Sample records for continuous flow preconcentration

  1. High throughput liquid absorption preconcentrator sampling instrument

    DOEpatents

    Zaromb, Solomon; Bozen, Ralph M.

    1992-01-01

    A system for detecting trace concentrations of an analyte in air includes a preconcentrator for the analyte and an analyte detector. The preconcentrator includes an elongated tubular container comprising a wettable material. The wettable material is continuously wetted with an analyte-sorbing liquid which flows from one part of the container to a lower end. Sampled air flows through the container in contact with the wetted material with a swirling motion which results in efficient transfer of analyte vapors or aerosol particles to the sorbing liquid and preconcentration of traces of analyte in the liquid. The preconcentrated traces of analyte may be either detected within the container or removed therefrom for injection into a separate detection means or for subsequent analysis.

  2. High-throughput liquid-absorption preconcentrator sampling methods

    DOEpatents

    Zaromb, Solomon

    1994-01-01

    A system for detecting trace concentrations of an analyte in air includes a preconcentrator for the analyte and an analyte detector. The preconcentrator includes an elongated tubular container comprising a wettable material. The wettable material is continuously wetted with an analyte-sorbing liquid which flows from one part of the container to a lower end. Sampled air flows through the container in contact with the wetted material with a swirling motion which results in efficient transfer of analyte vapors or aerosol particles to the sorbing liquid and preconcentration of traces of analyte in the liquid. The preconcentrated traces of analyte may be either detected within the container or removed therefrom for injection into a separate detection means or for subsequent analysis.

  3. High throughput liquid absorption preconcentrator sampling instrument

    DOEpatents

    Zaromb, S.; Bozen, R.M.

    1992-12-22

    A system for detecting trace concentrations of an analyte in air includes a preconcentrator for the analyte and an analyte detector. The preconcentrator includes an elongated tubular container comprising a wettable material. The wettable material is continuously wetted with an analyte-sorbing liquid which flows from one part of the container to a lower end. Sampled air flows through the container in contact with the wetted material with a swirling motion which results in efficient transfer of analyte vapors or aerosol particles to the sorbing liquid and preconcentration of traces of analyte in the liquid. The preconcentrated traces of analyte may be either detected within the container or removed therefrom for injection into a separate detection means or for subsequent analysis. 12 figs.

  4. High-throughput liquid-absorption preconcentrator sampling methods

    DOEpatents

    Zaromb, S.

    1994-07-12

    A system for detecting trace concentrations of an analyte in air includes a preconcentrator for the analyte and an analyte detector. The preconcentrator includes an elongated tubular container comprising a wettable material. The wettable material is continuously wetted with an analyte-sorbing liquid which flows from one part of the container to a lower end. Sampled air flows through the container in contact with the wetted material with a swirling motion which results in efficient transfer of analyte vapors or aerosol particles to the sorbing liquid and preconcentration of traces of analyte in the liquid. The preconcentrated traces of analyte may be either detected within the container or removed therefrom for injection into a separate detection means or for subsequent analysis. 12 figs.

  5. Microfluidic paper-based biomolecule preconcentrator based on ion concentration polarization.

    PubMed

    Han, Sung Il; Hwang, Kyo Seon; Kwak, Rhokyun; Lee, Jeong Hoon

    2016-06-21

    Microfluidic paper-based analytical devices (μPADs) for molecular detection have great potential in the field of point-of-care diagnostics. Currently, a critical problem being faced by μPADs is improving their detection sensitivity. Various preconcentration processes have been developed, but they still have complicated structures and fabrication processes to integrate into μPADs. To address this issue, we have developed a novel paper-based preconcentrator utilizing ion concentration polarization (ICP) with minimal addition on lateral-flow paper. The cation selective membrane (i.e., Nafion) is patterned on adhesive tape, and this tape is then attached to paper-based channels. When an electric field is applied across the Nafion, ICP is initiated to preconcentrate the biomolecules in the paper channel. Departing from previous paper-based preconcentrators, we maintain steady lateral fluid flow with the separated Nafion layer; as a result, fluorescent dyes and proteins (FITC-albumin and bovine serum albumin) are continuously delivered to the preconcentration zone, achieving high preconcentration performance up to 1000-fold. In addition, we demonstrate that the Nafion-patterned tape can be integrated with various geometries (multiplexed preconcentrator) and platforms (string and polymer microfluidic channel). This work would facilitate integration of various ICP devices, including preconcentrators, pH/concentration modulators, and micro mixers, with steady lateral flows in paper-based platforms.

  6. Liquid-absorption preconcentrator sampling instrument

    DOEpatents

    Zaromb, Solomon

    1990-01-01

    A system for detecting trace concentrations of an analyte in air and includes a preconcentrator for the analyte and an analyte detector. The preconcentrator includes an elongated tubular container in which is disposed a wettable material extending substantially the entire length of the container. One end of the wettable material is continuously wetted with an analyte-sorbing liquid, which flows to the other end of the container. Sample air is flowed through the container in contact with the wetted material for trapping and preconcentrating the traces of analyte in the sorbing liquid, which is then collected at the other end of the container and discharged to the detector. The wetted material may be a wick comprising a bundle of fibers, one end of which is immersed in a reservoir of the analyte-sorbing liquid, or may be a liner disposed on the inner surface of the container, with the sorbing liquid being centrifugally dispersed onto the liner at one end thereof. The container is preferably vertically oriented so that gravity effects the liquid flow.

  7. Liquid-absorption preconcentrator sampling instrument

    DOEpatents

    Zaromb, S.

    1990-12-11

    A system is described for detecting trace concentrations of an analyte in air and includes a preconcentrator for the analyte and an analyte detector. The preconcentrator includes an elongated tubular container in which is disposed a wettable material extending substantially the entire length of the container. One end of the wettable material is continuously wetted with an analyte-sorbing liquid, which flows to the other end of the container. Sample air is flowed through the container in contact with the wetted material for trapping and preconcentrating the traces of analyte in the sorbing liquid, which is then collected at the other end of the container and discharged to the detector. The wetted material may be a wick comprising a bundle of fibers, one end of which is immersed in a reservoir of the analyte-sorbing liquid, or may be a liner disposed on the inner surface of the container, with the sorbing liquid being centrifugally dispersed onto the liner at one end thereof. The container is preferably vertically oriented so that gravity effects the liquid flow. 4 figs.

  8. Application of polyurethane foam as a sorbent for trace metal pre-concentration — A review

    NASA Astrophysics Data System (ADS)

    Lemos, V. A.; Santos, M. S.; Santos, E. S.; Santos, M. J. S.; dos Santos, W. N. L.; Souza, A. S.; de Jesus, D. S.; das Virgens, C. F.; Carvalho, M. S.; Oleszczuk, N.; Vale, M. G. R.; Welz, B.; Ferreira, S. L. C.

    2007-01-01

    The first publication on the use of polyurethane foam (PUF) for sorption processes dates back to 1970, and soon after the material was applied for separation processes. The application of PUF as a sorbent for solid phase extraction of inorganic analytes for separation and pre-concentration purposes is reviewed. The physical and chemical characteristics of PUF (polyether and polyester type) are discussed and an introduction to the characterization of these sorption processes using different types of isotherms is given. Separation and pre-concentration methods using unloaded and loaded PUF in batch and on-line procedures with continuous flow and flow injection systems are presented. Methods for the direct solid sampling analysis of the PUF after pre-concentration are discussed as well as approaches for speciation analysis. Thermodynamic proprieties of some extraction processes are evaluated and the interpretation of determined parameters, such as enthalpy, entropy and Gibbs free energy in light of the physico-chemical processes is explained.

  9. Chemical preconcentrator with integral thermal flow sensor

    DOEpatents

    Manginell, Ronald P.; Frye-Mason, Gregory C.

    2003-01-01

    A chemical preconcentrator with integral thermal flow sensor can be used to accurately measure fluid flow rate in a microanalytical system. The thermal flow sensor can be operated in either constant temperature or constant power mode and variants thereof. The chemical preconcentrator with integral thermal flow sensor can be fabricated with the same MEMS technology as the rest of the microanlaytical system. Because of its low heat capacity, low-loss, and small size, the chemical preconcentrator with integral thermal flow sensor is fast and efficient enough to be used in battery-powered, portable microanalytical systems.

  10. Two-stage preconcentrator for vapor/particle detection

    DOEpatents

    Linker, Kevin L.; Brusseau, Charles A.

    2002-01-01

    A device for concentrating particles from a high volume gas stream and delivering the particles for detection in a low volume gas stream includes first and second preconcentrators. The first preconcentrator has a first structure for retaining particles in a first gas flow path through which a first gas flows at a relatively high volume, valves for selectively stopping the first gas flow; and a second gas flow path through which gas flows at an intermediate flow volume for moving particles from the first structure. The second preconcentrator includes a second structure for retaining particles in the second gas flow path; a valve for selectively stopping the second gas flow; and a third gas flow path through which gas flows at a low volume for moving particles from the second structure to a detector. Each of the particle retaining structures is preferably a metal screen that may be resistively heated by application of an electric potential to release the particles.

  11. Tortuous path chemical preconcentrator

    DOEpatents

    Manginell, Ronald P.; Lewis, Patrick R.; Adkins, Douglas R.; Wheeler, David R.; Simonson, Robert J.

    2010-09-21

    A non-planar, tortuous path chemical preconcentrator has a high internal surface area having a heatable sorptive coating that can be used to selectively collect and concentrate one or more chemical species of interest from a fluid stream that can be rapidly released as a concentrated plug into an analytical or microanalytical chain for separation and detection. The non-planar chemical preconcentrator comprises a sorptive support structure having a tortuous flow path. The tortuosity provides repeated twists, turns, and bends to the flow, thereby increasing the interfacial contact between sample fluid stream and the sorptive material. The tortuous path also provides more opportunities for desorption and readsorption of volatile species. Further, the thermal efficiency of the tortuous path chemical preconcentrator is comparable or superior to the prior non-planar chemical preconcentrator. Finally, the tortuosity can be varied in different directions to optimize flow rates during the adsorption and desorption phases of operation of the preconcentrator.

  12. Microfluidic concentration of bacteria by on-chip electrophoresis

    PubMed Central

    Puchberger-Enengl, Dietmar; Podszun, Susann; Heinz, Helene; Hermann, Carsten; Vulto, Paul; Urban, Gerald A.

    2011-01-01

    In this contribution, we present a system for efficient preconcentration of pathogens without affecting their viability. Development of miniaturized molecular diagnostic kits requires concentration of the sample, molecule extraction, amplification, and detection. In consequence of low analyte concentrations in real-world samples, preconcentration is a critical step within this workflow. Bacteria and viruses exhibit a negative surface charge and thus can be electrophoretically captured from a continuous flow. The concept of phaseguides was applied to define gel membranes, which enable effective and reversible collection of the target species. E. coli of the strains XL1-blue and K12 were used to evaluate the performance of the device. By suppression of the electroosmotic flow both strains were captured with efficiencies of up to 99%. At a continuous flow of 15 μl/min concentration factors of 50.17 ± 2.23 and 47.36 ± 1.72 were achieved in less than 27 min for XL1-blue and K12, respectively. These results indicate that free flow electrophoresis enables efficient concentration of bacteria and the presented device can contribute to rapid analyses of swab-derived samples. PMID:22207893

  13. Battery operated preconcentration-assisted lateral flow assay.

    PubMed

    Kim, Cheonjung; Yoo, Yong Kyoung; Han, Sung Il; Lee, Junwoo; Lee, Dohwan; Lee, Kyungjae; Hwang, Kyo Seon; Lee, Kyu Hyoung; Chung, Seok; Lee, Jeong Hoon

    2017-07-11

    Paper-based analytical devices (e.g. lateral flow assays) are highly advantageous as portable diagnostic systems owing to their low costs and ease of use. Because of their low sensitivity and detection limits for biomolecules, these devices have several limitations in applications for real-field diagnosis. Here, we demonstrate a paper-based preconcentration enhanced lateral flow assay using a commercial β-hCG-based test. Utilizing a simple 9 V battery operation with a low power consumption of approximately 81 μW, we acquire a 25-fold preconcentration factor, demonstrating a clear sensitivity enhancement in the colorimetric lateral flow assay; consequently, clear colors are observed in a rapid kit test line, which cannot be monitored without preconcentration. This device can also facilitate a semi-quantitative platform using the saturation value and/or color intensity in both paper-based colorimetric assays and smartphone-based diagnostics.

  14. In situ continuous derivatization/pre-concentration of carbonyl compounds with 2,4-dinitrophenylhydrazine in aqueous samples by solid-phase extraction Application to liquid chromatography determination of aldehydes.

    PubMed

    Baños, Clara-Eugenia; Silva, Manuel

    2009-03-15

    A rapid and straightforward continuous solid-phase extraction system has been developed for in situ derivatization and pre-concentration of carbonyl compounds in aqueous samples. Initially 2,4-dinitrophenylhydrazine, the derivatizing agent, was adsorbed on a C(18) mini-column and then 15-ml of sample were continuously aspirated into the flow system, where the derivatization and pre-concentration of the analytes (low-molecular mass aldehydes) were performed simultaneously. Following elution, 20 microl of the extract were injected into a LC-DAD system, in which hydrazones were successfully separated in 12 min on a RP-C(18) column using a linear gradient mobile phase of acetonitrile-water of 60-100% acetonitrile for 8 min, flowing at 0.5 ml/min. The whole analytical process can be accomplished within ca. 35 min. Under optimum conditions, limits of detection were obtained between 0.3 and 1.0 microg/l and RSDs (inter-day precision) from 1.2 to 4.6%. Finally, some applications on water samples are presented with recoveries ranged from 95.8 to 99.4%.

  15. Folding-paper-based preconcentrator for low dispersion of preconcentration plug

    NASA Astrophysics Data System (ADS)

    Lee, Kyungjae; Yoo, Yong Kyoung; Han, Sung Il; Lee, Junwoo; Lee, Dohwan; Kim, Cheonjung; Lee, Jeong Hoon

    2017-12-01

    Ion concentration polarization (ICP) has been widely studied for collecting target analytes as it is a powerful preconcentrator method employed for charged molecules. Although the method is quite robust, simple, cheap, and yields a high preconcentration factor, a major hurdle to be addressed is extracting the preconcentrated samples without dispersing the plug. This study investigates a 3D folding-paper-based ICP preconcentrator for preconcentrated plug extraction without the dispersion effect. The ICP preconcentrator is printed on a cellulose paper with pre-patterned hydrophobic wax. To extract and isolate the preconcentration plug with minimal dispersion, a 3D pop-up structure is fabricated via water drain, and a preconcentration factor of 300-fold for 10 min is achieved. By optimizing factors such as the electric field, water drain, and sample volume, the technique was enhanced by facilitating sample preconcentration and isolation, thereby providing the possibility for extensive applications in analytical devices such as lateral flow assays and FTAR cards.

  16. A MEMS Based Hybrid Preconcentrator/Chemiresistor Chemical Sensor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    HUGHES,ROBERT C.; PATEL,SANJAY V.; MANGINELL,RONALD P.

    2000-06-12

    A hybrid of a microfabricated planar preconcentrator and a four element chemiresistor array chip has been fabricated and the performance as a chemical sensor system has been demonstrated. The close proximity of the chemiresistor sensor to the preconcentrator absorbent layer allows for fast transfer of the preconcentrated molecules during the heating and resorption step. The hybrid can be used in a conventional flow sampling system for detection of low concentrations of analyte molecules or in a pumpless/valveless mode with a grooved lid to confine the desorption plume from the preconcentrator during heating.

  17. Continuous ultrasound-assisted extraction of hexavalent chromium from soil with or without on-line preconcentration prior to photometric monitoring.

    PubMed

    Luque-García, J L; Luque de Castro, M D

    2002-08-01

    A continuous ultrasound-assisted extractor was coupled to a photometric detector in order to obtain a fully automated approach for the determination of CrVI in soil. The use of a flow injection (FI) manifold as interface between the extractor and the photometric detector allowed the monitoring of CrVI after extraction in a continuous manner. The coloured complex formed between 1,5-diphenylcarbazide (DPC) and CrVI was used as recommended in EPA method 7196A because it is one of the most sensitive and selective reactions for CrVI determination. A preconcentration minicolumn packed with a strong anion-exchange resin was placed between the extractor and the detector, providing a more sensitive method. The linear dynamic ranges were 1-10 and 0.25-7.5 mg l-1 for the methods without (method A) and with preconcentration (method B), respectively. The limits of detection were 4.52 ng for method A and 1.23 ng for method B. Both methods were applied to a natural contaminated soil and the results obtained agreed well with those obtained by the reference EPA method 3060A. The influence of different amounts of CrIII in the samples was also studied and the results showed that the proposed methods did not disturb the original species distribution.

  18. Electrolytic preconcentration in instrumental analysis.

    PubMed

    Sioda, R E; Batley, G E; Lund, W; Wang, J; Leach, S C

    1986-05-01

    The use of electrolytic deposition as a separation and preconcentration step in trace metal analysis is reviewed. Both the principles and applications of the technique are dealt with in some detail. Electrolytic preconcentration can be combined with a variety of instrumental techniques. Special attention is given to stripping voltammetry, potentiometric stripping analysis, different combinations with atomic-absorption spectrometry, and the use of flow-through porous electrodes. It is pointed out that the electrolytic preconcentration technique deserves more extensive use as well as fundamental investigation.

  19. Non-planar chemical preconcentrator

    DOEpatents

    Manginell, Ronald P [Albuquerque, NM; Adkins, Douglas R [Albuquerque, NM; Sokolowski, Sara S [Albuquerque, NM; Lewis, Patrick R [Albuquerque, NM

    2006-10-10

    A non-planar chemical preconcentrator comprises a high-surface area, low mass, three-dimensional, flow-through sorption support structure that can be coated or packed with a sorptive material. The sorptive material can collect and concentrate a chemical analyte from a fluid stream and rapidly release it as a very narrow temporal plug for improved separations in a microanalytical system. The non-planar chemical preconcentrator retains most of the thermal and fabrication benefits of a planar preconcentrator, but has improved ruggedness and uptake, while reducing sorptive coating concerns and extending the range of collectible analytes.

  20. Determination of pesticides in waters by automatic on-line solid-phase extraction-capillary electrophoresis.

    PubMed

    Hinsmann, P; Arce, L; Ríos, A; Valcárcel, M

    2000-01-07

    The separation of seven pesticides by micellar electrokinetic capillary chromatography in spiked water samples is described, allowing the analysis of pesticides mixtures down to a concentration of 50 microg l(-1) in less than 13 min. Calibration, pre-concentration, elution and injection into the sample vial was carried out automatically by a continuous flow system (CFS) coupled to a capillary electrophoresis system via a programmable arm. The whole system was electronically coupled by a micro-processor and completely controlled by a computer. A C18 solid-phase mini-column was used for the pre-concentration, allowing a 12-fold enrichment (as an average value) of the pesticides from fortified water samples. Under the optimal extraction conditions, recoveries between 90 and 114% for most of the pesticides were obtained.

  1. Determination of scandium in acid mine drainage by ICP-OES with flow injection on-line preconcentration using oxidized multiwalled carbon nanotubes.

    PubMed

    Jerez, Javier; Isaguirre, Andrea C; Bazán, Cristian; Martinez, Luis D; Cerutti, Soledad

    2014-06-01

    An on-line scandium preconcentration and determination system implemented with inductively coupled plasma optical emission spectrometry associated with flow injection was studied. Trace amounts of scandium were preconcentrated by sorption on a minicolumn packed with oxidized multiwalled carbon nanotubes, at pH 1.5. The retained analyte was removed from the minicolumn with 30% (v/v) nitric acid. A total enrichment factor of 225-fold was obtained within a preconcentration time of 300 s (for a 25 mL sample volume). The overall time required for preconcentration and elution of 25 mL of sample was about 6 min; the throughput was about 10 samples per hour. The value of the detection limit was 4 ng L(-1) and the precision for 10 replicate determinations at 100 ng L(-1) Sc level was 5% relative standard deviation, calculated from the peak heights obtained. The calibration graph using the preconcentration system was linear with a correlation coefficient of 0.9996 at levels near the detection limits up to at least 10 mg L(-1). After optimization, the method was successfully applied to the determination of Sc in an acid drainage from an abandoned mine located in the province of San Luis, Argentina. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Continuous flow nanoparticle concentration using alternating current-electroosmotic flow.

    PubMed

    Hoettges, Kai F; McDonnell, Martin B; Hughes, Michael P

    2014-02-01

    Achieving real-time detection of environmental pathogens such as viruses and bacterial spores requires detectors with both rapid action and a suitable detection threshold. However, most biosensors have detection limits of an order of magnitude or more above the potential infection threshold, limiting their usefulness. This can be improved through the use of automated sample preparation techniques such as preconcentration. In this paper, we describe the use of AC electroosmosis to concentrate nanoparticles from a continuous flow. Electrodes at an optimized angle across a flow cell, and energized by a 1 kHz signal, were used to push nanoparticles to one side of a flow cell, and to extract the resulting stream with a high particle concentration from that side of the flow cell. A simple model of the behavior of particles in the flow cell has been developed, which shows good agreement with experimental results. The method indicates potential for higher concentration factors through cascading devices. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Integrated explosive preconcentrator and electrochemical detection system for 2,4,6-trinitrotoluene (TNT) vapor.

    PubMed

    Cizek, Karel; Prior, Chad; Thammakhet, Chongdee; Galik, Michal; Linker, Kevin; Tsui, Ray; Cagan, Avi; Wake, John; La Belle, Jeff; Wang, Joseph

    2010-02-19

    This article reports on an integrated explosive-preconcentration/electrochemical detection system for 2,4,6-trinitrotoluene (TNT) vapor. The challenges involved in such system integration are discussed. A hydrogel-coated screen-printed electrode is used for the detection of the thermally desorbed TNT from a preconcentration device using rapid square wave voltammetry. Optimization of the preconcentration system for desorption of TNT and subsequent electrochemical detection was conducted yielding a desorption temperature of 120 degrees C under a flow rate of 500 mL min(-1). Such conditions resulted in a characteristic electrochemical signal for TNT representing the multi-step reduction process. Quantitative measurements produced a linear signal dependence on TNT quantity exposed to the preconcentrator from 0.25 to 10 microg. Finally, the integrated device was successfully demonstrated using a sample of solid TNT located upstream of the preconcentrator. Copyright 2009 Elsevier B.V. All rights reserved.

  4. Electrokinetic Sample Preconcentration and Hydrodynamic Sample Injection for Microchip Electrophoresis Using a Pneumatic Microvalve

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cong, Yongzheng; Katipamula, Shanta; Geng, Tao

    2016-02-01

    A microfluidic platform was developed to perform online electrokinetic sample preconcentration and rapid hydrodynamic sample injection for electrophoresis using a single microvalve. The PDMS microchip consists of a separation channel, a side channel for sample introduction, and a control channel which is used as a pneumatic microvalve aligned at the intersection of the two flow channels. The closed microvalve, created by multilayer soft lithography, can serve as a preconcentrator under an applied electric potential, enabling current to pass through while blocking bulk flow. Once analytes are concentrated, the valve is briefly opened and the stacked sample is pressure injected intomore » the separation channel for electrophoretic separation. Fluorescently labeled peptides were enriched by a factor of ~450 in 230 s. The performance of the platform was validated by the online preconcentration, injection and electrophoretic separation of fluorescently labeled peptides. This method enables both rapid analyte concentration and controlled injection volume for high sensitivity, high resolution capillary electrophoresis.« less

  5. Parallel-plate wet denuder coupled ion chromatograph for near-real-time detection of trace acidic gases in clean room air.

    PubMed

    Takeuchi, Masaki; Tsunoda, Hiromichi; Tanaka, Hideji; Shiramizu, Yoshimi

    2011-01-01

    This paper describes the performance of our automated acidic (CH(3)COOH, HCOOH, HCl, HNO(2), SO(2), and HNO(3)) gases monitor utilizing a parallel-plate wet denuder (PPWD). The PPWD quantitatively collects gaseous contaminants at a high sample flow rate (∼8 dm(3) min(-1)) compared to the conventional methods used in a clean room. Rapid response to any variability in the sample concentration enables near-real-time monitoring. In the developed monitor, the analyte collected with the PPWD is pumped into one of two preconcentration columns for 15 min, and determined by means of ion chromatography. While one preconcentration column is used for chromatographic separation, the other is used for loading the sample solution. The system allows continuous monitoring of the common acidic gases in an advanced semiconductor manufacturing clean room. 2011 © The Japan Society for Analytical Chemistry

  6. A continuous analyzer for soluble anionic constituents and ammonium in atmospheric particulate matter.

    PubMed

    Al-Horr, Rida; Samanta, Gautam; Dasgupta, Purnendu K

    2003-12-15

    A new continuous soluble particle collector (PC) that does not use steam is described. Preceded by a denuder and interfaced with an ion chromatograph, this compact collector (3 in. o.d., approximately 5 in. total height) permits collection and continuous extraction of soluble components in atmospheric particulate matter. The PC is mounted atop a parallel plate wetted denuder for removal of soluble gases. The soluble gas denuded air enters the PC through an inlet. One version of the PC contained an integral cyclone-like inlet. For this device, penetration of particles as a function of size was characterized. In the simpler design, the sampled air enters the PC through a nozzle, and deionized water flows through a capillary tube placed close to the exit side of the nozzle by Venturi action or is forcibly pumped. Some growth of the aerosol occurs in the highly humid mist-chamber environment, but the dominant aerosol capture mechanism involves capture by the water film that forms on the hydrophobic PTFE membrane filter that constitutes the top of the PC and the airflow exit. Water drops coalesce on the filter and fall below into a purpose-machined cavity equipped with a liquid sensor. The water and the dissolved constituents are aspirated by a pump onto serial cation and anion preconcentrator columns. NH4+ captured by the cation preconcentrator is eluted with NaOH and is passed across an asymmetric membrane device. NH3 diffuses from the alkaline donor stream into a deionized water flowing countercurrent; the conductivity of the latter provides a measure of ammonium. The anions on the anion preconcentrator column are eluted and measured by a fully automated ion chromatography system. The total system thus provides automated semicontinuous measurement of soluble anions and ammonium. With a 15 min analytical cycle and a sampling rate of 5 L/min, the limit of detection (LOD) for ammonium is 8 ng/m3 and those for sulfate, nitrate, and oxalate are < or = 0.1 ng/m3. The system has been extensively field tested.

  7. Particle preconcentrator

    DOEpatents

    Linker, Kevin L.; Conrad, Frank J.; Custer, Chad A.; Rhykerd, Jr., Charles L.

    1998-01-01

    An apparatus and method for preconcentrating particles and vapors. The preconcentrator apparatus permits detection of highly diluted amounts of particles in a main gas stream, such as a stream of ambient air. A main gas stream having airborne particles entrained therein is passed through a pervious screen. The particles accumulate upon the screen, as the screen acts as a sort of selective particle filter. The flow of the main gas stream is then interrupted by diaphragm shutter valves, whereupon a cross-flow of carrier gas stream is blown parallel past the faces of the screen to dislodge the accumulated particles and carry them to a particle or vapor detector, such as an ion mobility spectrometer. The screen may be heated, such as by passing an electrical current there through, to promote desorption of particles therefrom during the flow of the carrier gas. Various types of screens are disclosed. The apparatus and method of the invention may find particular utility in the fields of narcotics, explosives detection and chemical agents.

  8. Particle preconcentrator

    DOEpatents

    Linker, Kevin L.; Conrad, Frank J.; Custer, Chad A.; Rhykerd, Jr., Charles L.

    2005-09-20

    An apparatus and method for preconcentrating particles and vapors. The preconcentrator apparatus permits detection of highly diluted amounts of particles in a main gas stream, such as a stream of ambient air. A main gas stream having airborne particles entrained therein is passed through a pervious screen. The particles accumulate upon the screen, as the screen acts as a sort of selective particle filter. The flow of the main gas stream is then interrupted by diaphragm shutter valves, whereupon a cross-flow of carrier gas stream is blown parallel past the faces of the screen to dislodge the accumulated particles and carry them to a particle or vapor detector, such as an ion mobility spectrometer. The screen may be heated, such as by passing an electrical current there through, to promote desorption of particles therefrom during the flow of the carrier gas. Various types of screens are disclosed. The apparatus and method of the invention may find particular utility in the fields of narcotics, explosives detection and chemical agents.

  9. Particle preconcentrator

    DOEpatents

    Linker, Kevin L.; Conrad, Frank J.; Custer, Chad A.; Rhykerd, Jr., Charles L.

    2000-01-01

    An apparatus and method for preconcentrating particles and vapors. The preconcentrator apparatus permits detection of highly diluted amounts of particles in a main gas stream, such as a stream of ambient air. A main gas stream having airborne particles entrained therein is passed through a pervious screen. The particles accumulate upon the screen, as the screen acts as a sort of selective particle filter. The flow of the main gas stream is then interrupted by diaphragm shutter valves, whereupon a cross-flow of carrier gas stream is blown parallel past the faces of the screen to dislodge the accumulated particles and carry them to a particle or vapor detector, such as an ion mobility spectrometer. The screen may be heated, such as by passing an electrical current there through, to promote desorption of particles therefrom during the flow of the carrier gas. Various types of screens are disclosed. The apparatus and method of the invention may find particular utility in the fields of narcotics, explosives detection and chemical agents.

  10. Particle preconcentrator

    DOEpatents

    Linker, K.L.; Conrad, F.J.; Custer, C.A.; Rhykerd, C.L. Jr.

    1998-12-29

    An apparatus and method are disclosed for preconcentrating particles and vapors. The preconcentrator apparatus permits detection of highly diluted amounts of particles in a main gas stream, such as a stream of ambient air. A main gas stream having airborne particles entrained therein is passed through a pervious screen. The particles accumulate upon the screen, as the screen acts as a sort of selective particle filter. The flow of the main gas stream is then interrupted by diaphragm shutter valves, whereupon a cross-flow of carrier gas stream is blown parallel past the faces of the screen to dislodge the accumulated particles and carry them to a particle or vapor detector, such as an ion mobility spectrometer. The screen may be heated, such as by passing an electrical current there through, to promote desorption of particles therefrom during the flow of the carrier gas. Various types of screens are disclosed. The apparatus and method of the invention may find particular utility in the fields of narcotics, explosives detection and chemical agents. 3 figs.

  11. Improved limits and portability over currently employed cadmium monitoring systems through preconcentration for detection by way of micro-/nanofluidic mechanisms

    NASA Astrophysics Data System (ADS)

    Wach, Paul

    Due to risk of environmental and biological accumulation of Cadmium (Cd), improved methods of early detection and monitoring must be explored as a preventative measure. Listed as one of the top three toxic heavy metals by the Environmental Protection Agency (EPA), the effects on ecological and human systems have well documented side-effects of physical mutation, reproductive sterility, kidney failure, liver disease, bone loss, and death. Found in batteries, metal plating, pigments, plastics, and cigarettes, Cd is also used as a neutron absorber in the nuclear industry as well as having 3 known radioactive isotopes. Urine Cd levels, which have been widely used to predict whole body levels, increase when kidney damage occurs, thus increasing the importance to monitor and detect as early as possible. Although several methods of detection and monitoring are currently in use, they are insufficient for reasons including massive expense, weak specificity causing false readings, and/or a lack of portability. By exploiting naturally occurring mechanisms known to micro-/nanofluidics, a novel approach to Cd detection, measurement, and preconcentration was explored using the finite element computational software COMSOL. An open flow system of a nanochannel was explored through manipulation of the surface charge density. With a dominant negatively charged density on the walls, positive surface charge densities were adjacently placed at the center of the nanochannel causing a constriction of flow and allowing preconcentration of the analytes. When the open flow system was scaled up to a microchannel, the mechanism was found to have little effect on constriction of the flow. A preconcentration effect was discovered in a closed flow system when the adjacent patches were modeled as being impermeable to charge, causing the molecules to migrate to and remain at the central region of the microchannel once the dynamic process reached steady state. It was found to have the ability to concentrate Cd at an initial concentration of 0.5 mol/m3, which is nearly half the limit of commercially available technology. Additionally, this preconcentration mechanism was demonstrated to potentially advance its capabilities by attaching channels in series or parallel to further preconcentrate for improved detection. Finally, measurement of extremely low concentrations of Cd is possible due to differences seen in the concentration distribution profiles once steady-state is reached.

  12. Vertical flow chemical detection portal

    DOEpatents

    Linker, K.L.; Hannum, D.W.; Conrad, F.J.

    1999-06-22

    A portal apparatus is described for screening objects or persons for the presence of trace amounts of chemical substances such as illicit drugs or explosives. The apparatus has a test space, in which a person may stand, defined by two generally upright sides spanned by a horizontal transom. One or more fans in the transom generate a downward air flow (uni-directional) within the test space. The air flows downwardly from a high pressure upper zone, past the object or person to be screened. Air moving past the object dislodges from the surface thereof both volatile and nonvolatile particles of the target substance. The particles are entrained into the air flow which continues flowing downward to a lower zone of reduced pressure, where the particle-bearing air stream is directed out of the test space and toward preconcentrator and detection components. The sides of the portal are specially configured to partially contain and maintain the air flow. 3 figs.

  13. Vertical flow chemical detection portal

    DOEpatents

    Linker, Kevin L.; Hannum, David W.; Conrad, Frank James

    1999-01-01

    A portal apparatus for screening objects or persons for the presence of trace amounts of chemical substances such as illicit drugs or explosives. The apparatus has a test space, in which a person may stand, defined by two generally upright sides spanned by a horizontal transom. One or more fans in the transom generate a downward air flow (uni-directional) within the test space. The air flows downwardly from a high pressure upper zone, past the object or person to be screened. Air moving past the object dislodges from the surface thereof both volatile and nonvolatile particles of the target substance. The particles are entrained into the air flow which continues flowing downward to a lower zone of reduced pressure, where the particle-bearing air stream is directed out of the test space and toward preconcentrator and detection components. The sides of the portal are specially configured to partially contain and maintain the air flow.

  14. Method and apparatus for concentrating vapors for analysis

    DOEpatents

    Grate, Jay W [West Richland, WA; Baldwin, David L [Kennewick, WA; Anheier, Jr., Norman C.

    2012-06-05

    A pre-concentration device and a method are disclosed for concentrating gaseous vapors for analysis. Vapors sorbed and concentrated within the bed of the pre-concentration device are thermally desorbed, achieving at least partial separation of the vapor mixtures. The pre-concentration device is suitable, e.g., for pre-concentration and sample injection, and provides greater resolution of peaks for vapors within vapor mixtures, yielding detection levels that are 10-10,000 times better than direct sampling and analysis systems. Features are particularly useful for continuous unattended monitoring applications. The invention finds application in conjunction with, e.g., analytical instruments where low detection limits for gaseous vapors are desirable.

  15. Electrokinetic sample preconcentration and hydrodynamic sample injection for microchip electrophoresis using a pneumatic microvalve.

    PubMed

    Cong, Yongzheng; Katipamula, Shanta; Geng, Tao; Prost, Spencer A; Tang, Keqi; Kelly, Ryan T

    2016-02-01

    A microfluidic platform was developed to perform online electrokinetic sample preconcentration and rapid hydrodynamic sample injection for zone electrophoresis using a single microvalve. The polydimethylsiloxane microchip comprises a separation channel, a side channel for sample introduction, and a control channel which is used as a pneumatic microvalve aligned at the intersection of the two flow channels. The closed microvalve, created by multilayer soft lithography, serves as a nanochannel preconcentrator under an applied electric potential, enabling current to pass through while preventing bulk flow. Once analytes are concentrated, the valve is briefly opened and the stacked sample is pressure injected into the separation channel for electrophoretic separation. Fluorescently labeled peptides were enriched by a factor of ∼450 in 230 s. This method enables both rapid analyte concentration and controlled injection volume for high sensitivity, high-resolution CE. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Factors governing the pre-concentration of wastewater using forward osmosis for subsequent resource recovery.

    PubMed

    Ansari, Ashley J; Hai, Faisal I; Guo, Wenshan; Ngo, Hao H; Price, William E; Nghiem, Long D

    2016-10-01

    This study demonstrated a technique using forward osmosis (FO) to pre-concentrate the organic matter in raw wastewater, thereby transforming low strength wastewater into an anaerobically digestible solution. The chemical oxygen demand (COD) of raw wastewater was concentrated up to approximately eightfold at a water recovery of 90%. Thus, even low strength wastewater could be pre-concentrated by FO to the range suitable for biogas production via anaerobic treatment. Excessive salinity accumulation in pre-concentrated wastewater was successfully mitigated by adopting ionic organic draw solutes, namely, sodium acetate, and EDTA-2Na. These two draw solutes are also expected to benefit the digestibility of the pre-concentrated wastewater compared to the commonly used draw solute sodium chloride. Significant membrane fouling was observed when operating at 90% water recovery using raw wastewater. Nevertheless, membrane fouling was reversible and was effectively controlled by optimising the hydrodynamic conditions of the cross-flow FO system. Crown Copyright © 2016. Published by Elsevier B.V. All rights reserved.

  17. Real-time dual-loop electric current measurement for label-free nanofluidic preconcentration chip.

    PubMed

    Chung, Pei-Shan; Fan, Yu-Jui; Sheen, Horn-Jiunn; Tian, Wei-Cheng

    2015-01-07

    An electrokinetic trapping (EKT)-based nanofluidic preconcentration device with the capability of label-free monitoring trapped biomolecules through real-time dual-loop electric current measurement was demonstrated. Universal current-voltage (I-V) curves of EKT-based preconcentration devices, consisting of two microchannels connected by ion-selective channels, are presented for functional validation and optimal operation; universal onset current curves indicating the appearance of the EKT mechanism serve as a confirmation of the concentrating action. The EKT mechanism and the dissimilarity in the current curves related to the volume flow rate (Q), diffusion coefficient (D), and diffusion layer (DL) thickness were explained by a control volume model with a five-stage preconcentration process. Different behaviors of the trapped molecular plug were categorized based on four modes associated with different degrees of electroosmotic instability (EOI). A label-free approach to preconcentrating (bio)molecules and monitoring the multibehavior molecular plug was demonstrated through real-time electric current monitoring, rather than through the use of microscope images.

  18. Trace mercury determination in drinking and natural water samples by room temperature ionic liquid based-preconcentration and flow injection-cold vapor atomic absorption spectrometry.

    PubMed

    Martinis, Estefanía M; Bertón, Paula; Olsina, Roberto A; Altamirano, Jorgelina C; Wuilloud, Rodolfo G

    2009-08-15

    A liquid-liquid extraction procedure (L-L) based on room temperature ionic liquid (RTIL) was developed for the preconcentration and determination of mercury in different water samples. The analyte was quantitatively extracted with 1-butyl-3-methylimidazolium hexafluorophosphate ([C(4)mim][PF(6)]) under the form of Hg-2-(5-bromo-2-pyridylazo)-5-diethylaminophenol (Hg-5-Br-PADAP) complex. A volume of 500 microl of 9.0 mol L(-1) hydrochloric acid was used to back-extract the analyte from the RTIL phase into an aqueous media prior to its analysis by flow injection-cold vapor atomic absorption spectrometry (FI-CV-AAS). A preconcentration factor of 36 was achieved upon preconcentration of 20 mL of sample. The limit of detection (LOD) obtained under the optimal conditions was 2.3ngL(-1) and the relative standard deviation (RSD) for 10 replicates at 1 microg L(-1) Hg(2+) was 2.8%, calculated with peaks height. The method was successfully applied to the determination of mercury in river, sea, mineral and tap water samples and a certified reference material (CRM).

  19. Development of a flow system for the determination of cadmium in fuel alcohol using vermicompost as biosorbent and flame atomic absorption spectrometry.

    PubMed

    Bianchin, Joyce Nunes; Martendal, Edmar; Mior, Renata; Alves, Vanessa Nunes; Araújo, Cleide Sandra Tavares; Coelho, Nívia Maria Melo; Carasek, Eduardo

    2009-04-30

    In this study a method for the determination of cadmium in fuel alcohol using solid-phase extraction with a flow injection analysis system and detection by flame atomic absorption spectrometry was developed. The sorbent material used was a vermicompost commonly used as a garden fertilizer. The chemical and flow variables of the on-line preconcentration system were optimized by means of a full factorial design. The selected factors were: sorbent mass, sample pH, buffer concentration and sample flow rate. The optimum extraction conditions were obtained using sample pH in the range of 7.3-8.3 buffered with tris(hydroxymethyl)aminomethane at 50 mmol L(-1), a sample flow rate of 4.5 mL min(-1) and 160 mg of sorbent mass. With the optimized conditions, the preconcentration factor, limit of detection and sample throughput were estimated as 32 (for preconcentration of 10 mL sample), 1.7 microg L(-1) and 20 samples per hour, respectively. The analytical curve was linear from 5 up to at least 50 microg L(-1), with a correlation coefficient of 0.998 and a relative standard deviation of 2.4% (35 microg L(-1), n=7). The developed method was successfully applied to spiked fuel alcohol, and accuracy was assessed through recovery tests, with recovery ranging from 94% to 100%.

  20. Integrated microfluidic systems for sample preparation and detection of respiratory pathogen Bordetella pertussis.

    PubMed

    de la Rosa, Carlos; Prakash, Ranjit; Tilley, Peter A; Fox, Julie D; Kaler, Karan V i S

    2007-01-01

    An integrated microfluidic system for combined manipulation, pre-concentration, and lysis of samples containing Bordetella pertussis by dielectrophoresis and electroporation has been developed and implemented. The microfluidic device was able to pre-concentrate the amount of B. pertussis cells present in 200 microl of a B. pertussis suspension stock into a 20 microl volume. The device exhibited optimal sample pre-concentration of 6.7x at a stock value of 10(3) cfu/ml and at a flow rate of 250 microl/h. Electro-disruption experiments showed that on-chip-based electroporation is an effective solution for lysis of B. pertussis cells that is easily integrated with dielectrophoresis assisted pre-concentration procedures. Pulsed voltage applied, number of pulses, and presence of potassium chloride in a B. pertussis suspension showed a reduction in B. pertussis cell viability by electroporation; and transmission electron microscopy confirmed B. pertussis cell disruption by electroporation. Genetic amplification and detection of the pre-concentrated sample employing an integrated chip-based system demonstrated a complete chip approach for pathogen detection.

  1. Force fields of charged particles in micro-nanofluidic preconcentration systems

    NASA Astrophysics Data System (ADS)

    Gong, Lingyan; Ouyang, Wei; Li, Zirui; Han, Jongyoon

    2017-12-01

    Electrokinetic concentration devices based on the ion concentration polarization (ICP) phenomenon have drawn much attention due to their simple setup, high enrichment factor, and easy integration with many subsequent processes, such as separation, reaction, and extraction etc. Despite significant progress in the experimental research, fundamental understanding and detailed modeling of the preconcentration systems is still lacking. The mechanism of the electrokinetic trapping of charged particles is currently limited to the force balance analysis between the electric force and fluid drag force in an over-simplified one-dimensional (1D) model, which misses many signatures of the actual system. This letter studies the particle trapping phenomena that are not explainable in the 1D model through the calculation of the two-dimensional (2D) force fields. The trapping of charged particles is shown to significantly distort the electric field and fluid flow pattern, which in turn leads to the different trapping behaviors of particles of different sizes. The mechanisms behind the protrusions and instability of the focused band, which are important factors determining overall preconcentration efficiency, are revealed through analyzing the rotating fluxes of particles in the vicinity of the ion-selective membrane. The differences in the enrichment factors of differently sized particles are understood through the interplay between the electric force and convective fluid flow. These results provide insights into the electrokinetic concentration effect, which could facilitate the design and optimization of ICP-based preconcentration systems.

  2. Natural analcime zeolite modified with 5-Br-PADAP for the preconcentration and anodic stripping voltammetric determination of trace amount of cadmium.

    PubMed

    Afzali, Darush; Mostafavi, Ali; Taher, Mohammad Ali; Rezaeipour, Ebrahim; Khayatzadeh Mahani, Mohammad

    2005-04-01

    A procedure for separation and preconcentration of trace amounts of cadmium has been proposed. A column of analcime zeolite modified with benzyldimethyltetradecylammonium chloride and loaded with 2-(5-bromo-2-pyridylazo)-5-diethylaminophenol (5-Br-PADAP) was used for retention of cadmium. The cadmium was quantitatively retained on the column at pH approximately 9 and was recovered from column with 5 ml of 2 M nitric acid with a preconcentration factor of 140. Anodic stripping differential pulse voltammetry was used for determination of cadmium. A 0.05 ng/ml detection limit for the preconcentration of aqueous solution of cadmium was obtained. The relative standard deviation (RSD) for eight replicate determinations at the 1 microg/ml cadmium levels was 0.31% (calculated with the peak height obtained). The calibration graph using the preconcentration system was linear from 0.01 to 150 microg/ml in final solution with a correlation coefficient of 0.9997. For optimization of conditions, various parameters such as the effect of pH, flow rate, instrumental conditions and interference of number of ions, were studied in detail. This method was successfully applied for determination of cadmium in various complex samples.

  3. An ICP-MS procedure to determine Cd, Co, Cu, Ni, Pb and Zn in oceanic waters using in-line flow-injection with solid-phase extraction for preconcentration.

    PubMed

    O'Sullivan, Jeanette E; Watson, Roslyn J; Butler, Edward C V

    2013-10-15

    An automated procedure including both in-line preconcentration and multi-element determination by an inductively coupled plasma mass spectrometer (ICP-MS) has been developed for the determination of Cd, Co, Cu, Ni, Pb and Zn in open-ocean samples. The method relies on flow injection of the sample through a minicolumn of chelating (iminodiacetate) sorbent to preconcentrate the trace metals, while simultaneously eliminating the major cations and anions of seawater. The effectiveness of this step is tested and reliability in results are secured with a rigorous process of quality assurance comprising 36 calibration and reference samples in a run for analysis of 24 oceanic seawaters in a 6-h program. The in-line configuration and procedures presented minimise analyst operations and exposure to contamination. Seawater samples are used for calibration providing a true matrix match. The continuous automated pH measurement registers that chelation occurs within a selected narrow pH range and monitors the consistency of the entire analytical sequence. The eluent (0.8M HNO3) is sufficiently strong to elute the six metals in 39 s at a flow rate of 2.0 mL/min, while being compatible for prolonged use with the mass spectrometer. Throughput is one sample of 7 mL every 6 min. Detection limits were Co 3.2 pM, Ni 23 pM, Cu 46 pM, Zn 71 pM, Cd 2.7 pM and Pb 1.5 pM with coefficients of variation ranging from 3.4% to 8.6% (n=14) and linearity of calibration established beyond the observed concentration range of each trace metal in ocean waters. Recoveries were Co 96.7%, Ni 102%, Cu 102%, Zn 98.1%, Cd 92.2% and Pb 97.6%. The method has been used to analyse ~800 samples from three voyages in the Southern Ocean and Tasman Sea. It has the potential to be extended to other trace elements in ocean waters. © 2013 Elsevier B.V. All rights reserved.

  4. A novel hierarchical nanobiocomposite of graphene oxide-magnetic chitosan grafted with mercapto as a solid phase extraction sorbent for the determination of mercury ions in environmental water samples.

    PubMed

    Ziaei, Ehsan; Mehdinia, Ali; Jabbari, Ali

    2014-11-19

    New mercapto-grafted graphene oxide-magnetic chitosan (GO-MC) has been developed as a novel biosorbent for the preconcentration and extraction of mercury ion from water samples. A facile and ecofriendly synthesis procedure was also developed for modification of GO-MC with 3-mercaptopropyltrimethoxysilane. The prepared nanocomposite material (mercapto/GO-MC) was characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR) and energy-dispersive X-ray spectroscopy (EDX). The mercury analysis was performed by continuous-flow cold vapor atomic absorption spectrometry. The parameters affecting the extraction and preconcentration processes were carried out. The optimum conditions were found to be 60mg of sorbent, pH of 6.5, 10min for adsorption time, 3mL of HCl (0.1mol L(-1))/thiourea (2% w/v) as the eluent and 250mL for breakthrough volume. An excellent linearity was achieved in the range of 0.12-80ng mL(-1) (R(2)=0.999) at a preconcentration factor of 80. The limit of detection and quantification were achieved as 0.06ng mL(-1) and 0.12ng mL(-1), respectively. A good repeatability was obtained with the relative standard deviation (RSD) of 4.7%. Furthermore, real water samples were analyzed and good recoveries were obtained from 95 to 100%. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Development of a FI-HG-ICP-OES solid phase preconcentration system for inorganic selenium speciation in Argentinean beverages.

    PubMed

    Escudero, Luis A; Pacheco, Pablo H; Gasquez, José A; Salonia, José A

    2015-02-15

    A preconcentration system has been developed to determine inorganic selenium species. Selenium was retained by a column filled with polyvinyl chloride (PVC) with lanthanum hydroxide co-precipitation. Speciation was achieved by selective photoreduction previous Se preconcentration. The retention pH was optimized at 10.0. Two multivariate calibrations and a central composite design were employed for optimization of the system. Sample, reagents and acid flow rates are significant variables affecting the system. Employing HG-ICP-OES as detection, the optimized system reached a detection limit of 0.03μg/L, and an enhancement factor of 14875 (25 for preconcentration system, 595 for hydride generation). To verify the method' accuracy, two certified reference materials, BCR® 414 Plankton & IRMM-804 Rice Flour, were analysed. The system was applied to inorganic selenium speciation in several Argentinean beverages to estimate their selenium contribution to diet. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. An optimized procedure for preconcentration, determination and on-line recovery of palladium using highly selective diphenyldiketone-monothiosemicarbazone modified silica gel.

    PubMed

    Sharma, R K; Pandey, Amit; Gulati, Shikha; Adholeya, Alok

    2012-03-30

    A novel, highly selective, efficient and reusable chelating resin, diphenyldiketone-monothiosemicarbazone modified silica gel, was prepared and applied for the on-line separation and preconcentration of Pd(II) ions in catalytic converter and spiked tap water samples. Several parameters like effect of pH, sample volume, flow rate, type of eluent, and influence of various ionic interferences, etc. were evaluated for effective adsorption of palladium at trace levels. The resin was found to be highly selective for Pd(II) ions in the pH range 4-5 with a very high sorption capacity of 0.73 mmol/g and preconcentration factor of 335. The present environment friendly procedure has also been applied for large-scale extraction by employing the use of newly designed reactor in which on-line separation and preconcentration of Pd can be carried out easily and efficiently in short duration of time. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Flow injection on-line displacement/solid phase extraction system coupled with flame atomic absorption spectrometry for selective trace silver determination in water samples.

    PubMed

    Christou, Chrysoula K; Anthemidis, Aristidis N

    2009-04-15

    A novel flow injection (FI) on-line displacement solid phase extraction preconcentration and/or separation method coupled with FAAS in order to minimize interference from other metals was developed for trace silver determination. The proposed method involved the on-line formation and subsequently pre-sorption of lead diethyldithiocarbamate (Pb-DDTC) into a column packed with PTFE-turnings. The preconcentration and/or separation of the Ag(I) took place through a displacement reaction between Ag(I) and Pb(II) of the pre-sorbed Pb-DDTC. Finally, the retained analyte was eluted with isobutyl methyl ketone (IBMK) and delivered directly to nebulizer for measuring. Interference from co-existing ions with lower DDTC complex stability in comparison with Pb-DDTC, was eliminated without need for any masking reagent. With 120 s of preconcentration time at a sample flow rate of 7.6 mL min(-1), an enhancement factor of 110 and a detection limit (3s) of 0.2 microg L(-1) were obtained. The precision (RSD, n=10) was 3.1% at the 10 mug L(-1) level. The developed method was successfully applied to trace silver determination in a variety of environmental water samples and certified reference material.

  8. Multiplexed electrokinetic sample fractionation, preconcentration and elution for proteomics.

    PubMed

    Hua, Yujuan; Jemere, Abebaw B; Dragoljic, Jelena; Harrison, D Jed

    2013-07-07

    Both 6 and 8-channel integrated microfluidic sample pretreatment devices capable of performing "in space" sample fractionation, collection, preconcentration and elution of captured analytes via sheath flow assisted electrokinetic pumping are described. Coatings and monolithic polymer beds were developed for the glass devices to provide cationic surface charge and anodal electroosmotic flow for delivery to an electrospray emitter tip. A mixed cationic ([2-(methacryloyloxy)ethyl] trimethylammonium chloride) (META) and hydrophobic butyl methacrylate-based monolithic porous polymer, photopolymerized in the 6- or 8-fractionation channels, was used to capture and preconcentrate samples. A 0.45 wt% META loaded bed generated comparable anodic electroosmotic flow to the cationic polymer PolyE-323 coated channel segments in the device. The balanced electroosmotic flow allowed stable electrokinetic sheath flow to prevent cross contamination of separated protein fractions, while reducing protein/peptide adsorption on the channel walls. Sequential elution of analytes trapped in the SPE beds revealed that the monolithic columns could be efficiently used to provide sheath flow during elution of analytes, as demonstrated for neutral carboxy SNARF (residual signal, 0.08% RSD, n = 40) and charged fluorescein (residual signal, 2.5% n = 40). Elution from monolithic columns showed reproducible performance with peak area reproducibility of ~8% (n = 6 columns) in a single sequential elution and the run-to-run reproducibility was 2.4-6.7% RSD (n = 4) for elution from the same bed. The demonstrated ability of this device design and operation to elute from multiple fractionation beds into a single exit channel for sample analysis by fluorescence or electrospray mass spectrometry is a crucial component of an integrated fractionation and assay system for proteomics.

  9. On-line preconcentration of fluorescent derivatives of catecholamines in cerebrospinal fluid using flow-gated capillary electrophoresis.

    PubMed

    Zhang, Qiyang; Gong, Maojun

    2016-06-10

    Flow-gated capillary electrophoresis (CE) coupled with microdialysis has become an important tool for in vivo bioanalytical measurements because it is capable of performing rapid and efficient separations of complex biological mixtures thus enabling high temporal resolution in chemical monitoring. However, the limit of detection (LOD) is often limited to a micro- or nano-molar range while many important target analytes have picomolar or sub-nanomolar levels in brain and other tissues. To enhance the capability of flow-gated CE for catecholamine detection, a novel and simple on-line sample preconcentration method was developed exclusively for fluorescent derivatives of catecholamines that were fluorogenically derivatized with naphthalene-2,3-dicarboxaldehyde (NDA) in the presence of cyanide. The effective preconcentration coupled with the sensitive laser-induced fluorescence (LIF) detection lowered the LOD down to 20pM for norepinephrine (NE) and 50pM for dopamine (DA) at 3-fold of S/N ratio, and the signal enhancement was estimated to be over 100-fold relative to normal injection when standard analytes were dissolved in artificial cerebrospinal fluid (aCSF). The basic focusing principle is novel since the sample plug contains borate while the background electrolyte (BGE) is void of borate. This strategy took advantage of the complexation between diols and borate, through which one negative charge was added to the complex entity. The sample derivatization mixture was electrokinetically injected into a capillary via the flow-gated injection, and then NE and DA derivatives were selectively focused to a narrow zone by the reversible complexation. Separation of NE and DA derivatives was executed by incoming surfactants of cholate and deoxycholate mixed in the front BGE plug. This on-line preconcentration method was finally applied to the detection of DA in rat cerebrospinal fluid (CSF) via microdialysis and on-line derivatization. It is anticipated that the method would be valuable for in vivo monitoring of DA and NE in various brain regions of live animals on flow-gated CE or microchip platforms. Published by Elsevier B.V.

  10. Porous silicon structures with high surface area/specific pore size

    DOEpatents

    Northrup, M.A.; Yu, C.M.; Raley, N.F.

    1999-03-16

    Fabrication and use of porous silicon structures to increase surface area of heated reaction chambers, electrophoresis devices, and thermopneumatic sensor-actuators, chemical preconcentrates, and filtering or control flow devices. In particular, such high surface area or specific pore size porous silicon structures will be useful in significantly augmenting the adsorption, vaporization, desorption, condensation and flow of liquids and gases in applications that use such processes on a miniature scale. Examples that will benefit from a high surface area, porous silicon structure include sample preconcentrators that are designed to adsorb and subsequently desorb specific chemical species from a sample background; chemical reaction chambers with enhanced surface reaction rates; and sensor-actuator chamber devices with increased pressure for thermopneumatic actuation of integrated membranes. Examples that benefit from specific pore sized porous silicon are chemical/biological filters and thermally-activated flow devices with active or adjacent surfaces such as electrodes or heaters. 9 figs.

  11. Process for forming a porous silicon member in a crystalline silicon member

    DOEpatents

    Northrup, M. Allen; Yu, Conrad M.; Raley, Norman F.

    1999-01-01

    Fabrication and use of porous silicon structures to increase surface area of heated reaction chambers, electrophoresis devices, and thermopneumatic sensor-actuators, chemical preconcentrates, and filtering or control flow devices. In particular, such high surface area or specific pore size porous silicon structures will be useful in significantly augmenting the adsorption, vaporization, desorption, condensation and flow of liquids and gasses in applications that use such processes on a miniature scale. Examples that will benefit from a high surface area, porous silicon structure include sample preconcentrators that are designed to adsorb and subsequently desorb specific chemical species from a sample background; chemical reaction chambers with enhanced surface reaction rates; and sensor-actuator chamber devices with increased pressure for thermopneumatic actuation of integrated membranes. Examples that benefit from specific pore sized porous silicon are chemical/biological filters and thermally-activated flow devices with active or adjacent surfaces such as electrodes or heaters.

  12. Porous silicon structures with high surface area/specific pore size

    DOEpatents

    Northrup, M. Allen; Yu, Conrad M.; Raley, Norman F.

    1999-01-01

    Fabrication and use of porous silicon structures to increase surface area of heated reaction chambers, electrophoresis devices, and thermopneumatic sensor-actuators, chemical preconcentrates, and filtering or control flow devices. In particular, such high surface area or specific pore size porous silicon structures will be useful in significantly augmenting the adsorption, vaporization, desorption, condensation and flow of liquids and gasses in applications that use such processes on a miniature scale. Examples that will benefit from a high surface area, porous silicon structure include sample preconcentrators that are designed to adsorb and subsequently desorb specific chemical species from a sample background; chemical reaction chambers with enhanced surface reaction rates; and sensor-actuator chamber devices with increased pressure for thermopneumatic actuation of integrated membranes. Examples that benefit from specific pore sized porous silicon are chemical/biological filters and thermally-activated flow devices with active or adjacent surfaces such as electrodes or heaters.

  13. On-line Determination of Zinc in Water and Biological Samples after Its Preconcentration onto Zincon Anchored Polyurethane Foam.

    PubMed

    Azeem, Sami M Abdel; Hanafi, Hassan A; El-Shahat, M F

    2015-01-01

    A fast and sensitive on-line procedure for the determination of zinc in water and biological samples was developed. Zinc was preconcentrated in a mini-column packed with polyurethane foam (PUF) chemically modified with zincon via -N=N- bonding. The optimal conditions for preconcentration were pH 8.5 and sample flow rate of 4.0 mL min(-1). Quantitative desorption of Zn(II) was obtained by 0.1 mol L(-1) hydrochloric acid and subsequent spectrophotmetric determination using 4-(2-pyridylazo)-resorcinol at 498 nm. The obtained detection limit was found to be 3.0 ng mL(-1), precision (RSD) was 4.8 and 6.7% at 20 and 110 ng mL(-1), respectively, for 60 s preconcentration time and enrichment factor was 31. The linearity range was from 10 to 120 ng mL(-1) and maximum sample throughput was 20 h(-1). Finally, the method was successfully applied to the determination of zinc in tap water, Nile River water and human urine samples with RSD in the range of 1.1 - 8.3%.

  14. Fully integrated three-dimensional electrodes for electrochemical detection in microchips: fabrication, characterization, and applications.

    PubMed

    Pai, Rekha S; Walsh, Kevin M; Crain, Mark M; Roussel, Thomas J; Jackson, Douglas J; Baldwin, Richard P; Keynton, Robert S; Naber, John F

    2009-06-15

    A scalable and rather inexpensive solution to producing microanalytical systems with "on-chip" three-dimensional (3D) microelectrodes is presented in this study, along with applicability to practical electrochemical (EC) detection scenarios such as preconcentration and interferant removal. This technique to create high-aspect-ratio (as much as 4:1) gold microstructures in constrained areas involved the modification of stud bump geometry with microfabricated silicon molds via an optimized combination of temperature, pressure, and time. The microelectrodes that resulted consisted of an array of square pillars approximately 18 microm tall and 20 microm wide on each side, placed at the end of a microfabricated electrophoresis channel. This technique increased the active surface area of the microelectrodes by as much as a factor of 50, while mass transfer and, consequently, preconcentration collection efficiencies were increased to approximately 100%, compared to approximately 30% efficiency for planar nonmodified microelectrodes (samples that were used included the neurotransmitters dopamine and catechol). The 3D microelectrodes were used both in a stand-alone configuration, for direct EC detection of model catecholamine analytes, and, more interestingly, in dual electrode configurations for EC sample processing prior to detection downstream at a second planar electrode. In particular, the 3D electrodes were shown to be capable of performing coulometry or complete (100%) redox conversion of analyte species over a wide range of concentrations, from 4.3 microM to 4.4 mM, in either plug-flow or continuous-flow formats.

  15. Liquid electrode plasma-optical emission spectrometry combined with solid-phase preconcentration for on-site analysis of lead.

    PubMed

    Barua, Suman; Rahman, Ismail M M; Alam, Iftakharul; Miyaguchi, Maho; Sawai, Hikaru; Maki, Teruya; Hasegawa, Hiroshi

    2017-08-15

    A relatively rapid and precise method is presented for the determination of lead in aqueous matrix. The method consists of analyte quantitation using the liquid electrode plasma-optical emission spectrometry (LEP-OES) coupled with selective separation/preconcentration by solid-phase extraction (SPE). The impact of operating variables on the retention of lead in SPEs such as pH, flow rate of the sample solution; type, volume, flow rate of the eluent; and matrix effects were investigated. Selective SPE-separation/preconcentration minimized the interfering effect due to manganese in solution and limitations in lead-detection in low-concentration samples by LEP-OES. The LEP-OES operating parameters such as the electrical conductivity of sample solution; applied voltage; on-time, off-time, pulse count for applied voltage; number of measurements; and matrix effects have also been optimized to obtain a distinct peak for the lead at λ max =405.8nm. The limit of detection (3σ) and the limit of quantification (10σ) for lead determination using the technique were found as 1.9 and 6.5ng mL -1 , respectively. The precision, as relative standard deviation, was lower than 5% at 0.1μg mL -1 Pb, and the preconcentration factor was found to be 187. The proposed method was applied to the analysis of lead contents in the natural aqueous matrix (recovery rate:>95%). The method accuracy was verified using certified reference material of wastewaters: SPS-WW1 and ERM-CA713. The results from LEP-OES were in good agreement with inductively coupled plasma optical emission spectrometry measurements of the same samples. The application of the method is rapid (≤5min, without preconcentration) with a reliable detection limit at trace levels. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. SP70-alpha-benzoin oxime chelating resin for preconcentration-separation of Pb(II), Cd(II), Co(II) and Cr(III) in environmental samples.

    PubMed

    Narin, Ibrahim; Surme, Yavuz; Bercin, Erdogan; Soylak, Mustafa

    2007-06-25

    In the presented work, alpha-benzoin oxime immobilized SP70 chelating resin was synthesized for separation and preconcentration of Pb(II), Cd(II), Co(II) and Cr(III). The optimization procedure for analytical parameters including pH, eluent type, flow rate, etc. was examined in order to gain quantitative recoveries of analyte ions. The effects of foreign ions on the recoveries of studied metal ions were also investigated. The detection limits (3sigma) were found to be 16.0, 4.2, 1.3, 2.4microgL(-1) for Pb, Cd, Co and Cr, respectively. The preconcentration factor was 75 for Pb, 100 for Cd, Co and Cr. The optimized method was validated with certified reference materials and successfully applied to the waters, crops and pharmaceutical samples with good results (recoveries greater than 95%, R.S.D. lower than 10%).

  17. Micro-scale flow system for on-line multielement preconcentration from saliva digests and determination by inductively coupled plasma optical emission spectrometry

    NASA Astrophysics Data System (ADS)

    Menegário, Amauri A.; Fernanda Giné, Maria

    2001-10-01

    A micro-scale flow system is proposed for on-line preconcentration of Cd, Cu, Mn, Ni and Pb in saliva samples and their determination by inductively coupled plasma optical emission spectrometry (ICP-OES). A small column containing 8 μl of AG50W-X8 resin was inserted into the flow system, assembled with capillary tubes and connected to a micro-concentric nebulizer. The elution of the analytes was performed with 3 mol l -1 HCl at a flow rate of 82 μl min -1. The ICP-OES signal acquisition program permits measurements for 5 s in the concentrated portion of the transient elution peaks. A sample volume of 1 ml was required to obtain enrichment factors of 46, 23, 17, 18 and 44 for Cd, Cu, Mn, Ni and Pb, respectively. The relative standard deviations for a 50-μg l -1 multi-analyte solution were ≤6.5%. The recoveries for Cd, Cu, Mn, Ni and Pb in digested human saliva samples were between 86 and 111%. The sample throughput was 24 h -1.

  18. Non-chromatographic speciation analysis of mercury by flow injection on-line preconcentration in combination with chemical vapor generation atomic fluorescence spectrometry

    NASA Astrophysics Data System (ADS)

    Wu, Hong; Jin, Yan; Han, Weiying; Miao, Qiang; Bi, Shuping

    2006-07-01

    A novel non-chromatographic approach for direct speciation of mercury, based on the selective retention inorganic mercury and methylmercury on the inner wall of a knotted reactor by using ammonium diethyl dithiophosphate and dithizone as complexing agents respectively, was developed for flow injection on-line sorption preconcentration coupled with chemical vapor generation non-dispersive atomic fluorescence spectrometry. With the sample pH kept at 2.0, the preconcentration of inorganic mercury on the inner walls of the knotted reactor was carried out based on the exclusive retention of Hg-DDP complex in the presence of methylmercury via on-line merging the sample solution with ammonium diethyl dithiophosphate solution, and selective preconcentration methylmercury was achieved with dithizone instead of ammonium diethyl dithiophosphate. A 15% (v/v) HCl was introduced to elute the retained mercury species and merge with KBH 4 solution for atomic fluorescence spectrometry detection. Under the optimal experimental conditions, the sample throughputs of inorganic mercury and methylmercury were 30 and 20 h - 1 with the enhancement factors of 13 and 24. The detection limits were found to be 3.6 ng l - 1 for Hg 2+ and 2.0 ng l - 1 for CH 3Hg +. The precisions (RSD) for the 11 replicate measurements of each 0.2 μg l - 1 of Hg 2+ and CH 3Hg + were 2.2% and 2.8%, respectively. The developed method was validated by the analysis of certified reference materials (simulated natural water, rice flour and pork) and by recovery measurements on spiked samples, and was applied to the determination of inorganic mercury and methylmercury in biological and environmental water samples.

  19. On-line preconcentration and speciation of arsenic by flow injection hydride generation atomic absorption spectrophotometry.

    PubMed

    Narcise, Cristine Ingrid S; Coo, Lilibeth Dlc; Del Mundo, Florian R

    2005-12-15

    A flow injection-column preconcentration-hydride generation atomic absorption spectrophotometric (FI-column-HGAAS) method was developed for determining mug/l levels of As(III) and As(V) in water samples, with simultaneous preconcentration and speciation. The speciation scheme involved determining As(V) at neutral pH and As(III+V) at pH 12, with As(III) obtained by difference. The enrichment factor (EF) increased with increase in sample loading volume from 2.5 to 10ml, and for preconcentration using the chloride-form anion exchange column, EFs ranged from 5 to 48 for As(V) and 4 to 24 for As(III+V), with corresponding detection limits of 0.03-0.3 and 0.07-0.3mug/l. Linear concentration range (LCR) also varied with sample loading volume, and for a 5-ml sample was 0.3-5 and 0.2-8mug/l for As(V) and As(III+V), respectively. Sample throughput, which decreased with increase in sample volume, was 8-17 samples/h. For the hydroxide-form column, the EFS for 2.5-10ml samples were 3-23 for As(V) and 2-15 for As(III+V), with corresponding detection limits of 0.07-0.4 and 0.1-0.5mug/l. The LCR for a 5-ml sample was 0.3-10mug/l for As(V) and 0.2-20mug/l for As(III+V). Sample throughput was 10-20 samples/h. The developed method has been effectively applied to tap water and mineral water samples, with recoveries ranging from 90 to 102% for 5-ml samples passed through the two columns.

  20. Graphene oxide sheets immobilized polystyrene for column preconcentration and sensitive determination of lead by flame atomic absorption spectrometry.

    PubMed

    Islam, Aminul; Ahmad, Hilal; Zaidi, Noushi; Kumar, Suneel

    2014-08-13

    A novel solid-phase extractant was synthesized by coupling graphene oxide (GO) on chloromethylated polystyrene through an ethylenediamine spacer unit to develop a column method for the preconcentration/separation of lead prior to its determination by flame atomic absorption spectrometry. It was characterized by Fourier transform infrared spectroscopy, far-infrared spectroscopy, thermogravimetric analysis/differential thermal analysis, scanning electron microscopy, energy-dispersive spectrometry, and transmission electron microscopy. The abundant oxygen-containing surface functional groups form a strong complex with lead, resulting in higher sorption capacity (227.92 mg g(-1)) than other nanosorbents used for sorption studies of the column method. Using the column procedure here is an alternative to the direct use of GO, which restricts irreversible aggregation of GO and its escape into the ecosystem, making it an environmentally sustainable method. The column method was optimized by varying experimental variables such as pH, flow rate for sorption/desorption, and elution condition and was observed to exhibit a high preconcentration factor (400) with a low preconcentration limit (2.5 ppb) and a high degree of tolerance for matrix ions. The accuracy of the proposed method was verified by determining the Pb content in the standard reference materials and by recovery experiments. The method showed good precision with a relative standard deviation <5%. The proposed method was successfully applied for the determination of lead in tap water, electroplating wastewater, river water, and food samples after preconcentration.

  1. Comparison of Diafiltration and Size-Exclusion Chromatography to Recover Hemicelluloses From Process Water From Thermomechanical Pulping of Spruce

    NASA Astrophysics Data System (ADS)

    Andersson, Alexandra; Persson, Tobias; Zacchi, Guido; Stålbrand, Henrik; Jönsson, Ann-Sofi

    Hemicelluloses constitute one of the most abundant renewable resources on earth. To increase their utilization, the isolation of hemicelluloses from industrial biomass side-streams would be beneficial. A method was investigated to isolate hemicelluloses from process water from a thermomechanical pulp mill. The method consists of three steps: removal of solids by microfiltration, preconcentration of the hemicelluloses by ultrafiltration, and purification by either size-exclusion chromatography (SEC) or diafiltration. The purpose of the final purification step is to separate hemicelluloses from small oligosaccharides, monosaccharides, and salts. The ratio between galactose, glucose, and mannose in oligo- and polysaccharides after preconcentration was 0.8∶1∶2.8, which is similar to that found in galactoglucomannan. Continuous diafiltration was performed using a composite fluoro polymer membrane with cutoff of 1000 Da. After diafiltration with four diavolumes the purity of the hemicelluloses was 77% (gram oligo- and polysaccharides/ gram total dissolved solids) and the recovery was 87%. Purification by SEC was performed with 5, 20, and 40% sample loadings, respectively and a flow rate of 12 or 25 mL/min (9 or 19 cm/h). The purity of hemicelluloses after SEC was approx 82%, and the recovery was above 99%. The optimal sample load and flow rate were 20% and 25 mL/min, respectively. The process water from thermomechanical pulping of spruce is inexpensive. Thus, the recovery of hemicelluloses is not of main importance. If the purity of 77%, obtained with diafiltration, is sufficient for the utilization of the hemicelluloses, diafiltration probably offers a less expensive alternative in this application.

  2. An on-line SPE-HPLC method for effective sample preconcentration and determination of fenoxycarb and cis, trans-permethrin in surface waters.

    PubMed

    Šatínský, Dalibor; Naibrtová, Linda; Fernández-Ramos, Carolina; Solich, Petr

    2015-09-01

    A new on-line SPE-HPLC method using fused-core columns for on-line solid phase extraction and large volume sample injection for increasing the sensitivity of detection was developed for the determination of insecticides fenoxycarb and cis-, trans-permethrin in surface waters. The separation was carried out on fused-core column Phenyl-Hexyl (100×4.6 mm), particle size 2.7 µm with mobile phase acetonitrile:water in gradient mode at flow rate 1.0 mL min(-1), column temperature 45°C. Large volume sample injection (1500 µL) to the extraction dimension using short precolumn Ascentis Express RP C-18 (5×4.6 mm); fused-core particle size 2.7 µm allowed effective sample preconcentration and efficient ballast sample matrix removal. The washing mobile phase consisting of a mixture of acetonitrile:water; 30:70, (v/v) was pumped at flow rate of 0.5 mL min(-1) through the extraction precolumn to the waste. Time of the valve switch for transferring the preconcentrated sample zone from the extraction to the separation column was set at 3rd min. Elution of preconcentrated insecticides from the extraction precolumn and separation on the analytical column was performed in gradient mode. Linear gradient elution started from 40% of acetonitrile at time of valve switch from SPE column (3rd min) to 95% of acetonitrile at 7th min. Synthetic dye sudan I was chosen as an internal standard. UV detection at wavelength 225 nm was used and the method reached the limits of detection (LOD) at ng mL(-1) levels for both insecticides. The method showing on-line sample pretreatment and preconcentration with highly sensitive determination of insecticides was applied for monitoring of fenoxycarb and both permethrin isomers in different surface water samples in Czech Republic. The time of whole analysis including on-line extraction, interferences removal, chromatography separation and system equilibration was less than 8 min. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Applicability of multisyringe chromatography coupled to on-line solid-phase extraction to the simultaneous determination of dicamba, 2,4-D, and atrazine.

    PubMed

    Chávez-Moreno, C A; Guzmán-Mar, J L; Hinojosa-Reyes, L; Hernández-Ramírez, A; Ferrer, L; Cerdà, V

    2012-07-01

    Simultaneous determination of three herbicides (dicamba, 2,4-D, and atrazine) has been achieved by on-line solid-phase extraction (SPE) coupled to multisyringe chromatography (MSC) with UV detection. The preconcentration conditions were optimized; a preconcentration flow rate of 0.5 mL min(-1) and elution at 0.8 mL min(-1) were the optimum conditions. A C(18) (8 mm i.d.) membrane extraction disk conditioned with 0.3 mol L(-1) HCl in 0.5% MeOH was used. A 3-mL sample was preconcentrated, then eluted with 0.43 mL 40:60 water-MeOH. A C(18) monolithic column (25 mm × 4.6 mm) was used for chromatographic separation. Separation of the three compounds was achieved in 10 min by use of 0.01% aqueous acetic acid-MeOH (60:40) as mobile phase at a flow rate of 0.8 mL min(-1). The limits of detection (LOD) were 13, 57, and 22 μg L(-1) for dicamba, 2,4-D, and atrazine, respectively. The sampling frequency was three analyses per hour, and each analysis consumed only 7.3 mL solvent. The method was applied to spiked water samples, and recovery between 85 and 112% was obtained. Recovery was significantly better than in the conventional HPLC-UV method. These results indicated the reliability and accuracy of this flow-based method. This is the first time this family of herbicides has been simultaneously analyzed by on-line SPE-MSC using a monolithic column.

  4. Simultaneous trace multielement determination by ICP-OES after solid phase extraction with modified octadecyl silica gel.

    PubMed

    Karbasi, Mohamad-Hadi; Jahanparast, Babak; Shamsipur, Mojtaba; Hassan, Jalal

    2009-10-15

    Multielement simultaneous determination of 35 trace elements in environmental samples was carried out by inductively coupled plasma emission spectrometry (ICP-OES) after preconcentration with octadecyl silicagel, modified with aurin tricarboxylic acid (Aluminon). Optimal experimental conditions including pH of sample solution, sample volume, sample and eluent flow rate, type, concentration and volume of eluent and foreign ions effect were investigated and established. Trace element ions in aqueous solution were quantitatively adsorbed onto octadecyl silicagel modified with aurin tricarboxylic acid at pH 8.0 with a flow rate of 11.0 mL min(-1). The adsorbed element ions were eluted with 3-5 mL of 0.5 mol L(-1) HNO(3) at a flow rate of 10.0 mL min(-1) and analyzed by ICP-OES simultaneously. The proposed method has at least preconcentration factor of 100 in water samples, which results high sensitive detection of ultra-trace and trace analysis. The present methodology gave recoveries better than 70% and RSD less than 16%.

