Sample records for continuous glucose reading

  1. THE INCIDENCE OF HYPERGLYCAEMIA IN VERY LOW BIRTH WEIGHT PRETERM NEWBORNS. RESULTS OF A CONTINUOUS GLUCOSE MONITORING STUDY--PRELIMINARY REPORT.

    PubMed

    Szymońska, Izabela; Jagła, Mateusz; Starzec, Katarzyna; Hrnciar, Katarzyna; Kwinta, Przemko

    2015-01-01

    To determine the incidence of hyperglycaemia in very low birth weight preterm newborns. To assess risk factors in hyperglycemia and outcome in groups of children with and without clinically significant hyperglycaemia. The prospective study included newborns with very low birth weight in whom the continuous glucose monitoring system was used for glucose measurements. A standardized hyperglycaemia treatment schedule was implemented and a uniform nutrition strategy introduced. The patients were divided into groups: group A--patients with under 5% of the readings over 150 mg/dL of glucose (control group), group B--patients with more than 5% of the readings over 150 mg/dL of glucose and under 5% of the readings over 180 mg/dL of glucose (mild hyperglycaemia), and group C--patients with over 5% of the readings > 180 mg/dL or on insulin treatment (moderate or severe hyperglycaemia). 63 patients were included in the study. Their mean gestational age was 27.7 weeks (SD:2.4), the mean birth weight was 1059g (SD: 262 g). Hyperglycaemia was detected in 27 (42.9%), including mild hyperglycaemia in 19 (30.2%), and moderate or severe hyperglycaemia in 8 (12.7%) neonates. Lower gestational age (p = 0.02) and higher CRIB IIscore (p < 0.01) were positively associated with hyperglycaemia. Early-onset sepsis (p < 0.01) was associated with higher glucose levels as well. A significantly higher mortality rate on the 28th day of life (p = 0.02), depending on the severity of hyperglycemia, was noted. No adverse effects related to the continuous glucose monitoring system were observed. The study confirmed the usefulness and safety of the continuous glucose monitoring system in VLBW neonates. A continuous glucose monitoring system should be used in neonatal intensive care units as a standard method.

  2. Susceptibility of interstitial continuous glucose monitor performance to sleeping position.

    PubMed

    Mensh, Brett D; Wisniewski, Natalie A; Neil, Brian M; Burnett, Daniel R

    2013-07-01

    Developing a round-the-clock artificial pancreas requires accurate and stable continuous glucose monitoring. The most widely used continuous glucose monitors (CGMs) are percutaneous, with the sensor residing in the interstitial space. Inaccuracies in percutaneous CGM readings during periods of lying on the devices (e.g., in various sleeping positions) have been anecdotally reported but not systematically studied. In order to assess the impact of sleep and sleep position on CGM performance, we conducted a study in human subjects in which we measured the variability of interstitial CGM data at night as a function of sleeping position. Commercially available sensors were placed for 4 days in the abdominal subcutaneous tissue in healthy, nondiabetic volunteers (four sensors per person, two per side). Nocturnal sleeping position was determined from video recordings and correlated to sensor data. We observed that, although the median of the four sensor readings was typically 70-110 mg/dl during sleep, individual sensors intermittently exhibited aberrant glucose readings (>25 mg/dl away from median) and that these aberrant readings were strongly correlated with subjects lying on the sensors. We expected and observed that most of these aberrant sleep-position-related CGM readings were sudden decreases in reported glucose values, presumably due to local blood-flow decreases caused by tissue compression. Curiously, in rare cases, the aberrant CGM readings were elevated values. These findings highlight limitations in our understanding of interstitial fluid physiology in the subcutaneous space and have significant implications for the utilization of sensors in the construction of an artificial pancreas. © 2013 Diabetes Technology Society.

  3. Design, development, and evaluation of a novel microneedle array-based continuous glucose monitor.

    PubMed

    Jina, Arvind; Tierney, Michael J; Tamada, Janet A; McGill, Scott; Desai, Shashi; Chua, Beelee; Chang, Anna; Christiansen, Mark

    2014-05-01

    The development of accurate, minimally invasive continuous glucose monitoring (CGM) devices has been the subject of much work by several groups, as it is believed that a less invasive and more user-friendly device will result in greater adoption of CGM by persons with insulin-dependent diabetes. This article presents the results of preliminary clinical studies in subjects with diabetes of a novel prototype microneedle-based continuous glucose monitor. In this device, an array of tiny hollow microneedles is applied into the epidermis from where glucose in interstitial fluid (ISF) is transported via passive diffusion to an amperometric glucose sensor external to the body. Comparison of 1396 paired device glucose measurements and fingerstick blood glucose readings for up to 72-hour wear in 10 diabetic subjects shows the device to be accurate and well tolerated by the subjects. Overall mean absolute relative difference (MARD) is 15% with 98.4% of paired points in the A+B region of the Clarke error grid. The prototype device has demonstrated clinically accurate glucose readings over 72 hours, the first time a microneedle-based device has achieved such performance. © 2014 Diabetes Technology Society.

  4. Consistency of Continuous Ambulatory Interstitial Glucose Monitoring Sensors.

    PubMed

    Wu, Pei T; Segovia, David E; Lee, Cathy C; Nguyen, Kim-Lien

    2018-05-16

    The abdominal region is the most common location for continuous glucose monitor (CGM) sensor insertion. However, a paucity of post-marketing data is available to demonstrate intra-individual consistency of CGM readings at different abdominal insertion sites. Healthy adults (fasting glucose (FG) < 5.5 mmol/L; BMI < 30 kg/m²) were recruited and a CGM sensor was placed on each side of the abdomen. Postprandial and continuous 48-h interstitial glucose levels were analyzed. There was no significant difference in the 3-h postprandial glucose (PPG) level derived from the left versus right CGM, which remained non-significant after adjusting for waist circumference or FG. Among the glucose levels recorded over 48-h, values on the left site were greater in 3.6% of the data points ( p < 0.05). After adjusting for waist circumference, only 0.5% of the glucose values remained significantly greater on the left ( p < 0.05). When adjusted for FG, similar results were observed. For both PPG and 48-h readings, the mean absolute relative difference was not significant between the two abdominal sites. CGM-derived glucose measures were highly consistent between the left and right abdomen during both the postprandial and post-absorptive periods.

  5. Continuous glucose monitoring: quality of hypoglycaemia detection.

    PubMed

    Zijlstra, E; Heise, T; Nosek, L; Heinemann, L; Heckermann, S

    2013-02-01

    To evaluate the accuracy of a (widely used) continuous glucose monitoring (CGM)-system and its ability to detect hypoglycaemic events. A total of 18 patients with type 1 diabetes mellitus used continuous glucose monitoring (Guardian REAL-Time CGMS) during two 9-day in-house periods. A hypoglycaemic threshold alarm alerted patients to sensor readings <70 mg/dl. Continuous glucose monitoring sensor readings were compared to laboratory reference measurements taken every 4 h and in case of a hypoglycaemic alarm. A total of 2317 paired data points were evaluated. Overall, the mean absolute relative difference (MARD) was 16.7%. The percentage of data points in the clinically accurate or acceptable Clarke Error Grid zones A + B was 94.6%. In the hypoglycaemic range, accuracy worsened (MARD 38.8%) leading to a failure to detect more than half of the true hypoglycaemic events (sensitivity 37.5%). Furthermore, more than half of the alarms that warn patients for hypoglycaemia were false (false alert rate 53.3%). Above the low alert threshold, the sensor confirmed 2077 of 2182 reference values (specificity 95.2%). Patients using continuous glucose monitoring should be aware of its limitation to accurately detect hypoglycaemia. © 2012 Blackwell Publishing Ltd.

  6. Accuracy of a real-time continuous glucose monitoring system in children with septic shock: A pilot study.

    PubMed

    Prabhudesai, Sumant; Kanjani, Amruta; Bhagat, Isha; Ravikumar, Karnam G; Ramachandran, Bala

    2015-11-01

    The aim of this prospective, observational study was to determine the accuracy of a real-time continuous glucose monitoring system (CGMS) in children with septic shock. Children aged 30 days to 18 years admitted to the Pediatric Intensive Care Unit with septic shock were included. A real-time CGMS sensor was used to obtain interstitial glucose readings. CGMS readings were compared statistically with simultaneous laboratory blood glucose (BG). Nineteen children were included, and 235 pairs of BG-CGMS readings were obtained. BG and CGMS had a correlation coefficient of 0.61 (P < 0.001) and a median relative absolute difference of 17.29%. On Clarke's error grid analysis, 222 (94.5%) readings were in the clinically acceptable zones (A and B). When BG was < 70, 70-180, and > 180 mg/dL, 44%, 100%, and 76.9% readings were in zones A and B, respectively (P < 0.001). The accuracy of CGMS was not affected by the presence of edema, acidosis, vasopressors, steroids, or renal replacement therapy. On receiver operating characteristics curve analysis, a CGMS reading <97 mg/dL predicted hypoglycemia (sensitivity 85.2%, specificity 75%, area under the curve [AUC] =0.85). A reading > 141 mg/dL predicted hyperglycemia (sensitivity 84.6%, specificity 89.6%, AUC = 0.87). CGMS provides a fairly, accurate estimate of BG in children with septic shock. It is unaffected by a variety of clinical variables. The accuracy over extremes of blood sugar may be a concern. We recommend larger studies to evaluate its use for the early detection of hypoglycemia and hyperglycemia.

  7. The accuracy and efficacy of real-time continuous glucose monitoring sensor in Chinese diabetes patients: a multicenter study.

    PubMed

    Zhou, Jian; Lv, Xiaofeng; Mu, Yiming; Wang, Xianling; Li, Jing; Zhang, Xingguang; Wu, Jinxiao; Bao, Yuqian; Jia, Weiping

    2012-08-01

    The purpose of this multicenter study was to investigate the accuracy of a real-time continuous glucose monitoring sensor in Chinese diabetes patients. In total, 48 patients with type 1 or 2 diabetes from three centers in China were included in the study. The MiniMed Paradigm(®) 722 insulin pump (Medtronic, Northridge, CA) was used to monitor the real-time continuous changes of blood glucose levels for three successive days. Venous blood of the subjects was randomly collected every 15 min for seven consecutive hours on the day when the subjects were wearing the sensor. Reference values were provided by the YSI(®) 2300 STAT PLUS™ glucose and lactate analyzer (YSI Life Sciences, Yellow Springs, OH). In total, 1,317 paired YSI-sensor values were collected from the 48 patients. Of the sensor readings, 88.3% (95% confidence interval, 0.84-0.92) were within±20% of the YSI values, and 95.7% were within±30% of the YSI values. Clarke and consensus error grid analyses showed that the ratios of the YSI-sensor values in Zone A to the values in Zone B were 99.1% and 99.9%, respectively. Continuous error grid analysis showed that the ratios of the YSI-sensor values in the region of accurate reading, benign errors, and erroneous reading were 96.4%, 1.8%, and 1.8%, respectively. The mean absolute relative difference (ARD) for all subjects was 10.4%, and the median ARD was 7.8%. Bland-Altman analysis detected a mean blood glucose level of 3.84 mg/dL. Trend analysis revealed that 86.1% of the difference of the rates of change between the YSI values and the sensor readings occurred within the range of 1 mg/dL/min. The Paradigm insulin pump has high accuracy in both monitoring the real-time continuous changes and predicting the trend of changes in blood glucose level. However, actual clinical manifestations should be taken into account for diagnosis of hypoglycemia.

  8. Metabolic Biofouling of Glucose Sensors in Vivo: Role of Tissue Microhemorrhages

    PubMed Central

    Klueh, Ulrike; Liu, Zenghe; Feldman, Ben; Henning, Timothy P; Cho, Brian; Ouyang, Tianmei; Kreutzer, Don

    2011-01-01

    Objective: Based on our in vitro study that demonstrated the adverse effects of blood clots on glucose sensor function, we hypothesized that in vivo local tissue hemorrhages, induced as a consequence of sensor implantation or sensor movement post-implantation, are responsible for unreliable readings or an unexplained loss of functionality shortly after implantation. Research Design and Methods: To investigate this issue, we utilized real-time continuous monitoring of blood glucose levels in a mouse model. Direct injection of blood at the tissue site of sensor implantation was utilized to mimic sensor-induced local tissue hemorrhages. Results: It was found that blood injections, proximal to the sensor, consistently caused lowered sensor glucose readings, designated temporary signal reduction, in vivo in our mouse model, while injections of plasma or saline did not have this effect. Conclusion: These results support our hypothesis that tissue hemorrhage and resulting blood clots near the sensor can result in lowered local blood glucose concentrations due to metabolism of glucose by the clot. The lowered local blood glucose concentration led to low glucose readings from the still functioning sensor that did not reflect the systemic glucose level. PMID:21722574

  9. Numerical and clinical precision of continuous glucose monitoring in Colombian patients treated with insulin infusion pump with automated suspension in hypoglycemia.

    PubMed

    Gómez, Ana M; Marín Sánchez, Alejandro; Muñoz, Oscar M; Colón Peña, Christian Alejandro

    2015-12-01

    Insulin pump therapy associated with continuous glucose monitoring has shown a positive clinical impact on diabetes control and reduction of hypoglycemia episodes. There are descriptions of the performance of this device in other populations, but its precision and accuracy in Colombia and Latin America are unknown, especially in the routine outpatient setting. Data from 33 type 1 and type 2 diabetes patients with sensor-augmented pump therapy with threshold suspend automation, MiniMed Paradigm® Veo™ (Medtronic, Northridge, California), managed at Hospital Universitario San Ignacio (Bogotá, Colombia) and receiving outpatient treatment, were analyzed. Simultaneous data from continuous glucose monitoring and capillary blood glucose were compared, and their precision and accuracy were calculating with different methods, including Clarke error grid. Analyses included 2,262 continuous glucose monitoring -reference paired glucose values. A mean absolute relative difference of 20.1% was found for all measurements, with a value higher than 23% for glucose levels ≤75mg/dL. Global compliance with the ISO criteria was 64.9%. It was higher for values >75mg/dl (68.3%, 1,308 of 1,916 readings), than for those ≤ 75mg/dl (49.4%, 171 of 346 readings). Clinical accuracy, as assessed by the Clarke error grid, showed that 91.77% of data were within the A and B zones (75.6% in hypoglycemia). A good numerical accuracy was found for continuous glucose monitoring in normo and hyperglycemia situations, with low precision in hypoglycemia. The clinical accuracy of the device was adequate, with no significant safety concerns for patients. Copyright © 2015 SEEN. Published by Elsevier España, S.L.U. All rights reserved.

  10. Flash Glucose Monitoring: Differences Between Intermittently Scanned and Continuously Stored Data.

    PubMed

    Pleus, Stefan; Kamecke, Ulrike; Link, Manuela; Haug, Cornelia; Freckmann, Guido

    2018-03-01

    The flash glucose monitoring system FreeStyle Libre (Abbott Diabetes Care Ltd., Witney, UK) measures interstitial glucose concentrations and continuously stores measurement values every 15 minutes. To obtain a current glucose reading, users have to scan the sensor with the reader. In a clinical trial, 5% of the scanned data showed relative differences of more than ±10% compared with continuously stored data points (median -0.5%). Such differences might impact results of studies using this system. It should be indicated whether scanned or continuously stored data were used for analyses. Health care professionals might have to differentiate between data reports from clinical software and the scanned data their patients are provided with. Additional information on these differences and their potential impact on therapeutic decisions would be helpful.

  11. Evaluation of the performance of a novel system for continuous glucose monitoring.

    PubMed

    Zschornack, Eva; Schmid, Christina; Pleus, Stefan; Link, Manuela; Klötzer, Hans-Martin; Obermaier, Karin; Schoemaker, Michael; Strasser, Monika; Frisch, Gerhard; Schmelzeisen-Redeker, Günther; Haug, Cornelia; Freckmann, Guido

    2013-07-01

    The performance of a continuous glucose monitoring (CGM) system in the early stage of development was assessed in an inpatient setting that simulates daily life conditions of people with diabetes. Performance was evaluated at low glycemic, euglycemic, and high glycemic ranges as well as during phases with rapid glucose excursions. Each of the 30 participants with type 1 diabetes (15 female, age 47 ± 12 years, hemoglobin A1c 7.7% ± 1.3%) wore two sensors of the prototype system in parallel for 7 days. Capillary blood samples were measured at least 16 times per day (at least 15 times per daytime and at least once per night). On two subsequent study days, glucose excursions were induced. For performance evaluation, the mean absolute relative difference (MARD) between CGM readings and paired capillary blood glucose readings and precision absolute relative difference (PARD), i.e., differences between paired CGM readings were calculated. Overall aggregated MARD was 9.2% and overall aggregated PARD was 7.5%. During induced glucose excursions, MARD was 10.9% and PARD was 7.8%. Lowest MARD (8.5%) and lowest PARD (6.4%) were observed in the high glycemic range (euglycemic range, MARD 9.1% and PARD 7.4%; low glycemic range, MARD 12.3% and PARD 12.4%). The performance of this prototype CGM system was, particularly in the hypoglycemic range and during phases with rapid glucose fluctuations, better than performance data reported for other commercially available systems. In addition, performance of this prototype sensor was noticeably constant over the whole study period. This prototype system is not yet approved, and performance of this CGM system needs to be further assessed in clinical studies. © 2013 Diabetes Technology Society.

  12. Continuous glucose monitoring system: dawn period calibration does not change accuracy of the method.

    PubMed

    Augusto, Gustavo A; Sousa, André G P; Perazo, Marcela N A; Correa-Giannella, Maria L C; Nery, Marcia; Melo, Karla F S de

    2009-06-01

    Continuous glucose monitoring system is a valuable instrument to measure glycemic control, which uses a retrospective calibration based upon 3 to 4 capillary glucose meter values inserted by the patient each day. We evaluated the interference of calibration during the dawn period in the system accuracy. The monitoring data were retrospectively divided into two groups: with (Group A) or without (Group B) the dawn period calibration (between 1:00 and 5:00 AM). Accuracy of the method was expressed by relative absolute difference. Thirty-four continuous glucose monitoring data were evaluated comprising a total of 112 nights. A total of 289 paired readings were analyzed - 195 in Group A and 94 in Group B. We did not find a difference in relative absolute difference (RAD%) in any analyzed period of day by adding dawn calibration. These data suggest that dawn calibration does not alter accuracy of method.

  13. Alarms based on real-time sensor glucose values alert patients to hypo- and hyperglycemia: the guardian continuous monitoring system.

    PubMed

    Bode, Bruce; Gross, Kenneth; Rikalo, Nancy; Schwartz, Sherwyn; Wahl, Timothy; Page, Casey; Gross, Todd; Mastrototaro, John

    2004-04-01

    The purposes of this study were to demonstrate the accuracy and effectiveness of the Guardian Continuous Monitoring System (Medtronic MiniMed, Northridge, California) and to demonstrate that the application of real-time alarms to continuous monitoring alerts users to hypo and hyperglycemia and reduces excursions in people with diabetes. A total of 71 subjects with type 1 diabetes, mean hemoglobin A1c of 7.6 +/- 1.1%, age 44.0 +/- 11.4 years, and duration of diabetes 23.6 +/- 10.6 years were enrolled in this two-period, randomized, multicenter study. Subjects were randomized into either an Alert group or a Control group. The accuracy of the Guardian was evaluated by treating the study data as a single-sample correlational design. Effectiveness of the Guardian alerts was evaluated by comparing the Alert group with the Control group. The mean (median) absolute relative error between home blood glucose meter readings and sensor values was 21.3% (17.3%), and the Guardian, on average, read 12.8 mg/dL below the concurrent home blood glucose meter readings. The hypoglycemia alert was able to distinguished glucose values < or =70 mg/dL with 67% sensitivity, 90% specificity, and 47% false alerts. The hyperglycemia alert showed a similar ability to detect sensor values > or =250 mg/dL with 63% sensitivity, 97% specificity, and 19% false alerts. The Alert group demonstrated a median decrease in the duration of hypoglycemic excursions (-27.8 min) that was significantly greater than the median decrease in the duration of hypoglycemic excursions in the Control group (-4.5 min) (P = 0.03). A marginally significant increase in the frequency of hyperglycemic excursions (P = 0.07) between Period 1 and Period 2 was accompanied by a decrease of 9.6 min in the duration of hyperglycemic excursions in the Alert group. Glucose measurements differ between blood samples taken from the finger and interstitial fluid, especially when levels are changing rapidly; however, these results demonstrate that the Guardian is reasonably accurate while performing continuous glucose monitoring. The subjects' responses to hypoglycemia alerts resulted in a significant reduction in the duration of hypoglycemic excursions; however, overtreating hypoglycemia may have resulted in a marginally significant increase in the frequency of hyperglycemic excursions.

