Sample records for continuous frequency spectrum

  1. Window of visibility - A psychophysical theory of fidelity in time-sampled visual motion displays

    NASA Technical Reports Server (NTRS)

    Watson, A. B.; Ahumada, A. J., Jr.; Farrell, J. E.

    1986-01-01

    A film of an object in motion presents on the screen a sequence of static views, while the human observer sees the object moving smoothly across the screen. Questions related to the perceptual identity of continuous and stroboscopic displays are examined. Time-sampled moving images are considered along with the contrast distribution of continuous motion, the contrast distribution of stroboscopic motion, the frequency spectrum of continuous motion, the frequency spectrum of stroboscopic motion, the approximation of the limits of human visual sensitivity to spatial and temporal frequencies by a window of visibility, the critical sampling frequency, the contrast distribution of staircase motion and the frequency spectrum of this motion, and the spatial dependence of the critical sampling frequency. Attention is given to apparent motion, models of motion, image recording, and computer-generated imagery.

  2. A computer program for estimating the power-density spectrum of advanced continuous simulation language generated time histories

    NASA Technical Reports Server (NTRS)

    Dunn, H. J.

    1981-01-01

    A computer program for performing frequency analysis of time history data is presented. The program uses circular convolution and the fast Fourier transform to calculate power density spectrum (PDS) of time history data. The program interfaces with the advanced continuous simulation language (ACSL) so that a frequency analysis may be performed on ACSL generated simulation variables. An example of the calculation of the PDS of a Van de Pol oscillator is presented.

  3. Spectrally resolved, broadband frequency response characterization of photodetectors using continuous-wave supercontinuum sources

    NASA Astrophysics Data System (ADS)

    Choudhury, Vishal; Prakash, Roopa; Nagarjun, K. P.; Supradeepa, V. R.

    2018-02-01

    A simple and powerful method using continuous wave supercontinuum lasers is demonstrated to perform spectrally resolved, broadband frequency response characterization of photodetectors in the NIR Band. In contrast to existing techniques, this method allows for a simple system to achieve the goal, requiring just a standard continuous wave(CW) high-power fiber laser source and an RF spectrum analyzer. From our recent work, we summarize methods to easily convert any high-power fiber laser into a CW supercontinuum. These sources in the time domain exhibit interesting properties all the way down to the femtosecond time scale. This enables measurement of broadband frequency response of photodetectors while the wide optical spectrum of the supercontinuum can be spectrally filtered to obtain this information in a spectrally resolved fashion. The method involves looking at the RF spectrum of the output of a photodetector under test when incident with the supercontinuum. By using prior knowledge of the RF spectrum of the source, the frequency response can be calculated. We utilize two techniques for calibration of the source spectrum, one using a prior measurement and the other relying on a fitted model. Here, we characterize multiple photodetectors from 150MHz bandwidth to >20GHz bandwidth at multiple bands in the NIR region. We utilize a supercontinuum source spanning over 700nm bandwidth from 1300nm to 2000nm. For spectrally resolved measurement, we utilize multiple wavelength bands such as around 1400nm and 1600nm. Interesting behavior was observed in the frequency response of the photodetectors when comparing broadband spectral excitation versus narrower band excitation.

  4. Frequency domain analysis of errors in cross-correlations of ambient seismic noise

    NASA Astrophysics Data System (ADS)

    Liu, Xin; Ben-Zion, Yehuda; Zigone, Dimitri

    2016-12-01

    We analyse random errors (variances) in cross-correlations of ambient seismic noise in the frequency domain, which differ from previous time domain methods. Extending previous theoretical results on ensemble averaged cross-spectrum, we estimate confidence interval of stacked cross-spectrum of finite amount of data at each frequency using non-overlapping windows with fixed length. The extended theory also connects amplitude and phase variances with the variance of each complex spectrum value. Analysis of synthetic stationary ambient noise is used to estimate the confidence interval of stacked cross-spectrum obtained with different length of noise data corresponding to different number of evenly spaced windows of the same duration. This method allows estimating Signal/Noise Ratio (SNR) of noise cross-correlation in the frequency domain, without specifying filter bandwidth or signal/noise windows that are needed for time domain SNR estimations. Based on synthetic ambient noise data, we also compare the probability distributions, causal part amplitude and SNR of stacked cross-spectrum function using one-bit normalization or pre-whitening with those obtained without these pre-processing steps. Natural continuous noise records contain both ambient noise and small earthquakes that are inseparable from the noise with the existing pre-processing steps. Using probability distributions of random cross-spectrum values based on the theoretical results provides an effective way to exclude such small earthquakes, and additional data segments (outliers) contaminated by signals of different statistics (e.g. rain, cultural noise), from continuous noise waveforms. This technique is applied to constrain values and uncertainties of amplitude and phase velocity of stacked noise cross-spectrum at different frequencies, using data from southern California at both regional scale (˜35 km) and dense linear array (˜20 m) across the plate-boundary faults. A block bootstrap resampling method is used to account for temporal correlation of noise cross-spectrum at low frequencies (0.05-0.2 Hz) near the ocean microseismic peaks.

  5. Magnetosheath electrostatic turbulence

    NASA Technical Reports Server (NTRS)

    Rodriquez, P.

    1977-01-01

    The spectrum of electrostatic plasma waves in the terrestrial magnetosheath was studied using the plasma wave experiment on the IMP-6 satellite. Electrostatic plasma wave turbulence is almost continuously present throughout the magnetosheath with broadband (20 Hz- 70 kHz) r.m.s. field intensities typically 0.01 - 1.0 millivolts/m. Peak intensities of about 1.0 millivolts/m near the electron plasma frequency (30 - 60 kHz) were detected occasionally. The components usually identified in the spectrum of magnetosheath electrostatic turbulence include a high frequency ( or = 30 kHz) component peaking at the electron plasma frequency f sub pe, a low frequency component with a broad intensity maximum below the nominal ion plasma frequency f sub pi (approximately f sub pe/43), and a less well defined intermediate component in the range f sub pi f f sub pe. The intensity distribution of magnetosheath electrostatic turbulence clearly shows that the low frequency component is associated with the bow shock, suggesting that the ion heating begun at the shock continues into the downstream magnetosheath.

  6. Geodesic acoustic modes in noncircular cross section tokamaks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sorokina, E. A., E-mail: sorokina.ekaterina@gmail.com; Lakhin, V. P.; Konovaltseva, L. V.

    2017-03-15

    The influence of the shape of the plasma cross section on the continuous spectrum of geodesic acoustic modes (GAMs) in a tokamak is analyzed in the framework of the MHD model. An expression for the frequency of a local GAM for a model noncircular cross section plasma equilibrium is derived. Amendments to the oscillation frequency due to the plasma elongation and triangularity and finite tokamak aspect ratio are calculated. It is shown that the main factor affecting the GAM spectrum is the plasma elongation, resulting in a significant decrease in the mode frequency.

  7. Rapid-scan EPR imaging.

    PubMed

    Eaton, Sandra S; Shi, Yilin; Woodcock, Lukas; Buchanan, Laura A; McPeak, Joseph; Quine, Richard W; Rinard, George A; Epel, Boris; Halpern, Howard J; Eaton, Gareth R

    2017-07-01

    In rapid-scan EPR the magnetic field or frequency is repeatedly scanned through the spectrum at rates that are much faster than in conventional continuous wave EPR. The signal is directly-detected with a mixer at the source frequency. Rapid-scan EPR is particularly advantageous when the scan rate through resonance is fast relative to electron spin relaxation rates. In such scans, there may be oscillations on the trailing edge of the spectrum. These oscillations can be removed by mathematical deconvolution to recover the slow-scan absorption spectrum. In cases of inhomogeneous broadening, the oscillations may interfere destructively to the extent that they are not visible. The deconvolution can be used even when it is not required, so spectra can be obtained in which some portions of the spectrum are in the rapid-scan regime and some are not. The technology developed for rapid-scan EPR can be applied generally so long as spectra are obtained in the linear response region. The detection of the full spectrum in each scan, the ability to use higher microwave power without saturation, and the noise filtering inherent in coherent averaging results in substantial improvement in signal-to-noise relative to conventional continuous wave spectroscopy, which is particularly advantageous for low-frequency EPR imaging. This overview describes the principles of rapid-scan EPR and the hardware used to generate the spectra. Examples are provided of its application to imaging of nitroxide radicals, diradicals, and spin-trapped radicals at a Larmor frequency of ca. 250MHz. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Spectrum Control through Discrete Frequency Diffraction in the Presence of Photonic Gauge Potentials

    NASA Astrophysics Data System (ADS)

    Qin, Chengzhi; Zhou, Feng; Peng, Yugui; Sounas, Dimitrios; Zhu, Xuefeng; Wang, Bing; Dong, Jianji; Zhang, Xinliang; Alù; , Andrea; Lu, Peixiang

    2018-03-01

    By using optical phase modulators in a fiber-optical circuit, we theoretically and experimentally demonstrate large control over the spectrum of an impinging signal, which may evolve analogously to discrete diffraction in spatial waveguide arrays. The modulation phase acts as a photonic gauge potential in the frequency dimension, realizing efficient control of the central frequency and bandwidth of frequency combs. We experimentally achieve a 50 GHz frequency shift and threefold bandwidth expansion of an impinging comb, as well as the frequency analogue of various refraction phenomena, including negative refraction and perfect focusing in the frequency domain, both for discrete and continuous incident spectra. Our study paves a promising way towards versatile frequency management for optical communications and signal processing using time modulation schemes.

  9. 47 CFR 101.535 - Geographic partitioning and spectrum aggregation/disaggregation.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES 24 GHz Service and Digital Electronic Message Service § 101.535 Geographic partitioning and spectrum aggregation/disaggregation. (a) Eligibility... grant of a license. (2) Any existing frequency coordination agreements shall convey with the assignment...

  10. 47 CFR 101.535 - Geographic partitioning and spectrum aggregation/disaggregation.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES 24 GHz Service and Digital Electronic Message Service § 101.535 Geographic partitioning and spectrum aggregation/disaggregation. (a) Eligibility... grant of a license. (2) Any existing frequency coordination agreements shall convey with the assignment...

  11. 47 CFR 101.535 - Geographic partitioning and spectrum aggregation/disaggregation.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES 24 GHz Service and Digital Electronic Message Service § 101.535 Geographic partitioning and spectrum aggregation/disaggregation. (a) Eligibility... grant of a license. (2) Any existing frequency coordination agreements shall convey with the assignment...

  12. 47 CFR 101.535 - Geographic partitioning and spectrum aggregation/disaggregation.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES 24 GHz Service and Digital Electronic Message Service § 101.535 Geographic partitioning and spectrum aggregation/disaggregation. (a) Eligibility... grant of a license. (2) Any existing frequency coordination agreements shall convey with the assignment...

  13. 47 CFR 101.535 - Geographic partitioning and spectrum aggregation/disaggregation.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES 24 GHz Service and Digital Electronic Message Service § 101.535 Geographic partitioning and spectrum aggregation/disaggregation. (a) Eligibility... grant of a license. (2) Any existing frequency coordination agreements shall convey with the assignment...

  14. An echolocation model for the restoration of an acoustic image from a single-emission echo

    NASA Astrophysics Data System (ADS)

    Matsuo, Ikuo; Yano, Masafumi

    2004-12-01

    Bats can form a fine acoustic image of an object using frequency-modulated echolocation sound. The acoustic image is an impulse response, known as a reflected-intensity distribution, which is composed of amplitude and phase spectra over a range of frequencies. However, bats detect only the amplitude spectrum due to the low-time resolution of their peripheral auditory system, and the frequency range of emission is restricted. It is therefore necessary to restore the acoustic image from limited information. The amplitude spectrum varies with the changes in the configuration of the reflected-intensity distribution, while the phase spectrum varies with the changes in its configuration and location. Here, by introducing some reasonable constraints, a method is proposed for restoring an acoustic image from the echo. The configuration is extrapolated from the amplitude spectrum of the restricted frequency range by using the continuity condition of the amplitude spectrum at the minimum frequency of the emission and the minimum phase condition. The determination of the location requires extracting the amplitude spectra, which vary with its location. For this purpose, the Gaussian chirplets with a carrier frequency compatible with bat emission sweep rates were used. The location is estimated from the temporal changes of the amplitude spectra. .

  15. 47 CFR 22.853 - Eligibility to hold interest in licenses limited to 3 MHz of spectrum.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... limited to 3 MHz of spectrum. 22.853 Section 22.853 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES PUBLIC MOBILE SERVICES Air-Ground Radiotelephone Service Commercial... commercial aviation Air-Ground Radiotelephone Service frequency bands (see § 22.857). Individuals and...

  16. On the Power Spectrum of Motor Unit Action Potential Trains Synchronized With Mechanical Vibration.

    PubMed

    Romano, Maria; Fratini, Antonio; Gargiulo, Gaetano D; Cesarelli, Mario; Iuppariello, Luigi; Bifulco, Paolo

    2018-03-01

    This study provides a definitive analysis of the spectrum of a motor unit action potential train (MUAPT) elicited by mechanical vibratory stimulation via a detailed and concise mathematical formulation. Experimental studies demonstrated that MUAPs are not exactly synchronized with the vibratory stimulus but show a variable latency jitter, whose effects have not been investigated yet. Synchronized action potential train was represented as a quasi-periodic sequence of a given MU waveform. The latency jitter of action potentials was modeled as a Gaussian stochastic process, in accordance to the previous experimental studies. A mathematical expression for power spectrum of a synchronized MUAPT has been derived. The spectrum comprises a significant continuous component and discrete components at the vibratory frequency and its harmonics. Their relevance is correlated to the level of synchronization: the weaker the synchronization the more relevant is the continuous spectrum. Electromyography (EMG) rectification enhances the discrete components. The derived equations have general validity and well describe the power spectrum of actual EMG recordings during vibratory stimulation. Results are obtained by appropriately setting the level of synchronization and vibration frequency. This paper definitively clarifies the nature of changes in spectrum of raw EMG recordings from muscles undergoing vibratory stimulation. Results confirm the need of motion artifact filtering for raw EMG recordings during stimulation and strongly suggest to avoid EMG rectification that significantly alters the spectrum characteristics.

  17. The high-resolution infrared spectrum of the ν3 +ν5 combination band of jet-cooled propyne

    NASA Astrophysics Data System (ADS)

    Doney, K. D.; Zhao, D.; Bouwman, J.; Linnartz, H.

    2017-09-01

    We present the first detection of the high-resolution ro-vibrational spectrum of the ν3 +ν5 combination band of propyne around 3070 cm-1. The fully resolved spectrum is recorded for supersonically jet-cooled propyne using continuous wave cavity ring-down spectroscopy (cw-CRDS). The assignments are supported with the help of accurate ab initio vibration-rotation interaction constants (αi) and anharmonic frequencies. A detailed analysis of the rotationally cold spectrum is given.

  18. Evidence for a continuous spectrum of equatorial waves in the Indian Ocean

    NASA Astrophysics Data System (ADS)

    Eriksen, Charles C.

    1980-06-01

    Seven-month records of current and temperature measurements from a moored array centered at 53°E on the equator in the Indian Ocean are consistent with a continuous spectrum of equatorially trapped internal inertial-gravity, mixed Rossby-gravity, and Kelvin waves. A model spectrum of free linear waves analogous to those for mid-latitude internal gravity waves is used to compute spectra of observed quantities at depths greater than about 2000 m. Model parameters are adjusted to fit general patterns in the observed spectra over periods from roughly 2 days to 1 month. Measurements at shallower depths presumably include forced motions which we have not attempted to model. This `straw-person' spectrum is consistent with the limited data available. The model spectru Ē (n, m, ω) = K · B(m) · C(n, ω), where Ē is an average local energy density in the equatorial wave guide which has amplitude K, wave number shape B(m) ∝ (1 + m/m*)-3, where m is vertical mode number and the bandwidth parameter m* is between 4 and 8, and frequency shape C(n, ω) ∝ [(2n + 1 + s2)½ · σ3]-1 where n is meridional mode number, and s and σ are dimensionless zonal wave number and frequency related by the usual dispersion relation. The scales are (β/cm)½ and (β · cm)½ for horizontal wave number and frequency, where cm is the Kelvin wave speed of the vertical mode m. At each frequency and vertical wave number, energy is partitioned equally among the available inertial gravity modes so that the field tends toward horizontal isotropy at high frequency. The transition between Kelvin and mixed Rossby-gravity motion at low frequency and inertial-gravity motion at high frequency occurs at a period of roughly 1 week. At periods in the range 1-3 weeks, the model spectrum which fits the observations suggests that mixed Rossby-gravity motion dominates; at shorter periods gravity motion dominates. The model results are consistent with the low vertical coherence lengths observed (roughly 80 m). Horizontal coherence over 2 km is consistent with isotropic energy flux. Evidence for net zontal energy flux is not found in this data, and the presence of a red wave number shape suggests that net flux will be difficult to observe from modest moored arrays. The equatorial wave spectrum does not match across the diurnal and semidiurnal tides to the high-frequency internal wave spectrum (the latter is roughly 1 decade higher).

  19. Coherent changes of multifractal properties of continuous acoustic emission at failure of heterogeneous materials

    NASA Astrophysics Data System (ADS)

    Panteleev, Ivan; Bayandin, Yuriy; Naimark, Oleg

    2017-12-01

    This work performs a correlation analysis of the statistical properties of continuous acoustic emission recorded in different parts of marble and fiberglass laminate samples under quasi-static deformation. A spectral coherent measure of time series, which is a generalization of the squared coherence spectrum on a multidimensional series, was chosen. The spectral coherent measure was estimated in a sliding time window for two parameters of the acoustic emission multifractal singularity spectrum: the spectrum width and the generalized Hurst exponent realizing the maximum of the singularity spectrum. It is shown that the preparation of the macrofracture focus is accompanied by the synchronization (coherent behavior) of the statistical properties of acoustic emission in allocated frequency intervals.

  20. Oscillation spectrum of WASP-33 from the MOST photometry

    NASA Astrophysics Data System (ADS)

    Mkrtichian, David

    2015-08-01

    We present results of extended continuous time series photometry of the Delta Scuti type pulsating exoplanet host star WASP-33 obtained in two seasons (2011 and 2013) with the MOST space telescope. Our frequency analysis yealds rich, low-amplitude multi-frequency spectrum of oscillation modes. We discuss possible resonances between the orbiital period of the planet and frequencies of the oscillation modes. We present results of our measurements of planets orbital O-C variations and analyze possible existence of invisible planets in the system. We review recent results of the high-resolution spectroscopic campaign on WASP-33 and confirm the retrograde orbital motion of the planet WASP-33b.

  1. High-Frequency Observation of Water Spectrum and Its Application in Monitoring of Dynamic Variation of Suspended Materials in the Hangzhou Bay.

    PubMed

    Dai, Qian; Pan, De-lu; He, Xian-qiang; Zhu, Qian-kun; Gong, Fang; Huang, Hai-qing

    2015-11-01

    In situ measurement of water spectrum is the basis of the validation of the ocean color remote sensing. The traditional method to obtain the water spectrum is based on the shipboard measurement at limited stations, which is difficult to meet the requirement of validation of ocean color remote sensing in the highly dynamic coastal waters. To overcome this shortage, continuously observing systems of water spectrum have been developed in the world. However, so far, there are still few high-frequency observation systems of the water spectrum in coastal waters, especially in the highly turbid and high-dynamic waters. Here, we established a high-frequency water-spectrum observing system based on tower in the Hangzhou Bay. The system measures the water spectrum at a step of 3 minutes, which can fully match the satellite observation. In this paper, we primarily developed a data processing method for the tower-based high-frequency water spectrum data, to realize automatic judgment of clear sky, sun glint, platform shadow, and weak illumination, etc. , and verified the processing results. The results show that the normalized water-leaving radiance spectra obtained through tower observation have relatively high consistency with the shipboard measurement results, with correlation coefficient of more than 0. 99, and average relative error of 9.96%. In addition, the long-term observation capability of the tower-based high-frequency water-spectrum observing system was evaluated, and the results show that although the system has run for one year, the normalized water-leaving radiance obtained by this system have good consistency with the synchronously measurement by Portable spectrometer ASD in respect of spectral shape and value, with correlation coefficient of more than 0.90 and average relative error of 6.48%. Moreover, the water spectra from high-frequency observation by the system can be used to effectively monitor the rapid dynamic variation in concentration of suspended materials with tide. The tower-based high-frequency water-spectrum observing system provided rich in situ spectral data for the validation of ocean color remote sensing in turbid waters, especially for validation of the high temporal-resolution geostationary satellite ocean color remote sensing.

  2. Continuous-wave modulation of a femtosecond oscillator using coherent molecules.

    PubMed

    Gold, D C; Karpel, J T; Mueller, E A; Yavuz, D D

    2018-03-01

    We describe a new method to broaden the frequency spectrum of a femtosecond oscillator in the continuous-wave (CW) domain. The method relies on modulating the femtosecond laser using four-wave mixing inside a Raman-based optical modulator. We prepare the modulator by placing deuterium molecules inside a high-finesse cavity and driving their fundamental vibrational transition using intense pump and Stokes lasers that are locked to the cavity modes. With the molecules prepared, any laser within the optical region of the spectrum can pass through the system and be modulated in a single pass. This constitutes a CW optical modulator at a frequency of 90 THz with a steady-state single-pass efficiency of ∼10 -6 and transient (10 μs-time-scale) single-pass efficiency of ∼10 -4 . Using our modulator, we broaden the initial Ti:sapphire spectrum centered at 800 nm and produce upshifted and downshifted sidebands centered at wavelengths of 650 nm and 1.04 μm, respectively.

  3. Homogeneous spectral spanning of terahertz semiconductor lasers with radio frequency modulation.

    PubMed

    Wan, W J; Li, H; Zhou, T; Cao, J C

    2017-03-08

    Homogeneous broadband and electrically pumped semiconductor radiation sources emitting in the terahertz regime are highly desirable for various applications, including spectroscopy, chemical sensing, and gas identification. In the frequency range between 1 and 5 THz, unipolar quantum cascade lasers employing electron inter-subband transitions in multiple-quantum-well structures are the most powerful semiconductor light sources. However, these devices are normally characterized by either a narrow emission spectrum due to the narrow gain bandwidth of the inter-subband optical transitions or an inhomogeneous broad terahertz spectrum from lasers with heterogeneous stacks of active regions. Here, we report the demonstration of homogeneous spectral spanning of long-cavity terahertz semiconductor quantum cascade lasers based on a bound-to-continuum and resonant phonon design under radio frequency modulation. At a single drive current, the terahertz spectrum under radio frequency modulation continuously spans 330 GHz (~8% of the central frequency), which is the record for single plasmon waveguide terahertz lasers with a bound-to-continuum design. The homogeneous broadband terahertz sources can be used for spectroscopic applications, i.e., GaAs etalon transmission measurement and ammonia gas identification.

  4. Homogeneous spectral spanning of terahertz semiconductor lasers with radio frequency modulation

    PubMed Central

    Wan, W. J.; Li, H.; Zhou, T.; Cao, J. C.

    2017-01-01

    Homogeneous broadband and electrically pumped semiconductor radiation sources emitting in the terahertz regime are highly desirable for various applications, including spectroscopy, chemical sensing, and gas identification. In the frequency range between 1 and 5 THz, unipolar quantum cascade lasers employing electron inter-subband transitions in multiple-quantum-well structures are the most powerful semiconductor light sources. However, these devices are normally characterized by either a narrow emission spectrum due to the narrow gain bandwidth of the inter-subband optical transitions or an inhomogeneous broad terahertz spectrum from lasers with heterogeneous stacks of active regions. Here, we report the demonstration of homogeneous spectral spanning of long-cavity terahertz semiconductor quantum cascade lasers based on a bound-to-continuum and resonant phonon design under radio frequency modulation. At a single drive current, the terahertz spectrum under radio frequency modulation continuously spans 330 GHz (~8% of the central frequency), which is the record for single plasmon waveguide terahertz lasers with a bound-to-continuum design. The homogeneous broadband terahertz sources can be used for spectroscopic applications, i.e., GaAs etalon transmission measurement and ammonia gas identification. PMID:28272492

  5. Digital processing of RF signals from optical frequency combs

    NASA Astrophysics Data System (ADS)

    Cizek, Martin; Smid, Radek; Buchta, Zdeněk.; Mikel, Břetislav; Lazar, Josef; Cip, Ondřej

    2013-01-01

    The presented work is focused on digital processing of beat note signals from a femtosecond optical frequency comb. The levels of mixing products of single spectral components of the comb with CW laser sources are usually very low compared to products of mixing all the comb components together. RF counters are more likely to measure the frequency of the strongest spectral component rather than a weak beat note. Proposed experimental digital signal processing system solves this problem by analyzing the whole spectrum of the output RF signal and using software defined radio (SDR) algorithms. Our efforts concentrate in two main areas: Firstly, using digital servo-loop techniques for locking free running continuous laser sources on single components of the fs comb spectrum. Secondly, we are experimenting with digital signal processing of the RF beat note spectrum produced by f-2f 1 technique used for assessing the offset and repetition frequencies of the comb, resulting in digital servo-loop stabilization of the fs comb. Software capable of computing and analyzing the beat-note RF spectrums using FFT and peak detection was developed. A SDR algorithm performing phase demodulation on the f- 2f signal is used as a regulation error signal source for a digital phase-locked loop stabilizing the offset frequency of the fs comb.

  6. Atmospheric and Fog Effects on Ultra-Wide Band Radar Operating at Extremely High Frequencies.

    PubMed

    Balal, Nezah; Pinhasi, Gad A; Pinhasi, Yosef

    2016-05-23

    The wide band at extremely high frequencies (EHF) above 30 GHz is applicable for high resolution directive radars, resolving the lack of free frequency bands within the lower part of the electromagnetic spectrum. Utilization of ultra-wideband signals in this EHF band is of interest, since it covers a relatively large spectrum, which is free of users, resulting in better resolution in both the longitudinal and transverse dimensions. Noting that frequencies in the millimeter band are subjected to high atmospheric attenuation and dispersion effects, a study of the degradation in the accuracy and resolution is presented. The fact that solid-state millimeter and sub-millimeter radiation sources are producing low power, the method of continuous-wave wideband frequency modulation becomes the natural technique for remote sensing and detection. Millimeter wave radars are used as complementary sensors for the detection of small radar cross-section objects under bad weather conditions, when small objects cannot be seen by optical cameras and infrared detectors. Theoretical analysis for the propagation of a wide "chirped" Frequency-Modulated Continuous-Wave (FMCW) radar signal in a dielectric medium is presented. It is shown that the frequency-dependent (complex) refractivity of the atmospheric medium causes distortions in the phase of the reflected signal, introducing noticeable errors in the longitudinal distance estimations, and at some frequencies may also degrade the resolution.

  7. Atmospheric and Fog Effects on Ultra-Wide Band Radar Operating at Extremely High Frequencies

    PubMed Central

    Balal, Nezah; Pinhasi, Gad A.; Pinhasi, Yosef

    2016-01-01

    The wide band at extremely high frequencies (EHF) above 30 GHz is applicable for high resolution directive radars, resolving the lack of free frequency bands within the lower part of the electromagnetic spectrum. Utilization of ultra-wideband signals in this EHF band is of interest, since it covers a relatively large spectrum, which is free of users, resulting in better resolution in both the longitudinal and transverse dimensions. Noting that frequencies in the millimeter band are subjected to high atmospheric attenuation and dispersion effects, a study of the degradation in the accuracy and resolution is presented. The fact that solid-state millimeter and sub-millimeter radiation sources are producing low power, the method of continuous-wave wideband frequency modulation becomes the natural technique for remote sensing and detection. Millimeter wave radars are used as complementary sensors for the detection of small radar cross-section objects under bad weather conditions, when small objects cannot be seen by optical cameras and infrared detectors. Theoretical analysis for the propagation of a wide “chirped” Frequency-Modulated Continuous-Wave (FMCW) radar signal in a dielectric medium is presented. It is shown that the frequency-dependent (complex) refractivity of the atmospheric medium causes distortions in the phase of the reflected signal, introducing noticeable errors in the longitudinal distance estimations, and at some frequencies may also degrade the resolution. PMID:27223286

  8. Military Training: DOD Met Annual Reporting Requirements in Its 2016 Sustainable Ranges Report

    DTIC Science & Technology

    2016-06-01

    domain. Examples include, but are not limited to, endangered species and critical habitat, unexploded ordnance and munitions, radio frequency spectrum...security, (4) threatened and endangered and candidate species , (5) demand for electromagnetic spectrum, (6) continued growth in domestic use of unmanned...Management for Endangered Species Affecting Training Ranges. GAO-03-976. Washington, D.C.: September 29, 2003. Military Training: DOD Approach to

  9. Apparatus and methods for continuous beam fourier transform mass spectrometry

    DOEpatents

    McLuckey, Scott A.; Goeringer, Douglas E.

    2002-01-01

    A continuous beam Fourier transform mass spectrometer in which a sample of ions to be analyzed is trapped in a trapping field, and the ions in the range of the mass-to-charge ratios to be analyzed are excited at their characteristic frequencies of motion by a continuous excitation signal. The excited ions in resonant motions generate real or image currents continuously which can be detected and processed to provide a mass spectrum.

  10. Efficient frequency downconversion at the single photon level from the red spectral range to the telecommunications C-band.

    PubMed

    Zaske, Sebastian; Lenhard, Andreas; Becher, Christoph

    2011-06-20

    We report on single photon frequency downconversion from the red part of the spectrum (738 nm) to the telecommunications C-band. By mixing attenuated laser pulses with an average photon number per pulse < 1 with a strong continuous light field at 1403 nm in a periodically poled Zn:LiNbO3 ridge waveguide an internal conversion efficiency of ∼ 73% is achieved. We further investigate the noise properties of the process by measuring the output spectrum. Our results indicate that by narrow spectral filtering a quantum interface should be feasible which bridges the wavelength gap between quantum emitters like color centers in diamond emitting in the red part of the spectrum and low-loss fiber-optic telecommunications wavelengths.

  11. Linewidth and tuning characteristics of terahertz quantum cascade lasers.

    PubMed

    Barkan, A; Tittel, F K; Mittleman, D M; Dengler, R; Siegel, P H; Scalari, G; Ajili, L; Faist, J; Beere, H E; Linfield, E H; Davies, A G; Ritchie, D A

    2004-03-15

    We have measured the spectral linewidths of three continuous-wave quantum cascade lasers operating at terahertz frequencies by heterodyning the free-running quantum cascade laser with two far-infrared gas lasers. Beat notes are detected with a GaAs diode mixer and a microwave spectrum analyzer, permitting very precise frequency measurements and giving instantaneous linewidths of less than -30 kHz. Characteristics are also reported for frequency tuning as the injection current is varied.

  12. Spectral Characteristics of the Unitary Critical Almost-Mathieu Operator

    NASA Astrophysics Data System (ADS)

    Fillman, Jake; Ong, Darren C.; Zhang, Zhenghe

    2017-04-01

    We discuss spectral characteristics of a one-dimensional quantum walk whose coins are distributed quasi-periodically. The unitary update rule of this quantum walk shares many spectral characteristics with the critical Almost-Mathieu Operator; however, it possesses a feature not present in the Almost-Mathieu Operator, namely singularity of the associated cocycles (this feature is, however, present in the so-called Extended Harper's Model). We show that this operator has empty absolutely continuous spectrum and that the Lyapunov exponent vanishes on the spectrum; hence, this model exhibits Cantor spectrum of zero Lebesgue measure for all irrational frequencies and arbitrary phase, which in physics is known as Hofstadter's butterfly. In fact, we will show something stronger, namely, that all spectral parameters in the spectrum are of critical type, in the language of Avila's global theory of analytic quasiperiodic cocycles. We further prove that it has empty point spectrum for each irrational frequency and away from a frequency-dependent set of phases having Lebesgue measure zero. The key ingredients in our proofs are an adaptation of Avila's Global Theory to the present setting, self-duality via the Fourier transform, and a Johnson-type theorem for singular dynamically defined CMV matrices which characterizes their spectra as the set of spectral parameters at which the associated cocycles fail to admit a dominated splitting.

  13. The Synchrotron Spectrum of Fast Cooling Electrons Revisited.

    PubMed

    Granot; Piran; Sari

    2000-05-10

    We discuss the spectrum arising from synchrotron emission by fast cooling (FC) electrons, when fresh electrons are continually accelerated by a strong blast wave, into a power-law distribution of energies. The FC spectrum has so far been described by four power-law segments divided by three break frequencies nusa

  14. Application of neural networks to prediction of advanced composite structures mechanical response and behavior

    NASA Technical Reports Server (NTRS)

    Cios, K. J.; Vary, A.; Berke, L.; Kautz, H. E.

    1992-01-01

    Two types of neural networks were used to evaluate acousto-ultrasonic (AU) data for material characterization and mechanical reponse prediction. The neural networks included a simple feedforward network (backpropagation) and a radial basis functions network. Comparisons of results in terms of accuracy and training time are given. Acousto-ultrasonic (AU) measurements were performed on a series of tensile specimens composed of eight laminated layers of continuous, SiC fiber reinforced Ti-15-3 matrix. The frequency spectrum was dominated by frequencies of longitudinal wave resonance through the thickness of the specimen at the sending transducer. The magnitude of the frequency spectrum of the AU signal was used for calculating a stress-wave factor based on integrating the spectral distribution function and used for comparison with neural networks results.

  15. Frequency-noise measurements of optical frequency combs by multiple fringe-side discriminator

    PubMed Central

    Coluccelli, Nicola; Cassinerio, Marco; Gambetta, Alessio; Laporta, Paolo; Galzerano, Gianluca

    2015-01-01

    The frequency noise of an optical frequency comb is routinely measured through the hetherodyne beat of one comb tooth against a stable continuous-wave laser. After frequency-to-voltage conversion, the beatnote is sent to a spectrum analyzer to retrive the power spectral density of the frequency noise. Because narrow-linewidth continuous-wave lasers are available only at certain wavelengths, heterodyning the comb tooth can be challenging. We present a new technique for direct characterization of the frequency noise of an optical frequency comb, requiring no supplementary reference lasers and easily applicable in all spectral regions from the terahertz to the ultraviolet. The technique is based on the combination of a low finesse Fabry-Perot resonator and the so-called “fringe-side locking” method, usually adopted to characterize the spectral purity of single-frequency lasers, here generalized to optical frequency combs. The effectiveness of this technique is demonstrated with an Er-fiber comb source across the wavelength range from 1 to 2 μm. PMID:26548900

  16. Quasi-simultaneous observations of the BL Lac object MK 501 in X-ray, UV, visible, IR and radio frequencies

    NASA Technical Reports Server (NTRS)

    Kondo, D. M.; Worrall, D. M.; Mushotzky, R. F.; Hackney, R. L.; Hackney, K. H.; Oke, J. B.; Yee, H.; Neugebauer, G.; Matthews, K.; Feldman, P. A.

    1980-01-01

    Quasi-simultaneous observations of the BL Lacertae (Lac) objects MK 501 were performed for the first time at X-ray, ultraviolet, visible, infrared, and radio frequencies. The observed spectral slope from the X-ray to UV regions is positive and continuous, but that from the mid UV to visible light region becomes gradually flat and possibly turns down toward lower frequencies; the optical radio emission can not be accounted for by a single power law. Several theoretical models were considered for the emission mechanism. A quantitative comparison was performed with the synchrotron-self-Compton model; the total spectrum is found consistent with this model. The spectrum from visible light to X-ray is consistent with synchrotron radiation or with inverse-Compton scattering by a hot thermal cloud of electrons. The continuity of the spectral slope from X-ray to UV implied by the current data suggests that the previous estimates of the total luminosity of this BL Lac object is underestimated by a factor of about three or four.

  17. On the r-mode spectrum of relativistic stars in the low-frequency approximation

    NASA Astrophysics Data System (ADS)

    Ruoff, Johannes; Kokkotas, Kostas D.

    2001-12-01

    The axial modes for non-barotropic relativistic rotating neutron stars with uniform angular velocity are studied, using the slow-rotation formalism together with the low-frequency approximation, first investigated by Kojima. The time-independent form of the equations leads to a singular eigenvalue problem, which admits a continuous spectrum. We show that for l=2, it is nevertheless also possible to find discrete mode solutions (the r modes). However, under certain conditions related to the equation of state and the compactness of the stellar model, the eigenfrequency lies inside the continuous band and the associated velocity perturbation is divergent; hence these solutions have to be discarded as being unphysical. We corroborate our results by explicitly integrating the time-dependent equations. For stellar models admitting a physical r-mode solution, it can indeed be excited by arbitrary initial data. For models admitting only an unphysical mode solution, the evolutions do not show any tendency to oscillate with the respective frequency. For higher values of l it seems that in certain cases there are no mode solutions at all.

  18. Microchip dual-frequency laser with well-balanced intensity utilizing temperature control.

    PubMed

    Hu, Miao; Zhang, Yu; Wei, Mian; Zeng, Ran; Li, Qiliang; Lu, Yang; Wei, Yizhen

    2016-10-03

    A continuous-wave microchip dual-frequency laser (DFL) with well balanced intensity was presented. In order to obtain such a balanced intensity distribution of the two frequency components, the DFL wavelengths were precisely tuned and spectrally matched with the emission cross section (ECS) spectrum of the gain medium by employing a temperature controller. Finally, when the heat sink temperature was controlled at -5.6°C, a 264 mW DFL signal was achieved with frequency separation at 67.52 GHz and intensity balance ratio (IBR) at 0.991.

  19. Enhanced accuracy of the microwave field strength measurement in a CW-EPR by pulsed modulation technique

    NASA Astrophysics Data System (ADS)

    Rakvin, B.; Carić, D.; Kveder, M.

    2018-02-01

    The microwave magnetic field strength, B1, in the cavity of a conventional continuous wave electron paramagnetic resonance, CW-EPR, spectrometer was measured by employing modulation sidebands, MS, in the EPR spectrum. MS spectrum in CW-EPR is produced by applying the modulation frequency, ωrf, which exceeds the linewidth, δB, given in frequency units. An amplitude-modulated CW-EPR, AM-CW-EPR, was selected as detection method. Theoretical description of AM-CW-EPR spectrum was modified by adding Bloch-Siegert-like shift obtained by taking into account the cumulative effect of the non-resonant interactions between the driving fields and the spin system. This approach enables to enhance the precision of B1 measurement. In order to increase the sensitivity of the method when saturation effects, due to higher intensity of B1, decrease the resolution of AM-CW-EPR spectrum, detection at the second harmonic of CW-EPR has been employed.

  20. Enhanced accuracy of the microwave field strength measurement in a CW-EPR by pulsed modulation technique.

    PubMed

    Rakvin, B; Carić, D; Kveder, M

    2018-02-01

    The microwave magnetic field strength, B 1 , in the cavity of a conventional continuous wave electron paramagnetic resonance, CW-EPR, spectrometer was measured by employing modulation sidebands, MS, in the EPR spectrum. MS spectrum in CW-EPR is produced by applying the modulation frequency, ω rf , which exceeds the linewidth, δB, given in frequency units. An amplitude-modulated CW-EPR, AM-CW-EPR, was selected as detection method. Theoretical description of AM-CW-EPR spectrum was modified by adding Bloch-Siegert-like shift obtained by taking into account the cumulative effect of the non-resonant interactions between the driving fields and the spin system. This approach enables to enhance the precision of B 1 measurement. In order to increase the sensitivity of the method when saturation effects, due to higher intensity of B 1 , decrease the resolution of AM-CW-EPR spectrum, detection at the second harmonic of CW-EPR has been employed. Copyright © 2018 Elsevier Inc. All rights reserved.

  1. From quantum physics to digital communication: Single sideband continuous phase modulation

    NASA Astrophysics Data System (ADS)

    Farès, Haïfa; Christian Glattli, D.; Louët, Yves; Palicot, Jacques; Moy, Christophe; Roulleau, Preden

    2018-01-01

    In the present paper, we propose a new frequency-shift keying continuous phase modulation (FSK-CPM) scheme having, by essence, the interesting feature of single-sideband (SSB) spectrum providing a very compact frequency occupation. First, the original principle, inspired from quantum physics (levitons), is presented. Besides, we address the problem of low-complexity coherent detection of this new waveform, based on orthonormal wave functions used to perform matched filtering for efficient demodulation. Consequently, this shows that the proposed modulation can operate using existing digital communication technology, since only well-known operations are performed (e.g., filtering, integration). This SSB property can be exploited to allow large bit rates transmissions at low carrier frequency without caring about image frequency degradation effects typical of ordinary double-sideband signals. xml:lang="fr"

  2. Sound Spectrum Influences Auditory Distance Perception of Sound Sources Located in a Room Environment

    PubMed Central

    Spiousas, Ignacio; Etchemendy, Pablo E.; Eguia, Manuel C.; Calcagno, Esteban R.; Abregú, Ezequiel; Vergara, Ramiro O.

    2017-01-01

    Previous studies on the effect of spectral content on auditory distance perception (ADP) focused on the physically measurable cues occurring either in the near field (low-pass filtering due to head diffraction) or when the sound travels distances >15 m (high-frequency energy losses due to air absorption). Here, we study how the spectrum of a sound arriving from a source located in a reverberant room at intermediate distances (1–6 m) influences the perception of the distance to the source. First, we conducted an ADP experiment using pure tones (the simplest possible spectrum) of frequencies 0.5, 1, 2, and 4 kHz. Then, we performed a second ADP experiment with stimuli consisting of continuous broadband and bandpass-filtered (with center frequencies of 0.5, 1.5, and 4 kHz and bandwidths of 1/12, 1/3, and 1.5 octave) pink-noise clips. Our results showed an effect of the stimulus frequency on the perceived distance both for pure tones and filtered noise bands: ADP was less accurate for stimuli containing energy only in the low-frequency range. Analysis of the frequency response of the room showed that the low accuracy observed for low-frequency stimuli can be explained by the presence of sparse modal resonances in the low-frequency region of the spectrum, which induced a non-monotonic relationship between binaural intensity and source distance. The results obtained in the second experiment suggest that ADP can also be affected by stimulus bandwidth but in a less straightforward way (i.e., depending on the center frequency, increasing stimulus bandwidth could have different effects). Finally, the analysis of the acoustical cues suggests that listeners judged source distance using mainly changes in the overall intensity of the auditory stimulus with distance rather than the direct-to-reverberant energy ratio, even for low-frequency noise bands (which typically induce high amount of reverberation). The results obtained in this study show that, depending on the spectrum of the auditory stimulus, reverberation can degrade ADP rather than improve it. PMID:28690556

  3. Sound Spectrum Influences Auditory Distance Perception of Sound Sources Located in a Room Environment.

    PubMed

    Spiousas, Ignacio; Etchemendy, Pablo E; Eguia, Manuel C; Calcagno, Esteban R; Abregú, Ezequiel; Vergara, Ramiro O

    2017-01-01

    Previous studies on the effect of spectral content on auditory distance perception (ADP) focused on the physically measurable cues occurring either in the near field (low-pass filtering due to head diffraction) or when the sound travels distances >15 m (high-frequency energy losses due to air absorption). Here, we study how the spectrum of a sound arriving from a source located in a reverberant room at intermediate distances (1-6 m) influences the perception of the distance to the source. First, we conducted an ADP experiment using pure tones (the simplest possible spectrum) of frequencies 0.5, 1, 2, and 4 kHz. Then, we performed a second ADP experiment with stimuli consisting of continuous broadband and bandpass-filtered (with center frequencies of 0.5, 1.5, and 4 kHz and bandwidths of 1/12, 1/3, and 1.5 octave) pink-noise clips. Our results showed an effect of the stimulus frequency on the perceived distance both for pure tones and filtered noise bands: ADP was less accurate for stimuli containing energy only in the low-frequency range. Analysis of the frequency response of the room showed that the low accuracy observed for low-frequency stimuli can be explained by the presence of sparse modal resonances in the low-frequency region of the spectrum, which induced a non-monotonic relationship between binaural intensity and source distance. The results obtained in the second experiment suggest that ADP can also be affected by stimulus bandwidth but in a less straightforward way (i.e., depending on the center frequency, increasing stimulus bandwidth could have different effects). Finally, the analysis of the acoustical cues suggests that listeners judged source distance using mainly changes in the overall intensity of the auditory stimulus with distance rather than the direct-to-reverberant energy ratio, even for low-frequency noise bands (which typically induce high amount of reverberation). The results obtained in this study show that, depending on the spectrum of the auditory stimulus, reverberation can degrade ADP rather than improve it.

  4. Fly Eye radar: detection through high scattered media

    NASA Astrophysics Data System (ADS)

    Molchanov, Pavlo; Gorwara, Ashok

    2017-05-01

    Longer radio frequency waves better penetrating through high scattered media than millimeter waves, but imaging resolution limited by diffraction at longer wavelength. Same time frequency and amplitudes of diffracted waves (frequency domain measurement) provides information of object. Phase shift of diffracted waves (phase front in time domain) consists information about shape of object and can be applied for reconstruction of object shape or even image by recording of multi-frequency digital hologram. Spectrum signature or refracted waves allows identify the object content. Application of monopulse method with overlap closely spaced antenna patterns provides high accuracy measurement of amplitude, phase, and direction to signal source. Digitizing of received signals separately in each antenna relative to processor time provides phase/frequency independence. Fly eye non-scanning multi-frequency radar system provides simultaneous continuous observation of multiple targets and wide possibilities for stepped frequency, simultaneous frequency, chaotic frequency sweeping waveform (CFS), polarization modulation for reliable object detection. Proposed c-band fly eye radar demonstrated human detection through 40 cm concrete brick wall with human and wall material spectrum signatures and can be applied for through wall human detection, landmines, improvised explosive devices detection, underground or camouflaged object imaging.

  5. Spectrum analysis of radar life signal in the three kinds of theoretical models

    NASA Astrophysics Data System (ADS)

    Yang, X. F.; Ma, J. F.; Wang, D.

    2017-02-01

    In the single frequency continuous wave radar life detection system, based on the Doppler effect, the theory model of radar life signal is expressed by the real function, and there is a phenomenon that can't be confirmed by the experiment. When the phase generated by the distance between the measured object and the radar measuring head is л of integer times, the main frequency spectrum of life signal (respiration and heartbeat) is not existed in radar life signal. If this phase is л/2 of odd times, the main frequency spectrum of breath and heartbeat frequency is the strongest. In this paper, we use the Doppler effect as the basic theory, using three different mathematical expressions——real function, complex exponential function and Bessel's function expansion form. They are used to establish the theoretical model of radar life signal. Simulation analysis revealed that the Bessel expansion form theoretical model solve the problem of real function form. Compared with the theoretical model of the complex exponential function, the derived spectral line is greatly reduced in the theoretical model of Bessel expansion form, which is more consistent with the actual situation.

  6. New Approach to Ultrasonic Spectroscopy Applied to Flywheel Rotors

    NASA Technical Reports Server (NTRS)

    Harmon, Laura M.; Baaklini, George Y.

    2002-01-01

    Flywheel energy storage devices comprising multilayered composite rotor systems are being studied extensively for use in the International Space Station. A flywheel system includes the components necessary to store and discharge energy in a rotating mass. The rotor is the complete rotating assembly portion of the flywheel, which is composed primarily of a metallic hub and a composite rim. The rim may contain several concentric composite rings. This article summarizes current ultrasonic spectroscopy research of such composite rings and rims and a flat coupon, which was manufactured to mimic the manufacturing of the rings. Ultrasonic spectroscopy is a nondestructive evaluation (NDE) method for material characterization and defect detection. In the past, a wide bandwidth frequency spectrum created from a narrow ultrasonic signal was analyzed for amplitude and frequency changes. Tucker developed and patented a new approach to ultrasonic spectroscopy. The ultrasonic system employs a continuous swept-sine waveform and performs a fast Fourier transform on the frequency spectrum to create the spectrum resonance spacing domain, or fundamental resonant frequency. Ultrasonic responses from composite flywheel components were analyzed at Glenn to assess this NDE technique for the quality assurance of flywheel applications.

  7. [Amplitude modulation in sound signals by mammals].

    PubMed

    Nikol'skiĭ, A A

    2012-01-01

    Periodic variations in amplitude of a signal, or amplitude modulation (AM), affect the structure of communicative messages spectrum. Within the spectrum of AM-signals, side frequencies are formed both above and below the carrier frequency that is subjected to modulation. In case of harmonic signal structure they are presented near fundamental frequency as well as near harmonics. Thus, AM may by viewed as a relatively simple mechanism for controlling the spectrum of messages transmitted by mammals. Examples of AM affecting the spectrum structure of functionally different sound signals are discussed as applied to representatives of four orders of mammals: rodents (Reodentia), duplicidentates (Lagomorpha), pinnipeds (Pinnipedia), and paridigitates (Artiodactia). For the first time, the classification of AM in animals' sound signals is given. Five forms of AM are picked out in sound signals by mammals: absence of AM, continuous AM, fragmented, heterogeneous, and multilevel one. AM presence/absence is related neither with belonging to any specific order nor with some particular function of a signal. Similar forms of AM can occur in different orders of mammals in parallel. On the contrary, different forms of AM can be detected in signals meant for similar functions. The assumption is made about AM-signals facilitating information encoding and jamprotection of messages transmitted by mammals. Preliminry analysis indicates that hard-driving amplitude modulation is incompatible with hard-driving frequency modulation.

  8. Self-similar gravity wave spectra resulting from the modulation of bound waves

    NASA Astrophysics Data System (ADS)

    Michel, Guillaume; Semin, Benoît; Cazaubiel, Annette; Haudin, Florence; Humbert, Thomas; Lepot, Simon; Bonnefoy, Félicien; Berhanu, Michaël; Falcon, Éric

    2018-05-01

    We experimentally study the properties of nonlinear surface gravity waves in a large-scale basin. We consider two different configurations: a one-dimensional (1D) monochromatic wave forcing, and a two-dimensional (2D) forcing with bichromatic waves satisfying resonant-wave interaction conditions. For the 1D forcing, we find a discrete wave-energy spectrum dominated at high frequencies by bound waves whose amplitudes decrease as a power law of the frequency. Bound waves (e.g., to the carrier) are harmonics superimposed on the carrier wave propagating with the same phase velocity as the one of the carrier. When a narrow frequency random modulation is applied to this carrier, the high-frequency part of the wave-energy spectrum becomes continuous with the same frequency-power law. Similar results are found for the 2D forcing when a random modulation is also applied to both carrier waves. Our results thus show that all these nonlinear gravity wave spectra are dominated at high frequencies by the presence of bound waves, even in the configuration where resonant interactions occur. Moreover, in all these configurations, the power-law exponent of the spectrum is found to depend on the forcing amplitude with the same trend as the one found in previous gravity wave turbulence experiments. Such a set of bound waves may thus explain this dependence that was previously poorly understood.

  9. Overcoming the Illusion of Security: Creating a New Spacefaring Security Strategy Paradigm

    DTIC Science & Technology

    2014-03-01

    satellites also means the radio frequency spectrum is becoming saturated. As space becomes more congested it almost naturally becomes more...share. As a minimum, the global architecture must include the continued deconfliction of orbital slots and radio frequencies , integrated domain...Norfolk, VA 23511-1702 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) 11 . SPONSOR/MONITOR’S REPORT

  10. Space-Time Processing for Tactical Mobile Ad Hoc Networks

    DTIC Science & Technology

    2010-05-01

    Spatial Diversity and Imperfect Channel Estimation on Wideband MC- DS - CDMA and MC- CDMA " IEEE Transactions on Communications, Vol. 57, No. 10, pp. 2988...include direct sequence code division multiple access ( DS - CDMA ), Frequency Hopped (FH) CDMA and Orthogonal Frequency Division Multiple Access (OFDMA...capability, LPD/LPI, and operability in non-continuous spectrum. In addition, FH- CDMA is robust to the near-far problem, while DS - CDMA requires

  11. RT-CW: widely tunable semiconductor THz QCL sources

    NASA Astrophysics Data System (ADS)

    Razeghi, M.; Lu, Q. Y.

    2016-09-01

    Distinctive position of Terahertz (THz) frequencies (ν 0.3 -10 THz) in the electromagnetic spectrum with their lower quantum energy compared to IR and higher frequency compared to microwave range allows for many potential applications unique to them. Especially in the security side of the THz sensing applications, the distinct absorption spectra of explosives and related compounds in the range of 0.1-5 THz makes THz technology a competitive technique for detecting hidden explosives. A compact, high power, room temperature continuous wave terahertz source emitting in a wide frequency range will greatly boost the THz applications for the diagnosis and detection of explosives. Here we present a new strong-coupled strain-balanced quantum cascade laser design for efficient THz generation based intracavity DFG. Room temperature continuous wave operation with electrical frequency tuning range of 2.06-4.35 THz is demonstrated.

  12. Digital processing of signals from femtosecond combs

    NASA Astrophysics Data System (ADS)

    Čížek, Martin; Šmíd, Radek; Buchta, Zdeněk.; Mikel, Břetislav; Lazar, Josef; Číp, Ondrej

    2012-01-01

    The presented work is focused on digital processing of beat note signals from a femtosecond optical frequency comb. The levels of mixing products of single spectral components of the comb with CW laser sources are usually very low compared to products of mixing all the comb components together. RF counters are more likely to measure the frequency of the strongest spectral component rather than a weak beat note. Proposed experimental digital signal processing system solves this problem by analyzing the whole spectrum of the output RF signal and using software defined radio (SDR) algorithms. Our efforts concentrate in two main areas: Firstly, we are experimenting with digital signal processing of the RF beat note spectrum produced by f-2f 1 technique and with fully digital servo-loop stabilization of the fs comb. Secondly, we are using digital servo-loop techniques for locking free running continuous laser sources on single components of the fs comb spectrum. Software capable of computing and analyzing the beat-note RF spectrums using FFT and peak detection was developed. A SDR algorithm performing phase demodulation on the f- 2f signal is used as a regulation error signal source for a digital phase-locked loop stabilizing the offset and repetition frequencies of the fs comb.

  13. [Study on phase correction method of spatial heterodyne spectrometer].

    PubMed

    Wang, Xin-Qiang; Ye, Song; Zhang, Li-Juan; Xiong, Wei

    2013-05-01

    Phase distortion exists in collected interferogram because of a variety of measure reasons when spatial heterodyne spectrometers are used in practice. So an improved phase correction method is presented. The phase curve of interferogram was obtained through Fourier inverse transform to extract single side transform spectrum, based on which, the phase distortions were attained by fitting phase slope, so were the phase correction functions, and the convolution was processed between transform spectrum and phase correction function to implement spectrum phase correction. The method was applied to phase correction of actually measured monochromatic spectrum and emulational water vapor spectrum. Experimental results show that the low-frequency false signals in monochromatic spectrum fringe would be eliminated effectively to increase the periodicity and the symmetry of interferogram, in addition when the continuous spectrum imposed phase error was corrected, the standard deviation between it and the original spectrum would be reduced form 0.47 to 0.20, and thus the accuracy of spectrum could be improved.

  14. A Code Division Multiple Access Communication System for the Low Frequency Band.

    DTIC Science & Technology

    1983-04-01

    frequency channels spread-spectrum communication / complex sequences, orthogonal codes impulsive noise 20. ABSTRACT (Continue an reverse side It...their transmissions with signature sequences. Our LF/CDMA scheme is different in that each user’s signature sequence set consists of M orthogonal ...signature sequences. Our LF/CDMA scheme is different in that each user’s signature sequence set consists of M orthogonal sequences and thus log 2 M

  15. Specific features of low-frequency vibrational dynamics and low-temperature heat capacity of double-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Avramenko, M. V.; Roshal, S. B.

    2016-05-01

    A continuous model has been constructed for low-frequency dynamics of a double-walled carbon nanotube. The formation of the low-frequency part of the phonon spectrum of a double-walled nanotube from phonon spectra of its constituent single-walled nanotubes has been considered in the framework of the proposed approach. The influence of the environment on the phonon spectrum of a single double-walled carbon nanotube has been analyzed. A combined method has been proposed for estimating the coefficients of the van der Waals interaction between the walls of the nanotube from the spectroscopic data and the known values of the elastic moduli of graphite. The low-temperature specific heat has been calculated for doublewalled carbon nanotubes, which in the field of applicability of the model ( T < 35 K) is substantially less than the sum of specific heats of two individual single-walled nanotubes forming it.

  16. Photoacoustic simulation study of chirp excitation response from different size absorbers

    NASA Astrophysics Data System (ADS)

    Jnawali, K.; Chinni, B.; Dogra, V.; Rao, N.

    2017-03-01

    Photoacoustic (PA) imaging is a hybrid imaging modality that integrates the strength of optical and ultrasound imaging. Nanosecond (ns) pulsed lasers used in current PA imaging systems are expensive, bulky and they often waste energy. We propose and evaluate, through simulations, the use of a continuous wave (CW) laser whose amplitude is linear frequency modulated (chirp) for PA imaging. The chirp signal provides signal-to-side-lobe ratio (SSR) improvement potential and full control over PA signal frequencies excited in the sample. The PA signal spectrum is a function of absorber size and the time frequencies present in the chirp. A mismatch between the input chirp spectrum and the output PA signal spectrum can affect the compressed pulse that is recovered from cross-correlating the two. We have quantitatively characterized this effect. The k-wave Matlab tool box was used to simulate PA signals in three dimensions for absorbers ranging in size from 0.1 mm to 0.6 mm, in response to laser excitation amplitude that is linearly swept from 0.5 MHz to 4 MHz. This sweep frequency range was chosen based on the spectrum analysis of a PA signal generated from ex-vivo human prostate tissue samples. In comparison, the energy wastage by a ns laser pulse was also estimated. For the chirp methodology, the compressed pulse peak amplitude, pulse width and side lobe structure parameters were extracted for different size absorbers. While the SSR increased 6 fold with absorber size, the pulse width decreased by 25%.

  17. Unique capabilities of AC frequency scanning and its implementation on a Mars Organic Molecule Analyzer linear ion trap.

    PubMed

    Snyder, Dalton T; Kaplan, Desmond A; Danell, Ryan M; van Amerom, Friso H W; Pinnick, Veronica T; Brinckerhoff, William B; Mahaffy, Paul R; Cooks, R Graham

    2017-06-21

    A limitation of conventional quadrupole ion trap scan modes which use rf amplitude control for mass scanning is that, in order to detect a subset of an ion population, the rest of the ion population must also be interrogated. That is, ions cannot be detected out of order; they must be detected in order of either increasing or decreasing mass-to-charge (m/z). However, an ion trap operated in the ac frequency scan mode, where the rf amplitude is kept constant and instead the ac frequency is used for mass-selective operations, has no such limitation because any variation in the ac frequency affects only the subset of ions whose secular frequencies match the perturbation frequency. Hence, an ion trap operated in the ac frequency scan mode can perform any arbitrary mass scan, as well as a sequence of scans, using a single ion injection; we demonstrate both capabilities here. Combining these two capabilities, we demonstrate the acquisition of a full mass spectrum, a product ion spectrum, and a second generation product ion spectrum using a single ion injection event. We further demonstrate a "segmented scan" in which different mass ranges are interrogated at different rf amplitudes in order to improve resolution over a portion of the mass range, and a "periodic scan" in which ions are continuously introduced into the ion trap to achieve a nearly 100% duty cycle. These unique scan modes, along with other characteristics of ac frequency scanning, are particularly appropriate for miniature ion trap mass spectrometers. Hence, implementation of ac frequency scanning on a prototype of the Mars Organic Molecule Analyzer mass spectrometer is also described.

  18. Spectrum sensing and resource allocation for multicarrier cognitive radio systems under interference and power constraints

    NASA Astrophysics Data System (ADS)

    Dikmese, Sener; Srinivasan, Sudharsan; Shaat, Musbah; Bader, Faouzi; Renfors, Markku

    2014-12-01

    Multicarrier waveforms have been commonly recognized as strong candidates for cognitive radio. In this paper, we study the dynamics of spectrum sensing and spectrum allocation functions in cognitive radio context using very practical signal models for the primary users (PUs), including the effects of power amplifier nonlinearities. We start by sensing the spectrum with energy detection-based wideband multichannel spectrum sensing algorithm and continue by investigating optimal resource allocation methods. Along the way, we examine the effects of spectral regrowth due to the inevitable power amplifier nonlinearities of the PU transmitters. The signal model includes frequency selective block-fading channel models for both secondary and primary transmissions. Filter bank-based wideband spectrum sensing techniques are applied for detecting spectral holes and filter bank-based multicarrier (FBMC) modulation is selected for transmission as an alternative multicarrier waveform to avoid the disadvantage of limited spectral containment of orthogonal frequency-division multiplexing (OFDM)-based multicarrier systems. The optimization technique used for the resource allocation approach considered in this study utilizes the information obtained through spectrum sensing and knowledge of spectrum leakage effects of the underlying waveforms, including a practical power amplifier model for the PU transmitter. This study utilizes a computationally efficient algorithm to maximize the SU link capacity with power and interference constraints. It is seen that the SU transmission capacity depends critically on the spectral containment of the PU waveform, and these effects are quantified in a case study using an 802.11-g WLAN scenario.

  19. Slope-assisted BOTDA based on vector SBS and frequency-agile technique for wide-strain-range dynamic measurements.

    PubMed

    Zhou, Dengwang; Dong, Yongkang; Wang, Benzhang; Jiang, Taofei; Ba, Dexin; Xu, Pengbai; Zhang, Hongying; Lu, Zhiwei; Li, Hui

    2017-02-06

    We present a slope-assisted BOTDA system based on the vector stimulated Brillouin scattering (SBS) and frequency-agile technique (FAT) for the wide-strain-range dynamic measurement. A dimensionless coefficient K defined as the ratio of Brillouin phase-shift to gain is employed to demodulate the strain of the fiber, and it is immune to the power fluctuation of pump pulse and has a linear relation of the frequency detuning for the continuous pump and Stokes waves. For a 30ns-square pump pulse, the available frequency span of the K spectrum can reach up to 200MHz, which is larger than fourfold of 48MHz-linewidth of Brillouin gain spectrum. For a single-slope assisted BOTDA, dynamic strain measurement with the maximum strain of 2467.4με and the vibration frequency components of 10.44Hz and 20.94Hz is obtained. For a multi-slope-assisted BOTDA, dynamic measurement with the strain variation up to 5372.9με and the vibration frequency components of 5.58Hz and 11.14Hz is achieved by using FAT to extend the strain range.

  20. Lock-in amplifier error prediction and correction in frequency sweep measurements.

    PubMed

    Sonnaillon, Maximiliano Osvaldo; Bonetto, Fabian Jose

    2007-01-01

    This article proposes an analytical algorithm for predicting errors in lock-in amplifiers (LIAs) working with time-varying reference frequency. Furthermore, a simple method for correcting such errors is presented. The reference frequency can be swept in order to measure the frequency response of a system within a given spectrum. The continuous variation of the reference frequency produces a measurement error that depends on three factors: the sweep speed, the LIA low-pass filters, and the frequency response of the measured system. The proposed error prediction algorithm is based on the final value theorem of the Laplace transform. The correction method uses a double-sweep measurement. A mathematical analysis is presented and validated with computational simulations and experimental measurements.

  1. High resolution signal-processing method for extrinsic Fabry-Perot interferometric sensors

    NASA Astrophysics Data System (ADS)

    Xie, Jiehui; Wang, Fuyin; Pan, Yao; Wang, Junjie; Hu, Zhengliang; Hu, Yongming

    2015-03-01

    In this paper, a signal-processing method for optical fiber extrinsic Fabry-Perot interferometric sensors is presented. It achieves both high resolution and absolute measurement of the dynamic change of cavity length with low sampling points in wavelength domain. In order to improve the demodulation accuracy, the reflected interference spectrum is cleared by Discrete Wavelet Transform and adjusted by the Hilbert transform. Then the cavity length is interrogated by the cross correlation algorithm. The continuous tests show the resolution of cavity length is only 36.7 pm. Moreover, the corresponding resolution of cavity length is only 1 pm on the low frequency range below 420 Hz, and the corresponding power spectrum shows the possibility of detecting the ultra-low frequency signals based on spectra detection.

  2. High Frequency Tail Characteristics in the Coastal Waters off Gopalpur, Northwest Bay of Bengal: A Nearshore Modelling Study

    NASA Astrophysics Data System (ADS)

    Umesh, P. A.; Bhaskaran, Prasad K.; Sandhya, K. G.; Nair, T. M. Balakrishnan

    2017-12-01

    Over the years, continued uncertainty amid - 4 and - 5 frequency exponent representation observed in the slope of the high-frequency tail of a wind-wave frequency spectrum is a major concern. To comprehend the nature of the high-frequency tail an effort has been made to assess the slope of the high-frequency tail with measured data recorded for 3 years off Gopalpur. The study demonstrates that the high-frequency slope of the spectra varied seasonally in the range of n = - 2.13 to - 3.48. The swell and wind sea parameters calculated by separation frequency method, shows that 64.6% of waves were dominant by swell and the rest 34.9% by sea annually. Single, double and multi-peaked spectra occur 12.23, 71.80 and 15.37% annually. To simulate wave spectra, the nested WAM-SWAN model is forced with ERA-Interim winds and 1D wave spectra comparisons, when performed, proved to be encouraging. From the comparisons of measured and theoretical spectra it is concluded that JONSWAP model could not describe the high-frequency tail of measured spectrum, as indicated by the very high Scatter Index ranging from 0.24 to 1.44. Whether there exists a correct slope for the high-frequency tail is still a question. Moreover, the philosophy of a unique slope at any coastal location remains uncertain for the wave modelling community.

  3. Spectrum Situational Awareness Capability: The Military Need and Potential Implementation Issues

    DTIC Science & Technology

    2006-10-01

    Management Sensor Systems Frequency Management EW Systems Frequency Management Allied Battlespace Spectrum Management Restricted Frequency List Frequency...Management Restricted Frequency List Frequency Allocation Table Civil Frequency Use Data Inputs Negotiation and allocation process © Dstl 2006 26th...Management Restricted Frequency List Data Inputs Negotiation and allocation process Frequency Allocation Table SSA ES INT COP etc WWW Spectrum

  4. Acoustic emission studies of large advanced composite rocket motor cases.

    NASA Technical Reports Server (NTRS)

    Robinson, E. Y.

    1973-01-01

    Acoustic emission (AE) patterns were measured during pressure testing of advanced composite rocket motor cases made of boron/epoxy and graphite/epoxy. Both accelerometers and high frequency AE transducers were used, and both frequency spectrum and amplitude distribution were studied. The AE patterns suggest that precursor emission might be used in certain cases to anticipate failure. The technique of hold-cycle AE monitoring was also evaluated and could become a valuable decision gate for test continuation/termination. Data presented show similarity of accelerometers and AE transducer responses despite the different frequency response, and suggest that structural AE phenomena are broadband.

  5. Opto-electronic device for frequency standard generation and terahertz-range optical demodulation based on quantum interference

    DOEpatents

    Georgiades, Nikos P.; Polzik, Eugene S.; Kimble, H. Jeff

    1999-02-02

    An opto-electronic system and technique for comparing laser frequencies with large frequency separations, establishing new frequency standards, and achieving phase-sensitive detection at ultra high frequencies. Light responsive materials with multiple energy levels suitable for multi-photon excitation are preferably used for nonlinear mixing via quantum interference of different excitation paths affecting a common energy level. Demodulation of a carrier with a demodulation frequency up to 100's THZ can be achieved for frequency comparison and phase-sensitive detection. A large number of materials can be used to cover a wide spectral range including the ultra violet, visible and near infrared regions. In particular, absolute frequency measurement in a spectrum from 1.25 .mu.m to 1.66 .mu.m for fiber optics can be accomplished with a nearly continuous frequency coverage.

  6. Ultrasonic Resonance Spectroscopy of Composite Rims for Flywheel Rotors

    NASA Technical Reports Server (NTRS)

    Harmon, Laura M.; Baaklini, George Y.

