered to the mass spectrometer while maintaining a constant total flow rate. Reconstructed ion currents are then a time-dependent signal consisting of the sum of the ion currents from the various samples. Spectral deconvolution of each reconstructed ion current reveals the identity of each sample, encoded by its unique frequency, and its concentration encoded by the peak height in the frequency domain. This technique is different from other approaches that have been described, which have used modulation techniques to increase the signal-to-noise ratio of a single sample. As proof of concept of this new method, two samples containing up to 9 analytes were multiplexed. The linear dynamic range of the calibration curve was increased with extended acquisition times of the experiment and longer oscillation periods of the samples. Because of the combination of the samples, salt had little effect on the ability of this method to achieve relative quantitation. Continued development of this method is expected to allow for increased numbers of samples that can be multiplexed.

  16. Achieving high time-resolution with a new flow-through type analyzer for total inorganic carbon in seawater.

    PubMed

    Kimoto, Hideshi; Nozaki, Ken; Kudo, Setsuko; Kato, Ken; Negishi, Akira; Kayanne, Hajime

    2002-03-01

    A fully automated, continuous-flow-through type analyzer was developed to observe rapid changes in the concentration of total inorganic carbon (CT) in coastal zones. Seawater and an H3PO4 solution were fed into the analyzer's mixing coil by two high-precision valveless piston pumps. The CO2 was stripped from the seawater and moved into a carrier gas, using a newly developed continuous-flow-through CO2 extractor. A mass flow controller was used to assure a precise flow rate of the carrier gas. The CO2 concentration was then determined with a nondispersive infrared gas analyzer. This analyzer achieved a time-resolution of as good as 1 min. In field experiments on a shallow reef flat of Shiraho (Ishigaki Island, Southwest Japan), the analyzer detected short-term, yet extreme, variations in CT which manual sampling missed. Analytical values obtained by the analyzer on the boat were compared with those determined by potentiometric titration with a closed cell in a laboratory: CT(flow-through) = 0.980 x CT(titration) + 38.8 with r2 = 0.995 (n = 34; September 1998).

  17. An Open Port Sampling Interface for Liquid Introduction Atmospheric Pressure Ionization Mass Spectrometry

    DOE PAGES

    Van Berkel, Gary J.; Kertesz, Vilmos

    2015-08-25

    RATIONALE: A simple method to introduce unprocessed samples into a solvent for rapid characterization by liquid introduction atmospheric pressure ionization mass spectrometry has been lacking. The continuous flow, self-cleaning open port sampling interface introduced here fills this void. METHODS: The open port sampling interface used a vertically aligned, co-axial tube arrangement enabling solvent delivery to the sampling end of the device through the tubing annulus and solvent aspiration down the center tube and into the mass spectrometer ionization source via the commercial APCI emitter probe. The solvent delivery rate to the interface was set to exceed the aspiration rate creatingmore » a continuous sampling interface along with a constant, self-cleaning spillover of solvent from the top of the probe. RESULTS: Using the open port sampling interface with positive ion mode APCI and a hybrid quadrupole time of flight mass spectrometer, rapid, direct sampling and analysis possibilities are exemplified with plastics, ballpoint and felt tip ink pens, skin, and vegetable oils. These results demonstrated that the open port sampling interface could be used as a simple, versatile and self-cleaning system to rapidly introduce multiple types of unprocessed, sometimes highly concentrated and complex, samples into a solvent flow stream for subsequent ionization and analysis by mass spectrometry. The basic setup presented here could be incorporated with any self-aspirating liquid introduction ionization source (e.g., ESI, APCI, APPI, ICP, etc.) or any type of atmospheric pressure sampling ready mass spectrometer system. CONCLUSIONS: The open port sampling interface provides a means to introduce and quickly analyze unprocessed solid or liquid samples with liquid introduction atmospheric pressure ionization source without fear of sampling interface or ionization source contamination.« less

  18. Recent developments in cyanide detection: A review

    PubMed Central

    Ma, Jian; Dasgupta, Purnendu K.

    2010-01-01

    The extreme toxicity of cyanide and environmental concerns from its continued industrial use continue to generate interest in facile and sensitive methods for cyanide detection. In recent years there is also additional recognition of HCN toxicity from smoke inhalation and potential use of cyanide as a weapon of terrorism. This review summarizes the literature since 2005 on cyanide measurement in different matrices ranging from drinking water and wastewater, to cigarette smoke and exhaled breath to biological fluids like blood, urine and saliva. The dramatic increase in the number of publications on cyanide measurement is indicative of the great interest in this field not only from analytical chemists, but also researchers from diverse environmental, medical, forensic and clinical arena. The recent methods cover both established and emerging analytical disciplines and include naked eye visual detection, spectrophotometry/colorimetry, capillary electrophoresis with optical absorbance detection, fluorometry, chemiluminescence, near-infrared cavity ring down spectroscopy, atomic absorption spectrometry, electrochemical methods (potentiometry/amperometry/ion chromatography-pulsed amperometry), mass spectrometry (selected ion flow tube mass spectrometry, electrospray ionization mass spectrometry, gas chromatography-mass spectrometry), gas chromatography (nitrogen phosphorus detector, electron capture detector) and quartz crystal mass monitors. PMID:20599024

  19. Model-based flow rate control for an orfice-type low-volume air sampler

    USDA-ARS?s Scientific Manuscript database

    The standard method of measuring air suspended particulate matter concentration per volume of air consists of continuously drawing a defined volume of air across a filter over an extended period of time, then measuring the mass of the filtered particles and dividing it by the total volume sampled ov...

  20. 40 CFR 65.153 - Absorbers, condensers, carbon adsorbers, and other recovery devices used as final recovery devices.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., an organic monitoring device capable of providing a continuous record, or an integrating regeneration... regeneration stream mass or volumetric flow for each regeneration cycle, and a carbon-bed temperature monitoring device capable of recording the carbon-bed temperature after each regeneration and within 15...

  1. 40 CFR 65.153 - Absorbers, condensers, carbon adsorbers, and other recovery devices used as final recovery devices.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., an organic monitoring device capable of providing a continuous record, or an integrating regeneration... regeneration stream mass or volumetric flow for each regeneration cycle, and a carbon-bed temperature monitoring device capable of recording the carbon-bed temperature after each regeneration and within 15...

  2. 40 CFR 65.153 - Absorbers, condensers, carbon adsorbers, and other recovery devices used as final recovery devices.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., an organic monitoring device capable of providing a continuous record, or an integrating regeneration... regeneration stream mass or volumetric flow for each regeneration cycle, and a carbon-bed temperature monitoring device capable of recording the carbon-bed temperature after each regeneration and within 15...

  3. 40 CFR 65.153 - Absorbers, condensers, carbon adsorbers, and other recovery devices used as final recovery devices.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., an organic monitoring device capable of providing a continuous record, or an integrating regeneration... regeneration stream mass or volumetric flow for each regeneration cycle, and a carbon-bed temperature monitoring device capable of recording the carbon-bed temperature after each regeneration and within 15...

  4. 40 CFR 65.153 - Absorbers, condensers, carbon adsorbers, and other recovery devices used as final recovery devices.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., an organic monitoring device capable of providing a continuous record, or an integrating regeneration... regeneration stream mass or volumetric flow for each regeneration cycle, and a carbon-bed temperature monitoring device capable of recording the carbon-bed temperature after each regeneration and within 15...

  5. Combining experimental techniques with non-linear numerical models to assess the sorption of pesticides on soils

    NASA Astrophysics Data System (ADS)

    Magga, Zoi; Tzovolou, Dimitra N.; Theodoropoulou, Maria A.; Tsakiroglou, Christos D.

    2012-03-01

    The risk assessment of groundwater pollution by pesticides may be based on pesticide sorption and biodegradation kinetic parameters estimated with inverse modeling of datasets from either batch or continuous flow soil column experiments. In the present work, a chemical non-equilibrium and non-linear 2-site sorption model is incorporated into solute transport models to invert the datasets of batch and soil column experiments, and estimate the kinetic sorption parameters for two pesticides: N-phosphonomethyl glycine (glyphosate) and 2,4-dichlorophenoxy-acetic acid (2,4-D). When coupling the 2-site sorption model with the 2-region transport model, except of the kinetic sorption parameters, the soil column datasets enable us to estimate the mass-transfer coefficients associated with solute diffusion between mobile and immobile regions. In order to improve the reliability of models and kinetic parameter values, a stepwise strategy that combines batch and continuous flow tests with adequate true-to-the mechanism analytical of numerical models, and decouples the kinetics of purely reactive steps of sorption from physical mass-transfer processes is required.

  6. Group solution for unsteady free-convection flow from a vertical moving plate subjected to constant heat flux

    NASA Astrophysics Data System (ADS)

    Kassem, M.

    2006-03-01

    The problem of heat and mass transfer in an unsteady free-convection flow over a continuous moving vertical sheet in an ambient fluid is investigated for constant heat flux using the group theoretical method. The nonlinear coupled partial differential equation governing the flow and the boundary conditions are transformed to a system of ordinary differential equations with appropriate boundary conditions. The obtained ordinary differential equations are solved numerically using the shooting method. The effect of Prandlt number on the velocity and temperature of the boundary-layer is plotted in curves. A comparison with previous work is presented.

  7. Transient response in granular quasi-two-dimensional bounded heap flow.

    PubMed

    Xiao, Hongyi; Ottino, Julio M; Lueptow, Richard M; Umbanhowar, Paul B

    2017-10-01

    We study the transition between steady flows of noncohesive granular materials in quasi-two-dimensional bounded heaps by suddenly changing the feed rate. In both experiments and simulations, the primary feature of the transition is a wedge of flowing particles that propagates downstream over the rising free surface with a wedge front velocity inversely proportional to the square root of time. An additional longer duration transient process continues after the wedge front reaches the downstream wall. The entire transition is well modeled as a moving boundary problem with a diffusionlike equation derived from local mass balance and a local relation between the flux and the surface slope.

  8. Ethanol production during semi-continuous syngas fermentation in a trickle bed reactor using Clostridium ragsdalei.

    PubMed

    Devarapalli, Mamatha; Atiyeh, Hasan K; Phillips, John R; Lewis, Randy S; Huhnke, Raymond L

    2016-06-01

    An efficient syngas fermentation bioreactor provides a mass transfer capability that matches the intrinsic kinetics of the microorganism to obtain high gas conversion efficiency and productivity. In this study, mass transfer and gas utilization efficiencies of a trickle bed reactor during syngas fermentation by Clostridium ragsdalei were evaluated at various gas and liquid flow rates. Fermentations were performed using a syngas mixture of 38% CO, 28.5% CO2, 28.5% H2 and 5% N2, by volume. Results showed that increasing the gas flow rate from 2.3 to 4.6sccm increased the CO uptake rate by 76% and decreased the H2 uptake rate by 51% up to Run R6. Biofilm formation after R6 increased cells activity with over threefold increase in H2 uptake rate. At 1662h, the final ethanol and acetic acid concentrations were 5.7 and 12.3g/L, respectively, at 200ml/min of liquid flow rate and 4.6sccm gas flow rate. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. A novel microfluidic system for the mass production of Inertial Fusion Energy shells

    NASA Astrophysics Data System (ADS)

    Inoue, N. T.

    2016-04-01

    A system which can mass produce millimetre sized spherical polymer shells economically and with high precision will be a great step towards the Inertial Fusion Energy goal. Microfluidics has shown itself to be a disruptive technology, where a rapid and continuous production of compound emulsions can be processed into such shells. Planar emulsion generators co-flow-focus in one step (COFON) and cascaded co-flow- focus (COFUS) enable millimetre compound emulsions to be produced using a one or two step formation process respectively. The co-flow-focus geometry uses symmetric and curved carrier fluid entrance walls to create a focusing orifice-minima and a carrier flow which aids movement and shaping of the dispersed fluid(s) towards the outlet, whilst maintaining operation in the dripping regime. Precision concentric alignment of these compound emulsions remains one of the greatest challenges. However steps to solve this passively using curved channel modulation to perturbate the emulsion have shown that rapid alignment can be achieved. Issues with satellite droplet formation, repeatability of the emulsion generation and cost are also addressed.

  10. Discharge flow of a granular media from a silo: effect of the packing fraction and of the hopper angle

    NASA Astrophysics Data System (ADS)

    Benyamine, Mebirika; Aussillous, Pascale; Dalloz-Dubrujeaud, Blanche

    2017-06-01

    Silos are widely used in the industry. While empirical predictions of the flow rate, based on scaling laws, have existed for more than a century (Hagen 1852, translated in [1] - Beverloo et al. [2]), recent advances have be made on the understanding of the control parameters of the flow. In particular, using continuous modeling together with a mu(I) granular rheology seem to be successful in predicting the flow rate for large numbers of beads at the aperture (Staron et al.[3], [4]). Moreover Janda et al.[5] have shown that the packing fraction at the outlet plays an important role when the number of beads at the apeture decreases. Based on these considerations, we have studied experimentally the discharge flow of a granular media from a rectangular silo. We have varied two main parameters: the angle of the hopper, and the bulk packing fraction of the granular material by using bidisperse mixtures. We propose a simple physical model to describe the effect of these parameters, considering a continuous granular media with a dilatancy law at the outlet. This model predicts well the dependance of the flow rate on the hopper angle as well as the dependance of the flow rate on the fine mass fraction of a bidisperse mixture.

  11. Aerothermodynamic Design Sensitivities for a Reacting Gas Flow Solver on an Unstructured Mesh Using a Discrete Adjoint Formulation

    NASA Astrophysics Data System (ADS)

    Thompson, Kyle Bonner

    An algorithm is described to efficiently compute aerothermodynamic design sensitivities using a decoupled variable set. In a conventional approach to computing design sensitivities for reacting flows, the species continuity equations are fully coupled to the conservation laws for momentum and energy. In this algorithm, the species continuity equations are solved separately from the mixture continuity, momentum, and total energy equations. This decoupling simplifies the implicit system, so that the flow solver can be made significantly more efficient, with very little penalty on overall scheme robustness. Most importantly, the computational cost of the point implicit relaxation is shown to scale linearly with the number of species for the decoupled system, whereas the fully coupled approach scales quadratically. Also, the decoupled method significantly reduces the cost in wall time and memory in comparison to the fully coupled approach. This decoupled approach for computing design sensitivities with the adjoint system is demonstrated for inviscid flow in chemical non-equilibrium around a re-entry vehicle with a retro-firing annular nozzle. The sensitivities of the surface temperature and mass flow rate through the nozzle plenum are computed with respect to plenum conditions and verified against sensitivities computed using a complex-variable finite-difference approach. The decoupled scheme significantly reduces the computational time and memory required to complete the optimization, making this an attractive method for high-fidelity design of hypersonic vehicles.

  12. Two-dimensional model of vocal fold vibration for sound synthesis of voice and soprano singing

    NASA Astrophysics Data System (ADS)

    Adachi, Seiji; Yu, Jason

    2005-05-01

    Voiced sounds were simulated with a computer model of the vocal fold composed of a single mass vibrating both parallel and perpendicular to the airflow. Similarities with the two-mass model are found in the amplitudes of the glottal area and the glottal volume flow velocity, the variation in the volume flow waveform with the vocal tract shape, and the dependence of the oscillation amplitude upon the average opening area of the glottis, among other similar features. A few dissimilarities are also found in the more symmetric glottal and volume flow waveforms in the rising and falling phases. The major improvement of the present model over the two-mass model is that it yields a smooth transition between oscillations with an inductive load and a capacitive load of the vocal tract with no sudden jumps in the vibration frequency. Self-excitation is possible both below and above the first formant frequency of the vocal tract. By taking advantage of the wider continuous frequency range, the two-dimensional model can successfully be applied to the sound synthesis of a high-pitched soprano singing, where the fundamental frequency sometimes exceeds the first formant frequency. .

  13. Mass load estimation errors utilizing grab sampling strategies in a karst watershed

    USGS Publications Warehouse

    Fogle, A.W.; Taraba, J.L.; Dinger, J.S.

    2003-01-01

    Developing a mass load estimation method appropriate for a given stream and constituent is difficult due to inconsistencies in hydrologic and constituent characteristics. The difficulty may be increased in flashy flow conditions such as karst. Many projects undertaken are constrained by budget and manpower and do not have the luxury of sophisticated sampling strategies. The objectives of this study were to: (1) examine two grab sampling strategies with varying sampling intervals and determine the error in mass load estimates, and (2) determine the error that can be expected when a grab sample is collected at a time of day when the diurnal variation is most divergent from the daily mean. Results show grab sampling with continuous flow to be a viable data collection method for estimating mass load in the study watershed. Comparing weekly, biweekly, and monthly grab sampling, monthly sampling produces the best results with this method. However, the time of day the sample is collected is important. Failure to account for diurnal variability when collecting a grab sample may produce unacceptable error in mass load estimates. The best time to collect a sample is when the diurnal cycle is nearest the daily mean.

  14. The role of alpine rockfall aquifer systems in baseflow maintenance and flood attenuation

    NASA Astrophysics Data System (ADS)

    Lauber, Ute; Kotyla, Patrick; Morche, David; Goldscheider, Nico

    2015-04-01

    Rockfall masses are frequent in alpine valleys. Huge rockfalls (millions to billions m³) precipitated after the end of the last glaciation, but many large events (thousand to millions m³) have occurred in historical time, and increasingly during the past decades, as a result of glacier retreat and thawing of permafrost. Most hydrological research focuses on water as a cause or trigger of rockfalls, while much less research has been done on the hydrogeological properties and functions of rockfall masses in alpine valleys. We have studied a series of rockfall and alluvial aquifer systems in the Reintal valley, German Alps, where all surface water infiltrates underground and reemerges downgradient from the rockfall masses. The goal of the study was to characterize the role of this rockfall aquifer in baseflow maintenance and flood attenuation. Employed methods include geomorphological and hydrogeological mapping, tracer tests, and continuous flow measurements. Field observations have revealed that both the infiltration and exfiltration locations vary as a function of the hydrologic conditions. Underground flow path length range from 500 m during high flows to 2 km during low flows; measured groundwater flow velocities range between 13 and 30 m/h; lag times between upstream and downstream flood peaks are 5 to 101 hours. Flood peaks were dampened by a factor of 1.5 and the maximum discharge ratio (22) and peak recession coefficient (0.2/d) downstream are very low compared with other alpine catchments. These results indicate that rockfall aquifers can play an important role in the flow regime and flood attenuation in alpine regions.

  15. Numerical investigation of influence on heat transfer characteristics to pneumatically conveyed dense phase flow by selecting models and boundary conditions

    NASA Astrophysics Data System (ADS)

    Zheng, Y.; Liu, Q.; Li, Y.

    2012-03-01

    Solids moving with a gas stream in a pipeline can be found in many industrial processes, such as power generation, chemical, pharmaceutical, food and commodity transfer processes. A mass flow rate of the solids is important characteristic that is often required to be measured (and controlled) to achieve efficient utilization of energy and raw materials in pneumatic conveying systems. The methods of measuring the mass flow rate of solids in a pneumatic pipeline can be divided into direct and indirect (inferential) measurements. A thermal solids' mass flow-meter, in principle, should ideally provide a direct measurement of solids flow rate, regardless of inhomogeneities in solids' distribution and environmental impacts. One key issue in developing a thermal solids' mass flow-meter is to characterize the heat transfer between the hot pipe wall and the gas-solids dense phase flow. The Eulerian continuum modeling with gas-solid two phases is the most common method for pneumatic transport. To model a gas-solid dense phase flow passing through a heated region, the gas phase is described as a continuous phase and the particles as the second phase. This study aims to describe the heat transfer characteristics between the hot wall and the gas-solids dense phase flow in pneumatic pipelines by modeling a turbulence gas-solid plug passing through the heated region which involves several actual and crucial issues: selections of interphase exchange coefficient, near-wall region functions and different wall surface temperatures. A sensitivity analysis was discussed to identify the influence on the heat transfer characteristics by selecting different interphase exchange coefficient models and different boundary conditions. Simulation results suggest that sensitivity analysis in the choice of models is very significant. The simulation results appear to show that a combination of choosing the Syamlal-O'Brien interphase exchange coefficient model and the standard k-ɛ model along with the standard wall function model might be the best approach, by which, the simulation data seems to be closest to the experimental results.

  16. Brine flow up a borehole caused by pressure perturbation from CO2 storage: Static and dynamic evaluations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Birkholzer, J.T.; Nicot, J.-P.; Oldenburg, C.M.

    Industrial-scale storage of CO{sub 2} in saline sedimentary basins will cause zones of elevated pressure, larger than the CO{sub 2} plume itself. If permeable conduits (e.g., leaking wells) exist between the injection reservoir and overlying shallow aquifers, brine could be pushed upwards along these conduits and mix with groundwater resources. This paper discusses the potential for such brine leakage to occur in temperature- and salinity-stratified systems. Using static mass-balance calculations as well as dynamic well flow simulations, we evaluate the minimum reservoir pressure that would generate continuous migration of brine up a leaking wellbore into a freshwater aquifer. Since themore » brine invading the well is denser than the initial fluid in the wellbore, continuous flow only occurs if the pressure perturbation in the reservoir is large enough to overcome the increased fluid column weight after full invasion of brine into the well. If the threshold pressure is exceeded, brine flow rates are dependent on various hydraulic (and other) properties, in particular the effective permeability of the wellbore and the magnitude of pressure increase. If brine flow occurs outside of the well casing, e.g., in a permeable fracture zone between the well cement and the formation, the fluid/solute transfer between the migrating fluid and the surrounding rock units can strongly retard brine flow. At the same time, the threshold pressure for continuous flow to occur decreases compared to a case with no fluid/solute transfer.« less

  17. Thermal boundary layer due to sudden heating of fluid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurkal, K.R.; Munukutla, S.

    This paper proposes to solve computationally the heat-transfer problems (introduced by Munukutla and Venkataraman, 1988) related to a closed-cycle pulsed high-power laser flow loop. The continuity and the momentum equations as well as the unsteady energy equation are solved using the Keller-Box method. The solutions were compared with the steady-state solutions at large times, and the comparison was found to be excellent. Empirical formulas are proposed for calculating the time-dependent boundary-layer thickness and mass-heat transfer, that can be used by laser flow loop designers. 6 refs.

  18. Thermal boundary layer due to sudden heating of fluid

    NASA Astrophysics Data System (ADS)

    Kurkal, K. R.; Munukutla, S.

    1989-10-01

    This paper proposes to solve computationally the heat-transfer problems (introduced by Munukutla and Venkataraman, 1988) related to a closed-cycle pulsed high-power laser flow loop. The continuity and the momentum equations as well as the unsteady energy equation are solved using the Keller-Box method. The solutions were compared with the steady-state solutions at large times, and the comparison was found to be excellent. Empirical formulas are proposed for calculating the time-dependent boundary-layer thickness and mass-heat transfer, that can be used by laser flow loop designers.

  19. A Geochemical Mass-Balance Method for Base-Flow Separation, Upper Hillsborough River Watershed, West-Central Florida, 2003-2005 and 2009

    USGS Publications Warehouse

    Kish, G.R.; Stringer, C.E.; Stewart, M.T.; Rains, M.C.; Torres, A.E.

    2010-01-01

    Geochemical mass-balance (GMB) and conductivity mass-balance (CMB) methods for hydrograph separation were used to determine the contribution of base flow to total stormflow at two sites in the upper Hillsborough River watershed in west-central Florida from 2003-2005 and at one site in 2009. The chemical and isotopic composition of streamflow and precipitation was measured during selected local and frontal low- and high-intensity storm events and compared to the geochemical and isotopic composition of groundwater. Input for the GMB method included cation, anion, and stable isotope concentrations of surface water and groundwater, whereas input for the CMB method included continuous or point-sample measurement of specific conductance. The surface water is a calcium-bicarbonate type water, which closely resembles groundwater geochemically, indicating that much of the surface water in the upper Hillsborough River basin is derived from local groundwater discharge. This discharge into the Hillsborough River at State Road 39 and at Hillsborough River State Park becomes diluted by precipitation and runoff during the wet season, but retains the calcium-bicarbonate characteristics of Upper Floridan aquifer water. Field conditions limited the application of the GMB method to low-intensity storms but the CMB method was applied to both low-intensity and high-intensity storms. The average contribution of base flow to total discharge for all storms ranged from 31 to 100 percent, whereas the contribution of base flow to total discharge during peak discharge periods ranged from less than 10 percent to 100 percent. Although calcium, magnesium, and silica were consistent markers of Upper Floridan aquifer chemistry, their use in calculating base flow by the GMB method was limited because the frequency of point data collected in this study was not sufficient to capture the complete hydrograph from pre-event base-flow to post-event base-flow concentrations. In this study, pre-event water represented somewhat diluted groundwater. Streamflow conductivity integrates the concentrations of the major ions, and the logistics of acquiring specific conductance at frequent time intervals are less complicated than data collection, sample processing, shipment, and analysis of water samples in a laboratory. The acquisition of continuous specific conductance data reduces uncertainty associated with less-frequently collected geochemical point data.

  20. Seasonal speed-up of two outlet glaciers of Austfonna, Svalbard, inferred from continuous GPS measurements

    NASA Astrophysics Data System (ADS)

    Dunse, T.; Schuler, T. V.; Hagen, J. O.; Reijmer, C. H.

    2011-12-01

    A large part of the ice discharge from ice caps and ice sheets occurs through spatially limited flow units that may operate in a mode of steady flow or cyclic surge behaviour. Changes in the dynamics of distinct flow units play a key role in the mass balance of Austfonna, the largest ice cap on Svalbard. The recent net mass loss of Austfonna was dominated by calving from marine terminating outlet glaciers. Previous ice-surface velocity maps of the ice cap were derived by satellite radar interferometry (InSAR) and rely on data acquired in the mid-1990s with limited information concerning the temporal variability. Here, we present continuous Global Positioning System (GPS) observations along the central flowlines of two fast flowing outlet glaciers over 2008-2010. The data show prominent summer speed-ups with ice-surface velocities as high as 240 % of the pre-summer mean. Acceleration follows the onset of the summer melt period, indicating enhanced basal motion due to input of surface meltwater into the subglacial drainage system. In 2008, multiple velocity peaks coincide with successive melt periods. In 2009, the principle melt was of higher amplitude than in 2008. Flow velocities appear unaffected by subsequent melt periods, suggesting a transition towards a hydraulically more efficient drainage system. The observed annual mean velocities of Duvebreen and Basin-3 exceed those from the mid-1990s by factors two and four, respectively, implying increased ice discharge at the calving front. Measured summer velocities up to 2 m d-1 for Basin-3 are close to that of Kronebreen, often referred to as the fastest glacier on Svalbard.

  1. 40 CFR Table 9 to Subpart Eeee of... - Continuous Compliance With Operating Limits-High Throughput Transfer Racks

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    .... An adsorption system with adsorbent regeneration to comply with an emission limit in table 2 to this.... Maintain the total regeneration stream mass flow during the adsorption bed regeneration cycle greater than..., achieve and maintain the temperature of the adsorption bed after regeneration less than or equal to the...

  2. 40 CFR Table 9 to Subpart Eeee of... - Continuous Compliance With Operating Limits-High Throughput Transfer Racks

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    .... An adsorption system with adsorbent regeneration to comply with an emission limit in table 2 to this.... Maintain the total regeneration stream mass flow during the adsorption bed regeneration cycle greater than..., achieve and maintain the temperature of the adsorption bed after regeneration less than or equal to the...

  3. 40 CFR 63.3168 - What are the requirements for continuous parameter monitoring system installation, operation, and...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... regenerative carbon adsorber as an add-on control device, you must monitor the total regeneration desorbing gas (e.g., steam or nitrogen) mass flow for each regeneration cycle, the carbon bed temperature after each regeneration and cooling cycle, and comply with paragraphs (a)(3) through (5) and (d)(1) and (2...

  4. 40 CFR Table 9 to Subpart Eeee of... - Continuous Compliance With Operating Limits-High Throughput Transfer Racks

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... adsorbent regeneration to comply with an emission limit in table 2 to this subpart. a. Maintain the daily... regeneration stream mass flow during the adsorption bed regeneration cycle greater than or equal to the... temperature of the adsorption bed after regeneration less than or equal to the reference temperature...

  5. 40 CFR Table 9 to Subpart Eeee of... - Continuous Compliance With Operating Limits-High Throughput Transfer Racks

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    .... An adsorption system with adsorbent regeneration to comply with an emission limit in table 2 to this.... Maintain the total regeneration stream mass flow during the adsorption bed regeneration cycle greater than..., achieve and maintain the temperature of the adsorption bed after regeneration less than or equal to the...

  6. 40 CFR Table 7 to Subpart Ppp of... - Operating Parameters for Which Monitoring Levels Are Required To Be Established for Process Vent...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutant Emissions for Polyether Polyols Production Pt. 63, Subpt. PPP, Table 7... regeneration stream mass or volumetric flow during carbon bed regeneration cycle; and temperature of the carbon...

  7. Dynamics of drinking water biofilm in flow/non-flow conditions.

    PubMed

    Manuel, C M; Nunes, O C; Melo, L F

    2007-02-01

    Drinking water biofilm formation on polyvinyl chloride (PVC), cross-linked polyethylene (PEX), high density polyethylene (HDPE) and polypropylene (PP) was followed in three different reactors operating under stagnant or continuous flow regimes. After one week, a quasi-steady state was achieved where biofilm total cell numbers per unit surface area were not affected by fluctuations in the concentration of suspended cells. Metabolically active cells in biofilms were around 17-35% of the total cells and 6-18% were able to form colony units in R(2)A medium. Microbiological analysis showed that the adhesion material and reactor design did not affect significantly the biofilm growth. However, operating under continuous flow (0.8-1.9 Pa) or stagnant water had a significant effect on biofilm formation: in stagnant waters, biofilm grew to a less extent. By applying mass balances and an asymptotic biofilm formation model to data from biofilms grown on PVC and HDPE surfaces under turbulent flow, specific growth rates of bacteria in the biofilm were found to be similar for both materials (around 0.15 day(-1)) and much lower than the specific growth rates of suspended bacteria (around 1.8 day(-1)).

  8. Computer program for aerodynamic and blading design of multistage axial-flow compressors

    NASA Technical Reports Server (NTRS)

    Crouse, J. E.; Gorrell, W. T.

    1981-01-01

    A code for computing the aerodynamic design of a multistage axial-flow compressor and, if desired, the associated blading geometry input for internal flow analysis codes is presented. Compressible flow, which is assumed to be steady and axisymmetric, is the basis for a two-dimensional solution in the meridional plane with viscous effects modeled by pressure loss coefficients and boundary layer blockage. The radial equation of motion and the continuity equation are solved with the streamline curvature method on calculation stations outside the blade rows. The annulus profile, mass flow, pressure ratio, and rotative speed are input. A number of other input parameters specify and control the blade row aerodynamics and geometry. In particular, blade element centerlines and thicknesses can be specified with fourth degree polynomials for two segments. The output includes a detailed aerodynamic solution and, if desired, blading coordinates that can be used for internal flow analysis codes.

  9. Spatio-temporal changes in river bank mass failures in the Lockyer Valley, Queensland, Australia

    NASA Astrophysics Data System (ADS)

    Thompson, Chris; Croke, Jacky; Grove, James; Khanal, Giri

    2013-06-01

    Wet-flow river bank failure processes are poorly understood relative to the more commonly studied processes of fluvial entrainment and gravity-induced mass failures. Using high resolution topographic data (LiDAR) and near coincident aerial photography, this study documents the downstream distribution of river bank mass failures which occurred as a result of a catastrophic flood in the Lockyer Valley in January 2011. In addition, this distribution is compared with wet flow mass failure features from previous large floods. The downstream analysis of these two temporal data sets indicated that they occur across a range of river lengths, catchment areas, bank heights and angles and do not appear to be scale-dependent or spatially restricted to certain downstream zones. The downstream trends of each bank failure distribution show limited spatial overlap with only 17% of wet flows common to both distributions. The modification of these features during the catastrophic flood of January 2011 also indicated that such features tend to form at some 'optimum' shape and show limited evidence of subsequent enlargement even when flow and energy conditions within the banks and channel were high. Elevation changes indicate that such features show evidence for infilling during subsequent floods. The preservation of these features in the landscape for a period of at least 150 years suggests that the seepage processes dominant in their initial formation appear to have limited role in their continuing enlargement over time. No evidence of gully extension or headwall retreat is evident. It is estimated that at least 12 inundation events would be required to fill these failures based on the average net elevation change recorded for the 2011 event. Existing conceptual models of downstream bank erosion process zones may need to consider a wider array of mass failure processes to accommodate for wet flow failures.

  10. Dissolution of explosive compounds TNT, RDX, and HMX under continuous flow conditions.

    PubMed

    Wang, Chao; Fuller, Mark E; Schaefer, Charles; Caplan, Jeffrey L; Jin, Yan

    2012-05-30

    2,4,6-trinitrotoluene (TNT), hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) are common contaminants around active military firing ranges. Dissolution of these compounds is usually the first step prior to their spreading in subsurface environments. Nevertheless, dissolution of individual TNT, RDX, and HMX under continuous flow conditions has not been well investigated. This study applied spectral confocal microscopy to observe and quantify the dissolution of TNT, RDX, and HMX (<100 μm crystals) in micromodel channels. Dissolution models were developed to describe the changes of their radii, surface areas, volumes, and specific surface areas as a function of time. Results indicated that a model incorporating a resistance term that accounts for the surface area in direct contact with the channel surfaces (and hence, was not exposed to the flowing water) described the dissolution processes well. The model without the resistance term, however, could not capture the observed data at the late stage of TNT dissolution. The model-fitted mass transfer coefficients were in agreement with the previous reports. The study highlights the importance of including the resistance term in the dissolution model and illustrates the utility of the newly developed spectral imaging method for quantification of mass transfer of TNT, RDX, and HMX. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Direct computation of thermodynamic properties of chemically reacting air with consideration to CFD

    NASA Astrophysics Data System (ADS)

    Iannelli, Joe

    2003-10-01

    This paper details a two-equation procedure to calculate exactly mass and mole fractions, pressure, temperature, specific heats, speed of sound and the thermodynamic and jacobian partial derivatives of pressure and temperature for a five-species chemically reacting equilibrium air. The procedure generates these thermodynamic properties using as independent variables either pressure and temperature or density and internal energy, for CFD applications. An original element in this procedure consists in the exact physically meaningful solution of the mass-fraction and mass-action equations. Air-equivalent molecular masses for oxygen and nitrogen are then developed to account, within a mixture of only oxygen and nitrogen, for the presence of carbon dioxide, argon and the other noble gases within atmospheric air. The mathematical formulation also introduces a versatile system non-dimensionalization that makes the procedure uniformly applicable to flows ranging from shock-tube flows with zero initial velocity to aerothermodynamic flows with supersonic/hypersonic free-stream Mach numbers. Over a temperature range of more than 10000 K and pressure and density ranges corresponding to an increase in altitude in standard atmosphere of 30000 m above sea level, the predicted distributions of mole fractions, constant-volume specific heat, and speed of sound for the model five species agree with independently published results, and all the calculated thermodynamic properties, including their partial derivatives, remain continuous, smooth, and physically meaningful.

  12. Miniature piezo electric vacuum inlet valve

    DOEpatents

    Keville, Robert F.; Dietrich, Daniel D.

    1998-03-24

    A miniature piezo electric vacuum inlet valve having a fast pulse rate and is battery operated with variable flow capability. The low power (<1.6 watts), high pulse rate (<2 milliseconds), variable flow inlet valve is utilized for mass spectroscopic applications or other applications where pulsed or continuous flow conditions are needed. The inlet valve also has a very minimal dead volume of less than 0.01 std/cc. The valve can utilize, for example, a 12 Vdc input/750 Vdc, 3 mA output power supply compared to conventional piezo electric valves which require preloading of the crystal drive mechanism and 120 Vac, thus the valve of the present invention is smaller by a factor of three.

  13. Biohydrogen production in a continuous stirred tank bioreactor from synthesis gas by anaerobic photosynthetic bacterium: Rhodopirillum rubrum.

    PubMed

    Younesi, Habibollah; Najafpour, Ghasem; Ku Ismail, Ku Syahidah; Mohamed, Abdul Rahman; Kamaruddin, Azlina Harun

    2008-05-01

    Hydrogen may be considered a potential fuel for the future since it is carbon-free and oxidized to water as a combustion product. Bioconversion of synthesis gas (syngas) to hydrogen was demonstrated in continuous stirred tank bioreactor (CSTBR) utilizing acetate as a carbon source. An anaerobic photosynthetic bacterium, Rhodospirillum rubrum catalyzed water-gas shift reaction which was applied for the bioconversion of syngas to hydrogen. The continuous fermentation of syngas in the bioreactor was continuously operated at various gas flow rates and agitation speeds, for the period of two months. The gas flow rates were varied from 5 to 14 ml/min. The agitation speeds were increasingly altered in the range of 150-500 rpm. The pH and temperature of the bioreactor was set at 6.5 and 30 degrees C. The liquid flow rate was kept constant at 0.65 ml/min for the duration of 60 days. The inlet acetate concentration was fed at 4 g/l into the bioreactor. The hydrogen production rate and yield were 16+/-1.1 mmol g(-1)cell h(-1) and 87+/-2.4% at fixed agitation speed of 500 rpm and syngas flow rate of 14 ml/min, respectively. The mass transfer coefficient (KLa) at this condition was approximately 72.8h(-1). This new approach, using a biocatalyst was considered as an alternative method of conventional Fischer-Tropsch synthetic reactions, which were able to convert syngas into hydrogen.

  14. Innovatively Continuous Mass Production Couette-taylor Flow: Pure Inorganic Green-Emitting Cs4PbBr6 Perovskite Microcrystal for display technology.

    PubMed

    Song, Young Hyun; Choi, Seung Hee; Park, Won Kyu; Yoo, Jin Sun; Kwon, Seok Bin; Kang, Bong Kyun; Park, Sang Ryul; Seo, Young Soo; Yang, Woo Seok; Yoon, Dae Ho

    2018-01-31

    We report for the first time the mass production of Cs 4 PbBr 6 perovskite microcrystal with a Couette-Taylor flow reactor in order to enhance the efficiency of the synthesis reaction. We obtained a pure Cs 4 PbBr 6 perovskite solid within 3 hrs that then realized a high photoluminescence quantum yield (PLQY) of 46%. Furthermore, the Cs 4 PbBr 6 perovskite microcrystal is applied with red emitting K 2 SiF 6 phosphor on a blue-emitting InGaN chip, achieving a high-performance luminescence characteristics of 9.79 lm/W, external quantum efficiency (EQE) of 2.9%, and correlated color temperature (CCT) of 2976 K; therefore, this perovskite is expected to be a promising candidate material for applications in optoelectronic devices.

  15. Analysis of the Tangjiaxi landslide-generated waves in the Zhexi Reservoir, China, by a granular flow coupling model

    NASA Astrophysics Data System (ADS)

    Huang, Bolin; Yin, Yueping; Wang, Shichang; Tan, Jianmin; Liu, Guangning

    2017-05-01

    A rocky granular flow is commonly formed after the failure of rocky bank slopes. An impulse wave disaster may also be initiated if the rocky granular flow rushes into a river with a high velocity. Currently, the granular mass-water body coupling study is an important trend in the field of landslide-induced impulse waves. In this paper, a full coupling numerical model for landslide-induced impulse waves is developed based on a non-coherent granular flow equation, i.e., the Mih equation. In this model, the Mih equation for continuous non-coherent granular flow controls movements of sliding mass, the two-phase flow equation regulates the interaction between sliding mass and water, and the renormalization group (RNG) turbulence model governs the movement of the water body. The proposed model is validated and applied for the 2014 Tangjiaxi landslide of the Zhexi Reservoir located in Hunan Province, China, to analyze the characteristics of both landslide motion and its following impulse waves. On 16 July 2014, a rocky debris flow was formed after the failure of the Tangjiaxi landslide, damming the Tangjiaxi stream and causing an impulse wave disaster with three dead and nine missing bodies. Based on the full coupling numerical analysis, the granular flow impacts the water with a maximum velocity of about 22.5 m s-1. Moreover, the propagation velocity of the generated waves reaches up to 12 m s-1. The maximum calculated run-up of 21.8 m is close enough to the real value of 22.7 m. The predicted landslide final deposit and wave run-up heights are in a good agreement with the field survey data. These facts verify the ability of the proposed model for simulating the real impulse wave generated by rocky granular flow events.

  16. Discontinuous Galerkin Approaches for Stokes Flow and Flow in Porous Media

    NASA Astrophysics Data System (ADS)

    Lehmann, Ragnar; Kaus, Boris; Lukacova, Maria

    2014-05-01

    Firstly, we present results of a study comparing two different numerical approaches for solving the Stokes equations with strongly varying viscosity: the continuous Galerkin (i.e., FEM) and the discontinuous Galerkin (DG) method. Secondly, we show how the latter method can be extended and applied to flow in porous media governed by Darcy's law. Nonlinearities in the viscosity or other material parameters can lead to discontinuities in the velocity-pressure solution that may not be approximated well with continuous elements. The DG method allows for discontinuities across interior edges of the underlying mesh. Furthermore, depending on the chosen basis functions, it naturally enforces local mass conservation, i.e., in every mesh cell. Computationally, it provides the capability to locally adapt the polynomial degree and needs communication only between directly adjacent mesh cells making it highly flexible and easy to parallelize. The methods are compared for several geophysically relevant benchmarking setups and discussed with respect to speed, accuracy, computational efficiency.

  17. Invited article: Time accurate mass flow measurements of solid-fueled systems.

    PubMed

    Olliges, Jordan D; Lilly, Taylor C; Joslyn, Thomas B; Ketsdever, Andrew D

    2008-10-01

    A novel diagnostic method is described that utilizes a thrust stand mass balance (TSMB) to directly measure time-accurate mass flow from a solid-fuel thruster. The accuracy of the TSMB mass flow measurement technique was demonstrated in three ways including the use of an idealized numerical simulation, verifying a fluid mass calibration with high-speed digital photography, and by measuring mass loss in more than 30 hybrid rocket motor firings. Dynamic response of the mass balance was assessed through weight calibration and used to derive spring, damping, and mass moment of inertia coefficients for the TSMB. These dynamic coefficients were used to determine the mass flow rate and total mass loss within an acrylic and gaseous oxygen hybrid rocket motor firing. Intentional variations in the oxygen flow rate resulted in corresponding variations in the total propellant mass flow as expected. The TSMB was optimized to determine mass losses of up to 2.5 g and measured total mass loss to within 2.5% of that calculated by a NIST-calibrated digital scale. Using this method, a mass flow resolution of 0.0011 g/s or 2% of the average mass flow in this study has been achieved.

  18. Invited Article: Time accurate mass flow measurements of solid-fueled systems

    NASA Astrophysics Data System (ADS)

    Olliges, Jordan D.; Lilly, Taylor C.; Joslyn, Thomas B.; Ketsdever, Andrew D.

    2008-10-01

    A novel diagnostic method is described that utilizes a thrust stand mass balance (TSMB) to directly measure time-accurate mass flow from a solid-fuel thruster. The accuracy of the TSMB mass flow measurement technique was demonstrated in three ways including the use of an idealized numerical simulation, verifying a fluid mass calibration with high-speed digital photography, and by measuring mass loss in more than 30 hybrid rocket motor firings. Dynamic response of the mass balance was assessed through weight calibration and used to derive spring, damping, and mass moment of inertia coefficients for the TSMB. These dynamic coefficients were used to determine the mass flow rate and total mass loss within an acrylic and gaseous oxygen hybrid rocket motor firing. Intentional variations in the oxygen flow rate resulted in corresponding variations in the total propellant mass flow as expected. The TSMB was optimized to determine mass losses of up to 2.5 g and measured total mass loss to within 2.5% of that calculated by a NIST-calibrated digital scale. Using this method, a mass flow resolution of 0.0011 g/s or 2% of the average mass flow in this study has been achieved.

  19. Adjustable shear stress erosion and transport flume

    DOEpatents

    Roberts, Jesse D.; Jepsen, Richard A.

    2002-01-01

    A method and apparatus for measuring the total erosion rate and downstream transport of suspended and bedload sediments using an adjustable shear stress erosion and transport (ASSET) flume with a variable-depth sediment core sample. Water is forced past a variable-depth sediment core sample in a closed channel, eroding sediments, and introducing suspended and bedload sediments into the flow stream. The core sample is continuously pushed into the flow stream, while keeping the surface level with the bottom of the channel. Eroded bedload sediments are transported downstream and then gravitationally separated from the flow stream into one or more quiescent traps. The captured bedload sediments (particles and aggregates) are weighed and compared to the total mass of sediment eroded, and also to the concentration of sediments suspended in the flow stream.

  20. Numerical Modeling of Interstitial Fluid Flow Coupled with Blood Flow through a Remodeled Solid Tumor Microvascular Network

    PubMed Central

    Soltani, M.; Chen, P.

    2013-01-01

    Modeling of interstitial fluid flow involves processes such as fluid diffusion, convective transport in extracellular matrix, and extravasation from blood vessels. To date, majority of microvascular flow modeling has been done at different levels and scales mostly on simple tumor shapes with their capillaries. However, with our proposed numerical model, more complex and realistic tumor shapes and capillary networks can be studied. Both blood flow through a capillary network, which is induced by a solid tumor, and fluid flow in tumor’s surrounding tissue are formulated. First, governing equations of angiogenesis are implemented to specify the different domains for the network and interstitium. Then, governing equations for flow modeling are introduced for different domains. The conservation laws for mass and momentum (including continuity equation, Darcy’s law for tissue, and simplified Navier–Stokes equation for blood flow through capillaries) are used for simulating interstitial and intravascular flows and Starling’s law is used for closing this system of equations and coupling the intravascular and extravascular flows. This is the first study of flow modeling in solid tumors to naturalistically couple intravascular and extravascular flow through a network. This network is generated by sprouting angiogenesis and consisting of one parent vessel connected to the network while taking into account the non-continuous behavior of blood, adaptability of capillary diameter to hemodynamics and metabolic stimuli, non-Newtonian blood flow, and phase separation of blood flow in capillary bifurcation. The incorporation of the outlined components beyond the previous models provides a more realistic prediction of interstitial fluid flow pattern in solid tumors and surrounding tissues. Results predict higher interstitial pressure, almost two times, for realistic model compared to the simplified model. PMID:23840579

  1. Ambient infrared laser ablation mass spectrometry (AIRLAB-MS) of live plant tissue with plume capture by continuous flow solvent probe.