  5. Simultaneous diamagnetic and magnetic particle trapping in ferrofluid microflows via a single permanent magnet

    PubMed Central

    Zhou, Yilong; Kumar, Dhileep Thanjavur; Lu, Xinyu; Kale, Akshay; DuBose, John; Song, Yongxin; Wang, Junsheng; Li, Dongqing; Xuan, Xiangchun

    2015-01-01

    Trapping and preconcentrating particles and cells for enhanced detection and analysis are often essential in many chemical and biological applications. Existing methods for diamagnetic particle trapping require the placement of one or multiple pairs of magnets nearby the particle flowing channel. The strong attractive or repulsive force between the magnets makes it difficult to align and place them close enough to the channel, which not only complicates the device fabrication but also restricts the particle trapping performance. This work demonstrates for the first time the use of a single permanent magnet to simultaneously trap diamagnetic and magnetic particles in ferrofluid flows through a T-shaped microchannel. The two types of particles are preconcentrated to distinct locations of the T-junction due to the induced negative and positive magnetophoretic motions, respectively. Moreover, they can be sequentially released from their respective trapping spots by simply increasing the ferrofluid flow rate. In addition, a three-dimensional numerical model is developed, which predicts with a reasonable agreement the trajectories of diamagnetic and magnetic particles as well as the buildup of ferrofluid nanoparticles. PMID:26221197

  6. Simultaneous diamagnetic and magnetic particle trapping in ferrofluid microflows via a single permanent magnet.

    PubMed

    Zhou, Yilong; Kumar, Dhileep Thanjavur; Lu, Xinyu; Kale, Akshay; DuBose, John; Song, Yongxin; Wang, Junsheng; Li, Dongqing; Xuan, Xiangchun

    2015-07-01

    Trapping and preconcentrating particles and cells for enhanced detection and analysis are often essential in many chemical and biological applications. Existing methods for diamagnetic particle trapping require the placement of one or multiple pairs of magnets nearby the particle flowing channel. The strong attractive or repulsive force between the magnets makes it difficult to align and place them close enough to the channel, which not only complicates the device fabrication but also restricts the particle trapping performance. This work demonstrates for the first time the use of a single permanent magnet to simultaneously trap diamagnetic and magnetic particles in ferrofluid flows through a T-shaped microchannel. The two types of particles are preconcentrated to distinct locations of the T-junction due to the induced negative and positive magnetophoretic motions, respectively. Moreover, they can be sequentially released from their respective trapping spots by simply increasing the ferrofluid flow rate. In addition, a three-dimensional numerical model is developed, which predicts with a reasonable agreement the trajectories of diamagnetic and magnetic particles as well as the buildup of ferrofluid nanoparticles.

  7. Differential determination of chromium(VI) and total chromium in natural waters using flow injection on-line separation and preconcentration electrothermal atomic absorption spectrometry.

    PubMed

    Sperling, M; Yin, X; Welz, B

    1992-03-01

    A rapid, sensitive and selective method for the differential determination of CrIII and CrVI in natural waters is described. Chromium(vi) can be determined directly by flow injection on-line sorbent extraction preconcentration coupled with electrothermal atomic absorption spectrometry using sodium diethyldithiocarbamate as the complexing agent and C18 bonded silica reversed-phase sorbent as the column material. Total Cr can be determined after oxidation of CrIII to CrVI by potassium peroxydisulfate. Chromium(III) can be calculated by difference. The optimum conditions for sorbent extraction of CrVI and oxidation of CrIII to CrVI are evaluated. A 12-fold enhancement in sensitivity compared with direct introduction of 40 microliters samples was achieved after preconcentration for 60 s, giving detection limits of 16 ng l-1 for CrVI and 18 ng l-1 for total Cr (based on 3 sigma). Results obtained for sea-water and river water reference materials were all within the certified range for total Cr with a precision of better than 10% relative standard deviation in the range 100-200 ng l-1. The selectivity of the determination of CrVI was evaluated by analysing spiked reference materials in the presence of CrIII, resulting in quantitative recovery of CrVI.

  8. An on-line pre-concentration system for determination of cadmium in drinking water using FAAS.

    PubMed

    dos Santos, Walter N L; Costa, Jorge L O; Araujo, Rennan G O; de Jesus, Djane S; Costa, Antônio C S

    2006-10-11

    In the present paper, a minicolumn of polyurethane foam loaded with 4-(2-pyridylazo)-resorcinol (PAR) is proposed as pre-concentration system for cadmium determination in drinking water samples by flame atomic absorption spectrometry. The optimization step was performed using two-level full factorial design and Doehlert matrix, involving the variables: sampling flow rate, elution concentration, buffer concentration and pH. Using the established experimental conditions in the optimization step of: pH 8.2, sampling flow rate 8.5 mL min(-1), buffer concentration 0.05 mol L(-1) and elution concentration of 1.0 mol L(-1), this system allows the determination of cadmium with detection limit (LD) (3sigma/S) of 20.0 ng L(-1) and quantification limit (LQ) (10sigma/S) of 64 ng L(-1), precision expressed as relative standard deviation (R.S.D.) of 5.0 and 4.7% for cadmium concentration of 5.0 and 40.0 microg L(-1), respectively, and a pre-concentration factor of 158 for a sample volume of 20.0 mL. The accuracy was confirmed by cadmium determination in the standard reference material, NIST SRM 1643d trace elements in natural water. This procedure was applied for cadmium determination in drinking water samples collected from Salvador City, Bahia, Brazil. For five samples analyzed, the achieved concentrations varied from 0.31 to 0.86 microg L(-1).

  9. Determination of compound-specific Hg isotope ratios from transient signals using gas chromatography coupled to multicollector inductively coupled plasma mass spectrometry (MC-ICP/MS).

    PubMed

    Dzurko, Mark; Foucher, Delphine; Hintelmann, Holger

    2009-01-01

    MeHg and inorganic Hg compounds were measured in aqueous media for isotope ratio analysis using aqueous phase derivatization, followed by purge-and-trap preconcentration. Compound-specific isotope ratio measurements were performed by gas chromatography interfaced to MC-ICP/MS. Several methods of calculating isotope ratios were evaluated for their precision and accuracy and compared with conventional continuous flow cold vapor measurements. An apparent fractionation of Hg isotopes was observed during the GC elution process for all isotope pairs, which necessitated integration of signals prior to the isotope ratio calculation. A newly developed average peak ratio method yielded the most accurate isotope ratio in relation to values obtained by a continuous flow technique and the best reproducibility. Compound-specific isotope ratios obtained after GC separation were statistically not different from ratios measured by continuous flow cold vapor measurements. Typical external uncertainties were 0.16 per thousand RSD (n = 8) for the (202)Hg(/198)Hg ratio of MeHg and 0.18 per thousand RSD for the same ratio in inorganic Hg using the optimized operating conditions. Using a newly developed reference standard addition method, the isotopic composition of inorganic Hg and MeHg synthesized from this inorganic Hg was measured in the same run, obtaining a value of delta (202)Hg = -1.49 +/- 0.47 (2SD; n = 10). For optimum performance a minimum mass of 2 ng per Hg species should be introduced onto the column.

  10. Analytical Applications of Transport Through Bulk Liquid Membranes.

    PubMed

    Diaconu, Ioana; Ruse, Elena; Aboul-Enein, Hassan Y; Bunaciu, Andrei A

    2016-07-03

    This review discusses the results of research in the use of bulk liquid membranes in separation processes and preconcentration for analytical purposes. It includes some theoretical aspects, definitions, types of liquid membranes, and transport mechanism, as well as advantages of using liquid membranes in laboratory studies. These concepts are necessary to understand fundamental principles of liquid membrane transport. Due to the multiple advantages of liquid membranes several studies present analytical applications of the transport through liquid membranes in separation or preconcentration processes of metallic cations and some organic compounds, such as phenol and phenolic derivatives, organic acids, amino acids, carbohydrates, and drugs. This review presents coupled techniques such as separation through the liquid membrane coupled with flow injection analysis.

  11. Determination of methylmercury and inorganic mercury in water samples by slurry sampling cold vapor atomic absorption spectrometry in a flow injection system after preconcentration on silica C(18) modified.

    PubMed

    Segade, Susana Río; Tyson, Julian F

    2007-03-15

    A novel method for preconcentration of methylmercury and inorganic mercury from water samples was developed involving the determination of ngl(-1) levels of analytes retained on the silica C(18) solid sorbent, previous complexation with ammonium pyrrolidine dithiocarbamate (APDC), by slurry sampling cold vapor atomic absorption spectrometry (SS-CVAAS) in a flow injection (FI) system. Several variables were optimized affecting either the retention of both mercury species, such as APDC concentration, silica C(18) amount, agitation times, or their determination, including hydrochloric acid concentration in the suspension medium, peristaltic pump speed and argon flow-rate. A Plackett-Burman saturated factorial design permitted to differentiate the influential parameters on the preconcentration efficiency, which were after optimized by the sequential simplex method. The contact time between mercury containing solution and APDC, required to reach an efficient sorption, was decreased from 26 to 3min by the use of sonication stirring instead of magnetic stirring. The use of 1moldm(-3) hydrochloric acid suspension medium and 0.75% (m/v) sodium borohydride reducing agent permitted the selective determination of methylmercury. The combination of 5moldm(-3) hydrochloric acid and 10(-4)% (m/v) sodium borohydride was used for the selective determination of inorganic mercury. The detection limits achieved for methylmercury and inorganic mercury determination under optimum conditions were 0.96 and 0.25ngl(-1), respectively. The reliability of the proposed method for the determination of both mercury species in waters was checked by the analysis of samples spiked with known concentrations of methylmercury and inorganic mercury; quantitative recoveries were obtained.

  12. Determination of cadmium and lead at low levels by using preconcentration at fullerene coupled to thermospray flame furnace atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Pereira, M. G.; Pereira-Filho, E. R.; Berndt, H.; Arruda, M. A. Z.

    2004-04-01

    A new and sensitive method for Cd and Pb determinations, based on the coupling of thermospray flame furnace atomic absorption spectrometry and a preconcentrator system, was developed. The procedure comprised the chelating of Cd and Pb with ammonium pyrrolidinedithiocarbamate with posterior adsorption of the chelates on a mixture (40 mg) of C 60 and C 70 at a flow rate of 2.0 ml min -1. These chelates were eluted from the adsorbent by passing a continuous flow of ethanol (80% v/v) at 0.9 ml min -1 to a nickel tube placed in an air/acetylene flame. After sample introduction into the tube by using a ceramic capillary (0.5 mm i.d.), the analytical signals were registered as peak height. Under these conditions, improvement factors in detectability of 675 and 200 were obtained for Cd and Pb, respectively, when compared to conventional flame atomic absorption spectrometry. Spiked samples (mineral and tap waters) and drinking water containing natural concentrations of Cd were employed for evaluating accuracy by comparing the results obtained from the proposed methodology with those using electrothermal atomic absorption spectrometry. In addition, certified reference materials (rye grass, CRM 281 and pig kidney, CRM 186) were also adopted for the accuracy tests. Due to the good linearity ranges for Cd (0.5-5.0 μg l -1) and Pb (10-250 μg l -1), samples with different concentrations could be analyzed. Detection limits of 0.1 and 2.4 μg l -1 were obtained for Cd and Pb, respectively, and RSD values <4.5% were observed ( n=10). Finally, a sample throughput of 24 determinations per hour was possible.

  13. Large volume preconcentration and determination of nanomolar concentrations of iron in seawater using a renewable cellulose 8-hydroquinoline sorbent microcolumn and universal approach of post-column eluate utilization in a Lab-on-Valve system.

    PubMed

    Horstkotte, Burkhard; Chocholouš, Petr; Solich, Petr

    2016-04-01

    We report on a Lab-On-Valve (LOV) configuration for analyte preconcentration from milliliter sample volumes using confluent mixing in the holding coil for in-line addition of loading buffer. The system was applied to the spectrophotometric determination of iron(II) in acidified seawater using 1,10-phenanthroline as color reagent. A cellulose-based chelating sorbent containing 8-hydroxyquinoline was used for the first time in LOV and excellent retention behavior and loading capacity were found. The flow system employs a syringe pump for handling all solutions (sorbent suspension, loading buffer, water, eluent, and color reagent) and a peristaltic pump for sample propulsion and includes a fit-for-purpose 14 cm long detection glass flow cell and a bubble trap for in-line carrier degasification. Advantage was taken of the LOV flow-through port to keep the eluted analytes for re-aspiration for subsequent chromogenic reaction. In effect, a universal analyzer configuration and preconcentration procedure was developed, which is combinable with other analytes, sorbents, and reagents. Among the studied parameters were the compositions, pH, volumes, and flow rates of loading buffer, eluent, and color reagent, as well as the microcolumn size, repeatability, and system stability. Reproducibility of 4.1% RSD over the entire working range, a LOD of down to 5 nmol L(-1), sampling frequency of 12h(-1), and linearity up to 1 µmol L(-1) for 3.3 mL of sample were obtained and applicability to real samples was demonstrated. It was proven that both Fe(III) and Fe(II) were retained and yielded similar recovery and sensitivity values. The method was applied to coastal seawater samples and spiking experiments yielded recovery values close to 100%. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Method and Apparatus for Concentrating Vapors for Analysis

    DOEpatents

    Grate, Jay W.; Baldwin, David L.; Anheier, Jr., Norman C.

    2008-10-07

    An apparatus and method are disclosed for pre-concentrating gaseous vapors for analysis. The invention finds application in conjunction with, e.g., analytical instruments where low detection limits for gaseous vapors are desirable. Vapors sorbed and concentrated within the bed of the apparatus can be thermally desorbed achieving at least partial separation of vapor mixtures. The apparatus is suitable, e.g., for preconcentration and sample injection, and provides greater resolution of peaks for vapors within vapor mixtures, yielding detection levels that are 10-10,000 times better than for direct sampling and analysis systems. Features are particularly useful for continuous unattended monitoring applications.

  15. Analysis of biogenic carbonates by inductively coupled plasma-mass spectrometry (ICP-MS). Flow injection on-line solid-phase preconcentration for trace element determination in fish otoliths.

    PubMed

    Arslan, Z; Paulson, A J

    2002-04-01

    The aragonite deposits within the ear bones (otoliths) of teleost fish retain a chemical signal reflecting the life history of fish (similar to rings of trees) and the nature of fish habitats. Otoliths dissolved in acid solutions contain high concentrations of calcium and a variety of proteins. Elimination of matrix salts and organic interferences during preconcentration is essential for accurate determination of trace elements in otolith solutions by inductively coupled plasma-quadrupole mass spectrometry. An iminodiacetate-based chelating resin (Toyopearl AF-Chelate 650 M) has been used for on-line preconcentration and matrix separation for the determination of 31 transition and rare elements. Successful preconcentration of the elements was achieved at pH 5 by on-line buffering, except Mn which required pH 8.8. Sample solutions were loaded on to the column for 1 min at 3.2 mL min(-1), and then eluted directly into the mass spectrometer with 4% v/v nitric acid. This procedure enabled up to 25-fold preconcentration with successful removal of the calcium matrix. The effect of heat-assisted oxidation with concentrated nitric acid was investigated to eliminate the organic matrix. It was found that heating to dryness after dissolution and further mineralization with the acid significantly improved the retention of the transition elements. The method was validated by analysis of a certified reference material produced from saggittal otoliths of emperor snapper ( Lutjanus sebae), and then applied to the determination of trace metal concentrations in juvenile bluefin tuna ( Thunnus thynnus) from the Western Pacific Ocean.

  16. Ring-oven based preconcentration technique for microanalysis: simultaneous determination of Na, Fe, and Cu in fuel ethanol by laser induced breakdown spectroscopy.

    PubMed

    Cortez, Juliana; Pasquini, Celio

    2013-02-05

    The ring-oven technique, originally applied for classical qualitative analysis in the years 1950s to 1970s, is revisited to be used in a simple though highly efficient and green procedure for analyte preconcentration prior to its determination by the microanalytical techniques presently available. The proposed preconcentration technique is based on the dropwise delivery of a small volume of sample to a filter paper substrate, assisted by a flow-injection-like system. The filter paper is maintained in a small circular heated oven (the ring oven). Drops of the sample solution diffuse by capillarity from the center to a circular area of the paper substrate. After the total sample volume has been delivered, a ring with a sharp (c.a. 350 μm) circular contour, of about 2.0 cm diameter, is formed on the paper to contain most of the analytes originally present in the sample volume. Preconcentration coefficients of the analyte can reach 250-fold (on a m/m basis) for a sample volume as small as 600 μL. The proposed system and procedure have been evaluated to concentrate Na, Fe, and Cu in fuel ethanol, followed by simultaneous direct determination of these species in the ring contour, employing the microanalytical technique of laser induced breakdown spectroscopy (LIBS). Detection limits of 0.7, 0.4, and 0.3 μg mL(-1) and mean recoveries of (109 ± 13)%, (92 ± 18)%, and (98 ± 12)%, for Na, Fe, and Cu, respectively, were obtained in fuel ethanol. It is possible to anticipate the application of the technique, coupled to modern microanalytical and multianalyte techniques, to several analytical problems requiring analyte preconcentration and/or sample stabilization.

  17. Trace determination of antimony by hydride generation atomic absorption spectrometry with analyte preconcentration/atomization in a dielectric barrier discharge atomizer.

    PubMed

    Zurynková, Pavla; Dědina, Jiří; Kratzer, Jan

    2018-06-20

    Atomization conditions for antimony hydride in the plasma atomizer based on a dielectric barrier discharge (DBD) with atomic absorption spectrometric detection were optimized. Argon was found as the best discharge gas under a flow rate of 50 mL min - 1 while the DBD power was optimum at 30 W. Analytical figures of merit including interference study of As, Se and Bi have been subsequently investigated and the results compared to those found in an externally heated quartz tube atomizer (QTA). The limit of detection (LOD) reached in DBD (0.15 ng mL -1  Sb) is comparable to that observed in QTA (0.14 ng mL -1  Sb). Finally, possibility of Sb preconcentration by stibane in situ trapping in a DBD atomizer was studied. For trapping time of 300 s, the preconcentration efficiency and LOD, respectively, were 103 ± 2% and 0.02 ng mL -1 . Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Highly integrated autonomous lab-on-a-chip device for on-line and in situ determination of environmental chemical parameters.

    PubMed

    Martinez-Cisneros, Cynthia; da Rocha, Zaira; Seabra, Antonio; Valdés, Francisco; Alonso-Chamarro, Julián

    2018-06-05

    The successful integration of sample pretreatment stages, sensors, actuators and electronics in microfluidic devices enables the attainment of complete micro total analysis systems, also known as lab-on-a-chip devices. In this work, we present a novel monolithic autonomous microanalyzer that integrates microfluidics, electronics, a highly sensitive photometric detection system and a sample pretreatment stage consisting on an embedded microcolumn, all in the same device, for on-line determination of relevant environmental parameters. The microcolumn can be filled/emptied with any resin or powder substrate whenever required, paving the way for its application to several analytical processes: separation, pre-concentration or ionic-exchange. To promote its autonomous operation, avoiding issues caused by bubbles in photometric detection systems, an efficient monolithic bubble removal structure was also integrated. To demonstrate its feasibility, the microanalyzer was successfully used to determine nitrate and nitrite in continuous flow conditions, providing real time and continuous information.

  19. Amine-functionalized mesoporous polymer as potential sorbent for nickel preconcentration from electroplating wastewater.

    PubMed

    Islam, Aminul; Zaidi, Noushi; Ahmad, Hilal; Kumar, Suneel

    2015-05-01

    In this study, mesoporous glycidyl methacrylate-divinylbenzene-based chelating resin was synthesized and grafted with diethylenetriamine through epoxy ring-opening reaction. The synthesized resin was characterized by elemental analysis, infrared spectroscopy, surface area and pore size analysis, scanning electron microscopy, energy-dispersive spectroscopy, and thermogravimetry. The resin was used for the first time as an effective sorbent for the preconcentration of nickel in electroplating wastewater samples. The analytical variables like pH, flow rate for sorption/desorption, and eluate selection were systematically investigated and optimized. The uniform and monolayer sorption behavior of resin for nickel was proved by an evident fit of the equilibrium data to a Langmuir isotherm model. Under optimized conditions, the resin was observed to show a good sorption capacity of 20.25 mg g(-1) and >96% recovery of nickel even in the presence of a large number of competitive matrix ions. Its ability to extract trace amount of nickel was exhibited by low preconcentration limit (5.9 μg L(-1)). The calibration curve was found to be linear (R(2) = 0.998) in the concentration range of 6.0-400.0 μg L(-1). Coefficient of variation of less than 5 for all the analysis indicated good reproducibility. The reliability was evaluated by the analysis of standard reference material (SRM) and recovery experiments. The applicability of the resin for the systematic preconcentration of nickel is substantiated by the analysis of electroplating wastewater and river water samples. Graphical abstract ᅟ.

  20. Factorial design optimization of experimental variables in the on-line separation/preconcentration of copper in water samples using solid phase extraction and ICP-OES determination.

    PubMed

    Escudero, Luis A; Cerutti, S; Olsina, R A; Salonia, J A; Gasquez, J A

    2010-11-15

    An on-line preconcentration procedure using solid phase extraction (SPE) for the determination of copper in different water samples by inductively coupled plasma optical emission spectrometry (ICP-OES) is proposed. The copper was retained on a minicolumn filled with ethyl vinyl acetate (EVA) at pH 8.0 without using any complexing reagent. The experimental optimization step was performed using a two-level full factorial design. The results showed that pH, sample loading flow rate, and their interaction (at the tested levels) were statistically significant. In order to determine the best conditions for preconcentration and determination of copper, a final optimization of the significant factors was carried out using a central composite design (CCD). The calibration graph was linear with a regression coefficient of 0.995 at levels near the detection limit up to at least 300 μg L(-1). An enrichment factor (EF) of 54 with a preconcentration time of 187.5 s was obtained. The limit of detection (3σ) was 0.26 μg L(-1). The sampling frequency for the developed methodology was about 15 samples/h. The relative standard deviation (RSD) for six replicates containing 50 μg L(-1) of copper was 3.76%. The methodology was successfully applied to the determination of Cu in tap, mineral, river water samples, and in a certified VKI standard reference material. Copyright © 2010 Elsevier B.V. All rights reserved.

  1. Investigation of cloud point extraction for the analysis of metallic nanoparticles in a soil matrix

    PubMed Central

    Hadri, Hind El; Hackley, Vincent A.

    2017-01-01

    The characterization of manufactured nanoparticles (MNPs) in environmental samples is necessary to assess their behavior, fate and potential toxicity. Several techniques are available, but the limit of detection (LOD) is often too high for environmentally relevant concentrations. Therefore, pre-concentration of MNPs is an important component in the sample preparation step, in order to apply analytical tools with a LOD higher than the ng kg−1 level. The objective of this study was to explore cloud point extraction (CPE) as a viable method to pre-concentrate gold nanoparticles (AuNPs), as a model MNP, spiked into a soil extract matrix. To that end, different extraction conditions and surface coatings were evaluated in a simple matrix. The CPE method was then applied to soil extract samples spiked with AuNPs. Total gold, determined by inductively coupled plasma mass spectrometry (ICP-MS) following acid digestion, yielded a recovery greater than 90 %. The first known application of single particle ICP-MS and asymmetric flow field-flow fractionation to evaluate the preservation of the AuNP physical state following CPE extraction is demonstrated. PMID:28507763

  2. Synthesis, characterization and application of a new chelating resin for solid phase extraction, preconcentration and determination of trace metals in some dairy samples by flame atomic absorption spectrometry.

    PubMed

    Daşbaşı, Teslima; Saçmacı, Şerife; Çankaya, Nevin; Soykan, Cengiz

    2016-11-15

    In this study, a simple and rapid solid phase extraction/preconcentration procedure was developed for determination of Cd(II), Co(II), Cr(III), Cu(II), Fe(III), Mn(II), Pb(II), and Zn(II) trace metals by flame atomic absorption spectrometry (FAAS). A new chelating resin, poly(N-cyclohexylacrylamide-co-divinylbenzene-co-2-acrylamido-2-methyl-1-propanesulfonic acid) (NCA-co-DVB-co-AMPS) (hereafter CDAP) was synthesized and characterized. The influences of the analytical parameters such as pH of the sample solution, type and concentration of eluent, flow rates of the sample and eluent, volume of the sample and eluent, amount of chelating resin, and interference of ions were examined. The limit of detection (LOD) of analytes were found (3s) to be in the range of 0.65-1.90μgL(-1). Preconcentration factor (PF) of 200 and the relative standard deviation (RSD) of ⩽2% were achieved (n=11). The developed method was applied for determination of analytes in some dairy samples and certified reference materials. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Zincon-modified activated carbon for solid-phase extraction and preconcentration of trace lead and chromium from environmental samples.

    PubMed

    Li, Zhenhua; Chang, Xijun; Hu, Zheng; Huang, Xinping; Zou, Xiaojun; Wu, Qiong; Nie, Rong

    2009-07-15

    A new method that utilizes zincon-modified activated carbon (AC-ZCN) as a solid-phase extractant has been developed for simultaneous preconcentration of trace Cr(III) and Pb(II) prior to the measurement by inductively coupled plasma optical emission spectrometry (ICP-OES). The separation/preconcentration conditions of analytes were investigated, including effects of pH, the shaking time, the sample flow rate and volume, the elution condition and the interfering ions. At pH 4, the maximum adsorption capacity of Cr(III) and Pb(II) onto the AC-ZCN were 17.9 and 26.7 mg g(-1), respectively. The adsorbed metal ions were quantitatively eluted by 1 mL of 0.1 mol L(-1) HCl. Common coexisting ions did not interfere with the separation. According to the definition of IUPAC, the detection limits (3 sigma) of this method for Cr(III) and Pb(II) were 0.91 and 0.65 ng mL(-1), respectively. The relative standard deviation under optimum condition is less than 3.5% (n=8). The method has been applied for the determination of Cr(III) and Pb(II) in biological materials and water samples with satisfactory results.

  4. On-line preconcentration system for lead(II) determination in waste water by atomic absorption spectrometry using active carbon loaded with Pyrogallol Red.

    PubMed

    Ensafi, Ali A; Khayamian, Taghi; Karbasi, Mohammad H

    2003-06-01

    An on-line system for enrichment and determination of lead(II) is presented. It is based on the adsorption of lead(II) ions on a minicolumn packed with active carbon loaded with Pyrogallol Red. After preconcentration step, the metal ions are eluted automatically by 5.0 ml of 0.50 M nitric acid solution and the lead ion contents were determined by atomic absorption spectrometry. The influence of chemicals, pH and flow variables were studied as well as effect of potential interfering ions. Under the optimum conditions, the lead ions in aqueous samples were concentrated about 100 fold by the column. The detection limit was 0.001 microg ml(-1). The recovery percent of spliced lead(II) was in the range of 98%-103%.

  5. Evaluation of performance of three different hybrid mesoporous solids based on silica for preconcentration purposes in analytical chemistry: From the study of sorption features to the determination of elements of group IB.

    PubMed

    Kim, Manuela Leticia; Tudino, Mabel Beatríz

    2010-08-15

    Several studies involving the physicochemical interaction of three silica based hybrid mesoporous materials with metal ions of the group IB have been performed in order to employ them for preconcentration purposes in the determination of traces of Cu(II), Ag(I) and Au(III). The three solids were obtained from mesoporous silica functionalized with 3-aminopropyl (APS), 3-mercaptopropyl (MPS) and N-[2-aminoethyl]-3-aminopropyl (NN) groups, respectively. Adsorption capacities for Au, Cu and Ag were calculated using Langmuir's isotherm model and then, the optimal values for the retention of each element onto each one of the solids were found. Physicochemical data obtained under thermodynamic equilibrium and under kinetic conditions - imposed by flow through experiments - allowed the design of simple analytical methodologies where the solids were employed as fillings of microcolumns held in continuous systems coupled on-line to an atomic absorption spectrometry. In order to control the interaction between the filling and the analyte at short times (flow through conditions) and thus, its effect on the analytical signal and the presence of interferences, the initial adsorption velocities were calculated using the pseudo second order model. All these experiments allowed the comparison of the solids in terms of their analytical behaviour at the moment of facing the determination of the three elements. Under optimized conditions mainly given by the features of the filling, the analytical methodologies developed in this work showed excellent performances with limits of detection of 0.14, 0.02 and 0.025 microg L(-1) and RSD % values of 3.4, 2.7 and 3.1 for Au, Cu and Ag, respectively. A full discussion of the main findings on the interaction metal ions/fillings will be provided. The analytical results for the determination of the three metals will be also presented. Copyright 2010 Elsevier B.V. All rights reserved.

  6. A flow system for the spectrophotometric determination of lead in different types of waters using ion-exchange for pre-concentration and elimination of interferences.

    PubMed

    Mesquita, Raquel B R; Fernandes, Sílvia M V; Rangel, António O S S

    2004-02-06

    A flow system for the spectrophotometric determination of lead in natural and waste waters is proposed. The determination is based on the colorimetric reaction between malachite green and iodide, followed by the formation of a ternary complex between those reagents and lead cations. The developed flow system includes a lead pre-concentration step in a column packed with a cationic resin (Chelex 100) operating in a sequential injection mode. To improve the mixture of sample and reagents, a flow injection approach was adopted for the colorimetric determination. This way a hybrid flow system, involving both sequential and flow injection concepts was designed. Another feature of the proposed system is the efficient elimination of major interferent species, such as cadmium and copper. The elimination of cadmium interference is obtained by complexing Cd(2+) with chloride and retaining the formed negatively charged complexes in an anionic resin, AG1 X-8. As for copper, with the presence of both ionic resins as well as the conditions for cadmium elimination, it no longer acts as an interferent. Different ranges of lead concentration (50-300 and 300-1000mugl(-1)) can be determined with minor changes in the controlling software, useful for application to both natural and waste waters. Therefore, a detection limit of 25mugl(-1) was achieved. Repeatability was evaluated from 10 consecutive determinations being the results better than 4%. The recoveries of lead spikes added to the samples ranged from 93 to 102%. The sampling frequency was 17 and 24 determinations per hour, for 50-300 and 300-1000mugl(-1) ranges, respectively.

  7. Compact and controlled microfluidic mixing and biological particle capture

    NASA Astrophysics Data System (ADS)

    Ballard, Matthew; Owen, Drew; Mills, Zachary Grant; Hesketh, Peter J.; Alexeev, Alexander

    2016-11-01

    We use three-dimensional simulations and experiments to develop a multifunctional microfluidic device that performs rapid and controllable microfluidic mixing and specific particle capture. Our device uses a compact microfluidic channel decorated with magnetic features. A rotating magnetic field precisely controls individual magnetic microbeads orbiting around the features, enabling effective continuous-flow mixing of fluid streams over a compact mixing region. We use computer simulations to elucidate the underlying physical mechanisms that lead to effective mixing and compare them with experimental mixing results. We study the effect of various system parameters on microfluidic mixing to design an efficient micromixer. We also experimentally and numerically demonstrate that orbiting microbeads can effectively capture particles transported by the fluid, which has major implications in pre-concentration and detection of biological particles including various cells and bacteria, with applications in areas such as point-of-care diagnostics, biohazard detection, and food safety. Support from NSF and USDA is gratefully acknowledged.

  8. Sample preconcentration with chemical derivatization in capillary electrophoresis. Capillary as preconcentrator, microreactor and chiral selector for high-throughput metabolite screening.

    PubMed

    Ptolemy, Adam S; Britz-McKibbin, Philip

    2006-02-17

    New strategies for integrating sample pretreatment with chemical analyses under a single format is required for rapid, sensitive and enantioselective analyses of low abundance metabolites in complex biological samples. Capillary electrophoresis (CE) offers a unique environment for controlling analyte/reagent band dispersion and electromigration properties using discontinuous electrolyte systems. Recent work in our laboratory towards developing a high-throughput CE platform for low abundance metabolites via on-line sample preconcentration with chemical derivatization (SPCD) is primarily examined in this review, as there have been surprisingly only a few strategies reported in the literature to date. In-capillary sample preconcentration serves to enhance concentration sensitivity via electrokinetic focusing of long sample injection volumes for lower detection limits, whereas chemical derivatization by zone passing is used to expand detectability and selectivity, notably for enantiomeric resolution of metabolites lacking intrinsic chromophores using nanolitre volumes of reagent. Together, on-line SPCD-CE can provide over a 100-fold improvement in concentration sensitivity, shorter total analysis times, reduced sample handling and improved reliability for a variety of amino acid and amino sugar metabolites, which is also amenable to automated high-throughput screening. This review will highlight basic method development and optimization parameters relevant to SPCD-CE, including applications to bacterial metabolite flux and biomarker analyses. Insight into the mechanism of analyte focusing and labeling by SPCD-CE is also discussed, as well as future directions for continued research.

  9. Flexible particle flow-focusing in microchannel driven by droplet-directed induced-charge electroosmosis.

    PubMed

    Ren, Yukun; Liu, Xianyu; Liu, Weiyu; Tao, Ye; Jia, Yankai; Hou, Likai; Li, Wenying; Jiang, Hongyuan

    2018-02-01

    We report herein a novel microfluidic particle concentrator that utilizes constriction microchannels to enhance the flow-focusing performance of induced-charge electroosmosis (ICEO), where viscous hemi-spherical oil droplets are embedded within the mainchannel to form deformable converging-diverging constriction structures. The constriction region between symmetric oil droplets partially coated on the electrode strips can improve the focusing performance by inducing a granular wake flow area at the diverging channel, which makes almost all of the scattered sample particles trapped within a narrow stream on the floating electrode. Another asymmetric droplet pair arranged near the outlets can further direct the trajectory of focused particle stream to one specified outlet port depending on the symmetry breaking in the shape of opposing phase interfaces. By fully exploiting rectification properties of induced-charge electrokinetic phenomena at immiscible water/oil interfaces of tunable geometry, the expected function of continuous and switchable flow-focusing is demonstrated by preconcentrating both inorganic silica particles and biological yeast cells. Physical mechanisms responsible for particle focusing and locus deflection in the droplet-assisted concentrentor are analyzed in detail, and simulation results are in good accordance with experimental observations. Our work provides new routes to construct flexible electrokinetic framework for preprocessing on-chip biological samples before performing subsequent analysis. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Simultaneous preconcentrations of Co(2+), Cr(6+), Hg(2+) and Pb(2+) ions by Bacillus altitudinis immobilized nanodiamond prior to their determinations in food samples by ICP-OES.

    PubMed

    Ozdemir, Sadin; Kilinc, Ersin; Celik, Kadir Serdar; Okumus, Veysi; Soylak, Mustafa

    2017-01-15

    A novel solid phase extraction method was developed for simultaneous preconcentration-separation of Co(2+), Cr(6+), Hg(2+) and Pb(2+) ions prior to their determinations in food samples by ICP-OES. Thermophilic Bacillus altitudinis immobilized nanodiamond was used as a new biosorbent. SEM and FT-IR analysis were studied to characterize the biosorbent. The optimum pH values of quantitative biosorption for Co(2+), Cr(6+), Hg(2+) and Pb(2+) were found to be 5.0, 6.0, 6.0 and 6.0, respectively. A flow rate of 3.0mLmin(-1) was selected as optimum for all metal ions. 5mL of 1mol/L HCl was used as eluent. Preconcentration factor was achieved as 80. LODs were calculated as 0.071, 0.023, 0.016 and 0.034ngmL(-1), respectively for Hg(2+), Co(2+), Cr(6+) and Pb(2+). The biosorption capacities were calculated for Co(2+), Cr(6+), Hg(2+) and Pb(2+) as 26.4, 30.4, 19.5, and 35.2mg/g, respectively. The developed method was successfully applied to food samples to determine analyte concentrations. Copyright © 2016. Published by Elsevier Ltd.

  11. On-line separation and preconcentration of lead(II) by solid-phase extraction using activated carbon loaded with xylenol orange and its determination by flame atomic absorption spectrometry.

    PubMed

    Ensafi, Ali A; Shiraz, A Zendegi

    2008-02-11

    Activated carbon loaded with xylenol orange in a mini-column was used for the highly selective separation and preconcentration of Pb(II) ions. An on-line system for enrichment and the determination of Pb(II) was carried out on flame atomic absorption spectrometry. The conditions of preconcentration and quantitative recovery of Pb(II) from diluted solution, such as pH of aqueous phase, amount of the sorbent, volume of the solutions and flow variables were studied as well as effect of potential interfering ions. Under the optimum conditions, Pb(II) in an aqueous sample was concentrated about 200-fold and the detection limit was 0.4 ng mL(-1) Pb(II). The adsorption capacity of the solid phase was 0.20mg of lead per one gram of the modified activated carbon. The modified activated carbon is stable for several treatments of sample solutions without the need for using any chemical reagent. The recovery of lead(II) from river water, waste water, tap water, and in the following reference materials: SRM 2711 Montana soil and GBW-07605 tea were obtained in the range of 97-104% by the proposed method.

  12. Magnetic scavengers as carriers of analytes for flowing atmospheric pressure afterglow mass spectrometry (FAPA-MS).

    PubMed

    Cegłowski, Michał; Kurczewska, Joanna; Smoluch, Marek; Reszke, Edward; Silberring, Jerzy; Schroeder, Grzegorz

    2015-09-07

    In this paper, a procedure for the preconcentration and transport of mixtures of acids, bases, and drug components to a mass spectrometer using magnetic scavengers is presented. Flowing atmospheric pressure afterglow mass spectrometry (FAPA-MS) was used as an analytical method for identification of the compounds by thermal desorption from the scavengers. The proposed procedure is fast and cheap, and does not involve time-consuming purification steps. The developed methodology can be applied for trapping harmful substances in minute quantities, to transport them to specialized, remotely located laboratories.

  13. On chip preconcentration and fluorescence labeling of model proteins by use of monolithic columns: device fabrication, optimization, and automation.

    PubMed

    Yang, Rui; Pagaduan, Jayson V; Yu, Ming; Woolley, Adam T

    2015-01-01

    Microfluidic systems with monolithic columns have been developed for preconcentration and on-chip labeling of model proteins. Monoliths were prepared in microchannels by photopolymerization, and their properties were optimized by varying the composition and concentration of the monomers to improve flow and extraction. On-chip labeling of proteins was achieved by driving solutions through the monolith by use of voltage then incubating fluorescent dye with protein retained on the monolith. Subsequently, the labeled proteins were eluted, by applying voltages to reservoirs on the microdevice, and then detected, by monitoring laser-induced fluorescence. Monoliths prepared from octyl methacrylate combine the best protein retention with the possibility of separate elution of unattached fluorescent label with 50% acetonitrile. Finally, automated on-chip extraction and fluorescence labeling of a model protein were successfully demonstrated. This method involves facile sample pretreatment, and therefore has potential for production of integrated bioanalysis microchips.

  14. Polypyrrole/multi-walled carbon nanotube composite for the solid phase extraction of lead(II) in water samples.

    PubMed

    Sahmetlioglu, Ertugrul; Yilmaz, Erkan; Aktas, Ece; Soylak, Mustafa

    2014-02-01

    A multi-walled carbon nanotubes-polypyrrole conducting polymer nanocomposite has been synthesized, characterized and used for the separation and preconcentration of lead at trace levels in water samples prior to its flame atomic absorption spectrometric detection. The analytical parameters like pH, sample volume, eluent, sample flow rate that were affected the retentions of lead(II) on the new nanocomposite were optimized. Matrix effects were also investigated. Limit of detection and preconcentration factors were 1.1 µg L(-1) and 200, respectively. The adsorption capacity of the nanocomposite was 25.0mg lead(II) per gram composite. The validation of the method was checked by using SPS-WW2 Waste water Level 2 certified reference material. The method was applied to the determination of lead in water samples with satisfactory results. © 2013 Elsevier B.V. All rights reserved.

  15. Solid-phase extraction of heavy metal ions on bucky tubes disc in natural water and herbal plant samples.

    PubMed

    Soylak, Mustafa; Unsal, Yunus Emre

    2011-10-01

    A preconcentration-separation procedure has been established based on solid-phase extraction of Fe(III) and Pb(II) on bucky tubes (BTs) disc. Fe(III) and Pb(II) ions were quantitatively recovered at pH 6. The influences of the analytical parameters like sample volume, flow rates on the recoveries of analytes on BT disc were investigated. The effects of co-existing ions on the recoveries were also studied. The detection limits for iron and lead were found 1.6 and 4.9 μg L⁻¹, respectively. The validation of the presented method was checked by the analysis of TMDA-51.3 fortified water certified reference material. The presented procedure was successfully applied to the separation-preconcentration and determination of iron and lead content of some natural water and herbal plant samples from Kayseri, Turkey.

  16. System and method for preconcentrating, identifying, and quantifying chemical and biological substances

    DOEpatents

    Yu, Conrad M.; Koo, Jackson C.

    2000-01-01

    A system and method for preconcentrating, identifying, and quantifying chemical and biological substances is disclosed. An input valve directs a first volume of a sample gas to a surface acoustic wave (SAW) device. The SAW device preconcentrates and detects a mass of a substance within the sample gas. An output valve receives a second volume of the sample gas containing the preconcentrated substance from the SAW device and directs the second volume to a gas chromatograph (GC). The GC identifies the preconcentrated substance within the sample gas. A shunt valve exhausts a volume of the sample gas equal to the first volume minus the second volume away from the SAW device and the GC. The method of the present invention includes the steps of opening an input valve for passing a first volume of a sample gas to a SAW device; preconcentrating and detecting a mass of a substance within the sample gas using the SAW device; opening an output valve for passing a second volume of the sample gas containing the preconcentrated substance to a gas chromatograph (GC); and then identifying the preconcentrated substance within the sample gas using the GC.

  17. Modular manifold for integrated fluidics and electronics

    DOEpatents

    Adkins, Douglas Ray

    2010-03-30

    An airtight preconcentrator housing and/or a sensor housing for chemical testing, the housing(s) comprising internal dimensions such that a pre-manufactured preconcentrator and/or sensor can be disposed therein. The housings can also comprise electrical contacts disposed therein which align with and thus provide electrical connection to the preconcentrator and/or sensor. The preconcentrator and/or sensor can be easily and quickly replaced.

  18. Nanofluidic Pre-Concentration Devices for Enhancing the Detection Sensitivity and Selectivity of Biomarkers for Human Performance Monitoring

    DTIC Science & Technology

    2014-11-24

    aptamers to enhance specificity. Additionally, pre-concentration was coupled to various detection paradigms to achieve high-sensitivity biomarker... Aptamers , Biomarkers, Nanofluidics, Pre-concentration Devices, Sensing 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT SAR 18. NUMBER...devices and optimized electrokinetic pre-concentration conditions for key neurological biomarkers of interest, by using nanoparticles and aptamers to

  19. Performance and stability of low-cost dye-sensitized solar cell based crude and pre-concentrated anthocyanins: Combined experimental and DFT/TDDFT study

    NASA Astrophysics Data System (ADS)

    Chaiamornnugool, Phrompak; Tontapha, Sarawut; Phatchana, Ratchanee; Ratchapolthavisin, Nattawat; Kanokmedhakul, Somdej; Sang-aroon, Wichien; Amornkitbamrung, Vittaya

    2017-01-01

    The low cost DSSCs utilized by crude and pre-concentrated anthocyanins extracted from six anthocyanin-rich samples including mangosteen pericarp, roselle, red cabbage, Thai berry, black rice and blue pea were fabricated. Their photo-to-current conversion efficiencies and stability were examined. Pre-concentrated extracts were obtained by solid phase extraction (SPE) using C18 cartridge. The results obviously showed that all pre-concentrated extracts performed on photovoltaic performances in DSSCs better than crude extracts except for mangosteen pericarp. The DSSC sensitized by pre-concentrated anthocyanin from roselle and red cabbage showed maximum current efficiency η = 0.71% while DSSC sensitized by crude anthocyanin from mangosteen pericarp reached maximum efficiency η = 0.97%. In addition, pre-concentrated extract based cells possess more stability than those of crude extract based cells. This indicates that pre-concentration of anthocyanin via SPE method is very effective for DSSCs based on good photovoltaic performance and stability. The DFT/TDDFT calculations of electronic and photoelectrochemical properties of the major anthocyanins found in the samples are employed to support the experimental results.

  20. Dispersive solid phase microextraction with magnetic graphene oxide as the sorbent for separation and preconcentration of ultra-trace amounts of gold ions.

    PubMed

    Kazemi, Elahe; Dadfarnia, Shayessteh; Haji Shabani, Ali Mohammad

    2015-08-15

    A selective, simple and rapid dispersive solid phase microextraction was developed using magnetic graphene oxide (MGO) as an efficient sorbent for the separation and preconcentration of gold ions. The MGO was synthesized by means of the simple one step chemical coprecipitation method, characterized by X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy and scanning electron microscopy (SEM). Gold ions retained by the sorbent were eluted using 0.5mol L(-)(1) thiourea in 0.1mol L(-1) HCl solution and determined by the flow injection flame atomic absorption spectrometry (FI-FAAS). The factors affecting the separation and preconcentration of gold were investigated and optimized. Under the optimized conditions, the method exhibited a linear dynamic range of 0.02-100.0µg L(-)(1) with a detection limit of 4ng L(-1) and an enrichment factor of 500. The relative standard deviations of 3.2% and 4.7% (n=6) were obtained at 20µg L(-1) level of gold ions for the intra and the inter day analysis, respectively. The method was successfully applied to the determination of gold ions in water and waste water samples as well as a certified reference material (CCU-1b, copper flotation concentrate). Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Lyotropic liquid crystal preconcentrates for the treatment of periodontal disease.

    PubMed

    Fehér, A; Urbán, E; Eros, I; Szabó-Révész, P; Csányi, E

    2008-06-24

    The aim of our study was to develop water-free lyotropic liquid crystalline preconcentrates, which consist of oils and surfactants with good physiological tolerance and spontaneously form lyotropic liquid crystalline phase in aqueous environment. In this way these preconcentrates having low viscosity can be injected into the periodontal pocket, where they are transformed into highly viscous liquid crystalline phase, so that the preparation is prevented from flowing out of the pocket due to its great viscosity, while drug release is controlled by the liquid crystalline texture. In order to follow the structure alteration upon water absorption polarization microscopical and rheological examinations were performed. The water absorption mechanism of the samples was examined by the Enslin-method. Metronidazole-benzoate was used as active agent the release of which was characterized via in vitro investigations performed by means of modified Kirby-Bauer disk diffusion method. On the grounds of the results it can be stated that the 4:1 mixture of the investigated surfactants (Cremophor EL, Cremophor RH40) and oil (Miglyol 810) formed lyotopic liquid crystalline phases upon water addition. Polarization microscopic examinations showed that samples with 10-40% water content possessed anisotropic properties. On the basis of water absorption, rheological and drug release studies it can be concluded that the amount of absorbed water and stiffness of lyotropic structure influenced by the chemical entity of the surfactant exerted major effect on the drug release.

  2. On-line solid phase selective separation and preconcentration of Cd(II) by solid-phase extraction using carbon active modified with methyl thymol blue.

    PubMed

    Ensafi, Ali A; Ghaderi, Ali R

    2007-09-05

    An on-line flow system was used to develop a selective and efficient on-line sorbent extraction preconcentration system for cadmium. The method is based on adsorption of cadmium ions onto the activated carbon modified with methyl thymol blue. Then the adsorbed ions were washed using 0.5M HNO(3) and the eluent was used to determine the Cd(II) ions using flame atomic absorption spectrometry. The results obtained show that the modified activated carbon has the greatest adsorption capacity of 80 microg of Cd(II) per 1.0 g of the solid phase. The optimal pH value for the quantitative preconcentration was 9.0 and full desorption is achieved by using 0.5M HNO(3) solution. It is established that the solid phase can be used repeatedly without a considerable adsorption capacity loss. The detection limit was less than 1 ngmL(-1) Cd(II), with an enrichment factor of 1000. The calibration graph was linear in the range of 1-2000 ngmL(-1) Cd(II). The developed method has been applied to the determination of trace cadmium (II) in water samples and in the following reference materials: sewage sludge (CRM144R), and sea water (CASS.4) with satisfactory results. The accuracy was assessed through recovery experiments.

  3. Chemically modified activated carbon with 1-acylthiosemicarbazide for selective solid-phase extraction and preconcentration of trace Cu(II), Hg(II) and Pb(II) from water samples.

    PubMed

    Gao, Ru; Hu, Zheng; Chang, Xijun; He, Qun; Zhang, Lijun; Tu, Zhifeng; Shi, Jianping

    2009-12-15

    A new sorbent 1-acylthiosemicarbazide-modified activated carbon (AC-ATSC) was prepared as a solid-phase extractant and applied for removing of trace Cu(II), Hg(II) and Pb(II) prior to their determination by inductively coupled plasma optical emission spectrometry (ICP-OES). The separation/preconcentration conditions of analytes were investigated, including effects of pH, the shaking time, the sample flow rate and volume, the elution condition and the interfering ions. At pH 3, the maximum static adsorption capacity of Cu(II), Hg(II) and Pb(II) onto the AC-ATSC were 78.20, 67.80 and 48.56 mg g(-1), respectively. The adsorbed metal ions were quantitatively eluted by 3.0 mL of 2% CS(NH2)2 and 2.0 mol L(-1) HCl solution. Common coexisting ions did not interfere with the separation. According to the definition of IUPAC, the detection limits (3sigma) of this method for Cu(II), Hg(II) and Pb(II) were 0.20, 0.12 and 0.45 ng mL(-1), respectively. The relative standard deviation under optimum conditions is less than 4.0% (n=8). The prepared sorbent was applied for the preconcentration of trace Cu(II), Hg(II) and Pb(II) in certified and water samples with satisfactory results.

  4. Capillary-valve-based fabrication of ion-selective membrane junction for electrokinetic sample preconcentration in PDMS chip.

    PubMed

    Liu, Vincent; Song, Yong-Ak; Han, Jongyoon

    2010-06-07

    In this paper, we report a novel method for fabricating ion-selective membranes in poly(dimethylsiloxane) (PDMS)/glass-based microfluidic preconcentrators. Based on the concept of capillary valves, this fabrication method involves filling a lithographically patterned junction between two microchannels with an ion-selective material such as Nafion resin; subsequent curing results in a high aspect-ratio membrane for use in electrokinetic sample preconcentration. To demonstrate the concentration performance of this high-aspect-ratio, ion-selective membrane, we integrated the preconcentrator with a surface-based immunoassay for R-Phycoerythrin (RPE). Using a 1x PBS buffer system, the preconcentrator-enhanced immunoassay showed an approximately 100x improvement in sensitivity within 30 min. This is the first time that an electrokinetic microfluidic preconcentrator based on ion concentration polarization (ICP) has been used in high ionic strength buffer solutions to enhance the sensitivity of a surface-based immunoassay.

  5. Polyaniline-coated cigarette filters as a solid-phase extraction sorbent for the extraction and enrichment of polycyclic aromatic hydrocarbon in water samples.

    PubMed

    Bunkoed, Opas; Rueankaew, Thanaschaphorn; Nurerk, Piyaluk; Kanatharana, Proespichaya

    2016-06-01

    Polyaniline coated cigarette filters were successfully synthesized and used as a solid-phase extraction sorbent for the extraction and preconcentration of polycyclic aromatic hydrocarbons in water samples. The polyaniline helped to enhance the adsorption ability of polycyclic aromatic hydrocarbons on the sorbent through π-π interactions. The high porosity and large surface area of the cigarette filters helped to reduce backpressure and can be operated with high sample flow rate without loss of extraction efficiency. The developed sorbent was characterized by Fourier transform infrared spectroscopy and scanning electron microscopy. The parameters that affected the extraction efficiencies, i.e. polymerization time, type of desorption solvent and its volume, sample flow rate, sample volume, sample pH, ionic strength, and organic modifier were investigated. Under the optimal conditions, the method was linear over the range of 0.5-10 μg/L and a detection limit of 0.5 ng/L. This simple, rapid, and cost-effective method was successfully applied to the preconcentration of polycyclic aromatic hydrocarbons from water samples. The developed method provided a high enrichment factor with good extraction efficiency (85-98%) and a relative standard deviation <10%. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Ion Imprinted Polymer for Preconcentration and Determination of Ultra-Trace Cadmium, Employing Flow Injection Analysis with Thermo Spray Flame Furnace Atomic Absorption Spectrometry.

    PubMed

    do Lago, Ayla Campos; Marchioni, Camila; Mendes, Tássia Venga; Wisniewski, Célio; Fadini, Pedro Sergio; Luccas, Pedro Orival

    2016-11-01

    This work proposes a preconcentration method using an ion imprinted polymer (IIP) for determination of cadmium, in several samples, employing a mini-column filled with the polymer coupled into a flow injection analysis system with detection by thermospray flame furnace atomic absorption spectrometry (FIA-TS-FF-AAS). The polymer was synthesized via bulk using methacrylic acid and vinylimidazole as a functional monomer. For the FIA system initial assessment, the variables: pH, eluent concentration and buffer concentration were studied, employing a 23 full factorial design. To obtain the optimum values for each significant variable, a Doehlert matrix was employed. After the optimization conditions as: pH 5.8, eluent (HNO3) concentration of 0.48 mol L -1 and buffer concentration of 0.01 mol L -1 , were adopted. The proposed method showed a linear response in the range of 0.081-10.0 μg L -1 , limits detection and quantification of 0.024 and 0.081 μg L -1 , respectively; preconcentration factor of 165, consumptive index of 0.06 mL, concentration efficiency 132 min -1 , and frequency of readings equal to 26 readings h -1 The accuracy was checked by analysis of certified reference materials for trace metals and recovery tests. The obtained results were in agreement with 95% confidence level (t-test). The method was adequate to apply in samples of: jewelry (earrings) (2.38 ± 0.28 μg kg -1 ), black tea (1.09 ± 0.15 μg kg -1 ), green tea (3.85 ± 0.13 μg kg -1 ), cigarette tobacco (38.27 ± 0.22 μg kg -1 ), and hair (0.35 ± 0.02 μg kg -1 ). © The Author(s) 2016.

  7. Design and Analysis of a Preconcentrator for the ChemLab

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    WONG,CHUNGNIN C.; FLEMMING,JEB H.; MANGINELL,RONALD P.

    2000-07-17

    Preconcentration is a critical analytical procedure when designing a microsystem for trace chemical detection, because it can purify a sample mixture and boost the small analyte concentration to a much higher level allowing a better analysis. This paper describes the development of a micro-fabricated planar preconcentrator for the {mu}ChemLab{trademark} at Sandia. To guide the design, an analytical model to predict the analyte transport, adsorption and resorption process in the preconcentrator has been developed. Experiments have also been conducted to analyze the adsorption and resorption process and to validate the model. This combined effort of modeling, simulation, and testing has ledmore » us to build a reliable, efficient preconcentrator with good performance.« less

  8. Determination of nickel in water, food, and biological samples by electrothermal atomic absorption spectrometry after preconcentration on modified carbon nanotubes.

    PubMed

    Taher, Mohammad Ali; Mazaheri, Lida; Ashkenani, Hamid; Mohadesi, Alireza; Afzali, Daryoush

    2014-01-01

    A new and sensitive SPE method using modified carbon nanotubes for extraction and preconcentration, and electrothermal atomic absorption spectrometric determination of nickel (Ni) in real samples at ng/L levels was investigated. First, multiwalled carbon nanotubes were oxidized with concentrated HNO3, then modified with 2-(5-bormo-2-pyridylazo)-5-diethylaminophenol reagent. The adsorption was achieved quantitatively on a modified carbon nanotubes column in a pH range of 6.5 to 8.5; the adsorbed Ni(II) ions were then desorbed by passing 5.0 mL of 1 M HNO3. The effects of analytical parameters, including pH of the solution, eluent type and volume, sample volume, flow rate of the eluent, and matrix ions, were investigated for optimization of the presented procedure. The enrichment factor was 180, and the LOD for Ni was 4.9 ng/L. The method was applied to the determination of Ni in water, food, and biological samples, and reproducible results were obtained.

  9. Solid-phase extraction of iridium from soil and water samples by using activated carbon cloth prior to its spectrophotometric determination.

    PubMed

    Ozkantar, Nebiye; Yilmaz, Erkan; Soylak, Mustafa; Tuzen, Mustafa

    2015-08-01

    A solid-phase extraction method for separation and preconcentration of Ir(IV) ion by using activated carbon cloth (ACC) has been presented. Ir(IV) as their 1-(2-pyridylazo) 2-naphtol (PAN) chelate was adsorbed on ACC at pH 2.0 and was eluted from ACC with acidic dimethylformamide (DMF). The Ir(IV) concentration was determined at 536 nm as Ir(IV)-PAN complex by using UV-vis spectrophotometer. The analytical parameters including pH, sample and eluent flow rates, amount of PAN, eluent type, concentration, and sample volume were optimized. The effects of foreign ions on the recoveries of iridium were also investigated. The preconcentration factor was calculated as 60. The limit of detection (LOD) and the limit of quantification (LOQ) of the method were found as 0.039 and 0.129 μg L(-1), respectively. The method was applied to soil and water samples for iridium determination.

  10. Graphene-based solid-phase extraction disk for fast separation and preconcentration of trace polycyclic aromatic hydrocarbons from environmental water samples.

    PubMed

    Wang, Zonghua; Han, Qiang; Xia, Jianfei; Xia, Linhua; Ding, Mingyu; Tang, Jie

    2013-06-01

    Graphene has great potentials for the use in sample preparation due to its ultra high specific surface area, superior chemical stability, and excellent thermal stability. In our work, a novel graphene-based SPE disk was developed for separation and preconcentration of trace polycyclic aromatic hydrocarbons from environmental water samples. Based on the strong π-π stacking interaction between the analytes and graphene, the analytes extracted by graphene were eluted by cyclohexane and then determined by GC-MS. Under the optimized conditions, high flow rate (30 mL/min) and sensitivity (0.84-13 ng/L) were achieved. The proposed method was successfully applied to the analysis of real environmental water samples with recoveries ranging from 72.8 to 106.2%. Furthermore, the property of anticlogging and reusability was also improved. This work reveals great potentials of graphene-based SPE disk in environmental analytical. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Grafting 3-mercaptopropyl trimethoxysilane on multi-walled carbon nanotubes surface for improving on-line cadmium(II) preconcentration from water samples.

    PubMed

    Corazza, Marcela Zanetti; Somera, Bruna Fabrin; Segatelli, Mariana Gava; Tarley, Cesar Ricardo Teixeira

    2012-12-01

    In the present study, the performance of multi-walled carbon nanotubes (MWCNTs) grafted with 3-mercaptopropyltrimethoxysilane (3-MPTMS), used as a solid phase extractor for Cd(2+) preconcentration in a flow injection system coupled to flame atomic absorption spectrometry (FAAS), was evaluated. The procedure involved the preconcentration of 20.0 mL of Cd(2+) solution at pH 7.5 (0.1 mol L(-1) buffer phosphate) through 70 mg of 3-MPTMS-grafted MWCNTs packed into a minicolumn at 6.0 mL min(-1). The elution step was carried out with 1.0 mol L(-1) HCl. Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) were used to estimate the extent of the MWCNT chemical modification. The 3-MPTMS-grafted MWCNTs provided a 1.68 times improvement in the sensitivity of the Cd(2+) FAAS determination compared to the unsilanized oxidized MWCNTs. The following parameters were obtained: preconcentration factor of 31.5, consumptive index of 0.635 mL, sample throughput of 14 h(-1), and concentration efficiency of 9.46 min(-1). The analytical curve was constructed in the range of 1.0-60.0 μg L(-1) (r=0.9988), and the detection and quantification limits were found to be 0.15 μg L(-1) and 0.62 μg L(-1), respectively. Different types of water samples and cigarette sample were successfully analyzed, and the results were compared using electrothermal atomic absorption spectrometry (ETAAS) as reference technique. In addition, the accuracy of proposed method was also checked by analysis of certified reference material NIST SRM 1573a (tomato leaves) and standard reference material NIST SRM 1643e (trace elements in natural waters). Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Odor Sensing System Using Preconcentrator with Variable Temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Isaka, Y; Nakamoto, Takamichi; Moriizumi, T

    1999-01-01

    An odor sensing system using QCM gas sensor array and pattern recognition technique is useful to identify various kinds of odors. A preconcentrator with variable temperature is promising to obtain further pattern separation after the appropriate temperature changes, whereas it has been so far used to enhance sensor sensitivity. After the preconcentrator collects the vapors, it is heated so that they can be thermally desorbed. The combination of the preconcentrator with the sensor array enhances the capability of discrimination among vapors since their desorption temperatures depend upon vapor kinds.

  13. Ultratrace determination of arsenic in water samples by electrothermal atomic absorption spectrometry after pre-concentration with Mg-Al-Fe ternary layered double hydroxide nano-sorbent.

    PubMed

    Abdolmohammad-Zadeh, Hossein; Jouyban, Abolghasem; Amini, Roghayeh

    2013-11-15

    A selective solid phase extraction method, based on nano-structured Mg-Al-Fe(NO3(-)) ternary layered double hydroxide as a sorbent, is developed for the pre-concentration of ultra-trace levels of arsenic (As) prior to determination by electrothermal atomic absorption spectrometry. It is found that both As(III) and As(V) could be quantitatively retained on the sorbent within a wide pH range of 4-12. Accordingly, the presented method is applied to determination of total inorganic As in aqueous solutions. Maximum analytical signal of As is achieved when the pyrolysis and atomization temperatures are close to 900 °C and 2300 °C, respectively. Several variables affecting the extraction efficiency including pH, sample flow rate, amount of nano-sorbent, elution conditions and sample volume are optimized. Under the optimized conditions, the limit of detection (3Sb/m) and the relative standard deviation are 4.6 pg mL(-1) and 3.9%, respectively. The calibration graph is linear in the range of 15.0-650 pg mL(-1) with a correlation coefficient of 0.9979, sorption capacity and pre-concentration factor are 8.68 mg g(-1) and 300, respectively. The developed method is validated by the analysis of a standard reference material (SRM 1643e) and is successfully applied to the determination of ultra-trace amounts of As in different water samples. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Application of mercapto-silica polymerized high internal phase emulsions for the solid-phase extraction and preconcentration of trace lead(II).

    PubMed

    Su, Rihui; Ruan, Guihua; Chen, Zhengyi; Du, Fuyou; Li, Jianping

    2015-12-01

    A new class of solid-phase extraction column prepared with grafted mercapto-silica polymerized high internal phase emulsion particles was used for the preconcentration of trace lead. First, mercapto-silica polymerized high internal phase emulsion particles were synthesized by using high internal phase emulsion polymerization and carefully assembled in a polyethylene syringe column. The influences of various parameters including adsorption pH value, adsorption and desorption solvents, flow rate of the adsorption and desorption procedure were optimized, respectively, and the suitable uploading sample volumes, adsorption capacity, and reusability of solid phase extraction column were also investigated. Under the optimum conditions, Pb(2+) could be preconcentrated quantitatively over a wide pH range (2.0-5.0). In the presence of foreign ions, such as Na(+) , K(+) , Ca(2+) , Zn(2+) , Mg(2+) , Cu(2+) , Fe(2+) , Cd(2+) , Cl(-) and NO3 (-) , Pb(2+) could be recovered successfully. The prepared solid-phase extraction column performed with high stability and desirable durability, which allowed more than 100 replicate extractions without measurable changes of performance. The feasibility of the developed method was further validated by the extraction of Pb(2+) in rice samples. At three spiked levels of 40.0, 200 and 800 μg/kg, the average recoveries for Pb(2+) in rice samples ranged from 87.3 to 105.2%. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Combination of solid phase extraction and dispersive liquid-liquid microextraction for separation/preconcentration of ultra trace amounts of uranium prior to its fiber optic-linear array spectrophotometry determination.

    PubMed

    Dadfarnia, Shayessteh; Shabani, Ali Mohammad Haji; Shakerian, Farid; Shiralian Esfahani, Golnaz

    2013-12-15

    A simple and sensitive method for the separation and preconcentration of the ultra trace amounts of uranium and its determination by spectrophotometry was developed. The method is based on the combination of solid phase extraction and dispersive liquid-liquid microextraction. Thus, by passing the sample through the basic alumina column, the uranyl ion and some cations are separated from the sample matrix. The retained uranyl ion along with the cations are eluted with 5 mL of nitric acid (2 mol L(-1)) and after neutralization of the eluent, the extracted uranyl ion is converted to its anionic benzoate complex and is separated from other cations by extraction of its ion pair with malachite green into small volume of chloroform using dispersive liquid-liquid microextraction. The amount of uranium is then determined by the absorption measurement of the extracted ion pair at 621 nm using flow injection spectrophotometry. Under the optimum conditions, with 500 mL of the sample, a preconcentration factor of 1980, a detection limit of 40 ng L(-1), and a relative standard deviation of 4.1% (n=6) at 400 ng L(-1) were obtained. The method was successfully applied to the determination of uranium in mineral water, river water, well water, spring water and sea water samples. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. On-line ion-exchange preconcentration and determination of traces of platinum by electrothermal atomic absorption spectrometry.

    PubMed

    González García, M M; Sánchez Rojas, F; Bosch Ojeda, C; García de Torres, A; Cano Pavón, J M

    2003-04-01

    A method to determine trace amounts of platinum in different samples based on electrothermal atomic absorption spectrometry is described. The preconcentration step is performed on a chelating resin microcolumn [1,5-bis(2-pyridyl)-3-sulfophenyl methylene thiocarbonohydrazide (PSTH) immobilized on an anion-exchange resin (Dowex 1x8-200)] placed in the autosampler arm. The combination of a peristaltic pump for sample loading and the atomic absorption spectrometer pumps for elution through a selection valve simplifies the hardware. The peristaltic pump and the selection valve are easily controlled electronically with two switches placed in the autosampler, which are activated when the autosampler arm is down. Thus, the process is fully automated without any modification of the software of the atomic absorption spectrometer. Under the optimum conditions with a 60-s preconcentration time, a sample flow rate of 2.4 mL min(-1), and an injection volume of eluent of 40 microL, a linear calibration graph was obtained in the range 0-100 ng mL(-1). The enrichment factor was 14. The detection limit under these conditions is 1 ng mL(-1), and the relative standard deviation (RSD) is 1.6% for 10 ng mL(-1) of Pt. The method has been applied to the determination of platinum in catalyst, vegetation, soil, and natural water samples. The results showed good agreement with the certified value and the recoveries of Pt added to samples were 98-105%.

  17. Simultaneous preconcentration and removal of iron, chromium, nickel with N,N'-etylenebis-(ethane sulfonamide) ligand on activated carbon in aqueous solution and determination by ICP-OES.

    PubMed

    Karacan, Mehmet Sayim; Aslantaş, Neslihan

    2008-07-15

    In this study, Fe, Cr and Ni have been preconcentrated and removed by using N,N'-ethylenebis (ethane sulfonamide), (ESEN) ligand on activated carbon (AC) in aqueous solution. For this purpose, complexes between these metals and ligands have been investigated and used in preconcentration and removal studies. Factors which have affected adsorption of metals on activated carbon have been optimized. Adsorbed metals have been preconcentrated 10-fold and determined by ICP-OES. Interferences of Ca, Mg and K to this process have been investigated. The proposed method has been applied to the tap water and Ankara Creek water in order to Fe, Cr, and Ni remediation and preconcentration. Determination of metals by ICP-OES has been checked with standard reference material (NIST 1643e). The proposed method provides the recoveries of 87%, 108% and 106% for Fe, Cr and Ni, respectively, in preconcentration. It also provides the removal of Fe, Cr and Ni by 93%, 100% and 100% removal from waters, respectively.

  18. Application of chitosan and its N-heterocyclic derivatives for preconcentration of noble metal ions and their determination using atomic absorption spectrometry.

    PubMed

    Azarova, Yu A; Pestov, A V; Ustinov, A Yu; Bratskaya, S Yu

    2015-12-10

    Chitosan and its N-heterocyclic derivatives N-2-(2-pyridyl)ethylchitosan (2-PEC), N-2-(4-pyridyl) ethylchitosan (4-PEC), and N-(5-methyl-4-imidazolyl) methylchitosan (IMC) have been applied in group preconcentration of gold, platinum, and palladium for subsequent determination by atomic absorption spectroscopy (AAS) in solutions with high background concentrations of iron and sodium ions. It has been shown that the sorption mechanism, which was elucidated by XPS, significantly influences the sorption capacity of materials, the efficiency of metal ions elution after preconcentration, and, as a result, the accuracy of metal determination by AAS. We have shown that native chitosan was not suitable for preconcentration of Au(III), if the elution step was used as a part of the analysis scheme. The group preconcentration of Au(III), Pd(II), and Pt(IV) with subsequent quantitative elution using 0.1M HCl/1M thiourea solution was possible only on IMC and 4-PEC. Application of IMC for analysis of the national standard quartz ore sample proved that gold could be accurately determined after preconcentration/elution with the recovery above 80%. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. On-line preconcentration/determination of lead in Ilex paraguariensis samples (mate tea) using polyurethane foam as filter and USN-ICP-OES.

    PubMed

    Marchisio, P F; Sales, A; Cerutti, S; Marchevski, E; Martinez, L D

    2005-09-30

    The present paper proposes an on-line preconcentration procedure for lead determination in Ilex paraguariensis (St. Hilaire) samples by ultrasonic nebulization associated to inductively coupled plasma optical emission spectrometry (USN-ICP-OES). It is based on the precipitation of lead(II) ion on a minicolumn packed with polyurethane foam using 2-(5-bromo-2-pyridilazo)-5-diethylaminophenol (5-Br-PADAP) as precipitating reagent. The collected analyte precipitate was quantitatively eluted from the minicolumn with 20% (v/v) nitric acid. An enhancement factor of 225-fold was obtained (15 for USN and 15 for preconcentration). The detection limit (DL) value for the preconcentration of 10.0 ml of sample was 40.0 ng/l. The relative standard deviation (R.S.D.) was 3.0% for a Pb concentration of 1 microg/l, calculated from the peak heights obtained. The calibration graph using the preconcentration system for lead was linear with a correlation coefficient of 0.9997, at levels near the detection limits up to at least 100 microg/l. The preconcentration procedure was successfully applied to the determination of lead in mate tea samples.

  20. Continuous Preconcentrator for Trace Gas Analysis (Preprint)

    DTIC Science & Technology

    2009-05-21

    several ppb to several hundreds of ppb) gradually impact human health and raise concerns for the general public.xv In any of these cases, but...The large number of patents on the subject makes a complete comprehensive review impossible, but general characteristics will be discussed along...established technology and the general trend in their development is towards faster and more accurately controlled desorption systems. A natural progression

  1. An automated and semi-continuous method for the analysis of water-soluble constituents in PM(2.5).

    PubMed

    Lee, B K; Kim, Y H; Lee, D S

    2008-04-01

    An automated and semi-continuous method for measuring water-soluble constituents in PM(2.5) was developed. The system consists of a multi-tube diffusion scrubber (MTDS), a low temperature particle impactor (LTPI), an inertial air/liquid separator, and two ion chromatography systems. The MTDS acts as an interfering gas removal system and also as a humidifier for growing particles. Since the MTDS operates at 40 degrees C, the loss of volatile compounds and hydrological conversion of nitrogen oxides to nitrite were not of significant concern. The condensation of water vapor, dissolution of soluble constituents, and capture of insoluble particles occurred in the LTPI. The condensed liquid containing the dissolved species and the insoluble particles was separated from the airflow using an inertial air/liquid separator. The analysis of cations and anions in the effluent liquid was performed using two ion chromatography systems. The collection efficiency, including the inlet loss, of the system was 96.6+/-7.1% at an air flow rate of 1.0 SLPM. The limits of detection ranged from 12 to 57 ng/m(3) for major ionic constituents without any pre-concentration procedure. This method was tested in the field and the average data capture was over 90%, demonstrating the reliability of the system.

  2. An Easy to Manufacture Micro Gas Preconcentrator for Chemical Sensing Applications.

    PubMed

    McCartney, Mitchell M; Zrodnikov, Yuriy; Fung, Alexander G; LeVasseur, Michael K; Pedersen, Josephine M; Zamuruyev, Konstantin O; Aksenov, Alexander A; Kenyon, Nicholas J; Davis, Cristina E

    2017-08-25

    We have developed a simple-to-manufacture microfabricated gas preconcentrator for MEMS-based chemical sensing applications. Cavities and microfluidic channels were created using a wet etch process with hydrofluoric acid, portions of which can be performed outside of a cleanroom, instead of the more common deep reactive ion etch process. The integrated heater and resistance temperature detectors (RTDs) were created with a photolithography-free technique enabled by laser etching. With only 28 V DC (0.1 A), a maximum heating rate of 17.6 °C/s was observed. Adsorption and desorption flow parameters were optimized to be 90 SCCM and 25 SCCM, respectively, for a multicomponent gas mixture. Under testing conditions using Tenax TA sorbent, the device was capable of measuring analytes down to 22 ppb with only a 2 min sample loading time using a gas chromatograph with a flame ionization detector. Two separate devices were compared by measuring the same chemical mixture; both devices yielded similar peak areas and widths (fwhm: 0.032-0.033 min), suggesting reproducibility between devices.

  3. Preconcentration of Zr, Hf, Nb, Ta and W in seawater using solid-phase extraction on TSK-8-hydroxyquinoline resin and determination by inductively coupled plasma-mass spectrometry.

    PubMed

    Firdaus, M Lutfi; Norisuye, Kazuhiro; Sato, Taishi; Urushihara, Shouhei; Nakagawa, Yusuke; Umetani, Shigeo; Sohrin, Yoshiki

    2007-02-05

    Here, we present the first simultaneous preconcentration and determination of ultratrace (pmol kg(-1) level) Zr, Hf, Nb, Ta and W in seawater, both in the form of dissolved and acid-dissolvable species. 8-Hydroxyquinoline (8HQ) bonded covalently to a vinyl polymer resin, TSK-8HQ, was used in a chelating adsorbent column to concentrate the metals. The greatest advantage of this resin is its endurance to 5M HF, since this is an effective eluent for all five metals. The analytes were successfully concentrated from 250 mL seawater with a 50-fold concentration factor through the column extraction and evaporation. The detection limit was 0.009-0.15 pmol kg(-1). The procedure blank determined using ultra pure water as a sample was 0.005-0.37 pmol kg(-1). The five metals were quantitatively recovered from seawater with good precision (2-4%). The effect of sample pH, sample flow rate, eluent composition and sample pretreatment were carefully studied. This method was applied to seawater.

  4. A new open tubular capillary microextraction and sweeping for the analysis of super low concentration of hydrophobic compounds.

    PubMed

    Xia, Zhining; Gan, Tingting; Chen, Hua; Lv, Rui; Wei, Weili; Yang, Fengqing

    2010-10-01

    A sample pre-concentration method based on the in-line coupling of in-tube solid-phase microextraction and electrophoretic sweeping was developed for the analysis of hydrophobic compounds. The sample pre-concentration and electrophoretic separation processes were simply and sequentially carried out with a (35%-phenyl)-methylpolysiloxane-coated capillary. The developed method was validated and applied to enrich and separate several pharmaceuticals including loratadine, indomethacin, ibuprofen and doxazosin. Several parameters of microextration were investigated such as temperature, pH and eluant. And the concentration of microemulsion that influences separation efficiency and microextraction efficiency were also studied. Central composite design was applied for the optimization of sampling flow rate and sampling time that interact in a very complex way with each other. The precision, sensitivity and recovery of the method were investigated. Under the optimal conditions, the maximum enrichment factors for loratadine, indomethacin, ibuprofen and doxazosin in aqueous solutions are 1355, 571, 523 and 318, respectively. In addition, the developed method was applied to determine loratadine in rabbit blood sample.

  5. Thermophilic Geobacillus galactosidasius sp. nov. loaded γ-Fe2O3 magnetic nanoparticle for the preconcentrations of Pb and Cd.

    PubMed

    Özdemir, Sadin; Kilinç, Ersin; Okumuş, Veysi; Poli, Annarita; Nicolaus, Barbara; Romano, Ida

    2016-02-01

    Thermophilic bacteria, Geobacillus galactosidasius sp nov. was loaded on γ-Fe2O3 magnetic nanoparticle for the preconcentrations of Pb and Cd by solid phase extraction before ICP-OES. pH and flow rate of the solution, amounts of biosorbent and magnetic nanoparticle, volume of sample solution, effects of the possible interferic ions were investigated in details. Linear calibration curves were constructed in the concentration ranges of 1.0-60ngmL(-1) for Pb and Cd. The RSDs of the method were lower than 2.8% for Pb and 3.8% for Cd. Certified and standard reference samples of fortified water, wastewater, poplar leaves, and simulated fresh water were used to accurate the method. LOD values were found as 0.07 and 0.06ngmL(-1) respectively for Pb and Cd. The biosorption capacities were found as 34.3mgg(-1) for Pb and 37.1mgg(-1) for Cd. Pb and Cd concentrations in foods were determined. Surface microstructure was investigated by SEM-EDX. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Evaluation of needle trap micro-extraction and automatic alveolar sampling for point-of-care breath analysis.

    PubMed

    Trefz, Phillip; Rösner, Lisa; Hein, Dietmar; Schubert, Jochen K; Miekisch, Wolfram

    2013-04-01

    Needle trap devices (NTDs) have shown many advantages such as improved detection limits, reduced sampling time and volume, improved stability, and reproducibility if compared with other techniques used in breath analysis such as solid-phase extraction and solid-phase micro-extraction. Effects of sampling flow (2-30 ml/min) and volume (10-100 ml) were investigated in dry gas standards containing hydrocarbons, aldehydes, and aromatic compounds and in humid breath samples. NTDs contained (single-bed) polymer packing and (triple-bed) combinations of divinylbenzene/Carbopack X/Carboxen 1000. Substances were desorbed from the NTDs by means of thermal expansion and analyzed by gas chromatography-mass spectrometry. An automated CO2-controlled sampling device for direct alveolar sampling at the point-of-care was developed and tested in pilot experiments. Adsorption efficiency for small volatile organic compounds decreased and breakthrough increased when sampling was done with polymer needles from a water-saturated matrix (breath) instead from dry gas. Humidity did not affect analysis with triple-bed NTDs. These NTDs showed only small dependencies on sampling flow and low breakthrough from 1-5 %. The new sampling device was able to control crucial parameters such as sampling flow and volume. With triple-bed NTDs, substance amounts increased linearly with increasing sample volume when alveolar breath was pre-concentrated automatically. When compared with manual sampling, automatic sampling showed comparable or better results. Thorough control of sampling and adequate choice of adsorption material is mandatory for application of needle trap micro-extraction in vivo. The new CO2-controlled sampling device allows direct alveolar sampling at the point-of-care without the need of any additional sampling, storage, or pre-concentration steps.