    2002-01-01

    Flywheel energy storage devices comprising multilayered composite rotor systems are being studied extensively for utilization in the International Space Station. These composite material systems were investigated with a recently developed ultrasonic resonance spectroscopy technique. The ultrasonic system employs a continuous swept-sine waveform and performs a fast Fourier transform (FFT) on the frequency response spectrum. In addition, the system is capable of equalizing the amount of energy at each frequency. Equalization of the frequency spectrum, along with interpretation of the second FFT, aids in the evaluation of the fundamental frequency. The frequency responses from multilayered material samples, with and without known defects, were analyzed to assess the capabilities and limitations of this nondestructive evaluation technique for material characterization and defect detection. Amplitude and frequency changes were studied from ultrasonic responses of thick composite rings and a multiring composite rim. A composite ring varying in thickness was evaluated to investigate the full thickness resonance. The frequency response characteristics from naturally occurring voids in a composite ring were investigated. Ultrasonic responses were compared from regions with and without machined voids in a composite ring and a multiring composite rim. Finally, ultrasonic responses from the multiring composite rim were compared before and after proof spin testing to 63,000 rpm.

  7. New Approaches to Coding Information using Inverse Scattering Transform

    NASA Astrophysics Data System (ADS)

    Frumin, L. L.; Gelash, A. A.; Turitsyn, S. K.

    2017-06-01

    Remarkable mathematical properties of the integrable nonlinear Schrödinger equation (NLSE) can offer advanced solutions for the mitigation of nonlinear signal distortions in optical fiber links. Fundamental optical soliton, continuous, and discrete eigenvalues of the nonlinear spectrum have already been considered for the transmission of information in fiber-optic channels. Here, we propose to apply signal modulation to the kernel of the Gelfand-Levitan-Marchenko equations that offers the advantage of a relatively simple decoder design. First, we describe an approach based on exploiting the general N -soliton solution of the NLSE for simultaneous coding of N symbols involving 4 ×N coding parameters. As a specific elegant subclass of the general schemes, we introduce a soliton orthogonal frequency division multiplexing (SOFDM) method. This method is based on the choice of identical imaginary parts of the N -soliton solution eigenvalues, corresponding to equidistant soliton frequencies, making it similar to the conventional OFDM scheme, thus, allowing for the use of the efficient fast Fourier transform algorithm to recover the data. Then, we demonstrate how to use this new approach to control signal parameters in the case of the continuous spectrum.

  8. 47 CFR 2.1057 - Frequency spectrum to be investigated.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 1 2014-10-01 2014-10-01 false Frequency spectrum to be investigated. 2.1057... Frequency spectrum to be investigated. (a) In all of the measurements set forth in §§ 2.1051 and 2.1053, the spectrum shall be investigated from the lowest radio frequency signal generated in the equipment, without...

  9. 47 CFR 2.1057 - Frequency spectrum to be investigated.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 1 2011-10-01 2011-10-01 false Frequency spectrum to be investigated. 2.1057... Frequency spectrum to be investigated. (a) In all of the measurements set forth in §§ 2.1051 and 2.1053, the spectrum shall be investigated from the lowest radio frequency signal generated in the equipment, without...

  10. 47 CFR 2.1057 - Frequency spectrum to be investigated.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 1 2010-10-01 2010-10-01 false Frequency spectrum to be investigated. 2.1057... Frequency spectrum to be investigated. (a) In all of the measurements set forth in §§ 2.1051 and 2.1053, the spectrum shall be investigated from the lowest radio frequency signal generated in the equipment, without...

  11. 47 CFR 2.1057 - Frequency spectrum to be investigated.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 1 2013-10-01 2013-10-01 false Frequency spectrum to be investigated. 2.1057... Frequency spectrum to be investigated. (a) In all of the measurements set forth in §§ 2.1051 and 2.1053, the spectrum shall be investigated from the lowest radio frequency signal generated in the equipment, without...

  12. 47 CFR 2.1057 - Frequency spectrum to be investigated.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 1 2012-10-01 2012-10-01 false Frequency spectrum to be investigated. 2.1057... Frequency spectrum to be investigated. (a) In all of the measurements set forth in §§ 2.1051 and 2.1053, the spectrum shall be investigated from the lowest radio frequency signal generated in the equipment, without...

  13. Spread-Spectrum Beamforming and Clutter Filtering for Plane-Wave Color Doppler Imaging.

    PubMed

    Mansour, Omar; Poepping, Tamie L; Lacefield, James C

    2016-07-21

    Plane-wave imaging is desirable for its ability to achieve high frame rates, allowing the capture of fast dynamic events and continuous Doppler data. In most implementations of plane-wave imaging, multiple low-resolution images from different plane wave tilt angles are compounded to form a single high-resolution image, thereby reducing the frame rate. Compounding improves the lateral beam profile in the high-resolution image, but it also acts as a low-pass filter in slow time that causes attenuation and aliasing of signals with high Doppler shifts. This paper introduces a spread-spectrum color Doppler imaging method that produces high-resolution images without the use of compounding, thereby eliminating the tradeoff between beam quality, maximum unaliased Doppler frequency, and frame rate. The method uses a long, random sequence of transmit angles rather than a linear sweep of plane wave directions. The random angle sequence randomizes the phase of off-focus (clutter) signals, thereby spreading the clutter power in the Doppler spectrum, while keeping the spectrum of the in-focus signal intact. The ensemble of randomly tilted low-resolution frames also acts as the Doppler ensemble, so it can be much longer than a conventional linear sweep, thereby improving beam formation while also making the slow-time Doppler sampling frequency equal to the pulse repetition frequency. Experiments performed using a carotid artery phantom with constant flow demonstrate that the spread-spectrum method more accurately measures the parabolic flow profile of the vessel and outperforms conventional plane-wave Doppler in both contrast resolution and estimation of high flow velocities. The spread-spectrum method is expected to be valuable for Doppler applications that require measurement of high velocities at high frame rates.

  14. Intense, carrier frequency and bandwidth tunable quasi single-cycle pulses from an organic emitter covering the Terahertz frequency gap

    PubMed Central

    Vicario, C.; Monoszlai, B.; Jazbinsek, M.; Lee, S. -H.; Kwon, O. -P.; Hauri, C. P.

    2015-01-01

    In Terahertz (THz) science, one of the long-standing challenges has been the formation of spectrally dense, single-cycle pulses with tunable duration and spectrum across the frequency range of 0.1–15 THz (THz gap). This frequency band, lying between the electronically and optically accessible spectra hosts important molecular fingerprints and collective modes which cannot be fully controlled by present strong-field THz sources. We present a method that provides powerful single-cycle THz pulses in the THz gap with a stable absolute phase whose duration can be continuously selected between 68 fs and 1100 fs. The loss-free and chirp-free technique is based on optical rectification of a wavelength-tunable pump pulse in the organic emitter HMQ-TMS that allows for tuning of the spectral bandwidth from 1 to more than 7 octaves over the entire THz gap. The presented source tunability of the temporal carrier frequency and spectrum expands the scope of spectrally dense THz sources to time-resolved nonlinear THz spectroscopy in the entire THz gap. This opens new opportunities towards ultrafast coherent control over matter and light. PMID:26400005

  15. 15 mJ single-frequency Ho:YAG laser resonantly pumped by a 1.9 µm laser diode

    NASA Astrophysics Data System (ADS)

    Na, Q. X.; Gao, C. Q.; Wang, Q.; Zhang, Y. X.; Gao, M. W.; Ye, Q.; Li, Y.

    2016-09-01

    A 2.09 µm injection-seeded single-frequency Ho:YAG laser resonantly pumped by a 1.91 µm laser diode is demonstrated for the first time. The seed laser is a continuous wave (CW) Ho:YAG non-planar ring oscillator. 15.15 mJ single-frequency output energy is obtained from the injection-seeded Q-switched Ho:YAG laser, with a pulse repetition rate of 200 Hz and a pulse width of 109 ns. The half-width of the pulse spectrum is measured to be 4.19 MHz by using the heterodyne technique. The fluctuation of the center frequency of the single-frequency pulses is 1.52 MHz (root mean square (RMS)) in 1 h.

  16. Vibration sensing using a tapered bend-insensitive fiber based Mach-Zehnder interferometer.

    PubMed

    Xu, Yanping; Lu, Ping; Qin, Zengguang; Harris, Jeremie; Baset, Farhana; Lu, Ping; Bhardwaj, Vedula Ravi; Bao, Xiaoyi

    2013-02-11

    In this study, a novel fiber-optic sensor consisting of a tapered bend-insensitive fiber based Mach-Zehnder interferometer is presented to realize damped and continuous vibration measurement. The double cladding structure and the central coating region of the in-fiber interferometer ensure an enhanced mechanical strength, reduced external disturbance, and a more uniform spectrum. A damped vibration frequency range of 29-60 Hz as well as continuous vibration disturbances ranging from 1 Hz up to 500 kHz are successfully demonstrated.

  17. Opto-electronic device for frequency standard generation and terahertz-range optical demodulation based on quantum interference

    DOEpatents

    Georgiades, N.P.; Polzik, E.S.; Kimble, H.J.

    1999-02-02

    An opto-electronic system and technique for comparing laser frequencies with large frequency separations, establishing new frequency standards, and achieving phase-sensitive detection at ultra high frequencies are disclosed. Light responsive materials with multiple energy levels suitable for multi-photon excitation are preferably used for nonlinear mixing via quantum interference of different excitation paths affecting a common energy level. Demodulation of a carrier with a demodulation frequency up to 100`s THZ can be achieved for frequency comparison and phase-sensitive detection. A large number of materials can be used to cover a wide spectral range including the ultra violet, visible and near infrared regions. In particular, absolute frequency measurement in a spectrum from 1.25 {micro}m to 1.66 {micro}m for fiber optics can be accomplished with a nearly continuous frequency coverage. 7 figs.

  18. Magneto-thermal-acoustic differential-frequency imaging of magnetic nanoparticle with magnetic spatial localization: a theoretical prediction

    NASA Astrophysics Data System (ADS)

    Piao, Daqing

    2017-02-01

    The magneto-thermo-acoustic effect that we predicted in 2013 refers to the generation of acoustic-pressure wave from magnetic nanoparticle (MNP) when thermally mediated under an alternating magnetic field (AMF) at a pulsed or frequency-chirped application. Several independent experimental studies have since validated magneto-thermoacoustic effect, and a latest report has discovered acoustic-wave generation from MNP at the second-harmonic frequency of the AMF when operating continuously. We propose that applying two AMFs with differing frequencies to MNP will produce acoustic-pressure wave at the summation and difference of the two frequencies, in addition to the two second-harmonic frequencies. Analysis of the specific absorption dynamics of the MNP when exposed to two AMFs of differing frequencies has shown some interesting patterns of acoustic-intensity at the multiple frequency components. The ratio of the acoustic-intensity at the summation-frequency over that of the difference-frequency is determined by the frequency-ratio of the two AMFs, but remains independent of the AMF strengths. The ratio of the acoustic-intensity at the summation- or difference-frequency over that at each of the two second-harmonic frequencies is determined by both the frequency-ratio and the field-strength-ratio of the two AMFs. The results indicate a potential strategy for localization of the source of a continuous-wave magneto-thermalacoustic signal by examining the frequency spectrum of full-field non-differentiating acoustic detection, with the field-strength ratio changed continuously at a fixed frequency-ratio. The practicalities and challenges of this magnetic spatial localization approach for magneto-thermo-acoustic imaging using a simple envisioned set of two AMFs arranged in parallel to each other are discussed.

  19. A New Instantaneous Frequency Measure Based on The Stockwell Transform

    NASA Astrophysics Data System (ADS)

    yedlin, M. J.; Ben-Horrin, Y.; Fraser, J. D.

    2011-12-01

    We propose the use of a new transform, the Stockwell transform[1], as a means of creating time-frequency maps and applying them to distinguish blasts from earthquakes. This new transform, the Stockwell transform can be considered as a variant of the continuous wavelet transform, that preserves the absolute phase.The Stockwell transform employs a complex Morlet mother wavelet. The novelty of this transform lies in its resolution properties. High frequencies in the candidate signal are well-resolved in time but poorly resolved in frequency, while the converse is true for low frequency signal components. The goal of this research is to obtain the instantaneous frequency as a function of time for both the earthquakes and the blasts. Two methods will be compared. In the first method, we will compute the analytic signal, the envelope and the instantaneous phase as a function of time[2]. The instantaneous phase derivative will yield the instantaneous angular frequency. The second method will be based on time-frequency analysis using the Stockwell transform. The Stockwell transform will be computed in non-redundant fashion using a dyadic representation[3]. For each time-point, the frequency centroid will be computed -- a representation for the most likely frequency at that time. A detailed comparison will be presented for both approaches to the computation of the instantaneous frequency. An advantage of the Stockwell approach is that no differentiation is applied. The Hilbert transform method can be less sensitive to edge effects. The goal of this research is to see if the new Stockwell-based method could be used as a discriminant between earthquakes and blasts. References [1] Stockwell, R.G., Mansinha, L. and Lowe, R.P. "Localization of the complex spectrum: the S transform", IEEE Trans. Signal Processing, vol.44, no.4, pp.998-1001, (1996). [2]Taner, M.T., Koehler, F. "Complex seismic trace analysis", Geophysics, vol. 44, Issue 6, pp. 1041-1063 (1979). [3] Brown, R.A., Lauzon, M.L. and Frayne, R. "General Description of Linear Time-Frequency Transforms and Formulation of a Fast, Invertible Transform That Samples the Continuous S-Transform Spectrum Nonredundantly", IEEE Transactions on Signal Processing, 1:281-90 (2010).

  20. Fast Interrogation of Fiber Bragg Gratings with Electro-Optical Dual Optical Frequency Combs

    PubMed Central

    Posada-Roman, Julio E.; Garcia-Souto, Jose A.; Poiana, Dragos A.; Acedo, Pablo

    2016-01-01

    Optical frequency combs (OFC) generated by electro-optic modulation of continuous-wave lasers provide broadband coherent sources with high power per line and independent control of line spacing and the number of lines. In addition to their application in spectroscopy, they offer flexible and optimized sources for the interrogation of other sensors based on wavelength change or wavelength filtering, such as fiber Bragg grating (FBG) sensors. In this paper, a dual-OFC FBG interrogation system based on a single laser and two optical-phase modulators is presented. This architecture allows for the configuration of multimode optical source parameters such as the number of modes and their position within the reflected spectrum of the FBG. A direct read-out is obtained by mapping the optical spectrum onto the radio-frequency spectrum output of the dual-comb. This interrogation scheme is proposed for measuring fast phenomena such as vibrations and ultrasounds. Results are presented for dual-comb operation under optimized control. The optical modes are mapped onto detectable tones that are multiples of 0.5 MHz around a center radiofrequency tone (40 MHz). Measurements of ultrasounds (40 kHz and 120 kHz) are demonstrated with this sensing system. Ultrasounds induce dynamic strain onto the fiber, which generates changes in the reflected Bragg wavelength and, hence, modulates the amplitude of the OFC modes within the reflected spectrum. The amplitude modulation of two counterphase tones is detected to obtain a differential measurement proportional to the ultrasound signal. PMID:27898043

  1. Fast Interrogation of Fiber Bragg Gratings with Electro-Optical Dual Optical Frequency Combs.

    PubMed

    Posada-Roman, Julio E; Garcia-Souto, Jose A; Poiana, Dragos A; Acedo, Pablo

    2016-11-26

    Optical frequency combs (OFC) generated by electro-optic modulation of continuous-wave lasers provide broadband coherent sources with high power per line and independent control of line spacing and the number of lines. In addition to their application in spectroscopy, they offer flexible and optimized sources for the interrogation of other sensors based on wavelength change or wavelength filtering, such as fiber Bragg grating (FBG) sensors. In this paper, a dual-OFC FBG interrogation system based on a single laser and two optical-phase modulators is presented. This architecture allows for the configuration of multimode optical source parameters such as the number of modes and their position within the reflected spectrum of the FBG. A direct read-out is obtained by mapping the optical spectrum onto the radio-frequency spectrum output of the dual-comb. This interrogation scheme is proposed for measuring fast phenomena such as vibrations and ultrasounds. Results are presented for dual-comb operation under optimized control. The optical modes are mapped onto detectable tones that are multiples of 0.5 MHz around a center radiofrequency tone (40 MHz). Measurements of ultrasounds (40 kHz and 120 kHz) are demonstrated with this sensing system. Ultrasounds induce dynamic strain onto the fiber, which generates changes in the reflected Bragg wavelength and, hence, modulates the amplitude of the OFC modes within the reflected spectrum. The amplitude modulation of two counterphase tones is detected to obtain a differential measurement proportional to the ultrasound signal.

  2. Continuous Wavelet Transform Analysis of Acceleration Signals Measured from a Wave Buoy

    PubMed Central

    Chuang, Laurence Zsu-Hsin; Wu, Li-Chung; Wang, Jong-Hao

    2013-01-01

    Accelerometers, which can be installed inside a floating platform on the sea, are among the most commonly used sensors for operational ocean wave measurements. To examine the non-stationary features of ocean waves, this study was conducted to derive a wavelet spectrum of ocean waves and to synthesize sea surface elevations from vertical acceleration signals of a wave buoy through the continuous wavelet transform theory. The short-time wave features can be revealed by simultaneously examining the wavelet spectrum and the synthetic sea surface elevations. The in situ wave signals were applied to verify the practicality of the wavelet-based algorithm. We confirm that the spectral leakage and the noise at very-low-frequency bins influenced the accuracies of the estimated wavelet spectrum and the synthetic sea surface elevations. The appropriate thresholds of these two factors were explored. To study the short-time wave features from the wave records, the acceleration signals recorded from an accelerometer inside a discus wave buoy are analysed. The results from the wavelet spectrum show the evidence of short-time nonlinear wave events. Our study also reveals that more surface profiles with higher vertical asymmetry can be found from short-time nonlinear wave with stronger harmonic spectral peak. Finally, we conclude that the algorithms of continuous wavelet transform are practical for revealing the short-time wave features of the buoy acceleration signals. PMID:23966188

  3. Multicarrier orthogonal spread-spectrum (MOSS) data communications

    DOEpatents

    Smith, Stephen F [London, TN; Dress, William B [Camas, WA

    2008-01-01

    Systems and methods are described for multicarrier orthogonal spread-spectrum (MOSS) data communication. A method includes individually spread-spectrum modulating at least two of a set of orthogonal frequency division multiplexed carriers, wherein the resulting individually spread-spectrum modulated at least two of a set of orthogonal frequency division multiplexed carriers are substantially mutually orthogonal with respect to both frequency division multiplexing and spread-spectrum modulation.

  4. Tailoring noise frequency spectrum to improve NIR determinations.

    PubMed

    Xie, Shaofei; Xiang, Bingren; Yu, Liyan; Deng, Haishan

    2009-12-15

    Near infrared spectroscopy (NIR) contains excessive background noise and weak analytical signals caused by near infrared overtones and combinations. That makes it difficult to achieve quantitative determinations of low concentration samples by NIR. A simple chemometric approach has been established to modify the noise frequency spectrum to improve NIR determinations. The proposed method is to multiply one Savitzky-Golay filtered NIR spectrum with another reference spectrum added with thermal noises before the other Savitzky-Golay filter. Since Savitzky-Golay filter is a kind of low-pass filter and cannot eliminate low frequency components of NIR spectrum, using one step or two consecutive Savitzky-Golay filter procedures cannot improve the determination of NIR greatly. Meanwhile, significant improvement is achieved via the Savitzky-Golay filtered NIR spectrum processed with the multiplication alteration before the other Savitzky-Golay filter. The frequency range of the modified noise spectrum shifts toward higher frequency regime via multiplication operation. So the second Savitzky-Golay filter is able to provide better filtering efficiency to obtain satisfied result. The improvement of NIR determination with tailoring noise frequency spectrum technique was demonstrated by both simulated dataset and two measured NIR spectral datasets. It is expected that noise frequency spectrum technique will be adopted mostly in applications where quantitative determination of low concentration sample is crucial.

  5. Laser-induced dispersive fluorescence spectrum and the detection of NO II

    NASA Astrophysics Data System (ADS)

    Zhang, Guiyin; Jin, Yidong

    2008-03-01

    Laser-induced dispersive fluorescence (LIDF) spectrum of NO II molecule in the spectral region of 508.3-708.3nm is obtained with the 508.0nm excitation wavelength. It is found that at low sample pressure the spectrum is composed of a banded structure superimposed on a continuous one. While the spectrum show itself as a continuous envelope centered at 630.0nm when the pressure with a higher value. NO II molecules are excited to the first excited state A2B II by absorbing laser photons. Owing to the strong interaction between X2A I~A2B II and A2B II ~ B2B Istates, some excited molecules redistribute to X2A I and B2B I states by the process of internal energy conversion or quenching. This induces the fluorescence come from different excited states. Based on the experimental data, the vibration frequencies of the ground electronic state of NO II molecule are obtained. They are ω I=(1319+/-12)cm -1, ω II=(759.8+/-0.7)cm -1,and ω 3=(1635+/-29)cm -1. The optimum-receiving wavelength for detecting NO II gas with the technique of LIDF is proposed.

  6. Differential changes in myoelectric characteristics of slow and fast fatigable frog muscle fibres during long-lasting activity.

    PubMed

    Vydevska-Chichova, M; Mileva, K; Radicheva, N

    2007-04-01

    The electrical activity of different muscle fibre types during fatigue at varying stimulation frequency and fibre stretch was studied. Extracellular action potentials (ECAPs) were recorded from isolated frog muscle fibres at initial length and stretched by 15%, 25% and 35% and stimulated for 180 s by suprathreshold pulses with frequencies of 5, 6.7 and 10Hz. The changes in ECAP negative phase duration (T(0)), propagation velocity of excitation (PV), potential power spectrum and its median frequency (MDF) were analysed for the period of uninterrupted activity (endurance time, ET). Slow (SMF) and fast (FMF) fatigable muscle fibre types were distinguished by the rate of PV decrease during ET. With the increase of stimulation frequency and fibre stretch, the rate of ECAP parameter changes increased and was larger in FMF, but this proportion was reversed with stretching over 25% and 10Hz stimulation. In both fibre types the power spectrum shift to lower frequencies during continuous activity was more pronounced with higher stimulation frequency. In FMFs the rates of MDF changes were positively and more strongly correlated with the rates of PV changes, whilst in SMFs the inverse correlation between the rates of changes of MDF and T(0) was stronger. The results indicate specific adaptation of slow and fast fatigable muscle fibres to stretch and activation frequency due to the differences in their membrane processes.

  7. Frequency Correction for MIRO Chirp Transformation Spectroscopy Spectrum

    NASA Technical Reports Server (NTRS)

    Lee, Seungwon

    2012-01-01

    This software processes the flyby spectra of the Chirp Transform Spectrometer (CTS) of the Microwave Instrument for Rosetta Orbiter (MIRO). The tool corrects the effect of Doppler shift and local-oscillator (LO) frequency shift during the flyby mode of MIRO operations. The frequency correction for CTS flyby spectra is performed and is integrated with multiple spectra into a high signal-to-noise averaged spectrum at the rest-frame RF frequency. This innovation also generates the 8 molecular line spectra by dividing continuous 4,096-channel CTS spectra. The 8 line spectra can then be readily used for scientific investigations. A spectral line that is at its rest frequency in the frame of the Earth or an asteroid will be observed with a time-varying Doppler shift as seen by MIRO. The frequency shift is toward the higher RF frequencies on approach, and toward lower RF frequencies on departure. The magnitude of the shift depends on the flyby velocity. The result of time-varying Doppler shift is that of an observed spectral line will be seen to move from channel to channel in the CTS spectrometer. The direction (higher or lower frequency) in the spectrometer depends on the spectral line frequency under consideration. In order to analyze the flyby spectra, two steps are required. First, individual spectra must be corrected for the Doppler shift so that individual spectra can be superimposed at the same rest frequency for integration purposes. Second, a correction needs to be applied to the CTS spectra to account for the LO frequency shifts that are applied to asteroid mode.

  8. Hybrid spread spectrum radio system

    DOEpatents

    Smith, Stephen F [London, TN; Dress, William B [Camas, WA

    2010-02-09

    Systems and methods are described for hybrid spread spectrum radio systems. A method, includes receiving a hybrid spread spectrum signal including: fast frequency hopping demodulating and direct sequence demodulating a direct sequence spread spectrum signal, wherein multiple frequency hops occur within a single data-bit time and each bit is represented by chip transmissions at multiple frequencies.

  9. Effect of water depth on wind-wave frequency spectrum I. Spectral form

    NASA Astrophysics Data System (ADS)

    Wen, Sheng-Chang; Guan, Chang-Long; Sun, Shi-Cai; Wu, Ke-Jian; Zhang, Da-Cuo

    1996-06-01

    Wen et al's method developed to obtain wind-wave frequency spectrum in deep water was used to derive the spectrum in finite depth water. The spectrum S(ω) (ω being angular frequency) when normalized with the zeroth moment m 0 and peak frequency {ie97-1}, contains in addition to the peakness factor {ie97-2} a depth parameter η=(2π m o)1/2/ d ( d being water depth), so the spectrum behavior can be studied for different wave growth stages and water depths.

  10. Intracavity frequency doubling of a continuous wave Ti:sapphire ring laser and application in resonance Raman spectroscopy of heme protein dynamics

    NASA Astrophysics Data System (ADS)

    Buchter, Scott C.; Williams, Curtis; Schulte, Alfons; Alekel, Theodore, III; Mizell, Gregory J.; Fay, William R.

    1995-04-01

    Noncritical temperature-tuned phase-matching and large nonlinear coefficients make potassium niobate an attractive material for frequency doubling tuneable near-infrared radiation. We have mounted a KNbO3 crystal intracavity in an argon ion pumped, continuous wave Ti:Sapphire ring laser to increase the power level of the second harmonic. Wavelength selection at the fundamental frequency is accomplished with a birefringent filter. By using the crystal orientation that defines the d32 coefficient of KNbO3 we have obtained a blue second harmonic output tuneable from 425-445 nm. The laser is also characterized by the narrow linewidth of the Ti:Sapphire ring oscillator and good temporal stability. A continuous wave, frequency doubled Ti:sapphire laser is well suited to excite the resonance Raman spectrum in heme proteins with strong absorption bands in the range of 400 to 450 nm. We demonstrate the feasibility of such a setup for Raman studies of ligand binding to myoglobin. The Raman bands yield information on the reaction dynamics and on conformational changes near the linkage between the heme and the protein. In particular, a shift of the stretch frequency of the iron- histidine bond with high pressure may be attributed to a protein conformational change.

  11. VizieR Online Data Catalog: KIC 10670103 frequency spectrum (Reed+, 2014)

    NASA Astrophysics Data System (ADS)

    Reed, M. D.; Foster, H.; Telting, J. H.; Ostensen, R. H.; Farris, L. H.; Oreiro, R.; Baran, A. S.

    2017-05-01

    From 33 months of nearly continuous Kepler data, we have detected 278 periodicities in KIC 10670103, making it the richest sdBV star observed, so far. The 93.8 per cent duty cycle provided excellent data with a 5σ detection limit of 0.1ppt and a resolution of 0.017uHz. (1 data file).

  12. Generation of an optical frequency comb with a Gaussian spectrum using a linear time-to-space mapping system.

    PubMed

    Hisatake, Shintaro; Tada, Keiji; Nagatsuma, Tadao

    2010-03-01

    We demonstrate the generation of an optical frequency comb (OFC) with a Gaussian spectrum using a continuous-wave (CW) laser, based on spatial convolution of a slit and a periodically moving optical beam spot in a linear time-to-space mapping system. A CW optical beam is linearly mapped to a spatial signal using two sinusoidal electro-optic (EO) deflections and an OFC is extracted by inserting a narrow spatial slit in the Fourier-transform plane of a second EO deflector (EOD). The spectral shape of the OFC corresponds to the spatial beam profile in the near-field region of the second EOD, which can be manipulated by a spatial filter without spectral dispersers. In a proof-of-concept experiment, a 16.25-GHz-spaced, 240-GHz-wide Gaussian-envelope OFC (corresponding to 1.8 ps Gaussian pulse generation) was demonstrated.

  13. Energy transport in weakly nonlinear wave systems with narrow frequency band excitation.

    PubMed

    Kartashova, Elena

    2012-10-01

    A novel discrete model (D model) is presented describing nonlinear wave interactions in systems with small and moderate nonlinearity under narrow frequency band excitation. It integrates in a single theoretical frame two mechanisms of energy transport between modes, namely, intermittency and energy cascade, and gives the conditions under which each regime will take place. Conditions for the formation of a cascade, cascade direction, conditions for cascade termination, etc., are given and depend strongly on the choice of excitation parameters. The energy spectra of a cascade may be computed, yielding discrete and continuous energy spectra. The model does not require statistical assumptions, as all effects are derived from the interaction of distinct modes. In the example given-surface water waves with dispersion function ω(2)=gk and small nonlinearity-the D model predicts asymmetrical growth of side-bands for Benjamin-Feir instability, while the transition from discrete to continuous energy spectrum, excitation parameters properly chosen, yields the saturated Phillips' power spectrum ~g(2)ω(-5). The D model can be applied to the experimental and theoretical study of numerous wave systems appearing in hydrodynamics, nonlinear optics, electrodynamics, plasma, convection theory, etc.

  14. Study on sampling of continuous linear system based on generalized Fourier transform

    NASA Astrophysics Data System (ADS)

    Li, Huiguang

    2003-09-01

    In the research of signal and system, the signal's spectrum and the system's frequency characteristic can be discussed through Fourier Transform (FT) and Laplace Transform (LT). However, some singular signals such as impulse function and signum signal don't satisfy Riemann integration and Lebesgue integration. They are called generalized functions in Maths. This paper will introduce a new definition -- Generalized Fourier Transform (GFT) and will discuss generalized function, Fourier Transform and Laplace Transform under a unified frame. When the continuous linear system is sampled, this paper will propose a new method to judge whether the spectrum will overlap after generalized Fourier transform (GFT). Causal and non-causal systems are studied, and sampling method to maintain system's dynamic performance is presented. The results can be used on ordinary sampling and non-Nyquist sampling. The results also have practical meaning on research of "discretization of continuous linear system" and "non-Nyquist sampling of signal and system." Particularly, condition for ensuring controllability and observability of MIMO continuous systems in references 13 and 14 is just an applicable example of this paper.

  15. A Cognitive Agent for Spectrum Monitoring and Informed Spectrum Access

    DTIC Science & Technology

    2017-06-01

    electromagnetic environments (EMEs) to understand what spectrum bands are accessed, when those bands are accessed, and how much energy is...recall. The cognitive agent in this report uses the second approach. The knowledge domain of the cognitive agent is the electromagnetic spectrum. The...Knowledge DTV digital television EME electromagnetic environments FM frequency modulated RF radio frequency VHF very high frequency

  16. Response of microchip solid-state laser to external frequency-shifted feedback and its applications

    PubMed Central

    Tan, Yidong; Zhang, Shulian; Zhang, Song; Zhang, Yongqing; Liu, Ning

    2013-01-01

    The response of the microchip solid-state Nd:YAG laser, which is subjected to external frequency-shifted feedback, is experimentally and theoretically analysed. The continuous weak response of the laser to the phase and amplitude of the feedback light is achieved by controlling the feedback power level, and this system can be used to achieve contact-free measurement of displacement, vibration, liquid evaporation and thermal expansion with nanometre accuracy in common room conditions without precise environmental control. Furthermore, a strong response, including chaotic harmonic and parametric oscillation, is observed, and the spectrum of this response, as examined by a frequency-stabilised Nd:YAG laser, indicates laser spectral linewidth broadening. PMID:24105389

  17. Response of microchip solid-state laser to external frequency-shifted feedback and its applications.

    PubMed

    Tan, Yidong; Zhang, Shulian; Zhang, Song; Zhang, Yongqing; Liu, Ning

    2013-10-09

    The response of the microchip solid-state Nd:YAG laser, which is subjected to external frequency-shifted feedback, is experimentally and theoretically analysed. The continuous weak response of the laser to the phase and amplitude of the feedback light is achieved by controlling the feedback power level, and this system can be used to achieve contact-free measurement of displacement, vibration, liquid evaporation and thermal expansion with nanometre accuracy in common room conditions without precise environmental control. Furthermore, a strong response, including chaotic harmonic and parametric oscillation, is observed, and the spectrum of this response, as examined by a frequency-stabilised Nd:YAG laser, indicates laser spectral linewidth broadening.

  18. A mechanism to explain the spectrum of Hessdalen Lights phenomenon

    NASA Astrophysics Data System (ADS)

    Paiva, G. S.; Taft, C. A.

    2012-07-01

    In this work, we present a model to explain the apparently contradictory spectrum observed in Hessdalen Lights (HL) phenomenon. According to our model, its nearly flat spectrum on the top with steep sides is due to the effect of optical thickness on the bremsstrahlung spectrum. At low frequencies self-absorption modifies the spectrum to follow the Rayleigh-Jeans part of the blackbody curve. This spectrum is typical of dense ionized gas. Additionally, spectrum produced in the thermal bremsstrahlung process is flat up to a cutoff frequency, ν cut, and falls off exponentially at higher frequencies. This sequence of events forms the typical spectrum of HL phenomenon when the atmosphere is clear, with no fog.

  19. Short wind waves on the ocean: Wavenumber-frequency spectra

    NASA Astrophysics Data System (ADS)

    Plant, William J.

    2015-03-01

    Dominant surface waves on the ocean exhibit a dispersion relation that confines their energy to a curve in a wavenumber-frequency spectrum. Short wind waves on the ocean, on the other hand, are advected by these dominant waves so that they do not exhibit a well-defined dispersion relation over many realizations of the surface. Here we show that the short-wave analog to the dispersion relation is a distributed spectrum in the wavenumber-frequency plane that collapses to the standard dispersion relation in the absence of long waves. We compute probability distributions of short-wave wavenumber given a (frequency, direction) pair and of short-wave frequency given a (wavenumber, direction) pair. These two probability distributions must yield a single spectrum of surface displacements as a function of wavenumber and frequency, F(k,f). We show that the folded, azimuthally averaged version of this spectrum has a "butterfly" pattern in the wavenumber-frequency plane if significant long waves are present. Integration of this spectrum over frequency yields the well-known k-3 wavenumber spectrum. When integrated over wavenumber, the spectrum yields an f-4 form that agrees with measurement. We also show that a cut through the unfolded F(k,f) at constant k produces the well-known form of moderate-incidence-angle Doppler spectra for electromagnetic scattering from the sea. This development points out the dependence of the short-wave spectrum on the amplitude of the long waves.

  20. [EMD Time-Frequency Analysis of Raman Spectrum and NIR].

    PubMed

    Zhao, Xiao-yu; Fang, Yi-ming; Tan, Feng; Tong, Liang; Zhai, Zhe

    2016-02-01

    This paper analyzes the Raman spectrum and Near Infrared Spectrum (NIR) with time-frequency method. The empirical mode decomposition spectrum becomes intrinsic mode functions, which the proportion calculation reveals the Raman spectral energy is uniform distributed in each component, while the NIR's low order intrinsic mode functions only undertakes fewer primary spectroscopic effective information. Both the real spectrum and numerical experiments show that the empirical mode decomposition (EMD) regard Raman spectrum as the amplitude-modulated signal, which possessed with high frequency adsorption property; and EMD regards NIR as the frequency-modulated signal, which could be preferably realized high frequency narrow-band demodulation during first-order intrinsic mode functions. The first-order intrinsic mode functions Hilbert transform reveals that during the period of empirical mode decomposes Raman spectrum, modal aliasing happened. Through further analysis of corn leaf's NIR in time-frequency domain, after EMD, the first and second orders components of low energy are cut off, and reconstruct spectral signal by using the remaining intrinsic mode functions, the root-mean-square error is 1.001 1, and the correlation coefficient is 0.981 3, both of these two indexes indicated higher accuracy in re-construction; the decomposition trend term indicates the absorbency is ascending along with the decreasing to wave length in the near-infrared light wave band; and the Hilbert transform of characteristic modal component displays, 657 cm⁻¹ is the specific frequency by the corn leaf stress spectrum, which could be regarded as characteristic frequency for identification.

  1. The frequency spectrum crisis - Issues and answers

    NASA Astrophysics Data System (ADS)

    Armes, G. L.

    The frequency spectrum represents a unique resource which can be overtaxed. In the present investigation, it is attempted to evalute the demand for satellite and microwave services. Dimensions of increased demand are discussed, taking into account developments related to the introduction of the personal computer, the activities of the computer and communications industries in preparation for the office of the future, and electronic publishing. Attention is given to common carrier spectrum congestion, common carrier microwave, satellite communications, teleports, international implications, satellite frequency bands, satellite spectrum implications, alternatives regarding the utilization of microwave frequency bands, U.S. Government spectrum utilization, and the impact at C-band.

  2. 47 CFR 301.20 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... AND SPECTRUM SHARING BY FEDERAL GOVERNMENT STATIONS General Information § 301.20 Definitions... spectrum frequencies or the reallocation of spectrum frequencies from Federal use to exclusive non-Federal...

  3. 47 CFR 301.20 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... AND SPECTRUM SHARING BY FEDERAL GOVERNMENT STATIONS General Information § 301.20 Definitions... spectrum frequencies or the reallocation of spectrum frequencies from Federal use to exclusive non-Federal...

  4. Time Correlations and the Frequency Spectrum of Sound Radiated by Turbulent Flows

    NASA Technical Reports Server (NTRS)

    Rubinstein, Robert; Zhou, Ye

    1997-01-01

    Theories of turbulent time correlations are applied to compute frequency spectra of sound radiated by isotropic turbulence and by turbulent shear flows. The hypothesis that Eulerian time correlations are dominated by the sweeping action of the most energetic scales implies that the frequency spectrum of the sound radiated by isotropic turbulence scales as omega(exp 4) for low frequencies and as omega(exp -3/4) for high frequencies. The sweeping hypothesis is applied to an approximate theory of jet noise. The high frequency noise again scales as omega(exp -3/4), but the low frequency spectrum scales as omega(exp 2). In comparison, a classical theory of jet noise based on dimensional analysis gives omega(exp -2) and omega(exp 2) scaling for these frequency ranges. It is shown that the omega(exp -2) scaling is obtained by simplifying the description of turbulent time correlations. An approximate theory of the effect of shear on turbulent time correlations is developed and applied to the frequency spectrum of sound radiated by shear turbulence. The predicted steepening of the shear dominated spectrum appears to be consistent with jet noise measurements.

  5. A Model for Jet-Surface Interaction Noise Using Physically Realizable Upstream Turbulence Conditions

    NASA Technical Reports Server (NTRS)

    Afsar, Mohammed Z.; Leib, Stewart J.; Bozak, Richard F.

    2016-01-01

    This paper is a continuation of previous work in which a generalized Rapid Distortion Theory (RDT) formulation was used to model low-frequency trailing-edge noise. The research was motivated by proposed next-generation aircraft configurations where the exhaust system is tightly integrated with the airframe. Data from recent experiments at NASA on the interaction between high-Reynolds-number subsonic jet flows and an external flat plate showed that the power spectral density (PSD) of the far-field pressure underwent considerable amplification at low frequencies. For example, at the 90deg observation angle, the low-frequency noise could be as much as 10 dB greater than the jet noise itself. In this paper, we present predictions of the noise generated by the interaction of a rectangular jet with the trailing edge of a semi-infinite flat plate. The calculations are based on a formula for the acoustic spectrum of this noise source derived from an exact formal solution of the linearized Euler equations involving (in this case) one arbitrary convected scalar quantity and a Rayleigh equation Green's function. A low-frequency asymptotic approximation for the Green's function based on a two-dimensional mean flow is used in the calculations along with a physically realizable upstream turbulence spectrum, which includes a finite decorrelation region. Numerical predictions of the sound field, based on three-dimensional RANS solutions to determine the mean flow, turbulent kinetic energy and turbulence length and time scales, for a range of subsonic acoustic Mach number jets and nozzle aspect ratios are compared with experimental data. Comparisons of the RANS results with flow data are also presented for selected cases. We find that a finite decorrelation region in the turbulence spectrum increases the low-frequency algebraic decay (the low frequency "roll-off") of the acoustic spectrum with angular frequency thereby producing much closer agreement with noise data for Strouhal numbers less than 0.1. Secondly, the large-aspect-ratio theory is able to predict the low-frequency amplification due to the jet-edge interaction reasonably well, even for moderate aspect ratio nozzles. We show also that the noise predictions for smaller aspect ratio jets can be fine-tuned using the appropriate RANS-based mean flow and turbulence properties.

  6. Lattice vibrations in the Frenkel-Kontorova model. I. Phonon dispersion, number density, and energy

    NASA Astrophysics Data System (ADS)

    Meng, Qingping; Wu, Lijun; Welch, David O.; Zhu, Yimei

    2015-06-01

    We studied the lattice vibrations of two interpenetrating atomic sublattices via the Frenkel-Kontorova (FK) model of a linear chain of harmonically interacting atoms subjected to an on-site potential using the technique of thermodynamic Green's functions based on quantum field-theoretical methods. General expressions were deduced for the phonon frequency-wave-vector dispersion relations, number density, and energy of the FK model system. As the application of the theory, we investigated in detail cases of linear chains with various periods of the on-site potential of the FK model. Some unusual but interesting features for different amplitudes of the on-site potential of the FK model are discussed. In the commensurate structure, the phonon spectrum always starts at a finite frequency, and the gaps of the spectrum are true ones with a zero density of modes. In the incommensurate structure, the phonon spectrum starts from zero frequency, but at a nonzero wave vector; there are some modes inside these gap regions, but their density is very low. In our approximation, the energy of a higher-order commensurate state of the one-dimensional system at a finite temperature may become indefinitely close to the energy of an incommensurate state. This finding implies that the higher-order incommensurate-commensurate transitions are continuous ones and that the phase transition may exhibit a "devil's staircase" behavior at a finite temperature.

  7. Low frequency electric and magnetic fields

    NASA Technical Reports Server (NTRS)

    Spaniol, Craig

    1989-01-01

    Following preliminary investigations of the low frequency electric and magnetic fields that may exists in the Earth-ionospheric cavity, measurements were taken with state-of-the art spectrum analyzers. As a follow up to this activity, an investigation was initiated to determine sources and values for possible low frequency signal that would appear in the cavity. The lowest cavity resonance is estimated at about 8 Hz, but lower frequencies may be an important component of our electromagnetic environment. The potential field frequencies produced by the electron were investigated by a classical model that included possible cross coupling of the electric and gravitation fields. During this work, an interesting relationship was found that related the high frequency charge field with the extremely low frequency of the gravitation field. The results of numerical calculations were surprisingly accurate and this area of investigation is continuing. The work toward continued development of a standardized monitoring facility is continuing with the potential of installing the prototype at West Virginia State College early in 1990. This installation would be capable of real time monitoring of ELF signals in the Earth-ionoshpere cavity and would provide some directional information. A high gain, low noise, 1/f frequency corrected preamplifier was designed and tested for the ferrite core magnetic sensor. The potential application of a super conducting sensor for the ELF magnetic field detection is under investigation. It is hoped that a fully operational monitoring network could pinpoint the location of ELF signal sources and provide new information on where these signals originate and what causes them, assuming that they are natural in origin.

  8. Research on spectrum broadening covering visible light of a fiber femtosecond optical frequency comb for absolute frequency measurement

    NASA Astrophysics Data System (ADS)

    Xing, Shuai; Wu, Tengfei; Li, Shuyi; Xia, Chuanqing; Han, Jibo; Zhang, Lei; Zhao, Chunbo

    2018-03-01

    As a bridge connecting microwave frequency and optical frequency, femtosecond laser has important significance in optical frequency measurement. Compared with the traditional Ti-sapphire femtosecond optical frequency comb, with the advantages of compact structure, strong anti-interference ability and low cost, the fiber femtosecond optical frequency comb has a wider application prospect. An experiment of spectrum broadening in a highly nonlinear photonic crystal fiber pumped by an Er-fiber mode-locked femtosecond laser is studied in this paper. Based on optical amplification and frequency doubling, the central wavelength of the output spectrum is 780nm and the average power is 232mW. With the femtosecond pulses coupled into two different photonic crystal fibers, the coverage of visible spectrum is up to 500nm-960nm. The spectral shape and width can be optimized by changing the polarization state for satisfying the requirments of different optical frequencies measurement.

  9. Radio Frequency Interference Detection for Passive Remote Sensing Using Eigenvalue Analysis

    NASA Technical Reports Server (NTRS)

    Schoenwald, Adam; Kim, Seung-Jun; Mohammed-Tano, Priscilla

    2017-01-01

    Radio frequency interference (RFI) can corrupt passive remote sensing measurements taken with microwave radiometers. With the increasingly utilized spectrum and the push for larger bandwidth radiometers, the likelihood of RFI contamination has grown significantly. In this work, an eigenvalue-based algorithm is developed to detect the presence of RFI and provide estimates of RFI-free radiation levels. Simulated tests show that the proposed detector outperforms conventional kurtosis-based RFI detectors in the low-to-medium interferece-to-noise-power-ratio (INR) regime under continuous wave (CW) and quadrature phase shift keying (QPSK) RFIs.

  10. Radio Frequency Interference Detection for Passive Remote Sensing Using Eigenvalue Analysis

    NASA Technical Reports Server (NTRS)

    Schoenwald, Adam J.; Kim, Seung-Jun; Mohammed, Priscilla N.

    2017-01-01

    Radio frequency interference (RFI) can corrupt passive remote sensing measurements taken with microwave radiometers. With the increasingly utilized spectrum and the push for larger bandwidth radiometers, the likelihood of RFI contamination has grown significantly. In this work, an eigenvalue-based algorithm is developed to detect the presence of RFI and provide estimates of RFI-free radiation levels. Simulated tests show that the proposed detector outperforms conventional kurtosis-based RFI detectors in the low-to-medium interference-to-noise-power-ratio (INR) regime under continuous wave (CW) and quadrature phase shift keying (QPSK) RFIs.

  11. Engineering the Frequency Spectrum of Bright Squeezed Vacuum via Group Velocity Dispersion in an SU(1,1) Interferometer.

    PubMed

    Lemieux, Samuel; Manceau, Mathieu; Sharapova, Polina R; Tikhonova, Olga V; Boyd, Robert W; Leuchs, Gerd; Chekhova, Maria V

    2016-10-28

    Bright squeezed vacuum, a promising tool for quantum information, can be generated by high-gain parametric down-conversion. However, its frequency and angular spectra are typically quite broad, which is undesirable for applications requiring single-mode radiation. We tailor the frequency spectrum of high-gain parametric down-conversion using an SU(1,1) interferometer consisting of two nonlinear crystals with a dispersive medium separating them. The dispersive medium allows us to select a narrow band of the frequency spectrum to be exponentially amplified by high-gain parametric amplification. The frequency spectrum is thereby narrowed from (56.5±0.1) to (1.22±0.02)  THz and, in doing so, the number of frequency modes is reduced from approximately 50 to 1.82±0.02. Moreover, this method provides control and flexibility over the spectrum of the generated light through the timing of the pump.

  12. Non Debye approximation on specific heat of solids

    NASA Astrophysics Data System (ADS)

    Bhattacharjee, Ruma; Das, Anamika; Sarkar, A.

    2018-05-01

    A simple non Debye frequency spectrum is proposed. The normalized frequency spectrum is compared to that of Debye spectrum. The proposed spectrum, provides a good account of low frequency phonon density of states, which gives a linear temperature variation at low temperature in contrast to Debye T3 law. It has been analyzed that the proposed model provides a good account of excess specific heat for nanostructure solid.

  13. Further studies of particle acceleration in cassiopeia A

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chevalier, R.A.; Oegerle, W.R.; Scott, J.S.

    We have further investigated models for statistical particle acceleration in the supernova remnant Cas A. Simple (three-parameter) models involving continuous second order Fermi acceleration and variable relativistic particle injection can reproduce the observed radio properties of Cas A, including the low-frequency flux anomaly first noted by Erickson and Perley. Models dominated by adiabatic expansion losses are preferable to those dominated by particle escape. The gain time determined from these models agrees well with that predicted from the hydrodynamic situation in Cas A. A model predicting the high-frequency nonthermal spectrum of Cas A indicates that the spectrum turns down in themore » optical regime due to synchrotron losses. The maximum relativistic particle energy content of Cas A was probably about several times 10/sup 49/-10/sup 50/ ergs, which can be compared with an estimated initial kinetic energy in the range 0.24 to 1.0 x 10/sup 52/ ergs. If relativistic particles can escape from Cas A, their spectra will have certain characteristics: the electron spectrum will have a turnover due to synchrotron losses and the proton spectrum will have a cutoff due to the particle gyroradii becoming larger than the sizes of the magnetic scattering centers. The observed bend in the galactic cosmic ray spectrum could be due to energy losses within the source remnant itself instead of losses incurred during propagation through the Galaxy. We also comment on other models for the relativistic electron content of Cas A.« less

  14. Quantum Entanglement Molecular Absorption Spectrum Simulator

    NASA Technical Reports Server (NTRS)

    Nguyen, Quang-Viet; Kojima, Jun

    2006-01-01

    Quantum Entanglement Molecular Absorption Spectrum Simulator (QE-MASS) is a computer program for simulating two photon molecular-absorption spectroscopy using quantum-entangled photons. More specifically, QE-MASS simulates the molecular absorption of two quantum-entangled photons generated by the spontaneous parametric down-conversion (SPDC) of a fixed-frequency photon from a laser. The two-photon absorption process is modeled via a combination of rovibrational and electronic single-photon transitions, using a wave-function formalism. A two-photon absorption cross section as a function of the entanglement delay time between the two photons is computed, then subjected to a fast Fourier transform to produce an energy spectrum. The program then detects peaks in the Fourier spectrum and displays the energy levels of very short-lived intermediate quantum states (or virtual states) of the molecule. Such virtual states were only previously accessible using ultra-fast (femtosecond) laser systems. However, with the use of a single-frequency continuous wave laser to produce SPDC photons, and QEMASS program, these short-lived molecular states can now be studied using much simpler laser systems. QE-MASS can also show the dependence of the Fourier spectrum on the tuning range of the entanglement time of any externally introduced optical-path delay time. QE-MASS can be extended to any molecule for which an appropriate spectroscopic database is available. It is a means of performing an a priori parametric analysis of entangled photon spectroscopy for development and implementation of emerging quantum-spectroscopic sensing techniques. QE-MASS is currently implemented using the Mathcad software package.

  15. A 0.4 to 10 GHz airborne electromagnetic environment survey of USA urban areas

    NASA Technical Reports Server (NTRS)

    Taylor, R. E.; Hill, J. S.

    1976-01-01

    An airborne electromagnetic-environment survey of some U.S. metropolitan areas measured terrestrial emissions within the broad frequency spectrum from 0.4 to 10 GHz. A Cessna 402 commercial aircraft was fitted with both nadir-viewing and horizon-viewing antennas and instrumentation, including a spectrum analyzer, a 35 mm continuous film camera, and a magnetic tape recorder. Most of the flights were made at a nominal altitude of 10,000 feet, and Washington, D. C., Baltimore, Philadelphia, New York, and Chicago were surveyed. The 450 to 470 MHz land-mobile UHF band is especially crowded, and the 400 to 406 MHz space bands are less active. This paper discusses test measurements obtained up to 10 GHz. Sample spectrum analyzer photograhs were selected from a total of 5,750 frames representing 38 hours of data.

  16. 0.4- to 10-GHz airborne electromagnetic-environment survey of United States urban areas

    NASA Technical Reports Server (NTRS)

    Taylor, R. E.; Hill, J. S.

    1976-01-01

    An airborne electromagnetic-environment survey of some U.S. metropolitan areas measured terrestrial emissions within the broad-frequency spectrum from 0.4 to 10 GHz. A Cessna 402 commercial aircraft was fitted with both nadir-viewing and horizon-viewing antennas and instrumentation, including a spectrum analyzer, a 35-mm continuous-film camera, and a magnetic-tape recorder. Most of the flights were made at a nominal altitude of 10,000 ft, and Washington, Baltimore, Philadelphia, New York, and Chicago were surveyed. The 450- to 470-MHz land-mobile UHF band is especially crowded, and the 400- to 406-MHz space bands are less active. Test measurements obtained up to 10 GHz are discussed. Sample spectrum-analyzer photographs were selected from a total of 5750 frames representing 38 hours of data.

  17. Determining Aliasing in Isolated Signal Conditioning Modules

    NASA Technical Reports Server (NTRS)

    2009-01-01

    The basic concept of aliasing is this: Converting analog data into digital data requires sampling the signal at a specific rate, known as the sampling frequency. The result of this conversion process is a new function, which is a sequence of digital samples. This new function has a frequency spectrum, which contains all the frequency components of the original signal. The Fourier transform mathematics of this process show that the frequency spectrum of the sequence of digital samples consists of the original signal s frequency spectrum plus the spectrum shifted by all the harmonics of the sampling frequency. If the original analog signal is sampled in the conversion process at a minimum of twice the highest frequency component contained in the analog signal, and if the reconstruction process is limited to the highest frequency of the original signal, then the reconstructed signal accurately duplicates the original analog signal. It is this process that can give birth to aliasing.

  18. Properties of train load frequencies and their applications

    NASA Astrophysics Data System (ADS)

    Milne, D. R. M.; Le Pen, L. M.; Thompson, D. J.; Powrie, W.

    2017-06-01

    A train in motion applies moving steady loads to the railway track as well as dynamic excitation; this causes track deflections, vibration and noise. At low frequency, the spectrum of measured track vibration has been found to have a distinct pattern; with spectral peaks occurring at multiples of the vehicle passing frequency. This pattern can be analysed to quantify aspects of train and track performance as well as to design sensors and systems for trackside condition monitoring. To this end, analytical methods are developed to determine frequency spectra based on known vehicle geometry and track properties. It is shown that the quasi-static wheel loads from a moving train, which are the most significant cause of the track deflections at low frequency, can be understood by considering a loading function representing the train geometry in combination with the response of the track to a single unit load. The Fourier transform of the loading function describes how the passage of repeating vehicles within a train leads to spectral peaks at various multiples of the vehicle passing frequency. When a train consists of a single type of repeating vehicle, these peaks depend on the geometry of that vehicle type as the separation of axles on a bogie and spacing of those bogies on a vehicle cause certain frequencies to be suppressed. Introduction of different vehicle types within a train or coupling of trainsets with a different inter-car length changes the spectrum, although local peaks still occur at multiples of the passing frequency of the primary vehicle. Using data from track-mounted geophones, it is shown that the properties of the train load spectrum, together with a model for track behaviour, allows calculation of the track system support modulus without knowledge of the axle loads, and enables rapid determination of the train speed. For continuous remote condition monitoring, track-mounted transducers are ideally powered using energy harvesting devices. These need to be tuned to optimise energy abstraction; the appropriate energy harvesting frequencies for given vehicle types and line speeds can also be predicted using the models developed.

  19. Tunable diode laser-pumped Tm,Ho:YLF laser operated in continuous-wave and Q-switched modes

    NASA Technical Reports Server (NTRS)

    Mcguckin, B. T.; Hemmati, H.; Menzies, R. T.

    1992-01-01

    Tunable continuous-wave and pulsed laser output was obtained from a Tm-sensitized Ho:YLiF4 crystal at subambient temperatures when longitudinally pumped with a diode laser array. A conversion efficiency of 42 percent and slope efficiency of approximately 60 percent relative to the absorbed pumped power have been achieved at a crystal temperature of 275 K. The emission spectrum was etalon tunable over a range of 16/cm centered at 2067 nm with fine tuning capability of the transition frequency with crystal temperature at measured rate of -0.03/cm/K. Output energies of 0.22 mJ per pulse and 22 ns pulse duration were recorded at Q-switch frequencies that correspond to an effective upper laser level lifetime of 6 ms, and a pulse energy extraction efficiency of 64 percent.

  20. Micro acoustic spectrum analyzer

    DOEpatents

    Schubert, W. Kent; Butler, Michael A.; Adkins, Douglas R.; Anderson, Larry F.

    2004-11-23

    A micro acoustic spectrum analyzer for determining the frequency components of a fluctuating sound signal comprises a microphone to pick up the fluctuating sound signal and produce an alternating current electrical signal; at least one microfabricated resonator, each resonator having a different resonant frequency, that vibrate in response to the alternating current electrical signal; and at least one detector to detect the vibration of the microfabricated resonators. The micro acoustic spectrum analyzer can further comprise a mixer to mix a reference signal with the alternating current electrical signal from the microphone to shift the frequency spectrum to a frequency range that is a better matched to the resonant frequencies of the microfabricated resonators. The micro acoustic spectrum analyzer can be designed specifically for portability, size, cost, accuracy, speed, power requirements, and use in a harsh environment. The micro acoustic spectrum analyzer is particularly suited for applications where size, accessibility, and power requirements are limited, such as the monitoring of industrial equipment and processes, detection of security intrusions, or evaluation of military threats.

  1. The perceptual significance of high-frequency energy in the human voice.

    PubMed

    Monson, Brian B; Hunter, Eric J; Lotto, Andrew J; Story, Brad H

    2014-01-01

    While human vocalizations generate acoustical energy at frequencies up to (and beyond) 20 kHz, the energy at frequencies above about 5 kHz has traditionally been neglected in speech perception research. The intent of this paper is to review (1) the historical reasons for this research trend and (2) the work that continues to elucidate the perceptual significance of high-frequency energy (HFE) in speech and singing. The historical and physical factors reveal that, while HFE was believed to be unnecessary and/or impractical for applications of interest, it was never shown to be perceptually insignificant. Rather, the main causes for focus on low-frequency energy appear to be because the low-frequency portion of the speech spectrum was seen to be sufficient (from a perceptual standpoint), or the difficulty of HFE research was too great to be justifiable (from a technological standpoint). The advancement of technology continues to overcome concerns stemming from the latter reason. Likewise, advances in our understanding of the perceptual effects of HFE now cast doubt on the first cause. Emerging evidence indicates that HFE plays a more significant role than previously believed, and should thus be considered in speech and voice perception research, especially in research involving children and the hearing impaired.

  2. The perceptual significance of high-frequency energy in the human voice

    PubMed Central

    Monson, Brian B.; Hunter, Eric J.; Lotto, Andrew J.; Story, Brad H.

    2014-01-01

    While human vocalizations generate acoustical energy at frequencies up to (and beyond) 20 kHz, the energy at frequencies above about 5 kHz has traditionally been neglected in speech perception research. The intent of this paper is to review (1) the historical reasons for this research trend and (2) the work that continues to elucidate the perceptual significance of high-frequency energy (HFE) in speech and singing. The historical and physical factors reveal that, while HFE was believed to be unnecessary and/or impractical for applications of interest, it was never shown to be perceptually insignificant. Rather, the main causes for focus on low-frequency energy appear to be because the low-frequency portion of the speech spectrum was seen to be sufficient (from a perceptual standpoint), or the difficulty of HFE research was too great to be justifiable (from a technological standpoint). The advancement of technology continues to overcome concerns stemming from the latter reason. Likewise, advances in our understanding of the perceptual effects of HFE now cast doubt on the first cause. Emerging evidence indicates that HFE plays a more significant role than previously believed, and should thus be considered in speech and voice perception research, especially in research involving children and the hearing impaired. PMID:24982643

  3. Theory of Electromagnetic Surface Waves in Plasma with Smooth Boundaries

    NASA Astrophysics Data System (ADS)

    Kuzelev, M. V.

    2018-05-01

    A theory of nonpotential surface waves in plasma with smooth boundaries is developed. The complex frequencies of surface waves for plasma systems of different geometries and different profiles of the plasma density are calculated. Expressions for the rates of collisionless damping of surface waves due to their resonance interaction with local plasma waves of continuous spectrum are obtained. The influence of collisions in plasma is also considered.

  4. Terahertz quantum-cascade lasers as high-power and wideband, gapless sources for spectroscopy.

    PubMed

    Röben, Benjamin; Lü, Xiang; Hempel, Martin; Biermann, Klaus; Schrottke, Lutz; Grahn, Holger T

    2017-07-10

    Terahertz (THz) quantum-cascade lasers (QCLs) are powerful radiation sources for high-resolution and high-sensitivity spectroscopy with a discrete spectrum between 2 and 5 THz as well as a continuous coverage of several GHz. However, for many applications, a radiation source with a continuous coverage of a substantially larger frequency range is required. We employed a multi-mode THz QCL operated with a fast ramped injection current, which leads to a collective tuning of equally-spaced Fabry-Pérot laser modes exceeding their separation. A continuous coverage over 72 GHz at about 4.7 THz was achieved. We demonstrate that the QCL is superior to conventional sources used in Fourier transform infrared spectroscopy in terms of the signal-to-noise ratio as well as the dynamic range by one to two orders of magnitude. Our results pave the way for versatile THz spectroscopic systems with unprecedented resolution and sensitivity across a wide frequency range.

  5. Synchrotron Spectral Curvature from 22 MHZ to 23 GHZ

    NASA Technical Reports Server (NTRS)

    Kogut, Alan J.

    2012-01-01

    We combine surveys of the radio sky at frequencies 22 MHz to 1.4 GHz with data from the ARCADE-2 instrument at frequencies 3 GHz to 10 GHz to characterize the frequency spectrum of diffuse synchrotron emission in the Galaxy. The radio spectrum steepens with frequency from 22 MHz to 10 GHz. The projected spectral index at 23 GHz derived from the low-frequency data agrees well with independent measurements using only data at frequencies 23 GHz and above. Comparing the spectral index at 23 GHz to the value from previously published analyses allows extension of the model to higher frequencies. The combined data are consistent with a power-law index beta = -2.64 +/-= 0.03 at 0.31 GHz, steepening by an amount of Delta-beta = 0.07 every octave in frequency. Comparison of the radio data to models including the cosmic-ray energy spectrum suggests that any break in the synchrotron spectrum must occur at frequencies above 23 GHz.

  6. Ultrasonic Resonance Spectroscopy of Composite Rings for Flywheel Rotors

    NASA Technical Reports Server (NTRS)

    Harmon, Laura M.; Baaklini, George Y.

    2001-01-01

    Flywheel energy storage devices comprising multilayered composite rotor systems are being studied extensively for utilization in the International Space Station. These composite material systems were investigated with a recently developed ultrasonic resonance spectroscopy technique. The system employs a swept frequency approach and performs a fast Fourier transform on the frequency spectrum of the response signal. In addition. the system allows for equalization of the frequency spectrum, providing all frequencies with equal amounts of energy to excite higher order resonant harmonics. Interpretation of the second fast Fourier transform, along with equalization of the frequency spectrum, offers greater assurance in acquiring and analyzing the fundamental frequency, or spectrum resonance spacing. The range of frequencies swept in a pitch-catch mode was varied up to 8 MHz, depending on the material and geometry of the component. Single and multilayered material samples, with and without known defects, were evaluated to determine how the constituents of a composite material system affect the resonant frequency. Amplitude and frequency changes in the spectrum and spectrum resonance spacing domains were examined from ultrasonic responses of a flat composite coupon, thin composite rings, and thick composite rings. Also, the ultrasonic spectroscopy responses from areas with an intentional delamination and a foreign material insert, similar to defects that may occur during manufacturing malfunctions, were compared with those from defect-free areas in thin composite rings. A thick composite ring with varying thickness was tested to investigate the full-thickness resonant frequency and any possible bulk interfacial bond issues. Finally, the effect on the frequency response of naturally occurring single and clustered voids in a composite ring was established.

  7. Real-time high-resolution heterodyne-based measurements of spectral dynamics in fibre lasers

    PubMed Central

    Sugavanam, Srikanth; Fabbri, Simon; Le, Son Thai; Lobach, Ivan; Kablukov, Sergey; Khorev, Serge; Churkin, Dmitry

    2016-01-01

    Conventional tools for measurement of laser spectra (e.g. optical spectrum analysers) capture data averaged over a considerable time period. However, the generation spectrum of many laser types may involve spectral dynamics whose relatively fast time scale is determined by their cavity round trip period, calling for instrumentation featuring both high temporal and spectral resolution. Such real-time spectral characterisation becomes particularly challenging if the laser pulses are long, or they have continuous or quasi-continuous wave radiation components. Here we combine optical heterodyning with a technique of spatio-temporal intensity measurements that allows the characterisation of such complex sources. Fast, round-trip-resolved spectral dynamics of cavity-based systems in real-time are obtained, with temporal resolution of one cavity round trip and frequency resolution defined by its inverse (85 ns and 24 MHz respectively are demonstrated). We also show how under certain conditions for quasi-continuous wave sources, the spectral resolution could be further increased by a factor of 100 by direct extraction of phase information from the heterodyned dynamics or by using double time scales within the spectrogram approach. PMID:26984634

  8. Methods and apparatuses using filter banks for multi-carrier spread-spectrum signals

    DOEpatents

    Moradi, Hussein; Farhang, Behrouz; Kutsche, Carl A

    2014-10-14

    A transmitter includes a synthesis filter bank to spread a data symbol to a plurality of frequencies by encoding the data symbol on each frequency, apply a common pulse-shaping filter, and apply gains to the frequencies such that a power level of each frequency is less than a noise level of other communication signals within the spectrum. Each frequency is modulated onto a different evenly spaced subcarrier. A demodulator in a receiver converts a radio frequency input to a spread-spectrum signal in a baseband. A matched filter filters the spread-spectrum signal with a common filter having characteristics matched to the synthesis filter bank in the transmitter by filtering each frequency to generate a sequence of narrow pulses. A carrier recovery unit generates control signals responsive to the sequence of narrow pulses suitable for generating a phase-locked loop between the demodulator, the matched filter, and the carrier recovery unit.

  9. Methods and apparatuses using filter banks for multi-carrier spread-spectrum signals

    DOEpatents

    Moradi, Hussein; Farhang, Behrouz; Kutsche, Carl A

    2014-05-20

    A transmitter includes a synthesis filter bank to spread a data symbol to a plurality of frequencies by encoding the data symbol on each frequency, apply a common pulse-shaping filter, and apply gains to the frequencies such that a power level of each frequency is less than a noise level of other communication signals within the spectrum. Each frequency is modulated onto a different evenly spaced subcarrier. A demodulator in a receiver converts a radio frequency input to a spread-spectrum signal in a baseband. A matched filter filters the spread-spectrum signal with a common filter having characteristics matched to the synthesis filter bank in the transmitter by filtering each frequency to generate a sequence of narrow pulses. A carrier recovery unit generates control signals responsive to the sequence of narrow pulses suitable for generating a phase-locked loop between the demodulator, the matched filter, and the carrier recovery unit.

  10. Onboard Processing on PWE OFA/WFC (Onboard Frequency Analyzer/Waveform Capture) aboard the ERG (ARASE) Satellite

    NASA Astrophysics Data System (ADS)

    Matsuda, S.; Kasahara, Y.; Kojima, H.; Kasaba, Y.; Yagitani, S.; Ozaki, M.; Imachi, T.; Ishisaka, K.; Kurita, S.; Ota, M.; Kumamoto, A.; Tsuchiya, F.; Yoshizumi, M.; Matsuoka, A.; Teramoto, M.; Shinohara, I.

    2017-12-01

    Exploration of energization and Radiation in Geospace (ERG) is a mission for understanding particle acceleration, loss mechanisms, and the dynamic evolution of space storms in the context of cross-energy and cross-regional coupling [Miyoshi et al., 2012]. The ERG (ARASE) satellite was launched on December 20, 2016, and successfully inserted into an orbit. The Plasma Wave Experiment (PWE) is one of the science instruments on board the ERG satellite to measure electric field and magnetic field in the inner magnetosphere. PWE consists of three sub-components, EFD (Electric Field Detector), OFA/WFC (Onboard Frequency Analyzer and Waveform Capture), and HFA (High Frequency Analyzer). Especially, OFA/WFC measures electric and magnetic field spectrum and waveform from a few Hz to 20 kHz. OFA/WFC processes signals detected by a couple of dipole wire-probe antenna (WPT) and tri-axis magnetic search coils (MSC) installed onboard the satellite. The PWE-OFA subsystem calculates and produces three kind of data; OFA-SPEC (power spectrum), OFA-MATRIX (spectrum matrix), and OFA-COMPLEX (complex spectrum). They are continuously processed 24 hours per day and all data are sent to the ground. OFA-MATRIX and OFA-COMPLEX are used for polarization analyses and direction finding of the plasma waves. The PWE-WFC subsystem measures raw (64 kHz sampled) and down-sampled (1 kHz sampled) burst waveform detected by the WPT and the MSC sensors. It activates by a command, automatic triggering, and scheduling. The initial check-out process of the PWE successfully completed, and initial data has been obtained. In this presentation, we introduce onboard processing technique on PWE OFA/WFC and its initial results.