  14. Glucose Prediction Algorithms from Continuous Monitoring Data: Assessment of Accuracy via Continuous Glucose Error-Grid Analysis.

    PubMed

    Zanderigo, Francesca; Sparacino, Giovanni; Kovatchev, Boris; Cobelli, Claudio

    2007-09-01

    The aim of this article was to use continuous glucose error-grid analysis (CG-EGA) to assess the accuracy of two time-series modeling methodologies recently developed to predict glucose levels ahead of time using continuous glucose monitoring (CGM) data. We considered subcutaneous time series of glucose concentration monitored every 3 minutes for 48 hours by the minimally invasive CGM sensor Glucoday® (Menarini Diagnostics, Florence, Italy) in 28 type 1 diabetic volunteers. Two prediction algorithms, based on first-order polynomial and autoregressive (AR) models, respectively, were considered with prediction horizons of 30 and 45 minutes and forgetting factors (ff) of 0.2, 0.5, and 0.8. CG-EGA was used on the predicted profiles to assess their point and dynamic accuracies using original CGM profiles as reference. Continuous glucose error-grid analysis showed that the accuracy of both prediction algorithms is overall very good and that their performance is similar from a clinical point of view. However, the AR model seems preferable for hypoglycemia prevention. CG-EGA also suggests that, irrespective of the time-series model, the use of ff = 0.8 yields the highest accurate readings in all glucose ranges. For the first time, CG-EGA is proposed as a tool to assess clinically relevant performance of a prediction method separately at hypoglycemia, euglycemia, and hyperglycemia. In particular, we have shown that CG-EGA can be helpful in comparing different prediction algorithms, as well as in optimizing their parameters.

  15. Validation of the continuous glucose monitoring sensor in preterm infants.

    PubMed

    Beardsall, K; Vanhaesebrouck, S; Ogilvy-Stuart, A L; Vanhole, C; VanWeissenbruch, M; Midgley, P; Thio, M; Cornette, L; Ossuetta, I; Palmer, C R; Iglesias, I; de Jong, M; Gill, B; de Zegher, F; Dunger, D B

    2013-03-01

    Recent studies have highlighted the need for improved methods of monitoring glucose control in intensive care to reduce hyperglycaemia, without increasing the risk of hypoglycaemia. Continuous glucose monitoring is increasingly used in children with diabetes, but there are little data regarding its use in the preterm infant, particularly at extremes of glucose levels and over prolonged periods. This study aimed to assess the accuracy of the continuous glucose monitoring sensor (CGMS) across the glucose profile, and to determine whether there was any deterioration over a 7 day period. Prospectively collected CGMS data from the NIRTURE Trial was compared with the data obtained simultaneously using point of care glucose monitors. An international multicentre randomised controlled trial. One hundred and eighty-eight very low birth weight control infants. Optimal accuracy, performance goals (American Diabetes Association consensus), Bland Altman, Error Grid analyses and accuracy. The mean (SD) duration of CGMS recordings was 156.18 (29) h (6.5 days), with a total of 5207 paired glucose levels. CGMS data correlated well with point of care devices (r=0.94), with minimal bias. It met the Clarke Error Grid and Consensus Grid criteria for clinical significance. Accuracy of single readings to detect set thresholds of hypoglycaemia, or hyperglycaemia was poor. There was no deterioration over time from insertion. CGMS can provide information on trends in glucose control, and guidance on the need for blood glucose assessment. This highlights the potential use of CGMS in optimising glucose control in preterm infants.

  16. Use of an intravascular fluorescent continuous glucose sensor in subjects with type 1 diabetes mellitus.

    PubMed

    Romey, Matthew; Jovanovič, Lois; Bevier, Wendy; Markova, Kateryna; Strasma, Paul; Zisser, Howard

    2012-11-01

    Stress hyperglycemia in the critically ill is associated with increased morbidity and mortality. Continuous glucose monitoring offers a solution to the difficulties of dosing intravenous insulin properly to maintain glycemic control. The purpose of this study was to evaluate an intravascular continuous glucose monitoring (IV-CGM) system with a sensing element based on the concept of quenched fluorescence. A second-generation intravascular continuous glucose sensor was evaluated in 13 volunteer subjects with type 1 diabetes mellitus. There were 21 study sessions of up to 24 h in duration. Sensors were inserted into peripheral veins of the upper extremity, up to two sensors per subject per study session. Sensor output was compared with temporally correlated reference measurements obtained from venous samples on a laboratory glucose analyzer. Data were obtained from 23 sensors in 13 study sessions with 942 paired reference values. Fourteen out of 23 sensors (60.9%) had a mean absolute relative difference ≤ 10%. Eighty-nine percent of paired points were in the clinically accurate A zone of the Clarke error grid and met ISO 15197 performance criteria. Adequate venous blood flow was identified as a necessary condition for accuracy when local sensor readings are compared with venous blood glucose. The IV-CGM system was capable of achieving a high level of glucose measurement accuracy. However, superficial peripheral veins may not provide adequate blood flow for reliable indwelling blood glucose monitoring. © 2012 Diabetes Technology Society.

  17. Use of an Intravascular Fluorescent Continuous Glucose Sensor in Subjects with Type 1 Diabetes Mellitus

    PubMed Central

    Romey, Matthew; Jovanovič, Lois; Bevier, Wendy; Markova, Kateryna; Strasma, Paul; Zisser, Howard

    2012-01-01

    Background Stress hyperglycemia in the critically ill is associated with increased morbidity and mortality. Continuous glucose monitoring offers a solution to the difficulties of dosing intravenous insulin properly to maintain glycemic control. The purpose of this study was to evaluate an intravascular continuous glucose monitoring (IV-CGM) system with a sensing element based on the concept of quenched fluorescence. Method A second-generation intravascular continuous glucose sensor was evaluated in 13 volunteer subjects with type 1 diabetes mellitus. There were 21 study sessions of up to 24 h in duration. Sensors were inserted into peripheral veins of the upper extremity, up to two sensors per subject per study session. Sensor output was compared with temporally correlated reference measurements obtained from venous samples on a laboratory glucose analyzer. Results Data were obtained from 23 sensors in 13 study sessions with 942 paired reference values. Fourteen out of 23 sensors (60.9%) had a mean absolute relative difference ≤ 10%. Eighty-nine percent of paired points were in the clinically accurate A zone of the Clarke error grid and met ISO 15197 performance criteria. Adequate venous blood flow was identified as a necessary condition for accuracy when local sensor readings are compared with venous blood glucose. Conclusions The IV-CGM system was capable of achieving a high level of glucose measurement accuracy. However, superficial peripheral veins may not provide adequate blood flow for reliable indwelling blood glucose monitoring. PMID:23294770

  18. Does glycemic variability impact mood and quality of life?

    PubMed

    Penckofer, Sue; Quinn, Lauretta; Byrn, Mary; Ferrans, Carol; Miller, Michael; Strange, Poul

    2012-04-01

    Diabetes is a chronic condition that significantly impacts quality of life. Poor glycemic control is associated with more diabetes complications, depression, and worse quality of life. The impact of glycemic variability on mood and quality of life has not been studied. A descriptive exploratory design was used. Twenty-three women with type 2 diabetes wore a continuous glucose monitoring system for 72 h and completed a series of questionnaires. Measurements included (1) glycemic control shown by glycated hemoglobin and 24-h mean glucose, (2) glycemic variability shown by 24-h SD of the glucose readings, continuous overall net glycemic action (CONGA), and Fourier statistical models to generate smoothed curves to assess rate of change defined as "energy," and (3) mood (depression, anxiety, anger) and quality of life by questionnaires. Women with diabetes and co-morbid depression had higher anxiety, more anger, and lower quality of life than those without depression. Certain glycemic variability measures were associated with mood and quality of life. The 24-h SD of the glucose readings and the CONGA measures were significantly associated with health-related quality of life after adjusting for age and weight. Fourier models indicated that certain energy components were significantly associated with depression, trait anxiety, and overall quality of life. Finally, subjects with higher trait anxiety tended to have steeper glucose excursions. Data suggest that greater glycemic variability may be associated with lower quality of life and negative moods. Implications include replication of the study in a larger sample for the assessment of blood glucose fluctuations as they impact mood and quality of life.

  19. Does Glycemic Variability Impact Mood and Quality of Life?

    PubMed Central

    Quinn, Lauretta; Byrn, Mary; Ferrans, Carol; Miller, Michael; Strange, Poul

    2012-01-01

    Abstract Background Diabetes is a chronic condition that significantly impacts quality of life. Poor glycemic control is associated with more diabetes complications, depression, and worse quality of life. The impact of glycemic variability on mood and quality of life has not been studied. Methods A descriptive exploratory design was used. Twenty-three women with type 2 diabetes wore a continuous glucose monitoring system for 72 h and completed a series of questionnaires. Measurements included (1) glycemic control shown by glycated hemoglobin and 24-h mean glucose, (2) glycemic variability shown by 24-h SD of the glucose readings, continuous overall net glycemic action (CONGA), and Fourier statistical models to generate smoothed curves to assess rate of change defined as “energy,” and (3) mood (depression, anxiety, anger) and quality of life by questionnaires. Results Women with diabetes and co-morbid depression had higher anxiety, more anger, and lower quality of life than those without depression. Certain glycemic variability measures were associated with mood and quality of life. The 24-h SD of the glucose readings and the CONGA measures were significantly associated with health-related quality of life after adjusting for age and weight. Fourier models indicated that certain energy components were significantly associated with depression, trait anxiety, and overall quality of life. Finally, subjects with higher trait anxiety tended to have steeper glucose excursions. Conclusions Data suggest that greater glycemic variability may be associated with lower quality of life and negative moods. Implications include replication of the study in a larger sample for the assessment of blood glucose fluctuations as they impact mood and quality of life. PMID:22324383

  20. Long-term blood glucose monitoring with implanted telemetry device in conscious and stress-free cynomolgus monkeys.

    PubMed

    Wang, B; Sun, G; Qiao, W; Liu, Y; Qiao, J; Ye, W; Wang, H; Wang, X; Lindquist, R; Wang, Y; Xiao, Y-F

    2017-09-01

    Continuous blood glucose monitoring, especially long-term and remote, in diabetic patients or research is very challenging. Nonhuman primate (NHP) is an excellent model for metabolic research, because NHPs can naturally develop Type 2 diabetes mellitus (T2DM) similarly to humans. This study was to investigate blood glucose changes in conscious, moving-free cynomolgus monkeys (Macaca fascicularis) during circadian, meal, stress and drug exposure. Blood glucose, body temperature and physical activities were continuously and simultaneously recorded by implanted HD-XG telemetry device for up to 10 weeks. Blood glucose circadian changes in normoglycemic monkeys significantly differed from that in diabetic animals. Postprandial glucose increase was more obvious after afternoon feeding. Moving a monkey from its housing cage to monkey chair increased blood glucose by 30% in both normoglycemic and diabetic monkeys. Such increase in blood glucose declined to the pre-procedure level in 30 min in normoglycemic animals and >2 h in diabetic monkeys. Oral gavage procedure alone caused hyperglycemia in both normoglycemic and diabetic monkeys. Intravenous injection with the stress hormones, angiotensin II (2 μg/kg) or norepinephrine (0.4 μg/kg), also increased blood glucose level by 30%. The glucose levels measured by the telemetry system correlated significantly well with glucometer readings during glucose tolerance tests (ivGTT or oGTT), insulin tolerance test (ITT), graded glucose infusion (GGI) and clamp. Our data demonstrate that the real-time telemetry method is reliable for monitoring blood glucose remotely and continuously in conscious, stress-free, and moving-free NHPs with the advantages highly valuable to diabetes research and drug discovery.

  1. Comparison of the clinical information provided by the FreeStyle Navigator continuous interstitial glucose monitor versus traditional blood glucose readings.

    PubMed

    McGarraugh, Geoffrey V; Clarke, William L; Kovatchev, Boris P

    2010-05-01

    The purpose of the analysis was to compare the clinical utility of data from traditional self-monitoring of blood glucose (SMBG) to that of continuous glucose monitoring (CGM). A clinical study of the clinical accuracy of the FreeStyle Navigator CGM System (Abbott Diabetes Care, Alameda, CA), which includes SMBG capabilities, was conducted by comparison to the YSI blood glucose analyzer (YSI Inc., Yellow Springs, OH) using 58 subjects with type 1 diabetes. The Continuous Glucose-Error Grid Analysis (CG-EGA) was used as the analytical tool. Using CG-EGA, the "clinically accurate," "benign errors," and "clinical errors" were 86.8%, 8.7%, and 4.5% for SMBG and 92.7%, 3.7%, and 3.6% for CGM, respectively. If blood glucose is viewed as a process in time, SMBG would provide accurate information about this process 86.8% of the time, whereas CGM would provide accurate information about this process 92.7% of the time (P < 0.0001). In the hypoglycemic range, however, SMBG is more accurate as the "clinically accurate," "benign errors," and "clinical errors" were 83.5%, 6.4%, and 10.1% for SMBG and 57.1%, 8.4%, and 34.5% (P < 0.0001) for CGM, respectively. While SMBG produces more accurate instantaneous glucose values than CGM, control of blood glucose involves a system in flux, and CGM provides more detailed insight into the dynamics of that system. In the normal and elevated glucose ranges, the additional information about the direction and rate of glucose change provided by the FreeStyle Navigator CGM System increases the ability to make correct clinical decisions when compared to episodic SMBG tests.

  2. Interstitial Glucose and Physical Exercise in Type 1 Diabetes: Integrative Physiology, Technology, and the Gap In-Between

    PubMed Central

    Moser, Othmar; Yardley, Jane E.; Bracken, Richard M.

    2018-01-01

    Continuous and flash glucose monitoring systems measure interstitial fluid glucose concentrations within a body compartment that is dramatically altered by posture and is responsive to the physiological and metabolic changes that enable exercise performance in individuals with type 1 diabetes. Body fluid redistribution within the interstitial compartment, alterations in interstitial fluid volume, changes in rate and direction of fluid flow between the vasculature, interstitium and lymphatics, as well as alterations in the rate of glucose production and uptake by exercising tissues, make for caution when interpreting device read-outs in a rapidly changing internal environment during acute exercise. We present an understanding of the physiological and metabolic changes taking place with acute exercise and detail the blood and interstitial glucose responses with different forms of exercise, namely sustained endurance, high-intensity, and strength exercises in individuals with type 1 diabetes. Further, we detail novel technical information on currently available patient devices. As more health services and insurance companies advocate their use, understanding continuous and flash glucose monitoring for its strengths and limitations may offer more confidence for patients aiming to manage glycemia around exercise. PMID:29342932

  3. A human pilot study of the fluorescence affinity sensor for continuous glucose monitoring in diabetes.

    PubMed

    Dutt-Ballerstadt, Ralph; Evans, Colton; Pillai, Arun P; Orzeck, Eric; Drabek, Rafal; Gowda, Ashok; McNichols, Roger

    2012-03-01

    We report results of a pilot clinical study of a subcutaneous fluorescence affinity sensor (FAS) for continuous glucose monitoring conducted in people with type 1 and type 2 diabetes. The device was assessed based on performance, safety, and comfort level under acute conditions (4 h). A second-generation FAS (BioTex Inc., Houston, TX) was subcutaneously implanted in the abdomens of 12 people with diabetes, and its acute performance to excursions in blood glucose was monitored over 4 h. After 30-60 min the subjects, who all had fasting blood glucose levels of less than 200 mg/dl, received a glucose bolus of 75 g/liter dextrose by oral administration. Capillary blood glucose samples were obtained from the finger tip. The FAS data were retrospectively evaluated by linear least squares regression analysis and by the Clarke error grid method. Comfort levels during insertion, operation, and sensor removal were scored by the subjects using an analog pain scale. After retrospective calibration of 17 sensors implanted in 12 subjects, error grid analysis showed 97% of the paired values in zones A and B and 1.5% in zones C and D, respectively. The mean absolute relative error between sensor signal and capillary blood glucose was 13% [±15% standard deviation (SD), 100-350 mg/dl] with an average correlation coefficient of 0.84 (±0.24 SD). The actual average "warm-up" time for the FAS readings, at which highest correlation with glucose readings was determined, was 65 (±32 SD) min. Mean time lag was 4 (±5 SD) min during the initial operational hours. Pain levels during insertion and operation were modest. The in vivo performance of the FAS demonstrates feasibility of the fluorescence affinity technology to determine blood glucose excursions accurately and safely under acute dynamic conditions in humans with type 1 and type 2 diabetes. Specific engineering challenges to sensor and instrumentation robustness remain. Further studies will be required to validate its promising performance over longer implantation duration (5-7 days) in people with diabetes. © 2012 Diabetes Technology Society.

  4. Long wavelength fluorescence based biosensors for in vivo continuous monitoring of metabolites

    NASA Astrophysics Data System (ADS)

    Thomas, Joseph; Ambroise, Arounaguiry; Birchfield, Kara; Cai, Wensheng; Sandmann, Christian; Singh, Sarabjit; Weidemaier, Kristin; Pitner, J. Bruce

    2006-02-01

    The early stage development studies of novel implantable continuous metabolite sensor systems for glucose, lactate and fatty acids are discussed. These sensors utilize non-enzymatic "reagentless" sensor systems based on NIR fluorophore-labeled binding proteins. For in vivo applications, NIR fluorescence based systems (beyond 600 nm) have the added benefit of reduced interference from background scattering, tissue and serum absorption and cell auto-fluorescence. The long wavelength emission facilitates implanted sensor disks to transmit fluorescence to an external reader through wireless connections and the resulting fluorescence signals can be correlated to metabolite concentrations. We have developed a prototype optical system that uses a bifurcated optical fiber to transmit excitation and read emission at the surface of the skin. With this system, fluorescence signals were read over time through animal skin. The changes in glucose concentration were studied using immobilized sensor proteins and were compared to non-immobilized sensors in solution. For sensors in solution, no response delay was observed. For immobilized systems, the fluorescence response showed a delay corresponding to the diffusion time for the metabolite to equilibrate within the sensor.

  5. Development of the Likelihood of Low Glucose (LLG) algorithm for evaluating risk of hypoglycemia: a new approach for using continuous glucose data to guide therapeutic decision making.

    PubMed

    Dunn, Timothy C; Hayter, Gary A; Doniger, Ken J; Wolpert, Howard A

    2014-07-01

    The objective was to develop an analysis methodology for generating diabetes therapy decision guidance using continuous glucose (CG) data. The novel Likelihood of Low Glucose (LLG) methodology, which exploits the relationship between glucose median, glucose variability, and hypoglycemia risk, is mathematically based and can be implemented in computer software. Using JDRF Continuous Glucose Monitoring Clinical Trial data, CG values for all participants were divided into 4-week periods starting at the first available sensor reading. The safety and sensitivity performance regarding hypoglycemia guidance "stoplights" were compared between the LLG method and one based on 10th percentile (P10) values. Examining 13 932 hypoglycemia guidance outputs, the safety performance of the LLG method ranged from 0.5% to 5.4% incorrect "green" indicators, compared with 0.9% to 6.0% for P10 value of 110 mg/dL. Guidance with lower P10 values yielded higher rates of incorrect indicators, such as 11.7% to 38% at 80 mg/dL. When evaluated only for periods of higher glucose (median above 155 mg/dL), the safety performance of the LLG method was superior to the P10 method. Sensitivity performance of correct "red" indicators of the LLG method had an in sample rate of 88.3% and an out of sample rate of 59.6%, comparable with the P10 method up to about 80 mg/dL. To aid in therapeutic decision making, we developed an algorithm-supported report that graphically highlights low glucose risk and increased variability. When tested with clinical data, the proposed method demonstrated equivalent or superior safety and sensitivity performance. © 2014 Diabetes Technology Society.