  7. Optimization of sampling parameters for collection and preconcentration of alveolar air by needle traps.

    PubMed

    Filipiak, Wojciech; Filipiak, Anna; Ager, Clemens; Wiesenhofer, Helmut; Amann, Anton

    2012-06-01

    The approach for breath-VOCs' collection and preconcentration by applying needle traps was developed and optimized. The alveolar air was collected from only a few exhalations under visual control of expired CO(2) into a large gas-tight glass syringe and then warmed up to 45 °C for a short time to avoid condensation. Subsequently, a specially constructed sampling device equipped with Bronkhorst® electronic flow controllers was used for automated adsorption. This sampling device allows time-saving collection of expired/inspired air in parallel onto three different needle traps as well as improvement of sensitivity and reproducibility of NT-GC-MS analysis by collection of relatively large (up to 150 ml) volume of exhaled breath. It was shown that the collection of alveolar air derived from only a few exhalations into a large syringe followed by automated adsorption on needle traps yields better results than manual sorption by up/down cycles with a 1 ml syringe, mostly due to avoided condensation and electronically controlled stable sample flow rate. The optimal profile and composition of needle traps consists of 2 cm Carbopack X and 1 cm Carboxen 1000, allowing highly efficient VOCs' enrichment, while injection by a fast expansive flow technique requires no modifications in instrumentation and fully automated GC-MS analysis can be performed with a commercially available autosampler. This optimized analytical procedure considerably facilitates the collection and enrichment of alveolar air, and is therefore suitable for application at the bedside of critically ill patients in an intensive care unit. Due to its simplicity it can replace the time-consuming sampling of sufficient breath volume by numerous up/down cycles with a 1 ml syringe.

  8. A double-stage tube furnace--acid-trapping protocol for the pre-concentration of mercury from solid samples for isotopic analysis.

    PubMed

    Sun, Ruoyu; Enrico, Maxime; Heimbürger, Lars-Eric; Scott, Clint; Sonke, Jeroen E

    2013-08-01

    High-precision mercury (Hg) stable isotopic analysis requires relatively large amounts of Hg (>10 ng). Consequently, the extraction of Hg from natural samples with low Hg concentrations (<1-20 ng/g) by wet chemistry is challenging. Combustion-trapping techniques have been shown to be an appropriate alternative. Here, we detail a modified off-line Hg pre-concentration protocol that is based on combustion and trapping. Hg in solid samples is thermally reduced and volatilized in a pure O2 stream using a temperature-programmed combustion furnace. A second furnace, kept at 1,000 °C, decomposes combustion products into H2O, CO2, SO2, etc. The O2 carrier gas, including combustion products and elemental Hg, is then purged into a 40% (v/v) acid-trapping solution. The method was optimized by assessing the variations of Hg pre-concentration efficiency and Hg isotopic compositions as a function of acid ratio, gas flow rate, and temperature ramp rate for two certified reference materials of bituminous coals. Acid ratios of 2HNO3/1HCl (v/v), 25 mL/min O2 flow rate, and a dynamic temperature ramp rate (15 °C/min for 25-150 and 600-900 °C; 2.5 °C/min for 150-600 °C) were found to give optimal results. Hg step-release experiments indicated that significant Hg isotopic fractionation occurred during sample combustion. However, no systematic dependence of Hg isotopic compositions on Hg recovery (81-102%) was observed. The tested 340 samples including coal, coal-associated rocks, fly ash, bottom ash, peat, and black shale sediments with Hg concentrations varying from <5 ng/g to 10 μg/g showed that most Hg recoveries were within the acceptable range of 80-120%. This protocol has the advantages of a short sample processing time (∼3.5 h) and limited transfer of residual sample matrix into the Hg trapping solution. This in turn limits matrix interferences on the Hg reduction efficiency of the cold vapor generator used for Hg isotopic analysis.

  9. Spectrophotometric determination of paracetamol in urine with tetrahydroxycalix[4]arene as a coupling reagent and preconcentration with triton X-114 using cloud point extraction.

    PubMed

    Filik, Hayati; Sener, Izzet; Cekiç, Sema Demirci; Kiliç, Emine; Apak, Reşat

    2006-06-01

    In the present paper, conventional spectrophotometry in conjunction with cloud point extraction-preconcentration were investigated as alternative methods for paracetamol (PCT) assay in urine samples. Cloud point extraction (CPE) was employed for the preconcentration of p-aminophenol (PAP) prior to spectrophotometric determination using the non-ionic surfactant Triton X-114 (TX-114) as an extractant. The developed methods were based on acidic hydrolysis of PCT to PAP, which reacted at room temperature with 25,26,27,28-tetrahydroxycalix[4]arene (CAL4) in the presence of an oxidant (KIO(4)) to form an blue colored product. The PAP-CAL4 blue dye formed was subsequently entrapped in the surfactant micelles of Triton X-114. Cloud point phase separation with the aid of Triton X-114 induced by addition of Na(2)SO(4) solution was performed at room temperature as an advantage over other CPE assays requiring elevated temperatures. The 580 nm-absorbance maximum of the formed product was shifted bathochromically to 590 nm with CPE. The working range of 1.5-12 microg ml(-1) achieved by conventional spectrophotometry was reduced down to 0.14-1.5 microg ml(-1) with cloud point extraction, which was lower than those of most literature flow-through assays that also suffer from nonspecific absorption in the UV region. By preconcentrating 10 ml sample solution, a detection limit as low as 40.0 ng ml(-1) was obtained after a single-step extraction, achieving a preconcentration factor of 10. The stoichiometric composition of the dye was found to be 1 : 4 (PAP : CAL4). The impact of a number of parameters such as concentrations of CAL4, KIO(4), Triton X-100 (TX-100), and TX-114, extraction temperature, time periods for incubation and centrifugation, and sample volume were investigated in detail. The determination of PAP in the presence of paracetamol in micellar systems under these conditions is limited. The established procedures were successfully adopted for the determination of PCT in urine samples. Since the drug is rapidly absorbed and excreted largely in urine and its high doses have been associated with lethal hepatic necrosis and renal failure, development of a rapid, sensitive and selective assay of PCT is of vital importance for fast urinary screening and antidote administration before applying more sophisticated, but costly and laborious hyphenated instrumental techniques of HPLC-SPE-NMR-MS.

  10. Method for preconcentrating a sample for subsequent analysis

    DOEpatents

    Zaromb, Solomon

    1990-01-01

    A system for analysis of trace concentration of contaminants in air includes a portable liquid chromatograph and a preconcentrator for the contaminants to be analyzed. The preconcentrator includes a sample bag having an inlet valve and an outlet valve for collecting an air sample. When the sample is collected the sample bag is connected in series with a sorbing apparatus in a recirculation loop. The sorbing apparatus has an inner gas-permeable container containing a sorbent material and an outer gas-impermeable container. The sample is circulated through the outer container and around the inner container for trapping and preconcentrating the contaminants in the sorbent material. The sorbent material may be a liquid having the same composition as the mobile phase of the chromatograph for direct injection thereinto. Alternatively, the sorbent material may be a porous, solid body, to which mobile phase liquid is added after preconcentration of the contaminants for dissolving the contaminants, the liquid solution then being withdrawn for injection into the chromatograph.

  11. An Enhanced Platform to Analyse Low-Affinity Amyloid β Protein by Integration of Electrical Detection and Preconcentrator.

    PubMed

    Yoo, Yong Kyoung; Yoon, Dae Sung; Kim, Gangeun; Kim, Jinsik; Han, Sung Il; Lee, Junwoo; Chae, Myung-Sic; Lee, Sang-Myung; Lee, Kyu Hyoung; Hwang, Kyo Seon; Lee, Jeong Hoon

    2017-10-30

    Sensitivity and limit of detection (LOD) enhancement are essential criteria for the development of ultrasensitive molecular sensors. Although various sensor types have been investigated to enhance sensitivity and LOD, analyte detection and its quantification are still challenging, particularly for protein-protein interactions with low association constants. To solve this problem, here, we used ion concentration polarization (ICP)-based preconcentration to increase the local concentration of analytes in a microfluidic platform for LOD improvement. This was the first demonstration of a microfluidic device with an integrated ICP preconcentrator and interdigitated microelectrode (IME) sensor to detect small changes in surface binding between antigens and antibodies. We detected the amyloid beta (Aβ) protein, an Alzheimer's disease marker, with low binding affinity to its antibodies by adopting ICP preconcentration phenomena. We demonstrated that a combination of ICP preconcentrator and IME sensor increased the LOD by 13.8-fold to femtomolar level (8.15 fM), which corresponds to a significant advance for clinical applications.

  12. Speciation of chromium using reversed phase-high performance liquid chromatography coupled to different spectrometric detection methods

    NASA Astrophysics Data System (ADS)

    Andrle, C. M.; Jakubowski, N.; Broekaert, J. A. C.

    1997-02-01

    Speciation of Cr(III) and Cr(VI) based on the formation of different complexes with ammonium-pyrrolidinedithioate (APDC) in a continuous flow technique and their preconcentration using solid phase extraction (SPE) have been elaborated and applied to the analysis of waste waters from the galvanic industry. The Cr complexes were separated and determined using reversed phase-high performance liquid chromatography (RP-HPLC) coupled to different detection methods, namely UV-detection, graphite furnace-atomic absorption spectrometry (GF-AAS) and inductively coupled plasma mass spectrometry with hydraulic high pressure nebulization (HHPN/ICP-MS). After optimization the detection limits for Cr(III) and Cr(VI) of all methods are at the μg 1 -1 level and the precision in terms of RSD is 5% ( cCr = 100 μg 1 -1, N = 10). The procedure was applied to the determination of Cr(III) and Cr(VI) at the μg 1 -1 level in galvanic waste waters, and its accuracy was approved by comparing the results with those of independent methods.

  13. Highly sensitive chiral analysis in capillary electrophoresis with large-volume sample stacking with an electroosmotic flow pump.

    PubMed

    Kawai, Takayuki; Koino, Hiroshi; Sueyoshi, Kenji; Kitagawa, Fumihiko; Otsuka, Koji

    2012-07-13

    To improve the sensitivity in chiral analysis by capillary electrophoresis without loss of optical resolution, application of large-volume sample stacking with an electroosmotic flow pump (LVSEP) was investigated. Effects of the addition of cyclodextrin (CD) into a running solution on the LVSEP preconcentration was theoretically studied, where the preconcentration efficiency and effective separation length would be slightly increased if the effective electrophoretic velocity (v(ep,eff,BGS)) of the analytes was decreased by interacting with CD. In LVSEP-CD-modified capillary zone electrophoresis (CDCZE) and LVSEP-CD electrokinetic chromatography with reduced v(ep,eff,BGS), up to 1000-fold sensitivity increases were achieved with almost no loss of resolution. In LVSEP-CD-modified micellar electrokinetic chromatography of amino acids with increased v(ep,eff,BGS), a 1300-fold sensitivity increase was achieved without much loss of resolution, indicating the versatile applicability of LVSEP to many separation modes. An enantio-excess (EE) assay was also carried out in LVSEP-CDCZE, resulting in successful analyses of up to 99.6% EE. Finally, we analyzed ibuprofen in urine by desalting with a C₁₈ solid-phase extraction column. As a typical result, 250ppb ibuprofen was well concentrated and optically resolved with 84.0-86.6% recovery in LVSEP-CDCZE, indicating the applicability of LVSEP to real samples containing a large amount of unnecessary background salts. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Determination of ultratrace elements in natural waters by solid-phase extraction and atomic spectrometry methods.

    PubMed

    Grotti, Marco; Abelmoschi, Maria Luisa; Soggia, Francesco; Frache, Roberto

    2003-01-01

    A study was carried out on the preconcentration of ultratrace amounts of cadmium, lead, manganese, copper and iron from high-salinity aqueous samples and determination by atomic spectrometry methods. Sample volume, amount of resin, loading flow rate, and elution volume were optimized in order to obtain the simultaneous preconcentration of all the analytes. Quantitative recoveries were obtained by using 200 mg of iminodiacetic resin with a loading flow rate of 2 mL min(-1), elution volume of 3 mL and sample volume of 50-450 mL. Only copper in seawater samples was not completely retained by the resin (60-70% recovery), due to unfavorable competition of iminodiacetic-active groups with organically bound metal.To quantify the metals in the eluates, two atomic spectrometry techniques were compared: electrothermal atomization atomic absorption spectrometry (ETAAS) and inductively coupled plasma-optical emission spectrometry (ICP-OES) with simultaneous CCD detection system. Both techniques are suitable for sample analysis with detection limits of 1.0, 4.7, 3.3, 6.8, and 53 ng L(-1) using ETAAS and 12, 122, 3.4, 17, and 21 ng L(-1) using ICP-OES for Cd, Pb, Mn, Cu, and Fe, respectively. Relative standard deviations of the procedures ranged from 1.7 to 14% at the sub-microg L(-1) concentration level. The accuracy of both methods was verified by analyzing various certified reference materials (river water, estuarine water, coastal and off-shore seawater).

  15. Electrodialytic in-line preconcentration for ionic solute analysis.

    PubMed

    Ohira, Shin-Ichi; Yamasaki, Takayuki; Koda, Takumi; Kodama, Yuko; Toda, Kei

    2018-04-01

    Preconcentration is an effective way to improve analytical sensitivity. Many types of methods are used for enrichment of ionic solute analytes. However, current methods are batchwise and include procedures such as trapping and elution. In this manuscript, we propose in-line electrodialytic enrichment of ionic solutes. The method can enrich ionic solutes within seconds by quantitative transfer of analytes from the sample solution to the acceptor solution under an electric field. Because of quantitative ion transfer, the enrichment factor (the ratio of the concentration in the sample and to that in the obtained acceptor solution) only depends on the flow rate ratio of the sample solution to the acceptor solution. The ratios of the concentrations and flow rates are equal for ratios up to 70, 20, and 70 for the tested ionic solutes of inorganic cations, inorganic anions, and heavy metal ions, respectively. The sensitivity of ionic solute determinations is also improved based on the enrichment factor. The method can also simultaneously achieve matrix isolation and enrichment. The method was successively applied to determine the concentrations of trace amounts of chloroacetic acids in tap water. The regulated concentration levels cannot be determined by conventional high-performance liquid chromatography with ultraviolet detection (HPLC-UV) without enrichment. However, enrichment with the present method is effective for determination of tap water quality by improving the limits of detection of HPLC-UV. The standard addition test with real tap water samples shows good recoveries (94.9-109.6%). Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Preconcentrator with high volume chiller for high vapor pressure particle detection

    DOEpatents

    Linker, Kevin L

    2013-10-22

    Apparatus and method for collecting particles of both high and low vapor pressure target materials entrained in a large volume sample gas stream. Large volume active cooling provides a cold air supply which is mixed with the sample gas stream to reduce the vapor pressure of the particles. In embodiments, a chiller cools air from ambient conditions to 0-15.degree. C. with the volumetric flow rate of the cold air supply being at least equal to the volumetric flow rate of the sample gas stream. In further embodiments an adsorption media is heated in at least two stages, a first of which is below a threshold temperature at which decomposition products of the high vapor pressure particle are generated.

  17. Accumulation of Colloidal Particles in Flow Junctions Induced by Fluid Flow and Diffusiophoresis

    NASA Astrophysics Data System (ADS)

    Shin, Sangwoo; Ault, Jesse T.; Warren, Patrick B.; Stone, Howard A.

    2017-10-01

    The flow of solutions containing solutes and colloidal particles in porous media is widely found in systems including underground aquifers, hydraulic fractures, estuarine or coastal habitats, water filtration systems, etc. In such systems, solute gradients occur when there is a local change in the solute concentration. While the effects of solute gradients have been found to be important for many applications, we observe an unexpected colloidal behavior in porous media driven by the combination of solute gradients and the fluid flow. When two flows with different solute concentrations are in contact near a junction, a sharp solute gradient is formed at the interface, which may allow strong diffusiophoresis of the particles directed against the flow. Consequently, the particles accumulate near the pore entrance, rapidly approaching the packing limit. These colloidal dynamics have important implications for the clogging of a porous medium, where particles that are orders of magnitude smaller than the pore width can accumulate and block the pores within a short period of time. We also show that this effect can be exploited as a useful tool for preconcentrating biomolecules for rapid bioassays.

  18. The evaluation of different sorbents for the preconcentration of phenoxyacetic acid herbicides and their metabolites from soils.

    PubMed

    Moret, Sònia; Sánchez, Juan M; Salvadó, Victòria; Hidalgo, Manuela

    2005-12-16

    A procedure using alkaline extraction, solid-phase extraction (SPE) and HPLC is developed to analyze the polar herbicides 2,4-dichlorophenoxyacetic acid (2,4-D) and 4-chloro-2-methylphenoxyacetic acid (MCPA) together with their main metabolites in soils. An ion-pairing HPLC method is used for the determination as it permits the baseline separation of these highly polar herbicides and their main metabolites. The use of a highly cross-linked polystyrene-divinylbenzene sorbent (PS-DVB) gives the best results for the analysis of these compounds. This sorbent allows the direct preconcentration of the analytes at the high pH values obtained after quantitative alkaline extraction of the herbicides from soil samples. Different parameters are evaluated for the SPE preconcentration step. The high polarity of the main analytes of interest (2,4-D and MCPA) makes it necessary to work at low flow rates (< or =0.5 mL min(-1)) in order for these compounds to be retained by the PS-DVB sorbent. A two stage desorption from the SPE sorbent is required to obtain the analytes in solvents that are appropriate for HPLC determination. A first desorption with a 50:50 methanol:water mixture elutes the most polar analytes (2,4-D, MCPA and 2CP). The second elution step with methanol permits the analysis of the other phenol derivatives. The humic and fulvic substances present in the soil are not efficiently retained by PS-DVB sorbents at alkaline pH's and so do not interfere in the analysis. This method has been successfully applied in the analysis of soil samples from a golf course treated with a commercial product containing esters of 2,4-D and MCPA as the active components.

  19. Solid Phase Extraction of Trace Elements in Waterand Tissue Samples on a Mini Column with Diphenylcarbazone Impregnated Nano-TiO2 and Their Determination by Inductively Coupled Plasma Optical Emission Spectrometry

    PubMed Central

    Baytak, Sıtkı; Arslan, Zikri

    2015-01-01

    This study presents a simple, robust and environmentally friendly solid phase preconcentration procedure for multielement determination by inductively coupled plasma optical emission spectrometry (ICP-OES) using diphenylcarbazone (DPC) impregnated TiO2 nanopowder (n-TiO2). DPC was successfully impregnated onto n-TiO2 in colloidal solution. A number of elements, including Co(II), Cr(III), Cu(II), Fe(III), Mn(II) and Zn(II) were quantitatively preconcentrated from aqueous solutions between pH 8 and 8.5 at a flow rate of 2 mL min−1, and then eluted with 2 mL of 5% (v/v) HNO3. A mini-column packed with 0.12 g DPC impregnated n-TiO2 retained all elements quantitatively from up to 250 mL multielement solution (2.5 μg per analyte) affording an enrichment factor of 125. The limits of detection (LOD) for preconcentration of 50 mL blank solutions (n = 12) were 0.28, 0.15, 0.25, 0.22, 0.12, and 0.10 μg L−1 for Co, Cr, Cu, Fe, Mn, and Zn, respectively. The relative standard deviation (RSD) for five replicate determinations was 0.8, 3.4, 2.6, 2.2, 1.2 and 3.3% for Co, Cr, Cu, Fe, Mn and Zn, respectively, at 5 μg L−1 level. The method was validated with analysis of Freshwater (SRM 1643e) and Lobster hepatopancreas (TORT-2) certified reference materials, and then applied to the determination of the elements from tap water and lake water samples by ICP-OES. PMID:26236403

  20. Trace elements determination in seawater by ICP-MS with on-line pre-concentration on a Chelex-100 column using a ‘standard’ instrument setup.

    PubMed Central

    Søndergaard, Jens; Asmund, Gert; Larsen, Martin M.

    2015-01-01

    Trace element determination in seawater is analytically challenging due to the typically very low concentrations of the trace elements and the potential interference of the salt matrix. A common way to address the challenge is to pre-concentrate the trace elements on a chelating resin, then rinse the matrix elements from the resin and subsequently elute and detect the trace elements using inductively coupled plasma mass spectrometry (ICP-MS). This technique typically involves time-consuming pre-treatment of the samples for ‘off-line’ analyses or complicated sample introduction systems involving several pumps and valves for ‘on-line’ analyses. As an alternative, the following method offers a simple method for ‘on-line’ analyses of seawater by ICP-MS. As opposed to previous methods, excess seawater was pumped through the nebulizer of the ICP-MS during the pre-concentration step but the gas flow was adjusted so that the seawater was pumped out as waste without being sprayed into the instrument. Advantages of the method include: • Simple and convenient analyses of seawater requiring no changes to the ‘standard’ sample introduction system except from a resin-filled micro-column connected to the sample tube. The ‘standard’ sample introduction system refers to that used for routine digest-solution analyses of biota and sediment by ICP-MS using only one peristaltic pump; and • Accurate determination of the elements V, Mn, Co, Ni, Cu, Zn, Cd and Pb in a range of different seawater matrices verified by participation in 6 successive rounds of the international laboratory intercalibration program QUASIMEME. PMID:26258050

  1. Portable chemical detection system with intergrated preconcentrator

    DOEpatents

    Baumann, Mark J.; Brusseau, Charles A.; Hannum, David W.; Linker, Kevin L.

    2005-12-27

    A portable system for the detection of chemical particles such as explosive residue utilizes a metal fiber substrate that may either be swiped over a subject or placed in a holder in a collection module which can shoot a jet of gas at the subject to dislodge residue, and then draw the air containing the residue into the substrate. The holder is then placed in a detection module, which resistively heats the substrate to evolve the particles, and provides a gas flow to move the particles to a miniature detector in the module.

  2. Integrated multiplexed capillary electrophoresis system

    DOEpatents

    Yeung, Edward S.; Tan, Hongdong

    2002-05-14

    The present invention provides an integrated multiplexed capillary electrophoresis system for the analysis of sample analytes. The system integrates and automates multiple components, such as chromatographic columns and separation capillaries, and further provides a detector for the detection of analytes eluting from the separation capillaries. The system employs multiplexed freeze/thaw valves to manage fluid flow and sample movement. The system is computer controlled and is capable of processing samples through reaction, purification, denaturation, pre-concentration, injection, separation and detection in parallel fashion. Methods employing the system of the invention are also provided.

  3. Determination of dipyrone in pharmaceutical preparations based on the chemiluminescent reaction of the quinolinic hydrazide-H2O2-vanadium(IV) system and flow-injection analysis.

    PubMed

    Pradana Pérez, Juan A; Durand Alegría, Jesús S; Hernando, Pilar Fernández; Sierra, Adolfo Narros

    2012-01-01

    A rapid, economic and sensitive chemiluminescent method involving flow-injection analysis was developed for the determination of dipyrone in pharmaceutical preparations. The method is based on the chemiluminescent reaction between quinolinic hydrazide and hydrogen peroxide in a strongly alkaline medium, in which vanadium(IV) acts as a catalyst. Principal chemical and physical variables involved in the flow-injection system were optimized using a modified simplex method. The variations in the quantum yield observed when dipyrone was present in the reaction medium were used to determine the concentration of this compound. The proposed method requires no preconcentration steps and reliably quantifies dipyrone over the linear range 1-50 µg/mL. In addition, a sample throughput of 85 samples/h is possible. Copyright © 2011 John Wiley & Sons, Ltd.

  4. Solid-phase extraction of copper(II) in water and food samples using silica gel modified with bis(3-aminopropyl)amine and determination by flame atomic absorption spectrometry.

    PubMed

    Cagirdi, Duygu; Altundag, Hüseyin; Imamoglu, Mustafa; Tuzen, Mustafa

    2014-01-01

    A simple and selective separation and preconcentration method was developed for the determination of Cu(ll) ions. This method is based on adsorption of Cu(ll) ions from aqueous solution on a bis(3-aminopropyl)amine modified silica gel column and flame atomic absorption spectrometric determination after desorption. Various analytical parameters such as pH, type of eluent solution and its volume, flow rate of sample and eluent, and sample volume were optimized. Effects of some cation, anion, and transition metal ions on the recoveries of Cu(ll) ions were also investigated. Cu(ll) ions were quantitatively recovered at pH 6; 5.0 mL of 2 M HCI was used as the eluent. The preconcentration factor was found to be 150. The LOD was 0.12 microg/L for Cu(ll). The accuracy of the method was confirmed by analysis of Tea Leaves (INCT-TL-1) and Fish Protein (DORM-3) certified reference materials. The optimized method was applied to various water and food samples for the determination of Cu(ll).

  5. Separation, preconcentration and inductively coupled plasma-mass spectrometric (ICP-MS) determination of thorium(IV), titanium(IV), iron(III), lead(II) and chromium(III) on 2-nitroso-1-naphthol impregnated MCI GEL CHP20P resin.

    PubMed

    Aydin, Funda Armagan; Soylak, Mustafa

    2010-01-15

    A simple and effective method is presented for the separation and preconcentration of Th(IV), Ti(IV), Fe(III), Pb(II) and Cr(III) by solid phase extraction on 2-nitroso-1-naphthol impregnated MCI GEL CHP20P resin prior to their inductively coupled plasma-mass spectrometric determinations. The influence of analytical parameters including pH of the aqueous solution, flow rates of sample and eluent solutions and sample volume on the quantitative recoveries of analyte ions was investigated. Matrix effects caused by the presence of alkali, earth alkali and some metal ions in the analyzed solutions were investigated. The presented solid phase extraction method was applied to BCR-144R Sewage Sludge (domestic origin), BCR-141R Calcareous Loam Soil, NIST 1568a Rice Flour and NIST 1577b Bovine Liver certified reference materials (CRMs) for the determination of analyte ions and the results were in good agreement with the certified values. The separation procedure presented was also applied to the various natural water samples collected from Turkey with satisfactory results.

  6. Determination of Iodate in Food, Environmental, and Biological Samples after Solid-Phase Extraction with Ni-Al-Zr Ternary Layered Double Hydroxide as a Nanosorbent

    PubMed Central

    Abdolmohammad-Zadeh, Hossein; Tavarid, Keyvan; Talleb, Zeynab

    2012-01-01

    Nanostructured nickel-aluminum-zirconium ternary layered double hydroxide was successfully applied as a solid-phase extraction sorbent for the separation and pre-concentration of trace levels of iodate in food, environmental and biological samples. An indirect method was used for monitoring of the extracted iodate ions. The method is based on the reaction of the iodate with iodide in acidic solution to produce iodine, which can be spectrophotometrically monitored at 352 nm. The absorbance is directly proportional to the concentration of iodate in the sample. The effect of several parameters such as pH, sample flow rate, amount of nanosorbent, elution conditions, sample volume, and coexisting ions on the recovery was investigated. In the optimum experimental conditions, the limit of detection (3s) and enrichment factor were 0.12 μg mL−1 and 20, respectively. The calibration graph using the preconcentration system was linear in the range of 0.2–2.8 μg mL−1 with a correlation coefficient of 0.998. In order to validate the presented method, a certified reference material, NIST SRM 1549, was also analyzed. PMID:22619590

  7. Investigation on the Performance of Chemically Modified Aquatic Macrophytes-Salvinia molesta for the Micro-Solid Phase Preconcentration of Cd(II) On-Line Coupled to FAAS.

    PubMed

    Cajamarca, Fabio Antonio Suquila; Corazza, Marcela Zanetti; Prete, Maiyara Caroline; Dragunski, Douglas Cardoso; Rocker, Cristiana; Caetano, Josiane; Gonçalves Júnior, Affonso Celso; Tarley, César Ricardo Teixeira

    2016-12-01

    In this study, a new method for the preconcentration of cadmium ions using modified aquatic macrophytes - Salvinia molesta as biosorbent in an on-line preconcentration system coupled to flame atomic absorption spectrometry (FAAS) was developed. The method is based on preconcentration of 20.0 mL sample at pH 3.75 through 35.0 mg of biosorbent at 10.0 mL min -1 and subsequent elution with 0.5 mol L -1 HNO 3 . A preconcentration factor of 31-fold, linear dynamic range from 5.0 to 70.0 µg L -1 (r = 0.9996) and detection and quantification limits of 0.15 and 0.51 µg L -1 were obtained. The characterization of the biosorbent chemically modified with NaOH and citric acid, was performed through FTIR and SEM measurements. The method precision was found to be 3.97 % and 1.48 % for 5.0 and 60.0 µg L -1 Cd(II) solutions, respectively. The applicability of method was checked by analysis of different kind of water samples and certified reference material.

  8. Tracing the pathogen Staphylococcus aureus on laboratory ants using physical preconcentration coupled ZnO nanoparticle assisted MALDI-TOF MS.

    PubMed

    Gopal, Judy; Wu, Hui-Fen; Lee, Chia-Hsun; Manikandan, Muthu

    2012-01-21

    Ants and humans coexist closely and for the most part happily. We consider ants to be harmless, small beings--we have no problem picking them out of our tea cups or sugar jars, throwing them away and continuing to consume the food. This paper is an eye-opener that these ants are not as harmless as they may seem. In particular, our relationship with those present in bacteria-rich environments (e.g. a microbiological lab) need to be reconsidered. From an analytical point of view we have applied the physical preconcentration coupled ZnO NPs assisted MALDI-MS (PP-MALDI-MS) as a novel and sensitive technique for detecting bacteria on the surface of a species of ant present in our laboratory. The preconcentration methods consist of simple techniques comprising of vortex combined with centrifugation or ultrasonication resulting in increasing sample concentration up to the MALDI-MS detection limit. ZnO NPs were used to further enhance the bacterial signals for culture free rapid analysis using MALDI-MS. The importance of a vortex-combined centrifugation approach, using a large number of samples (large number of ants) and decreasing the suspension volume and addition of sample to ZnO NPs (3.5g L(-1)) were found to be crucial prerequisites for increasing MALDI-MS detection of bacteria on ants. We were able to identify the pathogenic clinically important Staphylococcus aureus on the surface of the ants. The bacterial identification was validated using ClinPro 2.1.

  9. MSFIA-LOV system for (226)Ra isolation and pre-concentration from water samples previous radiometric detection.

    PubMed

    Rodríguez, Rogelio; Borràs, Antoni; Leal, Luz; Cerdà, Víctor; Ferrer, Laura

    2016-03-10

    An automatic system based on multisyringe flow injection analysis (MSFIA) and lab-on-valve (LOV) flow techniques for separation and pre-concentration of (226)Ra from drinking and natural water samples has been developed. The analytical protocol combines two different procedures: the Ra adsorption on MnO2 and the BaSO4 co-precipitation, achieving more selectivity especially in water samples with low radium levels. Radium is adsorbed on MnO2 deposited on macroporous of bead cellulose. Then, it is eluted with hydroxylamine to transform insoluble MnO2 to soluble Mn(II) thus freeing Ra, which is then coprecipitated with BaSO4. The (226)Ra can be directly detected in off-line mode using a low background proportional counter (LBPC) or through a liquid scintillation counter (LSC), after performing an on-line coprecipitate dissolution. Thus, the versatility of the proposed system allows the selection of the radiometric detection technique depending on the detector availability or the required response efficiency (sample number vs. response time and limit of detection). The MSFIA-LOV system improves the precision (1.7% RSD), and the extraction frequency (up to 3 h(-1)). Besides, it has been satisfactorily applied to different types of water matrices (tap, mineral, well and sea water). The (226)Ra minimum detectable activities (LSC: 0.004 Bq L(-1); LBPC: 0.02 Bq L(-1)) attained by this system allow to reach the guidance values proposed by the relevant international agencies e.g. WHO, EPA and EC. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. HPLC column-switching technique for sample preparation and fluorescence determination of propranolol in urine using fused-core columns in both dimensions.

    PubMed

    Satínský, Dalibor; Havlíková, Lucie; Solich, Petr

    2013-08-01

    A new and fast high-performance liquid chromatography (HPLC) column-switching method using fused-core columns in both dimensions for sample preconcentration and determination of propranolol in human urine has been developed. On-line sample pretreatment and propranolol preconcentration were performed on an Ascentis Express RP-C-18 guard column (5 × 4.6 mm), particle size, 2.7 μm, with mobile phase acetonitrile/water (5:95, v/v) at a flow rate of 2.0 mL min(-1) and at a temperature of 50 °C. Valve switch from pretreatment column to analytical column was set at 4.0 min in a back-flush mode. Separation of propranolol from other endogenous urine compounds was achieved on the fused-core column Ascentis Express RP-Amide (100 × 4.6 mm), particle size, 2.7 μm, with mobile phase acetonitrile/water solution of 0.5% triethylamine, pH adjusted to 4.5 by means of glacial acetic acid (25:75, v/v), at a flow rate of 1.0 mL min(-1) and at a temperature of 50 °C. Fluorescence excitation/emission detection wavelengths were set at 229/338 nm. A volume of 1,500 μL of filtered urine sample solution was injected directly into the column-switching HPLC system. The total analysis time including on-line sample pretreatment was less than 8 min. The experimentally determined limit of detection of the method was found to be 0.015 ng mL(-1).

  11. Split Flow Online Solid-Phase Extraction Coupled with Inductively Coupled Plasma Mass Spectrometry System for One-Shot Data Acquisition of Quantification and Recovery Efficiency.

    PubMed

    Furukawa, Makoto; Takagai, Yoshitaka

    2016-10-04

    Online solid-phase extraction (SPE) coupled with inductively coupled plasma mass spectrometry (ICPMS) is a useful tool in automatic sequential analysis. However, it cannot simultaneously quantify the analytical targets and their recovery percentages (R%) in one-shot samples. We propose a system that simultaneously acquires both data in a single sample injection. The main flowline of the online solid-phase extraction is divided into main and split flows. The split flow line (i.e., bypass line), which circumvents the SPE column, was placed on the main flow line. Under program-controlled switching of the automatic valve, the ICPMS sequentially measures the targets in a sample before and after column preconcentration and determines the target concentrations and the R% on the SPE column. This paper describes the system development and two demonstrations to exhibit the analytical significance, i.e., the ultratrace amounts of radioactive strontium ( 90 Sr) using commercial Sr-trap resin and multielement adsorbability on the SPE column. This system is applicable to other flow analyses and detectors in online solid phase extraction.

  12. Determination of dissolved-phase pesticides in surface water from the Yakima River basin, Washington, using the Goulden large-sample extractor and gas chromatography/mass spectrometer

    USGS Publications Warehouse

    Foster, Gregory D.; Gates, Paul M.; Foreman, William T.; McKenzie, Stuart W.; Rinella, Frank A.

    1993-01-01

    Concentrations of pesticides in the dissolved phase of surface water samples from the Yakima River basin, WA, were determined using preconcentration in the Goulden large-sample extractor (GLSE) and gas chromatography/mass spectrometry (GC/MS) analysis. Sample volumes ranging from 10 to 120 L were processed with the GLSE, and the results from the large-sample analyses were compared to those derived from 1-L continuous liquid-liquid extractions Few of the 40 target pesticides were detected in 1-L samples, whereas large-sample preconcentration in the GLSE provided detectable levels for many of the target pesticides. The number of pesticides detected in GLSE processed samples was usually directly proportional to sample volume, although the measured concentrations of the pesticides were generally lower at the larger sample volumes for the same water source. The GLSE can be used to provide lower detection levels relative to conventional liquid-liquid extraction in GC/MS analysis of pesticides in samples of surface water.

  13. Development of clinical dosage forms for a poorly water-soluble drug II: formulation and characterization of a novel solid microemulsion preconcentrate system for oral delivery of a poorly water-soluble drug.

    PubMed

    Li, Ping; Hynes, Sara R; Haefele, Thomas F; Pudipeddi, Madhu; Royce, Alan E; Serajuddin, Abu T M

    2009-05-01

    The solution of a poorly water-soluble drug in a liquid lipid-surfactant mixture, which served as a microemulsion preconcentrate, was converted into a solid form by incorporating it in a solid polyethylene glycol (PEG) matrix. The solid microemulsion preconcentrates thus formed consisted of Capmul PG8 (propylene glycol monocaprylate) as oil, Cremophor EL (polyoxyl 35 castor oil) as surfactant, and hydrophilic polymer PEG 3350 as solid matrix. The drug (aqueous solubility: 0.17 microg/mL at pH 1-8 and 25 degrees C) was dissolved in a melt of the mixture at 65-70 degrees C and then the hot solution was filled into hard gelatin capsules; the liquid gradually solidified upon cooling below 55 degrees C. The solid system was characterized by differential scanning calorimetry (DSC), scanning electron microscopy (SEM), confocal Raman microscopy (CRM), and the dispersion testing in water. It was confirmed that a solid microemulsion preconcentrate is a two-phase system, where clusters of crystalline PEG 3350 formed the solid structure (m.p. 55-60 degrees C) and the liquid microemulsion preconcentrate dispersed in between PEG 3350 crystals as a separate phase. The drug remained dissolved in the liquid phase. In vitro release testing showed that the preconcentrate dispersed readily in water forming a microemulsion with the drug dissolved in the oil particles (<150 nm) and the presence of PEG 3350 did not interfere with the process of self-microemulsification.

  14. Online analysis of H2S and SO2 via advanced mid-infrared gas sensors.

    PubMed

    Petruci, João Flavio da Silveira; Wilk, Andreas; Cardoso, Arnaldo Alves; Mizaikoff, Boris

    2015-10-06

    Volatile sulfur compounds (VSCs) are among the most prevalent emitted pollutants in urban and rural atmospheres. Mainly because of the versatility of sulfur regarding its oxidation state (2- to 6+), VSCs are present in a wide variety of redox-environments, concentration levels, and molar ratios. Among the VSCs, hydrogen sulfide and sulfur dioxide are considered most relevant and have simultaneously been detected within naturally and anthropogenically caused emission events (e.g., volcano emissions, food production and industries, coal pyrolysis, and various biological activities). Next to their presence as pollutants, changes within their molar ratio may also indicate natural anomalies. Prior to analysis, H2S- and SO2-containing samples are usually preconcentrated via solid sorbents and are then detected by gas chromatographic techniques. However, such analytical strategies may be of limited selectivity, and the dimensions and operation modalities of the involved instruments prevent routine field usage. In this contribution, we therefore describe an innovative portable mid-infrared chemical sensor for simultaneously determining and quantifying gaseous H2S and SO2 via coupling a substrate-integrated hollow waveguides (iHWG) serving as a highly miniaturized mid-infrared photon conduit and gas cell with a custom-made preconcentration tube and an in-line UV-converter device. Both species were collected onto a solid sorbent within the preconcentrator and then released by thermal desorption into the UV-device. Hydrogen sulfide is detected by UV-assisted quantitative conversion of the rather weak IR-absorber H2S into SO2, which provides a significantly more pronounced and distinctively detectable rovibrational signature. Modulation of the UV-device system (i.e., UV-lamp on/off) enables discriminating between SO2 generated from H2S conversion and abundant SO2 signals. After optimization of the operational parameters, calibrations in the range of 0.75-10 ppmv with a limit of detection (LOD) at 77 ppbv for SO2 and 207 ppbv for H2S were established after 20 min of sampling time at 200 mL min(-1). Taking advantage of the device flexibility in terms of sampling time, flow-rate, and iHWG design facilitates tailoring the developed Preconcentrator-UV-device-iHWG device toward a wide variety of application scenarios ranging from environmental/atmospheric monitoring to industrial process monitoring and clinical diagnostics.

  15. The Problem of Preconcentration of Uranium Ores by Physical Processes; LES PROBLEMES DE LA PRECONCENTRATION DES MINERAIS D'URANIUM PAR VOIE PHYSIQUE. LE TRIAGE ELECTRONIQUE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vuchot, L.; Ginocchio, A. et al.

    1959-10-31

    As uranium ores, like most other ores, are not definite substances which can be treated directly for the production of the metal, the ores must be concentrated. The common physical processes used for all ores, such as sieving, gravimetric separation, flotation, electromagnetic separation, and electrostatic separation, are applicable to the beneficiation of uranium. The radioactivity of uranium ores has led to a radiometric method for the concentration. This method is described in detail. As an example, the preconcentration of Forez ores is discussed. (J.S.R.)

  16. Biological preconcentrator

    DOEpatents

    Manginell, Ronald P [Albuquerque, NM; Bunker, Bruce C [Albuquerque, NM; Huber, Dale L [Albuquerque, NM

    2008-09-09

    A biological preconcentrator comprises a stimulus-responsive active film on a stimulus-producing microfabricated platform. The active film can comprise a thermally switchable polymer film that can be used to selectively absorb and desorb proteins from a protein mixture. The biological microfabricated platform can comprise a thin membrane suspended on a substrate with an integral resistive heater and/or thermoelectric cooler for thermal switching of the active polymer film disposed on the membrane. The active polymer film can comprise hydrogel-like polymers, such as poly(ethylene oxide) or poly(n-isopropylacrylamide), that are tethered to the membrane. The biological preconcentrator can be fabricated with semiconductor materials and technologies.

  17. Sample extraction and injection with a microscale preconcentrator.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robinson, Alex Lockwood; Chan, Helena Kai Lun

    2007-09-01

    This report details the development of a microfabricated preconcentrator that functions as a fully integrated chemical extractor-injector for a microscale gas chromatograph (GC). The device enables parts-per-billion detection and quantitative analysis of volatile organic compounds (VOCs) in indoor air with size and power advantages over macro-scale systems. The 44 mm{sup 3} preconcentrator extracts VOCs using highly adsorptive, granular forms of graphitized carbon black and carbon molecular sieves. The micron-sized silicon cavities have integrated heating and temperature sensing allowing low power, yet rapid heating to thermally desorb the collected VOCs (GC injection). The keys to device construction are a new adsorbent-solventmore » filling technique and solvent-tolerant wafer-level silicon-gold eutectic bonding technology. The product is the first granular adsorbent preconcentrator integrated at the wafer level. Other advantages include exhaustive VOC extraction and injection peak widths an order of magnitude narrower than predecessor prototypes. A mass transfer model, the first for any microscale preconcentrator, is developed to describe both adsorption and desorption behaviors. The physically intuitive model uses implicit and explicit finite differences to numerically solve the required partial differential equations. The model is applied to the adsorption and desorption of decane at various concentrations to extract Langmuir adsorption isotherm parameters from effluent curve measurements where properties are unknown a priori.« less

  18. Zinc oxide nanorods functionalized paper for protein preconcentration in biodiagnostics

    NASA Astrophysics Data System (ADS)

    Tiwari, Sadhana; Vinchurkar, Madhuri; Rao, V. Ramgopal; Garnier, Gil

    2017-03-01

    Distinguishing a specific biomarker from a biofluid sample containing a large variety of proteins often requires the selective preconcentration of that particular biomarker to a detectable level for analysis. Low-cost, paper-based device is an emerging opportunity in diagnostics. In the present study, we report a novel Zinc oxide nanorods functionalized paper platform for the preconcentration of Myoglobin, a cardiac biomarker. Zinc oxide nanorods were grown on a Whatman filter paper no. 1 via the standard hydrothermal route. The growth of Zinc oxide nanorods on paper was confirmed by a combination of techniques consisting of X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS,) scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDX) analysis. The Zinc oxide nanorods modified Whatman filter paper (ZnO-NRs/WFP) was further tested for use as a protein preconcentrator. Paper-based ELISA was performed for determination of pre-concentration of cardiac marker protein Myoglobin using the new ZnO-NRs/WFP platform. The ZnO-NRs/WFP could efficiently capture the biomarker even from a very dilute solution (Myoglobin < 50 nM). Our ELISA results show a threefold enhancement in protein capture with ZnO-NRs/WFP compared to unmodified Whatman filter paper, allowing accurate protein analysis and showing the diagnostic concept.

  19. Preconcentration and Separation of Mixed-Species Samples Near a Nano-Junction in a Convergent Microchannel

    PubMed Central

    Chiu, Ping-Hsien; Weng, Chen-Hsun; Yang, Ruey-Jen

    2015-01-01

    A fluidic microchip incorporating a convergent microchannel and a Nafion-nanoporous membrane is proposed for the preconcentration and separation of multi-species samples on a single platform. In the device, sample preconcentration is achieved by means of the ion concentration polarization effect induced at the micro/nano interface under the application of an external electric field, while species separation is achieved by exploiting the different electrophoretic mobilities of the sample components. The experimental results show that the device is capable of detecting C-reactive protein (CRP) with an initial concentration as low as 9.50 × 10−6 mg/L given a sufficient preconcentration time and driving voltage. In addition, it is shown that a mixed-species sample consisting of three negatively-charged components (bovine serum albumin (BSA), tetramethylrhodamine(TAMRA) isothiocyanate-Dextran and fluorescent polymer beads) can be separated and preconcentrated within 20 min given a driving voltage of 100 V across 1 cm microchannel in length. In general, the present results confirm the feasibility of the device for the immunoassay or detection of various multi-species samples under low concentration in the biochemical and biomedical fields. The novel device can therefore improve the detection limit of traditional medical facilities. PMID:26690167

  20. Sequential injection ionic liquid dispersive liquid-liquid microextraction for thallium preconcentration and determination with flame atomic absorption spectrometry.

    PubMed

    Anthemidis, Aristidis N; Ioannou, Kallirroy-Ioanna G

    2012-08-01

    A novel, automatic on-line sequential injection dispersive liquid-liquid microextraction (SI-DLLME) method, based on 1-hexyl-3-methylimidazolium hexafluorophosphate ([Hmim][PF(6)]) ionic liquid as an extractant solvent was developed and demonstrated for trace thallium determination by flame atomic absorption spectrometry. The ionic liquid was on-line fully dispersed into the aqueous solution in a continuous flow format while the TlBr(4)(-) complex was easily migrated into the fine droplets of the extractant due to the huge contact area of them with the aqueous phase. Furthermore, the extractant was simply retained onto the surface of polyurethane foam packed into a microcolumn. No specific conditions like low temperature are required for extractant isolation. All analytical parameters of the proposed method were investigated and optimized. For 15 mL of sample solution, an enhancement factor of 290, a detection limit of 0.86 μg L(-1) and a precision (RSD) of 2.7% at 20.0 μg L(-1) Tl(I) concentration level, was obtained. The developed method was evaluated by analyzing certified reference materials while good recoveries from environmental and biological samples proved that present method was competitive in practical applications.

  1. Accumulation of Colloidal Particles in Flow Junctions Induced by Fluid Flow and Diffusiophoresis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shin, Sangwoo; Ault, Jesse T.; Warren, Patrick B.

    The flow of solutions containing solutes and colloidal particles in porous media is widely found in systems including underground aquifers, hydraulic fractures, estuarine or coastal habitats, water filtration systems, etc. In such systems, solute gradients occur when there is a local change in the solute concentration. While the effects of solute gradients have been found to be important for many applications, we observe an unexpected colloidal behavior in porous media driven by the combination of solute gradients and the fluid flow. When two flows with different solute concentrations are in contact near a junction, a sharp solute gradient is formedmore » at the interface, which may allow strong diffusiophoresis of the particles directed against the flow. Consequently, the particles accumulate near the pore entrance, rapidly approaching the packing limit. These colloidal dynamics have important implications for the clogging of a porous medium, where particles that are orders of magnitude smaller than the pore width can accumulate and block the pores within a short period of time. As a result, we also show that this effect can be exploited as a useful tool for preconcentrating biomolecules for rapid bioassays.« less

  2. Accumulation of Colloidal Particles in Flow Junctions Induced by Fluid Flow and Diffusiophoresis

    DOE PAGES

    Shin, Sangwoo; Ault, Jesse T.; Warren, Patrick B.; ...

    2017-11-16

    The flow of solutions containing solutes and colloidal particles in porous media is widely found in systems including underground aquifers, hydraulic fractures, estuarine or coastal habitats, water filtration systems, etc. In such systems, solute gradients occur when there is a local change in the solute concentration. While the effects of solute gradients have been found to be important for many applications, we observe an unexpected colloidal behavior in porous media driven by the combination of solute gradients and the fluid flow. When two flows with different solute concentrations are in contact near a junction, a sharp solute gradient is formedmore » at the interface, which may allow strong diffusiophoresis of the particles directed against the flow. Consequently, the particles accumulate near the pore entrance, rapidly approaching the packing limit. These colloidal dynamics have important implications for the clogging of a porous medium, where particles that are orders of magnitude smaller than the pore width can accumulate and block the pores within a short period of time. As a result, we also show that this effect can be exploited as a useful tool for preconcentrating biomolecules for rapid bioassays.« less

  3. Microchip electrophoresis of oligosaccharides using large-volume sample stacking with an electroosmotic flow pump in a single channel.

    PubMed

    Kawai, Takayuki; Sueyoshi, Kenji; Kitagawa, Fumihiko; Otsuka, Koji

    2010-08-01

    The applicability of an online preconcentration technique, large-volume sample stacking with an electroosmotic flow pump (LVSEP), to microchip zone electrophoresis (MCZE) for the analysis of oligosaccharides was investigated. Since the sample stacking and separation proceeded continuously without polarity switching in LVSEP, a single "straight" channel microchip could be employed. In the MCZE analysis of oligosaccharides, sample adsorption onto the channel surface should be suppressed, so the straight microchannel was modified with poly(vinyl alcohol) (PVA). So far, the mechanism of LVSEP in the polymer-coated capillary or microchannel has not been reported, and thus, the LVSEP process in the PVA-coated channel was investigated by fluorescence imaging. Although it is well-known that the PVA coating can suppress the electroosmotic flow (EOF), an enhanced EOF with a mobility of 4.4 x 10(-4) cm(2)/(V x s) was observed in a low ionic strength sample solution. It was revealed that such temporarily enhanced EOF in the sample zone worked as the driving force to remove the sample matrix in LVSEP. To evaluate the analytical performance of LVSEP-MCZE, oligosaccharides were analyzed in the PVA-coated straight channel. As a result, both the glucose ladder and oligosaccharides obtained from bovine ribonuclease B were well enriched and separated with up to 2200-2900-fold sensitivity enhancement compared to those in a conventional MCZE analysis. The run-to-run repeatabilities of the migration time and peak height were good with relative standard deviations of 1.1% and 7.2%, respectively, which were better than those of normal MCZE. By applying the LVSEP technique to MCZE, a complicated voltage program for fluidic control could be simplified from four channels for two steps to two channels for one step.

  4. TEST AND EVALUATION OF A POLYMER MEMBRANE PRECONCENTRATOR

    EPA Science Inventory

    The report gives results of an evaluation of the applicability of membrane systems as a preconcentrator and defines operating parameters of a membrane system. Advantages of such a system is a potential reduction in cost for subsequent control systems. The evaluation is part of a ...

  5. Analytical instrument with apparatus and method for sample concentrating

    DOEpatents

    Zaromb, S.

    1986-08-04

    A system for analysis of trace concentrations of contaminants in air includes a portable liquid chromatograph and a preconcentrator for the contaminants to be analyzed. The preconcentrator includes a sample bag having an inlet valve and an outlet valve for collecting an air sample. When the sample is collected the sample bag is connected in series with a sorbing apparatus in a recirculation loop. The sorbing apparatus has an inner gas-permeable container containing a sorbent material and an outer gas-impermeable container. The sample is circulated through the outer container and around the inner container for trapping and preconcentrating the contaminants in the sorbent material. The sorbent material may be a liquid having the same composition as the mobile phase of the chromatograph for direct injection thereinto. Alternatively, the sorbent material may be a porous, solid body, to which mobile phase liquid is added after preconcentration of the contaminants for dissolving the contaminants, the liquid solution then being withdrawn for injection into the chromatograph.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jenkins, T.F.; Thorne, P.G.; Myers, K.F.

    Salting-out solvent extraction (SOE) was compared with cartridge and membrane solid-phase extraction (SPE) for preconcentration of nitroaromatics, nitramines, and aminonitroaromatics prior to determination by reversed-phase high-performance liquid chromatography. The solid phases used were manufacturer-cleaned materials, Porapak RDX for the cartridge method and Empore SDB-RPS for the membrane method. Thirty-three groundwater samples from the Naval Surface Warfare Center, Crane, Indiana, were analyzed using the direct analysis protocol specified in SW846 Method 8330, and the results were compared with analyses conducted after preconcentration using SOE with acetonitrile, cartridge-based SPE, and membrane-based SPE. For high-concentration samples, analytical results from the three preconcentration techniquesmore » were compared with results from the direct analysis protocol; good recovery of all target analytes was achieved by all three pre-concentration methods. For low-concentration samples, results from the two SPE methods were correlated with results from the SOE method; very similar data was obtained by the SOE and SPE methods, even at concentrations well below 1 microgram/L.« less

  7. Analytical instrument with apparatus for sample concentrating

    DOEpatents

    Zaromb, Solomon

    1989-01-01

    A system for analysis of trace concentrations of contaminants in air includes a portable liquid chromatograph and a preconcentrator for the contaminants to be analyzed. The preconcentrator includes a sample bag having an inlet valve and an outlet valve for collecting an air sample. When the sample is collected the sample bag is connected in series with a sorbing apparatus in a recirculation loop. The sorbing apparatus has an inner gas-permeable container containing a sorbent material and an outer gas-impermeable container. The sample is circulated through the outer container and around the inner container for trapping and preconcentrating the contaminants in the sorbent material. The sorbent material may be a liquid having the same composition as the mobile phase of the chromatograph for direct injection thereinto. Alternatively, the sorbent material may be a porous, solid body, to which mobile phase liquid is added after preconcentration of the contaminants for dissolving the contaminants, the liquid solution then being withdrawn for injection into the chromatograph.

  8. Mesoporous Silica Nanoparticles as an Adsorbent for Preconcentration and Determination of Trace Amount of Nickel in Environmental Samples by Atom Trap Flame Atomic Absorption Spectrometry

    NASA Astrophysics Data System (ADS)

    Shirkhanloo, H.; Falahnejad, M.; Zavvar Mousavi, H.

    2016-01-01

    A rapid enrichment method based on solid-phase extraction (SPE) has been established for preconcentration and separation of trace Ni(II) ions in water samples prior to their determination by atom trap flame atomic absorption spectrometry. A column filled with bulky NH2-UVM7 was used as the novel adsorbent. Under optimal conditions, the linear range, limit of detection (LOD), and preconcentration factor (PF) were 3-92 μg/L, 0.8 μg/L, and 100, respectively. The validity of the method was checked by the standard reference material.

  9. A Micro-Preconcentrator Combined Olfactory Sensing System with a Micromechanical Cantilever Sensor for Detecting 2,4-Dinitrotoluene Gas Vapor

    PubMed Central

    Chae, Myung-Sic; Kim, Jinsik; Yoo, Yong Kyoung; Kang, Ji Yoon; Lee, Jeong Hoon; Hwang, Kyo Seon

    2015-01-01

    Preventing unexpected explosive attacks and tracing explosion-related molecules require the development of highly sensitive gas-vapor detection systems. For that purpose, a micromechanical cantilever-based olfactory sensing system including a sample preconcentrator was developed to detect 2,4-dinitrotoluene (2,4-DNT), which is a well-known by-product of the explosive molecule trinitrotoluene (TNT) and exists in concentrations on the order of parts per billion in the atmosphere at room temperature. A peptide receptor (His-Pro-Asn-Phe-Ser-Lys-Tyr-Ile-Leu-His-Gln-Arg) that has high binding affinity for 2,4-DNT was immobilized on the surface of the cantilever sensors to detect 2,4-DNT vapor for highly selective detection. A micro-preconcentrator (µPC) was developed using Tenax-TA adsorbent to produce higher concentrations of 2,4-DNT molecules. The preconcentration was achieved via adsorption and thermal desorption phenomena occurring between target molecules and the adsorbent. The µPC directly integrated with a cantilever sensor and enhanced the sensitivity of the cantilever sensor as a pretreatment tool for the target vapor. The response was rapidly saturated within 5 min and sustained for more than 10 min when the concentrated vapor was introduced. By calculating preconcentration factor values, we verified that the cantilever sensor provides up to an eightfold improvement in sensing performance. PMID:26213944

  10. Simultaneous Preconcentration and Determination of Brilliant Blue and Sunset Yellow in Foodstuffs by Solid-Phase Extraction Combined UV-Vis Spectrophotometry.

    PubMed

    Bişgin, Abdullah Taner

    2018-05-29

    Background: Brilliant Blue and Sunset Yellow, two highly water-soluble synthetic food dyes, are the most popular food dyes used and consumed. Although they are not highly toxic, some health problems can be observed when excessive amounts of food products containing these dyes are consumed. Objectives: The aim of the study was to develop a simultaneous UV-Vis combined solid-phase extraction method, based on the adsorption onto Amberlite XAD-8 resin, for determination of Brilliant Blue and Sunset Yellow dyes. Methods: Sample solution was poured into the reservoir of the column and permitted to gravitationally pass through the column at 2 mL/min flow rate. Adsorbed dyes were eluted to 5 mL of final volume with 1 mol/L HNO₃ in ethanol solution by applying a 2 mL/min flow rate. Dye concentrations of the solution were determined at 483 and 630 nm for Sunset Yellow and Brilliant Blue, respectively. Results: The detection limits of the method for Brilliant Blue and Sunset Yellow were determined as 0.13 and 0.66 ng/mL, respectively. Preconcentration factor was 80. Brilliant Blue contents of real food samples were found to be between 11 and 240 μg/g. Sunset Yellow concentrations of foodstuffs were determined to be between 19 and 331 μg/g. Conclusions: Economical, effective, and simple simultaneous determination of Brilliant Blue and Sunset Yellow was achieved by using a solid-phase extraction combined UV-Vis spectrometry method. Highlights: The method is applicable and suitable for routine analysis in quality control laboratories without the need for expert personnel and high operational costs because the instrumentation is simple and inexpensive.

  11. Extraction of trace amounts of mercury with sodium dodecyle sulphate-coated magnetite nanoparticles and its determination by flow injection inductively coupled plasma-optical emission spectrometry.

    PubMed

    Faraji, Mohammad; Yamini, Yadollah; Rezaee, Mohammad

    2010-05-15

    A new method for solid-phase extraction and preconcentration of trace amounts Hg(II) from environmental samples was developed by using sodium dodecyle sulphate-coated magnetite nanoparticles (SDS-coated Fe(3)O(4) NPs) as a new extractant. The procedure is based on the adsorption of the analyte, as mercury-Michler's thioketone [Hg(2)(TMK)(4)](2+) complex on the negatively charged surface of the SDS-coated Fe(3)O(4) NPs and then elution of the preconcentrated mercury from the surface of the SDS-coated Fe(3)O(4) NPs prior to its determination by flow injection inductively coupled plasma-optical emission spectrometry. The effects of pH, TMK concentration, SDS and Fe(3)O(4) NPs amounts, eluent type, sample volume and interfering ions on the recovery of the analyte were investigated. Under optimized conditions, the calibration curve was linear in the range of 0.2-100ngmL(-1) with r(2)=0.9994 (n=8). The limit of detection for Hg(II) determination was 0.04ngmL(-1). Also, relative standard deviation (R.S.D.) for the determination of 2 and 50ngmL(-1) of Hg(II) was 5.2 and 4.7% (n=6), respectively. Due to the quantitative extraction of Hg(II) from 1000mL of the sample solution an enhancement factor as large as 1230-fold can be obtained. The proposed method has been validated using a certified reference materials, and also the method has been applied successfully for the determination of Hg(II) in aqueous samples.

  12. Separation and Enrichment of Gold in Water, Geological and Environmental Samples by Solid Phase Extraction on Multiwalled Carbon Nanotubes Prior to its Determination by Flame Atomic Absorption Spectrometry.

    PubMed

    Duran, Ali; Tuzen, Mustafa; Soylak, Mustafa

    2015-01-01

    This study proposes the application of multi-walled carbon nanotubes as a solid sorbent for the preconcentration of gold prior to its flame atomic absorption spectrometry determination. Extraction was achieved by using a glass column (15.0 cm in length and 1.0 cm in diameter). Quantitative recoveries were obtained in the pH range of 2.5-4.0; the elution step was carried out with 5.0 ml of 1.0 mol/L HNO3 in acetone. In the ligand-free study, variables such as pH, eluent type, sample volume, flow rates, and matrix effect were examined for the optimum recovery of gold ions. The gold ions were able to be pre-concentrated by a factor of 150 and their LOD was determined to be 1.71 μg/L. In order to evaluate the accuracy of the developed method, addition-recovery tests were applied for the tap water, mineral water, and sea water samples. Gold recovery studies were implemented using a wet digestion technique for mine and soil samples taken from various media, and this method was also applied for anodic slime samples taken from the factories located in the Kayseri Industrial Zone of Turkey.

  13. Tuning direct current streaming dielectrophoresis of proteins

    PubMed Central

    Nakano, Asuka; Camacho-Alanis, Fernanda; Chao, Tzu-Chiao; Ros, Alexandra

    2012-01-01

    Dielectrophoresis (DEP) of biomolecules has large potential to serve as a novel selectivity parameter for bioanalytical methods such as (pre)concentration, fractionation, and separation. However, in contrast to well-characterized biological cells and (nano)particles, the mechanism of protein DEP is poorly understood, limiting bioanalytical applications for proteins. Here, we demonstrate a detailed investigation of factors influencing DEP of diagnostically relevant immunoglobulin G (IgG) molecules using insulator-based DEP (iDEP) under DC conditions. We found that the pH range in which concentration of IgG due to streaming iDEP occurs without aggregate formation matches the pH range suitable for immunoreactions. Numerical simulations of the electrokinetic factors pertaining to DEP streaming in this range further suggested that the protein charge and electroosmotic flow significantly influence iDEP streaming. These predictions are in accordance with the experimentally observed pH-dependent iDEP streaming profiles as well as the determined IgG molecular properties. Moreover, we observed a transition in the streaming behavior caused by a change from positive to negative DEP induced through micelle formation for the first time experimentally, which is in excellent qualitative agreement with numerical simulations. Our study thus relates molecular immunoglobulin properties to observed iDEP, which will be useful for the future development of protein (pre)concentration or separation methods based on DEP. PMID:23908679

  14. Application of l-cystine modified zeolite for preconcentration and determination of ultra-trace levels of cadmium by flame atomic absorption spectrometry.

    PubMed

    Rezvani, Seyyed Ahmad; Soleymanpour, Ahmad

    2016-03-04

    A very convenient, sensitive and precise solid phase extraction (SPE) system was developed for enrichment and determination of ultra-trace of cadmium ion in water and plant samples. This method was based on the retention of cadmium(II) ions by l-cystine adsorbed in Y-zeolite and carry out in a packed mini-column. The retained cadmium ions then were eluted and determined by flame atomic absorption spectrometry. The scanning electron microscopy (SEM), powder X-ray diffraction (XRD) and Fourier Transform Infrared (FT-IR) spectroscopy techniques were applied for the characterization of cystine modified zeolite (CMZ). Some experimental conditions affecting the analytical performance such as pH, eluent type, concentration of sample, eluent flow rate and also the presence of interfering ions were investigated. The calibration graph was linear within the range of 0.1-7.5ngmL(-1) and limit of detection was obtained 0.04ngmL(-1) with the preconcentration factor of 400. The relative standard deviation (RSD) was obtained 1.4%, indicating the excellent reproducibility of this method. The proposed method was successfully applied for the extraction and determination of cadmium(II) ion in black tea, cigarette's tobacco and also various water samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Automated microfluidic devices integrating solid-phase extraction, fluorescent labeling, and microchip electrophoresis for preterm birth biomarker analysis.

    PubMed

    Sahore, Vishal; Sonker, Mukul; Nielsen, Anna V; Knob, Radim; Kumar, Suresh; Woolley, Adam T

    2018-01-01

    We have developed multichannel integrated microfluidic devices for automated preconcentration, labeling, purification, and separation of preterm birth (PTB) biomarkers. We fabricated multilayer poly(dimethylsiloxane)-cyclic olefin copolymer (PDMS-COC) devices that perform solid-phase extraction (SPE) and microchip electrophoresis (μCE) for automated PTB biomarker analysis. The PDMS control layer had a peristaltic pump and pneumatic valves for flow control, while the PDMS fluidic layer had five input reservoirs connected to microchannels and a μCE system. The COC layers had a reversed-phase octyl methacrylate porous polymer monolith for SPE and fluorescent labeling of PTB biomarkers. We determined μCE conditions for two PTB biomarkers, ferritin (Fer) and corticotropin-releasing factor (CRF). We used these integrated microfluidic devices to preconcentrate and purify off-chip-labeled Fer and CRF in an automated fashion. Finally, we performed a fully automated on-chip analysis of unlabeled PTB biomarkers, involving SPE, labeling, and μCE separation with 1 h total analysis time. These integrated systems have strong potential to be combined with upstream immunoaffinity extraction, offering a compact sample-to-answer biomarker analysis platform. Graphical abstract Pressure-actuated integrated microfluidic devices have been developed for automated solid-phase extraction, fluorescent labeling, and microchip electrophoresis of preterm birth biomarkers.

  16. Solid phase extraction of metal ions in environmental samples on 1-(2-pyridylazo)-2-naphthol impregnated activated carbon cloth.

    PubMed

    Alothman, Zeid A; Yilmaz, Erkan; Habila, Mohamed; Soylak, Mustafa

    2015-02-01

    1-(2-Pyridylazo)-2-naphthol impregnated activated carbon cloth (PAN-imp-ACC) was prepared as a solid phase sorbent and, for the first time, was used for the simultaneous separation and preconcentration of trace amounts of lead, cadmium and nickel in water, soil and sewage sludge samples prior to determination by flame atomic absorption spectrometry (FAAS). The parameters governing the efficiency of the method were optimized, including the pH, the eluent type and volume, the sample and eluent flow rates, diverse ions effects and the sample volume. A preconcentration factor of 100 was achieved for all the metal ions, with detection limits of 0.1-2.8 µg L(-1) and relative standard deviations below 6.3%. The adsorption capacity of the PAN-imp-ACC for Pb(II), Cd(II) and Ni(II) ions was found to be 45.0 mg g(-1), 45.0 mg g(-1) and 43.2 mg g(-1), respectively. The method was validated by the analysis of the certified reference materials TMDA-64.2 fortified Lake Ontario water and BCR-146R Sewage Sludge Amended Soil (Industrial Origin). The procedure was applied to determine the analytes content in real samples. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Dissimilar viscosity induced sample pre-concentration in elecrokinetic nanofluidic channels

    NASA Astrophysics Data System (ADS)

    Wink, Dean; Shelton, Elijah; Pennathur, Sumita; Storey, Brian

    2013-11-01

    Nanofluidic analysis systems boast many advantages: portability, small sample handling, short processing times, and potential for integration with mobile electronics. However, such systems face the challenge of detecting increasingly small volumes of sample at low concentrations. In this work, we demonstrate a unique pre-concentration technique in electrokinetic nanofluidic systems based on a viscosity mismatch between two fluids. In nanofluidic electrokinetic systems, finite electric double layers (EDL) lead to non-uniform electric potentials and transverse concentration distributions. Therefore, when the EDL is comparable in size to the channel height, negatively charged ions are repelled from negatively charged walls and preferentially populate the channel centerline. Furthermore, an axial piecewise viscosity distribution induces internal pressure gradients within the channel. These force the ions to move at a different average velocities based on the pressure gradient being favorable or adverse, leading to focusing. To experimentally probe this phenomenon, we electrokinetically inject solutions of borate buffer with and without glycerol (to change the viscosity) and use a fluorescent tracer dye to visualize the flow. We perform the injections in cross-geometry channels of 20 micron, 1 micron, and 250 nanometer depths. We measure fluorescence at 5, 10 and 15 mm distances from junction. Enhancement is characterized by comparing intensities to control measurements for systems with uniform viscosity.

  18. Monitoring of trace amounts of heavy metals in different food and water samples by flame atomic absorption spectrophotometer after preconcentration by amine-functionalized graphene nanosheet.

    PubMed

    Behbahani, Mohammad; Tapeh, Nasim Akbari Ghareh; Mahyari, Mojtaba; Pourali, Ali Reza; Amin, Bahareh Golrokh; Shaabani, Ahmad

    2014-11-01

    We are introducing graphene oxide modified with amine groups as a new solid phase for extraction of heavy metal ions including cadmium(II), copper(II), nickel(II), zinc(II), and lead(II). Effects of pH value, flow rates, type, concentration, and volume of the eluent, breakthrough volume, and the effect of potentially interfering ions were studied. Under optimized conditions, the extraction efficiency is >97 %, the limit of detections are 0.03, 0.05, 0.2, 0.1, and 1 μg L(-1) for the ions of cadmium, copper, nickel, zinc, and lead, respectively, and the adsorption capacities for these ions are 178, 142, 110, 125, and 210 mg g(-1). The amino-functionalized graphene oxide was characterized by thermogravimetric analysis, transmission electron microscopy, scanning electron microscopy, and Fourier transform infrared spectrometry. The proposed method was successfully applied in the analysis of environmental water and food samples. Good spiked recoveries over the range of 95.8-100.0 % were obtained. This work not only proposes a useful method for sample preconcentration but also reveals the great potential of modified graphene as an excellent sorbent material in analytical processes.

  19. Gas chromatography with mass spectrometry for the determination of phthalates preconcentrated by microextraction based on an ionic liquid.

    PubMed

    Cacho, Juan Ignacio; Campillo, Natalia; Viñas, Pilar; Hernández-Córdoba, Manuel

    2017-03-01

    A new procedure is proposed for the analysis of migration test solutions obtained from plastic bottles used in the packaging of edible oils. Ultrasound-assisted emulsification microextraction with ionic liquids was applied for the preconcentration of six phthalate esters: dimethylphthalate, diethylphthalate, di-n-butylphthalate, n-butylbenzylphthalate, di-2-ethylhexylphthalate, and di-n-octylphthalate. The enriched ionic liquid was directly analyzed by gas chromatography and mass spectrometry using direct insert microvial thermal desorption. The different factors affecting the microextraction efficiency, such as volume of the extracting phase (30 μL of the ionic liquid) and ultrasound application time (25 s), and the thermal desorption step, such as desorption temperature and time, and gas flow rate, were studied. Under the selected conditions, detection limits for the analytes were in the 0.012-0.18 μg/L range, while recovery assays provided values ranging from 80 to 112%. The use of butyl benzoate as internal standard increased the reproducibility of the analytical procedure. When the release of the six phthalate esters from the tested plastic bottles to liquid simulants was monitored using the optimized procedure, analyte concentrations of between 1.0 and 273 μg/L were detected. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Tolerance and bioaccumulation of U(VI) by Bacillus mojavensis and its solid phase preconcentration by Bacillus mojavensis immobilized multiwalled carbon nanotube.

    PubMed

    Özdemir, Sadin; Oduncu, M Kadir; Kilinc, Ersin; Soylak, Mustafa

    2017-02-01

    In this study, uranium(VI) tolerance and bioaccumulation were investigated by using thermo -tolerant Bacillus mojavensis. The level of U(VI) was measured by UV-VIS spectrophotometry. The minimum inhibition concentration (MIC) value of U(VI) was experimented. Bacterial growth was not affected in the presence of 1.0 and 2.5 mg/L U(VI) at 36 h and the growth was partially affected in the presence of 5 mg/L U(VI) at 24 h. What was obtained from this study is that there was diversity in the various periods of the growth phases of metal bioaccumulation capacity, which was shown by B. mojavensis. The maximum bioaccumulation capacities were found to be 12.8, 22.7, and 48.2 mg/g dried bacteria, at 24th hours at concentration of 1.0, 2.5 and 5 mg/L U(VI), respectively. In addition to these, U(VI) has been preconcentrated on B. mojavensis immobilized MWCNT. Several factors such as pH, flow rate of solution, amount of biosorbent and support materials, eluent type, concentration and volume, the matrix interference effect on retention have been studied, and extraction conditions were optimized. Preconcentration factor was achieved as 60. Under the optimized conditions, the limit of detection (LOD) and quantification (LOQ) were calculated as 0.74 and 2.47 μg/L. The biosorption capacity of immobilized B. mojavensis was calculated for U(VI) as 25.8 mg/g. The results demonstrated that the immobilized biosorbent column could be reused at least 30 cycles of biosorption and desorption with the higher than 95% recovery. FT-IR and SEM analysis were performed to understand the surface properties of B. mojavensis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Rapid and sensitive detection of malachite green in aquaculture water by electrochemical preconcentration and surface-enhanced Raman scattering.

    PubMed

    Xu, Kai-Xuan; Guo, Mei-Hong; Huang, Yu-Ping; Li, Xiao-Dong; Sun, Jian-Jun

    2018-04-01

    A highly sensitive and rapid method of in-situ surface-enhanced Raman spectroscopy (SERS) combining with electrochemical preconcentration (EP) in detecting malachite green (MG) in aquaculture water was established. Ag nanoparticles (AgNPs) were synthesized and spread onto the surface of gold electrodes after centrifuging to produce SERS-active substrates. After optimizing the pH values, preconcentration potentials and times, in-situ EP-SERS detection was carried out. A sensitive and rapid analysis of the low-concentration MG was accomplished within 200s and the limit of detection was 2.4 × 10 -16 M. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Apparatus for sensing volatile organic chemicals in fluids

    DOEpatents

    Hughes, Robert C.; Manginell, Ronald P.; Jenkins, Mark W.; Kottenstette, Richard; Patel, Sanjay V.

    2005-06-07

    A chemical-sensing apparatus is formed from the combination of a chemical preconcentrator which sorbs and concentrates particular volatile organic chemicals (VOCs) and one or more chemiresistors that sense the VOCs after the preconcentrator has been triggered to release them in concentrated form. Use of the preconcentrator and chemiresistor(s) in combination allows the VOCs to be detected at lower concentration than would be possible using the chemiresistor(s) alone and further allows measurements to be made in a variety of fluids, including liquids (e.g. groundwater). Additionally, the apparatus provides a new mode of operation for sensing VOCs based on the measurement of decay time constants, and a method for background correction to improve measurement precision.

  3. Development of a portable preconcentrator/ion mobility spectrometer system for the trace detection of narcotics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parmeter, J.E.; Custer, C.A.

    This project was supported by LDRD funding for the development and preliminary testing of a portable narcotics detection system. The system developed combines a commercial trace detector known as an ion mobility spectrometer (IMS) with a preconcentrator originally designed by Department 5848 for the collection of explosives molecules. The detector and preconcentrator were combined along with all necessary accessories onto a push cart, thus yielding a fully portable detection unit. Preliminary testing with both explosives and narcotics molecules shown that the system is operational, and that it can successfully detect drugs as marijuana, methamphetamine (speed), and cocaine based on theirmore » characteristics IMS signatures.« less

  4. Mechanisms of deterioration of nutrients. [of freeze dried foods

    NASA Technical Reports Server (NTRS)

    Karel, M.; Flink, J. M.

    1976-01-01

    Methods which produce freeze dried foods of improved quality were examined with emphasis on storage stability. Specific topics discussed include: microstructure of freeze dried systems, investigation of structural changes in freeze dried systems, artificial food matrices, osmotic preconcentration to yield improved quality freeze dried fruits, and storage stability of osmotically preconcentrated freeze dried fruits.

  5. Micelle-mediated extraction and cloud point preconcentration for the analysis of aesculin and aesculetin in Cortex fraxini by HPLC.

    PubMed

    Shi, Zhihong; Zhu, Xiaomin; Zhang, Hongyi

    2007-08-15

    In this paper, a micelle-mediated extraction and cloud point preconcentration method was developed for the determination of less hydrophobic compounds aesculin and aesculetin in Cortex fraxini by HPLC. Non-ionic surfactant oligoethylene glycol monoalkyl ether (Genapol X-080) was employed as the extraction solvent. Various experimental conditions were investigated to optimize the extraction process. Under optimum conditions, i.e. 5% Genapol X-080 (w/v), pH 1.0, liquid/solid ratio of 400:1 (ml/g), ultrasonic-assisted extraction for 30 min, the extraction yield reached the highest value. For the preconcentration of aesculin and aesculetin by cloud point extraction (CPE), the solution was incubated in a thermostatic water bath at 55 degrees C for 30 min, and 20% NaCl (w/v) was added to the solution to facilitate the phase separation and increase the preconcentration factor during the CPE process. Compared with methanol, which was used in Chinese Pharmacopoeia (2005 edition) for the extraction of C. fraxini, the extraction efficiency of 5% Genapol X-080 reached higher value.

  6. Rapid and highly sensitive determination of low-molecular-weight carbonyl compounds in drinking water and natural water by preconcentration HPLC with 2,4-dinitrophenylhydrazine.

    PubMed

    Takeda, Kazuhiko; Katoh, Shinya; Nakatani, Nobutake; Sakugawa, Hiroshi

    2006-12-01

    The aim of this research was to develop a simple procedure for a highly sensitive determination of low-molecular-weight (LMW) carbonyl compounds in drinking water and natural water. We employed a preconcentration HPLC system with 2,4-dinitrophenylhydrazine (DNPH) for the determination of LMW carbonyl compounds. A C-18 reverse-phase preconcentration column was used instead of a sample loop at the sample injection valve. A 0.1 - 5.0 mL portion of the derivatized sample solution was injected with a gas-tight syringe, and a 15% acetonitrile aqueous solution was pushed through the preconcentration column to remove the unreacted excess DNPH, which caused serious interference in the determination of formaldehyde. The detection limits were 1 - 3 nM with a relative standard deviation of 2 - 5% for 20 nM standard solutions (n = 5). The calibration curves were essentially unaffected by coexisting sea salts. Applications to commercial mineral water, tap water, river water, pond water and seawater are presented.

  7. Selection of forward osmosis draw solutes for subsequent integration with anaerobic treatment to facilitate resource recovery from wastewater.