  11. Promises and Limitations of RFI Canceling Solutions

    NASA Astrophysics Data System (ADS)

    Fisher, J. R.

    2004-05-01

    Recent years have seen a kindling of interest in signal processing solutions to radio frequency interference (RFI) to astronomical observations. Over a dozen refereed papers and several dozen conference presentations on the subject are now in the astronomical and engineering literature. This work builds on several decades of signal processing development in the fields of acoustics and communications for which there are a number of standard texts. Radio astronomy has the unique requirement that interference must be suppressed below very low detection thresholds before the scientific results of observations can be considered reliable. These detection thresholds are several orders of magnitude lower than is typical of communications signal levels. Initial trials of coherent cancellation of TV and satellite signals and blanking of pulsed interference, such as radar and aircraft signals, are encouraging, but the signal processing power required for useful bandwidths is sobering. Simultaneous cancellation of many signals and compensation for multi-path propagation effects of distant transmitters add to the processing load and are challenges that remain to be tackled. Spectrum management is becoming increasingly complex with greater emphasis on spectrum sharing in the time and spacial domains. This requires a better understanding of long-distance propagation effects and the techniques and economics of signal separation to guide the protection of the scientific use of the radio spectrum. The traditional concept of frequency allocations will be only one aspect of spectrum management in the coming years. Active users of the spectrum will expect us to devote some of our engineering and managerial resources to spectrum sharing agreements, Hence, we need to continually build a firm technical footing upon which to base our negotiating positions. The NRAO is operated for the National Science Foundation (NSF) by Associated Universities, Inc. (AUI), under a cooperative agreement.

  12. FBMC receiver for multi-user asynchronous transmission on fragmented spectrum

    NASA Astrophysics Data System (ADS)

    Doré, Jean-Baptiste; Berg, Vincent; Cassiau, Nicolas; Kténas, Dimitri

    2014-12-01

    Relaxed synchronization and access to fragmented spectrum are considered for future generations of wireless networks. Frequency division multiple access for filter bank multicarrier (FBMC) modulation provides promising performance without strict synchronization requirements contrary to conventional orthogonal frequency division multiplexing (OFDM). The architecture of a FBMC receiver suitable for this scenario is considered. Carrier frequency offset (CFO) compensation is combined with intercarrier interference (ICI) cancellation and performs well under very large frequency offsets. Channel estimation and interpolation had to be adapted and proved effective even for heavily fragmented spectrum usage. Channel equalization can sustain large delay spread. Because all the receiver baseband signal processing functionalities are proposed in the frequency domain, the overall architecture is suitable for multiuser asynchronous transmission on fragmented spectrum.

  13. Ultrasonic Multiple-Access Ranging System Using Spread Spectrum and MEMS Technology for Indoor Localization

    PubMed Central

    Segers, Laurent; Tiete, Jelmer; Braeken, An; Touhafi, Abdellah

    2014-01-01

    Indoor localization of persons and objects poses a great engineering challenge. Previously developed localization systems demonstrate the use of wideband techniques in ultrasound ranging systems. Direct sequence and frequency hopping spread spectrum ultrasound signals have been proven to achieve a high level of accuracy. A novel ranging method using the frequency hopping spread spectrum with finite impulse response filtering will be investigated and compared against the direct sequence spread spectrum. In the first setup, distances are estimated in a single-access environment, while in the second setup, two senders and one receiver are used. During the experiments, the micro-electromechanical systems are used as ultrasonic sensors, while the senders were implemented using field programmable gate arrays. Results show that in a single-access environment, the direct sequence spread spectrum method offers slightly better accuracy and precision performance compared to the frequency hopping spread spectrum. When two senders are used, measurements point out that the frequency hopping spread spectrum is more robust to near-far effects than the direct sequence spread spectrum. PMID:24553084

  14. A New Proof of the Expected Frequency Spectrum under the Standard Neutral Model.

    PubMed

    Hudson, Richard R

    2015-01-01

    The sample frequency spectrum is an informative and frequently employed approach for summarizing DNA variation data. Under the standard neutral model the expectation of the sample frequency spectrum has been derived by at least two distinct approaches. One relies on using results from diffusion approximations to the Wright-Fisher Model. The other is based on Pólya urn models that correspond to the standard coalescent model. A new proof of the expected frequency spectrum is presented here. It is a proof by induction and does not require diffusion results and does not require the somewhat complex sums and combinatorics of the derivations based on urn models.

  15. Achieving spectrum conservation for the minimum-span and minimum-order frequency assignment problems

    NASA Technical Reports Server (NTRS)

    Heyward, Ann O.

    1992-01-01

    Effective and efficient solutions of frequency assignment problems assumes increasing importance as the radiofrequency spectrum experiences ever increasing utilization by diverse communications services, requiring that the most efficient use of this resource be achieved. The research presented explores a general approach to the frequency assignment problem, in which such problems are categorized by the appropriate spectrum conserving objective function, and are each treated as an N-job, M-machine scheduling problem appropriate for the objective. Results obtained and presented illustrate that such an approach presents an effective means of achieving spectrum conserving frequency assignments for communications systems in a variety of environments.

  16. A Model for Jet-Surface Interaction Noise Using Physically Realizable Upstream Turbulence Conditions

    NASA Technical Reports Server (NTRS)

    Afsar, Mohammed Z.; Leib, Stewart J.; Bozak, Richard F.

    2015-01-01

    This paper is a continuation of previous work in which a generalized Rapid Distortion Theory (RDT) formulation was used to model low-frequency trailing-edge noise. The research was motivated by proposed next-generation aircraft configurations where the exhaust system is tightly integrated with the airframe. Data from recent experiments at NASA on the interaction between high-Reynolds-number subsonic jet flows and an external flat plate showed that the power spectral density (PSD) of the far-field pressure underwent considerable amplification at low frequencies. For example, at the 900 observation angle, the low-frequency noise could be as much as 10dB greater than the jet noise itself. In this paper, we present predictions of the noise generated by the interaction of a rectangular jet with the trailing edge of a semi-infinite flat plate. The calculations are based on a formula for the acoustic spectrum of this noise source derived from an exact formal solution of the linearized Euler equations involving (in this case) one arbitrary convected scalar quantity and a Rayleigh equation Green's function. A low-frequency asymptotic approximation for the Green's function based on a two-dimensional mean flow is used in the calculations along with a physically realizable upstream turbulence spectrum, which includes a finite de-correlation region. Numerical predictions, based on three-dimensional RANS solutions for a range of subsonic acoustic Mach number jets and nozzle aspect ratios are compared with experimental data. Comparisons of the RANS results with flow data are also presented for selected cases. We find that a finite decorrelation region increases the low-frequency algebraic decay (the low frequency "rolloff") of the acoustic spectrum with angular frequency thereby producing much closer agreement with noise data for Strouhal numbers less than 0.1. Secondly, the large-aspectratio theory is able to predict the low-frequency amplification due to the jet-edge interaction reasonably well, even for moderate aspect ratio nozzles. We show also that the noise predictions for smaller aspect ratio jets can be fine-tuned using the appropriate RANS-based mean flow and turbulence properties.

  17. [Continuum based fast Fourier transform processing of infrared spectrum].

    PubMed

    Liu, Qing-Jie; Lin, Qi-Zhong; Wang, Qin-Jun; Li, Hui; Li, Shuai

    2009-12-01

    To recognize ground objects with infrared spectrum, high frequency noise removing is one of the most important phases in spectrum feature analysis and extraction. A new method for infrared spectrum preprocessing was given combining spectrum continuum processing and Fast Fourier Transform (CFFT). Continuum was firstly removed from the noise polluted infrared spectrum to standardize hyper-spectra. Then the spectrum was transformed into frequency domain (FD) with fast Fourier transform (FFT), separating noise information from target information After noise eliminating from useful information with a low-pass filter, the filtered FD spectrum was transformed into time domain (TD) with fast Fourier inverse transform. Finally the continuum was recovered to the spectrum, and the filtered infrared spectrum was achieved. Experiment was performed for chlorite spectrum in USGS polluted with two kinds of simulated white noise to validate the filtering ability of CFFT by contrast with cubic function of five point (CFFP) in time domain and traditional FFT in frequency domain. A circle of CFFP has limited filtering effect, so it should work much with more circles and consume more time to achieve better filtering result. As for conventional FFT, Gibbs phenomenon has great effect on preprocessing result at edge bands because of special character of rock or mineral spectra, while works well at middle bands. Mean squared error of CFFT is 0. 000 012 336 with cut-off frequency of 150, while that of FFT and CFFP is 0. 000 061 074 with cut-off frequency of 150 and 0.000 022 963 with 150 working circles respectively. Besides the filtering result of CFFT can be improved by adjusting the filter cut-off frequency, and has little effect on working time. The CFFT method overcomes the Gibbs problem of FFT in spectrum filtering, and can be more convenient, dependable, and effective than traditional TD filter methods.

  18. Analysis of Coherent Phonon Signals by Sparsity-promoting Dynamic Mode Decomposition

    NASA Astrophysics Data System (ADS)

    Murata, Shin; Aihara, Shingo; Tokuda, Satoru; Iwamitsu, Kazunori; Mizoguchi, Kohji; Akai, Ichiro; Okada, Masato

    2018-05-01

    We propose a method to decompose normal modes in a coherent phonon (CP) signal by sparsity-promoting dynamic mode decomposition. While the CP signals can be modeled as the sum of finite number of damped oscillators, the conventional method such as Fourier transform adopts continuous bases in a frequency domain. Thus, the uncertainty of frequency appears and it is difficult to estimate the initial phase. Moreover, measurement artifacts are imposed on the CP signal and deforms the Fourier spectrum. In contrast, the proposed method can separate the signal from the artifact precisely and can successfully estimate physical properties of the normal modes.

  19. 1THz synchronous tuning of two optical synthesizers

    NASA Astrophysics Data System (ADS)

    Neuhaus, Rudolf; Rohde, Felix; Benkler, Erik; Puppe, Thomas; Raab, Christoph; Unterreitmayer, Reinhard; Zach, Armin; Telle, Harald R.; Stuhler, Jürgen

    2016-04-01

    Single-frequency optical synthesizers (SFOS) provide an optical field with arbitrarily adjustable frequency and phase which is phase-coherently linked to a reference signal. Ideally, they combine the spectral resolution of narrow linewidth frequency stabilized lasers with the broad spectral coverage of frequency combs in a tunable fashion. In state-of-the-art SFOSs tuning across comb lines requires comb line order switching,1, 2 which imposes technical overhead with problems like forbidden frequency gaps or strong phase glitches. Conventional tunable lasers often tune over only tens of GHz before mode-hops occur. Here, we present a novel type of SFOSs, which relies on a serrodyne technique with conditional flyback,3 shifting the carrier frequency of the employed frequency comb without an intrusion into the comb generator. It utilizes a new continuously tunable diode laser that tunes mode-hop-free across the full gain spectrum of the integrated laser diode. We investigate the tuning behavior of two identical SFOSs that share a common reference, by comparing the phases of their output signals. Previously, we achieved phase-stable and cycle-slip free frequency tuning over 28.1 GHz with a maximum zero-to-peak phase deviation of 62 mrad4 when sharing a common comb generator. With the new continuously tunable lasers, the SFOSs tune synchronously across nearly 17800 comb lines (1 THz). The tuning range in this approach can be extended to the full bandwidth of the frequency comb and the 110 nm mode-hop-free tuning range of the diode laser.

  20. [Experimental investigation of laser plasma soft X-ray source with gas target].

    PubMed

    Ni, Qi-liang; Gong, Yan; Lin, Jing-quan; Chen, Bo; Cao, Jian-lin

    2003-02-01

    This paper describes a debris-free laser plasma soft X-ray source with a gas target, which has high operating frequency and can produce strong soft X-ray radiation. The valve of this light source is drived by a piezoelectrical ceramic whose operating frequency is up to 400 Hz. In comparison with laser plasma soft X-ray sources using metal target, the light source is debris-free. And it has higher operating frequency than gas target soft X-ray sources whose nozzle is controlled by a solenoid valve. A channel electron multiplier (CEM) operating in analog mode is used to detect the soft X-ray generated by the laser plasma source, and the CEM's output is fed to to a charge-sensitive preamplifier for further amplification purpose. Output charges from the CEM are proportional to the amplitude of the preamplifier's output voltage. Spectra of CO2, Xe and Kr at 8-14 nm wavelength which can be used for soft X-ray projection lithography are measured. The spectrum for CO2 consists of separate spectral lines originate mainly from the transitions in Li-like and Be-like ions. The Xe spectrum originating mainly from 4d-5f, 4d-4f, 4d-6p and 4d-5p transitions in multiply charged xenon ions. The spectrum for Kr consists of separate spectral lines and continuous broad spectra originating mainly from the transitions in Cu-, Ni-, Co- and Fe-like ions.

  1. Lattice vibrations in the Frenkel-Kontorova model. I. Phonon dispersion, number density, and energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meng, Qingping; Wu, Lijun; Welch, David O.

    2015-06-17

    We studied the lattice vibrations of two inter-penetrating atomic sublattices via the Frenkel-Kontorova (FK) model of a linear chain of harmonically interacting atoms subjected to an on-site potential, using the technique of thermodynamic Green's functions based on quantum field-theoretical methods. General expressions were deduced for the phonon frequency-wave-vector dispersion relations, number density, and energy of the FK model system. In addition, as the application of the theory, we investigated in detail cases of linear chains with various periods of the on-site potential of the FK model. Some unusual but interesting features for different amplitudes of the on-site potential of themore » FK model are discussed. In the commensurate structure, the phonon spectrum always starts at a finite frequency, and the gaps of the spectrum are true ones with a zero density of modes. In the incommensurate structure, the phonon spectrum starts from zero frequency, but at a non-zero wave vector; there are some modes inside these gap regions, but their density is very low. In our approximation, the energy of a higher-order commensurate state of the one-dimensional system at a finite temperature may become indefinitely close to the energy of an incommensurate state. This finding implies that the higher-order incommensurate-commensurate transitions are continuous ones and that the phase transition may exhibit a “devil's staircase” behavior at a finite temperature.« less

  2. Radio frequency spectrum management

    NASA Astrophysics Data System (ADS)

    Sujdak, E. J., Jr.

    1980-03-01

    This thesis is a study of radio frequency spectrum management as practiced by agencies and departments of the Federal Government. After a brief introduction to the international agency involved in radio frequency spectrum management, the author concentrates on Federal agencies engaged in frequency management. These agencies include the National Telecommunications and Information Administration (NTIA), the Interdepartment Radio Advisory Committee (IRAC), and the Department of Defense (DoD). Based on an analysis of Department of Defense frequency assignment procedures, recommendations are given concerning decentralizing military frequency assignment by delegating broader authority to unified commanders. This proposal includes a recommendation to colocate the individual Service frequency management offices at the Washington level. This would result in reduced travel costs, lower manpower requirements, and a common tri-Service frequency management data base.

  3. Measuring the Non-Line-of-Sight Ultra-High-Frequency Channel in Mountainous Terrain: A Spread-Spectrum, Portable Channel Sounder

    DTIC Science & Technology

    2018-03-01

    ER D C/ CR RE L TR -1 8- 3 ERDC 6.1 Basic Research Measuring the Non-Line-of-Sight Ultra- High - Frequency Channel in Mountainous Terrain... High - Frequency Channel in Mountainous Terrain A Spread-Spectrum, Portable Channel Sounder Samuel S. Streeter and Daniel J. Breton U.S. Army...spread-spectrum, portable channel sounder specifically designed to meas- ure the non-line-of-sight, ultra- high -frequency channel in mountainous terrain

  4. Communication: Vibrational sum-frequency spectrum of the air-water interface, revisited

    NASA Astrophysics Data System (ADS)

    Ni, Yicun; Skinner, J. L.

    2016-07-01

    Before 2015, heterodyne-detected sum-frequency-generation experiments on the air-water interface showed the presence of a positive feature at low frequency in the imaginary part of the susceptibility. However, three very recent experiments indicate that this positive feature is in fact absent. Armed with a better understanding, developed by others, of how to calculate sum-frequency spectra, we recalculate the spectrum and find good agreement with these new experiments. In addition, we provide a revised interpretation of the spectrum.

  5. Digital FMCW for ultrawideband spectrum sensing

    NASA Astrophysics Data System (ADS)

    Cheema, A. A.; Salous, S.

    2016-08-01

    An ultrawideband digital frequency-modulated continuous wave sensing engine is proposed as an alternative technique for cognitive radio applications. A dual-band demonstrator capable of sensing 750 MHz bandwidth in 204.8 µs is presented. Its performance is illustrated from both bench tests and from real-time measurements of the GSM 900 band and the 2.4 GHz wireless local area network (WLAN) band. The measured sensitivity and noise figure values are -90 dBm for a signal-to-noise ratio margin of at least 10 dB and ~13-14 dB, respectively. Data were collected over 24 h and were analyzed by using the energy detection method. The obtained results show the time variability of occupancy, and considerable sections of the spectrum are unoccupied. In addition, unlike the cyclic temporal variations of spectrum occupancy in the GSM 900 band, the detected variations in the 2.4 GHz WLAN band have an impulsive nature.

  6. Frequency Arrangement For 700 MHz Band

    NASA Astrophysics Data System (ADS)

    Ancans, G.; Bobrovs, V.; Ivanovs, G.

    2015-02-01

    The 694-790 MHz (700 MHz) band was allocated by the 2012 World Radiocommunication Conference (WRC-12) in ITU Region 1 (Europe included), to the mobile service on a co-primary basis with other services to which this band was allocated on the primary basis and identified for the International Mobile Telecommunications (IMT). At the same time, the countries of Region 1 will be able also to continue using these frequencies for their broadcasting services if necessary. This allocation will be effective immediately after 2015 World Radiocommunication Conference (WRC-15). In order to make the best possible use of this frequency band for mobile service, a worldwide harmonized frequency arrangement is to be prepared to allow for large economies of scale and international roaming as well as utilizing the available spectrum in the best possible way, minimizing possible interference between services, facilitating deployment and cross-border coordination. The authors analyze different possible frequency arrangements and conclude on the frequency arrangement most suitable for Europe.

  7. Signal Identification and Isolation Utilizing Radio Frequency Photonics

    DTIC Science & Technology

    2017-09-01

    analyzers can measure the frequency of signals and filters can be used to separate the signals apart from one another. This report will review...different techniques for spectrum analysis and isolation. 15. SUBJECT TERMS radio frequency, photonics, spectrum analyzer, filters 16. SECURITY CLASSIFICATION...Analyzers .......................................................................................... 3 3.2 Frequency Identification using Filters

  8. Low-frequency source parameters of twelve large earthquakes. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Harabaglia, Paolo

    1993-01-01

    A global survey of the low-frequency (1-21 mHz) source characteristics of large events are studied. We are particularly interested in events unusually enriched in low-frequency and in events with a short-term precursor. We model the source time function of 12 large earthquakes using teleseismic data at low frequency. For each event we retrieve the source amplitude spectrum in the frequency range between 1 and 21 mHz with the Silver and Jordan method and the phase-shift spectrum in the frequency range between 1 and 11 mHz with the Riedesel and Jordan method. We then model the source time function by fitting the two spectra. Two of these events, the 1980 Irpinia, Italy, and the 1983 Akita-Oki, Japan, are shallow-depth complex events that took place on multiple faults. In both cases the source time function has a length of about 100 seconds. By comparison Westaway and Jackson find 45 seconds for the Irpinia event and Houston and Kanamori about 50 seconds for the Akita-Oki earthquake. The three deep events and four of the seven intermediate-depth events are fast rupturing earthquakes. A single pulse is sufficient to model the source spectra in the frequency range of our interest. Two other intermediate-depth events have slower rupturing processes, characterized by a continuous energy release lasting for about 40 seconds. The last event is the intermediate-depth 1983 Peru-Ecuador earthquake. It was first recognized as a precursive event by Jordan. We model it with a smooth rupturing process starting about 2 minutes before the high frequency origin time superimposed to an impulsive source.

  9. Methods and apparatuses using filter banks for multi-carrier spread spectrum signals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moradi, Hussein; Farhang, Behrouz; Kutsche, Carl A

    2017-01-31

    A transmitter includes a synthesis filter bank to spread a data symbol to a plurality of frequencies by encoding the data symbol on each frequency, apply a common pulse-shaping filter, and apply gains to the frequencies such that a power level of each frequency is less than a noise level of other communication signals within the spectrum. Each frequency is modulated onto a different evenly spaced subcarrier. A demodulator in a receiver converts a radio frequency input to a spread-spectrum signal in a baseband. A matched filter filters the spread-spectrum signal with a common filter having characteristics matched to themore » synthesis filter bank in the transmitter by filtering each frequency to generate a sequence of narrow pulses. A carrier recovery unit generates control signals responsive to the sequence of narrow pulses suitable for generating a phase-locked loop between the demodulator, the matched filter, and the carrier recovery unit.« less

  10. Methods and apparatuses using filter banks for multi-carrier spread spectrum signals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moradi, Hussein; Farhang, Behrouz; Kutsche, Carl A.

    2016-06-14

    A transmitter includes a synthesis filter bank to spread a data symbol to a plurality of frequencies by encoding the data symbol on each frequency, apply a common pulse-shaping filter, and apply gains to the frequencies such that a power level of each frequency is less than a noise level of other communication signals within the spectrum. Each frequency is modulated onto a different evenly spaced subcarrier. A demodulator in a receiver converts a radio frequency input to a spread-spectrum signal in a baseband. A matched filter filters the spread-spectrum signal with a common filter having characteristics matched to themore » synthesis filter bank in the transmitter by filtering each frequency to generate a sequence of narrow pulses. A carrier recovery unit generates control signals responsive to the sequence of narrow pulses suitable for generating a phase-locked loop between the demodulator, the matched filter, and the carrier recovery unit.« less

  11. Terahertz Frequency-Domain Spectroscopy of Low-Pressure Acetonitrile Gas by a Photomixing Terahertz Synthesizer Referenced to Dual Optical Frequency Combs

    NASA Astrophysics Data System (ADS)

    Hsieh, Yi-Da; Kimura, Hiroto; Hayashi, Kenta; Minamikawa, Takeo; Mizutani, Yasuhiro; Yamamoto, Hirotsugu; Iwata, Tetsuo; Inaba, Hajime; Minoshima, Kaoru; Hindle, Francis; Yasui, Takeshi

    2016-09-01

    A terahertz (THz) frequency synthesizer based on photomixing of two near-infrared lasers with a sub-THz to THz frequency offset is a powerful tool for spectroscopy of polar gas molecules due to its broad spectral coverage; however, its frequency accuracy and resolution are relatively low. To tune the output frequency continuously and widely while maintaining its traceability to a frequency standard, we developed a photomixing THz synthesizer phase-locked to dual optical frequency combs (OFCs). While the phase-locking to dual OFCs ensured continuous tuning within a spectral range of 120 GHz, in addition to the traceability to the frequency standard, use of a broadband uni-traveling carrier photodiode for photomixing enabled the generation of CW-THz radiation within a frequency range from 0.2 to 1.5 THz. We demonstrated THz frequency-domain spectroscopy of gas-phase acetonitrile CH3CN and its isotope CH3 13CN in the frequency range of 0.600-0.720 THz using this THz synthesizer. Their rotational transitions were assigned with a frequency accuracy of 8.42 × 10-8 and a frequency resolution of 520 kHz. Furthermore, the concentration of the CH3CN gas at 20 Pa was determined to be (5.41 ± 0.05) × 1014 molecules/cm3 by curve fitting analysis of the measured absorbance spectrum, and the mixture ratio of the mixed CH3CN/CH3 13CN gas was determined to be 1:2.26 with a gas concentration of 1014-1015 molecules/cm3. The developed THz synthesizer is highly promising for high-precision THz-FDS of low-pressure molecular gases and will enable the qualitative and quantitative analyses of multiple gases.

  12. Continuous wavelet transform based time-scale and multifractal analysis of the nonlinear oscillations in a hollow cathode glow discharge plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nurujjaman, Md.; Narayanan, Ramesh; Iyengar, A. N. Sekar

    2009-10-15

    Continuous wavelet transform (CWT) based time-scale and multifractal analyses have been carried out on the anode glow related nonlinear floating potential fluctuations in a hollow cathode glow discharge plasma. CWT has been used to obtain the contour and ridge plots. Scale shift (or inversely frequency shift), which is a typical nonlinear behavior, has been detected from the undulating contours. From the ridge plots, we have identified the presence of nonlinearity and degree of chaoticity. Using the wavelet transform modulus maxima technique we have obtained the multifractal spectrum for the fluctuations at different discharge voltages and the spectrum was observed tomore » become a monofractal for periodic signals. These multifractal spectra were also used to estimate different quantities such as the correlation and fractal dimension, degree of multifractality, and complexity parameters. These estimations have been found to be consistent with the nonlinear time series analysis.« less

  13. 47 CFR 90.663 - MTA-based SMR system operations.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... stations using any frequency identified in their spectrum block anywhere within their authorized MTA... rules and international agreements that restrict use of frequencies identified in their spectrum block... for a previously authorized co-channel station within the MTA licensee's authorized spectrum block is...

  14. 47 CFR 90.663 - MTA-based SMR system operations.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... stations using any frequency identified in their spectrum block anywhere within their authorized MTA... rules and international agreements that restrict use of frequencies identified in their spectrum block... for a previously authorized co-channel station within the MTA licensee's authorized spectrum block is...

  15. 47 CFR 90.663 - MTA-based SMR system operations.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... stations using any frequency identified in their spectrum block anywhere within their authorized MTA... rules and international agreements that restrict use of frequencies identified in their spectrum block... for a previously authorized co-channel station within the MTA licensee's authorized spectrum block is...

  16. 47 CFR 90.663 - MTA-based SMR system operations.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... stations using any frequency identified in their spectrum block anywhere within their authorized MTA... rules and international agreements that restrict use of frequencies identified in their spectrum block... for a previously authorized co-channel station within the MTA licensee's authorized spectrum block is...

  17. Time frequency analysis for automated sleep stage identification in fullterm and preterm neonates.

    PubMed

    Fraiwan, Luay; Lweesy, Khaldon; Khasawneh, Natheer; Fraiwan, Mohammad; Wenz, Heinrich; Dickhaus, Hartmut

    2011-08-01

    This work presents a new methodology for automated sleep stage identification in neonates based on the time frequency distribution of single electroencephalogram (EEG) recording and artificial neural networks (ANN). Wigner-Ville distribution (WVD), Hilbert-Hough spectrum (HHS) and continuous wavelet transform (CWT) time frequency distributions were used to represent the EEG signal from which features were extracted using time frequency entropy. The classification of features was done using feed forward back-propagation ANN. The system was trained and tested using data taken from neonates of post-conceptual age of 40 weeks for both preterm (14 recordings) and fullterm (15 recordings). The identification of sleep stages was successfully implemented and the classification based on the WVD outperformed the approaches based on CWT and HHS. The accuracy and kappa coefficient were found to be 0.84 and 0.65 respectively for the fullterm neonates' recordings and 0.74 and 0.50 respectively for preterm neonates' recordings.

  18. Device for frequency modulation of a laser output spectrum

    DOEpatents

    Beene, James R.; Bemis, Jr., Curtis E.

    1986-01-01

    A device is provided for fast frequency modulating the output spectrum of multimode lasers and single frequency lasers that are not actively stabilized. A piezoelectric transducer attached to a laser cavity mirror is driven in an unconventional manner to excite resonance vibration of the transducer to rapidly, cyclicly change the laser cavity length. The result is a cyclic sweeping of the output wavelength sufficient to fill the gaps in the laser output frequency spectrum. When such a laser is used to excite atoms or molecules, complete absorption line coverage is made possible.

  19. Device for frequency modulation of a laser output spectrum

    DOEpatents

    Beene, J.R.; Bemis, C.E. Jr.

    1984-07-17

    A device is provided for fast frequency modulating the output spectrum of multimode lasers and single frequency lasers that are not actively stabilized. A piezoelectric transducer attached to a laser cavity mirror is driven in an unconventional manner to excite resonance vibration of the tranducer to rapidly, cyclicly change the laser cavity length. The result is a cyclic sweeping of the output wavelength sufficient to fill the gaps in the laser output frequency spectrum. When a laser is used to excite atoms or molecules, complete absorption line coverage is made possible.

  20. Influences of Fundamental Frequency, Formant Frequencies, Aperiodicity, and Spectrum Level on the Perception of Voice Gender

    ERIC Educational Resources Information Center

    Skuk, Verena G.; Schweinberger, Stefan R.

    2014-01-01

    Purpose: To determine the relative importance of acoustic parameters (fundamental frequency [F0], formant frequencies [FFs], aperiodicity, and spectrum level [SL]) on voice gender perception, the authors used a novel parameter-morphing approach that, unlike spectral envelope shifting, allows the application of nonuniform scale factors to transform…

  1. Decoherence control mechanisms of a charged magneto-oscillator in contact with different environments

    NASA Astrophysics Data System (ADS)

    Rajesh, Asam; Bandyopadhyay, Malay; Jayannavar, Arun M.

    2017-12-01

    In this work, we consider two different techniques based on reservoir engineering process and quantum Zeno control method to analyze the decoherence control mechanism of a charged magneto-oscillator in contact with different type of environment. Our analysis reveals that both the control mechanisms are very much sensitive on the details of different environmental spectrum (J (ω)), and also on different system and reservoir parameters, e.g., external magnetic field (rc), confinement length (r0), temperature (T), cut-off frequency of reservoir spectrum (ωcut), and measurement interval (τ). We also demonstrate the manipulation scheme of the continuous passage from decay suppression to decay acceleration by tuning the above mentioned system or reservoir parameters, e.g., rc, r0, T and τ.

  2. Instantaneous frequency time analysis of physiology signals: The application of pregnant women’s radial artery pulse signals

    NASA Astrophysics Data System (ADS)

    Su, Zhi-Yuan; Wang, Chuan-Chen; Wu, Tzuyin; Wang, Yeng-Tseng; Tang, Feng-Cheng

    2008-01-01

    This study used the Hilbert-Huang transform, a recently developed, instantaneous frequency-time analysis, to analyze radial artery pulse signals taken from women in their 36th week of pregnancy and after pregnancy. The acquired instantaneous frequency-time spectrum (Hilbert spectrum) is further compared with the Morlet wavelet spectrum. Results indicate that the Hilbert spectrum is especially suitable for analyzing the time series of non-stationary radial artery pulse signals since, in the Hilbert-Huang transform, signals are decomposed into different mode functions in accordance with signal’s local time scale. Therefore, the Hilbert spectrum contains more detailed information than the Morlet wavelet spectrum. From the Hilbert spectrum, we can see that radial artery pulse signals taken from women in their 36th week of pregnancy and after pregnancy have different patterns. This approach could be applied to facilitate non-invasive diagnosis of fetus’ physiological signals in the future.

  3. Optimised frequency modulation for continuous-wave optical magnetic resonance sensing using nitrogen-vacancy ensembles.

    PubMed

    El-Ella, Haitham A R; Ahmadi, Sepehr; Wojciechowski, Adam M; Huck, Alexander; Andersen, Ulrik L

    2017-06-26

    Magnetometers based on ensembles of nitrogen-vacancy centres are a promising platform for continuously sensing static and low-frequency magnetic fields. Their combination with phase-sensitive (lock-in) detection creates a highly versatile sensor with a sensitivity that is proportional to the derivative of the optical magnetic resonance lock-in spectrum, which is in turn dependant on the lock-in modulation parameters. Here we study the dependence of the lock-in spectral slope on the modulation of the spin-driving microwave field. Given the presence of the intrinsic nitrogen hyperfine spin transitions, we experimentally show that when the ratio between the hyperfine linewidth and their separation is ≳ 1/4, square-wave based frequency modulation generates the steepest slope at modulation depths exceeding the separation of the hyperfine lines, compared to sine-wave based modulation. We formulate a model for calculating lock-in spectra which shows excellent agreement with our experiments, and which shows that an optimum slope is achieved when the linewidth/separation ratio is ≲ 1/4 and the modulation depth is less then the resonance linewidth, irrespective of the modulation function used.

  4. 47 CFR 90.683 - EA-based SMR system operations.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... operate base stations using any of the base station frequencies identified in their spectrum block... use of frequencies identified in their spectrum block, including the provisions of § 90.619 relating... authorization for a previously authorized co-channel station within the EA licensee's spectrum block is...

  5. 47 CFR 90.683 - EA-based SMR system operations.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... operate base stations using any of the base station frequencies identified in their spectrum block... use of frequencies identified in their spectrum block, including the provisions of § 90.619 relating... authorization for a previously authorized co-channel station within the EA licensee's spectrum block is...

  6. 47 CFR 90.683 - EA-based SMR system operations.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... operate base stations using any of the base station frequencies identified in their spectrum block... use of frequencies identified in their spectrum block, including the provisions of § 90.619 relating... authorization for a previously authorized co-channel station within the EA licensee's spectrum block is...

  7. The influence of tortuosity on the spectrum of radiation from lightning return strokes

    NASA Technical Reports Server (NTRS)

    Levine, D. M.

    1978-01-01

    An investigation was made of the influence of tortuosity on the spectrum of radiation from lightning return strokes. The shape of the spectrum obtained by including effects of tortuosity was in keeping with data: The spectrum had a peak in the correct frequency regime followed by an initial decrease as the inverse of frequency. This spectrum was in better agreement with data than the spectrum predicted by the same model without tortuosity (i.e. the long straight channel), which decays at a rate proportional to 1/v squared.

  8. Adaptive multitaper time-frequency spectrum estimation

    NASA Astrophysics Data System (ADS)

    Pitton, James W.

    1999-11-01

    In earlier work, Thomson's adaptive multitaper spectrum estimation method was extended to the nonstationary case. This paper reviews the time-frequency multitaper method and the adaptive procedure, and explores some properties of the eigenvalues and eigenvectors. The variance of the adaptive estimator is used to construct an adaptive smoother, which is used to form a high resolution estimate. An F-test for detecting and removing sinusoidal components in the time-frequency spectrum is also given.

  9. The Use of Continuous Wavelet Transform Based on the Fast Fourier Transform in the Analysis of Multi-channel Electrogastrography Recordings.

    PubMed

    Komorowski, Dariusz; Pietraszek, Stanislaw

    2016-01-01

    This paper presents the analysis of multi-channel electrogastrographic (EGG) signals using the continuous wavelet transform based on the fast Fourier transform (CWTFT). The EGG analysis was based on the determination of the several signal parameters such as dominant frequency (DF), dominant power (DP) and index of normogastria (NI). The use of continuous wavelet transform (CWT) allows for better visible localization of the frequency components in the analyzed signals, than commonly used short-time Fourier transform (STFT). Such an analysis is possible by means of a variable width window, which corresponds to the scale time of observation (analysis). Wavelet analysis allows using long time windows when we need more precise low-frequency information, and shorter when we need high frequency information. Since the classic CWT transform requires considerable computing power and time, especially while applying it to the analysis of long signals, the authors used the CWT analysis based on the fast Fourier transform (FFT). The CWT was obtained using properties of the circular convolution to improve the speed of calculation. This method allows to obtain results for relatively long records of EGG in a fairly short time, much faster than using the classical methods based on running spectrum analysis (RSA). In this study authors indicate the possibility of a parametric analysis of EGG signals using continuous wavelet transform which is the completely new solution. The results obtained with the described method are shown in the example of an analysis of four-channel EGG recordings, performed for a non-caloric meal.

  10. Demonstration of Space Optical Transmitter Development for Multiple High Frequency Bands

    NASA Technical Reports Server (NTRS)

    Nguyen, Hung; Simons, Rainee; Wintucky, Edwin; Freeman, Jon

    2013-01-01

    As the demand for multiple radio frequency carrier bands continues to grow in space communication systems, the design of a cost-effective compact optical transmitter that is capable of transmitting selective multiple RF bands is of great interest, particularly for NASA Space Communications Network Programs. This paper presents experimental results that demonstrate the feasibility of a concept based on an optical wavelength division multiplexing (WDM) technique that enables multiple microwave bands with different modulation formats and bandwidths to be combined and transmitted all in one unit, resulting in many benefits to space communication systems including reduced size, weight and complexity with corresponding savings in cost. Experimental results will be presented including the individual received RF signal power spectra for the L, C, X, Ku, Ka, and Q frequency bands, and measurements of the phase noise associated with each RF frequency. Also to be presented is a swept RF frequency power spectrum showing simultaneous multiple RF frequency bands transmission. The RF frequency bands in this experiment are among those most commonly used in NASA space environment communications.

  11. Generation of dark and bright spin wave envelope soliton trains through self-modulational instability in magnetic films.

    PubMed

    Wu, Mingzhong; Kalinikos, Boris A; Patton, Carl E

    2004-10-08

    The generation of dark spin wave envelope soliton trains from a continuous wave input signal due to spontaneous modulational instability has been observed for the first time. The dark soliton trains were formed from high dispersion dipole-exchange spin waves propagated in a thin yttrium iron garnet film with pinned surface spins at frequencies situated near the dipole gaps in the dipole-exchange spin wave spectrum. Dark and bright soliton trains were generated for one and the same film through placement of the input carrier frequency in regions of negative and positive dispersion, respectively. Two unreported effects in soliton dynamics, hysteresis and period doubling, were also observed.

  12. A continuous-wave ultrasound system for displacement amplitude and phase measurement.

    PubMed

    Finneran, James J; Hastings, Mardi C

    2004-06-01

    A noninvasive, continuous-wave ultrasonic technique was developed to measure the displacement amplitude and phase of mechanical structures. The measurement system was based on a method developed by Rogers and Hastings ["Noninvasive vibration measurement system and method for measuring amplitude of vibration of tissue in an object being investigated," U.S. Patent No. 4,819,643 (1989)] and expanded to include phase measurement. A low-frequency sound source was used to generate harmonic vibrations in a target of interest. The target was simultaneously insonified by a low-power, continuous-wave ultrasonic source. Reflected ultrasound was phase modulated by the target motion and detected with a separate ultrasonic transducer. The target displacement amplitude was obtained directly from the received ultrasound frequency spectrum by comparing the carrier and sideband amplitudes. Phase information was obtained by demodulating the received signal using a double-balanced mixer and low-pass filter. A theoretical model for the ultrasonic receiver field is also presented. This model coupled existing models for focused piston radiators and for pulse-echo ultrasonic fields. Experimental measurements of the resulting receiver fields compared favorably with theoretical predictions.

  13. Spectral negentropy based sidebands and demodulation analysis for planet bearing fault diagnosis

    NASA Astrophysics Data System (ADS)

    Feng, Zhipeng; Ma, Haoqun; Zuo, Ming J.

    2017-12-01

    Planet bearing vibration signals are highly complex due to intricate kinematics (involving both revolution and spinning) and strong multiple modulations (including not only the fault induced amplitude modulation and frequency modulation, but also additional amplitude modulations due to load zone passing, time-varying vibration transfer path, and time-varying angle between the gear pair mesh lines of action and fault impact force vector), leading to difficulty in fault feature extraction. Rolling element bearing fault diagnosis essentially relies on detection of fault induced repetitive impulses carried by resonance vibration, but they are usually contaminated by noise and therefor are hard to be detected. This further adds complexity to planet bearing diagnostics. Spectral negentropy is able to reveal the frequency distribution of repetitive transients, thus providing an approach to identify the optimal frequency band of a filter for separating repetitive impulses. In this paper, we find the informative frequency band (including the center frequency and bandwidth) of bearing fault induced repetitive impulses using the spectral negentropy based infogram. In Fourier spectrum, we identify planet bearing faults according to sideband characteristics around the center frequency. For demodulation analysis, we filter out the sensitive component based on the informative frequency band revealed by the infogram. In amplitude demodulated spectrum (squared envelope spectrum) of the sensitive component, we diagnose planet bearing faults by matching the present peaks with the theoretical fault characteristic frequencies. We further decompose the sensitive component into mono-component intrinsic mode functions (IMFs) to estimate their instantaneous frequencies, and select a sensitive IMF with an instantaneous frequency fluctuating around the center frequency for frequency demodulation analysis. In the frequency demodulated spectrum (Fourier spectrum of instantaneous frequency) of selected IMF, we discern planet bearing fault reasons according to the present peaks. The proposed spectral negentropy infogram based spectrum and demodulation analysis method is illustrated via a numerical simulated signal analysis. Considering the unique load bearing feature of planet bearings, experimental validations under both no-load and loading conditions are done to verify the derived fault symptoms and the proposed method. The localized faults on outer race, rolling element and inner race are successfully diagnosed.

  14. Frequency spectrum analysis of laser generated ultrasonic waves in ablative regime

    NASA Astrophysics Data System (ADS)

    Mi, Bao; Ume, I. Charles

    2002-05-01

    In this paper, laser ultrasonic signals generated in ablative regime are measured in a number of metal samples (2024 Al, 6061 Al, 7075 Al, mild steel, and copper) with a broadband laser interferometer. The frequency spectra are analyzed and compared for different thicknesses (50.8 mm, 25.4 mm, 12.7 mm, and 6.4 mm), and for different power densities. Hanning windowing is applied before frequency analysis is performed. The experimental data match the theoretical predictions very well. The results show that the frequency spectrum extends from 0 to 15 MHz, while the center frequency occurs near 2 MHz. The detailed distribution of the spectrum is dependent on the material, thickness, and laser power density.

  15. Neuroimaging paradigms for tonotopic mapping (II): the influence of acquisition protocol.

    PubMed

    Langers, Dave R M; Sanchez-Panchuelo, Rosa M; Francis, Susan T; Krumbholz, Katrin; Hall, Deborah A

    2014-10-15

    Numerous studies on the tonotopic organisation of auditory cortex in humans have employed a wide range of neuroimaging protocols to assess cortical frequency tuning. In the present functional magnetic resonance imaging (fMRI) study, we made a systematic comparison between acquisition protocols with variable levels of interference from acoustic scanner noise. Using sweep stimuli to evoke travelling waves of activation, we measured sound-evoked response signals using sparse, clustered, and continuous imaging protocols that were characterised by inter-scan intervals of 8.8, 2.2, or 0.0 s, respectively. With regard to sensitivity to sound-evoked activation, the sparse and clustered protocols performed similarly, and both detected more activation than the continuous method. Qualitatively, tonotopic maps in activated areas proved highly similar, in the sense that the overall pattern of tonotopic gradients was reproducible across all three protocols. However, quantitatively, we observed substantial reductions in response amplitudes to moderately low stimulus frequencies that coincided with regions of strong energy in the scanner noise spectrum for the clustered and continuous protocols compared to the sparse protocol. At the same time, extreme frequencies became over-represented for these two protocols, and high best frequencies became relatively more abundant. Our results indicate that although all three scanning protocols are suitable to determine the layout of tonotopic fields, an exact quantitative assessment of the representation of various sound frequencies is substantially confounded by the presence of scanner noise. In addition, we noticed anomalous signal dynamics in response to our travelling wave paradigm that suggest that the assessment of frequency-dependent tuning is non-trivially influenced by time-dependent (hemo)dynamics when using sweep stimuli. Copyright © 2014. Published by Elsevier Inc.

  16. Frequency Allocation; The Radio Spectrum.

    ERIC Educational Resources Information Center

    Federal Communications Commission, Washington, DC.

    The Federal Communications Commission (FCC) assigns segments of the radio spectrum to categories of users, and specific frequencies within each segment to individual users. Since demand for channel space exceeds supply, the process is complex. The radio spectrum can be compared to a long ruler: the portion from 10-540 kiloHertz has been set aside…

  17. Method of detecting system function by measuring frequency response

    DOEpatents

    Morrison, John L.; Morrison, William H.; Christophersen, Jon P.; Motloch, Chester G.

    2013-01-08

    Methods of rapidly measuring an impedance spectrum of an energy storage device in-situ over a limited number of logarithmically distributed frequencies are described. An energy storage device is excited with a known input signal, and a response is measured to ascertain the impedance spectrum. An excitation signal is a limited time duration sum-of-sines consisting of a select number of frequencies. In one embodiment, magnitude and phase of each frequency of interest within the sum-of-sines is identified when the selected frequencies and sample rate are logarithmic integer steps greater than two. This technique requires a measurement with a duration of one period of the lowest frequency. In another embodiment, where selected frequencies are distributed in octave steps, the impedance spectrum can be determined using a captured time record that is reduced to a half-period of the lowest frequency.

  18. Quasimonochromatic exact solutions to Maxwell's equations with finite total energy and arbitrary frequencies in the vacuum.

    PubMed

    Ma, Xiaolu; Thompson, Richard S

    2017-12-01

    We analyze a family of exact finite energy solutions to Maxwell's equations. These solutions are a subset of the modified-power-spectrum solutions found by Ziolkowski [Phys. Rev. A 39, 2005 (1989)10.1103/PhysRevA.39.2005]. There are three characteristic parameters in the solutions: q_{1},q_{2}, and k_{0}. q_{1} and q_{2} are related to the frequency bandwidth of the solution. In the parameter space of k_{0}q_{1}≫1 and k_{0}q_{2}≫1, they represent quasimonochromatic continuous wave fields with the main angular frequency k_{0}c and energy localized in the transverse directions. Under the restriction of q_{1}≪q_{2}, the beam propagates mainly in the +z direction with velocity c and limited diffraction.

  19. Quasi-simultaneous observations of BL Lac object Mrk 501 in X-ray, UV, visible, IR, and radio frequencies

    NASA Technical Reports Server (NTRS)

    Kondo, Y.; Worrall, D. M.; Oke, J. B.; Yee, H. K. C.; Neugebauer, G.; Matthews, K.; Feldman, P. A.; Mushotzky, R. F.; Hackney, R. L.; Hackney, K. R. H.

    1981-01-01

    Observations in the X-ray, UV, visible, IR and radio regions of the BL Lac object Mrk 501 made over the course of two months are reported. The measurements were made with the A2 experiment on HEAO 1 (X-ray), the SWP and LWR cameras on IUE (UV), the 5-m Hale telescope (visible), the 2.5-m telescope at Mount Wilson (IR), the NRAO 92-m radio telescope at Green Bank (4750 MHz) and the 46-m radio telescope at the Algonquin Observatory (10275 and 10650 MHz). The quasi-simultaneously observed spectral slope is found to be positive and continuous from the X-ray to the UV, but to gradually flatten and possibly turn down from the mid-UV to the visible; the optical-radio emission cannot be accounted for by a single power law. The total spectrum is shown to be compatible with a synchrotron self-Compton emission mechanism, while the spectrum from the visible to the X-ray is consistent with synchrotron radiation or inverse-Compton scattering by a hot thermal electron cloud. The continuity of the spectrum from the UV to the X-ray is noted to imply a total luminosity greater than previous estimates by a factor of 3-4.

  20. Climate change and the macroeconomic structure in pre-industrial europe: new evidence from wavelet analysis.

    PubMed

    Pei, Qing; Zhang, David D; Li, Guodong; Lee, Harry F

    2015-01-01

    The relationship between climate change and the macroeconomy in pre-industrial Europe has attracted considerable attention in recent years. This study follows the combined paradigms of evolutionary economics and ecological economics, in which wavelet analysis (spectrum analysis and coherence analysis) is applied as the first attempt to examine the relationship between climate change and the macroeconomic structure in pre-industrial Europe in the frequency domain. Aside from confirming previous results, this study aims to further substantiate the association between climate change and macroeconomy by presenting new evidence obtained from the wavelet analysis. Our spectrum analysis shows a consistent and continuous frequency band of 60-80 years in the temperature, grain yield ratio, grain price, consumer price index, and real wage throughout the study period. Besides, coherence analysis shows that the macroeconomic structure is shaped more by climate change than population change. In addition, temperature is proven as a key climatic factor that influences the macroeconomic structure. The analysis reveals a unique frequency band of about 20 years (15-35 years) in the temperature in AD1600-1700, which could have contributed to the widespread economic crisis in pre-industrial Europe. Our findings may have indications in re-examining the Malthusian theory.

  1. Climate Change and the Macroeconomic Structure in Pre-Industrial Europe: New Evidence from Wavelet Analysis

    PubMed Central

    Pei, Qing; Zhang, David D.; Li, Guodong; Lee, Harry F.

    2015-01-01

    The relationship between climate change and the macroeconomy in pre-industrial Europe has attracted considerable attention in recent years. This study follows the combined paradigms of evolutionary economics and ecological economics, in which wavelet analysis (spectrum analysis and coherence analysis) is applied as the first attempt to examine the relationship between climate change and the macroeconomic structure in pre-industrial Europe in the frequency domain. Aside from confirming previous results, this study aims to further substantiate the association between climate change and macroeconomy by presenting new evidence obtained from the wavelet analysis. Our spectrum analysis shows a consistent and continuous frequency band of 60–80 years in the temperature, grain yield ratio, grain price, consumer price index, and real wage throughout the study period. Besides, coherence analysis shows that the macroeconomic structure is shaped more by climate change than population change. In addition, temperature is proven as a key climatic factor that influences the macroeconomic structure. The analysis reveals a unique frequency band of about 20 years (15–35 years) in the temperature in AD1600-1700, which could have contributed to the widespread economic crisis in pre-industrial Europe. Our findings may have indications in re-examining the Malthusian theory. PMID:26039087

  2. EFPI sensor utilizing optical spectrum analyzer with tunable laser: detection of baseline oscillations faster than spectrum acquisition rate

    NASA Astrophysics Data System (ADS)

    Ushakov, Nikolai; Liokumovich, Leonid

    2014-05-01

    A novel approach for extrinsic Fabry-Perot interferometer baseline measurement has been developed. The principles of frequency-scanning interferometry are utilized for registration of the interferometer spectral function, from which the baseline is demodulated. The proposed approach enables one to capture the absolute baseline variations at frequencies much higher than the spectral acquisition rate. Despite the conventional approaches, associating a single baseline indication to the registered spectrum, in the proposed method a modified frequency detection procedure is applied to the spectrum. This provides an ability to capture the baseline variations which took place during the spectrum acquisition. The limitations on the parameters of the possibly registered baseline variations are formulated. The experimental verification of the proposed approach for different perturbations has been performed.

  3. Method and apparatus configured for identification of a material

    DOEpatents

    Slater, John M.; Crawford, Thomas M.

    2000-01-01

    The present invention includes an apparatus configured for identification of a material, and methods of identifying a material. One embodiment of the invention provides an apparatus including a first region configured to receive a first sample, the first region being configured to output a first spectrum corresponding to the first sample and responsive to exposure of the first sample to radiation; a modulator configured to modulate the first spectrum according to a first frequency; a second region configured to receive a second sample, the second region being configured to output a second spectrum corresponding to the second sample and responsive to exposure of the second sample to the modulated first spectrum; and a detector configured to detect the second spectrum having a second frequency greater than the first frequency.

  4. Black holes by analytic continuation

    NASA Astrophysics Data System (ADS)

    Amati, D.; Russo, J. G.

    1997-07-01

    In the context of a two-dimensional exactly solvable model, the dynamics of quantum black holes is obtained by analytically continuing the description of the regime where no black hole is formed. The resulting spectrum of outgoing radiation departs from the one predicted by the Hawking model in the region where the outgoing modes arise from the horizon with Planck-order frequencies. This occurs early in the evaporation process, and the resulting physical picture is unconventional. The theory predicts that black holes will only radiate out an energy of Planck mass order, stabilizing after a transitory period. The continuation from a regime without black hole formation-accessible in the 1+1 gravity theory considered-is implicit in an S-matrix approach and suggests in this way a possible solution to the problem of information loss.

  5. Spectral wings of the fiber supercontinuum and the dark-bright soliton interaction.

    PubMed

    Milián, C; Marest, T; Kudlinski, A; Skryabin, D V

    2017-05-01

    We present experimental and numerical data on the supercontinuum generation in an optical fiber pumped in the normal dispersion range where the seeded dark and the spontaneously generated bright solitons contribute to the spectral broadening. We report the dispersive radiation arising from the interaction of the bright and dark solitons. This radiation consists of the two weak dispersing pulses that continuously shift their frequencies and shape the short and long wavelength wings of the supercontinuum spectrum.

  6. The ISEE-C plasma wave investigation

    NASA Technical Reports Server (NTRS)

    Scarf, F. L.; Fredricks, R. W.; Gurnett, D. A.; Smith, E. J.

    1978-01-01

    The ISEE-C plasma wave investigation is designed to provide comprehensive information on interplanetary wave-particle interactions. Three spectrum analyzers with a total of 19 bandpass channels cover the frequency range 0.3 Hz to 100 kHz. The main analyzer, which uses 16 continuously active amplifiers, gives two complete spectral scans per second in each of 16 filter channels. The instrument sensors include a high-sensitivity magnetic search coil, and electric antennas with effective lengths of 0.6 and 45 m.

  7. The Role of Adaptive Photorefractive Power Limiting on Acousto-Optic Radio Frequency (RF) Signal Excision

    DTIC Science & Technology

    2001-12-01

    using TeO2 , A-O cell, slow acoustic wave). Beam deflection is a continuous function of the input voltage power spectrum; however, the spot width...than for isotropic crystals. Thus, anisotropic, A-O materials, such as TeO2 , have advantages for high RF bandwidth; slow acoustic speeds give better...112 Unfortunately, signal resolution worsened because the new TeO2 crystal was designed to operate in the longitudinal acoustic mode, ua = 5.5 Km

  8. Extragalactic Peaked-spectrum Radio Sources at Low Frequencies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Callingham, J. R.; Gaensler, B. M.; Sadler, E. M.

    We present a sample of 1483 sources that display spectral peaks between 72 MHz and 1.4 GHz, selected from the GaLactic and Extragalactic All-sky Murchison Widefield Array (GLEAM) survey. The GLEAM survey is the widest fractional bandwidth all-sky survey to date, ideal for identifying peaked-spectrum sources at low radio frequencies. Our peaked-spectrum sources are the low-frequency analogs of gigahertz-peaked spectrum (GPS) and compact-steep spectrum (CSS) sources, which have been hypothesized to be the precursors to massive radio galaxies. Our sample more than doubles the number of known peaked-spectrum candidates, and 95% of our sample have a newly characterized spectral peak.more » We highlight that some GPS sources peaking above 5 GHz have had multiple epochs of nuclear activity, and we demonstrate the possibility of identifying high-redshift ( z > 2) galaxies via steep optically thin spectral indices and low observed peak frequencies. The distribution of the optically thick spectral indices of our sample is consistent with past GPS/CSS samples but with a large dispersion, suggesting that the spectral peak is a product of an inhomogeneous environment that is individualistic. We find no dependence of observed peak frequency with redshift, consistent with the peaked-spectrum sample comprising both local CSS sources and high-redshift GPS sources. The 5 GHz luminosity distribution lacks the brightest GPS and CSS sources of previous samples, implying that a convolution of source evolution and redshift influences the type of peaked-spectrum sources identified below 1 GHz. Finally, we discuss sources with optically thick spectral indices that exceed the synchrotron self-absorption limit.« less

  9. Sparsity based terahertz reflective off-axis digital holography

    NASA Astrophysics Data System (ADS)

    Wan, Min; Muniraj, Inbarasan; Malallah, Ra'ed; Zhao, Liang; Ryle, James P.; Rong, Lu; Healy, John J.; Wang, Dayong; Sheridan, John T.

    2017-05-01

    Terahertz radiation lies between the microwave and infrared regions in the electromagnetic spectrum. Emitted frequencies range from 0.1 to 10 THz with corresponding wavelengths ranging from 30 μm to 3 mm. In this paper, a continuous-wave Terahertz off-axis digital holographic system is described. A Gaussian fitting method and image normalisation techniques were employed on the recorded hologram to improve the image resolution. A synthesised contrast enhanced hologram is then digitally constructed. Numerical reconstruction is achieved using the angular spectrum method of the filtered off-axis hologram. A sparsity based compression technique is introduced before numerical data reconstruction in order to reduce the dataset required for hologram reconstruction. Results prove that a tiny amount of sparse dataset is sufficient in order to reconstruct the hologram with good image quality.

  10. Power Spectrum of Atmospheric Scintillation for the Deep Space Network Goldstone Ka-Band Downlink

    NASA Technical Reports Server (NTRS)

    Ho, C.; Wheelon, A.

    2004-01-01

    Dynamic signal fluctuations due to atmospheric scintillations may impair the Ka-band (around 32-GHz) link sensitivities for a low-margin Deep Space Network (DSN) receiving system. The ranges of frequency and power of the fast fluctuating signals (time scale less than 1 min) are theoretically investigated using the spatial covariance and turbulence theory. Scintillation power spectrum solutions are derived for both a point receiver and a finite-aperture receiver. The aperture-smoothing frequency ((omega(sub s)), corner frequency ((omega(sub c)), and damping rate are introduced to define the shape of the spectrum for a finite-aperture antenna. The emphasis is put on quantitatively describing the aperture-smoothing effects and graphically estimating the corner frequency for a large aperture receiver. Power spectral shapes are analyzed parametrically in detail through both low- and high-frequency approximations. It is found that aperture-averaging effects become significant when the transverse correlation length of the scintillation is smaller than the antenna radius. The upper frequency or corner frequency for a finite-aperture receiver is controlled by both the Fresnel frequency and aperture-smoothing frequency. Above the aperture-smoothing frequency, the spectrum rolls off at a much faster rate of exp (-omega(sup 2)/omega(sup 2, sub s), rather than omega(sup -8/3), which is customary for a point receiver. However, a relatively higher receiver noise level can mask the fast falling-off shape and make it hard to be identified. We also predict that when the effective antenna radius a(sub r) less than or = 6 m, the corner frequency of its power spectrum becomes the same as that for a point receiver. The aperture-smoothing effects are not obvious. We have applied these solutions to the scenario of a DSN Goldstone 34-m-diameter antenna and predicted the power spectrum shape for the receiving station. The maximum corner frequency for the receiver (with omega(sub s) = 0.79 omega(sub 0) is found to be 0.44 Hz (or 1.0 omega(sub 0), while the fading rate (or fading slope) is about 0.06 dB/s.

  11. New results on the generation of broadband electrostatic waves in the magnetotail

    NASA Technical Reports Server (NTRS)

    Grabbe, C. L.

    1985-01-01

    The theory of the generation of broadband electrostatic noise (BEN) in the magnetotail is extended through numerical solution of the dispersion relation under conditions that exist in the plasma sheet boundary layer. It is found that the low-frequency portion of the spectrum has a broad angular spectrum but a fairly sharp peak near 75 deg with respect to the magnetic field, while the high-frequency portion has a narrower angular spectrum that is strongly concentrated along the magnetic field line. These results are in excellent agreement with observations of the broadband wave spectrum and a recent measurement of the propagation direction. The effect of a second cold component of electrons is analyzed, and it is found that it can increase the upper cutoff frequency of BEN to the observed value at about the plasma frequency.

  12. Attenuation analysis of real GPR wavelets: The equivalent amplitude spectrum (EAS)

    NASA Astrophysics Data System (ADS)

    Economou, Nikos; Kritikakis, George

    2016-03-01

    Absorption of a Ground Penetrating Radar (GPR) pulse is a frequency dependent attenuation mechanism which causes a spectral shift on the dominant frequency of GPR data. Both energy variation of GPR amplitude spectrum and spectral shift were used for the estimation of Quality Factor (Q*) and subsequently the characterization of the subsurface material properties. The variation of the amplitude spectrum energy has been studied by Spectral Ratio (SR) method and the frequency shift by the estimation of the Frequency Centroid Shift (FCS) or the Frequency Peak Shift (FPS) methods. The FPS method is more automatic, less robust. This work aims to increase the robustness of the FPS method by fitting a part of the amplitude spectrum of GPR data with Ricker, Gaussian, Sigmoid-Gaussian or Ricker-Gaussian functions. These functions fit different parts of the spectrum of a GPR reference wavelet and the Equivalent Amplitude Spectrum (EAS) is selected, reproducing Q* values used in forward Q* modeling analysis. Then, only the peak frequencies and the time differences between the reference wavelet and the subsequent reflected wavelets are used to estimate Q*. As long as the EAS is estimated, it is used for Q* evaluation in all the GPR section, under the assumption that the selected reference wavelet is representative. De-phasing and constant phase shift, for obtaining symmetrical wavelets, proved useful in the sufficiency of the horizons picking. Synthetic, experimental and real GPR data were examined in order to demonstrate the effectiveness of the proposed methodology.

  13. Numerical method based on transfer function for eliminating water vapor noise from terahertz spectra.

    PubMed

    Huang, Y; Sun, P; Zhang, Z; Jin, C

    2017-07-10

    Water vapor noise in the air affects the accuracy of optical parameters extracted from terahertz (THz) time-domain spectroscopy. In this paper, a numerical method was proposed to eliminate water vapor noise from the THz spectra. According to the Van Vleck-Weisskopf function and the linear absorption spectrum of water molecules in the HITRAN database, we simulated the water vapor absorption spectrum and real refractive index spectrum with a particular line width. The continuum effect of water vapor molecules was also considered. Theoretical transfer function of a different humidity was constructed through the theoretical calculation of the water vapor absorption coefficient and the real refractive index. The THz signal of the Lacidipine sample containing water vapor background noise in the continuous frequency domain of 0.5-1.8 THz was denoised by use of the method. The results show that the optical parameters extracted from the denoised signal are closer to the optical parameters in the dry nitrogen environment.

  14. A Novel Characteristic Frequency Bands Extraction Method for Automatic Bearing Fault Diagnosis Based on Hilbert Huang Transform

    PubMed Central

    Yu, Xiao; Ding, Enjie; Chen, Chunxu; Liu, Xiaoming; Li, Li

    2015-01-01

    Because roller element bearings (REBs) failures cause unexpected machinery breakdowns, their fault diagnosis has attracted considerable research attention. Established fault feature extraction methods focus on statistical characteristics of the vibration signal, which is an approach that loses sight of the continuous waveform features. Considering this weakness, this article proposes a novel feature extraction method for frequency bands, named Window Marginal Spectrum Clustering (WMSC) to select salient features from the marginal spectrum of vibration signals by Hilbert–Huang Transform (HHT). In WMSC, a sliding window is used to divide an entire HHT marginal spectrum (HMS) into window spectrums, following which Rand Index (RI) criterion of clustering method is used to evaluate each window. The windows returning higher RI values are selected to construct characteristic frequency bands (CFBs). Next, a hybrid REBs fault diagnosis is constructed, termed by its elements, HHT-WMSC-SVM (support vector machines). The effectiveness of HHT-WMSC-SVM is validated by running series of experiments on REBs defect datasets from the Bearing Data Center of Case Western Reserve University (CWRU). The said test results evidence three major advantages of the novel method. First, the fault classification accuracy of the HHT-WMSC-SVM model is higher than that of HHT-SVM and ST-SVM, which is a method that combines statistical characteristics with SVM. Second, with Gauss white noise added to the original REBs defect dataset, the HHT-WMSC-SVM model maintains high classification accuracy, while the classification accuracy of ST-SVM and HHT-SVM models are significantly reduced. Third, fault classification accuracy by HHT-WMSC-SVM can exceed 95% under a Pmin range of 500–800 and a m range of 50–300 for REBs defect dataset, adding Gauss white noise at Signal Noise Ratio (SNR) = 5. Experimental results indicate that the proposed WMSC method yields a high REBs fault classification accuracy and a good performance in Gauss white noise reduction. PMID:26540059

  15. A Novel Characteristic Frequency Bands Extraction Method for Automatic Bearing Fault Diagnosis Based on Hilbert Huang Transform.

    PubMed

    Yu, Xiao; Ding, Enjie; Chen, Chunxu; Liu, Xiaoming; Li, Li

    2015-11-03

    Because roller element bearings (REBs) failures cause unexpected machinery breakdowns, their fault diagnosis has attracted considerable research attention. Established fault feature extraction methods focus on statistical characteristics of the vibration signal, which is an approach that loses sight of the continuous waveform features. Considering this weakness, this article proposes a novel feature extraction method for frequency bands, named Window Marginal Spectrum Clustering (WMSC) to select salient features from the marginal spectrum of vibration signals by Hilbert-Huang Transform (HHT). In WMSC, a sliding window is used to divide an entire HHT marginal spectrum (HMS) into window spectrums, following which Rand Index (RI) criterion of clustering method is used to evaluate each window. The windows returning higher RI values are selected to construct characteristic frequency bands (CFBs). Next, a hybrid REBs fault diagnosis is constructed, termed by its elements, HHT-WMSC-SVM (support vector machines). The effectiveness of HHT-WMSC-SVM is validated by running series of experiments on REBs defect datasets from the Bearing Data Center of Case Western Reserve University (CWRU). The said test results evidence three major advantages of the novel method. First, the fault classification accuracy of the HHT-WMSC-SVM model is higher than that of HHT-SVM and ST-SVM, which is a method that combines statistical characteristics with SVM. Second, with Gauss white noise added to the original REBs defect dataset, the HHT-WMSC-SVM model maintains high classification accuracy, while the classification accuracy of ST-SVM and HHT-SVM models are significantly reduced. Third, fault classification accuracy by HHT-WMSC-SVM can exceed 95% under a Pmin range of 500-800 and a m range of 50-300 for REBs defect dataset, adding Gauss white noise at Signal Noise Ratio (SNR) = 5. Experimental results indicate that the proposed WMSC method yields a high REBs fault classification accuracy and a good performance in Gauss white noise reduction.

  16. Widely tunable laser frequency offset lock with 30 GHz range and 5 THz offset.

    PubMed

    Biesheuvel, J; Noom, D W E; Salumbides, E J; Sheridan, K T; Ubachs, W; Koelemeij, J C J

    2013-06-17

    We demonstrate a simple and versatile method to greatly extend the tuning range of optical frequency shifting devices, such as acousto-optic modulators (AOMs). We use this method to stabilize the frequency of a tunable narrow-band continuous-wave (CW) laser to a transmission maximum of an external Fabry-Perot interferometer (FPI) with a tunable frequency offset. This is achieved through a servo loop which contains an in-loop AOM for simple radiofrequency (RF) tuning of the optical frequency over the full 30 GHz mode-hop-free tuning range of the CW laser. By stabilizing the length of the FPI to a stabilized helium-neon (HeNe) laser (at 5 THz offset from the tunable laser) we simultaneously transfer the ~ 1 MHz absolute frequency stability of the HeNe laser to the entire 30 GHz range of the tunable laser. Thus, our method allows simple, wide-range, fast and reproducible optical frequency tuning and absolute optical frequency measurements through RF electronics, which is here demonstrated by repeatedly recording a 27-GHz-wide molecular iodine spectrum at scan rates up to 500 MHz/s. General technical aspects that determine the performance of the method are discussed in detail.

  17. Rough surface wavelength measurement through self mixing of Doppler microwave backscatter. [from ocean waves

    NASA Technical Reports Server (NTRS)

    Weissman, D. E.; Johnson, J. W.