  6. Influence of time point of calibration on accuracy of continuous glucose monitoring in individuals with type 1 diabetes.

    PubMed

    Zueger, Thomas; Diem, Peter; Mougiakakou, Stavroula; Stettler, Christoph

    2012-07-01

    Data on the influence of calibration on accuracy of continuous glucose monitoring (CGM) are scarce. The aim of the present study was to investigate whether the time point of calibration has an influence on sensor accuracy and whether this effect differs according to glycemic level. Two CGM sensors were inserted simultaneously in the abdomen on either side of 20 individuals with type 1 diabetes. One sensor was calibrated predominantly using preprandial glucose (calibration(PRE)). The other sensor was calibrated predominantly using postprandial glucose (calibration(POST)). At minimum three additional glucose values per day were obtained for analysis of accuracy. Sensor readings were divided into four categories according to the glycemic range of the reference values (low, ≤4 mmol/L; euglycemic, 4.1-7 mmol/L; hyperglycemic I, 7.1-14 mmol/L; and hyperglycemic II, >14 mmol/L). The overall mean±SEM absolute relative difference (MARD) between capillary reference values and sensor readings was 18.3±0.8% for calibration(PRE) and 21.9±1.2% for calibration(POST) (P<0.001). MARD according to glycemic range was 47.4±6.5% (low), 17.4±1.3% (euglycemic), 15.0±0.8% (hyperglycemic I), and 17.7±1.9% (hyperglycemic II) for calibration(PRE) and 67.5±9.5% (low), 24.2±1.8% (euglycemic), 15.5±0.9% (hyperglycemic I), and 15.3±1.9% (hyperglycemic II) for calibration(POST). In the low and euglycemic ranges MARD was significantly lower in calibration(PRE) compared with calibration(POST) (P=0.007 and P<0.001, respectively). Sensor calibration predominantly based on preprandial glucose resulted in a significantly higher overall sensor accuracy compared with a predominantly postprandial calibration. The difference was most pronounced in the hypo- and euglycemic reference range, whereas both calibration patterns were comparable in the hyperglycemic range.

  7. Optical microsensor for continuous glucose measurements in interstitial fluid

    NASA Astrophysics Data System (ADS)

    Olesberg, Jonathon T.; Cao, Chuanshun; Yager, Jeffrey R.; Prineas, John P.; Coretsopoulos, Chris; Arnold, Mark A.; Olafsen, Linda J.; Santilli, Michael

    2006-02-01

    Tight control of blood glucose levels has been shown to dramatically reduce the long-term complications of diabetes. Current invasive technology for monitoring glucose levels is effective but underutilized by people with diabetes because of the pain of repeated finger-sticks, the inconvenience of handling samples of blood, and the cost of reagent strips. A continuous glucose sensor coupled with an insulin delivery system could provide closed-loop glucose control without the need for discrete sampling or user intervention. We describe an optical glucose microsensor based on absorption spectroscopy in interstitial fluid that can potentially be implanted to provide continuous glucose readings. Light from a GaInAsSb LED in the 2.2-2.4 μm wavelength range is passed through a sample of interstitial fluid and a linear variable filter before being detected by an uncooled, 32-element GaInAsSb detector array. Spectral resolution is provided by the linear variable filter, which has a 10 nm band pass and a center wavelength that varies from 2.18-2.38 μm (4600-4200 cm -1) over the length of the detector array. The sensor assembly is a monolithic design requiring no coupling optics. In the present system, the LED running with 100 mA of drive current delivers 20 nW of power to each of the detector pixels, which have a noise-equivalent-power of 3 pW/Hz 1/2. This is sufficient to provide a signal-to-noise ratio of 4500 Hz 1/2 under detector-noise limited conditions. This signal-to-noise ratio corresponds to a spectral noise level less than 10 μAU for a five minute integration, which should be sufficient for sub-millimolar glucose detection.

  8. Accuracy of a continuous glucose monitoring system in dogs and cats with diabetic ketoacidosis.

    PubMed

    Reineke, Erica L; Fletcher, Daniel J; King, Lesley G; Drobatz, Kenneth J

    2010-06-01

    (1) To determine the ability of a continuous interstitial glucose monitoring system (CGMS) to accurately estimate blood glucose (BG) in dogs and cats with diabetic ketoacidosis. (2) To determine the effect of perfusion, hydration, body condition score, severity of ketosis, and frequency of calibration on the accuracy of the CGMS. Prospective study. University Teaching Hospital. Thirteen dogs and 11 cats diagnosed with diabetic ketoacidosis were enrolled in the study within 24 hours of presentation. Once BG dropped below 22.2 mmol/L (400 mg/dL), a sterile flexible glucose sensor was placed aseptically in the interstitial space and attached to the continuous glucose monitoring device for estimation of the interstitial glucose every 5 minutes. BG measurements were taken with a portable BG meter every 2-4 hours at the discretion of the primary clinician and compared with CGMS glucose measurements. The CGMS estimates of BG and BG measured on the glucometer were strongly associated regardless of calibration frequency (calibration every 8 h: r=0.86, P<0.001; calibration every 12 h: r=0.85, P<0.001). Evaluation of this data using both the Clarke and Consensus error grids showed that 96.7% and 99% of the CGMS readings, respectively, were deemed clinically acceptable (Zones A and B errors). Interpatient variability in the accuracy of the CGMS glucose measurements was found but was not associated with body condition, perfusion, or degree of ketosis. A weak association between hydration status of the patient as assessed with the visual analog scale and absolute percent error (Spearman's rank correlation, rho=-0.079, 95% CI=-0.15 to -0.01, P=0.03) was found, with the device being more accurate in the more hydrated patients. The CGMS provides clinically accurate estimates of BG in patients with diabetic ketoacidosis.

  9. Sensor Life and Overnight Closed Loop: A Randomized Clinical Trial.

    PubMed

    Tauschmann, Martin; Allen, Janet M; Wilinska, Malgorzata E; Ruan, Yue; Thabit, Hood; Acerini, Carlo L; Dunger, David B; Hovorka, Roman

    2017-05-01

    Closed-loop (CL) systems direct insulin delivery based on continuous glucose monitor (CGM) sensor values. CGM accuracy varies with sensor life, being least accurate on day 1 of sensor insertion. We evaluated the effect of sensor life (enhanced Enlite, Medtronic MiniMed, Northridge, CA) on overnight CL. In an open-label, randomized, 2-period, inpatient crossover pilot study, 12 adolescents on insulin pump (age 16.7 ± 1.9 years; HbA1c 66 ± 10 mmol/mol) attended a clinical research facility on 2 overnight occasions. In random order, participants received CL on day 1 or on day 3-4 after sensor insertion. During both periods, glucose was automatically controlled by a model predictive control algorithm informed by sensor glucose. Plasma glucose was measured every 30 to 60 min. During overnight CL (22:30 to 07:30), the proportion of time with plasma glucose readings in the target range (3.9-8.0 mmol/l, primary endpoint) when initiated on day 1 of sensor insertion vs day 3-4 were comparable (58 ± 32% day 1 vs 56 ± 36% day 3-4; P = .34), and there were no significant differences between interventions in terms of mean plasma glucose ( P = .26), percentage time above 8.0 mmol/l ( P = .49), and time spent below 3.9 mmol/l ( P = .93). Sensor accuracy varied with sensor life (mean absolute relative difference 19.8 ± 15.0% on day 1 and 13.7 ± 10.2% on day 3 to 4). Sensor glucose tended to under-read plasma glucose inflating benefits of CL on glucose control. In spite of differences in sensor accuracy, overnight CL glucose control informed by sensor glucose on day 1 or day 3-4 after sensor insertion was comparable. The model predictive controller appears to mitigate against sensor inaccuracies.

  10. Rate-of-Change Dependence of the Performance of Two CGM Systems During Induced Glucose Swings.

    PubMed

    Pleus, Stefan; Schoemaker, Michael; Morgenstern, Karin; Schmelzeisen-Redeker, Günther; Haug, Cornelia; Link, Manuela; Zschornack, Eva; Freckmann, Guido

    2015-07-01

    The accuracy of continuous glucose monitoring (CGM) systems is often assessed with respect to blood glucose (BG) readings. CGM readings are affected by a physiological and a technical time delay when compared to BG readings. In this analysis, the dependence of CGM performance parameters on the BG rate of change was investigated for 2 CGM systems. Data from a previously published study were retrospectively analyzed. An established CGM system (Dexcom G4, Dexcom, San Diego, CA; system A) and a prototype system (Roche Diagnostics GmbH, Mannheim, Germany; system B) with 2 sensors each were worn by 10 subjects in parallel. Glucose swings were induced to achieve rapidly changing BG concentrations. Mean absolute relative differences (MARD) were calculated in different BG rate-of-change categories. In addition, sensor-to-sensor precision was assessed. At BG rates of change of -1 mg/dl/min to 0 mg/dl/min and 0 mg/dl/min to +1 mg/dl/min, MARD results were 12.6% and 11.3% for system A and 8.2% and 10.0% for system B. At rapidly changing BG concentrations (<-3 mg/dl/min and ≥+3 mg/dl/min), higher MARD results were found for both systems, but system B was less affected (system A: 24.9% and 29.6%, system B: 10.6% and 16.3%). The impact of rate of change on sensor-to-sensor precision was less pronounced. Both systems were affected by rapidly changing BG concentrations to some degree, although system B was mostly unaffected by decreasing BG concentrations. It would seem that technological advancements in CGM systems might allow for a more precise tracking of BG concentrations even at rapidly changing BG concentrations. © 2015 Diabetes Technology Society.

  11. Random Plasma Glucose Values Measured in Community Dental Practices: Findings from The Dental Practice-Based Research Network

    PubMed Central

    Barasch, Andrei; Gilbert, Gregg H; Spurlock, Noel; Funkhouser, Ellen; Persson, Lise-Lotte; Safford, Monika M

    2012-01-01

    Objectives To examine feasibility of testing and frequency of abnormal plasma glucose among dental patients in The Dental Practice-Based Research Network. Methods Eligible dental patients were >19 years old and had at least one American Diabetes Association-defined risk factor for diabetes mellitus, or an existing diagnosis of diabetes or pre-diabetes. Random (fasting not required) plasma glucose was measured in standardized fashion using a commercial glucometer. Readings <70 mg/dl or >300 mg/dl triggered re-testing. Patients with glucose >126 mg/dl were referred for medical follow up. Results Of 498 subjects in 28 dental practices, 491 (98%) consented and 418 (85.1%) qualified for testing. Fifty-one patients (12.2%) had diabetes; 24 (5.7%) had pre-diabetes. Glucose ranged from 50 – 465 mg/dl. 129 subjects (31%) had readings outside the normal range; of these, 28 (6.7%) had readings <80 mg/dl and 101 (24.2%) had readings >126 mg/dl; in 9 patients (7 with diabetes), glucose was >200 mg/dl. Conclusions A significant proportion of patients tested had abnormal blood glucose. Routine glucose testing in dental practice of populations at risk or diagnosed with diabetes may be beneficial and community dental practices hold promise as settings for diabetes and pre-diabetes screening and monitoring. Clinical Relevance Results suggest that implementation of glucose measurement in dental practice may provide important clinical and health information for both patients and practitioners. PMID:22903529

  12. Patients' and caregivers' experiences of using continuous glucose monitoring to support diabetes self-management: qualitative study.

    PubMed

    Lawton, J; Blackburn, M; Allen, J; Campbell, F; Elleri, D; Leelarathna, L; Rankin, D; Tauschmann, M; Thabit, H; Hovorka, R

    2018-02-20

    Continuous glucose monitoring (CGM) enables users to view real-time interstitial glucose readings and provides information on the direction and rate of change of blood glucose levels. Users can also access historical data to inform treatment decisions. While the clinical and psychological benefits of CGM are well established, little is known about how individuals use CGM to inform diabetes self-management. We explored participants' experiences of using CGM in order to provide recommendations for supporting individuals to make optimal use of this technology. In-depth interviews (n = 24) with adults, adolescents and parents who had used CGM for ≥4 weeks; data were analysed thematically. Participants found CGM an empowering tool because they could access blood glucose data effortlessly, and trend arrows enabled them to see whether blood glucose was rising or dropping and at what speed. This predicative information aided short-term lifestyle planning and enabled individuals to take action to prevent hypoglycaemia and hyperglycaemia. Having easy access to blood glucose data on a continuous basis also allowed participants to develop a better understanding of how insulin, activity and food impacted on blood glucose. This understanding was described as motivating individuals to make dietary changes and break cycles of over-treating hypoglycaemia and hyperglycaemia. Participants also described how historical CGM data provided a more nuanced picture of blood glucose control than was possible with blood glucose self-monitoring and, hence, better information to inform changes to background insulin doses and mealtime ratios. However, while participants expressed confidence making immediate adjustments to insulin and lifestyle to address impending hypoglycaemia and hypoglycaemia, most described needing and expecting health professionals to interpret historical CGM data and determine changes to background insulin doses and mealtime ratios. While alarms could reinforce a sense of hypoglycaemic safety, some individuals expressed ambivalent views, especially those who perceived alarms as signalling personal failure to achieve optimal glycaemic control. CGM can be an empowering and motivational tool which enables participants to fine-tune and optimize their blood glucose control. However, individuals may benefit from psycho-social education, training and/or technological support to make optimal use of CGM data and use alarms appropriately.

  13. Continuous determination of blood glucose in children admitted with malaria in a rural hospital in Mozambique.

    PubMed

    Madrid, Lola; Sitoe, Antonio; Varo, Rosauro; Nhampossa, Tacilta; Lanaspa, Miguel; Nhama, Abel; Acácio, Sozinho; Riaño, Isolina; Casellas, Aina; Bassat, Quique

    2017-05-02

    Hypoglycaemia is a frequent complication among admitted children, particularly in malaria-endemic areas. This study aimed to estimate the occurrence of hypoglycaemia not only upon admission but throughout the first 72 h of hospitalization in children admitted with malaria. A simple pilot study to continuously monitor glycaemia in children aged 0-10 years, admitted with malaria in a rural hospital was conducted in Southern Mozambique by inserting continuous glucose monitors (CGMs) in subcutaneous tissue of the abdominal area, producing glycaemia readings every 5 min. Glucose was continuously monitored during a mean of 48 h, in 74 children. Continuous measurements of blood glucose were available for 72/74 children (97.3%). Sixty-five of them were admitted with density-specific malaria diagnosis criteria (17 severe, 48 uncomplicated). Five children (7.7%) had hypoglycaemia (<54 mg/dL) on admission as detected by routine capillary determination. Analysing the data collected by the CGMs, hypoglycaemia episodes (<54 mg/dL) were detected in 10/65 (15.4%) of the children, of which 7 (10.8%) could be classified as severe (≤45 mg/dL). No risk factors were independently associated with the presence of at least one episode of hypoglycaemia (<54 mg/dL) during hospitalization. Only one death occurred among a normoglycaemic child. All episodes of hypoglycaemia detected by CGMs were subclinical episodes or not perceived by caregivers or clinical staff. Hypoglycaemia beyond admission in children with malaria appears to be much more frequent than what had been previously described. The clinical relevance of these episodes of hypoglycaemia in the medium or long term remains to be determined.

  14. Pharmacology of the glucagon-like peptide-1 analog exenatide extended-release in healthy cats.

    PubMed

    Rudinsky, A J; Adin, C A; Borin-Crivellenti, S; Rajala-Schultz, P; Hall, M J; Gilor, C

    2015-04-01

    Exenatide extended-release (ER) is a microencapsulated formulation of the glucagon-like peptide 1-receptor agonist exenatide. It has a protracted pharmacokinetic profile that allows a once-weekly injection with comparable efficacy to insulin with an improved safety profile in type II diabetic people. Here, we studied the pharmacology of exenatide ER in 6 healthy cats. A single subcutaneous injection of exenatide ER (0.13 mg/kg) was administered on day 0. Exenatide concentrations were measured for 12 wk. A hyperglycemic clamp (target = 225 mg/dL) was performed on days -7 (clamp I) and 21 (clamp II) with measurements of insulin and glucagon concentrations. Glucose tolerance was defined as the amount of glucose required to maintain hyperglycemia during the clamp. Continuous glucose monitoring was performed on weeks 0, 2, and 6 after injection. Plasma concentrations of exenatide peaked at 1 h and 4 wk after injection. Comparing clamp I with clamp II, fasting blood glucose decreased (mean ± standard deviation = -11 ± 8 mg/dL, P = 0.02), glucose tolerance improved (median [range] +33% [4%-138%], P = 0.04), insulin concentrations increased (+36.5% [-9.9% to 274.1%], P = 0.02), and glucagon concentrations decreased (-4.7% [0%-12.1%], P = 0.005). Compared with preinjection values on continuous glucose monitoring, glucose concentrations decreased and the frequency of readings <50 mg/dL increased at 2 and 6 wk after injection of exenatide ER. This did not correspond to clinical hypoglycemia. No other side effects were observed throughout the study. Exenatide ER was safe and effective in improving glucose tolerance 3 wk after a single injection. Further evaluation is needed to determine its safety, efficacy, and duration of action in diabetic cats. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Enzymatic glucose sensor compensation for variations in ambient oxygen concentration

    NASA Astrophysics Data System (ADS)

    Collier, Bradley B.; McShane, Michael J.

    2013-02-01

    Due to the increasing prevalence of diabetes, research toward painless glucose sensing continues. Oxygen sensitive phosphors with glucose oxidase (GOx) can be used to determine glucose levels indirectly by monitoring oxygen consumption. This is an attractive combination because of its speed and specificity. Packaging these molecules together in "smart materials" for implantation will enable non-invasive glucose monitoring. As glucose levels increase, oxygen levels decrease; consequently, the luminescence intensity and lifetime of the phosphor increase. Although the response of the sensor is dependent on glucose concentration, the ambient oxygen concentration also plays a key role. This could lead to inaccurate glucose readings and increase the risk of hyper- or hypoglycemia. To mitigate this risk, the dependence of hydrogel glucose sensor response on oxygen levels was investigated and compensation methods explored. Sensors were calibrated at different oxygen concentrations using a single generic logistic equation, such that trends in oxygen-dependence were determined as varying parameters in the equation. Each parameter was found to be a function of oxygen concentration, such that the correct glucose calibration equation can be calculated if the oxygen level is known. Accuracy of compensation will be determined by developing an overall calibration, using both glucose and oxygen sensors in parallel, correcting for oxygen fluctuations in real time by intentionally varying oxygen, and calculating the error in actual and predicted glucose levels. While this method was developed for compensation of enzymatic glucose sensors, in principle it can also be implemented with other kinds of sensors utilizing oxidases.

  16. Glucose Oxidase Biosensor Modeling and Predictors Optimization by Machine Learning Methods.

    PubMed

    Gonzalez-Navarro, Felix F; Stilianova-Stoytcheva, Margarita; Renteria-Gutierrez, Livier; Belanche-Muñoz, Lluís A; Flores-Rios, Brenda L; Ibarra-Esquer, Jorge E

    2016-10-26

    Biosensors are small analytical devices incorporating a biological recognition element and a physico-chemical transducer to convert a biological signal into an electrical reading. Nowadays, their technological appeal resides in their fast performance, high sensitivity and continuous measuring capabilities; however, a full understanding is still under research. This paper aims to contribute to this growing field of biotechnology, with a focus on Glucose-Oxidase Biosensor (GOB) modeling through statistical learning methods from a regression perspective. We model the amperometric response of a GOB with dependent variables under different conditions, such as temperature, benzoquinone, pH and glucose concentrations, by means of several machine learning algorithms. Since the sensitivity of a GOB response is strongly related to these dependent variables, their interactions should be optimized to maximize the output signal, for which a genetic algorithm and simulated annealing are used. We report a model that shows a good generalization error and is consistent with the optimization.

  17. Review of Adverse Events Associated With False Glucose Readings Measured by GDH-PQQ–Based Glucose Test Strips in the Presence of Interfering Sugars

    PubMed Central

    Frias, Juan P.; Lim, Christine G.; Ellison, John M.; Montandon, Carol M.