    PubMed

    O'Brien, Jeremy T; Williams, Evan R; Holman, Hoi-Ying N

    2015-03-03

    A new experimental setup for spatially resolved ambient infrared laser ablation-mass spectrometry (AIRLAB-MS) that uses an infrared microscope with an infinity-corrected reflective objective and a continuous flow solvent probe coupled to a Fourier transform ion cyclotron resonance mass spectrometer is described. The efficiency of material transfer from the sample to the electrospray ionization emitter was determined using glycerol/methanol droplets containing 1 mM nicotine and is ∼50%. This transfer efficiency is significantly higher than values reported for similar techniques. Laser desorption does not induce fragmentation of biomolecules in droplets containing bradykinin, leucine enkephalin and myoglobin, but loss of the heme group from myoglobin occurs as a result of the denaturing solution used. An application of AIRLAB-MS to biological materials is demonstrated for tobacco leaves. Chemical components are identified from the spatially resolved mass spectra of the ablated plant material, including nicotine and uridine. The reproducibility of measurements made using AIRLAB-MS on plant material was demonstrated by the ablation of six closely spaced areas (within 2 × 2 mm) on a young tobacco leaf, and the results indicate a standard deviation of <10% in the uridine signal obtained for each area. The spatial distribution of nicotine was measured for selected leaf areas and variation in the relative nicotine levels (15-100%) was observed. Comparative analysis of the nicotine distribution was demonstrated for two tobacco plant varieties, a genetically modified plant and its corresponding wild-type, indicating generally higher nicotine levels in the mutant.

  2. Penning trap mass measurement of 56Cu

    NASA Astrophysics Data System (ADS)

    Valverde, A. A.; Brodeur, M.; Bollen, G.; Eibach, M.; Gulyuz, K.; Hamacker, A.; Izzo, C.; Ong, W.-J.; Puentes, D.; Redshaw, M.; Ringle, R.; Sandler, R.; Schwarz, S.; Sumithrarachchi, C. S.; Surbrook, J.; Villari, A. C. C.; Yandow, I. T.

    2017-09-01

    The doubly-magic nucleus 56Ni is one of the most important waiting point nuclei in the rp-process. While we now know that it is not the endpoint of the rp-process, which continues to the Sn-Sb-Te cycle, the flow around this nucleus is still not well understood. A pathway bypassing 56Ni through the 55Ni(p, γ)56Cu reaction exists, but the rate depends on the Q value of this reaction, which has not been experimentally determined. Mass measurements were undertaken using the LEBIT 9.4T Penning trap mass spectrometer at the National Superconducting Cyclotron Laboratory to rectify this situation. This work was supported in part by the National Science Foundation.

  3. 40 CFR 63.4768 - What are the requirements for continuous parameter monitoring system installation, operation, and...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... using a carbon adsorber as an add-on control device, you must monitor the total regeneration desorbing gas (e.g., steam or nitrogen) mass flow for each regeneration cycle, the carbon bed temperature after each regeneration and cooling cycle, and comply with paragraphs (a)(3) through (5) and (d)(1) and (2...

  4. Highly efficient reversible addition-fragmentation chain-transfer polymerization in ethanol/water via flow chemistry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ye, Piaoran; Cao, Peng -Fei; Su, Zhe

    Here, utilization of a flow reactor under high pressure allows highly efficient polymer synthesis via reversible addition–fragmentation chain-transfer (RAFT) polymerization in an aqueous system. Compared with the batch reaction, the flow reactor allows the RAFT polymerization to be performed in a high-efficiency manner at the same temperature. The adjustable pressure of the system allows further elevation of the reaction temperature and hence faster polymerization. Other reaction parameters, such as flow rate and initiator concentration, were also well studied to tune the monomer conversion and the molar mass dispersity (Ð) of the obtained polymers. Gel permeation chromatography, nuclear magnetic resonance (NMR),more » and Fourier transform infrared spectroscopies (FTIR) were utilized to monitor the polymerization process. With the initiator concentration of 0.15 mmol L –1, polymerization of poly(ethylene glycol) methyl ethermethacrylate with monomer conversion of 52% at 100 °C under 73 bar can be achieved within 40 min with narrow molar mass dispersity (D) Ð (<1.25). The strategy developed here provides a method to produce well-defined polymers via RAFT polymerization with high efficiency in a continuous manner.« less

  5. Hydraulic fracture monitoring in hard rock at 410 m depth with an advanced fluid-injection protocol and extensive sensor array

    NASA Astrophysics Data System (ADS)

    Zang, Arno; Stephansson, Ove; Stenberg, Leif; Plenkers, Katrin; Specht, Sebastian; Milkereit, Claus; Schill, Eva; Kwiatek, Grzegorz; Dresen, Georg; Zimmermann, Günter; Dahm, Torsten; Weber, Michael

    2017-02-01

    In this paper, an underground experiment at the Äspö Hard Rock Laboratory (HRL) is described. Main goal is optimizing geothermal heat exchange in crystalline rock mass at depth by multistage hydraulic fracturing with minimal impact on the environment, that is, seismic events. For this, three arrays with acoustic emission, microseismicity and electromagnetic sensors are installed mapping hydraulic fracture initiation and growth. Fractures are driven by three different water injection schemes (continuous, progressive and pulse pressurization). After a brief review of hydraulic fracture operations in crystalline rock mass at mine scale, the site geology and the stress conditions at Äspö HRL are described. Then, the continuous, single-flow rate and alternative, multiple-flow rate fracture breakdown tests in a horizontal borehole at depth level 410 m are described together with the monitoring networks and sensitivity. Monitoring results include the primary catalogue of acoustic emission hypocentres obtained from four hydraulic fractures with the in situ trigger and localizing network. The continuous versus alternative water injection schemes are discussed in terms of the fracture breakdown pressure, the fracture pattern from impression packer result and the monitoring at the arrays. An example of multistage hydraulic fracturing with several phases of opening and closing of fracture walls is evaluated using data from acoustic emissions, seismic broad-band recordings and electromagnetic signal response. Based on our limited amount of in situ tests (six) and evaluation of three tests in Ävrö granodiorite, in the multiple-flow rate test with progressively increasing target pressure, the acoustic emission activity starts at a later stage in the fracturing process compared to the conventional fracturing case with continuous water injection. In tendency, also the total number and magnitude of acoustic events are found to be smaller in the progressive treatment with frequent phases of depressurization.

  6. Generic DART-MS platform for monitoring the on-demand continuous-flow production of pharmaceuticals: Advancing the quantitative protocol for caffeates in microfluidic biocatalysis.

    PubMed

    Xu, Yan; Zhang, Dong-Yang; Meng, Xiang-Yun; Liu, Xi; Sheng, Sheng; Wu, Guo-Hua; Wang, Jun; Wu, Fu-An

    2017-04-15

    Today, continuous processing is regarded as an effective on-demand production technique of pharmaceuticals. Homemade microreactors packed with immobilized lipase under continuous-flow conditions were first applied to tailor the production of high-value caffeic acid phenethyl ester (CAPE) from methyl caffeate (MC) and 2-phenylethanol (PE) in cyclohexane via transesterification; however, this method is challenging due to the lack of a rapid platform for monitoring caffeates in microfluidic biocatalysis. The reactants were directly analyzed using Direct Analysis in Real Time Mass Spectrometry (DART-MS), and the corresponding ionization parameters were investigated. Special ions produced from MC (parent ion m/z 192.87 and product ion m/z 133.44) and CAPE (parent ion m/z 282.93 and product ion m/z 178.87) were determined using DART-MS 2 in the negative ion mode. The peak areas of the select reaction monitoring (SRM) signals were calculated to develop the standard curves for quantitative analyses of the concentration. Reasonable linear regression equations of MC and CAPE were obtained in the range of 3.125-50.000mg/L, with linear coefficients (R 2 ) of 0.9515 and 0.9973, limits of detection (LOD) of 0.005 and 0.003mg/L, limits of quantification (LOQ) of 0.02 and 0.01mg/L, and recovery ranges of 92.50-97.11% and 90.11-97.60%, respectively. The results using DART-MS 2 were in good agreement with those using conventional High-Performance Liquid Chromatography with a UV detector (HPLC-UV) and were successfully applied to monitor the kinetics constants and mass transfer coefficients in a continuous-flow packed bed microreactor. Thus, the DART-MS 2 method is an efficient tool for analyzing caffeates in microfluidic biocatalysis with limited sample preparation and short operating time. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Statistics of particle time-temperature histories.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hewson, John C.; Lignell, David O.; Sun, Guangyuan

    2014-10-01

    Particles in non - isothermal turbulent flow are subject to a stochastic environment tha t produces a distribution of particle time - temperature histories. This distribution is a function of the dispersion of the non - isothermal (continuous) gas phase and the distribution of particles relative to that gas phase. In this work we extend the one - dimensional turbulence (ODT) model to predict the joint dispersion of a dispersed particle phase and a continuous phase. The ODT model predicts the turbulent evolution of continuous scalar fields with a model for the cascade of fluctuations to smaller sc ales (themore » 'triplet map') at a rate that is a function of the fully resolved one - dimens ional velocity field . Stochastic triplet maps also drive Lagrangian particle dispersion with finite Stokes number s including inertial and eddy trajectory - crossing effect s included. Two distinct approaches to this coupling between triplet maps and particle dispersion are developed and implemented along with a hybrid approach. An 'instantaneous' particle displacement model matches the tracer particle limit and provide s an accurate description of particle dispersion. A 'continuous' particle displacement m odel translates triplet maps into a continuous velocity field to which particles respond. Particles can alter the turbulence, and modifications to the stochastic rate expr ession are developed for two - way coupling between particles and the continuous phase. Each aspect of model development is evaluated in canonical flows (homogeneous turbulence, free - shear flows and wall - bounded flows) for which quality measurements are ava ilable. ODT simulations of non - isothermal flows provide statistics for particle heating. These simulations show the significance of accurately predicting the joint statistics of particle and fluid dispersion . Inhomogeneous turbulence coupled with the in fluence of the mean flow fields on particles of varying properties alter s particle dispersion. The joint particle - temperature dispersion leads to a distribution of temperature histories predicted by the ODT . Predictions are shown for the lower moments an d the full distributions of the particle positions, particle - observed gas temperatures and particle temperatures. An analysis of the time scales affecting particle - temperature interactions covers Lagrangian integral time scales based on temperature autoco rrelations, rates of temperature change associated with particle motion relative to the temperature field and rates of diffusional change of temperatures. These latter two time scales have not been investigated previously; they are shown to be strongly in termittent having peaked distributions with long tails. The logarithm of the absolute value of these time scales exhibits a distribution closer to normal. A cknowledgements This work is supported by the Defense Threat Reduction Agency (DTRA) under their Counter - Weapons of Mass Destruction Basic Research Program in the area of Chemical and Biological Agent Defeat under award number HDTRA1 - 11 - 4503I to Sandia National Laboratories. The authors would like to express their appreciation for the guidance provi ded by Dr. Suhithi Peiris to this project and to the Science to Defeat Weapons of Mass Destruction program.« less

  8. Modeling highly transient flow, mass, and heat transport in the Chattahoochee River near Atlanta, Georgia

    USGS Publications Warehouse

    Jobson, Harvey E.; Keefer, Thomas N.

    1979-01-01

    A coupled flow-temperature model has been developed and verified for a 27.9-km reach of the Chattahoochee River between Buford Dam and Norcross, Ga. Flow in this reach of the Chattahoochee is continuous but highly regulated by Buford Dam, a flood-control and hydroelectric facility located near Buford, Ga. Calibration and verification utilized two sets of data collected under highly unsteady discharge conditions. Existing solution techniques, with certain minor improvements, were applied to verify the existing technology of flow and transport modeling. A linear, implicit finite-difference flow model was coupled with implicit, finite-difference transport and temperature models. Both the conservative and nonconservative forms of the transport equation were solved, and the difference in the predicted concentrations of dye were found to be insignificant. The temperature model, therefore, was based on the simpler nonconservative form of the transport equation. (Woodard-USGS)

  9. Transient response in granular bounded heap flows

    NASA Astrophysics Data System (ADS)

    Xiao, Hongyi; Ottino, Julio M.; Lueptow, Richard M.; Umbanhowar, Paul B.

    2017-11-01

    Heap formation, a canonical granular flow, is common in industry and is also found in nature. Here, we study the transition between steady flow states in quasi-2D bounded heaps by suddenly changing the feed rate from one fixed value to another. During the transition, in both experiments and discrete element method simulations, an additional wedge of flowing particles propagates over the rising free surface. The downstream edge of the wedge - the wedge front - moves downstream with velocity inversely proportional to the square root of time. An additional longer duration transient process continues after the wedge front reaches the downstream wall. The transient flux profile during the entire transition is well modeled by a diffusion-like equation derived from local mass balance and a local linear relation between the flux and the surface slope. Scalings for the transient kinematics during the flow transitions are developed based on the flux profiles. Funded by NSF Grant CBET-1511450.

  10. Highly conductive composites for fuel cell flow field plates and bipolar plates

    DOEpatents

    Jang, Bor Z; Zhamu, Aruna; Song, Lulu

    2014-10-21

    This invention provides a fuel cell flow field plate or bipolar plate having flow channels on faces of the plate, comprising an electrically conductive polymer composite. The composite is composed of (A) at least 50% by weight of a conductive filler, comprising at least 5% by weight reinforcement fibers, expanded graphite platelets, graphitic nano-fibers, and/or carbon nano-tubes; (B) polymer matrix material at 1 to 49.9% by weight; and (C) a polymer binder at 0.1 to 10% by weight; wherein the sum of the conductive filler weight %, polymer matrix weight % and polymer binder weight % equals 100% and the bulk electrical conductivity of the flow field or bipolar plate is at least 100 S/cm. The invention also provides a continuous process for cost-effective mass production of the conductive composite-based flow field or bipolar plate.

  11. NPAC-Nozzle Performance Analysis Code

    NASA Technical Reports Server (NTRS)

    Barnhart, Paul J.

    1997-01-01

    A simple and accurate nozzle performance analysis methodology has been developed. The geometry modeling requirements are minimal and very flexible, thus allowing rapid design evaluations. The solution techniques accurately couple: continuity, momentum, energy, state, and other relations which permit fast and accurate calculations of nozzle gross thrust. The control volume and internal flow analyses are capable of accounting for the effects of: over/under expansion, flow divergence, wall friction, heat transfer, and mass addition/loss across surfaces. The results from the nozzle performance methodology are shown to be in excellent agreement with experimental data for a variety of nozzle designs over a range of operating conditions.

  12. Method and system for measuring multiphase flow using multiple pressure differentials

    DOEpatents

    Fincke, James R.

    2001-01-01

    An improved method and system for measuring a multiphase flow in a pressure flow meter. An extended throat venturi is used and pressure of the multiphase flow is measured at three or more positions in the venturi, which define two or more pressure differentials in the flow conduit. The differential pressures are then used to calculate the mass flow of the gas phase, the total mass flow, and the liquid phase. The method for determining the mass flow of the high void fraction fluid flow and the gas flow includes certain steps. The first step is calculating a gas density for the gas flow. The next two steps are finding a normalized gas mass flow rate through the venturi and computing a gas mass flow rate. The following step is estimating the gas velocity in the venturi tube throat. The next step is calculating the pressure drop experienced by the gas-phase due to work performed by the gas phase in accelerating the liquid phase between the upstream pressure measuring point and the pressure measuring point in the venturi throat. Another step is estimating the liquid velocity in the venturi throat using the calculated pressure drop experienced by the gas-phase due to work performed by the gas phase. Then the friction is computed between the liquid phase and a wall in the venturi tube. Finally, the total mass flow rate based on measured pressure in the venturi throat is calculated, and the mass flow rate of the liquid phase is calculated from the difference of the total mass flow rate and the gas mass flow rate.

  13. Numerical study of heat and mass transfer in inertial suspensions in pipes.

    NASA Astrophysics Data System (ADS)

    Niazi Ardekani, Mehdi; Brandt, Luca

    2017-11-01

    Controlling heat and mass transfer in particulate suspensions has many important applications such as packed and fluidized bed reactors and industrial dryers. In this work, we study the heat and mass transfer within a suspension of spherical particles in a laminar pipe flow, using the immersed boundary method (IBM) to account for the solid fluid interactions and a volume of fluid (VoF) method to resolve temperature equation both inside and outside of the particles. Tracers that follow the fluid streamlines are considered to investigate mass transfer within the suspension. Different particle volume fractions 5, 15, 30 and 40% are simulated for different pipe to particle diameter ratios: 5, 10 and 15. The preliminary results quantify the heat and mass transfer enhancement with respect to a single-phase laminar pipe flow. We show in particular that the heat transfer from the wall saturates for volume fractions more than 30%, however at high particle Reynolds numbers (small diameter ratios) the heat transfer continues to increase. Regarding the dispersion of tracer particles we show that the diffusivity of tracers increases with volume fraction in radial and stream-wise directions however it goes through a peak at 15% in the azimuthal direction. European Research Council, Grant No. ERC-2013-CoG- 616186, TRITOS; SNIC (the Swedish National Infrastructure for Computing).

  14. Tracer-Test Planning Using the Efficient Hydrologic Tracer ...

    EPA Pesticide Factsheets

    Hydrological tracer testing is the most reliable diagnostic technique available for establishing flow trajectories and hydrologic connections and for determining basic hydraulic and geometric parameters necessary for establishing operative solute-transport processes. Tracer-test design can be difficult because of a lack of prior knowledge of the basic hydraulic and geometric parameters desired and the appropriate tracer mass to release. A new efficient hydrologic tracer-test design (EHTD) methodology has been developed that combines basic measured field parameters (e.g., discharge, distance, cross-sectional area) in functional relationships that describe solute-transport processes related to flow velocity and time of travel. The new method applies these initial estimates for time of travel and velocity to a hypothetical continuously stirred tank reactor as an analog for the hydrologic flow system to develop initial estimates for tracer concentration and axial dispersion, based on a preset average tracer concentration. Root determination of the one-dimensional advection-dispersion equation (ADE) using the preset average tracer concentration then provides a theoretical basis for an estimate of necessary tracer mass.Application of the predicted tracer mass with the hydraulic and geometric parameters in the ADE allows for an approximation of initial sample-collection time and subsequent sample-collection frequency where a maximum of 65 samples were determined to be

  15. EFFICIENT HYDROLOGICAL TRACER-TEST DESIGN (EHTD ...

    EPA Pesticide Factsheets

    Hydrological tracer testing is the most reliable diagnostic technique available for establishing flow trajectories and hydrologic connections and for determining basic hydraulic and geometric parameters necessary for establishing operative solute-transport processes. Tracer-test design can be difficult because of a lack of prior knowledge of the basic hydraulic and geometric parameters desired and the appropriate tracer mass to release. A new efficient hydrologic tracer-test design (EHTD) methodology has been developed that combines basic measured field parameters (e.g., discharge, distance, cross-sectional area) in functional relationships that describe solute-transport processes related to flow velocity and time of travel. The new method applies these initial estimates for time of travel and velocity to a hypothetical continuously stirred tank reactor as an analog for the hydrologic flow system to develop initial estimates for tracer concentration and axial dispersion, based on a preset average tracer concentration. Root determination of the one-dimensional advection-dispersion equation (ADE) using the preset average tracer concentration then provides a theoretical basis for an estimate of necessary tracer mass.Application of the predicted tracer mass with the hydraulic and geometric parameters in the ADE allows for an approximation of initial sample-collection time and subsequent sample-collection frequency where a maximum of 65 samples were determined to

  16. Plume mass flow and optical damage distributions for an MMH/N2O4 RCS thruster. [exhaust plume contamination of spacecraft components

    NASA Technical Reports Server (NTRS)

    Spisz, E. W.; Bowman, R. L.; Jack, J. R.

    1973-01-01

    The data obtained from two recent experiments conducted in a continuing series of experiments at the Lewis Research Center into the contamination characteristics of a 5-pound thrust MMH/N2O4 engine are presented. The primary objectives of these experiments were to establish the angular distribution of condensible exhaust products within the plume and the corresponding optical damage angular distribution of transmitting optical elements attributable to this contaminant. The plume mass flow distribution was measured by five quartz crystal microbalances (QCM's) located at the engine axis evaluation. The fifth QCM was located above the engine and 15 deg behind the nozzle exit plane. The optical damage was determined by ex-situ transmittance measurements for the wavelength range from 0.2 to 0.6 microns on 2.54 cm diameter fused silica discs also located at engine centerline elevation. Both the mass deposition and optical damage angular distributions followed the expected trend of decreasing deposition and damage as the angle between sensor or sample and the nozzle axis increased. A simple plume gas flow equation predicted the deposition distribution reasonably well for angles of up to 55 degrees. The optical damage measurements also indicated significant effects at large angles.

  17. Chemical characterization of milk after treatment with thermal (HTST and UHT) and nonthermal (turbulent flow ultraviolet) processing technologies.

    PubMed

    Cappozzo, Jack C; Koutchma, Tatiana; Barnes, Gail

    2015-08-01

    As a result of growing interest to nonthermal processing of milk, the purpose of this study was to characterize the chemical changes in raw milk composition after exposure to a new nonthermal turbulent flow UV process, conventional thermal pasteurization process (high-temperature, short-time; HTST), and their combinations, and compare those changes with commercially UHT-treated milk. Raw milk was exposed to UV light in turbulent flow at a flow rate of 4,000L/h and applied doses of 1,045 and 2,090 J/L, HTST pasteurization, and HTST in combination with UV (before or after the UV). Unprocessed raw milk, HTST-treated milk, and UHT-treated milk were the control to the milk processed with the continuous turbulent flow UV treatment. The chemical characterization included component analysis and fatty acid composition (with emphasis on conjugated linoleic acid) and analysis for vitamin D and A and volatile components. Lipid oxidation, which is an indicator to oxidative rancidity, was evaluated by free fatty acid analysis, and the volatile components (extracted organic fraction) by gas chromatography-mass spectrometry to obtain mass spectral profile. These analyses were done over a 14-d period (initially after treatment and at 7 and 14 d) because of the extended shelf-life requirement for milk. The effect of UV light on proteins (i.e., casein or lactalbumin) was evaluated qualitatively by sodium dodecyl sulfate-PAGE. The milk or liquid soluble fraction was analyzed by sodium dodecyl sulfate-PAGE for changes in the protein profile. From this study, it appears that continuous turbulent flow UV processing, whether used as a single process or in combination with HTST did not cause any statistically significant chemical changes when compared with raw milk with regard to the proximate analysis (total fat, protein, moisture, or ash), the fatty acid profile, lipid oxidation with respect to volatile analysis, or protein profile. A 56% loss of vitamin D and a 95% loss of vitamin A content was noted after 7 d from the continuous turbulent flow UV processing, but this loss was equally comparable to that found with traditional thermal processing, such as HTST and UHT. Chemical characterization of milk showed that turbulent flow UV light technology can be considered as alternative nonthermal treatment of pasteurized milk and raw milk to extend shelf life. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  18. Gaseous-fuel nuclear reactor research for multimegawatt power in space

    NASA Technical Reports Server (NTRS)

    Thom, K.; Schneider, R. T.; Helmick, H. H.

    1977-01-01

    In the gaseous-fuel reactor concept, the fissile material is contained in a moderator-reflector cavity and exists in the form of a flowing gas or plasma separated from the cavity walls by means of fluid mechanical forces. Temperatures in excess of structural limitations are possible for low-specific-mass power and high-specific-impulse propulsion in space. Experiments have been conducted with a canister filled with enriched UF6 inserted into a beryllium-reflected cavity. A theoretically predicted critical mass of 6 kg was measured. The UF6 was also circulated through this cavity, demonstrating stable reactor operation with the fuel in motion. Because the flowing gaseous fuel can be continuously processed, the radioactive waste in this type of reactor can be kept small. Another potential of fissioning gases is the possibility of converting the kinetic energy of fission fragments directly into coherent electromagnetic radiation, the nuclear pumping of lasers. Numerous nuclear laser experiments indicate the possibility of transmitting power in space directly from fission energy. The estimated specific mass of a multimegawatt gaseous-fuel reactor power system is from 1 to 5 kg/kW while the companion laser-power receiver station would be much lower in specific mass.

  19. Validation of a numerical method for interface-resolving simulation of multicomponent gas-liquid mass transfer and evaluation of multicomponent diffusion models

    NASA Astrophysics Data System (ADS)

    Woo, Mino; Wörner, Martin; Tischer, Steffen; Deutschmann, Olaf

    2018-03-01

    The multicomponent model and the effective diffusivity model are well established diffusion models for numerical simulation of single-phase flows consisting of several components but are seldom used for two-phase flows so far. In this paper, a specific numerical model for interfacial mass transfer by means of a continuous single-field concentration formulation is combined with the multicomponent model and effective diffusivity model and is validated for multicomponent mass transfer. For this purpose, several test cases for one-dimensional physical or reactive mass transfer of ternary mixtures are considered. The numerical results are compared with analytical or numerical solutions of the Maxell-Stefan equations and/or experimental data. The composition-dependent elements of the diffusivity matrix of the multicomponent and effective diffusivity model are found to substantially differ for non-dilute conditions. The species mole fraction or concentration profiles computed with both diffusion models are, however, for all test cases very similar and in good agreement with the analytical/numerical solutions or measurements. For practical computations, the effective diffusivity model is recommended due to its simplicity and lower computational costs.

  20. Tidal asymmetry and variability of bed shear stress and sediment bed flux at a site in San Francisco Bay, USA

    USGS Publications Warehouse

    Brennan, Matthew L.; Schoellhamer, David H.; Burau, Jon R.; Monismith, Stephen G.; Winterwerp, J.C.; Kranenburg, C.

    2002-01-01

    The relationship between sediment bed flux and bed shear stress during a pair of field experiments in a partially stratified estuary is examined in this paper. Time series of flow velocity, vertical density profiles, and suspended sediment concentration were measured continuously throughout the water column and intensely within 1 meter of the bed. These time series were analyzed to determine bed shear stress, vertical turbulent sediment flux, and mass of sediment suspended in the water column. Resuspension, as inferred from near-bed measurements of vertical turbulent sediment flux, was flood dominant, in accordance with the flood-dominant bed shear stress. Bathymetry-induced residual flow, gravitational circulation, and ebb tide salinity stratification contributed to the flood dominance. In addition to this flow-induced asymmetry, the erodibility of the sediment appears to increase during the first 2 hours of flood tide. Tidal asymmetry in bed shear stress and erodibility help explain an estuarine turbidity maximum that is present during flood tide but absent during ebb tide. Because horizontal advection was insignificant during most of the observation periods, the change in bed mass can be estimated from changes in the total suspended sediment mass. The square wave shape of the bed mass time series indicates that suspended sediment rapidly deposited in an unconsolidated or concentrated benthic suspension layer at slack tides and instantly resuspended when the shear stress became sufficiently large during a subsequent tide. The variability of bed mass associated with the spring/neap cycle (about 60 mg/cm2) is similar to that associated with the semidiurnal tidal cycle.

  1. Free-Surface flow dynamics and its effect on travel time distribution in unsaturated fractured zones - findings from analogue percolation experiments

    NASA Astrophysics Data System (ADS)

    Noffz, Torsten; Kordilla, Jannes; Dentz, Marco; Sauter, Martin

    2017-04-01

    Flow in unsaturated fracture networks constitutes a high potential for rapid mass transport and can therefore possibly contributes to the vulnerability of aquifer systems. Numerical models are generally used to predict flow and transport and have to reproduce various complex effects of gravity-driven flow dynamics. However, many classical volume-effective modelling approaches often do not grasp the non-linear free surface flow dynamics and partitioning behaviour at fracture intersections in unsaturated fracture networks. Better process understanding can be obtained by laboratory experiments, that isolate single aspects of the mass partitioning process, which influence travel time distributions and allow possible cross-scale applications. We present a series of percolation experiments investigating partitioning dynamics of unsaturated multiphase flow at an individual horizontal fracture intersection. A high precision multichannel dispenser is used to establish gravity-driven free surface flow on a smooth and vertical PMMA (poly(methyl methacrylate)) surface at rates ranging from 1.5 to 4.5 mL/min to obtain various flow modes (droplets; rivulets). Cubes with dimensions 20 x 20 x 20 cm are used to create a set of simple geometries. A digital balance provides continuous real-time cumulative mass bypassing the network. The influence of variable flow rate, atmospheric pressure and temperature on the stability of flow modes is shown in single-inlet experiments. Droplet and rivulet flow are delineated and a transition zone exhibiting mixed flow modes can be determined. Furthermore, multi-inlet setups with constant total inflow rates are used to reduce variance and the effect of erratic free-surface flow dynamics. Investigated parameters include: variable aperture widths df, horizontal offsets dv of the vertical fracture surface and alternating injection methods for both droplet and rivulet flow. Repetitive structures with several horizontal fractures extend arrival times but also complexity and variance. Finally, impacts of variable geometric features and flow modes on partitioning dynamics are highlighted by normalized fracture inflow rates. For higher flow rates, i.e. rivulet flows dominates, the effectiveness of filling horizontal fractures strongly increases. We demonstrate that the filling can be described by plug flow, which transitions into a Washburn-type flow at later times, and derive an analytical solution for the case of rivulet flows. Droplet flow dominated flow experiments exhibit a high bypass efficiency, which cannot be described by plug-flow, however, they also transition into a Washburn stage.

  2. Faster Blood Flow Rate Does Not Improve Circuit Life in Continuous Renal Replacement Therapy: A Randomized Controlled Trial.

    PubMed

    Fealy, Nigel; Aitken, Leanne; du Toit, Eugene; Lo, Serigne; Baldwin, Ian

    2017-10-01

    To determine whether blood flow rate influences circuit life in continuous renal replacement therapy. Prospective randomized controlled trial. Single center tertiary level ICU. Critically ill adults requiring continuous renal replacement therapy. Patients were randomized to receive one of two blood flow rates: 150 or 250 mL/min. The primary outcome was circuit life measured in hours. Circuit and patient data were collected until each circuit clotted or was ceased electively for nonclotting reasons. Data for clotted circuits are presented as median (interquartile range) and compared using the Mann-Whitney U test. Survival probability for clotted circuits was compared using log-rank test. Circuit clotting data were analyzed for repeated events using hazards ratio. One hundred patients were randomized with 96 completing the study (150 mL/min, n = 49; 250 mL/min, n = 47) using 462 circuits (245 run at 150 mL/min and 217 run at 250 mL/min). Median circuit life for first circuit (clotted) was similar for both groups (150 mL/min: 9.1 hr [5.5-26 hr] vs 10 hr [4.2-17 hr]; p = 0.37). Continuous renal replacement therapy using blood flow rate set at 250 mL/min was not more likely to cause clotting compared with 150 mL/min (hazards ratio, 1.00 [0.60-1.69]; p = 0.68). Gender, body mass index, weight, vascular access type, length, site, and mode of continuous renal replacement therapy or international normalized ratio had no effect on clotting risk. Continuous renal replacement therapy without anticoagulation was more likely to cause clotting compared with use of heparin strategies (hazards ratio, 1.62; p = 0.003). Longer activated partial thromboplastin time (hazards ratio, 0.98; p = 0.002) and decreased platelet count (hazards ratio, 1.19; p = 0.03) were associated with a reduced likelihood of circuit clotting. There was no difference in circuit life whether using blood flow rates of 250 or 150 mL/min during continuous renal replacement therapy.

  3. Heat and mass transfer in a dissociated laminar boundary layer of air with consideration of the finite rate of chemical reaction

    NASA Technical Reports Server (NTRS)

    Oyegbesan, A. O.; Algermissen, J.

    1986-01-01

    A numerical investigation of heat and mass transfer in a dissociated laminar boundary layer of air on an isothermal flat plate is carried out for different degrees of cooling of the wall. A finite-difference chemical model is used to study elementary reactions involving NO2 and N2O. The analysis is based on equations of continuity, momentum, energy, conservation and state for the two-dimensional viscous flow of a reacting multicomponent mixtures. Attention is given to the effects of both catalyticity and noncatalyticity of the wall.

  4. Control and Automation of Fluid Flow, Mass Transfer and Chemical Reactions in Microscale Segmented Flow

    NASA Astrophysics Data System (ADS)

    Abolhasani, Milad

    Flowing trains of uniformly sized bubbles/droplets (i.e., segmented flows) and the associated mass transfer enhancement over their single-phase counterparts have been studied extensively during the past fifty years. Although the scaling behaviour of segmented flow formation is increasingly well understood, the predictive adjustment of the desired flow characteristics that influence the mixing and residence times, remains a challenge. Currently, a time consuming, slow and often inconsistent manual manipulation of experimental conditions is required to address this task. In my thesis, I have overcome the above-mentioned challenges and developed an experimental strategy that for the first time provided predictive control over segmented flows in a hands-off manner. A computer-controlled platform that consisted of a real-time image processing module within an integral controller, a silicon-based microreactor and automated fluid delivery technique was designed, implemented and validated. In a first part of my thesis I utilized this approach for the automated screening of physical mass transfer and solubility characteristics of carbon dioxide (CO2) in a physical solvent at a well-defined temperature and pressure and a throughput of 12 conditions per hour. Second, by applying the segmented flow approach to a recently discovered CO2 chemical absorbent, frustrated Lewis pairs (FLPs), I determined the thermodynamic characteristics of the CO2-FLP reaction. Finally, the segmented flow approach was employed for characterization and investigation of CO2-governed liquid-liquid phase separation process. The second part of my thesis utilized the segmented flow platform for the preparation and shape control of high quality colloidal nanomaterials (e.g., CdSe/CdS) via the automated control of residence times up to approximately 5 minutes. By introducing a novel oscillatory segmented flow concept, I was able to further extend the residence time limitation to 24 hours. A case study of a slow candidate reaction, the etching of gold nanorods during up to five hours, served to illustrate the utility of oscillatory segmented flows in assessing the shape evolution of colloidal nanomaterials on-chip via continuous optical interrogation at only one sensing location. The developed cruise control strategy will enable plug'n play operation of segmented flows in applications that include flow chemistry, material synthesis and in-flow analysis and screening.

  5. Burner rig study of variables involved in hole plugging of air cooled turbine engine vanes

    NASA Technical Reports Server (NTRS)

    Deadmore, D. L.; Lowell, C. E.

    1983-01-01

    The effects of combustion gas composition, flame temperatures, and cooling air mass flow on the plugging of film cooling holes by a Ca-Fe-P-containing deposit were investigated. The testing was performed on film-cooled vanes exposed to the combustion gases of an atmospheric Mach 0.3 burner rig. The extent of plugging was determined by measurement of the open hole area at the conclusion of the tests as well as continuous monitoring of some of the tests using stop-action photography. In general, as the P content increased, plugging rates also increased. The plugging was reduced by increasing flame temperature and cooling air mass flow rates. At times up to approximately 2 hours little plugging was observed. This apparent incubation period was followed by rapid plugging, reaching in several hours a maximum closure whose value depended on the conditions of the test.

  6. Novel 3D coaxial flow-focusing nozzle device for the production of monodispersed collagen microspheres.

    PubMed

    Jaligama, Sravani; Po-Jung Huang; Kameoka, Jun

    2016-08-01

    We have developed a 3D coaxial flow-focusing nozzle device for the mass production of monodispersed collagen microspheres and chemically crosslinked them using EDC (1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide) and N-hydroxysuccinimide (NHS). The size of the microspheres was varied between 200 μm and 600 μm by adjusting the ratio of the flow rates of the dispersed and continuous phases. MDA231-GFP cells were attached to the surface of these particles and their viability was investigated. Because they are comprised of a natural biomaterial, these collagen microspheres will have numerous applications, including bone regeneration scaffolds for tissue engineering and analyses of cancer cell interactions in a 3D environment.

  7. Miniature piezo electric vacuum inlet valve

    DOEpatents

    Keville, R.F.; Dietrich, D.D.

    1998-03-24

    A miniature piezo electric vacuum inlet valve having a fast pulse rate and is battery operated with variable flow capability is disclosed. The low power (<1.6 watts), high pulse rate (<2 milliseconds), variable flow inlet valve is utilized for mass spectroscopic applications or other applications where pulsed or continuous flow conditions are needed. The inlet valve also has a very minimal dead volume of less than 0.01 std/cc. The valve can utilize, for example, a 12 Vdc input/750 Vdc, 3 mA output power supply compared to conventional piezo electric valves which require preloading of the crystal drive mechanism and 120 Vac, thus the valve of the present invention is smaller by a factor of three. 6 figs.

  8. Nitrogen regulation of transpiration controls mass-flow acquisition of nutrients.

    PubMed

    Matimati, Ignatious; Verboom, G Anthony; Cramer, Michael D

    2014-01-01

    Transpiration may enhance mass-flow of nutrients to roots, especially in low-nutrient soils or where the root system is not extensively developed. Previous work suggested that nitrogen (N) may regulate mass-flow of nutrients. Experiments were conducted to determine whether N regulates water fluxes, and whether this regulation has a functional role in controlling the mass-flow of nutrients to roots. Phaseolus vulgaris were grown in troughs designed to create an N availability gradient by restricting roots from intercepting a slow-release N source, which was placed at one of six distances behind a 25 μm mesh from which nutrients could move by diffusion or mass-flow (termed 'mass-flow' treatment). Control plants had the N source supplied directly to their root zone so that N was available through interception, mass-flow, and diffusion (termed 'interception' treatment). 'Mass-flow' plants closest to the N source exhibited 2.9-fold higher transpiration (E), 2.6-fold higher stomatal conductance (gs), 1.2-fold higher intercellular [CO2] (Ci), and 3.4-fold lower water use efficiency than 'interception' plants, despite comparable values of photosynthetic rate (A). E, gs, and Ci first increased and then decreased with increasing distance from the N source to values even lower than those of 'interception' plants. 'Mass-flow' plants accumulated phosphorus and potassium, and had maximum concentrations at 10mm from the N source. Overall, N availability regulated transpiration-driven mass-flow of nutrients from substrate zones that were inaccessible to roots. Thus when water is available, mass-flow may partially substitute for root density in providing access to nutrients without incurring the costs of root extension, although the efficacy of mass-flow also depends on soil nutrient retention and hydraulic properties.

  9. Hydrodynamic shear stress and mass transport modulation of endothelial cell metabolism.

    PubMed

    Nollert, M U; Diamond, S L; McIntire, L V

    1991-09-01

    Mammalian cells responds to physical forces by altering their growth rate, morphology, metabolism, and genetic expression. We have studied the mechanism by which these cells detect the presence of mechanical stress and convert this force into intracellular signals. As our model systems, we have studied cultured human endothelial cells, which line the blood vessels and forms the interface between the blood and the vessel wall. These cell responds within minutes to the initiation of flow by increasing their arachidonic acid metabolism and increasing the level of the intracellular second messengers inositol trisphosphate and calcium ion concentration. With continued exposure to arterial levels of wall shear stress for up to 24 h, endothelial cells increase the expression of tissue plasminogen activator (tPA) and tPA messenger RNA (mRNA) and decrease the expression of endothelin peptide and endothelin mRNA. Since the initiation of flow also causes enhanced convective mass transfer to the endothelial cell monolayer, we have investigated the role of enhanced convection of adenosine trisphosphate (ATP) to the cell surface in eliciting a cellular response by monitoring cytosolic calcium concentrations on the single cell level and by computing the concentration profile of ATP in a parallel-plate flow geometry. Our result demonstrate that endothelial cells respond in very specific ways to the initiation of flow and that mass transfer and fluid shear stress can both play a role in the modulation of intracellular signal transduction and metabolism.

  10. Performance and operational analysis of a liquid desiccant open-flow solar collector

    NASA Astrophysics Data System (ADS)

    Grodzka, P. G.; Rico, S. S.

    1982-10-01

    Theoretical predictions of the heat and mass transfer in an open flow solar collector used in conjunction with an absorption chiller are compared with performance data from a rooftop system. The study focuses on aqueous solutions of a hygroscopic salt, e.g., LiCl, flowing continuously over a solar absorbing surface. Water in the solution sublimes to a region of lower vapor pressure, i.e., the atmosphere. Direction of the water-depleted dessiccant to a storage volume and then to circulation around an evaporator unit permits operation of a solar-powered air conditioner. A closed form solution was defined for the heat and mass transfer, along with a finite difference solution. The system studied comprised a sloped roof top with 2500 sq ft of asphalt shingles, collector pipes beneath the shingles, and two 500 gal storage tanks. Relatively good agreement was found between the models and the recorded data, although some discrepancies were present when considering temperatures and performance at specific times of day. The measured 30-40% efficiencies indicated that further development of the system is warranted.

  11. Basic Modeling of the Solar Atmosphere and Spectrum

    NASA Technical Reports Server (NTRS)

    Avrett, Eugene; Wagner, William J. (Technical Monitor)

    2003-01-01

    This grant supported the research and publication of a major 26-page paper in The Astrophysical Journal, by Fontenla, Avrett, & Loeser (2002): 'Energy Balance in the Solar Transition Region. IV. Hydrogen and Helium Mass Flows with Diffusion.' This paper extended our previous modeling of the chromosphere-corona transition region to include cases with particle and mass flows. Inflows and outflows were shown to produce striking changes in the profiles of hydrogen and helium lines. An important conclusion is that line shifts are much less significant than the changes in line intensity and central reversal due to the influence of flows on the excitation and ionization of atoms in the solar atmosphere. This modeling effort at SAO is the only current one being undertaken anywhere to simulate in detail the full range of non-LTE absorption, emission, and scattering processes in the solar atmosphere to account for the entire solar spectrum from radio waves to X-rays. This effort is being continued with internal SAO funding at a relatively slow pace. Further NASA support in the future would yield results of great value for the interpretation of solar observations from NASA spacecraft.

  12. Measurement of Size-dependent Dynamic Shape Factors of Quartz Particles in Two Flow Regimes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alexander, Jennifer M.; Bell, David M.; Imre, D.

    2016-08-02

    Understanding and modeling the behavior of quartz dust particles, commonly found in the atmosphere, requires knowledge of many relevant particles properties, including particle shape. This study uses a single particle mass spectrometer, a differential mobility analyzer, and an aerosol particle mass analyzer to measure quartz aerosol particles mobility, aerodynamic, and volume equivalent diameters, mass, composition, effective density, and dynamic shape factor as a function of particle size, in both the free molecular and transition flow regimes. The results clearly demonstrate that dynamic shape factors can vary significantly as a function of particle size. For the quartz samples studied here, themore » dynamic shape factors increase with size, indicating that larger particles are significantly more aspherical than smaller particles. In addition, dynamic shape factors measured in the free-molecular (χv) and transition (χt) flow regimes can be significantly different, and these differences vary with the size of the quartz particles. For quartz, χv of small (d < 200 nm) particles is 1.25, while χv of larger particles (d ~ 440 nm) is 1.6, with a continuously increasing trend with particle size. In contrast χt, of small particles starts at 1.1 increasing slowly to 1.34 for 550 nm diameter particles. The multidimensional particle characterization approach used here goes beyond determination of average properties for each size, to provide additional information about how the particle dynamic shape factor may vary even for particles with the same mass and volume equivalent diameter.« less

  13. 40 CFR Table 13 to Subpart Xxxx of... - Minimum Data for Continuous Compliance With the Emission Limitations for Puncture Sealant...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... do not exceed the operating limits in Table 4 to this subpart Records of the total regeneration stream mass or volumetric flow for each regeneration cycle for 100 percent of the hours during which the process was operated, and a record of the carbon bed temperature after each regeneration, and within 15...

  14. 40 CFR Table 13 to Subpart Xxxx of... - Minimum Data for Continuous Compliance With the Emission Limitations for Puncture Sealant...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... do not exceed the operating limits in Table 4 to this subpart Records of the total regeneration stream mass or volumetric flow for each regeneration cycle for 100 percent of the hours during which the process was operated, and a record of the carbon bed temperature after each regeneration, and within 15...

  15. Orifice Mass Flow Calculation in NASA's W-8 Single Stage Axial Compressor Facility

    NASA Technical Reports Server (NTRS)

    Bozak, Richard F.

    2018-01-01

    Updates to the orifice mass flow calculation for the W-8 Single Stage Axial Compressor Facility at NASA Glenn Research Center are provided to include the effect of humidity and incorporate ISO 5167. A methodology for including the effect of humidity into the inlet orifice mass flow calculation is provided. Orifice mass flow calculations provided by ASME PTC-19.5-2004, ASME MFC-3M-2004, ASME Fluid Meters, and ISO 5167 are compared for W-8's atmospheric inlet orifice plate. Differences in expansion factor and discharge coefficient given by these standards give a variation of about +/- 75% mass flow except for a few cases. A comparison of the calculations with an inlet static pressure mass flow correlation and a fan exit mass flow integration using test data from a 2017 turbofan rotor test in W-8 show good agreement between the inlet static pressure mass flow correlation, ISO 5167, and ASME Fluid Meters. While W-8's atmospheric inlet orifice plate violates the pipe diameter limit defined by each of the standards, the ISO 5167 is chosen to be the primary orifice mass flow calculation to use in the W-8 facility.

  16. Wall Driven Cavity Approach to Slug Flow Modeling In a Micro channel

    NASA Astrophysics Data System (ADS)

    Sahu, Avinash; Kulkarni, Shekhar; Pushpavanam, Subramaniam; Pushpavanam Research League Team, Prof.