    1979-01-01

    A microwave backscatter technique is presented that has the ability to sense the dominant surface wavelength of a random rough surface. The purpose of this technique is to perform this measurement from an aircraft or spacecraft, wherein the horizontal velocity of the radar is an important parameter of the measurement system. Attention will be directed at water surface conditions for which a dominant wavelength can be defined, then the spatial variations of reflectivity will have a two dimensional spectrum that is sufficiently close to that of waves to be useful. The measurement concept is based on the relative motion between the water waves and a nadir looking radar, and the fact that while the instantaneous Doppler frequency at the receiver returned by any elementary group of scatterers on a water wave is monotonically changing, the difference in the Doppler frequency between any two scattering 'patches' stays approximately constant as these waves travel parallel to the major axis of an elliptical antenna footprint. The results of a theoretical analysis and a laboratory experiment with a continuous wave (CW) radar that encompasses several of the largest waves in the illuminated area show how the structure in the Doppler spectrum of the backscattered signal is related to the surface spectrum and its parameters in an especially direct and simple way when an incoherent envelope detector is the receiver.

  18. The clonal and mutational evolution spectrum of primary triple-negative breast cancers.

    PubMed

    Shah, Sohrab P; Roth, Andrew; Goya, Rodrigo; Oloumi, Arusha; Ha, Gavin; Zhao, Yongjun; Turashvili, Gulisa; Ding, Jiarui; Tse, Kane; Haffari, Gholamreza; Bashashati, Ali; Prentice, Leah M; Khattra, Jaswinder; Burleigh, Angela; Yap, Damian; Bernard, Virginie; McPherson, Andrew; Shumansky, Karey; Crisan, Anamaria; Giuliany, Ryan; Heravi-Moussavi, Alireza; Rosner, Jamie; Lai, Daniel; Birol, Inanc; Varhol, Richard; Tam, Angela; Dhalla, Noreen; Zeng, Thomas; Ma, Kevin; Chan, Simon K; Griffith, Malachi; Moradian, Annie; Cheng, S-W Grace; Morin, Gregg B; Watson, Peter; Gelmon, Karen; Chia, Stephen; Chin, Suet-Feung; Curtis, Christina; Rueda, Oscar M; Pharoah, Paul D; Damaraju, Sambasivarao; Mackey, John; Hoon, Kelly; Harkins, Timothy; Tadigotla, Vasisht; Sigaroudinia, Mahvash; Gascard, Philippe; Tlsty, Thea; Costello, Joseph F; Meyer, Irmtraud M; Eaves, Connie J; Wasserman, Wyeth W; Jones, Steven; Huntsman, David; Hirst, Martin; Caldas, Carlos; Marra, Marco A; Aparicio, Samuel

    2012-04-04

    Primary triple-negative breast cancers (TNBCs), a tumour type defined by lack of oestrogen receptor, progesterone receptor and ERBB2 gene amplification, represent approximately 16% of all breast cancers. Here we show in 104 TNBC cases that at the time of diagnosis these cancers exhibit a wide and continuous spectrum of genomic evolution, with some having only a handful of coding somatic aberrations in a few pathways, whereas others contain hundreds of coding somatic mutations. High-throughput RNA sequencing (RNA-seq) revealed that only approximately 36% of mutations are expressed. Using deep re-sequencing measurements of allelic abundance for 2,414 somatic mutations, we determine for the first time-to our knowledge-in an epithelial tumour subtype, the relative abundance of clonal frequencies among cases representative of the population. We show that TNBCs vary widely in their clonal frequencies at the time of diagnosis, with the basal subtype of TNBC showing more variation than non-basal TNBC. Although p53 (also known as TP53), PIK3CA and PTEN somatic mutations seem to be clonally dominant compared to other genes, in some tumours their clonal frequencies are incompatible with founder status. Mutations in cytoskeletal, cell shape and motility proteins occurred at lower clonal frequencies, suggesting that they occurred later during tumour progression. Taken together, our results show that understanding the biology and therapeutic responses of patients with TNBC will require the determination of individual tumour clonal genotypes.

  19. Apparatus configured for identification of a material and method of identifying a material

    DOEpatents

    Slater, John M.; Crawford, Thomas M.; Frickey, Dean A.

    2001-01-01

    The present invention relates to an apparatus configured for identification of a material and method of identifying a material. One embodiment of the present invention provides an apparatus configured for identification of a material including a first region configured to receive a first sample and output a first spectrum responsive to exposure of the first sample to radiation; a signal generator configured to provide a reference signal having a reference frequency and a modulation signal having a modulation frequency; a modulator configured to selectively modulate the first spectrum using the modulation signal according to the reference frequency; a second region configured to receive a second sample and output a second spectrum responsive to exposure of the second sample to the first spectrum; and a detector configured to detect the second spectrum.

  20. A frequency standard via spectrum analysis and direct digital synthesis

    NASA Astrophysics Data System (ADS)

    Li, Dawei; Shi, Daiting; Hu, Ermeng; Wang, Yigen; Tian, Lu; Zhao, Jianye; Wang, Zhong

    2014-11-01

    We demonstrated a frequency standard based on a detuned coherent population beating phenomenon. In this phenomenon, the beat frequency of the radio frequency for laser modulation and the hyperfine splitting can be obtained by digital signal processing technology. After analyzing the spectrum of the beat frequency, the fluctuation information is obtained and applied to compensate for the frequency shift to generate the standard frequency by the digital synthesis method. Frequency instability of 2.6 × 1012 at 1000 s is observed in our preliminary experiment. By eliminating the phase-locking loop, the method will enable us to achieve a full-digital frequency standard with remarkable stability.

  1. Bearings fault detection in helicopters using frequency readjustment and cyclostationary analysis

    NASA Astrophysics Data System (ADS)

    Girondin, Victor; Pekpe, Komi Midzodzi; Morel, Herve; Cassar, Jean-Philippe

    2013-07-01

    The objective of this paper is to propose a vibration-based automated framework dealing with local faults occurring on bearings in the transmission of a helicopter. The knowledge of the shaft speed and kinematic computation provide theoretical frequencies that reveal deteriorations on the inner and outer races, on the rolling elements or on the cage. In practice, the theoretical frequencies of bearing faults may be shifted. They may also be masked by parasitical frequencies because the numerous noisy vibrations and the complexity of the transmission mechanics make the signal spectrum very profuse. Consequently, detection methods based on the monitoring of the theoretical frequencies may lead to wrong decisions. In order to deal with this drawback, we propose to readjust the fault frequencies from the theoretical frequencies using the redundancy introduced by the harmonics. The proposed method provides the confidence index of the readjusted frequency. Minor variations in shaft speed may induce random jitters. The change of the contact surface or of the transmission path brings also a random component in amplitude and phase. These random components in the signal destroy spectral localization of frequencies and thus hide the fault occurrence in the spectrum. Under the hypothesis that these random signals can be modeled as cyclostationary signals, the envelope spectrum can reveal that hidden patterns. In order to provide an indicator estimating fault severity, statistics are proposed. They make the hypothesis that the harmonics at the readjusted frequency are corrupted with an additive normally distributed noise. In this case, the statistics computed from the spectra are chi-square distributed and a signal-to-noise indicator is proposed. The algorithms are then tested with data from two test benches and from flight conditions. The bearing type and the radial load are the main differences between the experiences on the benches. The fault is mainly visible in the spectrum for the radially constrained bearing and only visible in the envelope spectrum for the "load-free" bearing. Concerning results in flight conditions, frequency readjustment demonstrates good performances when applied on the spectrum, showing that a fully automated bearing decision procedure is applicable for operational helicopter monitoring.

  2. THE VIOLATION OF THE TAYLOR HYPOTHESIS IN MEASUREMENTS OF SOLAR WIND TURBULENCE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klein, K. G.; Howes, G. G.; TenBarge, J. M.

    2014-08-01

    Motivated by the upcoming Solar Orbiter and Solar Probe Plus missions, qualitative and quantitative predictions are made for the effects of the violation of the Taylor hypothesis on the magnetic energy frequency spectrum measured in the near-Sun environment. The synthetic spacecraft data method is used to predict observational signatures of the violation for critically balanced Alfvénic turbulence or parallel fast/whistler turbulence. The violation of the Taylor hypothesis can occur in the slow flow regime, leading to a shift of the entire spectrum to higher frequencies, or in the dispersive regime, in which the dissipation range spectrum flattens at high frequencies.more » It is found that Alfvénic turbulence will not significantly violate the Taylor hypothesis, but whistler turbulence will. The flattening of the frequency spectrum is therefore a key observational signature for fast/whistler turbulence.« less

  3. Method of estimating pulse response using an impedance spectrum

    DOEpatents

    Morrison, John L; Morrison, William H; Christophersen, Jon P; Motloch, Chester G

    2014-10-21

    Electrochemical Impedance Spectrum data are used to predict pulse performance of an energy storage device. The impedance spectrum may be obtained in-situ. A simulation waveform includes a pulse wave with a period greater than or equal to the lowest frequency used in the impedance measurement. Fourier series coefficients of the pulse train can be obtained. The number of harmonic constituents in the Fourier series are selected so as to appropriately resolve the response, but the maximum frequency should be less than or equal to the highest frequency used in the impedance measurement. Using a current pulse as an example, the Fourier coefficients of the pulse are multiplied by the impedance spectrum at corresponding frequencies to obtain Fourier coefficients of the voltage response to the desired pulse. The Fourier coefficients of the response are then summed and reassembled to obtain the overall time domain estimate of the voltage using the Fourier series analysis.

  4. A Tri-Band Frequency Selective Surface (FSS) to Diplex Widely Separated Bands for Millimeter Wave Remote Sensing

    NASA Astrophysics Data System (ADS)

    Poojali, Jayaprakash; Ray, Shaumik; Pesala, Bala; Chitti, Krishnamurthy V.; Arunachalam, Kavitha

    2016-10-01

    A substrate-backed frequency selective surface (FSS) is presented for diplexing the widely separated frequency spectrum centered at 55, 89, and 183 GHz with varying bandwidth for spatial separation in the quasi-optical feed network of the millimeter wave sounder. A unit cell composed of a crossed dipole integrated with a circular ring and loaded inside a square ring is optimized for tri-band frequency response with transmission window at 89 GHz and rejection windows at 55 and 183 GHz. The reflection and transmission losses predicted for the optimized unit cell (728 μm × 728 μm) composed of dissimilar resonant shapes is less than 0.5 dB for transverse electric (TE) and transverse magnetic (TM) polarizations and wide angle of incidence (0°-45°). The FSS is fabricated on a 175-μm-thick quartz substrate using microfabrication techniques. The transmission characteristics measured with continuous wave (CW) terahertz transmit receive system are in good agreement with the numerical simulations.

  5. Selective visual scaling of time-scale processes facilitates broadband learning of isometric force frequency tracking.

    PubMed

    King, Adam C; Newell, Karl M

    2015-10-01

    The experiment investigated the effect of selectively augmenting faster time scales of visual feedback information on the learning and transfer of continuous isometric force tracking tasks to test the generality of the self-organization of 1/f properties of force output. Three experimental groups tracked an irregular target pattern either under a standard fixed gain condition or with selectively enhancement in the visual feedback display of intermediate (4-8 Hz) or high (8-12 Hz) frequency components of the force output. All groups reduced tracking error over practice, with the error lowest in the intermediate scaling condition followed by the high scaling and fixed gain conditions, respectively. Selective visual scaling induced persistent changes across the frequency spectrum, with the strongest effect in the intermediate scaling condition and positive transfer to novel feedback displays. The findings reveal an interdependence of the timescales in the learning and transfer of isometric force output frequency structures consistent with 1/f process models of the time scales of motor output variability.

  6. QKD Via a Quantum Wavelength Router Using Spatial Soliton

    NASA Astrophysics Data System (ADS)

    Kouhnavard, M.; Amiri, I. S.; Afroozeh, A.; Jalil, M. A.; Ali, J.; Yupapin, P. P.

    2011-05-01

    A system for continuous variable quantum key distribution via a wavelength router is proposed. The Kerr type of light in the nonlinear microring resonator (NMRR) induces the chaotic behavior. In this proposed system chaotic signals are generated by an optical soliton or Gaussian pulse within a NMRR system. The parameters, such as input power, MRRs radii and coupling coefficients can change and plays important role in determining the results in which the continuous signals are generated spreading over the spectrum. Large bandwidth signals of optical soliton are generated by the input pulse propagating within the MRRs, which is allowed to form the continuous wavelength or frequency with large tunable channel capacity. The continuous variable QKD is formed by using the localized spatial soliton pulses via a quantum router and networks. The selected optical spatial pulse can be used to perform the secure communication network. Here the entangled photon generated by chaotic signals has been analyzed. The continuous entangled photon is generated by using the polarization control unit incorporating into the MRRs, required to provide the continuous variable QKD. Results obtained have shown that the application of such a system for the simultaneous continuous variable quantum cryptography can be used in the mobile telephone hand set and networks. In this study frequency band of 500 MHz and 2.0 GHz and wavelengths of 775 nm, 2,325 nm and 1.55 μm can be obtained for QKD use with input optical soliton and Gaussian beam respectively.

  7. Tunable CW diode-pumped Tm,Ho:YLiF4 laser operating at or near room temperature

    NASA Technical Reports Server (NTRS)

    Mcguckin, Brendan T. (Inventor); Menzies, Robert T. (Inventor)

    1995-01-01

    A conversion efficiency of 42% and slope efficiency of 60% relative to absorbed pump power are obtained from a continuous wave diode-pumped Tm,Ho:YLiF4 laser at 2 microns with output power of 84 mW at a crystal temperature of 275 K. The emission spectrum is etalon tunable over a range of7 nm (16.3/cm) centered on 2.067 microns with fine tuning capability of the transition frequency with crystal temperature at a measured rate of -0.03/(cm)K. The effective emission cross-section is measured to be 5 x 10(exp -21) cm squared. These and other aspects of the laser performance are disclosed in the context of calculated atmospheric absorption characteristics in this spectral region and potential use in remote sensing applications. Single frequency output and frequency stabilization are achieved using an intracavity etalon in conjunction with an external reference etalon.

  8. Time-of-Flight Microwave Camera.

    PubMed

    Charvat, Gregory; Temme, Andrew; Feigin, Micha; Raskar, Ramesh

    2015-10-05

    Microwaves can penetrate many obstructions that are opaque at visible wavelengths, however microwave imaging is challenging due to resolution limits associated with relatively small apertures and unrecoverable "stealth" regions due to the specularity of most objects at microwave frequencies. We demonstrate a multispectral time-of-flight microwave imaging system which overcomes these challenges with a large passive aperture to improve lateral resolution, multiple illumination points with a data fusion method to reduce stealth regions, and a frequency modulated continuous wave (FMCW) receiver to achieve depth resolution. The camera captures images with a resolution of 1.5 degrees, multispectral images across the X frequency band (8 GHz-12 GHz), and a time resolution of 200 ps (6 cm optical path in free space). Images are taken of objects in free space as well as behind drywall and plywood. This architecture allows "camera-like" behavior from a microwave imaging system and is practical for imaging everyday objects in the microwave spectrum.

  9. Spectrum Sharing in an ISM Band: Outage Performance of a Hybrid DS/FH Spread Spectrum System with Beamforming

    NASA Astrophysics Data System (ADS)

    Li, Hanyu; Syed, Mubashir; Yao, Yu-Dong; Kamakaris, Theodoros

    2009-12-01

    This paper investigates spectrum sharing issues in the unlicensed industrial, scientific, and medical (ISM) bands. It presents a radio frequency measurement setup and measurement results in 2.4 GHz. It then develops an analytical model to characterize the coexistence interference in the ISM bands, based on radio frequency measurement results in the 2.4 GHz. Outage performance using the interference model is examined for a hybrid direct-sequence frequency-hopping spread spectrum system. The utilization of beamforming techniques in the system is also investigated, and a simplified beamforming model is proposed to analyze the system performance using beamforming. Numerical results show that beamforming significantly improves the system outage performance. The work presented in this paper provides a quantitative evaluation of signal outages in a spectrum sharing environment. It can be used as a tool in the development process for future dynamic spectrum access models as well as engineering designs for applications in unlicensed bands.

  10. Real-Time Analysis of the Heart Rate Variability During Incremental Exercise for the Detection of the Ventilatory Threshold.

    PubMed

    Shiraishi, Yasuyuki; Katsumata, Yoshinori; Sadahiro, Taketaro; Azuma, Koichiro; Akita, Keitaro; Isobe, Sarasa; Yashima, Fumiaki; Miyamoto, Kazutaka; Nishiyama, Takahiko; Tamura, Yuichi; Kimura, Takehiro; Nishiyama, Nobuhiro; Aizawa, Yoshiyasu; Fukuda, Keiichi; Takatsuki, Seiji

    2018-01-07

    It has never been possible to immediately evaluate heart rate variability (HRV) during exercise. We aimed to visualize the real-time changes in the power spectrum of HRV during exercise and to investigate its relationship to the ventilatory threshold (VT). Thirty healthy subjects (29.1±5.7 years of age) and 35 consecutive patients (59.0±13.2 years of age) with myocardial infarctions underwent cardiopulmonary exercise tests with an RAMP protocol ergometer. The HRV was continuously assessed with power spectral analyses using the maximum entropy method and projected on a screen without delay. During exercise, a significant decrease in the high frequency (HF) was followed by a drastic shift in the power spectrum of the HRV with a periodic augmentation in the low frequency/HF (L/H) and steady low HF. When the HRV threshold (HRVT) was defined as conversion from a predominant high frequency (HF) to a predominant low frequency/HF (L/H), the VO 2 at the HRVT (HRVT-VO 2 ) was substantially correlated with the VO 2 at the lactate threshold and VT) in the healthy subjects ( r =0.853 and 0.921, respectively). The mean difference between each threshold (0.65 mL/kg per minute for lactate threshold and HRVT, 0.53 mL/kg per minute for VT and HRVT) was nonsignificant ( P >0.05). Furthermore, the HRVT-VO 2 was also correlated with the VT-VO 2 in these myocardial infarction patients ( r =0.867), and the mean difference was -0.72 mL/kg per minute and was nonsignificant ( P >0.05). A HRV analysis with our method enabled real-time visualization of the changes in the power spectrum during exercise. This can provide additional information for detecting the VT. © 2018 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.

  11. Coherence Volume of an Optical Wave Field with Broad Frequency and Angular Spectra

    NASA Astrophysics Data System (ADS)

    Lyakin, D. V.; Mysina, N. Yu.; Ryabukho, V. P.

    2018-03-01

    We consider the sizes of a region in a three-dimensional space in which an optical wave field excites mutually coherent perturbations. We discuss the conditions under which the length of this region along the direction of propagation of the wave field and, correspondingly, its volume are determined either by the width of the frequency spectrum of the field or by the width of its angular spectrum, or by the parameters of these spectra simultaneously. We obtain expressions for estimating extremely small values of the coherence volume of the fields with a broad frequency spectrum and an extremely broad angular spectrum. Using the notion of instantaneous speckle-modulation of the wave field, we give a physical interpretation to the occurrence of a limited coherence volume of the field. The length of the spatiotemporal coherence region in which mutually coherent perturbations occur at different times is determined. The coherence volume of a wave field that illuminates an object in high-resolution microscopy with frequency broadband light is considered. The conditions for the dominant influence of the angular or frequency spectra on the longitudinal length of the coherence region are given, and the conditions for the influence of the frequency spectrum width on the transverse coherence of the wave field are examined. We show that, when using fields with broad and ultrabroad spectra in high-resolution microscopy, this influence should be taken into account.

  12. Spectrum Management and Electromagnetic Compatibility Issues in the Department of Defense

    DTIC Science & Technology

    1991-01-01

    Interference JEWC Joint Electronic Warfare Center JRFL Joint Restricted Frequency List JSMS Joint Spectrum Management System JT&E Joint Test and Evaluation JTAC...Joint Restricted Frequency List (JRFL) is essentially a list of frequencies prohibited from use by ECM units. Creation and maintenance of the JRFL to...sponsored by CECOM, developed a prototype that primarily acted as an analysis of the restricted frequency list as a predecessor to DECON. Presently the Army

  13. Frequency-domain method for measuring spectral properties in multiple-scattering media: methemoglobin absorption spectrum in a tissuelike phantom

    NASA Astrophysics Data System (ADS)

    Fishkin, Joshua B.; So, Peter T. C.; Cerussi, Albert E.; Gratton, Enrico; Fantini, Sergio; Franceschini, Maria Angela

    1995-03-01

    We have measured the optical absorption and scattering coefficient spectra of a multiple-scattering medium (i.e., a biological tissue-simulating phantom comprising a lipid colloid) containing methemoglobin by using frequency-domain techniques. The methemoglobin absorption spectrum determined in the multiple-scattering medium is in excellent agreement with a corrected methemoglobin absorption spectrum obtained from a steady-state spectrophotometer measurement of the optical density of a minimally scattering medium. The determination of the corrected methemoglobin absorption spectrum takes into account the scattering from impurities in the methemoglobin solution containing no lipid colloid. Frequency-domain techniques allow for the separation of the absorbing from the scattering properties of multiple-scattering media, and these techniques thus provide an absolute

  14. Track Structure Model for Radial Distributions of Electron Spectra and Event Spectra from High-Energy Ions

    NASA Technical Reports Server (NTRS)

    Cucinotta, F. A.; Katz, R.; Wilson, J. W.

    1998-01-01

    An analytic method is described for evaluating the average radial electron spectrum and the radial and total frequency-event spectrum for high-energy ions. For high-energy ions, indirect events make important contributions to frequency-event spectra. The method used for evaluating indirect events is to fold the radial electron spectrum with measured frequency-event spectrum for photons or electrons. The contribution from direct events is treated using a spatially restricted linear energy transfer (LET). We find that high-energy heavy ions have a significantly reduced frequency-averaged final energy (yF) compared to LET, while relativistic protons have a significantly increased yF and dose-averaged lineal energy (yD) for typical site sizes used in tissue equivalent proportional counters. Such differences represent important factors in evaluating event spectra with laboratory beams, in space- flight, or in atmospheric radiation studies and in validation of radiation transport codes. The inadequacy of LET as descriptor because of deviations in values of physical quantities, such as track width, secondary electron spectrum, and yD for ions of identical LET is also discussed.

  15. Observing random walks of atoms in buffer gas through resonant light absorption

    NASA Astrophysics Data System (ADS)

    Aoki, Kenichiro; Mitsui, Takahisa

    2016-07-01

    Using resonant light absorption, random-walk motions of rubidium atoms in nitrogen buffer gas are observed directly. The transmitted light intensity through atomic vapor is measured, and its spectrum is obtained, down to orders of magnitude below the shot-noise level to detect fluctuations caused by atomic motions. To understand the measured spectra, the spectrum for atoms performing random walks in a Gaussian light beam is computed, and its analytical form is obtained. The spectrum has 1 /f2 (f is frequency) behavior at higher frequencies, crossing over to a different, but well-defined, behavior at lower frequencies. The properties of this theoretical spectrum agree excellently with the measured spectrum. This understanding also enables us to obtain the diffusion constant, the photon cross section of atoms in buffer gas, and the atomic number density from a single spectral measurement. We further discuss other possible applications of our experimental method and analysis.

  16. Fault diagnosis of rolling element bearings with a spectrum searching method

    NASA Astrophysics Data System (ADS)

    Li, Wei; Qiu, Mingquan; Zhu, Zhencai; Jiang, Fan; Zhou, Gongbo

    2017-09-01

    Rolling element bearing faults in rotating systems are observed as impulses in the vibration signals, which are usually buried in noise. In order to effectively detect faults in bearings, a novel spectrum searching method is proposed in this paper. The structural information of the spectrum (SIOS) on a predefined frequency grid is constructed through a searching algorithm, such that the harmonics of the impulses generated by faults can be clearly identified and analyzed. Local peaks of the spectrum are projected onto certain components of the frequency grid, and then the SIOS can interpret the spectrum via the number and power of harmonics projected onto components of the frequency grid. Finally, bearings can be diagnosed based on the SIOS by identifying its dominant or significant components. The mathematical formulation is developed to guarantee the correct construction of the SIOS through searching. The effectiveness of the proposed method is verified with both simulated and experimental bearing signals.

  17. Polarization dependence of Brillouin linewidth and peak frequency due to fiber inhomogeneity in single mode fiber and its impact on distributed fiber Brillouin sensing.

    PubMed

    Xie, Shangran; Pang, Meng; Bao, Xiaoyi; Chen, Liang

    2012-03-12

    The dependence of Brillouin linewidth and peak frequency on lightwave state of polarization (SOP) due to fiber inhomogeneity in single mode fiber (SMF) is investigated by using Brillouin optical time domain analysis (BOTDA) system. Theoretical analysis shows fiber inhomogeneity leads to fiber birefringence and sound velocity variation, both of which can cause the broadening and asymmetry of the Brillouin gain spectrum (BGS) and thus contribute to the variation of Brillouin linewidth and peak frequency with lightwave SOP. Due to fiber inhomogeneity both in lateral profile and longitudinal direction, the measured BGS is the superposition of several spectrum components with different peak frequencies within the interaction length. When pump or probe SOP changes, both the peak Brillouin gain and the overlapping area of the optical and acoustic mode profile that determine the peak efficiency of each spectrum component vary within the interaction length, which further changes the linewidth and peak frequency of the superimposed BGS. The SOP dependence of Brillouin linewidth and peak frequency was experimentally demonstrated and quantified by measuring the spectrum asymmetric factor and fitting obtained effective peak frequency respectively via BOTDA system on standard step-index SMF-28 fiber. Experimental results show that on this fiber the Brillouin spectrum asymmetric factor and effective peak frequency vary in the range of 2% and 0.06MHz respectively over distance with orthogonal probe input SOPs. Experimental results also show that in distributed fiber Brillouin sensing, polarization scrambler (PS) can be used to reduce the SOP dependence of Brillouin linewidth and peak frequency caused by fiber inhomogeneity in lateral profile, however it maintains the effects caused by fiber inhomogeneity in longitudinal direction. In the case of non-ideal polarization scrambling using practical PS, the fluctuation of effective Brillouin peak frequency caused by fiber inhomogeneity provides another limit of sensing frequency resolution of distributed fiber Brillouin sensor.

  18. [Study on spectral gain characterization of FWM processes with multi-frequency pumps in photonic crystal fiber].

    PubMed

    Hui, Zhan-Qiang

    2011-10-01

    Spectral gain induced by four-wave-mixing with multi-frequency pump was investigated by exploiting the data signal and continue lights co-propagation in dispersion flattened high nonlinear photonic crystal fiber (PCF). The effects of wavelength drift of pump lights, polarization state of orthogonal or parallel of pump lights, polarization mismatch of signal light versus orthogonal pump lights, total power of signal and probe light on the spectrum gain were analyzed. The results show that good FWM gain effects with multi-frequency pump can be obtained in 36.4 nm wavelength range when power ratio of pump to probe light is appropriate and with identical polarization. Furthermore, the gain of FWM with multi-frequency pump is very sensitive to polarization fluctuation and the different idle waves obtain different gain with the variation in signal polarization state. Moreover, the impact of pump numbers was investigated. The obtained results would be helpful for further research on ultrahigh-speed all optical signal processing devices exploiting the FWM with multi-frequency pump in PCF for future photonics network.

  19. A Novel Modified Omega-K Algorithm for Synthetic Aperture Imaging Lidar through the Atmosphere

    PubMed Central

    Guo, Liang; Xing, Mendao; Tang, Yu; Dan, Jing

    2008-01-01

    The spatial resolution of a conventional imaging lidar system is constrained by the diffraction limit of the telescope's aperture. The combination of the lidar and synthetic aperture (SA) processing techniques may overcome the diffraction limit and pave the way for a higher resolution air borne or space borne remote sensor. Regarding the lidar transmitting frequency modulation continuous-wave (FMCW) signal, the motion during the transmission of a sweep and the reception of the corresponding echo were expected to be one of the major problems. The given modified Omega-K algorithm takes the continuous motion into account, which can compensate for the Doppler shift induced by the continuous motion efficiently and azimuth ambiguity for the low pulse recurrence frequency limited by the tunable laser. And then, simulation of Phase Screen (PS) distorted by atmospheric turbulence following the von Karman spectrum by using Fourier Transform is implemented in order to simulate turbulence. Finally, the computer simulation shows the validity of the modified algorithm and if in the turbulence the synthetic aperture length does not exceed the similar coherence length of the atmosphere for SAIL, we can ignore the effect of the turbulence. PMID:27879865

  20. Vibrational correlation between conjugated carbonyl and diazo modes studied by single- and dual-frequency two-dimensional infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Maekawa, Hiroaki; Sul, Soohwan; Ge, Nien-Hui

    2013-08-01

    We have applied infrared three-pulse photon echo and single- and dual-frequency 2D IR spectroscopy to the ester Cdbnd O and diazo Ndbnd N stretching modes in ethyl diazoacetate (EDA), and investigated their vibrational frequency fluctuations and correlation. The two modes exhibit different vibrational dynamics and 2D lineshape, which are well simulated by frequency-frequency correlation functions (FFCFs) with two decaying components. Although the FT IR spectrum shows a single Cdbnd O band, absolute magnitude 2D IR nonrephasing spectrum displays spectral signatures supporting the presence of cis and trans conformations. The cross-peak inclined toward the anti-diagonal in the dual-frequency 2D IR spectrum, indicating that the frequency fluctuations of the two modes are anticorrelated. This behavior is attributed to anticorrelated change in the bond orders when solvent and structural fluctuations causes EDA to adopt a different mixture of the two dominant resonance structures. The effects of cross FFCF on the cross-peak line shape are discussed.

  1. Tunable microwave generation of a monolithic dual-wavelength distributed feedback laser.

    PubMed

    Lo, Yen-Hua; Wu, Yu-Chang; Hsu, Shun-Chieh; Hwang, Yi-Chia; Chen, Bai-Ci; Lin, Chien-Chung

    2014-06-02

    The dynamic behavior of a monolithic dual-wavelength distributed feedback laser was fully investigated and mapped. The combination of different driving currents for master and slave lasers can generate a wide range of different operational modes, from single mode, period 1 to chaos. Both the optical and microwave spectrum were recorded and analyzed. The detected single mode signal can continuously cover from 15GHz to 50GHz, limited by photodetector bandwidth. The measured optical four-wave-mixing pattern indicates that a 70GHz signal can be generated by this device. By applying rate equation analysis, the important laser parameters can be extracted from the spectrum. The extracted relaxation resonant frequency is found to be 8.96GHz. With the full operational map at hand, the suitable current combination can be applied to the device for proper applications.

  2. Compton interaction of free electrons with intense low frequency radiation

    NASA Technical Reports Server (NTRS)

    Illarionov, A. F.; Kompaneyets, D. A.

    1978-01-01

    Electron behavior in an intense low frequency radiation field, with induced Compton scattering as the primary mechanism of interaction, is investigated. Evolution of the electron energy spectrum is studied, and the equilibrium spectrum of relativistic electrons in a radiation field with high brightness temperature is found. The induced radiation pressure and heating rate of an electron gas are calculated. The direction of the induced pressure depends on the radiation spectrum. The form of spectrum, under the induced force can accelerate electrons to superrelativistic energies is found.

  3. Resonant ultrasound spectroscopy

    DOEpatents

    Migliori, Albert

    1991-01-01

    A resonant ultrasound spectroscopy method provides a unique characterization of an object for use in distinguishing similar objects having physical differences greater than a predetermined tolerance. A resonant response spectrum is obtained for a reference object by placing excitation and detection transducers at any accessible location on the object. The spectrum is analyzed to determine the number of resonant response peaks in a predetermined frequency interval. The distribution of the resonance frequencies is then characterized in a manner effective to form a unique signature of the object. In one characterization, a small frequency interval is defined and stepped though the spectrum frequency range. Subsequent objects are similarly characterized where the characterizations serve as signatures effective to distinguish objects that differ from the reference object by more than the predetermined tolerance.

  4. Numerical investigation of frequency spectrum in the Hasegawa-Wakatani model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Juhyung; Terry, P. W.

    2013-10-15

    The wavenumber-frequency spectrum of the two-dimensional Hasegawa-Wakatani model is investigated in the hydrodynamic, intermediate, and adiabatic regimes. A nonlinear frequency and a line width related to energy transfer properties provide a measure of the average frequency and spectral broadening, respectively. In the adiabatic regime, narrow spectra, typical of wave turbulence, are observed with a nonlinear frequency shift in the electron drift direction. In the hydrodynamic regime, broad spectra with almost zero nonlinear frequencies are observed. Nonlinear frequency shifts are shown to be related to nonlinear energy transfer by vorticity advection through the high frequency region of the spectrum. In themore » intermediate regime, the nonlinear frequency shift for density fluctuations is observed to be weaker than that of electrostatic potential fluctuations. The weaker frequency shift of the density fluctuations is due to nonlinear density advection, which favors energy transfer in the low frequency range. Both the nonlinear frequency and the spectral width increase with poloidal wavenumber k{sub y}. In addition, in the adiabatic regime where the nonlinear interactions manifest themselves in the nonlinear frequency shift, the cross-phase between the density and potential fluctuations is observed to match a linear relation, but only if the linear response of the linearly stable eigenmode branch is included. Implications of these numerical observations are discussed.« less

  5. The Pioneer Venus Orbiter plasma wave investigation

    NASA Technical Reports Server (NTRS)

    Scarf, F. L.; Taylor, W. W. L.; Virobik, P. F.

    1980-01-01

    The Pioneer Venus plasma wave instrument has a self-contained balanced electric dipole (effective length = 0.75 m) and a 4-channel spectrum analyzer (30% bandwidth filters with center frequencies at 100 Hz, 730 Hz, and 30 kHz). The channels are continuously active and the highest Orbiter telemetry rate (2048 bits/sec) yields 4 spectral scans/sec. The total mass of 0.55 kg includes the electronics, the antenna, and the antenna deployment mechanism. This report contains a brief description of the instrument design and a discussion of the in-flight performance.

  6. Geostationary multipurpose platforms

    NASA Technical Reports Server (NTRS)

    Bekey, I.; Bowman, R. M.

    1981-01-01

    In addition to the advantages generally associated with orbital platforms, such as improved reliability, economies of scale, simple connectivity of elements, reduced tracking demands and the restraint of orbital object population growth, geostationary platforms yield: (1) continuous access by fixed ground antennas for communications services; (2) continuous monitoring of phenomena over chosen regions of the earth's surface; (3) a preferred location for many solar-terrestrial physics experiments. The geostationary platform also offers a low-risk and economical solution to the impending saturation of the orbital arc/frequency spectrum, maximizing the capacity of individual slots and increasing the utility of the entire arc. It also allows the use of many small, simple and inexpensive earth stations through complexity inversion and high power per beam. Block diagram and operational flowcharts are provided.

  7. Improving signal-to-noise ratios of liquid chromatography-tandem mass spectrometry peaks using noise frequency spectrum modification between two consecutive matched-filtering procedures.

    PubMed

    Wang, Shau-Chun; Huang, Chih-Min; Chiang, Shu-Min

    2007-08-17

    This paper reports a simple chemometric technique to alter the noise spectrum of liquid chromatography-tandem mass spectrometry (LC-MS-MS) chromatogram between two consecutive matched filter procedures to improve the peak signal-to-noise (S/N) ratio enhancement. This technique is to multiply one match-filtered LC-MS-MS chromatogram with another artificial chromatogram added with thermal noises prior to the second matched filter. Because matched filter cannot eliminate low-frequency components inherent in the flicker noises of spike-like sharp peaks randomly riding on LC-MS-MS chromatograms, efficient peak S/N ratio improvement cannot be accomplished using one-step or consecutive matched filter procedures to process LC-MS-MS chromatograms. In contrast, when the match-filtered LC-MS-MS chromatogram is conditioned with the multiplication alteration prior to the second matched filter, much better efficient ratio improvement is achieved. The noise frequency spectrum of match-filtered chromatogram, which originally contains only low-frequency components, is altered to span a boarder range with multiplication operation. When the frequency range of this modified noise spectrum shifts toward higher frequency regime, the second matched filter, working as a low-pass filter, is able to provide better filtering efficiency to obtain higher peak S/N ratios. Real LC-MS-MS chromatograms containing random spike-like peaks, of which peak S/N ratio improvement is less than four times with two consecutive matched filters typically, are remedied to accomplish much better ratio enhancement approximately 16-folds when the noise frequency spectrum is modified between two matched filters.

  8. On the Full-range β Dependence of Ion-scale Spectral Break in the Solar Wind Turbulence

    NASA Astrophysics Data System (ADS)

    Wang, Xin; Tu, Chuanyi; He, Jiansen; Wang, Linghua

    2018-04-01

    The power spectrum of magnetic fluctuations has a break at the high-frequency end of the inertial range. Beyond this break, the spectrum becomes steeper than the Kolmogorov law f ‑5/3. The break frequency was found to be associated with plasma beta (β). However, the full-range β dependence of the ion-scale spectral break has not been presented before in observational studies. Here we show the continuous variation of the break frequency on full-range β in the solar wind turbulence. By using measurements from the WIND and Ulysses spacecraft, we show the break frequency (f b ) normalized, respectively, by the frequencies corresponding to ion inertial length (f di ), ion gyroradius ({f}ρ i), and cyclotron resonance scale (f ri ) as a function of β for 1306 intervals. Their β values spread from 0.005 to 20, which nearly covers the full β range of the observed solar wind turbulence. It is found that {f}b/{f}{di} ({f}b/{f}ρ i) generally decreases (increases) with β, while {f}b/{f}{ri} is nearly a constant. We perform a linear fit on the statistical result, and obtain the empirical formulas {f}b/{f}{di}∼ {β }-1/4, {f}b/{f}ρ i∼ {β }1/4, and {f}b/{f}{ri}∼ 0.90 to describe the relation between f b and β. We also compare our observations with a numerical simulation and the prediction by ion cyclotron resonance theory. Our result favors the idea that the cyclotron resonance is an important mechanism for energy dissipation at the spectral break. When β ≪ 1 and β ≫ 1, the break at f di and {f}ρ i may also be associated with other processes.

  9. Self spectrum window method in wigner-ville distribution.

    PubMed

    Liu, Zhongguo; Liu, Changchun; Liu, Boqiang; Lv, Yangsheng; Lei, Yinsheng; Yu, Mengsun

    2005-01-01

    Wigner-Ville distribution (WVD) is an important type of time-frequency analysis in biomedical signal processing. The cross-term interference in WVD has a disadvantageous influence on its application. In this research, the Self Spectrum Window (SSW) method was put forward to suppress the cross-term interference, based on the fact that the cross-term and auto-WVD- terms in integral kernel function are orthogonal. With the Self Spectrum Window (SSW) algorithm, a real auto-WVD function was used as a template to cross-correlate with the integral kernel function, and the Short Time Fourier Transform (STFT) spectrum of the signal was used as window function to process the WVD in time-frequency plane. The SSW method was confirmed by computer simulation with good analysis results. Satisfactory time- frequency distribution was obtained.

  10. Rotational Spectroscopy of 4-HYDROXY-2-BUTYNENITRILE

    NASA Astrophysics Data System (ADS)

    Motiyenko, R. A.; Margulès, L.; Guillemin, J.-C.

    2015-06-01

    Recently we studied the rotational spectrum of hydroxyacetonitrile (HOCH_2CN, HAN) in order to provide a firm basis for its possible detection in the interstellar medium Different plausible pathways of the formation of HAN in the interstellar conditions were proposed; however, up to now, the searches for this molecule were unsuccessful. To continue the study of nitriles that represent an astrophysical interest we present in this talk the analysis of the rotational spectrum of 4-hydroxy-2-butynenitrile (HOCH_2CC-CN, HBN), the next molecule in the series of hydroxymethyl nitriles. Using the Lille spectrometer the spectrum of HBN was measured in the frequency range 50 -- 500 GHz. From the spectroscopic point of view HBN molecule is rather similar to HAN, because of -OH group tunnelling in gauche conformation. As it was previously observed for HAN, due to this large amplitude motion, the splittings in the rotational spectra of HBN are easily resolved making the spectral analysis more difficult. Additional difficulties arise from the near symmetric top character of HBN (κ = -0.996), and very dense spectrum because of relatively small values of rotational constants and a number of low-lying excited vibrational states. The analysis carried out in the frame of reduced axis system approach of Pickett allows to fit within experimental accuracy all the rotational transitions in the ground vibrational state. Thus, the results of the present study provide a reliable catalog of frequency predictions for HBN. The support of the Action sur Projets de l'INSU PCMI, and ANR-13-BS05-0008-02 IMOLABS is gratefully acknowledged Margulès L., Motiyenko R.A., Guillemin J.-C. 68th ISMS, 2013, TI12. Danger G. et al. Phys. Chem. Chem. Phys. 2014, 16, 3360. Pickett H.M. J. Chem. Phys. 1972, 56, 1715.

  11. Phonon impedance matching: minimizing interfacial thermal resistance of thin films

    NASA Astrophysics Data System (ADS)

    Polanco, Carlos; Zhang, Jingjie; Ghosh, Avik

    2014-03-01

    The challenge to minimize interfacial thermal resistance is to allow a broad band spectrum of phonons, with non-linear dispersion and well defined translational and rotational symmetries, to cross the interface. We explain how to minimize this resistance using a frequency dependent broadening matrix that generalizes the notion of acoustic impedance to the whole phonon spectrum including symmetries. We show how to ``match'' two given materials by joining them with a single atomic layer, with a multilayer material and with a graded superlattice. Atomic layer ``matching'' requires a layer with a mass close to the arithmetic mean (or spring constant close to the harmonic mean) to favor high frequency phonon transmission. For multilayer ``matching,'' we want a material with a broadening close to the geometric mean to maximize transmission peaks. For graded superlattices, a continuous sequence of geometric means translates to an exponentially varying broadening that generates a wide-band antireflection coating for both the coherent and incoherent limits. Our results are supported by ``first principles'' calculations of thermal conductance for GaAs / Gax Al1 - x As / AlAs thin films using the Non-Equilibrium Greens Function formalism coupled with Density Functional Perturbation Theory. NSF-CAREER (QMHP 1028883), NSF-IDR (CBET 1134311), XSEDE.

  12. Subsurface attenuation estimation using a novel hybrid method based on FWE function and power spectrum

    NASA Astrophysics Data System (ADS)

    Li, Jingnan; Wang, Shangxu; Yang, Dengfeng; Tang, Genyang; Chen, Yangkang

    2018-02-01

    Seismic waves propagating in the subsurface suffer from attenuation, which can be represented by the quality factor Q. Knowledge of Q plays a vital role in hydrocarbon exploration. Many methods to measure Q have been proposed, among which the central frequency shift (CFS) and the peak frequency shift (PFS) are commonly used. However, both methods are under the assumption of a particular shape for amplitude spectra, which will cause systematic error in Q estimation. Recently a new method to estimate Q has been proposed to overcome this disadvantage by using frequency weighted exponential (FWE) function to fit amplitude spectra of different shapes. In the FWE method, a key procedure is to calculate the central frequency and variance of the amplitude spectrum. However, the amplitude spectrum is susceptible to noise, whereas the power spectrum is less sensitive to random noise and has better anti-noise performance. To enhance the robustness of the FWE method, we propose a novel hybrid method by combining the advantage of the FWE method and the power spectrum, which is called the improved FWE method (IFWE). The basic idea is to consider the attenuation of the power spectrum instead of the amplitude spectrum and to use a modified FWE function to fit power spectra, according to which we derive a new Q estimation formula. Tests of noisy synthetic data show that the IFWE are more robust than the FWE. Moreover, the frequency bandwidth selection in the IFWE can be more flexible than that in the FWE. The application to field vertical seismic profile data and surface seismic data further demonstrates its validity.

  13. Relativistic jet feedback - II. Relationship to gigahertz peak spectrum and compact steep spectrum radio galaxies

    NASA Astrophysics Data System (ADS)

    Bicknell, Geoffrey V.; Mukherjee, Dipanjan; Wagner, Alexander Y.; Sutherland, Ralph S.; Nesvadba, Nicole P. H.

    2018-04-01

    We propose that Gigahertz Peak Spectrum (GPS) and Compact Steep Spectrum (CSS) radio sources are the signposts of relativistic jet feedback in evolving galaxies. Our simulations of relativistic jets interacting with a warm, inhomogeneous medium, utilizing cloud densities and velocity dispersions in the range derived from optical observations, show that free-free absorption can account for the ˜ GHz peak frequencies and low-frequency power laws inferred from the radio observations. These new computational models replace a power-law model for the free-free optical depth a more fundamental model involving disrupted log-normal distributions of warm gas. One feature of our new models is that at early stages, the low-frequency spectrum is steep but progressively flattens as a result of a broader distribution of optical depths, suggesting that the steep low-frequency spectra discovered by Callingham et al. may possibly be attributed to young sources. We also investigate the inverse correlation between peak frequency and size and find that the initial location on this correlation is determined by the average density of the warm ISM. The simulated sources track this correlation initially but eventually fall below it, indicating the need for a more extended ISM than presently modelled. GPS and CSS sources can potentially provide new insights into the phenomenon of AGN feedback since their peak frequencies and spectra are indicative of the density, turbulent structure, and distribution of gas in the host galaxy.

  14. Hybrid spread spectrum radio system

    DOEpatents

    Smith, Stephen F.; Dress, William B.

    2010-02-02

    Systems and methods are described for hybrid spread spectrum radio systems. A method includes modulating a signal by utilizing a subset of bits from a pseudo-random code generator to control an amplification circuit that provides a gain to the signal. Another method includes: modulating a signal by utilizing a subset of bits from a pseudo-random code generator to control a fast hopping frequency synthesizer; and fast frequency hopping the signal with the fast hopping frequency synthesizer, wherein multiple frequency hops occur within a single data-bit time.

  15. Marine asset security and tracking (MAST) system

    DOEpatents

    Hanson, Gregory Richard [Clinton, TN; Smith, Stephen Fulton [Loudon, TN; Moore, Michael Roy [Corryton, TN; Dobson, Eric Lesley [Charleston, SC; Blair, Jeffrey Scott [Charleston, SC; Duncan, Christopher Allen [Marietta, GA; Lenarduzzi, Roberto [Knoxville, TN

    2008-07-01

    Methods and apparatus are described for marine asset security and tracking (MAST). A method includes transmitting identification data, location data and environmental state sensor data from a radio frequency tag. An apparatus includes a radio frequency tag that transmits identification data, location data and environmental state sensor data. Another method includes transmitting identification data and location data from a radio frequency tag using hybrid spread-spectrum modulation. Another apparatus includes a radio frequency tag that transmits both identification data and location data using hybrid spread-spectrum modulation.

  16. NASA Radio Frequency Spectrum Management Manual

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The Radio Frequency (RF) Spectrum Management Manual sets forth procedures and guidelines for the management requirements for controlling the use of radio frequencies by the National Aeronautics and Space Administration. It is applicable to NASA Headquarters and field installations. NASA Management Instruction 1102.3 assigns the authority for management of radio frequencies for the National Aeronautics and Space Administration to the Associate Administrator for Space Operations, NASA Headquarters. This manual is issued in loose-leaf form and will be revised by page changes.

  17. Statistical analysis of low frequency vibrations in variable speed wind turbines

    NASA Astrophysics Data System (ADS)

    Escaler, X.; Mebarki, T.

    2013-12-01

    The spectral content of the low frequency vibrations in the band from 0 to 10 Hz measured in full scale wind turbines has been statistically analyzed as a function of the whole range of steady operating conditions. Attention has been given to the amplitudes of the vibration peaks and their dependency on rotating speed and power output. Two different wind turbine models of 800 and 2000 kW have been compared. For each model, a sample of units located in the same wind farm and operating during a representative period of time have been considered. A condition monitoring system installed in each wind turbine has been used to register the axial acceleration on the gearbox casing between the intermediate and the high speed shafts. The average frequency spectrum has permitted to identify the vibration signature and the position of the first tower natural frequency in both models. The evolution of the vibration amplitudes at the rotor rotating frequency and its multiples has shown that the tower response is amplified by resonance conditions in one of the models. So, it is concluded that a continuous measurement and control of low frequency vibrations is required to protect the turbines against harmful vibrations of this nature.

  18. The Frequency Spectrum Radio.

    ERIC Educational Resources Information Center

    Howkins, John, Ed.

    1979-01-01

    This journal issue focuses on the frequency spectrum used in radio communication and on the World Administrative Radio Conference, sponsored by the International Telecommunication Union, held in Geneva, Switzerland, in the fall of 1979. Articles describe the World Administrative Radio Conference as the most important radio communication conference…

  19. Orbital Noise of the Earth Causes Intensity Fluctuation in the Geomagnetic Field

    NASA Technical Reports Server (NTRS)

    Liu, Han-Shou; Kolenkiewicz, R.; Wade, C., Jr.

    2003-01-01

    Orbital noise of Earth's obliquity can provide an insight into the core of the Earth that causes intensity fluctuations in the geomagnetic field. Here we show that noise spectrum of the obliquity frequency have revealed a series of frequency periods centered at 250-, 1OO-, 50-, 41-, 30-, and 26-kyr which are almost identical with the observed spectral peaks from the composite curve of 33 records of relative paleointensity spanning the past 800 kyr (Sint-800 data). A continuous record for the past two million years also reveals the presence of the major 100 kyr periodicity in obliquity noise and geomagnetic intensity fluctuations. These results of correlation suggest that obliquity noise may power the dynamo, located in the liquid outer core of the Earth, which generates the geomagnetic field.

  20. THz Acoustic Spectroscopy by using Double Quantum Wells and Ultrafast Optical Spectroscopy.

    PubMed

    Wei, Fan Jun; Yeh, Yu-Hsiang; Sheu, Jinn-Kong; Lin, Kung-Hsuan

    2016-06-27

    GaN is a pivotal material for acoustic transducers and acoustic spectroscopy in the THz regime, but its THz phonon properties have not been experimentally and comprehensively studied. In this report, we demonstrate how to use double quantum wells as a THz acoustic transducer for measuring generated acoustic phonons and deriving a broadband acoustic spectrum with continuous frequencies. We experimentally investigated the sub-THz frequency dependence of acoustic attenuation (i.e., phonon mean-free paths) in GaN, in addition to its physical origins such as anharmonic scattering, defect scattering, and boundary scattering. A new upper limit of attenuation caused by anharmonic scattering, which is lower than previously reported values, was obtained. Our results should be noteworthy for THz acoustic spectroscopy and for gaining a fundamental understanding of heat conduction.

  1. FPGA-based RF spectrum merging and adaptive hopset selection

    NASA Astrophysics Data System (ADS)

    McLean, R. K.; Flatley, B. N.; Silvius, M. D.; Hopkinson, K. M.

    The radio frequency (RF) spectrum is a limited resource. Spectrum allotment disputes stem from this scarcity as many radio devices are confined to a fixed frequency or frequency sequence. One alternative is to incorporate cognition within a reconfigurable radio platform, therefore enabling the radio to adapt to dynamic RF spectrum environments. In this way, the radio is able to actively sense the RF spectrum, decide, and act accordingly, thereby sharing the spectrum and operating in more flexible manner. In this paper, we present a novel solution for merging many distributed RF spectrum maps into one map and for subsequently creating an adaptive hopset. We also provide an example of our system in operation, the result of which is a pseudorandom adaptive hopset. The paper then presents a novel hardware design for the frequency merger and adaptive hopset selector, both of which are written in VHDL and implemented as a custom IP core on an FPGA-based embedded system using the Xilinx Embedded Development Kit (EDK) software tool. The design of the custom IP core is optimized for area, and it can process a high-volume digital input via a low-latency circuit architecture. The complete embedded system includes the Xilinx PowerPC microprocessor, UART serial connection, and compact flash memory card IP cores, and our custom map merging/hopset selection IP core, all of which are targeted to the Virtex IV FPGA. This system is then incorporated into a cognitive radio prototype on a Rice University Wireless Open Access Research Platform (WARP) reconfigurable radio.

  2. Observation of Wakefields and Resonances in Coherent Synchrotron Radiation

    NASA Astrophysics Data System (ADS)

    Billinghurst, B. E.; Bergstrom, J. C.; Baribeau, C.; Batten, T.; Dallin, L.; May, T. E.; Vogt, J. M.; Wurtz, W. A.; Warnock, R.; Bizzozero, D. A.; Kramer, S.

    2015-05-01

    We report on high resolution measurements of resonances in the spectrum of coherent synchrotron radiation (CSR) at the Canadian Light Source (CLS). The resonances permeate the spectrum at wave number intervals of 0.074 cm-1 , and are highly stable under changes in the machine setup (energy, bucket filling pattern, CSR in bursting or continuous mode). Analogous resonances were predicted long ago in an idealized theory as eigenmodes of a smooth toroidal vacuum chamber driven by a bunched beam moving on a circular orbit. A corollary of peaks in the spectrum is the presence of pulses in the wakefield of the bunch at well-defined spatial intervals. Through experiments and further calculations we elucidate the resonance and wakefield mechanisms in the CLS vacuum chamber, which has a fluted form much different from a smooth torus. The wakefield is observed directly in the 30-110 GHz range by rf diodes, and indirectly by an interferometer in the THz range. The wake pulse sequence found by diodes is less regular than in the toroidal model, and depends on the point of observation, but is accounted for in a simulation of fields in the fluted chamber. Attention is paid to polarization of the observed fields, and possible coherence of fields produced in adjacent bending magnets. Low frequency wakefield production appears to be mainly local in a single bend, but multibend effects cannot be excluded entirely, and could play a role in high frequency resonances. New simulation techniques have been developed, which should be invaluable in further work.

  3. The gravitational wave background from massive black hole binaries in Illustris: spectral features and time to detection with pulsar timing arrays

    NASA Astrophysics Data System (ADS)

    Kelley, Luke Zoltan; Blecha, Laura; Hernquist, Lars; Sesana, Alberto; Taylor, Stephen R.

    2017-11-01

    Pulsar timing arrays (PTAs) around the world are using the incredible consistency of millisecond pulsars to measure low-frequency gravitational waves from (super)massive black hole (MBH) binaries. We use comprehensive MBH merger models based on cosmological hydrodynamic simulations to predict the spectrum of the stochastic gravitational wave background (GWB). We use real time-of-arrival specifications from the European, NANOGrav, Parkes, and International PTA (IPTA) to calculate realistic times to detection of the GWB across a wide range of model parameters. In addition to exploring the parameter space of environmental hardening processes (in particular: stellar scattering efficiencies), we have expanded our models to include eccentric binary evolution which can have a strong effect on the GWB spectrum. Our models show that strong stellar scattering and high characteristic eccentricities enhance the GWB strain amplitude near the PTA-sensitive `sweet-spot' (near the frequency f = 1 yr-1), slightly improving detection prospects in these cases. While the GWB amplitude is degenerate between cosmological and environmental parameters, the location of a spectral turnover at low frequencies (f ≲ 0.1 yr-1) is strongly indicative of environmental coupling. At high frequencies (f ≳ 1 yr-1), the GWB spectral index can be used to infer the number density of sources and possibly their eccentricity distribution. Even with merger models that use pessimistic environmental and eccentricity parameters, if the current rate of PTA expansion continues, we find that the IPTA is highly likely to make a detection within about 10 yr.

  4. Frequency spectrum might act as communication code between retina and visual cortex I

    PubMed Central

    Yang, Xu; Gong, Bo; Lu, Jian-Wei

    2015-01-01

    AIM To explore changes and possible communication relationship of local potential signals recorded simultaneously from retina and visual cortex I (V1). METHODS Fourteen C57BL/6J mice were measured with pattern electroretinogram (PERG) and pattern visually evoked potential (PVEP) and fast Fourier transform has been used to analyze the frequency components of those signals. RESULTS The amplitude of PERG and PVEP was measured at about 36.7 µV and 112.5 µV respectively and the dominant frequency of PERG and PVEP, however, stay unchanged and both signals do not have second, or otherwise, harmonic generation. CONCLUSION The results suggested that retina encodes visual information in the way of frequency spectrum and then transfers it to primary visual cortex. The primary visual cortex accepts and deciphers the input visual information coded from retina. Frequency spectrum may act as communication code between retina and V1. PMID:26682156

  5. Frequency spectrum might act as communication code between retina and visual cortex I.

    PubMed

    Yang, Xu; Gong, Bo; Lu, Jian-Wei

    2015-01-01

    To explore changes and possible communication relationship of local potential signals recorded simultaneously from retina and visual cortex I (V1). Fourteen C57BL/6J mice were measured with pattern electroretinogram (PERG) and pattern visually evoked potential (PVEP) and fast Fourier transform has been used to analyze the frequency components of those signals. The amplitude of PERG and PVEP was measured at about 36.7 µV and 112.5 µV respectively and the dominant frequency of PERG and PVEP, however, stay unchanged and both signals do not have second, or otherwise, harmonic generation. The results suggested that retina encodes visual information in the way of frequency spectrum and then transfers it to primary visual cortex. The primary visual cortex accepts and deciphers the input visual information coded from retina. Frequency spectrum may act as communication code between retina and V1.

  6. Eliminating the zero spectrum in Fourier transform profilometry using empirical mode decomposition.

    PubMed

    Li, Sikun; Su, Xianyu; Chen, Wenjing; Xiang, Liqun

    2009-05-01

    Empirical mode decomposition is introduced into Fourier transform profilometry to extract the zero spectrum included in the deformed fringe pattern without the need for capturing two fringe patterns with pi phase difference. The fringe pattern is subsequently demodulated using a standard Fourier transform profilometry algorithm. With this method, the deformed fringe pattern is adaptively decomposed into a finite number of intrinsic mode functions that vary from high frequency to low frequency by means of an algorithm referred to as a sifting process. Then the zero spectrum is separated from the high-frequency components effectively. Experiments validate the feasibility of this method.

  7. Analysis of axial compressive loaded beam under random support excitations

    NASA Astrophysics Data System (ADS)

    Xiao, Wensheng; Wang, Fengde; Liu, Jian

    2017-12-01

    An analytical procedure to investigate the response spectrum of a uniform Bernoulli-Euler beam with axial compressive load subjected to random support excitations is implemented based on the Mindlin-Goodman method and the mode superposition method in the frequency domain. The random response spectrum of the simply supported beam subjected to white noise excitation and to Pierson-Moskowitz spectrum excitation is investigated, and the characteristics of the response spectrum are further explored. Moreover, the effect of axial compressive load is studied and a method to determine the axial load is proposed. The research results show that the response spectrum mainly consists of the beam's additional displacement response spectrum when the excitation is white noise; however, the quasi-static displacement response spectrum is the main component when the excitation is the Pierson-Moskowitz spectrum. Under white noise excitation, the amplitude of the power spectral density function decreased as the axial compressive load increased, while the frequency band of the vibration response spectrum increased with the increase of axial compressive load.

  8. FSD: Frequency Space Differential measurement of CMB spectral distortions

    NASA Astrophysics Data System (ADS)

    Mukherjee, Suvodip; Silk, Joseph; Wandelt, Benjamin D.

    2018-07-01

    Although the cosmic microwave background (CMB) agrees with a perfect blackbody spectrum within the current experimental limits, it is expected to exhibit certain spectral distortions with known spectral properties. We propose a new method Frequency Space Differential (FSD) to measure the spectral distortions in the CMB spectrum by using the inter-frequency differences of the brightness temperature. The difference between the observed CMB temperature at different frequencies must agree with the frequency derivative of the blackbody spectrum in the absence of any distortion. However, in the presence of spectral distortions, the measured inter-frequency differences would also exhibit deviations from blackbody that can be modelled for known sources of spectral distortions like y and μ. Our technique uses FSD information for the CMB blackbody, y, μ, or any other sources of spectral distortions to model the observed signal. Successful application of this method in future CMB missions can provide an alternative method to extract spectral distortion signals and can potentially make it feasible to measure spectral distortions without an internal blackbody calibrator.

  9. Timing and frequency considerations in the worldwide testing of a spread spectrum communication system

    NASA Technical Reports Server (NTRS)

    Woodring, D. G.; Nichols, S. A.; Swanson, R.

    1979-01-01

    During 1978 and 1979, an Air Force C-135 test aircraft was flown to various locations in the North and South Atlantic and Pacific Oceans for satellite communications experiments. A part of the equipment tested on the aircraft was the SEACOM spread spectrum modem. The SEACOM modem operated at X band frequency from the aircraft via the DSCS II satellite to a ground station. For data to be phased successfully, it was necessary to maintain independent time and frequency accuracy over relatively long periods of time (up to two weeks) on the aircraft and at the ground station. To achieve this goal, two Efratom atomic frequency standards were used. The performance of these frequency standards as used in the spread spectrum modem is discussed, including the effects of high relative velocity, synchronization and the effects of the frequency standards on data performance is discussed. The aircraft environment, which includes extremes of temperature, as well as long periods of shutdown followed by rapid warmup requirements, is also discussed.

  10. Influence of two-stream relativistic electron beam parameters on the space-charge wave with broad frequency spectrum formation

    NASA Astrophysics Data System (ADS)

    Alexander, LYSENKO; Iurii, VOLK

    2018-03-01

    We developed a cubic non-linear theory describing the dynamics of the multiharmonic space-charge wave (SCW), with harmonics frequencies smaller than the two-stream instability critical frequency, with different relativistic electron beam (REB) parameters. The self-consistent differential equation system for multiharmonic SCW harmonic amplitudes was elaborated in a cubic non-linear approximation. This system considers plural three-wave parametric resonant interactions between wave harmonics and the two-stream instability effect. Different REB parameters such as the input angle with respect to focusing magnetic field, the average relativistic factor value, difference of partial relativistic factors, and plasma frequency of partial beams were investigated regarding their influence on the frequency spectrum width and multiharmonic SCW saturation levels. We suggested ways in which the multiharmonic SCW frequency spectrum widths could be increased in order to use them in multiharmonic two-stream superheterodyne free-electron lasers, with the main purpose of forming a powerful multiharmonic electromagnetic wave.

  11. Spectrum of coherent transition radiation generated by a modulated electron beam

    NASA Astrophysics Data System (ADS)

    Naumenko, G. A.; Potylitsyn, A. P.; Karataev, P. V.; Shipulya, M. A.; Bleko, V. V.

    2017-07-01

    The spectrum of coherent transition radiation has been recorded with the use of a Martin-Puplett interferometer. It has been shown that the spectrum includes monochromatic lines that are caused by the modulation of an electron beam with the frequency of an accelerating radio-frequency field νRF and correspond to resonances at ν k = kνRF k ≤ 10. To determine the length of an electron bunch from the measurement of the spectrum from a single bunch, it is necessary to use a spectrometer with the resolution Δνsp > νRF.

  12. Environmental Light and Its Relationship with Electromagnetic Resonances of Biomolecular Interactions, as Predicted by the Resonant Recognition Model.

    PubMed

    Cosic, Irena; Cosic, Drasko; Lazar, Katarina

    2016-06-29

    The meaning and influence of light to biomolecular interactions, and consequently to health, has been analyzed using the Resonant Recognition Model (RRM). The RRM proposes that biological processes/interactions are based on electromagnetic resonances between interacting biomolecules at specific electromagnetic frequencies within the infra-red, visible and ultra-violet frequency ranges, where each interaction can be identified by the certain frequency critical for resonant activation of specific biological activities of proteins and DNA. We found that: (1) the various biological interactions could be grouped according to their resonant frequency into super families of these functions, enabling simpler analyses of these interactions and consequently analyses of influence of electromagnetic frequencies to health; (2) the RRM spectrum of all analyzed biological functions/interactions is the same as the spectrum of the sun light on the Earth, which is in accordance with fact that life is sustained by the sun light; (3) the water is transparent to RRM frequencies, enabling proteins and DNA to interact without loss of energy; (4) the spectrum of some artificial sources of light, as opposed to the sun light, do not cover the whole RRM spectrum, causing concerns for disturbance to some biological functions and consequently we speculate that it can influence health.

  13. Environmental Light and Its Relationship with Electromagnetic Resonances of Biomolecular Interactions, as Predicted by the Resonant Recognition Model

    PubMed Central

    Cosic, Irena; Cosic, Drasko; Lazar, Katarina

    2016-01-01

    The meaning and influence of light to biomolecular interactions, and consequently to health, has been analyzed using the Resonant Recognition Model (RRM). The RRM proposes that biological processes/interactions are based on electromagnetic resonances between interacting biomolecules at specific electromagnetic frequencies within the infra-red, visible and ultra-violet frequency ranges, where each interaction can be identified by the certain frequency critical for resonant activation of specific biological activities of proteins and DNA. We found that: (1) the various biological interactions could be grouped according to their resonant frequency into super families of these functions, enabling simpler analyses of these interactions and consequently analyses of influence of electromagnetic frequencies to health; (2) the RRM spectrum of all analyzed biological functions/interactions is the same as the spectrum of the sun light on the Earth, which is in accordance with fact that life is sustained by the sun light; (3) the water is transparent to RRM frequencies, enabling proteins and DNA to interact without loss of energy; (4) the spectrum of some artificial sources of light, as opposed to the sun light, do not cover the whole RRM spectrum, causing concerns for disturbance to some biological functions and consequently we speculate that it can influence health. PMID:27367714

  14. The Okinawa study: an estimation of noise-induced hearing loss on the basis of the records of aircraft noise exposure around Kadena Air Base

    NASA Astrophysics Data System (ADS)

    Hiramatsu, K.; Matsui, T.; Ito, A.; Miyakita, T.; Osada, Y.; Yamamoto, T.

    2004-10-01

    Aircraft noise measurements were recorded at the residential areas in the vicinity of Kadena Air Base, Okinawa in 1968 and 1972 at the time of the Vietnam war. The estimated equivalent continuous A-weighted sound pressure level LAeq for 24 h was 85 dB.The time history of sound level during 24 h was estimated from the measurement conducted in 1968, and the sound level was converted into the spectrum level at the centre frequency of the critical band of temporary threshold shift (TTS) using the results of spectrum analysis of aircraft noise operated at the airfield. With the information of spectrum level and its time history, TTS was calculated as a function of time and level change. The permanent threshold shift was also calculated by means of Robinson's method and ISO's method. The results indicate the noise exposure around Kadena Air Base was hazardous to hearing and is likely to have caused hearing loss to people living in its vicinity.

  15. The Radio Frequency Environment at 240-270 MHz with Application to Signal-of-Opportunity Remote Sensing

    NASA Technical Reports Server (NTRS)

    Piepmeier, Jeffrey R.; Vega, Manuel; Fritts, Matthew; Du Toit, Cornelis; Knuble, Joseph; Lin, Yao-Cheng; Nold, Benjamin; Garrison, James

    2017-01-01

    Low frequency observations are desired for soil moisture and biomass remote sensing. Long wavelengths are needed to penetrate vegetation and Earths land surface. In addition to the technical challenges of developing Earth observing spaceflight instruments operating at low frequencies, the radio frequency spectrum allocated to remote sensing is limited. Signal-of-opportunity remote sensing offers the chance to use existing signals exploiting their allocated spectrum to make Earth science measurements. We have made observations of the radio frequency environment around 240-270 MHz and discuss properties of desired and undesired signals.

  16. [The spectrum of human chromosomal aberrations detected by routine and differential (GTG) staining].

    PubMed

    Ponomareva, A V; Matveeva, V G; Osipova, L P

    2001-01-01

    As a result of sample cytogenetic studies of 23 persons living on the territory of Yamal-Nentsy Autonomous District and chronically exposed to the small doses of radiation the data on the frequency and spectrum of chromosome aberrations, detected by the routine and differential (GTG) staining were obtained. Comparative efficiency of these methods was determined. The absence of significant differences for the spectrum and frequencies of chromosome aberrations revealed by both methods was shown.

  17. High-Resolution Spectroscopy of the νb{16} Band of 1,3,5-TRIOXANE

    NASA Astrophysics Data System (ADS)

    Gibson, Bradley M.; Koeppen, Nicole; McCall, Benjamin J.