    2010-01-01

    OBJECTIVE To assess the implications of falsely elevated glucose readings measured with glucose dehydrogenase pyrroloquinolinequinone (GDH-PQQ) test strips. RESEARCH DESIGN AND METHODS We conducted a review of the Food and Drug Administration's Manufacturer and User Facility Device Experience database and medical literature for adverse events (AEs) associated with falsely elevated glucose readings with GDH-PQQ test strips in the presence of interfering sugars. RESULTS Eighty-two reports were identified: 16 (20%) were associated with death, 46 (56%) with severe hypoglycemia, and 12 (15%) with nonsevere hypoglycemia. In eight reports (10%), the AE was not described. Forty-two events (51%) occurred in the U.S. Although most events occurred in hospitalized patients, at least 14 (17%) occurred in outpatients. Agents most commonly associated with AEs were icodextrin-containing peritoneal dialysate and maltose-containing intravenous immune globulin. CONCLUSIONS GDH-PQQ test strips pose a safety risk to insulin-using patients treated with agents containing or metabolized to interfering sugars. PMID:20351227

  18. In vivo continuous and simultaneous monitoring of brain energy substrates with a multiplex amperometric enzyme-based biosensor device.

    PubMed

    Cordeiro, C A; de Vries, M G; Ngabi, W; Oomen, P E; Cremers, T I F H; Westerink, B H C

    2015-05-15

    Enzyme-based amperometric biosensors are widely used for monitoring key biomarkers. In experimental neuroscience there is a growing interest in in vivo continuous and simultaneous monitoring of metabolism-related biomarkers, like glucose, lactate and pyruvate. The use of multiplex biosensors will provide better understanding of brain energy metabolism and its role in neuropathologies such as diabetes, ischemia, and epilepsy. We have developed and characterized an implantable multiplex microbiosensor device (MBD) for simultaneous and continuous in vivo monitoring of glucose, lactate, and pyruvate. First, we developed and characterized amperometric microbiosensors for monitoring lactate and pyruvate. In vitro evaluation allowed us to choose the most suitable biosensors for incorporation into the MBD, along with glucose and background biosensors. Fully assembled MBDs were characterized in vitro. The calculated performance parameters (LOD, LR, LRS, IMAX and appKM) showed that the multiplex MBD was highly selective and sensitive (LRS≥100 nA/mM) for each analyte and within an adequate range for in vivo application. Finally, MBDs were implanted in the mPFC of anesthetized adult male Wistar rats for in vivo evaluation. Following an equilibration period, baseline brain levels of glucose (1.3±0.2 mM), lactate (1.5±0.4 mM) and pyruvate (0.3±0.1 mM) were established. Subsequently, the MBDs recorded the responses of the animals when submitted to hyperglycemic (40% glucose i.v.) and hypoglycemic (5 U/kg insulin i.v.) challenges. Afterwards, MBDs were recalibrated to convert electrochemical readings into accurate substrate concentrations and to assess biofouling. The presented MBD can monitor simultaneously multiple biomarkers in vivo. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Inpatient Trial of an Artificial Pancreas Based on Multiple Model Probabilistic Predictive Control with Repeated Large Unannounced Meals

    PubMed Central

    Niemeyer, Günter; Wilson, Darrell M.; Bequette, B. Wayne; Benassi, Kari S.; Clinton, Paula; Buckingham, Bruce A.

    2014-01-01

    Abstract Background: Closed-loop control of blood glucose levels in people with type 1 diabetes offers the potential to reduce the incidence of diabetes complications and reduce the patients' burden, particularly if meals do not need to be announced. We therefore tested a closed-loop algorithm that does not require meal announcement. Materials and Methods: A multiple model probabilistic predictive controller (MMPPC) was assessed on four patients, revised to improve performance, and then assessed on six additional patients. Each inpatient admission lasted for 32 h with five unannounced meals containing approximately 1 g/kg of carbohydrate per admission. The system used an Abbott Diabetes Care (Alameda, CA) Navigator® continuous glucose monitor (CGM) and Insulet (Bedford, MA) Omnipod® insulin pump, with the MMPPC implemented through the artificial pancreas system platform. The controller was initialized only with the patient's total daily dose and daily basal pattern. Results: On a 24-h basis, the first cohort had mean reference and CGM readings of 179 and 167 mg/dL, respectively, with 53% and 62%, respectively, of readings between 70 and 180 mg/dL and four treatments for glucose values <70 mg/dL. The second cohort had mean reference and CGM readings of 161 and 142 mg/dL, respectively, with 63% and 78%, respectively, of the time spent euglycemic. There was one controller-induced hypoglycemic episode. For the 30 unannounced meals in the second cohort, the mean reference and CGM premeal, postmeal maximum, and 3-h postmeal values were 139 and 132, 223 and 208, and 168 and 156 mg/dL, respectively. Conclusions: The MMPPC, tested in-clinic against repeated, large, unannounced meals, maintained reasonable glycemic control with a mean blood glucose level that would equate to a mean glycated hemoglobin value of 7.2%, with only one controller-induced hypoglycemic event occurring in the second cohort. PMID:25259939

  20. Do high blood glucose peaks contribute to higher HbA1c? Results from repeated continuous glucose measurements in children.

    PubMed

    Ulf, Samuelsson; Ragnar, Hanas; Arne, Whiss Per; Johnny, Ludvigsson

    2008-08-01

    HbA1c levels are influenced by the glycemic control of previous 2-3 months. Sometimes patients have surprisingly low HbA1c in spite of many correctly measured high blood glucose values, which is difficult to explain. As glucose sensors give an objective picture based on glucose readings several times per minute over 24 hours, we used the area under the curve (AUC) of such subcutaneous glucose profiles to evaluate their relationship with HbA1c. Thirty-two patients were randomized into two study arms, one open and the other blinded. Both arms had 8 pump users and 8 patients with multiple daily injections (MDI). After three months the two arms crossed over. Both study arms wore a continuous glucose monitoring system (CGMS) for 3 days every 2 weeks. HbA1c was determined before and after each 3-month study period. There was no relationship between HbA1c and s.c. glucose AUC or between HbA1c and the number of peaks >15.0 mmol/L when all CGMS profiles during the 6 months were taken together. Children on MDI showed a positive relationship between HbA1c and AUC (P<0.01) as well as the number of peaks (P<0.01). Children with a negative relationship between HbA1c and AUC generally had fewer fluctuations in blood glucose values, whereas children with a positive relationship had wide fluctuations. between s.c. glucose AUC and HbA1c, the results indicate that wide blood glucose fluctuations may be related to high HbA1c values. Therefore, complications and therapeutic interventions should aim at reducing such fluctuations. Although there was no relationship between s.c. glucose AUC and HbA1c, the results indicate that wide blood glucose fluctuations may be related to high HbA1c values. Therefore, complications and therapeutic interventions should aim at reducing such fluctuations.

  1. A Prospective Multicenter Evaluation of the Accuracy of a Novel Implanted Continuous Glucose Sensor: PRECISE II.

    PubMed

    Christiansen, Mark P; Klaff, Leslie J; Brazg, Ronald; Chang, Anna R; Levy, Carol J; Lam, David; Denham, Douglas S; Atiee, George; Bode, Bruce W; Walters, Steven J; Kelley, Lynne; Bailey, Timothy S

    2018-03-01

    Persistent use of real-time continuous glucose monitoring (CGM) improves diabetes control in individuals with type 1 diabetes (T1D) and type 2 diabetes (T2D). PRECISE II was a nonrandomized, blinded, prospective, single-arm, multicenter study that evaluated the accuracy and safety of the implantable Eversense CGM system among adult participants with T1D and T2D (NCT02647905). The primary endpoint was the mean absolute relative difference (MARD) between paired Eversense and Yellow Springs Instrument (YSI) reference measurements through 90 days postinsertion for reference glucose values from 40 to 400 mg/dL. Additional endpoints included Clarke Error Grid analysis and sensor longevity. The primary safety endpoint was the incidence of device-related or sensor insertion/removal procedure-related serious adverse events (SAEs) through 90 days postinsertion. Ninety participants received the CGM system. The overall MARD value against reference glucose values was 8.8% (95% confidence interval: 8.1%-9.3%), which was significantly lower than the prespecified 20% performance goal for accuracy (P < 0.0001). Ninety-three percent of CGM values were within 20/20% of reference values over the total glucose range of 40-400 mg/dL. Clarke Error Grid analysis showed 99.3% of samples in the clinically acceptable error zones A (92.8%) and B (6.5%). Ninety-one percent of sensors were functional through day 90. One related SAE (1.1%) occurred during the study for removal of a sensor. The PRECISE II trial demonstrated that the Eversense CGM system provided accurate glucose readings through the intended 90-day sensor life with a favorable safety profile.

  2. Clinical Use of Continuous Glucose Monitoring in Adults with Type 2 Diabetes

    PubMed Central

    Mullen, Deborah M.; Bergenstal, Richard M.

    2017-01-01

    Abstract Background: Hemoglobin A1c is an excellent population health measure for the risk of vascular complications in diabetes, while continuous glucose monitoring (CGM) is a tool to help personalize a diabetes treatment plan. The value of CGM in individuals with type 1 diabetes (T1D) has been well demonstrated when compared with utilizing self-monitoring of blood glucose (SMBG) to guide treatment decisions. CGM is a tool for patients and clinicians to visualize the important role that diet, exercise, stress management, and the appropriate selection of diabetes medications can have in managing type 2 diabetes (T2D). Several diabetes organizations have recently reviewed the literature on the appropriate use of CGM in diabetes management and concluded CGM may be a useful educational and management tool particularly for patients on insulin therapy. The indications for using CGM either as a clinic-based loaner distribution model for intermittent use (professional CGM) or a CGM system owned by the patient and used at home with real-time glucose reading (personal CGM) are only beginning to be addressed in T2D. Most summaries of CGM studies conclude that having a standardized glucose pattern report, such as the ambulatory glucose profile (AGP) report, should help facilitate effective shared decision-making sessions. The future of CGM indications for the use of CGM is evolving rapidly. In some instances, CGM is now approved for making medication adjustments without SMBG confirmation and it appears that some forms of CGM will be approved for use in the Medicare population in the United States in the near future. Many individuals with T1D and T2D and their care teams will come to depend on CGM as a key tool for diabetes management. PMID:28541137

  3. Evaluating the accuracy, reliability, and clinical applicability of continuous glucose monitoring (CGM): Is CGM ready for real time?

    PubMed

    Mazze, Roger S; Strock, Ellie; Borgman, Sarah; Wesley, David; Stout, Philip; Racchini, Joel

    2009-01-01

    This study was designed to assess the accuracy, reliability, and contribution to clinical decision-making of two commercially available continuous glucose monitoring (CGM) devices using a novel analytical approach. Eleven individuals with type 1 diabetes and five with type 2 diabetes wore a Guardian RT (GRT) (Medtronic Minimed, Northridge, CA) or DexCom STS Continuous Monitoring System (DEX) (San Diego, CA) device for 200 h followed by an 8-h laboratory study. A subset of these subjects wore both devices simultaneously. Subjects produced 1,902 +/- 269 readings during the ambulatory phase. During the laboratory study we found: lag time of 21 +/- 5 min for GRT and 7 +/- 7 min for DEX (P < 0.005); mean absolute relative difference of 19.9% and 16.7%, respectively, for GRT and DEX; and glucose exposure (the ratio of study device/laboratory reference device [YSI Instruments, Inc., Yellow Springs, OH] area under the curve) of 95 +/- 6% for GRT and 101 +/- 13% for DEX. Reliability measured during laboratory study showed 82% for DEX and 99% for GRT. Clarke Error Grid analysis (YSI reference) showed for GRT 59% of values in zone A, 34% in zone B, and 7% in zone D and for DEX 70% in zone A, 28% in zone B, 1% in zone C, and 1% in zone D. Bland-Altman plots (YSI standard) yielded for DEX 3 mg/dL (95% confidence interval, -78 to 84 mg/dL) and for GRT -21 mg/dL (95% confidence interval, -124 to 82 mg/dL). Six of eight subjects completed both home and laboratory simultaneous use of DEX and GRT. Lag times were inconsistent between devices, ranging from 0 to 32 min; area under the curve revealed a tendency for DEX to report higher total glucose exposure than GRT for the same patient. CGM detects abnormalities in glycemic control in a manner heretofore impossible to obtain. However, our studies revealed sufficient incongruence between simultaneous laboratory blood glucose levels and interstitial fluid glucose (after calibrations) to question the fundamental assumption that interstitial fluid glucose and blood glucose could be made identical by resorting to algorithms based on concurrent blood glucose levels alone.

  4. Glucose Oxidase Biosensor Modeling and Predictors Optimization by Machine Learning Methods †

    PubMed Central

    Gonzalez-Navarro, Felix F.; Stilianova-Stoytcheva, Margarita; Renteria-Gutierrez, Livier; Belanche-Muñoz, Lluís A.; Flores-Rios, Brenda L.; Ibarra-Esquer, Jorge E.

    2016-01-01

    Biosensors are small analytical devices incorporating a biological recognition element and a physico-chemical transducer to convert a biological signal into an electrical reading. Nowadays, their technological appeal resides in their fast performance, high sensitivity and continuous measuring capabilities; however, a full understanding is still under research. This paper aims to contribute to this growing field of biotechnology, with a focus on Glucose-Oxidase Biosensor (GOB) modeling through statistical learning methods from a regression perspective. We model the amperometric response of a GOB with dependent variables under different conditions, such as temperature, benzoquinone, pH and glucose concentrations, by means of several machine learning algorithms. Since the sensitivity of a GOB response is strongly related to these dependent variables, their interactions should be optimized to maximize the output signal, for which a genetic algorithm and simulated annealing are used. We report a model that shows a good generalization error and is consistent with the optimization. PMID:27792165

  5. Comparison Between One-Point Calibration and Two-Point Calibration Approaches in a Continuous Glucose Monitoring Algorithm

    PubMed Central

    Mahmoudi, Zeinab; Johansen, Mette Dencker; Christiansen, Jens Sandahl

    2014-01-01

    Background: The purpose of this study was to investigate the effect of using a 1-point calibration approach instead of a 2-point calibration approach on the accuracy of a continuous glucose monitoring (CGM) algorithm. Method: A previously published real-time CGM algorithm was compared with its updated version, which used a 1-point calibration instead of a 2-point calibration. In addition, the contribution of the corrective intercept (CI) to the calibration performance was assessed. Finally, the sensor background current was estimated real-time and retrospectively. The study was performed on 132 type 1 diabetes patients. Results: Replacing the 2-point calibration with the 1-point calibration improved the CGM accuracy, with the greatest improvement achieved in hypoglycemia (18.4% median absolute relative differences [MARD] in hypoglycemia for the 2-point calibration, and 12.1% MARD in hypoglycemia for the 1-point calibration). Using 1-point calibration increased the percentage of sensor readings in zone A+B of the Clarke error grid analysis (EGA) in the full glycemic range, and also enhanced hypoglycemia sensitivity. Exclusion of CI from calibration reduced hypoglycemia accuracy, while slightly increased euglycemia accuracy. Both real-time and retrospective estimation of the sensor background current suggest that the background current can be considered zero in the calibration of the SCGM1 sensor. Conclusions: The sensor readings calibrated with the 1-point calibration approach indicated to have higher accuracy than those calibrated with the 2-point calibration approach. PMID:24876420

  6. [Glycemic changes during menstrual cycles in women with type 1 diabetes].

    PubMed

    Herranz, Lucrecia; Saez-de-Ibarra, Lourdes; Hillman, Natalia; Gaspar, Ruth; Pallardo, Luis Felipe

    2016-04-01

    To determine frequency of women with type 1 diabetes showing menstrual cyclic changes in glycemia, analyze their clinical characteristics, and assess the pattern of glycemic changes. We analyzed glucose meter readings along 168 menstrual cycles of 26 women with type 1 diabetes. We evaluated mean glucose, mean glucose standard deviation, mean fasting glucose, percentage of glucose readings>7.8 mmol/L and<3.1 mmol/L, and mean insulin dose in 4 periods for each cycle. A woman was identified as having cyclic changes when mean glucose rose from early follicular to late luteal in two-thirds of her menstrual cycles. A percentage of 65.4 of the women had cyclic changes. Characteristics of women with and without cyclic changes, including self-perception of glycemic changes, were similar with exception of age at diabetes diagnosis (22.5 [7.5] vs. 14.4 [9.5] years; P=.039). In women with cyclic changes mean percentage of glucose readings>7.8 mmol/L rose from early follicular (52.2 [16.3] %) to early and late luteal (58.4 [16.0] %, P=.0269; 61.0 [16.9] %, P=.000). Almost two-thirds of women with type 1 diabetes experience a menstrual cycle phenomenon, attributable to an increase in hyperglycemic excursions during the luteal phase. Enabling women to evaluate their weekly mean glucose from their meter and exploring the causes of hyperglycemic excursions during luteal phase should ensure more accuracy when giving instructions for diabetes management in women with premenstrual hyperglycemia. Copyright © 2016 Elsevier España, S.L.U. All rights reserved.

  7. Relative accuracy of the BD Logic and FreeStyle blood glucose meters.

    PubMed

    2007-04-01

    The BD Logic((R)) (Becton, Dickinson and Co., Franklin Lakes, NJ) and FreeStyle((R)) (Abbott Diabetes Care, Alameda, CA) meters are used to transmit data directly to insulin pumps for calculation of insulin doses and to calibrate continuous glucose sensors as well as to monitor blood glucose levels. The accuracy of the two meters was evaluated in two inpatient studies conducted by the Diabetes Research in Children Network (DirecNet). In both studies, meter glucose measurements made with either venous or capillary blood were compared with reference glucose measurements made by the DirecNet Central Laboratory at the University of Minnesota using a hexokinase enzymatic method. The BD Logic tended to read lower than the laboratory reference regardless of whether venous (median difference = -9 mg/dL) or capillary blood (median difference = -7 mg/dL) was used. This resulted in lower accuracy of the BD Logic compared with the FreeStyle meter based on the median relative absolute difference (RAD) for both venous blood (median RAD, 9% vs. 5%, P < 0.001) and capillary blood (median RAD, 11% vs. 6%, P = 0.008). The greatest discrepancy in the performance of the two meters was at higher reference glucose values. Accuracy was not significantly different when the reference was < or = 70 mg/dL. The BD Logic meter is less accurate than the FreeStyle meter.

  8. Closed-loop control of artificial pancreatic Beta -cell in type 1 diabetes mellitus using model predictive iterative learning control.

    PubMed

    Wang, Youqing; Dassau, Eyal; Doyle, Francis J

    2010-02-01

    A novel combination of iterative learning control (ILC) and model predictive control (MPC), referred to here as model predictive iterative learning control (MPILC), is proposed for glycemic control in type 1 diabetes mellitus. MPILC exploits two key factors: frequent glucose readings made possible by continuous glucose monitoring technology; and the repetitive nature of glucose-meal-insulin dynamics with a 24-h cycle. The proposed algorithm can learn from an individual's lifestyle, allowing the control performance to be improved from day to day. After less than 10 days, the blood glucose concentrations can be kept within a range of 90-170 mg/dL. Generally, control performance under MPILC is better than that under MPC. The proposed methodology is robust to random variations in meal timings within +/-60 min or meal amounts within +/-75% of the nominal value, which validates MPILC's superior robustness compared to run-to-run control. Moreover, to further improve the algorithm's robustness, an automatic scheme for setpoint update that ensures safe convergence is proposed. Furthermore, the proposed method does not require user intervention; hence, the algorithm should be of particular interest for glycemic control in children and adolescents.