    PubMed

    Ansari, Ashley J; Hai, Faisal I; Guo, Wenshan; Ngo, Hao H; Price, William E; Nghiem, Long D

    2015-09-01

    Forward osmosis (FO) can be used to extract clean water and pre-concentrate municipal wastewater to make it amenable to anaerobic treatment. A protocol was developed to assess the suitability of FO draw solutes for pre-concentrating wastewater for potential integration with anaerobic treatment to facilitate resource recovery from wastewater. Draw solutes were evaluated in terms of their ability to induce osmotic pressure, water flux, and reverse solute flux. The compatibility of each draw solute with subsequent anaerobic treatment was assessed by biomethane potential analysis. The effect of each draw solute (at concentrations corresponding to the reverse solute flux at ten-fold pre-concentration of wastewater) on methane production was also evaluated. The results show that ionic organic draw solutes (e.g., sodium acetate) were most suitable for FO application and subsequent anaerobic treatment. On the other hand, the reverse solute flux of inorganic draw solutions could inhibit methane production from FO pre-concentrated wastewater. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  8. Automated solid-phase extraction of herbicides from water for gas chromatographic-mass spectrometric analysis

    USGS Publications Warehouse

    Meyer, M.T.; Mills, M.S.; Thurman, E.M.

    1993-01-01

    An automated solid-phase extraction (SPE) method was developed for the pre-concentration of chloroacetanilide and triazine herbicides, and two triazine metabolites from 100-ml water samples. Breakthrough experiments for the C18 SPE cartridge show that the two triazine metabolites are not fully retained and that increasing flow-rate decreases their retention. Standard curve r2 values of 0.998-1.000 for each compound were consistently obtained and a quantitation level of 0.05 ??g/l was achieved for each compound tested. More than 10,000 surface and ground water samples have been analyzed by this method.

  9. Nickel (II) Preconcentration and Speciation Analysis During Transport from Aqueous Solutions Using a Hollow-fiber Permeation Liquid Membrane (HFPLM) Device.

    PubMed

    Bautista-Flores, Ana Nelly; De San Miguel, Eduardo Rodríguez; Gyves, Josefina de; Jönsson, Jan Åke

    2011-08-18

    Nickel (II) preconcentration and speciation analysis using a hollow fiber supported liquid membrane (HFSLM) device was studied. A counterflow of protons coupled to complexation with formate provided the driving force of the process, while Kelex 100 was employed as carrier. The influence of variables related to module configuration (acceptor pH and carrier concentration) and to the sample properties (donor pH) on the preconcentration factor, E, was simultaneously studied and optimized using a 3 factor Doehlert matrix response surface methodology. The effect of metal concentration was studied as well. Preconcentration factors as high as 4240 were observed  depending on the values of the different variables. The effects of the presence of inorganic anions (NO2-, SO42-, Cl-, NO3-, CO32-, CN-) and dissolved organic matter (DOM) in the form of humic acids were additionally considered in order to carry out a speciation analysis study. Nickel preconcentration was observed to be independent of both effects, except when cyanide was present in the donor phase. A characterization of the transport regime was performed through the analysis of the dependence of E on the temperature. E increases with the increase in temperature according to the equation E(K) = -8617.3 + 30.5T with an activation energy of 56.7 kJ mol-1 suggesting a kinetic-controlled regime. Sample depletion ranged from 12 to 1.2% depending on the volume of the donor phase (100 to 1000 mL, respectively).

  10. Toward the use of surface modified activated carbon in speciation: selective preconcentration of selenite and selenate in environmental waters.

    PubMed

    Tsoi, Yeuk-Ki; Leung, Kelvin Sze-Yin

    2011-04-22

    This paper describes a novel application of tetrabutylammonium hydroxide-modified activated carbon (AC-TBAH) to the speciation of ultra-trace Se(IV) and Se(VI) using LC-ICP-DRC-MS. The anion exchange functionality was immobilized onto the AC surface enables selective preconcentration of inorganic Se anions in a wide range of working pHs. Simultaneous retention and elution of both analytes, followed by subsequent analysis with LC-ICP-DRC-MS, allows to accomplish speciation analysis in natural samples without complicated redox pre-treatment. The laboratory-made column of immobilized AC (0.4 g of sorbent packed in a 6 mL syringe barrel) has achieved analyte enrichment factors of 76 and 93, respectively, for Se(IV) and Se(VI), thus proving its superior preconcentration efficiency and selectivity over common AC. The considerable enhancement in sensitivity achieved by using the preconcentration column has improved the method's detection limits to 1.9-2.2 ng L(-1), which is a 100-fold improvement compared with direct injection. The analyte recoveries from heavily polluted river matrix were between 95.3 and 107.7% with less than 5.0% RSD. The robustness of the preconcentration and speciation method was validated by analysis of natural waters collected from rivers and reservoirs in Hong Kong. The modified AC material is hence presented as a low-cost yet robust substitute for conventional anion exchange resins for routine applications. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. Enhancement in the sensitivity of microfluidic enzyme-linked immunosorbent assays through analyte preconcentration.

    PubMed

    Yanagisawa, Naoki; Dutta, Debashis

    2012-08-21

    In this Article, we describe a microfluidic enzyme-linked immunosorbent assay (ELISA) method whose sensitivity can be substantially enhanced through preconcentration of the target analyte around a semipermeable membrane. The reported preconcentration has been accomplished in our current work via electrokinetic means allowing a significant increase in the amount of captured analyte relative to nonspecific binding in the trapping/detection zone. Upon introduction of an enzyme substrate into this region, the rate of generation of the ELISA reaction product (resorufin) was observed to increase by over a factor of 200 for the sample and 2 for the corresponding blank compared to similar assays without analyte trapping. Interestingly, in spite of nonuniformities in the amount of captured analyte along the surface of our analysis channel, the measured fluorescence signal in the preconcentration zone increased linearly with time over an enzyme reaction period of 30 min and at a rate that was proportional to the analyte concentration in the bulk sample. In our current study, the reported technique has been shown to reduce the smallest detectable concentration of the tumor marker CA 19-9 and Blue Tongue Viral antibody by over 2 orders of magnitude compared to immunoassays without analyte preconcentration. When compared to microwell based ELISAs, the reported microfluidic approach not only yielded a similar improvement in the smallest detectable analyte concentration but also reduced the sample consumption in the assay by a factor of 20 (5 μL versus 100 μL).

  12. Simulation of electrokinetic flow in microfluidic channels

    NASA Astrophysics Data System (ADS)

    Sabur, Romena; Matin, M.

    2005-08-01

    Electrokinetic phenomena become an increasingly efficient fluid transport mechanism in micro- and nano-fluidic fields. These phenomena have also been applied successfully in microfluidic devices to achieve particle separation, pre-concentration and mixing. Electrokinetic is the flow produced by the action of an electric field on a fluid with a net charge, where the charged ions of fluid are able to drag the whole solution through the channels in the microfluidic device from one analyzing point to the other. We will present the simulation results of electrokinetic transports of fluid in various typical micro-channel geometries such as T-channel, Y-channel, cross channel and straight channel. In practice, high-speed micro-PIV technique is used to measure transient fluidic phenomena in a microfluidic channel. Particle Image Velocimetry (PIV) systems provide two- or three-dimensional velocity maps in flows using whole field techniques based on imaging the light scattered by small particles in the flow illuminated by a laser light sheet. The system generally consists of an epifluorescent microscope, CW laser and a high-speed CMOS of CCD camera. The flow of a liquid, (water for example), containing fluorescent particle is then analyzed in a counter microchannel by the highly accurate PIV method. One can then compare the simulated and experimental microfluidic flow due to electroosmotic effect.

  13. Multicomutation flow system for manganese speciation by solid phase extraction and flame atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Tobiasz, Anna; Sołtys, Monika; Kurys, Ewa; Domagała, Karolina; Dudek-Adamska, Danuta; Walas, Stanisław

    2017-08-01

    In the paper an application of solid phase extraction technique for speciation analysis of manganese in water samples with the use of flame atomic absorption spectrometry is presented. Two types of sorbents, activated silica gel and Dowex 1 × 4, were used respectively for simultaneously Mn2 + and MnO42 - retention and preconcentration. The whole procedure was realized in multicomutation flow system. Different conditions like: type and concentration of eluent, sample pH and loading time were tested during the study. Under appropriate conditions, it was possible to obtained enrichment factors of 20 and 16 for Mn(II) and Mn(VII), respectively. Precision of the procedure was close to 4% (measured as relative standard deviation), whereas the detection limit (3σ) was 1.4 μg·L- 1 for Mn(II) and 4.8 μg·L- 1 for Mn(VII).

  14. Methods for improved preconcentrators

    DOEpatents

    Manginell, Ronald P [Albuquerque, NM; Lewis, Patrick R [Albuquerque, NM; Okandan, Murat [Edgewood, NM

    2010-06-01

    The present invention relates generally to chemical analysis (e.g. by gas chromatography), and in particular to a compact chemical preconcentrator formed on a substrate with a heatable sorptive membrane that can be used to accumulate and concentrate one or more chemical species of interest over time and then rapidly release the concentrated chemical species upon demand for chemical analysis.

  15. The Trace Analysis of DEET in Water using an On-line Preconcentration Column and Liquid Chromatography with UV Photodiode Array Detection

    EPA Science Inventory

    A method for the detection of trace levels of N,N-diethyl-m-toluamide (DEET) in water is discussed. The method utilizes an on-line preconcentration column in series with high performance liquid chromatography (HPLC) and UV photodiode array detection. DEET, a common insect repel...

  16. Nickel (II) Preconcentration and Speciation Analysis During Transport from Aqueous Solutions Using a Hollow-fiber Permeation Liquid Membrane (HFPLM) Device

    PubMed Central

    Bautista-Flores, Ana Nelly; de San Miguel, Eduardo Rodríguez; de Gyves, Josefina; Jönsson, Jan Åke

    2011-01-01

    Nickel (II) preconcentration and speciation analysis using a hollow fiber supported liquid membrane (HFSLM) device was studied. A counterflow of protons coupled to complexation with formate provided the driving force of the process, while Kelex 100 was employed as carrier. The influence of variables related to module configuration (acceptor pH and carrier concentration) and to the sample properties (donor pH) on the preconcentration factor, E, was simultaneously studied and optimized using a 3 factor Doehlert matrix response surface methodology. The effect of metal concentration was studied as well. Preconcentration factors as high as 4240 were observed depending on the values of the different variables. The effects of the presence of inorganic anions (NO2−, SO42−, Cl−, NO3−, CO32−, CN−) and dissolved organic matter (DOM) in the form of humic acids were additionally considered in order to carry out a speciation analysis study. Nickel preconcentration was observed to be independent of both effects, except when cyanide was present in the donor phase. A characterization of the transport regime was performed through the analysis of the dependence of E on the temperature. E increases with the increase in temperature according to the equation E(K) = −8617.3 + 30.5T with an activation energy of 56.7 kJ mol−1 suggesting a kinetic-controlled regime. Sample depletion ranged from 12 to 1.2% depending on the volume of the donor phase (100 to 1000 mL, respectively). PMID:24957733

  17. A fully automated and fast method using direct sample injection combined with fused-core column on-line SPE-HPLC for determination of ochratoxin A and citrinin in lager beers.

    PubMed

    Lhotská, Ivona; Šatínský, Dalibor; Havlíková, Lucie; Solich, Petr

    2016-05-01

    A new fast and sensitive method based on on-line solid-phase extraction on a fused-core precolumn coupled to liquid chromatography with fluorescence detection has been developed for ochratoxin A (OTA) and citrinin (CIT) determination in lager beer samples. Direct injection of 100 μL filtered beer samples into an on-line SPE-HPLC system enabled fast and effective sample extraction including separation in less than 6 min. Preconcentration of OTA and CIT from beer samples was performed on an Ascentis Express RP C18 guard column (5 × 4.6 mm), particle size 2.7 μm, with a mobile phase of methanol/0.5% aqueous acetic acid pH 2.8 (30:70, v/v) at a flow rate of 2.0 mL min(-1). The flow switch from extraction column to analytical column in back-flush mode was set at 2.0 min and the separation was performed on the fused-core column Ascentis Express Phenyl-Hexyl (100 × 4.6 mm), particle size 2.7 μm, with a mobile phase acetonitrile/0.5% aqueous acetic acid pH 2.8 in a gradient elution at a flow rate of 1.0 mL min(-1) and temperature of 50 °C. Fluorescence excitation/emission detection wavelengths were set at 335/497 nm. The accuracy of the method, defined as the mean recoveries of OTA and CIT from light and dark beer samples, was in the range 98.3-102.1%. The method showed high sensitivity owing to on-line preconcentration; LOQ values were found to be 10 and 20 ng L(-1) for OTA and CIT, respectively. The found values of OTA and CIT in all tested light, dark and wheat beer samples were significantly below the maximum tolerable limits (3.0 μg kg(-1) for OTA and 2000 μg kg(-1) for CIT) set by the European Union.

  18. Determination of trace heavy metals in soil and sediments by atomic spectrometry following preconcentration with Schiff bases on Amberlite XAD-4.

    PubMed

    Kara, Derya; Fisher, Andrew; Hill, Steve J

    2009-06-15

    A matrix separation and analyte preconcentration system using Amberlite XAD copolymer resins functionalized by Schiff base reactions coupled with atomic spectrometry has been developed. Three different functionalized Amberlite XAD resins were synthesized using 4-phenylthiosemicarbazide, 2,3-dihydroxybenzaldehyde and 2-thiophenecarboxaldehyde as reagents. These resins could be used to preconcentrate transition and other trace heavy metal analytes from nitric acid digests of soil and sediment samples. Analyte retention was shown to work well at pH 6.0. After treatment of the digests with sodium fluoride and buffering to pH 6, samples that contain extremely large concentrations of iron were analysed for trace analytes without the excess iron overloading the capacity of the resin. The analytes Cd, Co, Cu, Ni and Pb were preconcentrated from acid extracts of certified soil/sediment samples and then eluted with 0.1M HNO(3) directly to the detection system. Flame atomic absorption spectrometry was used as a means of detection during the studies. The efficiency of the chelating resin and the accuracy of the proposed method were evaluated by the analysis of soil (SO-2) and sediment (LGC 6157 and MESS-3) certified reference materials.

  19. Determination of Hg(II) in waters by on-line preconcentration using Cyanex 923 as a sorbent — Cold vapor atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Duan, Taicheng; Song, Xuejie; Xu, Jingwei; Guo, Pengran; Chen, Hangting; Li, Hongfei

    2006-09-01

    Using a solid phase extraction mini-column home-made from a neutral extractant Cyanex 923, inorganic Hg could be on-line preconcentrated and simultaneously separated from methyl mercury. The preconcentrated Hg (II) was then eluted with 10% HNO 3 and subsequently reduced by NaBH 4 to form Hg vapor before determination by cold vapor atomic absorption spectrometry (CVAAS). Optimal conditions for and interferences on the Hg preconcentration and measurement were at 1% HCl, for a 25 mL sample uptake volume and a 10 mL min - 1 sample loading rate. The detection limit was 0.2 ng L - 1 and much lower than that of conventional method (around 15.8 ng L - 1 ). The relative standard deviation (RSD) is 1.8% for measurements of 40 ng L - 1 of Hg and the linear working curve is from 20 to 2000 ng L - 1 (with a correlation coefficient of 0.9996). The method was applied in determination of inorganic Hg in city lake and deep well water (from Changchun, Jilin, China), and recovery test results for both samples were satisfactory.

  20. Concurrent DNA Preconcentration and Separation in Bipolar Electrode-Based Microfluidic Device

    PubMed Central

    Song, Hongjun; Wang, Yi; Garson, Charles; Pant, Kapil

    2015-01-01

    This paper presents a bipolar electrode (BPE) device in a microfluidic dual-channel design for concurrent preconcentration and separation of composite DNA containing samples. The novelty of the present effort relies on the combination of BPE-induced ion concentration polarization (ICP) and end-labeled free-solution electrophoresis (ELFSE). The ion concentration polarization effect arising from the faradaic reaction on the BPE is utilized to exert opposing electrophoretic and electroosmotic forces on the DNA samples. Meanwhile, end-labeled free-solution electrophoresis alters the mass-charge ratio to enable simultaneous DNA separation in free solution. The microfluidic device was fabricated using standard and soft lithography techniques to form gold-on-glass electrode capped with a PDMS microfluidic channel. Experimental testing with various DNA samples was carried out over a range of applied electric field. Concentration ratios up to 285× within 5 minutes for a 102-mer DNA, and concurrent preconcentration and free-solution separation of binary mixture of free and bound 102-mer DNA within 6 minutes was demonstrated. The effect of applied electric field was also interrogated with respect to pertinent performance metrics of preconcentration and separation. PMID:26005497

  1. Determination of simazine in water samples by HPLC after preconcentration with diatomaceous earth.

    PubMed

    Katsumata, Hideyuki; Fujii, Aya; Kaneco, Satoshi; Suzuki, Tohru; Ohta, Kiyohisa

    2005-01-15

    A sensitive and selective batch adsorption method is proposed for the preconcentration and determination of simazine. Simazine was preconcentrated on diatomaceous earth as an adsorbent and then determined by high-performance liquid chromatography (HPLC). Several parameters on the recovery of the analyte were investigated. The experimental results showed that it was possible to obtain quantitative analysis when the solution pH was 2 using 100mL of validation solution containing 1.5mug of simazine and 5mL of ethanol as an eluent. Recovery of simazine was 89.0 +/- 1.6% with a relative standard deviation for seven determinations of 1.5% under optimum conditions. The maximum preconcentration factor was 100 for simazine when 500mL of sample solution volume was used. The linear range of calibration curve was 1-200ngmL(-1) with a correlation coefficient of 0.996 and the detection limit (3S/N) was 0.3ngmL(-1). The capacity of the adsorbent was also examined and found to be 1.1mgg(-1) for simazine. The proposed method was successfully applied to the determination of simazine in river water with high precision and accuracy.

  2. Preconcentration of heavy metals on activated carbon and their determination in fruits by inductively coupled plasma optical emission spectrometry.

    PubMed

    Feist, Barbara; Mikula, Barbara

    2014-03-15

    A method of separation and preconcentration of cadmium, cobalt, copper, nickel, lead, and zinc at trace level using activated carbon is proposed. Activated carbon with the adsorbed trace metals was mineralised using a high-pressure microwave mineraliser. The heavy metals were determined after preconcentration by inductively coupled plasma optical emission spectrometry (ICP-OES). The influence of several parameters, such as pH, sorbent mass, shaking time was examined. Moreover, effects of inorganic matrix on recovery of the determined elements were studied. The experiment shows that foreign ions did not influence recovery of the determined elements. The detection limits (DL) of Cd, Co, Cu, Ni, Pb, and Zn were 0.17, 0.19, 1.60, 2.60, 0.92 and 1.50 μg L(-)(1), respectively. The recovery of the method for the determined elements was better than 95% with relative standard deviation from 1.3% to 3.7%. The preconcentration factor was 80. The proposed method was applied for determination of Cd, Co, Cu, Ni, Pb, and Zn in fruits materials. Accuracy of the proposed method was verified using certified reference material (NCS ZC85006 Tomato). Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Simultaneous extraction and HPLC determination of 3-indole butyric acid and 3-indole acetic acid in pea plant by using ionic liquid-modified silica as sorbent.

    PubMed

    Sheikhian, Leila; Bina, Sedigheh

    2016-01-15

    In this study, ionic liquid-modified silica was used as sorbent for simultaneous extraction and preconcentration of 3-indole butyric acid and 3-indole acetic acid in pea plants. The effect of some parameters such as pH and ionic strength of sample solution, amount of sorbent, flow rate of aqueous sample solution and eluent solution, concentration of eluent solution, and temperature were studied for each hormone solution. Percent extraction of 3-indole butyric acid and 3-indole acetic acid was strongly affected by pH of aqueous sample solution. Ionic strength of aqueous phase and temperature showed no serious effects on extraction efficiency of studied plant hormones. Obtained breakthrough volume was 200mL for each of studied hormones. Preconcentration factor for spectroscopic and chromatographic determination of studied hormones was 100 and 4.0×10(3) respectively. Each solid sorbent phase was reusable for almost 10 times of extraction/stripping procedure. Relative standard deviations of extraction/stripping processes of 3-indole butyric acid and 3-indole acetic acid were 2.79% and 3.66% respectively. The calculated limit of detections for IBA and IAA were 9.1×10(-2)mgL(-1) and 1.6×10(-1)mgL(-1) respectively. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Potentiometric perchlorate determination at nanomolar concentrations in vegetables.

    PubMed

    Leoterio, Dilmo M S; Paim, Ana Paula S; Belian, Mônica F; Galembeck, André; Lavorante, André F; Pinto, Edgar; Amorim, Célia G; Araújo, Alberto N; Montenegro, Maria C B S M

    2017-07-15

    In this work, an expeditious method based on the multi-commutated flow-analysis concept with potentiometric detection is proposed to perform determinations of the emergent contaminant perchlorate in vegetable matrices down to nanomolar concentration. To accomplish the task, a tubular shaped potentiometric sensor selective to perchlorate ion was constructed with a PVC membrane containing 12mmol/kg of the polyamine bisnaphthalimidopropyl-4,4'-diaminodiphenylmethane and 2-nitrophenyl phenyl ether 68% (w/w) as plasticizer casted on a conductive epoxy resin. Under optimal flow conditions, the sensor responded linearly in the concentration range of 6.3×10 -7 -1.0×10 -3 mol/L perchlorate. In order to extend the determinations to lower concentrations (4.6(±1.3)×10 -10 mol/L perchlorate), a column packed with 70mg of sodium 2,5,8,11,14-pentaoxa-1-silacyclotetradecane-polymer was coupled to the flow-system thus enabling prior pre-concentration of the perchlorate. The proposed procedure provides a simpler alternative for the determination of perchlorate in foods, nowadays only allowed by sophisticated and expensive equipment and laborious methods. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Development of a pre-concentration system and auto-analyzer for dissolved methane, ethane, propane, and butane concentration measurements with a GC-FID

    NASA Astrophysics Data System (ADS)

    Chepigin, A.; Leonte, M.; Colombo, F.; Kessler, J. D.

    2014-12-01

    Dissolved methane, ethane, propane, and butane concentrations in natural waters are traditionally measured using a headspace equilibration technique and gas chromatograph with flame ionization detector (GC-FID). While a relatively simple technique, headspace equilibration suffers from slow equilibration times and loss of sensitivity due to concentration dilution with the pure gas headspace. Here we present a newly developed pre-concentration system and auto-analyzer for use with a GC-FID. This system decreases the time required for each analysis by eliminating the headspace equilibration time, increases the sensitivity and precision with a rapid pre-concentration step, and minimized operator time with an autoanalyzer. In this method, samples are collected from Niskin bottles in newly developed 1 L plastic sample bags rather than glass vials. Immediately following sample collection, the sample bags are placed in an incubator and individually connected to a multiport sampling valve. Water is pumped automatically from the desired sample bag through a small (6.5 mL) Liqui-Cel® membrane contactor where the dissolved gas is vacuum extracted and directly flushed into the GC sample loop. The gases of interest are preferentially extracted with the Liqui-Cel and thus a natural pre-concentration effect is obtained. Daily method calibration is achieved in the field with a five-point calibration curve that is created by analyzing gas standard-spiked water stored in 5 L gas-impermeable bags. Our system has been shown to substantially pre-concentrate the dissolved gases of interest and produce a highly linear response of peak areas to dissolved gas concentration. The system retains the high accuracy, precision, and wide range of measurable concentrations of the headspace equilibration method while simultaneously increasing the sensitivity due to the pre-concentration step. The time and labor involved in the headspace equilibration method is eliminated and replaced with the immediate and automatic analysis of a maximum of 13 sequential samples. The elapsed time between sample collection and analysis is reduced from approximately 12 hrs to < 10 min, enabling dynamic and highly resolved sampling plans.

  6. Electrochemical detection of methylated DNA on a microfluidic chip with nanoelectrokinetic pre-concentration.

    PubMed

    Hong, Sung A; Kim, Yong-June; Kim, Sung Jae; Yang, Sung

    2018-06-01

    DNA methylation is considered to be a promising marker for the early diagnosis and prognosis of cancer. However, direct detection of the methylated DNAs in clinically relevant samples is still challenging because of its extremely low concentration (~fM). Here, an integrated microfluidic chip is reported, which is capable of pre-concentrating the methylated DNAs using ion concentration polarization (ICP) and electrochemically detecting the pre-concentrated DNAs on a single chip. The proposed chip is the first demonstration of an electrochemical detection of both level and concentration of the methylated DNAs by integrating a DNA pre-concentration unit without gene amplification. Using the proposed chip, 500 fM to 500 nM of methylated DNAs is pre-concentrated by almost 100-fold in 10 min, resulting in a drastic improvement of the electrochemical detection threshold down to the fM level. The proposed chip is able to measure not only the DNA concentration, but also the level of methylation using human urine sample by performing a consecutive electrochemical sensing on a chip. For clinical application, the level as well as the concentration of methylation of glutathione-S transferase-P1 (GSTP1) and EGF-containing fibulin-like extracellular matrix protein 1 (EFEMP1), which are known to be closely associated with prostate cancer diagnosis, are electrochemically detected in human urine spiked with these genes. The developed chip shows a limit of detection (LoD) of 7.9 pM for GSTP1 and 11.8 pM for EFEMP1 and is able to detect the level of methylation in a wide range from 10% to 100% with the concentration variation from 50 pM to 500 nM. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. 3D-printed flow system for determination of lead in natural waters.

    PubMed

    Mattio, Elodie; Robert-Peillard, Fabien; Branger, Catherine; Puzio, Kinga; Margaillan, André; Brach-Papa, Christophe; Knoery, Joël; Boudenne, Jean-Luc; Coulomb, Bruno

    2017-06-01

    The development of 3D printing in recent years opens up a vast array of possibilities in the field of flow analysis. In the present study, a new 3D-printed flow system has been developed for the selective spectrophotometric determination of lead in natural waters. This system was composed of three 3D-printed units (sample treatment, mixing coil and detection) that might have been assembled without any tubing to form a complete flow system. Lead was determined in a two-step procedure. A preconcentration of lead was first carried out on TrisKem Pb Resin located in a 3D-printed column reservoir closed by a tapped screw. This resin showed a high extraction selectivity for lead over many tested potential interfering metals. In a second step, lead was eluted by ammonium oxalate in presence of 4-(2-pyridylazo)-resorcinol (PAR), and spectrophotometrically detected at 520nm. The optimized flow system has exhibited a linear response from 3 to 120µgL -1 . Detection limit, coefficient of variation and sampling rate were evaluated at 2.7µgL -1 , 5.4% (n=6) and 4 sampleh -1 , respectively. This flow system stands out by its fully 3D design, portability and simplicity for low cost analysis of lead in natural waters. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Preconcentration and separation of analytes in microchannels

    DOEpatents

    Hatch, Anson; Singh, Anup K.; Herr, Amy E.; Throckmorton, Daniel J.

    2010-11-09

    Disclosed herein are methods and devices for preconcentrating and separating analytes such as proteins and polynucleotides in microchannels. As disclosed, at least one size-exclusion polymeric element is adjacent to processing area or an assay area in a microchannel which may be porous polymeric element. The size-exclusion polymeric element may be used to manipulate, e.g. concentrate, analytes in a sample prior to assaying in the assay area.

  9. Living organisms as an alternative to hyphenated techniques for metal speciation. Evaluation of baker's yeast immobilized on silica gel for Hg speciation*1

    NASA Astrophysics Data System (ADS)

    Pérez-Corona, Teresa; Madrid-Albarrán, Yolanda; Cámara, Carmen; Beceiro, Elisa

    1998-02-01

    The use of living organisms for metal preconcentration and speciation is discussed. Among substrates, Saccharomyces cerevisiae baker's yeast has been successfully used for the speciation of mercury [Hg(II) and CH 3Hg +], selenium [Se(IV) and Se(VI)] and antimony [Sb(III) and Sb(V)]. To illustrate the capabilities of these organisms, the analytical performance of baker's yeast immobilized on silica gel for on-line preconcentration and speciation of Hg(II) and methylmercury is reported. The immobilized cells were packed in a PTFE microcolumn, through which mixtures of organic and inorganic mercury solutions were passed. Retention of inorganic and organic mercury solutions took place simultaneously, with the former retained in the silica and the latter on the yeast. The efficiency uptake for both species was higher than 95% over a wide pH range. The speciation was carried out by selective and sequential elution with 0.02 mol L -1 HCl for methylmercury and 0.8 mol L -1 CN - for Hg(II). This method allows both preconcentration and speciation of mercury. The preconcentration factors were around 15 and 100 for methylmercury and mercury(II), respectively. The method has been successfully applied to spiked sea water samples.

  10. Dispersive liquid-liquid microextraction combined with online preconcentration MEKC for the determination of some phenoxyacetic acids in drinking water.

    PubMed

    Zhang, Yaohai; Jiao, Bining

    2013-09-01

    A fast and simple technique composed of dispersive liquid-liquid microextraction (DLLME) and online preconcentration MEKC with diode array detection was developed for the determination of four phenoxyacetic acids, 2,4,5-trichlorophenoxyacetic acid, 2,4-dichlorophenoxyacetic acid, 2,6-dichlorophenoxyacetic acid, and 4-chlorophenoxyacetic acid, in drinking water. The four phenoxyacetic acids were separated in reversed-migration MEKC to the baseline. About 145-fold increases in detection sensitivity were observed with online concentration strategy, compared with standard hydrodynamic injection (5 s at 25 mbar pressure). LODs ranged from 0.002 to 0.005 mg/L using only the online preconcentration procedures without any offline concentration of the extract. A DLLME procedure was used in combination with the proposed online preconcentration strategies, which achieved the determination of analytes at limits of quantification ranging from 0.2 to 0.5 μg/kg, which is far lower than the maximum residue limits established by China. The satisfactory recoveries obtained by DLMME spiked at two levels ranged from 67.2 to 99.4% with RSD <15%, making this proposed method suitable for the determination of phenoxyacetic acids in water samples. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Pre-concentration and determination of tartrazine dye from aqueous solutions using modified cellulose nanosponges.

    PubMed

    Shiralipour, Roohollah; Larki, Arash

    2017-01-01

    In this study, a new absorbent based on cellulose nanosponges modified with methyltrioctylammonium chloride (aliquat 336) was prepared and used for pre-concentration, removal and determination of tartrazine dye, using UV-vis spectrophotometry. This adsorbent was fully characterized using various instrumental techniques such as SEM, FTIR and XRD spectra. The pre-concentration and removal procedures were studied in column and batch modes, respectively. The effects of parameters such as pH of the aqueous medium, methyltrioctylammounium chloride dose, adsorbent amount, desorbing conditions and interfering ions on the adsorption of tartrazine were investigated and optimized. The fitting experimental data with conventional isotherm models revealed that the adsorption followed the Brunauer-Emmett-Teller (BET) model and the maximum adsorption capacity for tartrazine was 180mg/g with modified nanosponges. Under the optimized conditions, the calibration curve was linear over the range of 2-300ng/mL and the limit of detection was 0.15ng/mL. The relative standard deviation (RSD) for 20 and 100ng/mL of tartrazine were 3.1% and 1.5%, respectively. The proposed method was applied for pre-concentration and determination of tartrazine dye in different water samples. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Analytical evaluation of BEA zeolite for the pre-concentration of polycyclic aromatic hydrocarbons and their subsequent chromatographic analysis in water samples.

    PubMed

    Wilson, Walter B; Costa, Andréia A; Wang, Huiyong; Dias, José A; Dias, Sílvia C L; Campiglia, Andres D

    2012-07-06

    The analytical performance of BEA - a commercial zeolite - is evaluated for the pre-concentration of fifteen Environmental Protection Agency - polycyclic aromatic hydrocarbons and their subsequent HPLC analysis in tap and lake water samples. The pre-concentration factors obtained with BEA have led to a method with excellent analytical figures of merit. One milliliter aliquots were sufficient to obtain excellent precision of measurements at the parts-per-trillion concentration level with relative standard deviations varying from 4.1% (dibenzo[a,h]anthracene) to 13.4% (pyrene). The limits of detection were excellent as well and varied between 1.1 (anthracene) and 49.9 ng L(-1) (indeno[1,2,3-cd]pyrene). The recovery values of all the studied compounds meet the criterion for regulated polycyclic aromatic hydrocarbons, which mandates relative standard deviations equal or lower than 25%. The small volume of organic solvents (100 μL per sample) and amount of BEA (2 mg per sample) makes sample pre-concentration environmentally friendly and cost effective. The extraction procedure is well suited for numerous samples as the small working volume (1 mL) facilitates the implementation of simultaneous sample extraction. These are attractive features when routine monitoring of numerous samples is contemplated. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Combination of solid-phase extraction with dispersive liquid-liquid microextraction followed by GC-MS for determination of pesticide residues from water, milk, honey and fruit juice.

    PubMed

    Shamsipur, Mojtaba; Yazdanfar, Najmeh; Ghambarian, Mahnaz

    2016-08-01

    In this work, an effective preconcentration method for the extraction and determination of traces of multi-residue pesticides was developed using solid-phase extraction (SPE) coupled with dispersive liquid-liquid microextraction and gas chromatography-mass spectrometry (GC-MS). Variables affecting the performance of both extraction steps such as type and volume of elution and extraction solvents, breakthrough volume, salt addition, extraction time were thoroughly investigated. The proposed method resulted in good linearities (R(2)>0.9915) over the ranges of 1-10,000ngkg(-1), limits of detection (LODs) in the range of 0.5-1.0ngkg(-1) at S/N=3, and precision of RSD% of ⩽11.8. Under optimal conditions, the preconcentration factors were obtained in the range of 2362-10,593 for 100mL sample solutions. Comparison of the proposed method with other ones demonstrated that SPE-DLLME method provides higher extraction efficiency and larger preconcentration factor for determination of pesticides residues. Further, it is simple, inexpensive, highly sensitive, and can be successfully applied to separation, preconcentration and determination of the pesticides (and other noxious materials) in different real food samples. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Preconcentration of Zn2+ and Cu2+ ions from food and vegetable samples using modified activated carbon.

    PubMed

    Ghaedi, M; Tavallali, H; Montazerozohori, M; Zahedi, E; Amirineko, M; Khodadoust, S; Karimipour, G

    2012-11-01

    In this work, two N/S-containing chelating agents 2-(4-methoxybenzylideneamino)thiophenol (2-4-MBAT) and 2-(4-chlorobenzylideneamino) benzenethiol (2-4-CBABT) were synthesized as new sorbents and were used for preconcentration of Zn(2+) and Cu(2+) ions in food and vegetable samples. In the proposed procedure, the trace amount of Zn(2+) and Cu(2+) ions from 250 mL of sample solution at pH = 5.0 was preconcentrated by 1 g of activated carbon (AC) loaded with 15 mg of 2-4-MBAT and 2-4-CBABT separately. The breakthrough volumes (maximum sample volume that their metal ions quantitatively can be enriched) for solid-phase extraction (SPE) procedure based on the AC modified with 2-4-MBAT and 2-4-CBABT were 800 and 750 mL, respectively. The sorbed Zn(2+) and Cu(2+) ions were efficiently eluted by 8 mL of 4 mol L(-1) HNO(3) and preconcentration factor of 112.5 and 93.7 and experimental enhancement factor of 30 and 35 ions were obtained for Zn(2+) and Cu(2+), respectively. The application of this enrichment procedure allowed the extraction of trace metal ions with recoveries exceeding of 90%.

  15. RAPID DETERMINATION OF ACTINIDES IN URINE BY INDUCTIVELY-COUPLED PLASMA MASS SPECTROMETRY AND ALPHA SPECTROMETRY: A HYBRID APPROACH

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maxwell, S.; Jones, V.

    2009-05-27

    A new rapid separation method that allows separation and preconcentration of actinides in urine samples was developed for the measurement of longer lived actinides by inductively coupled plasma mass spectrometry (ICP-MS) and short-lived actinides by alpha spectrometry; a hybrid approach. This method uses stacked extraction chromatography cartridges and vacuum box technology to facilitate rapid separations. Preconcentration, if required, is performed using a streamlined calcium phosphate precipitation. Similar technology has been applied to separate actinides prior to measurement by alpha spectrometry, but this new method has been developed with elution reagents now compatible with ICP-MS as well. Purified solutions are splitmore » between ICP-MS and alpha spectrometry so that long- and short-lived actinide isotopes can be measured successfully. The method allows for simultaneous extraction of 24 samples (including QC samples) in less than 3 h. Simultaneous sample preparation can offer significant time savings over sequential sample preparation. For example, sequential sample preparation of 24 samples taking just 15 min each requires 6 h to complete. The simplicity and speed of this new method makes it attractive for radiological emergency response. If preconcentration is applied, the method is applicable to larger sample aliquots for occupational exposures as well. The chemical recoveries are typically greater than 90%, in contrast to other reported methods using flow injection separation techniques for urine samples where plutonium yields were 70-80%. This method allows measurement of both long-lived and short-lived actinide isotopes. 239Pu, 242Pu, 237Np, 243Am, 234U, 235U and 238U were measured by ICP-MS, while 236Pu, 238Pu, 239Pu, 241Am, 243Am and 244Cm were measured by alpha spectrometry. The method can also be adapted so that the separation of uranium isotopes for assay is not required, if uranium assay by direct dilution of the urine sample is preferred instead. Multiple vacuum box locations may be set-up to supply several ICP-MS units with purified sample fractions such that a high sample throughput may be achieved, while still allowing for rapid measurement of short-lived actinides by alpha spectrometry.« less

  16. Pleurotus eryngii immobilized Amberlite XAD-16 as a solid-phase biosorbent for preconcentrations of Cd2+ and Co2+ and their determination by ICP-OES.

    PubMed

    Özdemir, Sadin; Okumuş, Veysi; Kılınç, Ersin; Bilgetekin, Havin; Dündar, Abdurrahman; Ziyadanogˇulları, Berrin

    2012-09-15

    This article reports a method that is used for the preconcentration and determination of Cd(2+) and Co(2+) in vegetables, using Pleurotus eryngii immobilized Amberlite XAD-16 as a solid-phase biosorbent. The concentrations of metals were determined by inductively coupled plasma-optical spectrometry (ICP-OES). Critical parameters, such as the pH of the solution, flow rate, the amount of biosorbent, type and volume of eluent, and the sample volume, that affect the solid-phase extraction (SPE) procedure were optimized. The optimum extraction conditions were determined as being a pH of 6.0 for Cd(2+) and of 5.0 for Co(2+); a sample flow rate of 2.0 mL min(-1); 200.0mg of biosorbent; and 5.0 mL of 1.0 mol L(-1) HCl as eluent. The capacities of the biosorbent for metal uptake were found to be 11.3 and 9.8 mg g(-1) for Cd(2+) and Co(2+) ions, respectively. Limit of quantitations (LOQs) were found to be 0.67 and 0.82 ng mL(-1), respectively, for Cd(2+) and Co(2+). The linear working curves were observed to be in the linear range from 1.0 to 50.0 ng mL(-1), and possessed high correlation coefficients. The use of the SPE method showed 50.7- and 35.7-fold improvements in the sensitivities of ICP-OES. The developed method was successfully applied to NCS ZC-73014 (a certified reference tea sample). Relative standard deviations (RSD) were lower than 5.0%. The Cd(2+) and Co(2+) concentrations in the different parts (leave, root, stem, and fruit) of purslane, onion, rocket, okra, and aubergine were determined after microwave digestion and solid-phase extraction by P. eryngii immobilized on Amberlite XAD-16. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Hydrogen sulphide in human nasal air quantified using thermal desorption and selected ion flow tube mass spectrometry.

    PubMed

    Wondimu, Taddese; Wang, Rui; Ross, Brian

    2014-09-01

    The discovery that hydrogen sulphide (H2S) acts as a gasotransmitter when present at very low concentrations (sub-parts per billion (ppbv)) has resulted in the need to quickly quantify trace amounts of the gas in complex biological samples. Selected ion flow tube mass spectrometry (SIFT-MS) is capable of real-time quantification of H2S but many SIFT-MS instruments lack sufficient sensitivity for this application. In this study we investigate the utility of combining thermal desorption with SIFT-MS for quantifying H2S in the 0.1-1 ppbv concentration range. Human orally or nasally derived breath, and background ambient air, were collected in sampling bags and dried by passing through CaCl2 and H2S pre-concentrated using a sorbent trap optimised for the capture of this gas. The absorbed H2S was then thermally desorbed and quantified by SIFT-MS. H2S concentrations in ambient air, nasal breath and oral breath collected from 10 healthy volunteers were 0.12  ±  0.02 (mean ± SD), 0.40  ±  0.11 and 3.1  ±  2.5 ppbv respectively, and in the oral cavity H2S, quantified by SIFT-MS without pre-concentration, was present at 13.5  ±  8.6 ppbv. The oral cavity H2S correlates well with oral breath H2S but not with nasal breath H2S, suggesting that oral breath H2S derives mainly from the oral cavity but nasal breath is likely pulmonary in origin. The successful quantification of such low concentrations of H2S in nasal air using a rapid analytical procedure paves the way for the straightforward analysis of H2S in breath and may assist in elucidating the role that H2S plays in biological systems.

  18. Capillary electrochromatography and preconcentration of neutral compounds on poly(dimethylsiloxane) microchips.

    PubMed

    Ro, Kyung Won; Chang, Woo-Jin; Kim, Ho; Koo, Yoon-Mo; Hahn, Jong Hoon

    2003-09-01

    Capillary electrochromatography (CEC) and preconcentration of neutral compounds have been realized on poly(dimethylsiloxane) (PDMS) microchips. The channels are coated with polyelectrolyte multilayers to avoid absorption of hydrophobic analytes into PDMS. The structures of a microchip include an injector and a bead chamber with integrated frits, where the particles of the stationary phase are completely retained. Dimensions of the frit structures are 25 micro mx20 micro m, and the space between the structures is 3 micro m. A neutral compound, BODIPY, that is strongly absorbed into native PDMS, is successfully and selectively retained on octadecylsilane-coated silica beads in the bead chamber with a concentration enhancement of up to 100 times and eluted with elution buffer solution containing 70% acetonitrile. Preconcentrations and CEC separations of coumarins have been conducted with the same device and achieved complete separations in less than 50 s.

  19. Microwave acid digestion and preconcentration neutron activation analysis of biological and diet samples for iodine.

    PubMed

    Rao, R R; Chatt, A

    1991-07-01

    A simple preconcentration neutron activation analysis (PNAA) method has been developed for the determination of low levels of iodine in biological and nutritional materials. The method involves dissolution of the samples by microwave digestion in the presence of acids in closed Teflon bombs and preconcentration of total iodine, after reduction to iodide with hydrazine sulfate, by coprecipitation with bismuth sulfide. The effects of different factors such as acidity, time for complete precipitation, and concentrations of bismuth, sulfide, and diverse ions on the quantitative recovery of iodide have been studied. The absolute detection limit of the PNAA method is 5 ng of iodine. Precision of measurement, expressed in terms of relative standard deviation, is about 5% at 100 ppb and 10% at 20 ppb levels of iodine. The PNAA method has been applied to several biological reference materials and total diet samples.

  20. Determination of trace inorganic mercury species in water samples by cloud point extraction and UV-vis spectrophotometry.

    PubMed

    Ulusoy, Halil Ibrahim

    2014-01-01

    A new micelle-mediated extraction method was developed for preconcentration of ultratrace Hg(II) ions prior to spectrophotometric determination. 2-(2'-Thiazolylazo)-p-cresol (TAC) and Ponpe 7.5 were used as the chelating agent and nonionic surfactant, respectively. Hg(II) ions form a hydrophobic complex with TAC in a micelle medium. The main factors affecting cloud point extraction efficiency, such as pH of the medium, concentrations of TAC and Ponpe 7.5, and equilibration temperature and time, were investigated in detail. An overall preconcentration factor of 33.3 was obtained upon preconcentration of a 50 mL sample. The LOD obtained under the optimal conditions was 0.86 microg/L, and the RSD for five replicate measurements of 100 microg/L Hg(II) was 3.12%. The method was successfully applied to the determination of Hg in environmental water samples.

  1. Determination of molybdenum in sea and estuarine water with BETA-naphthoin oxime and neutron activation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuathilake, A.I.; Chatt, A.

    1980-05-01

    An analytical method has been developed for the determination of submicrogram quantities of molybdenum in sea and esturaine water. The method consists of preconcentration of molybdenum with BETA-naphthoin oxime followed by the determination of the element employing neutron activation analysis. Various factors that can influence yield and selectivity of the preconcentration process have been investigated in detail. A comparison study between ..cap alpha..-benzoin oxime and BETA-naphthoin oxime in preconcentrating molybdenum has been carried out using a standard steel sample. The method has been applied to determine molybdenum content of sea and estuarine water. A detection limit of 0.32 ..mu..g Momore » L/sup -1/ seawater has been acheived. The precision and accuracy of the method have been evaluated using an intercomparison fresh water and a biological standard reference material. 1 figure, 9 tables.« less

  2. Comparison method for uranium determination in ore sample by inductively coupled plasma optical emission spectrometry (ICP-OES).

    PubMed

    Sert, Şenol

    2013-07-01

    A comparison method for the determination (without sample pre-concentration) of uranium in ore by inductively coupled plasma optical emission spectrometry (ICP-OES) has been performed. The experiments were conducted using three procedures: matrix matching, plasma optimization, and internal standardization for three emission lines of uranium. Three wavelengths of Sm were tested as internal standard for the internal standardization method. The robust conditions were evaluated using applied radiofrequency power, nebulizer argon gas flow rate, and sample uptake flow rate by considering the intensity ratio of the Mg(II) 280.270 nm and Mg(I) 285.213 nm lines. Analytical characterization of method was assessed by limit of detection and relative standard deviation values. The certificated reference soil sample IAEA S-8 was analyzed, and the uranium determination at 367.007 nm with internal standardization using Sm at 359.260 nm has been shown to improve accuracy compared with other methods. The developed method was used for real uranium ore sample analysis.

  3. Automated method for simultaneous lead and strontium isotopic analysis applied to rainwater samples and airborne particulate filters (PM10).

    PubMed

    Beltrán, Blanca; Avivar, Jessica; Mola, Montserrat; Ferrer, Laura; Cerdà, Víctor; Leal, Luz O

    2013-09-03

    A new automated, sensitive, and fast system for the simultaneous online isolation and preconcentration of lead and strontium by sorption on a microcolumn packed with Sr-resin using an inductively coupled plasma mass spectrometry (ICP-MS) detector was developed, hyphenating lab-on-valve (LOV) and multisyringe flow injection analysis (MSFIA). Pb and Sr are directly retained on the sorbent column and eluted with a solution of 0.05 mol L(-1) ammonium oxalate. The detection limits achieved were 0.04 ng for lead and 0.03 ng for strontium. Mass calibration curves were used since the proposed system allows the use of different sample volumes for preconcentration. Mass linear working ranges were between 0.13 and 50 ng and 0.1 and 50 ng for lead and strontium, respectively. The repeatability of the method, expressed as RSD, was 2.1% and 2.7% for Pb and Sr, respectively. Environmental samples such as rainwater and airborne particulate (PM10) filters as well as a certified reference material SLRS-4 (river water) were satisfactorily analyzed obtaining recoveries between 90 and 110% for both elements. The main features of the LOV-MSFIA-ICP-MS system proposed are the capability to renew solid phase extraction at will in a fully automated way, the remarkable stability of the column which can be reused up to 160 times, and the potential to perform isotopic analysis.

  4. Determination of traces of palladium in stream sediment and auto catalyst by FI-ICP-OES using on-line separation and preconcentration with QuadraSil TA.

    PubMed

    Nakajima, Junichi; Ohno, Masashi; Chikama, Katsumi; Seki, Tatsuya; Oguma, Koichi

    2009-09-15

    A flow injection analysis (FIA) method using on-line separation and preconcentration with a novel metal scavenger beads, QuadraSil TA, has been developed for the ICP-OES determination of traces of palladium. QuadraSil TA contains diethylenetriamine as a functional group on spherical silica beads and shows the highest selectivity for Pd(II) at pH 1 (0.1 mol l(-1) hydrochloric acid) solution. An aliquot of the sample solution prepared as 0.1 mol l(-1) in hydrochloric acid was passed through the QuadraSil TA column. After washing the column with the carrier solution, the Pd(II) retained on the column was eluted with 0.05 mol l(-1) thiourea solution and the eluate was directly introduced into an ICP-OES. The proposed method was successfully applied to the determination of traces of palladium in JSd-2 stream sediment certified reference material [0.019+/-0.001 microg g(-1) (n=3); provisional value: 0.0212 microg g(-1)] and SRM 2556 used auto catalyst certified reference material [315+/-4 microg g(-1) (n=4); certified value: 326 microg g(-1)]. The detection limit (3 sigma) of 0.28 ng ml(-1) was obtained for 5 ml of sample solution. The sample through puts for 5 ml and 100 microl of the sample solutions were 10 and 15 h(-1), respectively.

  5. On-line ionic liquid-based preconcentration system coupled to flame atomic absorption spectrometry for trace cadmium determination in plastic food packaging materials.

    PubMed

    Martinis, Estefanía M; Olsina, Roberto A; Altamirano, Jorgelina C; Wuilloud, Rodolfo G

    2009-05-15

    A novel on-line preconcentration method based on liquid-liquid (L-L) extraction with room temperature ionic liquids (RTILs) coupled to flame atomic absorption spectrometry (FAAS) was developed for cadmium determination in plastic food packaging materials. The methodology is based on the complexation of Cd with 2-(5-bromo-2-pyridylazo)-5-diethylaminophenol (5-Br-PADAP) reagent after sample digestion followed by extraction of the complex with the RTIL 1-butyl-3-methylimidazolium hexafluorophosphate ([C(4)mim][PF(6)]). The mixture was loaded into a flow injection analysis (FIA) manifold and the RTIL rich-phase was retained in a microcolumn filled with silica gel. The RTIL rich-phase was then eluted directly into FAAS. A enhancement factor of 35 was achieved with 20 mL of sample. The limit of detection (LOD), obtained as IUPAC recommendation, was 6 ng g(-1) and the relative standard deviation (R.S.D.) for 10 replicates at 10 microg L(-1) Cd concentration level was 3.9%, calculated at the peak heights. The calibration graph was linear and a correlation coefficient of 0.9998 was achieved. The accuracy of the method was evaluated by both a recovery study and comparison of results with direct determination by electrothermal atomic absorption spectrometry (ETAAS). The method was successfully applied for Cd determination in plastic food packaging materials and Cd concentrations found were in the range of 0.04-10.4 microg g(-1).

  6. Selenium analysis by an integrated microwave digestion-needle trap device with hydride sorption on carbon nanotubes and electrothermal atomic absorption spectrometry determination

    NASA Astrophysics Data System (ADS)

    Maratta Martínez, Ariel; Vázquez, Sandra; Lara, Rodolfo; Martínez, Luis Dante; Pacheco, Pablo

    2018-02-01

    An integrated microwave assisted digestion (MW-AD) - needle trap device (NTD) for selenium determination in grape pomace samples is presented. The NTD was filled with oxidized multiwall carbon nanotubes (oxMWCNTS) where Se hydrides were preconcentrated. Determination was carried out by flow injection-electrothermal atomic absorption spectrometry (FI-ETAAS). The variables affecting the system were established by a multivariate design (Plackett Burman), indicating that the following variables significantly affect the system: sample amount, HNO3 digestion solution concentration, NaBH4 volume and elution volume. A Box-Behnken design was implemented to determine the optimized values of these variables. The system improved Se atomization in the graphite furnace, since only trapped hydrides reached the graphite furnace, and the pyrolysis stage was eliminated according to the aqueous matrix of the eluate. Under optimized conditions the system reached a limit of quantification of 0.11 μg kg- 1, a detection limit of 0.032 μg kg- 1, a relative standard deviation of 4% and a preconcentration factor (PF) of 100, reaching a throughput sample of 5 samples per hour. Sample analysis show Se concentrations between 0.34 ± 0.03 μg kg- 1 to 0.48 ± 0.03 μg kg- 1 in grape pomace. This system provides minimal reagents and sample consumption, eliminates discontinuous stages between samples processing reaching a simpler and faster Se analysis.

  7. Solid phase extraction of rare earth elements in seawater and estuarine water with 4-(2-thiazolylazo) resorcinol immobilized Chromosorb 106 for determination by inductively coupled plasma mass spectrometry

    PubMed Central

    Zereen, Fahmida; Yilmaz, Vedat; Arslan, Zikri

    2013-01-01

    A solid phase preconcentration method has been developed using new chelating resin prepared by immobilization of 4-(2-thiazolylazo) resorcinol (TAR) on Chromosorb 106. The method was optimized for determination of rare earth elements (REEs) in seawater and estuarine water samples by inductively coupled plasma mass spectrometry (ICP-MS). The effects of various experimental parameters, such as load pH, eluent concentration, sample and eluent flow rates were examined to find the optimum operating conditions. The REEs were quantitatively retained from saline solutions on a minicolumn Chromosorb 106-TAR resin at pH 5.0 and then eluted with 1.0 mL of 1% (v/v) HNO3. The resin possesses large sorption capacity for REEs ranging from 81.1 µmol g−1 for Lu and 108 µmol g−1 for Nd. Detection limits (3s) varied between 0.06 ng L−1 for Pr to 0.31 for Ce for preconcentration of 5.0 mL blank solutions (pH 5.0). The relative standard deviation for triplicate measurements was less than 5% at 0.1 µg L−1 level. The method was validated by analysis Nearshore seawater certified reference material (CASS–4). The elemental results were comparable with the values reported in literature. The method was verified by analysis of spiked and unspiked coastal seawater and estuarine water samples. PMID:24000264

  8. Solid phase extraction of rare earth elements in seawater and estuarine water with 4-(2-thiazolylazo) resorcinol immobilized Chromosorb 106 for determination by inductively coupled plasma mass spectrometry.

    PubMed

    Zereen, Fahmida; Yilmaz, Vedat; Arslan, Zikri

    2013-09-01

    A solid phase preconcentration method has been developed using new chelating resin prepared by immobilization of 4-(2-thiazolylazo) resorcinol (TAR) on Chromosorb 106. The method was optimized for determination of rare earth elements (REEs) in seawater and estuarine water samples by inductively coupled plasma mass spectrometry (ICP-MS). The effects of various experimental parameters, such as load pH, eluent concentration, sample and eluent flow rates were examined to find the optimum operating conditions. The REEs were quantitatively retained from saline solutions on a minicolumn Chromosorb 106-TAR resin at pH 5.0 and then eluted with 1.0 mL of 1% (v/v) HNO 3 . The resin possesses large sorption capacity for REEs ranging from 81.1 µmol g -1 for Lu and 108 µmol g -1 for Nd. Detection limits (3s) varied between 0.06 ng L -1 for Pr to 0.31 for Ce for preconcentration of 5.0 mL blank solutions (pH 5.0). The relative standard deviation for triplicate measurements was less than 5% at 0.1 µg L -1 level. The method was validated by analysis Nearshore seawater certified reference material (CASS-4). The elemental results were comparable with the values reported in literature. The method was verified by analysis of spiked and unspiked coastal seawater and estuarine water samples.

  9. Use of a Novel Fluidics Microbead Trap/Flow-cell Enhances Speed and Sensitivity of Bead-Based Bioassays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ozanich, Rich M.; Antolick, Kathryn C.; Bruckner-Lea, Cindy J.

    2007-09-15

    Automated devices and methods for biological sample preparation often utilize surface functionalized microbeads (superparamagnetic or non-magnetic) to allow capture, purification and pre-concentration of trace amounts of proteins, cells, or nucleic acids (DNA/RNA) from complex samples. We have developed unique methods and hardware for trapping either magnetic or non-magnetic functionalized beads that allow samples and reagents to be efficiently perfused over a micro-column of beads. This approach yields enhanced mass transport and up to 5-fold improvements in assay sensitivity or speed, dramatically improving assay capability relative to assays conducted in more traditional “batch modes” (i.e., in tubes or microplate wells). Summarymore » results are given that highlight the analytical performance improvements obtained for automated microbead processing systems utilizing novel microbead trap/flow-cells for various applications, including: 1) simultaneous capture of multiple cytokines using an antibody-coupled polystyrene bead assay with subsequent flow cytometry detection; 2) capture of nucleic acids using oligonucleotide coupled polystyrene beads with flow cytometry detection; and 3) capture of Escherichia coli 0157:H7 (E. coli) from 50 mL sample volumes using antibody-coupled superparamagnetic microbeads with subsequent culturing to assess capture efficiency.« less

  10. Determination of mercury in agroindustrial samples by flow-injection cold vapor atomic absorption spectrometry using ion exchange and reductive elution.

    PubMed

    Gomes Neto, J A; Zara, L F; Rocha, J C; Santos, A; Dakuzaku, C S; Nóbrega, J A

    2000-03-06

    A flow-injection system with a Chelite-S(R) cationic resin packed minicolumn is proposed for the determination of trace levels of mercury in agroindustrial samples by cold vapor atomic absorption spectrometry. Improved sensitivity and selectivity are attained since mercuric ions are on-line concentrated whereas other potential interferents are discarded. With on-line reductive elution procedure, concentrated hydrochloric acid could be replaced by 10% w/v SnCl(2), in 6 M HCl as eluent. The reversed-intermittent stream either carries the atomic mercury to the flow cell in the forward direction or removes the residue from reactor/gas-liquid separator to a discarding flask in the opposite direction. Concentration and volume of reagent, acidity, flow rates, commutation times and potential interfering species were investigated. For 120 s preconcentration time, the proposed system handles about 25 samples h(-1) (50.0-500 ng l(-1)), consuming about 10 ml sample and 5 mg SnCl(2) per determination. The detection limit is 0.8 ng l(-1) and the relative standard deviation (RSD) (n=12) of a 76.7 ng l(-1) sample is about 5%. Results are in agreement with certified value of standard materials at 95% confidence level and good recoveries (97-128%) of spiked samples were found.

  11. Advances in Automated Plankton Imaging: Enhanced Throughput, Automated Staining, and Extended Deployment Modes for Imaging FlowCytobot

    NASA Astrophysics Data System (ADS)

    Sosik, H. M.; Olson, R. J.; Brownlee, E.; Brosnahan, M.; Crockford, E. T.; Peacock, E.; Shalapyonok, A.

    2016-12-01

    Imaging FlowCytobot (IFCB) was developed to fill a need for automated identification and monitoring of nano- and microplankton, especially phytoplankton in the size range 10 200 micrometer, which are important in coastal blooms (including harmful algal blooms). IFCB uses a combination of flow cytometric and video technology to capture high resolution (1 micrometer) images of suspended particles. This proven, now commercially available, submersible instrument technology has been deployed in fixed time series locations for extended periods (months to years) and in shipboard laboratories where underway water is automatically analyzed during surveys. Building from these successes, we have now constructed and evaluated three new prototype IFCB designs that extend measurement and deployment capabilities. To improve cell counting statistics without degrading image quality, a high throughput version (IFCB-HT) incorporates in-flow acoustic focusing to non-disruptively pre-concentrate cells before the measurement area of the flow cell. To extend imaging to all heterotrophic cells (even those that do not exhibit chlorophyll fluorescence), Staining IFCB (IFCB-S) incorporates automated addition of a live-cell fluorescent stain (fluorescein diacetate) to samples before analysis. A horizontally-oriented IFCB-AV design addresses the need for spatial surveying from surface autonomous vehicles, including design features that reliably eliminate air bubbles and mitigate wave motion impacts. Laboratory evaluation and test deployments in waters near Woods Hole show the efficacy of each of these enhanced IFCB designs.

  12. Assessment of Metaborate Fusion for the Rapid Dissolution of Solid Samples: Suitability with the Northstar ARSIIe

    DTIC Science & Technology

    2016-07-01

    goal of this project was to develop a rapid dissolution methodology for solid environmental samples and a crude pre- concentration of actinides ...environmental solid samples needed to be removed from the samples prior to actinide separation on the ARSIIe system. As a result of this project, two...procedures were developed, one applicable to the pre-concentration of the actinides only and a second for the pre-concentration of both actinides and

  13. Pre-concentration of trace elements in short chain alcohols using different commercial cation exchange resins prior to inductively coupled plasma-optical emission spectrometric detection.

    PubMed

    Nomngongo, Philiswa N; Catherine Ngila, J; Kamau, Joseph N; Msagati, Titus A M; Marjanovic, Ljiljana; Moodley, Brenda

    2013-07-17

    Chelex-100, Dowex 50W-x8 and Dowex MAC-3 exchange resins were investigated for separation and pre-concentration of trace amounts of Cd, Cr, Cu, Fe, Mn, Pb, Ti and Zn in alcohols with respect to retention and desorption characteristics. Dowex 50W-x8 was found to be the best sorbent with percentages recoveries >95%. In addition, Chelex-100 appeared to be suitable for the pre-concentration of Cu, Fe and Zn, whereas Dowex MAC-3 was selective for Cu and Fe. Therefore, Dowex 50W-x8 was used for further investigations. The relative standard deviations <4% (n=20), limits of detection and quantification were 0.1-1.2 μg L(-1) and 0.3-1.5 μg L(-1), respectively. The SPE method was validated against a certified reference material and the results were in agreement with certified values. The accuracy of the optimized method was verified by the recovery test in the spiked alcohol samples. The accuracy and spike recovery test for different metal ions were in the range 98-102% and 95-105%, respectively. The optimized method was applied to the separation and pre-concentration of metal ions in different commercial alcohol samples. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Modification of gold nanoparticle loaded on activated carbon with bis(4-methoxysalicylaldehyde)-1,2-phenylenediamine as new sorbent for enrichment of some metal ions.

    PubMed

    Karimipour, Gholamreza; Ghaedi, Mehrorang; Sahraei, Reza; Daneshfar, Ali; Biyareh, Mehdi Nejati

    2012-01-01

    In this study, a new sorbent based on the gold nanoparticle loaded in activated carbon (Au-NP-AC) was synthesized and modified by bis(4-methoxy salicylaldehyde)-1,2-phenylenediamine (BMSAPD). This sorbent, which is abbreviated as Au-NP-AC-BMSAPD, has been applied for the enrichment and preconcentration of trace amounts of Co(2+), Cu(2+), Ni(2+), Fe(2+), Pb(2+), and Zn(2+) ions in real samples. All metal ions under study were retained on the Au-NP-AC-BMSAPD sorbent by complexation of the ions with the BMSAPD ligand, providing an efficient preconcentration fashion. The retained metal ions were then eluted from the sorbent by HNO(3) and detected by flame atomic absorption spectrometry. The analytical parameters including pH, amount of ligand, and the nature of the eluent and solid phase were evaluated to obtain the optimum condition for the preconcentration factor. Following the optimum conditions, a preconcentration factor of 200 was obtained for all the metal ions under study with detection limits of 1.4-2.6 ng mL(-1). The method has been successfully applied for the extraction and determination of the ion content in the same real samples with recoveries in the range of 95-99.6% and a relative standard deviation lower than 4.0%.

  15. Single-step enantioselective amino acid flux analysis by capillary electrophoresis using on-line sample preconcentration with chemical derivatization.

    PubMed

    Ptolemy, Adam S; Tran, Lara; Britz-McKibbin, Philip

    2006-07-15

    Capillary electrophoresis (CE) represents a versatile platform for integrating sample pretreatment with chemical analysis because of its ability to tune analyte electromigration and band dispersion properties in discontinuous electrolyte systems. In this article, a single-step method that combines on-line sample preconcentration with in-capillary chemical derivatization is developed for rapid, sensitive, and enantioselective analysis of micromolar levels of amino acids that lack intrinsic chromophores by CE with UV detection. Time-resolved electrophoretic studies revealed two distinct stages of amino acid band narrowing within the original long sample injection plug occurring both prior to and after in-capillary labeling via zone passing by ortho-phthalaldehyde/N-acetyl l-cysteine (OPA/NAC). This technique enabled direct analysis of d-amino acids in a 95% enantiomeric excess mixture with sub-micromolar detection limits and minimal sample handling, where the capillary functions as a preconcentrator, microreactor, and chiral selector. On-line sample preconcentration with chemical derivatization CE (SPCD-CE) was applied to study the enantioselective amino acid flux in Escherichia coli bacteria cultures, which demonstrated a unique l-Ala efflux into the extracellular medium. New strategies for high-throughput analyses of low-abundance metabolites are important for understanding fundamental physiological processes in bacteria required for screening the efficacy of new classes of antibiotics as well as altered metabolism in genetically modified mutant strains.

  16. Development and application of a microwave-assisted extraction and LC/MS/MS methodology to the determination of antifouling booster biocides in sea mullets (Mugil cephalus) organisms.

    PubMed

    Franco-Barrios, Alejandro; Torres-Padrón, María Esther; Sosa-Ferrera, Zoraida; Santana-Rodríguez, José Juan

    2014-01-01

    A method is presented for the extraction, preconcentration, and determination of two commonly used booster biocides, Irgarol 1051 and diuron, in samples of muscle and liver tissues from Mugil cephalus by microwave-assisted extraction (MAE) followed by SPE for the preconcentration and cleanup step, coupled with LC/MS/MS. The optimum conditions for MAE were established as power 200 W and irradiation time 4 min. Using these conditions, the LOD was 0.13 ng/g for diuron and 0.10 ng/g for Irgarol 1051. The recoveries calculated at three concentration levels (0.5, 5, and 50 ng/g) were greater than 74%. Repeatability was less than 7.5% and reproducibility less than 12.7%. The optimized method was used to monitor these compounds in M. cephalus from different harbors of Gran Canaria Island. The samples were collected bimonthly and processed following the optimized method. High levels of Irgarol 1051 (6.9 +/- 1.03 ng/g) were found in the liver, while diuron was undetected. However, diuron was found in the muscle (1.41 +/- 0.45 ng/g). The proposed sentinel organism could be used in tropical and subtropical regions to continuously biomonitor for booster biocides over long periods of time. This technique could be a useful tool for improving the management of ocean and coastal waters.

  17. Potential of sawdust as a green and economical sorbent for simultaneous preconcentration of trace amounts of cadmium, cobalt, and lead from water, biological, food, and herbal samples.

    PubMed

    Baki, Mostafa Hossein; Shemirani, Farzaneh; Khani, Rouhollah

    2013-05-01

    Application of treated sawdust with NaOH as a green and economical sorbent for simultaneous preconcentration of trace amounts of Cd(II), Co(II), and Pb(II) ions from liver, lettuce, fish, and water as test samples with complicated matrices was investigated. Various parameters, such as effect of pH and contact time, breakthrough volume, type, and concentration of eluent and interference of ions were studied. The sorption was quantitative in the pH of 5.0 to 7.0 and desorption occurred instantaneously with 5.0 mL of mixed solutions of ethanol and 2.0 mol/L HNO3 -HCl and the amount of ions was measured by using flame atomic absorption spectrometry. Linearity was maintained at 3 to 500 μg/L for cobalt, 5.0 to 800 μg/L for lead, and 2.0 to 300 μg/L for cadmium in the original solution. The relative standard deviation was less than 1.80% (n = 6, with concentration of 0.3 mg/L for cadmium and 0.5 mg/L for lead and cobalt). Detection limits and maximum capacity of the sorbent for Co (II), Cd (II), and Pb (II) in the original solution were 0.86, 0.50, and 1.7 μg/L and 28.5, 30.6, and 47.3 mg/g, respectively. The results for spiked real samples, effect of interfering ions, and adsorption capacity indicated that the applicability of this method for lead preconcentration is better than cadmium and cobalt preconcentration from complicated matrices. Practical Application: Sawdust can be applied as a green and economical sorbent for simultaneous preconcentration and solid-phase extraction of metal ions from food and environmental samples with complicated matrices. © 2013 Institute of Food Technologists®

  18. A multi-module microfluidic platform for continuous pre-concentration of water-soluble ions and separation of oil droplets from oil-in-water (O/W) emulsions using a DC-biased AC electrokinetic technique.

    PubMed

    Das, Dhiman; Phan, Dinh-Tuan; Zhao, Yugang; Kang, Yuejun; Chan, Vincent; Yang, Chun

    2017-03-01

    A novel continuous flow microfluidic platform specifically designed for environmental monitoring of O/W emulsions during an aftermath of oil spills is reported herein. Ionized polycyclic aromatic hydrocarbons which are toxic are readily released from crude oil to the surrounding water phase through the smaller oil droplets with enhanced surface area. Hence, a multi-module microfluidic device is fabricated to form ion enrichment zones in the water phase of O/W emulsions for the ease of detection and to separate micron-sized oil droplets from the O/W emulsions. Fluorescein ions in the water phase are used to simulate the presence of these toxic ions in the O/W emulsion. A DC-biased AC electric field is employed in both modules. In the first module, a nanoporous Nafion membrane is used for activating the concentration polarization effect on the fluorescein ions, resulting in the formation of stable ion enrichment zones in the water phase of the emulsion. A 35.6% amplification of the fluorescent signal is achieved in the ion enrichment zone; corresponding to 100% enrichment of the fluorescent dye concentration. In this module, the main inlet is split into two channels by using a Y-junction so that there are two outlets for the oil droplets. The second module located downstream of the first module consists of two oil droplet entrapment zones at two outlets. By switching on the appropriate electrodes, either one of the two oil droplet entrapment zones can be activated and the droplets can be blocked in the corresponding outlet. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Optimization of Antibody-Conjugated Magnetic Nanoparticles for Target Preconcentration and Immunoassays

    DTIC Science & Technology

    2010-01-01

    protein, AlexaFluor647– chicken IgG (Alexa647–chick IgG). Antibody-labeled MNPs (Alexa647– chick–MNPs) were used to preconcentrate the target via magnetic...separation and as the tracer to dem- onstrate binding to slides modified with anti- chicken IgG as a capture agent. A full optimization study of the...magnetically assisted transport evanescent field fluoroimmunoassay; Alexa647–chick–MNPs, MNPs functionalized with fluorescently labeled target chicken IgG

  20. From carbon nanostructures to high-performance sorbents for chromatographic separation and preconcentration

    NASA Astrophysics Data System (ADS)

    Postnov, V. N.; Rodinkov, O. V.; Moskvin, L. N.; Novikov, A. G.; Bugaichenko, A. S.; Krokhina, O. A.

    2016-02-01

    Information on carbon nanostructures (fullerenes, nanotubes, graphene, nanodiamond and nanodispersed active carbon) used to develop high-performance sorbents of organics and heavy metal ions from aqueous solutions is collected and analyzed. The advantages in the synthesis of hybrid carbon nanostructures and the possibilities of surface modification of these systems in order to carry out fast sorption pre-concentration are considered. Prospects for application of these materials in sorption technologies and analytical chemistry are discussed. The bibliography includes 364 references.

  1. Chemical preconcentrator

    DOEpatents

    Manginell, Ronald P.; Frye-Mason, Gregory C.

    2001-01-01

    A chemical preconcentrator is disclosed with applications to chemical sensing and analysis. The preconcentrator can be formed by depositing a resistive heating element (e.g. platinum) over a membrane (e.g. silicon nitride) suspended above a substrate. A coating of a sorptive material (e.g. a microporous hydrophobic sol-gel coating or a polymer coating) is formed on the suspended membrane proximate to the heating element to selective sorb one or more chemical species of interest over a time period, thereby concentrating the chemical species in the sorptive material. Upon heating the sorptive material with the resistive heating element, the sorbed chemical species are released for detection and analysis in a relatively high concentration and over a relatively short time period. The sorptive material can be made to selectively sorb particular chemical species of interest while not substantially sorbing other chemical species not of interest. The present invention has applications for use in forming high-sensitivity, rapid-response miniaturized chemical analysis systems (e.g. a "chem lab on a chip").

  2. Highly Sensitive Aluminium(III) Ion Sensor Based on a Self-assembled Monolayer on a Gold Nanoparticles Modified Screen-printed Carbon Electrode.

    PubMed

    See, Wong Pooi; Heng, Lee Yook; Nathan, Sheila

    2015-01-01

    A new approach for the development of a highly sensitive aluminium(III) ion sensor via the preconcentration of aluminium(III) ion with a self-assembled monolayer on a gold nanoparticles modified screen-printed carbon electrode and current mediation by potassium ferricyanide redox behavior during aluminium(III) ion binding has been attempted. A monolayer of mercaptosuccinic acid served as an effective complexation ligand for the preconcentration of trace aluminium; this led to an enhancement of aluminium(III) ion capture and thus improved the sensitivity of the sensor with a detection limit of down to the ppb level. Under the optimum experimental conditions, the sensor exhibited a wide linear dynamic range from 0.041 to 12.4 μM. The lower detection limit of the developed sensor was 0.037 μM (8.90 ppb) using a 10 min preconcentration time. The sensor showed excellent selectivity towards aluminium(III) ion over other interference ions.

  3. Simultaneous preconcentration of cadmium and lead in water samples with silica gel and determination by flame atomic absorption spectrometry.

    PubMed

    Xu, Hongbo; Wu, Yun; Wang, Jian; Shang, Xuewei; Jiang, Xiaojun

    2013-12-01

    A new method that utilizes pretreated silica gel as an adsorbent has been developed for simultaneous preconcentration of trace Cd(II) and Pb(II) prior to the measurement by flame atomic absorption spectrometry. The effects of pH, the shaking time, the elution condition and the coexisting ions on the separation/preconcentration conditions of analytes were investigated. Under optimized conditions, the static adsorption capacity of Cd(II) and Pb(II) were 45.5 and 27.1mg/g, the relative standard deviations were 3.2% and 1.7% (for n = 11), and the limits of detection obtained were 4.25 and 0.60 ng/mL, respectively. The method was validated by analyzing the certified reference materials GBW 07304a (stream sediment) and successfully applied to the analysis of various treated wastewater samples with satisfactory results. Copyright © 2013 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.

  4. Permeation absorption sampler with multiple detection

    DOEpatents

    Zaromb, Solomon

    1990-01-01

    A system for detecting analytes in air or aqueous systems includes a permeation absorption preconcentrator sampler for the analytes and analyte detectors. The preconcentrator has an inner fluid-permeable container into which a charge of analyte-sorbing liquid is intermittently injected, and a fluid-impermeable outer container. The sample is passed through the outer container and around the inner container for trapping and preconcentrating the analyte in the sorbing liquid. The analyte can be detected photometrically by injecting with the sorbing material a reagent which reacts with the analyte to produce a characteristic color or fluorescence which is detected by illuminating the contents of the inner container with a light source and measuring the absorbed or emitted light, or by producing a characteristic chemiluminescence which can be detected by a suitable light sensor. The analyte can also be detected amperometrically. Multiple inner containers may be provided into which a plurality of sorbing liquids are respectively introduced for simultaneously detecting different analytes. Baffles may be provided in the outer container. A calibration technique is disclosed.

  5. Applications of organo-silica nanocomposites for SPNE of Hg(II)

    NASA Astrophysics Data System (ADS)

    Kaur, Anupreet

    2016-02-01

    An analytical method using modified SiO2 nanoparticles as solid-phase extractant has been developed for the preconcentration of trace amounts of Hg(II) in different water samples. Conditions of the analysis such as preconcentration factor, effect of pH, sample volume, shaking time, elution conditions and effects of interfering ions for the recovery of analyte were investigated. The adsorption capacity of nanometer SiO2-APTMS was found to be 181.42 µmol g-1 at optimum pH and the detection limit (3σ) was 0.45 µg L-1. The extractant showed rapid kinetic sorption. The adsorption equilibrium of Hg(II) on nanometer SiO2-APTMS was achieved just in 15 min. Adsorbed Hg(II) was easily eluted with 4 mL of 2.0 M hydrochloric acid. The maximum preconcentration factor was 75. The method was applied for the determination of trace amounts of Hg(II) in various synthetic samples and water samples.

  6. Comparison of activated carbon and oxidized multiwalled carbon nanotubes modified with bis(3-nitrobenzylidene)-1,2-ethanediamine for enrichment of trace amounts of some metal ions.

    PubMed

    Ghaedi, Mehrorang; Montazerozohori, Mortaza; Tabatabie, Maryam; Noormohamadi, Hamid; Haghighi, Alireza Borhan

    2012-01-01

    The efficiency of modified activated carbon (AC) and multiwalled carbon nanotubes (MWCNTs) for the separation/preconcentration and determination of Co, Cd, Pb, Zn, and Cu following their complexation by bis(3-nitrobenzylidene)-1,2-ethanediamine has been described and compared. A one-at-a-time optimization method investigated the influence of various parameters that significantly influence the recoveries of the studied metal ions. At the optimum values of all variables, the response was linear over the range of 0.01-0.3 microg/mL, and detection limit (3 SDb/m, n = 10) was between 1.41-2.05 ng/mL for both sorbents while the preconcentration factor was 100 for AC and 500 for MWCNTs. The method was successfully applied for preconcentration and determination of trace amount of the aforementioned ions in various real samples such as orange, lettuce, bread, and pear.

  7. Detection biomarkers of lung cancer using mini-GC-PID system integrated with micro GC column and micro pre-concentrator

    PubMed Central

    2014-01-01

    The survival rate of lung cancer can be significantly improved by monitoring biomarkers in exhaled air that indicate diseases in early stage, so it is very important to develop micro analytical systems which can offer a fast, on-site, real-time detecting biomarkers in exhaled air. In this paper, a mini-gas chromatography (GC)-photo-ionization detector (PID) system integrated with a micro GC column and a micro pre-concentrator was developed for forming an inexpensive, fast, and non-invasive diagnostic tool for lung cancer. This system has very strong concentrate ability owing to its integrated micro pre-concentrator, which make the detection of trace components in exhaled air very easy. In addition, the integrated micro GC column can separate complex mixtures, which overcome low resolution and poor anti-interference ability of other instruments. The results indicated that the mini-GC-PID system can effectively separate and detect the biomarkers at parts-per-billion (ppb) level. PMID:25339856

  8. The mercury isotope composition of Arctic coastal seawater

    NASA Astrophysics Data System (ADS)

    Štrok, Marko; Baya, Pascale Anabelle; Hintelmann, Holger

    2015-11-01

    For the first time, Hg isotope composition of seawater in the Canadian Arctic Archipelago is reported. Hg was pre-concentrated from large volumes of seawater sampling using anion exchange resins onboard the research vessel immediately after collection. Elution of Hg was performed in laboratory followed by isotope composition determination by multi-collector inductively coupled plasma mass spectrometry (MC-ICP-MS). For comparison, seawater from two stations was shipped to the laboratory and processed within it. Results showed negative mass-dependent fractionation in the range from -2.85 to -1.10‰ for δ202Hg, as well as slightly positive mass-independent fractionation of odd Hg isotopes. Positive mass-independent fractionation of 200Hg was also observed. Samples that were pre-concentrated in the laboratory showed different Hg isotope signatures and this is most probably due to the abiotic reduction of Hg in the dark by organic matter during storage and shipment after sampling. This emphasizes the need for immediate onboard pre-concentration.