    2014-06-01

    1,3,5-trioxane, often used as a solid fuel or source of formaldehyde, is a symmetric top of the C3v group. Although the microwave and low-resolution vibrational spectra have been studied extensively, only the νb{17} band near 1072 wn has been observed with rotational resolution. Here, we will present our studies of trioxane vapor from 1140-1220 wn, covering the νb{16} band at a resolution of approximately 30 MHz. Solid trioxane was heated, and the resulting vapor was entrained in a continuous supersonic expansion of argon. Continuous-wave cavity ringdown spectroscopy was then performed using a frequency-stabilized external cavity quantum cascade laser (EC-QCL) as the light source. In addition to providing new ro-vibrational transition frequencies of trioxane, the present work serves to validate our newly-developed EC-QCL spectrometer and will be used to evaluate the cooling performance of the sheath-flow supercritical fluid expansion source currently under development. Oka, T., Tsuchiya, K., Iwata, S., and Morino, Y. Microwave Spectrum of s-Trioxane. Bull. Chem. Soc. Jpn. 37 (1964), 4-7. Stair, A.T. Jr. and Nielsen, J. Rud. Vibrational Spectra of sym-Trioxane. J. Chem. Phys. 27 (1957), 402-407. Henninot, J-F., Bolvin, H., Demaison, J., and Lemoine, B. The Infrared Spectrum of Trioxane in a Supersonic Slit Jet. J. Mol. Spect. 152 (1992), 62-68. Gibson, B.M., Stewart, J.T., and McCall, B.J., contribution TJ14, presented at the 68th International Symposium on Molecular Spectroscopy, Columbus, OH, USA, 2013.

  18. Water accessibility in a membrane-inserting peptide comparing Overhauser DNP and pulse EPR methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Segawa, Takuya F., E-mail: takuya.segawa@alumni.ethz.ch; Doppelbauer, Maximilian; Garbuio, Luca

    2016-05-21

    Water accessibility is a key parameter for the understanding of the structure of biomolecules, especially membrane proteins. Several experimental techniques based on the combination of electron paramagnetic resonance (EPR) spectroscopy with site-directed spin labeling are currently available. Among those, we compare relaxation time measurements and electron spin echo envelope modulation (ESEEM) experiments using pulse EPR with Overhauser dynamic nuclear polarization (DNP) at X-band frequency and a magnetic field of 0.33 T. Overhauser DNP transfers the electron spin polarization to nuclear spins via cross-relaxation. The change in the intensity of the {sup 1}H NMR spectrum of H{sub 2}O at a Larmormore » frequency of 14 MHz under a continuous-wave microwave irradiation of the nitroxide spin label contains information on the water accessibility of the labeled site. As a model system for a membrane protein, we use the hydrophobic α-helical peptide WALP23 in unilamellar liposomes of DOPC. Water accessibility measurements with all techniques are conducted for eight peptides with different spin label positions and low radical concentrations (10–20 μM). Consistently in all experiments, the water accessibility appears to be very low, even for labels positioned near the end of the helix. The best profile is obtained by Overhauser DNP, which is the only technique that succeeds in discriminating neighboring positions in WALP23. Since the concentration of the spin-labeled peptides varied, we normalized the DNP parameter ϵ, being the relative change of the NMR intensity, by the electron spin concentration, which was determined from a continuous-wave EPR spectrum.« less

  19. Water accessibility in a membrane-inserting peptide comparing Overhauser DNP and pulse EPR methods.

    PubMed

    Segawa, Takuya F; Doppelbauer, Maximilian; Garbuio, Luca; Doll, Andrin; Polyhach, Yevhen O; Jeschke, Gunnar

    2016-05-21

    Water accessibility is a key parameter for the understanding of the structure of biomolecules, especially membrane proteins. Several experimental techniques based on the combination of electron paramagnetic resonance (EPR) spectroscopy with site-directed spin labeling are currently available. Among those, we compare relaxation time measurements and electron spin echo envelope modulation (ESEEM) experiments using pulse EPR with Overhauser dynamic nuclear polarization (DNP) at X-band frequency and a magnetic field of 0.33 T. Overhauser DNP transfers the electron spin polarization to nuclear spins via cross-relaxation. The change in the intensity of the (1)H NMR spectrum of H2O at a Larmor frequency of 14 MHz under a continuous-wave microwave irradiation of the nitroxide spin label contains information on the water accessibility of the labeled site. As a model system for a membrane protein, we use the hydrophobic α-helical peptide WALP23 in unilamellar liposomes of DOPC. Water accessibility measurements with all techniques are conducted for eight peptides with different spin label positions and low radical concentrations (10-20 μM). Consistently in all experiments, the water accessibility appears to be very low, even for labels positioned near the end of the helix. The best profile is obtained by Overhauser DNP, which is the only technique that succeeds in discriminating neighboring positions in WALP23. Since the concentration of the spin-labeled peptides varied, we normalized the DNP parameter ϵ, being the relative change of the NMR intensity, by the electron spin concentration, which was determined from a continuous-wave EPR spectrum.

  20. Impaired Timing and Frequency Discrimination in High-Functioning Autism Spectrum Disorders

    ERIC Educational Resources Information Center

    Bhatara, Anjali; Babikian, Talin; Laugeson, Elizabeth; Tachdjian, Raffi; Sininger, Yvonne S.

    2013-01-01

    Individuals with autism spectrum disorders (ASD) frequently demonstrate preserved or enhanced frequency perception but impaired timing perception. The present study investigated the processing of spectral and temporal information in 12 adolescents with ASD and 15 age-matched controls. Participants completed two psychoacoustic tasks: one determined…

  1. Recurrent bottlenecks in the malaria life cycle obscure signals of positive selection.

    PubMed

    Chang, Hsiao-Han; Hartl, Daniel L

    2015-02-01

    Detecting signals of selection in the genome of malaria parasites is a key to identify targets for drug and vaccine development. Malaria parasites have a unique life cycle alternating between vector and host organism with a population bottleneck at each transition. These recurrent bottlenecks could influence the patterns of genetic diversity and the power of existing population genetic tools to identify sites under positive selection. We therefore simulated the site-frequency spectrum of a beneficial mutant allele through time under the malaria life cycle. We investigated the power of current population genetic methods to detect positive selection based on the site-frequency spectrum as well as temporal changes in allele frequency. We found that a within-host selective advantage is difficult to detect using these methods. Although a between-host transmission advantage could be detected, the power is decreased when compared with the classical Wright-Fisher (WF) population model. Using an adjusted null site-frequency spectrum that takes the malaria life cycle into account, the power of tests based on the site-frequency spectrum to detect positive selection is greatly improved. Our study demonstrates the importance of considering the life cycle in genetic analysis, especially in parasites with complex life cycles.

  2. 21 CFR 882.1420 - Electroencephalogram (EEG) signal spectrum analyzer.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Electroencephalogram (EEG) signal spectrum....1420 Electroencephalogram (EEG) signal spectrum analyzer. (a) Identification. An electroencephalogram (EEG) signal spectrum analyzer is a device used to display the frequency content or power spectral...

  3. 21 CFR 882.1420 - Electroencephalogram (EEG) signal spectrum analyzer.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Electroencephalogram (EEG) signal spectrum....1420 Electroencephalogram (EEG) signal spectrum analyzer. (a) Identification. An electroencephalogram (EEG) signal spectrum analyzer is a device used to display the frequency content or power spectral...

  4. 21 CFR 882.1420 - Electroencephalogram (EEG) signal spectrum analyzer.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Electroencephalogram (EEG) signal spectrum....1420 Electroencephalogram (EEG) signal spectrum analyzer. (a) Identification. An electroencephalogram (EEG) signal spectrum analyzer is a device used to display the frequency content or power spectral...

  5. Experimentally observed evolution between dynamic patterns and intrinsic localized modes in a driven nonlinear electrical cyclic lattice

    NASA Astrophysics Data System (ADS)

    Shige, S.; Miyasaka, K.; Shi, W.; Soga, Y.; Sato, M.; Sievers, A. J.

    2018-02-01

    Locked intrinsic localized modes (ILMs) and large amplitude lattice spatial modes (LSMs) have been experimentally measured for a driven 1-D nonlinear cyclic electric transmission line, where the nonlinear element is a saturable capacitor. Depending on the number of cells and electrical lattice damping an LSM of fixed shape can be tuned across the modal spectrum. Interestingly, by tuning the driver frequency away from this spectrum the LSM can be continuously converted into ILMs and vice versa. The differences in pattern formation between simulations and experimental findings are due to a low concentration of impurities. Through this novel nonlinear excitation and switching channel in cyclic lattices either energy balanced or unbalanced LSMs and ILMs may occur. Because of the general nature of these dynamical results for nonintegrable lattices applications are to be expected. The ultimate stability of driven aero machinery containing nonlinear periodic structures may be one example.

  6. Artificial immune system via Euclidean Distance Minimization for anomaly detection in bearings

    NASA Astrophysics Data System (ADS)

    Montechiesi, L.; Cocconcelli, M.; Rubini, R.

    2016-08-01

    In recent years new diagnostics methodologies have emerged, with particular interest into machinery operating in non-stationary conditions. In fact continuous speed changes and variable loads make non-trivial the spectrum analysis. A variable speed means a variable characteristic fault frequency related to the damage that is no more recognizable in the spectrum. To overcome this problem the scientific community proposed different approaches listed in two main categories: model-based approaches and expert systems. In this context the paper aims to present a simple expert system derived from the mechanisms of the immune system called Euclidean Distance Minimization, and its application in a real case of bearing faults recognition. The proposed method is a simplification of the original process, adapted by the class of Artificial Immune Systems, which proved to be useful and promising in different application fields. Comparative results are provided, with a complete explanation of the algorithm and its functioning aspects.

  7. 47 CFR 27.601 - Authority and coordination requirements.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ....2(b), a Guard Band licensee may allow a spectrum lessee, pursuant to a spectrum lease arrangement....2(b), a Guard Band licensee may allow a spectrum lessee, pursuant to a spectrum lease arrangement...) Frequency coordination.(1) A Guard Band licensee, or a spectrum lessee operating at 775-776 MHz and 805-806...

  8. 47 CFR 27.601 - Authority and coordination requirements.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ....2(b), a Guard Band licensee may allow a spectrum lessee, pursuant to a spectrum lease arrangement....2(b), a Guard Band licensee may allow a spectrum lessee, pursuant to a spectrum lease arrangement...) Frequency coordination.(1) A Guard Band licensee, or a spectrum lessee operating at 775-776 MHz and 805-806...

  9. 47 CFR 27.601 - Authority and coordination requirements.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ....2(b), a Guard Band licensee may allow a spectrum lessee, pursuant to a spectrum lease arrangement....2(b), a Guard Band licensee may allow a spectrum lessee, pursuant to a spectrum lease arrangement...) Frequency coordination.(1) A Guard Band licensee, or a spectrum lessee operating at 775-776 MHz and 805-806...

  10. 47 CFR 27.601 - Authority and coordination requirements.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ....2(b), a Guard Band licensee may allow a spectrum lessee, pursuant to a spectrum lease arrangement....2(b), a Guard Band licensee may allow a spectrum lessee, pursuant to a spectrum lease arrangement...) Frequency coordination.(1) A Guard Band licensee, or a spectrum lessee operating at 775-776 MHz and 805-806...

  11. 47 CFR 27.601 - Authority and coordination requirements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ....2(b), a Guard Band licensee may allow a spectrum lessee, pursuant to a spectrum lease arrangement....2(b), a Guard Band licensee may allow a spectrum lessee, pursuant to a spectrum lease arrangement...) Frequency coordination.(1) A Guard Band licensee, or a spectrum lessee operating at 775-776 MHz and 805-806...

  12. Smoothed Spectra, Ogives, and Error Estimates for Atmospheric Turbulence Data

    NASA Astrophysics Data System (ADS)

    Dias, Nelson Luís

    2018-01-01

    A systematic evaluation is conducted of the smoothed spectrum, which is a spectral estimate obtained by averaging over a window of contiguous frequencies. The technique is extended to the ogive, as well as to the cross-spectrum. It is shown that, combined with existing variance estimates for the periodogram, the variance—and therefore the random error—associated with these estimates can be calculated in a straightforward way. The smoothed spectra and ogives are biased estimates; with simple power-law analytical models, correction procedures are devised, as well as a global constraint that enforces Parseval's identity. Several new results are thus obtained: (1) The analytical variance estimates compare well with the sample variance calculated for the Bartlett spectrum and the variance of the inertial subrange of the cospectrum is shown to be relatively much larger than that of the spectrum. (2) Ogives and spectra estimates with reduced bias are calculated. (3) The bias of the smoothed spectrum and ogive is shown to be negligible at the higher frequencies. (4) The ogives and spectra thus calculated have better frequency resolution than the Bartlett spectrum, with (5) gradually increasing variance and relative error towards the low frequencies. (6) Power-law identification and extraction of the rate of dissipation of turbulence kinetic energy are possible directly from the ogive. (7) The smoothed cross-spectrum is a valid inner product and therefore an acceptable candidate for coherence and spectral correlation coefficient estimation by means of the Cauchy-Schwarz inequality. The quadrature, phase function, coherence function and spectral correlation function obtained from the smoothed spectral estimates compare well with the classical ones derived from the Bartlett spectrum.

  13. Broadband turbulent spectra in gamma-ray burst light curves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Putten, Maurice H. P. M.; Guidorzi, Cristiano; Frontera, Filippo, E-mail: mvp@sejong.ac.kr

    2014-05-10

    Broadband power density spectra offer a window to understanding turbulent behavior in the emission mechanism and, at the highest frequencies, in the putative inner engines powering long gamma-ray bursts (GRBs). We describe a chirp search method alongside Fourier analysis for signal detection in the Poisson noise-dominated, 2 kHz sampled, BeppoSAX light curves. An efficient numerical implementation is described in O(Nnlog n) operations, where N is the number of chirp templates and n is the length of the light-curve time series, suited for embarrassingly parallel processing. For the detection of individual chirps over a 1 s duration, the method is onemore » order of magnitude more sensitive in signal-to-noise ratio than Fourier analysis. The Fourier-chirp spectra of GRB 010408 and GRB 970816 show a continuation of the spectral slope with up to 1 kHz of turbulence identified in low-frequency Fourier analysis. The same continuation is observed in an average spectrum of 42 bright, long GRBs. An outlook on a similar analysis of upcoming gravitational wave data is included.« less

  14. Fourier analysis of blazar variability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Finke, Justin D.; Becker, Peter A., E-mail: justin.finke@nrl.navy.mil

    Blazars display strong variability on multiple timescales and in multiple radiation bands. Their variability is often characterized by power spectral densities (PSDs) and time lags plotted as functions of the Fourier frequency. We develop a new theoretical model based on the analysis of the electron transport (continuity) equation, carried out in the Fourier domain. The continuity equation includes electron cooling and escape, and a derivation of the emission properties includes light travel time effects associated with a radiating blob in a relativistic jet. The model successfully reproduces the general shapes of the observed PSDs and predicts specific PSD and timemore » lag behaviors associated with variability in the synchrotron, synchrotron self-Compton, and external Compton emission components, from submillimeter to γ-rays. We discuss applications to BL Lacertae objects and to flat-spectrum radio quasars (FSRQs), where there are hints that some of the predicted features have already been observed. We also find that FSRQs should have steeper γ-ray PSD power-law indices than BL Lac objects at Fourier frequencies ≲ 10{sup –4} Hz, in qualitative agreement with previously reported observations by the Fermi Large Area Telescope.« less

  15. Nonlinear Dynamics in Viscoelastic Jets

    NASA Astrophysics Data System (ADS)

    Majmudar, Trushant; Varagnat, Matthieu; McKinley, Gareth

    2008-11-01

    Instabilities in free surface continuous jets of non-Newtonian fluids, although relevant for many industrial processes, remain poorly understood in terms of fundamental fluid dynamics. Inviscid, and viscous Newtonian jets have been studied in considerable detail, both theoretically and experimentally. Instability in viscous jets leads to regular periodic coiling of the jet, which exhibits a non-trivial frequency dependence with the height of the fall. Here we present a systematic study of the effect of viscoelasticity on the dynamics of continuous jets of worm-like micellar surfactant solutions of varying viscosities and elasticities. We observe complex nonlinear spatio-temporal dynamics of the jet, and uncover a transition from periodic to quasi-periodic to a multi-frequency, broad-spectrum dynamics. Beyond this regime, the jet dynamics smoothly crosses over to exhibit the ``leaping shampoo'' or the Kaye effect. We examine different dynamical regimes in terms of scaling variables, which depend on the geometry (dimensionless height), kinematics (dimensionless flow rate), and the fluid properties (elasto-gravity number) and present a regime map of the dynamics of the jet in terms of these dimensionless variables.

  16. Nonlinear Dynamics in Viscoelastic Jets

    NASA Astrophysics Data System (ADS)

    Majmudar, Trushant; Varagnat, Matthieu; McKinley, Gareth

    2009-03-01

    Instabilities in free surface continuous jets of non-Newtonian fluids, although relevant for many industrial processes, remain poorly understood in terms of fundamental fluid dynamics. Inviscid, and viscous Newtonian jets have been studied in considerable detail, both theoretically and experimentally. Instability in viscous jets leads to regular periodic coiling of the jet, which exhibits a non-trivial frequency dependence with the height of the fall. Here we present a systematic study of the effect of viscoelasticity on the dynamics of continuous jets of worm-like micellar surfactant solutions of varying viscosities and elasticities. We observe complex nonlinear spatio-temporal dynamics of the jet, and uncover a transition from periodic to quasi-periodic to a multi-frequency, broad-spectrum dynamics. Beyond this regime, the jet dynamics smoothly crosses over to exhibit the ``leaping shampoo'' or the Kaye effect. We examine different dynamical regimes in terms of scaling variables, which depend on the geometry (dimensionless height), kinematics (dimensionless flow rate), and the fluid properties (elasto-gravity number) and present a regime map of the dynamics of the jet in terms of these dimensionless variables.

  17. Continuous-wave cavity ringdown spectroscopy based on the control of cavity reflection.

    PubMed

    Li, Zhixin; Ma, Weiguang; Fu, Xiaofang; Tan, Wei; Zhao, Gang; Dong, Lei; Zhang, Lei; Yin, Wangbao; Jia, Suotang

    2013-07-29

    A new type of continuous-wave cavity ringdown spectrometer based on the control of cavity reflection for trace gas detection was designed and evaluated. The technique separated the acquisitions of the ringdown event and the trigger signal to optical switch by detecting the cavity reflection and transmission, respectively. A detailed description of the time sequence of the measurement process was presented. In order to avoid the wrong extraction of ringdown time encountered accidentally in fitting procedure, the laser frequency and cavity length were scanned synchronously. Based on the statistical analysis of measured ringdown times, the frequency normalized minimum detectable absorption in the reflection control mode was 1.7 × 10(-9)cm(-1)Hz(-1/2), which was 5.4 times smaller than that in the transmission control mode. However the signal-to-noise ratio of the absorption spectrum was only 3 times improved since the etalon effect existed. Finally, the peak absorption coefficients of the C(2)H(2) transition near 1530.9nm under different pressures showed a good agreement with the theoretical values.

  18. Hydrophone area-averaging correction factors in nonlinearly generated ultrasonic beams

    NASA Astrophysics Data System (ADS)

    Cooling, M. P.; Humphrey, V. F.; Wilkens, V.

    2011-02-01

    The nonlinear propagation of an ultrasonic wave can be used to produce a wavefield rich in higher frequency components that is ideally suited to the calibration, or inter-calibration, of hydrophones. These techniques usually use a tone-burst signal, limiting the measurements to harmonics of the fundamental calibration frequency. Alternatively, using a short pulse enables calibration at a continuous spectrum of frequencies. Such a technique is used at PTB in conjunction with an optical measurement technique to calibrate devices. Experimental findings indicate that the area-averaging correction factor for a hydrophone in such a field demonstrates a complex behaviour, most notably varying periodically between frequencies that are harmonics of the centre frequency of the original pulse and frequencies that lie midway between these harmonics. The beam characteristics of such nonlinearly generated fields have been investigated using a finite difference solution to the nonlinear Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation for a focused field. The simulation results are used to calculate the hydrophone area-averaging correction factors for 0.2 mm and 0.5 mm devices. The results clearly demonstrate a number of significant features observed in the experimental investigations, including the variation with frequency, drive level and hydrophone element size. An explanation for these effects is also proposed.

  19. The anti-counterfeiting hologram of encryption processing in frequency domain

    NASA Astrophysics Data System (ADS)

    Bao, Nai K.; Chen, Zhongyu Y.

    2004-09-01

    This paper proposed a new encryption method using Computer Generated Fourier Hologram in frequency domain. When the main frequency spectrum, i.e. brand and an encrypted information frequency spectrum are mixed, it will not recognized and copied. We will use the methods of Dot Matrix (Digital) Hologram Modulation and the filter to get real signal. One new multi-modulated dot matrix hologram is introduced. It is encoded using several gratings. These gratings have different angles of inclination and different periods in same dot, to enable us in obtaining more information.

  20. Techniques for the Enhancement of Linear Predictive Speech Coding in Adverse Conditions

    NASA Astrophysics Data System (ADS)

    Wrench, Alan A.

    Available from UMI in association with The British Library. Requires signed TDF. The Linear Prediction model was first applied to speech two and a half decades ago. Since then it has been the subject of intense research and continues to be one of the principal tools in the analysis of speech. Its mathematical tractability makes it a suitable subject for study and its proven success in practical applications makes the study worthwhile. The model is known to be unsuited to speech corrupted by background noise. This has led many researchers to investigate ways of enhancing the speech signal prior to Linear Predictive analysis. In this thesis this body of work is extended. The chosen application is low bit-rate (2.4 kbits/sec) speech coding. For this task the performance of the Linear Prediction algorithm is crucial because there is insufficient bandwidth to encode the error between the modelled speech and the original input. A review of the fundamentals of Linear Prediction and an independent assessment of the relative performance of methods of Linear Prediction modelling are presented. A new method is proposed which is fast and facilitates stability checking, however, its stability is shown to be unacceptably poorer than existing methods. A novel supposition governing the positioning of the analysis frame relative to a voiced speech signal is proposed and supported by observation. The problem of coding noisy speech is examined. Four frequency domain speech processing techniques are developed and tested. These are: (i) Combined Order Linear Prediction Spectral Estimation; (ii) Frequency Scaling According to an Aural Model; (iii) Amplitude Weighting Based on Perceived Loudness; (iv) Power Spectrum Squaring. These methods are compared with the Recursive Linearised Maximum a Posteriori method. Following on from work done in the frequency domain, a time domain implementation of spectrum squaring is developed. In addition, a new method of power spectrum estimation is developed based on the Minimum Variance approach. This new algorithm is shown to be closely related to Linear Prediction but produces slightly broader spectral peaks. Spectrum squaring is applied to both the new algorithm and standard Linear Prediction and their relative performance is assessed. (Abstract shortened by UMI.).

  1. Frequency-Dependent Blanking with Digital Linear Chirp Waveform Synthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doerry, Armin Walter; Andrews, John M.

    2014-07-01

    Wideband radar systems, especially those that operate at lower frequencies such as VHF and UHF, are often restricted from transmitting within or across specific frequency bands in order to prevent interference to other spectrum users. Herein we describe techniques for notching the transmitted spectrum of a generated and transmitted radar waveform. The notches are fully programmable as to their location, and techniques are given that control the characteristics of the notches.

  2. The South Pole, Antarctica, Solar Radio Telescope (SPASRT) System

    NASA Astrophysics Data System (ADS)

    Gerrard, A. J.; Weatherwax, A. T.; Gary, D. E.; Kujawski, J. T.; Nita, G. M.; Melville, R.; Stillinger, A.; Jeffer, G.

    2014-12-01

    The study of the sun in the radio portion of the electromagnetic spectrum furthers our understanding of fundamental solar processes observed in the X-ray, UV, and visible regions of the spectrum. For example, the study of solar radio bursts, which have been shown to cause serious disruptions of technologies at Earth, are essential for advancing our knowledge and understanding of solar flares and their relationship to coronal mass ejections and solar energetic particles, as well as the underlying particle acceleration mechanisms associated with these processes. In addition, radio coverage of the solar atmosphere could yield completely new insights into the variations of output solar energy, including Alfven wave propagation through the solar atmosphere and into the solar wind, which can potentially modulate and disturb the solar wind and Earth's geospace environment. In this presentation we discuss the development, construction, and testing of the South Pole, Antarctica, Solar Radio Telescope that is planned for installation at South Pole. The system will allow for 24-hour continuous, long-term observations of the sun across the 1-18 GHz frequency band and allow for truly continuous solar observations. We show that this system will enable unique scientific investigations of the solar atmosphere.

  3. Dynamical properties of total intensity fluctuation spectrum in two-mode Nd:YVO4 microchip laser

    NASA Astrophysics Data System (ADS)

    Zhang, Shao-Hui; Shu-Lian, Zhang; Tan, Yi-Dong; Sun, Li-Qun

    2015-12-01

    We investigate the total intensity fluctuation spectrum of the two-longitudinal- mode Nd:YVO4 microchip laser (ML). We find that low-frequency relaxation oscillation (RO) peaks still appear in the total intensity fluctuation spectrum, which is different from a previous research result that the low-frequency RO peaks exist in the spectrum of the individual mode but compensate for each other totally in the total intensity fluctuation spectrum. Taking the spatial hole-burning effect into account, one and two-mode rate equations for Nd:YVO4 ML laser are established and studied. Based on the theoretical model, we find that when the gains and losses for two longitudinal models are different, a low-frequency RO peak will appear in the total intensity fluctuation spectrum, while when they share the same gain and loss, the total spectrum will behave like that of a single mode laser. Theoretical simulation results coincide with experimental results very well. Project supported by the Beijing Higher Education Young Elite Teacher Project, China (Grant No. YETP0086), the Tsinghua University Initiative Scientific Research Programme, China (Grant No. 2012Z02166), and the Special-funded Programme on National Key Scientific Instruments and Equipment Development of China (Grant No. 2011YQ04013603).

  4. Respiratory motion influence on catheter contact force during radio frequency ablation procedures

    NASA Astrophysics Data System (ADS)

    Koch, Martin; Brost, Alexander; Hornegger, Joachim; Strobel, Norbert

    2013-03-01

    Minimally invasive catheter ablation is a common treatment option for atrial fibrillation. A common treatment strategy is pulmonary vein isolation. In this case, individual ablation points need to be placed around the ostia of the pulmonary veins attached to the left atrium to generate transmural lesions and thereby block electric signals. To achieve a durable transmural lesion, the tip of the catheter has to be stable with a sufficient tissue contact during radio-frequency ablation. Besides the steerable interface operated by the physician, the movement of the catheter is also influenced by the heart and breathing motion - particularly during ablation. In this paper we investigate the influence of breathing motion on different areas of the endocardium during radio frequency ablation. To this end, we analyze the frequency spectrum of the continuous catheter contact force to identify areas with increased breathing motion using a classification method. This approach has been applied to clinical patient data acquired during three pulmonary vein isolation procedures. Initial findings show that motion due to respiration is more pronounced at the roof and around the right pulmonary veins.

  5. High efficiency laser spectrum conditioner

    DOEpatents

    Greiner, Norman R.

    1980-01-01

    A high efficiency laser spectrum conditioner for generating a collinear parallel output beam containing a predetermined set of frequencies from a multifrequency laser. A diffraction grating and spherical mirror are used in combination, to disperse the various frequencies of the input laser beam and direct these frequencies along various parallel lines spatially separated from one another to an apertured mask. Selection of the desired frequencies is accomplished by placement of apertures at locations on the mask where the desired frequencies intersect the mask. A recollimated parallel output beam with the desired set of frequencies is subsequently generated utilizing a mirror and grating matched and geometrically aligned in the same manner as the input grating and mirror.

  6. Geosynchronous platform definition study. Volume 3: Geosynchronous mission characteristics

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The objectives of the study were to examine the nature of currently planned and new evolutionary geosynchronous programs, to analyze alternative ways of conducting missions, to establish concepts for new systems to support geosynchronous programs in an effective and economical manner, and to define the logistic support to carry out these programs. In order to meet these objectives, it was necessary to define and examine general geosynchronous mission characteristics and the potentially applicable electromagnetic spectrum characteristics. An organized compilation of these data is given with emphasis on the development and use of the data. Fundamental geosynchronous orbit time histories, mission profile characteristics, and delivery system characteristics are presented. In addition, electromagnetic spectrum utilization is discussed in terms of the usable frequency spectrum, the spectrum potentially available considering established frequency allocations, and the technology status as it affects the ability to operate within specific frequency bands.

  7. Transmit-reference methods in software defined radio platforms for communication in harsh propagation environments and systems thereof

    DOEpatents

    Dowla, Farid U; Nekoogar, Faranak

    2015-03-03

    A method for adaptive Radio Frequency (RF) jamming according to one embodiment includes dynamically monitoring a RF spectrum; detecting any undesired signals in real time from the RF spectrum; and sending a directional countermeasure signal to jam the undesired signals. A method for adaptive Radio Frequency (RF) communications according to another embodiment includes transmitting a data pulse in a RF spectrum; and transmitting a reference pulse separated by a predetermined period of time from the data pulse; wherein the data pulse is modulated with data, wherein the reference pulse is unmodulated. A method for adaptive Radio Frequency (RF) communications according to yet another embodiment includes receiving a data pulse in a RF spectrum; and receiving a reference pulse separated in time from the data pulse, wherein the data pulse is modulated with data, wherein the reference pulse is unmodulated; and demodulating the pulses.

  8. Transmit-reference methods in software defined radio platforms for communication in harsh propagation environments and systems thereof

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dowla, Farid; Nekoogar, Faranak

    A method for adaptive Radio Frequency (RF) jamming according to one embodiment includes dynamically monitoring a RF spectrum; detecting any undesired signals in real time from the RF spectrum; and sending a directional countermeasure signal to jam the undesired signals. A method for adaptive Radio Frequency (RF) communications according to another embodiment includes transmitting a data pulse in a RF spectrum; and transmitting a reference pulse separated by a predetermined period of time from the data pulse; wherein the data pulse is modulated with data, wherein the reference pulse is unmodulated. A method for adaptive Radio Frequency (RF) communications accordingmore » to yet another embodiment includes receiving a data pulse in a RF spectrum; and receiving a reference pulse separated in time from the data pulse, wherein the data pulse is modulated with data, wherein the reference pulse is unmodulated; and demodulating the pulses.« less

  9. Magnetoplasmon spectrum for realistic off-plane structure of dissipative 2D system

    NASA Astrophysics Data System (ADS)

    Cheremisin, M. V.

    2017-12-01

    The rigorous analysis of the textbook result (Chiu and Quinn, 1974) gives unexpectedly the dramatic change of the magnetoplasmon spectrum taking into account both the arbitrary dissipation and asymmetric off-plane structure of 2D system. For given wave vector the dissipation enhancement leads to decrease(increase) of magnetoplasmon frequency at low(high) magnetic field. At certain range of disorder the purely relaxational mode appears in magnetoplasmon spectrum. In strong magnetic fields the magnetoplasmon frequency falls to cyclotron resonance line even in presence of finite dissipation. The observation of nonlinearity and, moreover, the mysterious zig-zag behavior 2D magnetoplasmon spectrum is consistent with our findings.

  10. Benchmark Eye Movement Effects during Natural Reading in Autism Spectrum Disorder

    ERIC Educational Resources Information Center

    Howard, Philippa L.; Liversedge, Simon P.; Benson, Valerie

    2017-01-01

    In 2 experiments, eye tracking methodology was used to assess on-line lexical, syntactic and semantic processing in autism spectrum disorder (ASD). In Experiment 1, lexical identification was examined by manipulating the frequency of target words. Both typically developed (TD) and ASD readers showed normal frequency effects, suggesting that the…

  11. U.S. Military Operations Within the Electromagnetic Spectrum: Operational Critical Weakness

    DTIC Science & Technology

    2008-04-23

    the mistake only after we landed.”27 The primary tool used to coordinate friendly use of the spectrum with ES and EA is the Joint Restricted Frequency ... List (JRFL). Frequencies that are deemed “necessary for friendly forces to accomplish objectives”28 are listed and classified as guarded, protected

  12. Review of measurements of the RF spectrum of radiation from lightning

    NASA Technical Reports Server (NTRS)

    Levine, D. M.

    1986-01-01

    Measurements reported in the literature of the spectrum of electromagnetic radiation from lightning in the frequency range from 1 kHz to 1 GHz are reviewed. Measurements have been made either by monitoring the power received at individual frequencies using a narrow bandwidth recording device tuned to the frequencies under investigation or by recording the transient (time dependent) radiation with a wide bandwidth device and then Fourier transforming the waveform to obtain a spectrum. Measurements of the first type were made extensively in the 1950's and 1960's and several composite spectra have been deduced by normalizing the data of different investigators to common units of bandwidth and distance. The composite spectra tend to peak near 5 kHz and then decrease roughly as (frequency) to the -1, up to nearly 100 MHz where scatter in the data make the behavior uncertain. Measurements of the second type have been reported for return strokes, the stepped leader and for some intracloud processes. The spectrum of first return strokes obtained in this manner is very similar to the composite spectra obtained from the narrow-band measurements.

  13. Frequency spectrum analyzer with phase-lock

    DOEpatents

    Boland, Thomas J.

    1984-01-01

    A frequency-spectrum analyzer with phase-lock for analyzing the frequency and amplitude of an input signal is comprised of a voltage controlled oscillator (VCO) which is driven by a ramp generator, and a phase error detector circuit. The phase error detector circuit measures the difference in phase between the VCO and the input signal, and drives the VCO locking it in phase momentarily with the input signal. The input signal and the output of the VCO are fed into a correlator which transfers the input signal to a frequency domain, while providing an accurate absolute amplitude measurement of each frequency component of the input signal.

  14. Time-of-Flight Microwave Camera

    PubMed Central

    Charvat, Gregory; Temme, Andrew; Feigin, Micha; Raskar, Ramesh

    2015-01-01

    Microwaves can penetrate many obstructions that are opaque at visible wavelengths, however microwave imaging is challenging due to resolution limits associated with relatively small apertures and unrecoverable “stealth” regions due to the specularity of most objects at microwave frequencies. We demonstrate a multispectral time-of-flight microwave imaging system which overcomes these challenges with a large passive aperture to improve lateral resolution, multiple illumination points with a data fusion method to reduce stealth regions, and a frequency modulated continuous wave (FMCW) receiver to achieve depth resolution. The camera captures images with a resolution of 1.5 degrees, multispectral images across the X frequency band (8 GHz–12 GHz), and a time resolution of 200 ps (6 cm optical path in free space). Images are taken of objects in free space as well as behind drywall and plywood. This architecture allows “camera-like” behavior from a microwave imaging system and is practical for imaging everyday objects in the microwave spectrum. PMID:26434598

  15. Tunable CW diode-pumped Tm,Ho:YLiF4 laser operating at or near room temperature

    NASA Technical Reports Server (NTRS)

    Mcguckin, Brendan T. (Inventor); Menzies, Robert T. (Inventor)

    1993-01-01

    A conversion efficiency of 42 percent and slope efficiency of 60 percent relative to absorbed pump power are obtained from a continuous wave diode-pumped Tm,Ho:YLiF4 laser at 2 microns with output power of 84mW at a crystal temperature of 275K. The emission spectrum is etalon tunable over a range of 7nm (16.3 cm(sup -1) centered on 2.067 microns with fine tuning capability of the transition frequency with crystal temperature at a measured rate of -0.03/(cm)K. The effective emission cross-section is measured to be 5 x 10(sup -21) cm squared. These and other aspects of the laser performance are disclosed in the context of calculated atmospheric absorption characteristics in this spectral region and potential use in remote sensing applications. Single frequency output and frequency stabilization are achieved using an intracavity etalon in conjunction with an external reference etalon.

  16. Brain-computer interface using wavelet transformation and naïve bayes classifier.

    PubMed

    Bassani, Thiago; Nievola, Julio Cesar

    2010-01-01

    The main purpose of this work is to establish an exploratory approach using electroencephalographic (EEG) signal, analyzing the patterns in the time-frequency plane. This work also aims to optimize the EEG signal analysis through the improvement of classifiers and, eventually, of the BCI performance. In this paper a novel exploratory approach for data mining of EEG signal based on continuous wavelet transformation (CWT) and wavelet coherence (WC) statistical analysis is introduced and applied. The CWT allows the representation of time-frequency patterns of the signal's information content by WC qualiatative analysis. Results suggest that the proposed methodology is capable of identifying regions in time-frequency spectrum during the specified task of BCI. Furthermore, an example of a region is identified, and the patterns are classified using a Naïve Bayes Classifier (NBC). This innovative characteristic of the process justifies the feasibility of the proposed approach to other data mining applications. It can open new physiologic researches in this field and on non stationary time series analysis.

  17. Autonomous strange nonchaotic oscillations in a system of mechanical rotators

    NASA Astrophysics Data System (ADS)

    Jalnine, Alexey Yu.; Kuznetsov, Sergey P.

    2017-05-01

    We investigate strange nonchaotic self-oscillations in a dissipative system consisting of three mechanical rotators driven by a constant torque applied to one of them. The external driving is nonoscillatory; the incommensurable frequency ratio in vibrational-rotational dynamics arises due to an irrational ratio of diameters of the rotating elements involved. It is shown that, when losing stable equilibrium, the system can demonstrate two- or three-frequency quasi-periodic, chaotic and strange nonchaotic self-oscillations. The conclusions of the work are confirmed by numerical calculations of Lyapunov exponents, fractal dimensions, spectral analysis, and by special methods of detection of a strange nonchaotic attractor (SNA): phase sensitivity and analysis using rational approximation for the frequency ratio. In particular, SNA possesses a zero value of the largest Lyapunov exponent (and negative values of the other exponents), a capacitive dimension close to 2 and a singular continuous power spectrum. In general, the results of this work shed a new light on the occurrence of strange nonchaotic dynamics.

  18. Fully reconfigurable photonic microwave transversal filter based on digital micromirror device and continuous-wave, incoherent supercontinuum source.

    PubMed

    Lee, Ju Han; Chang, You Min; Han, Young-Geun; Lee, Sang Bae; Chung, Hae Yang

    2007-08-01

    The combined use of a programmable, digital micromirror device (DMD) and an ultrabroadband, cw, incoherent supercontinuum (SC) source is experimentally demonstrated to fully explore various aspects on the reconfiguration of a microwave filter transfer function by creating a range of multiwavelength optical filter shapes. Owing to both the unique characteristic of the DMD that an arbitrary optical filter shape can be readily produced and the ultrabroad bandwidth of the cw SC source that is 3 times larger than that of Er-amplified spontaneous emission, a multiwavelength optical beam pattern can be generated with a large number of wavelength filter taps apodized by an arbitrary amplitude window. Therefore various types of high-quality microwave filter can be readily achieved through the spectrum slicing-based photonic microwave transversal filter scheme. The experimental demonstration is performed in three aspects: the tuning of a filter resonance bandwidth at a fixed resonance frequency, filter resonance frequency tuning at a fixed resonance frequency, and flexible microwave filter shape reconstruction.

  19. Time-of-Flight Microwave Camera

    NASA Astrophysics Data System (ADS)

    Charvat, Gregory; Temme, Andrew; Feigin, Micha; Raskar, Ramesh

    2015-10-01

    Microwaves can penetrate many obstructions that are opaque at visible wavelengths, however microwave imaging is challenging due to resolution limits associated with relatively small apertures and unrecoverable “stealth” regions due to the specularity of most objects at microwave frequencies. We demonstrate a multispectral time-of-flight microwave imaging system which overcomes these challenges with a large passive aperture to improve lateral resolution, multiple illumination points with a data fusion method to reduce stealth regions, and a frequency modulated continuous wave (FMCW) receiver to achieve depth resolution. The camera captures images with a resolution of 1.5 degrees, multispectral images across the X frequency band (8 GHz-12 GHz), and a time resolution of 200 ps (6 cm optical path in free space). Images are taken of objects in free space as well as behind drywall and plywood. This architecture allows “camera-like” behavior from a microwave imaging system and is practical for imaging everyday objects in the microwave spectrum.

  20. A deterministic (non-stochastic) low frequency method for geoacoustic inversion.

    PubMed

    Tolstoy, A

    2010-06-01

    It is well known that multiple frequency sources are necessary for accurate geoacoustic inversion. This paper presents an inversion method which uses the low frequency (LF) spectrum only to estimate bottom properties even in the presence of expected errors in source location, phone depths, and ocean sound-speed profiles. Matched field processing (MFP) along a vertical array is used. The LF method first conducts an exhaustive search of the (five) parameter search space (sediment thickness, sound-speed at the top of the sediment layer, the sediment layer sound-speed gradient, the half-space sound-speed, and water depth) at 25 Hz and continues by retaining only the high MFP value parameter combinations. Next, frequency is slowly increased while again retaining only the high value combinations. At each stage of the process, only those parameter combinations which give high MFP values at all previous LF predictions are considered (an ever shrinking set). It is important to note that a complete search of each relevant parameter space seems to be necessary not only at multiple (sequential) frequencies but also at multiple ranges in order to eliminate sidelobes, i.e., false solutions. Even so, there are no mathematical guarantees that one final, unique "solution" will be found.

  1. [Restoration filtering based on projection power spectrum for single-photon emission computed tomography].

    PubMed

    Kubo, N

    1995-04-01

    To improve the quality of single-photon emission computed tomographic (SPECT) images, a restoration filter has been developed. This filter was designed according to practical "least squares filter" theory. It is necessary to know the object power spectrum and the noise power spectrum. The power spectrum is estimated from the power spectrum of a projection, when the high-frequency power spectrum of a projection is adequately approximated as a polynomial exponential expression. A study of the restoration with the filter based on a projection power spectrum was conducted, and compared with that of the "Butterworth" filtering method (cut-off frequency of 0.15 cycles/pixel), and "Wiener" filtering (signal-to-noise power spectrum ratio was a constant). Normalized mean-squared errors (NMSE) of the phantom, two line sources located in a 99mTc filled cylinder, were used. NMSE of the "Butterworth" filter, "Wiener" filter, and filtering based on a power spectrum were 0.77, 0.83, and 0.76 respectively. Clinically, brain SPECT images utilizing this new restoration filter improved the contrast. Thus, this filter may be useful in diagnosis of SPECT images.

  2. Low-level laser therapy on skeletal muscle inflammation: evaluation of irradiation parameters

    NASA Astrophysics Data System (ADS)

    Mantineo, Matías; Pinheiro, João P.; Morgado, António M.

    2014-09-01

    We evaluated the effect of different irradiation parameters in low-level laser therapy (LLLT) for treating inflammation induced in the gastrocnemius muscle of rats through cytokines concentration in systemic blood and analysis of muscle tissue. We used continuous (830 and 980 nm) and pulsed illuminations (830 nm). Animals were divided into five groups per wavelength (10, 20, 30, 40, and 50 mW), and a control group. LLLT was applied during 5 days with a constant irradiation time and area. TNF-α, IL-1β, IL-2, and IL-6 cytokines were quantified by ELISA. Inflammatory cells were counted using microscopy. Identical methodology was used with pulsed illumination. Average power (40 mW) and duty cycle were kept constant (80%) at five frequencies (5, 25, 50, 100, and 200 Hz). For continuous irradiation, treatment effects occurred for all doses, with a reduction of TNF-α, IL-1β, and IL-6 cytokines and inflammatory cells. Continuous irradiation at 830 nm was more effective, a result explained by the action spectrum of cytochrome c oxidase (CCO). Best results were obtained for 40 mW, with data suggesting a biphasic dose response. Pulsed wave irradiation was only effective for higher frequencies, a result that might be related to the rate constants of the CCO internal electron transfer process.

  3. Detection of main tidal frequencies using least squares harmonic estimation method

    NASA Astrophysics Data System (ADS)

    Mousavian, R.; Hossainali, M. Mashhadi

    2012-11-01

    In this paper the efficiency of the method of Least Squares Harmonic Estimation (LS-HE) for detecting the main tidal frequencies is investigated. Using this method, the tidal spectrum of the sea level data is evaluated at two tidal stations: Bandar Abbas in south of Iran and Workington on the eastern coast of the UK. The amplitudes of the tidal constituents at these two tidal stations are not the same. Moreover, in contrary to the Workington station, the Bandar Abbas tidal record is not an equispaced time series. Therefore, the analysis of the hourly tidal observations in Bandar Abbas and Workington can provide a reasonable insight into the efficiency of this method for analyzing the frequency content of tidal time series. Furthermore, applying the method of Fourier transform to the Workington tidal record provides an independent source of information for evaluating the tidal spectrum proposed by the LS-HE method. According to the obtained results, the spectrums of these two tidal records contain the components with the maximum amplitudes among the expected ones in this time span and some new frequencies in the list of known constituents. In addition, in terms of frequencies with maximum amplitude; the power spectrums derived from two aforementioned methods are the same. These results demonstrate the ability of LS-HE for identifying the frequencies with maximum amplitude in both tidal records.

  4. High-power continuous-wave mid-infrared radiation generated by difference frequency mixing of diode-laser-seeded fiber amplifiers and its application to dual-beam spectroscopy

    NASA Technical Reports Server (NTRS)

    Lancaster, D. G.; Richter, D.; Curl, R. F.; Tittel, F. K.; Goldberg, L.; Koplow, J.

    1999-01-01

    We report the generation of up to 0.7 mW of narrow-linewidth (<60-MHz) radiation at 3.3 micrometers by difference frequency mixing of a Nd:YAG-seeded 1.6-W Yb fiber amplifier and a 1.5-micrometers diode-laser-seeded 0.6-W Er/Yb fiber amplifier in periodically poled LiNbO3. A conversion efficiency of 0.09%/W (0.47 mWW-2 cm-1) was achieved. A room-air CH4 spectrum acquired with a compact 80-m multipass cell and a dual-beam spectroscopic configuration indicates an absorption sensitivity of +/-2.8 x 10(-5) (+/-1 sigma), corresponding to a sub-parts-in-10(9) (ppb) CH4 sensitivity (0.8 ppb).

  5. Millimeter wave sensor for monitoring effluents

    DOEpatents

    Gopalsami, Nachappa; Bakhtiari, Sasan; Raptis, Apostolos C.; Dieckman, Stephen L.

    1995-01-01

    A millimeter-wave sensor for detecting and measuring effluents from processing plants either remotely or on-site includes a high frequency signal source for transmitting frequency-modulated continuous waves in the millimeter or submillimeter range with a wide sweep capability and a computer-controlled detector for detecting a plurality of species of effluents on a real time basis. A high resolution spectrum of an effluent, or effluents, is generated by a deconvolution of the measured spectra resulting in a narrowing of the line widths by 2 or 3 orders of magnitude as compared with the pressure broadened spectra detected at atmospheric pressure for improved spectral specificity and measurement sensitivity. The sensor is particularly adapted for remote monitoring such as where access is limited or sensor cost restricts multiple sensors as well as for large area monitoring under nearly all weather conditions.

  6. Real-time gas sensing based on optical feedback in a terahertz quantum-cascade laser.

    PubMed

    Hagelschuer, Till; Wienold, Martin; Richter, Heiko; Schrottke, Lutz; Grahn, Holger T; Hübers, Heinz-Wilhelm

    2017-11-27

    We report on real-time gas sensing with a terahertz quantum-cascade laser (QCL). The method is solely based on the modulation of the external cavity length, exploiting the intermediate optical feedback regime. While the QCL is operated in continuous-wave mode, optical feedback results in a change of the QCL frequency as well as its terminal voltage. The first effect is exploited to tune the lasing frequency across a molecular absorption line. The second effect is used for the detection of the self-mixing signal. This allows for fast measurement times on the order of 10 ms per spectrum and for real-time measurements of gas concentrations with a rate of 100 Hz. This technique is demonstrated with a mixture of D 2 O and CH 3 OD in an absorption cell.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yin; Wang, Wen; Wysocki, Gerard, E-mail: gwysocki@princeton.edu

    In this Letter, we present a method of performing broadband mid-infrared spectroscopy with conventional, free-running, continuous wave Fabry-Perot quantum cascade lasers (FP-QCLs). The measurement method is based on multi-heterodyne down-conversion of optical signals. The sample transmission spectrum probed by one multi-mode FP-QCL is down-converted to the radio-frequency domain through an optical multi-heterodyne process using a second FP-QCL as the local oscillator. Both a broadband multi-mode spectral measurement as well as high-resolution (∼15 MHz) spectroscopy of molecular absorption are demonstrated and show great potential for development of high performance FP-laser-based spectrometers for chemical sensing.

  8. What can be found in scalp EEG spectrum beyond common frequency bands. EEG-fMRI study

    NASA Astrophysics Data System (ADS)

    Marecek, R.; Lamos, M.; Mikl, M.; Barton, M.; Fajkus, J.; I, Rektor; Brazdil, M.

    2016-08-01

    Objective. The scalp EEG spectrum is a frequently used marker of neural activity. Commonly, the preprocessing of EEG utilizes constraints, e.g. dealing with a predefined subset of electrodes or a predefined frequency band of interest. Such treatment of the EEG spectrum neglects the fact that particular neural processes may be reflected in several frequency bands and/or several electrodes concurrently, and can overlook the complexity of the structure of the EEG spectrum. Approach. We showed that the EEG spectrum structure can be described by parallel factor analysis (PARAFAC), a method which blindly uncovers the spatial-temporal-spectral patterns of EEG. We used an algorithm based on variational Bayesian statistics to reveal nine patterns from the EEG of 38 healthy subjects, acquired during a semantic decision task. The patterns reflected neural activity synchronized across theta, alpha, beta and gamma bands and spread over many electrodes, as well as various EEG artifacts. Main results. Specifically, one of the patterns showed significant correlation with the stimuli timing. The correlation was higher when compared to commonly used models of neural activity (power fluctuations in distinct frequency band averaged across a subset of electrodes) and we found significantly correlated hemodynamic fluctuations in simultaneously acquired fMRI data in regions known to be involved in speech processing. Further, we show that the pattern also occurs in EEG data which were acquired outside the MR machine. Two other patterns reflected brain rhythms linked to the attentional and basal ganglia large scale networks. The other patterns were related to various EEG artifacts. Significance. These results show that PARAFAC blindly identifies neural activity in the EEG spectrum and that it naturally handles the correlations among frequency bands and electrodes. We conclude that PARAFAC seems to be a powerful tool for analysis of the EEG spectrum and might bring novel insight to the relationships between EEG activity and brain hemodynamics.

  9. Characterizing resonant component in speech: A different view of tracking fundamental frequency

    NASA Astrophysics Data System (ADS)

    Dong, Bin

    2017-05-01

    Inspired by the nonlinearity and nonstationarity and the modulations in speech, Hilbert-Huang Transform and cyclostationarity analysis are employed to investigate the speech resonance in vowel in sequence. Cyclostationarity analysis is not directly manipulated on the target vowel, but on its intrinsic mode functions one by one. Thanks to the equivalence between the fundamental frequency in speech and the cyclic frequency in cyclostationarity analysis, the modulation intensity distributions of the intrinsic mode functions provide much information for the estimation of the fundamental frequency. To highlight the relationship between frequency and time, the pseudo-Hilbert spectrum is proposed to replace the Hilbert spectrum here. After contrasting the pseudo-Hilbert spectra of and the modulation intensity distributions of the intrinsic mode functions, it finds that there is usually one intrinsic mode function which works as the fundamental component of the vowel. Furthermore, the fundamental frequency of the vowel can be determined by tracing the pseudo-Hilbert spectrum of its fundamental component along the time axis. The later method is more robust to estimate the fundamental frequency, when meeting nonlinear components. Two vowels [a] and [i], picked up from a speech database FAU Aibo Emotion Corpus, are applied to validate the above findings.

  10. The very low frequency power spectrum of Centaurus X-3

    NASA Technical Reports Server (NTRS)

    Gruber, D. E.

    1988-01-01

    The long-term variability of Cen X-3 on time scales ranging from days to years has been examined by combining data obtained by the HEAO 1 A-4 instrument with data from Vela 5B. A simple interpretation of the data is made in terms of the standard alpha-disk model of accretion disk structure and dynamics. Assuming that the low-frequency variance represents the inherent variability of the mass transfer from the companion, the decline in power at higher frequencies results from the leveling of radial structure in the accretion disk through viscous mixing. The shape of the observed power spectrum is shown to be in excellent agreement with a calculation based on a simplified form of this model. The observed low-frequency power spectrum of Cen X-3 is consistent with a disk in which viscous mixing occurs about as rapidly as possible and on the largest scale possible.

  11. Frequency spectrum of tantalum at temperatures of 293-2300 K

    NASA Astrophysics Data System (ADS)

    Semenov, V. A.; Kozlov, Zh. A.; Krachun, L.; Mateescu, G.; Morozov, V. M.; Oprea, A. I.; Oprea, K.; Puchkov, A. V.

    2010-05-01

    The temperature dependence of the frequency spectrum of tantalum in the temperature range from room temperature to 2300 K has been studied for the first time using inelastic slow-neutron scattering. The inelastic slow-neutron scattering spectra have been measured at different temperatures on a DIN-2PI time-of-flight spectrometer installed at the IBR-2 nuclear reactor (Joint Institute for Nuclear Research, Dubna, Russia) with the use of a TS3000K high-temperature thermostat. From the measured spectra, the frequency spectra of the tantalum crystal lattice have been determined at temperatures of 293, 1584, and 2300 K by the iteration method. As the temperature increases, the frequency spectrum, on the whole, is softened and the specific features manifested themselves at room temperature are smoothed. The variations observed have been explained by the increase in the role of the effects of vibration anharmonism at high temperatures.

  12. Detection and Tracking of Moving Targets Behind Cluttered Environments Using Compressive Sensing

    NASA Astrophysics Data System (ADS)

    Dang, Vinh Quang

    Detection and tracking of moving targets (target's motion, vibration, etc.) in cluttered environments have been receiving much attention in numerous applications, such as disaster search-and-rescue, law enforcement, urban warfare, etc. One of the popular techniques is the use of stepped frequency continuous wave radar due to its low cost and complexity. However, the stepped frequency radar suffers from long data acquisition time. This dissertation focuses on detection and tracking of moving targets and vibration rates of stationary targets behind cluttered medium such as wall using stepped frequency radar enhanced by compressive sensing. The application of compressive sensing enables the reconstruction of the target space using fewer random frequencies, which decreases the acquisition time. Hardware-accelerated parallelization on GPU is investigated for the Orthogonal Matching Pursuit reconstruction algorithm. For simulation purpose, two hybrid methods have been developed to calculate the scattered fields from the targets through the wall approaching the antenna system, and to convert the incoming fields into voltage signals at terminals of the receive antenna. The first method is developed based on the plane wave spectrum approach for calculating the scattered fields of targets behind the wall. The method uses Fast Multiple Method (FMM) to calculate scattered fields on a particular source plane, decomposes them into plane wave components, and propagates the plane wave spectrum through the wall by integrating wall transmission coefficients before constructing the fields on a desired observation plane. The second method allows one to calculate the complex output voltage at terminals of a receiving antenna which fully takes into account the antenna effects. This method adopts the concept of complex antenna factor in Electromagnetic Compatibility (EMC) community for its calculation.

  13. Noise and interference study for satellite lightning sensor

    NASA Technical Reports Server (NTRS)

    Herman, J. R.

    1981-01-01

    The use of radio frequency techniques for the detection and monitoring of terrestrial thunderstorms from space are discussed. Three major points are assessed: (1) lightning and noise source characteristics; (2) propagation effects imposed by the atmosphere and ionosphere; and (3) the electromagnetic environment in near space within which lightning RF signatures must be detected. A composite frequency spectrum of the peak of amplitude from lightning flashes is developed. Propagation effects (ionospheric cutoff, refraction, absorption, dispersion and scintillation) are considered to modify the lightning spectrum to the geosynchronous case. It is suggested that in comparing the modified spectrum with interfering noise source spectra RF lightning pulses on frequencies up to a few GHz are detectable above the natural noise environment in near space.

  14. Laser velocimeter application to oscillatory liquid flows

    NASA Technical Reports Server (NTRS)

    Gartrell, L. R.

    1978-01-01

    A laser velocimeter technique was used to measure the mean velocity and the frequency characteristics of an oscillatory flow component generated with a rotating flapper in liquid flow system at Reynolds numbers approximating 93,000. The velocity information was processed in the frequency domain using a tracker whose output was used to determine the flow spectrum. This was accomplished with the use of an autocorrelator/Fourier transform analyzer and a spectrum averaging analyzer where induced flow oscillations up to 40 Hz were detected. Tests were conducted at a mean flow velocity of approximately 2 m/s. The experimental results show that the laser velocimeter can provide quantitative information such as liquid flow velocity and frequency spectrum with a possible application to cryogenic fluid flows.

  15. Wideband spectrum analysis of ultra-high frequency radio-wave signals due to advanced one-phonon non-collinear anomalous light scattering.

    PubMed

    Shcherbakov, Alexandre S; Arellanes, Adan Omar

    2017-04-20

    We present a principally new acousto-optical cell providing an advanced wideband spectrum analysis of ultra-high frequency radio-wave signals. For the first time, we apply a recently developed approach with the tilt angle to a one-phonon non-collinear anomalous light scattering. In contrast to earlier cases, now one can exploit a regime with the fixed optical wavelength for processing a great number of acoustic frequencies simultaneously in the linear regime. The chosen rutile-crystal combines a moderate acoustic velocity with low acoustic attenuation and allows us wide-band data processing within GHz-frequency acoustic waves. We have created and experimentally tested a 6-cm aperture rutile-made acousto-optical cell providing the central frequency 2.0 GHz, frequency bandwidth ∼0.52  GHz with the frequency resolution about 68.3 kHz, and ∼7620 resolvable spots. A similar cell permits designing an advanced ultra-high-frequency arm within a recently developed multi-band radio-wave acousto-optical spectrometer for astrophysical studies. This spectrometer is intended to operate with a few parallel optical arms for processing the multi-frequency data flows within astrophysical observations. Keeping all the instrument's advantages of the previous schematic arrangement, now one can create the highest-frequency arm using the developed rutile-based acousto-optical cell. It permits optimizing the performances inherent in that arm via regulation of both the central frequency and the frequency bandwidth for spectrum analysis.

  16. Time-frequency analysis of phonocardiogram signals using wavelet transform: a comparative study.

    PubMed

    Ergen, Burhan; Tatar, Yetkin; Gulcur, Halil Ozcan

    2012-01-01

    Analysis of phonocardiogram (PCG) signals provides a non-invasive means to determine the abnormalities caused by cardiovascular system pathology. In general, time-frequency representation (TFR) methods are used to study the PCG signal because it is one of the non-stationary bio-signals. The continuous wavelet transform (CWT) is especially suitable for the analysis of non-stationary signals and to obtain the TFR, due to its high resolution, both in time and in frequency and has recently become a favourite tool. It decomposes a signal in terms of elementary contributions called wavelets, which are shifted and dilated copies of a fixed mother wavelet function, and yields a joint TFR. Although the basic characteristics of the wavelets are similar, each type of the wavelets produces a different TFR. In this study, eight real types of the most known wavelets are examined on typical PCG signals indicating heart abnormalities in order to determine the best wavelet to obtain a reliable TFR. For this purpose, the wavelet energy and frequency spectrum estimations based on the CWT and the spectra of the chosen wavelets were compared with the energy distribution and the autoregressive frequency spectra in order to determine the most suitable wavelet. The results show that Morlet wavelet is the most reliable wavelet for the time-frequency analysis of PCG signals.

  17. Whole earth telescope observations of the DBV white dwarf GD 358

    NASA Technical Reports Server (NTRS)

    Winget, D. E.; Nather, R. E.; Clemens, J. C.; Provencal, J. L.; Kleinman, S. J.; Bradley, P. A.; Claver, C. F.; Dixson, J. S.; Montgomery, M. H.; Hansen, C. J.

    1994-01-01

    We report on the analysis of 154 hours of early continuous high-speed photometry on the pulsating DB white dwarf (DBV) GD 358, obtained during the Whole Earth Telescope (WET) run of 1990 May. The power spectrum of the light curve is dominated by power in the range from 1000 to 2400 microHz with more than 180 significant peaks in the total spectrum. We identify all of the triplet frequencies as degree l = 1, and from the details of their spacings we derive the total stellar mass as 0.61 + or - 0.03 solar mass, the mass of the outer helium envelope as 2.0 + or - 1.0 x 10(exp -6) M(sub *), the absolute luminosity as 0.050 + or - 0.012 solar luminosity and the distance as 42 + or - 3 pc. We find strong evidence for differential rotation in the radial direction -- the outer envelope is rotating at least 1.8 times faster than the core -- and we detect the presence of a weak magnetic field with a strength of 1300 + or - 300 G. We also find a significant power at the sums and differences of the dominant frequencies, indicating nonlinear processes are significant, but they have a richness and complexity that rules out resonant mode coupling as a major cause.

  18. Effects of aromaticity in cations and their functional groups on the temperature dependence of low-frequency spectrum

    DOE PAGES

    Kakinuma, Shohei; Ramati, Sharon; Wishart, James F.; ...

    2018-05-21

    We investigate the temperature dependence of low-frequency spectra in the frequency range of 0.3–200 cm -1 for ionic liquids (ILs) whose cations possess two systematically different cyclic groups, using femtosecond Raman-induced Kerr effect spectroscopy. The target ILs are bis(trifluoromethylsulfonyl)amide [NTf 2]– salts of 1-cyclohexylmethyl-1-methylpyrrolidinium [CHxmMPyrr] +, 1-cyclohexylmethyl-3-methylimidazolium [CHxmMIm] +, N-cyclohexylmethylpyridinium [CHxmPy]+, 1-benzyl-1-methylpyrrolidinium [BzMPyrr] +, 1-benzyl-3-methylimidazolium [BzMIm] +, and N-benzylpyridinium [BzPy] + cations. The aim of this study is to better understand the effects of aromaticity in the cations’ constituent groups on the temperature-dependent low-frequency spectral features of the ILs. The low-frequency spectra of these ILs are temperature dependent, but themore » temperature-dependent spectrum of [CHxmMPyrr][NTf 2] is different from that of other ILs. While [CHxmMPyrr][NTf 2] shows spectral changes with temperature in the low-frequency region below 50 cm -1, the other ILs also show spectral changes in the high-frequency region above 80 cm -1 (above 50 cm -1 in the case of [BzMPyrr][NTf 2]). We conclude that the spectral change in the low-frequency region is due to both the cation and anion, while the change in the high-frequency region is attributed to the red shift of the aromatic ring librations. On the basis of the plots of the first moment of the spectra vs. temperature, we found that the first moment of the low-frequency spectrum of the IL whose cation does not have an aromatic ring is less temperature dependent than that of the other ILs. However, the intrinsic first moment, the first moment at 0 K, of the low-frequency spectrum is governed by the absence or presence of a charged aromatic group, while a neutral aromatic group does not have much influence on determining the intrinsic first moment.« less

  19. Effects of aromaticity in cations and their functional groups on the temperature dependence of low-frequency spectrum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kakinuma, Shohei; Ramati, Sharon; Wishart, James F.

    We investigate the temperature dependence of low-frequency spectra in the frequency range of 0.3–200 cm -1 for ionic liquids (ILs) whose cations possess two systematically different cyclic groups, using femtosecond Raman-induced Kerr effect spectroscopy. The target ILs are bis(trifluoromethylsulfonyl)amide [NTf 2]– salts of 1-cyclohexylmethyl-1-methylpyrrolidinium [CHxmMPyrr] +, 1-cyclohexylmethyl-3-methylimidazolium [CHxmMIm] +, N-cyclohexylmethylpyridinium [CHxmPy]+, 1-benzyl-1-methylpyrrolidinium [BzMPyrr] +, 1-benzyl-3-methylimidazolium [BzMIm] +, and N-benzylpyridinium [BzPy] + cations. The aim of this study is to better understand the effects of aromaticity in the cations’ constituent groups on the temperature-dependent low-frequency spectral features of the ILs. The low-frequency spectra of these ILs are temperature dependent, but themore » temperature-dependent spectrum of [CHxmMPyrr][NTf 2] is different from that of other ILs. While [CHxmMPyrr][NTf 2] shows spectral changes with temperature in the low-frequency region below 50 cm -1, the other ILs also show spectral changes in the high-frequency region above 80 cm -1 (above 50 cm -1 in the case of [BzMPyrr][NTf 2]). We conclude that the spectral change in the low-frequency region is due to both the cation and anion, while the change in the high-frequency region is attributed to the red shift of the aromatic ring librations. On the basis of the plots of the first moment of the spectra vs. temperature, we found that the first moment of the low-frequency spectrum of the IL whose cation does not have an aromatic ring is less temperature dependent than that of the other ILs. However, the intrinsic first moment, the first moment at 0 K, of the low-frequency spectrum is governed by the absence or presence of a charged aromatic group, while a neutral aromatic group does not have much influence on determining the intrinsic first moment.« less

  20. Effects of aromaticity in cations and their functional groups on the temperature dependence of low-frequency spectrum

    NASA Astrophysics Data System (ADS)

    Kakinuma, Shohei; Ramati, Sharon; Wishart, James F.; Shirota, Hideaki

    2018-05-01

    In this study, we investigate the temperature dependence of low-frequency spectra in the frequency range of 0.3-200 cm-1 for ionic liquids (ILs) whose cations possess two systematically different cyclic groups, using femtosecond Raman-induced Kerr effect spectroscopy. The target ILs are bis(trifluoromethylsulfonyl)amide [NTf2]- salts of 1-cyclohexylmethyl-1-methylpyrrolidinium [CHxmMPyrr]+, 1-cyclohexylmethyl-3-methylimidazolium [CHxmMIm]+, N-cyclohexylmethylpyridinium [CHxmPy]+, 1-benzyl-1-methylpyrrolidinium [BzMPyrr]+, 1-benzyl-3-methylimidazolium [BzMIm]+, and N-benzylpyridinium [BzPy]+ cations. The aim of this study is to better understand the effects of aromaticity in the cations' constituent groups on the temperature-dependent low-frequency spectral features of the ILs. The low-frequency spectra of these ILs are temperature dependent, but the temperature-dependent spectrum of [CHxmMPyrr][NTf2] is different from that of other ILs. While [CHxmMPyrr][NTf2] shows spectral changes with temperature in the low-frequency region below 50 cm-1, the other ILs also show spectral changes in the high-frequency region above 80 cm-1 (above 50 cm-1 in the case of [BzMPyrr][NTf2]). We conclude that the spectral change in the low-frequency region is due to both the cation and anion, while the change in the high-frequency region is attributed to the red shift of the aromatic ring librations. On the basis of the plots of the first moment of the spectra vs. temperature, we found that the first moment of the low-frequency spectrum of the IL whose cation does not have an aromatic ring is less temperature dependent than that of the other ILs. However, the intrinsic first moment, the first moment at 0 K, of the low-frequency spectrum is governed by the absence or presence of a charged aromatic group, while a neutral aromatic group does not have much influence on determining the intrinsic first moment.

  1. Spectral Entropy Based Neuronal Network Synchronization Analysis Based on Microelectrode Array Measurements

    PubMed Central

    Kapucu, Fikret E.; Välkki, Inkeri; Mikkonen, Jarno E.; Leone, Chiara; Lenk, Kerstin; Tanskanen, Jarno M. A.; Hyttinen, Jari A. K.

    2016-01-01

    Synchrony and asynchrony are essential aspects of the functioning of interconnected neuronal cells and networks. New information on neuronal synchronization can be expected to aid in understanding these systems. Synchronization provides insight in the functional connectivity and the spatial distribution of the information processing in the networks. Synchronization is generally studied with time domain analysis of neuronal events, or using direct frequency spectrum analysis, e.g., in specific frequency bands. However, these methods have their pitfalls. Thus, we have previously proposed a method to analyze temporal changes in the complexity of the frequency of signals originating from different network regions. The method is based on the correlation of time varying spectral entropies (SEs). SE assesses the regularity, or complexity, of a time series by quantifying the uniformity of the frequency spectrum distribution. It has been previously employed, e.g., in electroencephalogram analysis. Here, we revisit our correlated spectral entropy method (CorSE), providing evidence of its justification, usability, and benefits. Here, CorSE is assessed with simulations and in vitro microelectrode array (MEA) data. CorSE is first demonstrated with a specifically tailored toy simulation to illustrate how it can identify synchronized populations. To provide a form of validation, the method was tested with simulated data from integrate-and-fire model based computational neuronal networks. To demonstrate the analysis of real data, CorSE was applied on in vitro MEA data measured from rat cortical cell cultures, and the results were compared with three known event based synchronization measures. Finally, we show the usability by tracking the development of networks in dissociated mouse cortical cell cultures. The results show that temporal correlations in frequency spectrum distributions reflect the network relations of neuronal populations. In the simulated data, CorSE unraveled the synchronizations. With the real in vitro MEA data, CorSE produced biologically plausible results. Since CorSE analyses continuous data, it is not affected by possibly poor spike or other event detection quality. We conclude that CorSE can reveal neuronal network synchronization based on in vitro MEA field potential measurements. CorSE is expected to be equally applicable also in the analysis of corresponding in vivo and ex vivo data analysis. PMID:27803660

  2. Investigation of Doppler spectra of laser radiation scattered inside hand skin during occlusion test

    NASA Astrophysics Data System (ADS)

    Kozlov, I. O.; Zherebtsov, E. A.; Zherebtsova, A. I.; Dremin, V. V.; Dunaev, A. V.