    2014-03-01

    Slug flow is a commonly observed stable regime and occurs at relatively low flow rates of the fluids. Wettability of channel decides continuous and discrete phases. In these types of biphasic flows, the fluid - fluid interface acts as a barrier that prohibits species movement across the interface. The flow inside a slug is qualitatively similar to the well known shallow cavity flow. In shallow cavities the flow mimics the ``fully developed'' internal circulation in slug flows. Another approach to slug flow modeling can be in a moving reference frame. Here the wall boundary moves in the direction opposite to that of the flow, hence induces circulations within the phases which is analogous to the well known Lid Driven Cavity. The two parallel walls are moved in the opposite directions which generate circulation patterns, equivalent to the ones regularly observed in slug flow in micro channels. A fourth order stream function equation is solved using finite difference approach. The flow field obtained using the two approaches will be used to analyze the effect on mass transfer and chemical reactions in the micro channel. The internal circulations and the performance of these systems will be validated experimentally.

  17. Influence of Reduced Mass Flow Rate and Chamber Backpressure on Swirl Injector Fluid Mechanics

    NASA Technical Reports Server (NTRS)

    Kenny, R Jeremy; Hulka, James R.

    2008-01-01

    Industry interest in variable-thrust liquid rocket engines places a demand on engine injector technology to operate over a wide range of liquid mass flow rates and chamber backpressures. One injection technology of current interest for variable thrust applications is an injector design with swirled fluids. Current swirl injector design methodologies do not take into account how swirl injector design parameters respond to elevated chamber backpressures at less than design mass flow rates. The current work was created to improve state-of-the-art swirl injector design methods in this area. The specific objective was to study the effects of elevated chamber backpressure and off-design mass flow rates on swirl injector fluid mechanics. Using a backpressure chamber with optical access, water was flowed through a swirl injector at various combinations of chamber backpressure and mass flow rates. The film thickness profile down the swirl injector nozzle section was measured through a transparent nozzle section of the injector. High speed video showed measurable increases in the film thickness profile with application of chamber backpressure and mass flow rates less than design. At prescribed combinations of chamber backpressure and injected mass flow rate, a discrete change in the film thickness profile was observed. Measured injector discharge coefficient values showed different trends with increasing chamber backpressure at low mass flow rates as opposed to near-design mass flow rates. Downstream spray angles showed classic changes in morphology as the mass flow rate was decreased below the design value. Increasing chamber backpressure decreased the spray angle at any injection mass flow rate. Experimental measurements and discussion of these results are reported in this paper.

  18. Statistical analysis and mathematical modeling of a tracer test on the Santa Clara River, Ventura County, California

    USGS Publications Warehouse

    Paybins, Katherine S.; Nishikawa, Tracy; Izbicki, John A.; Reichard, Eric G.

    1998-01-01

    To better understand flow processes, solute-transport processes, and ground-water/surface-water interactions on the Santa Clara River in Ventura County, California, a 24-hour fluorescent-dye tracer study was performed under steady-state flow conditions on a 28-mile reach of the river. The study reach includes perennial (uppermost and lowermost) subreaches and ephemeral subreaches of the lower Piru Creek and the middle Santa Clara River. Dye was injected at a site on Piru Creek, and fluorescence of river water was measured continuously at four sites and intermittently at two sites. Discharge measurements were also made at the six sites. The time of travel of the dye, peak dye concentration, and time-variance of time-concentration curves were obtained at each site. The long tails of the time-concentration curves are indicative of sources/sinks within the river, such as riffles and pools, or transient bank storage. A statistical analysis of the data indicates that, in general, the transport characteristics follow Fickian theory. These data and previously collected discharge data were used to calibrate a one-dimensional flow model (DAFLOW) and a solute-transport model (BLTM). DAFLOW solves a simplified form of the diffusion-wave equation and uses empirical relations between flow rate and cross-sectional area, and flow rate and channel width. BLTM uses the velocity data from DAFLOW and solves the advection-dispersion transport equation, including first-order decay. The simulations of dye transport indicated that (1) ground-water recharge explains the loss of dye mass in the middle, ephemeral, subreaches, and (2) ground-water recharge does not explain the loss of dye mass in the uppermost and lowermost, perennial, subreaches. This loss of mass was simulated using a linear decay term. The loss of mass in the perennial subreaches may be caused by a combination of photodecay or adsorption/desorption.

  19. Gravity-Driven Flow of non-Newtonian Fluids in Heterogeneous Porous Media: a Theoretical and Experimental Analysis

    NASA Astrophysics Data System (ADS)

    Di Federico, V.; Longo, S.; Ciriello, V.; Chiapponi, L.

    2015-12-01

    A theoretical and experimental analysis of non-Newtonian gravity-driven flow in porous media with spatially variable properties is presented. The motivation for our study is the rheological complexity exhibited by several environmental contaminants (wastewater sludge, oil pollutants, waste produced by the minerals and coal industries) and remediation agents (suspensions employed to enhance the efficiency of in-situ remediation). Natural porous media are inherently heterogeneous, and this heterogeneity influences the extent and shape of the porous domain invaded by the contaminant or remediation agent. To grasp the combined effect of rheology and spatial heterogeneity, we consider: a) the release of a thin current of non-Newtonian power-law fluid into a 2-D, semi-infinite and saturated porous medium above a horizontal bed; b) perfectly stratified media, with permeability and porosity varying along the direction transverse (vertical) or parallel (horizontal) to the flow direction. This continuous variation of spatial properties is described by two additional parameters. In order to represent several possible spreading scenarios, we consider: i) instantaneous injection with constant mass; ii) continuous injection with time-variable mass; iii) instantaneous release of a mound of fluid, which can drain freely out of the formation at the origin (dipole flow). Under these assumptions, scalings for current length and thickness are derived in self similar form. An analysis of the conditions on model parameters required to avoid an unphysical or asymptotically invalid result is presented. Theoretical results are validated against multiple sets of experiments, conducted for different combinations of spreading scenarios and types of stratification. Two basic setups are employed for the experiments: I) direct flow simulation in an artificial porous medium constructed superimposing layers of glass beads of different diameter; II) a Hele-Shaw (HS) analogue made of two parallel plates set at an angle. The HS analogy is extended to power-law fluid flow in porous media with variable properties parallel or transverse to the flow direction. Comparison with experimental results show that the proposed models capture the propagation of the current front and the current profile at intermediate and late time.

  20. Impact of drag reducing polymers on the onset of instability in a pipe with reverse flow

    NASA Astrophysics Data System (ADS)

    Shashank, H. J.; Sreenivas, K. R.

    2014-11-01

    The objective of this study is to understand the mechanism by which drag reducing polymer (DRP) additives modify turbulent flow, so as to reduce turbulent drag. Reverse flow in a pipe occurs when the fluid close to the wall moves in an opposite direction to that of the core fluid. Reverse flow is established by using a piston-cylinder mechanism, the programmed motion of which imparts a known impulse to the fluid. When the piston is stopped at the end of the stroke, fluid inertia makes the core of the flow to continue in the same direction. In order to conserve mass, reverse flow is established close to the wall. An inflection point is thus formed, leading to flow instability above a critical Reynolds number. Dye and streak flow visualization experiments are performed to highlight the impact of DRP additives (polyethylene oxide, PEO, dissolved in water). The time of onset of the instability and the wavelength of the observed instability are studied in systems with and without DRP additives. This study will provide further insight into the phenomenon of turbulent polymer drag reduction.

  1. Estimating ground-water exchange with lakes using water-budget and chemical mass-balance approaches for ten lakes in ridge areas of Polk and Highlands counties, Florida

    USGS Publications Warehouse

    Sacks, L.A.; Swancar, Amy; Lee, T.M.

    1998-01-01

    Water budget and chemical mass-balance approaches were used to estimate ground-water exchange with 10 lakes in ridge areas of Polk and Highlands Counties, Florida. At each lake, heads were monitored in the surficial aquifer system and deeper Upper Floridan aquifer, lake stage and rainfall were measured continuously, and lakes and wells were sampled three times between October 1995 and December 1996. The water-budget approach computes net ground-water flow (ground-water inflow minus outflow) as the residual of the monthly waterbudget equation. Net ground-water flow varied seasonally at each of the 10 lakes, and was notably different between lakes, illustrating short-term differences in ground-water fluxes. Monthly patterns in net ground-water flow were related to monthly patterns of other hydrologic variables such as rainfall, ground-water flow patterns, and head differences between the lake and the Upper Floridan aquifer. The chemical mass-balance approach combines the water budget and solute or isotope mass-balance equations, and assumes steady-state conditions. Naturally occurring tracers that were analyzed for include calcium, magnesium, sodium, potassium, chloride, and bromide, the isotopes deuterium and oxygen-18. Chloride and sodium were the most successful solute tracers; however, their concentrations in ground water typically varied spatially, and in places were similar to that in lake water, limiting their sensitivity as tracers. In contrast, the isotopes were more robust tracers because the isotopic composition of ground water was relatively uniform and was distinctly different from the lake water. Groundwater inflow computed using the chemical massbalance method varied significantly between lakes, and ranged from less than 10 to more than 150 inches per year. Both water-budget and chemical mass-balance approaches had limitations, but the multiple lines of evidence gained using both approaches improved the understanding of the role of ground water in the water budget of the lakes.

  2. Mass flow in interacting binaries observed in the ultraviolet

    NASA Technical Reports Server (NTRS)

    Kondo, Yoji

    1989-01-01

    Recent satellite observations of close binary systems show that practically all binaries exhibit evidence of mass flow and that, where the observations are sufficiently detailed, a fraction of the matter flowing out of the mass-losing component is accreted by the companion and the remainder is lost from the binary system. The mass flow is not conservative. During the phase of dynamic mass flow, the companion star becomes immersed in optically-thick plasma and the physical properties of that star elude close scrutiny.

  3. Modular Exhaust Design and Manufacturing Techniques for Low Cost Mid Volume Rapid Buidl to Order Systems

    DTIC Science & Technology

    2014-08-06

    the pressure field is uniform across them, but which allow mass flow to be diverted. Series elements have a constant mass flow across the ports...they can be used to calculate the pressure and mass flow after the element from the pressure and mass flow prior to the element, as shown in...the matrix product of each transfer matrix in turn. The final matrix gives no information about the pressures and mass flows within the element

  4. Applying NISHIJIN historical textile technique for e-Textile.

    PubMed

    Kuroda, Tomohiro; Hirano, Kikuo; Sugimura, Kazushige; Adachi, Satoshi; Igarashi, Hidetsugu; Ueshima, Kazuo; Nakamura, Hideo; Nambu, Masayuki; Doi, Takahiro

    2013-01-01

    The e-Textile is the key technology for continuous ambient health monitoring to increase quality of life of patients with chronic diseases. The authors introduce techniques of Japanese historical textile, NISHIJIN, which illustrate almost any pattern from one continuous yarn within the machine weaving process, which is suitable for mixed flow production. Thus, NISHIJIN is suitable for e-Textile production, which requires rapid prototyping and mass production of very complicated patterns. The authors prototyped and evaluated a few vests to take twelve-lead electrocardiogram. The result tells that the prototypes obtains electrocardiogram, which is good enough for diagnosis.

  5. Rapid and high-resolution stable isotopic measurement of biogenic accretionary carbonate using an online CO2 laser ablation system: Standardization of the analytical protocol.

    PubMed

    Sreemany, Arpita; Bera, Melinda Kumar; Sarkar, Anindya

    2017-12-30

    The elaborate sampling and analytical protocol associated with conventional dual-inlet isotope ratio mass spectrometry has long hindered high-resolution climate studies from biogenic accretionary carbonates. Laser-based on-line systems, in comparison, produce rapid data, but suffer from unresolvable matrix effects. It is, therefore, necessary to resolve these matrix effects to take advantage of the automated laser-based method. Two marine bivalve shells (one aragonite and one calcite) and one fish otolith (aragonite) were first analysed using a CO 2 laser ablation system attached to a continuous flow isotope ratio mass spectrometer under different experimental conditions (different laser power, sample untreated vs vacuum roasted). The shells and the otolith were then micro-drilled and the isotopic compositions of the powders were measured in a dual-inlet isotope ratio mass spectrometer following the conventional acid digestion method. The vacuum-roasted samples (both aragonite and calcite) produced mean isotopic ratios (with a reproducibility of ±0.2 ‰ for both δ 18 O and δ 13 C values) almost identical to the values obtained using the conventional acid digestion method. As the isotopic ratio of the acid digested samples fall within the analytical precision (±0.2 ‰) of the laser ablation system, this suggests the usefulness of the method for studying the biogenic accretionary carbonate matrix. When using laser-based continuous flow isotope ratio mass spectrometry for the high-resolution isotopic measurements of biogenic carbonates, the employment of a vacuum-roasting step will reduce the matrix effect. This method will be of immense help to geologists and sclerochronologists in exploring short-term changes in climatic parameters (e.g. seasonality) in geological times. Copyright © 2017 John Wiley & Sons, Ltd.

  6. Facies architecture and compositional variations of coves associated with recurrent mass wasting in the Norwegian North Sea.

    NASA Astrophysics Data System (ADS)

    Olakunle Omosanya, Kamaldeen; Johansen, Ståle

    2017-04-01

    Coves represent incisions commonly found on the gliding plane of mass-transport deposits (MTDs). Their association with ramps and promontories together causes marked topographic shift at the base of MTDs. Over the past decades, the majority of previous studies have focused on ramps rather than the coves. A debate emanating from these works centre on the origin and mode of formation of ramps. Some authors favour ramps to be tectonic structures while others show that they are erosional features. In this work, we have employed high-resolution 3D seismic reflection dataset and seismic attributes to investigate the evolution, kind and composition of coves found beneath three MTDs. Our attention is not only on the coves but also on the ramps with which they are associated. To do achieve this objective, we have chosen an area characterized by recurrent mass wasting, where one of the biggest submarine landslide in history have been documented. We restored the coves to their depositional geometries by applying techniques of geomorphologic analysis to the tops and bases of the MTDs. Our results revealed the presence of several coves at the base of three major slides i.e., Storegga, Tampen and Slide S. Coves are rugged and scoured sections of the basal shear surface on seismic sections. Their internal architecture includes continuous to slightly deformed reflections, blocky and faulted to strongly deformed packages, and low amplitude chaotic failed mass corresponding to slides, slumps and debris flow deposits. Stratigraphic succession of these seismic facies vary and differ from one coves to another, an indication of the multifaceted flow transformation during mass wasting. Ramps marking the boundaries of the coves are serrated scarps in map view. Our geomorphologic analyses show that blocks within the coves have compacted and are now slumps or deformed reflections on present day seismic data. Slump folds in the coves are kinematic indicators for mass flow direction, which in this study is multidirectional for two of the MTDs. An initial WSW direction of mass flow was succeeded by NW flow during which the coves were filled up to match the topographic position or zenith of the adjacent ramps. We demonstrate that coves, ramps, and slump folds are non-tectonic in origin instead coves are excavation zones or erosional features beneath the MTDs, ramps are their sidewalls, and slump folds are sedimentary imbrications. The coves are formed preferentially on paleo highs where fluid-flow features are prevalent and result from a complex interaction of erosion, sediment loading, and compaction. In the study area, coves are to be found recurring with the three slides and have significant implication for sediment preservation and budget during mass wasting events.

  7. The potential of model studies for the understanding of catalyst poisoning and temperature effects in polymer electrolyte fuel cell reactions

    NASA Astrophysics Data System (ADS)

    Behm, R. J.; Jusys, Z.

    In this contribution we demonstrate the potential of model studies for the understanding of electrocatalytic reactions in low-temperature polymer electrolyte fuel cells (PEFCs) operated by H 2-rich anode feed gas, in particular of the role of temperature effects and catalyst poisoning. Reviewing previous work from our laboratory and, for better comparison, focussing on carbon-supported Pt catalysts, the important role of using fuel cell relevant reaction and mass transport conditions will be outlined. The latter conditions include continuous reaction, elevated temperatures, realistic supported catalyst materials and controlled mass transport. The data show the importance of combining electrochemical techniques such as rotating disc electrode (RDE), wall-jet and flow cell measurements, and on-line differential electrochemical mass spectrometry (DEMS) under controlled mass transport conditions.

  8. Spontaneous Growth and Mobilization of a Gas Phase in the Presence of Dense Non- Aqueous Phase Liquid (DNAPL)

    NASA Astrophysics Data System (ADS)

    Roy, J. W.; Smith, J. E.

    2006-12-01

    A number of mechanisms can lead to the presence of disconnected bubbles or ganglia of gas phase in groundwater. When associated with or near a DNAPL phase, the disconnected gas phase experiences mass transfer of dissolved gases including the volatile components of the DNAPL. The properties of the gas phase interface, such as interfacial tension and contact angle, can also be affected. This work addresses the behavior of spontaneous continual growth of initially trapped seed gas bubbles within DNAPL source zones. Three different experiments were performed in a 2-dimensional transparent flow cell 15 cm by 20 cm by 1.5 cm. In each case, a DNAPL pool was created within larger glass beads over smaller glass beads that served as a capillary barrier. The DNAPL consisted of either a 1:2 (v/v) tetrachloroethene (PCE) to benzene mixture, single component PCE, or single component TCE. The experiments effectively demonstrate spontaneous gas phase expansion and vertical advective mobilization of gas bubbles and ganglia above the DNAPL source zone. A cycle of gas phase growth and mobilization was facilitated by the presence of secondary seed bubbles left behind due to snap-off during vertical bubble (ganglion) mobilization. This gas phase growth process was relatively slow but continuous and could be expected to continue until the NAPL is completely dissolved. Some implications of the demonstrated behavior for water flow and mass transfer within and near the DNAPL source zone are highlighted.

  9. Field Continuous Measurement of Dissolved Gases with a CF-MIMS: Applications to the Physics and Biogeochemistry of Groundwater Flow.

    PubMed

    Chatton, Eliot; Labasque, Thierry; de La Bernardie, Jérôme; Guihéneuf, Nicolas; Bour, Olivier; Aquilina, Luc

    2017-01-17

    In the perspective of a temporal and spatial exploration of aquatic environments (surface and groundwater), we developed a technique for field continuous measurements of dissolved gases with a precision better than 1% for N 2 , O 2 , CO 2 , He, Ar, 2% for Kr, 8% for Xe, and 3% for CH 4 , N 2 O and Ne. With a large resolution (from 1 × 10 -9 to 1 × 10 -2 ccSTP/g) and a capability of high frequency analysis (1 measure every 2 s), the CF-MIMS (Continuous Flow Membrane Inlet Mass Spectrometer) is an innovative tool allowing the investigation of a large panel of hydrological and biogeochemical processes in aquatic systems. Based on the available MIMS technology, this study introduces the development of the CF-MIMS (conception for field experiments, membrane choices, ionization) and an original calibration procedure allowing the quantification of mass spectral overlaps and temperature effects on membrane permeability. This study also presents two field applications of the CF-MIMS involving the well-logging of dissolved gases and the implementation of groundwater tracer tests with dissolved 4 He. The results demonstrate the analytical capabilities of the CF-MIMS in the field. Therefore, the CF-MIMS is a valuable tool for the field characterization of biogeochemical reactivity, aquifer transport properties, groundwater recharge, groundwater residence time and aquifer-river exchanges from few hours to several weeks experiments.

  10. Elbow mass flow meter

    DOEpatents

    McFarland, Andrew R.; Rodgers, John C.; Ortiz, Carlos A.; Nelson, David C.

    1994-01-01

    Elbow mass flow meter. The present invention includes a combination of an elbow pressure drop generator and a shunt-type mass flow sensor for providing an output which gives the mass flow rate of a gas that is nearly independent of the density of the gas. For air, the output is also approximately independent of humidity.

  11. Fluorochemical Mass Flows in a Municipal Wastewater Treatment Facility

    PubMed Central

    Schultz, Melissa M.; Higgins, Christopher P.; Huset, Carin A.; Luthy, Richard G.; Barofsky, Douglas F.; Field, Jennifer A.

    2008-01-01

    Fluorochemicals have widespread applications and are released into municipal wastewater treatment plants via domestic wastewater. A field study was conducted at a full-scale municipal wastewater treatment plant to determine the mass flows of selected fluorochemicals. Flow-proportional, 24-h samples of raw influent, primary effluent, trickling filter effluent, secondary effluent, and final effluent and grab samples of primary, thickened, activated, and anaerobically-digested sludge were collected over ten days and analyzed by liquid chromatography electrospray-ionization tandem mass spectrometry. Significant decreases in the mass flows of perfluorohexane sulfonate and perfluorodecanoate occurred during trickling filtration and primary clarification, while activated sludge treatment decreased the mass flow of perfluorohexanoate. Mass flows of the 6:2 fluorotelomer sulfonate and perfluorooctanoate were unchanged as a result of wastewater treatment, which indicates that conventional wastewater treatment is not effective for removal of these compounds. A net increase in the mass flows for perfluorooctane and perfluorodecane sulfonates occurred from trickling filtration and activated sludge treatment. Mass flows for perfluoroalkylsulfonamides and perfluorononanoate also increased during activated sludge treatment and are attributed to degradation of precursor molecules. PMID:17180988

  12. Novel instruments for in situ continuous Rn-222 measurement in groundwater and the application to river bank infiltration.

    PubMed

    Gilfedder, B S; Hofmann, H; Cartwright, I

    2013-01-15

    There is little known about the short-term dynamics of groundwater-surface water exchange in losing rivers. This is partly due to the paucity of chemical techniques that can autonomously collect high-frequency data in groundwater bores. Here we present two new instruments for continuous in situ (222)Rn measurement in bores for quantifying the surface water infiltration rate into an underlying or adjacent aquifer. These instruments are based on (222)Rn diffusion through silicone tube membranes, either wrapped around a pole (MonoRad) or strung between two hollow end pieces (OctoRad). They are combined with novel, robust, low-cost Geiger counter (222)Rn detectors which are ideal for long-term autonomous measurement. The down-hole instruments have a quantitative response time of about a day during low flow, but this decreases to <12 h during high-flow events. The setup was able to trace river water bank infiltration during moderate to high river flow during two field experiments. Mass-balance calculations using the (222)Rn data gave a maximum infiltration rate of 2 m d(-1). These instruments offer the first easily constructible system for continuous (222)Rn analysis in groundwater, and could be used to trace surface water infiltration in many environments including rivers, lakes, wetlands, and coastal settings.

  13. Informatics in radiology (infoRAD): A complete continuous-availability PACS archive server.

    PubMed

    Liu, Brent J; Huang, H K; Cao, Fei; Zhou, Michael Z; Zhang, Jianguo; Mogel, Greg

    2004-01-01

    The operational reliability of the picture archiving and communication system (PACS) server in a filmless hospital environment is always a major concern because server failure could cripple the entire PACS operation. A simple, low-cost, continuous-availability (CA) PACS archive server was designed and developed. The server makes use of a triple modular redundancy (TMR) system with a simple majority voting logic that automatically identifies a faulty module and removes it from service. The remaining two modules continue normal operation with no adverse effects on data flow or system performance. In addition, the server is integrated with two external mass storage devices for short- and long-term storage. Evaluation and testing of the server were conducted with laboratory experiments in which hardware failures were simulated to observe recovery time and the resumption of normal data flow. The server provides maximum uptime (99.999%) for end users while ensuring the transactional integrity of all clinical PACS data. Hardware failure has only minimal impact on performance, with no interruption of clinical data flow or loss of data. As hospital PACS become more widespread, the need for CA PACS solutions will increase. A TMR CA PACS archive server can reliably help achieve CA in this setting. Copyright RSNA, 2004

  14. Continuous protein concentration via free-flow moving reaction boundary electrophoresis.

    PubMed

    Kong, Fanzhi; Zhang, Min; Chen, Jingjing; Fan, Liuyin; Xiao, Hua; Liu, Shaorong; Cao, Chengxi

    2017-07-28

    In this work, we developed the model and theory of free-flow moving reaction boundary electrophoresis (FFMRB) for continuous protein concentration for the first time. The theoretical results indicated that (i) the moving reaction boundary (MRB) can be quantitatively designed in free-flow electrophoresis (FFE) system; (ii) charge-to-mass ratio (Z/M) analysis could provide guidance for protein concentration optimization; and (iii) the maximum processing capacity could be predicted. To demonstrate the model and theory, three model proteins of hemoglobin (Hb), cytochrome C (Cyt C) and C-phycocyanin (C-PC) were chosen for the experiments. The experimental results verified that (i) stable MRBs with different velocities could be established in FFE apparatus with weak acid/weak base neutralization reaction system; (ii) proteins of Hb, Cyt C and C-PC were well concentrated with FFMRB; and (iii) a maximum processing capacity and recovery ratio of Cyt C enrichment were 126mL/h and 95.5% respectively, and a maximum enrichment factor was achieved 12.6 times for Hb. All of the experiments demonstrated the protein concentration model and theory. In contrast to other methods, the continuous processing ability enables FFMRB to efficiently enrich diluted protein or peptide in large volume solution. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Flow field design and optimization based on the mass transport polarization regulation in a flow-through type vanadium flow battery

    NASA Astrophysics Data System (ADS)

    Zheng, Qiong; Xing, Feng; Li, Xianfeng; Ning, Guiling; Zhang, Huamin

    2016-08-01

    Vanadium flow battery holds great promise for use in large scale energy storage applications. However, the power density is relatively low, leading to significant increase in the system cost. Apart from the kinetic and electronic conductivity improvement, the mass transport enhancement is also necessary to further increase the power density and reduce the system cost. To better understand the mass transport limitations, in the research, the space-varying and time-varying characteristic of the mass transport polarization is investigated based on the analysis of the flow velocity and reactant concentration in the bulk electrolyte by modeling. The result demonstrates that the varying characteristic of mass transport polarization is more obvious at high SoC or high current densities. To soften the adverse impact of the mass transport polarization, a new rectangular plug flow battery with a plug flow and short flow path is designed and optimized based on the mass transport polarization regulation (reducing the mass transport polarization and improving its uniformity of distribution). The regulation strategy of mass transport polarization is practical for the performance improvement in VFBs, especially for high power density VFBs. The findings in the research are also applicable for other flow batteries and instructive for practical use.

  16. Rapid Catalyst Screening by a Continuous-Flow Microreactor Interfaced with Ultra High Pressure Liquid Chromatography

    PubMed Central

    Fang, Hui; Xiao, Qing; Wu, Fanghui; Floreancig, Paul E.; Weber, Stephen G.

    2010-01-01

    A high-throughput screening system for homogeneous catalyst discovery has been developed by integrating a continuous-flow capillary-based microreactor with ultra-high pressure liquid chromatography (UHPLC) for fast online analysis. Reactions are conducted in distinct and stable zones in a flow stream that allows for time and temperature regulation. UHPLC detection at high temperature allows high throughput online determination of substrate, product, and byproduct concentrations. We evaluated the efficacies of a series of soluble acid catalysts for an intramolecular Friedel-Crafts addition into an acyliminium ion intermediate within one day and with minimal material investment. The effects of catalyst loading, reaction time, and reaction temperature were also screened. This system exhibited high reproducibility for high-throughput catalyst screening and allowed several acid catalysts for the reaction to be identified. Major side products from the reactions were determined through off-line mass spectrometric detection. Er(OTf)3, the catalyst that showed optimal efficiency in the screening, was shown to be effective at promoting the cyclization reaction on a preparative scale. PMID:20666502

  17. Effect of high negative incidence on the performance of a centrifugal compressor stage with conventional vaned diffusers

    NASA Astrophysics Data System (ADS)

    Jaatinen, Ahti; Grönman, Aki; Turunen-Saaresti, Teemu; Backman, Jari

    2011-06-01

    Three vaned diffusers, designed to have high negative incidence (-8°) at the design operating point, are studied experimentally. The overall performance (efficiency and pressure ratio) are measured at three rotational speeds, and flow angles before and after the diffuser are measured at the design rotational speed and with three mass flow rates. The results are compared to corresponding results of the original vaneless diffuser design. Attention is paid to the performance at lower mass flows than the design mass flow. The results show that it is possible to improve the performance at mass flows lower than the design mass flow with a vaned diffuser designed with high negative incidence. However, with the vaned diffusers, the compressor still stalls at higher mass flow rates than with the vaneless one. The flow angle distributions after the diffuser are more uniform with the vaned diffusers.

  18. Laboratory Plasma Source as an MHD Model for Astrophysical Jets

    NASA Technical Reports Server (NTRS)

    Mayo, Robert M.

    1997-01-01

    The significance of the work described herein lies in the demonstration of Magnetized Coaxial Plasma Gun (MCG) devices like CPS-1 to produce energetic laboratory magneto-flows with embedded magnetic fields that can be used as a simulation tool to study flow interaction dynamic of jet flows, to demonstrate the magnetic acceleration and collimation of flows with primarily toroidal fields, and study cross field transport in turbulent accreting flows. Since plasma produced in MCG devices have magnetic topology and MHD flow regime similarity to stellar and extragalactic jets, we expect that careful investigation of these flows in the laboratory will reveal fundamental physical mechanisms influencing astrophysical flows. Discussion in the next section (sec.2) focuses on recent results describing collimation, leading flow surface interaction layers, and turbulent accretion. The primary objectives for a new three year effort would involve the development and deployment of novel electrostatic, magnetic, and visible plasma diagnostic techniques to measure plasma and flow parameters of the CPS-1 device in the flow chamber downstream of the plasma source to study, (1) mass ejection, morphology, and collimation and stability of energetic outflows, (2) the effects of external magnetization on collimation and stability, (3) the interaction of such flows with background neutral gas, the generation of visible emission in such interaction, and effect of neutral clouds on jet flow dynamics, and (4) the cross magnetic field transport of turbulent accreting flows. The applicability of existing laboratory plasma facilities to the study of stellar and extragalactic plasma should be exploited to elucidate underlying physical mechanisms that cannot be ascertained though astrophysical observation, and provide baseline to a wide variety of proposed models, MHD and otherwise. The work proposed herin represents a continued effort on a novel approach in relating laboratory experiments to astrophysical jet observation. There exists overwhelming similarity among these flows that has already produced some fascinating results and is expected to continue a high pay off in future flow similarity studies.

  19. Biocatalytic synthesis of the Green Note trans-2-hexenal in a continuous-flow microreactor.

    PubMed

    van Schie, Morten M C H; Pedroso de Almeida, Tiago; Laudadio, Gabriele; Tieves, Florian; Fernández-Fueyo, Elena; Noël, Timothy; Arends, Isabel W C E; Hollmann, Frank

    2018-01-01

    The biocatalytic preparation of trans -hex-2-enal from trans -hex-2-enol using a novel aryl alcohol oxidase from Pleurotus eryngii ( Pe AAOx) is reported. As O 2 -dependent enzyme Pe AAOx-dependent reactions are generally plagued by the poor solubility of O 2 in aqueous media and mass transfer limitations resulting in poor reaction rates. These limitations were efficiently overcome by conducting the reaction in a flow-reactor setup reaching unpreceded catalytic activities for the enzyme in terms of turnover frequency (up to 38 s -1 ) and turnover numbers (more than 300000) pointing towards preparative usefulness of the proposed reaction scheme.

  20. Numerical Model Studies of the Martian Mesoscale Circulations

    NASA Technical Reports Server (NTRS)

    Segal, M.; Arritt, R. W.

    1996-01-01

    Studies concerning mesoscale topographical effects on Martian flows examined low-level jets in the near equatorial latitudes and the dynamical intensification of flow by steep terrain. Continuation of work from previous years included evaluating the dissipation of cold air mass outbreaks due to enhanced sensible heat flux, further sensitivity and scaling evaluations for generalization of the characteristics of Martian mesoscale circulation caused by horizontal sensible heat-flux gradients, and evaluations of the significance that non-uniform surface would have on enhancing the polar CO2 ice sublimation during the spring. The sensitivity of maximum and minimum atmospheric temperatures to changes in wind speed, surface albedo, and deep soil temperature was investigated.

  1. Biocatalytic synthesis of the Green Note trans-2-hexenal in a continuous-flow microreactor

    PubMed Central

    van Schie, Morten M C H; Pedroso de Almeida, Tiago; Laudadio, Gabriele; Tieves, Florian; Fernández-Fueyo, Elena; Arends, Isabel W C E

    2018-01-01

    The biocatalytic preparation of trans-hex-2-enal from trans-hex-2-enol using a novel aryl alcohol oxidase from Pleurotus eryngii (PeAAOx) is reported. As O2-dependent enzyme PeAAOx-dependent reactions are generally plagued by the poor solubility of O2 in aqueous media and mass transfer limitations resulting in poor reaction rates. These limitations were efficiently overcome by conducting the reaction in a flow-reactor setup reaching unpreceded catalytic activities for the enzyme in terms of turnover frequency (up to 38 s−1) and turnover numbers (more than 300000) pointing towards preparative usefulness of the proposed reaction scheme. PMID:29719567

  2. Handheld low-temperature plasma probe for portable "point-and-shoot" ambient ionization mass spectrometry.

    PubMed

    Wiley, Joshua S; Shelley, Jacob T; Cooks, R Graham

    2013-07-16

    We describe a handheld, wireless low-temperature plasma (LTP) ambient ionization source and its performance on a benchtop and a miniature mass spectrometer. The source, which is inexpensive to build and operate, is battery-powered and utilizes miniature helium cylinders or air as the discharge gas. Comparison of a conventional, large-scale LTP source against the handheld LTP source, which uses less helium and power than the large-scale version, revealed that the handheld source had similar or slightly better analytical performance. Another advantage of the handheld LTP source is the ability to quickly interrogate a gaseous, liquid, or solid sample without requiring any setup time. A small, 7.4-V Li-polymer battery is able to sustain plasma for 2 h continuously, while the miniature helium cylinder supplies gas flow for approximately 8 continuous hours. Long-distance ion transfer was achieved for distances up to 1 m.

  3. Enabling continuous-flow chemistry in microstructured devices for pharmaceutical and fine-chemical production.

    PubMed

    Kockmann, Norbert; Gottsponer, Michael; Zimmermann, Bertin; Roberge, Dominique M

    2008-01-01

    Microstructured devices offer unique transport capabilities for rapid mixing, enhanced heat and mass transfer and can handle small amounts of dangerous or unstable materials. The integration of reaction kinetics into fluid dynamics and transport phenomena is essential for successful application from process design in laboratory to chemical production. Strategies to implement production campaigns up to tons of pharmaceutical chemicals are discussed, based on Lonza projects.

  4. Data acquisition techniques for exploiting the uniqueness of the time-of-flight mass spectrometer: Application to sampling pulsed gas systems

    NASA Technical Reports Server (NTRS)

    Lincoln, K. A.

    1980-01-01

    Mass spectra are produced in most mass spectrometers by sweeping some parameter within the instrument as the sampled gases flow into the ion source. It is evident that any fluctuation in the gas during the sweep (mass scan) of the instrument causes the output spectrum to be skewed in its mass peak intensities. The time of flight mass spectrometer (TOFMS) with its fast, repetitive mode of operation produces spectra without skewing or varying instrument parameters and because all ion species are ejected from the ion source simultaneously, the spectra are inherently not skewed despite rapidly changing gas pressure or composition in the source. Methods of exploiting this feature by utilizing fast digital data acquisition systems, such as transient recorders and signal averagers which are commercially available are described. Applications of this technique are presented including TOFMS sampling of vapors produced by both pulsed and continuous laser heating of materials.

  5. Dual-scale Galerkin methods for Darcy flow

    NASA Astrophysics Data System (ADS)

    Wang, Guoyin; Scovazzi, Guglielmo; Nouveau, Léo; Kees, Christopher E.; Rossi, Simone; Colomés, Oriol; Main, Alex

    2018-02-01

    The discontinuous Galerkin (DG) method has found widespread application in elliptic problems with rough coefficients, of which the Darcy flow equations are a prototypical example. One of the long-standing issues of DG approximations is the overall computational cost, and many different strategies have been proposed, such as the variational multiscale DG method, the hybridizable DG method, the multiscale DG method, the embedded DG method, and the Enriched Galerkin method. In this work, we propose a mixed dual-scale Galerkin method, in which the degrees-of-freedom of a less computationally expensive coarse-scale approximation are linked to the degrees-of-freedom of a base DG approximation. We show that the proposed approach has always similar or improved accuracy with respect to the base DG method, with a considerable reduction in computational cost. For the specific definition of the coarse-scale space, we consider Raviart-Thomas finite elements for the mass flux and piecewise-linear continuous finite elements for the pressure. We provide a complete analysis of stability and convergence of the proposed method, in addition to a study on its conservation and consistency properties. We also present a battery of numerical tests to verify the results of the analysis, and evaluate a number of possible variations, such as using piecewise-linear continuous finite elements for the coarse-scale mass fluxes.

  6. Determination of Noncovalent Binding Using a Continuous Stirred Tank Reactor as a Flow Injection Device Coupled to Electrospray Ionization Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Santos, Inês C.; Waybright, Veronica B.; Fan, Hui; Ramirez, Sabra; Mesquita, Raquel B. R.; Rangel, António O. S. S.; Fryčák, Petr; Schug, Kevin A.

    2015-07-01

    Described is a new method based on the concept of controlled band dispersion, achieved by hyphenating flow injection analysis with ESI-MS for noncovalent binding determinations. A continuous stirred tank reactor (CSTR) was used as a FIA device for exponential dilution of an equimolar host-guest solution over time. The data obtained was treated for the noncovalent binding determination using an equimolar binding model. Dissociation constants between vancomycin and Ac-Lys(Ac)-Ala-Ala-OH peptide stereoisomers were determined using both the positive and negative ionization modes. The results obtained for Ac- L-Lys(Ac)- D-Ala- D-Ala (a model for a Gram-positive bacterial cell wall) binding were in reasonable agreement with literature values made by other mass spectrometry binding determination techniques. Also, the developed method allowed the determination of dissociation constants for vancomycin with Ac- L-Lys(Ac)- D-Ala- L-Ala, Ac- L-Lys(Ac)- L-Ala- D-Ala, and Ac- L-Lys(Ac)- L-Ala- L-Ala. Although some differences in measured binding affinities were noted using different ionization modes, the results of each determination were generally consistent. Differences are likely attributable to the influence of a pseudo-physiological ammonium acetate buffer solution on the formation of positively- and negatively-charged ionic complexes.

  7. Simultaneous Moisture Content and Mass Flow Measurements in Wood Chip Flows Using Coupled Dielectric and Impact Sensors.

    PubMed

    Pan, Pengmin; McDonald, Timothy; Fulton, John; Via, Brian; Hung, John

    2016-12-23

    An 8-electrode capacitance tomography (ECT) sensor was built and used to measure moisture content (MC) and mass flow of pine chip flows. The device was capable of directly measuring total water quantity in a sample but was sensitive to both dry matter and moisture, and therefore required a second measurement of mass flow to calculate MC. Two means of calculating the mass flow were used: the first being an impact sensor to measure total mass flow, and the second a volumetric approach based on measuring total area occupied by wood in images generated using the capacitance sensor's tomographic mode. Tests were made on 109 groups of wood chips ranging in moisture content from 14% to 120% (dry basis) and wet weight of 280 to 1100 g. Sixty groups were randomly selected as a calibration set, and the remaining were used for validation of the sensor's performance. For the combined capacitance/force transducer system, root mean square errors of prediction (RMSEP) for wet mass flow and moisture content were 13.42% and 16.61%, respectively. RMSEP using the combined volumetric mass flow/capacitance sensor for dry mass flow and moisture content were 22.89% and 24.16%, respectively. Either of the approaches was concluded to be feasible for prediction of moisture content in pine chip flows, but combining the impact and capacitance sensors was easier to implement. In situations where flows could not be impeded, however, the tomographic approach would likely be more useful.

  8. Multiyear nutrient removal performance of three constructed wetlands intercepting tile drain flows from grazed pastures.

    PubMed

    Tanner, Chris C; Sukias, James P S

    2011-01-01

    Subsurface tile drain flows can be a major s ource of nurient loss from agricultural landscapes. This study quantifies flows and nitrogen and phosphorus yields from tile drains at three intensively grazed dairy pasture sites over 3- to 5-yr periods and evaluates the capacity of constructed wetlands occupying 0.66 to 1.6% of the drained catchments too reduce nutrient loads. Continuous flow records are combined with automated flow-proportional sampling of nutrient concentrations to calculate tile drain nutrient yields and wetland mass removal rates. Annual drainage water yields rangedfrom 193 to 564 mm (16-51% of rainfall) at two rain-fed sites and from 827 to 853 mm (43-51% of rainfall + irrigation) at an irrigated site. Annually, the tile drains exported 14 to 109 kg ha(-1) of total N (TN), of which 58 to 90% was nitrate-N. Constructed wetlands intercepting these flows removed 30 to 369 gTN m(-2) (7-63%) of influent loadings annually. Seasonal percentage nitrate-N and TN removal were negatively associated with wetland N mass loadings. Wetland P removal was poor in all wetlands, with 12 to 115% more total P exported annually overall than received. Annually, the tile drains exported 0.12 to 1.38 kg ha of total P, of which 15 to 93% was dissolved reactive P. Additional measures are required to reduce these losses or provide supplementary P removal. Wetland N removal performance could be improved by modifying drainage systems to release flows more gradually and improving irrigation practices to reduce drainage losses.

  9. Eruption mass estimation using infrasound waveform inversion and ash and gas measurements: Evaluation at Sakurajima Volcano, Japan

    NASA Astrophysics Data System (ADS)

    Fee, David; Izbekov, Pavel; Kim, Keehoon; Yokoo, Akihiko; Lopez, Taryn; Prata, Fred; Kazahaya, Ryunosuke; Nakamichi, Haruhisa; Iguchi, Masato

    2017-12-01

    Eruption mass and mass flow rate are critical parameters for determining the aerial extent and hazard of volcanic emissions. Infrasound waveform inversion is a promising technique to quantify volcanic emissions. Although topography may substantially alter the infrasound waveform as it propagates, advances in wave propagation modeling and station coverage permit robust inversion of infrasound data from volcanic explosions. The inversion can estimate eruption mass flow rate and total eruption mass if the flow density is known. However, infrasound-based eruption flow rates and mass estimates have yet to be validated against independent measurements, and numerical modeling has only recently been applied to the inversion technique. Here we present a robust full-waveform acoustic inversion method, and use it to calculate eruption flow rates and masses from 49 explosions from Sakurajima Volcano, Japan. Six infrasound stations deployed from 12-20 February 2015 recorded the explosions. We compute numerical Green's functions using 3-D Finite Difference Time Domain modeling and a high-resolution digital elevation model. The inversion, assuming a simple acoustic monopole source, provides realistic eruption masses and excellent fit to the data for the majority of the explosions. The inversion results are compared to independent eruption masses derived from ground-based ash collection and volcanic gas measurements. Assuming realistic flow densities, our infrasound-derived eruption masses for ash-rich eruptions compare favorably to the ground-based estimates, with agreement ranging from within a factor of two to one order of magnitude. Uncertainties in the time-dependent flow density and acoustic propagation likely contribute to the mismatch between the methods. Our results suggest that realistic and accurate infrasound-based eruption mass and mass flow rate estimates can be computed using the method employed here. If accurate volcanic flow parameters are known, application of this technique could be broadly applied to enable near real-time calculation of eruption mass flow rates and total masses. These critical input parameters for volcanic eruption modeling and monitoring are not currently available.

  10. Efficient Synthesis of Ir-Polyoxometalate Cluster Using a Continuous Flow Apparatus and STM Investigation of Its Coassembly Behavior on HOPG Surface.

    PubMed

    Zhang, Junyong; Chang, Shaoqing; Suryanto, Bryan H R; Gong, Chunhua; Zeng, Xianghua; Zhao, Chuan; Zeng, Qingdao; Xie, Jingli

    2016-06-06

    Taking advantage of a continuous-flow apparatus, the iridium(III)-containing polytungstate cluster K12Na2H2[Ir2Cl8P2W20O72]·37H2O (1) was obtained in a reasonable yield (13% based on IrCl3·H2O). Compound 1 was characterized by Fourier transform IR, UV-visible, (31)P NMR, electrospray ionization mass spectrometry (ESI-MS), and thermogravimetric analysis measurements. (31)P NMR, ESI-MS, and elemental analysis all indicated 1 was a new polytungstate cluster compared with the reported K14[(IrCl4)KP2W20O72] compound. Intriguingly, the successful isolation of 1 relied on the custom-built flow apparatus, demonstrating the uniqueness of continuous-flow chemistry to achieve crystalline materials. The catalytic properties of 1 were assessed by investigating the activity on catalyzing the electro-oxidation of ruthenium tris-2,2'-bipyridine [Ru(bpy)3](2+/3+). The voltammetric behavior suggested a coupled catalytic behavior between [Ru(bpy)3](3+/2+) and 1. Furthermore, on the highly oriented pyrolytic graphite surface, 1,3,5-tris(10-carboxydecyloxy) benzene (TCDB) was used as the two-dimensional host network to coassemble cluster 1; the surface morphology was observed by scanning tunneling microscope technique. "S"-shape of 1 was observed, indicating that the cluster could be accommodated in the cavity formed by two TCDB host molecules, leading to a TCDB/cluster binary structure.

  11. Numerical analysis of the transient flow in a scroll refrigeration compressor

    NASA Astrophysics Data System (ADS)

    Sun, Shuaihui; Wu, Kai; Guo, Pengcheng; Luo, Xingqi

    2017-08-01

    In the present paper, the CFD technology is adopted to simulate the working process of a scroll refrigeration compressor with R22 as working fluid. The structural grids in the scroll compressor were updated continually during the solving process to cope with the movement boundaries of the fluid domain. The radial meshing clearance was 0.008 mm which was the same with that in the real prototype. The pressure, velocity and temperature distribution in chambers of compressor were computed. Also, the transient mass flux diagrams were calculated out. The results indicated that the pressure was asymmetrical in the two symmetrical suction chambers, because the suction port and passage were not absolutely symmetrical. The gradient of temperature was great in each working chamber due to leakage flow. Velocity vector distribution was asymmetrical in each pair of working chamber owing to the movement of orbiting scroll; the flow was complicated in the central working chamber. The movement of the orbiting scroll had different influence on the vortexes formation in each pair of compression chamber. The inlet and outlet mass flux fluctuated with the crank angle obviously. Because of the ‘cut-off’ of the refrigeration fluid in the suction chamber when the crank angle was larger than 220°, the inlet mass flux decreased remarkably. Finally, some useful advices were given to improve the performance of the scroll refrigeration compressor.

  12. Smoothed particle hydrodynamics method for simulating waterfall flow

    NASA Astrophysics Data System (ADS)

    Suwardi, M. G.; Jondri; Tarwidi, D.