  9. Pyridine-functionalized Fe₃O₄ nanoparticles as a novel sorbent for the preconcentration of lead and cadmium ions in tree leaf as a bioindicator of urban traffic pollution.

    PubMed

    Sayar, Omid; Zhad, Hamid Reza Lotfi Zadeh; Sadeghi, Omid; Amani, Vahid; Najafi, Ezzatolla; Tavassoli, Najmeh

    2012-12-01

    We have developed a facile and highly sensitive sorbent for cadmium and lead ions. It is based on Fe₃O₄ nanoparticles functionalized with a derivative of picoline and was characterized by scanning electron microscopy, differential thermographic analysis, and elemental analysis. The material can be applied to the preconcentration of lead and cadmium ions. Factors such as the type, concentration and volume of eluent, the pH of the sample solution, the time for extraction, and the volume of the sample were studied. The effects of a variety of ions on preconcentration and recovery of these ions were also investigated. The ions were determined by FAAS, and the limits of detection are <0.8 and <0.061 μg L⁻¹ for lead and cadmium, respectively. Recoveries and precisions are >98.0 % and <1.3 %, respectively. The method was validated by analyzing several certified leaf reference materials.

  10. Simultaneous spectrophotometric determination of trace amounts of uranium, thorium, and zirconium using the partial least squares method after their preconcentration by alpha-benzoin oxime modified Amberlite XAD-2000 resin.

    PubMed

    Ghasemi, Jahan B; Zolfonoun, E

    2010-01-15

    A new solid phase extraction method for separation and preconcentration of trace amounts of uranium, thorium, and zirconium in water samples is proposed. The procedure is based on the adsorption of U(VI), Th(IV) and Zr(IV) ions on a column of Amberlite XAD-2000 resin loaded with alpha-benzoin oxime prior to their simultaneous spectrophotometric determination with Arsenazo III using orthogonal signal correction partial least squares method. The enrichment factor for preconcentration of uranium, thorium, and zirconium was found to be 100. The detection limits for U(VI), Th(IV) and Zr(IV) were 0.50, 0.54, and 0.48microgL(-1), respectively. The precision of the method, evaluated as the relative standard deviation obtained by analyzing a series of 10 replicates, was below 4% for all elements. The practical applicability of the developed sorbent was examined using synthetic seawater, natural waters and ceramic samples.

  11. Determination of volatile components of green, black, oolong and white tea by optimized ultrasound-assisted extraction-dispersive liquid-liquid microextraction coupled with gas chromatography.

    PubMed

    Sereshti, Hassan; Samadi, Soheila; Jalali-Heravi, Mehdi

    2013-03-08

    Ultrasound assisted extraction (UAE) followed by dispersive liquid-liquid microextraction (DLLME) was used for extraction and preconcentration of volatile constituents of six tea plants. The preconcentrated compounds were analyzed by gas chromatography-mass spectrometry (GC-MS). Totally, 42 compounds were identified and caffeine was quantitatively determined. The main parameters (factors) of the extraction process were optimized by using a central composite design (CCD). Methanol and chloroform were selected as the extraction solvent and preconcentration solvent, respectively .The optimal conditions were obtained as 21 in for sonication time; 32°C for temperature; 27 L for volume of extraction solvent and 7.4% for salt concentration (NaCl/H(2)O). The determination coefficient (R(2)) was 0.9988. The relative standard deviation (RSD %) was 4.8 (n=5), and the enhancement factors (EFs) were 4.0-42.6. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Enhancement of the conductivity detection signal in capillary electrophoresis systems using neutral cyclodextrins as sweeping agents.

    PubMed

    Boublík, Milan; Riesová, Martina; Dubský, Pavel; Gaš, Bohuslav

    2018-06-01

    Conductivity detection is a universal detection technique often encountered in electrophoretic separation systems, especially in modern chip-electrophoresis based devices. On the other hand, it is sparsely combined with another contemporary trend of enhancing limits of detection by means of various preconcentration strategies. This can be attributed to the fact that a preconcentration experimental setup usually brings about disturbances in a conductivity baseline. Sweeping with a neutral sweeping agent seems a good candidate for overcoming this problem. A neutral sweeping agent does not hinder the conductivity detection while a charged analyte may preconcentrate on its boundary due to a decrease in its effective mobility. This study investigates such sweeping systems theoretically, by means of computer simulations, and experimentally. A formula is provided for the reliable estimation of the preconcentration factor. Additionally, it is demonstrated that the conductivity signal can significantly benefit from slowing down the analyte and thus the overall signal enhancement can easily overweight amplification caused solely by the sweeping process. The overall enhancement factor can be deduced a priori from the linearized theory of electrophoresis implemented in the PeakMaster freeware. Sweeping by neutral cyclodextrin is demonstrated on an amplification of a conductivity signal of flurbiprofen in a real drug sample. Finally, a possible formation of unexpected system peaks in systems with a neutral sweeping agent is revealed by the computer simulation and confirmed experimentally. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Evaluation of calcium alginate beads for Ce, La and Nd preconcentration from groundwater prior to ICP OES analysis.

    PubMed

    Arantes de Carvalho, Gabriel G; Kondaveeti, Stalin; Petri, Denise F S; Fioroto, Alexandre M; Albuquerque, Luiza G R; Oliveira, Pedro V

    2016-12-01

    Analytical methods for the determination of rare earth elements (REE) in natural waters by plasma spectrochemical techniques often require sample preparation procedures for analytes preconcentration as well as for removing matrix constituents, that may interfere on the analytical measurements. In the present work, calcium alginate (CA) beads were used for the first time aiming at Ce, La and Nd preconcentration from groundwater samples for further determination by inductively coupled plasma optical emission spectrometry (ICP OES). Test samples were analyzed in batch mode by transferring a 40mL test portion (pH=5±0.2) into a 50mL polyethylene flask containing 125mg CA beads. After 15min contact, the analytes were quantitatively extracted from the loaded CA beads with 2.0mL of 1.0molL -1 HCl solution for further determination by ICP OES, using Ce (II) 456.236, La (II) 379.478 and Nd (II) 430.358nm emission lines. The proposed approach is a reliable alternative for REE single-stage preconcentration from aqueous samples, as it provided accurate results based on the addition and recovery analysis of groundwater. The results obtained by the proposed method were also compared with those from reference method based on inductively coupled plasma mass spectrometry (ICP-MS) and no significant differences were observed after applying the Student's t-test at 95% confidence level. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Nano magnetic solid phase extraction for preconcentration of lead ions in environmental samples by a newly synthesized reagent.

    PubMed

    Golshekan, Mostafa; Shariati, Shahab

    2013-01-01

    In this study, magnetite nanoparticles with particle size lower than 47 nm were synthesized and were applied for preconcentration of Pb2+ ions from aqueous solutions. To preconcentrate the Pb2+ ions, the surface of the synthesized nano particles was modified with sodium dodecyl sulfate (SDS) as an anionic surfactant. A new chelating agent (2-((E)-2-amino-4,5-dinitrophenylimino)methyl)phenol) was synthesized and used to form a very stable complex with Pb2+ ions. The lead ions formed complexes and were quantitatively extracted with SDS-coated magnetite nanoparticles. After magnetic separation of adsorbent, the adsorbent was eluted with 0.5% (v/v) HC1 in dimethyl sulfoxide (DMSO) prior to analysis by flame atomic absorption spectrometry (FAAS). Orthogonal array design (OAD) was used to study and optimize the different experimental parameters. Under the optimum conditions, enhancement factor up to 63.5 was achieved for extraction from only 10 mL of sample solution and the relative standard deviation (RSD %) of the method was lower than 2.8%. The obtained calibration curve was linear in the range of 1-300 pg L-' with reasonable linearity (r2 > 0.998). The limit of detection (LOD) based on S/N = 3 was 0.04 microg L(-1) for 10 mL sample volumes. Finally, applicability of the proposed method was successfully confirmed by preconcentration and determination of trace amounts of lead ions in environmental samples and satisfactory results were obtained.

  15. Solid-phase extraction of some heavy metal ions on a double-walled carbon nanotube disk and determination by flame atomic absorption spectrometry.

    PubMed

    Karatepe, Aslihan; Soylak, Mustafa; Elçi, Latif

    2011-01-01

    A new preconcentration method was developed for the determination of trace amounts of Cu(II), Fe(III), Pb(II), Ni(II), and Cd(II) on a double-walled carbon nanotube disk. 4-(2-Thiazolylazo) resorcinol was used as a complexing reagent. The effects of parameters, including pH of the solutions, amounts of complexing reagent, eluent type, sample volume, flow rates of solutions, and matrix ions were examined for quantitative recoveries of the studied analyte ions. The retained metal ions were eluted by 2 M HNO3. The LOD values for the analytes were in the range of 0.7-4.4 microg/mL. Natural water samples and standard reference materials were analyzed by the presented method.

  16. Development of an Atmospheric Pressure Ionization Mass Spectrometer

    NASA Technical Reports Server (NTRS)

    1998-01-01

    A commercial atmospheric pressure ionization mass spectrometer (APIMS) was purchased from EXTREL Mass Spectrometry, Inc. (Pittsburgh, PA). Our research objectives were to adapt this instrument and develop techniques for real-time determinations of the concentrations of trace species in the atmosphere. The prototype instrument is capable of making high frequency measurements with no sample preconcentrations. Isotopically labeled standards are used as an internal standard to obtain high precision and to compensate for changes in instrument sensitivity and analyte losses in the sampling manifold as described by Bandy and coworkers. The prototype instrument is capable of being deployed on NASA C130, Electra, P3, and DC8 aircraft. After purchasing and taking delivery by June 1994, we assembled the mass spectrometer, data acquisition, and manifold flow control instrumentation in electronic racks and performed tests.

  17. Development of continuous dispersive liquid-liquid microextraction performed in home-made device for extraction and preconcentration of aryloxyphenoxy-propionate herbicides from aqueous samples followed by gas chromatography-flame ionization detection.

    PubMed

    Farajzadeh, Mir Ali; Mohebbi, Ali; Feriduni, Behruz

    2016-05-12

    In this study, a rapid, simple, and efficient sample preparation method based on continuous dispersive liquid-liquid microextraction has been developed for the extraction and preconcentration of aryloxyphenoxy-propionate herbicides from aqueous samples prior to their analysis by gas chromatography-flame ionization detection. In this method, two parallel glass tubes with different diameters are connected with a teflon stopcock and used as an extraction device. A mixture of disperser and extraction solvents is transferred into one side (narrow tube) of the extraction device and an aqueous phase containing the analytes is filled into the other side (wide tube). Then the stopcock is opened and the mixture of disperser and extraction solvents mixes with the aqueous phase. By this action, the extraction solvent is dispersed continuously as fine droplets into the aqueous sample and the target analytes are extracted into the fine droplets of the extraction solvent. The fine droplets move up through the aqueous phase due to its low density compared to aqueous phase and collect on the surface of the aqueous phase as an organic layer. Finally an aliquot of the organic phase is removed and injected into the separation system for analysis. Several parameters that can affect extraction efficiency including type and volume of extraction and disperser solvents, sample pH, and ionic strength were investigated and optimized. Under the optimum extraction conditions, the extraction recoveries and enrichment factors ranged from 49 to 74% and 1633 to 2466, respectively. Relative standard deviations were in the ranges of 3-6% (n = 6, C = 30 μg L(-1)) for intra-day and 4-7% (n = 4, C = 30 μg L(-1)) for inter-day precisions. The limits of detection were in the range of 0.20-0.86 μg L(-1). Finally the proposed method was successfully applied to determine the target herbicides in fruit juice and vegetable samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Ice matrix in reconfigurable microfluidic systems

    NASA Astrophysics Data System (ADS)

    Bossi, A. M.; Vareijka, M.; Piletska, E. V.; Turner, A. P. F.; Meglinski, I.; Piletsky, S. A.

    2013-07-01

    Microfluidic devices find many applications in biotechnologies. Here, we introduce a flexible and biocompatible microfluidic ice-based platform with tunable parameters and configuration of microfluidic patterns that can be changed multiple times during experiments. Freezing and melting of cavities, channels and complex relief structures created and maintained in the bulk of ice by continuous scanning of an infrared laser beam are used as a valve action in microfluidic systems. We demonstrate that pre-concentration of samples and transport of ions and dyes through the open channels created can be achieved in ice microfluidic patterns by IR laser-assisted zone melting. The proposed approach can be useful for performing separation and sensing processes in flexible reconfigurable microfluidic devices.

  19. High performance liquid chromatography for the simultaneous analysis of penicillin residues in beef and milk using ion-paired extraction and binary water-acetonitrile mixture.

    PubMed

    Kukusamude, Chunyapuk; Burakham, Rodjana; Chailapakul, Orawon; Srijaranai, Supalax

    2012-04-15

    An ion-paired extraction (IPE) has been developed for the analysis of penicillin antibiotics (penicillin G, oxacillin and cloxacillin) in beef and milk samples using tetrabutylammonium bromide (TBABr) as ion-pairing agent and binary water-acetonitrile as extractant. The factors affecting the IPE efficiency were optimized including solution pH, volume of acetonitrile (ACN), concentration of TBABr and electrolyte salt (NH(4))(2)SO(4). The optimum IPE conditions were 10 mmol L(-1) phosphate buffer pH 8, 2 mL of ACN, 6 mmol L(-1) of TBABr and 2.5 mL of saturated ammonium sulfate. Under the HPLC condition: an Xbridge™ C18 reversed-phase column, isocratic elution of 5 mmol L(-1) phosphate buffer (pH 6.6) and acetonitrile (75:25, v/v) and a flow rate of 1 mL min(-1), with UV detection at 215 nm, the separation of three penicillins was achieved within 10 min. Under the selected optimum conditions, the enhancement of 21-53 folds compared to that without preconcentration and limits of detection (LODs) of 1-2 ng mL(-1) were obtained. Good reproducibility was achieved with RSD<2% for retention time and <5% for slope of calibration curves. The average recoveries higher than 85% were obtained. The proposed IPE-HPLC method has shown to be high efficient preconcentration and analysis method for penicillin residues in beef and milk with LOD lower than the maximum residue limits. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Development of a new extraction method based on counter current salting-out homogenous liquid-liquid extraction followed by dispersive liquid-liquid microextraction: Application for the extraction and preconcentration of widely used pesticides from fruit juices.

    PubMed

    Farajzadeh, Mir Ali; Feriduni, Behruz; Mogaddam, Mohammad Reza Afshar

    2016-01-01

    In this paper, a new extraction method based on counter current salting-out homogenous liquid-liquid extraction (CCSHLLE) followed by dispersive liquid-liquid microextraction (DLLME) has been developed for the extraction and preconcentration of widely used pesticides in fruit juice samples prior to their analysis by gas chromatography-flame ionization detection (GC-FID). In this method, initially, sodium chloride as a separation reagent is filled into a small column and a mixture of water (or fruit juice) and acetonitrile is passed through the column. By passing the mixture sodium chloride is dissolved and the fine droplets of acetonitrile are formed due to salting-out effect. The produced droplets go up through the remained mixture and collect as a separated layer. Then, the collected organic phase (acetonitrile) is removed with a syringe and mixed with 1,1,2,2-tetrachloroethane (extraction solvent at µL level). In the second step, for further enrichment of the analytes the above mixture is injected into 5 mL de-ionized water placed in a test tube with conical bottom in order to dissolve acetonitrile into water and to achieve a sedimented phase at µL-level volume containing the enriched analytes. Under the optimal extraction conditions (extraction solvent, 1.5 mL acetonitrile; pH, 7; flow rate, 0.5 mL min(-1); preconcentration solvent, 20 µL 1,1,2,2-tetrachloroethane; NaCl concentration; 5%, w/w; and centrifugation rate and time, 5000 rpm and 5 min, respectively), the extraction recoveries and enrichment factors ranged from 87% to 96% and 544 to 600, respectively. Repeatability of the proposed method, expressed as relative standard deviations, ranged from 2% to 6% for intra-day (n=6, C=250 or 500 µg L(-1)) and inter-days (n=4, C=250 or 500 µg L(-1)) precisions. Limits of detection are obtained between 2 and 12 µg L(-1). Finally, the proposed method is applied for the determination of the target pesticide residues in the juice samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Determination of inorganic arsenic species in natural waters--benefits of separation and preconcentration on ion exchange and hybrid resins.

    PubMed

    Ben Issa, Nureddin; Rajaković-Ognjanović, Vladana N; Jovanović, Branislava M; Rajaković, Ljubinka V

    2010-07-19

    A simple method for the separation and determination of inorganic arsenic (iAs) species in natural and drinking water was developed. Procedures for sample preparation, separation of As(III) and As(V) species and preconcentration of the total iAs on fixed bed columns were defined. Two resins, a strong base anion exchange (SBAE) resin and a hybrid (HY) resin were utilized. The inductively-coupled plasma-mass spectrometry method was applied as the analytical method for the determination of the arsenic concentration in water. The governing factors for the ion exchange/sorption of arsenic on resins in a batch and a fixed bed flow system were analyzed and compared. Acidity of the water, which plays an important role in the control of the ionic or molecular forms of arsenic species, was beneficial for the separation; by adjusting the pH values to less than 8.00, the SBAE resin separated As(V) from As(III) in water by retaining As(V) and allowing As(III) to pass through. The sorption activity of the hydrated iron oxide particles integrated into the HY resin was beneficial for bonding of all iAs species over a wide range of pH values from 5.00 to 11.00. The resin capacities were calculated according to the breakthrough points in a fixed bed flow system. At pH 7.50, the SBAE resin bound more than 370 microg g(-1) of As(V) while the HY resin bound more than 4150 microg g(-1) of As(III) and more than 3500 microg g(-1) of As(V). The high capacities and selectivity of the resins were considered as advantageous for the development and application of two procedures, one for the separation and determination of As(III) (with SBAE) and the other for the preconcentration and determination of the total arsenic (with HY resin). Methods were established through basic analytical procedures (with external standards, certified reference materials and the standard addition method) and by the parallel analysis of some samples using the atomic absorption spectrometry-hydride generation technique. The analytical properties of both procedures were similar: the limit of detection was 0.24 microg L(-1), the limit of quantification was 0.80 microg L(-1) and the relative standard deviations for samples with a content of arsenic from 10.00 to 300.0 microg L(-1) ranged from 1.1 to 5.8%. The interference effects of anions commonly found in water and some organic species which can be present in water were found to be negligible. Verification with certified reference materials proved that the experimental concentrations found for model solutions and real samples were in agreement with the certified values. 2010 Elsevier B.V. All rights reserved.

  2. Sorption of tetracycline antibiotics on hyper-crosslinked polystyrene from aqueous and aqueous-organic media

    NASA Astrophysics Data System (ADS)

    Udalova, A. Yu.; Dmitrienko, S. G.; Apyari, V. V.

    2015-06-01

    The sorption of tetracycline, oxytetracycline, chlortetracycline, and doxycycline on hyper-cross-linked polystyrene from aqueous and aqueous-organic solutions is studied under static and dynamic conditions in order to extend the range of the sorbents suitable for sorption isolation and the preconcentration of tetracycline antibiotics. Features of tetracycline sorption depending on the acidity of a solution and the nature and concentration of the compounds are explained. It is shown that hyper-crosslinked polystyrene can be used for the group sorption preconcentration of these compounds.

  3. Glassy carbon electrode modified with carbon black for sensitive estradiol determination by means of voltammetry and flow injection analysis with amperometric detection.

    PubMed

    Smajdor, Joanna; Piech, Robert; Ławrywianiec, Martyna; Paczosa-Bator, Beata

    2018-03-01

    A voltammetric method for fast and sensitive estradiol determination using carbon black modified glassy carbon electrode (CBGC) is proposed. The use of carbon black as a modifying layer led to obtain low detection limit (9.2·10 -8  mol L -1 for a preconcentration time of 60 s) and stability of registered signals (measured as RSD is 1.3%, n = 7, estradiol concentration 0.5·10 -6  mol L -1 ). Cyclic voltammetry study revealed that in phosphate media estradiol suffers irreversible one-proton and one-electron oxidation process. Under the optimum conditions, estradiol calibration curve was linear in the concentration range from 0.15·10 -6 to 3.5·10 -6  mol L -1 . The proposed method enable to determine estradiol content in different pharmaceutical formulation with good recovery. Amperometric measurements of estradiol were performed as well to indicate the possibility of its fast and accurate determination under the flow conditions. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Determination of Hg(2+) by on-line separation and pre-concentration with atmospheric-pressure solution-cathode glow discharge atomic emission spectrometry.

    PubMed

    Li, Qing; Zhang, Zhen; Wang, Zheng

    2014-10-03

    A simple and sensitive method to determine Hg(2+) was developed by combining solution-cathode glow discharge atomic emission spectrometry (SCGD-AES) with flow injection (FI) based on on-line solid-phase extraction (SPE). We synthesized l-cysteine-modified mesoporous silica and packed it in an SPE microcolumn, which was experimentally determined to possess a good mercury adsorption capacity. An enrichment factor of 42 was achieved under optimized Hg(2+) elution conditions, namely, an FI flow rate of 2.0 mL min(-1) and an eluent comprised of 10% thiourea in 0.2 mol L(-1) HNO3. The detection limit of FI-SCGD-AES was determined to be 0.75 μg L(-1), and the precision of the 11 replicate Hg(2+) measurements was 0.86% at a concentration of 100 μg L(-1). The proposed method was validated by determining Hg(2+) in certified reference materials such as human hair (GBW09101b) and stream sediment (GBW07310). Copyright © 2014. Published by Elsevier B.V.

  5. Investigation of arsenic removal in batch wise water treatments by means of sequential hydride generation flow injection analysis.

    PubMed

    Toda, Kei; Takaki, Mari; Hashem, Md Abul

    2008-08-01

    Arsenic water pollution is a big issue worldwide. Determination of inorganic arsenic in each oxidation state is important because As(III) is much more toxic than As(V). An automated arsenic measurement system was developed based on complete vaporization of As by a sequential procedure and collection/preconcentration of the vaporized AsH(3), which was subsequently measured by a flow analysis. The automated sensitive method was applied to monitoring As(III) and As(V) concentrations in contaminated water standing overnight. Behaviors of arsenics were investigated in different conditions, and unique time dependence profiles were obtained. For example, in the standing of anaerobic water samples, the As(III) concentration immediately began decreasing whereas dead time was observed in the removal of As(V). In normal groundwater conditions, most arsenic was removed from the water simply by standing overnight. To obtain more effective removal, the addition of oxidants and use of steel wools were investigated. Simple batch wise treatments of arsenic contaminated water were demonstrated, and detail of the transitional changes in As(III) and As(V) were investigated.

  6. Determination of herbicides in mineral and stagnant waters at ng/L levels using capillary electrophoresis and UV detection combined with solid-phase extraction and sample stacking.

    PubMed

    Hernández-Borges, Javier; García-Montelongo, Francisco J; Cifuentes, Alejandro; Rodríguez-Delgado, Miguel Angel

    2005-04-08

    In this work, the combined use of solid-phase extraction (SPE) and on-line preconcentration strategies as normal stacking mode (NSM) and stacking with matrix removal (SWMR) for the ultrasensitive and simultaneous capillary electrophoresis-ultraviolet analysis (CE-UV) of five triazolopyrimidine sulfonanilide pesticides (i.e., diclosulam, cloransulam-methyl, flumetsulam, metosulam and florasulam) in different types of water is investigated. An adequate separation electrolyte for the separation and stacking of these pesticides was obtained, considering also its compatibility with MS detection, which consisted of 24 mM formic acid and 16 mM ammonium carbonate at pH 6.4. It was observed that the use of this running buffer together with the SWMR preconcentration method provided the best results in terms of sensitivity (between 6.54 and 11.9 microg/L) and peak efficiency (up to 550000 theoretical plates per meter, NTP/m). When this on-line preconcentration procedure was combined with an off-line sample preconcentration step as SPE using C18 cartridges, the selected herbicides could be detected in the ng/L range. The optimized SPE-SWMR-CE-UV method was applied to the determination of the selected group of pesticides in spiked and non-spiked mineral and stagnant waters. Recoveries ranged between 55 and 110% and limits of detection between 131 and 342 ng/L. This work shows the great possibilities of the combined use of SPE-SWMR-CE-UV to overcome the sensitivity problems usually linked to CE analysis.

  7. Determination of atrazine and simazine in water samples by high-performance liquid chromatography after preconcentration with heat-treated diatomaceous earth.

    PubMed

    Katsumata, Hideyuki; Kaneco, Satoshi; Suzuki, Tohru; Ohta, Kiyohisa

    2006-09-08

    A sensitive and selective column adsorption method is proposed for the preconcentration and determination of atrazine and simazine. Atrazine and simazine were preconcentrated on heat-treated diatomaceous earth as an adsorbent and then determined by high-performance liquid chromatography (HPLC). Several parameters on the recoveries of the analytes were investigated. The experimental results showed that it was possible to obtain quantitative analysis when the solution pH was 2 using 100 mL of validation solution containing 1.5 microg of triazines and 5 mL of ethanol as an eluent. Recoveries of atrazine and simazine were 95.7+/-4.2% and 75.0+/-1.9% with a relative standard deviation for seven determinations of 4.7% and 2.7% under optimum conditions. The maximum preconcentration factor was 100 for triazines when 500 mL of sample solution volume was used. The linear ranges of calibration curves for atrazine and simazine were 1-150 ng mL(-1) and 1-300 ng mL(-1), respectively, with correlation coefficients of 0.999 and the detection limits (3Signal-to-Noise) were 0.24 ng mL(-1) and 0.21 ng mL(-1) for atrazine and simazine. The capacity of the adsorbent was also examined and found to be 0.8 mg g(-1) and 1.3 mg g(-1) for atrazine and simazine, respectively. The proposed method was successfully applied to the determination of triazines in river water and tap water samples with high precision and accuracy.

  8. MULTIELEMENT SOLID PHASE PRECONCENTRATION USING A CHELATING RESIN OF STYRENE DIVINYLBENZENE COPOLYMER AND APPLICATION TO ANALYSIS OF SEAWATER AND FISH OTOLITHS BY INDUCTIVELY COUPLED PLASMA MASS SPECTROMETRY (ICP�MS)

    PubMed Central

    Zereen, Fahmida; Yilmaz, Vedat; Arslan, Zikri

    2013-01-01

    A new chelating resin has been synthesized by immobilizing 4–(2–thiazolylazo) resorcinol (TAR) onto styrene divinlybenzene copolymer and examined for on-line solid phase extraction/preconcentration of Cd, Co, Cu, Ni, Pb and Zn in seawater and fish otoliths for determination by inductively plasma mass spectrometry (ICP-MS). A volume of 5.0 mL sample solution was loaded onto the mini column of TAR immobilized resin at 2.0 mL min−1 via a sequential injection system. The optimum pH for multielement preconcentration was around pH 5.5. Recoveries were better than 96% in artificial seawater. Elution was achieved with 1.0 mL of 0.75 mol L−1 HNO3. The resin possesses large sorption capacity ranging from 82.0 µmol g−1 for Pb to 319 µmol g−1 for Cu. The detection limits (3s) varied between 0.0016 µg L−1 (Cd) and to 0.015 µg L−1 (Zn) for preconcentration of 5.0 mL blank solutions (pH 5.5). Relative standard deviation (RSD)for three replicate runs was between 0.3% (Cd) and 6% (Zn) at 1.0 µg L−1 level. The procedure was validated by analysis of Nearshore Seawater certified reference material (CASS–4), and then successfully applied to the determination of the trace elements in fish otoliths (CRM 22) and in coastal seawater and estuarine water samples. PMID:24976635

  9. Interference-free determination of trace copper in freshly ripened honeys by flame atomic absorption spectrometry following a preconcentration by solid-phase extraction and a two-step elution process.

    PubMed

    Pohl, Pawel; Stecka, Helena; Jamroz, Piotr

    2014-02-01

    A fast and straightforward procedure aimed at separating copper (Cu) ions from monosacharides and preconcentrating their traces before flame atomic absorption spectrometry (FAAS) measurements was developed, and its suitability was evaluated by the analysis of freshly ripened honeys on the content of this environmentally and physiologically relevant element. This procedure included the passage (at 20 mL/min) of 10 % (m/v) solutions of honeys (100 mL) through resin beds of Dowex 50 W × 8-400 to retain Cu by solid-phase extraction (SPE) and separate it from the glucose and fructose matrix. In turn, SPE columns were rinsed at 20 mL/min with 20 mL of water and subsequently washed with 20 mL of a 0.5 mol/L HNO3 solution (at 2.0 mL/min) to elute potassium and sodium. Preconcentrated Cu was stripped (at 2.0 mL/min) with 5.0 mL of a 2.0 mol/L HCl solution and determined by FAAS. The proposed procedure was used for the analysis of six ripened monoflower and multiflower honeys, enabling the measurement of Cu within the range of 0.17-0.42 μg/g and with a precision of 3-10%. Recoveries of Cu added to respective honey solutions were within 94-102%, proving the good accuracy of this procedure. The detection limit of Cu achieved with this SPE preconcentration/separation procedure and FAAS detection was 3.6 ng/g.

  10. Distribution of pesticides in n-hexane/water and n-hexane/acetonitrile systems and estimation of possibilities of their extraction isolation and preconcentration from various matrices.

    PubMed

    Zayats, M F; Leschev, S M; Petrashkevich, N V; Zayats, M A; Kadenczki, L; Szitás, R; Szemán Dobrik, H; Keresztény, N

    2013-04-24

    Distribution of 150 most widely used pesticides of different chemical classes (amides, anilinopirimidines, aromatics, benzenesulfonates, carbamates, dicarboximides, organophosphorus compounds, phenyl esters, phenylureas, pyrazoles, pyrethroids, pyrimidines, strobilurins, sulfamides, triazines, triazoles, etc.) in n-hexane/water and n-hexane/acetonitrile systems was investigated at 25°C. Distribution constants of pesticides (P) have been calculated as ratio of pesticide concentration in n-hexane to its concentration in water or acetonitrile phase. HPLC and GC methods were used for pesticides determination in phases. It was found that the overwhelming majority of pesticides are hydrophobic, i.e. in n-hexane/water system LgP≫0, and the difference in LgP values can reach 9.1 units. Replacement of water for acetonitrile leads to dramatic fall of LgP values reaching 9.5 units. The majority of LgP values in this case are negative and their differences is strongly leveled in comparison with a hexane/water system. Thus, maximal difference in pesticides LgP values for n-hexane/acetonitrile system is 3.2 units. It is shown that n-hexane can be used for selective and efficient extraction and preconcentration of pesticides from water matrices. On the other hand, acetonitrile is effective for the isolation and preconcentration of pesticides from hydrocarbon and vegetable oil matrices. The distribution constants described in the paper may be effectively used for the estimation of possibilities of extraction isolation, preconcentration and separation of pesticides. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Radionuclide Sensors and Systems for Monitoring Technetium-99 and Strontium-90 in Groundwater at the Hanford Site

    NASA Astrophysics Data System (ADS)

    Grate, J. W.; O'Hara, M. J.; Egorov, O. B.; Burge, S. R.

    2009-12-01

    We have developed automated sensor and analyzer devices for detection and monitoring of trace radionuclides in water, using preconcentrating columns and radiometric detection. The preconcentrating minicolumn sensor concept combines selective capture and detection in a single functional unit, where the column contains tens to hundreds of milligrams of selectively sorbent material, and the entire column content is monitored with a radiometric detector. Compared to thin film sensors with a few microgram of sorbent, this approach achieves tremendous preconcentration with efficient mass transport via pumping. Furthermore, in an equilibration-based mode of operation, the preconcentration by the sensor is maximized while eliminating the need for consumable reagents to regenerate the column; it can simply be re-equilibrated. We have demonstrated quantification of radionuclides such as technetium-99 to levels below drinking water standards in an equilibration-based process that produces steady state signals, signal proportional to concentration, and easy re-equilibration to new concentration levels. Alternatively, analyzers can be developed with separate separation and detection units that are fluidically linked. We have demonstrated detection of strontium-90 to levels below drinking water standards by this approach. We are developing autonomous systems for at-site monitoring on the Hanford Site in Washington State, using the fluidic sensor and analyzer methods, with the aim of monitoring natural and accelerated attenuation processes, remediation and barrier performance, and contaminant fluxes in the environment. Figure 1. The strontium-90 monitoring method deployed as part of the Burge Environmental Universal Sensor Platform, shown on the shores of the Columbia River on the Hanford site in Washington State.

  12. Preconcentration and Determination of Trace Vanadium(V) in Beverages by Combination of Ultrasound Assisted-cloud Point Extraction with Spectrophotometry.

    PubMed

    Kartal Temel, Nuket; Gürkan, Ramazan

    2018-03-01

    A novel ultrasound assisted-cloud point extraction method was developed for preconcentration and determination of V(V) in beverage samples. After complexation by pyrogallol in presence of safranin T at pH 6.0, V(V) ions as ternary complex are extracted into the micellar phase of Triton X-114. The complex was monitored at 533 nm by spectrophotometry. The matrix effect on the recovery of V(V) from the spiked samples at 50 μg L-1 was evaluated. In optimized conditions, the limits of detection and quantification of the method, respectively, was 0.58 and 1.93 μg L-1 in linear range of 2-500 μg L-1 with sensitivity enhancement and preconcentration factors of 47.7 and 40 for preconcentration from 15 mL of sample solution. The recoveries from spiked samples were in range of 93.8-103.2% with a relative standard deviation ranging from 2.6% to 4.1% (25, 100 and 250 μg L-1, n: 5). The accuracy was verified by analysis of two certified samples, and the results were in a good agreement with the certified values. The intra-day and inter-day precision were tested by reproducibility (as 3.3-3.4%) and repeatability (as 3.4-4.1%) analysis for five replicate measurements of V(V) in quality control samples spiked with 5, 10 and 15 μg L-1. Trace V(V) contents of the selected beverage samples by the developed method were successfully determined.

  13. A green and efficient procedure for the preconcentration and determination of cadmium, nickel and zinc from freshwater, hemodialysis solutions and tuna fish samples by cloud point extraction and flame atomic absorption spectrometry.

    PubMed

    Galbeiro, Rafaela; Garcia, Samara; Gaubeur, Ivanise

    2014-04-01

    Cloud point extraction (CPE) was used to simultaneously preconcentrate trace-level cadmium, nickel and zinc for determination by flame atomic absorption spectrometry (FAAS). 1-(2-Pyridilazo)-2-naphthol (PAN) was used as a complexing agent, and the metal complexes were extracted from the aqueous phase by the surfactant Triton X-114 ((1,1,3,3-tetramethylbutyl)phenyl-polyethylene glycol). Under optimized complexation and extraction conditions, the limits of detection were 0.37μgL(-1) (Cd), 2.6μgL(-1) (Ni) and 2.3μgL(-1) (Zn). This extraction was quantitative with a preconcentration factor of 30 and enrichment factor estimated to be 42, 40 and 43, respectively. The method was applied to different complex samples, and the accuracy was evaluated by analyzing a water standard reference material (NIST SRM 1643e), yielding results in agreement with the certified values. Copyright © 2013 Elsevier GmbH. All rights reserved.

  14. Amplified electrochemical detection of nucleic acid hybridization via selective preconcentration of unmodified gold nanoparticles.

    PubMed

    Li, Yuan; Tian, Rui; Zheng, Xingwang; Huang, Rongfu

    2016-08-31

    The common drawback of optical methods for rapid detection of nucleic acid by exploiting the differential affinity of single-/double-stranded nucleic acids for unmodified gold nanoparticles (AuNPs) is its relatively low sensitivity. In this article, on the basis of selective preconcentration of AuNPs unprotected by single-stranded DNA (ssDNA) binding, a novel electrochemical strategy for nucleic acid sequence identification assay has been developed. Through detecting the redox signal mediated by AuNPs on 1, 6-hexanedithiol blocked gold electrode, the proposed method is able to ensure substantial signal amplification and a low background current. This strategy is demonstrated for quantitative analysis of the target microRNA (let-7a) in human breast adenocarcinoma cells, and a detection limit of 16 fM is readily achieved with desirable specificity and sensitivity. These results indicate that the selective preconcentration of AuNPs for electrochemical signal readout can offer a promising platform for the detection of specific nucleic acid sequence. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Solid phase extraction for the speciation and preconcentration of inorganic selenium in water samples: a review.

    PubMed

    Herrero Latorre, C; Barciela García, J; García Martín, S; Peña Crecente, R M

    2013-12-04

    Selenium is an essential element for the normal cellular function of living organisms. However, selenium is toxic at concentrations of only three to five times higher than the essential concentration. The inorganic forms (mainly selenite and selenate) present in environmental water generally exhibit higher toxicity (up to 40 times) than organic forms. Therefore, the determination of low levels of different inorganic selenium species in water is an analytical challenge. Solid-phase extraction has been used as a separation and/or preconcentration technique prior to the determination of selenium species due to the need for accurate measurements for Se species in water at extremely low levels. The present paper provides a critical review of the published methods for inorganic selenium speciation in water samples using solid phase extraction as a preconcentration procedure. On the basis of more than 75 references, the different speciation strategies used for this task have been highlighted and classified. The solid-phase extraction sorbents and the performance and analytical characteristics of the developed methods for Se speciation are also discussed. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Graphene/graphene oxide and their derivatives in the separation/isolation and preconcentration of protein species: A review.

    PubMed

    Chen, Xuwei; Hai, Xin; Wang, Jianhua

    2016-05-30

    The distinctive/unique electrical, chemical and optical properties make graphene/graphene oxide-based materials popular in the field of analytical chemistry. Its large surface offers excellent capacity to anchor target analyte, making it an powerful sorbent in the adsorption and preconcentration of trace level analyte of interest in the field of sample preparation. The large delocalized π-electron system of graphene framework provides strong affinity to species containing aromatic rings, such as proteins, and the abundant active sites on its surface offers the chance to modulate adsorption tendency towards specific protein via functional modification/decoration. This review provides an overview of the current research on graphene/graphene oxide-based materials as attractive and powerful adsorption media in the separation/isolation and preconcentration of protein species from biological sample matrixes. These practices are aiming at providing protein sample of high purity for further investigations and applications, or to achieve certain extent of enrichment prior to quantitative assay. In addition, the challenges and future perspectives in the related research fields have been discussed. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Assessing the integration of forward osmosis and anaerobic digestion for simultaneous wastewater treatment and resource recovery.

    PubMed

    Ansari, Ashley J; Hai, Faisal I; Price, William E; Ngo, Huu H; Guo, Wenshan; Nghiem, Long D

    2018-07-01

    This study assessed the performance and key challenges associated with the integration of forward osmosis (FO) and anaerobic digestion for wastewater treatment and resource recovery. Using a thin film composite polyamide FO membrane, maximising the pre-concentration factor (i.e. system water recovery) resulted in the enrichment of organics and salinity in wastewater. Biomethane potential evaluation indicated that methane production increased correspondingly with the FO pre-concentration factor due to the organic retention in the feed solution. At 90% water recovery, about 10% more methane was produced when using NaOAc compared with NaCl because of the contribution of biodegradable reverse NaOAc flux. No negative impact on anaerobic digestion was observed when wastewater was pre-concentrated ten-fold (90% water recovery) for both draw solutes. Interestingly, the unit cost of methane production using NaOAc was slightly lower than NaCl due to the lower reverse solute flux of NaOAc, although NaCl is a much cheaper chemical. Crown Copyright © 2018. Published by Elsevier Ltd. All rights reserved.

  18. A microextraction procedure based on a task-specific ionic liquid for the separation and preconcentration of lead ions from red lipstick and pine leaves.

    PubMed

    Saljooqi, Asma; Shamspur, Tayebeh; Mohamadi, Maryam; Afzali, Daryoush; Mostafavi, Ali

    2015-05-01

    First, the extraction and preconcentration of ultratrace amounts of lead(II) ions was performed using microliter volumes of a task-specific ionic liquid. The remarkable properties of ionic liquids were added to the advantages of microextraction procedure. The ionic liquid used was trioctylmethylammonium thiosalicylate, which formed a lead thiolate complex due to the chelating effect of the ortho-positioned carboxylate relative to thiol functionality. So, trioctylmethylammonium thiosalicylate played the roles of both chelating agent and extraction solvent simultaneously. Hence, there is no need to use a ligand. The main parameters affecting the efficiency of the method were investigated and optimized. Under optimized conditions, this approach showed a linear range of 2.0-24.0 ng/mL with a detection limit of 0.0010 ng/mL. The proposed method was applied to the extraction and preconcentration of lead from red lipstick and pine leaves samples prior to electrothermal atomic absorption spectroscopic determination. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Signal Enhancement in HPLC/Micro-Coil NMR Using Automated Column Trapping

    PubMed Central

    Djukovic, Danijel; Liu, Shuhui; Henry, Ian; Tobias, Brian; Raftery, Daniel

    2008-01-01

    A new HPLC-NMR system is described that performs analytical separation, pre-concentration, and NMR spectroscopy in rapid succession. The central component of our method is the online pre-concentration sequence that improves the match between post-column analyte peak volume and the micro-coil NMR detection volume. Separated samples are collected on to a C18 guard column with a mobile phase composed of 90% D2O/10% acetonitrile-D3, and back-flashed to the NMR micro-coil probe with 90% acetonitrile-D3/10% D2O. In order to assess the performance of our unit, we separated a standard mixture of 1 mM ibuprofen, naproxen, and phenylbutazone using a commercially available C18 analytical column. The S/N measurements from the NMR acquisitions indicated that we achieved signal enhancement factors up to 10.4 (±1.2)-fold. Furthermore, we observed that pre-concentration factors increased as the injected amount of analyte decreased. The highest concentration enrichment of 14.7 (±2.2)-fold was attained injecting 100 μL solution of 0.2 mM (~4 μg) ibuprofen. PMID:17037915

  20. An automated flow injection system for metal determination by flame atomic absorption spectrometry involving on-line fabric disk sorptive extraction technique.

    PubMed

    Anthemidis, A; Kazantzi, V; Samanidou, V; Kabir, A; Furton, K G

    2016-08-15

    A novel flow injection-fabric disk sorptive extraction (FI-FDSE) system was developed for automated determination of trace metals. The platform was based on a minicolumn packed with sol-gel coated fabric media in the form of disks, incorporated into an on-line solid-phase extraction system, coupled with flame atomic absorption spectrometry (FAAS). This configuration provides minor backpressure, resulting in high loading flow rates and shorter analytical cycles. The potentials of this technique were demonstrated for trace lead and cadmium determination in environmental water samples. The applicability of different sol-gel coated FPSE media was investigated. The on-line formed complex of metal with ammonium pyrrolidine dithiocarbamate (APDC) was retained onto the fabric surface and methyl isobutyl ketone (MIBK) was used to elute the analytes prior to atomization. For 90s preconcentration time, enrichment factors of 140 and 38 and detection limits (3σ) of 1.8 and 0.4μgL(-1) were achieved for lead and cadmium determination, respectively, with a sampling frequency of 30h(-1). The accuracy of the proposed method was estimated by analyzing standard reference materials and spiked water samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Determination of free and conjugated forms of endocrine-disrupting chemicals in human biological fluids by GC-MS.

    PubMed

    Azzouz, Abdelmonaim; Rascón, Andrés J; Ballesteros, Evaristo

    2016-06-01

    Humans are exposed to hazardous substances including endocrine-disrupting chemicals (EDCs). These compounds have been associated with some diseases such as cancer and ascribed adverse effects on life-essential organs. The method, which allows the determination of both free and conjugated forms of EDCs, involves the liquid-liquid extraction from the sample with ethyl acetate, followed by its preconcentration and clean-up by SPE in a continuous system for the subsequent determination by GC-MS. The proposed method affords very low LODs and RSD. This allowed its successful application to the determination of EDCs in human urine, blood and breast milk. The most frequently founded were methylparaben, ethylparaben, bisphenol A and triclosan.

  2. Room temperature ionic liquid-based dispersive liquid phase microextraction for the separation/preconcentration of trace Cd(2+) as 1-(2-pyridylazo)-2-naphthol (PAN) complex from environmental and biological samples and determined by FAAS.

    PubMed

    Khan, Sumaira; Soylak, Mustafa; Kazi, Tasneem Gul

    2013-12-01

    The current work develops a new green methodology for the separation/preconcentration of cadmium ions (Cd(2+)) using room temperature ionic liquid-dispersive liquid phase microextraction (RTIL-DLME) prior to analysis by flame atomic absorption spectrometry with microsample introduction system. Room temperature ionic liquids (RTIL) are considered "Green Solvents" for their thermally stable and non-volatile properties, here 1-butyl-3-methylimidazolium hexafluorophosphate [C4mim][PF6] was used as an extractant. The preconcentration of Cd(2+) in different waters and acid digested scalp hair samples were complexed with 1-(2-pyridylazo)-2-naphthol and extracted into the fine drops of RTILs. Some significant factors influencing the extraction efficiency of Cd(2+) and its subsequent determination, including pH, amount of ligand, volume of RTIL, dispersant solvent, sample volume, temperature, and incubation time were investigated in detail. The limit of detection and the enhancement factor under the optimal conditions were 0.05 μg/L and 50, respectively. The relative standard deviation of 100 μg/L Cd(2+) was 4.3 %. The validity of the proposed method was checked by determining Cd(2+) in certified reference material (TM-25.3 fortified water). The sufficient recovery (>98 %) of Cd(2+) with the certified value. The mean concentrations of Cd in lake water 13.2, waste water 15.7 and hair sample 16.8 μg/L, respectively and the developed method was applied satisfactorily to the preconcentration and determination of Cd(2+) in real samples.

  3. Magnetic Droplet Microfluidics as a Platform for the Concentration of [18F]Fluoride and Radiosynthesis of Sulfonyl [18F]Fluoride.

    PubMed

    Fiel, Somewhere A; Yang, Hua; Schaffer, Paul; Weng, Samuel; Inkster, James A H; Wong, Michael C K; Li, Paul C H

    2015-06-17

    The radioisotope 18F is often considered the best choice for positron emission tomography (PET) owing to its desirable chemical and radiochemical properties. However, nucleophilic 18F-fluorination of large, water-soluble biomolecules, based on C-F bond formation, has traditionally been difficult. Thus, several aqueous fluorination approaches that offer significant versatility in radiopharmaceutical synthesis with sensitive targeting vectors have been developed. Furthermore, because 18F decays rapidly, production of these 18F-labeled compounds requires an automated process to reduce production time, reduce radiation exposure, and minimize losses due to the transfer of reagents during tracer synthesis. Herein, we report the use of magnetic droplet microfluidics (MDM) as a means to concentrate [18F]fluoride from the cyclotron target solution, followed by the synthesis of an 18F-labeled compound on a microfluidic platform. Using this method, we have demonstrated 18F preconcentration in a small-volume droplet through the use of anion exchanging magnetic particles. By using MDM, the preconcentration step took approximately 5 min, and the [18F]fluoride solution was preconcentrated by 15-fold. After the preconcentration step, an 18F-labeling reaction was performed on the MDM platform using the S-F bond formation in aqueous conditions to produce an arylsulfonyl [18F]fluoride compound which can be used as a prosthetic group to label PET targeting ligands. The high radiochemical purity of 95±1% was comparable to the 96% previously reported using a conventional method. In addition, when MDM was used, the total synthesis time was improved to 15 min with lower reagent volumes (50-60 μL) used.

  4. Determination of fluorine in herbs and water samples by molecular absorption spectrometry after preconcentration on nano-TiO2 using ultrasound-assisted dispersive micro solid phase extraction.

    PubMed

    Krawczyk-Coda, Magdalena; Stanisz, Ewa

    2017-11-01

    This work presents ultrasound-assisted dispersive micro solid phase extraction (USA DMSPE) for preconcentration of fluorine (F) in water and herb samples. TiO 2 nanoparticles (NPs) were used as an adsorbent. The determination with slurry sampling was performed via molecular absorption of calcium monofluoride (CaF) at 606.440 nm using a high-resolution continuum source electrothermal absorption spectrometry (HR-CS ET MAS). Several factors influencing the efficiency of the preconcentration technique, such as the amount of TiO 2 , pH of sample solution, ultrasonication and centrifugation time and TiO 2 slurry solution preparation before injection to HR-CS ET MAS, were investigated in detail. The conditions of detection step (wavelength, calcium amount, pyrolysis and molecule-forming temperatures) were also studied. After extraction, adsorbent with the analyte was mixed with 200 μL of H 2 O to prepare a slurry solution. The concentration limit of detection was 0.13 ng mL -1 . The achieved preconcentration factor was 7. The relative standard deviations (RSDs, %) for F in real samples were 3-15%. The accuracy of this method was evaluated by analyses of certified reference materials after spiking: INCT-MPH-2 (Mixed Polish Herbs), INCT-SBF-4 (Soya Bean Flour), ERM-CAO11b (Hard Drinking Water) and TMDA-54.5 (Lake Ontario Water). The measured F contents in reference materials were in satisfactory agreement with the added amounts, and the recoveries were found to be 97-109%. Under the developed extraction conditions, the proposed method has been successfully applied for the determination of F in real water samples (lake, sea, tap water) and herbs.

  5. Offline solid-phase extraction for preconcentration of pharmaceuticals and personal care products in environmental water and their simultaneous determination using the reversed phase high-performance liquid chromatography method.

    PubMed

    G Archana; Dhodapkar, Rita; Kumar, Anupama

    2016-09-01

    The present study reports a precise and simple offline solid-phase extraction (SPE) coupled with reversed-phase high-performance liquid chromatography (RP-HPLC) method for the simultaneous determination of five representative and commonly present pharmaceuticals and personal care products (PPCPs), a new class of emerging pollutants in the aquatic environment. The target list of analytes including ciprofloxacin, acetaminophen, caffeine benzophenone and irgasan were separated by a simple HPLC method. The column used was a reversed-phase C18 column, and the mobile phase was 1 % acetic acid and methanol (20:80 v/v) under isocratic conditions, at a flow rate of 1 mL min(-1). The analytes were separated and detected within 15 min using the photodiode array detector (PDA). The linearity of the calibration curves were obtained with correlation coefficients 0.98-0.99.The limit of detection (LOD), limit of quantification (LOQ), precision, accuracy and ruggedness demonstrated the reproducibility, specificity and sensitivity of the developed method. Prior to the analysis, the SPE was performed using a C18 cartridge to preconcentrate the targeted analytes from the environmental water samples. The developed method was applied to evaluate and fingerprint PPCPs in sewage collected from a residential engineering college campus, polluted water bodies such as Nag river and Pili river and the influent and effluent samples from a sewage treatment plant (STP) situated at Nagpur city, in the peak summer season. This method is useful for estimation of pollutants present in microquantities in the surface water bodies and treated sewage as compared to nanolevel pollutants detected by mass spectrometry (MS) detectors.

  6. Determination of lead and nickel in environmental samples by flame atomic absorption spectrometry after column solid-phase extraction on Ambersorb-572 with EDTA.

    PubMed

    Baytak, Sitki; Türker, A Rehber

    2006-02-28

    Lead and nickel were preconcentrated as their ethylenediaminetetraacedic acid (EDTA) complexes from aqueous sample solutions using a column containing Ambersorb-572 and determined by flame atomic absorption spectrometry (FAAS). pH values, amount of solid phase, elution solution and flow rate of sample solution have been optimized in order to obtain quantitative recovery of the analytes. The effect of interfering ions on the recovery of the analytes has also been investigated. The recoveries of Pb and Ni under the optimum conditions were 99 +/- 2 and 97 +/- 3%, respectively, at 95% confidence level. Seventy-five-fold (using 750 mL of sample solution and 10 mL of eluent) and 50-fold (using 500 mL of sample solution and 10 mL of eluent) preconcentration was obtained for Pb and Ni, respectively. Time of analysis is about 4.5 h (for obtaining enrichment factor of 75). By applying these enrichment factors, the analytical detection limits of Pb and Ni were found as 3.65 and 1.42 ng mL(-1), respectively. The capacity of the sorbent was found as 0.17 and 0.21 mmol g(-1) for Pb and Ni, respectively. The interferences of some cations, such as Mn2+, Co2+, Fe3+, Al3+, Zn2+, Cd2+, Ca2+, Mg2+, K+ and Na+ usually present in water samples were also studied. This procedure was applied to the determination of lead and nickel in parsley, green onion, sea water and waste water samples. The accuracy of the procedure was checked by determining Pb and Ni in standard reference tea leaves sample (GBW-07605). The results demonstrated good agreement with the certified values.

  7. Human portable preconcentrator system

    DOEpatents

    Linker, Kevin L.; Bouchier, Francis A.; Hannum, David W.; Rhykerd, Jr., Charles L.

    2003-01-01

    A preconcentrator system and apparatus suited to human portable use wherein sample potentially containing a target chemical substance is drawn into a chamber and through a pervious screen. The screen is adapted to capture target chemicals and then, upon heating, to release those chemicals into the chamber. Chemicals captured and then released in this fashion are then carried to a portable chemical detection device such as a portable ion mobility spectrometer. In the preferred embodiment, the means for drawing sample into the chamber comprises a reversible fan which, when operated in reverse direction, creates a backpressure that facilitates evolution of captured target chemicals into the chamber when the screen is heated.

  8. PNEUMATIC MICROVALVE FOR ELECTROKINETIC SAMPLE PRECONCENTRATION AND CAPILLARY ELECTROPHORESIS INJECTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cong, Yongzheng; Rausch, Sarah J.; Geng, Tao

    2014-10-27

    Here we show that a closed pneumatic microvalve on a PDMS chip can serve as a semipermeable membrane under an applied potential, enabling current to pass through while blocking the passage of charged analytes. Enrichment of both anionic and cationic species has been demonstrated, and concentration factors of ~70 have been achieved in just 8 s. Once analytes are concentrated, the valve is briefly opened and the sample is hydrodynamically injected onto an integrated microchip or capillary electrophoresis (CE) column. In contrast to existing preconcentration approaches, the membrane-based method described here enables both rapid analyte concentration as well as highmore » resolution separations.« less

  9. Molecularly imprinted solid-phase extraction combined with high performance liquid chromatography for analysis of phenolic compounds from environmental water samples.

    PubMed

    Feng, Qin-Zhong; Zhao, Li-Xia; Yan, Wei; Lin, Jin-Ming; Zheng, Zhi-Xia

    2009-08-15

    The molecularly imprinted bulk polymer with 2,4,6-trichlorophenol (2,4,6-TCP) as the template molecule and methylacrylic acid (MAA), ethylene glycol dimethacrylate (EGDMA) as functional monomer and the crosslinker, respectively, has been prepared and applied to the molecularly imprinted solid-phase extraction (MISPE) procedure for selective preconcentration of phenolic compounds from environmental water samples. Various parameters affecting the extraction efficiency of the polymer have been evaluated to optimize the selective preconcentration of the phenolic compounds from aqueous samples. The characteristics of the MISPE method were validated by HPLC. The recoveries ranged between 90% and 98% (RSD: 0.9-2.3%, n=3) for tap water, between 85% and 105% (RSD: 2.6-4.9%, n=3) for river water, between 78% and 98% (RSD: 2.6-5.4%, n=3) for sewage water fortified with 0.4 mg L(-1) of phenol, 4-chlorophenol (4-CP), 2,4-dichlorophenol (2,4-DCP), pentachlorophenol (PCP). It was demonstrated that this MISPE-HPLC method could be applied to direct preconcentration and determination of phenolic compounds in environmental water samples.

  10. Determination of heavy metals by ICP-OES and F-AAS after preconcentration with 2,2'-bipyridyl and erythrosine.

    PubMed

    Feist, Barbara; Mikula, Barbara; Pytlakowska, Katarzyna; Puzio, Bozena; Buhl, Franciszek

    2008-04-15

    The applicability of 2,2'-bipyridyl and erythrosine co-precipitation method for the separation and preconcentration of some heavy metals, such as Cd, Co, Cu, Ni, Pb and Zn in actual samples for their determination by ICP-OES and F-AAS was studied. Experimental conditions influencing the recovery of the investigated metals, such as pH, molar ratio of 2,2'-bipyridyl to erythrosine, the effect of time on co-precipitation were optimized. The analytical characteristics of the method (e.g. limit of detection, sensitivity, linear range and preconcentration factor) were obtained. The limits of detection LOD (ng mL(-1)) of the ICP-OES (F-AAS) method were: Cd: 4.0 (7.75), Co: 3.1 (57.2), Cu: 18 (10.3), Ni 21.3 (32.8), Pb: 35.9 (29.2) and Zn: 10.2 (6.90). The recovery of all the elements tested was more than 93%. The influence of inorganic matrix was examined. The proposed method was applied to determination of Cd, Co, Cu, Ni, Pb and Zn in vegetables and certified reference material (NCS ZC85006 Tomato).

  11. Rapid and direct determination of glyphosate, glufosinate, and aminophosphonic acid by online preconcentration CE with contactless conductivity detection.

    PubMed

    See, Hong Heng; Hauser, Peter C; Ibrahim, Wan Aini Wan; Sanagi, Mohd Marsin

    2010-01-01

    Rapid and direct online preconcentration followed by CE with capacitively coupled contactless conductivity detection (CE-C(4)D) is evaluated as a new approach for the determination of glyphosate, glufosinate (GLUF), and aminophosphonic acid (AMPA) in drinking water. Two online preconcentration techniques, namely large volume sample stacking without polarity switching and field-enhanced sample injection, coupled with CE-C(4)D were successfully developed and optimized. Under optimized conditions, LODs in the range of 0.01-0.1 microM (1.7-11.1 microg/L) and sensitivity enhancements of 48- to 53-fold were achieved with the large volume sample stacking-CE-C(4)D method. By performing the field-enhanced sample injection-CE-C(4)D procedure, excellent LODs down to 0.0005-0.02 microM (0.1-2.2 microg/L) as well as sensitivity enhancements of up to 245- to 1002-fold were obtained. Both techniques showed satisfactory reproducibility with RSDs of peak height of better than 10%. The newly established approaches were successfully applied to the analysis of glyphosate, glufosinate, and aminophosphonic acid in spiked tap drinking water.

  12. Effective determination of a pharmaceutical, sulpiride, in river water by online SPE-LC-MS using a molecularly imprinted polymer as a preconcentration medium.

    PubMed

    Kubo, Takuya; Kuroda, Kenta; Tominaga, Yuichi; Naito, Toyohiro; Sueyoshi, Kenji; Hosoya, Ken; Otsuka, Koji

    2014-02-01

    We report an effective and a quantitative analysis method for one of pharmaceuticals, sulpiride, in river water by online solid phase extraction (SPE) connected with liquid chromatography-mass spectrometry (LC-MS) using a molecularly imprinted polymer as a preconcentration medium. The polymer prepared with a pseudo template molecule showed the selective retention ability based on the interval recognition of functional groups in sulpiride. Also, the imprinted polymer provided an effective concentration of a trace level of sulpiride in offline SPE with dual washing processes using water and acetonitrile, although another imprinted polymer prepared by an authentic method using sulpiride and methacrylic acid as a template and a functional monomer, respectively, showed the selective adsorption only in organic solvents. Furthermore, we employed the imprinted polymer as the preconcentration column of online SPE-LC-MS and the results supposed that the proposed system allowed the quantitative analysis of sulpiride with high sensitivity and recovery (10ng/L at 96%). Additionally, the determination of sulpiride in real river water without an additional spiking was effectively achieved by the system. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Separation/preconcentration and determination of vanadium with dispersive liquid-liquid microextraction based on solidification of floating organic drop (DLLME-SFO) and electrothermal atomic absorption spectrometry.

    PubMed

    Asadollahi, Tahereh; Dadfarnia, Shayessteh; Shabani, Ali Mohammad Haji

    2010-06-30

    A novel dispersive liquid-liquid microextraction based on solidification of floating organic drop (DLLME-SFO) for separation/preconcentration of ultra trace amount of vanadium and its determination with the electrothermal atomic absorption spectrometry (ETAAS) was developed. The DLLME-SFO behavior of vanadium (V) using N-benzoyl-N-phenylhydroxylamine (BPHA) as complexing agent was systematically investigated. The factors influencing the complex formation and extraction by DLLME-SFO method were optimized. Under the optimized conditions: 100 microL, 200 microL and 25 mL of extraction solvent (1-undecanol), disperser solvent (acetone) and sample volume, respectively, an enrichment factor of 184, a detection limit (based on 3S(b)/m) of 7 ng L(-1) and a relative standard deviation of 4.6% (at 500 ng L(-1)) were obtained. The calibration graph using the preconcentration system for vanadium was linear from 20 to 1000 ng L(-1) with a correlation coefficient of 0.9996. The method was successfully applied for the determination of vanadium in water and parsley. Copyright 2010 Elsevier B.V. All rights reserved.

  14. Investigation of iron(III) reduction and trace metal interferences in the determination of dissolved iron in seawater using flow injection with luminol chemiluminescence detection.

    PubMed

    Ussher, Simon J; Milne, Angela; Landing, William M; Attiq-ur-Rehman, Kakar; Séguret, Marie J M; Holland, Toby; Achterberg, Eric P; Nabi, Abdul; Worsfold, Paul J

    2009-10-12

    A detailed investigation into the performance of two flow injection-chemiluminescence (FI-CL) manifolds (with and without a preconcentration column) for the determination of sub-nanomolar dissolved iron (Fe(II)+Fe(III)), following the reduction of Fe(III) by sulphite, in seawater is described. Kinetic experiments were conducted to examine the efficiency of reduction of inorganic Fe(III) with sulphite under different conditions and a rigorous study of the potential interference caused by other transition metals present in seawater was conducted. Using 100microM concentrations of sulphite a reduction time of 4h was sufficient to quantitatively reduce Fe(III) in seawater. Under optimal conditions, cobalt(II) and vanadium(IV)/(III) were the major positive interferences and strategies for their removal are reported. Specifically, cobalt(II) was masked by the addition of dimethylglyoxime to the luminol solution and vanadium(IV) was removed by passing the sample through an 8-hydroxyquinoline column in a low pH carrier stream. Manganese(II) also interfered by suppression of the CL response but this was not significant at typical open ocean concentrations.

  15. Magnetic core shell nanoparticles trapping in a microdevice generating high magnetic gradient.

    PubMed

    Teste, Bruno; Malloggi, Florent; Gassner, Anne-Laure; Georgelin, Thomas; Siaugue, Jean-Michel; Varenne, Anne; Girault, Hubert; Descroix, Stéphanie

    2011-03-07

    Magnetic core shell nanoparticles (MCSNPs) 30 nm diameter with a magnetic weight of 10% are usually much too small to be trapped in microfluidic systems using classical external magnets. Here, a simple microchip for efficient MCSNPs trapping and release is presented. It comprises a bed of micrometric iron beads (6-8 μm diameter) packed in a microchannel against a physical restriction and presenting a low dead volume of 0.8 nL. These beads of high magnetic permeability are used to focus magnetic field lines from an external permanent magnet and generate local high magnetic gradients. The nanoparticles magnetic trap has been characterised both by numerical simulations and fluorescent MCSNPs imaging. Numerical simulations have been performed to map both the magnetic flux density and the magnetic force, and showed that MCSNPs are preferentially trapped at the iron bead magnetic poles where the magnetic force is increased by 3 orders of magnitude. The trapping efficiency was experimentally determined using fluorescent MCSNPs for different flow rates, different iron beads and permanent magnet positions. At a flow rate of 100 μL h(-1), the nanoparticles trapping/release can be achieved within 20 s with a preconcentration factor of 4000.

  16. Breath analysis using external cavity diode lasers: a review

    NASA Astrophysics Data System (ADS)

    Bayrakli, Ismail

    2017-04-01

    Most techniques that are used for diagnosis and therapy of diseases are invasive. Reliable noninvasive methods are always needed for the comfort of patients. Owing to its noninvasiveness, ease of use, and easy repeatability, exhaled breath analysis is a very good candidate for this purpose. Breath analysis can be performed using different techniques, such as gas chromatography mass spectrometry (MS), proton transfer reaction-MS, and selected ion flow tube-MS. However, these devices are bulky and require complicated procedures for sample collection and preconcentration. Therefore, these are not practical for routine applications in hospitals. Laser-based techniques with small size, robustness, low cost, low response time, accuracy, precision, high sensitivity, selectivity, low detection limit, real-time, and point-of-care detection have a great potential for routine use in hospitals. In this review paper, the recent advances in the fields of external cavity lasers and breath analysis for detection of diseases are presented.

  17. Flame Atomic Absorption Spectrometric Determination of Gold After Solid-Phase Extraction of Its 2-Aminobenzothiazole Complex on Diaion SP-207.

    PubMed

    Unsal, Yunus Emre; Tuzen, Mustafa; Soylak, Mustafa

    2016-01-01

    An SPE of Au (III) on a 2-aminobenzothiazole-coated Diaion SP 207-column system has been developed. The parameters, including pH of solution, amount of 2-aminobenzothiazole, eluent type, sample volume, and flow rates, were examined. The effects of alkali, alkali earth, and some metals were also studied. The recovery values at optimal conditions and detection limits for Au (III) were found as >95% and 3.8 μg L(-1), respectively. The factor of preconcentration was 250. The RSD value was <5%. The capacity of adsorption for the resin was 10.4 mg g(-1). The accuracy of the method was evaluated by the use of CDN-GS-3D gold-certified reference material. The proposed procedure for the determination of gold was applied to water, mine, soil, and anodic slime samples.

  18. Diaion HP-2MG modified with 2-(2,6-dichlorobenzylideneamino) benzenethiol as new adsorbent for solid phase extraction and flame atomic absorption spectrometric determination of metal ions.

    PubMed

    Ghaedi, M; Montazerozohori, M; Haghdoust, S; Zaare, F; Soylak, M

    2013-04-01

    A solid phase extraction method for enrichment-separation and the determination of cobalt (Co(2+)), copper (Cu(2+)), nickel (Ni(2+)), zinc (Zn(2+)) and lead (Pb(2+)) ions in real samples has been proposed. The influences of some analytical parameters like pH, flow rate, eluent type and interference of matrix ions on recoveries of analytes were optimized. The limits of detection were found in the range of 1.6-3.9 µg L(-1), while preconcentration factor for all understudy metal ions were found to be 166 with loading half time (t 1/2) less than 10 min. The procedure was applied for the enrichment-separation of analyte ions in environmental samples with recoveries higher than 94.8% and relative SD <4.9% (N = 5).

  19. Determination of azoxystrobin and chlorothalonil using a methacrylate-based polymer modified with gold nanoparticles as solid-phase extraction sorbent.

    PubMed

    Catalá-Icardo, Mónica; Gómez-Benito, Carmen; Simó-Alfonso, Ernesto Francisco; Herrero-Martínez, José Manuel

    2017-01-01

    This paper describes a novel and sensitive method for extraction, preconcentration, and determination of two important widely used fungicides, azoxystrobin, and chlorothalonil. The developed methodology is based on solid-phase extraction (SPE) using a polymeric material functionalized with gold nanoparticles (AuNPs) as sorbent followed by high-performance liquid chromatography (HPLC) with diode array detector (DAD). Several experimental variables that affect the extraction efficiency such as the eluent volume, sample flow rate, and salt addition were optimized. Under the optimal conditions, the sorbent provided satisfactory enrichment efficiency for both fungicides, high selectivity and excellent reusability (>120 re-uses). The proposed method allowed the detection of 0.05 μg L -1 of the fungicides and gave satisfactory recoveries (75-95 %) when it was applied to drinking and environmental water samples (river, well, tap, irrigation, spring, and sea waters).

  20. Chromium fractionation and speciation in natural waters.

    PubMed

    Pereira, Catarinie Diniz; Techy, João Gabriel; Ganzarolli, Edgard Moreira; Quináia, Sueli Pércio

    2012-05-01

    It is common for leather industries to dump chromium-contaminated effluent into rivers and other bodies of water. Thus, it is crucial to know the impacts caused by this practice to the environment. A study on chromium partitioning and speciation, with determination at trace levels, was carried out in a potentially contaminated creek. Chromium fractionation and speciation was performed using a flow-injection preconcentration system and detection by flame atomic absorption spectrometry. High levels of this element were found in the particulate material (449-9320 mg kg(-1)), which indicates its compatibility with this fraction. The concentration of Cr(iii) in the water samples collected ranged from 5.2-105.2 μg L(-1). Cr(vi) was always below of the DL (0.3 μg L(-1)). Chromium accumulation observed in the sediment (873-1691 mg kg(-1)) may confirm contamination due to the long term release of contaminated effluents in the creek.

  1. A reflectance flow-through thionine sol-gel sensor for the determination of Se(IV).

    PubMed

    Carvalhido, Joana A E; Almeida, Agostinho A; Araújo, Alberto N; Montenegro, Maria C B S M

    2010-01-01

    In this work, a reversible sensor to assess the total Se(IV) content in samples is described. Pre-activated glass slides were spin-coated with 100 microL of a 20-h aged sol-gel mixture of 1 mL of tetramethoxysilane, 305 microL of 50 mmol L(-1) HCl and 2.0 mg of thionine. The flow-cell consisted of one of those slides as a window, and was filled with beads of a polystyrene anionic exchange resin to retain Se(IV) in the form of selenite ions. A reflectance transduction scheme at a wavelength of 596 nm was adopted. The cell was coupled to a multicommutation flow system where a programmed volume of a sample solution and 373 microL of 0.4 mmol L(-1) iodide in a 1.6 mol L(-1) HCl solution were sequentially inserted into the cell. The iodine produced from the reaction of retained Se(IV) with iodide bleached the blue color of thionine. Considering a sample volume of 2.30 mL, with which the preconcentration step was minimized, a linear dynamic working range between 1.5 to 20 microg mL(-1) and a detection limit of 0.29 microg mL(-1) were obtained. The sensor enabled us to perform approximately 200 assays, and provided results similar to those of electrothermal atomic absorption spectrometry.

  2. A fully-integrated aptamer-based affinity assay platform for monitoring astronaut health in space.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Xianbin; Durland, Ross H.; Hecht, Ariel H.

    2010-07-01

    Here we demonstrate the suitability of robust nucleic acid affinity reagents in an integrated point-of-care diagnostic platform for monitoring proteomic biomarkers indicative of astronaut health in spaceflight applications. A model thioaptamer targeting nuclear factor-kappa B (NF-{kappa}B) is evaluated in an on-chip electrophoretic gel-shift assay for human serum. Key steps of (i) mixing sample with the aptamer, (ii) buffer exchange, and (iii) preconcentration of sample were successfully integrated upstream of fluorescence-based detection. Challenges due to (i) nonspecific interactions with serum, and (ii) preconcentration at a nanoporous membrane are discussed and successfully resolved to yield a robust, rapid, and fully-integrated diagnostic system.

  3. Performance of the goulden large-sample extractor in multiclass pesticide isolation and preconcentration from stream water

    USGS Publications Warehouse

    Foster, G.D.; Foreman, W.T.; Gates, Paul M.

    1991-01-01

    The reliability of the Goulden large-sample extractor in preconcentrating pesticides from water was evaluated from the recoveries of 35 pesticides amended to filtered stream waters. Recoveries greater than 90% were observed for many of the pesticides in each major chemical class, but recoveries for some of the individual pesticides varied in seemingly unpredictable ways. Corrections cannot yet be factored into liquid-liquid extraction theory to account for matrix effects, which were apparent between the two stream waters tested. The Goulden large-sample extractor appears to be well suited for rapid chemical screening applications, with quantitative analysis requiring special quality control considerations. ?? 1991 American Chemical Society.

  4. Solid-phase extraction and high-performance liquid chromatographic separation of pigments of red wines.

    PubMed

    Csiktusnádi Kiss, G A; Forgács, E; Cserháti, T; Candeias, M; Vilas-Boas, L; Bronze, R; Spranger, I

    2000-08-11

    The adsorption and desorption capacities of 11 different solid-phase extraction sorbents were tested for the preconcenration of pigments of various Hungarian red wines. The concentrates were evaluated by multiwavelengh spectrophotometry combined with a spectral mapping technique (SPM) and by reversed-phase high-performance liquid chromatography. The highest (10-fold) concentration of pigments was achieved on octadecylsilica sorbent. It can be used five times without losing adsorption and desorption characteristics. SPM indicated that multiwavelength spectrophotometry can be employed for the differentiation of red wines. Comparison of the chromatograms of pigments with and without preconcentration showed that preconcentration makes possible the separation and detection of pigments present in low concentration in red wines.

  5. Rapid method for the determination of 226Ra in hydraulic fracturing wastewater samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maxwell, Sherrod L.; Culligan, Brian K.; Warren, Richard A.

    A new method that rapidly preconcentrates and measures 226Ra from hydraulic fracturing wastewater samples was developed in the Savannah River Environmental Laboratory. The method improves the quality of 226Ra measurements using gamma spectrometry by providing up to 100x preconcentration of 226Ra from this difficult sample matrix, which contains very high levels of calcium, barium, strontium, magnesium and sodium. The high chemical yield, typically 80-90%, facilitates a low detection limit, important for lower level samples, and indicates method ruggedness. Ba-133 tracer is used to determine chemical yield and correct for geometry-related counting issues. The 226Ra sample preparation takes < 2 hours.

  6. Exploration geochemical technique for the determination of preconcentrated organometallic halides by ICP-AES

    USGS Publications Warehouse

    Motooka, J.M.

    1988-01-01

    An atomic absorption extraction technique which is widely used in geochemical exploration for the determination of Ag, As, Au, Bi, Cd, Cu, Mo, Pb, Sb, and Zn has been modified and adapted to a simultaneous inductively coupled plasma-atomic emission instrument. the experimental and operating parameters are described for the preconcentration of the metals into their organometallic halides and for the determination of the metals. Lower limits of determination are equal to or improved over those for flame atomic absorption (except Au) and ICP results are very similar to the accepted AA values, with precision for the ICP data in excess of that necessary for exploration purposes.

  7. Rapid method for the determination of 226Ra in hydraulic fracturing wastewater samples

    DOE PAGES

    Maxwell, Sherrod L.; Culligan, Brian K.; Warren, Richard A.; ...

    2016-03-24

    A new method that rapidly preconcentrates and measures 226Ra from hydraulic fracturing wastewater samples was developed in the Savannah River Environmental Laboratory. The method improves the quality of 226Ra measurements using gamma spectrometry by providing up to 100x preconcentration of 226Ra from this difficult sample matrix, which contains very high levels of calcium, barium, strontium, magnesium and sodium. The high chemical yield, typically 80-90%, facilitates a low detection limit, important for lower level samples, and indicates method ruggedness. Ba-133 tracer is used to determine chemical yield and correct for geometry-related counting issues. The 226Ra sample preparation takes < 2 hours.

  8. Flame Atomic Absorption Spectrometric Determination of Trace Metal Ions in Environmental and Biological Samples After Preconcentration on a Newly Developed Amberlite XAD-16 Chelating Resin Containing p-Aminobenzene Sulfonic Acid.

    PubMed

    Islam, Aminul; Ahmad, Akil; Laskar, Mohammad Asaduddin

    2015-01-01

    Amberlite® XAD-16 was functionalized with p-aminobenzene sulfonic acid via an azo spacer in order to prepare a new chelating resin, which was then characterized by water regain value, hydrogen ion capacity, elemental analyses, and IR spectral and thermal studies. The maximum uptake of Cu(II), Ni(II), Zn(II), Co(II), Cr(III), Fe(III), and Pb(II) ions was observed in the pH range 4.0-6.0 with the corresponding half-loading times of 6.5, 7.0, 8.0, 9.0, 11.0, 8.5, and 16.5 min. The sorption data followed Langmuir isotherms and a pseudo-second-order model. Thermodynamic quantities, ΔH and ΔS, based on the variation of the distribution coefficient with temperature were also evaluated. High preconcentration factors of 60-100 up to a low preconcentration limit of 4.0-6.6 μg/L have been achieved for the metal ions. The validity of the method was checked by analyzing standard reference materials and recoveries of trace metals after spiking. The analytical applications of the method were explored by analyzing natural water, mango pulp, mint leaves, and fish.

  9. Synthesis, characterisation and analytical application of Fe₃O₄@SiO₂@polyaminoquinoline magnetic nanocomposite for the extraction and pre-concentration of Cd(II) and Pb(II) in food samples.

    PubMed

    Manoochehri, Mahboobeh; Asgharinezhad, Ali Akbar; Shekari, Nafiseh

    2015-01-01

    This work describes a novel Fe₃O₄@SiO₂@polyaminoquinoline magnetic nanocomposite and its application in the pre-concentration of Cd(II) and Pb(II) ions. The parameters affecting the pre-concentration procedure were optimised by a Box-Behnken design through response surface methodology. Three variables (extraction time, magnetic sorbent amount and pH) were selected as the main factors affecting the sorption step, while four variables (type, volume and concentration of the eluent, and elution time) were selected as main factors in the optimisation study of the elution step. Following the sorption and elution of analytes, the ions were quantified by flame atomic absorption spectrometry (FASS). The limits of detection were 0.1 and 0.7 ng ml(-1) for Cd(II) and Pb(II) ions, respectively. All the relative standard deviations were less than 7.6%. The sorption capacities of this new sorbent were 57 mg g(-)(1) for Cd(II) and 73 mg g(-1) for Pb(II). Ultimately, this nanocomposite was successfully applied to the rapid extraction of trace quantities of these heavy metal ions from seafood and agricultural samples and satisfactory results were obtained.

  10. Recent advances in the development of extraction chromatographic materials for the isolation of radionuclides from biological and environmental samples.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dietz, M. L.