  9. Accuracy of Continuous Glucose Monitoring before, during, and after Aerobic and Anaerobic Exercise in Patients with Type 1 Diabetes Mellitus

    PubMed Central

    Bertachi, Arthur; Quirós, Carmen; Giménez, Marga; Conget, Ignacio; Bondia, Jorge

    2018-01-01

    Continuous glucose monitoring (CGM) plays an important role in treatment decisions for patients with type 1 diabetes under conventional or closed-loop therapy. Physical activity represents a great challenge for diabetes management as well as for CGM systems. In this work, the accuracy of CGM in the context of exercise is addressed. Six adults performed aerobic and anaerobic exercise sessions and used two Medtronic Paradigm Enlite-2 sensors under closed-loop therapy. CGM readings were compared with plasma glucose during different periods: one hour before exercise, during exercise, and four hours after the end of exercise. In aerobic sessions, the median absolute relative difference (MARD) increased from 9.5% before the beginning of exercise to 16.5% during exercise (p < 0.001), and then decreased to 9.3% in the first hour after the end of exercise (p < 0.001). For the anaerobic sessions, the MARD before exercise was 15.5% and increased without statistical significance to 16.8% during exercise realisation (p = 0.993), and then decreased to 12.7% in the first hour after the cessation of anaerobic activities (p = 0.095). Results indicate that CGM might present lower accuracy during aerobic exercise, but return to regular operation a few hours after exercise cessation. No significant impact for anaerobic exercise was found. PMID:29522429

  10. Accuracy of Continuous Glucose Monitoring before, during, and after Aerobic and Anaerobic Exercise in Patients with Type 1 Diabetes Mellitus.

    PubMed

    Biagi, Lyvia; Bertachi, Arthur; Quirós, Carmen; Giménez, Marga; Conget, Ignacio; Bondia, Jorge; Vehí, Josep

    2018-03-09

    Continuous glucose monitoring (CGM) plays an important role in treatment decisions for patients with type 1 diabetes under conventional or closed-loop therapy. Physical activity represents a great challenge for diabetes management as well as for CGM systems. In this work, the accuracy of CGM in the context of exercise is addressed. Six adults performed aerobic and anaerobic exercise sessions and used two Medtronic Paradigm Enlite-2 sensors under closed-loop therapy. CGM readings were compared with plasma glucose during different periods: one hour before exercise, during exercise, and four hours after the end of exercise. In aerobic sessions, the median absolute relative difference (MARD) increased from 9.5% before the beginning of exercise to 16.5% during exercise ( p < 0.001), and then decreased to 9.3% in the first hour after the end of exercise ( p < 0.001). For the anaerobic sessions, the MARD before exercise was 15.5% and increased without statistical significance to 16.8% during exercise realisation ( p = 0.993), and then decreased to 12.7% in the first hour after the cessation of anaerobic activities ( p = 0.095). Results indicate that CGM might present lower accuracy during aerobic exercise, but return to regular operation a few hours after exercise cessation. No significant impact for anaerobic exercise was found.

  11. Continuous Monitoring of Glucose for Type 1 Diabetes: A Health Technology Assessment.

    PubMed

    2018-01-01

    Type 1 diabetes is a condition in which the pancreas produces little or no insulin. People with type 1 diabetes must manage their blood glucose levels by monitoring the amount of glucose in their blood and administering appropriate amounts of insulin via injection or an insulin pump. Continuous glucose monitoring may be beneficial compared to self-monitoring of blood glucose using a blood glucose meter. It provides insight into a person's blood glucose levels on a continuous basis, and can identify whether blood glucose levels are trending up or down. We conducted a health technology assessment, which included an evaluation of clinical benefit, value for money, and patient preferences related to continuous glucose monitoring. We compared continuous glucose monitoring with self-monitoring of blood glucose using a finger-prick and a blood glucose meter. We performed a systematic literature search for studies published since January 1, 2010. We created a Markov model projecting the lifetime horizon of adults with type 1 diabetes, and performed a budget impact analysis from the perspective of the health care payer. We also conducted interviews and focus group discussions with people who self-manage their type 1 diabetes or support the management of a child with type 1 diabetes. Twenty studies were included in the clinical evidence review. Compared with self-monitoring of blood glucose, continuous glucose monitoring improved the percentage of time patients spent in the target glycemic range by 9.6% (95% confidence interval 8.0-11.2) to 10.0% (95% confidence interval 6.75-13.25) and decreased the number of severe hypoglycemic events.Continuous glucose monitoring was associated with higher costs and small increases in health benefits (quality-adjusted life-years). Incremental cost-effectiveness ratios (ICERs) ranged from $592,206 to $1,108,812 per quality-adjusted life-year gained in analyses comparing four continuous glucose monitoring interventions to usual care. However, the uncertainty around the ICERs was large. The net budget impact of publicly funding continuous glucose monitoring assuming a 20% annual increase in adoption of continuous glucose monitoring would range from $8.5 million in year 1 to $16.2 million in year 5.Patient engagement surrounding the topic of continuous glucose monitoring was robust. Patients perceived that these devices provided important social, emotional, and medical and safety benefits in managing type 1 diabetes, especially in children. Continuous glucose monitoring was more effective than self-monitoring of blood glucose in managing type 1 diabetes for some outcomes, such as time spent in the target glucose range and time spent outside the target glucose range (moderate certainty in this evidence). We were less certain that continuous glucose monitoring would reduce the number of severe hypoglycemic events. Compared with self-monitoring of blood glucose, the costs of continuous glucose monitoring were higher, with only small increases in health benefits. Publicly funding continuous glucose monitoring for the type 1 diabetes population in Ontario would result in additional costs to the health system over the next 5 years. Adult patients and parents of children with type 1 diabetes reported very positive experiences with continuous glucose monitoring. The high ongoing cost of continuous glucose monitoring devices was seen as the greatest barrier to their widespread use.

  12. Continuous Monitoring of Glucose for Type 1 Diabetes: A Health Technology Assessment

    PubMed Central

    Vandersluis, Stacey; Kabali, Conrad; Djalalov, Sandjar; Gajic-Veljanoski, Olga; Wells, David; Holubowich, Corinne

    2018-01-01

    Background Type 1 diabetes is a condition in which the pancreas produces little or no insulin. People with type 1 diabetes must manage their blood glucose levels by monitoring the amount of glucose in their blood and administering appropriate amounts of insulin via injection or an insulin pump. Continuous glucose monitoring may be beneficial compared to self-monitoring of blood glucose using a blood glucose meter. It provides insight into a person's blood glucose levels on a continuous basis, and can identify whether blood glucose levels are trending up or down. Methods We conducted a health technology assessment, which included an evaluation of clinical benefit, value for money, and patient preferences related to continuous glucose monitoring. We compared continuous glucose monitoring with self-monitoring of blood glucose using a finger-prick and a blood glucose meter. We performed a systematic literature search for studies published since January 1, 2010. We created a Markov model projecting the lifetime horizon of adults with type 1 diabetes, and performed a budget impact analysis from the perspective of the health care payer. We also conducted interviews and focus group discussions with people who self-manage their type 1 diabetes or support the management of a child with type 1 diabetes. Results Twenty studies were included in the clinical evidence review. Compared with self-monitoring of blood glucose, continuous glucose monitoring improved the percentage of time patients spent in the target glycemic range by 9.6% (95% confidence interval 8.0–11.2) to 10.0% (95% confidence interval 6.75–13.25) and decreased the number of severe hypoglycemic events. Continuous glucose monitoring was associated with higher costs and small increases in health benefits (quality-adjusted life-years). Incremental cost-effectiveness ratios (ICERs) ranged from $592,206 to $1,108,812 per quality-adjusted life-year gained in analyses comparing four continuous glucose monitoring interventions to usual care. However, the uncertainty around the ICERs was large. The net budget impact of publicly funding continuous glucose monitoring assuming a 20% annual increase in adoption of continuous glucose monitoring would range from $8.5 million in year 1 to $16.2 million in year 5. Patient engagement surrounding the topic of continuous glucose monitoring was robust. Patients perceived that these devices provided important social, emotional, and medical and safety benefits in managing type 1 diabetes, especially in children. Conclusions Continuous glucose monitoring was more effective than self-monitoring of blood glucose in managing type 1 diabetes for some outcomes, such as time spent in the target glucose range and time spent outside the target glucose range (moderate certainty in this evidence). We were less certain that continuous glucose monitoring would reduce the number of severe hypoglycemic events. Compared with self-monitoring of blood glucose, the costs of continuous glucose monitoring were higher, with only small increases in health benefits. Publicly funding continuous glucose monitoring for the type 1 diabetes population in Ontario would result in additional costs to the health system over the next 5 years. Adult patients and parents of children with type 1 diabetes reported very positive experiences with continuous glucose monitoring. The high ongoing cost of continuous glucose monitoring devices was seen as the greatest barrier to their widespread use. PMID:29541282

  13. PROFESSIONAL FLASH CONTINUOUS GLUCOSE MONITORING WITH AMBULATORY GLUCOSE PROFILE REPORTING TO SUPPLEMENT A1C: RATIONALE AND PRACTICAL IMPLEMENTATION.

    PubMed

    Hirsch, Irl B; Verderese, Carol A

    2017-11-01

    Recent consensus statements strongly advocate downloading and interpreting continuous glucose data for diabetes management in patients with type 1 or 2 diabetes. Supplementing periodic glycated hemoglobin (A1C) testing with intermittent continuous glucose monitoring (CGM) using a standardized report form known as the ambulatory glucose profile (AGP) is an evolving standard of care. The rationale for this approach and its implementation with a recently approved novel monitoring technology are explored. Search of the medical literature, professional guidelines, and real-world evidence guided this introduction of an integrative practice framework that uses AGP in conjunction with intermittent flash continuous glucose monitoring (FCGM) as a supplement to A1C testing. The combination of intermittent continuous glucose pattern analysis, standardized glucose metrics, and a readily interpretable data report has the potential to practically extend the recognized benefits of CGM to more patients and clarify the relationship between A1C and average glucose levels in individual cases. Novel FCGM technologies portend greater use of continuous forms of glucose monitoring and wider adoption of AGP report analysis. Additional formal and empirical evidence is needed to more fully characterize best practice. A1C = glycated hemoglobin; AGP = ambulatory glucose profile; CGM = continuous glucose monitoring; FCGM = flash continuous glucose monitoring; IQR = interquartile range; SMBG = self-monitoring of blood glucose.

  14. Continuous glucose monitoring: a valuable monitoring tool for management of hypoglycemia during chemotherapy for acute lymphoblastic leukemia.

    PubMed

    Visavachaipan, Nipapat; Aledo, Alexander; Franklin, Bonita H; Brar, Preneet C

    2013-01-01

    Acute lymphoblastic leukemia (ALL) maintenance therapy (MT) has been occasionally associated with symptomatic hypoglycemia (SH), attributed to purine analog (mercaptopurine [6-MP]). This hypoglycemia has been hypothesized to affect substrate utilization of gluconeogenic precursor alanine in the liver. An overweight 5-year-old boy with ALL was evaluated for SH (lethargy and vomiting) that occurred 8-10 h after fasting while receiving daily 6-MP. Hypoglycemic episodes (>20 episodes per month) occurred predominantly around midmorning but not during the 5-day dexamethasone pulse. The adrenocorticotropic hormone test yielded a normal cortisol response, which ruled out pituitary adrenal suppression. A 12-h overnight fasting glucose was 49 mg/dL, with suppressed insulin response <2 IU/mL, low C-peptide of 0.5 ng/mL, high insulin-like growth factor-binding protein >160 ng/mL, high free fatty acid of 2.64 mmol/L, and negative glucagon stimulation test (change in blood glucose [BG] <5 mg/dL). These results ruled out hyperinsulinism. The patient was placed on cornstarch therapy 5 h prior to dosing with 6-MP. This treatment reduced the SH events to fewer than two episodes per month. To study the efficacy of cornstarch, the patient was fitted with the iPro™ professional continuous glucose monitoring system (CGMS) (Medtronic MiniMed, Northridge, CA) with a preset low alarm at 70 mg/dL, which was worn for a period of 5 days while the patient was on cornstarch. With 1,000 sensor reading the BG range was 65-158 mg/dL, and the percentage mean absolute difference between sensor and finger-stick BG readings (the parent monitored his BG four times a day) was 9.4%. There were no hypoglycemic episodes detected by the CGMS while the patient was on cornstarch. After the cessation of chemotherapy, a 15-h fasting study was performed, and the CGMS was placed. Results showed resolution of hypoglycemia. The CGMS helped us devise an effective management plan for our patient. CGMS proved useful as an adjunct to characterize the pattern of hypoglycemia and to validate the benefit of cornstarch in hypoglycemia associated with 6-MP treatment of ALL.

  15. Nocturnal continuous glucose monitoring: accuracy and reliability of hypoglycemia detection in patients with type 1 diabetes at high risk of severe hypoglycemia.

    PubMed

    Bay, Christiane; Kristensen, Peter Lommer; Pedersen-Bjergaard, Ulrik; Tarnow, Lise; Thorsteinsson, Birger

    2013-05-01

    A reliable method to detect biochemical nocturnal hypoglycemia is highly needed, especially in patients with recurrent severe hypoglycemia. We evaluated reliability of nocturnal continuous glucose monitoring (CGM) in patients with type 1 diabetes at high risk of severe hypoglycemia. Seventy-two type 1 diabetes patients with recurrent severe hypoglycemia (two or more events within the last year) participated for 4 nights in blinded CGM recordings (Guardian(®) REAL-Time CGMS and Sof-Sensor(®); Medtronic MiniMed, Northridge, CA). Blood was drawn hourly from 23:00 to 07:00 h for plasma glucose (PG) measurements (gold standard). Valid data were obtained in 217 nights. The sensitivity of CGM was 65% (95% confidence interval, 53-77%) below 4 mmol/L, 40% (24-56%) below 3 mmol/L, and 17% (0-47%) below 2.2 mmol/L. PG and CGM readings correlated in the total measurement range (Spearman's ρ=0.82; P<0.001). In the normo- and hyperglycemic ranges CGM underestimated PG by 1.1 mmol/L (0.9-1.2 mmol/L) (P<0.001); in contrast, in the hypoglycemic range (PG<4 mmol/L) CGM overestimated PG levels by 1.0 mmol/L (P<0.001). The mean absolute relative differences in the hypo- (≤3.9 mmol/L), normo- (4-9.9 mmol/L), and hyperglycemic (≥10 mmol/L) ranges were 45% (37-53%), 23% (22-25%), and 20% (19-21%), respectively. Continuous glucose error grid analysis indicated a clinical accuracy of 56%, 99%, and 93% in the hypo-, normo-, and hyperglycemic ranges, respectively. The accuracy in the hypoglycemic range of nocturnal CGM data using Sof-Sensor is suboptimal in type 1 diabetes patients at high risk of severe hypoglycemia. To ensure clinical useful sensitivity in detection of nocturnal hypoglycemic episodes, an alarm threshold should not be lower than 4 mmol/L.

  16. Comparison of 5 reflectance meters for capillary blood glucose determination.

    PubMed

    Kolopp, M; Louis, J; Pointel, J P; Kohler, F; Drouin, P; Debry, G

    1983-03-01

    Manufacturing quality, accuracy and users opinion (i.e. medical and nurses staff and patients) were compared among five Destrostix reading reflectance-meters for home-blood-glucose-monitoring. Two machines (dextrometer and glucometer) equipped with microprocessors, integrated circuits and good quality wiring are best made. Reflectance-meter capillary blood glucose measurements were found to be accurate enough for home-blood-glucose-monitoring, compared to a reference method. However, two machines from the same brand were different in blood glucose accuracy. Glucocheck had poorest results. Users prefer small sized, battery powered machines. Glucometer appears to be best suited to home-blood-glucose-monitoring.

  17. Benefits of three-month continuous glucose monitoring for persons with diabetes using insulin pumps and sensors.

    PubMed

    Peterson, Karolina; Zapletalova, Jana; Kudlova, Pavla; Matuskova, Veronika; Bartek, Josef; Novotny, Dalibor; Chlup, Rudolf

    2009-03-01

    The latest Paradigm 722 insulin pump, Medtronic MiniMed, USA, enables daily reading of 288 interstitial fluid glucose concentrations determined by a sensor inserted into subcutaneous tissue; the sensor signals are transmitted into the insulin pump, enabling the patient to see real-time glucose concentration on the display and adapt further treatment. To assess the evolution of HbA1c over the course of a 3-month period in two cohorts of persons with type 1 (n=39) or type 2 (n=3) diabetes (PWD): 1) PWD on Paradigm 722 using sensors for continuous glucose monitoring (CGM group), 2) PWD on other types of insulin pumps performing intensive self-monitoring as before (3 to 6 times/d) on glucometer Linus, Wellion, Agamatrix (control group). Compliant PWDs using insulin pump with insulin aspart for several previous months were included in the study. Seventeen were put on Paradigm 722 with CGM and 25 were included in the control group. Paired t-test and the statistical program SPSS v.15.0 were used to analyze the data. There was no significant difference in age between the two groups (P=0.996), in diabetes duration (P=0.482) or in daily insulin dose (P=0.469). In the CGM group (but not in the control group) HbA1c/IFCC dropped from 6.98+/-0.43 % to 5.98+/-0.36 % (P=0.006) within 1 month and remained reduced. The use of the Paradigm 722 insulin pump with CGM resulted in significant improvement in HbA1c which appeared within one month and remained throughout the whole 3-month study period. No significant improvement in HbA1c was seen in the control group.

  18. Evaluation of the effects of insufficient blood volume samples on the performance of blood glucose self-test meters.

    PubMed

    Pfützner, Andreas; Schipper, Christina; Ramljak, Sanja; Flacke, Frank; Sieber, Jochen; Forst, Thomas; Musholt, Petra B

    2013-11-01

    Accuracy of blood glucose readings is (among other things) dependent on the test strip being completely filled with sufficient sample volume. The devices are supposed to display an error message in case of incomplete filling. This laboratory study was performed to test the performance of 31 commercially available devices in case of incomplete strip filling. Samples with two different glucose levels (60-90 and 300-350 mg/dl) were used to generate three different sample volumes: 0.20 µl (too low volume for any device), 0.32 µl (borderline volume), and 1.20 µl (low but supposedly sufficient volume for all devices). After a point-of-care capillary reference measurement (StatStrip, NovaBiomedical), the meter strip was filled (6x) with the respective volume, and the response of the meters (two devices) was documented (72 determinations/meter type). Correct response was defined as either an error message indicating incomplete filling or a correct reading (±20% compared with reference reading). Only five meters showed 100% correct responses [BGStar and iBGStar (both Sanofi), ACCU-CHEK Compact+ and ACCU-CHEK Mobile (both Roche Diagnostics), OneTouch Verio (LifeScan)]. The majority of the meters (17) had up to 10% incorrect reactions [predominantly incorrect readings with sufficient volume; Precision Xceed and Xtra, FreeStyle Lite, and Freedom Lite (all Abbott); GlucoCard+ and GlucoMen GM (both Menarini); Contour, Contour USB, and Breeze2 (all Bayer); OneTouch Ultra Easy, Ultra 2, and Ultra Smart (all LifeScan); Wellion Dialog and Premium (both MedTrust); FineTouch (Terumo); ACCU-CHEK Aviva (Roche); and GlucoTalk (Axis-Shield)]. Ten percent to 20% incorrect reactions were seen with OneTouch Vita (LifeScan), ACCU-CHEK Aviva Nano (Roche), OmniTest+ (BBraun), and AlphaChek+ (Berger Med). More than 20% incorrect reactions were obtained with Pura (Ypsomed), GlucoCard Meter and GlucoMen LX (both Menarini), Elite (Bayer), and MediTouch (Medisana). In summary, partial and incomplete blood filling of glucose meter strips is often associated with inaccurate reading. These findings underline the importance of appropriate patient education on this aspect of blood glucose self-monitoring. © 2013 Diabetes Technology Society.