    2018-03-01

    The existence of waterfall in many nations, such as Indonesia has a potential to develop and to fulfill the electricity demand in the nation. By utilizing mechanical flow energy of the waterfall, it would be able to generate electricity. The study of mechanical energy could be done by simulating waterfall flow using 2-D smoothed particle hydrodynamics (SPH) method. The SPH method is suitable to simulate the flow of the waterfall, because it has an advantage which could form particles movement that mimic the characteristics of fluid. In this paper, the SPH method is used to solve Navier-Stokes and continuity equation which are the main cores of fluid motion. The governing equations of fluid flow are used to obtain the acceleration, velocity, density, and position of the SPH particles as well as the completion of Leapfrog time-stepping method. With these equations, simulating a waterfall flow would be more attractive and able to complete the analysis of mechanical energy as desired. The mechanical energy that generated from the waterfall flow is calculated and analyzed based on the mass, height, and velocity of each SPH particle.

  13. Quantification of the transient mass flow rate in a simplex swirl injector

    NASA Astrophysics Data System (ADS)

    Khil, Taeock; Kim, Sunghyuk; Cho, Seongho; Yoon, Youngbin

    2009-07-01

    When a heat release and acoustic pressure fluctuations are generated in a combustor by irregular and local combustions, these fluctuations affect the mass flow rate of the propellants injected through the injectors. In addition, variations of the mass flow rate caused by these fluctuations bring about irregular combustion, which is associated with combustion instability, so it is very important to identify a mass variation through the pressure fluctuation on the injector and to investigate its transfer function. Therefore, quantification of the variation of the mass flow rate generated in a simplex swirl injector via the injection pressure fluctuation was the subject of an initial study. To acquire the transient mass flow rate in the orifice with time, the axial velocity of flows and the liquid film thickness in the orifice were measured. The axial velocity was acquired through a theoretical approach after measuring the pressure in the orifice. In an effort to understand the flow area in the orifice, the liquid film thickness was measured by an electric conductance method. In the results, the mass flow rate calculated from the axial velocity and the liquid film thickness measured by the electric conductance method in the orifice was in good agreement with the mass flow rate acquired by the direct measuring method in a small error range within 1% in the steady state and within 4% for the average mass flow rate in a pulsated state. Also, the amplitude (gain) of the mass flow rate acquired by the proposed direct measuring method was confirmed using the PLLIF technique in the low pressure fluctuation frequency ranges with an error under 6%. This study shows that our proposed method can be used to measure the mass flow rate not only in the steady state but also in the unsteady state (or the pulsated state). Moreover, this method shows very high accuracy based on the experimental results.

  14. Journal: Efficient Hydrologic Tracer-Test Design for Tracer ...

    EPA Pesticide Factsheets

    Hydrological tracer testing is the most reliable diagnostic technique available for the determination of basic hydraulic and geometric parameters necessary for establishing operative solute-transport processes. Tracer-test design can be difficult because of a lack of prior knowledge of the basic hydraulic and geometric parameters desired and the appropriate tracer mass to release. A new efficient hydrologic tracer-test design (EHTD) methodology has been developed to facilitate the design of tracer tests by root determination of the one-dimensional advection-dispersion equation (ADE) using a preset average tracer concentration which provides a theoretical basis for an estimate of necessary tracer mass. The method uses basic measured field parameters (e.g., discharge, distance, cross-sectional area) that are combined in functional relatipnships that descrive solute-transport processes related to flow velocity and time of travel. These initial estimates for time of travel and velocity are then applied to a hypothetical continuous stirred tank reactor (CSTR) as an analog for the hydrological-flow system to develop initial estimates for tracer concentration, tracer mass, and axial dispersion. Application of the predicted tracer mass with the hydraulic and geometric parameters in the ADE allows for an approximation of initial sample-collection time and subsequent sample-collection frequency where a maximum of 65 samples were determined to be necessary for descri

  15. Hydraulic characterization and optimization of total nitrogen removal in an aerated vertical subsurface flow treatment wetland.

    PubMed

    Boog, Johannes; Nivala, Jaime; Aubron, Thomas; Wallace, Scott; van Afferden, Manfred; Müller, Roland Arno

    2014-06-01

    In this study, a side-by-side comparison of two pilot-scale vertical subsurface flow constructed wetlands (6.2 m(2)×0.85 m, q(i)=95 L/m(2) d, τ(n)=3.5 d) handling primary treated domestic sewage was conducted. One system (VA-i) was set to intermittent aeration while the other was aerated continuously (VAp-c). Intermittent aeration was provided to VA-i in an 8 h on/4 h off pattern. The intermittently aerated wetland, VA-i, was observed to have 70% less nitrate nitrogen mass outflow than the continuously aerated wetland, VAp-c. Intermittent aeration was shown to increase treatment performance for TN while saving 33% of running energy cost for aeration. Parallel tracer experiments in the two wetlands showed hydraulic characteristics similar to one Continuously Stirred Tank Reactor (CSTR). Intermittent aeration did not significantly affect the hydraulic functioning of the system. Hydraulic efficiencies were 78% for VAp-c and 76% for VA-i. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Optimal orientation in flows: providing a benchmark for animal movement strategies.

    PubMed

    McLaren, James D; Shamoun-Baranes, Judy; Dokter, Adriaan M; Klaassen, Raymond H G; Bouten, Willem

    2014-10-06

    Animal movements in air and water can be strongly affected by experienced flow. While various flow-orientation strategies have been proposed and observed, their performance in variable flow conditions remains unclear. We apply control theory to establish a benchmark for time-minimizing (optimal) orientation. We then define optimal orientation for movement in steady flow patterns and, using dynamic wind data, for short-distance mass movements of thrushes (Turdus sp.) and 6000 km non-stop migratory flights by great snipes, Gallinago media. Relative to the optimal benchmark, we assess the efficiency (travel speed) and reliability (success rate) of three generic orientation strategies: full compensation for lateral drift, vector orientation (single-heading movement) and goal orientation (continually heading towards the goal). Optimal orientation is characterized by detours to regions of high flow support, especially when flow speeds approach and exceed the animal's self-propelled speed. In strong predictable flow (short distance thrush flights), vector orientation adjusted to flow on departure is nearly optimal, whereas for unpredictable flow (inter-continental snipe flights), only goal orientation was near-optimally reliable and efficient. Optimal orientation provides a benchmark for assessing efficiency of responses to complex flow conditions, thereby offering insight into adaptive flow-orientation across taxa in the light of flow strength, predictability and navigation capacity.

  17. Optimal orientation in flows: providing a benchmark for animal movement strategies

    PubMed Central

    McLaren, James D.; Shamoun-Baranes, Judy; Dokter, Adriaan M.; Klaassen, Raymond H. G.; Bouten, Willem

    2014-01-01

    Animal movements in air and water can be strongly affected by experienced flow. While various flow-orientation strategies have been proposed and observed, their performance in variable flow conditions remains unclear. We apply control theory to establish a benchmark for time-minimizing (optimal) orientation. We then define optimal orientation for movement in steady flow patterns and, using dynamic wind data, for short-distance mass movements of thrushes (Turdus sp.) and 6000 km non-stop migratory flights by great snipes, Gallinago media. Relative to the optimal benchmark, we assess the efficiency (travel speed) and reliability (success rate) of three generic orientation strategies: full compensation for lateral drift, vector orientation (single-heading movement) and goal orientation (continually heading towards the goal). Optimal orientation is characterized by detours to regions of high flow support, especially when flow speeds approach and exceed the animal's self-propelled speed. In strong predictable flow (short distance thrush flights), vector orientation adjusted to flow on departure is nearly optimal, whereas for unpredictable flow (inter-continental snipe flights), only goal orientation was near-optimally reliable and efficient. Optimal orientation provides a benchmark for assessing efficiency of responses to complex flow conditions, thereby offering insight into adaptive flow-orientation across taxa in the light of flow strength, predictability and navigation capacity. PMID:25056213

  18. The effects of recirculation flows on mass transfer from the arterial wall to flowing blood.

    PubMed

    Zhang, Zhiguo; Deng, Xiaoyan; Fan, Yubo; Guidoin, Robert

    2008-01-01

    Using a sudden tubular expansion as a model of an arterial stenosis, the effect of disturbed flow on mass transfer from the arterial wall to flowing blood was studied theoretically and tested experimentally by measuring the dissolution rate of benzoic acid disks forming the outer tube of a sudden tubular expansion. The study revealed that mass transfer from vessel wall to flowing fluid in regions of disturbed flow is independent of wall shear rates. The rate of mass transfer is significantly higher in regions of disturbed flow with a local maximum around the reattachment point where the wall shear rate is zero. The experimental study also revealed that the rate of mass transfer from the vessel wall to a flowing fluid is much higher in the presence of microspheres (as models of blood cells) in the flowing fluid and under the condition of pulsatile flow than in steady flow. These results imply that flow disturbance may enhance the transport of biochemicals and macromolecules, such as plasma proteins and lipoproteins synthesized within the blood vessel wall, from the blood vessel wall to flowing blood.

  19. Mass changes of Southern and Northern Inylchek Glacier, Central Tian Shan, Kyrgyzstan, during ∼1975 and 2007 derived from remote sensing data

    NASA Astrophysics Data System (ADS)

    Shangguan, D. H.; Bolch, T.; Ding, Y. J.; Kröhnert, M.; Pieczonka, T.; Wetzel, H. U.; Liu, S. Y.

    2015-04-01

    Glacier melt is an essential source of freshwater for the arid regions surrounding the Tian Shan. However, the knowledge about glacier volume and mass changes over the last decades is limited. In the present study, glacier area, glacier dynamics and mass changes are investigated for the period ~1975-2007 for Southern Inylchek Glacier (SIG) and Northern Inylchek Glacier (NIG), the largest glacier system in Central Tian Shan separated by the regularly draining Lake Merzbacher. The area of NIG increased by 2.0 ± 0.1 km2 (~1.3%) in the period ~1975-2007. In contrast, SIG has shrunk continuously in all investigated periods since ~1975. Velocities of SIG in the central part of the ablation region reached ~100-120 m a-1 in 2002/2003, which was slightly higher than the average velocity in 2010/2011. The central part of SIG flows mainly towards Lake Merzbacher rather than towards its terminus. The measured velocities at the distal part of the terminus downstream of Lake Merzbacher were below the uncertainty, indicating very low flow with even stagnant parts. Geodetic glacier mass balances have been calculated using multi-temporal digital elevation models from KH-9 Hexagon (representing the year 1975), SRTM3 (1999), ALOS PRISM (2006) and SPOT-5 high-resolution geometrical (HRG) data (2007). In general, a continuous mass loss for both SIG and NIG could be observed between ~1975 and 2007. SIG lost mass at a rate of 0.43 ± 0.10 m w.e. a-1 and NIG at a rate of 0.25 ± 0.10 m w.e. a-1 within the period ~1975-1999. For the period 1999-2007, the highest mass loss of 0.57 ± 0.46 m w.e. a-1 was found for NIG, whilst SIG showed a potential moderate mass loss of 0.28 ± 0.46 m w.e. a-1. Both glaciers showed a small retreat during this period. Between ~1975 and 1999, we identified a thickening at the front of NIG with a maximum surface elevation increase of about 150 m as a consequence of a surge event. In contrast significant thinning (>0.5 m a-1) and comparatively high velocities close to the dam of Lake Merzbacher were observed for SIG, indicating that Lake Merzbacher enhances glacier mass loss.

  20. An Investigation into Performance Modelling of a Small Gas Turbine Engine

    DTIC Science & Technology

    2012-10-01

    b = Combustor part load constant f = Fuel to mass flow ratio or scale factor h = Enthalpy F = Force P = Pressure T = Temperature W = Mass flow...HP engine performance parameters[5,6] Parameter Condition (ISA, SLS) Value Thrust 108000 rpm 230 N Pressure Ratio 108000 rpm 4 Mass Flow Rate...system. The reasons for removing the electric starter were to ensure uniform flow through the bell- mouth for mass flow rate measurement, eliminate a

  1. Development and evaluation of virtual refrigerant mass flow sensors for fault detection and diagnostics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Woohyun; Braun, J.

    Refrigerant mass flow rate is an important measurement for monitoring equipment performance and enabling fault detection and diagnostics. However, a traditional mass flow meter is expensive to purchase and install. A virtual refrigerant mass flow sensor (VRMF) uses a mathematical model to estimate flow rate using low-cost measurements and can potentially be implemented at low cost. This study evaluates three VRMFs for estimating refrigerant mass flow rate. The first model uses a compressor map that relates refrigerant flow rate to measurements of inlet and outlet pressure, and inlet temperature measurements. The second model uses an energy-balance method on the compressormore » that uses a compressor map for power consumption, which is relatively independent of compressor faults that influence mass flow rate. The third model is developed using an empirical correlation for an electronic expansion valve (EEV) based on an orifice equation. The three VRMFs are shown to work well in estimating refrigerant mass flow rate for various systems under fault-free conditions with less than 5% RMS error. Each of the three mass flow rate estimates can be utilized to diagnose and track the following faults: 1) loss of compressor performance, 2) fouled condenser or evaporator filter, 3) faulty expansion device, respectively. For example, a compressor refrigerant flow map model only provides an accurate estimation when the compressor operates normally. When a compressor is not delivering the expected flow due to a leaky suction or discharge valve or other internal fault, the energy-balance or EEV model can provide accurate flow estimates. In this paper, the flow differences provide an indication of loss of compressor performance and can be used for fault detection and diagnostics.« less

  2. Nitrogen regulation of transpiration controls mass-flow acquisition of nutrients

    PubMed Central

    Matimati, Ignatious

    2014-01-01

    Transpiration may enhance mass-flow of nutrients to roots, especially in low-nutrient soils or where the root system is not extensively developed. Previous work suggested that nitrogen (N) may regulate mass-flow of nutrients. Experiments were conducted to determine whether N regulates water fluxes, and whether this regulation has a functional role in controlling the mass-flow of nutrients to roots. Phaseolus vulgaris were grown in troughs designed to create an N availability gradient by restricting roots from intercepting a slow-release N source, which was placed at one of six distances behind a 25 μm mesh from which nutrients could move by diffusion or mass-flow (termed ‘mass-flow’ treatment). Control plants had the N source supplied directly to their root zone so that N was available through interception, mass-flow, and diffusion (termed ‘interception’ treatment). ‘Mass-flow’ plants closest to the N source exhibited 2.9-fold higher transpiration (E), 2.6-fold higher stomatal conductance (g s), 1.2-fold higher intercellular [CO2] (C i), and 3.4-fold lower water use efficiency than ‘interception’ plants, despite comparable values of photosynthetic rate (A). E, g s, and C i first increased and then decreased with increasing distance from the N source to values even lower than those of ‘interception’ plants. ‘Mass-flow’ plants accumulated phosphorus and potassium, and had maximum concentrations at 10mm from the N source. Overall, N availability regulated transpiration-driven mass-flow of nutrients from substrate zones that were inaccessible to roots. Thus when water is available, mass-flow may partially substitute for root density in providing access to nutrients without incurring the costs of root extension, although the efficacy of mass-flow also depends on soil nutrient retention and hydraulic properties. PMID:24231035

  3. Dissipation of hydrological tracers and the herbicide S-metolachlor in batch and continuous-flow wetlands.

    PubMed

    Maillard, Elodie; Lange, Jens; Schreiber, Steffi; Dollinger, Jeanne; Herbstritt, Barbara; Millet, Maurice; Imfeld, Gwenaël

    2016-02-01

    Pesticide dissipation in wetland systems with regard to hydrological conditions and operational modes is poorly known. Here, we investigated in artificial wetlands the impact of batch versus continuous-flow modes on the dissipation of the chiral herbicide S-metolachlor (S-MET) and hydrological tracers (bromide, uranine and sulforhodamine B). The wetlands received water contaminated with the commercial formulation Mercantor Gold(®) (960 g L(-1) of S-MET, 87% of the S-enantiomer). The tracer mass budget revealed that plant uptake, sorption, photo- and presumably biodegradation were prominent under batch mode (i.e. characterized by alternating oxic-anoxic conditions), in agreement with large dissipation of S-MET (90%) under batch mode. Degradation was the main dissipation pathway of S-MET in the wetlands. The degradate metolachlor oxanilic acid (MOXA) mainly formed under batch mode, whereas metolachlor ethanesulfonic acid (MESA) prevailed under continuous-flow mode, suggesting distinct degradation pathways in each wetland. R-enantiomer was preferentially degraded under batch mode, which indicated enantioselective biodegradation. The release of MESA and MOXA by the wetlands as well as the potential persistence of S-MET compared to R-MET under both oxic and anoxic conditions may be relevant for groundwater and ecotoxicological risk assessment. This study shows the effect of batch versus continuous modes on pollutant dissipation in wetlands, and that alternate biogeochemical conditions under batch mode enhance S-MET biodegradation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Relationships between lava and tephra volumes erupted during the 26 October 2013 lava fountaining episode from the New Southeast Crater of Etna

    NASA Astrophysics Data System (ADS)

    Andronico, Daniele; Behncke, Boris; Cristaldi, Antonio; De Beni, Emanuela; Lo Castro, Maria Deborah; Lopez, Manuela; Scollo, Simona

    2014-05-01

    Determining the volume of the various products of a volcanic eruption can be notoriously difficult, especially if the products encompass lava, distal tephra, and proximal pyroclastics mostly deposited on a growing volcanic cone. We evaluated, for the first time at Etna, the total masses and volumes of both lava flows and pyroclastic material emitted during the 26 October 2013 episode of lava fountaining at Etna's New Southeast Crater (NSEC), correlating them with mass eruption rate and total grain-size of the fallout deposit. The episode was heralded by Strombolian activity starting on early 25 October and gradually intensifying throughout the day, blending into a continuous lava fountain early on 26 October. An eruption column started to rise to ~4 km above Etna's summit before being bent toward WSW by the wind. Lava fountaining up to 500 m high continued until ~10:00 GMT, and then started to diminish significantly; by 13:00 GMT, the episode was over. 'A'¯a lava flows were emitted throughout the phase of lava fountaining, forming a three-lobed lava field toward south and a minor lava flow toward east. After the episode, we carried out field surveys to map both the fallout deposits and the lava flows. Distal tephra was deposited to at least 110 km distance from the vent and possibly beyond the south coast of Sicily. The dispersal area of the tephra deposit was quite narrow on the ground, the load per unit area declining very rapidly away from the main dispersal axis. In the very proximal area (~1.6 km from the NSEC), the fallout deposit formed a 3-cm thick bed of scoriaceous lapilli (peaked at -2 phi) amounting to 22.25 kg/m2. The tephra load dropped up to 0.4 kg/m2 in the town of Adrano (16 km), where we found a continuous, thin layer of medium-sized ash. Finally, the fallout consisted of fine ash (~99 % of clasts

  5. Evaluation of the effect of reactant gases mass flow rates on power density in a polymer electrolyte membrane fuel cell

    NASA Astrophysics Data System (ADS)

    Kahveci, E. E.; Taymaz, I.

    2018-03-01

    In this study it was experimentally investigated the effect of mass flow rates of reactant gases which is one of the most important operational parameters of polymer electrolyte membrane (PEM) fuel cell on power density. The channel type is serpentine and single PEM fuel cell has an active area of 25 cm2. Design-Expert 8.0 (trial version) was used with four variables to investigate the effect of variables on the response using. Cell temperature, hydrogen mass flow rate, oxygen mass flow rate and humidification temperature were selected as independent variables. In addition, the power density was used as response to determine the combined effects of these variables. It was kept constant cell and humidification temperatures while changing mass flow rates of reactant gases. From the results an increase occurred in power density with increasing the hydrogen flow rates. But oxygen flow rate does not have a significant effect on power density within determined mass flow rates.

  6. Comparison of secondary organic aerosol formed with an aerosol flow reactor and environmental reaction chambers: effect of oxidant concentration, exposure time and seed particles on chemical composition and yield

    NASA Astrophysics Data System (ADS)

    Lambe, A. T.; Chhabra, P. S.; Onasch, T. B.; Brune, W. H.; Hunter, J. F.; Kroll, J. H.; Cummings, M. J.; Brogan, J. F.; Parmar, Y.; Worsnop, D. R.; Kolb, C. E.; Davidovits, P.

    2014-12-01

    We performed a systematic intercomparison study of the chemistry and yields of SOA generated from OH oxidation of a common set of gas-phase precursors in a Potential Aerosol Mass (PAM) continuous flow reactor and several environmental chambers. In the flow reactor, SOA precursors were oxidized using OH concentrations ranging from 2.0×108 to 2.2×1010 molec cm-3 over exposure times of 100 s. In the environmental chambers, precursors were oxidized using OH concentrations ranging from 2×106 to 2×107 molec cm-3 over exposure times of several hours. The OH concentration in the chamber experiments is close to that found in the atmosphere, but the integrated OH exposure in the flow reactor can simulate atmospheric exposure times of multiple days compared to chamber exposure times of only a day or so. A linear correlation analysis of the mass spectra (m=0.91-0.92, r2=0.93-0.94) and carbon oxidation state (m=1.1, r2=0.58) of SOA produced in the flow reactor and environmental chambers for OH exposures of approximately 1011 molec cm-3 s suggests that the composition of SOA produced in the flow reactor and chambers is the same within experimental accuracy as measured with an aerosol mass spectrometer. This similarity in turn suggests that both in the flow reactor and in chambers, SOA chemical composition at low OH exposure is governed primarily by gas-phase OH oxidation of the precursors, rather than heterogeneous oxidation of the condensed particles. In general, SOA yields measured in the flow reactor are lower than measured in chambers for the range of equivalent OH exposures that can be measured in both the flow reactor and chambers. The influence of sulfate seed particles on isoprene SOA yield measurements was examined in the flow reactor. The studies show that seed particles increase the yield of SOA produced in flow reactors by a factor of 3 to 5 and may also account in part for higher SOA yields obtained in the chambers, where seed particles are routinely used.

  7. Simultaneous moisture content and mass flow measurements in wood chip flows using coupled dielectric and impact sensors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pan, Pengmin; McDonald, Timothy; Fulton, John

    An 8-electrode capacitance tomography (ECT) sensor was built and used to measure moisture content (MC) and mass flow of pine chip flows. The device was capable of directly measuring total water quantity in a sample but was sensitive to both dry matter and moisture, and therefore required a second measurement of mass flow to calculate MC. Two means of calculating the mass flow were used: the first being an impact sensor to measure total mass flow, and the second a volumetric approach based on measuring total area occupied by wood in images generated using the capacitance sensor’s tomographic mode. Testsmore » were made on 109 groups of wood chips ranging in moisture content from 14% to 120% (dry basis) and wet weight of 280 to 1100 g. Sixty groups were randomly selected as a calibration set, and the remaining were used for validation of the sensor’s performance. For the combined capacitance/force transducer system, root mean square errors of prediction (RMSEP) for wet mass flow and moisture content were 13.42% and 16.61%, respectively. RMSEP using the combined volumetric mass flow/capacitance sensor for dry mass flow and moisture content were 22.89% and 24.16%, respectively. Either of the approaches was concluded to be feasible for prediction of moisture content in pine chip flows, but combining the impact and capacitance sensors was easier to implement. As a result, in situations where flows could not be impeded, however, the tomographic approach would likely be more useful.« less

  8. Simultaneous moisture content and mass flow measurements in wood chip flows using coupled dielectric and impact sensors

    DOE PAGES

    Pan, Pengmin; McDonald, Timothy; Fulton, John; ...

    2016-12-23

    An 8-electrode capacitance tomography (ECT) sensor was built and used to measure moisture content (MC) and mass flow of pine chip flows. The device was capable of directly measuring total water quantity in a sample but was sensitive to both dry matter and moisture, and therefore required a second measurement of mass flow to calculate MC. Two means of calculating the mass flow were used: the first being an impact sensor to measure total mass flow, and the second a volumetric approach based on measuring total area occupied by wood in images generated using the capacitance sensor’s tomographic mode. Testsmore » were made on 109 groups of wood chips ranging in moisture content from 14% to 120% (dry basis) and wet weight of 280 to 1100 g. Sixty groups were randomly selected as a calibration set, and the remaining were used for validation of the sensor’s performance. For the combined capacitance/force transducer system, root mean square errors of prediction (RMSEP) for wet mass flow and moisture content were 13.42% and 16.61%, respectively. RMSEP using the combined volumetric mass flow/capacitance sensor for dry mass flow and moisture content were 22.89% and 24.16%, respectively. Either of the approaches was concluded to be feasible for prediction of moisture content in pine chip flows, but combining the impact and capacitance sensors was easier to implement. As a result, in situations where flows could not be impeded, however, the tomographic approach would likely be more useful.« less

  9. Simultaneous Moisture Content and Mass Flow Measurements in Wood Chip Flows Using Coupled Dielectric and Impact Sensors

    PubMed Central

    Pan, Pengmin; McDonald, Timothy; Fulton, John; Via, Brian; Hung, John

    2016-01-01

    An 8-electrode capacitance tomography (ECT) sensor was built and used to measure moisture content (MC) and mass flow of pine chip flows. The device was capable of directly measuring total water quantity in a sample but was sensitive to both dry matter and moisture, and therefore required a second measurement of mass flow to calculate MC. Two means of calculating the mass flow were used: the first being an impact sensor to measure total mass flow, and the second a volumetric approach based on measuring total area occupied by wood in images generated using the capacitance sensor’s tomographic mode. Tests were made on 109 groups of wood chips ranging in moisture content from 14% to 120% (dry basis) and wet weight of 280 to 1100 g. Sixty groups were randomly selected as a calibration set, and the remaining were used for validation of the sensor’s performance. For the combined capacitance/force transducer system, root mean square errors of prediction (RMSEP) for wet mass flow and moisture content were 13.42% and 16.61%, respectively. RMSEP using the combined volumetric mass flow/capacitance sensor for dry mass flow and moisture content were 22.89% and 24.16%, respectively. Either of the approaches was concluded to be feasible for prediction of moisture content in pine chip flows, but combining the impact and capacitance sensors was easier to implement. In situations where flows could not be impeded, however, the tomographic approach would likely be more useful. PMID:28025536

  10. StimuFrac Compressibility as a Function of CO2 Molar Fraction

    DOE Data Explorer

    Carlos A. Fernandez

    2016-04-29

    Compressibility values were obtained in a range of pressures at 250degC by employing a fixed volume view cell completely filled with PAA aqueous solution and injecting CO2 at constant flow rate (0.3mL/min). Pressure increase as a function of supercritical CO2 (scCO2) mass fraction in the mixture was monitored. The plot shows the apparent compressibility of Stimufrac as a function of scCO2 mass fraction obtained in a pressure range between 2100-7000 psi at 250degC. At small mass fractions of scCO2 the compressibility increases probably due to the dissolution/reaction of CO2 in aqueous PAA and reaches a maximum at mCO2/mH2O = 0.06. Then, compressibility decreases showing a linear relationship with scCO2 mass fraction due to the continuous increase in density of the binary fluid associated to the pressure increase.

  11. A theoretical study of the acoustic impedance of orifices in the presence of a steady grazing flow

    NASA Technical Reports Server (NTRS)

    Rice, E. J.

    1976-01-01

    An analysis of the oscillatory fluid flow in the vicinity of a circular orifice with a steady grazing flow is presented. The study is similar to that of Hersh and Rogers but with the addition of the grazing flow. Starting from the momentum and continuity equations, a considerably simplified system of partial differential equations is developed with the assumption that the flow can be described by an oscillatory motion superimposed upon the known steady flow. The equations are seen to be linear in the region where the grazing flow effects are dominant, and a solution and the resulting orifice impedance are presented for this region. The nonlinearity appears to be unimportant for the usual conditions found in aircraft noise suppressors. Some preliminary conclusions of the study are that orifice resistance is directly proportional to grazing flow velocity (known previously from experimental data) and that the orifice inductive (mass reactance) end correction is not a function of grazing flow. This latter conclusion is contrary to the widely held notion that grazing flow removes the effect of the orifice inductive end correction. This conclusion also implies that the experimentally observed total inductance reduction with grazing flow might be in the flow within the orifice rather than in the end correction.

  12. Computational simulation of laboratory-scale volcanic jets

    NASA Astrophysics Data System (ADS)

    Solovitz, S.; Van Eaton, A. R.; Mastin, L. G.; Herzog, M.

    2017-12-01

    Volcanic eruptions produce ash clouds that may travel great distances, significantly impacting aviation and communities downwind. Atmospheric hazard forecasting relies partly on numerical models of the flow physics, which incorporate data from eruption observations and analogue laboratory tests. As numerical tools continue to increase in complexity, they must be validated to fine-tune their effectiveness. Since eruptions are relatively infrequent and challenging to observe in great detail, analogue experiments can provide important insights into expected behavior over a wide range of input conditions. Unfortunately, laboratory-scale jets cannot easily attain the high Reynolds numbers ( 109) of natural volcanic eruption columns. Comparisons between the computational models and analogue experiments can help bridge this gap. In this study, we investigate a 3-D volcanic plume model, the Active Tracer High-resolution Atmospheric Model (ATHAM), which has been used to simulate a variety of eruptions. However, it has not been previously validated using laboratory-scale data. We conducted numerical simulations of three flows that we have studied in the laboratory: a vertical jet in a quiescent environment, a vertical jet in horizontal cross flow, and a particle-laden jet. We considered Reynolds numbers from 10,000 to 50,000, jet-to-cross flow velocity ratios of 2 to 10, and particle mass loadings of up to 25% of the exit mass flow rate. Vertical jet simulations produce Gaussian velocity profiles in the near exit region by 3 diameters downstream, matching the mean experimental profiles. Simulations of air entrainment are of the correct order of magnitude, but they show decreasing entrainment with vertical distance from the vent. Cross flow simulations reproduce experimental trajectories for the jet centerline initially, although confinement appears to impact the response later. Particle-laden simulations display minimal variation in concentration profiles between cases with different mass loadings and size distributions, indicating that differences in particle behavior may not be evident at this laboratory scale.

  13. Moving beyond the limits of mass transport in liquid absorbent microfilms through the implementation of surface-induced vortices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bigham, S; Yu, DZ; Chugh, D

    2014-02-01

    The slow diffusion of an absorbate molecule into an absorbent often makes the absorption process a rate-limiting step in many applications. In cases involving an absorbate with a high heat of phase change, such as water absorption into a LiBr (lithium bromide) solution, the absorption rate is further slowed due to significant heating of the absorbent. Recently, it has been demonstrated that constraining a LiBr solution film by a hydrophobic porous structure enables manipulation of the solution flow thermohydraulic characteristics. Here, it is shown that mass transport mode in a constrained laminar solution flow can be changed from diffusive tomore » advective. This change in mode is accomplished through stretching and folding the laminar streamlines within the solution film via the implementation of micro-scale features on the flow channel surface. The process induces vortices within the solution film, which continuously bring concentrated solution from the bottom and middle of the solution channel to its interface with the vapor phase, thus leading to a significant enhancement in the absorption rate. The detailed physics of the involved transport processes is elucidated using the LBM (Lattice Boltzmann Method). Published by Elsevier Ltd.« less

  14. 40 CFR 63.605 - Monitoring requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... the mass flow of phosphorus-bearing feed material to the process. The monitoring system shall have an... either the mass flow of phosphorus-bearing feed material to the dryer or calciner, or the mass flow of... total mass rate in metric ton/hour of phosphorus bearing feed using a monitoring system for measuring...

  15. 40 CFR 63.605 - Monitoring requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... the mass flow of phosphorus-bearing feed material to the process. The monitoring system shall have an... either the mass flow of phosphorus-bearing feed material to the dryer or calciner, or the mass flow of... total mass rate in metric ton/hour of phosphorus bearing feed using a monitoring system for measuring...

  16. Response of Jupiter's Aurora to Plasma Mass Loading Rate Monitored by the Hisaki Satellite During Io's Volcanic Event

    NASA Astrophysics Data System (ADS)

    Kimura, T.; Yoshioka, K.; Tsuchiya, F.; Hiraki, Y.; Tao, C.; Murakami, G.; Yamazaki, A.; Fujimoto, M.; Badman, S. V.; Delamere, P. A.; Bagenal, F.

    2016-12-01

    Plasma production and transfer processes in the planetary and stellar magnetospheres are essential for understanding the space environments around the celestial bodies. It is hypothesized that the mass of plasma loaded from Io's volcano to Jupiter's rotating magnetosphere is recurrently ejected as blobs from the distant tail region of the magnetosphere. The plasma ejections are possibly triggered by the magnetic reconnections, which are followed by the particle energization, bursty planetward plasma flow, and resultant auroral emissions. They are referred to as the 'energetic events'. However, there has been no evidence that the plasma mass loading actually causes the energetic events because of lack of the simultaneous observation of them. This study presents that the recurrent transient auroras, which are possibly representative for the energetic events, are closely associated with the mass loading. Continuous monitoring of the aurora and Io plasma torus indicates onset of the recurrent auroras when accumulation of the loaded plasma mass reaches the canonical total mass of the magnetosphere. This onset condition implies that the fully filled magnetosphere overflows the plasma mass accompanying the energetic events.

  17. Method and apparatus for measuring the mass flow rate of a fluid

    DOEpatents

    Evans, Robert P.; Wilkins, S. Curtis; Goodrich, Lorenzo D.; Blotter, Jonathan D.

    2002-01-01

    A non invasive method and apparatus is provided to measure the mass flow rate of a multi-phase fluid. An accelerometer is attached to a pipe carrying a multi-phase fluid. Flow related measurements in pipes are sensitive to random velocity fluctuations whose magnitude is proportional to the mean mass flow rate. An analysis of the signal produced by the accelerometer shows a relationship between the mass flow of a fluid and the noise component of the signal of an accelerometer. The noise signal, as defined by the standard deviation of the accelerometer signal allows the method and apparatus of the present invention to non-intrusively measure the mass flow rate of a multi-phase fluid.

  18. Nanospray mass spectrometry with indirect conductive graphite coating.

    PubMed

    Viberg, Peter; Nilsson, Staffan; Skog, Kerstin

    2004-07-15

    An easy and cost-effective method to manufacture a robust conductive graphite coating for nanospray mass spectrometry (nESI-MS) and capillary electrophoresis (CE)-nESI-MS is described. The method involves graphite coating of a tube sleeve, into which the nESI emitter is inserted and connected to a transfer capillary, instead of coating the actual emitter. The coating, made of graphite from a pencil and epoxy glue, was stable over long periods of use (>80 h) and showed excellent resistance toward various solvents. Stable electrospray was achieved in the investigated flow range (150-900 nL x min(-)(1)), and salbutamol, diphenhydramine, and nortriptyline (M(w): 239-263 g x mol(-)(1)) were detected in the nanomole per liter range during continuous pumping. CE-nESI-MS analysis gave excellent signal-to-noise ratios for 100-fmol injections. The technique allows simple exchange of the nESI emitter to suit a specific flow rate, and it minimizes risk of corona discharge.

  19. Reactivation of dead sulfide species in lithium polysulfide flow battery for grid scale energy storage

    DOE PAGES

    Jin, Yang; Zhou, Guangmin; Shi, Feifei; ...

    2017-09-06

    Lithium polysulfide batteries possess several favorable attributes including low cost and high energy density for grid energy storage. However, the precipitation of insoluble and irreversible sulfide species on the surface of carbon and lithium (called “dead” sulfide species) leads to continuous capacity degradation in high mass loading cells, which represents a great challenge. To address this problem, herein we propose a strategy to reactivate dead sulfide species by reacting them with sulfur powder with stirring and heating (70 °C) to recover the cell capacity, and further demonstrate a flow battery system based on the reactivation approach. As a result, ultrahighmore » mass loading (0.125 g cm –3, 2g sulfur in a single cell), high volumetric energy density (135 Wh L –1), good cycle life, and high single-cell capacity are achieved. The high volumetric energy density indicates its promising application for future grid energy storage.« less

  20. Breakthrough Adsorption Study of Crude Oil Removal Using Buffing Dust

    NASA Astrophysics Data System (ADS)

    Setyaningsih, L. W. N.; Yuliansyah, A. T.; Prasetyo, A.; Arimanintan, S. K.; Putri, D. R.

    2018-05-01

    The utilization of leather industry solid waste as adsorbent to separate oil from water emulsions of surfactant flooding process is a solution that is relatively inexpensive. This study was conducted aiming to obtain a mathematical model that is appropriate for the adsorption process of crude oil by buffing dust in emulsion phase with a continuous adsorption method. Variations in the column adsorption experiments were carried out, such as: flow rate of feed of water-crude oil-surfactant, the concentration of crude oil in the feed, and mass of adsorbent used. Data were evaluated using three models: Adams Bohart, Thomas and Yan. Best results are obtained on the following conditions, the feed flow rate of 60 mL/minute, the crude oil concentration in feed is 1.5% volume and the mass of adsorbent used was 10 g. The values of kinetic constant and adsorption capacity obtained from Yan Model was 21.7774 mL/mg/minute and 220.9581 mg/g with the relative error obtained is 5.4424%.

  1. Reactivation of dead sulfide species in lithium polysulfide flow battery for grid scale energy storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin, Yang; Zhou, Guangmin; Shi, Feifei

    Lithium polysulfide batteries possess several favorable attributes including low cost and high energy density for grid energy storage. However, the precipitation of insoluble and irreversible sulfide species on the surface of carbon and lithium (called “dead” sulfide species) leads to continuous capacity degradation in high mass loading cells, which represents a great challenge. To address this problem, herein we propose a strategy to reactivate dead sulfide species by reacting them with sulfur powder with stirring and heating (70 °C) to recover the cell capacity, and further demonstrate a flow battery system based on the reactivation approach. As a result, ultrahighmore » mass loading (0.125 g cm –3, 2g sulfur in a single cell), high volumetric energy density (135 Wh L –1), good cycle life, and high single-cell capacity are achieved. The high volumetric energy density indicates its promising application for future grid energy storage.« less

  2. Review: Current applications and challenges for liquid chromatography coupled to isotope ratio mass spectrometry (LC/IRMS).

    PubMed

    Godin, Jean-Philippe; McCullagh, James S O

    2011-10-30

    High-precision isotope analysis is recognized as an essential research tool in many fields of study. Until recently, continuous flow isotope ratio mass spectrometry (CF-IRMS) was available via an elemental analyzer or a gas chromatography inlet system for compound-specific analysis of light stable isotopes. In 2004, however, an interface that coupled liquid chromatography with IRMS (LC/IRMS) became commercially available for the first time. This brought the capability for new areas of application, in particular enabling compound-specific δ(13)C analysis of non-volatile, aqueous soluble, compounds from complex mixtures. The interface design brought with it several analytical constraints, however, in particular a lack of compatibility with certain types of chromatography as well as limited flow rates and mobile phase compositions. Routine LC/IRMS methods have, however, been established for measuring the δ(13)C isotopic ratios of underivatized individual compounds for application in archeology, nutrition and physiology, geochemistry, hydrology, soil science and food authenticity. Seven years after its introduction, we review the technical advances and constraints, methodological developments and new applications of liquid chromatography coupled to isotope ratio mass spectrometry. Copyright © 2011 John Wiley & Sons, Ltd.

  3. Use of Interrupted Helium Flow in the Analysis of Vapor Samples with Flowing Atmospheric-Pressure Afterglow-Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Storey, Andrew P.; Zeiri, Offer M.; Ray, Steven J.; Hieftje, Gary M.

    2017-02-01

    The flowing atmospheric-pressure afterglow (FAPA) source was used for the mass-spectrometric analysis of vapor samples introduced between the source and mass spectrometer inlet. Through interrupted operation of the plasma-supporting helium flow, helium consumption is greatly reduced and dynamic gas behavior occurs that was characterized by schlieren imaging. Moreover, mass spectra acquired immediately after the onset of helium flow exhibit a signal spike before declining and ultimately reaching a steady level. This initial signal appears to be due to greater interaction of sample vapor with the afterglow of the source when helium flow resumes. In part, the initial spike in signal can be attributed to a pooling of analyte vapor in the absence of helium flow from the source. Time-resolved schlieren imaging of the helium flow during on and off cycles provided insight into gas-flow patterns between the FAPA source and the MS inlet that were correlated with mass-spectral data.

  4. Use of Interrupted Helium Flow in the Analysis of Vapor Samples with Flowing Atmospheric-Pressure Afterglow-Mass Spectrometry.

    PubMed

    Storey, Andrew P; Zeiri, Offer M; Ray, Steven J; Hieftje, Gary M

    2017-02-01

    The flowing atmospheric-pressure afterglow (FAPA) source was used for the mass-spectrometric analysis of vapor samples introduced between the source and mass spectrometer inlet. Through interrupted operation of the plasma-supporting helium flow, helium consumption is greatly reduced and dynamic gas behavior occurs that was characterized by schlieren imaging. Moreover, mass spectra acquired immediately after the onset of helium flow exhibit a signal spike before declining and ultimately reaching a steady level. This initial signal appears to be due to greater interaction of sample vapor with the afterglow of the source when helium flow resumes. In part, the initial spike in signal can be attributed to a pooling of analyte vapor in the absence of helium flow from the source. Time-resolved schlieren imaging of the helium flow during on and off cycles provided insight into gas-flow patterns between the FAPA source and the MS inlet that were correlated with mass-spectral data. Graphical Abstract ᅟ.

  5. Effect of irrigation regimes on mobilization of nonreactive tracers and dissolved and particulate phosphorus in slurry-injected soils

    NASA Astrophysics Data System (ADS)

    GlæSner, Nadia; Kjaergaard, Charlotte; RubæK, Gitte H.; Magid, Jakob

    2011-12-01

    Understanding the mobilization processes of phosphorus (P) in the plow layer are essential to quantify potential P losses and suggest management strategies to reduce P losses. This study is aimed at examining nonequilibrium exchange dynamics on the mobilization of slurry-amended Br-, and dissolved and particulate P in slurry-injected soils. We compared leaching from intact soil columns (20 cm diam., 20 cm high) under unsaturated flow (suction at the lower boundary of 5 hPa) subjected to continuous irrigation at 2 mm hr-1, and intermittent irrigation at 2 mm hr-1 and 10 mm hr-1 to with interruptions of 10 h duration simulate periodic precipitation events. Suction was increased to 20 hPa during interruptions to allow drainage of the largest pores. Irrigation interruptions induced fluctuations in leaching of nonreactive tracers, particles, and particulate P indicating nonequilibrium transport. A nonreactive tracer, 3H2O, applied with irrigation water, diffused from mobile to less mobile pore regions during interruptions, leading to a lower mass recovery during low-intermittent (76.4%) compared with continuous irrigation (86.6%). In contrast, mass recovery of slurry-injected Br- increased as Br- diffused from less mobile to mobile pore regions during low-intermittent (53%-64%) compared with continuous irrigation (42%-47%). Despite high fluctuations during the leaching of particles and particulate P during low-intermittent irrigation, accumulated values did not differ from continuous irrigation. Increased preferential flow during high-intermittent irrigation lowered the mass exchange between pore regions of nonreactive tracers, particles, and particulate P compared with low-intermittent irrigation. The leaching of dissolved inorganic and organic P was low during all of the experiments and scarcely affected by the irrigation regime. These results highlight that nonequilibrium exchange dynamics are important when evaluating processes affecting mobilization and transport in structured soils. Leaching experiments, including cycles of irrigation interruptions and gravitational drainage, thus, adds significantly to the understanding and interpretation of processes affecting mobilization and transport under natural conditions.

  6. Effect of oxidant concentration, exposure time, and seed particles on secondary organic aerosol chemical composition and yield

    NASA Astrophysics Data System (ADS)

    Lambe, A. T.; Chhabra, P. S.; Onasch, T. B.; Brune, W. H.; Hunter, J. F.; Kroll, J. H.; Cummings, M. J.; Brogan, J. F.; Parmar, Y.; Worsnop, D. R.; Kolb, C. E.; Davidovits, P.

    2015-03-01

    We performed a systematic intercomparison study of the chemistry and yields of secondary organic aerosol (SOA) generated from OH oxidation of a common set of gas-phase precursors in a Potential Aerosol Mass (PAM) continuous flow reactor and several environmental chambers. In the flow reactor, SOA precursors were oxidized using OH concentrations ranging from 2.0 × 108 to 2.2 × 1010 molec cm-3 over exposure times of 100 s. In the environmental chambers, precursors were oxidized using OH concentrations ranging from 2 × 106 to 2 × 107 molec cm-3 over exposure times of several hours. The OH concentration in the chamber experiments is close to that found in the atmosphere, but the integrated OH exposure in the flow reactor can simulate atmospheric exposure times of multiple days compared to chamber exposure times of only a day or so. In most cases, for a specific SOA type the most-oxidized chamber SOA and the least-oxidized flow reactor SOA have similar mass spectra, oxygen-to-carbon and hydrogen-to-carbon ratios, and carbon oxidation states at integrated OH exposures between approximately 1 × 1011 and 2 × 1011 molec cm-3 s, or about 1-2 days of equivalent atmospheric oxidation. This observation suggests that in the range of available OH exposure overlap for the flow reactor and chambers, SOA elemental composition as measured by an aerosol mass spectrometer is similar whether the precursor is exposed to low OH concentrations over long exposure times or high OH concentrations over short exposure times. This similarity in turn suggests that both in the flow reactor and in chambers, SOA chemical composition at low OH exposure is governed primarily by gas-phase OH oxidation of the precursors rather than heterogeneous oxidation of the condensed particles. In general, SOA yields measured in the flow reactor are lower than measured in chambers for the range of equivalent OH exposures that can be measured in both the flow reactor and chambers. The influence of sulfate seed particles on isoprene SOA yield measurements was examined in the flow reactor. The studies show that seed particles increase the yield of SOA produced in flow reactors by a factor of 3 to 5 and may also account in part for higher SOA yields obtained in the chambers, where seed particles are routinely used.

  7. 40 CFR 98.423 - Calculating CO2 supply.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) Calculate the annual mass of CO2 captured, extracted, imported, or exported through each flow meter in... flow meters are used, you shall calculate the annual mass of CO2 for all flow meters according to the procedures specified in paragraph (a)(3) of this section. (1) For each mass flow meter, you shall calculate...