    1998-11-30

    The determination of low levels of radionuclides in environmental and biological samples is often hampered by the complex and variable nature of the samples. One approach to circumventing this problem is to incorporate into the analytical scheme a separation and preconcentration step by which the species of interest can be isolated from the major constituents of the sample. Extraction chromatography (EXC), a form of liquid chromatography in which the stationary phase comprises an extractant or a solution of an extractant in an appropriate diluent coated onto an inert support, provides a simple and efficient means of performing a wide varietymore » of metal ion separations. Recent advances in extractant design, in particular the development of extractants capable of metal ion recognition or of strong complex formation even in acidic media, have substantially improved the utility of the method. For the preconcentration of actinides, for example, an EXC resin consisting of a liquid diphosphonic acid supported on a polymeric substrate has been shown to exhibit extraordinarily strong retention of these elements from acidic chloride media. This resin, together with other related materials, can provide the basis of a number of efficient and flexible schemes for the separation and preconcentration of radionuclides form a variety of samples for subsequent determination.« less

  11. Determination of perchlorate from tea leaves using quaternary ammonium modified magnetic carboxyl-carbon nanotubes followed by liquid chromatography-tandem quadrupole mass spectrometry.

    PubMed

    Zhao, Yong-Gang; Zhang, Yun; Wang, Feng-Lian; Zhou, Jian; Zhao, Qi-Ming; Zeng, Xiu-Qiong; Hu, Mei-Qin; Jin, Mi-Cong; Zhu, Yan

    2018-08-01

    The novel quaternary ammonium modified magnetic carboxyl-carbon nanotubes (QA-Mag-CCNTs) have been synthesised and characterized. QA-Mag-CCNTs were applied in magnetic dispersive solid phase extraction (Mag-dSPE) for preconcentration of perchlorate from tea leaves prior to liquid chromatography-tandem quadrupole mass spectrometry (LC-MS/MS) analysis. The Mag-dSPE procedure for preconcentration of perchlorate succeed in overcoming the flaw (containing target analyte randomly) of commercially available SPE cartridge. Under optimal conditions, the results showed higher extraction efficiency of QA-Mag-CCNTs, with recoveries between 85.2% and 107%. And the satisfactory precision with inter-day and intra-day RSD values were lower than 8.0%. Furthermore, QA-Mag-CCNTs were evaluated for reuse up to 20 times. The limit of quantification (LOQ) for perchlorate was 8.21 ng kg -1 . The developed method was successfully applied in tea leaves for food-safety risk monitoring in Zhejiang province, China. The results showed the concentrations of perchlorate in 229 out of 240 collected samples were in the range of 0.082-988 μg kg -1 . It was confirmed that QA-Mag-CCNTs were highly effective materials used for preconcentration of perchlorate. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Solid phase selective separation and preconcentration of Cu(II) by Cu(II)-imprinted polymethacrylic microbeads.

    PubMed

    Dakova, Ivanka; Karadjova, Irina; Ivanov, Ivo; Georgieva, Ventsislava; Evtimova, Bisera; Georgiev, George

    2007-02-12

    Ion-imprinted polymer (IIP) particles are prepared by copolymerization of methacrylic acid as monomer, trimethylolpropane trimethacrylate as crosslinking agent and 2,2'-azo-bis-isobutyronitrile as initiator in the presence of Cu(II), a Cu(II)-4-(2-pyridylazo)resorcinol (Cu(II)-PAR) complex, and PAR only. A batch procedure is used for the determination of the characteristics of the Cu(II) solid phase extraction from the IIP produced. The results obtained show that the Cu(II)-PAR IIP has the greatest adsorption capacity (37.4 micromol g(-1) of dry copolymer) among the IIPs investigated. The optimal pH value for the quantitative preconcentration is 7, and full desorption is achieved by 1 M HNO(3). The selectivity coefficients (S(Cu/Me)) for Me=Ni(II), Co(II) are 45.0 and 38.5, respectively. It is established that Cu(II)-PAR IIPs can be used repeatedly without a considerable adsorption capacity loss. The determination of Cu(II) ions in seawater shows that the interfering matrix does not influence the preconcentration and selectivity values of the Cu(II)-PAR IIPs. The detection and quantification limits are 0.001 micromol L(-1) (3sigma) and 0.003 micromol L(-1) (6sigma), respectively.

  13. A simple and rapid in situ preconcentration method for the determination of phosphate in environmental waters by use of solid-phase extraction, and its applications to brackish lake waters.

    PubMed

    Okumura, M; Tong, L; Fujinaga, K; Seike, Y

    2001-05-01

    A simple and rapid in situ preconcentration method for the determination of phosphate in environmental waters has been developed for field analysis. This method is based on solid-phase extraction on a zirconium-loaded Sep-Pack Accell CM cartridge (Zr-SP) and is applicable to studies in which sampling is performed by use of a graduated syringe to prevent contamination and to ensure easy operation at sampling sites. The Zr-SP cartridge was prepared by passing 0.1 mol L(-1) zirconium solution through a Sep-Pak Accell CM cartridge, packed with cation exchange sorbent based on a silica matrix. The adsorption of phosphate and its desorption depend only on the pH of the solution. A water sample containing phosphate was adjusted to pH 2 and passed through the Zr-SP cartridge to collect it. The retained phosphate was quantitatively eluted with 0.5 mol L(-1) sodium hydroxide solution. The phosphate retained in the Zr-SP cartridge was stable for at least one month. The established preconcentration method was successfully applied to brackish lake waters to investigate seasonal changes in the distribution and behavior of phosphate in a brackish lake.

  14. Potential role of gold nanoparticles for improved analytical methods: an introduction to characterizations and applications.

    PubMed

    Wu, Chung-Shu; Liu, Fu-Ken; Ko, Fu-Hsiang

    2011-01-01

    Nanoparticle-based material is a revolutionary scientific and engineering venture that will invariably impact the existing analytical separation and preconcentration for a variety of analytes. Nanoparticles can be regarded as a hybrid between small molecule and bulk material. A material on the nanoscale produces considerable changes on various properties, making them size- and shape-dependent. Gold nanoparticles (Au NPs), one of the wide variety of core materials available, coupled with tunable surface properties in the form of inorganic or inorganic-organic hybrid have been reported as an excellent platform for a broad range of analytical methods. This review aims to introduce the basic principles, examples, and descriptions of methods for the characterization of Au NPs by using chromatography, electrophoresis, and self-assembly strategies for separation science. Some of the latest important applications of using Au NPs as stationary phases toward open-tubular capillary electrochromatography, gas chromatography, and liquid chromatography as well as roles of run buffer additive to enhance separation and preconcentration in the field of chromatographic, electrophoretic and in chip-based systems are reviewed. Additionally, we review Au NPs-assisted state-of-the-art techniques involving the use of micellar electrokinetic chromatography, an online diode array detector, solid-phase extraction, and mass spectrometry for the preconcentration of some chemical compounds and biomolecules.

  15. Preparation of modified magnetic nanoparticles as a sorbent for the preconcentration and determination of cadmium ions in food and environmental water samples prior to flame atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Mirabi, Ali; Dalirandeh, Zeinab; Rad, Ali Shokuhi

    2015-05-01

    A new method has been developed for the separation/preconcentration of trace level cadmium ions using diphenyl carbazone/sodium dodecyl sulfate immobilized on magnetic nanoparticle Fe3O4 as a new sorbent SPE and their determination by flame atomic absorption spectrometry (FAAS). Synthesized nanoparticle was characterized by scanning electron microscope (SEM) and transmission electron microscope (TEM). Various influencing parameters on the separation and preconcentration of trace level cadmium ions such as, pH value, amount of nanoparticles, amount of diphenyl carbazone, condition of eluting solution, the effects of matrix ions were examined. The cadmium ions can be eluted from the modified magnetic nanoparticle using 1 mol L-1 HCl as a desorption reagent. The detection limit of this method for cadmium was 3.71 ng ml-1 and the R.S.D. was 0.503% (n=6). The advantages of this new method include rapidity, easy preparation of sorbents and a high concentration factor. The proposed method has been applied to the determination of Cd ions at trace levels in real samples such as, green tea, rice, tobacco, carrot, lettuce, ginseng, spice, tap water, river water, sea water with satisfactory results.

  16. A versatile, refrigerant- and cryogen-free cryofocusing-thermodesorption unit for preconcentration of traces gases in air

    NASA Astrophysics Data System (ADS)

    Obersteiner, Florian; Bönisch, Harald; Keber, Timo; O'Doherty, Simon; Engel, Andreas

    2016-10-01

    We present a compact and versatile cryofocusing-thermodesorption unit, which we developed for quantitative analysis of halogenated trace gases in ambient air. Possible applications include aircraft-based in situ measurements, in situ monitoring and laboratory operation for the analysis of flask samples. Analytes are trapped on adsorptive material cooled by a Stirling cooler to low temperatures (e.g. -80 °C) and subsequently desorbed by rapid heating of the adsorptive material (e.g. +200 °C). The set-up involves neither the exchange of adsorption tubes nor any further condensation or refocusing steps. No moving parts are used that would require vacuum insulation. This allows for a simple and robust design. Reliable operation is ensured by the Stirling cooler, which neither contains a liquid refrigerant nor requires refilling a cryogen. At the same time, it allows for significantly lower adsorption temperatures compared to commonly used Peltier elements. We use gas chromatography - mass spectrometry (GC-MS) for separation and detection of the preconcentrated analytes after splitless injection. A substance boiling point range of approximately -80 to +150 °C and a substance mixing ratio range of less than 1 ppt (pmol mol-1) to more than 500 ppt in preconcentrated sample volumes of 0.1 to 10 L of ambient air is covered, depending on the application and its analytical demands. We present the instrumental design of the preconcentration unit and demonstrate capabilities and performance through the examination of analyte breakthrough during adsorption, repeatability of desorption and analyte residues in blank tests. Examples of application are taken from the analysis of flask samples collected at Mace Head Atmospheric Research Station in Ireland using our laboratory GC-MS instruments and by data obtained during a research flight with our in situ aircraft instrument GhOST-MS (Gas chromatograph for the Observation of Tracers - coupled with a Mass Spectrometer).

  17. Adsorption studies of Cd(II) onto Al 2O 3/Nb 2O 5 mixed oxide dispersed on silica matrix and its on-line preconcentration and determination by flame atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Mendonça Costa, Lucimara; Ribeiro, Emerson Schwingel; Segatelli, Mariana Gava; do Nascimento, Danielle Raphael; de Oliveira, Fernanda Midori; Tarley, César Ricardo Teixeira

    2011-05-01

    The present study describes the adsorption characteristic of Cd(II) onto Nb 2O 5/Al 2O 3 mixed oxide dispersed on silica matrix. The characterization of the adsorbent has been carried out by infrared spectroscopy (IR), scanning electronic microscopy (SEM), energy dispersive spectroscopy (EDS), energy dispersive X-ray fluorescence analysis (EDXRF) and specific surface area ( SBET). From batch experiments, adsorption kinetic of Cd(II) was described by a pseudo-second-order kinetic model. The Langmuir linear isotherm fitted to the experimental adsorption isotherm very well, and the maximum adsorption capacity was found to be 17.88 mg g -1. Using the effective material, a method for Cd(II) preconcentration at trace level was developed. The method was based on on-line adsorption of Cd(II) onto SiO 2/Al 2O 3/Nb 2O 5 at pH 8.64, in which the quantitative desorption occurs with 1.0 mol L -1 hydrochloric acid towards FAAS detector. The experimental parameters related to the system were studied by means of multivariate analysis, using 2 4 full factorial design and Doehlert matrix. The effect of SO 42-, Cu 2+, Zn 2+ and Ni 2+ foreign ions showed no interference at 1:100 analyte:interferent proportion. Under the most favorable experimental conditions, the preconcentration system provided a preconcentration factor of 18.4 times, consumption index of 1.08 mL, sample throughput of 14 h -1, concentration efficiency of 4.35 min -1, linear range from 5.0 up to 35.0 μg L -1 and limits of detection and quantification of 0.19 and 0.65 μg L -1 respectively. The feasibility of the proposed method for Cd(II) determination was assessed by analysis of water samples, cigarette sample and certified reference materials TORT-2 (Lobster hepatopancreas) and DOLT-4 (Dogfish liver).

  18. Liquid chromatography-tandem mass spectrometry and passive sampling: powerful tools for the determination of emerging pollutants in water for human consumption.

    PubMed

    Mirasole, Cristiana; Di Carro, Marina; Tanwar, Shivani; Magi, Emanuele

    2016-09-01

    Among the wide range of emerging pollutants, perfluorinated compounds and various pharmaceuticals, such as nonsteroidal anti-inflammatory drugs, are showing growing concern. These contaminants can be found in freshwater ecosystems because of their incomplete removal during wastewater treatments so, their water solubility and poor degradability result in their continuous discharge and pseudo-persistent contamination. Usually, expected levels of these analytes are particularly low; therefore, sensitive and selective analytical techniques are required for their determination. Moreover, sampling and preconcentration are fundamental steps to reach the low detection limits required. The polar organic chemical integrative sampler (POCIS) represents a modern sampling approach that allows the in-situ preconcentration of ultra-trace pollutants. In this work, a fast liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS) method was developed for the determination of diclofenac, ketoprofen, mefenamic acid, naproxen, ibuprofen, perfluorooctanoic acid, perfluorooctanesulfonate and caffeine in water for human consumption. The chromatographic separation of analytes was achieved in less than 6 min. Quantitative analysis was performed in multiple reaction monitoring mode using ketoprofen-d3 as internal standard. Two different sites of Northern Italy were studied deploying POCIS for four weeks in both inlet and outlet of two drinking water treatment plants. The evaluation of time-weighted average concentration of contaminants was accomplished after the calibration of POCIS; to this aim, the sampling rate values for each compound were obtained by means of a simple calibration system developed in our laboratory. Ketoprofen, perfluorooctane sulfonate, perfluorooctanoate and caffeine were measured in both sites at the ng l(-1) level. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  19. Supramolecular solvent-based extraction of benzimidazolic fungicides from natural waters prior to their liquid chromatographic/fluorimetric determination.

    PubMed

    Moral, Antonia; Sicilia, María Dolores; Rubio, Soledad

    2009-05-01

    A supramolecular solvent made up of vesicles of decanoic acid in the nano- and microscale regimes dispersed in a continuous aqueous phase is proposed for the extraction/preconcentration of benzimidazolic fungicides (BFs) from river and underground water samples prior to their determination by liquid chromatography (LC)/fluorimetry. The solvent is produced from the coacervation of decanoic acid aqueous vesicles by the action of tetrabutylammonium (Bu(4)N(+)). Carbendazim (CB), thiabendazole (TB) and fuberidazole (FB) are extracted on the basis of hydrophobic and pi-cation interactions and the formation of hydrogen bonds. The extraction provides high preconcentration factors (160 for CB and 190 for TB and FB), requires a short time (the procedure takes less than 20 min and several samples can be simultaneously processed) and a low sample volume (20 mL), and avoids the use of toxic organic solvents. Because of the absence of matrix interferences and the low viscosity of the extracts, these can be directly injected into the chromatographic system without the need of cleaning-up or diluting them. Recoveries are not influenced by the presence of salt concentrations up to 1 M. The proposed method provides detection limits for the determination of CB, TB and FB in natural waters of 32, 4 and 0.1 ng L(-1), respectively, and a precision, expressed as relative standard deviation (n=11) of 5.5% for CB (100 ng L(-1)), 4.0% for TB (80 ng L(-1)) and 2.5% for FB (30 ng L(-1)). Recoveries obtained by applying this approach to the analysis of river and underground water samples fortified at the ng L(-1) level are in the intervals 75-83, 95-102 and 97-101% for CB, TB and FB, respectively.

  20. Ultra-preconcentration and determination of selected pharmaceutical and personal care products in different water matrices by solid-phase extraction combined with dispersive liquid-liquid microextraction prior to ultra high pressure liquid chromatography tandem mass spectrometry analysis.

    PubMed

    Celano, Rita; Piccinelli, Anna Lisa; Campone, Luca; Rastrelli, Luca

    2014-08-15

    Pharmaceutical and personal care products (PPCPs) are one of the most important classes of emerging contaminants. The potential of ecological and environmental impacts associated with PPCPs are of particular concern because they continually penetrate the aquatic environment. This work describes a novel ultra-preconcentration technique for the rapid and highly sensitive analysis of selected PPCPs in environmental water matrices at ppt levels. Selected PPCPs were rapidly extracted and concentrated from large volumes of aqueous solutions (500 and 250mL) by solid-phase extraction combined with dispersive liquid-liquid microextraction (SPE-DLLME) and then analyzed using UHPLC-MS/MS. Experimental parameters were carefully investigated and optimized to achieve the best SPE-DLLME efficiency and higher enrichment factors. The best results were obtained using the ternary mixture acetonitrile/methanol/dichloromethane 3:3:4, v/v/v, both as SPE eluent and DLLME extractant/dispersive mixture. DLLME aqueous solution (5% NaCl, 10mgL(-1) TBAB) was also modified to improve the extraction efficiency of more hydrophilic PPCPs. Under the optimal conditions, an exhaustive extraction for most of the investigated analytes (recoveries >70%), with a precision (RSD <10%) and very high enrichment factors were attained for different aqueous matrices (drinking, sea, river and wastewater). Method detection and quantification limits were at very low ppt levels and below 1 and 3ngL(-1), respectively, for 15 of selected PPCPs. The proposed analytical procedure offers numerous advantages such as the simplicity of operation, rapidity, a high enrichment factor and sensitivity. So it is suitable for monitoring and studies of occurrence of PPCPs in different environmental compartments. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Combined micro-droplet and thin-film-assisted pre-concentration of lead traces for on-line monitoring using anodic stripping voltammetry.

    PubMed

    Belostotsky, Inessa; Gridin, Vladimir V; Schechter, Israel; Yarnitzky, Chaim N

    2003-02-01

    An improved analytical method for airborne lead traces is reported. It is based on using a Venturi scrubber sampling device for simultaneous thin-film stripping and droplet entrapment of aerosol influxes. At least threefold enhancement of the lead-trace pre-concentration is achieved. The sampled traces are analyzed by square-wave anodic stripping voltammetry. The method was tested by a series of pilot experiments. These were performed using contaminant-controlled air intakes. Reproducible calibration plots were obtained. The data were validated by traditional analysis using filter sampling. LODs are comparable with the conventional techniques. The method was successfully applied to on-line and in situ environmental monitoring of lead.

  2. Human portable preconcentrator system

    DOEpatents

    Linker, Kevin L.; Brusseau, Charles A.; Hannum, David W.; Puissant, James G.; Varley, Nathan R.

    2003-08-12

    A preconcentrator system and apparatus suited to human portable use wherein sample potentially containing a target chemical substance is drawn into a chamber and through a pervious screen. The screen is adapted to capture target chemicals and then, upon heating, to release those chemicals into the chamber. Chemicals captured and then released in this fashion are then carried to a portable chemical detection device such as a portable ion mobility spectrometer. In the preferred embodiment, the means for drawing sample into the chamber comprises a reversible fan which, when operated in reverse direction, creates a backpressure that facilitates evolution of captured target chemicals into the chamber when the screen is heated. The screen can be positioned directly in front of the detector prior to heating to improve detection capability.

  3. Fundamental and Applied Investigations in Atomic Spectrometric Analysis

    NASA Astrophysics Data System (ADS)

    Wu, Min

    Simultaneous laser-excited fluorescence and absorption measurements were performed and the results have revealed that any interference caused by easily ionized elements does not originate from variations in analyte emission (quantum) efficiency. A closely related area, the roles of wet and dry aerosols in the matrix interference are clarified through spatially resolved imaging of the plasma by a charged coupled device camera. To eliminate matrix interference effects practically, various methods have been developed based on the above studies. The use of column pre-concentration with flow injection analysis has been found to provide a simple solution for reducing interference effects and increasing sensitivity of elemental analysis. A novel mini-spray chamber was invented. The new vertical rotary spray chamber combines gravitational, centrifugal, turbulent, and impact droplet segregation mechanisms to achieve a higher efficiency of small-droplet formation in a nebulized sample spray. As a result, it offers also higher sample-transport efficiency, lower memory effects, and improved analytical figures of merit over existing devices. This new device was employed with flow injection analysis to simulate an interface for coupling high performance liquid chromatography (HPLC) to a microwave plasma for chromatographic detection. The detection limits for common metallic elements are in the range of 5-50 mug/mL, and are degraded only twofold when the elements are presented in an organic solvent such as ethanol or methanol. Other sample-introduction schemes have also been investigated to improve sample-introduction technology. The direct coupling of hydride-generation techniques to the helium microwave plasma torch was evaluated for the determination of arsenic, antimony and tin by atomic emission spectrometry. A manually controlled peristaltic pump was modified for computer control and continuous flow injection was evaluated for standard calibration and trace elemental analysis. The present work evaluates the coupling of a novel microwave plasma torch with a quadruple mass spectrometer for the detection of ionic species from different nonmetals. Initial work performed with such a combination is demonstrated to be not only practicable but also promising. Detection limits for the halogens (F, Cl, Br, I) and S are in the range between 10 ng/mL and 1mug/mL. Further improvements have been realized through the use of chemical -vapor generation and by optimization of the plasma and the mass spectrometer. (Abstract shortened by UMI.).

  4. Flow-injection determination of total organic fluorine with off-line defluorination reaction on a solid sorbent bed.

    PubMed

    Musijowski, Jacek; Trojanowicz, Marek; Szostek, Bogdan; da Costa Lima, José Luis Fontes; Lapa, Rui; Yamashita, Hiroki; Takayanagi, Toshio; Motomizu, Shoji

    2007-09-26

    Considering recent reports on widespread occurrence and concerns about perfluoroalkyl substances (PFAS) in environmental and biological systems, analysis of these compounds have gained much attention in recent years. Majority of analyte-specific methods are based on a LC/MS/MS or a GC/MS detection, however many environmental or biological studies would benefit from a total organic fluorine (TOF) determination. Presented work was aimed at developing a method for TOF determination. TOF is determined as an amount of inorganic fluoride obtained after defluorination reaction conducted off-line using sodium biphenyl reagent directly on the sorbent without elution of retained analytes. Recovered fluoride was analyzed using flow-injection system with either fluorimetric or potentiometric detection. The TOF method was tested using perfluorocarboxylic acids (PFCA), including perfluorooctanoic acid (PFOA), as model compounds. Considering low concentrations of PFAS in natural samples, solid-phase extraction as a preconcentration procedure was evaluated. Several carbon-based sorbents were tested, namely multi-wall carbon nanotubes, carbon nanofibres and activated carbon. Good sorption of all analytes was achieved and defluorination reaction was possible to carry out directly on a sorbent bed. Recoveries obtained for PFCAs, adsorbed on an activated carbon sorbent, and measured as TOF, were 99.5+/-1.7, 110+/-9.4, 95+/-26, 120+/-32, 110+/-12 for C4, C6, C8, C10 and C12-PFCA, respectively. Two flow systems that would enable the defluorination reaction and fluoride determination in a single system were designed and tested.

  5. Development and optimization of an analytical system for volatile organic compound analysis coming from the heating of interstellar/cometary ice analogues.

    PubMed

    Abou Mrad, Ninette; Duvernay, Fabrice; Theulé, Patrice; Chiavassa, Thierry; Danger, Grégoire

    2014-08-19

    This contribution presents an original analytical system for studying volatile organic compounds (VOC) coming from the heating and/or irradiation of interstellar/cometary ice analogues (VAHIIA system) through laboratory experiments. The VAHIIA system brings solutions to three analytical constraints regarding chromatography analysis: the low desorption kinetics of VOC (many hours) in the vacuum chamber during laboratory experiments, the low pressure under which they sublime (10(-9) mbar), and the presence of water in ice analogues. The VAHIIA system which we developed, calibrated, and optimized is composed of two units. The first is a preconcentration unit providing the VOC recovery. This unit is based on a cryogenic trapping which allows VOC preconcentration and provides an adequate pressure allowing their subsequent transfer to an injection unit. The latter is a gaseous injection unit allowing the direct injection into the GC-MS of the VOC previously transferred from the preconcentration unit. The feasibility of the online transfer through this interface is demonstrated. Nanomoles of VOC can be detected with the VAHIIA system, and the variability in replicate measurements is lower than 13%. The advantages of the GC-MS in comparison to infrared spectroscopy are pointed out, the GC-MS allowing an unambiguous identification of compounds coming from complex mixtures. Beyond the application to astrophysical subjects, these analytical developments can be used for all systems requiring vacuum/cryogenic environments.

  6. Optimisation of the conditions for stripping voltammetric analysis at liquid-liquid interfaces supported at micropore arrays: a computational simulation.

    PubMed

    Strutwolf, Jörg; Arrigan, Damien W M

    2010-10-01

    Micropore membranes have been used to form arrays of microinterfaces between immiscible electrolyte solutions (µITIES) as a basis for the sensing of non-redox-active ions. Implementation of stripping voltammetry as a sensing method at these arrays of µITIES was applied recently to detect drugs and biomolecules at low concentrations. The present study uses computational simulation to investigate the optimum conditions for stripping voltammetric sensing at the µITIES array. In this scenario, the diffusion of ions in both the aqueous and the organic phases contributes to the sensing response. The influence of the preconcentration time, the micropore aspect ratio, the location of the microinterface within the pore, the ratio of the diffusion coefficients of the analyte ion in the organic and aqueous phases, and the pore wall angle were investigated. The simulations reveal that the accessibility of the microinterfaces during the preconcentration period should not be hampered by a recessed interface and that diffusional transport in the phase where the analyte ions are preconcentrated should be minimized. This will ensure that the ions are accumulated within the micropores close to the interface and thus be readily available for back transfer during the stripping process. On the basis of the results, an optimal combination of the examined parameters is proposed, which together improve the stripping voltammetric signal and provide an improvement in the detection limit.

  7. Fast and Selective Preconcentration of Europium from Wastewater and Coal Soil by Graphene Oxide/Silane@Fe3O4 Dendritic Nanostructure.

    PubMed

    Patra, Santanu; Roy, Ekta; Madhuri, Rashmi; Sharma, Prashant K

    2015-05-19

    In this study, nanocomposite of graphene oxide and silane modified magnetic nanoparticles (silane@Fe3O4) were synthesized in a form of dendritic structure. For this, silane@Fe3O4 nanoparticle gets sandwiched between two layers of graphene oxide by chemical synthesis route. The synthesized dendritic structure was used as a monomer for synthesis of europium ion imprinted polymer. The synthesis of imprinted polymer was contemplated onto the surface of the vinyl group modified silica fiber by activated generated free radical atom-transfer radical polymerization, that is, AGET-ATRP technique. The synthesized dendritic monomer was characterized by XRD, FT-IR, VSM, FE-SEM, and TEM analyses. The imprinted polymer modified silica fiber was first validated in the aqueous and blood samples for successful extraction and detection of europium ion with limit of detection = 0.050 pg mL(-1) (signal/noise = 3). The imprinted polymer modified silica fiber was also used for preconcentration and separation of europium metal ion from various soil samples of coal mine areas. However, the same silica fiber was also used for wastewater treatment and shows 100% performance for europium removal. The findings herein suggested that dendritic nanocomposite could be potentially used as a highly effective material for the enrichment and preconcentration of europium or other trivalent lanthanides/actinides in nuclear waste management.

  8. Comparison of solidification of floating drop and homogenous liquid-liquid microextractions for the extraction of two plasticizers from the water kept in PET-bottles.

    PubMed

    Yamini, Yadollah; Ghambarian, Mahnaz; Khalili-Zanjani, Mohammad Reza; Faraji, Mohammad; Shariati, Shahab

    2009-09-01

    Two approaches based on solidification of floating drop microextraction (SFDME) and homogenous liquid-liquid microextraction (HLLE) were compared for the extraction and preconcentration of di-(2-ethylhexyl) phthalate (DEHP) and di-(2-ethylhexyl) adipate (DEHA) from the mineral water samples. In SFDME, a floated drop of the mixture of acetophenone/1-undecanol (1:8) was exposed on the surface of the aqueous solution and extraction was permitted to occur. In HLLE, a homogenous ternary solvent system was used by water/methanol/chloroform and the phase separation phenomenon occurred by salt addition. Under the optimal conditions, the LODs for the two target plasticizers (DEHA and DEHP), obtained by SFDME-GC-FID and HLLE-GC-FID, were ranged from 0.03 to 0.01 microg/L and 0.02 to 0.01 microg/L, respectively. HLLE provided higher preconcentration factors (472.5- and 551.2-fold) within the shorter extraction time as well as better RSDs (4.5-6.9%). While, in SFDME, high preconcentration factors in the range of 162-198 and good RSDs in the range of 5.2-9.6% were obtained. Both methods were applied for the analysis of two plasticizers in different water samples and two target plasticizers were found in the bottled mineral water after the expiring time and the boiling water was exposed to a polyethylene vial.

  9. Adsorption and preconcentration of divalent metal ions in fossil fuels and biofuels: gasoline, diesel, biodiesel, diesel-like and ethanol by using chitosan microspheres and thermodynamic approach.

    PubMed

    Prado, Alexandre G S; Pescara, Igor C; Evangelista, Sheila M; Holanda, Matheus S; Andrade, Romulo D; Suarez, Paulo A Z; Zara, Luiz F

    2011-05-15

    Biodiesel and diesel-like have been obtained from soybean oil by transesterification and thermal cracking process, respectively. These biofuels were characterized as according to ANP standards by using specific ASTM methods. Ethanol, gasoline, and diesel were purchased from a gas station. Deacetylation degree of chitosan was determined by three distinct methods (conductimetry, FTIR and NMR), and the average degree was 78.95%. The chitosan microspheres were prepared from chitosan by split-coating and these spheres were crosslinked using glutaraldehyde. The surface area of microspheres was determined by BET method, and the surface area of crosslinked microspheres was 9.2m(2)g(-1). The adsorption isotherms of cooper, nickel and zinc on microspheres of chitosan were determined in petroleum derivatives (gasoline and diesel oil), as well as in biofuels (alcohol, biodiesel and diesel-like). The adsorption order in all fuels was: Cu>Ni>Zn. The elution tests presented the following preconcentration degrees: >4.5 to ethanol, >4.4 to gasoline, >4.0 to diesel, >3.8 to biodiesel and >3.6 to diesel-like. The application of chitosan microspheres in the metal ions preconcentration showed the potential of this biopolymer to enrich fuel sample in order to be analyzed by flame atomic absorption spectrometry. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. Ultrasonically Modified Amended-Cloud Point Extraction for Simultaneous Pre-Concentration of Neonicotinoid Insecticide Residues.

    PubMed

    Kachangoon, Rawikan; Vichapong, Jitlada; Burakham, Rodjana; Santaladchaiyakit, Yanawath; Srijaranai, Supalax

    2018-05-12

    An effective pre-concentration method, namely amended-cloud point extraction (CPE), has been developed for the extraction and pre-concentration of neonicotinoid insecticide residues. The studied analytes including clothianidin, imidacloprid, acetamiprid, thiamethoxam and thiacloprid were chosen as a model compound. The amended-CPE procedure included two cloud point processes. Triton™ X-114 was used to extract neonicotinoid residues into the surfactant-rich phase and then the analytes were transferred into an alkaline solution with the help of ultrasound energy. The extracts were then analyzed by high-performance liquid chromatography (HPLC) coupled with a monolithic column. Several factors influencing the extraction efficiency were studied such as kind and concentration of surfactant, type and content of salts, kind and concentration of back extraction agent, and incubation temperature and time. Enrichment factors (EFs) were found in the range of 20⁻333 folds. The limits of detection of the studied neonicotinoids were in the range of 0.0003⁻0.002 µg mL −1 which are below the maximum residue limits (MRLs) established by the European Union (EU). Good repeatability was obtained with relative standard deviations lower than 1.92% and 4.54% for retention time ( t R ) and peak area, respectively. The developed extraction method was successfully applied for the analysis of water samples. No detectable residues of neonicotinoids in the studied samples were found.

  11. Ultrasound-assisted dispersive magnetic solid phase extraction for preconcentration and determination of trace amount of Hg (II) ions from food samples and aqueous solution by magnetic graphene oxide (Fe3O4@GO/2-PTSC): Central composite design optimization.

    PubMed

    Keramat, Akram; Zare-Dorabei, Rouholah

    2017-09-01

    In this work, the synthesis of the magnetic graphene oxide modified by 2-pyridinecarboxaldehyde thiosemicarbazone groups (Fe 3 O 4 @GO/2-PTSC) was utilized for preconcentration and determination of mercuric ions in a trace amount by inductively coupled plasma-optical emission spectrometry (ICP-OES). Characterization of the adsorbent was performed using various techniques, such as FT-IR, VSM, SEM and XRD analysis. Central composite design (CCD) under response surface methodology (RSM) was used for obtaining the most important parameters and probable interactions in variables. The variables such as adsorbent dosage, pH, desorption time, and eluent volume was optimized. These values were 8mg, 5.4min, 0.5mL (HCl, 0.1M), respectively. Sonication had an important role in shortening the adsorption time of Hg (II) ions by enhancing the dispersion of adsorbent in solution. Under the optimal conditions, the proposed method presented high enrichment factor of 193, an extraction percentage of 96.5, a detection limit of 0.0079µgL -1 and a relative standard deviation (RSD %) of 1.63%. Finally, the application of the synthesized material was evaluated for preconcentration and determination of mercuric ions from foods and environmental waters samples. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Justification of rapid prototyping in the development cycle of thermoplastic-based lab-on-a-chip.

    PubMed

    Preywisch, Regina; Ritzi-Lehnert, Marion; Drese, Klaus S; Röser, Tina

    2011-11-01

    During the developmental cycle of lab-on-a-chip devices, various microstructuring techniques are required. While in the designing and assay implementation phase direct structuring or so-called rapid-prototyping methods such as milling or laser ablation are applied, replication methods like hot embossing or injection moulding are favourable for large quantity manufacturing. This work investigated the applicability of rapid-prototyping techniques for thermoplastic chip development in general, and the reproducibility of performances in dependency of the structuring technique. A previously published chip for prenatal diagnosis that preconcentrates DNA via electrokinetic trapping and field-amplified-sample-stacking and afterwards separates it in CGE was chosen as a model. The impact of structuring, sealing, and the integration of membranes on the mobility of the EOF, DNA preconcentration, and DNA separation was studied. Structuring methods were found to significantly change the location where preconcentration of DNA occurs. However, effects on the mobility of the EOF and the separation quality of DNA were not observed. Exchange of the membrane has no effect on the chip performance, whereas the sealing method impairs the separation of DNA within the chip. The overall assay performance is not significantly influenced by different structuring methods; thus, the application of rapid-prototyping methods during a chip development cycle is well justified. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Halloysite nanotubes as a solid sorbent in ultrasound-assisted dispersive micro solid-phase extraction for the determination of bismuth in water samples using high-resolution continuum source graphite-furnace atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Krawczyk-Coda, Magdalena

    2017-03-01

    In this research, a simple, accurate, and inexpensive preconcentration procedure was developed for the determination of bismuth in water samples, using high-resolution continuum source graphite furnace atomic absorption spectrometry (HR CS GFAAS). During the preconcentration step, halloysite nanotubes (HNTs) were used as a solid sorbent in ultrasound-assisted dispersive micro solid-phase extraction (USA DMSPE). The influence of the pH of the sample solution, amount of HNTs, and extraction time, as well as of the main parameters of HR CS GFAAS, on absorbance was investigated. The limit of detection was 0.005 μg L- 1. The preconcentration factor achieved for bismuth was 32. The relative standard deviation (RSD) was 4%. The accuracy of this method was validated by analyses of NIST SRM 1643e (Trace elements in water) and TMDA-54.5 (A high level fortified sample for trace elements) certified reference materials. The measured bismuth contents in these certified reference materials were in satisfactory agreement with the certified values according to the t-test for a 95% confidence level. The proposed method has been successfully applied to the determination of bismuth in five different real water samples (seawater, lake water, river water, stream water and rain water).

  14. Microchip integrating magnetic nanoparticles for allergy diagnosis.

    PubMed

    Teste, Bruno; Malloggi, Florent; Siaugue, Jean-Michel; Varenne, Anne; Kanoufi, Frederic; Descroix, Stéphanie

    2011-12-21

    We report on the development of a simple and easy to use microchip dedicated to allergy diagnosis. This microchip combines both the advantages of homogeneous immunoassays i.e. species diffusion and heterogeneous immunoassays i.e. easy separation and preconcentration steps. In vitro allergy diagnosis is based on specific Immunoglobulin E (IgE) quantitation, in that way we have developed and integrated magnetic core-shell nanoparticles (MCSNPs) as an IgE capture nanoplatform in a microdevice taking benefit from both their magnetic and colloidal properties. Integrating such immunosupport allows to perform the target analyte (IgE) capture in the colloidal phase thus increasing the analyte capture kinetics since both immunological partners are diffusing during the immune reaction. This colloidal approach improves 1000 times the analyte capture kinetics compared to conventional methods. Moreover, based on the MCSNPs' magnetic properties and on the magnetic chamber we have previously developed the MCSNPs and therefore the target can be confined and preconcentrated within the microdevice prior to the detection step. The MCSNPs preconcentration factor achieved was about 35,000 and allows to reach high sensitivity thus avoiding catalytic amplification during the detection step. The developed microchip offers many advantages: the analytical procedure was fully integrated on-chip, analyses were performed in short assay time (20 min), the sample and reagents consumption was reduced to few microlitres (5 μL) while a low limit of detection can be achieved (about 1 ng mL(-1)).

  15. Characterization of semi-solid Self-Emulsifying Drug Delivery Systems (SEDDS) of atorvastatin calcium by Raman image spectroscopy and chemometrics.

    PubMed

    Breitkreitz, Márcia C; Sabin, Guilherme P; Polla, Griselda; Poppi, Ronei J

    2013-01-25

    A methodology based on Raman image spectroscopy and chemometrics for homogeneity evaluation of formulations containing atorvastatin calcium in Gelucire(®) 44/14 is presented. In the first part of the work, formulations with high amounts of Gelucire(®) 44/14 (80%) and solvents of different polarities (diethylene glycol monoethyl ether, propyleneglycol, propylene glycol monocaprylate and glyceryl mono/dicaprylate/caprate) were prepared for miscibility screening evaluation by classical least squares (CLS). It was observed that Gelucire(®) 44/14 presented higher affinity for the lipophilic solvents glyceryl mono/dicaprylate/caprate and propylene glycol monocaprylate, whose samples were observed to be homogeneous, and lower affinity for the hydrophilic solvents diethylene glycol monoethyl ether and propyleneglycol, whose samples were heterogeneous. In the second part of the work, the ratio of glyceryl mono/dicaprylate/caprate and Gelucire(®) 44/14 was determined based on studies in water and allowed the selection of the proportions of these two excipients in the preconcentrate that provided supersaturation of atorvastatin upon dilution. The preconcentrate was then evaluated for homogeneity by partial least squares (PLS) and an excellent miscibility was observed in this proportion as well. Therefore, it was possible to select a formulation that presented simultaneously homogeneous preconcentrate and solubility enhancement in water by Raman image spectroscopy and chemometrics. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Analysis of isothiazolinones in environmental waters by gas chromatography-mass spectrometry.

    PubMed

    Rafoth, Astrid; Gabriel, Sabine; Sacher, Frank; Brauch, Heinz-Jürgen

    2007-09-14

    This paper describes an analytical method for the determination of five biocides of isothiazolinone type (2-methyl-3-isothiazolinone (MI), 5-chloro-2-methyl-3-isothiazolinone (CMI), 1,2-benzisothiazolinone (BIT), 2-octyl-3-isothiazolinone (OI), 4,5-dichloro-2-octyl-3-isothiazolinone (DCOI)) in environmental waters. The method is based on pre-concentration of the analytes by solid-phase extraction onto a mixture of a polymeric material and RP-C18 material and subsequent determination by gas chromatography-mass spectrometry (GC-MS). One of the target compounds (BIT) is derivatised with diazomethane after pre-concentration to improve its chromatographic performance. The method was optimised with respect to pre-concentration conditions (liquid-liquid extraction versus solid-phase extraction, solid-phase material, elution solvent and volume) and extensively validated. Applying the method to surface waters, groundwaters, and drinking waters, limits of detection between 0.01 and 0.1 microg/l could be achieved and the repeatability was below 10% for all compounds except for MI. Additional investigations showed that the stability of the isothiazolinones in environmental waters is limited and sample storage at 4 degrees C is mandatory to preserve the target biocides. First investigations of influents and effluents of a wastewater treatment plant showed that conventional wastewater treatment exhibits a high efficiency for removal of the isothiazolinones. In river waters, the target isothiazolinones could not be detected.

  17. Biosorption of platinum and palladium for their separation/preconcentration prior to graphite furnace atomic absorption spectrometric determination

    NASA Astrophysics Data System (ADS)

    Godlewska-Żyłkiewicz, Beata

    2003-08-01

    Inexpensive baker's yeast Saccharomyces cerevisiae and green algae Chlorella vulgaris, either free or immobilized on silica gel have been shown to selectively accumulate platinum and palladium from water samples in acidic medium (pH 1.6-1.8). Optimization of conditions of metals biosorption (sample pH, algae and yeast masses, adsorption time, temperature) was performed in batch mode. The procedure of matrix separation based on biosorption of platinum and palladium on algae C. vulgaris covalently immobilized on silica gel in flow mode was developed. The use of algae in flow procedure offers several advantages compared with its use in the batch mode. The procedure shows better reproducibility (<2%), improved efficiency of platinum retention on the column (93.3±1.6%), is less laborious and less time consuming. The best recovery of biosorbed metals from column (87.7±3.3% for platinum and 96.8±1.1 for palladium) was obtained with solution of 0.3 mol l -1 thiourea in 1 mol l -1 hydrochloric acid. The influence of thiourea on analytical signals of examined metals during GFAAS determination is discussed. The procedure has been applied for separation of noble metals from tap and waste water samples spiked with platinum and palladium.

  18. Surface nanodroplets for highly efficient liquid-liquid microextraction

    NASA Astrophysics Data System (ADS)

    Li, Miaosi; Lu, Ziyang; Yu, Haitao; Zhang, Xuehua

    2016-11-01

    Nanoscale droplets on a substrate are an essential element for a wide range of applications, such as laboratory-on-chip devices, simple and highly efficient miniaturized reactors for concentrating products, high-throughput single-bacteria or single-biomolecular analysis, encapsulation, and high-resolution imaging techniques. The solvent exchange process is a simple bottom-up approach for producing droplets at solid-liquid interfaces that are only several tens to hundreds of nanometers in height, or a few femtoliters in volume Oil nanodroplets can be produced on a substrate by solvent exchange in which a good solvent of oil is displaced by a poor solvent. Our previous work has significantly advanced understanding of the principle of solvent exchange, and the droplet size can be well-controlled by several parameters, including flow rates, flow geometry, gravitational effect and composition of solutions. In this work, we studied the microextraction effect of surface nanodroplets. Oil nanodroplets have been demonstrated to provide highly-efficient liquid-liquid microextraction of hydrophobic solute in a highly diluted solution. This effect proved the feasibility of nanodroplets as a platform for preconcentrating compounds for in situ highly sensitive microanalysis without further separation. Also the long lifetime and temporal stability of surface nanodroplets allow for some long-term extraction process and extraction without addition of stabilisers.

  19. Preparation and application of a tyre-based activated carbon solid phase extraction of heavy metals in wastewater samples

    NASA Astrophysics Data System (ADS)

    Dimpe, K. Mogolodi; Ngila, J. C.; Nomngongo, Philiswa N.

    2018-06-01

    In this paper, the tyre-based activated carbon solid phase extraction (SPE) method was successfully developed for simultaneous preconcentration of metal ions in the model and real water samples before their determination using flame atomic absorption spectrometry (FAAS). The activation of carbon was achieved by chemical activation and the tyre-based activated carbon was used as a sorbent for solid phase extraction. The prepared activated carbon was characterized using the scanning electron microscope (SEM), Brunauer-Emmett-Teller (BET), and Fourier Transform Infrared spectroscopy. Moreover, optimization of the proposed method was performed by the two-level full factorial design (FFD). The FFD was chosen in order to fully investigate the effect of the experimental variables (pH, eluent concentration and sample flow rate) that significantly influence the preconcentration procedure. In this model, individual factors are considered along with their interactions. In addition, modelling of the experiments allowed simultaneous variation of all experimental factors investigated, reduced the required time and number of experimental runs which consequently led to the reduction of the overall required costs. Under optimized conditions, the limits of detection and quantification (LOD and LOQ) ranged 0.66-2.12 μg L-1and 1.78-5.34 μg L-1, respectively and the enrichment factor of 25 was obtained. The developed SPE/FAAS method was validated using CWW-TM-A and CWW-TM-B wastewater standard reference materials (SRMs). The procedure showed to be accurate with satisfactory recoveries ranging from 92 to 99%. The precision (repeatability) was lower than 4% in terms of the relative standard deviation (%RSD). The developed method proved to have the capability to be used in routine analysis of heavy metals in domestic and industrial wastewater samples. In addition, the developed method can be used as a final step (before being discharged to the rivers) in wastewater treatment process in order to keep our water bodies free from toxic metals.

  20. Comparison of hydrodynamically closed isotachophoresis-capillary zone electrophoresis with hydrodynamically open capillary zone electrophoresis hyphenated with tandem mass spectrometry in drug analysis: pheniramine, its metabolite and phenylephrine in human urine.

    PubMed

    Piešťanský, Juraj; Maráková, Katarína; Kovaľ, Marián; Mikuš, Peter

    2014-09-05

    The advanced two dimensional isotachophoresis (ITP)-capillary zone electrophoresis (CZE) hyphenated with tandem mass spectrometry (MS/MS, here triple quadrupole, QqQ) was developed in this work to demonstrate analytical potentialities of this approach in the analysis of drugs in multicomponent ionic matrices. Pheniramine (PHM), phenylephrine (PHE), paracetamol (PCM) and their potential metabolic products were taken for the analysis by the ITP-CZE-ESI-QqQ technique working in hydrodynamically closed CE separation system and then a comparison with the conventional (hydrodynamically open) CZE-ESI-QqQ technique was made. The ITP-CZE-ESI-QqQ method was favorable in terms of obtainable selectivity (due to highly effective heart-cut analysis), concentration limits of detection (LOD at pgmL(-1) levels due to enhanced sample load capacity and ITP preconcentration), sample handling (on-line sample pretreatment, i.e. clean-up, preconcentration, preseparation), and, by that, possibilities for future automation and miniaturization. On the other hand, this experimental arrangement, in contrast to the CZE-ESI-QqQ arrangement supported by an electroosmotic flow, is principally limited to the analysis of uniformly (i.e. positively or negatively) charged analytes in one run without any possibilities to analyze neutral compounds (here, PCM and neutral or acidic metabolites of the drugs had to be excluded from the analysis). Hence, these general characteristics should be considered when choosing a proper analytical CE-MS approach for a given biomedical application. Here, the analytical potential of the ITP-CZE-ESI-QqQ method was demonstrated showing the real time profiles of excreted targeted drugs and metabolite (PHM, PHE, M-PHM) in human urine after the administration of one dose of Theraflu(®) to the volunteers. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Pre-concentration technique for reduction in "Analytical instrument requirement and analysis"

    NASA Astrophysics Data System (ADS)

    Pal, Sangita; Singha, Mousumi; Meena, Sher Singh

    2018-04-01

    Availability of analytical instruments for a methodical detection of known and unknown effluents imposes a serious hindrance in qualification and quantification. Several analytical instruments such as Elemental analyzer, ICP-MS, ICP-AES, EDXRF, ion chromatography, Electro-analytical instruments which are not only expensive but also time consuming, required maintenance, damaged essential parts replacement which are of serious concern. Move over for field study and instant detection installation of these instruments are not convenient to each and every place. Therefore, technique such as pre-concentration of metal ions especially for lean stream elaborated and justified. Chelation/sequestration is the key of immobilization technique which is simple, user friendly, most effective, least expensive, time efficient; easy to carry (10g - 20g vial) to experimental field/site has been demonstrated.

  2. Copper(II)-rubeanic acid coprecipitation system for separation-preconcentration of trace metal ions in environmental samples for their flame atomic absorption spectrometric determinations.

    PubMed

    Soylak, Mustafa; Erdogan, Nilgun D

    2006-09-21

    A simple and facile preconcentration procedure based on the coprecipitation of trace heavy metal ions with copper(II)-rubeanic acid complex has been developed. The analytical parameters including pH, amounts of rubeanic acid, sample volume, etc. was investigated for the quantitative recoveries of Pb(II), Fe(III), Cd(II), Au(III), Pd(II) and Ni(II). No interferic effects were observed from the concomitant ions. The detection limits for analyte ions by 3 sigma were in the range of 0.14 microg/l for iron-3.4 microg/l for lead. The proposed coprecipitation method was successfully applied to water samples from Palas Lake-Kayseri, soil and sediment samples from Kayseri and Yozgat-Turkey.

  3. Determination of ethylenediaminetetraacetic acid in sea water by solid-phase extraction and high-performance liquid chromatography.

    PubMed

    Kemmei, Tomoko; Kodama, Shuji; Fujishima, Hironori; Yamamoto, Atsushi; Inoue, Yoshinori; Hayakawa, Kazuichi

    2012-01-04

    The chelating agent EDTA is widely used, and as a result is showing up widely in the aquatic environment. Here we describe a preconcentration procedure for measuring EDTA concentration in sea water samples by HPLC. The procedure consists of forming an Fe(III) complex followed by solid-phase extraction using an activated carbon cartridge. After the preconcentration, EDTA was quantified by HPLC with ultraviolet detection (260 nm). The enrichment permitted the determination of EDTA at concentrations as low as 1 nM. Good recoveries were obtained for both brackish and full-strength sea water with high repeatability (RSD<6%). The method was applied to sea water samples taken from near the mouth of the Oyabe River in Japan. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Capacitive chemical sensor

    DOEpatents

    Manginell, Ronald P; Moorman, Matthew W; Wheeler, David R

    2014-05-27

    A microfabricated capacitive chemical sensor can be used as an autonomous chemical sensor or as an analyte-sensitive chemical preconcentrator in a larger microanalytical system. The capacitive chemical sensor detects changes in sensing film dielectric properties, such as the dielectric constant, conductivity, or dimensionality. These changes result from the interaction of a target analyte with the sensing film. This capability provides a low-power, self-heating chemical sensor suitable for remote and unattended sensing applications. The capacitive chemical sensor also enables a smart, analyte-sensitive chemical preconcentrator. After sorption of the sample by the sensing film, the film can be rapidly heated to release the sample for further analysis. Therefore, the capacitive chemical sensor can optimize the sample collection time prior to release to enable the rapid and accurate analysis of analytes by a microanalytical system.

  5. Study on the removal of hormones from domestic wastewaters with lab-scale constructed wetlands with different substrates and flow directions.

    PubMed

    Herrera-Melián, José Alberto; Guedes-Alonso, Rayco; Borreguero-Fabelo, Alejandro; Santana-Rodríguez, José Juan; Sosa-Ferrera, Zoraida

    2017-05-31

    Eight wastewater samples from a university campus were analysed between May and July of 2014 to determine the concentration of 14 natural and synthetic steroid hormones. An on-line solid-phase extraction combined with ultra-high performance liquid chromatography coupled with mass spectrometry (on-line SPE-UHPLC-MS/MS) was used as extraction, pre-concentration and detection method. In the samples studied, three oestrogens (17β-estradiol, estrone and estriol), two androgens (boldenone and testosterone), three progestogens (norgestrel, progesterone and norethisterone) and one glucocorticoid (prednisone) were detected. The removal of hormones was studied in primary and secondary constructed wetland mesocosms. The porous media of the primary constructed wetlands were palm tree mulch. These reactors were used to study the effect of water flow, i.e. horizontal (HF1) vs vertical (VF1). The latter was more efficient in the removal of 17β-estradiol (HF1: 30%, VF1: 50%), estrone (HF1: 63%, VF1: 85%), estriol (100% both), testosterone (HF1: 45%, VF1: 73%), boldenone (HF1:-77%, VF1: 100%) and progesterone (HF1: 84%, VF1: 99%). The effluent of HF1 was used as influent of three secondary constructed wetland mesocosms: two double-stage vertical flow constructed wetlands, one with gravel (VF2gravel) and one with palm mulch (VF2mulch), and a mineral-based, horizontal flow constructed wetland (HFmineral). VF2mulch was the most efficient of the secondary reactors, since it achieved the complete removal of the hormones studied with the exception of 17ß-estradiol. The significantly better removal of BOD and ammonia attained by VF2mulch suggests that the better aeration of mulch favoured the more efficient removal of hormones.

  6. Recent Advances in On-Line Methods Based on Extraction for Speciation Analysis of Chromium in Environmental Matrices.

    PubMed

    Trzonkowska, Laura; Leśniewska, Barbara; Godlewska-Żyłkiewicz, Beata

    2016-07-03

    The biological activity of Cr(III) and Cr(VI) species, their chemical behavior, and toxic effects are dissimilar. The speciation analysis of Cr(III) and Cr(VI) in environmental matrices is then of great importance and much research has been devoted to this area. This review presents recent developments in on-line speciation analysis of chromium in such samples. Flow systems have proved to be excellent tools for automation of sample pretreatment, separation/preconcentration of chromium species, and their detection by various instrumental techniques. Analytical strategies used in chromium speciation analysis discussed in this review are divided into categories based on selective extraction/separation of chromium species on solid sorbents and liquid-liquid extraction of chromium species. The most popular strategy is that based on solid-phase extraction. Therefore, this review shows the potential of novel materials designed and used for selective binding of chromium species. The progress in miniaturization of measurement systems is also presented.

  7. Polyhydroxybutyrate-b-polyethyleneglycol block copolymer for the solid phase extraction of lead and copper in water, baby foods, tea and coffee samples.

    PubMed

    Wadhwa, Sham Kumar; Tuzen, Mustafa; Kazi, Tasneem Gul; Soylak, Mustafa; Hazer, Baki

    2014-01-01

    A new adsorbent, polyhydroxybutyrate-b-polyethyleneglycol, was used for the separation and preconcentration of copper(II) and lead(II) ions prior to their flame atomic absorption spectrometric detections. The influences of parameters such as pH, amount of adsorbent, flow rates and sample volumes were investigated. The polymer does not interact with alkaline, alkaline-earth metals and transition metals. The enrichment factor was 50. The detection limits were 0.32 μg L(-1) and 1.82 μg L(-1) for copper and lead, respectively. The recovery values were found >95%. The relative standard deviations were found to be less than 6%. The validation of the procedure was performed by analysing certified reference materials; NIST SRM 1515 Apple leaves, IAEA-336 Lichen and GBW-07605 Tea. The method was successfully applied for the analysis of analytes in water and food samples. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Development of magnetic graphene oxide adsorbent for the removal and preconcentration of As(III) and As(V) species from environmental water samples.

    PubMed

    Rashidi Nodeh, Hamid; Wan Ibrahim, Wan Aini; Ali, Imran; Sanagi, Mohd Marsin

    2016-05-01

    New-generation adsorbent, Fe3O4@SiO2/GO, was developed by modification of graphene oxide (GO) with silica-coated (SiO2) magnetic nanoparticles (Fe3O4). The synthesized adsorbent was characterized using Fourier transform infrared spectroscopy, X-ray diffractometry, energy-dispersive X-ray spectroscopy, and field emission scanning electron microscopy. The developed adsorbent was used for the removal and simultaneous preconcentration of As(III) and As(V) from environmental waters prior to ICP-MS analysis. Fe3O4@SiO2/GO provided high adsorption capacities, i.e., 7.51 and 11.46 mg g(-1) for As(III) and As(V), respectively, at pH 4.0. Adsorption isotherm, kinetic, and thermodynamic were investigated for As(III) and As(V) adsorption. Preconcentration of As(III) and As(V) were studied using magnetic solid-phase extraction (MSPE) method at pH 9.0 as the adsorbent showed selective adsorption for As(III) only in pH range 7-10. MSPE using Fe3O4@SiO2/GO was developed with good linearities (0.05-2.0 ng mL(-1)) and high coefficient of determination (R (2) = 0.9992 and 0.9985) for As(III) and As(V), respectively. The limits of detection (LODs) (3× SD/m, n = 3) obtained were 7.9 pg mL(-1) for As(III) and 28.0 pg mL(-1) for As(V). The LOD obtained is 357-1265× lower than the WHO maximum permissible limit of 10.0 ng mL(-1). The developed MSPE method showed good relative recoveries (72.55-109.71 %) and good RSDs (0.1-4.3 %, n = 3) for spring water, lake, river, and tap water samples. The new-generation adsorbent can be used for the removal and simultaneous preconcentration of As(III) and As(V) from water samples successfully. The adsorbent removal for As(III) is better than As(V).

  9. A comprehensive study of a new versatile microchip device based liquid phase microextraction for stopped-flow and double-flow conditions.

    PubMed

    Payán, María Ramos; Murillo, Elia Santigosa; Coello, Jordi; López, Miguel Ángel Bello

    2018-06-29

    A new geometry for a versatile microfluidic-chip device based liquid phase microextraction was developed in order to enhance the preconcentration in microfluidic chips and also to enable double-flow and stopped-flow working modes. The microchip device was combined with a HPLC procedure for the simultaneous determination of two different families as model analytes, which were parabens and non-steroidal anti-inflammatories (NSAIDs): Ethyl 4-hydroxybenzoate (Et-P), Propyl 4-hydroxybenzoate (Pr-P), Butyl 4-hydroxybenzoate (Bu-P), IsoButyl 4-hydroxybenzoate (iBu-P), salycilic acid (SAC), ketoprofen (KET), naproxen (NAX), diclofenac (DIC) and ibuprofen (IBU) in urine samples. The new miniaturized microchip proposed in this work allows not only the possibility of working in double-flow conditions, but also under stagnant conditions (stopped-flow) (SF-μLPME). The sample (pH 1.5) was delivered to the SF-μLPME at 20 μL min -1 while keeping the acceptor phase (pH 11.75) under stagnant conditions during 20 min. The highest enrichment factors (between 16 and 47) were obtained under stopped-flow conditions at 20 μL min -1 (sample flow rate) after 20 min extraction; whereas the extraction efficiencies were within the range of 27-81% for all compounds. The procedure provided very low detection limits between 0.7 and 8.5 μg L -1 with a sample volume consumption of 400 μL. Parabens and NSAIDs have successfully been extracted from urine samples with excellent clean up and recoveries over 90% for all compounds. In parallel, the new device was also tested under double flow conditions, obtaining good but lower enrichment factors (between 9 and 20) and higher extraction efficiencies (between 45 and 95) after 7 min extraction, consuming a volume sample of 140 μL. The versatile device offered very high extraction efficiencies and good enrichment factor for double flow and stopped-flow conditions, respectively. In addition, this new miniaturized SF-μLPME device significantly reduced costs compared to the existing analytical techniques for sample preparation since this microchip require few microliters of sample and reagents and it is reusable. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Bayes to the Rescue: Continuous Positive Airway Pressure Has Less Mortality Than High-Flow Oxygen.

    PubMed

    Modesto I Alapont, Vicent; Khemani, Robinder G; Medina, Alberto; Del Villar Guerra, Pablo; Molina Cambra, Alfred

    2017-02-01

    The merits of high-flow nasal cannula oxygen versus bubble continuous positive airway pressure are debated in children with pneumonia, with suggestions that randomized controlled trials are needed. In light of a previous randomized controlled trial showing a trend for lower mortality with bubble continuous positive airway pressure, we sought to determine the probability that a new randomized controlled trial would find high-flow nasal cannula oxygen superior to bubble continuous positive airway pressure through a "robust" Bayesian analysis. Sample data were extracted from the trial by Chisti et al, and requisite to "robust" Bayesian analysis, we specified three prior distributions to represent clinically meaningful assumptions. These priors (reference, pessimistic, and optimistic) were used to generate three scenarios to represent the range of possible hypotheses. 1) "Reference": we believe bubble continuous positive airway pressure and high-flow nasal cannula oxygen are equally effective with the same uninformative reference priors; 2) "Sceptic on high-flow nasal cannula oxygen": we believe that bubble continuous positive airway pressure is better than high-flow nasal cannula oxygen (bubble continuous positive airway pressure has an optimistic prior and high-flow nasal cannula oxygen has a pessimistic prior); and 3) "Enthusiastic on high-flow nasal cannula oxygen": we believe that high-flow nasal cannula oxygen is better than bubble continuous positive airway pressure (high-flow nasal cannula oxygen has an optimistic prior and bubble continuous positive airway pressure has a pessimistic prior). Finally, posterior empiric Bayesian distributions were obtained through 100,000 Markov Chain Monte Carlo simulations. In all three scenarios, there was a high probability for more death from high-flow nasal cannula oxygen compared with bubble continuous positive airway pressure (reference, 0.98; sceptic on high-flow nasal cannula oxygen, 0.982; enthusiastic on high-flow nasal cannula oxygen, 0.742). The posterior 95% credible interval on the difference in mortality identified a future randomized controlled trial would be extremely unlikely to find a mortality benefit for high-flow nasal cannula oxygen over bubble continuous positive airway pressure, regardless of the scenario. Interpreting these findings using the "range of practical equivalence" framework would recommend rejecting the hypothesis that high-flow nasal cannula oxygen is superior to bubble continuous positive airway pressure for these children. For children younger than 5 years with pneumonia, high-flow nasal cannula oxygen has higher mortality than bubble continuous positive airway pressure. A future randomized controlled trial in this population is unlikely to find high-flow nasal cannula oxygen superior to bubble continuous positive airway pressure.

  11. Reversible adhesion switching of porous fibrillar adhesive pads by humidity.

    PubMed

    Xue, Longjian; Kovalev, Alexander; Dening, Kirstin; Eichler-Volf, Anna; Eickmeier, Henning; Haase, Markus; Enke, Dirk; Steinhart, Martin; Gorb, Stanislav N

    2013-01-01

    We report reversible adhesion switching on porous fibrillar polystyrene-block-poly(2-vinyl pyridine) (PS-b-P2VP) adhesive pads by humidity changes. Adhesion at a relative humidity of 90% was more than nine times higher than at a relative humidity of 2%. On nonporous fibrillar adhesive pads of the same material, adhesion increased only by a factor of ~3.3. The switching performance remained unchanged in at least 10 successive high/low humidity cycles. Main origin of enhanced adhesion at high humidity is the humidity-induced decrease in the elastic modulus of the polar component P2VP rather than capillary force. The presence of spongelike continuous internal pore systems with walls consisting of P2VP significantly leveraged this effect. Fibrillar adhesive pads on which adhesion is switchable by humidity changes may be used for preconcentration of airborne particulates, pollutants, and germs combined with triggered surface cleaning.

  12. Optofluidic analysis system for amplification-free, direct detection of Ebola infection

    NASA Astrophysics Data System (ADS)

    Cai, H.; Parks, J. W.; Wall, T. A.; Stott, M. A.; Stambaugh, A.; Alfson, K.; Griffiths, A.; Mathies, R. A.; Carrion, R.; Patterson, J. L.; Hawkins, A. R.; Schmidt, H.

    2015-09-01

    The massive outbreak of highly lethal Ebola hemorrhagic fever in West Africa illustrates the urgent need for diagnostic instruments that can identify and quantify infections rapidly, accurately, and with low complexity. Here, we report on-chip sample preparation, amplification-free detection and quantification of Ebola virus on clinical samples using hybrid optofluidic integration. Sample preparation and target preconcentration are implemented on a PDMS-based microfluidic chip (automaton), followed by single nucleic acid fluorescence detection in liquid-core optical waveguides on a silicon chip in under ten minutes. We demonstrate excellent specificity, a limit of detection of 0.2 pfu/mL and a dynamic range of thirteen orders of magnitude, far outperforming other amplification-free methods. This chip-scale approach and reduced complexity compared to gold standard RT-PCR methods is ideal for portable instruments that can provide immediate diagnosis and continued monitoring of infectious diseases at the point-of-care.

  13. SOA precursors at the T0 site during the 2010 CARES campaign

    NASA Astrophysics Data System (ADS)

    Wallace, H. W.; Jobson, B. T.; Erickson, M. H.

    2010-12-01

    Continuous measurements of C5 to C12 Volatile Organic Compounds (VOC) have been made using the Washington State University Mobile Atmospheric Chemistry Laboratory (MACL), at the T0 site during the month of June 2010 Carbonaceous Aerosol Carbonaceous Aerosols and Radiative Effects Study (CARES). These measurements were made to better understand aerosol formation and growth in Sacramento, CA and the surrounding areas. Using a sorbent based preconcentration sampling technique for our quadrupole ion trap gas chromatography mass spectrometer (GCMS), we have measured anthropogenic and biogenic secondary organic aerosol (SOA) precursors. Major biogenic VOCs identified include: α-pinene, limonene, isoprene, phellanderene and β-pinene. Diurnal profiles of the concentrations will be presented. Monoterpenes were highest in the mornings while isoprene was highest in the afternoon. In addition to understanding the diurnal profiles the SOA precursors at the T0 site, the relative contributions of biogenic and anthropogenic compounds to SOA formation will be presented.

  14. Simultaneous measurement of volatile sulfur compounds using ascorbic acid for oxidant removal and gas chromatography-flame photometric detection.

    PubMed

    Inomata, Y; Matsunaga, K; Murai, Y; Osada, K; Iwasaka, Y

    1999-12-09

    A method for the simultaneous measurement of volatile sulfur compounds (COS, H2S, CS2, CH3SH, DMS) is established with preconcentration and GC-flame photometric detection (FPD). Prior to preconcentration of ambient air, it was necessary to remove SO2, water vapor and atmospheric oxidant. SO2 and water vapor were removed using a glass fiber filter and a cooled PTFE water trap loop, respectively. In order to remove atmospheric oxidant, the efficiency of an ascorbic acid scrubber was examined. It was found that an ascorbic acid scrubber enabled measurement of volatile sulfur compounds without adsorption and reaction loss. The detection limits for COS, H2S, CS2, CH3SH and DMS were 20, 34, 35, 263 and 44 pg of S, respectively.

  15. Preliminary evaluation of new polymer matrix for solid-phase extraction of nonylphenol from water samples.

    PubMed

    Guerreiro, António; Soares, Ana; Piletska, Elena; Mattiasson, Bo; Piletsky, Sergey

    2008-03-31

    Molecularly imprinted (MIP) and blank polymers with affinity for nonylphenol were designed using computational modelling. Chromatographic tests demonstrated higher affinity of imprinted polymers towards the template nonylphenol as compared with blank polymers. The performance of both polymers in solid-phase extraction was however very similar. Both blank and imprinted polymers appeared to be suitable for the removal and pre-concentration of nonylphenol from contaminated water samples with 99% efficiency of the recovery. The commercial resins PH(EC) (Biotage) and C18 (Varian) tested in the same conditions used for comparative purposes had recovery rate <84%. The polymer capacity for nonylphenol was 231 mg g(-1) for blank and 228 mg g(-1) for MIP. The synthesised materials can have significance for sample pre-concentration and environmental analysis of this class of compounds.

  16. The trace analysis of microorganisms in real samples by combination of a filtration microcartridge and capillary isoelectric focusing.

    PubMed

    Horká, Marie; Horký, Jaroslav; Kubesová, Anna; Zapletalová, Eva; Slais, Karel

    2011-07-01

    Trace analysis of microorganisms in real biological samples needs very sensitive methods for their detection. Most procedures for detecting and quantifying pathogens require a sample preparation step including concentrating microorganisms from large sample volumes with high and reproducible efficiency. Electromigration techniques have great potential to include the preconcentration, separation, and detection of whole cells and therefore they can rapidly indicate the presence of pathogens. The preconcentration and separation of microorganisms from real suspensions utilising a combination of filtration and capillary isoelectric focusing was developed and the possibility for its application to real samples was verified. For our experiments, spores of Monilinia species and of Penicillium expansum were selected as model bioparticles, as they cause major losses in agrosystems. The isoelectric points of the spores of M. laxa, M. fructigena, M. fruticola, and P. expansum were determined and the method was verified using real samples taken directly from infected apples. The coupling of a filtration cartridge with a separation capillary can improve the detection limit of isoelectric focusing with UV detection by at least 4 orders of magnitude. Spores of M. fructigena and of M. laxa in numbers of hundreds of particles per milliliter were detected on a visually noninfected apple surface which was cross-contaminated during handling and storage. The efficiency of preconcentration and a preliminary identification was verified by the phenotyping technique after cultivation of the spores sampled from the apple surface.

  17. Determination of triazole fungicides in environmental water samples by high performance liquid chromatography with cloud point extraction using polyethylene glycol 600 monooleate.

    PubMed

    Tang, Tao; Qian, Kun; Shi, Tianyu; Wang, Fang; Li, Jianqiang; Cao, Yongsong

    2010-11-08

    A preconcentration technique known as cloud point extraction was developed for the determination of trace levels of triazole fungicides tricyclazole, triadimefon, tebuconazole and diniconazole in environmental waters. The triazole fungicides were extracted and preconcentrated using polyethylene glycol 600 monooleate (PEG600MO) as a low toxic and environmentally benign nonionic surfactant, and determined by high performance liquid chromatography/ultraviolet detection (HPLC-UV). The extraction conditions were optimized for the four triazole fungicides as follows: 2.0 wt% PEG600MO, 2.5 wt% Na(2)SO(4), equilibration at 45°C for 10 min, and centrifugation at 2000 rpm (533 × g) for 5 min. The triazole fungicides were well separated on a reversed-phase kromasil ODS C(18) column (250 mm × 4.6 mm, 5 μm) with gradient elution at ambient temperature and detected at 225 nm. The calibration range was 0.05-20 μg L(-1) for tricyclazole and 0.5-20 μg L(-1) for the other three classes of analytes with the correlation coefficients over 0.9992. Preconcentration factors were higher than 60-fold for the four selected fungicides. The limits of detection were 6.8-34.5 ng L(-1) (S/N=3) and the recoveries were 82.0-96.0% with the relative standard deviations of 2.8-7.8%. Copyright © 2010 Elsevier B.V. All rights reserved.

  18. Development of a New Microextraction Fiber Combined to On-Line Sample Stacking Capillary Electrophoresis UV Detection for Acidic Drugs Determination in Real Water Samples.

    PubMed

    Espina-Benitez, Maria; Araujo, Lilia; Prieto, Avismelsi; Navalón, Alberto; Vílchez, José Luis; Valera, Paola; Zambrano, Ana; Dugas, Vincent

    2017-07-07

    A new analytical method coupling a (off-line) solid-phase microextraction with an on-line capillary electrophoresis (CE) sample enrichment technique was developed for the analysis of ketoprofen, naproxen and clofibric acid from water samples, which are known as contaminants of emerging concern in aquatic environments. New solid-phase microextraction fibers based on physical coupling of chromatographic supports onto epoxy glue coated needle were studied for the off-line preconcentration of these micropollutants. Identification and quantification of such acidic drugs were done by capillary zone electrophoresis (CZE) using ultraviolet diode array detection (DAD). Further enhancement of concentration sensitivity detection was achieved by on-line CE "acetonitrile stacking" preconcentration technique. Among the eight chromatographic supports investigated, Porapak Q sorbent showed higher extraction and preconcentration capacities. The screening of parameters that influence the microextraction process was carried out using a two-level fractional factorial. Optimization of the most relevant parameters was then done through a surface response three-factor Box-Behnken design. The limits of detection and limits of quantification for the three drugs ranged between 0.96 and 1.27 µg∙L -1 and 2.91 and 3.86 µg∙L -1 , respectively. Recovery yields of approximately 95 to 104% were measured. The developed method is simple, precise, accurate, and allows quantification of residues of these micropollutants in Genil River water samples using inexpensive fibers.

  19. Selective ionic liquid ferrofluid based dispersive-solid phase extraction for simultaneous preconcentration/separation of lead and cadmium in milk and biological samples.

    PubMed

    Fasih Ramandi, Negin; Shemirani, Farzaneh

    2015-01-01

    For the first time, a selective ionic liquid ferrofluid has been used in dispersive solid phase extraction (IL-FF-D-SPE) for simultaneous preconcentration and separation of lead and cadmium in milk and biological samples combined with flame atomic absorption spectrometry. To improve the selectivity of the ionic liquid ferrofluid, the surface of TiO2 nanoparticles with a magnetic core as sorbent was modified by loading 1-(2-pyridylazo)-2-naphtol. Due to the rapid injection of an appropriate amount of ionic liquid ferrofluid into the aqueous sample by a syringe, extraction can be achieved within a few seconds. In addition, based on the attraction of the ionic liquid ferrofluid to a magnet, no centrifugation step is needed for phase separation. The experimental parameters of IL-FF-D-SPE were optimized using a Box-Behnken design (BBD) after a Plackett-Burman screening design. Under the optimum conditions, the relative standard deviations of 2.2% and 2.4% were obtained for lead and cadmium, respectively (n=7). The limit of detections were 1.21 µg L(-1) for Pb(II) and 0.21 µg L(-1) for Cd(II). The preconcentration factors were 250 for lead and 200 for cadmium and the maximum adsorption capacities of the sorbent were 11.18 and 9.34 mg g(-1) for lead and cadmium, respectively. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Cloud-point extraction and reversed-phase high-performance liquid chromatography for the determination of synthetic phenolic antioxidants in edible oils.

    PubMed

    Chen, Miao; Xia, Qinghai; Liu, Mousheng; Yang, Yaling

    2011-01-01

    A cloud-point extraction (CPE) method using Triton X-114 (TX-114) nonionic surfactant was developed for the extraction and preconcentration of propyl gallate (PG), tertiary butyl hydroquinone (TBHQ), butylated hydroxyanisole (BHA), and butylated hydroxytoluene (BHT) from edible oils. The optimum conditions of CPE were 2.5% (v/v) TX-114, 0.5% (w/v) NaCl and 40 min equilibration time at 50 °C. The surfactant-rich phase was then analyzed by reversed-phase high-performance liquid chromatography with ultraviolet detection at 280 nm, using a gradient mobile phase consisting of methanol and 1.5% (v/v) acetic acid. Under the studied conditions, 4 synthetic phenolic antioxidants (SPAs) were successfully separated within 24 min. The limits of detection (LOD) were 1.9 ng mL(-1) for PG, 11 ng mL(-1) for TBHQ, 2.3 ng mL(-1) for BHA, and 5.9 ng mL(-1) for BHT. Recoveries of the SPAs spiked into edible oil were in the range 81% to 88%. The CPE method was shown to be potentially useful for the preconcentration of the target analytes, with a preconcentration factor of 14. Moreover, the method is simple, has high sensitivity, consumes much less solvent than traditional methods, and is environment-friendly. Practical Application: The method established in this article uses less organic solvent to extract SPAs from edible oils; it is simple, highly sensitive and results in no pollution to the environment.

  1. A highly selective and sensitive ultrasonic assisted dispersive liquid phase microextraction based on deep eutectic solvent for determination of cadmium in food and water samples prior to electrothermal atomic absorption spectrometry.

    PubMed

    Zounr, Rizwan Ali; Tuzen, Mustafa; Deligonul, Nihal; Khuhawar, Muhammad Yar

    2018-07-01

    A simple, fast, green, sensitive and selective ultrasonic assisted deep eutectic solvent liquid-phase microextraction technique was used for preconcentration and extraction of cadmium (Cd) in water and food samples by electrothermal atomic absorption spectrometry (ETAAS). In this technique, a synthesized reagent (Z)-N-(3,5-diphenyl-1H-pyrrol-2-yl)-3,5-diphenyl-2H-pyrrol-2-imine (Azo) was used as a complexing agent for Cd. The main factors effecting the pre-concentration and extraction of Cd such as effect of pH, type and composition of deep eutectic solvent (DES), volume of DES, volume of complexing agent, volume of tetrahydrofuran (THF) and ultrasonication time have been examined in detail. At optimum conditions the value of pH and molar ratio of DES were found to be 6.0 and 1:4 (ChCl:Ph), respectively. The detection limit (LOD), limit of quantification (LOQ), relative standard deviation (RSD) and preconcentration factor (PF) were observed as 0.023 ng L -1 , 0.161 ng L -1 , 3.1% and 100, correspondingly. Validation of the developed technique was observed by extraction of Cd in certified reference materials (CRMs) and observed results were successfully compared with certified values. The developed procedure was practiced to various food, beverage and water samples. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Development of a New Microextraction Fiber Combined to On-Line Sample Stacking Capillary Electrophoresis UV Detection for Acidic Drugs Determination in Real Water Samples

    PubMed Central

    Araujo, Lilia; Prieto, Avismelsi; Navalón, Alberto; Vílchez, José Luis; Valera, Paola; Zambrano, Ana; Dugas, Vincent

    2017-01-01

    A new analytical method coupling a (off-line) solid-phase microextraction with an on-line capillary electrophoresis (CE) sample enrichment technique was developed for the analysis of ketoprofen, naproxen and clofibric acid from water samples, which are known as contaminants of emerging concern in aquatic environments. New solid-phase microextraction fibers based on physical coupling of chromatographic supports onto epoxy glue coated needle were studied for the off-line preconcentration of these micropollutants. Identification and quantification of such acidic drugs were done by capillary zone electrophoresis (CZE) using ultraviolet diode array detection (DAD). Further enhancement of concentration sensitivity detection was achieved by on-line CE “acetonitrile stacking” preconcentration technique. Among the eight chromatographic supports investigated, Porapak Q sorbent showed higher extraction and preconcentration capacities. The screening of parameters that influence the microextraction process was carried out using a two-level fractional factorial. Optimization of the most relevant parameters was then done through a surface response three-factor Box-Behnken design. The limits of detection and limits of quantification for the three drugs ranged between 0.96 and 1.27 µg∙L−1 and 2.91 and 3.86 µg∙L−1, respectively. Recovery yields of approximately 95 to 104% were measured. The developed method is simple, precise, accurate, and allows quantification of residues of these micropollutants in Genil River water samples using inexpensive fibers. PMID:28686186

  3. Synthesis, characterization and application of ion imprinted polymeric nanobeads for highly selective preconcentration and spectrophotometric determination of Ni2 + ion in water samples

    NASA Astrophysics Data System (ADS)

    Rajabi, Hamid Reza; Razmpour, Saham

    2016-01-01

    Here, the researchers report on the synthesis of ion imprinted polymeric (IIP) nanoparticles using a thermal polymerization strategy, and their usage for the separation of Ni2 + ion from water samples. The prepared Ni-IIP was characterized by colorimetry, FT-IR spectroscopy, and scanning electron microscopy. It was found that the particle size of the prepared particle to be 50-70 nm in diameter with the highly selective binding capability for Ni2 + ion, with reasonable adsorption and desorption process. After preconcentration, bound ions can be eluted with an aqueous solution of hydrochloric acid, after their complexation with dimethylglyoxime, these ions can be quantified by UV-Vis absorption spectrophotometry. The effect of various parameters on the extraction efficiency including pH of sample solution, adsorption and leaching times, initial sample volume, concentration and volume of eluent were investigated. In selectivity study, it was found that imprinting causes increased affinity of the prepared IIP toward Ni2 + ion over other ions such as Na+, K+, Ag+, Co2 +, Cu2 +, Cd2 +, Hg2 +, Pb2 +, Zn2 +, Mn2 +, Mg2 +, Cr3 +, and Fe3 +. The prepared IIP can be used and regenerated for at least eight times without any significant decrease in binding affinities. The prepared IIP is considered to be promising and selective sorbent for solid-phase extraction and preconcentration of Ni2 + ion from different water samples.