    2017-11-01

    Laser Doppler flowmetry (LDF) is a method widely used in diagnosis of microcirculation diseases. It is well known that information about frequency distribution of Doppler spectrum of the laser radiation scattered by moving red blood cells (RBC) usually disappears after signal processing procedure. Photocurrent’s spectrum distribution contains valuable diagnostic information about velocity distribution of the RBC. In this research it is proposed to compute the indexes of microcirculation in the sub-ranges of the Doppler spectrum as well as investigate the frequency distribution of the computed indexes.

  3. Quasinormal modes and quantization of area/entropy for noncommutative BTZ black hole

    NASA Astrophysics Data System (ADS)

    Huang, Lu; Chen, Juhua; Wang, Yongjiu

    2018-04-01

    We investigate the quasinormal modes and area/entropy spectrum for the noncommutative BTZ black hole. The exact expressions for QNM frequencies are presented by expanding the noncommutative parameter in horizon radius. We find that the noncommutativity does not affect conformal weights (hL, hR), but it influences the thermal equilibrium. The intuitive expressions of the area/entropy spectrum are calculated in terms of Bohr-Sommerfeld quantization, and our results show that the noncommutativity leads to a nonuniform area/entropy spectrum. We also find that the coupling constant ξ , which is the coupling between the scalar and the gravitational fields, shifts the QNM frequencies but not influences the structure of area/entorpy spectrum.

  4. Acetaminophen use in pregnancy and neurodevelopment: attention function and autism spectrum symptoms.

    PubMed

    Avella-Garcia, Claudia B; Julvez, Jordi; Fortuny, Joan; Rebordosa, Cristina; García-Esteban, Raquel; Galán, Isolina Riaño; Tardón, Adonina; Rodríguez-Bernal, Clara L; Iñiguez, Carmen; Andiarena, Ainara; Santa-Marina, Loreto; Sunyer, Jordi

    2016-12-01

    Acetaminophen is extensively used during pregnancy. But there is a lack of population-representative cohort studies evaluating its effects on a range of neuropsychological and behavioural endpoints. We aimed to assess whether prenatal exposure to acetaminophen is adversely associated with neurodevelopmental outcomes at 1 and 5 years of age. This Spanish birth cohort study included 2644 mother-child pairs recruited during pregnancy. The proportion of liveborn participants evaluated at 1 and 5 years was 88.8% and 79.9%, respectively. Use of acetaminophen was evaluated prospectively in two structured interviews. Ever/never use and frequency of use (never, sporadic, persistent) were measured. Main neurodevelopment outcomes were assessed using Childhood Autism Spectrum Test (CAST), Conner's Kiddie Continuous Performance Test (K-CPT) and ADHD-DSM-IV form list. Regression models were adjusted for social determinants and co-morbidities. Over 40% of mothers reported using acetaminophen. Ever-exposed offspring had higher risks of presenting more hyperactivity/impulsivity symptoms [incidence rate ratio (IRR) = 1.41, 95% confidence interval (CI) 1.01-1.98), K-CPT commission errors (IRR = 1.10, 1.03-1.17), and lower detectability scores (coefficient β = -0.75, -0.13--0.02). CAST scores were increased in ever-exposed males (β = 0.63, 0.09-1.18). Increased effect sizes of risks by frequency of use were observed for hyperactivity/impulsivity symptoms (IRR = 2.01, 0.95-4.24) in all children, K-CPT commission errors (IRR = 1.32, 1.05-1.66) and detectability (β = -0.18, -0.36-0.00) in females, and CAST scores in males (β = 1.91, 0.44-3.38). Prenatal acetaminophen exposure was associated with a greater number of autism spectrum symptoms in males and showed adverse effects on attention-related outcomes for both genders. These associations seem to be dependent on the frequency of exposure. © The Author 2016; all rights reserved. Published by Oxford University Press on behalf of the International Epidemiological Association

  5. WMAP7 constraints on oscillations in the primordial power spectrum

    NASA Astrophysics Data System (ADS)

    Meerburg, P. Daniel; Wijers, Ralph A. M. J.; van der Schaar, Jan Pieter

    2012-03-01

    We use the 7-year Wilkinson Microwave Anisotropy Probe (WMAP7) data to place constraints on oscillations supplementing an almost scale-invariant primordial power spectrum. Such oscillations are predicted by a variety of models, some of which amount to assuming that there is some non-trivial choice of the vacuum state at the onset of inflation. In this paper, we will explore data-driven constraints on two distinct models of initial state modifications. In both models, the frequency, phase and amplitude are degrees of freedom of the theory for which the theoretical bounds are rather weak: both the amplitude and frequency have allowed values ranging over several orders of magnitude. This requires many computationally expensive evaluations of the model cosmic microwave background (CMB) spectra and their goodness of fit, even in a Markov chain Monte Carlo (MCMC), normally the most efficient fitting method for such a problem. To search more efficiently, we first run a densely-spaced grid, with only three varying parameters: the frequency, the amplitude and the baryon density. We obtain the optimal frequency and run an MCMC at the best-fitting frequency, randomly varying all other relevant parameters. To reduce the computational time of each power spectrum computation, we adjust both comoving momentum integration and spline interpolation (in l) as a function of frequency and amplitude of the primordial power spectrum. Applying this to the WMAP7 data allows us to improve existing constraints on the presence of oscillations. We confirm earlier findings that certain frequencies can improve the fitting over a model without oscillations. For those frequencies we compute the posterior probability, allowing us to put some constraints on the primordial parameter space of both models.

  6. Study of spread spectrum multiple access systems for satellite communications with overlay on current services

    NASA Technical Reports Server (NTRS)

    Ha, Tri T.; Pratt, Timothy

    1989-01-01

    The feasibility of using spread spectrum techniques to provide a low-cost multiple access system for a very large number of low data terminals was investigated. Two applications of spread spectrum technology to very small aperture terminal (VSAT) satellite communication networks are presented. Two spread spectrum multiple access systems which use a form of noncoherent M-ary FSK (MFSK) as the primary modulation are described and the throughput analyzed. The analysis considers such factors as satellite power constraints and adjacent satellite interference. Also considered is the effect of on-board processing on the multiple access efficiency and the feasibility of overlaying low data rate spread spectrum signals on existing satellite traffic as a form of frequency reuse is investigated. The use of chirp is examined for spread spectrum communications. In a chirp communication system, each data bit is converted into one or more up or down sweeps of frequency, which spread the RF energy across a broad range of frequencies. Several different forms of chirp communication systems are considered, and a multiple-chirp coded system is proposed for overlay service. The mutual interference problem is examined in detail and a performance analysis undertaken for the case of a chirp data channel overlaid on a video channel.

  7. Fast Fourier Transform Spectral Analysis Program

    NASA Technical Reports Server (NTRS)

    Daniel, J. A., Jr.; Graves, M. L.; Hovey, N. M.

    1969-01-01

    Fast Fourier Transform Spectral Analysis Program is used in frequency spectrum analysis of postflight, space vehicle telemetered trajectory data. This computer program with a digital algorithm can calculate power spectrum rms amplitudes and cross spectrum of sampled parameters at even time increments.

  8. Absorption spectrum of a two-level system subjected to a periodic pulse sequence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fotso, H. F.; Dobrovitski, V. V.

    We investigate how the quantum control of a two-level system (TLS) coupled to photons can modify and tune the TLS’s photon absorption spectrum. Tuning and controlling the emission and the absorption is of much interest e.g. for the development of efficient interfaces between stationary and flying qubits in modern architectures for quantum computation and quantum communication. We consider the periodic pulse control, where the TLS is subjected to a periodic sequence of the near-resonant Rabi driving pulses, each pulse implementing a 180° rotation. For small inter-pulse delays, the absorption spectrum features a pronounced peak of stimulated emission at the pulsemore » frequency, as well as equidistant satellite peaks with smaller spectral weights. As long as the detuning between the carrier frequency of the driving and the TLS transition frequency remains moderate, this spectral shape shows little change. Therefore, the quantum control allows shifting the absorption peak to a desired position, and locks the absorption peak to the carrier frequency of the driving pulses. Detailed description of the spectrum, and its evolution as a function time, the inter-pulse spacing and the detuning, is presented.« less

  9. [A wavelet-transform-based method for the automatic detection of late-type stars].

    PubMed

    Liu, Zhong-tian; Zhao, Rrui-zhen; Zhao, Yong-heng; Wu, Fu-chao

    2005-07-01

    The LAMOST project, the world largest sky survey project, urgently needs an automatic late-type stars detection system. However, to our knowledge, no effective methods for automatic late-type stars detection have been reported in the literature up to now. The present study work is intended to explore possible ways to deal with this issue. Here, by "late-type stars" we mean those stars with strong molecule absorption bands, including oxygen-rich M, L and T type stars and carbon-rich C stars. Based on experimental results, the authors find that after a wavelet transform with 5 scales on the late-type stars spectra, their frequency spectrum of the transformed coefficient on the 5th scale consistently manifests a unimodal distribution, and the energy of frequency spectrum is largely concentrated on a small neighborhood centered around the unique peak. However, for the spectra of other celestial bodies, the corresponding frequency spectrum is of multimodal and the energy of frequency spectrum is dispersible. Based on such a finding, the authors presented a wavelet-transform-based automatic late-type stars detection method. The proposed method is shown by extensive experiments to be practical and of good robustness.

  10. Absorption spectrum of a two-level system subjected to a periodic pulse sequence

    DOE PAGES

    Fotso, H. F.; Dobrovitski, V. V.

    2017-06-01

    We investigate how the quantum control of a two-level system (TLS) coupled to photons can modify and tune the TLS’s photon absorption spectrum. Tuning and controlling the emission and the absorption is of much interest e.g. for the development of efficient interfaces between stationary and flying qubits in modern architectures for quantum computation and quantum communication. We consider the periodic pulse control, where the TLS is subjected to a periodic sequence of the near-resonant Rabi driving pulses, each pulse implementing a 180° rotation. For small inter-pulse delays, the absorption spectrum features a pronounced peak of stimulated emission at the pulsemore » frequency, as well as equidistant satellite peaks with smaller spectral weights. As long as the detuning between the carrier frequency of the driving and the TLS transition frequency remains moderate, this spectral shape shows little change. Therefore, the quantum control allows shifting the absorption peak to a desired position, and locks the absorption peak to the carrier frequency of the driving pulses. Detailed description of the spectrum, and its evolution as a function time, the inter-pulse spacing and the detuning, is presented.« less

  11. Method of detecting system function by measuring frequency response

    NASA Technical Reports Server (NTRS)

    Morrison, John L. (Inventor); Morrison, William H. (Inventor); Christophersen, Jon P. (Inventor)

    2012-01-01

    Real-time battery impedance spectrum is acquired using a one-time record. Fast Summation Transformation (FST) is a parallel method of acquiring a real-time battery impedance spectrum using a one-time record that enables battery diagnostics. An excitation current to a battery is a sum of equal amplitude sine waves of frequencies that are octave harmonics spread over a range of interest. A sample frequency is also octave and harmonically related to all frequencies in the sum. The time profile of this signal has a duration that is a few periods of the lowest frequency. The voltage response of the battery, average deleted, is the impedance of the battery in the time domain. Since the excitation frequencies are known and octave and harmonically related, a simple algorithm, FST, processes the time record by rectifying relative to the sine and cosine of each frequency. Another algorithm yields real and imaginary components for each frequency.

  12. Method of detecting system function by measuring frequency response

    DOEpatents

    Morrison, John L [Butte, MT; Morrison, William H [Manchester, CT; Christophersen, Jon P [Idaho Falls, ID

    2012-04-03

    Real-time battery impedance spectrum is acquired using a one-time record. Fast Summation Transformation (FST) is a parallel method of acquiring a real-time battery impedance spectrum using a one-time record that enables battery diagnostics. An excitation current to a battery is a sum of equal amplitude sine waves of frequencies that are octave harmonics spread over a range of interest. A sample frequency is also octave and harmonically related to all frequencies in the sum. The time profile of this signal has a duration that is a few periods of the lowest frequency. The voltage response of the battery, average deleted, is the impedance of the battery in the time domain. Since the excitation frequencies are known and octave and harmonically related, a simple algorithm, FST, processes the time record by rectifying relative to the sine and cosine of each frequency. Another algorithm yields real and imaginary components for each frequency.

  13. Black hole radiation and S-matrix.

    NASA Astrophysics Data System (ADS)

    Russo, J. G.

    1999-04-01

    The existence of an S-matrix below the threshold of black hole formation would be enough to exhibit, through its analytic structure, eventual thresholds for the creation of new objects and to describe, through analytic continuation, the physics above them in a unitary framework. In the context of a two-dimensional exactly soluble model, the semiclassical dynamics of quantum black holes is obtained by analytically continuing the description of the regime where no black hole is formed. The resulting spectrum of outgoing radiation departs from the one predicted by the Hawking model by the time the outgoing modes arise from the horizon with Planck-order frequencies. The theory predicts an unconventional scenario for the evolution: black holes only radiate out an energy of Planck mass order, stabilizing after a transitory period. A similar picture is obtained in 3+1 dimensions with spherical symmetry.

  14. High data rate modem simulation for the space station multiple-access communications system

    NASA Technical Reports Server (NTRS)

    Horan, Stephen

    1987-01-01

    The communications system for the space station will require a space based multiple access component to provide communications between the space based program elements and the station. A study was undertaken to investigate two of the concerns of this multiple access system, namely, the issues related to the frequency spectrum utilization and the possibilities for higher order (than QPSK) modulation schemes for use in possible modulators and demodulators (modems). As a result of the investigation, many key questions about the frequency spectrum utilization were raised. At this point, frequency spectrum utilization is seen as an area requiring further work. Simulations were conducted using a computer aided communications system design package to provide a straw man modem structure to be used for both QPSK and 8-PSK channels.

  15. Economic aspects of spectrum management

    NASA Technical Reports Server (NTRS)

    Stibolt, R. D.

    1979-01-01

    Problems associated with the allocation of the radio frequency spectrum are addressed. It is observed that the current method very likely does not allocate the resource to those most valuing its use. Ecomonic criteria by which the effectiveness of resource allocation schemes can be judged are set forth and some thoughts on traditional objections to implementation of market characteristics into frequency allocation are offered. The problem of dividing orbit and spectrum between two satellite services sharing the same band but having significantly different system characteristics is discussed. The problem is compounded by the likelihood that one service will commence operation much sooner than the other. Some alternative schemes are offered that, within proper international constraints, could achieve a desired flexibility in the division of orbit and frequency between the two services domestically over the next several years.

  16. Measurement of laser quantum frequency fluctuations using a Pound-Drever stabilization system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Y.J.; Mussche, P.L.; Siegman, A.E.

    1994-06-01

    The authors describe a method for measuring the frequency fluctuation spectrum of a laser oscillator, especially the weak noise contributions in the wings of the spectrum, and apply this method to confirm the existence of large excess quantum frequency fluctuations in a laser oscillator using an unstable optical resonator. The measurement apparatus uses the Pound-Drever technique, which employs an RF phase modulator and a Fabry-Perot cavity to produce a sensitive high-speed frequency discrimination signal. The authors show that this signal can also be used to measure the quantum noise contributions to the frequency spectrum of a laser oscillator. Experimental measurementsmore » on a miniature diode-pumped Nd:YAG laser using a stable optical cavity closely match the predictions of the usual Schawlow-Townes theory, while the frequency fluctuations in a nearly identical laser employing an unstable optical resonator are approximately 1,300 times larger. These much larger fluctuations arise in part from the larger output coupling and cavity bandwidth of the unstable cavity, but they also appear to confirm a predicted excess spontaneous emission factor (Petermann excess noise factor) of [approx]180 times arising from the nonorthogonal transverse mode properties of the unstable cavity.« less

  17. Generation of continuous-wave 194 nm laser for mercury ion optical frequency standard

    NASA Astrophysics Data System (ADS)

    Zou, Hongxin; Wu, Yue; Chen, Guozhu; Shen, Yong; Liu, Qu; Precision measurement; atomic clock Team

    2015-05-01

    194 nm continuous-wave (CW) laser is an essential part in mercury ion optical frequency standard. The continuous-wave tunable radiation sources in the deep ultraviolet (DUV) region of the spectrum is also serviceable in high-resolution spectroscopy with many atomic and molecular lines. We introduce a scheme to generate continuous-wave 194 nm radiation with SFM in a Beta Barium Borate (BBO) crystal here. The two source beams are at 718 nm and 266 nm, respectively. Due to the property of BBO, critical phase matching (CPM) is implemented. One bow-tie cavity is used to resonantly enhance the 718 nm beam while the 266 nm makes a single pass, which makes the configuration easy to implement. Considering the walk-off effect in CPM, the cavity mode is designed to be elliptical so that the conversion efficiency can be promoted. Since the 266 nm radiation is generated by a 532 nm laser through SHG in a BBO crystal with a large walk-off angle, the output mode is quite non-Gaussian. To improve mode matching, we shaped the 266 nm beam into Gaussian modes with a cylindrical lens and iris diaphragm. As a result, 2.05 mW 194 nm radiation can be generated. As we know, this is the highest power for 194 nm CW laser using SFM in BBO with just single resonance. The work is supported by the National Natural Science Foundation of China (Grant No. 91436103 and No. 11204374).

  18. Contact acoustic nonlinearity (CAN)-based continuous monitoring of bolt loosening: Hybrid use of high-order harmonics and spectral sidebands

    NASA Astrophysics Data System (ADS)

    Zhang, Zhen; Liu, Menglong; Liao, Yaozhong; Su, Zhongqing; Xiao, Yi

    2018-03-01

    The significance of evaluating bolt tightness in engineering structures, preferably in a continuous manner, cannot be overemphasized. With hybrid use of high-order harmonics (HOH) and spectral sidebands, a contact acoustic nonlinearity (CAN)-based monitoring framework is developed for detecting bolt loosening and subsequently evaluating the residual torque on a loose bolt. Low-frequency pumping vibration is introduced into the bolted joint to produce a "breathing" effect at the joining interface that modulates the propagation characteristics of a high-frequency probing wave when it traverses the bolt, leading to the generation of HOH and vibro-acoustic nonlinear distortions (manifested as sidebands in the signal spectrum). To gain insight into the mechanism of CAN generation and to correlate the acquired nonlinear responses of a loose joint with the residual torque remaining on the bolt, an analytical model based on micro-contact theory is established. Two types of nonlinear index, respectively exploiting the induced HOH and spectral sidebands, are defined without dependence on excitation intensity and are experimentally demonstrated to be effective in continuously monitoring bolt loosening in both aluminum-aluminum and composite-composite bolted joints. Taking a step further, variation of the index pair is quantitatively associated with the residual torque on a loose bolt. The approach developed provides a reliable method of continuous evaluation of bolt tightness in both composite and metallic joints, regardless of their working conditions, from early awareness of bolt loosening at an embryonic stage to quantitative estimation of residual torque.

  19. [Detection of endotoxins of Gram-negative bacteria on the basis of electromagnetic radiation frequency spectrum].

    PubMed

    Likhoded, V G; Kuleshova, N V; Sergieva, N V; Konev, Iu V; Trubnikova, I A; Sudzhian, E V

    2007-01-01

    Method of Gram-negative bacteria endotoxins detection on the basis of their own spectrum of electromagnetic radiation frequency was developed. Frequency spectrum typical for chemotype Re glycolipid, which is a part of lypopolysaccharides in the majority of Gram-negative bacteria, was used. Two devices--"Mini- Expert-DT" (manufactured by IMEDIS, Moscow) and "Bicom" (manufactured by Regumed, Germany)--were used as generators of electromagnetic radiation. Detection of endotoxin using these devices was performed by electropuncture vegetative resonance test. Immunoenzyme reaction with antibodies to chemotype Re glycolipid was used during analysis of preparations for assessment of resonance-frequency method specificity. The study showed that resonance-frequency method can detect lypopolysaccharides of different enterobacteria in quantities up to 0.1 pg as well as bacteria which contain lypopolysaccharides. At the same time, this method does not detect such bacteria as Staphylococcus aureus, Bifidobacterium spp., Lactobacillus spp., and Candida albicans. The method does not require preliminary processing of blood samples and can be used for diagnostics of endotoxinemia, and detection of endotoxins in blood samples or injection solutions.

  20. Evolution and Spectrum of the Radio Emission of Tycho's Supernova Remnant

    NASA Astrophysics Data System (ADS)

    Vinyaikin, E. N.

    2018-02-01

    The radio spectrum of Tycho's Supernova Remnant is constructed at frequencies 12.6-143 000 MHz for epoch 2010.3, taking into account the secular decrease in the radio flux density of the remnant at the rate d = -(0.46 ± 0.03)%/year: S_ν ^{3C10} (t = 2010.3) = (43.1 ± 1.8 Jy)(ν [GHz])^{ - (0.592 ± 0.019) + (0.041 ± 0.012)log (ν [GHz])} . The spectrum has positive curvature. The presence of a low-frequency turnover in the spectrum of the radio source 3C10 with its maximum at 7.7 MHz is predicted, due to absorption in the interstellar medium in the direction toward the source.

  1. An unobtrusive liquid sensor utilizing a micromilled RF spark gap transmitter and resonant cavity

    NASA Astrophysics Data System (ADS)

    Berry, H.; Wilson, C.

    2009-09-01

    This paper reports on a new dielectric liquid sensor that utilizes an RF sparkgap transmitter coupled with an aluminum microwave resonant cavity. The transmitter is a micromilled polymer transmitter housing with patterned copper electrodes that generate micro-arcs. This transmitter which operates outside the measured liquid generates a directed ultrawideband signal which is received by the aluminum waveguide. Absorption resonances in the microwave cavity, measured with a spectrum analyzer are a function of the liquids' dielectric constant at lower frequencies, as well as from molecular vibrations/rotations at higher frequencies. In many chemical manufacturing processes, liquids being manufactured are removed, tested in a lab, and then disposed of, or else they will contaminate the full batch. In beer brewing, for instance, samples are removed, density tested for alcohol content, then disposed of. Using this sensor, the chemical process could be continuously monitored by a computerized system without risk of contamination.

  2. Adaptive Back Sheet Material for Acoustic Liner Applications-ARMD Seedling Fund Phase I Final Report

    NASA Technical Reports Server (NTRS)

    Gerhold, Carl H.; Jones, Michael G.; Farrar, Dawnielle

    2014-01-01

    A recently developed piezo-electric composite film is evaluated for its usefulness in application in acoustic liners. Researchers at the NASA Langley Research Center Liner Technology Facility developed experiments to measure the electrical response of the material to acoustic excitation and the vibrational response of the material to electrical excitation. The robustness of the piezo-electric film was also assessed. The material's electrical response to acoustic excitation is found to be comparable to a commercial microphone in the range of frequencies from 500 to 3000 Hz. However, the vibrational response to electrical excitation in the frequency range of interest is an order of magnitude less than may be necessary for application to acoustic liners. Nevertheless, experimental results indicate that the potential exists for the material to produce a measurable change in the impedance spectrum of a liner. Work continues to improve the authority of the piezo-electric film.

  3. Wearable Eating Habit Sensing System Using Internal Body Sound

    NASA Astrophysics Data System (ADS)

    Shuzo, Masaki; Komori, Shintaro; Takashima, Tomoko; Lopez, Guillaume; Tatsuta, Seiji; Yanagimoto, Shintaro; Warisawa, Shin'ichi; Delaunay, Jean-Jacques; Yamada, Ichiro

    Continuous monitoring of eating habits could be useful in preventing lifestyle diseases such as metabolic syndrome. Conventional methods consist of self-reporting and calculating mastication frequency based on the myoelectric potential of the masseter muscle. Both these methods are significant burdens for the user. We developed a non-invasive, wearable sensing system that can record eating habits over a long period of time in daily life. Our sensing system is composed of two bone conduction microphones placed in the ears that send internal body sound data to a portable IC recorder. Applying frequency spectrum analysis on the collected sound data, we could not only count the number of mastications during eating, but also accurately differentiate between eating, drinking, and speaking activities. This information can be used to evaluate the regularity of meals. Moreover, we were able to analyze sound features to classify the types of foods eaten by food texture.

  4. Broadband pulsed difference frequency generation laser source centered 3326 nm based on ring fiber lasers

    NASA Astrophysics Data System (ADS)

    Chen, Guangwei; Li, Wenlei

    2018-03-01

    A broadband pulsed mid-infrared difference frequency generation (DFG) laser source based on MgO-doped congruent LiNbO3 bulk is experimentally demonstrated, which employs a homemade pulsed ytterbium-doped ring fiber laser and a continuous wave erbium-doped ring fiber laser to act as seed sources. The experimental results indicate that the perfect phase match crystal temperature is about 74.5∘C. The maximum spectrum bandwidth of idler is about 60 nm with suitable polarization states of fundamental lights. The central wavelength of idlers varies from 3293 nm to 3333 nm over the crystal temperature ranges of 70.4-76∘C. A jump of central wavelength exists around crystal temperature of 72∘C with variation of about 30 nm. The conversion efficiency of DFG can be tuned with the crystal temperature and polarization states of fundamental lights.

  5. Hazard Monitoring in a Spectrum-Challenged Future: US Department of Transportation Adjacent Band Compatibility Assessment of Interference on High-Precision GNSS Receivers

    NASA Astrophysics Data System (ADS)

    Blume, F.; Berglund, H. T.

    2016-12-01

    In 2012 the Federal Communications Commission (FCC) reversed its decision to allow communications company LightSquared to use GPS-adjacent spectrum for a ground based network after testing demonstrated harmful interference to GPS receivers. Now rebranded as Ligado, they have submitted modified application to use a smaller portion of the L-band spectrum at much lower power. Many GPS community stakeholders, including the hazard monitoring and EEW communities remain concerned that Ligado's proposed use could still cause harmful interference, causing signal degradation, real-time positioning errors, and total failure of GNSS hardware in widespread use in hazard monitoring networks. The Department of Transportation (DoT) has conducted hardware tests to determine adjacent-band transmitter power limit criteria that would prevent harmful interference from Ligado's operations. We present preliminary results produced from the data collected by the three UNAVCO receiver types tested: Trimble NetRS, Trimble NetR9, and Septentrio PolaRx5. In the first round of testing, simulated GNSS signals were broadcast in an anechoic chamber (pictured below) while interfering signals are broadcast simultaneously with varying amplitude and frequency. The older GPS-only NetRS receiver showed smaller reductions in SNR at frequencies adjacent to GPS L1 as compared to the other receivers, suggesting narrower L1 filter bandwidth in the RF frontend. The NetR9 showed greater decreases in observed SNR in the 1615 to 1625 MHz range when compared to the other two receivers. This suggests that the NetR9's L1 filter bandwidth has been increased to accommodate GNSS signals. Linearity tests were conducted to better relate SNR measurements between receiver types. The PolaRx5 receiver showed less SNR variation between tracking channels than both Trimble receivers. Our results show the power levels at which adjacent-band interference begins degrading receiver performance and eventually disables tracking. As the demand for spectrum for mobile applications increases, operators of hazard networks may need to consider the impact of RF interference on data quality and continuity. UNAVCO's participation ensures that our high precision GNSS community interests are represented in the future spectrum allocation decisions.

  6. Spectrum response estimation for deep-water floating platforms via retardation function representation

    NASA Astrophysics Data System (ADS)

    Liu, Fushun; Liu, Chengcheng; Chen, Jiefeng; Wang, Bin

    2017-08-01

    The key concept of spectrum response estimation with commercial software, such as the SESAM software tool, typically includes two main steps: finding a suitable loading spectrum and computing the response amplitude operators (RAOs) subjected to a frequency-specified wave component. In this paper, we propose a nontraditional spectrum response estimation method that uses a numerical representation of the retardation functions. Based on estimated added mass and damping matrices of the structure, we decompose and replace the convolution terms with a series of poles and corresponding residues in the Laplace domain. Then, we estimate the power density corresponding to each frequency component using the improved periodogram method. The advantage of this approach is that the frequency-dependent motion equations in the time domain can be transformed into the Laplace domain without requiring Laplace-domain expressions for the added mass and damping. To validate the proposed method, we use a numerical semi-submerged pontoon from the SESAM. The numerical results show that the responses of the proposed method match well with those obtained from the traditional method. Furthermore, the estimated spectrum also matches well, which indicates its potential application to deep-water floating structures.

  7. Multipath interference test method using synthesized chirped signal from directly modulated DFB-LD with digital-signal-processing technique.

    PubMed

    Aida, Kazuo; Sugie, Toshihiko

    2011-12-12

    We propose a method of testing transmission fiber lines and distributed amplifiers. Multipath interference (MPI) is detected as a beat spectrum between a multipath signal and a direct signal using a synthesized chirped test signal with lightwave frequencies of f(1) and f(2) periodically emitted from a distributed feedback laser diode (DFB-LD). This chirped test pulse is generated using a directly modulated DFB-LD with a drive signal calculated using a digital signal processing technique (DSP). A receiver consisting of a photodiode and an electrical spectrum analyzer (ESA) detects a baseband power spectrum peak appearing at the frequency of the test signal frequency deviation (f(1)-f(2)) as a beat spectrum of self-heterodyne detection. Multipath interference is converted from the spectrum peak power. This method improved the minimum detectable MPI to as low as -78 dB. We discuss the detailed design and performance of the proposed test method, including a DFB-LD drive signal calculation algorithm with DSP for synthesis of the chirped test signal and experiments on single-mode fibers with discrete reflections. © 2011 Optical Society of America

  8. Sphericity determination using resonant ultrasound spectroscopy

    DOEpatents

    Dixon, Raymond D.; Migliori, Albert; Visscher, William M.

    1994-01-01

    A method is provided for grading production quantities of spherical objects, such as roller balls for bearings. A resonant ultrasound spectrum (RUS) is generated for each spherical object and a set of degenerate sphere-resonance frequencies is identified. From the degenerate sphere-resonance frequencies and known relationships between degenerate sphere-resonance frequencies and Poisson's ratio, a Poisson's ratio can be determined, along with a "best" spherical diameter, to form spherical parameters for the sphere. From the RUS, fine-structure resonant frequency spectra are identified for each degenerate sphere-resonance frequency previously selected. From each fine-structure spectrum and associated sphere parameter values an asphericity value is determined. The asphericity value can then be compared with predetermined values to provide a measure for accepting or rejecting the sphere.

  9. Sphericity determination using resonant ultrasound spectroscopy

    DOEpatents

    Dixon, R.D.; Migliori, A.; Visscher, W.M.

    1994-10-18

    A method is provided for grading production quantities of spherical objects, such as roller balls for bearings. A resonant ultrasound spectrum (RUS) is generated for each spherical object and a set of degenerate sphere-resonance frequencies is identified. From the degenerate sphere-resonance frequencies and known relationships between degenerate sphere-resonance frequencies and Poisson's ratio, a Poisson's ratio can be determined, along with a 'best' spherical diameter, to form spherical parameters for the sphere. From the RUS, fine-structure resonant frequency spectra are identified for each degenerate sphere-resonance frequency previously selected. From each fine-structure spectrum and associated sphere parameter values an asphericity value is determined. The asphericity value can then be compared with predetermined values to provide a measure for accepting or rejecting the sphere. 14 figs.

  10. Spread spectrum communications. Volume 1, 2 & 3

    NASA Technical Reports Server (NTRS)

    Simon, M. K.; Levitt, B. K.; Omura, J. K.; Scholtz, R. A.

    1985-01-01

    The design and operation of spread-spectrum (SS) communication systems are examined in an introductory text intended for graduate engineering students and practicing engineers. Chapters are devoted to an overview of SS systems, the historical origins of SS, basic concepts and system models, antijam communication systems, pseudonoise generators, coherent direct-sequence systems, noncoherent frequency-hopped systems, coherent and differentially coherent modulation techniques, pseudonoise acquisition and tracking in direct-sequence receivers, time and frequency synchronization of frequency-hopped receivers, low-probability-of-intercept communication, and multiple-access communication. Graphs, diagrams, and photographs are provided.

  11. Poisson point process modeling for polyphonic music transcription.

    PubMed

    Peeling, Paul; Li, Chung-fai; Godsill, Simon

    2007-04-01

    Peaks detected in the frequency domain spectrum of a musical chord are modeled as realizations of a nonhomogeneous Poisson point process. When several notes are superimposed to make a chord, the processes for individual notes combine to give another Poisson process, whose likelihood is easily computable. This avoids a data association step linking individual harmonics explicitly with detected peaks in the spectrum. The likelihood function is ideal for Bayesian inference about the unknown note frequencies in a chord. Here, maximum likelihood estimation of fundamental frequencies shows very promising performance on real polyphonic piano music recordings.

  12. Prospects and limitations for use of frequency spectrum from 40 to 300 GHz

    NASA Technical Reports Server (NTRS)

    Catoe, C. E.

    1979-01-01

    The existing and future use of the electromagnetic spectrum from 40 to 300 gigahertz is discussed. The activities envisioned for this segment of the electromagnetic spectrum fall generically into two basic categories: communications and remote sensing. The communications services considered for this region are focused on the existing and future frequency allocations that are required for terrestrial radio services, space to ground radio services, space to space radio services, and space to deep space radio services. The remote sensing services considered for this region are divided into two groups of activities: earth viewing and space viewing.

  13. The network construction of CSELF for earthquake monitoring and its preliminary observation

    NASA Astrophysics Data System (ADS)

    Tang, J.; Zhao, G.; Chen, X.; Bing, H.; Wang, L.; Zhan, Y.; Xiao, Q.; Dong, Z.

    2017-12-01

    The Electromagnetic (EM) anomaly in short-term earthquake precursory is most sensitive physical phenomena. Scientists believe that EM monitoring for earthquake is one of the most promising means of forecasting. However, existing ground-base EM observation confronted with increasing impact cultural noises, and the lack of a frequency range of higher than 1Hz observations. Control source of extremely low frequency (CSELF) EM is a kind of good prospective new approach. It not only has many advantages with high S/N ratio, large coverage area, probing depth ect., thereby facilitating the identification and capture anomaly signal, and it also can be used to study the electromagnetic field variation and to study the crustal medium changes of the electric structure.The first CSELF EM network for earthquake precursory monitoring with 30 observatories in China has been constructed. The observatories distribute in Beijing surrounding area and in the southern part of North-South Seismic Zone. GMS-07 system made by Metronix is equipped at each station. The observation mixed CSELF and nature source, that is, if during the control source is off transmitted, the nature source EM signal will be recorded. In genernal, there are 3 5 frequencies signals in the 0.1-300Hz frequency band will be transmit in every morning and evening in a fixed time (length 2 hours). Besides time, natural field to extend the frequency band (0.001 1000 Hz) will be observed by using 3 sample frequencies, 4096Hz sampling rate for HF, 256Hz for MF and 16Hz for LF. The low frequency band records continuously all-day and the high and medium frequency band use a slices record, the data records by cycling acquisition in every 10 minutes with length of about 4 to 8 seconds and 64 to 128 seconds , respectively. All the data is automatically processed by server installed in the observatory. The EDI file including EM field spectrums and MT responses and time series files will be sent the data center by internet. There shows observation data since the network set up. We get some EM field spectrum variations and the apparent resistivity changes of different frequencies with time on observatories. They show some regular and irregular changes. This study is supported by The ELF Engineering Project of China (15212Z0000001), National Natural Science Foundation of China (41674081) etc.

  14. Wind dependence of ambient noise in a biologically rich coastal area.

    PubMed

    Mathias, Delphine; Gervaise, Cédric; Di Iorio, Lucia

    2016-02-01

    The wind dependence of acoustic spectrum between 100 Hz and 16 kHz is investigated for coastal biologically rich areas. The analysis of 5 months of continuous measurements run in a 10 m deep shallow water environment off Brittany (France) showed that wind dependence of spectral levels is subject to masking by biological sounds. When dealing with raw data, the wind dependence of spectral levels was not significant for frequencies where biological sounds were present (2 to 10 kHz). An algorithm developed by Kinda, Simard, Gervaise, Mars, and Fortier [J. Acoust. Soc. Am. 134(1), 77-87 (2013)] was used to automatically filter out the loud distinctive biological contribution and estimated the ambient noise spectrum. The wind dependence of ambient noise spectrum was always significant after application of this filter. A mixture model for ambient noise spectrum which accounts for the richness of the soundscape is proposed. This model revealed that wind dependence holds once the wind speed was strong enough to produce sounds higher in amplitude than the biological chorus (9 kn at 3 kHz, 11 kn at 8 kHz). For these higher wind speeds, a logarithmic affine law was adequate and its estimated parameters were compatible with previous studies (average slope 27.1 dB per decade of wind speed increase).

  15. The integrated radio continuum spectrum of M33 - Evidence for free-free absorption by cool ionized gas

    NASA Technical Reports Server (NTRS)

    Israel, F. P.; Mahoney, M. J.; Howarth, N.

    1992-01-01

    We present measurements of the integrated radio continuum flux density of M33 at frequencies between 22 and 610 MHz and discuss the radio continuum spectrum of M33 between 22 MHz and 10 GHz. This spectrum has a turnover between 500 and 900 MHz, depending on the steepness of the high frequency radio spectrum of M33. Below 500 MHz the spectrum is relatively flat. We discuss possible mechanisms to explain this spectral shape and consider efficient free-free absorption of nonthermal emission by a cool (not greater than 1000 K) ionized gas to be a very likely possibility. The surface filling factor of both the nonthermal and the thermal material appears to be small (of order 0.001), which could be explained by magnetic field/density fluctuations in the M 33 interstellar medium. We briefly speculate on the possible presence of a nuclear radio source with a steep spectrum.

  16. The Effects of Gender and Age on Repetitive and/or Restricted Behaviors and Interests in Adults with Autism Spectrum Disorders and Intellectual Disability

    ERIC Educational Resources Information Center

    Hattier, Megan A.; Matson, Johnny L.; Tureck, Kimberly; Horovitz, Max

    2011-01-01

    Frequency of repetitive and/or restricted behaviors and interests (RRBIs) was assessed in 140 adults with autism spectrum disorders (ASDs) and severe or profound intellectual disability (ID). The associations of gender and age range were analyzed with RRBI frequency which was obtained using the Stereotypies subscale of the "Diagnostic…

  17. The benefits of convergence.

    PubMed

    Chang, Gee-Kung; Cheng, Lin

    2016-03-06

    A multi-tier radio access network (RAN) combining the strength of fibre-optic and radio access technologies employing adaptive microwave photonics interfaces and radio-over-fibre (RoF) techniques is envisioned for future heterogeneous wireless communications. All-band radio spectrum from 0.1 to 100 GHz will be used to deliver wireless services with high capacity, high link speed and low latency. The multi-tier RAN will improve the cell-edge performance in an integrated heterogeneous environment enabled by fibre-wireless integration and networking for mobile fronthaul/backhaul, resource sharing and all-layer centralization of multiple standards with different frequency bands and modulation formats. In essence, this is a 'no-more-cells' architecture in which carrier aggregation among multiple frequency bands can be easily achieved with seamless handover between cells. In this way, current and future mobile network standards such as 4G and 5G can coexist with optimized and continuous cell coverage using multi-tier RoF regardless of the underlying network topology or protocol. In terms of users' experience, the future-proof approach achieves the goals of system capacity, link speed, latency and continuous heterogeneous cell coverage while overcoming the bandwidth crunch in next-generation communication networks. © 2016 The Author(s).

  18. Genealogies of rapidly adapting populations

    PubMed Central

    Neher, Richard A.; Hallatschek, Oskar

    2013-01-01

    The genetic diversity of a species is shaped by its recent evolutionary history and can be used to infer demographic events or selective sweeps. Most inference methods are based on the null hypothesis that natural selection is a weak or infrequent evolutionary force. However, many species, particularly pathogens, are under continuous pressure to adapt in response to changing environments. A statistical framework for inference from diversity data of such populations is currently lacking. Towards this goal, we explore the properties of genealogies in a model of continual adaptation in asexual populations. We show that lineages trace back to a small pool of highly fit ancestors, in which almost simultaneous coalescence of more than two lineages frequently occurs. Whereas such multiple mergers are unlikely under the neutral coalescent, they create a unique genetic footprint in adapting populations. The site frequency spectrum of derived neutral alleles, for example, is nonmonotonic and has a peak at high frequencies, whereas Tajima’s D becomes more and more negative with increasing sample size. Because multiple merger coalescents emerge in many models of rapid adaptation, we argue that they should be considered as a null model for adapting populations. PMID:23269838

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harilal, Sivanandan S.; LaHaye, Nicole L.; Phillips, Mark C.

    We use a two-dimensional laser-induced fluorescence spectroscopy technique to measure the coupled absorption and emission properties of atomic species in plasmas produced via laser ablation of solid aluminum targets at atmospheric pressure. Emission spectra from the Al I 394.4 nm and Al I 396.15 nm transitions are measured while a frequency-doubled, continuous-wave, Ti:Sapphire laser is tuned across the Al I 396.15 nm transition. The resulting two-dimensional spectra show the energy coupling between the two transitions via increased emission intensity for both transitions during resonant absorption of the continuous-wave laser at one transition. Time-delayed and gated detection of the emission spectrummore » is used to isolate the resonantly-excited fluorescence emission from the thermally-excited emission from the plasma. In addition, the tunable continuous-wave laser measures the absorption spectrum of the Al transition with ultra-high resolution after the plasma has cooled, resulting in narrower spectral linewidths than observed in emission spectra. Our results highlight that fluorescence spectroscopy employing continuous-wave laser re-excitation after pulsed laser ablation combines benefits of both traditional emission and absorption spectroscopic methods.« less

  20. Diamond tool wear detection method using cutting force and its power spectrum analysis in ultra-precision fly cutting

    NASA Astrophysics Data System (ADS)

    Zhang, G. Q.; To, S.

    2014-08-01

    Cutting force and its power spectrum analysis was thought to be an effective method monitoring tool wear in many cutting processes and a significant body of research has been conducted on this research area. However, relative little similar research was found in ultra-precision fly cutting. In this paper, a group of experiments were carried out to investigate the cutting forces and its power spectrum characteristics under different tool wear stages. Result reveals that the cutting force increases with the progress of tool wear. The cutting force signals under different tool wear stages were analyzed using power spectrum analysis. The analysis indicates that a characteristic frequency does exist in the power spectrum of the cutting force, whose power spectral density increases with the increasing of tool wear level, this characteristic frequency could be adopted to monitor diamond tool wear in ultra-precision fly cutting.

  1. Spectrum-averaged Harmonic Path (SHAPA) algorithm for non-contact vital sign monitoring with ultra-wideband (UWB) radar.

    PubMed

    Van Nguyen; Javaid, Abdul Q; Weitnauer, Mary Ann

    2014-01-01

    We introduce the Spectrum-averaged Harmonic Path (SHAPA) algorithm for estimation of heart rate (HR) and respiration rate (RR) with Impulse Radio Ultrawideband (IR-UWB) radar. Periodic movement of human torso caused by respiration and heart beat induces fundamental frequencies and their harmonics at the respiration and heart rates. IR-UWB enables capture of these spectral components and frequency domain processing enables a low cost implementation. Most existing methods of identifying the fundamental component either in frequency or time domain to estimate the HR and/or RR lead to significant error if the fundamental is distorted or cancelled by interference. The SHAPA algorithm (1) takes advantage of the HR harmonics, where there is less interference, and (2) exploits the information in previous spectra to achieve more reliable and robust estimation of the fundamental frequency in the spectrum under consideration. Example experimental results for HR estimation demonstrate how our algorithm eliminates errors caused by interference and produces 16% to 60% more valid estimates.

  2. High-Frequency EEG Variations in Children with Autism Spectrum Disorder during Human Faces Visualization

    PubMed Central

    Reategui, Camille; Costa, Bruna Karen de Sousa; da Fonseca, Caio Queiroz; da Silva, Luana; Morya, Edgard

    2017-01-01

    Autism spectrum disorder (ASD) is a neuropsychiatric disorder characterized by the impairment in the social reciprocity, interaction/language, and behavior, with stereotypes and signs of sensory function deficits. Electroencephalography (EEG) is a well-established and noninvasive tool for neurophysiological characterization and monitoring of the brain electrical activity, able to identify abnormalities related to frequency range, connectivity, and lateralization of brain functions. This research aims to evidence quantitative differences in the frequency spectrum pattern between EEG signals of children with and without ASD during visualization of human faces in three different expressions: neutral, happy, and angry. Quantitative clinical evaluations, neuropsychological evaluation, and EEG of children with and without ASD were analyzed paired by age and gender. The results showed stronger activation in higher frequencies (above 30 Hz) in frontal, central, parietal, and occipital regions in the ASD group. This pattern of activation may correlate with developmental characteristics in the children with ASD. PMID:29018811

  3. Spectrum of the Nuclear Environment for GaAs Spin Qubits.

    PubMed

    Malinowski, Filip K; Martins, Frederico; Cywiński, Łukasz; Rudner, Mark S; Nissen, Peter D; Fallahi, Saeed; Gardner, Geoffrey C; Manfra, Michael J; Marcus, Charles M; Kuemmeth, Ferdinand

    2017-04-28

    Using a singlet-triplet spin qubit as a sensitive spectrometer of the GaAs nuclear spin bath, we demonstrate that the spectrum of Overhauser noise agrees with a classical spin diffusion model over 6 orders of magnitude in frequency, from 1 mHz to 1 kHz, is flat below 10 mHz, and falls as 1/f^{2} for frequency f≳1  Hz. Increasing the applied magnetic field from 0.1 to 0.75 T suppresses electron-mediated spin diffusion, which decreases the spectral content in the 1/f^{2} region and lowers the saturation frequency, each by an order of magnitude, consistent with a numerical model. Spectral content at megahertz frequencies is accessed using dynamical decoupling, which shows a crossover from the few-pulse regime (≲16π pulses), where transverse Overhauser fluctuations dominate dephasing, to the many-pulse regime (≳32 π pulses), where longitudinal Overhauser fluctuations with a 1/f spectrum dominate.

  4. High-Resolution Dual-Comb Spectroscopy with Ultra-Low Noise Frequency Combs

    NASA Astrophysics Data System (ADS)

    Hänsel, Wolfgang; Giunta, Michele; Beha, Katja; Perry, Adam J.; Holzwarth, R.

    2017-06-01

    Dual-comb spectroscopy is a powerful tool for fast broad-band spectroscopy due to the parallel interrogation of thousands of spectral lines. Here we report on the spectroscopic analysis of acetylene vapor in a pressurized gas cell using two ultra-low noise frequency combs with a repetition rate around 250 MHz. Optical referencing to a high-finesse cavity yields a sub-Hertz stability of all individual comb lines (including the virtual comb lines between 0 Hz and the carrier) and permits one to pick a small difference of repetition rate for the two frequency combs on the order of 300 Hz, thus representing an optical spectrum of 100 THz (˜3300 \\wn) within half the free spectral range (125 MHz). The transmission signal is derived straight from a photodetector and recorded with a high-resolution spectrum analyzer or digitized with a computer-controlled AD converter. The figure to the right shows a schematic of the experimental setup which is all fiber-coupled with polarization-maintaining fiber except for the spectroscopic cell. The graph on the lower right reveals a portion of the recorded radio-frequency spectrum which has been scaled to the optical domain. The location of the measured absorption coincides well with data taken from the HITRAN data base. Due to the intrinsic linewidth of all contributing comb lines, each sampling point in the transmission graph corresponds to the probing at an optical frequency with sub-Hertz resolution. This resolution is maintained in coherent wavelength conversion processes such as difference-frequency generation (DFG), sum-frequency generation (SFG) or non-linear broadening (self-phase modulation), and is therefore easily transferred to a wide spectral range from the mid infrared up to the visible spectrum.

  5. Radiated Sound of a High-Speed Water-Jet-Propelled Transportation Vessel.

    PubMed

    Rudd, Alexis B; Richlen, Michael F; Stimpert, Alison K; Au, Whitlow W L

    2016-01-01

    The radiated noise from a high-speed water-jet-propelled catamaran was measured for catamaran speeds of 12, 24, and 37 kn. The radiated noise increased with catamaran speed, although the shape of the noise spectrum was similar for all speeds and measuring hydrophone depth. The spectra peaked at ~200 Hz and dropped off continuously at higher frequencies. The radiated noise was 10-20 dB lower than noise from propeller-driven ships at comparable speeds. The combination of low radiated noise and high speed could be a factor in the detection and avoidance of water-jet-propelled ships by baleen whales.

  6. Spin wave spectra in perpendicularly magnetized permalloy rings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, X.; Ding, J.; Adeyeye, A. O., E-mail: eleaao@nus.edu.sg

    2015-03-16

    The dynamic behavior of perpendicularly magnetized permalloy circular rings is systematically investigated as a function of film thickness using broadband field modulated ferromagnetic resonance spectroscopy. We observed the splitting of one spin wave mode into a family of dense resonance peaks for the rings, which is markedly different from the single mode observed for continuous films of the same thickness. As the excitation frequency is increased, the mode family observed for the rings gradually converges into one mode. With the increase in the film thickness, a sparser spectrum of modes is observed. Our experimental results are in qualitative agreement withmore » the dynamic micromagnetic simulations.« less

  7. A hybrid modulation for the dissemination of weather data to aircraft

    NASA Technical Reports Server (NTRS)

    Akos, Dennis M.

    1991-01-01

    Ohio University is continuing to conduct research to improve its system for weather data dissemination to aircraft. The current experimental system transmit compressed weather radar reflectivity patterns from a ground based station to aircraft. Although an effective system, the limited frequency spectrum does not provide a channel for transmission. This introduces the idea of a hybrid modulation. The hybrid technique encodes weather data using phase modulation (PM) onto an existing aeronautical channel which employs amplitude modulation (AM) for voice signal transmission. Ideally, the two modulations are independent of one another. The planned implementation and basis of the system are the reviewed.

  8. Extinction-ratio-independent electrical method for measuring chirp parameters of Mach-Zehnder modulators using frequency-shifted heterodyne.

    PubMed

    Zhang, Shangjian; Wang, Heng; Zou, Xinhai; Zhang, Yali; Lu, Rongguo; Liu, Yong

    2015-06-15

    An extinction-ratio-independent electrical method is proposed for measuring chirp parameters of Mach-Zehnder electric-optic intensity modulators based on frequency-shifted optical heterodyne. The method utilizes the electrical spectrum analysis of the heterodyne products between the intensity modulated optical signal and the frequency-shifted optical carrier, and achieves the intrinsic chirp parameters measurement at microwave region with high-frequency resolution and wide-frequency range for the Mach-Zehnder modulator with a finite extinction ratio. Moreover, the proposed method avoids calibrating the responsivity fluctuation of the photodiode in spite of the involved photodetection. Chirp parameters as a function of modulation frequency are experimentally measured and compared to those with the conventional optical spectrum analysis method. Our method enables an extinction-ratio-independent and calibration-free electrical measurement of Mach-Zehnder intensity modulators by using the high-resolution frequency-shifted heterodyne technique.

  9. Differences of the Solar Magnetic Activity Signature in Velocity and Intensity Helioseismic Observations

    NASA Astrophysics Data System (ADS)

    Salabert, D.; García, R. A.; Jiménez, A.

    2013-12-01

    The high-quality, full-disk helioseismic observations continuously collected by the spectrophotometer GOLF and the three photometers VIRGO/SPMs onboard the SoHO spacecraft for 17 years now (since April 11, 1996, apart from the SoHO “vacations”) are absolutely unique for the study of the interior of the Sun and its variability with magnetic activity. Here, we look at the differences in the low-degree oscillation p-mode frequencies between radial velocity and intensity measurements taking into account all the known features of the p-mode profiles (e.g., the opposite peak asymmetry), and of the power spectrum (e.g., the presence of the higher degrees ℓ = 4 and 5 in the signal). We show that the intensity frequencies are higher than the velocity frequencies during the solar cycle with a clear temporal dependence. The response between the individual angular degrees is also different. Time delays are observed between the temporal variations in GOLF and VIRGO frequencies. Such analysis is important in order to put new constraints and to better understand the mechanisms responsible for the temporal variations of the oscillation frequencies with the solar magnetic activity as well as their height dependences in the solar atmosphere. It is also important for the study of the stellar magnetic activity using asteroseismic data.

  10. Ultrafast and Doppler-free femtosecondoptical ranging based on dispersivefrequency-modulated interferometry.

    PubMed

    Xia, Haiyun; Zhang, Chunxi

    2010-03-01

    An ultrafast and Doppler-free optical ranging system based on dispersive frequency-modulated interferometry is demonstrated. The principle is similar to the conventional frequency-modulated continuous-wave interferometry where the range information is derived from the beat frequency between the object signal and the reference signal. However, a passive and static frequency scanning is performed based on the chromatic dispersion of a transform-limited femtosecond pulse in the time domain. We point out that the unbalanced dispersion introduced in the Mach-Zehnder interferometer can be optimized to eliminate the frequency chirp in the temporal interferograms pertaining to the third order dispersion of the all-fiber system, if the dynamic range being considered is small. Some negative factors, such as the polarization instability of the femtosecond pulse, the power fluctuation of the optical signal and the nonuniform gain spectrum of the erbium-doped fiber amplifier lead to an obvious envelope deformation of the temporal interferograms from the Gaussian shape. Thus a new data processing method is proposed to guarantee the range resolution. In the experiment, the vibration of a speaker is measured. A range resolution of 1.59 microm is achieved with an exposure time of 394 fs at a sampling rate of 48.6 MHz.

  11. Time-frequency analysis of electric motors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bentley, C.L.; Dunn, M.E.; Mattingly, J.K.

    1995-12-31

    Physical signals such as the current of an electric motor become nonstationary as a consequence of degraded operation and broken parts. In this instance, their power spectral densities become time dependent, and time-frequency analysis techniques become the appropriate tools for signal analysis. The first among these techniques, generally called the short-time Fourier transform (STFT) method, is the Gabor transform 2 (GT) of a signal S(t), which decomposes the signal into time-local frequency modes: where the window function, {Phi}(t-{tau}), is a normalized Gaussian. Alternatively, one can decompose the signal into its multi-resolution representation at different levels of magnification. This representation ismore » achieved by the continuous wavelet transform (CWT) where the function g(t) is a kernel of zero average belonging to a family of scaled and shifted wavelet kernels. The CWT can be interpreted as the action of a microscope that locates the signal by the shift parameter b and adjusts its magnification by changing the scale parameter a. The Fourier-transformed CWT, W,{sub g}(a, {omega}), acts as a filter that places the high-frequency content of a signal into the lower end of the scale spectrum and vice versa for the low frequencies. Signals from a motor in three different states were analyzed.« less

  12. A versatile and modular quasi optics-based 200 GHz dual dynamic nuclear polarization and electron paramagnetic resonance instrument

    NASA Astrophysics Data System (ADS)

    Siaw, Ting Ann; Leavesley, Alisa; Lund, Alicia; Kaminker, Ilia; Han, Songi

    2016-03-01

    Solid-state dynamic nuclear polarization (DNP) at higher magnetic fields (>3 T) and cryogenic temperatures (∼2-90 K) has gained enormous interest and seen major technological advances as an NMR signal enhancing technique. Still, the current state of the art DNP operation is not at a state at which sample and freezing conditions can be rationally chosen and the DNP performance predicted a priori, but relies on purely empirical approaches. An important step towards rational optimization of DNP conditions is to have access to DNP instrumental capabilities to diagnose DNP performance and elucidate DNP mechanisms. The desired diagnoses include the measurement of the "DNP power curve", i.e. the microwave (MW) power dependence of DNP enhancement, the "DNP spectrum", i.e. the MW frequency dependence of DNP enhancement, the electron paramagnetic resonance (EPR) spectrum, and the saturation and spectral diffusion properties of the EPR spectrum upon prolonged MW irradiation typical of continuous wave (CW) DNP, as well as various electron and nuclear spin relaxation parameters. Even basic measurements of these DNP parameters require versatile instrumentation at high magnetic fields not commercially available to date. In this article, we describe the detailed design of such a DNP instrument, powered by a solid-state MW source that is tunable between 193 and 201 GHz and outputs up to 140 mW of MW power. The quality and pathway of the transmitted and reflected MWs is controlled by a quasi-optics (QO) bridge and a corrugated waveguide, where the latter couples the MW from an open-space QO bridge to the sample located inside the superconducting magnet and vice versa. Crucially, the versatility of the solid-state MW source enables the automated acquisition of frequency swept DNP spectra, DNP power curves, the diagnosis of MW power and transmission, and frequency swept continuous wave (CW) and pulsed EPR experiments. The flexibility of the DNP instrument centered around the QO MW bridge will provide an efficient means to collect DNP data that is crucial for understanding the relationship between experimental and sample conditions, and the DNP performance. The modularity of this instrumental platform is suitable for future upgrades and extensions to include new experimental capabilities to meet contemporary DNP needs, including the simultaneous operation of two or more MW sources, time domain DNP, electron double resonance measurements, pulsed EPR operation, or simply the implementation of higher power MW amplifiers.

  13. A versatile and modular quasi optics-based 200GHz dual dynamic nuclear polarization and electron paramagnetic resonance instrument.

    PubMed

    Siaw, Ting Ann; Leavesley, Alisa; Lund, Alicia; Kaminker, Ilia; Han, Songi

    2016-03-01

    Solid-state dynamic nuclear polarization (DNP) at higher magnetic fields (>3T) and cryogenic temperatures (∼ 2-90K) has gained enormous interest and seen major technological advances as an NMR signal enhancing technique. Still, the current state of the art DNP operation is not at a state at which sample and freezing conditions can be rationally chosen and the DNP performance predicted a priori, but relies on purely empirical approaches. An important step towards rational optimization of DNP conditions is to have access to DNP instrumental capabilities to diagnose DNP performance and elucidate DNP mechanisms. The desired diagnoses include the measurement of the "DNP power curve", i.e. the microwave (MW) power dependence of DNP enhancement, the "DNP spectrum", i.e. the MW frequency dependence of DNP enhancement, the electron paramagnetic resonance (EPR) spectrum, and the saturation and spectral diffusion properties of the EPR spectrum upon prolonged MW irradiation typical of continuous wave (CW) DNP, as well as various electron and nuclear spin relaxation parameters. Even basic measurements of these DNP parameters require versatile instrumentation at high magnetic fields not commercially available to date. In this article, we describe the detailed design of such a DNP instrument, powered by a solid-state MW source that is tunable between 193 and 201 GHz and outputs up to 140 mW of MW power. The quality and pathway of the transmitted and reflected MWs is controlled by a quasi-optics (QO) bridge and a corrugated waveguide, where the latter couples the MW from an open-space QO bridge to the sample located inside the superconducting magnet and vice versa. Crucially, the versatility of the solid-state MW source enables the automated acquisition of frequency swept DNP spectra, DNP power curves, the diagnosis of MW power and transmission, and frequency swept continuous wave (CW) and pulsed EPR experiments. The flexibility of the DNP instrument centered around the QO MW bridge will provide an efficient means to collect DNP data that is crucial for understanding the relationship between experimental and sample conditions, and the DNP performance. The modularity of this instrumental platform is suitable for future upgrades and extensions to include new experimental capabilities to meet contemporary DNP needs, including the simultaneous operation of two or more MW sources, time domain DNP, electron double resonance measurements, pulsed EPR operation, or simply the implementation of higher power MW amplifiers. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Identification of Natural Frequency of Low Rise Building on Soft Ground Profile using Ambient Vibration Method

    NASA Astrophysics Data System (ADS)

    Kamarudin, A. F.; Zainal Abidin, M. H.; Mokhatar, S. N.; Daud, M. E.; Ibrahim, A.; Ibrahim, Z.; Noh, M. S. Md

    2018-04-01

    Natural frequency is the rate at which a body to vibrate or oscillate. Application of ambient vibration (AV) excitation is widely used nowadays as the input motion for building predominant frequency, fo, and ground fundamental frequency, Fo, prediction due to simple, fast, non-destructive, simple handling operation and reliable result. However, it must be emphasized and caution to isolate these frequencies (fo and Fo) from spurious frequencies of site-structure effects especially to low rise building on soft ground deposit. In this study, identification of fo and Fo by using AV measurements were performed on ground and 4-storey primary school reinforced concrete (RC) building at Sekolah Kebangsaan (SK) Sg. Tongkang, Rengit, Johor using 1 Hz of tri-axial seismometer sensor. Overlapping spectra between Fourier Amplitude Spectra (FAS) from and Horizontal to Vertical Spectra Ratio (HVSR) were used to distinguish respective frequencies of building and ground natural frequencies. Three dominant frequencies were identified from the FAS curves at 1.91 Hz, 1.98 Hz and 2.79 Hz in longitudinal (East West-EW), transverse (North South-NS) and vertical (UD) directions. It is expected the building has deformed in translational mode based on the first peak frequency by respective NS and EW components of FAS spectrum. Vertical frequency identified from the horizontal spectrums, might induces to the potential of rocking effect experienced by the school building. Meanwhile, single peak HVSR spectrum at low ground fundamental frequency concentrated at 0.93 Hz indicates to the existence deep contrast of soft deposit. Strong interaction between ground and building at similar frequency (0.93 Hz) observed from the FAS curves on the highest floor has shown the building to behave as a dependent unit against ground response as one rigid mass.

  15. Back extensor muscle fatigue at submaximal workloads assessed using frequency banding of the electromyographic signal.

    PubMed

    Cardozo, Adalgiso Coscrato; Gonçalves, Mauro; Dolan, Patricia

    2011-12-01

    Changes in the mean or median frequency of the electromyographic (EMG) power spectrum are often used to assess skeletal muscle fatigue. A more global analysis of the spectral changes using frequency banding may provide a more sensitive measure of fatigue than changes in mean or median frequency. So, the aim of the present study was to characterize changes in different power spectrum frequency bands and compare these with changes in median frequency. Twenty male subjects performed isometric contractions of the back muscles in an isometric dynamometer at 30%, 40%, 50% and 60% of maximum voluntary contraction. During each contraction, surface EMG signals were recorded from the right and left longissimus thoracis muscles, and endurance time was measured. The EMG power spectra were divided into four frequency bands (20-50 Hz; 50-80 Hz; 80-110 Hz; 110-140 Hz) and changes in power in each band with fatigue were compared with changes in median frequency. The percentage changes in 20-50 Hz band were greater than in all other and the rate of change in power, indicated by the slope, was also greatest in 20-50 Hz band. Also, 20-50 Hz band had a greater change in power than the median frequency. Power in the low frequency part of the EMG power spectrum increases with fatigue in a load-dependent manner. The rate of change in low frequency power may be a useful indicator of fatigue rate or "fatigability" in the back muscles. Also, changes in low frequency power are more evident than changes in the median frequency. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Spectrum Management Guidelines for National and Service Test and Training Ranges

    DTIC Science & Technology

    2017-07-12

    GPS Global Positioning System ISM Installation Spectrum Manager JTIDS Joint Tactical Information Distribution System KMR Kwajalein Missile Range... information UAV unmanned aerial vehicle US&P United States and Possessions Spectrum Management Guidelines for National and Service Test and Training...frequency deconfliction processes. The AFC will inform the range or center commander and the Installation Spectrum Manager (ISM) at the

  17. Real-Time, Polyphase-FFT, 640-MHz Spectrum Analyzer

    NASA Technical Reports Server (NTRS)

    Zimmerman, George A.; Garyantes, Michael F.; Grimm, Michael J.; Charny, Bentsian; Brown, Randy D.; Wilck, Helmut C.

    1994-01-01

    Real-time polyphase-fast-Fourier-transform, polyphase-FFT, spectrum analyzer designed to aid in detection of multigigahertz radio signals in two 320-MHz-wide polarization channels. Spectrum analyzer divides total spectrum of 640 MHz into 33,554,432 frequency channels of about 20 Hz each. Size and cost of polyphase-coefficient memory substantially reduced and much of processing loss of windowed FFTs eliminated.

  18. Gravitational waves produced by compressible MHD turbulence from cosmological phase transitions

    NASA Astrophysics Data System (ADS)

    Peter, Niksa; Martin, Schlederer; Günter, Sigl

    2018-07-01

    We calculate the gravitational wave spectrum produced by magneto-hydrodynamic turbulence in a first order phase transitions. We focus in particular on the role of decorrelation of incompressible (solenoidal) homogeneous isotropic turbulence, which is dominated by the sweeping effect. The sweeping effect describes that turbulent decorrelation is primarily due to the small scale eddies being swept with by large scale eddies in a stochastic manner. This effect reduces the gravitational wave signal produced by incompressible MHD turbulence by around an order of magnitude compared to previous studies. Additionally, we find a more complicated dependence for the spectral shape of the gravitational wave spectrum on the energy density sourced by solenoidal modes (magnetic and kinetic). The high frequency tail follows either a k ‑5/3 or a k ‑8/3 power law for large and small solenoidal turbulence density parameter, respectively. Further, magnetic helicity tends to increase the gravitational wave energy at low frequencies. Moreover, we show how solenoidal modes might impact the gravitational wave spectrum from dilatational modes e.g. sound waves. We find that solenoidal modes greatly affect the shape of the gravitational wave spectrum due to the sweeping effect on the dilatational modes. For a high velocity flow, one expects a k ‑2 high frequency tail, due to sweeping. In contrast, for a low velocity flow and a sound wave dominated flow, we expect a k ‑3 high frequency tail. If neither of these limiting cases is realized, the gravitational wave spectrum may be a broken power law with index between  ‑2 and  ‑3, extending up to the frequency at which the source is damped by viscous dissipation.

  19. THE LOW-FREQUENCY RADIO CATALOG OF FLAT-SPECTRUM SOURCES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Massaro, F.; Giroletti, M.; D'Abrusco, R.

    A well known property of the γ-ray sources detected by Cos-B in the 1970s, by the Compton Gamma-Ray Observatory in the 1990s, and recently by the Fermi observations is the presence of radio counterparts, particularly for those associated with extragalactic objects. This observational evidence is the basis of the radio-γ-ray connection established for the class of active galactic nuclei known as blazars. In particular, the main spectral property of the radio counterparts associated with γ-ray blazars is that they show a flat spectrum in the GHz frequency range. Our recent analysis dedicated to search blazar-like candidates as potential counterparts formore » the unidentified γ-ray sources allowed us to extend the radio-γ-ray connection in the MHz regime. We also showed that blazars below 1 GHz maintain flat radio spectra. Thus, on the basis of these new results, we assembled a low-frequency radio catalog of flat-spectrum sources built by combining the radio observations of the Westerbork Northern Sky Survey and of the Westerbork in the southern hemisphere catalog with those of the NRAO Very Large Array Sky survey (NVSS). This could be used in the future to search for new, unknown blazar-like counterparts of γ-ray sources. First, we found NVSS counterparts of Westerbork Synthesis Radio Telescope radio sources, and then we selected flat-spectrum radio sources according to a new spectral criterion, specifically defined for radio observations performed below 1 GHz. We also described the main properties of the catalog listing 28,358 radio sources and their logN-logS distributions. Finally, a comparison with the Green Bank 6 cm radio source catalog was performed to investigate the spectral shape of the low-frequency flat-spectrum radio sources at higher frequencies.« less

  20. Vocal Coordination During Early Parent-Infant Interactions Predicts Language Outcome in Infant Siblings of Children with Autism Spectrum Disorder

    PubMed Central

    Northrup, Jessie B.; Iverson, Jana M.