  8. Mass, momentum and energy flow from an MPD accelerator. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Cory, J. S.

    1971-01-01

    The mass, momentum, and energy flows are measured over a current range of 8 to 50 kA and inlet mass flows of 2 to 36q/sec of argon. The momentum flux profile indicates that the accelerator produces a uniform, 2-inch diameter axial jet at the anode which expands into a Gaussian profile at an axial station 11 inches from the anode. The electromagnetic component of the thrust is found to follow the familiar quadratic dependence on arc current, while a more complex empirical relation is needed to correlate the gasdynamic contribution with the current and mass flow rate. Using available time-of-flight velocity profiles at a current of 16 kA and a mass flow of 5.9 g/sec, calculated flux profiles of mass and kinetic energy exhibit a tendency for some fraction of the inlet mass flow to leak out at a low velocity around the central high velocity core.

  9. The effect of mass loading on the temperature of a flowing plasma. [in vicinity of Io

    NASA Technical Reports Server (NTRS)

    Linker, Jon A.; Kivelson, Margaret G.; Walker, Raymond J.

    1989-01-01

    How the addition of ions at rest (mass loading) affects the temperature of a flowing plasma in a MHD approximation is investigated, using analytic theory and time dependent, three-dimensional MHD simulations of plasma flow past Io. The MHD equations show that the temperature can increase or decrease relative to the background, depending on the local sonic Mach number M(S), of the flow. For flows with M(S) of greater than sq rt 9/5 (when gamma = 5/3), mass loading increases the plasma temperature. However, the simulations show a nonlinear response to the addition of mass. If the mass loading rate is large enough, the temperature increase may be smaller than expected, or the temperature may actually decrease, because a large mass loading rate slows the flow and decreases the thermal energy of the newly created plasma.

  10. Dense Pyroclastic Flows of the 16 -17 August 2006 Eruption of Tungurahua Volcano, Ecuador

    NASA Astrophysics Data System (ADS)

    Hall, M. L.; Mothes, P. A.; Ramon, P.; Arellano, S.; Barba, D.; Palacios, P.

    2007-05-01

    The 16-17 August 2006 eruption of Tungurahua volcano in central Ecuador was preceded by 7 years of threatening activity and finally a VEI=2 eruption on 14-15 July 2006. The larger August eruption witnessed tens of pyroclastic flows that descended 17 different channels up to 8.5 km to the volcano's base on the NW, N, W, and SW sides. Tungurahua (5023m) is a steep-sided, low SiO2 andesitic volcano with 2600 to 3200m of relief. The initial, small nuee ardentes began around 1700hr (local time), the larger flows occurred between 2147hr and 0100hr (17 Aug.), and a total of 31 events were indicated by seismic signals. The deposits of three distinct flow cycles are recognized at the NW base of the cone. On the Los Pajaros depositional fan, deposits of flows 1 and 2 are widespread laterally (<600m) and have low-aspect morphologies with low snouts and without levees. Their outer surfaces are covered with accessory > juvenile clasts that mainly range from 15 to 25cm in diameter, conversely their interiors are comprised of 40-42% clasts of 1-25cm size and a matrix (58-60%) of sand-size grains. The earlier flow 1 was accompanied by an ash cloud surge that leveled, but did not scorch, all trees, brush, even metal antenna posts, leaving a 1-10cm thick sandy ash layer upon flow 1's deposit. On the fan as well as in gullies on the upper flanks, flow 3 deposits form long narrow lobes with 1-2m high frontal snouts that are followed by empty flow channels, 5-15m wide, bounded by parallel levees 1-1.5m high. Within these channels subsequent flow lobes are found as remnant pulses. Unlike flows 1 and 2, flow 3 lobes are covered with 0.5-3m cauliflower-shaped, slightly vesiculated bombs that are rarely abraded; the deposit's interior has a 45% sandy matrix. During the climatic eruptive phase continuous lava fountaining, 500-700m high, and crater spilling likely fed a continual stream of fragmented lava onto the cone's upper steep flanks, from which dense pyroclastic mass flows were initiated by gravity. Flows 1 and 2 were more fluidized (due to entrained air and fines), faster, and had wider lateral extents. Flow 3 was poorly fluidized, highly channelized, and behaved more like an inertial granular flow that formed as a continuous avalanche stream that separated into consecutive pulses along the runout channel.

  11. Nucleation and growth constraints and outcome in the natural gas hydrate system

    NASA Astrophysics Data System (ADS)

    Osegovic, J. P.; Max, M. D.

    2016-12-01

    Hydrate formation processes are functions of energy distribution constrained by physical and kinetic parameters. The generation of energy and energy derivative plots of a constrained growth crucible are used to demonstrate nucleation probability zones (phase origin(s)). Nucleation sets the stage for growth by further constraining the pathways through changes in heat capacity, heat flow coefficient, and enthalpy which in turn modify the mass and energy flow into the hydrate formation region. Nucleation events result from the accumulation of materials and energy relative to pressure, temperature, and composition. Nucleation induction is predictive (a frequency parameter) rather than directly dependent on time. Growth, as mass tranfer into a new phase, adds time as a direct parameter. Growth has direct feedback on phase transfer, energy dynamics, and mass export/import rates. Many studies have shown that hydrate growth is largely an equilibrium process controlled by either mass or energy flows. Subtle changes in the overall energy distribution shift the equilibrium in a predictable fashion. We will demonstrate the localization of hydrate nucleation in a reservoir followed by likely evolution of growth in a capped, sand filled environment. The gas hydrate stability zone (GHSZ) can be characterized as a semi-batch crystallizer in which nucleation and growth of natural gas hydrate (NGH) is a continuous process that may result in very large concentrations of NGH. Gas flux, or the relative concentration of hydrate-forming gas is the critical factor in a GHSZ. In an open groundwater system in which flow rate exceeds diffusion transport rate, dissolved natural gas is transported into and through the GHSZ. In a closed system, such as a geological trap, diffusion of hydrate-forming gas from a free gas zone below the GHSZ is the primary mechanism for movement of gas reactants. Because of the lower molecular weight of methane, where diffusion is the principal transport mechanism, the natural system can be a purification process for formation of increasingly pure NGH from a mixed gas solution over time.

  12. Mechanistic modeling study on process optimization and precursor utilization with atmospheric spatial atomic layer deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deng, Zhang; He, Wenjie; Duan, Chenlong

    2016-01-15

    Spatial atomic layer deposition (SALD) is a promising technology with the aim of combining the advantages of excellent uniformity and conformity of temporal atomic layer deposition (ALD), and an industrial scalable and continuous process. In this manuscript, an experimental and numerical combined model of atmospheric SALD system is presented. To establish the connection between the process parameters and the growth efficiency, a quantitative model on reactant isolation, throughput, and precursor utilization is performed based on the separation gas flow rate, carrier gas flow rate, and precursor mass fraction. The simulation results based on this model show an inverse relation betweenmore » the precursor usage and the carrier gas flow rate. With the constant carrier gas flow, the relationship of precursor usage and precursor mass fraction follows monotonic function. The precursor concentration, regardless of gas velocity, is the determinant factor of the minimal residual time. The narrow gap between precursor injecting heads and the substrate surface in general SALD system leads to a low Péclet number. In this situation, the gas diffusion act as a leading role in the precursor transport in the small gap rather than the convection. Fluid kinetics from the numerical model is independent of the specific structure, which is instructive for the SALD geometry design as well as its process optimization.« less

  13. Heat-flow properties of systems with alternate masses or alternate on-site potentials.

    PubMed

    Pereira, Emmanuel; Santana, Leonardo M; Ávila, Ricardo

    2011-07-01

    We address a central issue of phononics: the search of properties or mechanisms to manage the heat flow in reliable materials. We analytically study standard and simple systems modeling the heat flow in solids, namely, the harmonic, self-consistent harmonic and also anharmonic chains of oscillators, and we show an interesting insulating effect: While in the homogeneous models the heat flow decays as the inverse of the particle mass, in the chain with alternate masses it decays as the inverse of the square of the mass difference, that is, it decays essentially as the mass ratio (between the smaller and the larger one) for a large mass difference. A similar effect holds if we alternate on-site potentials instead of particle masses. The existence of such behavior in these different systems, including anharmonic models, indicates that it is a ubiquitous phenomenon with applications in the heat flow control.

  14. Boundary-Layer-Ingesting Inlet Flow Control

    NASA Technical Reports Server (NTRS)

    Owens, Lewis R.; Allan, Brian G.; Gorton, Susan A.

    2006-01-01

    This paper gives an overview of a research study conducted in support of the small-scale demonstration of an active flow control system for a boundary-layer-ingesting (BLI) inlet. The effectiveness of active flow control in reducing engine inlet circumferential distortion was assessed using a 2.5% scale model of a 35% boundary-layer-ingesting flush-mounted, offset, diffusing inlet. This experiment was conducted in the NASA Langley 0.3-meter Transonic Cryogenic Tunnel at flight Mach numbers with a model inlet specifically designed for this type of testing. High mass flow actuators controlled the flow through distributed control jets providing the active flow control. A vortex generator point design configuration was also tested for comparison purposes and to provide a means to examine a hybrid vortex generator and control jets configuration. Measurements were made of the onset boundary layer, the duct surface static pressures, and the mass flow through the duct and the actuators. The distortion and pressure recovery were determined by 40 total pressure measurements on 8 rake arms each separated by 45 degrees and were located at the aerodynamic interface plane. The test matrix was limited to a maximum free-stream Mach number of 0.85 with scaled mass flows through the inlet for that condition. The data show that the flow control jets alone can reduce circumferential distortion (DPCP(sub avg)) from 0.055 to about 0.015 using about 2.5% of inlet mass flow. The vortex generators also reduced the circumferential distortion from 0.055 to 0.010 near the inlet mass flow design point. Lower inlet mass flow settings with the vortex generator configuration produced higher distortion levels that were reduced to acceptable levels using a hybrid vortex generator/control jets configuration that required less than 1% of the inlet mass flow.

  15. Boundary-Layer-Ingesting Inlet Flow Control

    NASA Technical Reports Server (NTRS)

    Owens, Lewis R.; Allan, Brian G.; Gorton, Susan A.

    2006-01-01

    This paper gives an overview of a research study conducted in support of the small-scale demonstration of an active flow control system for a boundary-layer-ingesting (BLI) inlet. The effectiveness of active flow control in reducing engine inlet circumferential distortion was assessed using a 2.5% scale model of a 35% boundary-layer-ingesting flush-mounted, offset, diffusing inlet. This experiment was conducted in the NASA Langley 0.3-meter Transonic Cryogenic Tunnel at flight Mach numbers with a model inlet specifically designed for this type of testing. High mass flow actuators controlled the flow through distributed control jets providing the active flow control. A vortex generator point design configuration was also tested for comparison purposes and to provide a means to examine a hybrid vortex generator and control jets configuration. Measurements were made of the onset boundary layer, the duct surface static pressures, and the mass flow through the duct and the actuators. The distortion and pressure recovery were determined by 40 total pressure measurements on 8 rake arms each separated by 45 degrees and were located at the aerodynamic interface plane. The test matrix was limited to a maximum free-stream Mach number of 0.85 with scaled mass flows through the inlet for that condition. The data show that the flow control jets alone can reduce circumferential distortion (DPCPavg) from 0.055 to about 0.015 using about 2.5% of inlet mass flow. The vortex generators also reduced the circumferential distortion from 0.055 to 0.010 near the inlet mass flow design point. Lower inlet mass flow settings with the vortex generator configuration produced higher distortion levels that were reduced to acceptable levels using a hybrid vortex generator/control jets configuration that required less than 1% of the inlet mass flow.

  16. Evaluation of online carbon isotope dilution mass spectrometry for the purity assessment of synthetic peptide standards.

    PubMed

    Cueto Díaz, Sergio; Ruiz Encinar, Jorge; García Alonso, J Ignacio

    2014-09-24

    We present a novel method for the purity assessment of peptide standards which is applicable to any water soluble peptide. The method is based on the online (13)C isotope dilution approach in which the peptide is separated from its related impurities by liquid chromatography (LC) and the eluent is mixed post-column with a continuous flow of (13)C-enriched sodium bicarbonate. An online oxidation step using sodium persulfate in acidic media at 99°C provides quantitative oxidation to (12)CO2 and (13)CO2 respectively which is extracted to a gaseous phase with the help of a gas permeable membrane. The measurement of the isotope ratio 44/45 in the mass spectrometer allows the construction of the mass flow chromatogram. As the only species that is finally measured in the mass spectrometer is CO2, the peptide content in the standard can be quantified, on the base of its carbon content, using a generic primary standard such as potassium hydrogen phthalate. The approach was validated by the analysis of a reference material (NIST 8327), and applied to the quantification of two commercial synthetic peptide standards. In that case, the results obtained were compared with those obtained using alternative methods, such as amino acid analysis and ICP-MS. The results obtained proved the value of the method for the fast, accurate and precise mass purity assignment of synthetic peptide standards. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Impact of sub-horizontal discontinuities and vertical heterogeneities on recharge processes in a weathered crystalline aquifer in southern India

    NASA Astrophysics Data System (ADS)

    Nicolas, Madeleine; Selles, Adrien; Bour, Olivier; Maréchal, Jean-Christophe; Crenner, Marion; Wajiduddin, Mohammed; Ahmed, Shakeel

    2017-04-01

    In the face of increasing demands for irrigated agriculture, many states in India are facing water scarcity issues, leading to severe groundwater depletion. Because perennial water resources in southern India consist mainly of crystalline aquifers, understanding how recharge takes place and the role of preferential flow zones in such heterogeneous media is of prime importance for successful and sustainable aquifer management. Here we investigate how vertical heterogeneities and highly transmissive sub-horizontal discontinuities may control groundwater flows and recharge dynamics. Recharge processes in the vadose zone were examined by analysing the propagation of an infiltration front and mass transfers resulting from the implementation of a managed aquifer recharge (MAR) structure. Said structure was set up in the Experimental Hydrogeological Park in Telangana (Southern India), a well-equipped and continuously monitored site, which is periodically supplied with surface water deviated from the nearby Musi river, downstream of Hyderabad. An initial volume balance equation was applied to quantify the overall inputs from the MAR structure into the groundwater system, which was confirmed using a chloride mass balance approach. To understand how this incoming mass is then distributed within the aquifer, we monitored the evolution of water volumes in the tank, and the resulting lateral propagation front observed in the surrounding borehole network. Borehole logs of temperature and conductivity were regularly performed to identify preferential flow paths. As a result we observed that mass transfers take place in the way of preferential lateral flow through the most transmissive zones of the profile. These include the interface between the lower portion of the upper weathered horizon (the saprolite) and the upper part of the underlying fissured granite, as well as the first flowing fractures. This leads to a rapid lateral transfer of recharge, which allows quick replenishment of aquifers but may have severe implications regarding groundwater quality, whether contaminants originate from diffuse sources (such as fertilizers), or a localized injection of polluted surface water. These findings confirm previous studies about the non-linear behaviour of hard rock aquifers (Guihéneuf et al., 2014) and recharge processes (Boisson et al., 2015; Alazard et al., 2015). Depending on water level conditions, the aquifer shifts from a regional flow system (when superficial more connected and weathered levels are saturated), to independent local flow systems (when only the lower lesser fractured portion is saturated). Thus recharge seems to be controlled by the existence of (i) vertical heterogeneities within the unsaturated zone and (ii) highly transmissive sub-horizontal discontinuities, both of which controlling groundwater flows and recharge dynamics.

  18. Performance of the active sidewall boundary-layer removal system for the Langley 0.3-meter Transonic Cryogenic Tunnel

    NASA Technical Reports Server (NTRS)

    Balakrishna, S.; Kilgore, W. Allen; Murthy, A. V.

    1989-01-01

    A performance evaluation of an active sidewall boundary-layer removal system for the Langley 0.3-m Transonic Cryogenic Tunnel (TCT) was evaluated in 1988. This system uses a compressor and two throttling digital valves to control the boundary-layer mass flow removal from the tunnel. The compressor operates near the maximum pressure ratio for all conditions. The system uses a surge prevention and flow recirculation scheme. A microprocessor based controller is used to provide the necessary mass flow and compressor pressure ratio control. Initial tests on the system indicated problems in realizing smooth mass flow control while running the compressor at high speed and high pressure ratios. An alternate method has been conceived to realize boundary-layer mass flow control which avoids the recirculation of the compressor mass flow and operation near the compressor surge point. This scheme is based on varying the speed of the compressor for a sufficient pressure ratio to provide needed mass flow removal. The system has a mass flow removal capability of about 10 percent of test section flow at M = 0.3 and 4 percent at M = 0.8. The system performance has been evaluated in the form of the compressor map, and compressor tunnel interface characteristics covering most of the 0.3-m TCT operational envelope.

  19. Removal of hexavalent chromium by biosorption process in rotating packed bed.

    PubMed

    Panda, M; Bhowal, A; Datta, S

    2011-10-01

    Removal of hexavalent chromium ions from an aqueous solution by crude tamarind (Tamarindus indica) fruit shell was examined in a rotating packed bed contactor by continuously recirculating a given volume of solution through the bed. Reduction of Cr(VI) to Cr(III) within the biosorbent appeared to be the removal mechanism. Depletion rate of Cr(VI) from, and release of reduced Cr(III) ions into the aqueous phase, was influenced by mass transfer resistance besides pH and packing depth. A mathematical model considering the reduction reaction to be irreversible and incorporating intraparticle and external phase mass transfer resistances represented the experimental data adequately. The study indicated that the limitations of fixed bed contactor operating under terrestrial gravity in intensifying mass transfer rates for this system can be overcome with rotating packed bed due to liquid flow under centrifugal acceleration.

  20. Diamondoid synthesis in atmospheric pressure adamantane-argon-methane-hydrogen mixtures using a continuous flow plasma microreactor

    NASA Astrophysics Data System (ADS)

    Stauss, Sven; Ishii, Chikako; Pai, David Z.; Urabe, Keiichiro; Terashima, Kazuo

    2014-06-01

    Due to their small size, low-power consumption and potential for integration with other devices, microplasmas have been used increasingly for the synthesis of nanomaterials. Here, we have investigated the possibility of using dielectric barrier discharges generated in continuous flow glass microreactors for the synthesis of diamondoids, at temperatures of 300 and 320 K, and applied voltages of 3.2-4.3 kVp-p, at a frequency of 10 kHz. The microplasmas were generated in gas mixtures containing argon, methane, hydrogen and adamantane, which was used as a precursor and seed. The plasmas were monitored by optical emission spectroscopy measurements and the synthesized products were characterized by gas chromatography—mass spectrometry (GC-MS). Depending on the gas composition, the optical emission spectra contained CH and C2 bands of varying intensities. The GC-MS measurements revealed that diamantane can be synthesized by microplasmas generated at atmospheric pressure, and that the yields highly depend on the gas composition and the presence of carbon sources.

  1. System for measuring multiphase flow using multiple pressure differentials

    DOEpatents

    Fincke, James R.

    2003-01-01

    An improved method and system for measuring a multi-phase flow in a pressure flow meter. An extended throat venturi is used and pressure of the multi-phase flow is measured at three or more positions in the venturi, which define two or more pressure differentials in the flow conduit. The differential pressures are then used to calculate the mass flow of the gas phase, the total mass flow, and the liquid phase. The system for determining the mass flow of the high void fraction fluid flow and the gas flow includes taking into account a pressure drop experienced by the gas phase due to work performed by the gas phase in accelerating the liquid phase.

  2. Biosensor System for Continuous Monitoring of Organophosphate Aerosols (Postprint)

    DTIC Science & Technology

    2007-05-01

    performed by chromatog- aphy coupled with mass selective detectors or various types of pectroscopy (Staaf and Ostman, 2005; Bjorklund et al., 2004...diverted to aste while the bubble-free flow was directed through the IMER olumns and into a single wavelength absorbance detector . The ow rate was...maintained at 2 ml/min by a second piston pump ositioned between the debubbler and the IMER columns so that he sample was under positive pressure as it

  3. Quantifying in-stream nitrate reaction rates using continuously-collected water quality data

    Treesearch

    Matthew Miller; Anthony Tesoriero; Paul Capel

    2016-01-01

    High frequency in situ nitrate data from three streams of varying hydrologic condition, land use, and watershed size were used to quantify the mass loading of nitrate to streams from two sources – groundwater discharge and event flow – at a daily time step for one year. These estimated loadings were used to quantify temporally-variable in-stream nitrate processing ...

  4. Eruption mass estimation using infrasound waveform inversion and ash and gas measurements: Evaluation at Sakurajima Volcano, Japan [Comparison of eruption masses at Sakurajima Volcano, Japan calculated by infrasound waveform inversion and ground-based sampling

    DOE PAGES

    Fee, David; Izbekov, Pavel; Kim, Keehoon; ...

    2017-10-09

    Eruption mass and mass flow rate are critical parameters for determining the aerial extent and hazard of volcanic emissions. Infrasound waveform inversion is a promising technique to quantify volcanic emissions. Although topography may substantially alter the infrasound waveform as it propagates, advances in wave propagation modeling and station coverage permit robust inversion of infrasound data from volcanic explosions. The inversion can estimate eruption mass flow rate and total eruption mass if the flow density is known. However, infrasound-based eruption flow rates and mass estimates have yet to be validated against independent measurements, and numerical modeling has only recently been appliedmore » to the inversion technique. Furthermore we present a robust full-waveform acoustic inversion method, and use it to calculate eruption flow rates and masses from 49 explosions from Sakurajima Volcano, Japan.« less

  5. Eruption mass estimation using infrasound waveform inversion and ash and gas measurements: Evaluation at Sakurajima Volcano, Japan [Comparison of eruption masses at Sakurajima Volcano, Japan calculated by infrasound waveform inversion and ground-based sampling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fee, David; Izbekov, Pavel; Kim, Keehoon

    Eruption mass and mass flow rate are critical parameters for determining the aerial extent and hazard of volcanic emissions. Infrasound waveform inversion is a promising technique to quantify volcanic emissions. Although topography may substantially alter the infrasound waveform as it propagates, advances in wave propagation modeling and station coverage permit robust inversion of infrasound data from volcanic explosions. The inversion can estimate eruption mass flow rate and total eruption mass if the flow density is known. However, infrasound-based eruption flow rates and mass estimates have yet to be validated against independent measurements, and numerical modeling has only recently been appliedmore » to the inversion technique. Furthermore we present a robust full-waveform acoustic inversion method, and use it to calculate eruption flow rates and masses from 49 explosions from Sakurajima Volcano, Japan.« less

  6. Ambient seismic noise monitoring of a clay landslide: Toward failure prediction

    NASA Astrophysics Data System (ADS)

    Mainsant, Guénolé; Larose, Eric; Brönnimann, Cornelia; Jongmans, Denis; Michoud, Clément; Jaboyedoff, Michel

    2012-03-01

    Given that clay-rich landslides may become mobilized, leading to rapid mass movements (earthflows and debris flows), they pose critical problems in risk management worldwide. The most widely proposed mechanism leading to such flow-like movements is the increase in water pore pressure in the sliding mass, generating partial or complete liquefaction. This solid-to-liquid transition results in a dramatic reduction of mechanical rigidity in the liquefied zones, which could be detected by monitoring shear wave velocity variations. With this purpose in mind, the ambient seismic noise correlation technique has been applied to measure the variation in the seismic surface wave velocity in the Pont Bourquin landslide (Swiss Alps). This small but active composite earthslide-earthflow was equipped with continuously recording seismic sensors during spring and summer 2010. An earthslide of a few thousand cubic meters was triggered in mid-August 2010, after a rainy period. This article shows that the seismic velocity of the sliding material, measured from daily noise correlograms, decreased continuously and rapidly for several days prior to the catastrophic event. From a spectral analysis of the velocity decrease, it was possible to determine the location of the change at the base of the sliding layer. These results demonstrate that ambient seismic noise can be used to detect rigidity variations before failure and could potentially be used to predict landslides.

  7. D and 18O enrichment measurements in biological fluids in a continuous-flow elemental analyser with an isotope-ratio mass spectrometer using two configurations.

    PubMed

    Ripoche, N; Ferchaud-Roucher, V; Krempf, M; Ritz, P

    2006-09-01

    In doubly labelled water studies, biological sample enrichments are mainly measured using off-line techniques (equilibration followed by dual-inlet introduction) or high-temperature elemental analysis (HT-EA), coupled with an isotope-ratio mass spectrometer (IRMS). Here another continuous-flow method, (CF-EA/IRMS), initially dedicated to water, is tested for plasma and urine analyses. The elemental analyser configuration is adapted for each stable isotope: chromium tube for deuterium reduction and glassy carbon reactor for 18O pyrolysis. Before on-line conversion of water into gas, each matrix is submitted to a short and easy treatment, which is the same for the analysis of the two isotopes. Plasma is passed through centrifugal filters. Urine is cleaned with black carbon and filtered (0.45 microm diameter). Tested between 150 and 300 ppm in these fluids, the D/H ratio response is linear with good repeatability (SD<0.2 ppm) and reproducibility (SD<0.5 ppm). For 18O/16O ratios (from 2000 to 2200 ppm), the same repeatability is obtained with a between-day precision lower than 1.4 ppm. The accuracy on biological samples is validated by comparison to classical dual-inlet methods: 18O analyses give more accurate results. The data show that enriched physiological fluids can be successfully analysed in CF-EA/IRMS. Copyright (c) 2006 John Wiley & Sons, Ltd.

  8. Omega Design and FEA Based Coriolis Mass Flow Sensor (CMFS) Analysis Using Titanium Material

    NASA Astrophysics Data System (ADS)

    Patil, Pravin P.; Kumar, Ashwani; Ahmad, Faraz

    2018-02-01

    The main highlight of this research work is evaluation of resonant frequency for titanium omega type coriolis mass flow sensor. Coriolis mass flow sensor is used for measuring direct mass flow in pipe useful for various industrial applications. It works on the principle of Coriolis effect. Finite Element Analysis (FEA) simulation of omega flow sensor was performed using Ansys 14.5 and Solid Edge, Pro-E was used for modelling of omega tube. Titanium was selected as omega tube material. Experimental setup was prepared for omega tube coriolis flow sensor for performing different test. Experimental setup was used for investigation of different parameters effect on CMFS and validation of simulation results.

  9. The 22 March 2014 Oso landslide, Washington, USA

    NASA Astrophysics Data System (ADS)

    Wartman, Joseph; Montgomery, David R.; Anderson, Scott A.; Keaton, Jeffrey R.; Benoît, Jean; dela Chapelle, John; Gilbert, Robert

    2016-01-01

    The Oso, Washington, USA, landslide occurred on the morning of Saturday, 22 March 2014 and claimed the lives of 43 people. The landslide began within an 200-m-high hillslope comprised of unconsolidated glacial and previous landslide/colluvial deposits; it continued as a debris avalanche/debris flow that rapidly inundated a neighborhood of 35 single-family residences. An intense three-week rainfall that immediately preceded the event most likely played a role in triggering the landslide; and other factors that likely contributed to destabilization of the landslide mass include alteration of the local groundwater recharge and hydrogeological regime from previous landsliding, weakening and alteration of the landslide mass caused by previous landsliding, and changes in stress distribution resulting from removal and deposition of material from earlier landsliding. Field reconnaissance following the event revealed six distinctive zones and several subzones that are characterized on the basis of geomorphic expression, styles of deformation, geologic materials, and the types, size, and orientation of vegetation. Seismic recording of the landslide indicate that the event was marked by several vibration-generating episodes of mass movement. We hypothesize that the landslide occurred in two stages, with the first being a sequential remobilization of existing slide masses from the most recent (2006) landslide and from an ancient slide that triggered a devastating debris avalanche/debris flow. The second stage involved headward extension into previously unfailed material that occurred in response to unloading and redirection of stresses.

  10. A Gravity-Driven Microfluidic Particle Sorting Device with Hydrodynamic Separation Amplification

    PubMed Central

    Huh, Dongeun; Bahng, Joong Hwan; Ling, Yibo; Wei, Hsien-Hung; Kripfgans, Oliver D.; Fowlkes, J. Brian; Grotberg, James B.; Takayama, Shuichi

    2008-01-01

    This paper describes a simple microfluidic sorting system that can perform size-profiling and continuous mass-dependent separation of particles through combined use of gravity (1g) and hydrodynamic flows capable of rapidly amplifying sedimentation-based separation between particles. Operation of the device relies on two microfluidic transport processes: i) initial hydrodynamic focusing of particles in a microchannel oriented parallel to gravity, ii) subsequent sample separation where positional difference between particles with different mass generated by sedimentation is further amplified by hydrodynamic flows whose streamlines gradually widen out due to the geometry of a widening microchannel oriented perpendicular to gravity. The microfluidic sorting device was fabricated in poly(dimethylsiloxane) (PDMS), and hydrodynamic flows in microchannels were driven by gravity without using external pumps. We conducted theoretical and experimental studies on fluid dynamic characteristics of laminar flows in widening microchannels and hydrodynamic amplification of particle separation. Direct trajectory monitoring, collection, and post-analysis of separated particles were performed using polystyrene microbeads with different sizes to demonstrate rapid (< 1 min) and high-purity (> 99.9 %) separation. Finally, we demonstrated biomedical applications of our system by isolating small-sized (diameter < 6 μm) perfluorocarbon liquid droplets from polydisperse droplet emulsions, which is crucial in preparing contrast agents for safe, reliable ultrasound medical imaging, tracers for magnetic resonance imaging, or transpulmonary droplets used in ultrasound-based occlusion therapy for cancer treatment. Our method enables straightforward, rapid real-time size-monitoring and continuous separation of particles in simple stand-alone microfabricated devices without the need for bulky and complex external power sources. We believe that this system will provide a useful tool o separate colloids and particles for various analytical and preparative applications, and may hold 3 potential for separation of cells or development of diagnostic tools requiring point-of-care sample preparation or testing. PMID:17297936

  11. Performance investigation and comparison of different turbulator shapes in solar water heating collector system

    NASA Astrophysics Data System (ADS)

    Khargotra, Rohit; Dhingra, Sunil; Chauhan, Ranchan; Singh, Tej

    2018-05-01

    The effective use of solar energy is hindered by the intermittent nature of its availability, limiting its use and effectiveness in domestic and industrial applications especially in water heating. In the present paper, the performance of different turbulator shapes in solar water heating collector system has been studied experimentally and comparison on the output performance has been carried out. Effects of insertion of coil-spring turbulator on heat transfer rate, mass flow rate, heat gain by the fluid etc. is studied by disturbing the flow inside the absorber tubes in a solar flat plate collector. The coil-spring used as a turbulator is placed inside the absorber tube which creates a continuous swirling flow along the tube wall. The results of the heat transfer have been compared well with the available results. The heat transfer rate in the collector has been found to be increased by 18% to 70%. Solar water heater having inserts in the flow tubes perform better than the conventional plain ones. It has been observed that heat losses are reduced consequently increasing the thermal performance to about 70% over the plain water heater under same operating conditions. The coil-spring used as a turbulator is placed inside the riser tube while the twisted tape is inserted into the wire coil to create a continuous swirling flow along the tube wall. The results of the heat transfer have been compared with the available results. Solar water heater having inserts in the flow tubes perform better than the conventional plain ones.

  12. Small-volume, ultrahigh-vacuum-compatible high-pressure reaction cell for combined kinetic and in situ IR spectroscopic measurements on planar model catalysts

    NASA Astrophysics Data System (ADS)

    Zhao, Z.; Diemant, T.; Häring, T.; Rauscher, H.; Behm, R. J.

    2005-12-01

    We describe the design and performance of a high-pressure reaction cell for simultaneous kinetic and in situ infrared reflection (IR) spectroscopic measurements on model catalysts at elevated pressures, between 10-3 and 103mbars, which can be operated both as batch reactor and as flow reactor with defined gas flow. The cell is attached to an ultrahigh-vacuum (UHV) system, which is used for sample preparation and also contains facilities for sample characterization. Specific for this design is the combination of a small cell volume, which allows kinetic measurements with high sensitivity under batch or continuous flow conditions, the complete isolation of the cell from the UHV part during UHV measurements, continuous temperature control during both UHV and high-pressure operation, and rapid transfer between UHV and high-pressure stage. Gas dosing is performed by a designed gas-handling system, which allows operation as flow reactor with calibrated gas flows at adjustable pressures. To study the kinetics of reactions on the model catalysts, a quadrupole mass spectrometer is connected to the high-pressure cell. IR measurements are possible in situ by polarization-modulation infrared reflection-absorption spectroscopy, which also allows measurements at elevated pressures. The performance of the setup is demonstrated by test measurements on the kinetics for CO oxidation and the CO adsorption on a Au /TiO2/Ru(0001) model catalyst film at 1-50 mbar total pressure.

  13. UV DRIVEN EVAPORATION OF CLOSE-IN PLANETS: ENERGY-LIMITED, RECOMBINATION-LIMITED, AND PHOTON-LIMITED FLOWS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Owen, James E.; Alvarez, Marcelo A., E-mail: jowen@ias.edu

    2016-01-01

    We have investigated the evaporation of close-in exoplanets irradiated by ionizing photons. We find that the properties of the flow are controlled by the ratio of the recombination time to the flow timescale. When the recombination timescale is short compared to the flow timescale, the flow is in approximate local ionization equilibrium with a thin ionization front where the photon mean free path is short compared to the flow scale. In this “recombination-limited” flow the mass-loss scales roughly with the square root of the incident flux. When the recombination time is long compared to the flow timescale the ionization frontmore » becomes thick and encompasses the entire flow with the mass-loss rate scaling linearly with flux. If the planet's potential is deep, then the flow is approximately “energy-limited”; however, if the planet's potential is shallow, then we identify a new limiting mass-loss regime, which we term “photon-limited.” In this scenario, the mass-loss rate is purely limited by the incoming flux of ionizing photons. We have developed a new numerical approach that takes into account the frequency dependence of the incoming ionizing spectrum and performed a large suite of 1D simulations to characterize UV driven mass-loss around low-mass planets. We find that the flow is “recombination-limited” at high fluxes but becomes “energy-limited” at low fluxes; however, the transition is broad occurring over several orders of magnitude in flux. Finally, we point out that the transitions between the different flow types do not occur at a single flux value but depend on the planet's properties, with higher-mass planets becoming “energy-limited” at lower fluxes.« less

  14. Combinational concentration gradient confinement through stagnation flow.

    PubMed

    Alicia, Toh G G; Yang, Chun; Wang, Zhiping; Nguyen, Nam-Trung

    2016-01-21

    Concentration gradient generation in microfluidics is typically constrained by two conflicting mass transport requirements: short characteristic times (τ) for precise temporal control of concentration gradients but at the expense of high flow rates and hence, high flow shear stresses (σ). To decouple the limitations from these parameters, here we propose the use of stagnation flows to confine concentration gradients within large velocity gradients that surround the stagnation point. We developed a modified cross-slot (MCS) device capable of feeding binary and combinational concentration sources in stagnation flows. We show that across the velocity well, source-sink pairs can form permanent concentration gradients. As source-sink concentration pairs are continuously supplied to the MCS, a permanently stable concentration gradient can be generated. Tuning the flow rates directly controls the velocity gradients, and hence the stagnation point location, allowing the confined concentration gradient to be focused. In addition, the flow rate ratio within the MCS rapidly controls (τ ∼ 50 ms) the location of the stagnation point and the confined combinational concentration gradients at low flow shear (0.2 Pa < σ < 2.9 Pa). The MCS device described in this study establishes the method for using stagnation flows to rapidly generate and position low shear combinational concentration gradients for shear sensitive biological assays.

  15. Influence of bed material entrainment and non-Newtonian rheology on turbulent geophysical flows dynamics. Numerical study

    NASA Astrophysics Data System (ADS)

    Eglit, M. E.; Yakubenko, A. E.; Yakubenko, T. A.

    2017-10-01

    This paper deals with the mathematical and numerical modeling of the propagation stage of geophysical gravity-driven flows, such as snow avalanches, mudflows, and rapid landslides. New mathematical models are presented which are based on full, not-depth-averaged equations of mechanics of continuous media. The models account for three important issues: non-Newtonian rheology of the moving material, entrainment of the bed material by the flow, and turbulence. The main objective is to investigate the effect of these three factors on the flow dynamics and on the value of the entrainment rate. To exclude the influence of many other factors, e.g., the complicated slope topography, only the motion down a long uniform slope with a constant inclination angle is studied numerically. Moreover, the entire flow from the front to the rear area was not modeled, but only its middle part where the flow is approximately uniform in length. One of the qualitative results is that in motion along homogeneous slope the mass entrainment increases the flow velocity and depth while the entrainment rate at large time tends to become constant which depends on the physical properties of the flow and the underlying material but not on the current values of the flow velocity and depth.

  16. 40 CFR 98.473 - Calculating CO2 received.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    .... (a) You must calculate and report the annual mass of CO2 received by pipeline using the procedures in... applicable. (1) For a mass flow meter, you must calculate the total annual mass of CO2 in a CO2 stream received in metric tons by multiplying the mass flow by the CO2 concentration in the flow, according to...

  17. 40 CFR 98.473 - Calculating CO2 received.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    .... (a) You must calculate and report the annual mass of CO2 received by pipeline using the procedures in... applicable. (1) For a mass flow meter, you must calculate the total annual mass of CO2 in a CO2 stream received in metric tons by multiplying the mass flow by the CO2 concentration in the flow, according to...

  18. 40 CFR 98.473 - Calculating CO2 received.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    .... (a) You must calculate and report the annual mass of CO2 received by pipeline using the procedures in... applicable. (1) For a mass flow meter, you must calculate the total annual mass of CO2 in a CO2 stream received in metric tons by multiplying the mass flow by the CO2 concentration in the flow, according to...

  19. 40 CFR 98.473 - Calculating CO2 received.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    .... (a) You must calculate and report the annual mass of CO2 received by pipeline using the procedures in... applicable. (1) For a mass flow meter, you must calculate the total annual mass of CO2 in a CO2 stream received in metric tons by multiplying the mass flow by the CO2 concentration in the flow, according to...

  20. Theoretical and computational analyses of LNG evaporator

    NASA Astrophysics Data System (ADS)

    Chidambaram, Palani Kumar; Jo, Yang Myung; Kim, Heuy Dong

    2017-04-01

    Theoretical and numerical analysis on the fluid flow and heat transfer inside a LNG evaporator is conducted in this work. Methane is used instead of LNG as the operating fluid. This is because; methane constitutes over 80% of natural gas. The analytical calculations are performed using simple mass and energy balance equations. The analytical calculations are made to assess the pressure and temperature variations in the steam tube. Multiphase numerical simulations are performed by solving the governing equations (basic flow equations of continuity, momentum and energy equations) in a portion of the evaporator domain consisting of a single steam pipe. The flow equations are solved along with equations of species transport. Multiphase modeling is incorporated using VOF method. Liquid methane is the primary phase. It vaporizes into the secondary phase gaseous methane. Steam is another secondary phase which flows through the heating coils. Turbulence is modeled by a two equation turbulence model. Both the theoretical and numerical predictions are seen to match well with each other. Further parametric studies are planned based on the current research.

  1. Work flow analysis of around-the-clock processing of blood culture samples and integrated MALDI-TOF mass spectrometry analysis for the diagnosis of bloodstream infections.

    PubMed

    Schneiderhan, Wilhelm; Grundt, Alexander; Wörner, Stefan; Findeisen, Peter; Neumaier, Michael

    2013-11-01

    Because sepsis has a high mortality rate, rapid microbiological diagnosis is required to enable efficient therapy. The effectiveness of MALDI-TOF mass spectrometry (MALDI-TOF MS) analysis in reducing turnaround times (TATs) for blood culture (BC) pathogen identification when available in a 24-h hospital setting has not been determined. On the basis of data from a total number of 912 positive BCs collected within 140 consecutive days and work flow analyses of laboratory diagnostics, we evaluated different models to assess the TATs for batch-wise and for immediate response (real-time) MALDI-TOF MS pathogen identification of positive BC results during the night shifts. The results were compared to TATs from routine BC processing and biochemical identification performed during regular working hours. Continuous BC incubation together with batch-wise MALDI-TOF MS analysis enabled significant reductions of up to 58.7 h in the mean TATs for the reporting of the bacterial species. The TAT of batch-wise MALDI-TOF MS analysis was inferior by a mean of 4.9 h when compared to the model of the immediate work flow under ideal conditions with no constraints in staff availability. Together with continuous cultivation of BC, the 24-h availability of MALDI-TOF MS can reduce the TAT for microbial pathogen identification within a routine clinical laboratory setting. Batch-wise testing of positive BC loses a few hours compared to real-time identification but is still far superior to classical BC processing. Larger prospective studies are required to evaluate the contribution of rapid around-the-clock pathogen identification to medical decision-making for septicemic patients.

  2. Modeling highly transient flow, mass, and heat transport in the Chattahoochee River near Atlanta, Georgia

    USGS Publications Warehouse

    Jobson, Harvey E.; Keefer, Thomas N.

    1979-01-01

    A coupled flow-temperature model has been developed and verified for a 27.9-km reach of the Chattahoochee River between Buford Dam and Norcross, Ga. Flow in this reach of the Chattahoochee is continuous but highly regulated by Buford Dam, a flood-control and hydroelectric facility located near Buford, Ga. Calibration and verification utilized two sets of data collected under highly unsteady discharge conditions. Existing solution techniques, with certain minor improvements, were applied to verify the existing technology of flow and transport modeling. The linear, implicit finite-difference flow model was calibrated by use of a depth profile obtained at steady low flow and unsteady flow data obtained in March 1976. During the calibration period, the model was generally able to reproduce observed stages to within 0.15 m and discharges at less than 100 m 3 /s, to within 5 percent. Peak discharges of about 200 m 3 /s were under-estimated by about 20 percent. During the verification period, October 1975, the flow model reproduced observed stage changes to within about 0.15 m, and its timing and over-all performance was considered to be very good. Dye was added to the upstream end of the river reach at a constant rate while the river flow was highly unsteady. The numerical solution of either the conservative or nonconservative form of the mass-transport equation did an excellent job of simulating the observed concentrations of dye in the river. The temperature model was capable of predicting temperature changes through this reach of as large as 5.8?C with a RMS (root-mean-square) error of 0.32?C in October 1975 and 0.20?C in March 1976. Hydropulsation has a significant effect on the water temperature below Buford Dam. These effects are very complicated because they are quite dependent on the timing of the release with respect to both the time of day and past releases.

  3. Vertical mass transfer in open channel flow

    USGS Publications Warehouse

    Jobson, Harvey E.

    1968-01-01

    The vertical mass transfer coefficient and particle fall velocity were determined in an open channel shear flow. Three dispersants, dye, fine sand and medium sand, were used with each of three flow conditions. The dispersant was injected as a continuous line source across the channel and downstream concentration profiles were measured. From these profiles along with the measured velocity distribution both the vertical mass transfer coefficient and the local particle fall velocity were determined.The effects of secondary currents on the vertical mixing process were discussed. Data was taken and analyzed in such a way as to largely eliminate the effects of these currents on the measured values. A procedure was developed by which the local value of the fall velocity of sand sized particles could be determined in an open channel flow. The fall velocity of the particles in the turbulent flow was always greater than their fall velocity in quiescent water. Reynolds analogy between the transfer of momentum and marked fluid particles was further substantiated. The turbulent Schmidt number was shown to be approximately 1.03 for an open channel flow with a rough boundary. Eulerian turbulence measurements were not sufficient to predict the vertical transfer coefficient. Vertical mixing of sediment is due to three semi-independent processes. These processes are: secondary currents, diffusion due to tangential velocity fluctuations and diffusion due to the curvature of the fluid particle path lines. The diffusion coefficient due to tangential velocity fluctuations is approximately proportional to the transfer coefficient of marked fluid particles. The proportionality constant is less than or equal to 1.0 and decreases with increasing particle size. The diffusion coefficient due to the curvature of the fluid particle path lines is not related to the diffusion coefficient for marked fluid particles and increases with particle size, at least for sediment particles in the sand size range. The total sediment transfer coefficient is equal to the sum of the coefficient due to tangential velocity fluctuations and the coefficient due to the curvature of the fluid particle path lines. A numerical solution to the conservation of mass equation is given. The effects of the transfer coefficient, fall velocity and bed conditions on the predicted concentration profiles are illustrated.

  4. Solitary Waves of Ice Loss Detected in Greenland Crustal Motion

    NASA Astrophysics Data System (ADS)

    Adhikari, S.; Ivins, E. R.; Larour, E. Y.

    2017-12-01

    The annual cycle and secular trend of Greenland mass loading are well recorded in measurements of solid Earth deformation. While bedrock vertical displacements are in phase with loading as inferred from space observations, horizontal motions have received almost no attention. The horizontal bedrock displacements can potentially track the spatiotemporal detail of mass changes with great fidelity. Our analysis of Greenland crustal motion data reveals that a significant excitation of horizontal amplitudes occurs during the intense Greenland melting. A suite of space geodetic observations and climate reanalysis data cannot explain these large horizontal displacements. We discover that solitary seasonal waves of substantial mass transport traveled through Rink Glacier in 2010 and 2012. We deduce that intense summer melting enhanced either basal lubrication or shear softening, or both, causing the glacier to thin dynamically. The newly routed upstream sublglacial water was likely to be both retarded and inefficient, thus providing a causal mechanism for the prolonged ice transport to continue well into the winter months. As the climate continues to produce increasingly warmer spring and summer, amplified seasonal waves of mass transport may become ever more present in years of future observations. Increased frequency of amplified seasonal mass transport may ultimately strengthen the Greenland's dynamic ice mass loss, a component of the balance that will have important ramifications for sea level rise. This animation shows a solitary wave passing through Rink Glacier, Greenland, in 2012, recorded by the motion of a GPS station (circle with arrow). Darker blue colors within the flow indicate mass loss, red colors show mass gain. The star marks the center of the wave. Credit: NASA/JPL-Caltech

  5. In situ continuous derivatization/pre-concentration of carbonyl compounds with 2,4-dinitrophenylhydrazine in aqueous samples by solid-phase extraction Application to liquid chromatography determination of aldehydes.