  19. Time Delay of CGM Sensors

    PubMed Central

    Schmelzeisen-Redeker, Günther; Schoemaker, Michael; Kirchsteiger, Harald; Freckmann, Guido; Heinemann, Lutz; del Re, Luigi

    2015-01-01

    Background: Continuous glucose monitoring (CGM) is a powerful tool to support the optimization of glucose control of patients with diabetes. However, CGM systems measure glucose in interstitial fluid but not in blood. Rapid changes in one compartment are not accompanied by similar changes in the other, but follow with some delay. Such time delays hamper detection of, for example, hypoglycemic events. Our aim is to discuss the causes and extent of time delays and approaches to compensate for these. Methods: CGM data were obtained in a clinical study with 37 patients with a prototype glucose sensor. The study was divided into 5 phases over 2 years. In all, 8 patients participated in 2 phases separated by 8 months. A total number of 108 CGM data sets including raw signals were used for data analysis and were processed by statistical methods to obtain estimates of the time delay. Results: Overall mean (SD) time delay of the raw signals with respect to blood glucose was 9.5 (3.7) min, median was 9 min (interquartile range 4 min). Analysis of time delays observed in the same patients separated by 8 months suggests a patient dependent delay. No significant correlation was observed between delay and anamnestic or anthropometric data. The use of a prediction algorithm reduced the delay by 4 minutes on average. Conclusions: Prediction algorithms should be used to provide real-time CGM readings more consistent with simultaneous measurements by SMBG. Patient specificity may play an important role in improving prediction quality. PMID:26243773

  20. Evaluating the accuracy and large inaccuracy of two continuous glucose monitoring systems.

    PubMed

    Leelarathna, Lalantha; Nodale, Marianna; Allen, Janet M; Elleri, Daniela; Kumareswaran, Kavita; Haidar, Ahmad; Caldwell, Karen; Wilinska, Malgorzata E; Acerini, Carlo L; Evans, Mark L; Murphy, Helen R; Dunger, David B; Hovorka, Roman

    2013-02-01

    This study evaluated the accuracy and large inaccuracy of the Freestyle Navigator (FSN) (Abbott Diabetes Care, Alameda, CA) and Dexcom SEVEN PLUS (DSP) (Dexcom, Inc., San Diego, CA) continuous glucose monitoring (CGM) systems during closed-loop studies. Paired CGM and plasma glucose values (7,182 data pairs) were collected, every 15-60 min, from 32 adults (36.2±9.3 years) and 20 adolescents (15.3±1.5 years) with type 1 diabetes who participated in closed-loop studies. Levels 1, 2, and 3 of large sensor error with increasing severity were defined according to absolute relative deviation greater than or equal to ±40%, ±50%, and ±60% at a reference glucose level of ≥6 mmol/L or absolute deviation greater than or equal to ±2.4 mmol/L,±3.0 mmol/L, and ±3.6 mmol/L at a reference glucose level of <6 mmol/L. Median absolute relative deviation was 9.9% for FSN and 12.6% for DSP. Proportions of data points in Zones A and B of Clarke error grid analysis were similar (96.4% for FSN vs. 97.8% for DSP). Large sensor over-reading, which increases risk of insulin over-delivery and hypoglycemia, occurred two- to threefold more frequently with DSP than FSN (once every 2.5, 4.6, and 10.7 days of FSN use vs. 1.2, 2.0, and 3.7 days of DSP use for Level 1-3 errors, respectively). At levels 2 and 3, large sensor errors lasting 1 h or longer were absent with FSN but persisted with DSP. FSN and DSP differ substantially in the frequency and duration of large inaccuracy despite only modest differences in conventional measures of numerical and clinical accuracy. Further evaluations are required to confirm that FSN is more suitable for integration into closed-loop delivery systems.

  1. Accuracy of Continuous Glucose Monitoring During Three Closed-Loop Home Studies Under Free-Living Conditions.

    PubMed

    Thabit, Hood; Leelarathna, Lalantha; Wilinska, Malgorzata E; Elleri, Daniella; Allen, Janet M; Lubina-Solomon, Alexandra; Walkinshaw, Emma; Stadler, Marietta; Choudhary, Pratik; Mader, Julia K; Dellweg, Sibylle; Benesch, Carsten; Pieber, Thomas R; Arnolds, Sabine; Heller, Simon R; Amiel, Stephanie A; Dunger, David; Evans, Mark L; Hovorka, Roman

    2015-11-01

    Closed-loop (CL) systems modulate insulin delivery based on glucose levels measured by a continuous glucose monitor (CGM). Accuracy of the CGM affects CL performance and safety. We evaluated the accuracy of the Freestyle Navigator(®) II CGM (Abbott Diabetes Care, Alameda, CA) during three unsupervised, randomized, open-label, crossover home CL studies. Paired CGM and capillary glucose values (10,597 pairs) were collected from 57 participants with type 1 diabetes (41 adults [mean±SD age, 39±12 years; mean±SD hemoglobin A1c, 7.9±0.8%] recruited at five centers and 16 adolescents [mean±SD age, 15.6±3.6 years; mean±SD hemoglobin A1c, 8.1±0.8%] recruited at two centers). Numerical accuracy was assessed by absolute relative difference (ARD) and International Organization for Standardization (ISO) 15197:2013 15/15% limits, and clinical accuracy was assessed by Clarke error grid analysis. Total duration of sensor use was 2,002 days (48,052 h). Overall sensor accuracy for the capillary glucose range (1.1-27.8 mmol/L) showed mean±SD and median (interquartile range) ARD of 14.2±15.5% and 10.0% (4.5%, 18.4%), respectively. Lowest mean ARD was observed in the hyperglycemic range (9.8±8.8%). Over 95% of pairs were in combined Clarke error grid Zones A and B (A, 80.1%, B, 16.2%). Overall, 70.0% of the sensor readings satisfied ISO criteria. Mean ARD was consistent (12.3%; 95% of the values fall within ±3.7%) and not different between participants (P=0.06) within the euglycemic and hyperglycemic range, when CL is actively modulating insulin delivery. Consistent accuracy of the CGM within the euglycemic-hyperglycemic range using the Freestyle Navigator II was observed and supports its use in home CL studies. Our results may contribute toward establishing normative CGM performance criteria for unsupervised home use of CL.

  2. Quantifying temporal glucose variability in diabetes via continuous glucose monitoring: mathematical methods and clinical application.

    PubMed

    Kovatchev, Boris P; Clarke, William L; Breton, Marc; Brayman, Kenneth; McCall, Anthony

    2005-12-01

    Continuous glucose monitors (CGMs) collect detailed blood glucose (BG) time series, which carry significant information about the dynamics of BG fluctuations. In contrast, the methods for analysis of CGM data remain those developed for infrequent BG self-monitoring. As a result, important information about the temporal structure of the data is lost during the translation of raw sensor readings into clinically interpretable statistics and images. The following mathematical methods are introduced into the field of CGM data interpretation: (1) analysis of BG rate of change; (2) risk analysis using previously reported Low/High BG Indices and Poincare (lag) plot of risk associated with temporal BG variability; and (3) spatial aggregation of the process of BG fluctuations and its Markov chain visualization. The clinical application of these methods is illustrated by analysis of data of a patient with Type 1 diabetes mellitus who underwent islet transplantation and with data from clinical trials. Normative data [12,025 reference (YSI device, Yellow Springs Instruments, Yellow Springs, OH) BG determinations] in patients with Type 1 diabetes mellitus who underwent insulin and glucose challenges suggest that the 90%, 95%, and 99% confidence intervals of BG rate of change that could be maximally sustained over 15-30 min are [-2,2], [-3,3], and [-4,4] mg/dL/min, respectively. BG dynamics and risk parameters clearly differentiated the stages of transplantation and the effects of medication. Aspects of treatment were clearly visualized by graphs of BG rate of change and Low/High BG Indices, by a Poincare plot of risk for rapid BG fluctuations, and by a plot of the aggregated Markov process. Advanced analysis and visualization of CGM data allow for evaluation of dynamical characteristics of diabetes and reveal clinical information that is inaccessible via standard statistics, which do not take into account the temporal structure of the data. The use of such methods improves the assessment of patients' glycemic control.

  3. A two-component response regulator, gltR, is required for glucose transport activity in Pseudomonas aeruginosa PAO1.

    PubMed Central

    Sage, A E; Proctor, W D; Phibbs, P V

    1996-01-01

    A 729-bp open reading frame (gltR) was identified in Pseudomonas aeruginosa PAO1 that encodes a product homologous to the two-component response regulator family of proteins. Disruption of gltR caused loss of glucose transport activity. Restoration of gltR resulted in wild-type levels of glucose transport. These findings indicate that gltR is required for expression of the glucose transport system in P. aeruginosa. PMID:8830708

  4. Blood Ketones: Measurement, Interpretation, Limitations, and Utility in the Management of Diabetic Ketoacidosis

    PubMed Central

    Dhatariya, Ketan

    2016-01-01

    Diabetic ketoacidosis (DKA) remains a common medical emergency. Over the last few years, new national guidelines have changed the focus in managing the condition from being glucose-centered to ketone-centered. With the advent of advancing technology and the increasing use of hand-held, point-of-care ketone meters, greater emphasis is placed on making treatment decisions based on these readings. Furthermore, recent warnings about euglycemic DKA occurring in people with diabetes using sodium-glucose co-transporter 2 (SGLT-2) inhibitors urge clinicians to inform their patients of this condition and possible testing options. This review describes the reasons for a change in treating DKA, and outlines the benefits and limitations of using ketone readings, in particular highlighting the difference between urine and capillary readings. PMID:28278308

  5. Designing the modern pump: engineering aspects of continuous subcutaneous insulin infusion software.

    PubMed

    Welsh, John B; Vargas, Steven; Williams, Gary; Moberg, Sheldon

    2010-06-01

    Insulin delivery systems attracted the efforts of biological, mechanical, electrical, and software engineers well before they were commercially viable. The introduction of the first commercial insulin pump in 1983 represents an enduring milestone in the history of diabetes management. Since then, pumps have become much more than motorized syringes and have assumed a central role in diabetes management by housing data on insulin delivery and glucose readings, assisting in bolus estimation, and interfacing smoothly with humans and compatible devices. Ensuring the integrity of the embedded software that controls these devices is critical to patient safety and regulatory compliance. As pumps and related devices evolve, software engineers will face challenges and opportunities in designing pumps that are safe, reliable, and feature-rich. The pumps and related systems must also satisfy end users, healthcare providers, and regulatory authorities. In particular, pumps that are combined with glucose sensors and appropriate algorithms will provide the basis for increasingly safe and precise automated insulin delivery-essential steps to developing a fully closed-loop system.

  6. Noninvasive Continuous Monitoring of Tear Glucose Using Glucose-Sensing Contact Lenses.

    PubMed

    Ascaso, Francisco J; Huerva, Valentín

    2016-04-01

    : The incidence of diabetes mellitus is dramatically increasing in the developed countries. Tight control of blood glucose concentration is crucial to diabetic patients to prevent microvascular complications. Self-monitoring of blood glucose is widely used for controlling blood glucose levels and usually performed by an invasive test using a portable glucometer. Many technologies have been developed over the past decades with the purpose of obtaining a continuous physiological glycemic monitoring. A contact lens is the ideal vehicle for continuous tear glucose monitoring of glucose concentration in tear film. There are several research groups that are working in the development of contact lenses with embedded biosensors for continuously and noninvasively monitoring tear glucose levels. Although numerous aspects must be improved, contact lens technology is one step closer to helping diabetic subjects better manage their condition, and these contact lenses will be able to measure the level of glucose in the wearer's tears and communicate the information to a mobile phone or computer. This article reviews studies on ocular glucose and its monitoring methods as well as the attempts to continuously monitor the concentration of tear glucose by using contact lens-based sensors.

  7. Glucose Biosensors: An Overview of Use in Clinical Practice

    PubMed Central

    Yoo, Eun-Hyung; Lee, Soo-Youn

    2010-01-01

    Blood glucose monitoring has been established as a valuable tool in the management of diabetes. Since maintaining normal blood glucose levels is recommended, a series of suitable glucose biosensors have been developed. During the last 50 years, glucose biosensor technology including point-of-care devices, continuous glucose monitoring systems and noninvasive glucose monitoring systems has been significantly improved. However, there continues to be several challenges related to the achievement of accurate and reliable glucose monitoring. Further technical improvements in glucose biosensors, standardization of the analytical goals for their performance, and continuously assessing and training lay users are required. This article reviews the brief history, basic principles, analytical performance, and the present status of glucose biosensors in the clinical practice. PMID:22399892

  8. Plasma-Generating Glucose Monitor Accuracy Demonstrated in an Animal Model

    PubMed Central

    Magarian, Peggy; Sterling, Bernhard

    2009-01-01

    Introduction Four randomized controlled trials have compared mortality and morbidity of tight glycemic control versus conventional glucose for intensive care unit (ICU) patients. Two trials showed a positive outcome. However, one single-center trial and a large multicenter trial had negative results. The positive trials used accurate portable lab analyzers. The negative trial allowed the use of meters. The portable analyzer measures in filtered plasma, minimizing the interference effects. OptiScan Biomedical Corporation is developing a continuous glucose monitor using centrifuged plasma and mid-infrared spectroscopy for use in ICU medicine. The OptiScanner draws approximately 0.1 ml of blood every 15 min and creates a centrifuged plasma sample. Internal quality control minimizes sample preparation error. Interference adjustment using this technique has been presented at the Society of Critical Care Medicine in separate studies since 2006. Method A good laboratory practice study was conducted on three Yorkshire pigs using a central venous catheter over 6 h while performing a glucose challenge. Matching Yellow Springs Instrument glucose readings were obtained. Results Some 95.7% of the predicted values were in the Clarke Error Grid A zone and 4.3% in the B zone. Of those in the B zone, all were within 3.3% of the A zone boundaries. The coefficient of determination (R2) was 0.993. The coefficient of variance was 5.02%. Animal necropsy and blood panels demonstrated safety. Conclusion The OptiScanner investigational device performed safely and accurately in an animal model. Human studies using the device will begin soon. PMID:20144396

  9. Continuous Glucose Monitoring: Impact on Hypoglycemia.

    PubMed

    van Beers, Cornelis A J; DeVries, J Hans

    2016-11-01

    The necessity of strict glycemic control is unquestionable. However, hypoglycemia remains a major limiting factor in achieving satisfactory glucose control, and evidence is mounting to show that hypoglycemia is not benign. Over the past decade, evidence has consistently shown that real-time continuous glucose monitoring improves glycemic control in terms of lowering glycated hemoglobin levels. However, real-time continuous glucose monitoring has not met the expectations of the diabetes community with regard to hypoglycemia prevention. The earlier trials did not demonstrate any effect on either mild or severe hypoglycemia and the effect of real-time continuous glucose monitoring on nocturnal hypoglycemia was often not reported. However, trials specifically designed to reduce hypoglycemia in patients with a high hypoglycemia risk have demonstrated a reduction in hypoglycemia, suggesting that real-time continuous glucose monitoring can prevent hypoglycemia when it is specifically used for that purpose. Moreover, the newest generation of diabetes technology currently available commercially, namely sensor-augmented pump therapy with a (predictive) low glucose suspend feature, has provided more convincing evidence for hypoglycemia prevention. This article provides an overview of the hypoglycemia outcomes of randomized controlled trials that investigate the effect of real-time continuous glucose monitoring alone or sensor-augmented pump therapy with a (predictive) low glucose suspend feature. Furthermore, several possible explanations are provided why trials have not shown a reduction in severe hypoglycemia. In addition, existing evidence is presented of real-time continuous glucose monitoring in patients with impaired awareness of hypoglycemia who have the highest risk of severe hypoglycemia. © 2016 Diabetes Technology Society.

  10. Continuous Glucose Monitoring

    PubMed Central

    van Beers, Cornelis A. J.; DeVries, J. Hans

    2016-01-01

    The necessity of strict glycemic control is unquestionable. However, hypoglycemia remains a major limiting factor in achieving satisfactory glucose control, and evidence is mounting to show that hypoglycemia is not benign. Over the past decade, evidence has consistently shown that real-time continuous glucose monitoring improves glycemic control in terms of lowering glycated hemoglobin levels. However, real-time continuous glucose monitoring has not met the expectations of the diabetes community with regard to hypoglycemia prevention. The earlier trials did not demonstrate any effect on either mild or severe hypoglycemia and the effect of real-time continuous glucose monitoring on nocturnal hypoglycemia was often not reported. However, trials specifically designed to reduce hypoglycemia in patients with a high hypoglycemia risk have demonstrated a reduction in hypoglycemia, suggesting that real-time continuous glucose monitoring can prevent hypoglycemia when it is specifically used for that purpose. Moreover, the newest generation of diabetes technology currently available commercially, namely sensor-augmented pump therapy with a (predictive) low glucose suspend feature, has provided more convincing evidence for hypoglycemia prevention. This article provides an overview of the hypoglycemia outcomes of randomized controlled trials that investigate the effect of real-time continuous glucose monitoring alone or sensor-augmented pump therapy with a (predictive) low glucose suspend feature. Furthermore, several possible explanations are provided why trials have not shown a reduction in severe hypoglycemia. In addition, existing evidence is presented of real-time continuous glucose monitoring in patients with impaired awareness of hypoglycemia who have the highest risk of severe hypoglycemia. PMID:27257169

  11. Wearable Contact Lens Biosensors for Continuous Glucose Monitoring Using Smartphones.

    PubMed

    Elsherif, Mohamed; Hassan, Mohammed Umair; Yetisen, Ali K; Butt, Haider

    2018-05-17

    Low-cost, robust, and reusable continuous glucose monitoring systems that can provide quantitative measurements at point-of-care settings is an unmet medical need. Optical glucose sensors require complex and time-consuming fabrication processes, and their readouts are not practical for quantitative analyses. Here, a wearable contact lens optical sensor was created for the continuous quantification of glucose at physiological conditions, simplifying the fabrication process and facilitating smartphone readouts. A photonic microstructure having a periodicity of 1.6 μm was printed on a glucose-selective hydrogel film functionalized with phenylboronic acid. Upon binding with glucose, the microstructure volume swelled, which modulated the periodicity constant. The resulting change in the Bragg diffraction modulated the space between zero- and first-order spots. A correlation was established between the periodicity constant and glucose concentration within 0-50 mM. The sensitivity of the sensor was 12 nm mM -1 , and the saturation response time was less than 30 min. The sensor was integrated with commercial contact lenses and utilized for continuous glucose monitoring using smartphone camera readouts. The reflected power of the first-order diffraction was measured via a smartphone application and correlated to the glucose concentrations. A short response time of 3 s and a saturation time of 4 min was achieved in the continuous monitoring mode. Glucose-sensitive photonic microstructures may have applications in point-of-care continuous monitoring devices and diagnostics at home settings.

  12. Noninvasive Ultrasound Transdermal Insulin Delivery and Glucose Monitoring Using a Low-Profile Cymbal Array

    NASA Astrophysics Data System (ADS)

    Park, E.-J.; Luis, J.; Meyer, R. J.; Pishko, M. V.; Smith, N. B.

    2006-05-01

    Recent studies have shown that ultrasound mediated transdermal drug delivery offers promising results for noninvasive drug administration. The purpose of this study was to demonstrate ultrasonic transdermal insulin delivery and in vivo sensing glucose with a novel, low-profile ultrasound array based on the cymbal transducer. As a practical device, the array composed of circular cymbal transducers was thin (< 7mm) and weighed less than 22g. Using this array on hyperglycemic rats, our previous experiments demonstrated that blood glucose would decrease by 296.7 mg/dL from 60 minutes of ultrasound exposure. With a similar intensity, our goal was to evaluate the feasibility of insulin delivery with large animals (rabbits and pigs) and noninvasively determine the glucose level of hyperglycemic rats with the array system. Ultrasound was exposed for 60 minutes at Isptp=100 mW/cm2. With the same procedure, a preliminary experiment of large animal was performed on a pig (12 kg) at Isptp=50 mW/cm2. For the control experiments in insulin delivery, the blood glucose level varied little from the initial baseline. However, for the ultrasound and insulin exposure experiment, the glucose level was found to decrease by 132.6 mg/dL in 60 minutes and continued to decrease by 208.1 mg/dL in 90 minutes. From the preliminary pig experiment, the blood glucose level decreased by 120 mg/dL in 90 minutes. To noninvasively determine the glucose level, ultrasound exposure experiments with an electrochemical glucose biosensor were performed on hyperglycemic rats. After 20 minutes ultrasound exposure, the biosensor was placed at the exposure area to determine the concentration of glucose diffused through the skin. The glucose level of rats determined by the biosensor was 408 mg/dL which was very similar to the results of conventional glucose meter reading 396.7 mg/dL. Recently, a rectangular cymbal transducer was developed to obtain a larger sonication area without an increase in array size. Preliminary experiments were performed on hyperglycemic rabbits to evaluate the new transducer design. The results showed that the rectangular array has enhanced performance compared to the circular array. All results of ultrasound application indicate the feasibility of using a low-cost, light-weight cymbal array for enhanced noninvasive transdermal insulin delivery and glucose monitoring.