    2015-01-01

    This study examined vocal coordination during mother-infant interactions in the infant siblings (high risk infants; HR) of children with autism spectrum disorder (ASD), a population at heightened risk for developing language delays. Vocal coordination between mothers and HR infants was compared to a group of low risk (LR; no first- or second-degree relative with ASD) dyads, and used to predict later language development. Nine-month-old infants were videotaped at home playing with their mothers, and interactions were coded for the frequency and timing of vocalizations. Percent infant simultaneous speech was predictive of later language delay (LD), and dyads with LD infants were less coordinated with one another in average latency to respond than dyads with non-delayed (ND) infants. The degree of coordination between mothers and infants on this variable predicted a continuous measure of language development in the third year. This research underscores the importance of understanding early development in the context of interaction. PMID:26345517

  1. Determining the Optimal Spectral Sampling Frequency and Uncertainty Thresholds for Hyperspectral Remote Sensing of Ocean Color

    NASA Technical Reports Server (NTRS)

    Vandermeulen, Ryan A.; Mannino, Antonio; Neeley, Aimee; Werdell, Jeremy; Arnone, Robert

    2017-01-01

    Using a modified geostatistical technique, empirical variograms were constructed from the first derivative of several diverse remote sensing reflectance and phytoplankton absorbance spectra to describe how data points are correlated with distance across the spectra. The maximum rate of information gain is measured as a function of the kurtosis associated with the Gaussian structure of the output, and is determined for discrete segments of spectra obtained from a variety of water types (turbid river filaments, coastal waters, shelf waters, a dense Microcystis bloom, and oligotrophic waters), as well as individual and mixed phytoplankton functional types (PFTs; diatoms, chlorophytes, cyanobacteria, coccolithophores). Results show that a continuous spectrum of 5 to 7 nm spectral resolution is optimal to resolve the variability across mixed reflectance and absorbance spectra. In addition, the impact of uncertainty on subsequent derivative analysis is assessed, showing that a limit of 3 Gaussian noise (SNR 66) is tolerated without smoothing the spectrum, and 13 (SNR 15) noise is tolerated with smoothing.

  2. Multibeam single frequency synthetic aperture radar processor for imaging separate range swaths

    NASA Technical Reports Server (NTRS)

    Jain, A. (Inventor)

    1982-01-01

    A single-frequency multibeam synthetic aperture radar for large swath imaging is disclosed. Each beam illuminates a separate ""footprint'' (i.e., range and azimuth interval). The distinct azimuth intervals for the separate beams produce a distinct Doppler frequency spectrum for each beam. After range correlation of raw data, an optical processor develops image data for the different beams by spatially separating the beams to place each beam of different Doppler frequency spectrum in a different location in the frequency plane as well as the imaging plane of the optical processor. Selection of a beam for imaging may be made in the frequency plane by adjusting the position of an aperture, or in the image plane by adjusting the position of a slit. The raw data may also be processed in digital form in an analogous manner.

  3. Ultrafast electrical spectrum analyzer based on all-optical Fourier transform and temporal magnification.

    PubMed

    Duan, Yuhua; Chen, Liao; Zhou, Haidong; Zhou, Xi; Zhang, Chi; Zhang, Xinliang

    2017-04-03

    Real-time electrical spectrum analysis is of great significance for applications involving radio astronomy and electronic warfare, e.g. the dynamic spectrum monitoring of outer space signal, and the instantaneous capture of frequency from other electronic systems. However, conventional electrical spectrum analyzer (ESA) has limited operation speed and observation bandwidth due to the electronic bottleneck. Therefore, a variety of photonics-assisted methods have been extensively explored due to the bandwidth advantage of the optical domain. Alternatively, we proposed and experimentally demonstrated an ultrafast ESA based on all-optical Fourier transform and temporal magnification in this paper. The radio-frequency (RF) signal under test is temporally multiplexed to the spectrum of an ultrashort pulse, thus the frequency information is converted to the time axis. Moreover, since the bandwidth of this ultrashort pulse is far beyond that of the state-of-the-art photo-detector, a temporal magnification system is applied to stretch the time axis, and capture the RF spectrum with 1-GHz resolution. The observation bandwidth of this ultrafast ESA is over 20 GHz, limited by that of the electro-optic modulator. Since all the signal processing is in the optical domain, the acquisition frame rate can be as high as 50 MHz. This ultrafast ESA scheme can be further improved with better dispersive engineering, and is promising for some ultrafast spectral information acquisition applications.

  4. Ship noise extends to frequencies used for echolocation by endangered killer whales.

    PubMed

    Veirs, Scott; Veirs, Val; Wood, Jason D

    2016-01-01

    Combining calibrated hydrophone measurements with vessel location data from the Automatic Identification System, we estimate underwater sound pressure levels for 1,582 unique ships that transited the core critical habitat of the endangered Southern Resident killer whales during 28 months between March, 2011, and October, 2013. Median received spectrum levels of noise from 2,809 isolated transits are elevated relative to median background levels not only at low frequencies (20-30 dB re 1 µPa(2)/Hz from 100 to 1,000 Hz), but also at high frequencies (5-13 dB from 10,000 to 96,000 Hz). Thus, noise received from ships at ranges less than 3 km extends to frequencies used by odontocetes. Broadband received levels (11.5-40,000 Hz) near the shoreline in Haro Strait (WA, USA) for the entire ship population were 110 ± 7 dB re 1 µPa on average. Assuming near-spherical spreading based on a transmission loss experiment we compute mean broadband source levels for the ship population of 173 ± 7 dB re 1 µPa 1 m without accounting for frequency-dependent absorption. Mean ship speed was 7.3 ± 2.0 m/s (14.1 ± 3.9 knots). Most ship classes show a linear relationship between source level and speed with a slope near +2 dB per m/s (+1 dB/knot). Spectrum, 1/12-octave, and 1/3-octave source levels for the whole population have median values that are comparable to previous measurements and models at most frequencies, but for select studies may be relatively low below 200 Hz and high above 20,000 Hz. Median source spectrum levels peak near 50 Hz for all 12 ship classes, have a maximum of 159 dB re 1 µPa(2)/Hz @ 1 m for container ships, and vary between classes. Below 200 Hz, the class-specific median spectrum levels bifurcate with large commercial ships grouping as higher power noise sources. Within all ship classes spectrum levels vary more at low frequencies than at high frequencies, and the degree of variability is almost halved for classes that have smaller speed standard deviations. This is the first study to present source spectra for populations of different ship classes operating in coastal habitats, including at higher frequencies used by killer whales for both communication and echolocation.

  5. Tailoring noise frequency spectrum between two consecutive second derivative filtering procedures to improve liquid chromatography-mass spectrometry determinations.

    PubMed

    Wang, Shau-Chun; Lin, Chiao-Juan; Chiang, Shu-Min; Yu, Sung-Nien

    2008-03-15

    This paper reports a simple chemometric technique to alter the noise spectrum of a liquid chromatography-mass spectrometry (LC-MS) chromatogram between two consecutive second-derivative filter procedures to improve the peak signal-to-noise (S/N) ratio enhancement. This technique is to multiply one second-derivative filtered LC-MS chromatogram with another artificial chromatogram added with thermal noises prior to the other second-derivative filter. Because the second-derivative filter cannot eliminate frequency components within its own filter bandwidth, more efficient peak S/N ratio improvement cannot be accomplished using consecutive second-derivative filter procedures to process LC-MS chromatograms. In contrast, when the second-derivative filtered LC-MS chromatogram is conditioned with the multiplication alteration prior to the other second-derivative filter, much better ratio improvement is achieved. The noise frequency spectrum of the second-derivative filtered chromatogram, which originally contains frequency components within the filter bandwidth, is altered to span a broader range with multiplication operation. When the frequency range of this modified noise spectrum shifts toward the other regimes, the other second-derivative filter, working as a band-pass filter, is able to provide better filtering efficiency to obtain higher peak S/N ratios. Real LC-MS chromatograms, of which 5-fold peak S/N ratio improvement achieved with two consecutive second-derivative filters remains the same S/N ratio improvement using a one-step second-derivative filter, are improved to accomplish much better ratio enhancement, approximately 25-fold or higher when the noise frequency spectrum is modified between two matched filters. The linear standard curve using the filtered LC-MS signals is validated. The filtered LC-MS signals are also more reproducible. The more accurate determinations of very low-concentration samples (S/N ratio about 5-7) are obtained via standard addition procedures using the filtered signals rather than the determinations using the original signals.

  6. Frequency-agile terahertz-wave parametric oscillator in a ring-cavity configuration.

    PubMed

    Minamide, Hiroaki; Ikari, Tomofumi; Ito, Hiromasa

    2009-12-01

    We demonstrate a frequency-agile terahertz wave parametric oscillator (TPO) in a ring-cavity configuration (ring-TPO). The TPO consists of three mirrors and a MgO:LiNbO(3) crystal under noncollinear phase-matching conditions. A novel, fast frequency-tuning method was realized by controlling a mirror of the three-mirror ring cavity. The wide tuning range between 0.93 and 2.7 THz was accomplished. For first demonstration using the ring-TPO, terahertz spectroscopy was performed as the verification of the frequency-agile performance, measuring the transmission spectrum of the monosaccharide glucose. The spectrum was obtained within about 8 s in good comparison to those of Fourier transform infrared spectrometer.

  7. Time-aware service-classified spectrum defragmentation algorithm for flex-grid optical networks

    NASA Astrophysics Data System (ADS)

    Qiu, Yang; Xu, Jing

    2018-01-01

    By employing sophisticated routing and spectrum assignment (RSA) algorithms together with a finer spectrum granularity (namely frequency slot) in resource allocation procedures, flex-grid optical networks can accommodate diverse kinds of services with high spectrum-allocation flexibility and resource-utilization efficiency. However, the continuity and the contiguity constraints in spectrum allocation procedures may always induce some isolated, small-sized, and unoccupied spectral blocks (known as spectrum fragments) in flex-grid optical networks. Although these spectrum fragments are left unoccupied, they can hardly be utilized by the subsequent service requests directly because of their spectral characteristics and the constraints in spectrum allocation. In this way, the existence of spectrum fragments may exhaust the available spectrum resources for a coming service request and thus worsens the networking performance. Therefore, many reactive defragmentation algorithms have been proposed to handle the fragmented spectrum resources via re-optimizing the routing paths and the spectrum resources for the existing services. But the routing-path and the spectrum-resource re-optimization in reactive defragmentation algorithms may possibly disrupt the traffic of the existing services and require extra components. By comparison, some proactive defragmentation algorithms (e.g. fragmentation-aware algorithms) were proposed to suppress spectrum fragments from their generation instead of handling the fragmented spectrum resources. Although these proactive defragmentation algorithms induced no traffic disruption and required no extra components, they always left the generated spectrum fragments unhandled, which greatly affected their efficiency in spectrum defragmentation. In this paper, by comprehensively considering the characteristics of both the reactive and the proactive defragmentation algorithms, we proposed a time-aware service-classified (TASC) spectrum defragmentation algorithm, which simultaneously employed proactive and reactive mechanisms in suppressing spectrum fragments with the awareness of services' types and their duration times. By dividing the spectrum resources into several flexible groups according to services' types and limiting both the spectrum allocation and the spectrum re-tuning for a certain service inside one specific spectrum group according to its type, the proposed TASC defragmentation algorithm cannot only suppress spectrum fragments from generation inside each spectrum group, but also handle the fragments generated between two adjacent groups. In this way, the proposed TASC algorithm gains higher efficiency in suppressing spectrum fragments than both the reactive and the proactive defragmentation algorithms. Additionally, as the generation of spectrum fragments is retrained between spectrum groups and the defragmentation procedure is limited inside each spectrum group, the induced traffic disruption for the existing services can be possibly reduced. Besides, the proposed TASC defragmentation algorithm always re-tunes the spectrum resources of the service with the maximum duration time first in spectrum defragmentation procedure, which can further reduce spectrum fragments because of the fact that the services with longer duration times always have higher possibility in inducing spectrum fragments than the services with shorter duration times. The simulation results show that the proposed TASC defragmentation algorithm can significantly reduce the number of the generated spectrum fragments while improving the service blocking performance.

  8. Quasi-supercontinuum source in the extreme ultraviolet using multiple frequency combs from high-harmonic generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wünsche, Martin; Fuchs, Silvio; Aull, Stefan

    A quasi-supercontinuum source in the extreme ultraviolet (XUV) is demonstrated using a table-top femtosecond laser and a tunable optical parametric amplifier (OPA) as a driver for high-harmonic generation (HHG). The harmonic radiation, which is usually a comb of odd multiples of the fundamental frequency, is generated by near-infrared (NIR) laser pulses from the OPA. A quasi-continuous XUV spectrum in the range of 30 to 100 eV is realized by averaging over multiple harmonic comb spectra with slightly different fundamental frequencies and thus different spectral spacing between the individual harmonics. The driving laser wavelength is swept automatically during an averaging timemore » period. With a total photon flux of 4×10 9 photons/s in the range of 30 eV to 100 eV and 1×10 7 photons/s in the range of 100 eV to 200 eV, the resulting quasi-supercontinuum XUV source is suited for applications such as XUV coherence tomography (XCT) or near-edge absorption fine structure spectroscopy (NEXAFS).« less

  9. Quasi-supercontinuum source in the extreme ultraviolet using multiple frequency combs from high-harmonic generation

    DOE PAGES

    Wünsche, Martin; Fuchs, Silvio; Aull, Stefan; ...

    2017-03-16

    A quasi-supercontinuum source in the extreme ultraviolet (XUV) is demonstrated using a table-top femtosecond laser and a tunable optical parametric amplifier (OPA) as a driver for high-harmonic generation (HHG). The harmonic radiation, which is usually a comb of odd multiples of the fundamental frequency, is generated by near-infrared (NIR) laser pulses from the OPA. A quasi-continuous XUV spectrum in the range of 30 to 100 eV is realized by averaging over multiple harmonic comb spectra with slightly different fundamental frequencies and thus different spectral spacing between the individual harmonics. The driving laser wavelength is swept automatically during an averaging timemore » period. With a total photon flux of 4×10 9 photons/s in the range of 30 eV to 100 eV and 1×10 7 photons/s in the range of 100 eV to 200 eV, the resulting quasi-supercontinuum XUV source is suited for applications such as XUV coherence tomography (XCT) or near-edge absorption fine structure spectroscopy (NEXAFS).« less

  10. The δ Scuti pulsations of β Pictoris as observed by ASTEP from Antarctica

    NASA Astrophysics Data System (ADS)

    Mékarnia, D.; Chapellier, E.; Guillot, T.; Abe, L.; Agabi, A.; De Pra, Y.; Schmider, F.-X.; Zwintz, K.; Stevenson, K. B.; Wang, J. J.; Lagrange, A.-M.; Bigot, L.; Crouzet, N.; Fanteï-Caujolle, Y.; Christille, J.-M.; Kalas, P.

    2017-12-01

    Aims: The Antarctica Search for Transiting Extrasolar Planets (ASTEP), an automatized 400 mm telescope located at Concordia station in Antarctica, monitored β Pictoris continuously to detect any variability linked to the transit of the Hill sphere of its planet β Pictoris b. The long observation sequence, from March to September 2017, combined with the quality and high level duty cycle of our data, enables us to detect and analyse the δ Scuti pulsations of the star. Methods: Time series photometric data were obtained using aperture photometry by telescope defocussing. The 66 418 data points were analysed using the software package Period04. We only selected frequencies with amplitudes that exceed four times the local noise level in the amplitude spectrum. Results: We detect 31 δ Scuti pulsation frequencies, 28 of which are new detections. All the frequencies detected are in the interval 34.76-75.68 d-1. We also find that β Pictoris exhibits at least one pulsation mode that varies in amplitude over our monitoring duration of seven months.

  11. Estimation of Radiative Efficiency of Chemicals with Potentially Significant Global Warming Potential.

    PubMed

    Betowski, Don; Bevington, Charles; Allison, Thomas C

    2016-01-19

    Halogenated chemical substances are used in a broad array of applications, and new chemical substances are continually being developed and introduced into commerce. While recent research has considerably increased our understanding of the global warming potentials (GWPs) of multiple individual chemical substances, this research inevitably lags behind the development of new chemical substances. There are currently over 200 substances known to have high GWP. Evaluation of schemes to estimate radiative efficiency (RE) based on computational chemistry are useful where no measured IR spectrum is available. This study assesses the reliability of values of RE calculated using computational chemistry techniques for 235 chemical substances against the best available values. Computed vibrational frequency data is used to estimate RE values using several Pinnock-type models, and reasonable agreement with reported values is found. Significant improvement is obtained through scaling of both vibrational frequencies and intensities. The effect of varying the computational method and basis set used to calculate the frequency data is discussed. It is found that the vibrational intensities have a strong dependence on basis set and are largely responsible for differences in computed RE values.

  12. Towards terahertz detection and calibration through spontaneous parametric down-conversion in the terahertz idler-frequency range generated by a 795 nm diode laser system

    NASA Astrophysics Data System (ADS)

    Kornienko, Vladimir V.; Kitaeva, Galiya Kh.; Sedlmeir, Florian; Leuchs, Gerd; Schwefel, Harald G. L.

    2018-05-01

    We study a calibration scheme for terahertz wave nonlinear-optical detectors based on spontaneous parametric down-conversion. Contrary to the usual low wavelength pump in the green, we report here on the observation of spontaneous parametric down-conversion originating from an in-growth poled lithium niobate crystal pumped with a continuous wave 50 mW, 795 nm diode laser system, phase-matched to a terahertz frequency idler wave. Such a system is more compact and allows for longer poling periods as well as lower losses in the crystal. Filtering the pump radiation by a rubidium-87 vapor cell allowed the frequency-angular spectra to be obtained down to ˜0.5 THz or ˜1 nm shift from the pump radiation line. The presence of an amplified spontaneous emission "pedestal" in the diode laser radiation spectrum significantly hampers the observation of spontaneous parametric down-conversion spectra, in contrast to conventional narrowband gas lasers. Benefits of switching to longer pump wavelengths are pointed out, such as collinear optical-terahertz phase-matching in bulk crystals.

  13. Frequency spectrum of an optical resonator in a curved spacetime

    NASA Astrophysics Data System (ADS)

    Rätzel, Dennis; Schneiter, Fabienne; Braun, Daniel; Bravo, Tupac; Howl, Richard; Lock, Maximilian P. E.; Fuentes, Ivette

    2018-05-01

    The effect of gravity and proper acceleration on the frequency spectrum of an optical resonator—both rigid or deformable—is considered in the framework of general relativity. The optical resonator is modeled either as a rod of matter connecting two mirrors or as a dielectric rod whose ends function as mirrors. Explicit expressions for the frequency spectrum are derived for the case that it is only perturbed slightly and variations are slow enough to avoid any elastic resonances of the rod. For a deformable resonator, the perturbation of the frequency spectrum depends on the speed of sound in the rod supporting the mirrors. A connection is found to a relativistic concept of rigidity when the speed of sound approaches the speed of light. In contrast, the corresponding result for the assumption of Born rigidity is recovered when the speed of sound becomes infinite. The results presented in this article can be used as the basis for the description of optical and opto-mechanical systems in a curved spacetime. We apply our results to the examples of a uniformly accelerating resonator and an optical resonator in the gravitational field of a small moving sphere. To exemplify the applicability of our approach beyond the framework of linearized gravity, we consider the fictitious situation of an optical resonator falling into a black hole.

  14. White-Light Whispering-Gallery-Mode Optical Resonators

    NASA Technical Reports Server (NTRS)

    Matsko, Andrey; Savchenkov, Anatoliy; Maleki, Lute

    2006-01-01

    Whispering-gallery-mode (WGM) optical resonators can be designed to exhibit continuous spectra over wide wavelength bands (in effect, white-light spectra), with ultrahigh values of the resonance quality factor (Q) that are nearly independent of frequency. White-light WGM resonators have potential as superior alternatives to (1) larger, conventional optical resonators in ring-down spectroscopy, and (2) optical-resonator/electro-optical-modulator structures used in coupling of microwave and optical signals in atomic clocks. In these and other potential applications, the use of white-light WGM resonators makes it possible to relax the requirement of high-frequency stability of lasers, thereby enabling the use of cheaper lasers. In designing a white-light WGM resonator, one exploits the fact that the density of the mode spectrum increases predictably with the thickness of the resonator disk. By making the resonator disk sufficiently thick, one can make the frequency differences between adjacent modes significantly less than the spectral width of a single mode, so that the spectral peaks of adjacent modes overlap, making the resonator spectrum essentially continuous. Moreover, inasmuch as the Q values of the various modes are determined primarily by surface Rayleigh scattering that does not depend on mode numbers, all the modes have nearly equal Q. By use of a proper coupling technique, one can ensure excitation of a majority of the modes. For an experimental demonstration of a white-light WGM resonator, a resonator disk 0.5-mm thick and 5 mm in diameter was made from CaF2. The shape of the resonator and the fiberoptic coupling arrangement were as shown in Figure 1. The resonator was excited with laser light having a wavelength of 1,320 nm and a spectral width of 4 kHz. The coupling efficiency exceeded 80 percent at any frequency to which the laser could be set in its tuning range, which was >100-GHz wide. The resonator response was characterized by means of ring-down tests in which the excitation was interrupted by a shutter having a rise and a fall time of 5 ns. The ring-down time of photodiodes and associated circuitry used to measure the interrupted excitation and the resonator output was <1 ns. Figure 2 shows the shapes of representative input and output light pulses. The average ring-down time was found to be 120 ns, corresponding to Q=2x10(exp 8). The variations of Q with the laser carrier frequency were found to be <5 percent. Hence, the resonator was shown to have the desired white light properties.

  15. Calibration-free absolute frequency response measurement of directly modulated lasers based on additional modulation.

    PubMed

    Zhang, Shangjian; Zou, Xinhai; Wang, Heng; Zhang, Yali; Lu, Rongguo; Liu, Yong

    2015-10-15

    A calibration-free electrical method is proposed for measuring the absolute frequency response of directly modulated semiconductor lasers based on additional modulation. The method achieves the electrical domain measurement of the modulation index of directly modulated lasers without the need for correcting the responsivity fluctuation in the photodetection. Moreover, it doubles measuring frequency range by setting a specific frequency relationship between the direct and additional modulation. Both the absolute and relative frequency response of semiconductor lasers are experimentally measured from the electrical spectrum of the twice-modulated optical signal, and the measured results are compared to those obtained with conventional methods to check the consistency. The proposed method provides calibration-free and accurate measurement for high-speed semiconductor lasers with high-resolution electrical spectrum analysis.

  16. System and method of detecting cavitation in pumps

    DOEpatents

    Lu, Bin; Sharma, Santosh Kumar; Yan, Ting; Dimino, Steven A.

    2017-10-03

    A system and method for detecting cavitation in pumps for fixed and variable supply frequency applications is disclosed. The system includes a controller having a processor programmed to repeatedly receive real-time operating current data from a motor driving a pump, generate a current frequency spectrum from the current data, and analyze current data within a pair of signature frequency bands of the current frequency spectrum. The processor is further programmed to repeatedly determine fault signatures as a function of the current data within the pair of signature frequency bands, repeatedly determine fault indices based on the fault signatures and a dynamic reference signature, compare the fault indices to a reference index, and identify a cavitation condition in a pump based on a comparison between the reference index and a current fault index.

  17. Multifrequency observations of a solar microwave burst with two-dimensional spatial resolution

    NASA Technical Reports Server (NTRS)

    Gary, Dale E.; Hurford, G. J.

    1990-01-01

    Frequency-agile interferometry observations using three baselines and the technique of frequency synthesis were used to obtain two-dimensional positions of multiple microwave sources at several frequency ranges in a solar flare. Source size and brightness temperature spectra were obtained near the peak of the burst. The size spectrum shows that the source size decreases rapidly with increasing frequency, but the brightness temperature spectrum can be well-fitted by gyrosynchrotron emission from a nonthermal distribution of electrons with power-law index of 4.8. The spatial structure of the burst showed several characteristics in common with primary/secondary bursts discussed by Nakajima et al. (1985). A source of coherent plasma emission at low frequencies is found near the secondary gyrosynchrotron source, associated with the leader spots of the active region.

  18. Frequency spectra from current vs. magnetic flux density measurements for mobile phones and other electrical appliances.

    PubMed

    Straume, Aksel; Johnsson, Anders; Oftedal, Gunnhild; Wilén, Jonna

    2007-10-01

    The frequency spectra of electromagnetic fields have to be determined to evaluate human exposure in accordance to ICNIRP guidelines. In the literature, comparisons with magnetic field guidelines have been performed by using the frequency distribution of the current drawn from the battery. In the present study we compared the frequency spectrum in the range 217 Hz to 2.4 kHz of the magnetic flux density measured near the surface of a mobile phone with the frequency spectrum of the supply current. By using the multiple frequency rule, recommended in the ICNIRP guidelines, we estimated the magnetic field exposure in the two cases. Similar measurements and estimations were done for an electric drill, a hair dryer, and a fluorescent desk lamp. All the devices have a basic frequency of 50 Hz, and the frequency spectra were evaluated up to 550 Hz. We also mapped the magnetic field in 3D around three mobile phones. The frequency distributions obtained from the two measurement methods are not equal. The frequency content of the current leads to an overestimation of the magnetic field exposure by a factor up to 2.2 for the mobile phone. For the drill, the hair dryer, and the fluorescent lamp, the supply current signal underestimated the exposure by a factor up to 2.3. In conclusion, an accurate exposure evaluation requires the magnetic flux density spectrum of the device to be measured directly. There was no indication that the devices studied would exceed the reference levels at the working distances normally used.

  19. An improved peak frequency shift method for Q estimation based on generalized seismic wavelet function

    NASA Astrophysics Data System (ADS)

    Wang, Qian; Gao, Jinghuai

    2018-02-01

    As a powerful tool for hydrocarbon detection and reservoir characterization, the quality factor, Q, provides useful information in seismic data processing and interpretation. In this paper, we propose a novel method for Q estimation. The generalized seismic wavelet (GSW) function was introduced to fit the amplitude spectrum of seismic waveforms with two parameters: fractional value and reference frequency. Then we derive an analytical relation between the GSW function and the Q factor of the medium. When a seismic wave propagates through a viscoelastic medium, the GSW function can be employed to fit the amplitude spectrum of the source and attenuated wavelets, then the fractional values and reference frequencies can be evaluated numerically from the discrete Fourier spectrum. After calculating the peak frequency based on the obtained fractional value and reference frequency, the relationship between the GSW function and the Q factor can be built by the conventional peak frequency shift method. Synthetic tests indicate that our method can achieve higher accuracy and be more robust to random noise compared with existing methods. Furthermore, the proposed method is applicable to different types of source wavelet. Field data application also demonstrates the effectiveness of our method in seismic attenuation and the potential in the reservoir characteristic.

  20. 1/f noise: diffusive systems and music

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Voss, R.F.

    1975-11-01

    Measurements of the 1/f voltage noise in continuous metal films are reported. At room temperature, samples of pure metals and bismuth (with a carrier density smaller by 10/sup 5/) of similar volume had comparable noise. The results suggest that the noise arises from equilibrium temperature fluctuations modulating the resistance. Spatial correlation of the noise implied that the fluctuations obey a diffusion equation. The empirical inclusion of an explicit 1/f region and appropriate normalization lead to excellent agreement with the measured noise. If the fluctuations are assumed to be spatially correlated, the diffusion equation can yield an extended 1/f region inmore » the power spectrum. The temperature response of a sample to delta and step function power inputs is shown to have the same shape as the autocorrelation function for uncorrelated and correlated temperature fluctuations, respectively. The spectrum obtained from the cosine transform of the measured step function response is in excellent agreement with the measured 1/f voltage noise spectrum. Spatially correlated equilibrium temperature fluctuations are not the dominant source of 1/f noise in semiconductors and metal films. However, the agreement between the low-frequency spectrum of fluctuations in the mean-square Johnson noise voltage and the resistance fluctuation spectrum measured in the presence of a current demonstrates that in these systems the 1/f noise is also due to equilibrium resistance fluctuations. Loudness fluctuations in music and speech and pitch fluctuations in music also show the 1/f behavior. 1/f noise sources, consequently, are demonstrated to be the natural choice for stochastic composition. 26 figures, 1 table. (auth)« less

  1. The effect of a hot, spherical scattering cloud on quasi-periodic oscillation behavior

    NASA Astrophysics Data System (ADS)

    Bussard, R. W.; Weisskopf, M. C.; Elsner, R. F.; Shibazaki, N.

    1988-04-01

    A Monte Carlo technique is used to investigate the effects of a hot electron scattering cloud surrounding a time-dependent X-ray source. Results are presented for the time-averaged emergent energy spectra and the mean residence time in the cloud as a function of energy. Moreover, after Fourier transforming the scattering Green's function, it is shown how the cloud affects both the observed power spectrum of a time-dependent source and the cross spectrum (Fourier transform of a cross correlation between energy bands). It is found that the power spectra intrinsic to the source are related to those observed by a relatively simple frequency-dependent multiplicative factor (a transmission function). The cloud can severely attenuate high frequencies in the power spectra, depending on optical depth, and, at lower frequencies, the transmission function has roughly a Lorentzian shape. It is also found that if the intrinsic energy spectrum is constant in time, the phase of the cross spectrum is determined entirely by scattering. Finally, the implications of the results for studies of the X-ray quasi-periodic oscillators are discussed.

  2. Characterizing active cytoskeletal dynamics with magnetic microposts

    NASA Astrophysics Data System (ADS)

    Shi, Yu; Henry, Steven; Crocker, John; Reich, Daniel

    Characterization of an active matter system such as the cellular cytoskeleton requires knowledge of three frequency dependent quantities: the dynamic shear modulus, G*(ω) describing its viscoelasticity, the Fourier power spectrum of forces in the material due to internal force generators f (ω) , and the spectrum of the material's active strain fluctuations x(ω) . Via use of PDMS micropost arrays with magnetic nanowires embedded in selected posts, we measure the local complex modulus of cells through mechanical actuation of the magnetic microposts. The micrometer scale microposts are also used as passive probes to measure simultaneously the frequency dependent strain fluctuations. We present data on 3T3 fibroblasts, where we find power law behavior for both the frequency dependence of cells' modulus | G (ω) | ω 0 . 27 and the power spectrum of strain fluctuations |x(ω) | ω-2 . Results for the power spectrum of active cytoskeletal stresses determined from these two measurements, and implications of this mesoscale characterization of cytoskeletal dynamics for cellular biophysics will also be discussed. Supported in part by NIH Grant 1R01HL127087.

  3. Mode-hopping mechanism generating colored noise in a magnetic tunnel junction based spin torque oscillator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, Raghav; Dürrenfeld, P.; Iacocca, E.

    The frequency noise spectrum of a magnetic tunnel junction (MTJ) based spin torque oscillator (STO) is examined where multiple modes and mode-hopping events are observed. The frequency noise spectrum is found to consist of both white noise and 1/f frequency noise. Here, we find a systematic and similar dependence of both white noise and 1/f frequency noise on bias current and the relative angle between the reference and free layers, which changes the effective damping and hence the mode-hopping behavior in this system. The frequency at which the 1/f frequency noise changes to white noise increases as the free layermore » is aligned away from the anti-parallel orientation w.r.t the reference layer. Lastly, these results indicate that the origin of 1/f frequency noise is related to mode-hopping which produces both white noise as well as 1/f frequency noise similar to the case of ring lasers.« less

  4. Mode-hopping mechanism generating colored noise in a magnetic tunnel junction based spin torque oscillator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, Raghav; Dürrenfeld, P.; Iacocca, E.

    The frequency noise spectrum of a magnetic tunnel junction based spin torque oscillator is examined where multiple modes and mode-hopping events are observed. The frequency noise spectrum is found to consist of both white noise and 1/f frequency noise. We find a systematic and similar dependence of both white noise and 1/f frequency noise on bias current and the relative angle between the reference and free layers, which changes the effective damping and hence the mode-hopping behavior in this system. The frequency at which the 1/f frequency noise changes to white noise increases as the free layer is aligned awaymore » from the anti-parallel orientation w.r.t the reference layer. These results indicate that the origin of 1/f frequency noise is related to mode-hopping, which produces both white noise as well as 1/f frequency noise similar to the case of ring lasers.« less

  5. Mode-hopping mechanism generating colored noise in a magnetic tunnel junction based spin torque oscillator

    DOE PAGES

    Sharma, Raghav; Dürrenfeld, P.; Iacocca, E.; ...

    2014-09-29

    The frequency noise spectrum of a magnetic tunnel junction (MTJ) based spin torque oscillator (STO) is examined where multiple modes and mode-hopping events are observed. The frequency noise spectrum is found to consist of both white noise and 1/f frequency noise. Here, we find a systematic and similar dependence of both white noise and 1/f frequency noise on bias current and the relative angle between the reference and free layers, which changes the effective damping and hence the mode-hopping behavior in this system. The frequency at which the 1/f frequency noise changes to white noise increases as the free layermore » is aligned away from the anti-parallel orientation w.r.t the reference layer. Lastly, these results indicate that the origin of 1/f frequency noise is related to mode-hopping which produces both white noise as well as 1/f frequency noise similar to the case of ring lasers.« less

  6. Temperament and character as endophenotype in adults with autism spectrum disorders or attention deficit/hyperactivity disorder.

    PubMed

    Sizoo, Bram B; van der Gaag, Rutger Jan; van den Brink, Wim

    2015-05-01

    Autism spectrum disorder and attention deficit/hyperactivity disorder overlap in several ways, raising questions about the nature of this comorbidity. Rommelse et al. published an innovative review of candidate endophenotypes for autism spectrum disorder and attention deficit/hyperactivity disorder in cognitive and brain domains. They found that all the endophenotypic impairments that were reviewed in attention deficit/hyperactivity disorder were also present in autism spectrum disorder, suggesting a continuity model with attention deficit/hyperactivity disorder as "a light form of autism spectrum disorder." Using existing data, 75 adults with autism spectrum disorder and 53 with attention deficit/hyperactivity disorder were directly compared on autistic symptoms with the autism spectrum quotient, and on the endophenotypic measure of temperament and character, using the Abbreviated (Dutch: Verkorte) Temperament and Character Inventory. Based on the hypothesis that attention deficit/hyperactivity disorder and autism spectrum disorder are disorders on a continuous spectrum, autism spectrum quotient scores and abbreviated Temperament and Character Inventory scores were expected to be different from normal controls in both disorders in a similar direction. In addition, the autism spectrum quotient and abbreviated Temperament and Character Inventory scores were expected to be closely correlated. These conditions applied to only two of the seven Abbreviated Temperament and Character Inventory scales (harm avoidance and self-directedness), suggesting that temperament and character as an endophenotype of autism spectrum disorder and attention deficit/hyperactivity disorder provides only partial support for the continuity hypothesis of autism spectrum disorder and attention deficit/hyperactivity disorder. © The Author(s) 2014.

  7. Rogue-wave pattern transition induced by relative frequency.

    PubMed

    Zhao, Li-Chen; Xin, Guo-Guo; Yang, Zhan-Ying

    2014-08-01

    We revisit a rogue wave in a two-mode nonlinear fiber whose dynamics is described by two-component coupled nonlinear Schrödinger equations. The relative frequency between two modes can induce different rogue wave patterns transition. In particular, we find a four-petaled flower structure rogue wave can exist in the two-mode coupled system, which possesses an asymmetric spectrum distribution. Furthermore, spectrum analysis is performed on these different type rogue waves, and the spectrum relations between them are discussed. We demonstrate qualitatively that different modulation instability gain distribution can induce different rogue wave excitation patterns. These results would deepen our understanding of rogue wave dynamics in complex systems.

  8. Real time analysis of voiced sounds

    NASA Technical Reports Server (NTRS)

    Hong, J. P. (Inventor)

    1976-01-01

    A power spectrum analysis of the harmonic content of a voiced sound signal is conducted in real time by phase-lock-loop tracking of the fundamental frequency, (f sub 0) of the signal and successive harmonics (h sub 1 through h sub n) of the fundamental frequency. The analysis also includes measuring the quadrature power and phase of each frequency tracked, differentiating the power measurements of the harmonics in adjacent pairs, and analyzing successive differentials to determine peak power points in the power spectrum for display or use in analysis of voiced sound, such as for voice recognition.

  9. Validation of the force and frequency characteristics of the activator adjusting instrument: effectiveness as a mechanical impedance measurement tool.

    PubMed

    Keller, T S; Colloca, C J; Fuhr, A W

    1999-02-01

    To determine the dynamic force-time and force-frequency characteristics of the Activator Adjusting Instrument and to validate its effectiveness as a mechanical impedance measurement device; in addition, to refine or optimize the force-frequency characteristics of the Activator Adjusting Instrument to provide enhanced dynamic structural measurement reliability and accuracy. An idealized test structure consisting of a rectangular steel beam with a static stiffness similar to that of the human thoracolumbar spine was used for validation of a method to determine the dynamic mechanical response of the spine. The Activator Adjusting Instrument equipped with a load cell and accelerometer was used to measure forces and accelerations during mechanical excitation of the steel beam. Driving point and transfer mechanical impedance and resonant frequency of the beam were determined by use of a frequency spectrum analysis for different force settings, stylus masses, and stylus tips. Results were compared with beam theory and transfer impedance measurements obtained by use of a commercial electronic PCB impact hammer. The Activator Adjusting Instrument imparted a very complex dynamic impact comprising an initial high force (116 to 140 N), short duration pulse (<0.1 ms) followed by several lower force (30 to 100 N), longer duration impulses (1 to 5 ms). The force profile was highly reproducible in terms of the peak impulse forces delivered to the beam structure (<8% variance). Spectrum analysis of the Activator Adjusting Instrument impulse indicated that the Activator Adjusting Instrument has a variable force spectrum and delivers its peak energy at a frequency of 20 Hz. Added masses and different durometer stylus tips had very little influence on the Activator Adjusting Instrument force spectrum. The resonant frequency of the beam was accurately predicted by both the Activator Adjusting Instrument and electronic PCB impact hammer, but variations in the magnitude of the driving point impedance at the resonant frequency were high (67%) compared with the transfer impedance measurements obtained with the electronic PCB impact hammer, which had a more uniform force spectrum and was more repeatable (<10% variation). The addition of a preload-control frame to the Activator Adjusting Instrument improved the characteristics of the force frequency spectrum and repeatability of the driving point impedance measurements. These findings indicate that the Activator Adjusting Instrument combined with an integral load cell and accelerometer was able to obtain an accurate description of a steel beam with readily identifiable geometric and dynamic mechanical properties. These findings support the rationale for using the device to assess the dynamic mechanical behavior of the vertebral column. Such information would be useful for SMT and may ultimately be used to evaluate the [corrected] biomechanical effectiveness of various manipulative, surgical, and rehabilitative spinal procedures.

  10. Emerging Definition of Next-Generation of Aeronautical Communications

    NASA Technical Reports Server (NTRS)

    Kerczewski, Robert J.

    2006-01-01

    Aviation continues to experience rapid growth. In regions such as the United States and Europe air traffic congestion is constraining operations, leading to major new efforts to develop methodologies and infrastructures to enable continued aviation growth through transformational air traffic management systems. Such a transformation requires better communications linking airborne and ground-based elements. Technologies for next-generation communications, the required capacities, frequency spectrum of operation, network interconnectivity, and global interoperability are now receiving increased attention. A number of major planning and development efforts have taken place or are in process now to define the transformed airspace of the future. These activities include government and industry led efforts in the United States and Europe, and by international organizations. This paper will review the features, approaches, and activities of several representative planning and development efforts, and identify the emerging global consensus on requirements of next generation aeronautical communications systems for air traffic control.

  11. The Application of Continuous Wavelet Transform Based Foreground Subtraction Method in 21 cm Sky Surveys

    NASA Astrophysics Data System (ADS)

    Gu, Junhua; Xu, Haiguang; Wang, Jingying; An, Tao; Chen, Wen

    2013-08-01

    We propose a continuous wavelet transform based non-parametric foreground subtraction method for the detection of redshifted 21 cm signal from the epoch of reionization. This method works based on the assumption that the foreground spectra are smooth in frequency domain, while the 21 cm signal spectrum is full of saw-tooth-like structures, thus their characteristic scales are significantly different. We can distinguish them in the wavelet coefficient space easily and perform the foreground subtraction. Compared with the traditional spectral fitting based method, our method is more tolerant to complex foregrounds. Furthermore, we also find that when the instrument has uncorrected response error, our method can also work significantly better than the spectral fitting based method. Our method can obtain similar results with the Wp smoothing method, which is also a non-parametric method, but our method consumes much less computing time.

  12. Spanwise measurements of vertical components of atmospheric turbulence

    NASA Technical Reports Server (NTRS)

    Sleeper, Robert K.

    1990-01-01

    Correlation and spectrum magnitude estimates are computed for vertical gust velocity measurements at the nose and wing tips of a NASA B-57B aircraft for six level flight, low speed and low altitude runs and are compared with those of the von Karman atmospheric turbulence model extended for spanwise relationships. The distance between the wing tips was 62.6 ft. Airspeeds ranged from about 330 to 400 ft/sec, heights above the ground ranged from near ground level to about 5250 ft. and gust velocity standard deviations ranged from 4.10 to 8.86 ft/sec. Integral scale lengths, determined by matching measured autocorrelation estimates with those of the model, ranged from 410 to 2050 ft. Digital signals derived from piezoelectric sensors provided continuous pressure and airspeed measurements. Some directional acceleration sensitivity of the sensors was eliminated by sensor orientation, and their performance was spectrally verified for the higher frequencies with supplemental onboard piezoresistive sensors. The model appeared to satisfactorily predict the trends of the measured cross-correlations and cross-spectrum magnitudes, particularly between the nose and wing tips. However, the measured magnitude estimates of the cross-spectra between the wing tips exceeded the predicted levels at the higher frequencies. Causes for the additional power across the wing tips were investigated. Vertical gust velocity components evaluated along and lateral to the flight path implied that the frozen-turbulence-field assumption is a suitable approximation.

  13. Spectral ageing in the era of big data: integrated versus resolved models

    NASA Astrophysics Data System (ADS)

    Harwood, Jeremy J.

    2017-04-01

    Continuous injection models of spectral ageing have long been used to determine the age of radio galaxies from their integrated spectrum; however, many questions about their reliability remain unanswered. With various large area surveys imminent (e.g. LOw Frequency ARray, MeerKAT, Murchison Widefield Array) and planning for the next generation of radio interferometers are well underway (e.g. next generation VLA, Square Kilometre Array), investigations of radio galaxy physics are set to shift away from studies of individual sources to the population as a whole. Determining if and how integrated models of spectral ageing can be applied in the era of big data is therefore crucial. In this paper, I compare classical integrated models of spectral ageing to recent well-resolved studies that use modern analysis techniques on small spatial scales to determine their robustness and validity as a source selection method. I find that integrated models are unable to recover key parameters and, even when known a priori, provide a poor, frequency-dependent description of a source's spectrum. I show a disparity of up to a factor of 6 in age between the integrated and resolved methods but suggest, even with these inconsistencies, such models still provide a potential method of candidate selection in the search for remnant radio galaxies and in providing a cleaner selection of high redshift radio galaxies in z - α selected samples.

  14. Increasing sensitivity in the measurement of heart rate variability: the method of non-stationary RR time-frequency analysis.

    PubMed

    Melkonian, D; Korner, A; Meares, R; Bahramali, H

    2012-10-01

    A novel method of the time-frequency analysis of non-stationary heart rate variability (HRV) is developed which introduces the fragmentary spectrum as a measure that brings together the frequency content, timing and duration of HRV segments. The fragmentary spectrum is calculated by the similar basis function algorithm. This numerical tool of the time to frequency and frequency to time Fourier transformations accepts both uniform and non-uniform sampling intervals, and is applicable to signal segments of arbitrary length. Once the fragmentary spectrum is calculated, the inverse transform recovers the original signal and reveals accuracy of spectral estimates. Numerical experiments show that discontinuities at the boundaries of the succession of inter-beat intervals can cause unacceptable distortions of the spectral estimates. We have developed a measure that we call the "RR deltagram" as a form of the HRV data that minimises spectral errors. The analysis of the experimental HRV data from real-life and controlled breathing conditions suggests transient oscillatory components as functionally meaningful elements of highly complex and irregular patterns of HRV. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  15. Information Operations

    DTIC Science & Technology

    2006-02-13

    restricted frequency list (JRFL). This list specifies protected, guarded, and taboo frequencies that should not normally be disrupted without prior... frequency list JROC Joint Requirement Oversight Council JSC Joint Spectrum Center JTCB joint targeting coordination board JTF joint task force JWAC joint

  16. A methodology for spectral wave model evaluation

    NASA Astrophysics Data System (ADS)

    Siqueira, S. A.; Edwards, K. L.; Rogers, W. E.

    2017-12-01

    Model evaluation is accomplished by comparing bulk parameters (e.g., significant wave height, energy period, and mean square slope (MSS)) calculated from the model energy spectra with those calculated from buoy energy spectra. Quality control of the observed data and choice of the frequency range from which the bulk parameters are calculated are critical steps in ensuring the validity of the model-data comparison. The compared frequency range of each observation and the analogous model output must be identical, and the optimal frequency range depends in part on the reliability of the observed spectra. National Data Buoy Center 3-m discus buoy spectra are unreliable above 0.3 Hz due to a non-optimal buoy response function correction. As such, the upper end of the spectrum should not be included when comparing a model to these data. Bioufouling of Waverider buoys must be detected, as it can harm the hydrodynamic response of the buoy at high frequencies, thereby rendering the upper part of the spectrum unsuitable for comparison. An important consideration is that the intentional exclusion of high frequency energy from a validation due to data quality concerns (above) can have major implications for validation exercises, especially for parameters such as the third and fourth moments of the spectrum (related to Stokes drift and MSS, respectively); final conclusions can be strongly altered. We demonstrate this by comparing outcomes with and without the exclusion, in a case where a Waverider buoy is believed to be free of biofouling. Determination of the appropriate frequency range is not limited to the observed spectra. Model evaluation involves considering whether all relevant frequencies are included. Guidance to make this decision is based on analysis of observed spectra. Two model frequency lower limits were considered. Energy in the observed spectrum below the model lower limit was calculated for each. For locations where long swell is a component of the wave climate, omitting the energy in the frequency band between the two lower limits tested can lead to an incomplete characterization of model performance. This methodology was developed to aid in selecting a comparison frequency range that does not needlessly increase computational expense and does not exclude energy to the detriment of model performance analysis.

  17. Hearing Sensitivity to Shifts of Rippled-Spectrum Sound Signals in Masking Noise.

    PubMed

    Nechaev, Dmitry I; Milekhina, Olga N; Supin, Alexander Ya

    2015-01-01

    The goal of the study was to enlarge knowledge of discrimination of complex sound signals by the auditory system in masking noise. For that, influence of masking noise on detection of shift of rippled spectrum was studied in normal listeners. The signal was a shift of ripple phase within a 0.5-oct wide rippled spectrum centered at 2 kHz. The ripples were frequency-proportional (throughout the band, ripple spacing was a constant proportion of the ripple center frequency). Simultaneous masker was a 0.5-oct noise below-, on-, or above the signal band. Both the low-frequency (center frequency 1 kHz) and on-frequency (the same center frequency as for the signal) maskers increased the thresholds for detecting ripple phase shift. However, the threshold dependence on the masker level was different for these two maskers. For the on-frequency masker, the masking effect primarily depended on the masker/signal ratio: the threshold steeply increased at a ratio of 5 dB, and no shift was detectable at a ratio of 10 dB. For the low-frequency masker, the masking effect primarily depended on the masker level: the threshold increased at a masker level of 80 dB SPL, and no shift was detectable at a masker level of 90 dB (for a signal level of 50 dB) or 100 dB (for a signal level of 80 dB). The high-frequency masker had little effect. The data were successfully simulated using an excitation-pattern model. In this model, the effect of the on-frequency masker appeared to be primarily due to a decrease of ripple depth. The effect of the low-frequency masker appeared due to widening of the auditory filters at high sound levels.

  18. Hearing Sensitivity to Shifts of Rippled-Spectrum Sound Signals in Masking Noise

    PubMed Central

    Nechaev, Dmitry I.; Milekhina, Olga N.; Supin, Alexander Ya.

    2015-01-01

    The goal of the study was to enlarge knowledge of discrimination of complex sound signals by the auditory system in masking noise. For that, influence of masking noise on detection of shift of rippled spectrum was studied in normal listeners. The signal was a shift of ripple phase within a 0.5-oct wide rippled spectrum centered at 2 kHz. The ripples were frequency-proportional (throughout the band, ripple spacing was a constant proportion of the ripple center frequency). Simultaneous masker was a 0.5-oct noise below-, on-, or above the signal band. Both the low-frequency (center frequency 1 kHz) and on-frequency (the same center frequency as for the signal) maskers increased the thresholds for detecting ripple phase shift. However, the threshold dependence on the masker level was different for these two maskers. For the on-frequency masker, the masking effect primarily depended on the masker/signal ratio: the threshold steeply increased at a ratio of 5 dB, and no shift was detectable at a ratio of 10 dB. For the low-frequency masker, the masking effect primarily depended on the masker level: the threshold increased at a masker level of 80 dB SPL, and no shift was detectable at a masker level of 90 dB (for a signal level of 50 dB) or 100 dB (for a signal level of 80 dB). The high-frequency masker had little effect. The data were successfully simulated using an excitation-pattern model. In this model, the effect of the on-frequency masker appeared to be primarily due to a decrease of ripple depth. The effect of the low-frequency masker appeared due to widening of the auditory filters at high sound levels. PMID:26462066

  19. Some characteristic features of the construction of the amplifying channel for working with semiconductor detectors in the charged particle energy spectrometer. [noise minimization at preamplifier input

    NASA Technical Reports Server (NTRS)

    Kuzyuta, E. I.

    1974-01-01

    A transistorized spectrometric amplifier with a shaper is reported that selects the shape of the frequency characteristic of the amplifying channel for which the primary frequency spectrum of the signal will pass, but where the noise spectrum is limited to the maximum. A procedure is presented for selecting the shaping circuits and their inclusion principles.

  20. Report to the President: Realizing the Full Potential of Government-Held Spectrum to Spur Economic Growth

    DTIC Science & Technology

    2012-07-01

    managing the use of the Radio Frequency (RF) spectrum to ensure reliable emergency, civil, and government communications . At that time, when the rules of...or equipment and/or radio frequencies to provide electronic communication services under standard conditions (a class license) or authorizing the...Cognitive Radio Networks.” IEEE Communications Magazine (2008). Circular A- 11 : Preparation, Submission, and Execution of the Budget. Executive Office

  1. Estimation and Coordination of Sequence Patterns for Frequency Hopping Dynamic Spectrum Access Networks

    DTIC Science & Technology

    2014-03-27

    Technology (AFIT). Research at AFIT investigates the use of DSA for both civilian and military applications while advancing technology in the area of radio...other military platforms is vital for successful operations. Twelve core functions comprise the US Air Force: Nuclear Deterrence Operations, Special...problems. This Air Force report discusses “Frequency Agile Spectrum Utilization”, a sub-topic of DSA, as a potential capability area [3]. Military

  2. Simple analytical model for low-frequency frequency-modulation noise of monolithic tunable lasers.

    PubMed

    Huynh, Tam N; Ó Dúill, Seán P; Nguyen, Lim; Rusch, Leslie A; Barry, Liam P

    2014-02-10

    We employ simple analytical models to construct the entire frequency-modulation (FM)-noise spectrum of tunable semiconductor lasers. Many contributions to the laser FM noise can be clearly identified from the FM-noise spectrum, such as standard Weiner FM noise incorporating laser relaxation oscillation, excess FM noise due to thermal fluctuations, and carrier-induced refractive index fluctuations from stochastic carrier generation in the passive tuning sections. The contribution of the latter effect is identified by noting a correlation between part of the FM-noise spectrum with the FM-modulation response of the passive sections. We pay particular attention to the case of widely tunable lasers with three independent tuning sections, mainly the sampled-grating distributed Bragg reflector laser, and compare with that of a distributed feedback laser. The theoretical model is confirmed with experimental measurements, with the calculations of the important phase-error variance demonstrating excellent agreement.

  3. A Sagnac Fourier spectrometer

    DOE PAGES

    Lenzner, Matthias; Diels, Jean -Claude

    2017-03-09

    A spectrometer based on a Sagnac interferometer, where one of the mirrors is replaced by a transmission grating, is introduced. Since the action of a transmission grating is reversible, both directions experience the same diffraction at a given wavelength. At the output, the crossed wavefronts are imaged onto a camera, where their Fizeau fringe pattern is recorded. Each spectral element produces a unique spatial frequency, hence the Fourier transform of the recorded interferogram contains the spectrum. Since the grating is tuned to place zero spatial frequency at a selected wavelength, the adjoining spectrum is heterodyned with respect to this wavelength.more » This spectrum can then be discriminated at a high spectral resolution from relatively low spatial frequencies. The spectrometer can be designed without moving parts for a relatively narrow spectral range or with a rotatable grating. As a result, the latter version bears the potential to be calibrated without a calibrated light source.« less

  4. A Sagnac Fourier spectrometer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lenzner, Matthias; Diels, Jean -Claude

    A spectrometer based on a Sagnac interferometer, where one of the mirrors is replaced by a transmission grating, is introduced. Since the action of a transmission grating is reversible, both directions experience the same diffraction at a given wavelength. At the output, the crossed wavefronts are imaged onto a camera, where their Fizeau fringe pattern is recorded. Each spectral element produces a unique spatial frequency, hence the Fourier transform of the recorded interferogram contains the spectrum. Since the grating is tuned to place zero spatial frequency at a selected wavelength, the adjoining spectrum is heterodyned with respect to this wavelength.more » This spectrum can then be discriminated at a high spectral resolution from relatively low spatial frequencies. The spectrometer can be designed without moving parts for a relatively narrow spectral range or with a rotatable grating. As a result, the latter version bears the potential to be calibrated without a calibrated light source.« less

  5. Frequency Allocations for Unmanned Aircraft Systems in the National Airspace. Access 5 White Paper to the WRC Advisory Committee

    NASA Technical Reports Server (NTRS)

    2006-01-01

    A critical aspect of the Access 5 program is identifying appropriate spectrum for civil and commercial purposes. However, currently, there is no spectrum allocated for the command/control link between the aircraft control station and the unmanned aircraft. Until such frequency spectrum is allocated and approved, it will be difficult for the UAS community to obtain civil airworthiness certification and operate in the NAS on a routine basis. This document provides a perspective from the UAS community on Agenda Items being considered for the upcoming World Radiocommunication Conference 2007 (WRC 07). Primarily, it supports the proposal to add Aeronautical Mobile (Route) Services (AM(R)S) to existing bands that could be used for UAS Line-of-Sight operations. It also recommends the need to identify spectrum that could be used for an Aeronautical Mobile Satellite (Route) Service (AMS(R)S) that would allow UAS to operate Beyond Line-of-Sight. If spectrum is made available to provide these services, it will then be incumbent upon the UAS community to justify their use of this spectrum as well as the assurance that they will not interfere with other users of this newly allocated spectrum.

  6. The Spectrum of Wind Power Fluctuations

    NASA Astrophysics Data System (ADS)

    Bandi, Mahesh

    2016-11-01

    Wind is a variable energy source whose fluctuations threaten electrical grid stability and complicate dynamical load balancing. The power generated by a wind turbine fluctuates due to the variable wind speed that blows past the turbine. Indeed, the spectrum of wind power fluctuations is widely believed to reflect the Kolmogorov spectrum; both vary with frequency f as f - 5 / 3. This variability decreases when aggregate power fluctuations from geographically distributed wind farms are averaged at the grid via a mechanism known as geographic smoothing. Neither the f - 5 / 3 wind power fluctuation spectrum nor the mechanism of geographic smoothing are understood. In this work, we explain the wind power fluctuation spectrum from the turbine through grid scales. The f - 5 / 3 wind power fluctuation spectrum results from the largest length scales of atmospheric turbulence of order 200 km influencing the small scales where individual turbines operate. This long-range influence spatially couples geographically distributed wind farms and synchronizes farm outputs over a range of frequencies and decreases with increasing inter-farm distance. Consequently, aggregate grid-scale power fluctuations remain correlated, and are smoothed until they reach a limiting f - 7 / 3 spectrum. This work was funded by the Collective Interactions Unit, OIST Graduate University, Japan.

  7. 47 CFR 87.479 - Harmful interference to radionavigation land stations.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... to establish wide-band systems using frequency-hopping spread spectrum techniques in the 960-1215 MHz... spectrum uniformly across the band; (2) The radiated pulse varies from the specified width of 6.4... peak of the JTIDS spectrum as measured in a 300 kHz bandwidth. The JTIDS will be prohibited from...

  8. 47 CFR 87.479 - Harmful interference to radionavigation land stations.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... to establish wide-band systems using frequency-hopping spread spectrum techniques in the 960-1215 MHz... spectrum uniformly across the band; (2) The radiated pulse varies from the specified width of 6.4... peak of the JTIDS spectrum as measured in a 300 kHz bandwidth. The JTIDS will be prohibited from...

  9. 47 CFR 87.479 - Harmful interference to radionavigation land stations.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... to establish wide-band systems using frequency-hopping spread spectrum techniques in the 960-1215 MHz... spectrum uniformly across the band; (2) The radiated pulse varies from the specified width of 6.4... peak of the JTIDS spectrum as measured in a 300 kHz bandwidth. The JTIDS will be prohibited from...

  10. Speech Spectrum's Correlation with Speakers' Eysenck Personality Traits

    PubMed Central

    Hu, Chao; Wang, Qiandong; Short, Lindsey A.; Fu, Genyue

    2012-01-01

    The current study explored the correlation between speakers' Eysenck personality traits and speech spectrum parameters. Forty-six subjects completed the Eysenck Personality Questionnaire. They were instructed to verbally answer the questions shown on a computer screen and their responses were recorded by the computer. Spectrum parameters of /sh/ and /i/ were analyzed by Praat voice software. Formant frequencies of the consonant /sh/ in lying responses were significantly lower than that in truthful responses, whereas no difference existed on the vowel /i/ speech spectrum. The second formant bandwidth of the consonant /sh/ speech spectrum was significantly correlated with the personality traits of Psychoticism, Extraversion, and Neuroticism, and the correlation differed between truthful and lying responses, whereas the first formant frequency of the vowel /i/ speech spectrum was negatively correlated with Neuroticism in both response types. The results suggest that personality characteristics may be conveyed through the human voice, although the extent to which these effects are due to physiological differences in the organs associated with speech or to a general Pygmalion effect is yet unknown. PMID:22439014

  11. New optimization model for routing and spectrum assignment with nodes insecurity

    NASA Astrophysics Data System (ADS)

    Xuan, Hejun; Wang, Yuping; Xu, Zhanqi; Hao, Shanshan; Wang, Xiaoli

    2017-04-01

    By adopting the orthogonal frequency division multiplexing technology, elastic optical networks can provide the flexible and variable bandwidth allocation to each connection request and get higher spectrum utilization. The routing and spectrum assignment problem in elastic optical network is a well-known NP-hard problem. In addition, information security has received worldwide attention. We combine these two problems to investigate the routing and spectrum assignment problem with the guaranteed security in elastic optical network, and establish a new optimization model to minimize the maximum index of the used frequency slots, which is used to determine an optimal routing and spectrum assignment schemes. To solve the model effectively, a hybrid genetic algorithm framework integrating a heuristic algorithm into a genetic algorithm is proposed. The heuristic algorithm is first used to sort the connection requests and then the genetic algorithm is designed to look for an optimal routing and spectrum assignment scheme. In the genetic algorithm, tailor-made crossover, mutation and local search operators are designed. Moreover, simulation experiments are conducted with three heuristic strategies, and the experimental results indicate that the effectiveness of the proposed model and algorithm framework.

  12. Monitoring of ionospheric turbulence spatial features by SEE diagnostic tools

    NASA Astrophysics Data System (ADS)

    Sergeev, E. N.; Boiko, G. N.; Shvarts, M. M.; Grach, S. M.; Kotov, P. V.

    Spatial features of HF pumped ionospheric F-region are investigated experimentally at the SURA facility by means of the stimulated electromagnetic emission (SEE). SEE, recall, appears as a result of conversion (or scattering) of HF pump-driven plasma waves off the geomagnetic field aligned electron density irregularities (striations). A specially designed pumping scheme was elaborated to study an influence of the perturbations of the electron density and temperature, created by powerful pump wave at frequency f_h and occupying quite extended altitude range (range-I), on spectral and temporal evolution of the diagnostic SEE (DSEE) generated by a weak continuous or pulse diagnostic wave at a frequency f_d in an altitude range-II, spatially shifted from the centre of the range-I. New two-channel digital receiver allowed to analyze the SEE from both ranges (around both frequencies f_h and f_d) simultaneously. A combination of the SEE diagnostics and computer simulations allowed to study:% (a) dependences of striation spectrum and dynamics on the frequency shift |f_h-f_d| (which can be easily translated to the altitude displacement), powers of the pump and diagnostic waves, offsets of the frequencies f_h and f_d from electron gyroharmonics, and on the daily conditions. It is found that a slow (time scale of 1--10 s) dynamics of DSEE, namely, characteristics of its slow overshoot and undershoot effects are determined by the spectral shape and intensity of the striations at, respectively, the development and relaxation stages. It is shown that the striation spectrum flattens in meter scale range for f_h between 3th and 4th gyroharmonics in comparison with larger f_h, in the centre of the range-I in comparison with its periphery, that the range-I extension increases with its altitude and with a transition from day to night conditions;% (b) an influence of the powerful pumping on ``diagnostic'' HF plasma wave evolution by measurements of growth and decay times of the DSEE. It is found that a shape and fast (time scale of 1--10 ms) dynamics of the DSEE spectrum is determined by efficiency of interaction between different HF modes (determined, particularly, by f_d offset from a gyroharmonic), but not by striation characteristics. Besides, during the powerful pumping the DSEE decay rates always exceed the collision values observed for purely diagnostic schedule at nighttime conditions.% The work was supported by INTAS grant 03-515583, RFBR grants 04-02-17544 and 03-02-16309, grant E02-3.2-36 of Education Ministry of Russian Federation.

  13. Electromagnetic spectrum survey of the environment in a locality in Kuala Lumpur, Malaysia

    NASA Astrophysics Data System (ADS)

    Abood, Wafa Ali; Din, Norashidah Md; Ismail, Aiman; Mohamad, Hafizal

    2013-06-01

    The electromagnetic spectrum in the environment is becoming a scarce resource with the emergence of a high number of wireless communications services Cognitive radio (CR) is viewed as a possible solution to the spectrum bottleneck which work in a premise that at an any given time and spatial region there are frequency bands that has no signal occupancy. The CR technique utilizes a temporarily unoccupied licensed band by allowing secondary users to exploit opportunistically the underutilized spectrum licensed to primary users without any harmful interference. Before investigating the technical and political implications of CR, it is necessary to know to what extent the licensed bands are temporally unoccupied. In this paper a spectrum occupancy measurements is conducted to study the utilization of RF spectrum in an environment. The measurements are performed on UHF TV, GSM900 and GSM1800 frequency bands in an urban area in Kuala Lumpur, Malaysia. The evaluation made is based on the power detection principle. From the measurements, the spectrum holes are identified. The obtained results show that the spectral usage is 7.37% for UHF TV band, 12.8% for GSM900 and 5.3% for GSM1800 band leading to the conclusion that a significant amount of spectrum is available for deployment of cognitive radio.

  14. A novel method for detecting airway narrowing using breath sound spectrum analysis in children.

    PubMed

    Tabata, Hideyuki; Hirayama, Mariko; Enseki, Mayumi; Nukaga, Mariko; Hirai, Kota; Furuya, Hiroyuki; Mochizuki, Hiroyuki

    2016-01-01

    Using a breath sound analyzer, we investigated new clinical parameters that are rarely affected by airflow in young children. A total of 65 children with asthma participated in this study (mean age 9.6 years). In Study 1, the intra- and inter-observer variability was measured. Common breath sound parameters, frequency at 99%, 75%, and 50% of the maximum frequency (F99, F75, and F50) and the highest frequency of inspiratory breath sounds were calculated. In addition, new parameters obtained using the ratio of sound spectra parameters, i.e., the spectrum curve indexes including the ratio of the third and fourth area to the total area and the ratio of power and frequency at F75 and F50, were calculated. In Study 2, 51 children underwent breath sound analyses. In Study 3, breath sounds were studied before and after methacholine inhalation. In Study 1, the data showed good inter- and intra-observer reliability. In Study 2, there were significant relationships between the airflow rate, age, height, and spirometric and common breath sound parameters. However, there were no significant relationships between the airflow rate and the spectrum curve indexes. Moreover, the spectrum curve indexes showed no relationships with age, height, or spirometric parameters. In Study 3, all parameters significantly changed after methacholine inhalation. Some spectrum curve indexes are not significantly affected by the airflow rate at the mouth, although they successfully indicate airway narrowing. These parameters may play a role in the assessment of bronchoconstriction in children. Copyright © 2015 The Japanese Respiratory Society. Published by Elsevier B.V. All rights reserved.

  15. Measurements of the power spectrum and dispersion relation of self-excited dust acoustic waves

    NASA Astrophysics Data System (ADS)

    Nosenko, V.; Zhdanov, S. K.; Kim, S.-H.; Heinrich, J.; Merlino, R. L.; Morfill, G. E.

    2009-12-01

    The spectrum of spontaneously excited dust acoustic waves was measured. The waves were observed with high temporal resolution using a fast video camera operating at 1000 frames per second. The experimental system was a suspension of micron-size kaolin particles in the anode region of a dc discharge in argon. Wave activity was found at frequencies as high as 450 Hz. At high wave numbers, the wave dispersion relation was acoustic-like (frequency proportional to wave number). At low wave numbers, the wave frequency did not tend to zero, but reached a cutoff frequency instead. The cutoff value declined with distance from the anode. We ascribe the observed cutoff to the particle confinement in this region.

  16. Time stretch dispersive Fourier transform based single-shot pulse-by-pulse spectrum measurement using a pulse-repetition-frequency-variable gain-switched laser

    NASA Astrophysics Data System (ADS)

    Furukawa, Hideaki; Makino, Takeshi; Wang, Xiaomin; Kobayashi, Tetsuya; Asghari, Mohammad H.; Trinh, Paul; Jalali, Bahram; Man, Wai Sing; Tsang, Kwong Shing; Wada, Naoya

    2018-02-01

    The time stretch dispersive Fourier Transform (TS-DFT) technique based on a fiber chromatic dispersion is a powerful tool for pulse-by-pulse single-shot spectrum measurement for highrepetition rate optical pulses. The distributed feedback laser diode (DFB-LD) with the gain switch operation can flexibly change the pulse repetition frequency (PRF). In this paper, we newly introduce a semiconductor gain-switched DFB-LD operating from 1 MHz up to 1 GHz PRF into the TS-DFT based spectrum measurement system to improve the flexibility and the operability. The pulse width can be below 2 ps with a pulse compression technique. We successfully measure the spectrum of each optical pulse at 1 GHz, 100 MHz, and 10 MHz PRF, and demonstrate the flexibility of the measurement system.

  17. Measurements of ocean wave spectra and modulation transfer function with the airborne two frequency scatterometer

    NASA Technical Reports Server (NTRS)

    Weissman, D. E.; Johnson, J. W.