    PubMed

    Baños, Clara-Eugenia; Silva, Manuel

    2009-03-15

    A rapid and straightforward continuous solid-phase extraction system has been developed for in situ derivatization and pre-concentration of carbonyl compounds in aqueous samples. Initially 2,4-dinitrophenylhydrazine, the derivatizing agent, was adsorbed on a C(18) mini-column and then 15-ml of sample were continuously aspirated into the flow system, where the derivatization and pre-concentration of the analytes (low-molecular mass aldehydes) were performed simultaneously. Following elution, 20 microl of the extract were injected into a LC-DAD system, in which hydrazones were successfully separated in 12 min on a RP-C(18) column using a linear gradient mobile phase of acetonitrile-water of 60-100% acetonitrile for 8 min, flowing at 0.5 ml/min. The whole analytical process can be accomplished within ca. 35 min. Under optimum conditions, limits of detection were obtained between 0.3 and 1.0 microg/l and RSDs (inter-day precision) from 1.2 to 4.6%. Finally, some applications on water samples are presented with recoveries ranged from 95.8 to 99.4%.

  6. Closed-loop helium circulation system for actuation of a continuously operating heart catheter pump.

    PubMed

    Karabegovic, Alen; Hinteregger, Markus; Janeczek, Christoph; Mohl, Werner; Gföhler, Margit

    2017-06-09

    Currently available, pneumatic-based medical devices are operated using closed-loop pulsatile or open continuous systems. Medical devices utilizing gases with a low atomic number in a continuous closed loop stream have not been documented to date. This work presents the construction of a portable helium circulation addressing the need for actuating a novel, pneumatically operated catheter pump. The design of its control system puts emphasis on the performance, safety and low running cost of the catheter pump. Static and dynamic characteristics of individual elements in the circulation are analyzed to ensure a proper operation of the system. The pneumatic circulation maximizes the working range of the drive unit inside the catheter pump while reducing the total size and noise production.Separate flow and pressure controllers position the turbine's working point into the stable region of the pressure creation element. A subsystem for rapid gas evacuation significantly decreases the duration of helium removal after a leak, reaching subatmospheric pressure in the intracorporeal catheter within several milliseconds. The system presented in the study offers an easy control of helium mass flow while ensuring stable behavior of its internal components.

  7. Sedimentary history and mass flow structures of Chryse and Acidalia Planitiae, Mars

    USGS Publications Warehouse

    Tanaka, K.L.

    1997-01-01

    Geologic mapping and crater counting in Chryse and Acidalia Planitiae (GAP) reveal five major sedimentary deposits of Hesperian to Early Amazonian age, including (1) a mass flow deposited during the Early Hesperian near Deuteronilus Mensae (northeast of the map region) that may have resulted from the carving of Kasei Valles, >3000 km southwest of the exposed part of the deposit; (2) knobby plains material consisting of channel (likely; from Simud and Tiu Valles and possibly Ares and Shalbatana Valles) and mass-wasting deposits in central and eastern CAP; (3) material largely from Maja and Ares Valles emplaced in at least western and southern CAP (outcrops in southern Chryse Planitia developed thermokarst); (4) a thin mass flow covering much of southern Chryse Planitia that emanated from Simud and Tiu Valles; and (5) a thick, extensive (perhaps >3500 km across) mass flow deposit in central and northern CAP derived from accumulation and backflow of the preceding thin mass flow or perhaps melting of polar deposits. Other possible deposits may not be recognizable owing to burial by younger materials or a lack of morphologic signature. Various associated landforms appear to be consistent with the mass flow interpretations, including lobate and linear scarps along deposit edges, fractures related to desiccation of thick sediments, troughs, and ridges near the edges of the deposit indicative of secondary mass movement and deformation, pitted domes and fissure-fed flows possibly formed by sedimentary (mud) eruptions, and longitudinal channel grooves perhaps formed by roller vortices. No convincing evidence for paleoshorelines or stagnant ice sheets is found in CAP. These findings suggest that mass flow and hyperconcentrated flooding may have been the predominant processes of outflow-channel dissection in CAP. Elsewhere in the northern plains, similar landforms are prevalent. The mass flow interpretation does not require either multiple episodes of extraordinarily high water-discharge rates achieved by freeing huge volumes of water from the crust, repetitive recycling of immense volumes of water into highland aquifers at the heads of Chryse channels, or profound climate change. Mars Pathfinder will most likely land on and inspect the surface of the thin mass flow that originated from the canyons of Simud and Tiu Valles.

  8. Microphysics of mass-transport in coupled droplet-pairs at low Reynolds number and the role of convective dynamics

    NASA Astrophysics Data System (ADS)

    Dong, Qingming; Sau, Amalendu

    2016-06-01

    Interfacial mass-transport and redistribution in the micro-scale liquid droplets are important in diverse fields of research interest. The role of the "inflow" and the "outflow" type convective eddy-pairs in the entrainment of outer solute and internal relocation are examined for different homogeneous and heterogeneous water droplet pairs appearing in a tandem arrangement. Two micro-droplets of pure (rain) water interact with an oncoming outer air stream (Re ≤ 100) contaminated by uniformly distributed SO2. By virtue of separation/attachment induced non-uniform interfacial shear-stress gradient, the well-defined inflow/outflow type pairs of recirculating eddy-based convective motion quickly develops, and the eddies effectively attract/repel the accumulated outer solute and control the physical process of mass-transport in the droplet-pair. The non-uniformly shear-driven flow interaction and bifurcation of the circulatory internal flow lead to growth of important micro-scale "secondary" eddies which suitably regroup with the adjacent "primary" one to create the sustained inflow/outflow type convective dynamics. The presently derived flow characteristics and in-depth analysis help to significantly improve our understanding of the micro-droplet based transport phenomena in a wider context. By tuning "Re" (defined in terms of the droplet diameter and the average oncoming velocity of the outer air) and gap-ratio "α," the internal convective forcing and the solute entrainment efficiency could be considerably enhanced. The quantitative estimates for mass entrainment, convective strength, and saturation characteristics for different coupled micro-droplet pairs are extensively examined here for 0.2 ≤ α ≤ 2.0 and 30 ≤ Re ≤ 100. Interestingly, for the compound droplets, with suitably tuned radius-ratio "B" (of upstream droplet with respect to downstream one) the generated "inflow" type coherent convective dynamics helped to significantly augment the centre-line mass flow, which in turn facilitate faster saturation of the upstream droplet. However, for heterogeneous droplet-pairs containing solid nucleus, while increased solid-fraction "S" (the ratio between the radius of the solid nucleus and that of the droplet) through 0.25 ≤ S ≤ 0.45 caused gradual reductions of convective strength and mass absorption rate (RSO2) for the upstream droplet, beyond a critical value S ≥ 0.45 the RSO2 therein continued to rise again owing to the reduced film thickness.

  9. Non-axisymmetric flow characteristics in centrifugal compressor

    NASA Astrophysics Data System (ADS)

    Wang, Leilei; Lao, Dazhong; Liu, Yixiong; Yang, Ce

    2015-06-01

    The flow field distribution in centrifugal compressor is significantly affected by the non-axisymmetric geometry structure of the volute. The experimental and numerical simulation methods were adopted in this work to study the compressor flow field distribution with different flow conditions. The results show that the pressure distributionin volute is characterized by the circumferential non-uniform phenomenon and the pressure fluctuation on the high static pressure zone propagates reversely to upstream, which results in the non-axisymmetric flow inside the compressor. The non-uniform level of pressure distribution in large flow condition is higher than that in small flow condition, its effect on the upstream flow field is also stronger. Additionally, the non-uniform circumferential pressure distribution in volute brings the non-axisymmetric flow at impeller outlet. In different flow conditions,the circumferential variation of the absolute flow angle at impeller outlet is also different. Meanwhile, the non-axisymmetric flow characteristics in internal impeller can be also reflected by the distribution of the mass flow. The high static pressure region of the volute corresponds to the decrease of mass flow in upstream blade channel, while the low static pressure zone of the volute corresponds to the increase of the mass flow. In small flow condition, the mass flow difference in the blade channel is bigger than that in the large flow condition.

  10. Microprocessor-Based Valved Controller

    NASA Technical Reports Server (NTRS)

    Norman, Arnold M., Jr.

    1987-01-01

    New controller simpler, more precise, and lighter than predecessors. Mass-flow controller compensates for changing supply pressure and temperature such as occurs when gas-supply tank becomes depleted. By periodically updating calculation of mass-flow rate, controller determines correct new position for valve and keeps mass-flow rate nearly constant.

  11. Modelling atmospheric flows with adaptive moving meshes

    NASA Astrophysics Data System (ADS)

    Kühnlein, Christian; Smolarkiewicz, Piotr K.; Dörnbrack, Andreas

    2012-04-01

    An anelastic atmospheric flow solver has been developed that combines semi-implicit non-oscillatory forward-in-time numerics with a solution-adaptive mesh capability. A key feature of the solver is the unification of a mesh adaptation apparatus, based on moving mesh partial differential equations (PDEs), with the rigorous formulation of the governing anelastic PDEs in generalised time-dependent curvilinear coordinates. The solver development includes an enhancement of the flux-form multidimensional positive definite advection transport algorithm (MPDATA) - employed in the integration of the underlying anelastic PDEs - that ensures full compatibility with mass continuity under moving meshes. In addition, to satisfy the geometric conservation law (GCL) tensor identity under general moving meshes, a diagnostic approach is proposed based on the treatment of the GCL as an elliptic problem. The benefits of the solution-adaptive moving mesh technique for the simulation of multiscale atmospheric flows are demonstrated. The developed solver is verified for two idealised flow problems with distinct levels of complexity: passive scalar advection in a prescribed deformational flow, and the life cycle of a large-scale atmospheric baroclinic wave instability showing fine-scale phenomena of fronts and internal gravity waves.

  12. Integrated CO2 capture-fixation chemistry via interfacial ionic liquid catalyst in laminar gas/liquid flow

    NASA Astrophysics Data System (ADS)

    Vishwakarma, Niraj K.; Singh, Ajay K.; Hwang, Yoon-Ho; Ko, Dong-Hyeon; Kim, Jin-Oh; Babu, A. Giridhar; Kim, Dong-Pyo

    2017-03-01

    Simultaneous capture of carbon dioxide (CO2) and its utilization with subsequent work-up would significantly enhance the competitiveness of CO2-based sustainable chemistry over petroleum-based chemistry. Here we report an interfacial catalytic reaction platform for an integrated autonomous process of simultaneously capturing/fixing CO2 in gas-liquid laminar flow with subsequently providing a work-up step. The continuous-flow microreactor has built-in silicon nanowires (SiNWs) with immobilized ionic liquid catalysts on tips of cone-shaped nanowire bundles. Because of the superamphiphobic SiNWs, a stable gas-liquid interface maintains between liquid flow of organoamines in upper part and gas flow of CO2 in bottom part of channel. The intimate and direct contact of the binary reagents leads to enhanced mass transfer and facilitating reactions. The autonomous integrated platform produces and isolates 2-oxazolidinones and quinazolines-2,4(1H,3H)-diones with 81-97% yields under mild conditions. The platform would enable direct CO2 utilization to produce high-valued specialty chemicals from flue gases without pre-separation and work-up steps.

  13. Integrated CO2 capture-fixation chemistry via interfacial ionic liquid catalyst in laminar gas/liquid flow.

    PubMed

    Vishwakarma, Niraj K; Singh, Ajay K; Hwang, Yoon-Ho; Ko, Dong-Hyeon; Kim, Jin-Oh; Babu, A Giridhar; Kim, Dong-Pyo

    2017-03-06

    Simultaneous capture of carbon dioxide (CO 2 ) and its utilization with subsequent work-up would significantly enhance the competitiveness of CO 2 -based sustainable chemistry over petroleum-based chemistry. Here we report an interfacial catalytic reaction platform for an integrated autonomous process of simultaneously capturing/fixing CO 2 in gas-liquid laminar flow with subsequently providing a work-up step. The continuous-flow microreactor has built-in silicon nanowires (SiNWs) with immobilized ionic liquid catalysts on tips of cone-shaped nanowire bundles. Because of the superamphiphobic SiNWs, a stable gas-liquid interface maintains between liquid flow of organoamines in upper part and gas flow of CO 2 in bottom part of channel. The intimate and direct contact of the binary reagents leads to enhanced mass transfer and facilitating reactions. The autonomous integrated platform produces and isolates 2-oxazolidinones and quinazolines-2,4(1H,3H)-diones with 81-97% yields under mild conditions. The platform would enable direct CO 2 utilization to produce high-valued specialty chemicals from flue gases without pre-separation and work-up steps.

  14. Integrated CO2 capture-fixation chemistry via interfacial ionic liquid catalyst in laminar gas/liquid flow

    PubMed Central

    Vishwakarma, Niraj K.; Singh, Ajay K.; Hwang, Yoon-Ho; Ko, Dong-Hyeon; Kim, Jin-Oh; Babu, A. Giridhar; Kim, Dong-Pyo

    2017-01-01

    Simultaneous capture of carbon dioxide (CO2) and its utilization with subsequent work-up would significantly enhance the competitiveness of CO2-based sustainable chemistry over petroleum-based chemistry. Here we report an interfacial catalytic reaction platform for an integrated autonomous process of simultaneously capturing/fixing CO2 in gas–liquid laminar flow with subsequently providing a work-up step. The continuous-flow microreactor has built-in silicon nanowires (SiNWs) with immobilized ionic liquid catalysts on tips of cone-shaped nanowire bundles. Because of the superamphiphobic SiNWs, a stable gas–liquid interface maintains between liquid flow of organoamines in upper part and gas flow of CO2 in bottom part of channel. The intimate and direct contact of the binary reagents leads to enhanced mass transfer and facilitating reactions. The autonomous integrated platform produces and isolates 2-oxazolidinones and quinazolines-2,4(1H,3H)-diones with 81–97% yields under mild conditions. The platform would enable direct CO2 utilization to produce high-valued specialty chemicals from flue gases without pre-separation and work-up steps. PMID:28262667

  15. Investigation of a liquid-fed water resistojet plume

    NASA Technical Reports Server (NTRS)

    Manzella, D. H.; Carney, L. M.

    1989-01-01

    Measurements of mass flux and flow angle were taken throughout the forward flow region of the exhaust of a liquid-fed water resistojet using a quartz crystal microbalance (QCM). The resistojet operated at a mass flow rate of 0.1 g/s with a power input of 330 Watts. Measured values were compared to theoretical predictions obtained by employing a source flow approximation. Excellent agreement between predicted and measured mass flux values was attained; however, this agreement was highly dependent on knowledge of nozzle flow conditions. Measurements of the temperature at which the exhaust condensed on the QCM were obtained as a function of incident mass flux.

  16. Mass-conservative reconstruction of Galerkin velocity fields for transport simulations

    NASA Astrophysics Data System (ADS)

    Scudeler, C.; Putti, M.; Paniconi, C.

    2016-08-01

    Accurate calculation of mass-conservative velocity fields from numerical solutions of Richards' equation is central to reliable surface-subsurface flow and transport modeling, for example in long-term tracer simulations to determine catchment residence time distributions. In this study we assess the performance of a local Larson-Niklasson (LN) post-processing procedure for reconstructing mass-conservative velocities from a linear (P1) Galerkin finite element solution of Richards' equation. This approach, originally proposed for a-posteriori error estimation, modifies the standard finite element velocities by imposing local conservation on element patches. The resulting reconstructed flow field is characterized by continuous fluxes on element edges that can be efficiently used to drive a second order finite volume advective transport model. Through a series of tests of increasing complexity that compare results from the LN scheme to those using velocity fields derived directly from the P1 Galerkin solution, we show that a locally mass-conservative velocity field is necessary to obtain accurate transport results. We also show that the accuracy of the LN reconstruction procedure is comparable to that of the inherently conservative mixed finite element approach, taken as a reference solution, but that the LN scheme has much lower computational costs. The numerical tests examine steady and unsteady, saturated and variably saturated, and homogeneous and heterogeneous cases along with initial and boundary conditions that include dry soil infiltration, alternating solute and water injection, and seepage face outflow. Typical problems that arise with velocities derived from P1 Galerkin solutions include outgoing solute flux from no-flow boundaries, solute entrapment in zones of low hydraulic conductivity, and occurrences of anomalous sources and sinks. In addition to inducing significant mass balance errors, such manifestations often lead to oscillations in concentration values that can moreover cause the numerical solution to explode. These problems do not occur when using LN post-processed velocities.

  17. Policy Guidance From a Multi-scale Suite of Natural Field and Digital Laboratories of Change: Hydrological Catchment Studies of Nutrient and Pollutant Source Releases, Waterborne Transport-Transformations and Mass Flows in Water Ecosystems

    NASA Astrophysics Data System (ADS)

    Destouni, G.

    2008-12-01

    Continental fresh water transports and loads excess nutrients and pollutants from various land surface sources, through the landscape, into downstream inland and coastal water environments. Our ability to understand, predict and control the eutrophication and the pollution pressures on inland, coastal and marine water ecosystems relies on our ability to quantify these mass flows. This paper synthesizes a series of hydro- biogeochemical studies of nutrient and pollutant sources, transport-transformations and mass flows in catchment areas across a range of scales, from continental, through regional and national, to individual drainage basin scales. Main findings on continental scales include correlations between country/catchment area, population and GDP and associated pollutant and nutrient loading, which differ significantly between world regions with different development levels. On regional scales, essential systematic near-coastal gaps are identified in the national monitoring of nutrient and pollutant loads from land to the sea. Combination of the unmonitored near-coastal area characteristics with the relevant regional nutrient and pollutant load correlations with these characteristics shows that the unmonitored nutrient and pollutant mass loads to the sea may often be as large as, or greater than the monitored river loads. Process studies on individual basin- scales show long-term nutrient and pollutant memories in the soil-groundwater systems of the basins, which may continue to uphold large mass loading to inland and coastal waters long time after mitigation of the sources. Linked hydro-biogeochemical-economic model studies finally demonstrate significant comparative advantages of policies that demand explicit quantitative account of the uncertainties implied by these monitoring gaps and long-term nutrient-pollution memories and time lags, and other knowledge, data and model limitations, instead of the now common neglect or subjective implicit handling of such uncertainties in strategies and practices for combating water pollution and eutrophication.

  18. 27 CFR 19.1 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ..., section, or portion of this part: Accurate mass flow meter. A mass flow meter for making volume determinations of bulk distilled spirits. A mass flow meter used for tax determination of bulk spirits must be certified by the manufacturer of the meter or other qualified person as accurate within a tolerance of plus...

  19. 27 CFR 19.1 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ..., section, or portion of this part: Accurate mass flow meter. A mass flow meter for making volume determinations of bulk distilled spirits. A mass flow meter used for tax determination of bulk spirits must be certified by the manufacturer of the meter or other qualified person as accurate within a tolerance of plus...

  20. 27 CFR 19.1 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ..., section, or portion of this part: Accurate mass flow meter. A mass flow meter for making volume determinations of bulk distilled spirits. A mass flow meter used for tax determination of bulk spirits must be certified by the manufacturer of the meter or other qualified person as accurate within a tolerance of plus...

  1. 27 CFR 19.1 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ..., section, or portion of this part: Accurate mass flow meter. A mass flow meter for making volume determinations of bulk distilled spirits. A mass flow meter used for tax determination of bulk spirits must be certified by the manufacturer of the meter or other qualified person as accurate within a tolerance of plus...

  2. Seed Cotton Mass Flow Measurement in the Gin

    USDA-ARS?s Scientific Manuscript database

    Seed cotton mass flow measurement is necessary for the development of improved gin process control systems that can increase gin efficiency and improve fiber quality. Previous studies led to the development of a seed cotton mass flow rate sensor based on the static pressure drop across the blowbox, ...

  3. The fabrication of plastic cages for suspension in mass air flow racks.

    PubMed

    Nielsen, F H; Bailey, B

    1979-08-01

    A cage for suspension in mass air flow racks was constructed of plastic and used to house rats. Little or no difficulty was encountered with the mass air flow rack-suspended cage system during the 4 years it was used for the study of trace elements.

  4. Elbow mass flow meter

    DOEpatents

    McFarland, A.R.; Rodgers, J.C.; Ortiz, C.A.; Nelson, D.C.

    1994-08-16

    The present invention includes a combination of an elbow pressure drop generator and a shunt-type mass flow sensor for providing an output which gives the mass flow rate of a gas that is nearly independent of the density of the gas. For air, the output is also approximately independent of humidity. 3 figs.

  5. Fluid mechanics in fluids at rest.

    PubMed

    Brenner, Howard

    2012-07-01

    Using readily available experimental thermophoretic particle-velocity data it is shown, contrary to current teachings, that for the case of compressible flows independent dye- and particle-tracer velocity measurements of the local fluid velocity at a point in a flowing fluid do not generally result in the same fluid velocity measure. Rather, tracer-velocity equality holds only for incompressible flows. For compressible fluids, each type of tracer is shown to monitor a fundamentally different fluid velocity, with (i) a dye (or any other such molecular-tagging scheme) measuring the fluid's mass velocity v appearing in the continuity equation and (ii) a small, physicochemically and thermally inert, macroscopic (i.e., non-Brownian), solid particle measuring the fluid's volume velocity v(v). The term "compressibility" as used here includes not only pressure effects on density, but also temperature effects thereon. (For example, owing to a liquid's generally nonzero isobaric coefficient of thermal expansion, nonisothermal liquid flows are to be regarded as compressible despite the general perception of liquids as being incompressible.) Recognition of the fact that two independent fluid velocities, mass- and volume-based, are formally required to model continuum fluid behavior impacts on the foundations of contemporary (monovelocity) fluid mechanics. Included therein are the Navier-Stokes-Fourier equations, which are now seen to apply only to incompressible fluids (a fact well-known, empirically, to experimental gas kineticists). The findings of a difference in tracer velocities heralds the introduction into fluid mechanics of a general bipartite theory of fluid mechanics, bivelocity hydrodynamics [Brenner, Int. J. Eng. Sci. 54, 67 (2012)], differing from conventional hydrodynamics in situations entailing compressible flows and reducing to conventional hydrodynamics when the flow is incompressible, while being applicable to both liquids and gases.

  6. Specifics of heat and mass transfer in spherical dimples under the effect of external factors

    NASA Astrophysics Data System (ADS)

    Shchukin, A. V.; Il'inkov, A. V.; Takmovtsev, V. V.; Khabibullin, I. I.

    2017-06-01

    The specifics are examined of heat transfer enhancement with spherical dimples under the effect of factors important for practice and characteristic of cooling systems of gas-turbine engines and power units. This experimental investigation deals with the effect of the following factors on the flow in a channel with hemispherical dimples: continuous air swirl in an annulus with dimples on its concave wall, dimples on the convex or concave wall of a curved rectangular channel, imposition of regular velocity fluctuations on the external flow in a straight rectangular channel, and adverse or favorable pressure gradient along the flow direction. The flow is turbulent. Reynolds numbers based on the channel hydraulic diameter are on the order of 104. Results of the investigation of a model of a two-cavity diffuser dimple proposed by the authors are presented. It has been found that results for channels with spherical dimples and for smooth channels differ not only quantitatively but also qualitatively. Thus, if the effect of centrifugal mass forces on convex and concave surfaces with hemispherical dimples and in a smooth channel is almost the same (quantitative and qualitative indicators are identical), the pressure gradient in the flow direction brings about the drastically opposite results. At the same time, the quantitative contribution to a change in heat transfer in hemispherical dimples is different and depends on the impact type. The results are discussed with the use of physical models created on the basis of the results of flow visualization studies and data on the turbulence intensity, pressure coefficient, etc. Results of the investigations suggest that application of spherical dimples under nonstandard conditions requires the calculated heat transfer to be corrected to account for one or another effect.

  7. Laboratory Studies and Preliminary Evaluation of Destructive Technologies for the Removal of RDX from the Water Waste Stream of Holston Army Ammunition Plan

    DTIC Science & Technology

    2010-05-01

    with electrode plates . ERDC/EL TR-10-4 29 Total Electrode Surface Area = 0.4311 m² Cathodic Surface Area = 0.2156 m² Reactor Volume = 1632 mL 35...27 Figure 15. Continuous flow electrochemical reactor packed with electrode plates . .......................... 28 Figure...Environmental Compliance (TDEC) is in the process of establishing a total maximum daily load (TMDL) that will regulate the mass of hexahydro- 1,3,5

  8. Feasibility of commercial space manufacturing, production of pharmaceuticals. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The feasibility of the commercial manufacturing of pharmaceuticals in space is examined. The method of obtaining pharmaceutical company involvement, laboratory results of the separation of serum proteins by the continuous flow electrophoresis process, the selection and study of candidate products, and their production requirements is presented. Antihemophilic factor, beta cells, erythropoietin, epidermal growth factor, alpha-1-antitrypsin and interferon were studied. Production mass balances for antihemophilic factor, beta cells, and erythropoietin were compared for space verus ground operation.

  9. Injection characteristics study of high-pressure direct injector for Compressed Natural Gas (CNG) using experimental and analytical method

    NASA Astrophysics Data System (ADS)

    Taha, Z.; Rahim, MF Abdul; Mamat, R.

    2017-10-01

    The injection characteristics of direct injector affect the mixture formation and combustion processes. In addition, the injector is converted from gasoline operation for CNG application. Thus measurement of CNG direct injector mass flow rate was done by independently tested a single injector on a test bench. The first case investigated the effect of CNG injection pressure and the second case evaluate the effect of pulse-width of injection duration. An analytical model was also developed to predict the mass flow rate of the injector. The injector was operated in a choked condition in both the experiments and simulation studies. In case 1, it was shown that mass flow rate through the injector is affected by injection pressure linearly. Based on the tested injection pressure of 20 bar to 60 bar, the resultant mass flow rate are in the range of 0.4 g/s to 1.2 g/s which are met with theoretical flow rate required by the engine. However, in Case 2, it was demonstrated that the average mass flow rate at short injection durations is lower than recorded in Case 1. At injection pressure of 50 bar, the average mass flow rate for Case 2 and Case 1 are 0.7 g/s and 1.1 g/s respectively. Also, the measured mass flow rate at short injection duration showing a fluctuating data in the range of 0.2 g/s - 1.3 g/s without any noticeable trends. The injector model able to predict the trend of the mass flow rate at different injection pressure but unable to track the fluctuating trend at short injection duration.

  10. High-precision geochronology confirms voluminous magmatism before, during, and after Earth’s most severe extinction

    PubMed Central

    Burgess, Seth D.; Bowring, Samuel A.

    2015-01-01

    The end-Permian mass extinction was the most severe in the Phanerozoic, extinguishing more than 90% of marine and 75% of terrestrial species in a maximum of 61 ± 48 ky. Because of broad temporal coincidence between the biotic crisis and one of the most voluminous continental volcanic eruptions since the origin of animals, the Siberian Traps large igneous province (LIP), a causal connection has long been suggested. Magmatism is hypothesized to have caused rapid injection of massive amounts of greenhouse gases into the atmosphere, driving climate change and subsequent destabilization of the biosphere. Establishing a causal connection between magmatism and mass extinction is critically dependent on accurately and precisely knowing the relative timing of the two events and the flux of magma. New U/Pb dates on Siberian Traps LIP lava flows, sills, and explosively erupted rocks indicate that (i) about two-thirds of the total lava/pyroclastic volume was erupted over ~300 ky, before and concurrent with the end-Permian mass extinction; (ii) eruption of the balance of lavas continued for at least 500 ky after extinction cessation; and (iii) massive emplacement of sills into the shallow crust began concomitant with the mass extinction and continued for at least 500 ky into the early Triassic. This age model is consistent with Siberian Traps LIP magmatism as a trigger for the end-Permian mass extinction and suggests a role for magmatism in suppression of post-extinction biotic recovery. PMID:26601239

  11. CFD Application to Flow-Accelerated Corrosion in Feeder Bends

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pietralik, John M.; Smith, Bruce A.W.

    2006-07-01

    Feeder piping in CANDU{sup R} plants experiences a thinning degradation mechanism called Flow-Accelerated Corrosion (FAC). The piping is made of carbon steel and has high water flow speeds. Although the water chemistry is highly alkaline with room-temperature pH in a range of 10.0-10.5, the piping has FAC rates exceeding 0.1 mm/year in some locations, e.g., in bends. One of the most important parameters affecting the FAC rate is the mass transfer coefficient for convective mass transport of ferrous ions. The ions are created at the pipe wall as a result of corrosion, diffuse through the oxide layer, and are transportedmore » from the oxide-layer/water interface to the bulk water by mass transport. Consequently, the local flow characteristics contribute to the highly turbulent convective mass transfer. Plant data and laboratory experiments indicate that the mass transfer step dominates FAC under feeder conditions. In this study, the flow and mass transfer in a feeder bend under operating conditions were simulated using the Fluent{sup TM} computer code. Because the flow speed is very high, with the Reynolds numbers in a range of several millions, and because the geometry is complex, experiments in a 1:1 scale were conducted with the main objective to validate flow simulations. The experiments measured pressure at several key locations and visualized the flow. The flow and mass transfer models were validated using available friction-factor and mass transfer correlations and literature experiments on mass transfer in a bend. The validation showed that the turbulence model that best predicts the experiments is the realizable k-{epsilon} model. Other two-equation turbulence models, as well as one-equation models and Reynolds stress models were tried. The near-wall treatment used the non-equilibrium wall functions. The wall functions were modified for surface roughness when necessary. A comparison of the local mass transfer coefficient with measured FAC rate in plant specimens shows very good agreement. Visualization experiments indicate secondary flows in the bends. No boundary layer separation was observed in experiments or in simulations. (authors)« less

  12. Effects of Mass Flow Rate on the Thermal-Flow Characteristics of Microwave CO2 Plasma.

    PubMed

    Hong, Chang-Ki; Na, Young-Ho; Uhm, Han-Sup; Kim, Youn-Jea

    2015-03-01

    In this study, the thermal-flow characteristics of atmospheric pressure microwave CO2 plasma were numerically investigated by simulation. The electric and gas flow fields in the reaction chamber with a microwave axial injection torch operated at 2.45 GHz were simulated. The microwave launcher had the standard rectangular waveguide WR340 geometry. The simulation was performed by using the COMSOL Multiphysics plasma model with various mass flow rates of CO2. The electric fields, temperature profiles and the density of electrons were graphically depicted for different CO2 inlet mass flow rates.

  13. Dynamic interaction of two-phase debris flow with pyramidal defense structures: An optimal strategy to efficiently protecting the desired area

    NASA Astrophysics Data System (ADS)

    Kattel, Parameshwari; Kafle, Jeevan; Fischer, Jan-Thomas; Mergili, Martin; Tuladhar, Bhadra Man; Pudasaini, Shiva P.

    2017-04-01

    In this work we analyze the dynamic interaction of two phase debris flows with pyramidal obstacles. To simulate the dynamic interaction of two-phase debris flow (a mixture of solid particles and viscous fluid) with obstacles of different dimensions and orientations, we employ the general two-phase mass flow model (Pudasaini, 2012). The model consists of highly non-linear partial differential equations representing the mass and momentum conservations for both solid and fluid. Besides buoyancy, the model includes some dominant physical aspects of the debris flows such as generalized drag, virtual mass and non-Newtonian viscous stress as induced by the gradient of solid-volume-fraction. Simulations are performed with high-resolution numerical schemes to capture essential dynamics, including the strongly re-directed flow with multiple stream lines, mass arrest and debris-vacuum generation when the rapidly cascading debris mass suddenly encounters the obstacle. The solid and fluid phases show fundamentally different interactions with obstacles, flow spreading and dispersions, run-out dynamics, and deposition morphology. A forward-facing pyramid deflects the mass wider, and a rearward-facing pyramid arrests a portion of solid-mass at its front. Our basic study reveals that appropriately installed obstacles, their dimensions and orientations have a significant influence on the flow dynamics, material redistribution and redirection. The precise knowledge of the change in dynamics is of great importance for the optimal and effective protection of designated areas along the mountain slopes and the runout zones. Further important results are, that specific installations lead to redirect either solid, or fluid, or both, in the desired amounts and directions. The present method of the complex interactions of real two-phase mass flows with the obstacles may help us to construct defense structures and to design advanced and physics-based engineering solutions for the prevention and mitigation of natural hazards caused by geophysical mass flows. References: Pudasaini, S. P. (2012): A general two-phase debris flow model. J. Geophys. Res. 117, F03010, doi: 10.1029/ 2011JF002186.

  14. Effect of Reynolds number on flow and mass transfer characteristics of a 90 degree elbow

    NASA Astrophysics Data System (ADS)

    Fujisawa, Nobuyuki; Ikarashi, Yuya; Yamagata, Takayuki; Taguchi, Syoichi

    2016-11-01

    The flow and mass transfer characteristics of a 90 degree elbow was studied experimentally by using the mass transfer measurement by plaster dissolution method, the surface flow visualization by oil film method and stereo PIV measurement. The experiments are carried out in a water tunnel of a circular pipe of 56mm in diameter with a working fluid of water. The Reynolds number was varied from 30000 to 200000. The experimental result indicated the change of the mass transfer coefficient distribution in the elbow with increasing the Reynolds number. This phenomenon is further examined by the surface flow visualization and measurement of secondary flow pattern in the elbow, and the results showed the suggested change of the secondary flow pattern in the elbow with increasing the Reynolds numbers.

  15. Method for the determination of lignin content of a sample by flash pyrolysis in an atmosphere of hydrogen or helium and method therefor

    NASA Technical Reports Server (NTRS)

    Shakkottai, Parthasarathy (Inventor); Kwack, Eug Y. (Inventor); Lawson, Daniel D. (Inventor)

    1991-01-01

    The lignin content of wood, paper pulp or other material containing lignin (such as filter paper soaked in black liquor) is more readily determined by flash pyrolysis of the sample at approximately 550.degree. C. in a reducing atmosphere of hydrogen or in an inert atmosphere of helium followed by a rapid analysis of the product gas by a mass spectrometer. The heated pyrolysis unit as fabricated comprises a small platinum cup welded to an electrically-heated stainless steel ribbon with control means for programmed short duration (1.5 sec, approximately) heating and means for continuous flow of hydrogen or helium. The pyrolysis products enter an electron-ionization mode mass spectrometer for spectral evaluation. Lignin content is obtained from certain ratios of integrated ion currents of many mass spectral lines, the ratios being linearly related to the Kappa number of Klason lignin.

  16. Mass balance in the monitoring of pollutants in tidal rivers of the Guanabara Bay, Rio de Janeiro, Brazil.

    PubMed

    da Silveira, Raquel Pinhão; Rodrigues, Ana Paula de Castro; Santelli, Ricardo Erthal; Cordeiro, Renato Campello; Bidone, Edison Dausacker

    2011-10-01

    This study addressed the identification and monitoring of pollution sources of terrestrial origin in rivers (domestic sewage and industrial effluents) and critical fluvial segments in highly polluted environments under tidal influence (mixing marine and continental sources) from Guanabara Bay Basin, Rio de Janeiro, Brazil. The mass balance of contaminants was determined in conditions of continuous flow (low tide) during dry season (lower dilution capability). The results allowed the evaluation of the potential of contaminant mass generation by the different river segments and the estimation of their natural and anthropogenic components. The water quality of Iguaçú and Sarapuí Rivers were evaluated for metals and biochemical oxygen demand. The method gave an excellent response, including the possibility of sources identification and contaminated river segments ranking. The approach also offers fast execution and data interpretation, being highly efficient.

  17. Mass removal modes in the laser ablation of silicon by a Q-switched diode-pumped solid-state laser (DPSSL)

    NASA Astrophysics Data System (ADS)

    Lim, Daniel J.; Ki, Hyungson; Mazumder, Jyoti

    2006-06-01

    A fundamental study on the Q-switched diode-pumped solid-state laser interaction with silicon was performed both experimentally and numerically. Single pulse drilling experiments were conducted on N-type silicon wafers by varying the laser intensity from 108-109 W cm-2 to investigate how the mass removal mechanism changes depending on the laser intensity. Hole width and depth were measured and surface morphology was studied using scanning electron microscopy. For the numerical model study, Ki et al's self-consistent continuous-wave laser drilling model (2001 J. Phys. D: Appl. Phys. 34 364-72) was modified to treat the solidification phenomenon between successive laser pulses. The model has the capabilities of simulating major interaction physics, such as melt flow, heat transfer, evaporation, homogeneous boiling, multiple reflections and surface evolution. This study presents some interesting results on how the mass removal mode changes as the laser intensity increases.

  18. Evaluation of a mass flow sensor at a gin

    USDA-ARS?s Scientific Manuscript database

    As part of a system to optimize the cotton ginning process, a custom-built mass flow sensor was evaluated at USDA-ARS Cotton Ginning Research Unit at Stoneville, Mississippi. The mass flow sensor was fabricated based on the principle of the sensor patented by Thomasson and Sui. The optical and ele...

  19. Self-regulated cooling flows in elliptical galaxies and in cluster cores - Is exclusively low mass star formation really necessary?

    NASA Technical Reports Server (NTRS)

    Silk, J.; Djorgovski, S.; Wyse, R. F. G.; Bruzual A., G.

    1986-01-01

    A self-consistent treatment of the heating by supernovae associated with star formation in a spherically symmetric cooling flow in a cluster core or elliptical galaxy is presented. An initial stellar mass function similar to that in the solar neighborhood is adopted. Inferred star-formation rates, within the cooling region - typically the inner 100 kpc around dominant galaxies at the centers of cooling flows in XD clusters - are reduced by about a factor of 2, relative to rates inferred when the heat input from star formation is ignored. Truncated initial mass functions (IMFs) are also considered, in which massive star formation is suppressed in accordance with previous treatments, and colors are predicted for star formation in cooling flows associated with central dominant elliptical galaxies and with isolated elliptical galaxies surrounded by gaseous coronae. The low inferred cooling-flow rates around isolated elliptical galaxies are found to be insensitive to the upper mass cutoff in the IMF, provided that the upper mass cutoff exceeds 2 M solar mass. Comparison with observed colors favors a cutoff in the IMF above 1 M solar mass in at least two well-studied cluster cooling flows, but a normal IMF cannot be excluded definitively. Models for NGC 1275 support a young (less than about 3 Gyr) cooling flow. As for the isolated elliptical galaxies, the spread in colors is consistent with a normal IMF. A definitive test of the IMF arising via star formation in cooling flows requires either UV spectral data or supernova searches in the cooling-flow-centered galaxies.

  20. Reconstruction of lava fields based on 3D and conventional images. Arenal volcano, Costa Rica.

    NASA Astrophysics Data System (ADS)

    Horvath, S.; Duarte, E.; Fernandez, E.

    2007-05-01

    Conventional air photographs, multi-spectral images and a map scale 1:10 000 were used to upgrade Arenal volcano's lava field. Arenal volcano located in NW Costa Rica has been active for 39 years. Fifty two days after the initial explosive events that opened three craters on the west flank, lava flows were erupted from crater A (1050 m) in September, 1968 and continued flowing until November, 1973. These lavas were the most voluminous of the eruption and the effusion rate of lava was relatively high in this period. In April, 1974 lava flows were erupted from crater C (1460 m) and continue to present time. Younger lava flows extended over uncovered ground to the south and southwest in the 1980s and early 1990s and onto the northern slopes in the 1990s and 2000s. Lava flows are becoming shorter and narrower with time. Therefore, the centre of mass of the whole lava flow-field has migrated closer to the vent. Above crater C a cone has been growing steadily, reaching a height of 1670 m, 36 m higher than the prehistoric Arenal cone by 2004. After 39 years of continuous emission of lava flows, the profile of Arenal volcano consists of a duplet of cones whose summits are separated by less than 500 meters. Most of the build up around the new cone comes from varied lava flows. For near 30 years volcano monitoring staff (from OVSICORI-UNA) has recorded field observations of regular and extraordinary events, in paper. Several drafts maps have been used for teaching, academic presentations and for graphic explanations to specific audiences and to the general public. An upgraded version was needed. The purpose of this work is to present the most recent lava flows giving a visual presentation of them by computer methods. Combined SIG techniques (Arc View 3.3) and ERDAS produced a base map in which layers containing the recorded lava flows from the recent 16 years, were depicted. Each lava flow has its own characteristics: direction, year of origin, width, length, surface texture, chemical composition, type of lava, velocity, etc. With all this information and photographs; real, visual and topographic images of the position and characters of the 1990s and 2000s lava flows, were obtained . An illustrative poster will be presented along with this abstract to show the construction process of such tool. Moreover, 3D animations will be present in the mentioned poster.

  1. Probe measures gas and liquid mass flux in high mass flow ratio two-phase flows

    NASA Technical Reports Server (NTRS)

    Burick, R. J.

    1972-01-01

    Deceleration probe constructed of two concentric tubes with separator inlet operates successfully in flow fields where ratio of droplet flow rate to gas flow rate ranges from 1.0 to 20, and eliminates problems of local flow field disturbances and flooding. Probe is effective tool for characterization of liquid droplet/gas spray fields.

  2. Effect of oxidant concentration, exposure time, and seed particles on secondary organic aerosol chemical composition and yield

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lambe, A. T.; Chhabra, P. S.; Onasch, T. B.

    We performed a systematic intercomparison study of the chemistry and yields of secondary organic aerosol (SOA) generated from OH oxidation of a common set of gas-phase precursors in a Potential Aerosol Mass (PAM) continuous flow reactor and several environmental chambers. In the flow reactor, SOA precursors were oxidized using OH concentrations ranging from 2.0 × 10 8 to 2.2 × 10 10 molec cm -3 over exposure times of 100 s. In the environmental chambers, precursors were oxidized using OH concentrations ranging from 2 × 10 6 to 2 × 10 7 molec cm -3 over exposure times of severalmore » hours. The OH concentration in the chamber experiments is close to that found in the atmosphere, but the integrated OH exposure in the flow reactor can simulate atmospheric exposure times of multiple days compared to chamber exposure times of only a day or so. In most cases, for a specific SOA type the most-oxidized chamber SOA and the least-oxidized flow reactor SOA have similar mass spectra, oxygen-to-carbon and hydrogen-to-carbon ratios, and carbon oxidation states at integrated OH exposures between approximately 1 × 10 11 and 2 × 10 11 molec cm -3 s, or about 1–2 days of equivalent atmospheric oxidation. This observation suggests that in the range of available OH exposure overlap for the flow reactor and chambers, SOA elemental composition as measured by an aerosol mass spectrometer is similar whether the precursor is exposed to low OH concentrations over long exposure times or high OH concentrations over short exposure times. This similarity in turn suggests that both in the flow reactor and in chambers, SOA chemical composition at low OH exposure is governed primarily by gas-phase OH oxidation of the precursors rather than heterogeneous oxidation of the condensed particles. In general, SOA yields measured in the flow reactor are lower than measured in chambers for the range of equivalent OH exposures that can be measured in both the flow reactor and chambers. The influence of sulfate seed particles on isoprene SOA yield measurements was examined in the flow reactor. The studies show that seed particles increase the yield of SOA produced in flow reactors by a factor of 3 to 5 and may also account in part for higher SOA yields obtained in the chambers, where seed particles are routinely used.« less

  3. Effect of oxidant concentration, exposure time, and seed particles on secondary organic aerosol chemical composition and yield

    DOE PAGES

    Lambe, A. T.; Chhabra, P. S.; Onasch, T. B.; ...

    2015-03-18

    We performed a systematic intercomparison study of the chemistry and yields of secondary organic aerosol (SOA) generated from OH oxidation of a common set of gas-phase precursors in a Potential Aerosol Mass (PAM) continuous flow reactor and several environmental chambers. In the flow reactor, SOA precursors were oxidized using OH concentrations ranging from 2.0 × 10 8 to 2.2 × 10 10 molec cm -3 over exposure times of 100 s. In the environmental chambers, precursors were oxidized using OH concentrations ranging from 2 × 10 6 to 2 × 10 7 molec cm -3 over exposure times of severalmore » hours. The OH concentration in the chamber experiments is close to that found in the atmosphere, but the integrated OH exposure in the flow reactor can simulate atmospheric exposure times of multiple days compared to chamber exposure times of only a day or so. In most cases, for a specific SOA type the most-oxidized chamber SOA and the least-oxidized flow reactor SOA have similar mass spectra, oxygen-to-carbon and hydrogen-to-carbon ratios, and carbon oxidation states at integrated OH exposures between approximately 1 × 10 11 and 2 × 10 11 molec cm -3 s, or about 1–2 days of equivalent atmospheric oxidation. This observation suggests that in the range of available OH exposure overlap for the flow reactor and chambers, SOA elemental composition as measured by an aerosol mass spectrometer is similar whether the precursor is exposed to low OH concentrations over long exposure times or high OH concentrations over short exposure times. This similarity in turn suggests that both in the flow reactor and in chambers, SOA chemical composition at low OH exposure is governed primarily by gas-phase OH oxidation of the precursors rather than heterogeneous oxidation of the condensed particles. In general, SOA yields measured in the flow reactor are lower than measured in chambers for the range of equivalent OH exposures that can be measured in both the flow reactor and chambers. The influence of sulfate seed particles on isoprene SOA yield measurements was examined in the flow reactor. The studies show that seed particles increase the yield of SOA produced in flow reactors by a factor of 3 to 5 and may also account in part for higher SOA yields obtained in the chambers, where seed particles are routinely used.« less

  4. Static Flow Characteristics of a Mass Flow Injecting Valve

    NASA Technical Reports Server (NTRS)

    Mattern, Duane; Paxson, Dan

    1995-01-01

    A sleeve valve is under development for ground-based forced response testing of air compression systems. This valve will be used to inject air and to impart momentum to the flow inside the first stage of a multi-stage compressor. The valve was designed to deliver a maximum mass flow of 0.22 lbm/s (0.1 kg/s) with a maximum valve throat area of 0.12 sq. in (80 sq. mm), a 100 psid (689 KPA) pressure difference across the valve and a 68 F, (20 C) air supply. It was assumed that the valve mass flow rate would be proportional to the valve orifice area. A static flow calibration revealed a nonlinear valve orifice area to mass flow relationship which limits the maximum flow rate that the valve can deliver. This nonlinearity was found to be caused by multiple choking points in the flow path. A simple model was used to explain this nonlinearity and the model was compared to the static flow calibration data. Only steady flow data is presented here. In this report, the static flow characteristics of a proportionally controlled sleeve valve are modelled and validated against experimental data.