  4. In-Syringe Micro Solid-Phase Extraction Method for the Separation and Preconcentration of Parabens in Environmental Water Samples.

    PubMed

    Mashile, Geaneth Pertunia; Mpupa, Anele; Nomngongo, Philiswa Nosizo

    2018-06-14

    In this study, a simple, rapid and effective in-syringe micro-solid phase extraction (MSPE) method was developed for the separation and preconcetration of parabens (methyl, ethyl, propyl and butyl paraben) in environmental water samples. The parabens were determined and quantified using high performance liquid chromatography and a photo diode array detector (HPLC-PDA). Chitosan-coated activated carbon (CAC) was used as the sorbent in the in-syringe MSPE device. A response surface methodology based on central composite design was used for the optimization of factors (eluent solvent type, eluent volume, number of elution cycles, sample volume, sample pH) affecting the extraction efficiency of the preconcentration procedure. The adsorbent used displayed excellent absorption performance and the adsorption capacity ranged from 227⁻256 mg g −1 . Under the optimal conditions the dynamic linear ranges for the parabens were between 0.04 and 380 µg L −1 . The limits of detection and quantification ranged from 6⁻15 ng L −1 and 20⁻50 ng L −1 , respectively. The intraday (repeatability) and interday (reproducibility) precisions expressed as relative standard deviations (%RSD) were below 5%. Furthermore, the in-syringe MSPE/HPLC procedure was validated using spiked wastewater and tap water samples and the recoveries ranged between from 96.7 to 107%. In conclusion, CAC based in-syringe MSPE method demonstrated great potential for preconcentration of parabens in complex environmental water.

  5. Optimization of headspace solid phase microextraction based on nano-structured ZnO combined with gas chromatography-mass spectrometry for preconcentration and determination of ultra-traces of chlorobenzenes in environmental samples.

    PubMed

    Ghasemi, Ensieh; Sillanpää, Mika

    2014-12-01

    In this study, a simple, novel and efficient preconcentration method for the determination of some chlorobenzenes (monochlorobenzene (MCB), three isomeric forms of dichlorobenzene (diCB), 1,3,5-trichlorobenzene (triCB) and hexachlorobenze (hexaCB)) has been developed using a headspace solid phase microextraction (HS-SPME) based on nano-structured ZnO combined with capillary gas chromatography-mass spectrometry (GC-MS). ZnO nanorods have been grown on fused silica fibers using a hydrothermal process. The diameter of ZnO nanorods was in the range of 50-80 nm. The effect of different variables on the extraction efficiency was studied simultaneously using an experimental design. The variables of interest in the HS-SPME were stirring rate, desorption time and temperature, ionic strength, extraction time and temperature. For this purpose, a multivariate strategy was applied based on an experimental design using a Plackett-Burman design for screening and a Box-Behnken design for optimizing of the significant factors. The detection limit and relative standard deviation (RSD) (n=5) for the target analytes were in the range of 0.01-0.1 ng L(-1) and 4.3-7.6%, respectively. The developed technique was found to be successfully applicable to preconcentration and determination of the target analytes in environmental water and soil samples. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Low-flow characteristics of Indiana streams

    USGS Publications Warehouse

    Fowler, K.K.; Wilson, J.T.

    1996-01-01

    Knowledge of low-flow characteristics of streams is essential for management of water resources. Low-flow characteristics are presented for 229 continuous-record, streamflow-gaging stations and 285 partial-record stations in Indiana. Low- flow-frequency characteristics were computed for 210 continuous-record stations that had at least 10 years of record, and flow-duration curves were computed for all continuous-record stations. Low-flow-frequency and flow-duration analyses are based on available streamflow records through September 1993. Selected low-flow-frequency curves were computed for annual low flows and seasonal low flows. The four seasons are represented by the 3-month groups of March-May, June-August, September-November, and December- February. The 7-day, 10-year and the 7-day, 2 year low flows were estimated for 285 partial-record stations, which are ungaged sites where streamflow measurements were made at base flow. The same low-flow characteristics were estimated for 19 continuous-record stations where less than 10 years of record were available. Precipitation and geology directly influence the streams in Indiana. Streams in the northern, glaciated part of the State tend to have higher sustained base flows than those in the nonglaciated southern part. Flow at several of the continuous-record gaging stations is affected by some form of regulation or diversion. Low-flow characteristics for continuous-record stations at which flow is affected by regulation are determined using the period of record affected by regulation; natural flows prior to regulation are not used.

  7. The assembly and use of continuous flow systems for chemical synthesis.

    PubMed

    Britton, Joshua; Jamison, Timothy F

    2017-11-01

    The adoption of and opportunities in continuous flow synthesis ('flow chemistry') have increased significantly over the past several years. Continuous flow systems provide improved reaction safety and accelerated reaction kinetics, and have synthesised several active pharmaceutical ingredients in automated reconfigurable systems. Although continuous flow platforms are commercially available, systems constructed 'in-lab' provide researchers with a flexible, versatile, and cost-effective alternative. Herein, we describe the assembly and use of a modular continuous flow apparatus from readily available and affordable parts in as little as 30 min. Once assembled, the synthesis of a sulfonamide by reacting 4-chlorobenzenesulfonyl chloride with dibenzylamine in a single reactor coil with an in-line quench is presented. This example reaction offers the opportunity to learn several important skills including reactor construction, charging of a back-pressure regulator, assembly of stainless-steel syringes, assembly of a continuous flow system with multiple junctions, and yield determination. From our extensive experience of single-step and multistep continuous flow synthesis, we also describe solutions to commonly encountered technical problems such as precipitation of solids ('clogging') and reactor failure. Following this protocol, a nonspecialist can assemble a continuous flow system from reactor coils, syringes, pumps, in-line liquid-liquid separators, drying columns, back-pressure regulators, static mixers, and packed-bed reactors.

  8. 3D-printed lab-on-valve for fluorescent determination of cadmium and lead in water.

    PubMed

    Mattio, Elodie; Robert-Peillard, Fabien; Vassalo, Laurent; Branger, Catherine; Margaillan, André; Brach-Papa, Christophe; Knoery, Joël; Boudenne, Jean-Luc; Coulomb, Bruno

    2018-06-01

    In recent years, the development of 3D printing in flow analysis has allowed the creation of new systems with various applications. Up to now, 3D printing was mainly used for the manufacture of small units such as flow detection cells, preconcentration units or mixing systems. In the present study, a new 3D printed lab-on-valve system was developed to selectively quantify lead and cadmium in water. Different technologies were compared for lab-on-valve 3D printing. Printed test units have shown that stereolithography or digital light processing are satisfactory techniques for creating complex lab-on-valve units. The lab-on-valve system was composed of two columns, eight peripheral ports and a central port, and a coil integrating baffles to increase mixing possibilities. A selective extraction of lead was first carried out by TrisKem Pb™ Resin column. Then, cadmium not retained on the first column was extracted on a second column of Amberlite® IR 120 resin. In a following step, lead and cadmium were eluted with ammonium oxalate and potassium iodide, respectively. Finally, the two metals were sequentially detected by the same Rhod-5N™ fluorescent reagent. This 3D printed lab-on-valve flow system allowed us to quantify lead and cadmium with a linear response from 0.2 to 15 µg L -1 and detection limits of 0.17 and 0.20 µg L -1 for lead and cadmium, respectively, which seems adapted for natural water analysis. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Alpha-environmental continuous air monitor inlet

    DOEpatents

    Rodgers, John C.

    2003-01-01

    A wind deceleration and protective shroud that provides representative samples of ambient aerosols to an environmental continuous air monitor (ECAM) has a cylindrical enclosure mounted to an input on the continuous air monitor, the cylindrical enclosure having shrouded nozzles located radially about its periphery. Ambient air flows, often along with rainwater flows into the nozzles in a sampling flow generated by a pump in the continuous air monitor. The sampling flow of air creates a cyclonic flow in the enclosure that flows up through the cylindrical enclosure until the flow of air reaches the top of the cylindrical enclosure and then is directed downward to the continuous air monitor. A sloped platform located inside the cylindrical enclosure supports the nozzles and causes any moisture entering through the nozzle to drain out through the nozzles.

  10. Continuation Power Flow with Variable-Step Variable-Order Nonlinear Predictor

    NASA Astrophysics Data System (ADS)

    Kojima, Takayuki; Mori, Hiroyuki

    This paper proposes a new continuation power flow calculation method for drawing a P-V curve in power systems. The continuation power flow calculation successively evaluates power flow solutions through changing a specified value of the power flow calculation. In recent years, power system operators are quite concerned with voltage instability due to the appearance of deregulated and competitive power markets. The continuation power flow calculation plays an important role to understand the load characteristics in a sense of static voltage instability. In this paper, a new continuation power flow with a variable-step variable-order (VSVO) nonlinear predictor is proposed. The proposed method evaluates optimal predicted points confirming with the feature of P-V curves. The proposed method is successfully applied to IEEE 118-bus and IEEE 300-bus systems.

  11. Methodology Measuring Rare Earth Elements in High TDS Reservoir Brines Application as Natural Tracers in CCUS Studies

    NASA Astrophysics Data System (ADS)

    Smith, W.; Mcling, T. L.; Smith, R. W.; Neupane, H.

    2013-12-01

    In recent years rare earth elements (REE) have been demonstrated to be useful natural tracers for geochemical processes in aqueous environments. The application of REE's to carbon dioxide utilization and storage (CCUS) could provide researchers with a sensitive, inexpensive tool for tracking the movement of CO2 and displaced formation brines. By definition, geologic reservoirs that have been deemed suitable for carbon capture and storage contain formation brine with total dissolved solids (TDS) greater than 10,000 ppm and often these formation brines exceed 75,000 ppm TDS. This high TDS water makes it very difficult to measure REE, which typically occur at part per trillion concentrations. Critical to the use of REE for CCUS studies is the development of a procedure, which allows for the pre-concentration of REE's across a wide range of water quality. Additionally, due to the large number of samples that will need analysis, any developed procedure must be inexpensive, reproducible, and quick to implement. As part of the Big Sky Carbon Sequestration Project the INL's Center for Advance Energy Studies is developing REE pre-concentration procedures based on methods reported in the literature. While there are many REE pre-concentration procedures in the literature, our tests have shown these methods have difficulty at TDS greater than seawater (roughly 35,000 ppm TDS). Therefore, the ability to quantitatively measure REE's in formation brines with very high TDS has required the modification of an already developed procedure. After careful consideration and testing we selected methods modified after those described by Kingston et al., 1978 and Strachan et al., 1989 utilizing chelating media for very high TDS waters and ion-exchange media as detailed by Crock et al., 1984; Robinson et al., 1985; and Stetzenbach et al., 1994 for low TDS (<10,000 ppm TDS) waters. These modified procedures have been successfully tested in our laboratory and have proven effective in greatly reducing interfering monovalent and divalent cation concentrations (e.g. Ba) and enriching the REE up to 100X for analysis. The procedures are straightforward, inexpensive, and require little infrastructure, using only single chromatography columns with inexpensive, reusable, commercially available resins and wash chemicals. The procedures have been tested with synthetic brines and waters (up to 250,000 ppm TDS) and field water samples (up to 5,000 ppm TDS). Testing has produced data with REE capture efficiency exceeding 95%, while reducing interfering elements by more than 93%. Further method development and testing continues in preparation for brine analysis of waters from the Big Sky Carbon Sequestration Partnership's Kevin Dome Pilot Study and the University of Wyoming's Carbon Institutes Rock Springs Uplift.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Finzi, S.; Marchetti, C.; Renzoni, R.

    The first of four reports on the design of a plant for producing 99.75 mole% D/sub 2/O from preconcentrated solutions is presented. The isotopic and chemicophysical design is treated, all the necessary theoretical considerations for the calculations being given. (T.R.H.)

  13. Pure-rotational spectrometry: a vintage analytical method applied to modern breath analysis.

    PubMed

    Hrubesh, Lawrence W; Droege, Michael W

    2013-09-01

    Pure-rotational spectrometry (PRS) is an established method, typically used to study structures and properties of polar gas-phase molecules, including isotopic and isomeric varieties. PRS has also been used as an analytical tool where it is particularly well suited for detecting or monitoring low-molecular-weight species that are found in exhaled breath. PRS is principally notable for its ultra-high spectral resolution which leads to exceptional specificity to identify molecular compounds in complex mixtures. Recent developments using carbon aerogel for pre-concentrating polar molecules from air samples have extended the sensitivity of PRS into the part-per-billion range. In this paper we describe the principles of PRS and show how it may be configured in several different modes for breath analysis. We discuss the pre-concentration concept and demonstrate its use with the PRS analyzer for alcohols and ammonia sampled directly from the breath.

  14. Integrating preconcentrator heat controller

    DOEpatents

    Bouchier, Francis A.; Arakaki, Lester H.; Varley, Eric S.

    2007-10-16

    A method and apparatus for controlling the electric resistance heating of a metallic chemical preconcentrator screen, for example, used in portable trace explosives detectors. The length of the heating time-period is automatically adjusted to compensate for any changes in the voltage driving the heating current across the screen, for example, due to gradual discharge or aging of a battery. The total deposited energy in the screen is proportional to the integral over time of the square of the voltage drop across the screen. Since the net temperature rise, .DELTA.T.sub.s, of the screen, from beginning to end of the heating pulse, is proportional to the total amount of heat energy deposited in the screen during the heating pulse, then this integral can be calculated in real-time and used to terminate the heating current when a pre-set target value has been reached; thereby providing a consistent and reliable screen temperature rise, .DELTA.T.sub.s, from pulse-to-pulse.

  15. Separation and preconcentration of the rare-earth elements and yttrium from geological materials by ion-exchange and sequential acid elution

    USGS Publications Warehouse

    Crock, J.G.; Lichte, F.E.; Riddle, G.O.; Beech, C.L.

    1986-01-01

    The abundance of rare-earth elements (REE) and yttrium in geological materials is generally low, and most samples contain elements that interfere in the determination of the REE and Y, so a separation and/or preconcentration step is often necessary. This is often achieved by ion-exchange chromatography with either nitric or hydrochloric acid. It is advantageous, however, to use both acids sequentially. The final solution thus obtained contains only the REE and Y, with minor amounts of Al, Ba, Ca, Sc, Sr and Ti. Elements that potentially interfere, such as Be, Co, Cr, Fe, Mn, Th, U, V and Zr, are virtually eliminated. Inductively-coupled argon plasma atomic-emission spectroscopy can then be used for a final precise and accurate measurement. The method can also be used with other instrumental methods of analysis. ?? 1986.

  16. Voltammetric analysis of ceftazidime after preconcentration at various mercury and carbon electrodes: application to sub-ppb level determination in urine samples.

    PubMed

    El-Maali, N A

    2000-04-28

    The electrochemical behavior of ceftazidime (CFZ) at four different kinds of electrodes viz. static mercury drop electrode (SMDE), controlled growth mercury electrode (CGME), glassy carbon electrode (GCE) and carbon paste electrode (CPE) has been presented. Optimal operational parameters have been selected for the drug preconcentration and determination in aqueous medium. Down to 2x10(-10) M CFZ is achieved as detection limit at the CGME. Modification of the CPE with polyvinyl alcohol (PVA) enhances both the sensitivity and selectivity for the drug accumulation and, therefore, its determination at very low levels. Application of the proposed method for CFZ analysis in spiked urine samples or those taken after metabolism has been easily assessed. Down to 1x10(-9) M CFZ (0.695 ng ml(-1)) could be easily achieved in such samples.

  17. Analysis of trace metals in water by inductively coupled plasma emission spectrometry using sodium dibenzyldithiocarbamate for preconcentration

    USGS Publications Warehouse

    Smith, C.L.; Motooka, J.M.; Willson, W.R.

    1984-01-01

    Since concentrations of trace elements in most natural waters seldom exceed the ??g/L level, analysis of trace elements in natural waters by inductively coupled plasma emission spectrometry (ICP) requires a preconcentration procedure. The elements Ag, Bi, Cd, Co, Cu, Fe, Mo, Ni, Pb, Sn, V, W, and Zn were separated and concentrated from 500 mL of water by coprecipitating them with sodium dibenzyldithiocarbamate (NaDBDTC) using nickel or silver as a carrier. The precipitated trace elements were collected on a membrane filter, redissolved from the filter with hot nitric and hydrochloric acids, and analyzed using ICP. Recoveries for all the trace elements except tungsten exceeded 80%. Coprecipitation of trace elements with NaDBDTC eliminated the use of difficult-to-inject organic solvents, and NaDBDTC coprecipitated a wider array of trace elements than ammoniumpyrrolidinedithiocarbamate (APDC), another commonly used coprecipitate.

  18. Cloud point extraction and flame atomic absorption spectrometric determination of cadmium and nickel in drinking and wastewater samples.

    PubMed

    Naeemullah; Kazi, Tasneem G; Shah, Faheem; Afridi, Hassan I; Baig, Jameel Ahmed; Soomro, Abdul Sattar

    2013-01-01

    A simple method for the preconcentration of cadmium (Cd) and nickel (Ni) in drinking and wastewater samples was developed. Cloud point extraction has been used for the preconcentration of both metals, after formation of complexes with 8-hydroxyquinoline (8-HQ) and extraction with the surfactant octylphenoxypolyethoxyethanol (Triton X-114). Dilution of the surfactant-rich phase with acidified ethanol was performed after phase separation, and the Cd and Ni contents were measured by flame atomic absorption spectrometry. The experimental variables, such as pH, amounts of reagents (8-HQ and Triton X-114), temperature, incubation time, and sample volume, were optimized. After optimization of the complexation and extraction conditions, enhancement factors of 80 and 61, with LOD values of 0.22 and 0.52 microg/L, were obtained for Cd and Ni, respectively. The proposed method was applied satisfactorily for the determination of both elements in drinking and wastewater samples.

  19. Fast Extraction and Detection of 4-Methylimidazole in Soy Sauce Using Magnetic Molecularly Imprinted Polymer by HPLC.

    PubMed

    Feng, Zufei; Lu, Yan; Zhao, Yingjuan; Ye, Helin

    2017-11-02

    On the basis of magnetic molecularly imprinted polymer (MMIP) solid-phase extraction coupled with high performance liquid chromatography, we established a new method for the determination of the 4-methylimidazole (4-MEI) in soy sauce. Scanning electron microscopy (SEM), Fourier transform infrared (FT-IR), X-ray diffraction (XRD) and vibrating sample magnetometer (VSM) were used to characterize the synthesized MMIPs. To evaluate the polymers, batch rebinding experiments were carried out. The binding strength and capacity were determined from the derived Freundlich isotherm (FI) equation. The selective recognition capability of MMIPs was investigated with a reference compound and a structurally similar compound. As a selective pre-concentration sorbents for 4-methylimidazole in soy sauce, the MMIPs showed a satisfied recoveries rate of spiked samples, ranged from 97% to 105%. As a result, the prepared MMIPs could be applied to selectively pre-concentrate and determine 4-methylimidazole in soy sauce samples.

  20. Ram-air sample collection device for a chemical warfare agent sensor

    DOEpatents

    Megerle, Clifford A.; Adkins, Douglas R.; Frye-Mason, Gregory C.

    2002-01-01

    In a surface acoustic wave sensor mounted within a body, the sensor having a surface acoustic wave array detector and a micro-fabricated sample preconcentrator exposed on a surface of the body, an apparatus for collecting air for the sensor, comprising a housing operatively arranged to mount atop the body, the housing including a multi-stage channel having an inlet and an outlet, the channel having a first stage having a first height and width proximate the inlet, a second stage having a second lower height and width proximate the micro-fabricated sample preconcentrator, a third stage having a still lower third height and width proximate the surface acoustic wave array detector, and a fourth stage having a fourth height and width proximate the outlet, where the fourth height and width are substantially the same as the first height and width.

  1. Electroanalytical method for determination of lead(II) in orange and apple using kaolin modified platinum electrode.

    PubMed

    El Mhammedi, M A; Achak, M; Bakasse, M; Chtaini, A

    2009-08-01

    This paper reports on the use of platinum electrode modified with kaolin (K/Pt) and square wave voltammetry for analytical detection of trace lead(II) in pure water, orange and apple samples. The electroanalytical procedure for determination of the Pb(II) comprises two steps: the chemical accumulation of the analyte under open-circuit conditions followed by the electrochemical detection of the preconcentrated species using square wave voltammetry. The analytical performances of the extraction method has been explored by studying the incubating time, and effect of interferences due to other ions. During the preconcentration step, Pb(II) was accumulated on the surface of the kaolin. The observed detection and quantification limits in pure water were 3.6x10(-9)molL(-1) and 1.2x10(-8)molL(-1), respectively. The precision of the method was also determined; the results was 2.35% (n=5).

  2. Toward in situ monitoring of water contamination by nitroenergetic compounds.

    PubMed

    Johnson, Brandy J; Leska, Iwona A; Medina, Alejandro; Dyson, Norris F; Nasir, Mansoor; Melde, Brian J; Taft, Jenna R; Charles, Paul T

    2012-11-06

    We have previously described the application of novel porous organosilicate materials to the preconcentration of nitroenergetic targets from aqueous solution prior to HPLC analysis. The performance of the sorbents and the advantages of these types of materials over commercially available solid phase extraction sorbents have been demonstrated. Here, the development of systems for application of those sorbents to in situ monitoring is described. Considerations such as column pressure, particulate filtration, and component durability are discussed. The diameter of selected column housings, the sorbent bed depth, and the frits utilized significantly impact the utility of the sorbent columns in the prototype system. The impact of and necessity for improvements in the morphological characteristics of the sorbents as they relate to reduction in column pressure are detailed. The results of experiments utilizing a prototype system are presented. Data demonstrating feasibility for use of the sorbents in preconcentration prior to ion mobility spectrometry is also presented.

  3. Process for separation and preconcentration of radium from water

    DOEpatents

    Dietz, Mark; Horwitz, E. Philip; Chiarizia, Renato; Bartsch, Richard A.

    1999-01-01

    A process for preconcentrating and separating radium from a contaminated solution containing at least water and radium includes the steps of adding a quantity of a water-soluble macrocyclic polyether to the contaminated solution to form a combined solution. An acid is added to the combined solution to form an acidic combined solution having an ›H.sup.+ ! concentration of about 0.5M. The acidic combined solution is contacted with a sulfonic acid-based strong acid cation exchange medium or a organophilic sulfonic acid medium having a plurality of binding sites thereon to bind the radium thereto and to form a radium-depleted solution. The radium-depleted solution is separated from the strong acid cation exchange medium or organophilic sulfonic acid medium. The radium remaining bound to the exchange medium or organophilic reagent is then stripped from the exchange medium or organophilic medium and the activity of the radium is measured.

  4. Determination of trace level bromate and perchlorate in drinking water by ion chromatography with an evaporative preconcentration technique.

    PubMed

    Liu, Yongjian; Mou, Shifen; Heberling, Shawn

    2002-05-17

    A simple sample preconcentration technique employing microwave-based evaporation for the determination of trace level bromate and perchlorate in drinking water with ion chromatography is presented. With a hydrophilic anion-exchange column and a sodium hydroxide eluent in linear gradient, bromate and perchlorate can be determined in one injection within 35 min. Prior to ion chromatographic analysis, the drinking water sample was treated with an OnGuard-Ag cartridge to remove the superfluous chloride and concentrated 20-fold using a PTFE beaker in a domestic microwave oven for 15 min. The recoveries of the anions ranged from 94.6% for NO2- to 105.2% for F-. The detection limits for bromate, perchlorate, iodate and chlorate were 0.1, 0.2, 0.1 and 0.2 microg/l, respectively. The developed method is applicable for the quantitation of bromate and perchlorate in drinking water samples.

  5. Dithizone-modified graphene oxide nano-sheet as a sorbent for pre-concentration and determination of cadmium and lead ions in food.

    PubMed

    Moghadam Zadeh, Hamid Reza; Ahmadvand, Parvaneh; Behbahani, Ali; Amini, Mostafa M; Sayar, Omid

    2015-01-01

    Graphene oxide nano-sheet was modified with dithizone as a novel sorbent for selective pre-concentration and determination of Cd(II) and Pb(II) in food. The sorbent was characterised by various analytical methods and the effective parameters for Cd(II) and Pb(II) adsorption were optimised during this work. The high adsorption capacity and selectivity of this sorbent makes the method capable of fast determinations of the Cd(II) and Pb(II) content in complicated matrices even at μg l(-1) levels using commonly available instrumentation. The precision of this method was < 1.9% from 10 duplicate determinations and its accuracy verified using standard reference materials. Finally, this method was applied to the determination of Cd(II) and Pb(II) ions in common food samples and satisfactory results were obtained.

  6. Process for separation and preconcentration of radium from water

    DOEpatents

    Dietz, M.; Horwitz, E.P.; Chiarizia, R.; Bartsch, R.A.

    1999-01-26

    A process for preconcentrating and separating radium from a contaminated solution containing at least water and radium includes the steps of adding a quantity of a water-soluble macrocyclic polyether to the contaminated solution to form a combined solution. An acid is added to the combined solution to form an acidic combined solution having an [H{sup +}] concentration of about 0.5M. The acidic combined solution is contacted with a sulfonic acid-based strong acid cation exchange medium or a organophilic sulfonic acid medium having a plurality of binding sites thereon to bind the radium thereto and to form a radium-depleted solution. The radium-depleted solution is separated from the strong acid cation exchange medium or organophilic sulfonic acid medium. The radium remaining bound to the exchange medium or organophilic reagent is then stripped from the exchange medium or organophilic medium and the activity of the radium is measured. 24 figs.

  7. Paper-based ion concentration polarization device for selective preconcentration of muc1 and lamp-2 genes

    NASA Astrophysics Data System (ADS)

    Son, Seok Young; Lee, Hyomin; Kim, Sung Jae

    2017-12-01

    Recently, novel biomolecules separation and detection methods based on ion concentration polarization (ICP) phenomena have been extensively researched due to its high amplification ratio and high-speed accumulation. Despite of these bright advances, the fabrication of conventional ICP devices still have complicated and times-consuming tasks. As an alternative platform, a paper have been recently used for the identical ICP operations. In this work, we demonstrated the selective preconcentration of a muc1 gene fragment as human breast cancer marker and a lamp-2 gene fragment as the cause of Danon disease in paper-based ICP devices. As a result, these two DNA fragments were successfully concentrated up to 60 fold at different location in a single paper-channel. The device would be a promising platform for point-of-care device due to an economic fabrication, the easy extraction of concentrated sample and an easy disposability.

  8. Quantification of trace metals in water using complexation and filter concentration.

    PubMed

    Dolgin, Bella; Bulatov, Valery; Japarov, Julia; Elish, Eyal; Edri, Elad; Schechter, Israel

    2010-06-15

    Various metals undergo complexation with organic reagents, resulting in colored products. In practice, their molar absorptivities allow for quantification in the ppm range. However, a proper pre-concentration of the colored complex on paper filter lowers the quantification limit to the low ppb range. In this study, several pre-concentration techniques have been examined and compared: filtering the already complexed mixture, complexation on filter, and dipping of dye-covered filter in solution. The best quantification has been based on the ratio of filter reflectance at a certain wavelength to that at zero metal concentration. The studied complex formations (Ni ions with TAN and Cd ions with PAN) involve production of nanoparticle suspensions, which are associated with complicated kinetics. The kinetics of the complexation of Ni ions with TAN has been investigated and optimum timing could be found. Kinetic optimization in regard to some interferences has also been suggested.

  9. A Gas Chromatographic System for the Detection of Ethylene Gas Using Ambient Air as a Carrier Gas.

    PubMed

    Zaidi, Nayyer Abbas; Tahir, Muhammad Waseem; Vellekoop, Michael J; Lang, Walter

    2017-10-07

    Ethylene gas is a naturally occurring gas that has an influence on the shelf life of fruit during their transportation in cargo ships. An unintentional exposure of ethylene gas during transportation results in a loss of fruit. A gas chromatographic system is presented here for the detection of ethylene gas. The gas chromatographic system was assembled using a preconcentrator, a printed 3D printed gas chromatographic column, a humidity sensor, solenoid valves, and an electrochemical ethylene gas sensor. Ambient air was used as a carrier gas in the gas chromatographic system. The flow rate was fixed to 10 sccm. It was generated through a mini-pump connected in series with a mass flow controller. The metal oxide gas sensor is discussed with its limitation in ambient air. The results show the chromatogram obtained from metal oxide gas sensor has low stability, drifts, and has uncertain peaks, while the chromatogram from the electrochemical sensor is stable and precise. Furthermore, ethylene gas measurements at higher ppb concentration and at lower ppb concentration were demonstrated with the electrochemical ethylene gas sensor. The system separates ethylene gas and humidity. The chromatograms obtained from the system are stable, and the results are 1.2% repeatable in five similar measurements. The statistical calculation of the gas chromatographic system shows that a concentration of 2.3 ppb of ethylene gas can be detected through this system.

  10. Capillary liquid chromatography combined with pressurized liquid extraction and dispersive liquid-liquid microextraction for the determination of vitamin E in cosmetic products.

    PubMed

    Viñas, Pilar; Pastor-Belda, Marta; Campillo, Natalia; Bravo-Bravo, María; Hernández-Córdoba, Manuel

    2014-06-01

    Capillary liquid chromatography (LC) is used for the determination of tocopherols and tocotrienols in cosmetic products. Dispersive liquid-liquid microextraction (DLLME) allows the analytes to be preconcentrated into a very small volume of organic solvent which is then injected into the chromatograph running at a very low flow rate. Pressurized liquid extraction (PLE) at a high temperature and pressure was used to isolate vitamin E forms from cosmetics. The Taguchi experimental method was used to optimize the factors affecting DLLME. The parameters selected were 2mL of acetonitrile (disperser solvent), 100μL carbon tetrachloride (extraction solvent) and 10mL aqueous solution. A volume of 5μL of the organic phase was injected into the reversed-phase capillary LC system equipped with a diode array detector and using an isocratic mobile phase composed of an 95:5 (v/v) methanol:water mixture at a flow-rate of 20μLmin(-1). Quantification was carried out using aqueous standards and detection limits were in the range 0.1-0.5ngmL(-1), corresponding to 3-15ngg(-1) in the cosmetic sample. The recoveries were in the 87-105% range, with RSDs lower than 7.8%. The method was validated according to international guidelines and using a certified reference material. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. The design of a microfluidic biochip for the rapid, multiplexed detection of foodborne pathogens by surface plasmon resonance imaging

    NASA Astrophysics Data System (ADS)

    Zordan, Michael D.; Grafton, Meggie M. G.; Park, Kinam; Leary, James F.

    2010-02-01

    The rapid detection of foodborne pathogens is increasingly important due to the rising occurrence of contaminated food supplies. We have previously demonstrated the design of a hybrid optical device that has the capability to perform realtime surface plasmon resonance (SPR) and epi-fluorescence imaging. We now present the design of a microfluidic biochip consisting of a two-dimensional array of functionalized gold spots. The spots on the array have been functionalized with capture peptides that specifically bind E. coli O157:H7 or Salmonella enterica. This array is enclosed by a PDMS microfluidic flow cell. A magnetically pre-concentrated sample is injected into the biochip, and whole pathogens will bind to the capture array. The previously constructed optical device is being used to detect the presence and identity of captured pathogens using SPR imaging. This detection occurs in a label-free manner, and does not require the culture of bacterial samples. Molecular imaging can also be performed using the epi-fluorescence capabilities of the device to determine pathogen state, or to validate the identity of the captured pathogens using fluorescently labeled antibodies. We demonstrate the real-time screening of a sample for the presence of E. coli O157:H7 and Salmonella enterica. Additionally the mechanical properties of the microfluidic flow cell will be assessed. The effect of these properties on pathogen capture will be examined.

  12. Ultra preconcentration of polycyclic aromatic hydrocarbons in smoked bacon by a combination of SPE and DLLME.

    PubMed

    Liu, Xiaofang; Zhou, Shu; Zhu, Quanfei; Ye, Yong; Chen, Huaixia

    2014-09-01

    A sample pretreatment method, solid-phase extraction combined with dispersive liquid-liquid microextraction (SPE-DLLME), was established for the sensitive determination of polycyclic aromatic hydrocarbons (PAHs) in smoked bacon samples. In the SPE-DLLME process, three PAHs including naphthalene (Naph), phenanthrene (Phen) and pyrene (Pyr) were extracted from samples and transferred into C18 SPE cartridge. The target analytes were subsequently eluted with 1.2 ml of acetonitrile-dichloromethane (5:1, v/v) mixture solution. The eluent was injected directly into the 5.0 ml ultrapure water in the subsequent DLLME procedure. The sedimented phase was concentrated under a gentle nitrogen flow to 120.0 µl. Finally, the analytes in the extraction solvent were determined by high-performance liquid chromatography with a ultra-violet detector. Some important extraction parameters affecting the performance, such as the sample solution flow rate, breakthrough volume, salt addition as well as the type and volume of the elution solvent were optimized. The developed method provided an ultra enrichment factors for PAHs ranged from 3478 to 3824. The method was applied for the selective extraction and sensitive determination of PAHs in smoked bacon samples. The limits of detection (S/N = 3) were 0.05, 0.01, 0.02 μg kg(-1) for Naph, Phen, Pyr, respectively. © The Author [2013]. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  13. Heated, humidified high-flow nasal cannula therapy: yet another way to deliver continuous positive airway pressure?

    PubMed

    Kubicka, Zuzanna J; Limauro, Joseph; Darnall, Robert A

    2008-01-01

    The goal was to estimate the level of delivered continuous positive airway pressure by measuring oral cavity pressure with the mouth closed in infants of various weights and ages treated with heated, humidified high-flow nasal cannula at flow rates of 1-5 L/minute. We hypothesized that clinically relevant levels of continuous positive airway pressure would not be achieved if a nasal leak is maintained. After performing bench measurements and demonstrating that oral cavity pressure closely approximated levels of traditionally applied nasal continuous positive airway pressure, we successfully measured oral cavity pressure during heated, humidified, high-flow nasal cannula treatment in 27 infants. Small (outer diameter: 0.2 cm) cannulae were used for all infants, and flow rates were left as ordered by providers. Bench measurements showed that, for any given leak size, there was a nearly linear relationship between flow rate and pressure. The highest pressure achieved was 4.5 cmH2O (flow rate: 8 L/minute; leak: 3 mm). In our study infants (postmenstrual age: 29.1-44.7 weeks; weight: 835-3735 g; flow rate: 1-5 L/minute), no pressure was generated with the mouth open at any flow rate. With the mouth closed, the oral cavity pressure was related to both flow rate and weight. For infants of < or = 1500 g, there was a linear relationship between flow rate and oral cavity pressure. Oral cavity pressure can estimate the level of continuous positive airway pressure. Continuous positive airway pressure generated with heated, humidified, high-flow nasal cannula treatment depends on the flow rate and weight. Only in the smallest infants with the highest flow rates, with the mouth fully closed, can clinically significant but unpredictable levels of continuous positive airway pressure be achieved. We conclude that heated, humidified high-flow nasal cannula should not be used as a replacement for delivering continuous positive airway pressure.

  14. 21 CFR 862.2150 - Continuous flow sequential multiple chemistry analyzer for clinical use.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Continuous flow sequential multiple chemistry..., DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Laboratory Instruments § 862.2150 Continuous flow sequential multiple chemistry...

  15. An efficient and more sustainable one-step continuous-flow multicomponent synthesis approach to chromene derivatives

    EPA Science Inventory

    A simple and rapid one-step continuous-flow synthesis route has been developed for the preparation of chromene derivatives from the reaction of aromatic aldehydes, α-cyanomethylene compounds and naphthols. In this contribution, a one-step continuous-flow protocol in a continuous ...

  16. 21 CFR 862.2150 - Continuous flow sequential multiple chemistry analyzer for clinical use.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Continuous flow sequential multiple chemistry..., DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Laboratory Instruments § 862.2150 Continuous flow sequential multiple chemistry...

  17. 21 CFR 862.2150 - Continuous flow sequential multiple chemistry analyzer for clinical use.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Continuous flow sequential multiple chemistry..., DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Laboratory Instruments § 862.2150 Continuous flow sequential multiple chemistry...

  18. 21 CFR 862.2150 - Continuous flow sequential multiple chemistry analyzer for clinical use.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Continuous flow sequential multiple chemistry..., DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Laboratory Instruments § 862.2150 Continuous flow sequential multiple chemistry...

  19. 21 CFR 862.2150 - Continuous flow sequential multiple chemistry analyzer for clinical use.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Continuous flow sequential multiple chemistry..., DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Laboratory Instruments § 862.2150 Continuous flow sequential multiple chemistry...

  20. An on-line system using ion-imprinted polymer for preconcentration and determination of bismuth in seawater employing atomic fluorescence spectrometry.

    PubMed

    Felix, Caio S A; Silva, Darllen G; Andrade, Heloysa M C; Riatto, Valeria B; Victor, Mauricio M; Ferreira, Sergio L C

    2018-07-01

    This work proposes an on-line preconcentration system using ion-imprinted polymer (IIP) for determination of bismuth in seawater employing atomic fluorescence spectrometry (AFS). The polymer was synthesized using 2- (5-bromo-2-pyridylazo) -5-diethylaminophenol (Br-PADAP) for complex formation, ethylene glycol dimethacrylate (EGDMA), cross-linking reagent and methacrylic acid (AMA) reagents, used as the functional monomer, 2,2-azobisisobutyronitrile was used as the radical initiator. The polymer was characterized employing the Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The determination of bismuth was performed employing hydride generation atomic fluorescence spectrometry (HG AFS) and the experimental conditions were optimized using a Box Behnken design involving the factors sample pH, eluent concentration and sodium tetrahydroborate concentration. So, using the optimized conditions the system allows the determination of bismuth with limits of detection and quantification of 26 and 88 ng L -1 , a preconcentration factor of 19.8. All these parameters were determined using a sample volume of 25 mL. The precision expressed as relative standard deviation (RSD%) was 3.7% for a bismuth(III) solution of concentration 0.25 µg L -1 . The system proposed was applied for the determination of bismuth in four seawater samples collected in Salvador City, Bahia State, Brazil. The concentrations obtained varied from 0.38 to 0.45 μg L -1 . The accuracy was evaluated by addition/recovery test, and the recoveries found varied from 92% to 101%. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Synthesis and characterisation of nano structure lead (II) ion-imprinted polymer as a new sorbent for selective extraction and preconcentration of ultra trace amounts of lead ions from vegetables, rice, and fish samples.

    PubMed

    Behbahani, Mohammad; Bagheri, Akbar; Taghizadeh, Mohsen; Salarian, Mani; Sadeghi, Omid; Adlnasab, Laleh; Jalali, Kobra

    2013-06-01

    This paper describes the preparation of new Pb(II)-imprinted polymeric particles using 2-vinylpyridine as a functional monomer, ethylene glycol dimethacrylate as the cross-linker, 2,2'- azobisisobutyronitrile as the initiator, diphenylcarbazone as the ligand, acetonitril as the solvent, and Pb(NO(3))(2) as the template ion, through bulk polymerisation technique. The imprinted lead ions were removed from the polymeric matrix using 5 mL of HCl (2 mol.L(-1)) as the eluting solvent. The lead ion concentration was determined by flame atomic absorption spectrometry. Optimum pH for maximum sorption was obtained at 6.0. Sorption and desorption of Pb(II) ions on the IIP particles were quite fast and achieved fully over 5 min. In the proposed method, the maximum sorbent capacity of the ion-imprinted polymer was calculated to be 75.4 mg g(-1). The preconcentration factor, relative standard deviation, and limit of detection of the method were found to be 245, 2.1%, and 0.42 ng mL(-1), respectively. The prepared ion-imprinted polymer particles have an increased selectivity toward Pb(II) ions over a range of competing metal ions with the same charge and similar ionic radius. This ion-imprinted polymer is an efficient solid phase for extraction and preconcentration of lead ions in complex matrixes. For proving that the proposed method is reliable, a wide range of food samples with different and complex matrixes was used. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Application of Ultrasound-Assisted Surfactant-Enhanced Emulsification Microextraction Based on Solidification of Floating Organic Droplets and High Performance Liquid Chromatography for Preconcentration and Determination of Alprazolam and Chlordiazepoxide in Human Serum Samples.

    PubMed

    Goudarzi, Nasser; Amirnavaee, Monavar; Arab Chamjangali, Mansour; Farsimadan, Sahar

    2017-07-01

    An improved microextraction method is proposed on the basis of ultrasound-assisted surfactant-enhanced emulsification and solidification of a floating organic droplet procedure combined with high performance liquid chromatography for the preconcentration and quantification of alprazolam (ALP) and chlordiazepoxide (CHL) present in a number of human serum samples. Several parameters affecting the extraction efficiency were investigated by the Plackett -Burman factorial design as the screening design. Then the response surface methodology based on the Box-Behnken design was used to optimize the effective parameters in the proposed procedure. The limits of detection for the proposed method were found to be 3.0 and 3.1 ng mL-1 for CHL and ALP, respectively. The calibration curves obtained for the method were linear in the ranges of 10.0-3,500.0 and 10.0-3,000.0 ng mL-1 for CHL and ALP, respectively, with a good determination coefficient. The recoveries of the drugs in the spiked human serum samples were above 93.0%. The developed method was successfully applied to the analysis of these studied drugs in human serum samples. The pre-treatment of the serum samples was performed using acetonitrile to remove the proteins. The proposed procedure was an accurate and reliable one for the determination and preconcentration of these drugs in blood samples. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  3. 1-(2-Formamidoethyl)-3-phenylurea functionalized activated carbon for selective solid-phase extraction and preconcentration of metal ions.

    PubMed

    Tu, Zhifeng; He, Qun; Chang, Xijun; Hu, Zheng; Gao, Ru; Zhang, Lina; Li, Zhenhua

    2009-09-07

    A novel method that utilizes 1-(2-formamidoethyl)-3-phenylurea-modified activated carbon (AC-1-(2-formamidoethyl)-3-phenylurea) as a solid-phase extractant has been developed for simultaneous preconcentration of trace Cr(III), Cu(II), Fe(III) and Pb(II) prior to the measurement by inductively coupled plasma atomic emission spectrometry (ICP-AES). Experimental conditions for effective adsorption of trace levels of Cr(III), Cu(II), Fe(III) and Pb(II) were optimized using batch and column procedures in detail. The optimum pH value for the separation of metal ions simultaneously on the new sorbent was 4. And the adsorbed metal ions could be completely eluted by using 2.0 mL 2.0 mol L(-1) HCl solution. Common coexisting ions did not interfere with the separation and determination of target metal ions. The maximum static adsorption capacity of the sorbent at optimum conditions was found to be 39.8, 39.9, 77.8 and 17.3 mg g(-1) for Cr(III), Cu(II), Fe(III) and Pb(II), respectively. The detection limits of the method were found to be 0.15, 0.41, 0.27 and 0.36 ng mL(-1) for Cr(III), Cu(II), Fe(III) and Pb(II), respectively. The relative standard deviation (RSD) of the method was lower than 4.0% (n=8). The method was successfully applied for the preconcentration of trace Cr(III), Cu(II), Fe(III) and Pb(II) in natural and certified samples with satisfactory results.

  4. Carbodiimide-mediated immobilization of acidic biomolecules on reversed-charge zwitterionic sensor chip surfaces.

    PubMed

    Risse, Fabian; Gedig, Erk T; Gutmann, Jochen S

    2018-04-30

    The carbodiimide-mediated amine coupling of protein ligands to sensor chips coated with anionic polycarboxylate hydrogels, such as carboxymethyl dextran, is the predominant covalent immobilization procedure utilized in optical biosensors, namely surface plasmon resonance (SPR) biosensors. Usually, electrostatic interactions at a slightly acidic pH and low ionic strength are employed to efficiently accumulate neutral and basic ligands on the chip surface, which are then covalently coupled by surface-bound active N-hydroxysuccinimide (NHS) esters. Unfortunately, this approach is not suitable for acidic proteins or other ligands with low isoelectric points (IEPs), such as nucleic acids, because the charge density of the polycarboxylates is greatly reduced at acidic pH or because electrostatic attraction cannot be achieved. To overcome these drawbacks, we have established a charge-reversal approach that allows the preconcentration of acidic proteins above their IEPs. A precisely controlled amount of tertiary amines is applied to reverse the previous anionic surface charge while maintaining carbodiimide compatibility with future protein immobilization. The mechanism of this reversed-charge immobilization approach was demonstrated employing protein A as a model protein and using attenuated total reflectance Fourier transform infrared spectroscopy, dynamic contact angle measurements, colorimetric quantification, and SPR analysis to characterize surface derivatization. Furthermore, even though it had previously proven impossible to preconcentrate DNA electrostatically and to covalently couple it to polyanionic chip surfaces, we demonstrated that our approach allowed DNA to be preconcentrated and immobilized in good yields. Graphical abstract Principle of the covalent immobilization of acidic ligands on reversed-charge zwitterionic sensor chip surfaces.

  5. Non-aqueous electrolytes for isotachophoresis of weak bases and its application to the comprehensive preconcentration of the 20 proteinogenic amino acids in column-coupling ITP/CE-MS.

    PubMed

    Kler, Pablo A; Huhn, Carolin

    2014-11-01

    Isotachophoresis (ITP) has long been used alone but also as a preconcentration technique for capillary electrophoresis (CE). Unfortunately, up to now, its application is restricted to relatively strong acids and bases as either the degree of (de)protonation is too low or the water dissociation is too high, evoking zone electrophoresis. With the comprehensive ITP analysis of all 20 proteinogenic amino acids as model analytes, we, here, show that non-aqueous ITP using dimethylsulfoxide as a solvent solves this ITP shortcoming. Dimethylsulfoxide changes the pH regime of analytes and electrolytes but, more importantly, strongly reduces the proton mobility by prohibiting hydrogen bonds and thus, the so-called Zundel-Eigen-Zundel electrical conduction mechanism of flipping hydrogen bonds. The effects are demonstrated in an electrolyte system with taurine or H(+) as terminator, and imidazole as leader together with strong acids such as oxalic and even trifluoroacetic acid as counterions, both impossible to use in aqueous solution. Mass spectrometric as well as capacitively coupled contactless conductivity detection (C(4)D) are used to follow the ITP processes. To demonstrate the preconcentration capabilities of ITP in a two-dimensional set-up, we, here, also demonstrate that our non-aqueous ITP method can be combined with capillary electrophoresis-mass spectrometry in a column-coupling system using a hybrid approach of capillaries coupled to a microfluidic interface. For this, C(4)D was optimized for on-chip detection with the electrodes aligned on top of a thin glass lid of the microfluidic chip.

  6. Nano sponge Mn₂O ₃ as a new adsorbent for the preconcentration of Pd(II) and Rh(III) ions in sea water, wastewater, rock, street sediment and catalytic converter samples prior to FAAS determinations.

    PubMed

    Yavuz, Emre; Tokalıoğlu, Serife; Sahan, Halil; Patat, Saban

    2014-10-01

    In this study, a nano sponge Mn2O3 adsorbent was synthesized and was used for the first time. Various parameters affecting the recovery values of Pd(II) and Rh(III) were examined. The tolerance limits (≥ 90 %) for both Pd(II) and Rh(III) ions were found to be 75,000 mg L(-1) Na(I), 75,000 mg L(-1) K(I), 50,000 mg L(-1) Mg(II) and 50,000 mg L(-1) Ca(II). A 30s contact time was enough for both adsorption and elution. A preconcentration factor of 100 was obtained by using 100mg of the nano sponge Mn2O3. The reusability of the adsorbent was 120 times. Adsorption capacities for Pd(II) and Rh(III) were found to be 42 and 6.2 mg g(-1), respectively. The detection limits were 1.0 µg L(-1) for Pd(II) and 0.37 µg L(-1) for Rh(III) and the relative standard deviations (RSD, %) were found to be ≤ 2.5%. The method was validated by analyzing the standard reference material, SRM 2556 (Used Auto Catalyst Pellets) and spiked real samples. The optimized method was applied for the preconcentration of Pd(II) and Rh(III) ions in water (sea water and wastewater), rock, street sediment and catalytic converter samples. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Preliminary results from a microvolume, dynamically heated analytical column for preconcentration and separation of simple gases prior to stable isotopic analysis

    NASA Astrophysics Data System (ADS)

    Panetta, Robert James; Seed, Mike

    2016-04-01

    Stable isotope applications that call for preconcentration (i.e., greenhouse gas measurements, small carbonate samples, etc.) universally call for cryogenic fluids such as liquid nitrogen, dry ice slurries, or expensive external recirculation chillers. This adds significant complexity, first and foremost in the requirements to store and handle such dangerous materials. A second layer of complexity is the instrument itself - with mechanisms to physically move either coolant around the trap, or move a trap in or out of the coolant. Not to mention design requirements for hardware that can safely isolate the fluid from other sensitive areas. In an effort to simplify the isotopic analysis of gases requiring preconcentration, we have developed a new separation technology, UltiTrapTM (patent pending), which leverage's the proprietary Advanced Purge & Trap (APT) Technology employed in elemental analysers from Elementar Analysensysteme GmbH products. UltiTrapTM has been specially developed as a micro volume, dynamically heated GC separation column. The introduction of solid-state cooling technology enables sub-zero temperatures without cryogenics or refrigerants, eliminates all moving parts, and increases analytical longevity due to no boiling losses of coolant . This new technology makes it possible for the system to be deployed as both a focussing device and as a gas separation device. Initial data on synthetic gas mixtures (CO2/CH4/N2O in air), and real-world applications including long-term room air and a comparison between carbonated waters of different origins show excellent agreement with previous technologies.

  8. Application of NaClO-treated multiwalled carbon nanotubes as solid phase extraction sorbents for preconcentration of trace 2,4-dichlorophenoxyacetic acid in aqueous samples.

    PubMed

    Lu, Ping; Deng, Dayi; Ni, Xiaodan

    2012-09-01

    Multiwalled carbon nanotubes functionalized by oxidation of original multiwalled carbon nanotubes with NaClO were prepared and their application as solid phase extraction sorbent for 2,4-dichlorophenoxyacetic acid (2,4-D) was investigated systemically, and a new method was developed for the determination of trace 2,4-D in water samples based on extraction and preconcentration of 2,4-D with solid phase extraction columns packed with NaClO-treated multiwalled carbon nanotubes prior to its determination by HPLC. The optimum experimental parameters for preconcentration of 2,4-D, including the column activating conditions, the amount of the sorbent, pH of the sample, elution composition, and elution volume, were investigated. The results indicated 2,4-D could be quantitatively retained by 100 mg NaClO-treated multiwalled carbon nanotubes at pH 5, and then eluted completely with 10 mL 3:1 (v/v) methanol-ammonium acetate solution (0.3 mol/L). The detection limit of this method for 2,4-D was 0.15 μg/L, and the relative standard deviation was 2.3% for fortified tap water samples and 2.5% for fortified riverine water sample at the 10 μg/L level. The method was validated using fortified tap water and riverine water samples with known amount of 2,4-D at the 0.4, 10, and 30 μg/L levels, respectively. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Fused silica capillaries with two segments of different internal diameters and inner surface roughnesses prepared by etching with supercritical water and used for volume coupling electrophoresis.

    PubMed

    Horká, Marie; Karásek, Pavel; Roth, Michal; Šlais, Karel

    2017-05-01

    In this work, single-piece fused silica capillaries with two different internal diameter segments featuring different inner surface roughness were prepared by new etching technology with supercritical water and used for volume coupling electrophoresis. The concept of separation and online pre-concentration of analytes in high conductivity matrix is based on the online large-volume sample pre-concentration by the combination of transient isotachophoretic stacking and sweeping of charged proteins in micellar electrokinetic chromatography using non-ionogenic surfactant. The modified surface roughness step helped to the significant narrowing of the zones of examined analytes. The sweeping and separating steps were accomplished simultaneously by the use of phosphate buffer (pH 7) containing ethanol, non-ionogenic surfactant Brij 35, and polyethylene glycol (PEG 10000) after sample injection. Sample solution of a large volume (maximum 3.7 μL) dissolved in physiological saline solution was injected into the wider end of capillary with inlet inner diameter from 150, 185 or 218 μm. The calibration plots were linear (R 2 ∼ 0.9993) over a 0.060-1 μg/mL range for the proteins used, albumin and cytochrome c. The peak area RSDs from at least 20 independent measuremens were below 3.2%. This online pre-concentration technique produced a more than 196-fold increase in sensitivity, and it can be applied for detection of, e.g. the presence of albumin in urine (0.060 μg/mL). © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Optimization of a novel method for determination of benzene, toluene, ethylbenzene, and xylenes in hair and waste water samples by carbon nanotubes reinforced sol-gel based hollow fiber solid phase microextraction and gas chromatography using factorial experimental design.

    PubMed

    Es'haghi, Zarrin; Ebrahimi, Mahmoud; Hosseini, Mohammad-Saeid

    2011-05-27

    A novel design of solid phase microextraction fiber containing carbon nanotube reinforced sol-gel which was protected by polypropylene hollow fiber (HF-SPME) was developed for pre-concentration and determination of BTEX in environmental waste water and human hair samples. The method validation was included and satisfying results with high pre-concentration factors were obtained. In the present study orthogonal array experimental design (OAD) procedure with OA(16) (4(4)) matrix was applied to study the effect of four factors influencing the HF-SPME method efficiency: stirring speed, volume of adsorption organic solvent, extraction and desorption time of the sample solution, by which the effect of each factor was estimated using individual contributions as response functions in the screening process. Analysis of variance (ANOVA) was employed for estimating the main significant factors and their percentage contributions in extraction. Calibration curves were plotted using ten spiking levels of BTEX in the concentration ranges of 0.02-30,000ng/mL with correlation coefficients (r) 0.989-0.9991 for analytes. Under the optimized extraction conditions, the method showed good linearity (0.3-20,000ng/L), repeatability, low limits of detections (0.49-0.7ng/L) and excellent pre-concentration factors (185-1872). The best conditions which were estimated then applied for the analysis of BTEX compounds in the real samples. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. 78 FR 65306 - Best Practices for Continuous Monitoring of Temperature and Flow in Wadeable Streams

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-31

    ... Practices for Continuous Monitoring of Temperature and Flow in Wadeable Streams AGENCY: Environmental... Monitoring of Temperature and Flow in Wadeable Streams'' (EPA/600/R-13/170). The EPA also is announcing that... Development. The report describes best practices for the deployment of continuous temperature and flow sensors...

  12. Analysis of Ethane and Diethylbenzene Bridged Sorbents

    DTIC Science & Technology

    2017-12-13

    Leska; P.T. Charles; B.J. Melde; J.R. Taft, "Electrochemical Detection with Preconcentration: Nitroenergetic Contaminants ," Chemosensors 2, 131...monitoring of contaminants in groundwater: Sorbent development; Naval Research Laboratory: 2013. Analysis of Ethane and Diethylbenzene Bridged Sorbents 7...

  13. Ultrasonic-energy enhance the ionic liquid-based dual microextraction to preconcentrate the lead in ground and stored rain water samples as compared to conventional shaking method.

    PubMed

    Nizamani, Sooraj; Kazi, Tasneem G; Afridi, Hassan I

    2018-01-01

    An efficient preconcentration technique based on ultrasonic-assisted ionic liquid-based dual microextraction (UA-ILDµE) method has been developed to preconcentrate the lead (Pb +2 ) in ground and stored rain water. In the current proposed method, Pb +2 was complexed with a chelating agent (dithizone), whereas an ionic liquid (1-butyl-3-methylimidazolium hexafluorophosphate) was used for extraction purpose. The ultrasonic irradiation and electrical shaking system were applied to enhance the dispersion and extraction of Pb +2 complex in aqueous samples. For second phase, dual microextraction (DµE phase), the enriched Pb +2 complex in ionic liquid, extracted back into the acidic aqueous solution and finally determined by flame atomic absorption spectrometry. Some major analytical parameters that influenced the extraction efficiency of developed method, such as pH, concentration of ligand, volume of ionic liquid and samples, time of shaking in thermostatic electrical shaker and ultrasonic bath, effect of back extracting HNO 3 volume, matrix effect, centrifugation time and rate were optimized. At the sample volume of 25mL, the calculated preconcentration factor was 62.2. The limit of detection of proposed procedure for Pb +2 ions was found to be 0.54μgL -1 . The validation of developed method was performed by the analysis of certified sample of water SRM 1643e and standard addition method in a real water sample. The extraction recovery of Pb +2 was enhanced≥2% with shaking time of 80s in ultrasonic bath as compared to used thermostatic electrical shaker, where for optimum recovery up to 10min was required. The developed procedure was successfully used for the enrichment of Pb +2 in ground and stored rain water (surface water) samples of an endemic region of Pakistan. The resulted data indicated that the ground water samples were highly contaminated with Pb +2 , while some of the surface water samples were also have higher values of Pb +2 than permissible limit of WHO. The concentration of Pb +2 in surface and ground water samples was found in the range of 17.5-24.5 and 25.6-99.1μgL - 1 respectively. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Continuous Flow Science in an Undergraduate Teaching Laboratory: Photocatalytic Thiol-Ene Reaction Using Visible Light

    ERIC Educational Resources Information Center

    Santandrea, Jeffrey; Kairouz, Vanessa; Collins, Shawn K.

    2018-01-01

    An undergraduate teaching laboratory experiment involving a continuous flow, photocatalytic thiol-ene reaction using visible-light irradiation is described that allows students to explore concepts of green chemistry, photochemistry, photocatalysis, and continuous flow chemistry.

  15. Geochemical variations of rare earth elements in Marcellus shale flowback waters and multiple-source cores in the Appalachian Basin

    NASA Astrophysics Data System (ADS)

    Noack, C.; Jain, J.; Hakala, A.; Schroeder, K.; Dzombak, D. A.; Karamalidis, A.

    2013-12-01

    Rare earth elements (REE) - encompassing the naturally occurring lanthanides, yttrium, and scandium - are potential tracers for subsurface groundwater-brine flows and geochemical processes. Application of these elements as naturally occurring tracers during shale gas development is reliant on accurate quantitation of trace metals in hypersaline brines. We have modified and validated a liquid-liquid technique for extraction and pre-concentration of REE from saline produced waters from shale gas extraction wells with quantitative analysis by ICP-MS. This method was used to analyze time-series samples of Marcellus shale flowback and produced waters. Additionally, the total REE content of core samples of various strata throughout the Appalachian Basin were determined using HF/HNO3 digestion and ICP-MS analysis. A primary goal of the study is to elucidate systematic geochemical variations as a function of location or shale characteristics. Statistical testing will be performed to study temporal variability of inter-element relationships and explore associations between REE abundance and major solution chemistry. The results of these analyses and discussion of their significance will be presented.

  16. Analysis of pesticides in soy milk combining solid-phase extraction and capillary electrophoresis-mass spectrometry.

    PubMed

    Hernández-Borges, Javier; Rodriguez-Delgado, Miguel Angel; García-Montelongo, Francisco J; Cifuentes, Alejandro

    2005-06-01

    In this work, the determination of a group of triazolopyrimidine sulfoanilide herbicides (cloransulam-methyl, metosulam, flumetsulam, florasulam, and diclosulam) in soy milk by capillary electrophoresis-mass spectrometry (CE-MS) is presented. The main electrospray interface (ESI) parameters (nebulizer pressure, dry gas flow rate, dry gas temperature, and composition of the sheath liquid) are optimized using a central composite design. To increase the sensitivity of the CE-MS method, an off-line sample preconcentration procedure based on solid-phase extraction (SPE) is combined with an on-line stacking procedure (i.e. normal stacking mode, NSM). Samples could be injected for up to 100 s, providing limits of detection (LODs) down to 74 microg/L, i.e., at the low ppb level, with relative standard deviation values (RSD,%) between 3.8% and 6.4% for peak areas on the same day, and between 6.5% and 8.1% on three different days. The usefulness of the optimized SPE-NSM-CE-MS procedure is demonstrated through the sensitive quantification of the selected pesticides in soy milk samples.

  17. Quantum-dots-encoded-microbeads based molecularly imprinted polymer.

    PubMed

    Liu, Yixi; Liu, Le; He, Yonghong; He, Qinghua; Ma, Hui

    2016-03-15

    Quantum dots encoded microbeads have various advantages such as large surface area, superb optical properties and the ability of multiplexing. Molecularly imprinted polymer that can mimic the natural recognition entities has high affinity and selectivity for the specific analyte. Here, the concept of utilizing the quantum dots encoded microbeads as the supporting material and the polydopamine as the functional monomer to form the core-shell molecular imprinted polymer was proposed for the first time. The resulted imprinted polymer can provide various merits: polymerization can complete in aqueous environment; fabrication procedure is facile and universal; the obvious economic advantage; the thickness of the imprinting layer is highly controllable; polydopamine coating can improve the biocompatibility of the quantum dot encoded microbeads. The rabbit IgG binding and flow cytometer experiment result showed the distinct advantages of this strategy: cost-saving, facile and fast preparation procedure. Most importantly, the ability for the multichannel detection, which makes the imprinted polydopamine modified encoded-beads very attractive in protein pre-concentration, recognition, separation and biosensing. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Column preconcentration and electrothermal atomic absorption spectrometric determination of rhodium in some food and standard samples.

    PubMed

    Taher, Mohammad Ali; Pourmohammad, Fatemeh; Fazelirad, Hamid

    2015-12-01

    In the present work, an electrothermal atomic absorption spectrometric method has been developed for the determination of ultra-trace amounts of rhodium after adsorption of its 2-(5-bromo-2-pyridylazo)-5-diethylaminophenol/tetraphenylborate ion associated complex at the surface of alumina. Several factors affecting the extraction efficiency such as the pH, type of eluent, sample and eluent flow rates, sorption capacity of alumina and sample volume were investigated and optimized. The relative standard deviation for eight measurements of 0.1 ng/mL of rhodium was ±6.3%. In this method, the detection limit was 0.003 ng/mL in the original solution. The sorption capacity of alumina and the linear range for Rh(III) were evaluated as 0.8 mg/g and 0.015-0.45 ng/mL in the original solution, respectively. The proposed method was successfully applied for the extraction and determination of rhodium content in some food and standard samples with high recovery values. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Isotachophoresis-Based Surface Immunoassay.

    PubMed

    Paratore, Federico; Zeidman Kalman, Tal; Rosenfeld, Tally; Kaigala, Govind V; Bercovici, Moran

    2017-07-18

    In the absence of amplification methods for proteins, the immune-detection of low-abundance proteins using antibodies is fundamentally limited by binding kinetic rates. Here, we present a new class of surface-based immunoassays in which protein-antibody reaction is accelerated by isotachophoresis (ITP). We demonstrate the use of ITP to preconcentrate and deliver target proteins to a surface decorated with specific antibodies, where effective utilization of the focused sample is achieved by modulating the driving electric field (stop-and-diffuse ITP mode) or applying a counter flow that opposes the ITP motion (counterflow ITP mode). Using enhanced green fluorescent protein (EGFP) as a model protein, we carry out an experimental optimization of the ITP-based immunoassay and demonstrate a 1300-fold improvement in limit of detection compared to a standard immunoassay, in a 6 min protein-antibody reaction. We discuss the design of buffer chemistries for other protein systems and, in concert with experiments, provide full analytical solutions for the two operation modes, elucidating the interplay between reaction, diffusion, and accumulation time scales and enabling the prediction and design of future immunoassays.

  20. Application of Chitosan-Zinc Oxide Nanoparticles for Lead Extraction From Water Samples by Combining Ant Colony Optimization with Artificial Neural Network

    NASA Astrophysics Data System (ADS)

    Khajeh, M.; Pourkarami, A.; Arefnejad, E.; Bohlooli, M.; Khatibi, A.; Ghaffari-Moghaddam, M.; Zareian-Jahromi, S.

    2017-09-01

    Chitosan-zinc oxide nanoparticles (CZPs) were developed for solid-phase extraction. Combined artificial neural network-ant colony optimization (ANN-ACO) was used for the simultaneous preconcentration and determination of lead (Pb2+) ions in water samples prior to graphite furnace atomic absorption spectrometry (GF AAS). The solution pH, mass of adsorbent CZPs, amount of 1-(2-pyridylazo)-2-naphthol (PAN), which was used as a complexing agent, eluent volume, eluent concentration, and flow rates of sample and eluent were used as input parameters of the ANN model, and the percentage of extracted Pb2+ ions was used as the output variable of the model. A multilayer perception network with a back-propagation learning algorithm was used to fit the experimental data. The optimum conditions were obtained based on the ACO. Under the optimized conditions, the limit of detection for Pb2+ ions was found to be 0.078 μg/L. This procedure was also successfully used to determine the amounts of Pb2+ ions in various natural water samples.

  1. On-chip isothermal, chemical cycling polymerase chain reaction (ccPCR)

    NASA Astrophysics Data System (ADS)

    Persat, Alexandre; Santiago, Juan

    2008-11-01

    We demonstrate a novel ccPCR technique for microfluidic DNA amplification where temperature is held constant in space and time. The polymerase chain reaction is a platform of choice for biological assays and typically based on a three-step thermal cycling: DNA denaturation, primers annealing and extension by an enzyme. We here demonstrate a novel technique where high concentration chemical denaturants (solvents) denature DNA. We leverage the high electrophoretic mobility of DNA and the electrical neutrality of denaturants to achieve chemical cycling. We focus DNA with isotachophoresis (ITP); a robust electrophoretic preconcentration technique which generates strong electric field gradients and protects the sample from dispersion. We apply a pressure-driven flow to balance electromigration velocity and keep the DNA sample stationary in a microchannel. We drive the DNA through a series of high denaturant concentration zones. DNA denatures at high denaturant concentration. At low denaturant concentration, the enzyme creates complementary strands. DNA reaction kinetics are slower than buffer reactions involved in ITP. We demonstrate successful ccPCR amplification for detection of E. Coli. The ccPCR has the potential for simpler chemistry than traditional PCR.

  2. Investigation of mechanism and critical parameters for removal of arsenic from water using Zr-TiO2 composite.

    PubMed

    Anđelković, I; Amaizah, N R R; Marković, S B; Stanković, D; Marković, M; Kuzmanović, D; Roglić, G

    2017-09-01

    Using the microwave-hydrothermal method for the synthesis of composite, high surface density of hydroxyl groups, as an active adsorption sites for arsenic, was obtained. Adsorption mechanisms of As(III) and As(V) onto zirconium-doped titanium dioxide (Zr-TiO 2 ) were investigated and proposed using macroscopic and microscopic methods. Obtained results are suggesting inner-sphere and outer-sphere adsorption mechanisms for As(III) and As(V), respectively. This allowed us to identify parameters that are critical for the successful removal of arsenic from water, which is essential information for further optimization of the removal process. The composite was further applied for the removal of As(III) and As(V) from water in a dynamic flow through the reactor. Column study proved that the removal of both arsenic species below the value recommended by WHO can be achieved. Elution of As(III) and As(V) from the composite can be done by using small amounts of 0.01 M NaOH solution resulting in preconcentration of arsenic species and possible multiple usage of composite.

  3. A new separation and preconcentration method for selenium in some foods using modified silica gel with 2,6-diamino-4-phenil-1,3,5-triazine.

    PubMed

    Mendil, Durali; Demirci, Zafer; Uluozlu, Ozgur Dogan; Tuzen, Mustafa; Soylak, Mustafa

    2017-04-15

    A novel and simple solid phase extraction method was improved and recommended for selenium. Silica gel was modified with 2,6-diamino-4-phenil-1,3,5-triazine and characterized by FTIR, SEM and elemental analysis and used adsorbent for column solid phase extraction of selenium ions. The experimental parameters (pH, flow rates, amounts of the modified silica gel, concentration and type of eluent, volume of sample, etc.) on the recoveries of selenium were optimized. Standard reference materials were analyzed for validation of method. The present method was successfully applied to the detection of total selenium in water and microwave digested some food samples with quantitative recoveries (> 95%). The relative standard deviations were<8%. Matrix influences were not observed. The adsorption capacity of modified silica gel was 5.90mgg -1 . The LOD was 0.015μgL -1 . Enrichment factor was obtained as 50 for the introduced method. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Spectrophotometric determination of zinc and copper in a multi-syringe flow injection analysis system using a liquid waveguide capillary cell: application to natural waters.

    PubMed

    Páscoa, Ricardo N M J; Tóth, Ildikó V; Rangel, António O S S

    2011-06-15

    This work exploits a multi-syringe injection analysis (MSFIA) system coupled with a long liquid waveguide capillary cell for the spectrophotometric determination of zinc and copper in waters. A liquid waveguide capillary cell (1.0m pathlength, 550 μm i.d. and 250 μL internal volume) was used to enhance the sensitivity of the detection. The determination for both ions is based on a colorimetric reaction with zincon at different pH values. The developed methodology compares favourably with other previously described procedures, as it allows to reach low detection limits for both cations (LODs of 0.1 and 2 μg L(-1), for copper and zinc, respectively), without the need for any pre-concentration step. The system also provided a linear response up to 100 μg L(-1) with a high throughput (43 h(-1)) and low reagent consumption and effluent production. The developed work was applied to natural waters and three certified reference water samples. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. Cadmium determination in natural waters at the limit imposed by European legislation by isotope dilution and TiO2 solid-phase extraction.

    PubMed

    García-Ruiz, Silvia; Petrov, Ivan; Vassileva, Emilia; Quétel, Christophe R

    2011-11-01

    The cadmium content in surface water is regulated by the last European Water Framework Directive to a maximum between 0.08 and 0.25 μg L(-1) depending on the water type and hardness. Direct measurement of cadmium at this low level is not straightforward in real samples, and we hereby propose a validated method capable of addressing cadmium content below μg L(-1) level in natural water. It is based on solid-phase extraction using TiO(2) nanoparticles as solid sorbent (0.05 g packed in mini-columns) to allow the separation and preconcentration of cadmium from the sample, combined to direct isotope dilution and detection by inductively coupled plasma mass spectrometry (ID-ICP-MS). The extraction setup is miniaturised and semi-automated to reduce risks of sample contamination and improve reproducibility. Procedural blanks for the whole measurement process were 5.3 ± 2.8 ng kg(-1) (1 s) for 50 g of ultrapure water preconcentrated ten times. Experimental conditions influencing the separation (including loading pH, sample flow rates, and acid concentration in the eluent) were evaluated. With isotope dilution the Cd recovery rate does not have to be evaluated carefully. Moreover, the mathematical model associated to IDMS is known, and provides transparency for the uncertainty propagation. Our validation protocol was in agreement with guidelines of the ISO/IEC 17025 standard (chapter 5.4.5). Firstly, we assessed the experimental factors influencing the final result. Secondly, we compared the isotope ratios measured after our separation procedure to the reference values obtained with a different protocol for the digested test material IMEP-111 (mineral feed). Thirdly, we analysed the certified reference material BCR-609 (groundwater). Finally, combined uncertainties associated to our results were estimated according to ISO-GUM guidelines (typically, 3-4% k = 2 for a cadmium content of around 100 ng kg(-1)). We applied the developed method to the groundwater and wastewater samples ERM-CA615 and BCR-713, respectively, and results agreed with certificate values within uncertainty statements.

  6. Resistance, bioaccumulation and solid phase extraction of uranium (VI) by Bacillus vallismortis and its UV-vis spectrophotometric determination.

    PubMed

    Ozdemir, Sadin; Oduncu, M Kadir; Kilinc, Ersin; Soylak, Mustafa

    2017-05-01

    Bioaccumulation, resistance and preconcentration of uranium(VI) by thermotolerant Bacillus vallismortis were investigated in details. The minimum inhibition concentration of (MIC) value of U(VI) was found as 85 mg/L and 15 mg/L in liquid and solid medium, respectively. Furthermore, the effect of various U(VI) concentrations on the growth of bacteria and bioaccumulation on B. vallismortis was examined in the liquid culture media. The growth was not significantly affected in the presence of 1.0, 2.5 and 5.0 mg/L U(VI) up to 72 h. The highest bioaccumulation value at 1 mg/L U(VI) concentration was detected at the 72nd hour (10 mg/g metal/dry bacteria), while the maximum bioaccumulation value at 5 mg/L U(VI) concentration was determined at the 48th hour (50 mg metal/dry bacteria). In addition to these, various concentration of U(VI) on α-amylase production was studied. The α-amylase activities at 0, 1, 2.5 and 5 mg/L U(VI) were found as 3313.2, 3845.2, 3687.1 and 3060.8 U/mg, respectively at 48th. Besides, uranium (VI) ions were preconcentrated with immobilized B. vallismortis onto multiwalled carbon nanotube (MWCNT) and were determined by UV-vis spectrophotometry. The surface macro structure and functionalities of B. vallismortis immobilized onto multiwalled carbon nanotube with and without U(VI) were examined by FT-IR and SEM. The optimum pH and flow rate for the biosorption of U(VI) were 4.0-5.0 and 1.0 mL/min, respectively. The quantitative elution occurred with 5.0 mL of 1 mol/L HCl. The loading capacity of immobilized B. vallismortis was determined as 23.6 mg/g. The certified reference sample was employed for the validation of developed solid phase extraction method. The new validated method was applied to the determination of U(VI) in water samples from Van Lake-Turkey. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Verification of a computational cardiovascular system model comparing the hemodynamics of a continuous flow to a synchronous valveless pulsatile flow left ventricular assist device.

    PubMed

    Gohean, Jeffrey R; George, Mitchell J; Pate, Thomas D; Kurusz, Mark; Longoria, Raul G; Smalling, Richard W

    2013-01-01

    The purpose of this investigation is to use a computational model to compare a synchronized valveless pulsatile left ventricular assist device with continuous flow left ventricular assist devices at the same level of device flow, and to verify the model with in vivo porcine data. A dynamic system model of the human cardiovascular system was developed to simulate the support of a healthy or failing native heart from a continuous flow left ventricular assist device or a synchronous pulsatile valveless dual-piston positive displacement pump. These results were compared with measurements made during in vivo porcine experiments. Results from the simulation model and from the in vivo counterpart show that the pulsatile pump provides higher cardiac output, left ventricular unloading, cardiac pulsatility, and aortic valve flow as compared with the continuous flow model at the same level of support. The dynamic system model developed for this investigation can effectively simulate human cardiovascular support by a synchronous pulsatile or continuous flow ventricular assist device.

  8. Verification of a computational cardiovascular system model comparing the hemodynamics of a continuous flow to a synchronous valveless pulsatile flow left ventricular assist device

    PubMed Central

    Gohean, Jeffrey R.; George, Mitchell J.; Pate, Thomas D.; Kurusz, Mark; Longoria, Raul G.; Smalling, Richard W.

    2012-01-01

    The purpose of this investigation is to utilize a computational model to compare a synchronized valveless pulsatile left ventricular assist device to continuous flow left ventricular assist devices at the same level of device flow, and to verify the model with in vivo porcine data. A dynamic system model of the human cardiovascular system was developed to simulate support of a healthy or failing native heart from a continuous flow left ventricular assist device or a synchronous, pulsatile, valveless, dual piston positive displacement pump. These results were compared to measurements made during in vivo porcine experiments. Results from the simulation model and from the in vivo counterpart show that the pulsatile pump provides higher cardiac output, left ventricular unloading, cardiac pulsatility, and aortic valve flow as compared to the continuous flow model at the same level of support. The dynamic system model developed for this investigation can effectively simulate human cardiovascular support by a synchronous pulsatile or continuous flow ventricular assist device. PMID:23438771

  9. A novel task specific magnetic polymeric ionic liquid for selective preconcentration of potassium in oil samples using centrifuge-less dispersive liquid-liquid microextraction technique and its determination by flame atomic emission spectroscopy.