  13. Subcutaneous glucagon infusion and continuous glucose monitoring enable effective management of hypoglycemia in a patient with IGF-2-producing hemangiopericytoma.

    PubMed

    Buras, Eric D; Weatherup, Emily; Wyckoff, Jennifer

    2018-01-01

    Ectopic insulin-like growth factor (IGF)-2 production is a rare complication of an array of epithelial and mesenchymal tumors, and can clinically manifest as life-threatening hypoglycemia. A 49-year-old woman with 13-year history of metastatic hemangiopericytoma, previously treated with multiple rounds of chemotherapy and palliative radiation, presented to the emergency department after a hypoglycemic seizure. On arrival, glucose was 18 mg/dL (1.0 mmol/L) and required continuous dextrose infusion for maintenance within normal limits. Insulin was <2.0 μU/mL, C-peptide 0.1 ng/mL, and beta-hydroxybutyrate <0.2 mmol/L. Random cortisol was 21 μg/dL; sulfonylurea screen, and insulin antibodies were negative. IGF-2 level was 1320 ng/mL; IGF-1 was within normal limits and IGF binding protein (BP)-3 suppressed. Dexamethasone, started at 6 mg twice daily, allowed discontinuation of the glucose infusion. Given concern for nocturnal hypoglycemia, and patient interest in steroid-sparing anti-hypoglycemic regimen, she was also started on overnight continuous subcutaneous glucagon infusion via insulin pump. She was discharged with instructions to maintain a diet high in complex carbohydrates during the day, while utilizing glucagon pump at night. She was also started on continuous glucose monitoring system (CGMS) with an alarm to warn of hypoglycemia. Glucagon infusion rate was later titrated based on CGMS readings. Abdominal CT revealed increasing size of a right upper quadrant mass not previously subjected to radiotherapy. After radiation to this area, hypoglycemia improved, allowing further glucagon titration. In parallel, IGF-2 level declined to 380 ng/mL. Ectopic IGF-2 production is a rare but often fatal complication of many cancers, and should be considered on the differential diagnosis in patients with malignancy and unexplained hypoglycemia. Once hypoglycemia is diagnosed, patients often have end-stage disease. While treatment of the causative tumor is the only definitive intervention, anti-hypoglycemia therapy is a life-saving, temporizing measure. In this case, the patient attained euglycemia and survived 3 months after presentation before ultimately succumbing to other malignancy-related complications. Given efficacy in management of hypoglycemia while awaiting definitive tumor-directed therapy, we submit nighttime subcutaneous glucagon infusion and CGMS are valuable additions to the physician's armamentarium in managing this condition.

  14. Diel Metagenomics and Metatranscriptomics of Elkhorn Slough Hypersaline Microbial Mat

    NASA Astrophysics Data System (ADS)

    Lee, J.; Detweiler, A. M.; Everroad, R. C.; Bebout, L. E.; Weber, P. K.; Pett-Ridge, J.; Bebout, B.

    2014-12-01

    To understand the variation in gene expression associated with the daytime oxygenic phototrophic and nighttime fermentation regimes seen in hypersaline microbial mats, a contiguous mat piece was subjected to sampling at regular intervals over a 24-hour diel period. Additionally, to understand the impact of sulfate reduction on biohydrogen consumption, molybdate was added to a parallel experiment in the same run. 4 metagenome and 12 metatranscriptome Illumina HiSeq lanes were completed over day / night, and control / molybdate experiments. Preliminary comparative examination of noon and midnight metatranscriptomic samples mapped using bowtie2 to reference genomes has revealed several notable results about the dominant mat-building cyanobacterium Microcoleus chthonoplastes PCC 7420. Dominant cyanobacterium M. chthonoplastes PCC 7420 shows expression in several pathways for nitrogen scavenging, including nitrogen fixation. Reads mapped to M. chthonoplastes PCC 7420 shows expression of two starch storage and utilization pathways, one as a starch-trehalose-maltose-glucose pathway, another through UDP-glucose-cellulose-β-1,4 glucan-glucose pathway. The overall trend of gene expression was primarily light driven up-regulation followed by down-regulation in dark, while much of the remaining expression profile appears to be constitutive. Co-assembly of quality-controlled reads from 4 metagenomes was performed using Ray Meta with progressively smaller K-mer sizes, with bins identified and filtered using principal component analysis of coverages from all libraries and a %GC filter, followed by reassembly of the remaining co-assembly reads and binned reads. Despite having relatively similar abundance profiles in each metagenome, this binning approach was able to distinctly resolve bins from dominant taxa, but also sulfate reducing bacteria that are desired for understanding molybdate inhibition. Bins generated from this iterative assembly process will be used for downstream mapping of transcriptomic reads as well as isolation efforts for Cyanobacteria-associated bacteria.

  15. Accuracy of a Factory-Calibrated, Real-Time Continuous Glucose Monitoring System During 10 Days of Use in Youth and Adults with Diabetes.

    PubMed

    Wadwa, R Paul; Laffel, Lori M; Shah, Viral N; Garg, Satish K

    2018-06-01

    Frequent use of continuous glucose monitoring (CGM) systems is associated with improved glycemic outcomes in persons with diabetes, but the need for calibrations and sensor insertions are often barriers to adoption. In this study, we evaluated the performance of G6, a sixth-generation, factory-calibrated CGM system specified for 10-day wear. The study enrolled participants of ages 6 years and up with type 1 diabetes or insulin-treated type 2 diabetes at 11 sites in the United States. Participation involved one sensor wear period of up to 10 days. Adults wore the system on the abdomen; youth of ages 6-17 years could choose to wear it on the abdomen or upper buttocks. Clinic sessions for frequent comparison with reference blood glucose measurements took place on days 1, 4-5, 7, and/or 10. Participants of ages 13 years and up underwent purposeful supervised glucose manipulation during in-clinic sessions. During the study, participants calibrated the systems once daily. However, analysis was performed on glucose values that were derived from reprocessed raw sensor data, independently of self-monitored blood glucose values used for calibration. Reprocessing used assigned sensor codes and a factory-calibration algorithm. Performance evaluation included the proportion of CGM values that were within ±20% of reference glucose values >100 mg/dL or within ±20 mg/dL of reference glucose values ≤100 mg/dL (%20/20), the analogous %15/15, and the mean absolute relative difference (MARD, expressed as a percentage) between temporally matched CGM and reference values. Data from 262 study participants (21,569 matched CGM reference pairs) were analyzed. The overall %15/15, %20/20, and MARD were 82.4%, 92.3%, and 10.0%, respectively. Matched pairs from 134 adults and 128 youth of ages 6-17 years were similar with respect to %20/20 (92.4% and 91.9%) and MARD (9.9% and 10.1%). Overall %20/20 values on days 1 and 10 of sensor wear were 88.6% and 90.6%, respectively. The system's "Urgent Low Soon" (predictive of hypoglycemia within 20 min) hypoglycemia alert was correctly provided 84% of the time within 30 min before impending biochemical hypoglycemia (<70 mg/dL). The 10-day sensor survival rate was 87%. The new factory-calibrated G6 real-time CGM system provides accurate readings for 10 days and removes several clinical barriers to broader CGM adoption.

  16. Sleep, Glucose, and Daytime Functioning in Youth with Type 1 Diabetes

    PubMed Central

    Perfect, Michelle M.; Patel, Priti G.; Scott, Roxanne E.; Wheeler, Mark D.; Patel, Chetanbabu; Griffin, Kurt; Sorensen, Seth T.; Goodwin, James L.; Quan, Stuart F.

    2012-01-01

    Study Hypotheses: 1) Youth with evidence of SDB (total apnea-hypopnea index [Total-AHI] ≥ 1.5) would have significantly worse glucose control than those without SDB; 2) Elevated self-reported sleepiness in youth with T1DM would be related to compromised psychosocial functioning; and 3) Youth with T1DM would have significantly less slow wave sleep (SWS) than controls. Design: The study utilized home-based polysomnography, actigraphy, and questionnaires to assess sleep, and continuous glucose monitors and hemoglobin A1C (HbA1C) values to assess glucose control in youth with T1DM. We compared sleep of youth with T1DM to sleep of a matched control sample. Setting: Diabetic participants were recruited in a pediatric endocrinology clinic. Participants: Participants were youth (10 through 16 years) with T1DM. Controls, matched for sex, age, and BMI percentile, were from the Tucson Children's Assessment of Sleep Apnea study. Results: Participants with a Total-AHI ≥ 1.5 had higher glucose levels. Sleepiness and/or poor sleep habits correlated with reduced quality of life, depressed mood, lower grades, and lower state standardized reading scores. Diabetic youth spent more time (%) in stage N2 and less time in stage N3. Findings related to sleep architecture included associations between reduced SWS and higher HbA1C, worse quality of life, and sleepiness. More time (%) spent in stage N2 related to higher glucose levels/hyperglycemia, behavioral difficulties, reduced quality of life, lower grades, depression, sleep-wake behavior problems, poor sleep quality, sleepiness, and lower state standardized math scores. Conclusions: Sleep should be routinely assessed as part of diabetes management in youth with T1DM. Citation: Perfect MM; Patel PG; Scott RE; Wheeler MD; Patel C; Griffin K; Sorensen ST; Goodwin JL; Quan SF. Sleep, glucose, and daytime functioning in youth with type 1 diabetes. SLEEP 2012;35(1):81-88. PMID:22215921

  17. Direct Evidence of Acetaminophen Interference with Subcutaneous Glucose Sensing in Humans: A Pilot Study

    PubMed Central

    Basu, Ananda; Veettil, Sona; Dyer, Roy; Peyser, Thomas

    2016-01-01

    Abstract Background: Recent advances in accuracy and reliability of continuous glucose monitoring (CGM) devices have focused renewed interest on the use of such technology for therapeutic dosing of insulin without the need for independent confirmatory blood glucose meter measurements. An important issue that remains is the susceptibility of CGM devices to erroneous readings in the presence of common pharmacologic interferences. We report on a new method of assessing CGM sensor error to pharmacologic interferences using the example of oral administration of acetaminophen. Materials and Methods: We examined the responses of several different Food and Drug Administration–approved and commercially available CGM systems (Dexcom [San Diego, CA] Seven® Plus™, Medtronic Diabetes [Northridge, CA] Guardian®, and Dexcom G4® Platinum) to oral acetaminophen in 10 healthy volunteers without diabetes. Microdialysis catheters were placed in the abdominal subcutaneous tissue. Blood and microdialysate samples were collected periodically and analyzed for glucose and acetaminophen concentrations before and after oral ingestion of 1 g of acetaminophen. We compared the response of CGM sensors with the measured acetaminophen concentrations in the blood and interstitial fluid. Results: Although plasma glucose concentrations remained constant at approximately 90 mg/dL (approximately 5 mM) throughout the study, CGM glucose measurements varied between approximately 85 to 400 mg/dL (from approximately 5 to 22 mM) due to interference from the acetaminophen. The temporal profile of CGM interference followed acetaminophen concentrations measured in interstitial fluid (ISF). Conclusions: This is the first direct measurement of ISF concentrations of putative CGM interferences with simultaneous measurements of CGM performance in the presence of the interferences. The observed interference with glucose measurements in the tested CGM devices coincided temporally with appearance of acetaminophen in the ISF. The method applied here can be used to determine the susceptibility of current and future CGM systems to interference from acetaminophen or other exogenous pharmacologic agents. PMID:26784129

  18. Current concepts in blood glucose monitoring

    PubMed Central

    Khadilkar, Kranti Shreesh; Bandgar, Tushar; Shivane, Vyankatesh; Lila, Anurag; Shah, Nalini

    2013-01-01

    Blood glucose monitoring has evolved over the last century. The concept of adequate glycemic control and minimum glycemic variability requires an ideal, accurate and reliable glucose monitoring system. The search for an ideal blood glucose monitoring system still continues. This review explains the various blood glucose monitoring systems with special focus on the monitoring systems like self- monitored blood glucose (SMBG) and continuous glucose monitoring system (CGMS). It also focuses on the newer concepts of blood glucose monitoring and their incorporation in routine clinical management of diabetes mellitus. PMID:24910827

  19. Self-reported discrimination, diabetes distress, and continuous blood glucose in women with type 2 diabetes.

    PubMed

    Wagner, Julie A; Tennen, Howard; Feinn, Richard; Osborn, Chandra Y

    2015-04-01

    We investigated whether self-reported racial discrimination was associated with continuous glucose levels and variability in individuals with diabetes, and whether diabetes distress mediated these associations. Seventy-four Black and White women with type 2 diabetes completed the Experience of Discrimination scale, a measure of lifetime racial discrimination, and the Problem Areas in Diabetes, a measure of diabetes distress. Participants wore a continuous glucose monitor for 24 h after 8 h of fasting, a standard meal, and a 4-h run in period. Higher discrimination predicted higher continuous mean glucose and higher standard deviation of glucose. For both mean and standard deviation of glucose, a race × discrimination interaction indicated a stronger relationship between discrimination and glucose for Whites than for Blacks. Diabetes distress mediated the discrimination-mean glucose relationship. Whites who report discrimination may be uniquely sensitive to distress. These preliminary findings suggest that racial discrimination adversely affects glucose control in women with diabetes, and does so indirectly through diabetes distress. Diabetes distress may be an important therapeutic target to reduce the ill effects of racial discrimination in persons with diabetes.

  20. Are late-night eating habits and sleep duration associated with glycemic control in adult type 1 diabetes patients treated with insulin pumps?

    PubMed

    Matejko, Bartlomiej; Kiec-Wilk, Beata; Szopa, Magdalena; Trznadel Morawska, Iwona; Malecki, Maciej T; Klupa, Tomasz

    2015-07-01

    Little is known about the impact of sleep duration and late-night snacking on glycemic control in patients with type 1 diabetes using insulin pumps. The aim of the present study was to examine whether late-night eating habits and short sleep duration are associated with glycemic control in continuous subcutaneous insulin infusion-treated type 1 diabetic patients. We included 148 consecutive adult type 1 diabetic subjects using an insulin pump (100 women and 48 men). Participants completed a questionnaire regarding sleep duration (classified as short if ≤6 h) and late-night snacking. Other sources of information included medical records and data from blood glucose meters. Glycemic control was assessed by glycated hemoglobin (HbA1c) levels and mean self-monitoring of blood glucose (SMBG) readings. The mean age of patients was 26 years, mean type 1 diabetes duration was 13.4 years and mean HbA1c level was 7.2%. In a univariate regression analysis, sleep duration was a predictor of both HbA1c (β = 0.51, P = 0.01) and SMBG levels (β = 11.4, P = 0.02). Additionally, an association was found between frequent late-night snacking and higher SMBG readings (often snacking β = 18.1, P = 0.05), but not with increased HbA1c levels. In the multivariate linear regression, independent predictors for HbA1c and SMBG were sleep duration and patient age. In a univariate logistic regression, sleep duration and frequency of late-night snacking were not predictors of whether HbA1c target levels were achieved. Short sleep duration, but not late-night snacking, seems to be associated with poorer glycemic control in type 1 diabetic patients treated with continuous subcutaneous insulin infusion.

  1. A Perioperative Systems Design to Improve Intraoperative Glucose Monitoring Is Associated with a Reduction in Surgical Site Infections in a Diabetic Patient Population.

    PubMed

    Ehrenfeld, Jesse M; Wanderer, Jonathan P; Terekhov, Maxim; Rothman, Brian S; Sandberg, Warren S

    2017-03-01

    Diabetic patients receiving insulin should have periodic intraoperative glucose measurement. The authors conducted a care redesign effort to improve intraoperative glucose monitoring. With approval from Vanderbilt University Human Research Protection Program (Nashville, Tennessee), the authors created an automatic system to identify diabetic patients, detect insulin administration, check for recent glucose measurement, and remind clinicians to check intraoperative glucose. Interrupted time series and propensity score matching were used to quantify pre- and postintervention impact on outcomes. Chi-square/likelihood ratio tests were used to compare surgical site infections at patient follow-up. The authors analyzed 15,895 cases (3,994 preintervention and 11,901 postintervention; similar patient characteristics between groups). Intraoperative glucose monitoring rose from 61.6 to 87.3% in cases after intervention (P = 0.0001). Recovery room entry hyperglycemia (fraction of initial postoperative glucose readings greater than 250) fell from 11.0 to 7.2% after intervention (P = 0.0019), while hypoglycemia (fraction of initial postoperative glucose readings less than 75) was unchanged (0.6 vs. 0.9%; P = 0.2155). Eighty-seven percent of patients had follow-up care. After intervention the unadjusted surgical site infection rate fell from 1.5 to 1.0% (P = 0.0061), a 55.4% relative risk reduction. Interrupted time series analysis confirmed a statistically significant surgical site infection rate reduction (P = 0.01). Propensity score matching to adjust for confounders generated a cohort of 7,604 well-matched patients and confirmed a statistically significant surgical site infection rate reduction (P = 0.02). Anesthesiologists add healthcare value by improving perioperative systems. The authors leveraged the one-time cost of programming to improve reliability of intraoperative glucose management and observed improved glucose monitoring, increased insulin administration, reduced recovery room hyperglycemia, and fewer surgical site infections. Their analysis is limited by its applied quasiexperimental design.

  2. Modeling and Measurement of Correlation between Blood and Interstitial Glucose Changes

    PubMed Central

    Shi, Ting; Li, Dachao; Li, Guoqing; Zhang, Yiming; Xu, Kexin; Lu, Luo

    2016-01-01

    One of the most effective methods for continuous blood glucose monitoring is to continuously measure glucose in the interstitial fluid (ISF). However, multiple physiological factors can modulate glucose concentrations and affect the lag phase between blood and ISF glucose changes. This study aims to develop a compensatory tool for measuring the delay in ISF glucose variations in reference to blood glucose changes. A theoretical model was developed based on biophysics and physiology of glucose transport in the microcirculation system. Blood and interstitial fluid glucose changes were measured in mice and rats by fluorescent and isotope methods, respectively. Computer simulation mimicked curves were fitted with data resulting from fluorescent measurements of mice and isotope measurements of rats, indicating that there were lag times for ISF glucose changes. It also showed that there was a required diffusion distance for glucose to travel from center of capillaries to interstitial space in both mouse and rat models. We conclude that it is feasible with the developed model to continuously monitor dynamic changes of blood glucose concentration through measuring glucose changes in ISF with high accuracy, which requires correct parameters for determining and compensating for the delay time of glucose changes in ISF. PMID:27239479

  3. Continuous glucose profiles in healthy subjects under everyday life conditions and after different meals.

    PubMed

    Freckmann, Guido; Hagenlocher, Sven; Baumstark, Annette; Jendrike, Nina; Gillen, Ralph C; Rössner, Katja; Haug, Cornelia

    2007-09-01

    This study investigated continuous glucose profiles in nondiabetic subjects. Continuous interstitial glucose measurement was performed under everyday life conditions (2 days) and after ingestion of four meals with standardized carbohydrate content (50 grams), but with different types of carbohydrates and variable protein and fat content. Twenty-four healthy volunteers (12 female, 12 male, age 27.1 +/- 3.6 years) participated in the study. Each subject wore two microdialysis devices (SCGM1, Roche Diagnostics) simultaneously. The mean 24-hour interstitial glucose concentration under everyday life conditions was 89.3 +/- 6.2 mg/dl (mean +/- SD, n = 21), and mean interstitial glucose concentrations at daytime and during the night were 93.0 +/- 7.0 and 81.8 +/- 6.3 mg/dl, respectively. The highest postprandial glucose concentrations were observed after breakfast: 132.3 +/- 16.7 mg/dl (range 101-168 mg/dl); peak concentrations after lunch and dinner were 118.2 +/- 13.4 and 123.0 +/- 16.9 mg/dl, respectively. Mean time to peak glucose concentration was between 46 and 50 minutes. After ingestion of standardized meals with fast absorption characteristics, peak interstitial glucose concentrations were 133.2 +/- 14.4 and 137.2 +/- 21.1 mg/dl, respectively. Meals with a higher fiber, protein, and fat content induced a smaller increase and a slower decrease of postprandial glucose concentrations with peak values of 99.2 +/- 10.5 and 122.1 +/- 20.4 mg/dl, respectively. This study provided continuous glucose profiles in nondiabetic subjects and demonstrated that differences in meal composition are reflected in postprandial interstitial glucose concentrations. Regarding the increasing application of continuous glucose monitoring in diabetic patients, these data suggest that detailed information about the ingested meals is important for adequate interpretation of postprandial glucose profiles.