  5. Solids mass flow determination

    DOEpatents

    Macko, Joseph E.

    1981-01-01

    Method and apparatus for determining the mass flow rate of solids mixed with a transport fluid to form a flowing mixture. A temperature differential is established between the solids and fluid. The temperature of the transport fluid prior to mixing, the temperature of the solids prior to mixing, and the equilibrium temperature of the mixture are monitored and correlated in a heat balance with the heat capacities of the solids and fluid to determine the solids mass flow rate.

  6. On the possibility of control restoration in some inverse problems of heat and mass transfer

    NASA Astrophysics Data System (ADS)

    Bilchenko, G. G.; Bilchenko, N. G.

    2016-11-01

    The hypersonic aircraft permeable surfaces effective heat protection problems are considered. The physic-chemical processes (the dissociation and the ionization) in laminar boundary layer of compressible gas are appreciated in mathematical model. The statements of direct problems of heat and mass transfer are given: according to preset given controls it is necessary to compute the boundary layer mathematical model parameters and determinate the local and total heat flows and friction forces and the power of blowing system. The A.A.Dorodnicyn's generalized integral relations method has been used as calculation basis. The optimal control - the blowing into boundary layer (for continuous functions) was constructed as the solution of direct problem in extreme statement with the use of this approach. The statement of inverse problems are given: the control laws ensuring the preset given local heat flow and local tangent friction are restored. The differences between the interpolation and the approximation statements are discussed. The possibility of unique control restoration is established and proved (in the stagnation point). The computational experiments results are presented.

  7. Novel Shear-horizontal Surface Acoustic Wave Based Immunosensors Using SiO2Waveguiding Layers And Flow Injection Analysis.

    PubMed

    Guo, X S; Chen, Y Q; Yang, X L; Wang, L R

    2005-01-01

    Surface acoustic wave (SAW) devices based on shear-horizontal (SH) waves can be used as mass-sensitive immunosensors. This paper presents a novel SH-SAW sensor to detect anti-immunoglobulin (IgG) molecules by means of the antibody-antigen binding mechanism. The sensor system comprising dual delay lines was fabricated on 36° Y-X LiTaO3substrate. A SiO2layer was used as love mode waveguiding layers, well as insulating and chemically resistant protective layer. Moreover, flow injection analysis (FIA) method was used for continuous detection the protein molecules. The protein A was immobilized on the optional surface of the gold layer, then coupled with IgG to adsorb the antigens to be measured in the protein solution. The operational frequency of the system changed due to the interaction of antibody-antigen binding. The experimental result demonstrates the sensor has stable frequency response to the mass loading effect of the various anti-IgG concentrations with the sensitivity up to 3.3ng/ml/Hz.

  8. Rapid Evaporation of Binary Mixture Injections

    NASA Astrophysics Data System (ADS)

    McCahan, S.; Kessler, C.

    1998-11-01

    When a fuel under pressure is heated above its normal boiling point and expanded through a nozzle into atmospheric conditions, rapid evaporation can occur. The resulting sprays typically exhibit increased atomization and shorter liquid penetration lengths. When heavy fuels with high specific heats are used, complete evaporation is theoretically possible. This is a continuation of work done by Sloss and McCahan (APS/DFD meeting 1996), in which dodecane, fuel oil, kerosene, and diesel oil were studied, and McCahan and Kessler (APS/DFD meeting 1997), in which preliminary results were presented on decane and tetradecane. At a pressure of 10 bar, the working fluid (decane/tetradecane mixture) is preheated to temperatures ranging from room temperature to the decane saturation temperature and then expanded through a simple converging nozzle into a chamber at 1 bar. From the photographic and mass flow rate data, the effect of degree of superheat on the spray cone angle and mass flow rate is observed. Results show that the addition of a heavier hydrocarbon has the expected damping effects on the spray characteristics.

  9. Exploring the Effects of Atmospheric Forcings on Evaporation: Experimental Integration of the Atmospheric Boundary Layer and Shallow Subsurface

    PubMed Central

    Smits, Kathleen; Eagen, Victoria; Trautz, Andrew

    2015-01-01

    Evaporation is directly influenced by the interactions between the atmosphere, land surface and soil subsurface. This work aims to experimentally study evaporation under various surface boundary conditions to improve our current understanding and characterization of this multiphase phenomenon as well as to validate numerical heat and mass transfer theories that couple Navier-Stokes flow in the atmosphere and Darcian flow in the porous media. Experimental data were collected using a unique soil tank apparatus interfaced with a small climate controlled wind tunnel. The experimental apparatus was instrumented with a suite of state of the art sensor technologies for the continuous and autonomous collection of soil moisture, soil thermal properties, soil and air temperature, relative humidity, and wind speed. This experimental apparatus can be used to generate data under well controlled boundary conditions, allowing for better control and gathering of accurate data at scales of interest not feasible in the field. Induced airflow at several distinct wind speeds over the soil surface resulted in unique behavior of heat and mass transfer during the different evaporative stages. PMID:26131928

  10. Development of Cellular Absorptive Tracers (CATs) for a Quantitative Characterization of Microbial Mass in Flow Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saripalli, Prasad; Brown, Christopher F.; Lindberg, Michael J.

    We report on a new Cellular Absorptive Tracers (CATs) method, for a simple, non-destructive characterization of bacterial mass in flow systems. Results show that adsorption of a CAT molecule into the cellular mass results in its retardation during flow, which is a good, quantitative measure of the biomass quantity and distribution. No such methods are currently available for a quantitative characterization of cell mass.

  11. Pressure Recovery, Drag, and Subcritical Stability Characteristics of Three Conical Supersonic Diffusers at Stream Mach Numbers from 1.7 to 2.0

    NASA Technical Reports Server (NTRS)

    Nussdorfer, Theodore J; Obery, Leonard J; Englert, Gerald W

    1952-01-01

    A study of a 20 degree and a 25 degree half-angle high mass-flow ratio conical supersonic inlet was made on a 16-inch ram jet in the 8- by 6-foot supersonic tunnel. A greater range of stable subcritical operation was obtained with the low mass-flow ratio inlets; a greater range was obtained with the 25 degree than with the 20 degree half-angle low mass-flow ratio inlet. The high mass-flow ratio inlet had the least drag.

  12. Design with constructal theory: Steam generators, turbines and heat exchangers

    NASA Astrophysics Data System (ADS)

    Kim, Yong Sung

    This dissertation shows that the architecture of steam generators, steam turbines and heat exchangers for power plants can be predicted on the basis of the constructal law. According to constructal theory, the flow architecture emerges such that it provides progressively greater access to its currents. Each chapter shows how constructal theory guides the generation of designs in pursuit of higher performance. Chapter two shows the tube diameters, the number of riser tubes, the water circulation rate and the rate of steam production are determined by maximizing the heat transfer rate from hot gases to riser tubes and minimizing the global flow resistance under the fixed volume constraint. Chapter three shows how the optimal spacing between adjacent tubes, the number of tubes for the downcomer and the riser and the location of the flow reversal for the continuous steam generator are determined by the intersection of asymptotes method, and by minimizing the flow resistance under the fixed volume constraints. Chapter four shows that the mass inventory for steam turbines can be distributed between high pressure and low pressure turbines such that the global performance of the power plant is maximal under the total mass constraint. Chapter five presents the more general configuration of a two-stream heat exchanger with forced convection of the hot side and natural circulation on the cold side. Chapter six demonstrates that segmenting a tube with condensation on the outer surface leads to a smaller thermal resistance, and generates design criteria for the performance of multi-tube designs.

  13. Accounting for the Effect of Noncondensing Gases on Interphasic Heat and Mass Transfer in the Two-Fluid Model Used in the KORSAR Code

    NASA Astrophysics Data System (ADS)

    Yudov, Yu. V.

    2018-03-01

    A model is presented of the interphasic heat and mass transfer in the presence of noncondensable gases for the KORSAR/GP design code. This code was developed by FGUP NITI and the special design bureau OKB Gidropress. It was certified by Rostekhnadzor in 2009 for numerical substantiation of the safety of reactor installations with VVER reactors. The model is based on the assumption that there are three types of interphasic heat and mass transfer of the vapor component: vapor condensation or evaporation on the interphase under any thermodynamic conditions of the phases, pool boiling of the liquid superheated above the saturation temperature at the total pressure, and spontaneous condensation in the volume of gas phase supercooled below the saturation temperature at the vapor partial pressure. Condensation and evaporation on the interphase continuously occur in a two-phase flow and control the time response of the interphase heat and mass transfer. Boiling and spontaneous condensation take place only at the metastable condition of the phases and run at a quite high speed. The procedure used for calculating condensation and evaporation on the interphase accounts for the combined diffusion and thermal resistance of mass transfer in all regimes of the two-phase flow. The proposed approach accounts for, in a natural manner, a decrease in the rate of steam condensation (or generation) in the presence of noncondensing components in the gas phase due to a decrease (or increase) in the interphase temperature relative to the saturation temperature at the vapor partial pressure. The model of the interphase heat transfer also accounts for the processes of dissolution or release of noncondensing components in or from the liquid. The gas concentration at the interphase and on the saturation curve is calculated by the Henry law. The mass transfer coefficient in gas dissolution is based on the heat and mass transfer analogy. Results are presented of the verification of the interphase heat and mass transfer used in the KORSAR/GP code based on the data on film condensation of steam-air flows in vertical pipes. The proposed model was also tested by solving a problem of nitrogen release from a supersaturated water solution.

  14. Model Scramjet Inlet Unstart Induced by Mass Addition and Heat Release

    NASA Astrophysics Data System (ADS)

    Im, Seong-Kyun; Baccarella, Damiano; McGann, Brendan; Liu, Qili; Wermer, Lydiy; Do, Hyungrok

    2015-11-01

    The inlet unstart phenomena in a model scramjet are investigated at an arc-heated hypersonic wind tunnel. The unstart induced by nitrogen or ethylene jets at low or high enthalpy Mach 4.5 freestream flow conditions are compared. The jet injection pressurizes the downstream flow by mass addition and flow blockage. In case of the ethylene jet injection, heat release from combustion increases the backpressure further. Time-resolved schlieren imaging is performed at the jet and the lip of the model inlet to visualize the flow features during unstart. High frequency pressure measurements are used to provide information on pressure fluctuation at the scramjet wall. In both of the mass and heat release driven unstart cases, it is observed that there are similar flow transient and quasi-steady behaviors of unstart shockwave system during the unstart processes. Combustion driven unstart induces severe oscillatory flow motions of the jet and the unstart shock at the lip of the scramjet inlet after the completion of the unstart process, while the unstarted flow induced by solely mass addition remains relatively steady. The discrepancies between the processes of mass and heat release driven unstart are explained by flow choking mechanism.

  15. Mass transfer in thin films under counter-current gas: experiments and numerical study

    NASA Astrophysics Data System (ADS)

    Lucquiaud, Mathieu; Lavalle, Gianluca; Schmidt, Patrick; Ausner, Ilja; Wehrli, Marc; O Naraigh, Lennon; Valluri, Prashant

    2016-11-01

    Mass transfer in liquid-gas stratified flows is strongly affected by the waviness of the interface. For reactive flows, the chemical reactions occurring at the liquid-gas interface also influence the mass transfer rate. This is encountered in several technological applications, such as absorption units for carbon capture. We investigate the absorption rate of carbon dioxide in a liquid solution. The experimental set-up consists of a vertical channel where a falling film is sheared by a counter-current gas flow. We measure the absorption occurring at different flow conditions, by changing the liquid solution, the liquid flow rate and the gas composition. With the aim to support the experimental results with numerical simulations, we implement in our level-set flow solver a novel module for mass transfer taking into account a variant of the ghost-fluid formalism. We firstly validate the pure mass transfer case with and without hydrodynamics by comparing the species concentration in the bulk flow to the analytical solution. In a final stage, we analyse the absorption rate in reactive flows, and try to reproduce the experimental results by means of numerical simulations to explore the active role of the waves at the interface.

  16. Coupled SPH-FV method with net vorticity and mass transfer

    NASA Astrophysics Data System (ADS)

    Chiron, L.; Marrone, S.; Di Mascio, A.; Le Touzé, D.

    2018-07-01

    Recently, an algorithm for coupling a Finite Volume (FV) method, that discretize the Navier-Stokes equations on block structured Eulerian grids, with the weakly-compressible Lagrangian Smoothed Particle Hydrodynamics (SPH) was presented in [16]. The algorithm takes advantage of the SPH method to discretize flow regions close to free-surfaces and of the FV method to resolve the bulk flow and the wall regions. The continuity between the two solutions is guaranteed by overlapping zones. Here we extend the algorithm by adding the possibility to have: 1) net mass transfer between the SPH and FV sub-domains; 2) free-surface across the overlapping region. In this context, particle generation at common boundaries is required to prevent depletion or clustering of particles. This operation is not trivial, because consistency between the Lagrangian and Eulerian description of the flow must be retained to ensure mass conservation. We propose here a new coupling paradigm that extends the algorithm developed in [16] and renders it suitable to test cases where vorticity and free surface significantly pass from one domain to the other. On the SPH side, a novel technique for the creation/deletion of particle was developed. On the FV side, the information recovered from the SPH solver are exploited to improve free surface prediction in a fashion that resemble the Particle Level-Set algorithms. The combination of the two new features was tested and validated in a number of test cases where both vorticity and front evolution are important. Convergence and robustness of the algorithm are shown.

  17. Effects of Distortion on Mass Flow Plug Calibration

    NASA Technical Reports Server (NTRS)

    Sasson, Jonathan; Davis, David O.; Barnhart, Paul J.

    2015-01-01

    A numerical, and experimental investigation to study the effects of flow distortion on a Mass Flow Plug (MFP) used to control and measure mass-flow during an inlet test has been conducted. The MFP was first calibrated using the WIND-US flow solver for uniform (undistorted) inflow conditions. These results are shown to compare favorably with an experimental calibration under similar conditions. The effects of distortion were investigated by imposing distorted flow conditions taken from an actual inlet test to the inflow plane of the numerical simulation. The computational fluid dynamic (CFD) based distortion study only showed the general trend in mass flow rate. The study used only total pressure as the upstream boundary condition, which was not enough to define the flow. A better simulation requires knowledge of the turbulence structure and a specific distortion pattern over a range of plug positions. It is recommended that future distortion studies utilize a rake with at least the same amount of pitot tubes as the AIP rake.

  18. 40 CFR Table 5 to Subpart Ppp of... - Process Vents From Batch Unit Operations-Monitoring, Recordkeeping, and Reporting Requirements

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Carbon Adsorber f Total regeneration stream mass or volumetric flow during carbon bed regeneration cycle(s), and 1. Record of total regeneration stream mass or volumetric flow for each carbon bed regeneration cycle.2. Record and report the total regeneration stream mass or volumetric flow during each...

  19. 40 CFR Table 5 to Subpart Ppp of... - Process Vents From Batch Unit Operations-Monitoring, Recordkeeping, and Reporting Requirements

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Carbon Adsorber f Total regeneration stream mass or volumetric flow during carbon bed regeneration cycle(s), and 1. Record of total regeneration stream mass or volumetric flow for each carbon bed regeneration cycle.2. Record and report the total regeneration stream mass or volumetric flow during each...

  20. 40 CFR Table 5 to Subpart Ppp of... - Process Vents From Batch Unit Operations-Monitoring, Recordkeeping, and Reporting Requirements

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Carbon Adsorber f Total regeneration stream mass or volumetric flow during carbon bed regeneration cycle(s), and 1. Record of total regeneration stream mass or volumetric flow for each carbon bed regeneration cycle.2. Record and report the total regeneration stream mass or volumetric flow during each...

  1. Evaluation of an experimental mass-flow sensor of cotton-lint at the gin

    USDA-ARS?s Scientific Manuscript database

    As part of a system to optimize the cotton ginning process, a custom built mass-flow sensor was evaluated at USDA-ARS Cotton Ginning Research Unit at Stoneville, Mississippi. The mass-flow sensor was fabricated based on the principle of the senor patented by Thomasson and Sui (2004). The optical a...

  2. Mass transfer from a sphere in an oscillating flow with zero mean velocity

    NASA Technical Reports Server (NTRS)

    Drummond, Colin K.; Lyman, Frederic A.

    1990-01-01

    A pseudospectral numerical method is used for the solution of the Navier-Stokes and mass transport equations for a sphere in a sinusoidally oscillating flow with zero mean velocity. The flow is assumed laminar and axisymmetric about the sphere's polar axis. Oscillating flow results were obtained for Reynolds numbers (based on the free-stream oscillatory flow amplitude) between 1 and 150, and Strouhal numbers between 1 and 1000. Sherwood numbers were computed and their dependency on the flow frequency and amplitude discussed. An assessment of the validity of the quasi-steady assumption for mass transfer is based on these results.

  3. Bayes to the Rescue: Continuous Positive Airway Pressure Has Less Mortality Than High-Flow Oxygen.

    PubMed

    Modesto I Alapont, Vicent; Khemani, Robinder G; Medina, Alberto; Del Villar Guerra, Pablo; Molina Cambra, Alfred

    2017-02-01

    The merits of high-flow nasal cannula oxygen versus bubble continuous positive airway pressure are debated in children with pneumonia, with suggestions that randomized controlled trials are needed. In light of a previous randomized controlled trial showing a trend for lower mortality with bubble continuous positive airway pressure, we sought to determine the probability that a new randomized controlled trial would find high-flow nasal cannula oxygen superior to bubble continuous positive airway pressure through a "robust" Bayesian analysis. Sample data were extracted from the trial by Chisti et al, and requisite to "robust" Bayesian analysis, we specified three prior distributions to represent clinically meaningful assumptions. These priors (reference, pessimistic, and optimistic) were used to generate three scenarios to represent the range of possible hypotheses. 1) "Reference": we believe bubble continuous positive airway pressure and high-flow nasal cannula oxygen are equally effective with the same uninformative reference priors; 2) "Sceptic on high-flow nasal cannula oxygen": we believe that bubble continuous positive airway pressure is better than high-flow nasal cannula oxygen (bubble continuous positive airway pressure has an optimistic prior and high-flow nasal cannula oxygen has a pessimistic prior); and 3) "Enthusiastic on high-flow nasal cannula oxygen": we believe that high-flow nasal cannula oxygen is better than bubble continuous positive airway pressure (high-flow nasal cannula oxygen has an optimistic prior and bubble continuous positive airway pressure has a pessimistic prior). Finally, posterior empiric Bayesian distributions were obtained through 100,000 Markov Chain Monte Carlo simulations. In all three scenarios, there was a high probability for more death from high-flow nasal cannula oxygen compared with bubble continuous positive airway pressure (reference, 0.98; sceptic on high-flow nasal cannula oxygen, 0.982; enthusiastic on high-flow nasal cannula oxygen, 0.742). The posterior 95% credible interval on the difference in mortality identified a future randomized controlled trial would be extremely unlikely to find a mortality benefit for high-flow nasal cannula oxygen over bubble continuous positive airway pressure, regardless of the scenario. Interpreting these findings using the "range of practical equivalence" framework would recommend rejecting the hypothesis that high-flow nasal cannula oxygen is superior to bubble continuous positive airway pressure for these children. For children younger than 5 years with pneumonia, high-flow nasal cannula oxygen has higher mortality than bubble continuous positive airway pressure. A future randomized controlled trial in this population is unlikely to find high-flow nasal cannula oxygen superior to bubble continuous positive airway pressure.

  4. A theoretical and experimental study of turbulent evaporating sprays

    NASA Technical Reports Server (NTRS)

    Solomon, A. S. P.; Shuen, J. S.; Zhang, Q. F.; Faeth, G. M.

    1984-01-01

    Measurements and analysis limited to the dilute portions of turbulent evaporating sprays, injected into a still air environment were completed. Mean and fluctuating velocities and Reynolds stress were measured in the continuous phase. Liquid phase measurements included liquid mass fluxes, drop sizes and drop size and velocity correlation. Initial conditions needed for model evaluation were measured at a location as close to the injector exit as possible. The test sprays showed significant effects of slip and turbulent dispersion of the discrete phase. The measurements were used to evaluate three typical models of these processes: (1) a locally homogeneous flow (LHF) model, where slip between the phases were neglected; (2) a deterministic separated flow (DSF) model, where slip was considered but effects of drop dispersion by turbulence were ignored; and (3) a stochastic separated flow (SSF) model, where effects of interphase slip and turbulent dispersion were considered using random-walk computations for drop motion. For all three models, a k-epsilon model as used to find the properties of the continuous phase. The LHF and DSF models did not provide very satisfactory predictions for the present measurements. In contrast, the SSF model performed reasonably well--with no modifications in the prescription of eddy properties from its original calibration.

  5. Direct molecular diffusion and micro-mixing for rapid dewatering of LiBr solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bigham, S; Isfahani, RN; Moghaddam, S

    2014-03-01

    A slow molecular diffusion rate often limits the desorption process of an absorbate molecule from a liquid absorbent. To enhance the desorption rate, the absorbent is often boiled to increase the liquid vapor interfacial area. However, the growth of bubbles generated during the nucleate boiling process still remains mass-diffusion limited. Here, it is shown that a desorption rate higher than that of boiling can be achieved, if the vapor absorbent interface is continuously replenished with the absorbate-rich solution to limit the concentration boundary layer growth. The study is conducted in a LiBr-water-solution, in which the water molecules' diffusion rate ismore » quite slow. The manipulation of the vapor solution interface concentration distribution is enabled by the mechanical confinement of the solution flow within microchannels, using a hydrophobic vapor-venting membrane and the implementation of microstructures on the flow channel's bottom wall. The microstructures stretch and fold the laminar streamlines within the solution film and produce vortices. The vortices continuously replace the concentrated solution at the vapor solution interface with the water-rich solution brought from the bottom and middle of the flow channel. The physics of the process is described using a combination of experimental and numerical studies. Published by Elsevier Ltd.« less

  6. Optimal Micro-Jet Flow Control for Compact Air Vehicle Inlets

    NASA Technical Reports Server (NTRS)

    Anderson, Bernhard H.; Miller, Daniel N.; Addington, Gregory A.; Agrell, Johan

    2004-01-01

    The purpose of this study on micro-jet secondary flow control is to demonstrate the viability and economy of Response Surface Methodology (RSM) to optimally design micro-jet secondary flow control arrays, and to establish that the aeromechanical effects of engine face distortion can also be included in the design and optimization process. These statistical design concepts were used to investigate the design characteristics of "low mass" micro-jet array designs. The term "low mass" micro-jet may refers to fluidic jets with total (integrated) mass flow ratios between 0.10 and 1.0 percent of the engine face mass flow. Therefore, this report examines optimal micro-jet array designs for compact inlets through a Response Surface Methodology.

  7. Fine PM measurements: personal and indoor air monitoring.

    PubMed

    Jantunen, M; Hänninen, O; Koistinen, K; Hashim, J H

    2002-12-01

    This review compiles personal and indoor microenvironment particulate matter (PM) monitoring needs from recently set research objectives, most importantly the NRC published "Research Priorities for Airborne Particulate Matter (1998)". Techniques and equipment used to monitor PM personal exposures and microenvironment concentrations and the constituents of the sampled PM during the last 20 years are then reviewed. Development objectives are set and discussed for personal and microenvironment PM samplers and monitors, for filter materials, and analytical laboratory techniques for equipment calibration, filter weighing and laboratory climate control. The progress is leading towards smaller sample flows, lighter, silent, independent (battery powered) monitors with data logging capacity to store microenvironment or activity relevant sensor data, advanced flow controls and continuous recording of the concentration. The best filters are non-hygroscopic, chemically pure and inert, and physically robust against mechanical wear. Semiautomatic and primary standard equivalent positive displacement flow meters are replacing the less accurate methods in flow calibration, and also personal sampling flow rates should become mass flow controlled (with or without volumetric compensation for pressure and temperature changes). In the weighing laboratory the alternatives are climatic control (set temperature and relative humidity), and mechanically simpler thermostatic heating, air conditioning and dehumidification systems combined with numerical control of temperature, humidity and pressure effects on flow calibration and filter weighing.

  8. A Review of Flow Analysis Methods for Determination of Radionuclides in Nuclear Wastes and Nuclear Reactor Coolants

    DOE PAGES

    Trojanowicz, Marek; Kolacinska, Kamila; Grate, Jay W.

    2018-02-13

    Here, the safety and security of nuclear power plant operations depend on the application of the most appropriate techniques and methods of chemical analysis, where modern flow analysis methods prevail. Nevertheless, the current status of the development of these methods is more limited than it might be expected based on their genuine advantages. The main aim of this paper is to review the automated flow analysis procedures developed with various detection methods for the nuclear energy industry. The flow analysis methods for the determination of radionuclides, that have been reported to date, are primarily focused on their environmental applications. Themore » benefits of the application of flow methods in both monitoring of the nuclear wastes and process analysis of the primary circuit coolants of light water nuclear reactors will also be discussed. The application of either continuous flow methods (CFA) or injection methods (FIA, SIA) of the flow analysis with the β–radiometric detection shortens the analysis time and improves the precision of determination due to mechanization of certain time-consuming operations of the sample processing. Compared to the radiometric detection, the mass spectrometry (MS) detection enables one to perform multicomponent analyses as well as the determination of transuranic isotopes with much better limits of detection.« less

  9. A Review of Flow Analysis Methods for Determination of Radionuclides in Nuclear Wastes and Nuclear Reactor Coolants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trojanowicz, Marek; Kolacinska, Kamila; Grate, Jay W.

    Here, the safety and security of nuclear power plant operations depend on the application of the most appropriate techniques and methods of chemical analysis, where modern flow analysis methods prevail. Nevertheless, the current status of the development of these methods is more limited than it might be expected based on their genuine advantages. The main aim of this paper is to review the automated flow analysis procedures developed with various detection methods for the nuclear energy industry. The flow analysis methods for the determination of radionuclides, that have been reported to date, are primarily focused on their environmental applications. Themore » benefits of the application of flow methods in both monitoring of the nuclear wastes and process analysis of the primary circuit coolants of light water nuclear reactors will also be discussed. The application of either continuous flow methods (CFA) or injection methods (FIA, SIA) of the flow analysis with the β–radiometric detection shortens the analysis time and improves the precision of determination due to mechanization of certain time-consuming operations of the sample processing. Compared to the radiometric detection, the mass spectrometry (MS) detection enables one to perform multicomponent analyses as well as the determination of transuranic isotopes with much better limits of detection.« less

  10. A review of flow analysis methods for determination of radionuclides in nuclear wastes and nuclear reactor coolants.

    PubMed

    Trojanowicz, Marek; Kołacińska, Kamila; Grate, Jay W

    2018-06-01

    The safety and security of nuclear power plant operations depend on the application of the most appropriate techniques and methods of chemical analysis, where modern flow analysis methods prevail. Nevertheless, the current status of the development of these methods is more limited than it might be expected based on their genuine advantages. The main aim of this paper is to review the automated flow analysis procedures developed with various detection methods for the nuclear energy industry. The flow analysis methods for the determination of radionuclides, that have been reported to date, are primarily focused on their environmental applications. The benefits of the application of flow methods in both monitoring of the nuclear wastes and process analysis of the primary circuit coolants of light water nuclear reactors will also be discussed. The application of either continuous flow methods (CFA) or injection methods (FIA, SIA) of the flow analysis with the β-radiometric detection shortens the analysis time and improves the precision of determination due to mechanization of certain time-consuming operations of the sample processing. Compared to the radiometric detection, the mass spectrometry (MS) detection enables one to perform multicomponent analyses as well as the determination of transuranic isotopes with much better limits of detection. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Analysis of glycerophosphocholine molecular species as derivatives of 7-[(chlorocarbonyl)-methoxy]-4-methylcoumarin.

    PubMed

    Wheelan, P; Zirrolli, J A; Clay, K L

    1992-01-01

    A method has been developed for the analysis of derivatized diradylglycerols obtained from glycerophosphocholine (GPC) of transformed murine bone marrow-derived mast cells that provided high performance liquid chromatography (HPLC) separation of GPC subclasses and molecular species separation with on-line quantitation using UV detection. In addition, the derivatized diradylglycerol species were unequivocably identified by continuous flow fast-atom bombardment mass spectrometry. GPC was initially isolated by thin-layer chromatography (TLC), the phosphocholine group was hydrolyzed, and the resultant diradylglycerol was derivatized with 7-[(chlorocarbonyl)-methoxy]-4-methylcoumarin (CMMC). After separation of the derivatized subclasses by normal phase HPLC, the individual molecular species of the alkylacyl and diacyl subclasses were quantitated and collected during a subsequent reverse phase HPLC step. With an extinction coefficient of 14,700 l mol-1 cm-1 at a wavelength detection of 320 nm, the CMMC derivatives afforded sensitive UV detection (100 pmol) and quantitation of the molecular species. Continuous flow fast-atom bombardment mass spectrometry of the alkylacyl CMMC derivatives yielded abundant [MH]+ ions and a single fragment ion formed by loss of alkylketene from the sn-2 acyl group, [MH-(R = C = O)]+. No fragmentation of the sn-1 alkyl chain was observed. Diacyl derivatives also produced abundant [MH]+ ions plus two fragment ions arising from loss of RCOOH from each of the acyl substituents and two fragment ions from the loss of alkyketene from each acyl group. Individual molecular species substituents were assigned from these ions.

  12. Fluoride removal from water using a magnesia-pullulan composite in a continuous fixed-bed column.

    PubMed

    Ye, Yuanyao; Yang, Jing; Jiang, Wei; Kang, Jianxiong; Hu, Ying; Ngo, Huu Hao; Guo, Wenshan; Liu, Yiwen

    2018-01-15

    A magnesia-pullulan composite (MgOP) was previously shown to effectively remove fluoride from water. In the present study, a continuous fixed-bed column was used to examine the application of the composite at an industrial scale. The influencing parameters included bed mass (4.0, 6.0 and 8.0 g), influent flow rate (8, 16 and 32 mL/min), inlet fluoride concentration (5, 10 and 20 mg/L), reaction temperature (20, 30 and 40 °C), influent pH (4, 7 and 10) and other existing anions (HCO 3 - , SO 4 2- , Cl - and NO 3 - ), through which the breakthrough curves could be depicted for the experimental data analysis. The results indicated that MgOP is promising for fluoride removal with a defluoridation capacity of 16.6 mg/g at the bed mass of 6.0 g, influent flow rate of 16 mL/min and inlet fluoride concentration of 10 mg/L. The dynamics of the fluoride adsorption process were modeled using the Thomas and Yan models, in which the Yan model presented better predictions for the breakthrough curves than the Thomas model. Moreover, the concentration of magnesium in the effluent was monitored to determine Mg stability in the MgOP composite. Results indicated the effluent concentration of Mg 2+ ions could be kept at a safe level. Calcination of fluoride-loaded MgOP effectively regenerated the material. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Mass and energy flow in prominences

    NASA Technical Reports Server (NTRS)

    Poland, Arthur I.

    1990-01-01

    Mass and energy flow in quiescent prominences is considered based on the hypothesis that active region prominences have a different structure and thus different mass and energy flow characteristics. Several important physical parameters have been plotted using the computational model, representing the evolutionary process after the prominence formation. The temperature, velocity, conductive flux, and enthalpy flux are plotted against distance from the highest point in the loop to the coolest part of the prominence. It is shown that the maximum velocity is only about 5 km/s. The model calculations indicate that the transition region of prominences is dominated by complex processes. It is necessary to take into account mass flow at temperatures below 200,000 K, and both mass flow and optical depth effects in hydrogen at temperatures below 30,000 K. Both of these effects lead to a less steep temperature gradient through the prominence corona interface than can be obtained from the conduction alone.

  14. Numerical study of heat transfer characteristics in BOG heat exchanger

    NASA Astrophysics Data System (ADS)

    Yan, Yan; Pfotenhauer, John M.; Miller, Franklin; Ni, Zhonghua; Zhi, Xiaoqin

    2016-12-01

    In this study, a numerical study of turbulent flow and the heat transfer process in a boil-off liquefied natural gas (BOG) heat exchanger was performed. Finite volume computational fluid dynamics and the k - ω based shear stress transport model were applied to simulate thermal flow of BOG and ethylene glycol in a full-sized 3D tubular heat exchanger. The simulation model has been validated and compared with the engineering specification data from its supplier. In order to investigate thermal characteristics of the heat exchanger, velocity, temperature, heat flux and thermal response were studied under different mass flowrates in the shell-side. The shell-side flow pattern is mostly determined by viscous forces, which lead to a small velocity and low temperature buffer area in the bottom-right corner of the heat exchanger. Changing the shell-side mass flowrate could result in different distributions of the shell-side flow. However, the distribution in the BOG will remain in a relatively stable pattern. Heat flux increases along with the shell-side mass flowrate, but the increase is not linear. The ratio of increased heat flux to the mass flow interval is superior at lower mass flow conditions, and the threshold mass flow for stable working conditions is defined as greater than 0.41 kg/s.

  15. Effects of Heat Flux, Oxygen Concentration and Glass Fiber Volume Fraction on Pyrolysate Mass Flux from Composite Solids

    NASA Technical Reports Server (NTRS)

    Rich, D. B.; Lautenberger, C. W.; Yuan, Z.; Fernandez-Pello, A. C.

    2004-01-01

    Experimental work on the effects of heat flux, oxygen concentration and glass fiber volume fraction on pyrolysate mass flux from samples of polypropylene/glass fiber composite (PP/G) is underway. The research is conducted as part of a larger project to develop a test methodology for flammability of materials, particularly composites, in the microgravity and variable oxygen concentration environment of spacecraft and space structures. Samples of PP/G sized at 30 x 30 x 10 mm are flush mounted in a flow tunnel, which provides a flow of oxidizer over the surface of the samples at a fixed value of 1 m/s and oxygen concentrations varying between 18 and 30%. Each sample is exposed to a constant external radiant heat flux at a given value, which varies between tests from 10 to 24 kW/sq m. Continuous sample mass loss and surface temperature measurements are recorded for each test. Some tests are conducted with an igniter and some are not. In the former case, the research goal is to quantify the critical mass flux at ignition for the various environmental and material conditions described above. The later case generates a wider range of mass flux rates than those seen prior to ignition, providing an opportunity to examine the protective effects of blowing on oxidative pyrolysis and heating of the surface. Graphs of surface temperature and sample mass loss vs. time for samples of 30% PPG at oxygen concentrations of 18 and 21% are presented in the figures below. These figures give a clear indication of the lower pyrolysis rate and extended time to ignition that accompany a lower oxygen concentration. Analysis of the mass flux rate at the time of ignition gives good repeatability but requires further work to provide a clear indication of mass flux trends accompanying changes in environmental and material properties.

  16. Effects of Heat Flux, Oxygen Concentration and Glass Fiber Volume Fraction on Pyrolysate Mass Flux from Composite Solids

    NASA Technical Reports Server (NTRS)

    Rich, D. B.; Lautenberger, C. W.; Yuan, Z.; Fernandez-Pello, A. C.

    2004-01-01

    Experimental work on the effects of heat flux, oxygen concentration and glass fiber volume fraction on pyrolysate mass flux from samples of polypropylene/glass fiber composite (PP/G) is underway. The research is conducted as part of a larger project to develop a test methodology for flammability of materials, particularly composites, in the microgravity and variable oxygen concentration environment of spacecraft and space structures. Samples of PP/G sized at 30x30x10 mm are flush mounted in a flow tunnel, which provides a flow of oxidizer over the surface of the samples at a fixed value of 1 m/s and oxygen concentrations varying between 18 and 30%. Each sample is exposed to a constant external radiant heat flux at a given value, which varies between tests from 10 to 24 kW/m2. Continuous sample mass loss and surface temperature measurements are recorded for each test. Some tests are conducted with an igniter and some are not. In the former case, the research goal is to quantify the critical mass flux at ignition for the various environmental and material conditions described above. The later case generates a wider range of mass flux rates than those seen prior to ignition, providing an opportunity to examine the protective effects of blowing on oxidative pyrolysis and heating of the surface. Graphs of surface temperature and sample mass loss vs. time for samples of 30% PPG at oxygen concentrations of 18 and 21% are presented in the figures below. These figures give a clear indication of the lower pyrolysis rate and extended time to ignition that accompany a lower oxygen concentration. Analysis of the mass flux rate at the time of ignition gives good repeatability but requires further work to provide a clear indication of mass flux trends accompanying changes in environmental and material properties.

  17. Mixed Convective Condensation in Enclosures with Noncondensable Gases

    NASA Astrophysics Data System (ADS)

    Fox, Richard John

    1994-01-01

    A transient, two-dimensional, numerical model was developed in order to study the laminar flow, heat, and mass transfer in a vertical reflux condenser loaded with vapor and noncondensable gas. The simplified model treats the two-component (gas/vapor), two-phase (vapor/liquid) mixture as a continuum by making use of conservation equations for mass continuity, momentum, species, and energy. The liquid mist phase is formed in such a way as to obey one of three conditions: thermodynamic equilibrium, complete nonequilibrium (no mist formation), or partial equilibrium (partial supersaturation). In developing the model, special attention was paid to the formulation of the boundary conditions, global continuity, and numerical efficiency. Two different mixture combinations were used in order to create stable and unstable systems. Steam-helium mixtures (Mv, = 18, Mg = 4) were found to exhibit stable flows with the lighter helium trapped in the upper portion of the condenser, shutting off condensation in that region. Steam-air mixtures (M_ {v}, = 18, Mg = 28) were found to exhibit varying degrees of instability, depending on the noncondensable gas and heat load, owing to the accumulation of the heavy gas near the condensing surface. Under low gas loading cases (Pg = 0.031 kg/m^3) the natural convective fluctuations were found to be weak and the flow was more easily dominated by the forced convective inlet flow and wall suction. At such low gas loadings, stable, asymmetric flow patterns persisted up to high powers. Large gas loadings (Pg = 0.196 kg/m^3) showed much stronger natural convective effects. Regions of counterflowing vapor and gas were found to promote stronger mixing as the power was increased. Regions of noncondensing gas were found to blanket the condenser walls as the suction velocity increased, resulting in a strong resistance to heat and mass transfer and consequent increase in system pressure. Moderate gas loadings (Pg = 0.065 kg/m ^3) were found to exhibit intermediate behavior between the low and high gas loading cases. For the moderate gas loading cases, a bifurcation was found to occur when Re was increased beyond a critical value, forcing the system into one of two stable, distinct flow patterns. Each branch of the bifurcation was found to correspond to the flows that occur in either the low or high gas loading cases, and radically different heat transfer performance was encountered for the same system parameters. The model was also used to simulate experiments conducted in a vertical reflux thermosyphon using steam -air mixtures. The qualitative aspects of the flow were in reasonable agreement between the model and experiment and trends in the local heat transfer were similar. By converting latent heat energy into sensible heat energy, mist formation was found to increase the system temperature and, as a consequence, the overall heat transfer coefficient was lowered. However, the total heat transfer rate was not sensitive to mist formation since the reduction in the latent heat transfer was accompanied by a corresponding increase in the sensible heat transfer, altering the mode but not the magnitude of the total heat transfer.

  18. Numerical simulation of tsunami generation by cold volcanic mass flows at Augustine Volcano, Alaska

    USGS Publications Warehouse

    Waythomas, C.F.; Watts, P.; Walder, J.S.

    2006-01-01

    Many of the world's active volcanoes are situated on or near coastlines. During eruptions, diverse geophysical mass flows, including pyroclastic flows, debris avalanches, and lahars, can deliver large volumes of unconsolidated debris to the ocean in a short period of time and thereby generate tsunamis. Deposits of both hot and cold volcanic mass flows produced by eruptions of Aleutian arc volcanoes are exposed at many locations along the coastlines of the Bering Sea, North Pacific Ocean, and Cook Inlet, indicating that the flows entered the sea and in some cases may have initiated tsunamis. We evaluate the process of tsunami generation by cold granular subaerial volcanic mass flows using examples from Augustine Volcano in southern Cook Inlet. Augustine Volcano is the most historically active volcano in the Cook Inlet region, and future eruptions, should they lead to debris-avalanche formation and tsunami generation, could be hazardous to some coastal areas. Geological investigations at Augustine Volcano suggest that as many as 12-14 debris avalanches have reached the sea in the last 2000 years, and a debris avalanche emplaced during an A.D. 1883 eruption may have initiated a tsunami that was observed about 80 km east of the volcano at the village of English Bay (Nanwalek) on the coast of the southern Kenai Peninsula. Numerical simulation of mass-flow motion, tsunami generation, propagation, and inundation for Augustine Volcano indicate only modest wave generation by volcanic mass flows and localized wave effects. However, for east-directed mass flows entering Cook Inlet, tsunamis are capable of reaching the more populated coastlines of the southwestern Kenai Peninsula, where maximum water amplitudes of several meters are possible.

  19. Ultrasonic detection of solid phase mass flow ratio of pneumatic conveying fly ash

    NASA Astrophysics Data System (ADS)

    Duan, Guang Bin; Pan, Hong Li; Wang, Yong; Liu, Zong Ming

    2014-04-01

    In this paper, ultrasonic attenuation detection and weight balance are adopted to evaluate the solid mass ratio in this paper. Fly ash is transported on the up extraction fluidization pneumatic conveying workbench. In the ultrasonic test. McClements model and Bouguer-Lambert-Beer law model were applied to formulate the ultrasonic attenuation properties of gas-solid flow, which can give the solid mass ratio. While in the method of weigh balance, the averaged mass addition per second can reveal the solids mass flow ratio. By contrast these two solid phase mass ratio detection methods, we can know, the relative error is less.

  20. Oil field management system

    DOEpatents

    Fincke, James R.

    2003-09-23

    Oil field management systems and methods for managing operation of one or more wells producing a high void fraction multiphase flow. The system includes a differential pressure flow meter which samples pressure readings at various points of interest throughout the system and uses pressure differentials derived from the pressure readings to determine gas and liquid phase mass flow rates of the high void fraction multiphase flow. One or both of the gas and liquid phase mass flow rates are then compared with predetermined criteria. In the event such mass flow rates satisfy the predetermined criteria, a well control system implements a correlating adjustment action respecting the multiphase flow. In this way, various parameters regarding the high void fraction multiphase flow are used as control inputs to the well control system and thus facilitate management of well operations.

  1. Electric field controlled emulsion phase contactor

    DOEpatents

    Scott, Timothy C.

    1995-01-01

    A system for contacting liquid phases comprising a column for transporting a liquid phase contacting system, the column having upper and lower regions. The upper region has a nozzle for introducing a dispersed phase and means for applying thereto a vertically oriented high intensity pulsed electric field. This electric field allows improved flow rates while shattering the dispersed phase into many micro-droplets upon exiting the nozzle to form a dispersion within a continuous phase. The lower region employs means for applying to the dispersed phase a horizontally oriented high intensity pulsed electric field so that the dispersed phase undergoes continuous coalescence and redispersion while being urged from side to side as it progresses through the system, increasing greatly the mass transfer opportunity.

  2. Method of using an electric field controlled emulsion phase contactor

    DOEpatents

    Scott, Timothy C.

    1993-01-01

    A system for contacting liquid phases comprising a column for transporting a liquid phase contacting system, the column having upper and lower regions. The upper region has a nozzle for introducing a dispersed phase and means for applying thereto a vertically oriented high intensity pulsed electric field. This electric field allows improved flow rates while shattering the dispersed phase into many micro-droplets upon exiting the nozzle to form a dispersion within a continuous phase. The lower region employs means for applying to the dispersed phase a horizontally oriented high intensity pulsed electric field so that the dispersed phase undergoes continuous coalescence and redispersion while being urged from side to side as it progresses through the system, increasing greatly the mass transfer opportunity.

  3. Electric field controlled emulsion phase contactor

    DOEpatents

    Scott, T.C.

    1995-01-31

    A system is described for contacting liquid phases comprising a column for transporting a liquid phase contacting system, the column having upper and lower regions. The upper region has a nozzle for introducing a dispersed phase and means for applying thereto a vertically oriented high intensity pulsed electric field. This electric field allows improved flow rates while shattering the dispersed phase into many micro-droplets upon exiting the nozzle to form a dispersion within a continuous phase. The lower region employs means for applying to the dispersed phase a horizontally oriented high intensity pulsed electric field so that the dispersed phase undergoes continuous coalescence and redispersion while being urged from side to side as it progresses through the system, increasing greatly the mass transfer opportunity. 5 figs.

  4. Study of gas-liquid flow in model porous media for heterogeneous catalysis

    NASA Astrophysics Data System (ADS)

    Francois, Marie; Bodiguel, Hugues; Guillot, Pierre; Laboratory of the Future Team

    2015-11-01

    Heterogeneous catalysis of chemical reactions involving a gas and a liquid phase is usually achieved in fixed bed reactors. Four hydrodynamic regimes have been observed. They depend on the total flow rate and the ratio between liquid and gas flow rate. Flow properties in these regimes influence transfer rates. Rather few attempts to access local characterization have been proposed yet, though these seem to be necessary to better describe the physical mechanisms involved. In this work, we propose to mimic slices of reactor by using two-dimensional porous media. We have developed a two-dimensional system that is transparent to allow the direct observation of the flow and the phase distribution. While varying the total flow rate and the gas/liquid flow rate ratio, we observe two hydrodynamic regimes: at low flow rate, the gaseous phase is continuous (trickle flow), while it is discontinuous at higher flow rate (pulsed flow). Thanks to some image analysis techniques, we are able to quantify the local apparent liquid saturation in the system. Its fluctuations in time are characteristic of the transition between the two regimes: at low liquid flow rates, they are negligible since the liquid/gas interface is fixed, whereas at higher flow rates we observe an alternation between liquid and gas. This transition between trickle to pulsed flow is in relative good agreement with the existing state of art. However, we report in the pulsed regime important flow heterogeneities at the scale of a few pores. These heterogeneities are likely to have a strong influence on mass transfers. We acknowledge the support of Solvay.