    1984-01-01

    The directional spectrum and the microwave modulation transfer function of ocean waves can be measured with the airborne two frequency scatterometer technique. Similar to tower based observations, the aircraft measurements of the Modulation Transfer Function (MTF) show that it is strongly affected by both wind speed and sea state. Also detected are small differences in the magnitudes of the MTF between downwind and upwind radar look directions, and variations with ocean wavenumber. The MTF inferred from the two frequency radar is larger than that measured using single frequency, wave orbital velocity techniques such as tower based radars or ROWS measurements from low altitude aircraft. Possible reasons for this are discussed. The ability to measure the ocean directional spectrum with the two frequency scatterometer, with supporting MTF data, is demonstrated.

  18. Measurements of ocean wave spectra and modulation transfer function with the airborne two-frequency scatterometer

    NASA Technical Reports Server (NTRS)

    Weissman, D. E.; Johnson, J. W.

    1986-01-01

    The directional spectrum and the microwave modulation transfer function of ocean waves can be measured with the airborne two frequency scatterometer technique. Similar to tower based observations, the aircraft measurements of the Modulation Transfer Function (MTF) show that it is strongly affected by both wind speed and sea state. Also detected are small differences in the magnitudes of the MTF between downwind and upwind radar look directions, and variations with ocean wavenumber. The MTF inferred from the two frequency radar is larger than that measured using single frequency, wave orbital velocity techniques such as tower based radars or ROWS measurements from low altitude aircraft. Possible reasons for this are discussed. The ability to measure the ocean directional spectrum with the two frequency scatterometer, with supporting MTF data, is demonstrated.

  19. Complex permeability and permittivity spectra of percolated Fe50Co50/Cu granular composites

    NASA Astrophysics Data System (ADS)

    Massango, Herieta; Tsutaoka, Takanori; Kasagi, Teruhiro; Yamamoto, Shinichiro; Hatakeyama, Kenichi

    2017-11-01

    Complex permeability and permittivity spectra of Fe50Co50/Cu hybrid granular composite materials have been studied in the RF to microwave frequency range. At low Cu particle content, the Fe50Co50/Cu hybrid sample shows a metallic percolative property with the electrical conductivity value about 0.1 S/cm. However, the low frequency plasmonic (LFP) state with negative permittivity (ENG) spectrum was not observed. An abrupt increase of electrical conductivity takes place at 14 to 16 vol% Cu content where the conductivity becomes above 1.0 S/cm; the Fe50Co50/Cu composite possesses the LFP state with negative permittivity spectrum below a characteristic frequency. The complex permittivity spectra in the LFP state can be described by the Drude model. Magnetic permeability spectrum in the LFP state showed a broad frequency dispersion above 10 MHz; a small negative permeability (MNG) dispersion was observed from 2 to 10 GHz. Consequently, the double negative (DNG) electromagnetic property with MNG and ENG was realized in the microwave range for the Cu content of 26 and 30 vol%.

  20. Multipath interference test method for distributed amplifiers

    NASA Astrophysics Data System (ADS)

    Okada, Takahiro; Aida, Kazuo

    2005-12-01

    A method for testing distributed amplifiers is presented; the multipath interference (MPI) is detected as a beat spectrum between the multipath signal and the direct signal using a binary frequency shifted keying (FSK) test signal. The lightwave source is composed of a DFB-LD that is directly modulated by a pulse stream passing through an equalizer, and emits the FSK signal of the frequency deviation of about 430MHz at repetition rate of 80-100 kHz. The receiver consists of a photo-diode and an electrical spectrum analyzer (ESA). The base-band power spectrum peak appeared at the frequency of the FSK frequency deviation can be converted to amount of MPI using a calibration chart. The test method has improved the minimum detectable MPI as low as -70 dB, compared to that of -50 dB of the conventional test method. The detailed design and performance of the proposed method are discussed, including the MPI simulator for calibration procedure, computer simulations for evaluating the error caused by the FSK repetition rate and the fiber length under test and experiments on singlemode fibers and distributed Raman amplifier.

  1. Calculating the electron temperature in the lightning channel by continuous spectrum

    NASA Astrophysics Data System (ADS)

    Xiangcheng, DONG; Jianhong, CHEN; Xiufang, WEI; Ping, YUAN

    2017-12-01

    Based on the theory of plasma continuous radiation, the relationship between the emission intensity of bremsstrahlung and recombination radiation and the plasma electron temperature is obtained. During the development process of a return stroke of ground flash, the intensity of continuous radiation spectrum is separated on the basis of the spectrums with obviously different luminous intensity at two moments. The electron temperature of the lightning discharge channel is obtained through the curve fitting of the continuous spectrum intensity. It is found that electron temperature increases with the increase of wavelength and begins to reduce after the peak. The peak temperature of the two spectra is close to 25 000 K. To be compared with the result of discrete spectrum, the electron temperature is fitted by the O I line and N II line of the spectrum respectively. The comparison shows that the high temperature value is in good agreement with the temperature of the lightning core current channel obtained from the ion line information, and the low temperature at the high band closes to the calculation result of the atomic line, at a low band is lower than the calculation of the atomic line, which reflects the temperature of the luminous channel of the outer corona.

  2. Human haemodynamic frequency harmonics regulate the inflammatory phenotype of vascular endothelial cells.

    PubMed

    Feaver, Ryan E; Gelfand, Bradley D; Blackman, Brett R

    2013-01-01

    Haemodynamic variations are inherent to blood vessel geometries (such as bifurcations) and correlate with regional development of inflammation and atherosclerosis. However, the complex frequency spectrum characteristics from these haemodynamics have never been exploited to test whether frequency variations are critical determinants of endothelial inflammatory phenotype. Here we utilize an experimental Fourier transform analysis to systematically manipulate individual frequency harmonics from human carotid shear stress waveforms applied in vitro to human endothelial cells. The frequency spectrum, specifically the 0 th and 1st harmonics, is a significant regulator of inflammation, including NF-κB activity and downstream inflammatory phenotype. Further, a harmonic-based regression-model predicts eccentric NF-κB activity observed in the human internal carotid artery. Finally, short interfering RNA-knockdown of the mechanosensor PECAM-1 reverses frequency-dependent regulation of NF-κB activity. Thus, PECAM-1 may have a critical role in the endothelium's exquisite sensitivity to complex shear stress frequency harmonics and provide a mechanism for the focal development of vascular inflammation.

  3. Wave-field decay rate estimate from the wavenumber-frequency spectra

    NASA Astrophysics Data System (ADS)

    Comisel, H.; Narita, Y.; Voros, Z.

    2017-12-01

    Observational data for wave or turbulent fields are conveniently analyzed and interpreted in the Fourier domain spanning the frequencies and the wavenumbers. If a wave field has not only oscillatory components (characterized by real parts of frequency) but also temporally decaying components (characterized by imaginary parts of frequency), the energy spectrum shows a frequency broadening around the peak due to the imaginary parts of frequency (or the decay rate). The mechanism of the frequency broadening is the same as that of the Breit-Wigner spectrum in nuclear resonance phenomena. We show that the decay rate can observationally and directly be estimated once multi-point data are available, and apply the method to Cluster four-point magnetometer data in the solar wind on a spatial scale of about 1000 km. The estimated decay rate is larger than the eddy turnover time, indicating that the decay profile of solar wind turbulence is more plasma physical such as excitation of whistler waves and other modes rather than hydrodynamic turbulence behavior.

  4. Method, system and computer-readable media for measuring impedance of an energy storage device

    DOEpatents

    Morrison, John L.; Morrison, William H.; Christophersen, Jon P.; Motloch, Chester G.

    2016-01-26

    Real-time battery impedance spectrum is acquired using a one-time record. Fast Summation Transformation (FST) is a parallel method of acquiring a real-time battery impedance spectrum using a one-time record that enables battery diagnostics. An excitation current to a battery is a sum of equal amplitude sine waves of frequencies that are octave harmonics spread over a range of interest. A sample frequency is also octave and harmonically related to all frequencies in the sum. A time profile of this sampled signal has a duration that is a few periods of the lowest frequency. A voltage response of the battery, average deleted, is an impedance of the battery in a time domain. Since the excitation frequencies are known and octave and harmonically related, a simple algorithm, FST, processes the time profile by rectifying relative to sine and cosine of each frequency. Another algorithm yields real and imaginary components for each frequency.

  5. Frequency-Modulation Correlation Spectrometer

    NASA Technical Reports Server (NTRS)

    Margolis, J. S.; Martonchik, J. V.

    1985-01-01

    New type of correlation spectrometer eliminates need to shift between two cells, one empty and one containing reference gas. Electrooptical phase modulator sinusoidally shift frequencies of sample transmission spectrum.

  6. 47 CFR 18.101 - Basis and purpose.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... industrial, scientific, and medical equipment (ISM) that emits electromagnetic energy on frequencies within the radio frequency spectrum in order to prevent harmful interference to authorized radio...

  7. 47 CFR 18.101 - Basis and purpose.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... industrial, scientific, and medical equipment (ISM) that emits electromagnetic energy on frequencies within the radio frequency spectrum in order to prevent harmful interference to authorized radio...

  8. 47 CFR 18.101 - Basis and purpose.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... industrial, scientific, and medical equipment (ISM) that emits electromagnetic energy on frequencies within the radio frequency spectrum in order to prevent harmful interference to authorized radio...

  9. 47 CFR 18.101 - Basis and purpose.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... industrial, scientific, and medical equipment (ISM) that emits electromagnetic energy on frequencies within the radio frequency spectrum in order to prevent harmful interference to authorized radio...

  10. 47 CFR 18.101 - Basis and purpose.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... industrial, scientific, and medical equipment (ISM) that emits electromagnetic energy on frequencies within the radio frequency spectrum in order to prevent harmful interference to authorized radio...

  11. Self-synchronization for spread spectrum audio watermarks after time scale modification

    NASA Astrophysics Data System (ADS)

    Nadeau, Andrew; Sharma, Gaurav

    2014-02-01

    De-synchronizing operations such as insertion, deletion, and warping pose significant challenges for watermarking. Because these operations are not typical for classical communications, watermarking techniques such as spread spectrum can perform poorly. Conversely, specialized synchronization solutions can be challenging to analyze/ optimize. This paper addresses desynchronization for blind spread spectrum watermarks, detected without reference to any unmodified signal, using the robustness properties of short blocks. Synchronization relies on dynamic time warping to search over block alignments to find a sequence with maximum correlation to the watermark. This differs from synchronization schemes that must first locate invariant features of the original signal, or estimate and reverse desynchronization before detection. Without these extra synchronization steps, analysis for the proposed scheme builds on classical SS concepts and allows characterizes the relationship between the size of search space (number of detection alignment tests) and intrinsic robustness (continuous search space region covered by each individual detection test). The critical metrics that determine the search space, robustness, and performance are: time-frequency resolution of the watermarking transform, and blocklength resolution of the alignment. Simultaneous robustness to (a) MP3 compression, (b) insertion/deletion, and (c) time-scale modification is also demonstrated for a practical audio watermarking scheme developed in the proposed framework.

  12. Discrete quantum spectrum of black holes

    NASA Astrophysics Data System (ADS)

    Lochan, Kinjalk; Chakraborty, Sumanta

    2016-04-01

    The quantum genesis of Hawking radiation is a long-standing puzzle in black hole physics. Semi-classically one can argue that the spectrum of radiation emitted by a black hole look very much sparse unlike what is expected from a thermal object. It was demonstrated through a simple quantum model that a quantum black hole will retain a discrete profile, at least in the weak energy regime. However, it was suggested that this discreteness might be an artifact of the simplicity of eigen-spectrum of the model considered. Different quantum theories can, in principle, give rise to different complicated spectra and make the radiation from black hole dense enough in transition lines, to make them look continuous in profile. We show that such a hope from a geometry-quantized black hole is not realized as long as large enough black holes are dubbed with a classical mass area relation in any gravity theory ranging from GR, Lanczos-Lovelock to f(R) gravity. We show that the smallest frequency of emission from black hole in any quantum description, is bounded from below, to be of the order of its inverse mass. That leaves the emission with only two possibilities. It can either be non-thermal, or it can be thermal only with the temperature being much larger than 1/M.

  13. Radio Disappearance of the Magnetar XTE J1810-197 and Continued X-ray Timing

    NASA Astrophysics Data System (ADS)

    Camilo, F.; Ransom, S. M.; Halpern, J. P.; Alford, J. A. J.; Cognard, I.; Reynolds, J. E.; Johnston, S.; Sarkissian, J.; van Straten, W.

    2016-04-01

    We report on timing, flux density, and polarimetric observations of the transient magnetar and 5.54 s radio pulsar XTE J1810-197 using the Green Bank, Nançay, and Parkes radio telescopes beginning in early 2006, until its sudden disappearance as a radio source in late 2008. Repeated observations through 2016 have not detected radio pulsations again. The torque on the neutron star, as inferred from its rotation frequency derivative \\dot{ν }, decreased in an unsteady manner by a factor of three in the first year of radio monitoring, until approximately mid-2007. By contrast, during its final year as a detectable radio source, the torque decreased steadily by only 9%. The period-averaged flux density, after decreasing by a factor of 20 during the first 10 months of radio monitoring, remained relatively steady in the next 22 months, at an average of 0.7 ± 0.3 mJy at 1.4 GHz, while still showing day-to-day fluctuations by factors of a few. There is evidence that during this last phase of radio activity the magnetar had a steep radio spectrum, in contrast to earlier flat-spectrum behavior. No secular decrease presaged its radio demise. During this time, the pulse profile continued to display large variations; polarimetry, including of a new profile component, indicates that the magnetic geometry remained consistent with that of earlier times. We supplement these results with X-ray timing of the pulsar from its outburst in 2003 up to 2014. For the first 4 years, XTE J1810-197 experienced non-monotonic excursions in frequency derivative by at least a factor of eight. But since 2007, its \\dot{ν } has remained relatively stable near its minimum observed value. The only apparent event in the X-ray record that is possibly contemporaneous with the radio shutdown is a decrease of ≈20% in the hot-spot flux in 2008-2009, to a stable, minimum value. However, the permanence of the high-amplitude, thermal X-ray pulse, even after the (unexplained) radio demise, implies continuing magnetar activity.

  14. Fermi-Pasta-Ulam auto recurrence in the description of the electrical activity of the heart.

    PubMed

    Novopashin, M A; Shmid, A V; Berezin, A A

    2017-04-01

    The authors proposed and mathematically described model of a new type of the Fermi-Pasta-Ulam recurrence (the FPU auto recurrence) and hypothesized an adequate description of the heart's electrical dynamics within the observed phenomenon. The dynamics of the FPU auto recurrence making appropriate electrical dynamics of the normal functioning of the heart in the form of an electrocardiogram (ECG) was obtained by a computer model study. The model solutions in the form of the FPU auto recurrence - ECG Fourier spectrum were evaluated for resistance to external disturbances in the form of random effects, as well as periodic perturbation at a frequency close to the heart beating rate of about 1Hz. In addition, in order to simulate the dynamics of myocardial infarction model, studied the effect of the surface area of the myocardium on the stability and shape of the auto recurrence - ECG spectrum. It has been found that the intense external disturbing periodic impacts at a frequency of about 1Hz lead to a sharp disturbance spectrum shape FPU auto recurrence - ECG structure. In addition, the decrease in the surface of the myocardium by 50% in the model led to the destruction of structures of the auto recurrence - ECG, which corresponds to the state of atrial myocardium. Research models have revealed a hypothetical basis of coronary heart disease in the form of increasing the energy of high-frequency harmonics spectrum of the auto recurrence by reducing the energy of low-frequency harmonic spectrum of the auto recurrence, which ultimately leads to a sharp decrease in myocardial contractility. In order to test the hypothesis has been studied more than 20,000 ECGs both healthy people and patients with cardiovascular disease. As a result of these studies, it was found that the dynamics of the electrical activity of normal functioning of the heart can be interpreted by the display of the detected by authors the FPU auto recurrence, and coronary heart disease is a violation of the energy ratio between the low and high frequency harmonics of the FPU auto recurrence Fourier spectrum equal to the ECG spectrum. Thus, the hypothesis has been confirmed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. The high-energy γ -ray emission of AP Librae

    DOE PAGES

    Abramowski, A.; Aharonian, F.; Ait Benkhali, F.; ...

    2014-12-10

    In this paper, the γ-ray spectrum of the low-frequency-peaked BL Lac (LBL) object AP Librae is studied, following the discovery of very-high-energy (VHE; E> 100 GeV) γ-ray emission up to the TeV range by the H.E.S.S. experiment. This makes AP Librae one of the few VHE emitters of the LBL type. The measured spectrum yields a flux of (8.8 ± 1.5 stat ± 1.8 sys) × 10 -12 cm -2 s -1 above 130 GeV and a spectral index of Γ = 2.65 ± 0.19 stat ± 0.20 sys. This study also makes use of Fermi-LAT observations in the highmore » energy (HE, E> 100 MeV) range, providing the longest continuous light curve (5 years) ever published on this source. The source underwent a flaring event between MJD 56 306–56 376 in the HE range, with a flux increase of a factor of 3.5 in the 14 day bin light curve and no significant variation in spectral shape with respect to the low-flux state. While the H.E.S.S. and (low state) Fermi-LAT fluxes are in good agreement where they overlap, a spectral curvature between the steep VHE spectrum and the Fermi-LAT spectrum is observed. Finally, the maximum of the γ-ray emission in the spectral energy distribution is located below the GeV energy range.« less

  16. Determination of the hydrate structure of an isolated alcoholic OH in hydrophobic medium by infrared and near-infrared spectroscopy.

    PubMed

    Iwamoto, Reikichi; Kusanagi, Hiroshi

    2009-05-07

    This paper reports the structure of the hydrate complex of an isolated alcoholic OH, produced in a small amount in hydrophobic solution in heptane. The structure was determined from the changes, caused by hydration, in the infrared and near-infrared spectra of 2-nonanol in the solution. The changes were exhibited in the "difference" spectrum, in which the spectrum of the solution before hydration was subtracted from that after hydration. The difference spectrum showed a "plus" or "minus" peak at the frequency of the stretching band of a free OH, depending on whether the concentration was below or above about 2%(v/v), respectively. The plus peak appears because the OH stretching band of the isolated OH that acts as an acceptor does not change in frequency but significantly increases in intensity, in agreement with theoretical calculations. In contrast, the stretching band of an isolated OH that acts as a donor shifts downward. This shift decreases the intensity at the stretching frequency of a free OH, giving rise to a minus peak at the frequency in the difference spectrum. It was concluded that an isolated OH is hydrated in the manner as HO...HOH and OH...OH(2) at a concentration below and above about 2%, respectively, in the hydrophobic solution of 2-nonanol.

  17. Radio Frequency Ultrasound Time Series Signal Analysis to Evaluate High-intensity Focused Ultrasound Lesion Formation Status in Tissue.

    PubMed

    Mobasheri, Saeedeh; Behnam, Hamid; Rangraz, Parisa; Tavakkoli, Jahan

    2016-01-01

    High-intensity focused ultrasound (HIFU) is a novel treatment modality used by scientists and clinicians in the recent decades. This modality has had a great and significant success as a noninvasive surgery technique applicable in tissue ablation therapy and cancer treatment. In this study, radio frequency (RF) ultrasound signals were acquired and registered in three stages of before, during, and after HIFU exposures. Different features of RF time series signals including the sum of amplitude spectrum in the four quarters of the frequency range, the slope, and intercept of the best-fit line to the entire power spectrum and the Shannon entropy were utilized to distinguish between the HIFU-induced thermal lesion and the normal tissue. We also examined the RF data, frame by frame to identify exposure effects on the formation and characteristics of a HIFU thermal lesion at different time steps throughout the treatment. The results obtained showed that the spectrum frequency quarters and the slope and intercept of the best fit line to the entire power spectrum both increased two times during the HIFU exposures. The Shannon entropy, however, decreased after the exposures. In conclusion, different characteristics of RF time series signal possess promising features that can be used to characterize ablated and nonablated tissues and to distinguish them from each other in a quasi-quantitative fashion.

  18. Josephson junction spectrum analyzer for millimeter and submillimeter wavelengths

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larkin, S.Y.; Anischenko, S.E.; Khabayev, P.V.

    1994-12-31

    A prototype of the Josephson-effect spectrum analyzer developed for the millimeter-wave band is described. The measurement results for spectra obtained in the frequency band from 50 to 250 GHz are presented.

  19. Office of Positioning, Navigation and Timing (PNT) and Spectrum Management Program Overview.

    DOT National Transportation Integrated Search

    2017-01-01

    Civil Global Positioning System (GPS)/PNT Leadership : Coordinate the development of departmental positions on PNT and : spectrum policy and protection from harmful radio frequency : interference and operational degradation of capabilities : ...

  20. Josephson Junction spectrum analyzer for millimeter and submillimeter wavelengths

    NASA Technical Reports Server (NTRS)

    Larkin, S. Y.; Anischenko, S. E.; Khabayev, P. V.

    1995-01-01

    A prototype of the Josephson-effect spectrum analyzer developed for the millimeter wave band is described. The measurement results for spectra obtained in the frequency band from 50 to 250 GHz are presented.

  1. High-Resolution Time-Frequency Spectrum-Based Lung Function Test from a Smartphone Microphone

    PubMed Central

    Thap, Tharoeun; Chung, Heewon; Jeong, Changwon; Hwang, Ki-Eun; Kim, Hak-Ryul; Yoon, Kwon-Ha; Lee, Jinseok

    2016-01-01

    In this paper, a smartphone-based lung function test, developed to estimate lung function parameters using a high-resolution time-frequency spectrum from a smartphone built-in microphone is presented. A method of estimation of the forced expiratory volume in 1 s divided by forced vital capacity (FEV1/FVC) based on the variable frequency complex demodulation method (VFCDM) is first proposed. We evaluated our proposed method on 26 subjects, including 13 healthy subjects and 13 chronic obstructive pulmonary disease (COPD) patients, by comparing with the parameters clinically obtained from pulmonary function tests (PFTs). For the healthy subjects, we found that an absolute error (AE) and a root mean squared error (RMSE) of the FEV1/FVC ratio were 4.49% ± 3.38% and 5.54%, respectively. For the COPD patients, we found that AE and RMSE from COPD patients were 10.30% ± 10.59% and 14.48%, respectively. For both groups, we compared the results using the continuous wavelet transform (CWT) and short-time Fourier transform (STFT), and found that VFCDM was superior to CWT and STFT. Further, to estimate other parameters, including forced vital capacity (FVC), forced expiratory volume in 1 s (FEV1), and peak expiratory flow (PEF), regression analysis was conducted to establish a linear transformation. However, the parameters FVC, FEV1, and PEF had correlation factor r values of 0.323, 0.275, and −0.257, respectively, while FEV1/FVC had an r value of 0.814. The results obtained suggest that only the FEV1/FVC ratio can be accurately estimated from a smartphone built-in microphone. The other parameters, including FVC, FEV1, and PEF, were subjective and dependent on the subject’s familiarization with the test and performance of forced exhalation toward the microphone. PMID:27548164

  2. Influence of gravitation on the propagation of electromagnetic radiation

    NASA Technical Reports Server (NTRS)

    Mashhoon, B.

    1975-01-01

    The existence of a general helicity-rotation coupling is demonstrated for electromagnetic waves propagating in the field of a slowly rotating body and in the Goedel universe. This coupling leads to differential focusing of circularly polarized radiation by a gravitational field which is detectable for a rapidly rotating collapsed body. The electromagnetic perturbations and their frequency spectrum are given for the Goedel universe. The spectrum of frequencies is bounded from below by the characteristic rotation frequency of the Goedel universe. If the universe were rotating, the differential focusing effect would be extremely small due to the present upper limit on the anisotropy of the microwave background radiation.

  3. Ship noise extends to frequencies used for echolocation by endangered killer whales

    PubMed Central

    Veirs, Val; Wood, Jason D.

    2016-01-01

    Combining calibrated hydrophone measurements with vessel location data from the Automatic Identification System, we estimate underwater sound pressure levels for 1,582 unique ships that transited the core critical habitat of the endangered Southern Resident killer whales during 28 months between March, 2011, and October, 2013. Median received spectrum levels of noise from 2,809 isolated transits are elevated relative to median background levels not only at low frequencies (20–30 dB re 1 µPa2/Hz from 100 to 1,000 Hz), but also at high frequencies (5–13 dB from 10,000 to 96,000 Hz). Thus, noise received from ships at ranges less than 3 km extends to frequencies used by odontocetes. Broadband received levels (11.5–40,000 Hz) near the shoreline in Haro Strait (WA, USA) for the entire ship population were 110 ± 7 dB re 1 µPa on average. Assuming near-spherical spreading based on a transmission loss experiment we compute mean broadband source levels for the ship population of 173 ± 7 dB re 1 µPa 1 m without accounting for frequency-dependent absorption. Mean ship speed was 7.3 ± 2.0 m/s (14.1 ± 3.9 knots). Most ship classes show a linear relationship between source level and speed with a slope near +2 dB per m/s (+1 dB/knot). Spectrum, 1/12-octave, and 1/3-octave source levels for the whole population have median values that are comparable to previous measurements and models at most frequencies, but for select studies may be relatively low below 200 Hz and high above 20,000 Hz. Median source spectrum levels peak near 50 Hz for all 12 ship classes, have a maximum of 159 dB re 1 µPa2/Hz @ 1 m for container ships, and vary between classes. Below 200 Hz, the class-specific median spectrum levels bifurcate with large commercial ships grouping as higher power noise sources. Within all ship classes spectrum levels vary more at low frequencies than at high frequencies, and the degree of variability is almost halved for classes that have smaller speed standard deviations. This is the first study to present source spectra for populations of different ship classes operating in coastal habitats, including at higher frequencies used by killer whales for both communication and echolocation. PMID:27004149

  4. An open-loop system design for deep space signal processing applications

    NASA Astrophysics Data System (ADS)

    Tang, Jifei; Xia, Lanhua; Mahapatra, Rabi

    2018-06-01

    A novel open-loop system design with high performance is proposed for space positioning and navigation signal processing. Divided by functions, the system has four modules, bandwidth selectable data recorder, narrowband signal analyzer, time-delay difference of arrival estimator and ANFIS supplement processor. A hardware-software co-design approach is made to accelerate computing capability and improve system efficiency. Embedded with the proposed signal processing algorithms, the designed system is capable of handling tasks with high accuracy over long period of continuous measurements. The experiment results show the Doppler frequency tracking root mean square error during 3 h observation is 0.0128 Hz, while the TDOA residue analysis in correlation power spectrum is 0.1166 rad.

  5. Trellis coding with Continuous Phase Modulation (CPM) for satellite-based land-mobile communications

    NASA Technical Reports Server (NTRS)

    1989-01-01

    This volume of the final report summarizes the results of our studies on the satellite-based mobile communications project. It includes: a detailed analysis, design, and simulations of trellis coded, full/partial response CPM signals with/without interleaving over various Rician fading channels; analysis and simulation of computational cutoff rates for coherent, noncoherent, and differential detection of CPM signals; optimization of the complete transmission system; analysis and simulation of power spectrum of the CPM signals; design and development of a class of Doppler frequency shift estimators; design and development of a symbol timing recovery circuit; and breadboard implementation of the transmission system. Studies prove the suitability of the CPM system for mobile communications.

  6. High-Q resonant cavities for terahertz quantum cascade lasers.

    PubMed

    Campa, A; Consolino, L; Ravaro, M; Mazzotti, D; Vitiello, M S; Bartalini, S; De Natale, P

    2015-02-09

    We report on the realization and characterization of two different designs for resonant THz cavities, based on wire-grid polarizers as input/output couplers, and injected by a continuous-wave quantum cascade laser (QCL) emitting at 2.55 THz. A comparison between the measured resonators parameters and the expected theoretical values is reported. With achieved quality factor Q ≈ 2.5 × 10(5), these cavities show resonant peaks as narrow as few MHz, comparable with the typical Doppler linewidth of THz molecular transitions and slightly broader than the free-running QCL emission spectrum. The effects of the optical feedback from one cavity to the QCL are examined by using the other cavity as a frequency reference.

  7. Use of Complementary and Alternative Medicine in Children and Adolescents with Autism Spectrum Disorder: A Systematic Review

    ERIC Educational Resources Information Center

    Höfer, Juliana; Hoffmann, Falk; Bachmann, Christian

    2017-01-01

    Despite limited evidence, complementary and alternative medicine treatments are popular in autism spectrum disorder. The aim of this review was to summarize the available evidence on complementary and alternative medicine use frequency in autism spectrum disorder. A systematic search of three electronic databases was performed. All research…

  8. THz frequency spectrum of protein-solvent interaction energy using a recurrence plot-based Wiener-Khinchin method.

    PubMed

    Karain, Wael

    2016-10-01

    The dynamics of a protein and the water surrounding it are coupled via nonbonded energy interactions. This coupling can exhibit a complex, nonlinear, and nonstationary nature. The THz frequency spectrum for this interaction energy characterizes both the vibration spectrum of the water hydrogen bond network, and the frequency range of large amplitude modes of proteins. We use a Recurrence Plot based Wiener-Khinchin method RPWK to calculate this spectrum, and the results are compared to those determined using the classical auto-covariance-based Wiener-Khinchin method WK. The frequency spectra for the total nonbonded interaction energy extracted from molecular dynamics simulations between the β-Lactamase Inhibitory Protein BLIP, and water molecules within a 10 Å distance from the protein surface, are calculated at 150, 200, 250, and 310 K, respectively. Similar calculations are also performed for the nonbonded interaction energy between the residues 49ASP, 53TYR, and 142PHE in BLIP, with water molecules within 10 Å from each residue respectively at 150, 200, 250, and 310 K. A comparison of the results shows that RPWK performs better than WK, and is able to detect some frequency data points that WK fails to detect. This points to the importance of using methods capable of taking the complex nature of the protein-solvent energy landscape into consideration, and not to rely on standard linear methods. In general, RPWK can be a valuable addition to the analysis tools for protein molecular dynamics simulations. Proteins 2016; 84:1549-1557. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  9. Spectral analysis of highly aliased sea-level signals

    NASA Astrophysics Data System (ADS)

    Ray, Richard D.

    1998-10-01

    Observing high-wavenumber ocean phenomena with a satellite altimeter generally calls for "along-track" analyses of the data: measurements along a repeating satellite ground track are analyzed in a point-by-point fashion, as opposed to spatially averaging data over multiple tracks. The sea-level aliasing problems encountered in such analyses can be especially challenging. For TOPEX/POSEIDON, all signals with frequency greater than 18 cycles per year (cpy), including both tidal and subdiurnal signals, are folded into the 0-18 cpy band. Because the tidal bands are wider than 18 cpy, residual tidal cusp energy, plus any subdiurnal energy, is capable of corrupting any low-frequency signal of interest. The practical consequences of this are explored here by using real sea-level measurements from conventional tide gauges, for which the true oceanographic spectrum is known and to which a simulated "satellite-measured" spectrum, based on coarsely subsampled data, may be compared. At many locations the spectrum is sufficently red that interannual frequencies remain unaffected. Intra-annual frequencies, however, must be interpreted with greater caution, and even interannual frequencies can be corrupted if the spectrum is flat. The results also suggest that whenever tides must be estimated directly from the altimetry, response methods of analysis are preferable to harmonic methods, even in nonlinear regimes; this will remain so for the foreseeable future. We concentrate on three example tide gauges: two coastal stations on the Malay Peninsula where the closely aliased K1 and Ssa tides are strong and at Canton Island where trapped equatorial waves are aliased.

  10. Application of power spectrum, cepstrum, higher order spectrum and neural network analyses for induction motor fault diagnosis

    NASA Astrophysics Data System (ADS)

    Liang, B.; Iwnicki, S. D.; Zhao, Y.

    2013-08-01

    The power spectrum is defined as the square of the magnitude of the Fourier transform (FT) of a signal. The advantage of FT analysis is that it allows the decomposition of a signal into individual periodic frequency components and establishes the relative intensity of each component. It is the most commonly used signal processing technique today. If the same principle is applied for the detection of periodicity components in a Fourier spectrum, the process is called the cepstrum analysis. Cepstrum analysis is a very useful tool for detection families of harmonics with uniform spacing or the families of sidebands commonly found in gearbox, bearing and engine vibration fault spectra. Higher order spectra (HOS) (also known as polyspectra) consist of higher order moment of spectra which are able to detect non-linear interactions between frequency components. For HOS, the most commonly used is the bispectrum. The bispectrum is the third-order frequency domain measure, which contains information that standard power spectral analysis techniques cannot provide. It is well known that neural networks can represent complex non-linear relationships, and therefore they are extremely useful for fault identification and classification. This paper presents an application of power spectrum, cepstrum, bispectrum and neural network for fault pattern extraction of induction motors. The potential for using the power spectrum, cepstrum, bispectrum and neural network as a means for differentiating between healthy and faulty induction motor operation is examined. A series of experiments is done and the advantages and disadvantages between them are discussed. It has been found that a combination of power spectrum, cepstrum and bispectrum plus neural network analyses could be a very useful tool for condition monitoring and fault diagnosis of induction motors.

  11. The effect of withdrawal of visual presentation of errors upon the frequency spectrum of tremor in a manual task

    PubMed Central

    Sutton, G. G.; Sykes, K.

    1967-01-01

    1. When a subject attempts to exert a steady pressure on a joystick he makes small unavoidable errors which, irrespective of their origin or frequency, may be called tremor. 2. Frequency analysis shows that low frequencies always contribute much more to the total error than high frequencies. If the subject is not allowed to check his performance visually, but has to rely on sensations of pressure in the finger tips, etc., the error power spectrum plotted on logarithmic co-ordinates approximates to a straight line falling at 6 db/octave from 0·4 to 9 c/s. In other words the amplitude of the tremor component at each frequency is inversely proportional to frequency. 3. When the subject is given a visual indication of his errors on an oscilloscope the shape of the tremor spectrum alters. The most striking change is the appearance of a tremor peak at about 9 c/s, but there is also a significant increase of error in the range 1-4 c/s. The extent of these changes varies from subject to subject. 4. If the 9 c/s peak represents oscillation of a muscle length-servo it would appear that greater use is made of this servo when positional information is available from the eyes than when proprioceptive impulses from the limbs have to be relied on. ImagesFig. 2 PMID:6048997

  12. Tides in a body librating about a spin-orbit resonance: generalisation of the Darwin-Kaula theory

    NASA Astrophysics Data System (ADS)

    Frouard, Julien; Efroimsky, Michael

    2017-09-01

    The Darwin-Kaula theory of bodily tides is intended for celestial bodies rotating without libration. We demonstrate that this theory, in its customary form, is inapplicable to a librating body. Specifically, in the presence of libration in longitude, the actual spectrum of Fourier tidal modes differs from the conventional spectrum rendered by the Darwin-Kaula theory for a nonlibrating celestial object. This necessitates derivation of formulae for the tidal torque and the tidal heating rate, that are applicable under libration. We derive the tidal spectrum for longitudinal forced libration with one and two main frequencies, generalisation to more main frequencies being straightforward. (By main frequencies we understand those emerging due to the triaxiality of the librating body.) Separately, we consider a case of free libration at one frequency (once again, generalisation to more frequencies being straightforward). We also calculate the tidal torque. This torque provides correction to the triaxiality-caused physical libration. Our theory is not self-consistent: we assume that the tidal torque is much smaller than the permanent-triaxiality-caused torque, so the additional libration due to tides is much weaker than the main libration due to the permanent triaxiality. Finally, we calculate the tidal dissipation rate in a body experiencing forced libration at the main mode, or free libration at one frequency, or superimposed forced and free librations.

  13. Adapted wavelet transform improves time-frequency representations: a study of auditory elicited P300-like event-related potentials in rats.

    PubMed

    Richard, Nelly; Laursen, Bettina; Grupe, Morten; Drewes, Asbjørn M; Graversen, Carina; Sørensen, Helge B D; Bastlund, Jesper F

    2017-04-01

    Active auditory oddball paradigms are simple tone discrimination tasks used to study the P300 deflection of event-related potentials (ERPs). These ERPs may be quantified by time-frequency analysis. As auditory stimuli cause early high frequency and late low frequency ERP oscillations, the continuous wavelet transform (CWT) is often chosen for decomposition due to its multi-resolution properties. However, as the conventional CWT traditionally applies only one mother wavelet to represent the entire spectrum, the time-frequency resolution is not optimal across all scales. To account for this, we developed and validated a novel method specifically refined to analyse P300-like ERPs in rats. An adapted CWT (aCWT) was implemented to preserve high time-frequency resolution across all scales by commissioning of multiple wavelets operating at different scales. First, decomposition of simulated ERPs was illustrated using the classical CWT and the aCWT. Next, the two methods were applied to EEG recordings obtained from prefrontal cortex in rats performing a two-tone auditory discrimination task. While only early ERP frequency changes between responses to target and non-target tones were detected by the CWT, both early and late changes were successfully described with strong accuracy by the aCWT in rat ERPs. Increased frontal gamma power and phase synchrony was observed particularly within theta and gamma frequency bands during deviant tones. The study suggests superior performance of the aCWT over the CWT in terms of detailed quantification of time-frequency properties of ERPs. Our methodological investigation indicates that accurate and complete assessment of time-frequency components of short-time neural signals is feasible with the novel analysis approach which may be advantageous for characterisation of several types of evoked potentials in particularly rodents.

  14. On the Absolutely Continuous Spectrum of Stark Operators

    NASA Astrophysics Data System (ADS)

    Perelman, Galina

    The stability of the absolutely continuous spectrum of the one-dimensional Stark operator under perturbations of the potential is discussed. The focus is on proving this stability under minimal assumptions on smoothness of the perturbation. A general criterion is presented together with some applications. These include the case of periodic perturbations where we show that any perturbation vL1()∩H-1/2() preserves the a.c. spectrum.

  15. Design of a micromachined terahertz electromagnetic crystals (EMXT) channel-drop filter on silicon-substrate

    NASA Astrophysics Data System (ADS)

    Zhou, Kai; Liu, Yong; Si, Liming; Lv, Xin

    2013-08-01

    An integrated 0.5 THz electromagnetic crystals(EMXT) channel-drop filter based on PBG structure is presented in this paper. A channel-drop filter is a device in which a narrow bandwidth is redirected to another "drop" waveguide while other frequencies are unaffected. It's capable of extracting a certain frequency from a continuous spectrum in the bus channel and passing it to the test channel. It has potential applications in photonic integrated circuits, radio astronomy, THz spectroscopy, THz communication and remote sensing radar receiver. PBG structures(or photonic crystals) are periodic structures which possess band gaps, where the electromagnetic wave of certain ranges of frequencies cannot pass through and is reflected. The proposed channel-drop filter consists of input waveguide,output waveguide and PBG structure. The proposed filter is simulated using the finite element method and can be fabricated by micro-electromechanical systems (MEMS) technology,due to its low cost, high performance and high processing precision.The filter operation principle and fabrication process are discussed.The simulation results show its ability to filter the frequency of 496GHz with a linewidth of approximately 4GHz and transmission of 27.2 dB above background.The loss at resonant frequency is less than 1dB considering the thickness and roughness of gold layer required by the MEMS process.The channel drop efficiency is 84%.

  16. Method And System For Examining Biological Materials Using Low Power Cw Excitation Raman Spectroscopy.

    DOEpatents

    Alfano, Robert R.; Wang, Wubao

    2003-05-06

    A method and system for examining biological materials using low-power cw excitation Raman spectroscopy. A low-power continuous wave (cw) pump laser beam and a low-power cw Stokes (or anti-Stokes) probe laser beam simultaneously illuminate a biological material and traverse the biological material in collinearity. The pump beam, whose frequency is varied, is used to induce Raman emission from the biological material. The intensity of the probe beam, whose frequency is kept constant, is monitored as it leaves the biological material. When the difference between the pump and probe excitation frequencies is equal to a Raman vibrational mode frequency of the biological material, the weak probe signal becomes amplified by one or more orders of magnitude (typically up to about 10.sup.4 -10.sup.6) due to the Raman emission from the pump beam. In this manner, by monitoring the intensity of the probe beam emitted from the biological material as the pump beam is varied in frequency, one can obtain an excitation Raman spectrum for the biological material tested. The present invention may be applied to in the in vivo and/or in vitro diagnosis of diabetes, heart disease, hepatitis, cancers and other diseases by measuring the characteristic excitation Raman lines of blood glucose, cholesterol, serum glutamic oxalacetic transaminase (SGOT)/serum glutamic pyruvic transaminase (SGPT), tissues and other corresponding Raman-active body constituents, respectively.

  17. Velocity Spectrum Variation in Central Gulf of Mexico: 9Case Studies for the 2005 Hurricanes

    NASA Astrophysics Data System (ADS)

    Zhang, F.; Li, C.

    2012-12-01

    Significant near inertial oscillation caused by hurricanes is common in the ocean. The details of the vertical and temporal variations of hurricane induced near inertial oscillation are usually complicated. We have done a case study of such vertical and temporal variations of velocity spectrum focusing around the inertial frequency for the 2005 hurricane season. Data were from a deep water mooring chain containing a series of current meters and 2 ADCPs from June to November 2005. The velocity spectrum is obtained with a 10-day sliding window at different depths for the 40-hour high-passed data to exclude the low frequency Loop Current variations. This gives a temporal variation of the spectrum at different depths. Such variations in velocity spectrum are resulted from the ocean dynamics influenced by the passage of hurricanes. Our preliminary analysis of the results show that (1) right before the center of the hurricane gets closest to the mooring site, there always exists a 2-peak feature of energy at almost all depths; while during the passage of the hurricane these two peaks will merge Into one peak which has a corresponding period of 30.3 to 25.6 hours, encompassing that corresponding to the inertial frequency in this latitude; (2) after the passage of the hurricane, the decay process of energy is also complicated. It is found that the whole profile can be at least divided into 3 layers: surface to 800m, 800m to 1500m, and 1500m to the bottom, which is consistent with the stratification of the water column. It is also found that shift in the peak frequency to either side of the inertial frequency is very common. The main peak of energy can break into several parts during the decay stage, with blue shift and red shift.; ;

  18. 2D DOST based local phase pattern for face recognition

    NASA Astrophysics Data System (ADS)

    Moniruzzaman, Md.; Alam, Mohammad S.

    2017-05-01

    A new two dimensional (2-D) Discrete Orthogonal Stcokwell Transform (DOST) based Local Phase Pattern (LPP) technique has been proposed for efficient face recognition. The proposed technique uses 2-D DOST as preliminary preprocessing and local phase pattern to form robust feature signature which can effectively accommodate various 3D facial distortions and illumination variations. The S-transform, is an extension of the ideas of the continuous wavelet transform (CWT), is also known for its local spectral phase properties in time-frequency representation (TFR). It provides a frequency dependent resolution of the time-frequency space and absolutely referenced local phase information while maintaining a direct relationship with the Fourier spectrum which is unique in TFR. After utilizing 2-D Stransform as the preprocessing and build local phase pattern from extracted phase information yield fast and efficient technique for face recognition. The proposed technique shows better correlation discrimination compared to alternate pattern recognition techniques such as wavelet or Gabor based face recognition. The performance of the proposed method has been tested using the Yale and extended Yale facial database under different environments such as illumination variation and 3D changes in facial expressions. Test results show that the proposed technique yields better performance compared to alternate time-frequency representation (TFR) based face recognition techniques.

  19. A new insight into the dependence of relaxation time on frequency in viscoelastic surfactant solutions: From experimental to modeling study.

    PubMed

    García, Brayan F; Saraji, Soheil

    2018-05-01

    The relaxation time in viscoelastic surfactant solutions is a function of temperature, salt/surfactant concentrations, resting conditions, as well as shear frequency. The simplistic assumption of a single and constant relaxation time is not representative of all relaxation modes in these solutions especially at high frequencies. Steady-state and oscillatory measurements are carried out to study the effects of high temperature, concentration and resting condition on the rheology of surfactants/salt mixtures including a non-ionic and a zwitterionic/anionic surfactant system. Furthermore, a novel semi-empirical rheological model is deducted based on Cates theory.This model introduces, for the first time, a frequency-dependence for the continuous relaxation time spectrum. At high temperatures, the non-ionic surfactant become more viscoelastic and the zwitterionic/anionic system loses its viscoelasticity. The addition of surfactant/salt improves the viscoelasticity of both systems, and, for the zwitterionic/anionic mixture, increasing the resting temperature improves its viscoelasticity. In addition, the proposed model significantly improves predictions of traditional Maxwell model for different viscoelastic surfactant solutions (using data from this study and the literature) for a considerable range of surfactant and salt combinations at a wide range of temperature. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. The spectra of rectangular lattices of quantum waveguides

    NASA Astrophysics Data System (ADS)

    Nazarov, S. A.

    2017-02-01

    We obtain asymptotic formulae for the spectral segments of a thin (h\\ll 1) rectangular lattice of quantum waveguides which is described by a Dirichlet problem for the Laplacian. We establish that the structure of the spectrum of the lattice is incorrectly described by the commonly accepted quantum graph model with the traditional Kirchhoff conditions at the vertices. It turns out that the lengths of the spectral segments are infinitesimals of order O(e-δ/h), δ> 0, and O(h) as h\\to+0, and gaps of width O(h-2) and O(1) arise between them in the low- frequency and middle- frequency spectral ranges respectively. The first spectral segment is generated by the (unique) eigenvalue in the discrete spectrum of an infinite cross-shaped waveguide \\Theta. The absence of bounded solutions of the problem in \\Theta at the threshold frequency means that the correct model of the lattice is a graph with Dirichlet conditions at the vertices which splits into two infinite subsets of identical edges- intervals. By using perturbations of finitely many joints, we construct any given number of discrete spectrum points of the lattice below the essential spectrum as well as inside the gaps.

  1. COHERENT EVENTS AND SPECTRAL SHAPE AT ION KINETIC SCALES IN THE FAST SOLAR WIND TURBULENCE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lion, Sonny; Alexandrova, Olga; Zaslavsky, Arnaud, E-mail: sonny.lion@obspm.fr

    2016-06-10

    In this paper we investigate spectral and phase coherence properties of magnetic fluctuations in the vicinity of the spectral transition from large, magnetohydrodynamic to sub-ion scales using in situ measurements of the Wind spacecraft in a fast stream. For the time interval investigated by Leamon et al. (1998) the phase coherence analysis shows the presence of sporadic quasi-parallel Alfvén ion cyclotron (AIC) waves as well as coherent structures in the form of large-amplitude, quasi-perpendicular Alfvén vortex-like structures and current sheets. These waves and structures importantly contribute to the observed power spectrum of magnetic fluctuations around ion scales; AIC waves contributemore » to the spectrum in a narrow frequency range whereas the coherent structures contribute to the spectrum over a wide frequency band from the inertial range to the sub-ion frequency range. We conclude that a particular combination of waves and coherent structures determines the spectral shape of the magnetic field spectrum around ion scales. This phenomenon provides a possible explanation for a high variability of the magnetic power spectra around ion scales observed in the solar wind.« less

  2. Performance Analysis of Control Signal Transmission Technique for Cognitive Radios in Dynamic Spectrum Access Networks

    NASA Astrophysics Data System (ADS)

    Sakata, Ren; Tomioka, Tazuko; Kobayashi, Takahiro

    When cognitive radio (CR) systems dynamically use the frequency band, a control signal is necessary to indicate which carrier frequencies are currently available in the network. In order to keep efficient spectrum utilization, this control signal also should be transmitted based on the channel conditions. If transmitters dynamically select carrier frequencies, receivers have to receive control signals without knowledge of their carrier frequencies. To enable such transmission and reception, this paper proposes a novel scheme called DCPT (Differential Code Parallel Transmission). With DCPT, receivers can receive low-rate information with no knowledge of the carrier frequencies. The transmitter transmits two signals whose carrier frequencies are spaced by a predefined value. The absolute values of the carrier frequencies can be varied. When the receiver acquires the DCPT signal, it multiplies the signal by a frequency-shifted version of the signal; this yields a DC component that represents the data signal which is then demodulated. The performance was evaluated by means of numerical analysis and computer simulation. We confirmed that DCPT operates successfully even under severe interference if its parameters are appropriately configured.

  3. Reflectance spectrum of plasmon waveguide interband cascade lasers and observation of the Berreman effect

    NASA Astrophysics Data System (ADS)

    Hinkey, Robert T.; Tian, Zhaobing; Yang, Rui Q.; Mishima, Tetsuya D.; Santos, Michael B.

    2011-08-01

    Noninvasive infrared reflectance measurements have been explored as a method for studying the optical properties of Si-doped cladding layers of plasmon waveguide interband cascade lasers. Measurements and theoretical simulations of the reflectance spectra were carried out on both the laser structures themselves, as well as highly doped InAs films grown on GaAs substrates. We have found that there is a sharp drop in the signal of the reflectance spectrum for p-polarized light oscillating near the plasma frequency. This is a manifestation of the so-called Berreman effect, which occurs at frequencies where the dielectric function approaches zero. This is distinct from the plasma edge feature seen in the reflectance spectrum of thick samples. The plasma frequencies of the highly doped layers were obtained by identifying the Berreman feature in the measured spectrum and fitting the spectrum to a modeled curve. Using a model for the effective mass, we were able to obtain measurements of the conduction electron concentration (in a range from 1018 to 1019 cm-3) in the waveguide cladding layers with values that were in good agreement with those found using Hall effect and SIMS measurements. The reflectance data was effectively used to achieve better calibration of the Si-doping during the growth of the n++-type InAs layers in the plasmon waveguide laser structures.

  4. Brillouin Light Scattering from Magnetic Excitations in Superparamagnetic and Ferromagnetic Co-Al-O Granular Films

    NASA Astrophysics Data System (ADS)

    Yoshihara, Akira; Maeda, Toshiteru; Kawamura, Satoshi; Nakamura, Shintaro; Nojima, Tsutomu; Takeda, Yoshihiko; Ohnuma, Shigehiro

    2018-04-01

    A systematic study of Brillouin light scattering (BLS) from superparamagnetic (SPM) and ferromagnetic (FM) Co-Al-O granular films was performed under magnetic fields of up to 4.6 kOe in the standard backscattering geometry at room temperature. The SPM and FM boundary, defined as the Co composition at which the exchange field vanishes, was found to be located at xC(Co) = 59.3 ± 1.3 at. %. From FM films we observed a pair of bulk spin-wave peaks on both the positive- and negative-frequency sides and a surface localized Damon-Eshbach peak only on the positive-frequency side under the present scattering conditions. From SPM films, a pair of broader but propagative excitation peaks with asymmetric intensity were observed on both frequency sides in a spectrum. We performed a numerical analysis of the BLS spectrum by employing the theory developed by Camley and Mills (CM) while retaining dipole and exchange couplings for FM films and only dipole coupling for SPM films. The CM theory successfully reproduced the observed spectrum for both SPM and FM films. The SPM spectrum exhibits a singlet-doublet peak structure similarly to an FM SW spectrum. The SPM peak stems from the dipole-coupled larger-amplitude precession motion of the granule magnetic moment around the external-field-induced magnetization.

  5. 76 FR 18652 - Revision to the Manual of Regulations and Procedures for Federal Radio Frequency Management

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-05

    ... Office of Spectrum Management, 1401 Constitution Avenue, NW., Room 1087, Washington, DC 20230. FOR... effect, is available in the Office of Spectrum Management, 1401 Constitution Avenue, NW., Room 1087...

  6. 75 FR 54790 - Revision to the Manual of Regulations and Procedures for Federal Radio Frequency Management

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-09

    ... Office of Spectrum Management, 1401 Constitution Avenue, NW., Room 1087, Washington, DC 20230. FOR... effect, is available in the Office of Spectrum Management, 1401 Constitution Avenue, NW., Room 1087...

  7. Broadband Spectral Modeling of the Extreme Gigahertz-peaked Spectrum Radio Source PKS B0008-421

    NASA Astrophysics Data System (ADS)

    Callingham, J. R.; Gaensler, B. M.; Ekers, R. D.; Tingay, S. J.; Wayth, R. B.; Morgan, J.; Bernardi, G.; Bell, M. E.; Bhat, R.; Bowman, J. D.; Briggs, F.; Cappallo, R. J.; Deshpande, A. A.; Ewall-Wice, A.; Feng, L.; Greenhill, L. J.; Hazelton, B. J.; Hindson, L.; Hurley-Walker, N.; Jacobs, D. C.; Johnston-Hollitt, M.; Kaplan, D. L.; Kudrayvtseva, N.; Lenc, E.; Lonsdale, C. J.; McKinley, B.; McWhirter, S. R.; Mitchell, D. A.; Morales, M. F.; Morgan, E.; Oberoi, D.; Offringa, A. R.; Ord, S. M.; Pindor, B.; Prabu, T.; Procopio, P.; Riding, J.; Srivani, K. S.; Subrahmanyan, R.; Udaya Shankar, N.; Webster, R. L.; Williams, A.; Williams, C. L.

    2015-08-01

    We present broadband observations and spectral modeling of PKS B0008-421 and identify it as an extreme gigahertz-peaked spectrum (GPS) source. PKS B0008-421 is characterized by the steepest known spectral slope below the turnover, close to the theoretical limit of synchrotron self-absorption, and the smallest known spectral width of any GPS source. Spectral coverage of the source spans from 0.118 to 22 GHz, which includes data from the Murchison Widefield Array and the wide bandpass receivers on the Australia Telescope Compact Array. We have implemented a Bayesian inference model fitting routine to fit the data with internal free-free absorption (FFA), single- and double-component FFA in an external homogeneous medium, FFA in an external inhomogeneous medium, or single- and double-component synchrotron self-absorption models, all with and without a high-frequency exponential break. We find that without the inclusion of a high-frequency break these models cannot accurately fit the data, with significant deviations above and below the peak in the radio spectrum. The addition of a high-frequency break provides acceptable spectral fits for the inhomogeneous FFA and double-component synchrotron self-absorption models, with the inhomogeneous FFA model statistically favored. The requirement of a high-frequency spectral break implies that the source has ceased injecting fresh particles. Additional support for the inhomogeneous FFA model as being responsible for the turnover in the spectrum is given by the consistency between the physical parameters derived from the model fit and the implications of the exponential spectral break, such as the necessity of the source being surrounded by a dense ambient medium to maintain the peak frequency near the gigahertz region. This implies that PKS B0008-421 should display an internal H i column density greater than 1020 cm-2. The discovery of PKS B0008-421 suggests that the next generation of low radio frequency surveys could reveal a large population of GPS sources that have ceased activity, and that a portion of the ultra-steep-spectrum source population could be composed of these GPS sources in a relic phase.

  8. Experimental study of the thermal-acoustic efficiency in a long turbulent diffusion-flame burner

    NASA Technical Reports Server (NTRS)

    Mahan, J. R.

    1983-01-01

    A two-year study of noise production in a long tubular burner is described. The research was motivated by an interest in understanding and eventually reducing core noise in gas turbine engines. The general approach is to employ an acoustic source/propagation model to interpret the sound pressure spectrum in the acoustic far field of the burner in terms of the source spectrum that must have produced it. In the model the sources are assumed to be due uniquely to the unsteady component of combustion heat release; thus only direct combustion-noise is considered. The source spectrum is then the variation with frequency of the thermal-acoustic efficiency, defined as the fraction of combustion heat release which is converted into acoustic energy at a given frequency. The thrust of the research was to study the variation of the source spectrum with the design and operating parameters of the burner.

  9. Fusion of multi-spectral and panchromatic images based on 2D-PWVD and SSIM

    NASA Astrophysics Data System (ADS)

    Tan, Dongjie; Liu, Yi; Hou, Ruonan; Xue, Bindang

    2016-03-01

    A combined method using 2D pseudo Wigner-Ville distribution (2D-PWVD) and structural similarity(SSIM) index is proposed for fusion of low resolution multi-spectral (MS) image and high resolution panchromatic (PAN) image. First, the intensity component of multi-spectral image is extracted with generalized IHS transform. Then, the spectrum diagrams of the intensity components of multi-spectral image and panchromatic image are obtained with 2D-PWVD. Different fusion rules are designed for different frequency information of the spectrum diagrams. SSIM index is used to evaluate the high frequency information of the spectrum diagrams for assigning the weights in the fusion processing adaptively. After the new spectrum diagram is achieved according to the fusion rule, the final fusion image can be obtained by inverse 2D-PWVD and inverse GIHS transform. Experimental results show that, the proposed method can obtain high quality fusion images.

  10. Mutational jackpot events generate effective frequency-dependent selection in adapting populations

    NASA Astrophysics Data System (ADS)

    Hallatschek, Oskar

    The site-frequency spectrum is one the most easily measurable quantities that characterize the genetic diversity of a population. While most neutral models predict that site frequency spectra should decay with increasing frequency, a high-frequency uptick has been reported in many populations. Anomalies in the high-frequency tail are particularly unsettling because the highest frequencies can be measured with greatest accuracy. Here, we show that an uptick in the spectrum of neutral mutations generally arises when mutant frequencies are dominated by rare jackpot events, mutational events with large descendant numbers. This leads to an effective pattern of frequency-dependent selection (or unstable internal equilibrium at one half frequency) that causes an accumulation of high-frequency polymorphic sites. We reproduce the known uptick occurring for recurrent hitchhiking (genetic draft) as well as rapid adaptation, and (in the future) generalize the shape of the high-frequency tail to other scenarios that are dominated by jackpot events, such as frequent range expansions. We also tackle (in the future) the inverse approach to use the high-frequency uptick for learning about the tail of the offspring number distribution. Positively selected alleles need to surpass, typically, an u NSF Career Award (PoLS), NIH NIGMS R01, Simons Foundation.

  11. Terahertz Josephson spectral analysis and its applications

    NASA Astrophysics Data System (ADS)

    Snezhko, A. V.; Gundareva, I. I.; Lyatti, M. V.; Volkov, O. Y.; Pavlovskiy, V. V.; Poppe, U.; Divin, Y. Y.

    2017-04-01

    Principles of Hilbert-transform spectral analysis (HTSA) are presented and advantages of the technique in the terahertz (THz) frequency range are discussed. THz HTSA requires Josephson junctions with high values of characteristic voltages I c R n and dynamics described by a simple resistively shunted junction (RSJ) model. To meet these requirements, [001]- and [100]-tilt YBa2Cu3O7-x bicrystal junctions with deviations from the RSJ model less than 1% have been developed. Demonstrators of Hilbert-transform spectrum analyzers with various cryogenic environments, including integration into Stirling coolers, are described. Spectrum analyzers have been characterized in the spectral range from 50 GHz to 3 THz. Inside a power dynamic range of five orders, an instrumental function of the analyzers has been found to have a Lorentz form around a single frequency of 1.48 THz with a spectral resolution as low as 0.9 GHz. Spectra of THz radiation from optically pumped gas lasers and semiconductor frequency multipliers have been studied with these spectrum analyzers and the regimes of these radiation sources were optimized for a single-frequency operation. Future applications of HTSA will be related with quick and precise spectral characterization of new radiation sources and identification of substances in the THz frequency range.

  12. Non-Destructive Evaluation of Depth of Surface Cracks Using Ultrasonic Frequency Analysis

    PubMed Central

    Her, Shiuh-Chuan; Lin, Sheng-Tung

    2014-01-01

    Ultrasonic is one of the most common uses of a non-destructive evaluation method for crack detection and characterization. The effectiveness of the acoustic-ultrasound Structural Health Monitoring (SHM) technique for the determination of the depth of the surface crack was presented. A method for ultrasonic sizing of surface cracks combined with the time domain and frequency spectrum was adopted. The ultrasonic frequency spectrum was obtained by Fourier transform technique. A series of test specimens with various depths of surface crack ranging from 1 mm to 8 mm was fabricated. The depth of the surface crack was evaluated using the pulse-echo technique. In this work, three different longitudinal waves with frequencies of 2.25 MHz, 5 MHz and 10 MHz were employed to investigate the effect of frequency on the sizing detection of surface cracks. Reasonable accuracies were achieved with measurement errors less than 7%. PMID:25225875

  13. The spectrum of the geoid from altimeter data

    NASA Technical Reports Server (NTRS)

    Wagner, C. A.

    1977-01-01

    A variety of sources of detailed information has been analyzed to arrive at a geoid power spectrum from global altimeter data. Using the equivalent of only two revolutions of data (mostly from GEOS-3) from all the major oceans, the high frequency geoid power (rms) is estimated (most simply) to be 80.7 n to the minus 1.47th power meters, where n is in cycles/global revolutions. This law is valid for all frequencies above 19 cycles but includes sea state. The (simple) law has more power than predicted by Kaula's rule for the geopotential. However, the data shows significantly less power for frequencies below 100 cycles. A closer approximation to the altimetry accumulates 2.18m (rss) for all frequencies higher than 19 cycles/rev. (including sea state), somewhat less power than predicted by the rule. The data permits up to 1.25 (rms) non-gravitational departures from the high frequency marine geoid.

  14. An Analysis of the High Frequency Vibrations in Early Thematic Mapper Scenes

    NASA Technical Reports Server (NTRS)

    Kogut, J.; Larduinat, E.

    1984-01-01

    The potential effects of high frequency vibrations on the final Thematic Mapper (TM) image are evaluated for 26 scenes. The angular displacements of the TM detectors from their nominal pointing directions as measured by the TM Angular Displacement Sensor (ADS) and the spacecraft Dry Rotor Inertial Reference Unit (DRIRU) give data on the along scan and cross scan high frequency vibrations present in each scan of a scene. These measurements are to find the maximum overlap and underlap between successive scans, and to analyze the spectrum of the high frequency vibrations acting on the detectors. The Fourier spectrum of the along scan and cross scan vibrations for each scene also evaluated. The spectra of the scenes examined indicate that the high frequency vibrations arise primarily from the motion of the TM and MSS mirrors, and that their amplitudes are well within expected ranges.

  15. Frequency Domain Analysis of Multiwavelength Photoacoustic Signals for Differentiating Tissue Components

    NASA Astrophysics Data System (ADS)

    Jian, X. H.; Dong, F. L.; Xu, J.; Li, Z. J.; Jiao, Y.; Cui, Y. Y.

    2018-05-01

    The feasibility of differentiating tissue components by performing frequency domain analysis of photoacoustic images acquired at different wavelengths was studied in this paper. Firstly, according to the basic theory of photoacoustic imaging, a brief theoretical model for frequency domain analysis of multiwavelength photoacoustic signal was deduced. The experiment results proved that the performance of different targets in frequency domain is quite different. Especially, the acoustic spectrum characteristic peaks of different targets are unique, which are 2.93 MHz, 5.37 MHz, 6.83 MHz, and 8.78 MHz for PDMS phantom, while 13.20 MHz, 16.60 MHz, 26.86 MHz, and 29.30 MHz for pork fat. The results indicated that the acoustic spectrum of photoacoustic imaging signals is possible to be utilized for tissue composition characterization.

  16. Numerical calculations of spectral turnover and synchrotron self-absorption in CSS and GPS radio sources

    NASA Astrophysics Data System (ADS)

    Jeyakumar, S.

    2016-06-01

    The dependence of the turnover frequency on the linear size is presented for a sample of Giga-hertz Peaked Spectrum and Compact Steep Spectrum radio sources derived from complete samples. The dependence of the luminosity of the emission at the peak frequency with the linear size and the peak frequency is also presented for the galaxies in the sample. The luminosity of the smaller sources evolve strongly with the linear size. Optical depth effects have been included to the 3D model for the radio source of Kaiser to study the spectral turnover. Using this model, the observed trend can be explained by synchrotron self-absorption. The observed trend in the peak-frequency-linear-size plane is not affected by the luminosity evolution of the sources.

  17. Estimation of Scatterer Diameter by Normalized Power Spectrum of High-Frequency Ultrasonic RF Echo for Assessment of Red Blood Cell Aggregation

    NASA Astrophysics Data System (ADS)

    Fukushima, Taku; Hasegawa, Hideyuki; Kanai, Hiroshi

    2011-07-01

    Red blood cell (RBC) aggregation, as one of the determinants of blood viscosity, plays an important role in blood rheology, including the condition of blood. RBC aggregation is induced by the adhesion of RBCs when the electrostatic repulsion between RBCs weakens owing to increases in protein and saturated fatty acid levels in blood, excessive RBC aggregation leads to various circulatory diseases. This study was conducted to establish a noninvasive quantitative method for assessment of RBC aggregation. The power spectrum of ultrasonic RF echoes from nonaggregating RBCs, which shows the frequency property of scattering, exhibits Rayleigh behavior. On the other hand, ultrasonic RF echoes from aggregating RBCs contain the components of reflection, which have no frequency dependence. By dividing the measured power spectrum of echoes from RBCs in the lumen by that of echoes from a posterior wall of the vein in the dorsum manus, the attenuation property of the propagating medium and the frequency responses of transmitting and receiving transducers are removed from the former spectrum. RBC aggregation was assessed by the diameter of a scatterer, which was estimated by minimizing the square difference between the measured normalized power spectrum and the theoretical power spectrum. In this study, spherical scatterers with diameters of 5, 11, 15, and 30 µm were measured in basic experiments. The estimated scatterer diameters were close to the actual diameters. Furthermore, the transient change of the scatterer diameters were measured in an in vivo experiment with respect to a 24-year-old healthy male during the avascularization using a cuff. The estimated diameters (12-22 µm) of RBCs during avascularization were larger than the diameters (4-8 µm) at rest and after recirculation. These results show the possibility of the use of the proposed method for noninvasive assessment of RBC aggregation.

  18. W-Band Frequency-Swept EPR

    PubMed Central

    Hyde, James S.; Strangeway, Robert A.; Camenisch, Theodore G.; Ratke, Joseph J.; Froncisz, Wojciech

    2010-01-01

    This paper describes a novel experiment on nitroxide radical spin labels using a multiarm EPR W-band bridge with a loop-gap resonator (LGR). We demonstrate EPR spectroscopy of spin labels by linear sweep of the microwave frequency across the spectrum. The high bandwidth of the LGR, about 1 GHz between 3 dB points of the microwave resonance, makes this new experiment possible. A frequency-tunable yttrium iron garnet (YIG) oscillator provides sweep rates as high as 1.8 × 105 GHz/s, which corresponds to 6.3 kT/s in magnetic field-sweep units over a 44 MHz range. Two experimental domains were identified. In the first, linear frequency sweep rates were relatively slow, and pure absorption and pure dispersion spectra were obtained. This appears to be a practical mode of operation at the present level of technological development. The main advantage is the elimination of sinusoidal magnetic field modulation. In the second mode, the frequency is swept rapidly across a portion of the spectrum, and then the frequency sweep is stopped for a readout period; FID signals from a swept line oscillate at a frequency that is the difference between the spectral position of the line in frequency units and the readout position. If there is more than one line, oscillations are superimposed. The sweep rates using the YIG oscillator were too slow, and the portion of the spectrum too narrow to achieve the full EPR equivalent of Fourier transform (FT) NMR. The paper discusses technical advances required to reach this goal. The hypothesis that trapezoidal frequency sweep is an enabling technology for FT EPR is supported by this study. PMID:20462775

  19. Gapped fermionic spectrum from a domain wall in seven dimension

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, Subir; Rai, Nishal

    2018-05-01

    We obtain a domain wall solution in maximally gauged seven dimensional supergravity, which interpolates between two AdS spaces and spontaneously breaks a U (1) symmetry. We analyse frequency dependence of conductivity and find power law behaviour at low frequency. We consider certain fermions of supergravity in the background of this domain wall and compute holographic spectral function of the operators in the dual six dimensional theory. We find fermionic operators involving bosons with non-zero expectation value lead to gapped spectrum.

  20. Cross-phase-modulation-induced instability in photonic-crystal fibers.

    PubMed

    Serebryannikov, E E; Konorov, S O; Ivanov, A A; Alfimov, M V; Scalora, M; Zheltikov, A M

    2005-08-01

    Cross-phase-modulation-induced instability is identified as a significant mechanism for efficient parametric four-wave-mixing frequency conversion in photonic-crystal fibers. Fundamental-wavelength femtosecond pulses of a Cr, forsterite laser are used in our experiments to transform the spectrum of copropagating second-harmonic pulses of the same laser in a photonic-crystal fiber. Efficient generation of sidebands shifted by more than 80 THz with respect to the central frequency of the second harmonic is observed in the output spectrum of the probe field.

Top