    PubMed

    Beiraghi, Asadollah; Shokri, Masood

    2018-02-01

    In the present study a new centrifuge-less dispersive liquid-liquid microextraction technique based on application of a new task specific magnetic polymeric ionic liquid (TSMPIL) as a chelating and extraction solvent for selective preconcentration of trace amounts of potassium from oil samples is developed, for the first time. After extraction, the fine droplets of TSMPIL were transferred into an eppendorf tube and diluted to 500µL using distilled water. Then, the enriched analyte was determined by flame atomic emission spectroscopy (FAES). Several important factors affecting both the complexation and extraction efficiency including extraction time, rate of vortex agitator, amount of carbonyl iron powder, pH of sample solution, volume of ionic liquid as well as effects of interfering species were investigated and optimized. Under the optimal conditions, the limits of detection (LOD) and quantification (LOQ) were 0.5 and 1.6µgL -1 respectively with the preconcentration factor of 128. The precision (RSD %) for seven replicate determinations at 10µgL -1 of potassium was better than 3.9%. The relative recoveries for the spiked samples were in the acceptable range of 95-104%. The results demonstrated that no remarkable interferences are created by other various ions in the determination of potassium, so that the tolerance limits (W Ion /W K ) of major cations and anions were in the range of 2500-10,000. The purposed method was successfully applied for the analysis of potassium in some oil samples. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Simultaneous multicomponent spectrophotometric monitoring of methyl and propyl parabens using multivariate statistical methods after their preconcentration by robust ionic liquid-based dispersive liquid-liquid microextraction.

    PubMed

    Khani, Rouhollah; Ghasemi, Jahan B; Shemirani, Farzaneh

    2014-03-25

    A powerful and efficient signal-preprocessing technique that combines local and multiscale properties of the wavelet prism with the global filtering capability of orthogonal signal correction (OSC) is applied for pretreatment of spectroscopic data of parabens as model compounds after their preconcentration by robust ionic liquid-based dispersive liquid-liquid microextraction method (IL-DLLME). In the proposed technique, a mixture of a water-immiscible ionic liquid (as extraction solvent) [Hmim][PF6] and disperser solvent is injected into an aqueous sample solution containing one of the IL's ions, NaPF6, as extraction solvent and common ion source. After preconcentration, the absorbance of the extracted compounds was measured in the wavelength range of 200-700 nm. The wavelet orthogonal signal correction with partial least squares (WOSC-PLS) method was then applied for simultaneous determination of each individual compound. Effective parameters, such as amount of IL, volume of the disperser solvent and amount of NaPF6, were inspected by central composite design to identify the most important parameters and their interactions. The effect of pH on the sensitivity and selectivity was studied according to the net analyte signal (NAS) for each component. Under optimum conditions, enrichment factors of the studied compounds were 75 for methyl paraben (MP) and 71 for propyl paraben (PP). Limits of detection for MP and PP were 4.2 and 4.8 ng mL(-)(1), respectively. The root mean square errors of prediction for MP and PP were 0.1046 and 0.1275 μg mL(-)(1), respectively. The practical applicability of the developed method was examined using hygienic, cosmetic, pharmaceutical and natural water samples. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Electrochemical detection of a powerful estrogenic endocrine disruptor: ethinylestradiol in water samples through bioseparation procedure.

    PubMed

    Martínez, Noelia A; Pereira, Sirley V; Bertolino, Franco A; Schneider, Rudolf J; Messina, Germán A; Raba, Julio

    2012-04-20

    The synthetic estrogen ethinylestradiol (EE2) is an active component of oral contraceptives (OCs), considered as an endocrine disrupting compound (EDC). It is excreted from humans and released via sewage treatment plant effluents into aquatic environments. EDCs are any environmental pollutant chemical that, once incorporated into an organism, affects the hormonal balance of various species including humans. Its presence in the environment is becoming of great importance in water quality. This paper describes the development of an accurate, sensitive and selective method for capture, preconcentration and determination of EE2 present in water samples using: magnetic particles (MPs) as bioaffinity support for the capture and preconcentration of EE2 and a glassy carbon electrode modified with multi-walled carbon nanotubes (MWCNTs/GCE) as detection system. The capture procedure was based on the principle of immunoaffinity, the EE2 being extracted from the sample using the anti-EE2 antibodies (anti-EE2 Ab) which were previously immobilized on MPs. Subsequently the analyte desorption was done employing a sulfuric acid solution and the determination of the EE2 in the pre-concentrated solution was carried out by square wave voltammetry (SWV). This method can be used to determine EE2 in the range of 0.035-70 ng L(-1) with a detection limit (LOD) of 0.01 ng L(-1) and R.S.D.<4.20%. The proposed method has been successfully applied to the determination of EE2 in water samples and it has promising analytical applications for the direct determination of EE2 at trace levels. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Study of 3-Ethylamino-but-2-enoic acid phenylamide as a new ligand for preconcentration of lanthanides from aqueous media by liquid-liquid extraction prior to ICP-MS analysis.

    PubMed

    Varbanova, Evelina K; Angelov, Plamen A; Stefanova, Violeta M

    2016-11-01

    In the present work the potential of a new ligand 3-Ethylamino-but-2-enoic acid phenylamide (representing the class of enaminones) for selective preconcentration of lanthanides (La, Ce, Eu, Gd and Er) from aqueous medium is examined. Liquid-liquid extraction parameters, such as pH of the water phase, type and volume of organic solvent, quantity of ligand and reaction time are optimized on model solutions. Recovery of lanthanides by re-extraction with nitric acid makes the LLE procedure compatible with Inductively Coupled Plasma Mass Spectrometry. Spectral and non-spectral interferences are studied. Two isotopes per element are measured (with exception of La) for dynamic evaluation of the potential risk of spectral interference in variable real samples. The selectivity of complex formation reaction towards concomitant alkali and alkali-earth elements eliminates the interferences from sample matrix. Subjecting the standards to the optimized extraction procedure in combination with Re as internal standard is recommended as calibration strategy. The accuracy of developed method is approved by analysis of CRM Bush branches and leaves (NCS DC 73348) and recovery of spiked water and plant samples. The method's limits of detection for both studied objects are in the ranges from 0.2 ((158)Gd) to 3.7 ((139)La) ngl(-1) and 0.02 ((158)Gd) to 0.37((139)La) ngg(-1) for waters and plants respectively. The studied compound is an effective new ligand for preconcentration/separation of lanthanides from aqueous medium by LLE and subsequent determination by ICP-MS. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Development of micromachined preconcentrators and gas chromatographic separation columns by an electroless gold plating technology

    NASA Astrophysics Data System (ADS)

    Kuo, C.-Y.; Chen, P.-S.; Chen, H.-T.; Lu, C.-J.; Tian, W.-C.

    2017-03-01

    In this study, a simple process for fabricating a novel micromachined preconcentrator (μPCT) and a gas chromatographic separation column (μSC) for use in a micro gas chromatograph (μGC) using one photomask is described. By electroless gold plating, a high-surface-area gold layer was deposited on the surface of channels inside the μPCT and μSC. For this process, (3-aminopropyl) trimethoxysilane (APTMS) was used as a promoter for attaching gold nanoparticles on a silicon substrate to create a seed layer. For this purpose, a gold sodium sulfite solution was used as reagent for depositing gold to form heating structures. The microchannels of the μPCT and μSC were coated with the adsorbent and stationary phase, Tenax-TA and polydimethylsiloxane (DB-1), respectively. μPCTs were heated at temperatures greater than 280 °C under an applied electrical power of 24 W and a heating rate of 75 °C s-1. Repeatable thermal heating responses for μPCTs were achieved; good linearity (R 2  >  0.9997) was attained at three heating rates for the temperature programme for the μSC (0.2, 0.5 and 1 °C s-1). The volatile organic compounds (VOCs) toluene and m-xylene were concentrated over the μPCT by rapid thermal desorption (peak width of half height (PWHH)  <1.5 s) preconcentration factors for both VOCs are  >7900. The VOCs acetone, benzene, toluene, m-xylene and 1,3,5-trimethylbenzene were also separated on the μSC as evidenced by their different retention times (47-184 s).

  14. Superparamagnetic graphene oxide-based dispersive-solid phase extraction for preconcentration and determination of tamsulosin hydrochloride in human plasma by high performance liquid chromatography-ultraviolet detection.

    PubMed

    Pashaei, Yaser; Ghorbani-Bidkorbeh, Fatemeh; Shekarchi, Maryam

    2017-05-26

    In the present study, superparamagnetic graphene oxide-Fe 3 O 4 nanocomposites were successfully prepared by a modified impregnation method (MGO mi ) and their application as a sorbent in the magnetic-dispersive solid phase extraction (M-dSPE) mode to the preconcentration and determination of tamsulosin hydrochloride (TMS) in human plasma was investigated by coupling with high performance liquid chromatography-ultraviolet detection (HPLC-UV). The structure, morphology and magnetic properties of the prepared nanocomposites were characterized using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), and vibrating sample magnetometry (VSM). Some factors affecting the extraction efficiency, including the pH value, amount of sorbent, extraction time, elution solvent and its volume, and desorption time were studied and optimized. Magnetic nanocomposites plasma extraction of TMS following HPLC analyses showed a linear calibration curve in the range of 0.5-50.0ngmL -1 with an acceptable correlation coefficient (R 2 =0.9988). The method was sensitive, with a low limit of detection (0.17ngmL -1 ) and quantification (0.48ngmL -1 ). Inter- and intra-day precision expressed as relative standard deviation (n=3) and the preconcentration factor, were found to be 5.6-7.2%, 2.9-4.2% and 10, respectively. Good recoveries (98.1-101.4%) with low relative standard deviations (4.2-5.0%) indicated that the matrices under consideration do not significantly affect the extraction process. Due to its high precision and accuracy, the developed method may be a HPLC-UV alternative with M-dSPE for bioequivalence analysis of TMS in human plasma. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Simultaneous spectrophotometric determination of crystal violet and malachite green in water samples using partial least squares regression and central composite design after preconcentration by dispersive solid-phase extraction.

    PubMed

    Razi-Asrami, Mahboobeh; Ghasemi, Jahan B; Amiri, Nayereh; Sadeghi, Seyed Jamal

    2017-04-01

    In this paper, a simple, fast, and inexpensive method is introduced for the simultaneous spectrophotometric determination of crystal violet (CV) and malachite green (MG) contents in aquatic samples using partial least squares regression (PLS) as a multivariate calibration technique after preconcentration by graphene oxide (GO). The method was based on the sorption and desorption of analytes onto GO and direct determination by ultraviolet-visible spectrophotometric techniques. GO was synthesized according to Hummers method. To characterize the shape and structure of GO, FT-IR, SEM, and XRD were used. The effective factors on the extraction efficiency such as pH, extraction time, and the amount of adsorbent were optimized using central composite design. The optimum values of these factors were 6, 15 min, and 12 mg, respectively. The maximum capacity of GO for the adsorption of CV and MG was 63.17 and 77.02 mg g -1 , respectively. Preconcentration factors and extraction recoveries were obtained and were 19.6, 98% for CV and 20, 100% for MG, respectively. LOD and linear dynamic ranges for CV and MG were 0.009, 0.03-0.3, 0.015, and 0.05-0.5 (μg mL -1 ), respectively. The intra-day and inter-day relative standard deviations were 1.99 and 0.58 for CV and 1.69 and 3.13 for MG at the concentration level of 50 ng mL -1 , respectively. Finally, the proposed DSPE/PLS method was successfully applied for the simultaneous determination of the trace amount of CV and MG in the real water samples.

  16. Dispersive micro-solid phase extraction combined with dispersive liquid-liquid microextraction for speciation analysis of antimony by electrothermal vaporization inductively coupled plasma mass spectrometry

    NASA Astrophysics Data System (ADS)

    Chen, Shizhong; Zhu, Shengping; Lu, Dengbo

    2018-01-01

    A method was developed for speciation analysis of antimony by electrothermal vaporization inductively coupled plasma mass spectrometry (ETV-ICP-MS) after preconcentration/separation using dispersive micro-solid phase extraction (DMSPE) and dispersive liquid-liquid micro-extraction (DLLME). In DMSPE, titanium dioxide nanofibers were used for preconcentration and separation of analytes. The upper aqueous phase and elution solution from DMSPE were used for further preconcentration and separation of Sb(III) and Sb(V) by DLLME without any pre-oxidation or pre-reduction operation, respectively. The extracts from DLLME were used for ETV-ICP-MS determination with APDC as a chemical modifier. Under optimal conditions, the detection limits of this method were 0.019 and 0.025 pg mL- 1 with relative standard deviations of 5.7% and 6.9% for Sb(III) and Sb(V) (c = 1.0 ng mL- 1, n = 9), respectively. This method was applied for speciation analysis of Sb and its distribution in the tea leaves and the tea infusion, including total, suspended, soluble, organic and inorganic Sb as well as Sb(III) and Sb(V). The results showed that the contents of Sb are 62.7, 12.9 and 47.3 ng g- 1 in the tea leaves, tea residue and tea soup, respectively; those of soluble, organic, inorganic, Sb(III) and Sb(V) are 0.41, 0.11, 0.29, 0.21 and 0.07 ng mL- 1 in the tea soup, respectively. A certified reference material of tea leaves (GBW 07605) was analyzed by this method with satisfactory results.

  17. Cloud point extraction-flame atomic absorption spectrometry for pre-concentration and determination of trace amounts of silver ions in water samples.

    PubMed

    Yang, Xiupei; Jia, Zhihui; Yang, Xiaocui; Li, Gu; Liao, Xiangjun

    2017-03-01

    A cloud point extraction (CPE) method was used as a pre-concentration strategy prior to the determination of trace levels of silver in water by flame atomic absorption spectrometry (FAAS) The pre-concentration is based on the clouding phenomena of non-ionic surfactant, triton X-114, with Ag (I)/diethyldithiocarbamate (DDTC) complexes in which the latter is soluble in a micellar phase composed by the former. When the temperature increases above its cloud point, the Ag (I)/DDTC complexes are extracted into the surfactant-rich phase. The factors affecting the extraction efficiency including pH of the aqueous solution, concentration of the DDTC, amount of the surfactant, incubation temperature and time were investigated and optimized. Under the optimal experimental conditions, no interference was observed for the determination of 100 ng·mL -1 Ag + in the presence of various cations below their maximum concentrations allowed in this method, for instance, 50 μg·mL -1 for both Zn 2+ and Cu 2+ , 80 μg·mL -1 for Pb 2+ , 1000 μg·mL -1 for Mn 2+ , and 100 μg·mL -1 for both Cd 2+ and Ni 2+ . The calibration curve was linear in the range of 1-500 ng·mL -1 with a limit of detection (LOD) at 0.3 ng·mL -1 . The developed method was successfully applied for the determination of trace levels of silver in water samples such as river water and tap water.

  18. Fe3O4/hydroxyapatite/graphene quantum dots as a novel nano-sorbent for preconcentration of copper residue in Thai food ingredients: Optimization of ultrasound-assisted magnetic solid phase extraction.

    PubMed

    Sricharoen, Phitchan; Limchoowong, Nunticha; Areerob, Yonrapach; Nuengmatcha, Prawit; Techawongstien, Suchila; Chanthai, Saksit

    2017-07-01

    Fe 3 O 4 /hydroxyapatite/graphene quantum dots (Fe 3 O 4 /HAP/GQDs) nanocomposite was synthesized and used as a novel magnetic adsorbent. This nanocomposite was characterized using scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction, energy dispersive X-ray spectroscopy, and magnetization property. The Fe 3 O 4 /HAP/GQDs was applied to pre-concentrate copper residues in Thai food ingredients (so-called "Tom Yum Kung") prior to determination by inductively coupled plasma-atomic emission spectrometry. Based on ultrasound-assisted extraction optimization, various parameters affecting the magnetic solid-phase extraction, such as solution pH, amount of magnetic nanoparticles, adsorption and desorption time, and type of elution solvent and its concentration were evaluated. Under optimal conditions, the linear range was 0.05-1500ngmL -1 (R 2 >0.999), limit of detection was 0.58ngmL -1 , and limit of quantification was 1.94ngmL -1 . The precision, expressed as the relative standard deviation of the calibration curve slope (n=5), for intra-day and inter-day analyses was 0.87% and 4.47%, respectively. The recovery study of Cu for real samples was ranged between 83.5% and 104.8%. This approach gave the enrichment factor of 39.2, which guarantees trace analysis of Cu residues. Therefore, Fe 3 O 4 /HAP/GQDs can be a potential and suitable candidate for the pre-concentration and separation of Cu from food samples. It can easily be reused after treatment with deionized water. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Ultrasound assisted extraction of Maxilon Red GRL dye from water samples using cobalt ferrite nanoparticles loaded on activated carbon as sorbent: Optimization and modeling.

    PubMed

    Mehrabi, Fatemeh; Vafaei, Azam; Ghaedi, Mehrorang; Ghaedi, Abdol Mohammad; Alipanahpour Dil, Ebrahim; Asfaram, Arash

    2017-09-01

    In this research, a selective, simple and rapid ultrasound assisted dispersive solid-phase micro-microextraction (UA-DSPME) was developed using cobalt ferrite nanoparticles loaded on activated carbon (CoFe 2 O 4 -NPs-AC) as an efficient sorbent for the preconcentration and determination of Maxilon Red GRL (MR-GRL) dye. The properties of sorbent are characterized by X-ray diffraction (XRD), Transmission Electron Microscopy (TEM), Vibrating sample magnetometers (VSM), Fourier transform infrared spectroscopy (FTIR), Particle size distribution (PSD) and Scanning Electron Microscope (SEM) techniques. The factors affecting on the determination of MR-GRL dye were investigated and optimized by central composite design (CCD) and artificial neural networks based on genetic algorithm (ANN-GA). CCD and ANN-GA were used for optimization. Using ANN-GA, optimum conditions were set at 6.70, 1.2mg, 5.5min and 174μL for pH, sorbent amount, sonication time and volume of eluent, respectively. Under the optimized conditions obtained from ANN-GA, the method exhibited a linear dynamic range of 30-3000ngmL -1 with a detection limit of 5.70ngmL -1 . The preconcentration factor and enrichment factor were 57.47 and 93.54, respectively with relative standard deviations (RSDs) less than 4.0% (N=6). The interference effect of some ions and dyes was also investigated and the results show a good selectivity for this method. Finally, the method was successfully applied to the preconcentration and determination of Maxilon Red GRL in water and wastewater samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Chemically-modified activated carbon with ethylenediamine for selective solid-phase extraction and preconcentration of metal ions.

    PubMed

    Li, Zhenhua; Chang, Xijun; Zou, Xiaojun; Zhu, Xiangbing; Nie, Rong; Hu, Zheng; Li, Ruijun

    2009-01-26

    A new method that utilizes ethylenediamine-modified activated carbon (AC-EDA) as a solid-phase extractant has been developed for simultaneous preconcentration of trace Cr(III), Fe(III), Hg(II) and Pb(II) prior to the measurement by inductively coupled plasma optical emission spectrometry (ICP-OES). The new sorbent was prepared by oxidative surface modification. Experimental conditions for effective adsorption of trace levels of Cr(III), Fe(III), Hg(II) and Pb(II) were optimized with respect to different experimental parameters using batch and column procedures in detail. The optimum pH value for the separation of metal ions simultaneously on the new sorbent was 4.0. Complete elution of absorbed metal ions from the sorbent surface was carried out using 3.0 mL of 2% (%w/w) thiourea and 0.5 mol L(-1) HCl solution. Common coexisting ions did not interfere with the separation and determination of target metal ions. The maximum static adsorption capacity of the sorbent at optimum conditions was found to be 39.4, 28.9, 60.5 and 49.9 mg g(-1) for Cr(III), Fe(III), Hg(II) and Pb(II), respectively. The time for 94% adsorption of target metal ions was less than 2 min. The detection limits of the method was found to be 0.28, 0.22, 0.09 and 0.17 ng mL(-1) for Cr(III), Fe(III), Hg(II) and Pb(II), respectively. The precision (R.S.D.) of the method was lower 4.0% (n=8). The prepared sorbent as solid-phase extractant was successfully applied for the preconcentration of trace Cr(III), Fe(III), Hg(II) and Pb(II) in natural and certified samples with satisfactory results.

  1. Matrix elimination method for the determination of precious metals in ores using electrothermal atomic absorption spectrometry.

    PubMed

    Salih, Bekir; Celikbiçak, Omür; Döker, Serhat; Doğan, Mehmet

    2007-03-28

    Poly(N-(hydroxymethyl)methacrylamide)-1-allyl-2-thiourea) hydrogels, poly(NHMMA-ATU), were synthesized by gamma radiation using (60)Co gamma source in the ternary mixture of NHMMA-ATU-H(2)O. These hydrogels were used for the specific gold, silver, platinum and palladium recovery, pre-concentration and matrix elimination from the solutions containing trace amounts of precious metal ions. Elimination of inorganic matrices such as different transition and heavy metal ions, and anions was performed by adjusting the solution pH to 0.5 that was the selective adsorption pH of the precious metal ions. Desorption of the precious metal ions was performed by using 0.8 M thiourea in 3M HCl as the most efficient desorbing agent with recovery values more than 95%. In the desorption medium, thiourea effect on the atomic signal was eliminated by selecting proper pyrolysis and atomization temperatures for all precious metal ions. Precision and the accuracy of the results were improved in the graphite furnace-atomic absorption spectrometer (GFAAS) measurements by applying the developed matrix elimination method performing the adsorption at pH 0.5. Pre-concentration factors of the studied precious metal ions were found to be at least 1000-fold. Detection limits of the precious metal ions were found to be less than 10 ng L(-1) of the all studied precious metal ions by using the proposed pre-concentration method. Determination of trace levels of the precious metals in the sea-water, anode slime, geological samples and photographic fixer solutions were performed using GFAAS clearly after applying the adsorption-desorption cycle onto the poly(NHMMA-UTU) hydrogels.

  2. Simultaneous determination of nickel and copper by H-point standard addition method-first-order derivative spectrophotometry in plant samples after separation and preconcentration on modified natural clinoptilolite as a new sorbent.

    PubMed

    Roohparvar, Rasool; Taher, Mohammad Ali; Mohadesi, Alireza

    2008-01-01

    For the simultaneous determination of nickel(ll) and copper(ll) in plant samples, a rapid and accurate method was developed. In this method, solid-phase extraction (SPE) and first-order derivative spectrophotometry (FDS) are combined, and the result is coupled with the H-point standard addition method (HPSAM). Compared with normal spectrophotometry, derivative spectrophotometry offers the advantages of increased selectivity and sensitivity. As there is no need for carrying out any pretreatment of the sample, the spectrophotometry method is easy, but because of a high detection limit, it is not so practical. In order to decrease the detection limit, it is suggested to combine spectrophotometry with a preconcentration method such as SPE. In the present work, after separation and preconcentration of Ni(ll) and Cu(ll) on modified clinoptilolite zeolite that is loaded with 2-[1-(2-hydroxy-5-sulforphenyl)-3-phenyl-5-formaza-no]-benzoic acid monosodium salt (zincon) as a selective chromogenic reagent, FDS-HPSAM, which is a simple and selective spectrophotometric method, has been applied for simultaneous determination of these ions. With optimum conditions, the detection limit in original solutions is 0.7 and 0.5 ng/mL, respectively, for nickel and copper. The linear concentration ranges in the proposed method for nickel and copper ions in original solutions are 1.1 to 3.0 x 10(3) and 0.9 to 2.0 x 10(3) ng/mL, respectively. The recommended procedure is applied to successful determination of Cu(ll) and Ni(ll) in standard and real samples.

  3. Preconcentration of β-blockers using functionalized ordered mesoporous silica as sorbent for SPE and their determination in waters by chiral CE.

    PubMed

    Silva, Mariana; Morante-Zarcero, Sonia; Pérez-Quintanilla, Damián; Marina, María Luisa; Sierra, Isabel

    2017-08-01

    A method for simultaneous separation and determination of four enantiomeric pairs of β-blockers in waters by chiral CE has been developed. Off-line SPE was employed using functionalized ordered mesoporous silica as sorbent. Separation by CE was achieved using a BGE composed by methylated-β-CD (1.25% w/v) dissolved in a 50 mM phosphate buffer (pH 2.5) and 30°C, with good chiral resolution for all enantiomers. Mesoporous silica functionalized with octadecyl groups (denoted SBA15-C18) was prepared by a postsynthesis method and applied for the preconcentration of atenolol, propranolol, metoprolol, and pindolol enantiomers in waters by off-line SPE. Under optimized conditions, a preconcentration factor of 300 was achieved, employing 100 mg of SBA15-C18 as sorbent, with recoveries between 96 and 105% in tap water and good repeatability (% RSD = 7-11%, n = 6). Commercial C18 amorphous silica (ExtraBond R C 18 ) was also tested as sorbent for SPE, but results revealed better extraction capacity with higher recoveries for the SBA15-C18 material. The analytical characteristics of the off-line SPE-chiral CE method were evaluated, showing good precision, linearity, and accuracy with method quantification limits between 5.3 and 13.7 μg/L for all enantiomers. The SBA15-C18 material allowed the extraction of four enantiomeric pairs of β-blockers spiked in tap water, river water, and ground water with recoveries between 58 and 105%. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Remote monitoring of sub ppb levels of vinyl chloride, dichloroethylene and trichloroethylene via modem operated automated GC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Linenberg, A.; Lander, N.J.

    1994-12-31

    The need for remote monitoring of certain compounds in a sparsely populated area with limited user assistance led to the development and manufacture of a self contained, portable gas chromatography with the appropriate software. Part per billion levels of vinyl chloride, cis 1,2 dichloroethylene and trichloroethylene were detected in air using a trap for preconcentration of the compounds. The units were continuously calibrated with certified standards from Scott Specialty Gases, which in one case was 1 part per billion of the aforementioned compounds. The entire operation of the units, including monitoring instrument responses, changing operating parameters, data transfer, data reviewmore » and data reporting was done entirely on a remote basis from approximately 600 miles away using a remote computer with a modem and remote operating software. The entire system concept promises the availability of highly sensitive remote monitoring in sparsely populated areas for long periods of time.« less

  5. Unified approach for incompressible flows

    NASA Astrophysics Data System (ADS)

    Chang, Tyne-Hsien

    1993-12-01

    An unified approach for solving both compressible and incompressible flows was investigated in this study. The difference in CFD code development between incompressible and compressible flows is due to the mathematical characteristics. However, if one can modify the continuity equation for incompressible flows by introducing pseudocompressibility, the governing equations for incompressible flows would have the same mathematical characters as compressible flows. The application of a compressible flow code to solve incompressible flows becomes feasible. Among numerical algorithms developed for compressible flows, the Centered Total Variation Diminishing (CTVD) schemes possess better mathematical properties to damp out the spurious oscillations while providing high-order accuracy for high speed flows. It leads us to believe that CTVD schemes can equally well solve incompressible flows. In this study, the governing equations for incompressible flows include the continuity equation and momentum equations. The continuity equation is modified by adding a time-derivative of the pressure term containing the artificial compressibility. The modified continuity equation together with the unsteady momentum equations forms a hyperbolic-parabolic type of time-dependent system of equations. The continuity equation is modified by adding a time-derivative of the pressure term containing the artificial compressibility. The modified continuity equation together with the unsteady momentum equations forms a hyperbolic-parabolic type of time-dependent system of equations. Thus, the CTVD schemes can be implemented. In addition, the boundary conditions including physical and numerical boundary conditions must be properly specified to obtain accurate solution. The CFD code for this research is currently in progress. Flow past a circular cylinder will be used for numerical experiments to determine the accuracy and efficiency of the code before applying this code to more specific applications.

  6. Continuous Flow Science in an Undergraduate Teaching Laboratory: Bleach-Mediated Oxidation in a Biphasic System

    ERIC Educational Resources Information Center

    Kairouz, Vanessa; Collins, Shawn K.

    2018-01-01

    An undergraduate teaching laboratory experiment involving a continuous flow, bleach-mediated oxidation of aldehydes under biphasic conditions was developed that allowed students to explore concepts of mixing or mass transport, solvent sustainability, biphasic reactions, phase transfer catalysis, and continuous flow chemistry.

  7. Applications of Continuous-Flow Photochemistry in Organic Synthesis, Material Science, and Water Treatment.

    PubMed

    Cambié, Dario; Bottecchia, Cecilia; Straathof, Natan J W; Hessel, Volker; Noël, Timothy

    2016-09-14

    Continuous-flow photochemistry in microreactors receives a lot of attention from researchers in academia and industry as this technology provides reduced reaction times, higher selectivities, straightforward scalability, and the possibility to safely use hazardous intermediates and gaseous reactants. In this review, an up-to-date overview is given of photochemical transformations in continuous-flow reactors, including applications in organic synthesis, material science, and water treatment. In addition, the advantages of continuous-flow photochemistry are pointed out and a thorough comparison with batch processing is presented.

  8. Combining asymmetrical flow field-flow fractionation with on- and off-line fluorescence detection to examine biodegradation of riverine dissolved and particulate organic matter.

    PubMed

    Lee, Sang Tak; Yang, Boram; Kim, Jin-Yong; Park, Ji-Hyung; Moon, Myeong Hee

    2015-08-28

    This study demonstrated that asymmetrical flow field-flow fractionation (AF4) coupled with on-line UV and fluorescence detection (FLD) and off-line excitation-emission matrix (EEM) fluorescence spectroscopy can be employed to analyze the influence of microbial metabolic activity on the consumption and production of freshwater organic matter. With the AF4 system, organic matter is on-line enriched during a focusing/relaxation period, which is an essential process prior to separation. Size-fractionated chromophoric and fluorophoric organic materials were simultaneously monitored during the 30-min AF4 separation process. Two fractions of different sizes (dissolved organic matter (DOM) and particulate organic matter (POM)) of freshwater samples from three locations (up-, mid-, and downstream) along the Han River basin of Korea were incubated with the same inoculum for 14 days to analyze fraction-specific alterations in optical properties using AF4-UV-FLD. A comparison of AF4 fractograms obtained from pre- and post-incubation samples revealed that POM-derived DOM were more susceptible to microbial metabolic activity than was DOM. Preferential microbial consumption of protein-like DOM components concurred with enhanced peaks of chromophoric and humic-like fluorescent components, presumably formed as by-products of microbial processing. AF4-UV-FLD combined with off-line identification of microbially processed components using EEM fluorescence spectroscopy provides a powerful tool to study the relationship between microbial activity and composition as well as biodegradability of DOM and POM-derived DOM from different origins, especially for the analysis of chromophoric and fluorophoric organic matter that are consumed and produced by microbial metabolic activity. The proposed AF4 system can be applied to organic matter in freshwater samples having low concentration range (0.3-2.5ppm of total organic carbon) without a pre-concentration procedure. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Methods used to compute low-flow frequency characteristics for continuous-record streamflow stations in Minnesota, 2006

    USGS Publications Warehouse

    Winterstein, Thomas A.; Arntson, Allan D.; Mitton, Gregory B.

    2007-01-01

    The 1-, 7-, and 30-day low-flow series were determined for 120 continuous-record streamflow stations in Minnesota having at least 20 years of continuous record. The 2-, 5-, 10-, 50-, and 100-year statistics were determined for each series by fitting a log Pearson type III distribution to the data. The methods used to determine the low-flow statistics and to construct the plots of the low-flow frequency curves are described. The low-flow series and the low-flow statistics are presented in tables and graphs.

  10. Monolithic microfluidic concentrators and mixers

    DOEpatents

    Frechet, Jean M.; Svec, Frantisek; Yu, Cong; Rohr, Thomas

    2005-05-03

    Microfluidic devices comprising porous monolithic polymer for concentration, extraction or mixing of fluids. A method for in situ preparation of monolithic polymers by in situ initiated polymerization of polymer precursors within microchannels of a microfluidic device and their use for solid phase extraction (SPE), preconcentration, concentration and mixing.

  11. SELECTIVE TRACE ENRICHMENT BY IMMUNOAFFINITY CAPILLARY ELECTROCHROMATOGRAPHY ON-LINE WITH CAPILLARY ZONE ELECTROPHORESIS - LASER-INDUCED FLUORESCENCE

    EPA Science Inventory

    Limited by the lack of a sensitive, universal detector, many capillary-based liquid-phase separation techniques might benefit from techniques that overcome modest concentration sensitivity by preconcentrating large injection volumes. The work presented employs selective solid-ph...

  12. Mechanisms of deterioration of nutrients. [improved quality of freeze-dried foods

    NASA Technical Reports Server (NTRS)

    Karel, M.; Flink, J. M.

    1978-01-01

    Methods for improving the quality of freeze-dried foods were investigated. Areas discussed include: (1) microstructure of freeze-dried systems, (2) structural changes in freeze-dried systems, (3) artificial food matrices, and (4) osmotic preconcentration to yield improved freeze-dried products.

  13. DETERMINATION OF TOTAL MERCURY IN FISH TISSUES USING PYROLYSIS ATOMIC ABSORPTION SPECTROMETRY WITH GOLD AMALGAMATION

    EPA Science Inventory

    A simple and rapid procedure for measuring total mercury in fish tissues is evaluated and
    compared with conventional techniques. Using an automated instrument incorporating combustion, preconcentration by amalgamation with gold, and atomic absorption spectrometry (AAS), mill...

  14. Flotation-separation and ICP-AES determination of ultra trace amounts of copper, cadmium, nickel and cobalt using 2-aminocyclopentene-1-dithiocarboxylic acid.

    PubMed

    Shamsipur, Mojtaba; Hashemi, Omid Reza; Safavi, Afsaneh

    2005-09-01

    A rapid flotation method for separation and enrichment of ultra trace amounts of copper(II), cadmium(II), nickel(II) and cobalt(II) ions from water samples is established. At pH 6.5 and with sodium dodecylsulfate used as a foaming reagent, Cu2+, Cd2+, Ni2+ and Co2+ were separated simultaneously with 2-aminocyclopentene-1-dithiocarboxylic acid (ACDA) added to 1 l of aqueous solution. The proposed procedure of preconcentration is applied prior to the determination of these four analytes using inductivity coupled plasma-atomic emission spectrometry (ICP-AES). The effects of pH, concentration of ACDA, applicability of different surfactants and foreign ions on the separation efficiency were investigated. The preconcentration factor of the method is 1000 and the detection limits of copper(II), cadmium(II), nickel(II) and cobalt(II) ions are 0.078, 0.075, 0.072 and 0.080 ng ml(-1), respectively.

  15. The quality of our drinking water: aluminium determination with an acoustic wave sensor.

    PubMed

    Veríssimo, Marta I S; Gomes, M Teresa S R

    2008-06-09

    A new methodology based on an inexpensive aluminium acoustic wave sensor is presented. Although the aluminium sensor has already been reported, and the composition of the selective membrane is known, the low detection limits required for the analysis of drinking water, demanded the inclusion of a preconcentration stage, as well as an optimization of the sensor. The necessary coating amount was established, as well as the best preconcentration protocol, in terms of oxidation of organic matter and aluminium elution from the Chelex-100. The methodology developed with the acoustic wave sensor allowed aluminium quantitation above 0.07 mg L(-1). Several water samples from Portugal were analysed using the acoustic wave sensor, as well as by UV-vis spectrophotometry. Results obtained with both methodologies were not statistically different (alpha=0.05), both in terms of accuracy and precision. This new methodology proved to be adequate for aluminium quantitation in drinking water and showed to be faster and less reagent consuming than the UV spectrophotometric methodology.

  16. Determination of alkenylbenzenes and related flavour compounds in food samples by on-column preconcentration-capillary liquid chromatography.

    PubMed

    Avila, Mónica; Zougagh, Mohammed; Escarpa, Alberto; Ríos, Angel

    2009-10-23

    A new, simple and versatile method is presented for the determination of different concentration levels of alkenylbenzenes (eugenol, isoeugenol, eugenol methyl ether, myristicin, anethole and estragole) and the related flavour compounds (coumarin and pulegone) in food samples. The method involves the use of a stationary phase (capillary column) for the enrichment with appropriate elution. After the sample had completely passed through the capillary column the eluent was changed and the separation/detection was achieved. Excellent linearity was obtained under the proposed conditions for a direct determination method and a method including on-line preconcentration. The limits of detection were in the ranges 97-148 and 9.5-14.2 ng/mL, respectively. Evidence for a matrix effect was not found and recoveries between 92 and 110% were obtained. The precision of the method, expressed as relative standard deviation values, was below 5% in all cases. The applicability of this methodology was tested by analyzing synthetic and real food samples.

  17. Environmental monitoring of phenolic pollutants in water by cloud point extraction prior to micellar electrokinetic chromatography.

    PubMed

    Stege, Patricia W; Sombra, Lorena L; Messina, Germán A; Martinez, Luis D; Silva, María F

    2009-05-01

    Many aromatic compounds can be found in the environment as a result of anthropogenic activities and some of them are highly toxic. The need to determine low concentrations of pollutants requires analytical methods with high sensitivity, selectivity, and resolution for application to soil, sediment, water, and other environmental samples. Complex sample preparation involving analyte isolation and enrichment is generally necessary before the final analysis. The present paper outlines a novel, simple, low-cost, and environmentally friendly method for the simultaneous determination of p-nitrophenol (PNP), p-aminophenol (PAP), and hydroquinone (HQ) by micellar electrokinetic capillary chromatography after preconcentration by cloud point extraction. Enrichment factors of 180 to 200 were achieved. The limits of detection of the analytes for the preconcentration of 50-ml sample volume were 0.10 microg L(-1) for PNP, 0.20 microg L(-1) for PAP, and 0.16 microg L(-1) for HQ. The optimized procedure was applied to the determination of phenolic pollutants in natural waters from San Luis, Argentina.

  18. Further research on iodine speciation in seawater by capillary zone electrophoresis with isotachophoresis preconcentration.

    PubMed

    Huang, Zhuo; Ito, Kazuaki; Hirokawa, Takeshi

    2004-11-05

    A novel, simple and highly sensitive CE method was developed to determine total iodine (TI) in seawater. The method is based on the on-capillary reduction of iodine species to iodide by a reductant, introduced into the capillary before sample injection, the preconcentration of iodide using isotachophoresis, followed by its UV detection. Under optimized conditions for reduction and CE separation, the limit of detection for TI (S/N = 3) reached 0.4 microg L(-1) (226 nm). The repeatability of migration time and peak area, expressed by relative standard deviation, was 0.46 and 1.45%, respectively (n = 19). The correlation factor was 0.9991 (n = 10) for the concentration range of 12-115 microg I L(-1). The CE results obtained for the real seawater analysis agreed with the data of ion chromatography. To determine the genuine TI by the proposed method, organic iodinated compounds in the sample were treated with H202 and irradiation with UV light before analysis.

  19. Isolation, Separation, and Preconcentration of Biologically Active Compounds from Plant Matrices by Extraction Techniques.

    PubMed

    Raks, Victoria; Al-Suod, Hossam; Buszewski, Bogusław

    2018-01-01

    Development of efficient methods for isolation and separation of biologically active compounds remains an important challenge for researchers. Designing systems such as organomineral composite materials that allow extraction of a wide range of biologically active compounds, acting as broad-utility solid-phase extraction agents, remains an important and necessary task. Selective sorbents can be easily used for highly selective and reliable extraction of specific components present in complex matrices. Herein, state-of-the-art approaches for selective isolation, preconcentration, and separation of biologically active compounds from a range of matrices are discussed. Primary focus is given to novel extraction methods for some biologically active compounds including cyclic polyols, flavonoids, and oligosaccharides from plants. In addition, application of silica-, carbon-, and polymer-based solid-phase extraction adsorbents and membrane extraction for selective separation of these compounds is discussed. Potential separation process interactions are recommended; their understanding is of utmost importance for the creation of optimal conditions to extract biologically active compounds including those with estrogenic properties.

  20. Solid Phase Extraction of Inorganic Mercury Using 5-Phenylazo-8-hydroxyquinoline and Determination by Cold Vapor Atomic Fluorescence Spectroscopy in Natural Water Samples

    PubMed Central

    Daye, Mirna; Halwani, Jalal; Hamzeh, Mariam

    2013-01-01

    8-Hydroxyquinoline (8-HQ) was chosen as a powerful ligand for Hg solid phase extraction. Among several chelating resins based on 8-HQ, 5-phenylazo-8-hydroxyquinoline (5Ph8HQ) is used for mercury extraction in which the adsorption dynamics were fully studied. It has been shown that Hg(II) is totally absorbed by 5Ph8HQ within the first 30 minutes of contact time with t 1/2 5 minutes, following Langmuir adsorption model. At pH 4, the affinity of mercury is unchallenged by other metals except, for Cu(II), which have shown higher Kd value. With these latter characteristics, 5Ph8HQ was examined for the preconcentration of trace levels of Hg(II). The developed method showed quantitative recoveries of Hg(II) with LOD = 0.21 pg mL−1 and RSD = 3–6% using cold vapor atomic fluorescence spectroscopy (CV-AFS) with a preconcentration factor greater than 250. PMID:24459417

  1. Partition/Ion-Exclusion Chromatographic Ion Stacking for the Analysis of Trace Anions in Water and Salt Samples by Ion Chromatography.

    PubMed

    Akter, Fouzia; Saito, Shingo; Tasaki-Handa, Yuiko; Shibukawa, Masami

    2018-01-01

    A new analytical methodology for a simple and efficient on-line preconcentration of trace inorganic anions in water and salt samples prior to ion chromatographic determination is proposed. The preconcentration method is based on partition/ion-exclusion chromatographic ion stacking (PIEC ion stacking) with a hydrophilic polymer gel column containing a small amount of fixed anionic charges. The developed on-line PIEC ion stacking-ion chromatography method was validated by recovery experiments for the determination of nitrate in tap water in terms of both accuracy and precision, and the results showed the reliability of the method. The method proposed was also successfully applied to the determination of trace impurity nitrite and nitrate in reagent-grade salts of sodium sulfate. A low background level can be achieved since pure water is used as the eluant for the PIEC ion stacking. It is possible to reach sensitive detection at sub-μg L -1 levels by on-line PIEC ion stacking-ion chromatography.

  2. Simultaneous determination of heavy metal ions in water using near-infrared spectroscopy with preconcentration by nano-hydroxyapatite.

    PubMed

    Ning, Yu; Li, Jihui; Cai, Wensheng; Shao, Xueguang

    2012-10-01

    A method for simultaneous determination of metal ions in river water was developed by using preconcentration and near-infrared diffuse reflectance spectroscopy (NIRDRS). An inorganic biomaterial, nano-hydroxyapatite (HAP) was used as a high-efficient adsorbent for gathering the ions from water samples. After adsorbing the analytes onto the adsorbent, NIRDRS was measured and partial least squares (PLS) models were established for fast and simultaneous quantitative prediction. With the samples prepared by river water, determination of Pb(2+), Zn(2+), Cu(2+), Cd(2+) and Cr(3+) was investigated. The calibration models of Cu(2+), Cr(3+) and total content were proven to be efficient enough for precise prediction. The determination coefficients (R(2)) of the independent validation were found as high as 0.9924, 0.9869 and 0.9273 for Cu(2+), Cr(3+) and total content, respectively. Therefore, the feasibility of NIRDRS for microanalysis of heavy metal ions in waste water was demonstrated. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Functionalization of silica-gel with polyamidoamine and 2-mercaptobenzothiazole and its adsorption property for lead

    NASA Astrophysics Data System (ADS)

    Wu, X. Z.; Liu, Y.; Luo, L. L.; Chen, Z. Y.

    2018-01-01

    Adsorbents PAMAM-n.0MBTSG (n=1-4) have been prepared by immobilizing polyamidoamine (PAMAM) and 2-mercaptobenzothiazole (MBT) on silica-gel. Characterized with FTIR, SEM, TGA, the preconcentration of Pb2+ with PAMAM-n.0MBTSG(n=1-4) has been investigated by graphite furnace atomic absorption spectroscopy (GFAAS). SEM showed that the surface morphology of adsorbent changed with the generation increase of PAMAM. Adsorption capacity of PAMAM-n.0MBTSG for Pb2+ (n=1-4) reached 16.22, 19.84, 22.92 and 27.56 mg g-1 respectively. Pb2+ (1.0 ng mL-1) in 2000 mL solution could be quantitatively absorbed with PAMAM-4.0MBTSG and eluted to obtain a preconcentration factor (PF) of 200. GFAAS method for analysis of Pb2+ with PAMAM-4.0MBTSG as adsorbent was proposed and successfully applied to analysis of Pb2+ of standard reference material, sea water and squid sample.

  4. Novel magnetic hollow zein nanoparticles for preconcentration of chlorpyrifos from water and soil samples prior to analysis via high-performance liquid chromatography (HPLC).

    PubMed

    Rahimi Moghadam, Mojtaba; Zargar, Behrooz; Rastegarzadeh, Saadat

    2018-04-30

    Herein, magnetically hollow zein nanoparticles were synthesized and used as a magnetic sorbent for the preconcentration of chlorpyrifos and its analysis by high-performance liquid chromatography (HPLC). Morphology of the sorbent was characterized by transmission electron microscopy (TEM). In this study, the effects of important parameters such as pH of the solution, adsorption and desorption time, type and volume of desorption solvent, and salt addition were investigated. Under optimized experimental conditions, the linear range was from 50 to 2000 μg mL-1, and an LOD of 25 μg L-1 was calculated. The relative standard deviations (RSD) varied from 3.8 to 5.1% (n = 5). The enrichment factors for 50 and 100 μg L-1 samples were calculated as 187 and 210, respectively. The developed method was successfully applied in soil and water samples and showed good extraction recoveries.

  5. Preconcentration and Spectrophotometric Determination of a Naphthalene Analog of Medetomidine Using Modified Maghemite Nanoparticles

    NASA Astrophysics Data System (ADS)

    Maddah, B.; Hosseini, F.; Ahmadi, M.; Rajabi, A. Asghar; Beik-Mohammadlood, Z.

    2016-05-01

    A novel and sensitive extraction procedure using sodium dodecyl sulfate (SDS) modified maghemite nanoparticles (MNPs) as an efficient solid phase has been developed for removal, preconcentration, and spectrophotometric determination of trace amounts of a naphthalene analog of dexmedetomidine (4-(1-(na phthalene-1-yl)ethyl)-1Himidazole, NMED). The MNPs were obtained by a coprecipitation method, and their surfaces were furthermore modified by SDS. The size and morphological properties of the synthesized MNPs were determined by X-ray diffraction analysis, FT-IR, vibrating sample magnetometry, and scanning electron microscopy. NMED was adsorbed at pH 3.0. The adsorbed drug was then desorbed and determined by spectrophotometry at 280 nm. The calibration graph was linear in the range 1 × 10-6-1 × 10-4 mol/L of NMED with a correlation coefficient of 0.989. The detection limit of the method for NMED determination was 3.7 × 10-7 mol/L. The method was successfully applied to the determination of NMED in human urine samples.

  6. A Facile Vortex-Assisted Dispersive Liquid-Liquid Microextraction Method for the Determination of Uranyl Ion at Low Levels by Spectrophotometry.

    PubMed

    Corazza, Marcela Zanetti; Pires, Igor Matheus Ruiz; Diniz, Kristiany Moreira; Segatelli, Mariana Gava; Tarley, César Ricardo Teixeira

    2015-08-01

    A facile and reliable UV-Vis spectrophotometric method associated with vortex-assisted dispersive liquid-liquid microextraction has been developed and applied to the determination of U(VI) at low levels in water samples. It was based on preconcentration of 24.0 mL sample at pH 8.0 in the presence of 7.4 µmol L(-1) 1-(2-pyridylazo)-2-naphthol, 1.0 mL of methanol as disperser solvent and 1.0 mL of chloroform as extraction solvent. A high preconcentration factor was achieved (396 times), thus providing a wide analytical curve from 6.9 up to 75.9 µg L(-1) (r=0.9982) and limits of detection and quantification of 0.40 and 1.30 µg L(-1), respectively. When necessary, EDTA or KCN can be used to remove interferences of foreign ions. The method was applied to the analysis of real water samples, such as tap, mineral and lake waters with good recovery values.

  7. Determination of bentazone, dichlorprop, and MCPA in different soils by sodium hydroxide extraction in combination with solid-phase preconcentration.

    PubMed

    Thorstensen, C W; Christiansen, A

    2001-09-01

    A method for the extraction of bentazone, dichlorprop, and MCPA in three selected Norwegian soils of different textures is described. Initially three different extraction methods were tested on one soil type. All methods gave recoveries >80% for the pesticide mixture, but extraction with sodium hydroxide in combination with solid-phase preconcentration was used for further recovery tests with soils of different properties spiked at four herbicide concentration levels (0.001-10 microg/g of wet soil). The method was rapid and easy and required a minimum of organic solvents. The recoveries were in the range of 82-109, 80-123, and 45-91% for the soils containing 1.4 (Hole), 2.5 (Kroer), and 37.8% (Froland) organic carbon, respectively. Limits of quantification using GC-MS were 0.0003 microg/g of wet soil for bentazone and 0.0001 microg/g of wet soil for both dichlorprop and MCPA.

  8. Solid supports for extraction and preconcentration of proteins and peptides in microfluidic devices: A review.

    PubMed

    Dziomba, Szymon; Araya-Farias, Monica; Smadja, Claire; Taverna, Myriam; Carbonnier, Benjamin; Tran, N Thuy

    2017-02-22

    Determination of proteins and peptides is among the main challenges of today's bioanalytical chemistry. The application of microchip technology in this field is an exhaustively developed concept that aims to create integrated and fully automated analytical devices able to quantify or detect one or several proteins from a complex matrix. Selective extraction and preconcentration of targeted proteins and peptides especially from biological fluids is of the highest importance for a successful realization of these microsystems. Incorporation of solid structures or supports is a convenient solution employed to face these demands. This review presents a critical view on the latest achievements in sample processing techniques for protein determination using solid supports in microfluidics. The study covers the period from 2006 to 2015 and focuses mainly on the strategies based on microbeads, monolithic materials and membranes. Less common approaches are also briefly discussed. The reviewed literature suggests future trends which are discussed in the concluding remarks. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Continuous and Pulsatile Pediatric Ventricular Assist Device Hemodynamics with a Viscoelastic Blood Model

    PubMed Central

    Good, Bryan C.; Deutsch, Steven; Manning, Keefe B.

    2015-01-01

    Purpose To investigate the effects of pulsatile and continuous pediatric ventricular assist (PVAD) flow and pediatric blood viscoelasticity on hemodynamics in a pediatric aortic graft model. Methods Hemodynamic parameters of pulsatility, along with velocity and wall shear stress (WSS), are analyzed and compared between Newtonian and viscoelastic blood models at a range of physiological pediatric hematocrits using computational fluid dynamics. Results Both pulsatile and continuous PVAD flow lead to a decrease in pulsatility (surplus hemodynamic energy (SHE), ergs/cm3) compared to healthy aortic flow but with continuous PVAD pulsatility up to 2.4 times lower than pulsatile PVAD pulsatility at each aortic outlet. Significant differences are also seen between the two flow modes in velocity and WSS. The higher velocity jet during systole with pulsatile flow leads to higher WSSs at the anastomotic toe and at the aortic branch bifurcations. The lower velocity but continuous flow jet leads to a much different flow field and higher WSSs into diastole. Under a range of physiological pediatric hematocrit (20-60%), both velocity and WSS can vary significantly with the higher hematocrit blood model generally leading to higher peak WSSs but also lower WSSs in regions of flow separation. Conclusions The large decrease in pulsatility seen from continuous PVAD flow could lead to complications in pediatric vascular development while the high WSSs during peak systole from pulsatile PVAD flow could lead to blood damage. Both flow modes lead to similar regions prone to intimal hyperplasia (IH) resulting from low time-averaged WSS (TAWSS) and high oscillatory shear index (OSI). PMID:26643646

  10. Effect of the load size on the efficiency of microwave heating under stop flow and continuous flow conditions.

    PubMed

    Patil, Narendra G; Rebrov, Evgeny V; Eränen, Kari; Benaskar, Faysal; Meuldijk, Jan; Mikkola, Jyri-Pekka; Hessel, Volker; Hulshof, Lumbertus A; Murzin, Dmitry Yu; Schouten, Jaap C

    2012-01-01

    A novel heating efficiency analysis of the microwave heated stop-flow (i.e. stagnant liquid) and continuous-flow reactors has been presented. The thermal losses to the surrounding air by natural convection have been taken into account for heating efficiency calculation of the microwave heating process. The effect of the load diameter in the range of 4-29 mm on the heating efficiency of ethylene glycol was studied in a single mode microwave cavity under continuous flow and stop-flow conditions. The variation of the microwave absorbing properties of the load with temperature was estimated. Under stop-flow conditions, the heating efficiency depends on the load diameter. The highest heating efficiency has been observed at the load diameter close to the half wavelength of the electromagnetic field in the corresponding medium. Under continuous-flow conditions, the heating efficiency increased linearly. However, microwave leakage above the propagation diameter restricted further experimentation at higher load diameters. Contrary to the stop-flow conditions, the load temperature did not raise monotonously from the inlet to outlet under continuous-flow conditions. This was due to the combined effect of lagging convective heat fluxes in comparison to volumetric heating. This severely disturbs the uniformity of the electromagnetic field in the axial direction and creates areas of high and low field intensity along the load Length decreasing the heating efficiency as compared to stop-flow conditions.

  11. 40 CFR Table 5 to Subpart Hhhhhhh... - Operating Parameters, Operating Limits and Data Monitoring, Recording and Compliance Frequencies...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... conductivity Continuous Every 15 minutes 3-hour block average. Regenerative Adsorber Regeneration stream flow. Minimum total flow per regeneration cycle Continuous N/A Total flow for each regeneration cycle. Adsorber bed temperature. Maximum temperature Continuously after regeneration and within 15 minutes of...

  12. 40 CFR Table 5 to Subpart Hhhhhhh... - Operating Parameters, Operating Limits and Data Monitoring, Recording and Compliance Frequencies...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... conductivity Continuous Every 15 minutes 3-hour block average. Regenerative Adsorber Regeneration stream flow. Minimum total flow per regeneration cycle Continuous N/A Total flow for each regeneration cycle. Adsorber bed temperature. Maximum temperature Continuously after regeneration and within 15 minutes of...

  13. Asymmetric reactions in continuous flow

    PubMed Central

    Mak, Xiao Yin; Laurino, Paola

    2009-01-01

    Summary An overview of asymmetric synthesis in continuous flow and microreactors is presented in this review. Applications of homogeneous and heterogeneous asymmetric catalysis as well as biocatalysis in flow are discussed. PMID:19478913

  14. A Gas Chromatographic System for the Detection of Ethylene Gas Using Ambient Air as a Carrier Gas

    PubMed Central

    Zaidi, Nayyer Abbas; Tahir, Muhammad Waseem; Vellekoop, Michael J.; Lang, Walter

    2017-01-01

    Ethylene gas is a naturally occurring gas that has an influence on the shelf life of fruit during their transportation in cargo ships. An unintentional exposure of ethylene gas during transportation results in a loss of fruit. A gas chromatographic system is presented here for the detection of ethylene gas. The gas chromatographic system was assembled using a preconcentrator, a printed 3D printed gas chromatographic column, a humidity sensor, solenoid valves, and an electrochemical ethylene gas sensor. Ambient air was used as a carrier gas in the gas chromatographic system. The flow rate was fixed to 10 sccm. It was generated through a mini-pump connected in series with a mass flow controller. The metal oxide gas sensor is discussed with its limitation in ambient air. The results show the chromatogram obtained from metal oxide gas sensor has low stability, drifts, and has uncertain peaks, while the chromatogram from the electrochemical sensor is stable and precise. Furthermore, ethylene gas measurements at higher ppb concentration and at lower ppb concentration were demonstrated with the electrochemical ethylene gas sensor. The system separates ethylene gas and humidity. The chromatograms obtained from the system are stable, and the results are 1.2% repeatable in five similar measurements. The statistical calculation of the gas chromatographic system shows that a concentration of 2.3 ppb of ethylene gas can be detected through this system. PMID:28991173

  15. Automated solid-phase extraction hyphenated to voltammetry for the determination of quercetin using magnetic nanoparticles and sequential injection lab-on-valve approach.

    PubMed

    Wang, Yang; Wang, Lu; Tian, Tian; Hu, Xiaoya; Yang, Chun; Xu, Qin

    2012-05-21

    In this study, an automated sequential injection lab-on-valve (SI-LOV) system was designed for the on-line matrix removal and preconcentration of quercetin. Octadecyl functionalized magnetic silica nanoparticles were prepared and packed into the microcolumn of the LOV as adsorbents. After being adsorbed through hydrophobic interaction, the analyte was eluted and subsequently introduced into the electrochemical flow cell by voltammetric quantification. The main parameters affecting the performance of solid-phase extraction, such as sample pH and flow rate, eluent solution and volume, accumulation potential and accumulation time were investigated in detail. Under the optimum experimental conditions, a linear calibration curve was obtained in the range of 1.0 × 10(-8) to 1 × 10(-5) mol L(-1) with R(2) = 0.9979. The limit of detection (LOD) and limit of quantitation (LOQ) were 1.3 × 10(-9) and 4.3 × 10(-9) mol L(-1), respectively. The relative standard deviation (RSD) for the determination of 1.0 × 10(-6) mol L(-1) quercetin was found to be 2.9% (n = 11) along with a sampling frequency of 40 h(-1). The applicability and reliability of the automated method described here had been applied to the determination of quercetin in human urine and red wine samples through recovery experiments, and the obtained results were in good agreement with those obtained by the HPLC method.

  16. ARSENIC DETERMINATION IN SALINE WATERS BY HYDRIDE GENERATION - INDUCTIVELY COUPLED PLASMA MASS SPECTROMETRY.

    EPA Science Inventory

    The determination of arsenic in estuarine waters usually involves a matrix removal and/or pre-concentration prior to analysis because of the high salt content in these waters. The salinity also produces analytical challenges in terms of interferences and instrument stability. A...

  17. SELF-ASSEMBLY CARBON NANOTUBES IN A MICROTRAP FOR ON-LINE PRECONCENTRATION OF VOLATILE ORGANICS. (R830901)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  18. Ionic liquid ultrasound-assisted dispersive liquid-liquid microextraction based on solidification of the aqueous phase for preconcentration of heavy metals ions prior to determination by LC-UV.

    PubMed

    Werner, Justyna

    2018-05-15

    Ionic liquid ultrasound-assisted dispersive liquid-liquid microextraction based on solidification of the aqueous phase was used for preconcentration of Ni 2+ , Co 2+ , Cd 2+ , Cu 2+ , Pb 2+ in natural water samples prior to liquid chromatography with UV detection. In the proposed method, the ammonium pyrrolidinedithiocarbamate was used as a complexing agent and the phosphonium ionic liquid trihexyl(tetradecyl)phosphonium bis[(2,4,4-trimethyl)pentyl]phosphinate (Cyphos IL 104) was used as an extractant. Ultrasound energy was used to disperse the extractant in the aqueous phase. After microextraction, the ionic liquid and aqueous phases were separated by centrifugation. Then the aqueous phase was frozen and the lighter than water ionic liquid phase containing metal ions complexes with pyrrolidinedithiocarbamate was separated and dissolved in a small volume of methanol prior to injection into the liquid chromatograph. Several parameters including the volume of extractant, the pH of the sample, the concentration of complexing agent, the time of ultrasound energy treatment, the time and speed of centrifugation and the effect of ionic strength were optimized. Under the optimized conditions (10 µL of Cyphos IL 104, pH = 5, 0.3% w/v ammonium pyrrolidinedithiocarbamate, 60 s of ultrasound use, 5 min/5000 rpm (2516×g) of centrifugation, 2.0 mg of NaCl), preconcentration factors were 211, 210, 209, 207 and 211 for Ni 2+ , Co 2+ , Cd 2+ , Cu 2+ and Pb 2+ respectively. Linearity was observed in the ranges 0.2-75.0 µg L -1 for Pb 2+ , Cd 2+ , Co 2+ and 0.5-100.0 µg L -1 for Cu 2+ , Ni 2+ . The limits of detection were 0.03 µg L -1 for Ni 2+ , 0.03 µg L -1 for Co 2+ , 0.03 µg L -1 for Cd 2+ , 0.02 µg L -1 for Cu 2+ , 0.02 µg L -1 for Pb 2+ , respectively. The accuracy of this method was evaluated by preconcentration and determination of Ni 2+ , Co 2+ , Cd 2+ , Cu 2+ , Pb 2+ in certified reference materials (TMRAIN-04 and NIST 1643e) with the recovery values in the range of 97-102%. The presented method has been successfully applied for the determination of analytes in natural water samples (river and lake waters). Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Applications of immobilized catalysts in continuous flow processes.

    PubMed

    Kirschning, Andreas; Jas, Gerhard

    2004-01-01

    As part of the dramatic changes associated with automation in pharmaceutical and agrochemical research laboratories, the search for new technologies has become a major topic in the chemical community. Commonly, high-throughput chemistry is still carried out in batches whereas flow-through processes are rather restricted to production processes, despite the fact that the latter concept allows facile automation, reproducibility, safety, and process reliability. Indeed, methods and technologies are missing that allow rapid transfer from the research level to process development. Continuous flow processes are considered as a universal lever to overcome these restrictions and only recently, joint efforts between synthetic and polymer chemists and chemical engineers have resulted in the first continuous flow devices and microreactors which allow rapid preparation of compounds with minimum workup. Importantly, more and more developments combine the use of immobilized reagents and catalysts with the concept of structured continuous flow reactors. Consequently, the present article focuses on this new research field, which is located at the interface of continuous flow processes and solid-phase-bound catalysts.

  20. 40 CFR 89.416 - Raw exhaust gas flow.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Raw exhaust gas flow. 89.416 Section 89.416 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED... Procedures § 89.416 Raw exhaust gas flow. The exhaust gas flow shall be determined by one of the methods...

  1. 40 CFR 89.416 - Raw exhaust gas flow.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Raw exhaust gas flow. 89.416 Section 89.416 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED... Procedures § 89.416 Raw exhaust gas flow. The exhaust gas flow shall be determined by one of the methods...

  2. Microwave and continuous flow technologies in drug discovery.

    PubMed

    Sadler, Sara; Moeller, Alexander R; Jones, Graham B

    2012-12-01

    Microwave and continuous flow microreactors have become mainstream heating sources in contemporary pharmaceutical company laboratories. Such technologies will continue to benefit from design and engineering improvements, and now play a key role in the drug discovery process. The authors review the applications of flow- and microwave-mediated heating in library, combinatorial, solid-phase, metal-assisted, and protein chemistries. Additionally, the authors provide a description of the combination of microwave and continuous flow platforms, with applications in the preparation of radiopharmaceuticals and in drug candidate development. Literature reviewed is chiefly 2000 - 2012, plus key citations from earlier reports. With the advent of microwave irradiation, reactions that normally took days to complete can now be performed in a matter of minutes. Coupled with the introduction of continuous flow microreactors, pharmaceutical companies have an easy way to improve the greenness and efficiency of many synthetic operations. The combined force of these technologies offers the potential to revolutionize discovery and manufacturing processes.

  3. MODIFYING EPA METHOD 314.0 FOR ANALYSIS OF PERCHLORATE IN AQUEOUS SAMPLES CONTAINING HIGH TOTAL DISSOLVED SOLIDS

    EPA Science Inventory

    Through the Regional Applied Research Effort (RARE) program, the Chemical Exposure Research Branch and Region 9 personnel in San Francisco, California are collaborating on a project to explore sample pretreatment and preconcentration techniques to lower the method detection limit...

  4. COMPARISON OF SILICA IMMOBILIZED POLY-L-CYSTEINE AND 8-HYDROXYQUINOLINE FOR TRACE METAL CHELATION AND PRECONCENTRATION. (R826694C651)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  5. EFFECTS OF OXIDATION OF IMMOBILIZED POLY-L-CYSTEINE ON TRACE METAL CHELATION AND PRECONCENTRATION. (R826694C651)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  6. Simultaneous determination of estrogens and progestogens in honey using high performance liquid chromatography-tandem mass spectrometry

    USDA-ARS?s Scientific Manuscript database

    This work describes the development and validation of a method for the simultaneous determination of 13 estrogens and progestogens in honey by high performance liquid chromatography-tandem mass spectrometry. The target compounds were preconcentrated by solid phase extraction. Pretreatment variables ...

  7. Preconcentration for Improved Long-Term Monitoring of Contaminants in Groundwater: Sorbent Development

    DTIC Science & Technology

    2013-02-11

    calibration curves was ±5%. Ion chromatography (IC) was used for analysis of perchlorate and other ionic targets. Analysis was carried out on a...The methods utilize liquid or gas chromatography , techniques that do not lend themselves well to portable devices and methods. Portable methods are...

  8. A STRINGENT COMPARISON OF SAMPLING AND ANALYSIS METHODS FOR VOCS IN AMBIENT AIR

    EPA Science Inventory

    A carefully designed study was conducted during the summer of 1998 to simultaneously collect samples of ambient air by canisters and compare the analysis results to direct sorbent preconcentration results taken at the time of sample collection. A total of 32 1-h sample sets we...

  9. Determination of Trace Level Triclosan in Water by Online Preconcentration and HPLC-UV Diode Array

    EPA Science Inventory

    An online high performance liquid chromatography (HPLC) method for the detection and quantification of trace levels of triclosan in water is discussed. Triclosan, an anti-bacterial agent, and related compounds have been shown to reach municipal waste waters through the disposal ...

  10. 76 FR 41669 - Airworthiness Directives; B/E Aerospace, Continuous Flow Passenger Oxygen Mask Assembly, Part...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-15

    ... Airworthiness Directives; B/E Aerospace, Continuous Flow Passenger Oxygen Mask Assembly, Part Numbers 174006... to prevent the in-line flow indicators of the oxygen mask assembly from fracturing and separating, which could inhibit oxygen flow to the masks. This condition could consequently result in occupants...

  11. Experimental and theoretical investigation of the stability of stepwise pH gradients in continuous flow electrophoresis

    NASA Technical Reports Server (NTRS)

    Kuhn, Reinhard; Wagner, Horst; Mosher, Richard A.; Thormann, Wolfgang

    1987-01-01

    Isoelectric focusing in the continuous flow mode can be more quickly and economically performed by admitting a stepwise pH gradient composed of simple buffers instead of uniform mixtures of synthetic carrier ampholytes. The time-consuming formation of the pH gradient by the electric field is thereby omitted. The stability of a three-step system with arginine - morpholinoethanesulfonic acid/glycylglycine - aspartic acid is analyzed theoretically by one-dimensional computer simulation as well as experimentally at various flow rates in a continuous flow apparatus. Excellent agreement between experimental and theoretical data was obtained. This metastable configuration was found to be suitable for focusing of proteins under continuous flow conditions. The influence of various combinations of electrolytes and membranes between electrophoresis chamber and electrode compartments is also discussed.

  12. High-bandwidth continuous-flow arc furnace

    DOEpatents

    Hardt, David E.; Lee, Steven G.

    1996-01-01

    A high-bandwidth continuous-flow arc furnace for stream welding applications includes a metal mass contained in a crucible having an orifice. A power source charges an electrode for generating an arc between the electrode and the mass. The arc heats the metal mass to a molten state. A pressurized gas source propels the molten metal mass through the crucible orifice in a continuous stream. As the metal is ejected, a metal feeder replenishes the molten metal bath. A control system regulates the electrode current, shielding gas pressure, and metal source to provide a continuous flow of molten metal at the crucible orifice. Independent control over the electrode current and shield gas pressure decouples the metal flow temperature and the molten metal flow rate, improving control over resultant weld characteristics.

  13. High-bandwidth continuous-flow arc furnace

    DOEpatents

    Hardt, D.E.; Lee, S.G.

    1996-08-06

    A high-bandwidth continuous-flow arc furnace for stream welding applications includes a metal mass contained in a crucible having an orifice. A power source charges an electrode for generating an arc between the electrode and the mass. The arc heats the metal mass to a molten state. A pressurized gas source propels the molten metal mass through the crucible orifice in a continuous stream. As the metal is ejected, a metal feeder replenishes the molten metal bath. A control system regulates the electrode current, shielding gas pressure, and metal source to provide a continuous flow of molten metal at the crucible orifice. Independent control over the electrode current and shield gas pressure decouples the metal flow temperature and the molten metal flow rate, improving control over resultant weld characteristics. 4 figs.

  14. Investigation of the continuous flow of the sample solution on the performance of electromembrane extraction: Comparison with conventional procedure.

    PubMed

    Nojavan, Saeed; Sirani, Mahsa; Asadi, Sakine

    2017-10-01

    In this study, electromembrane extraction from a flowing sample solution, termed as continuous-flow electromembrane extraction, was developed and compared with conventional procedures for the determination of four basic drugs in real samples. Experimental parameters affecting the extraction efficiency were further studied and optimized. Under optimum conditions, linearity of continuous-flow procedure was within 8.0-500 ng/mL, while it was wider for conventional procedures (2.0-500 ng/mL). Moreover, repeatability (percentage relative standard deviation) was found to range between 5.6 and 10.4% (n = 3) for the continuous-flow procedure, with a better repeatability than that of conventional procedures (2.3-5.5% (n = 3)). Also, for the continuous-flow procedure, the estimated detection limit (signal-to-noise ratio = 3) was less than 2.4 ng/mL and extraction recoveries were within 8-10%, while the corresponding figures for conventional procedures were less than 0.6 ng/mL and 42-60%, respectively. Thus, the results showed that both continuous flow and conventional procedures were applicable for the extraction of model compounds. However, the conventional procedure was more convenient to use, and thus it was applied to determine sample drugs in real urine and wastewater samples. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. A Depth-Averaged 2-D Simulation for Coastal Barrier Breaching Processes

    DTIC Science & Technology

    2011-05-01

    including bed change and variable flow density in the flow continuity and momentum equations. The model adopts the HLL approximate Riemann solver to handle...flow density in the flow continuity and momentum equations. The model adopts the HLL approximate Riemann solver to handle the mixed-regime flows near...18 547 Keulegan equation or the Bernoulli equation, and the breach morphological change is determined using simplified sediment transport models

  16. An investigation of the basic physics of irrigation in urology and the role of automated pump irrigation in cystoscopy.

    PubMed

    Chang, Dwayne; Manecksha, Rustom P; Syrrakos, Konstantinos; Lawrentschuk, Nathan

    2012-01-01

    To investigate the effects of height, external pressure, and bladder fullness on the flow rate in continuous, non-continuous cystoscopy and the automated irrigation fluid pumping system (AIFPS). Each experiment had two 2-litre 0.9% saline bags connected to a continuous, non-continuous cystoscope or AIFPS via irrigation tubing. Other equipment included height-adjustable drip poles, uroflowmetry devices, and model bladders. In Experiment 1, saline bags were elevated to measure the increment in flow rate. In Experiment 2, saline bags were placed under external pressures to evaluate the effect on flow rate. In Experiment 3, flow rate changes in response to variable bladder fullness were measured. Elevating saline bags caused an increase in flow rates, however the increment slowed down beyond a height of 80 cm. Increase in external pressure on saline bags elevated flow rates, but inconsistently. A fuller bladder led to a decrease in flow rates. In all experiments, the AIFPS posted consistent flow rates. Traditional irrigation systems were susceptible to changes in height of irrigation solution, external pressure application, and bladder fullness thus creating inconsistent flow rates. The AIFPS produced consistent flow rates and was not affected by any of the factors investigated in the study.

  17. Low-flow characteristics of streams in Virginia

    USGS Publications Warehouse

    Hayes, Donald C.

    1991-01-01

    Streamflow data were collected and low-flow characteristics computed for 715 gaged sites in Virginia Annual minimum average 7-consecutive-day flows range from 0 to 2,195 cubic feet per second for a 2-year recurrence interval and from 0 to 1,423 cubic feet per second for a 10-year recurrence interval. Drainage areas range from 0.17 to 7,320 square miles. Existing and discontinued gaged sites are separated into three types: long-term continuous-record sites, short-term continuous-record sites, and partial-record sites. Low-flow characteristics for long-term continuous-record sites are determined from frequency curves of annual minimum average 7-consecutive-day flows . Low-flow characteristics for short-term continuous-record sites are estimated by relating daily mean base-flow discharge values at a short-term site to concurrent daily mean discharge values at nearby long-term continuous-record sites having similar basin characteristics . Low-flow characteristics for partial-record sites are estimated by relating base-flow measurements to daily mean discharge values at long-term continuous-record sites. Information from the continuous-record sites and partial-record sites in Virginia are used to develop two techniques for estimating low-flow characteristics at ungaged sites. A flow-routing method is developed to estimate low-flow values at ungaged sites on gaged streams. Regional regression equations are developed for estimating low-flow values at ungaged sites on ungaged streams. The flow-routing method consists of transferring low-flow characteristics from a gaged site, either upstream or downstream, to a desired ungaged site. A simple drainage-area proration is used to transfer values when there are no major tributaries between the gaged and ungaged sites. Standard errors of estimate for108 test sites are 19 percent of the mean for estimates of low-flow characteristics having a 2-year recurrence interval and 52 percent of the mean for estimates of low-flow characteristics having a 10-year recurrence interval . A more complex transfer method must be used when major tributaries enter the stream between the gaged and ungaged sites. Twenty-four stream networks are analyzed, and predictions are made for 84 sites. Standard errors of estimate are 15 percent of the mean for estimates of low-flow characteristics having a 2-year recurrence interval and 22 percent of the mean for estimates of low-flow characteristics having a 10-year recurrence interval. Regional regression equations were developed for estimating low-flow values at ungaged sites on ungaged streams. The State was divided into eight regions on the basis of physiography and geographic grouping of the residuals computed in regression analyses . Basin characteristics that were significant in the regression analysis were drainage area, rock type, and strip-mined area. Standard errors of prediction range from 60 to139 percent for estimates of low-flow characteristics having a 2-year recurrence interval and 90 percent to 172 percent for estimates of low-flow characteristics having a 10-year recurrence interval.

  18. Electrohydrodynamic effects in continuous flow electrophoresis

    NASA Technical Reports Server (NTRS)

    Rhodes, P. H.; Snyder, R. S.; Roberts, G. O.; Baygents, J. C.

    1991-01-01

    We demonstrate experimentally and theoretically the importance of electrohydrodynamic (EHD) flows in continuous-flow electrophoresis (CFE) separations. These flows are associated with variations in the conductivity or dielectric constant, and are quadratic in the field strength. They appear to be the main cause of extraneous and undesired flows in CFE which have degraded separation performance and have until now not been explained. We discuss the importance of EHD flows relative to other effects. We also describe possible techniques for reducing the associated degradation of CFE separations.

  19. Effects of episodic sediment supply on bedload transport rate in mountain rivers. Detecting debris flow activity using continuous monitoring

    NASA Astrophysics Data System (ADS)

    Uchida, Taro; Sakurai, Wataru; Iuchi, Takuma; Izumiyama, Hiroaki; Borgatti, Lisa; Marcato, Gianluca; Pasuto, Alessandro

    2018-04-01

    Monitoring of sediment transport from hillslopes to channel networks as a consequence of floods with suspended and bedload transport, hyperconcentrated flows, debris and mud flows is essential not only for scientific issues, but also for prevention and mitigation of natural disasters, i.e. for hazard assessment, land use planning and design of torrent control interventions. In steep, potentially unstable terrains, ground-based continuous monitoring of hillslope and hydrological processes is still highly localized and expensive, especially in terms of manpower. In recent years, new seismic and acoustic methods have been developed for continuous bedload monitoring in mountain rivers. Since downstream bedload transport rate is controlled by upstream sediment supply from tributary channels and bed-external sources, continuous bedload monitoring might be an effective tool for detecting the sediments mobilized by debris flow processes in the upper catchment and thus represent an indirect method to monitor slope instability processes at the catchment scale. However, there is poor information about the effects of episodic sediment supply from upstream bed-external sources on downstream bedload transport rate at a single flood time scale. We have examined the effects of sediment supply due to upstream debris flow events on downstream bedload transport rate along the Yotagiri River, central Japan. To do this, we have conducted continuous bedload observations using a hydrophone (Japanese pipe microphone) located 6.4 km downstream the lower end of a tributary affected by debris flows. Two debris flows occurred during the two-years-long observation period. As expected, bedload transport rate for a given flow depth showed to be larger after storms triggering debris flows. That is, although the magnitude of sediment supply from debris flows is not large, their effect on bedload is propagating >6 km downstream at a single flood time scale. This indicates that continuous bedload observations could be effective for detecting sediment supply as a consequence of debris flow events.

  20. Streamflow characteristics and trends in New Jersey, water years 1897-2003

    USGS Publications Warehouse

    Watson, Kara M.; Reiser, Robert G.; Nieswand, Steven P.; Schopp, Robert D.

    2005-01-01

    Streamflow statistics were computed for 111 continuous-record streamflow-gaging stations with 20 or more years of continuous record and for 500 low-flow partial-record stations, including 66 gaging stations with less than 20 years of continuous record. Daily mean streamflow data from water year 1897 through water year 2001 were used for the computations at the gaging stations. (The water year is the 12-month period, October 1 through September 30, designated by the calendar year in which it ends). The characteristics presented for the long-term continuous-record stations are daily streamflow, harmonic mean flow, flow frequency, daily flow durations, trend analysis, and streamflow variability. Low-flow statistics for gaging stations with less than 20 years of record and for partial-record stations were estimated by correlating base-flow measurements with daily mean flows at long-term (more than 20 years) continuous-record stations. Instantaneous streamflow measurements through water year 2003 were used to estimate low-flow statistics at the partial-record stations. The characteristics presented for partial-record stations are mean annual flow; harmonic mean flow; and annual and winter low-flow frequency. The annual 1-, 7-, and 30-day low- and high-flow data sets were tested for trends. The results of trend tests for high flows indicate relations between upward trends for high flows and stream regulation, and high flows and development in the basin. The relation between development and low-flow trends does not appear to be as strong as for development and high-flow trends. Monthly, seasonal, and annual precipitation data for selected long-term meteorological stations also were tested for trends to analyze the effects of climate. A significant upward trend in precipitation in northern New Jersey, Climate Division 1 was identified. For Climate Division 2, no general increase in average precipitation was observed. Trend test results indicate that high flows at undeveloped, unregulated sites have not been affected by the increase in average precipitation. The ratio of instantaneous peak flow to 3-day mean flow, ratios of flow duration, ratios of high-flow/low-flow frequency, and coefficient of variation were used to define streamflow variability. Streamflow variability was significantly greater among the group of gaging stations located outside the Coastal Plain than among the group of gaging stations located in the Coastal Plain.

Top