  5. 40 CFR Table 5 to Subpart Ppp of... - Process Vents From Batch Unit Operations-Monitoring, Recordkeeping, and Reporting Requirements

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... collected—PR. d,e Carbon Adsorber f Total regeneration stream mass or volumetric flow during carbon bed regeneration cycle(s), and 1. Record of total regeneration stream mass or volumetric flow for each carbon bed regeneration cycle.2. Record and report the total regeneration stream mass or volumetric flow during each...

  6. 40 CFR Table 5 to Subpart Ppp of... - Process Vents From Batch Unit Operations-Monitoring, Recordkeeping, and Reporting Requirements

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... collected—PR. d e Carbon Adsorber f Total regeneration stream mass or volumetric flow during carbon bed regeneration cycle(s), and 1. Record of total regeneration stream mass or volumetric flow for each carbon bed regeneration cycle.2. Record and report the total regeneration stream mass or volumetric flow during each...

  7. Direct estimation of mass flow and diffusion of nitrogen compounds in solution and soil.

    PubMed

    Oyewole, Olusegun Ayodeji; Inselsbacher, Erich; Näsholm, Torgny

    2014-02-01

    Plant nutrient uptake from soil is mainly governed by diffusion and transpirationally induced mass flow, but the current methods for assessing the relative importance of these processes are indirect. We developed a microdialysis method using solutions of different osmotic potentials as perfusates to simulate diffusion and mass flow processes, and assessed how induced mass flow affected fluxes of nitrogen (N) compounds in solution and in boreal forest soil. Varying the osmotic potential of perfusates induced vertical fluxes in the direction of the dialysis membranes at rates of between 1 × 10(-8) and 3 × 10(-7)  m s(-1) , thus covering the estimated range of water velocities perpendicular to root surfaces and induced by transpiration. Mass flow increased N fluxes in solution but even more so in soil. This effect was explained by an indirect effect of mass flow on rates of diffusive fluxes, possibly caused by the formation of steeper gradients in concentrations of N compounds from membrane surfaces out in the soil. Our results suggest that transpiration may be an essential driver of plant N acquisition. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  8. Steady State Pyrolysis and Ablation Investigation

    DTIC Science & Technology

    2008-03-31

    the heat flux rises with increased transpiration mass flow. For mass 0.050 0.075 Mass flow [g/s] Figure 1.5: Heat flux with and without chocking ...initial species are N2 and 02- As the flow passes through the shock wave surrounding the body, additional species are produced by dis- sociation and...which images the plasma flow after a second reflect on a flat mirror on the entrance of an optical fiber. The captured light is then sent to an Ocean

  9. Modeling two-phase flow in three-dimensional complex flow-fields of proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Kim, Jinyong; Luo, Gang; Wang, Chao-Yang

    2017-10-01

    3D fine-mesh flow-fields recently developed by Toyota Mirai improved water management and mass transport in proton exchange membrane (PEM) fuel cell stacks, suggesting their potential value for robust and high-power PEM fuel cell stack performance. In such complex flow-fields, Forchheimer's inertial effect is dominant at high current density. In this work, a two-phase flow model of 3D complex flow-fields of PEMFCs is developed by accounting for Forchheimer's inertial effect, for the first time, to elucidate the underlying mechanism of liquid water behavior and mass transport inside 3D complex flow-fields and their adjacent gas diffusion layers (GDL). It is found that Forchheimer's inertial effect enhances liquid water removal from flow-fields and adds additional flow resistance around baffles, which improves interfacial liquid water and mass transport. As a result, substantial improvements in high current density cell performance and operational stability are expected in PEMFCs with 3D complex flow-fields, compared to PEMFCs with conventional flow-fields. Higher current density operation required to further reduce PEMFC stack cost per kW in the future will necessitate optimizing complex flow-field designs using the present model, in order to efficiently remove a large amount of product water and hence minimize the mass transport voltage loss.

  10. Anomalous transport in fracture networks: field scale experiments and modelling

    NASA Astrophysics Data System (ADS)

    Kang, P. K.; Le Borgne, T.; Bour, O.; Dentz, M.; Juanes, R.

    2012-12-01

    Anomalous transport is widely observed in different settings and scales of transport through porous and fractured geologic media. A common signature of anomalous transport is the late-time power law tailing in breakthrough curves (BTCs) during tracer tests. Various conceptual models of anomalous transport have been proposed, including multirate mass transfer, continuous time random walk, and stream tube models. Since different conceptual models can produce equally good fits to a single BTC, tracer test interpretation has been plagued with ambiguity. Here, we propose to resolve such ambiguity by analyzing BTCs obtained from both convergent and push-pull flow configurations at two different fracture planes. We conducted field tracer tests in a fractured granite formation close to Ploemeur, France. We observe that BTC tailing depends on the flow configuration and the injection fracture. Specifically the tailing disappears under push-pull geometry, and when we injected at a fracture with high flux (Figure 1). This indicates that for this fractured granite, BTC tailing is controlled by heterogeneous advection and not by matrix diffusion. To explain the change in tailing behavior for different flow configurations, we employ a simple lattice network model with heterogeneous conductivity distribution. The model assigns random conductivities to the fractures and solves the Darcy equation for an incompressible fluid, enforcing mass conservation at fracture intersections. The mass conservation constraint yields a correlated random flow through the fracture system. We investigate whether BTC tailing can be explained by the spatial distribution of preferential flow paths and stagnation zones, which is controlled by the conductivity variance and correlation length. By combining the results from the field tests and numerical modeling, we show that the reversibility of spreading is a key mechanism that needs to be captured. We also demonstrate the dominant role of the injection fracture on the tailing behavior: where we inject makes the difference in the tailing. Blue line is a BTC with injection into a slow velocity zone under convergent flow configuration. The late-time tailing observed for the convergent test diminished for push-pull experiment performed in the same zone(red line). Black line is a BTC with injection into a high velocity zone under convergent flow configuration. Insets: illustration of convergent and push-pull tracer tests using a double packer system.

  11. Theory of Bipolar Outflows from Accreting Hot Stars

    NASA Astrophysics Data System (ADS)

    Konigl, A.

    1996-05-01

    There is a growing number of observational indicators for the presence of bipolar outflows in massive, young stellar objects that are still accreting mass as part of their formation process. In particular, there is evidence that the outflows from these objects can attain higher velocities and kinetic luminosities than their lower-mass counterparts. Furthermore, the higher-mass objects appear to smoothly continue the correlation found in T Tauri stars between outflow and accretion signatures, and in several cases there are direct clues to the existence of a disk from optical and infrared spectroscopy. These results suggest that the disk--outflow connection found in low-mass pre--main-sequence stars extends to more massive objects, and that a similar physical mechanism may drive the outflows in both cases. In this presentation, I first critically examine the observational basis for this hypothesis, considering, among other things, the possibility that several low-luminosity outflows might occasionally masquerade as a single flow from a luminous object, and the effects that the radiation field of a hot star could have on the spectroscopic diagnostics of an accretion-driven outflow. I then go on to consider how the commonly invoked centrifugally driven wind models of bipolar outflows in low-mass stars would be affected by the various physical processes (such as photoionization, photoevaporation, radiation pressure, and stellar wind ram pressure) that operate in higher-mass stars. I conclude by mentioning some of the tantalizing questions that one could hope to address as this young field of research continues to develop (for example: is there a high-mass analog of the FU Orionis outburst phenomenon? Could one use observations of progressively more massive, and hence less convective, stars to elucidate the role of stellar magnetic fields in the accretion and outflow processes? Would it be possible to observationally identify massive stars that have reached the main sequence while they were still accreting? Does the evolution of protostellar disks differ in low-mass and high-mass objects?).

  12. New fully automated software for assessment of brachial artery flow- mediated dilation with advantages of continuous measurement.

    PubMed

    Ercan, Ertuğrul; Kırılmaz, Bahadır; Kahraman, İsmail; Bayram, Vildan; Doğan, Hüseyin

    2012-11-01

    Flow-mediated dilation (FMD) is used to evaluate endothelial functions. Computer-assisted analysis utilizing edge detection permits continuous measurements along the vessel wall. We have developed a new fully automated software program to allow accurate and reproducible measurement. FMD has been measured and analyzed in 18 coronary artery disease (CAD) patients and 17 controls both by manually and by the software developed (computer supported) methods. The agreement between methods was assessed by Bland-Altman analysis. The mean age, body mass index and cardiovascular risk factors were higher in CAD group. Automated FMD% measurement for the control subjects was 18.3±8.5 and 6.8±6.5 for the CAD group (p=0.0001). The intraobserver and interobserver correlation for automated measurement was high (r=0.974, r=0.981, r=0.937, r=0.918, respectively). Manual FMD% at 60th second was correlated with automated FMD % (r=0.471, p=0.004). The new fully automated software© can be used to precise measurement of FMD with low intra- and interobserver variability than manual assessment.

  13. Semiempirical method of determining flow coefficients for pitot rake mass flow rate measurements

    NASA Technical Reports Server (NTRS)

    Trefny, C. J.

    1985-01-01

    Flow coefficients applicable to area-weighted pitot rake mass flow rate measurements are presented for fully developed, turbulent flow in an annulus. A turbulent velocity profile is generated semiempirically for a given annulus hub-to-tip radius ratio and integrated numerically to determine the ideal mass flow rate. The calculated velocities at each probe location are then summed, and the flow rate as indicated by the rake is obtained. The flow coefficient to be used with the particular rake geometry is subsequently obtained by dividing the ideal flow rate by the rake-indicated flow rate. Flow coefficients ranged from 0.903 for one probe placed at a radius dividing two equal areas to 0.984 for a 10-probe area-weighted rake. Flow coefficients were not a strong function of annulus hub-to-tip radius ratio for rakes with three or more probes. The semiempirical method used to generate the turbulent velocity profiles is described in detail.

  14. Hollow cathode, quasi-steady MPD arc

    NASA Technical Reports Server (NTRS)

    Parmentier, N.; Jahn, R. G.

    1971-01-01

    A quasi-steady MPD accelerator has been operated with four different hollow cathodes over a power range from 5 kilowatts to 5 megawatts. The absolute level of the argon mass flow, as well as the fractional division of the flow between the cathode and the six standard chamber injectors, is varied over a range of 1 to 12 grams per second. For a fixed total current, it is observed that the voltage increases monotonically with mass flow rate, compared to the usual experience with solid cathodes where the voltage decreases with mass flow rate. For a fixed percentage of flow through the cathode, each hollow cathode configuration displays a minimum impedance at a particular value of the total mass flow. It is asserted that in order to keep the discharge inside the hollow cathode the magnetic pressure and gasdynamic pressure have to match inside the cavity.

  15. Low-flow characteristics of Indiana streams

    USGS Publications Warehouse

    Fowler, K.K.; Wilson, J.T.

    1996-01-01

    Knowledge of low-flow characteristics of streams is essential for management of water resources. Low-flow characteristics are presented for 229 continuous-record, streamflow-gaging stations and 285 partial-record stations in Indiana. Low- flow-frequency characteristics were computed for 210 continuous-record stations that had at least 10 years of record, and flow-duration curves were computed for all continuous-record stations. Low-flow-frequency and flow-duration analyses are based on available streamflow records through September 1993. Selected low-flow-frequency curves were computed for annual low flows and seasonal low flows. The four seasons are represented by the 3-month groups of March-May, June-August, September-November, and December- February. The 7-day, 10-year and the 7-day, 2 year low flows were estimated for 285 partial-record stations, which are ungaged sites where streamflow measurements were made at base flow. The same low-flow characteristics were estimated for 19 continuous-record stations where less than 10 years of record were available. Precipitation and geology directly influence the streams in Indiana. Streams in the northern, glaciated part of the State tend to have higher sustained base flows than those in the nonglaciated southern part. Flow at several of the continuous-record gaging stations is affected by some form of regulation or diversion. Low-flow characteristics for continuous-record stations at which flow is affected by regulation are determined using the period of record affected by regulation; natural flows prior to regulation are not used.

  16. On the Utilization of Ice Flow Models and Uncertainty Quantification to Interpret the Impact of Surface Radiation Budget Errors on Estimates of Greenland Ice Sheet Surface Mass Balance and Regional Estimates of Mass Balance

    NASA Astrophysics Data System (ADS)

    Schlegel, N.; Larour, E. Y.; Gardner, A. S.; Lang, C.; Miller, C. E.; van den Broeke, M. R.

    2016-12-01

    How Greenland ice flow may respond to future increases in surface runoff and to increases in the frequency of extreme melt events is unclear, as it requires detailed comprehension of Greenland surface climate and the ice sheet's sensitivity to associated uncertainties. With established uncertainty quantification tools run within the framework of Ice Sheet System Model (ISSM), we conduct decadal-scale forward modeling experiments to 1) quantify the spatial resolution needed to effectively force distinct components of the surface radiation budget, and subsequently surface mass balance (SMB), in various regions of the ice sheet and 2) determine the dynamic response of Greenland ice flow to variations in components of the net radiation budget. The Glacier Energy and Mass Balance (GEMB) software is a column surface model (1-D) that has recently been embedded as a module within ISSM. Using the ISSM-GEMB framework, we perform sensitivity analyses to determine how perturbations in various components of the surface radiation budget affect model output; these model experiments allow us predict where and on what spatial scale the ice sheet is likely to dynamically respond to changes in these parameters. Preliminary results suggest that SMB should be forced at at least a resolution of 23 km to properly capture dynamic ice response. In addition, Monte-Carlo style sampling analyses reveals that the areas with the largest uncertainty in mass flux are located near the equilibrium line altitude (ELA), upstream of major outlet glaciers in the North and West of the ice sheet. Sensitivity analysis indicates that these areas are also the most vulnerable on the ice sheet to persistent, far-field shifts in SMB, suggesting that continued warming, and upstream shift in the ELA, are likely to result in increased velocities, and consequentially SMB-induced thinning upstream of major outlet glaciers. Here, we extend our investigation to consider various components of the surface radiation budget separately, in order to determine how and where errors in these fields may independently impact ice flow. This work was performed at the California Institute of Technology's Jet Propulsion Laboratory under a contract with the National Aeronautics and Space Administration's Cryosphere and Interdisciplinary Research in Earth Science Programs.

  17. Energy dissipation by submarine obstacles during landslide impact on reservoir - potentially avoiding catastrophic dam collapse

    NASA Astrophysics Data System (ADS)

    Kafle, Jeevan; Kattel, Parameshwari; Mergili, Martin; Fischer, Jan-Thomas; Tuladhar, Bhadra Man; Pudasaini, Shiva P.

    2017-04-01

    Dense geophysical mass flows such as landslides, debris flows and debris avalanches may generate super tsunami waves as they impact water bodies such as the sea, hydraulic reservoirs or mountain lakes. Here, we apply a comprehensive and general two-phase, physical-mathematical mass flow model (Pudasaini, 2012) that consists of non-linear and hyperbolic-parabolic partial differential equations for mass and momentum balances, and present novel, high-resolution simulation results for two-phase flows, as a mixture of solid grains and viscous fluid, impacting fluid reservoirs with obstacles. The simulations demonstrate that due to the presence of different obstacles in the water body, the intense flow-obstacle-interaction dramatically reduces the flow momentum resulting in the rapid energy dissipation around the obstacles. With the increase of obstacle height overtopping decreases but, the deflection and capturing (holding) of solid mass increases. In addition, the submarine solid mass is captured by the multiple obstacles and the moving mass decreases both in amount and speed as each obstacle causes the flow to deflect into two streams and also captures a portion of it. This results in distinct tsunami and submarine flow dynamics with multiple surface water and submarine debris waves. This novel approach can be implemented in open source GIS modelling framework r.avaflow, and be applied in hazard mitigation, prevention and relevant engineering or environmental tasks. This might be in particular for process chains, such as debris impacts in lakes and subsequent overtopping. So, as the complex flow-obstacle-interactions strongly and simultaneously dissipate huge energy at impact such installations potentially avoid great threat against the integrity of the dam. References: Pudasaini, S. P. (2012): A general two-phase debris flow model. J. Geophys. Res. 117, F03010, doi: 10.1029/ 2011JF002186.

  18. Conduit Stability and Collapse in Explosive Volcanic Eruptions: Coupling Conduit Flow and Failure Models

    NASA Astrophysics Data System (ADS)

    Mullet, B.; Segall, P.

    2017-12-01

    Explosive volcanic eruptions can exhibit abrupt changes in physical behavior. In the most extreme cases, high rates of mass discharge are interspaced by dramatic drops in activity and periods of quiescence. Simple models predict exponential decay in magma chamber pressure, leading to a gradual tapering of eruptive flux. Abrupt changes in eruptive flux therefore indicate that relief of chamber pressure cannot be the only control of the evolution of such eruptions. We present a simplified physics-based model of conduit flow during an explosive volcanic eruption that attempts to predict stress-induced conduit collapse linked to co-eruptive pressure loss. The model couples a simple two phase (gas-melt) 1-D conduit solution of the continuity and momentum equations with a Mohr-Coulomb failure condition for the conduit wall rock. First order models of volatile exsolution (i.e. phase mass transfer) and fragmentation are incorporated. The interphase interaction force changes dramatically between flow regimes, so smoothing of this force is critical for realistic results. Reductions in the interphase force lead to significant relative phase velocities, highlighting the deficiency of homogenous flow models. Lateral gas loss through conduit walls is incorporated using a membrane-diffusion model with depth dependent wall rock permeability. Rapid eruptive flux results in a decrease of chamber and conduit pressure, which leads to a critical deviatoric stress condition at the conduit wall. Analogous stress distributions have been analyzed for wellbores, where much work has been directed at determining conditions that lead to wellbore failure using Mohr-Coulomb failure theory. We extend this framework to cylindrical volcanic conduits, where large deviatoric stresses can develop co-eruptively leading to multiple distinct failure regimes depending on principal stress orientations. These failure regimes are categorized and possible implications for conduit flow are discussed, including cessation of eruption.

  19. MERIDIONAL FLOW IN THE SOLAR CONVECTION ZONE. II. HELIOSEISMIC INVERSIONS OF GONG DATA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jackiewicz, J.; Serebryanskiy, A.; Kholikov, S., E-mail: jasonj@nmsu.edu

    2015-06-01

    Meridional flow is thought to play a very important role in the dynamics of the solar convection zone; however, because of its relatively small amplitude, precisely measuring it poses a significant challenge. Here we present a complete time–distance helioseismic analysis of about 2 years of ground-based Global Oscillation Network Group (GONG) Doppler data to retrieve the meridional circulation profile for modest latitudes in an attempt to corroborate results from other studies. We use an empirical correction to the travel times due to an unknown center-to-limb systematic effect. The helioseismic inversion procedure is first tested and reasonably validated on artificial datamore » from a large-scale numerical simulation followed by a test to broadly recover the solar differential rotation found from global seismology. From GONG data, we measure poleward photospheric flows at all latitudes with properties that are comparable with earlier studies and a shallow equatorward flow about 65 Mm beneath the surface, in agreement with recent findings from Helioseismic and Magnetic Imager (HMI) data. No strong evidence of multiple circulation cells in depth or latitude is found, yet the whole phase space has not yet been explored. Tests of mass flux conservation are then carried out on the inferred GONG and HMI flows and compared to a fiducial numerical baseline from models, and we find that the continuity equation is poorly satisfied. While the two disparate data sets do give similar results for about the outer 15% of the interior radius, the total inverted circulation pattern appears to be unphysical in terms of mass conservation when interpreted over modest time scales. We can likely attribute this to both the influence of realization noise and subtle effects in the data and measurement procedure.« less

  20. Cerebrospinal and Interstitial Fluid Transport via the Glymphatic Pathway Modeled by Optimal Mass Transport

    PubMed Central

    Ratner, Vadim; Gao, Yi; Lee, Hedok; Elkin, Rena; Nedergaard, Maiken; Benveniste, Helene; Tannenbaum, Allen

    2017-01-01

    The glymphatic pathway is a system which facilitates continuous cerebrospinal fluid (CSF) and interstitial fluid (ISF) exchange and plays a key role in removing waste products from the rodent brain. Dysfunction of the glymphatic pathway may be implicated in the pathophysiology of Alzheimer's disease. Intriguingly, the glymphatic system is most active during deep wave sleep general anesthesia. By using paramagnetic tracers administered into CSF of rodents, we previously showed the utility of MRI in characterizing a macroscopic whole brain view of glymphatic transport but we have yet to define and visualize the specific flow patterns. Here we have applied an alternative mathematical analysis approach to a dynamic time series of MRI images acquired every 4 min over ∼3 hrs in anesthetized rats, following administration of a small molecular weight paramagnetic tracer into the CSF reservoir of the cisterna magna. We use Optimal Mass Transport (OMT) to model the glymphatic flow vector field, and then analyze the flow to find the network of CSF-ISF flow channels. We use 3D visualization computational tools to visualize the OMT defined network of CSF-ISF flow channels in relation to anatomical and vascular key landmarks from the live rodent brain. The resulting OMT model of the glymphatic transport network agrees largely with the current understanding of the glymphatic transport patterns defined by dynamic contrast-enhanced MRI revealing key CSF transport pathways along the ventral surface of the brain with a trajectory towards the pineal gland, cerebellum, hypothalamus and olfactory bulb. In addition, the OMT analysis also revealed some interesting previously unnoticed behaviors regarding CSF transport involving parenchymal streamlines moving from ventral reservoirs towards the surface of the brain, olfactory bulb and large central veins. PMID:28323163

  1. Cerebrospinal and interstitial fluid transport via the glymphatic pathway modeled by optimal mass transport.

    PubMed

    Ratner, Vadim; Gao, Yi; Lee, Hedok; Elkin, Rena; Nedergaard, Maiken; Benveniste, Helene; Tannenbaum, Allen

    2017-05-15

    The glymphatic pathway is a system which facilitates continuous cerebrospinal fluid (CSF) and interstitial fluid (ISF) exchange and plays a key role in removing waste products from the rodent brain. Dysfunction of the glymphatic pathway may be implicated in the pathophysiology of Alzheimer's disease. Intriguingly, the glymphatic system is most active during deep wave sleep general anesthesia. By using paramagnetic tracers administered into CSF of rodents, we previously showed the utility of MRI in characterizing a macroscopic whole brain view of glymphatic transport but we have yet to define and visualize the specific flow patterns. Here we have applied an alternative mathematical analysis approach to a dynamic time series of MRI images acquired every 4min over ∼3h in anesthetized rats, following administration of a small molecular weight paramagnetic tracer into the CSF reservoir of the cisterna magna. We use Optimal Mass Transport (OMT) to model the glymphatic flow vector field, and then analyze the flow to find the network of CSF-ISF flow channels. We use 3D visualization computational tools to visualize the OMT defined network of CSF-ISF flow channels in relation to anatomical and vascular key landmarks from the live rodent brain. The resulting OMT model of the glymphatic transport network agrees largely with the current understanding of the glymphatic transport patterns defined by dynamic contrast-enhanced MRI revealing key CSF transport pathways along the ventral surface of the brain with a trajectory towards the pineal gland, cerebellum, hypothalamus and olfactory bulb. In addition, the OMT analysis also revealed some interesting previously unnoticed behaviors regarding CSF transport involving parenchymal streamlines moving from ventral reservoirs towards the surface of the brain, olfactory bulb and large central veins. Copyright © 2017. Published by Elsevier Inc.

  2. Experimental Study on Flow Boiling of Deionized Water in a Horizontal Long Small Channel

    NASA Astrophysics Data System (ADS)

    Huang, Qian; Jia, Li; Dang, Chao; Yang, Lixin

    2018-04-01

    In this paper, an experimental investigation on the flow boiling heat transfer in a horizontal long mini-channel was carried out. The mini-channel was with 2 mm wide and 1 mm deep and 900 mm long. The material of the mini-channel was stainless. The working fluid was deionized water. The experiments were conducted with the conditions of inlet pressure in the range of 0.2 0.5 MPa, mass flux in the range of 196.57-548.96 kg/m2s, and the outlet vapor quality in the range of 0.2 to 1. The heat flux was in the range of 292.86 kW/m2 to 788.48 kW/m2, respectively. The influences of mass flux and heat flux were studied. At a certain mass flow rate, the local heat transfer coefficient increased with the increase of the heat flux. If dry-out occurred in the mini-channel, the heat transfer coefficient decreased. At the same heat flux, the local heat transfer coefficient would depend on the mass flux. It would increase with the mass flux in a certain range, and then decrease if the mass flux was beyond this range. Experimental data were compared with the results of previous studies. Flow visualization and measurements were conducted to identify flow regime transitions. Results showed that there were eight different kinds of flow patterns occurring during the flow boiling. It was found that flow pattern had a significant effect on heat transfer.

  3. Online Coupling of Flow-Field Flow Fractionation and Single Particle Inductively Coupled Plasma-Mass Spectrometry: Characterization of Nanoparticle Surface Coating Thickness and Aggregation State

    EPA Science Inventory

    Surface coating thickness and aggregation state have strong influence on the environmental fate, transport, and toxicity of engineered nanomaterials. In this study, flow-field flow fractionation coupled on-line with single particle inductively coupled plasma-mass spectrometry i...

  4. 40 CFR 98.443 - Calculating CO2 geologic sequestration.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... each gas-liquid separator for which flow is measured using a mass flow meter, you must calculate...) For each gas-liquid separator for which flow is measured using a volumetric flow meter, you must...) To aggregate production data, you must sum the mass of all of the CO2 separated at each gas-liquid...

  5. Study on casing treatment and stator matching on multistage fan

    NASA Astrophysics Data System (ADS)

    Wu, Chuangliang; Yuan, Wei; Deng, Zhe

    2017-10-01

    Casing treatments are required for expanding the stall margin of multi-stage high-load turbofans designed with high blade-tip Mach numbers and high leakage flow. In the case of a low mass flow, the casing treatment effectively reduces the blockages caused by the leakage flow and enlarges the stall margin. However, in the case of a high mass flow, the casing treatment affects the overall flow capacity of the fan, the thrust when operating at the high speeds usually required by design-point specifications. Herein, we study a two-stage high-load fan with three-dimensional numerical simulations. We use the simulation results to propose a scheme that enlarges the stall margin of multistage high-load fans without sacrificing the flow capacity when operating with a large mass flow. Furthermore, a circumferential groove casing treatment is used and adjustments are made to the upstream stator angle to match the casing treatment. The stall margin is thus increased to 16.3%, with no reduction in the maximum mass flow rate or the design thrust performance.

  6. Condensation heat transfer and pressure drop of R-410A in a 7.0 mm O.D. microfin tube at low mass fluxes

    NASA Astrophysics Data System (ADS)

    Kim, Nae-Hyun

    2016-12-01

    R-410A condensation heat transfer and pressure drop data are provided for a 7.0 mm O.D. microfin tube at low mass fluxes (50-250 kg/m2 s). The heat transfer coefficient of the microfin tube shows a minimum behavior with the mass flux. At a low mass flux, where flow pattern is stratified, condensation induced by surface tension by microfins overwhelms condensation induced by shear, and the heat transfer coefficient decreases as mass flux increases. At a high mass flux, where flow pattern is annular, condensation induced by shear governs the heat transfer, and the heat transfer coefficient increases as mass flux increases. The pressure drop of the microfin tube is larger than that of the smooth tube at the annular flow regime. On the contrary, the pressure drop of the smooth tube is larger than that of the microfin tube at the stratified flow regime.

  7. BHR equations re-derived with immiscible particle effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwarzkopf, John Dennis; Horwitz, Jeremy A.

    2015-05-01

    Compressible and variable density turbulent flows with dispersed phase effects are found in many applications ranging from combustion to cloud formation. These types of flows are among the most challenging to simulate. While the exact equations governing a system of particles and fluid are known, computational resources limit the scale and detail that can be simulated in this type of problem. Therefore, a common method is to simulate averaged versions of the flow equations, which still capture salient physics and is relatively less computationally expensive. Besnard developed such a model for variable density miscible turbulence, where ensemble-averaging was applied tomore » the flow equations to yield a set of filtered equations. Besnard further derived transport equations for the Reynolds stresses, the turbulent mass flux, and the density-specific volume covariance, to help close the filtered momentum and continuity equations. We re-derive the exact BHR closure equations which include integral terms owing to immiscible effects. Physical interpretations of the additional terms are proposed along with simple models. The goal of this work is to extend the BHR model to allow for the simulation of turbulent flows where an immiscible dispersed phase is non-trivially coupled with the carrier phase.« less

  8. Numerical solution of the Saint-Venant equations by an efficient hybrid finite-volume/finite-difference method

    NASA Astrophysics Data System (ADS)

    Lai, Wencong; Khan, Abdul A.

    2018-04-01

    A computationally efficient hybrid finite-volume/finite-difference method is proposed for the numerical solution of Saint-Venant equations in one-dimensional open channel flows. The method adopts a mass-conservative finite volume discretization for the continuity equation and a semi-implicit finite difference discretization for the dynamic-wave momentum equation. The spatial discretization of the convective flux term in the momentum equation employs an upwind scheme and the water-surface gradient term is discretized using three different schemes. The performance of the numerical method is investigated in terms of efficiency and accuracy using various examples, including steady flow over a bump, dam-break flow over wet and dry downstream channels, wetting and drying in a parabolic bowl, and dam-break floods in laboratory physical models. Numerical solutions from the hybrid method are compared with solutions from a finite volume method along with analytic solutions or experimental measurements. Comparisons demonstrates that the hybrid method is efficient, accurate, and robust in modeling various flow scenarios, including subcritical, supercritical, and transcritical flows. In this method, the QUICK scheme for the surface slope discretization is more accurate and less diffusive than the center difference and the weighted average schemes.

  9. The assembly and use of continuous flow systems for chemical synthesis.

    PubMed

    Britton, Joshua; Jamison, Timothy F

    2017-11-01

    The adoption of and opportunities in continuous flow synthesis ('flow chemistry') have increased significantly over the past several years. Continuous flow systems provide improved reaction safety and accelerated reaction kinetics, and have synthesised several active pharmaceutical ingredients in automated reconfigurable systems. Although continuous flow platforms are commercially available, systems constructed 'in-lab' provide researchers with a flexible, versatile, and cost-effective alternative. Herein, we describe the assembly and use of a modular continuous flow apparatus from readily available and affordable parts in as little as 30 min. Once assembled, the synthesis of a sulfonamide by reacting 4-chlorobenzenesulfonyl chloride with dibenzylamine in a single reactor coil with an in-line quench is presented. This example reaction offers the opportunity to learn several important skills including reactor construction, charging of a back-pressure regulator, assembly of stainless-steel syringes, assembly of a continuous flow system with multiple junctions, and yield determination. From our extensive experience of single-step and multistep continuous flow synthesis, we also describe solutions to commonly encountered technical problems such as precipitation of solids ('clogging') and reactor failure. Following this protocol, a nonspecialist can assemble a continuous flow system from reactor coils, syringes, pumps, in-line liquid-liquid separators, drying columns, back-pressure regulators, static mixers, and packed-bed reactors.

  10. SPOC Benchmark Case: SNRE Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vishal Patel; Michael Eades; Claude Russel Joyner II

    The Small Nuclear Rocket Engine (SNRE) was modeled in the Center for Space Nuclear Research’s (CSNR) Space Propulsion Optimization Code (SPOC). SPOC aims to create nuclear thermal propulsion (NTP) geometries quickly to perform parametric studies on design spaces of historic and new NTP designs. The SNRE geometry was modeled in SPOC and a critical core with a reasonable amount of criticality margin was found. The fuel, tie-tubes, reflector, and control drum masses were predicted rather well. These are all very important for neutronics calculations so the active reactor geometries created with SPOC can continue to be trusted. Thermal calculations ofmore » the average and hot fuel channels agreed very well. The specific impulse calculations used historically and in SPOC disagree so mass flow rates and impulses differed. Modeling peripheral and power balance components that do not affect nuclear characteristics of the core is not a feature of SPOC and as such, these components should continue to be designed using other tools. A full paper detailing the available SNRE data and comparisons with SPOC outputs will be submitted as a follow-up to this abstract.« less

  11. Oxygen Consumption of Tilapia and Preliminary Mass Flows through a Prototype Closed Aquaculture System

    NASA Technical Reports Server (NTRS)

    Muller, Matthew S.; Bauer, Clarence F.

    1994-01-01

    Performance of NASA's prototype CELSS Breadboard Project Closed Aquaculture System was evaluated by estimating gas exchange quantification and preliminary carbon and nitrogen balances. The total system oxygen consumption rate was 535 mg/hr kg/fish (cv = 30%) when stocked with Tilapia aurea populations (fresh weights of 97 +/- 19 to 147 +/- 36 g/fish for various trials). Oxygen consumption by T. aurea (260 mg/hr kg/fish) contributed to approximately one-half of total system demand. Continuous carbon dioxide quantification methods were analyzed using the,relation of carbon dioxide to oxygen consumption. Overall food conversion rates averaged 18.2 +/- 3.2%. Major pathways for nitrogen and carbon in the system were described with preliminary mass closure of 60-80% and 60% for nitrogen and carbon.

  12. Investigation of viscous/inviscid interaction in transonic flow over airfoils with suction

    NASA Technical Reports Server (NTRS)

    Vemuru, C. S.; Tiwari, S. N.

    1988-01-01

    The viscous/inviscid interaction over transonic airfoils with and without suction is studied. The streamline angle at the edge of the boundary layer is used to couple the viscous and inviscid flows. The potential flow equations are solved for the inviscid flow field. In the shock region, the Euler equations are solved using the method of integral relations. For this, the potential flow solution is used as the initial and boundary conditions. An integral method is used to solve the laminar boundary-layer equations. Since both methods are integral methods, a continuous interaction is allowed between the outer inviscid flow region and the inner viscous flow region. To avoid the Goldstein singularity near the separation point the laminar boundary-layer equations are derived in an inverse form to obtain solution for the flows with small separations. The displacement thickness distribution is specified instead of the usual pressure distribution to solve the boundry-layer equations. The Euler equations are solved for the inviscid flow using the finite volume technique and the coupling is achieved by a surface transpiration model. A method is developed to apply a minimum amount of suction that is required to have an attached flow on the airfoil. The turbulent boundary layer equations are derived using the bi-logarithmic wall law for mass transfer. The results are found to be in good agreement with available experimental data and with the results of other computational methods.

  13. Targeted energy transfer in laminar vortex-induced vibration of a sprung cylinder with a nonlinear dissipative rotator

    NASA Astrophysics Data System (ADS)

    Blanchard, Antoine; Bergman, Lawrence A.; Vakakis, Alexander F.

    2017-07-01

    We computationally investigate the dynamics of a linearly-sprung circular cylinder immersed in an incompressible flow and undergoing transverse vortex-induced vibration (VIV), to which is attached a rotational nonlinear energy sink (NES) consisting of a mass that freely rotates at constant radius about the cylinder axis, and whose motion is restrained by a rotational linear viscous damper. The inertial coupling between the rotational motion of the attached mass and the rectilinear motion of the cylinder is ;essentially nonlinear;, which, in conjunction with dissipation, allows for one-way, nearly irreversible targeted energy transfer (TET) from the oscillating cylinder to the nonlinear dissipative attachment. At the intermediate Reynolds number Re = 100, the NES-equipped sprung cylinder undergoes repetitive cycles of slowly decaying oscillations punctuated by intervals of chaotic instabilities. During the slowly decaying portion of each cycle, the dynamics of the cylinder is regular and, for large enough values of the ratio ε of the NES mass to the total mass (i.e., NES mass plus cylinder mass), can lead to significant vortex street elongation with partial stabilization of the wake. As ε approaches zero, no such vortex elongation is observed and the wake patterns appear similar to that for a sprung cylinder with no NES. We apply proper orthogonal decomposition (POD) to the velocity flow field during a slowly decaying portion of the solution and show that, in situations where vortex elongation occurs, the NES, though not in direct contact with the surrounding fluid, has a drastic effect on the underlying flow structures, imparting significant and continuous passive redistribution of energy among POD modes. We construct a POD-based reduced-order model for the lift coefficient to characterize energy transactions between the fluid and the cylinder throughout the slowly decaying cycle. We introduce a quantitative signed measure of the work done by the fluid on the cylinder over one quasi-period of the slowly decaying response and find that vortex elongation is associated with a sign change of that measure, indicating that a reversal of the direction of energy transfer, with the cylinder ;leaking energy back; to the flow, is responsible for partial stabilization and elongation of the wake. We interpret these findings in terms of the spatial structure and energy distribution of the POD modes, and relate them to the mechanism of transient resonance capture into a slow invariant manifold of the fluid-structure interaction dynamics.

  14. Ethylene Trace-gas Techniques for High-speed Flows

    NASA Technical Reports Server (NTRS)

    Davis, David O.; Reichert, Bruce A.

    1994-01-01

    Three applications of the ethylene trace-gas technique to high-speed flows are described: flow-field tracking, air-to-air mixing, and bleed mass-flow measurement. The technique involves injecting a non-reacting gas (ethylene) into the flow field and measuring the concentration distribution in a downstream plane. From the distributions, information about flow development, mixing, and mass-flow rates can be dtermined. The trace-gas apparatus and special considerations for use in high-speed flow are discussed. A description of each application, including uncertainty estimates is followed by a demonstrative example.

  15. High Temperature Falling Particle Receiver (2012 - 2016) - Final DOE Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ho, Clifford K.

    The objective of this work was to advance falling particle receiver designs for concentrating solar power applications that will enable higher temperatures (>700 °C) and greater power-cycle efficiencies (≥50% thermal-to-electric). Modeling, design, and testing of components in Phases 1 and 2 led to the successful on-sun demonstration in Phase 3 of the world’s first continuously recirculating high-temperature 1 MW t falling particle receiver that achieved >700 °C particle outlet temperatures at mass flow rates ranging from 1 – 7 kg/s.

  16. Introduction of the new concept: Potential Aerosol Mass (PAM) for Inorganic and Organic Secondary Aerosol

    NASA Astrophysics Data System (ADS)

    Kang, E.; Root, M. J.; Brune, W. H.

    2006-12-01

    A new concept, the Potential Aerosol Mass (PAM), is being developed and tested in the laboratory with the goal of deploying instruments to measure PAM in the atmosphere. PAM can be defined as the maximum aerosol mass that precursor gases can be oxidized to form. In the PAM concept, all precursor gases are oxidized to low volatile compounds with excessive amount of oxidants in a small continuous-flow Teflon cylinder, resulting in aerosol formation. Excessive amounts of OH and O3 are produced by a UV light that shines into the Teflon chamber. For our studies, the aerosol mass is then detected with a real-time aerosol mass measurement instrument, the Rupprecht and Patashnick Tapered Element Oscillating Microbalance (TEOM) and Filter Dynamic Measurement System (FDMS). As a test of the system, SO2 was oxidized to sulfate; the measured and calculated conversion ratios of sulfate aerosol mass to SO2 mass agree to within 10%. We will discuss the results of a series of laboratory tests that have been conducted with α-pinene to determine the variables that most affect its Secondary Organic Aerosol (SOA) yield. We will also discuss the results of some atmospheric measurement tests made at a site on the Penn State University campus.

  17. On the deficit problem of mass and energy of solar coronal mass ejections connected with interplanetary shocks

    NASA Technical Reports Server (NTRS)

    Ivanchuk, V. I.; Pishkalo, N. I.

    1995-01-01

    Mean values of a number of parameters of the most powerful coronal mass ejections (CMEs) and interplanetary shocks generated by these ejections are estimated using an analysis of data obtained by the cosmic coronagraphs and spacecrafts, and geomagnetic storm measurements. It was payed attention that the shock mass and mechanical energy, averaging 5 x 10(exp 16) grm and 2 x 10(exp 32) erg respectively, are nearly 10 times larger than corresponding parameters of the ejections. So, the CME energy deficit problem seems to exist really. To solve this problem one can make an assumption that the process of the mass and energy growth of CMEs during their propagation out of the Sun observed in the solar corona is continued in supercorona too up to distances of 10-30 solar radii. This assumption is confirmed by the data analysis of five events observed using zodiacal light photometers of the HELIOS- I and HELIOS-2 spacecrafts. The mass growth rate is estimated to be equal to (1-7) x 10(exp 11) grm/sec. It is concluded that the CME contribution to mass and energy flows in the solar winds probably, is larger enough than the value of 3-5% adopted usually.

  18. Transmission Geometry Laser Ablation into a Non-Contact Liquid Vortex Capture Probe for Mass Spectrometry Imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ovchinnikova, Olga S; Bhandari, Deepak; Lorenz, Matthias

    2014-01-01

    RATIONALE: Capture of material from a laser ablation plume into a continuous flow stream of solvent provides the means for uninterrupted sampling, transport and ionization of collected material for coupling with mass spectral analysis. Reported here is the use of vertically aligned transmission geometry laser ablation in combination with a new non-contact liquid vortex capture probe coupled with electrospray ionization for spot sampling and chemical imaging with mass spectrometry. Methods: A vertically aligned continuous flow liquid vortex capture probe was positioned directly underneath a sample surface in a transmission geometry laser ablation (355 nm, 10 Hz, 7 ns pulse width)more » setup to capture into solution the ablated material. The outlet of the vortex probe was coupled to the Turbo V ion source of an AB SCIEX TripleTOF 5600+ mass spectrometer. System operation and performance metrics were tested using inked patterns and thin tissue sections. Glass slides and slides designed especially for laser capture microdissection, viz., DIRECTOR slides and PEN 1.0 (polyethylene naphthalate) membrane slides, were used as sample substrates. Results: The estimated capture efficiency of laser ablated material was 24%, which was enabled by the use of a probe with large liquid surface area (~ 2.8 mm2) and with gravity to help direct ablated material vertically down towards the probe. The swirling vortex action of the liquid surface potentially enhanced capture and dissolution of not only particulates, but also gaseous products of the laser ablation. The use of DIRECTOR slides and PEN 1.0 (polyethylene naphthalate) membrane slides as sample substrates enabled effective ablation of a wide range of sample types (basic blue 7, polypropylene glycol, insulin and cyctochrome c) without photodamage using a UV laser. Imaging resolution of about 6 m was demonstrated for stamped ink on DIRECTOR slides based on the ability to distinguish features present both in the optical and in the chemical image. This imaging resolution was 20 times better than the previous best reported results with laser ablation/liquid sample capture mass spectrometry imaging. Using thin sections of brain tissue the chemical image of a selected lipid was obtained with an estimated imaging resolution of about 50 um. Conclusions: A vertically aligned, transmission geometry laser ablation liquid vortex capture probe, electrospray ionization mass spectrometry system provides an effective means for spatially resolved spot sampling and imaging with mass spectrometry.« less

  19. Transmission geometry laser ablation into a non-contact liquid vortex capture probe for mass spectrometry imaging.

    PubMed

    Ovchinnikova, Olga S; Bhandari, Deepak; Lorenz, Matthias; Van Berkel, Gary J

    2014-08-15

    Capture of material from a laser ablation plume into a continuous flow stream of solvent provides the means for uninterrupted sampling, transport and ionization of collected material for coupling with mass spectral analysis. Reported here is the use of vertically aligned transmission geometry laser ablation in combination with a new non-contact liquid vortex capture probe coupled with electrospray ionization for spot sampling and chemical imaging with mass spectrometry. A vertically aligned continuous flow liquid vortex capture probe was positioned directly underneath a sample surface in a transmission geometry laser ablation (355 nm, 10 Hz, 7 ns pulse width) set up to capture into solution the ablated material. The outlet of the vortex probe was coupled to the Turbo V™ ion source of an AB SCIEX TripleTOF 5600+ mass spectrometer. System operation and performance metrics were tested using inked patterns and thin tissue sections. Glass slides and slides designed especially for laser capture microdissection, viz., DIRECTOR(®) slides and PEN 1.0 (polyethylene naphthalate) membrane slides, were used as sample substrates. The estimated capture efficiency of laser-ablated material was 24%, which was enabled by the use of a probe with large liquid surface area (~2.8 mm(2) ) and with gravity to help direct ablated material vertically down towards the probe. The swirling vortex action of the liquid surface potentially enhanced capture and dissolution not only of particulates, but also of gaseous products of the laser ablation. The use of DIRECTOR(®) slides and PEN 1.0 (polyethylene naphthalate) membrane slides as sample substrates enabled effective ablation of a wide range of sample types (basic blue 7, polypropylene glycol, insulin and cyctochrome c) without photodamage using a UV laser. Imaging resolution of about 6 µm was demonstrated for stamped ink on DIRECTOR(®) slides based on the ability to distinguish features present both in the optical and in the chemical image. This imaging resolution was 20 times better than the previous best reported results with laser ablation/liquid sample capture mass spectrometry imaging. Using thin sections of brain tissue the chemical image of a selected lipid was obtained with an estimated imaging resolution of about 50 µm. A vertically aligned, transmission geometry laser ablation liquid vortex capture probe, electrospray ionization mass spectrometry system provides an effective means for spatially resolved spot sampling and imaging with mass spectrometry. Published in 2014. This article is a U.S. Government work and is in the public domain in the USA.

  20. Gas-liquid mass transfer and flow phenomena in the Peirce-Smith converter: a water model study

    NASA Astrophysics Data System (ADS)

    Zhao, Xing; Zhao, Hong-liang; Zhang, Li-feng; Yang, Li-qiang

    2018-01-01

    A water model with a geometric similarity ratio of 1:5 was developed to investigate the gas-liquid mass transfer and flow characteristics in a Peirce-Smith converter. A gas mixture of CO2 and Ar was injected into a NaOH solution bath. The flow field, volumetric mass transfer coefficient per unit volume ( Ak/V; where A is the contact area between phases, V is the volume, and k is the mass transfer coefficient), and gas utilization ratio ( η) were then measured at different gas flow rates and blow angles. The results showed that the flow field could be divided into five regions, i.e., injection, strong loop, weak loop, splashing, and dead zone. Whereas the Ak/V of the bath increased and then decreased with increasing gas flow rate, and η steadily increased. When the converter was rotated clockwise, both Ak/V and η increased. However, the flow condition deteriorated when the gas flow rate and blow angle were drastically increased. Therefore, these parameters must be controlled to optimal conditions. In the proposed model, the optimal gas flow rate and blow angle were 7.5 m3·h-1 and 10°, respectively.

Top