  4. Preparation of PVA membrane for immobilization of GOD for glucose biosensor.

    PubMed

    Kumar, Jitendra; D'Souza, S F

    2008-03-15

    A membrane was prepared using polyvinyl alcohol (PVA) with low and high degree of polymerization (DOP), acetone, benzoic acid (BA) and was cross-linked by UV treatment. Membrane composition was optimized on the basis of swelling index. Membrane prepared with 12% low DOP and 8% high DOP of PVA, 2% BA, dissolved in buffer containing 20% acetone and cross-linked with UV treatment exhibited lower swelling index. Fourier transform infrared (FTIR) study of the membranes showed appearance of a strong band at approximately 2337 cm(-1) when UV was used for cross-linking in the presence of benzoic acid. Scanning electron microscope (SEM) study revealed that membrane cross-linked with UV treatment was smoother. Glucose oxidase (GOD)-PVA membrane was associated with the dissolved oxygen (DO) probe for biosensor reading. Glucose was detected on the basis of depletion of oxygen, when immobilized GOD oxidizes glucose to gluconolactone. A wide detection range, 0.9-225 mg/dl was estimated from the linear range of calibration plot of biosensor reading. Membranes were reused for 32 reactions without significant loss of activity and stored for 30 days (approximately 90% activity) at 4 degrees C. Membranes were also used with real blood samples.

  5. A continuous glucose monitoring and problem-solving intervention to change physical activity behavior in women with type 2 diabetes: a pilot study.

    PubMed

    Allen, Nancy; Whittemore, Robin; Melkus, Gail

    2011-11-01

    Diabetes technology has the potential to provide useful data for theory-based behavioral counseling. The aims of this study are to evaluate the feasibility, acceptability, and preliminary efficacy of a continuous glucose monitoring and problem-solving counseling intervention to change physical activity (PA) behavior in women with type 2 diabetes. Women (n=29) with type 2 diabetes were randomly assigned to one of two treatment conditions: continuous glucose counseling and problem-solving skills or continuous glucose monitoring counseling and general diabetes education. Feasibility data were obtained on intervention dose, implementation, and satisfaction. Preliminary efficacy data were collected at baseline and 12 weeks on the following measures: PA amount and intensity, diet, problem-solving skills, self-efficacy for PA, depression, hemogoloin A1c, weight, and blood pressure. Demographic and implementation variables were described using frequency distributions and summary statistics. Satisfaction data were analyzed using Wilcoxon rank. Differences between groups were analyzed using linear mixed-modeling. Women were mostly white/non-Latina with a mean age of 53 years, a 6.5-year history of diabetes, and suboptimal glycemic control. Continuous glucose monitoring plus problem-solving group participants had significantly greater problem-solving skills and had greater, although not statistically significant, dietary adherence, moderate activity minutes, weight loss, and higher intervention satisfaction pre- to post-intervention than did participants in the continuous glucose monitoring plus education group. A continuous glucose monitoring plus problem-solving intervention was feasible and acceptable, and participants had greater problem-solving skills than continuous glucose monitoring plus education group participants.

  6. Impact of Retrospective Calibration Algorithms on Hypoglycemia Detection in Newborn Infants Using Continuous Glucose Monitoring

    PubMed Central

    Signal, Matthew; Le Compte, Aaron; Harris, Deborah L.; Weston, Philip J.; Harding, Jane E.

    2012-01-01

    Abstract Background Neonatal hypoglycemia is common and may cause serious brain injury. Diagnosis is by blood glucose (BG) measurements, often taken several hours apart. Continuous glucose monitoring (CGM) could improve hypoglycemia detection, while reducing the number of BG measurements. Calibration algorithms convert sensor signals into CGM output. Thus, these algorithms directly affect measures used to quantify hypoglycemia. This study was designed to quantify the effects of recalibration and filtering of CGM data on measures of hypoglycemia (BG <2.6 mmol/L) in neonates. Subjects and Methods CGM data from 50 infants were recalibrated using an algorithm that explicitly recognized the high-accuracy BG measurements available in this study. CGM data were analyzed as (1) original CGM output, (2) recalibrated CGM output, (3) recalibrated CGM output with postcalibration median filtering, and (4) recalibrated CGM output with precalibration median filtering. Hypoglycemia was classified by number of episodes, duration, severity, and hypoglycemic index. Results Recalibration increased the number of hypoglycemic events (from 161 to 193), hypoglycemia duration (from 2.2% to 2.6%), and hypoglycemic index (from 4.9 to 7.1 μmol/L). Median filtering postrecalibration reduced hypoglycemic events from 193 to 131, with little change in duration (from 2.6% to 2.5%) and hypoglycemic index (from 7.1 to 6.9 μmol/L). Median filtering prerecalibration resulted in 146 hypoglycemic events, a total duration of hypoglycemia of 2.6%, and a hypoglycemic index of 6.8 μmol/L. Conclusions Hypoglycemia metrics, especially counting events, are heavily dependent on CGM calibration BG error, and the calibration algorithm. CGM devices tended to read high at lower levels, so when high accuracy calibration measurements are available it may be more appropriate to recalibrate the data. PMID:22856622

  7. Impact of retrospective calibration algorithms on hypoglycemia detection in newborn infants using continuous glucose monitoring.

    PubMed

    Signal, Matthew; Le Compte, Aaron; Harris, Deborah L; Weston, Philip J; Harding, Jane E; Chase, J Geoffrey

    2012-10-01

    Neonatal hypoglycemia is common and may cause serious brain injury. Diagnosis is by blood glucose (BG) measurements, often taken several hours apart. Continuous glucose monitoring (CGM) could improve hypoglycemia detection, while reducing the number of BG measurements. Calibration algorithms convert sensor signals into CGM output. Thus, these algorithms directly affect measures used to quantify hypoglycemia. This study was designed to quantify the effects of recalibration and filtering of CGM data on measures of hypoglycemia (BG <2.6 mmol/L) in neonates. CGM data from 50 infants were recalibrated using an algorithm that explicitly recognized the high-accuracy BG measurements available in this study. CGM data were analyzed as (1) original CGM output, (2) recalibrated CGM output, (3) recalibrated CGM output with postcalibration median filtering, and (4) recalibrated CGM output with precalibration median filtering. Hypoglycemia was classified by number of episodes, duration, severity, and hypoglycemic index. Recalibration increased the number of hypoglycemic events (from 161 to 193), hypoglycemia duration (from 2.2% to 2.6%), and hypoglycemic index (from 4.9 to 7.1 μmol/L). Median filtering postrecalibration reduced hypoglycemic events from 193 to 131, with little change in duration (from 2.6% to 2.5%) and hypoglycemic index (from 7.1 to 6.9 μmol/L). Median filtering prerecalibration resulted in 146 hypoglycemic events, a total duration of hypoglycemia of 2.6%, and a hypoglycemic index of 6.8 μmol/L. Hypoglycemia metrics, especially counting events, are heavily dependent on CGM calibration BG error, and the calibration algorithm. CGM devices tended to read high at lower levels, so when high accuracy calibration measurements are available it may be more appropriate to recalibrate the data.

  8. [Design and implementation of real-time continuous glucose monitoring instrument].

    PubMed

    Huang, Yonghong; Liu, Hongying; Tian, Senfu; Jia, Ziru; Wang, Zi; Pi, Xitian

    2017-12-01

    Real-time continuous glucose monitoring can help diabetics to control blood sugar levels within the normal range. However, in the process of practical monitoring, the output of real-time continuous glucose monitoring system is susceptible to glucose sensor and environment noise, which will influence the measurement accuracy of the system. Aiming at this problem, a dual-calibration algorithm for the moving-window double-layer filtering algorithm combined with real-time self-compensation calibration algorithm is proposed in this paper, which can realize the signal drift compensation for current data. And a real-time continuous glucose monitoring instrument based on this study was designed. This real-time continuous glucose monitoring instrument consisted of an adjustable excitation voltage module, a current-voltage converter module, a microprocessor and a wireless transceiver module. For portability, the size of the device was only 40 mm × 30 mm × 5 mm and its weight was only 30 g. In addition, a communication command code algorithm was designed to ensure the security and integrity of data transmission in this study. Results of experiments in vitro showed that current detection of the device worked effectively. A 5-hour monitoring of blood glucose level in vivo showed that the device could continuously monitor blood glucose in real time. The relative error of monitoring results of the designed device ranged from 2.22% to 7.17% when comparing to a portable blood meter.

  9. Optical biosensor optimized for continuous in-line glucose monitoring in animal cell culture.

    PubMed

    Tric, Mircea; Lederle, Mario; Neuner, Lisa; Dolgowjasow, Igor; Wiedemann, Philipp; Wölfl, Stefan; Werner, Tobias

    2017-09-01

    Biosensors for continuous glucose monitoring in bioreactors could provide a valuable tool for optimizing culture conditions in biotechnological applications. We have developed an optical biosensor for long-term continuous glucose monitoring and demonstrated a tight glucose level control during cell culture in disposable bioreactors. The in-line sensor is based on a commercially available oxygen sensor that is coated with cross-linked glucose oxidase (GOD). The dynamic range of the sensor was tuned by a hydrophilic perforated diffusion membrane with an optimized permeability for glucose and oxygen. The biosensor was thoroughly characterized by experimental data and numerical simulations, which enabled insights into the internal concentration profile of the deactivating by-product hydrogen peroxide. The simulations were carried out with a one-dimensional biosensor model and revealed that, in addition to the internal hydrogen peroxide concentration, the turnover rate of the enzyme GOD plays a crucial role for biosensor stability. In the light of this finding, the glucose sensor was optimized to reach a long functional stability (>52 days) under continuous glucose monitoring conditions with a dynamic range of 0-20 mM and a response time of t 90  ≤ 10 min. In addition, we demonstrated that the sensor was sterilizable with beta and UV irradiation and only subjected to minor cross sensitivity to oxygen, when an oxygen reference sensor was applied. Graphical abstract Measuring setup of a glucose biosensor in a shake flask for continuous glucose monitoring in mammalian cell culture.

  10. The Performance and Usability of a Factory-Calibrated Flash Glucose Monitoring System

    PubMed Central

    Bailey, Timothy; Bode, Bruce W.; Christiansen, Mark P.; Klaff, Leslie J.

    2015-01-01

    Abstract Introduction: The purpose of the study was to evaluate the performance and usability of the FreeStyle® Libre™ Flash glucose monitoring system (Abbott Diabetes Care, Alameda, CA) for interstitial glucose results compared with capillary blood glucose results. Materials and Methods: Seventy-two study participants with type 1 or type 2 diabetes were enrolled by four U.S. clinical sites. A sensor was inserted on the back of each upper arm for up to 14 days. Three factory-only calibrated sensor lots were used in the study. Sensor glucose measurements were compared with capillary blood glucose (BG) results (approximately eight per day) obtained using the BG meter built into the reader (BG reference) and with the YSI analyzer (Yellow Springs Instrument, Yellow Springs, OH) reference tests at three clinic visits (32 samples per visit). Sensor readings were masked to the participants. Results: The accuracy of the results was demonstrated against capillary BG reference values, with 86.7% of sensor results within Consensus Error Grid Zone A. The percentage of readings within Consensus Error Grid Zone A on Days 2, 7, and 14 was 88.4%, 89.2%, and 85.2%, respectively. The overall mean absolute relative difference was 11.4%. The mean lag time between sensor and YSI reference values was 4.5±4.8 min. Sensor accuracy was not affected by factors such as body mass index, age, type of diabetes, clinical site, insulin administration, or hemoglobin A1c. Conclusions: Interstitial glucose measurements with the FreeStyle Libre system were found to be accurate compared with capillary BG reference values, with accuracy remaining stable over 14 days of wear and unaffected by patient characteristics. PMID:26171659

  11. The Performance and Usability of a Factory-Calibrated Flash Glucose Monitoring System.

    PubMed

    Bailey, Timothy; Bode, Bruce W; Christiansen, Mark P; Klaff, Leslie J; Alva, Shridhara

    2015-11-01

    The purpose of the study was to evaluate the performance and usability of the FreeStyle(®) Libre™ Flash glucose monitoring system (Abbott Diabetes Care, Alameda, CA) for interstitial glucose results compared with capillary blood glucose results. Seventy-two study participants with type 1 or type 2 diabetes were enrolled by four U.S. clinical sites. A sensor was inserted on the back of each upper arm for up to 14 days. Three factory-only calibrated sensor lots were used in the study. Sensor glucose measurements were compared with capillary blood glucose (BG) results (approximately eight per day) obtained using the BG meter built into the reader (BG reference) and with the YSI analyzer (Yellow Springs Instrument, Yellow Springs, OH) reference tests at three clinic visits (32 samples per visit). Sensor readings were masked to the participants. The accuracy of the results was demonstrated against capillary BG reference values, with 86.7% of sensor results within Consensus Error Grid Zone A. The percentage of readings within Consensus Error Grid Zone A on Days 2, 7, and 14 was 88.4%, 89.2%, and 85.2%, respectively. The overall mean absolute relative difference was 11.4%. The mean lag time between sensor and YSI reference values was 4.5±4.8 min. Sensor accuracy was not affected by factors such as body mass index, age, type of diabetes, clinical site, insulin administration, or hemoglobin A1c. Interstitial glucose measurements with the FreeStyle Libre system were found to be accurate compared with capillary BG reference values, with accuracy remaining stable over 14 days of wear and unaffected by patient characteristics.

  12. Usefulness of continuous glucose monitoring for the diagnosis of hypoglycemia after a gastric bypass in a patient previously treated for type 2 diabetes.

    PubMed

    Hanaire, Hélène; Dubet, Audrey; Chauveau, Marie-Emilie; Anduze, Yves; Fernandes, Martine; Melki, Vincent; Ritz, Patrick

    2010-01-01

    Hypoglycemia is rare after a gastric bypass and can be taken for a dumping syndrome. There is no report in the literature of the contribution of continuous glucose monitoring to the diagnosis of hypoglycemia in these circumstances. The present case report shows that continuous glucose monitoring can be a useful tool for the diagnosis and the management of such episodes. Continuous glucose monitoring revealed hypoglycemic episodes in free living circumstances that were not present during 72-h fasting. These episodes followed wide hyperglycemic swings. No such episode resumed over 8 months after specific dietary advices and treatment by 50 mg TID of acarbose. Because hypoglycemia can be difficult to diagnose from dumping syndrome, continuous glucose monitoring is a very useful tool revealing the episodes in free living circumstances and can be used to monitor the treatment success.

  13. Perceived diabetes task competence mediates the relationship of both negative and positive affect with blood glucose in adolescents with type 1 diabetes.

    PubMed

    Fortenberry, Katherine T; Butler, Jorie M; Butner, Jonathan; Berg, Cynthia A; Upchurch, Renn; Wiebe, Deborah J

    2009-02-01

    Adolescents dealing with type 1 diabetes experience disruptions in affect and diabetes management that may influence their blood glucose. A daily diary format examined whether daily fluctuations in both negative and positive affect were associated with adolescents' perceived diabetes task competence (DTC) and blood glucose, and whether perceived DTC mediated the relationship between daily affect and blood glucose. Sixty-two adolescents with type 1 diabetes completed a 2-week daily diary, which included daily measures of affect and perceived DTC, then recorded their blood glucose readings at the end of the day. We utilized hierarchical linear modeling to examine whether daily perceived DTC mediated the relationship between daily emotion and blood glucose. Daily perceived DTC mediated the relationship of both negative and positive affect with daily blood glucose. This study suggests that within the ongoing process of self-regulation, daily affect may be associated with blood glucose by influencing adolescents' perception of competence on daily diabetes tasks.

  14. A Multicenter Evaluation of the Performance and Usability of a Novel Glucose Monitoring System in Chinese Adults With Diabetes.

    PubMed

    Ji, Linong; Guo, Xiaohui; Guo, Lixin; Ren, Qian; Yu, Nan; Zhang, Jie

    2017-03-01

    Flash glucose monitoring is a new glucose sensing technique that measures interstitial glucose levels for up to 14 days and does not require any calibration. The aim of this study is to evaluate the performance of the new system in Chinese patients with diabetes. A multicenter, prospective, masked study was performed in a total of 45 subjects with diabetes. Subjects wore 2 sensors at the same time, for up to 14 days. The accuracy was evaluated against capillary blood glucose (BG) and venous Yellow Springs Instrument (YSI; Yellow Springs, OH) measurements. During all 14 days, subjects were asked to perform at least 8 capillary BG tests per day. Each subject attended 3 days of 8-hour clinic sessions to measure YSI and sensor readings every 15 minutes. Forty subjects had evaluable glucose readings, with 6687 of 6696 (99.9%) sensor and capillary BG pairs within consensus error grid zones A and B, including 5824 (87.0%) in zone A. The 6969 sensor and venous YSI pairs resulted in 6965 (99.9%) pairs within zones A and B, including 5755 (82.6%) in zone A. The sensor pairs with BG and YSI result in mean absolute relative difference (MARD) of 10.0% and 10.7%, respectively. Overall between-sensor coefficient of variation (CV) was 8.0%, and the mean lag time was 3.1 (95% confidence interval 2.54 to 4.29) minutes. The system works well for people with diabetes in China, and it is easy to wear and use.

  15. Clinical assessment of the accuracy of blood glucose measurement devices.

    PubMed

    Pfützner, Andreas; Mitri, Michael; Musholt, Petra B; Sachsenheimer, Daniela; Borchert, Marcus; Yap, Andrew; Forst, Thomas

    2012-04-01

    Blood glucose meters for patient self-measurement need to comply with the accuracy standards of the ISO 15197 guideline. We investigated the accuracy of the two new blood glucose meters BG*Star and iBG*Star (Sanofi-Aventis) in comparison to four other competitive devices (Accu-Chek Aviva, Roche Diagnostics; FreeStyle Freedom Lite, Abbott Medisense; Contour, Bayer; OneTouch Ultra 2, Lifescan) at different blood glucose ranges in a clinical setting with healthy subjects and patients with type 1 and type 2 diabetes. BGStar and iBGStar are employ dynamic electrochemistry, which is supposed to result in highly accurate results. The study was performed on 106 participants (53 female, 53 male, age (mean ± SD): 46 ± 16 years, type 1: 32 patients, type 2: 34 patients, and 40 healthy subjects). Two devices from each type and strips from two different production lots were used for glucose assessment (∼200 readings/meter). Spontaneous glucose assessments and glucose or insulin interventions under medical supervision were applied to perform measurements in the different glucose ranges in accordance with the ISO 15197 requirements. Sample values <50 mg/dL and >400 mg/dL were prepared by laboratory manipulations. The YSI glucose analyzer (glucose oxidase method) served as the standard reference method which may be considered to be a limitation in light of glucose hexokinase-based meters. For all devices, there was a very close correlation between the glucose results compared to the YSI reference method results. The correlation coefficients were r = 0.995 for BGStar and r = 0.992 for iBGStar (Aviva: 0.995, Freedom Lite: 0.990, Contour: 0.993, Ultra 2: 0.990). Error-grid analysis according to Parkes and Clarke revealed both 100% of the readings to be within the clinically acceptable areas (Clarke: A + B with BG*Star (100 + 0), Aviva (97 + 3), and Contour (97 + 3); and 99.5% with iBG*Star (97.5 + 2), Freedom Lite (98 + 1.5), and Ultra 2 (97.5 + 2)). This study demonstrated the very high accuracy of BG*Star, iBG*Star, and the competitive blood glucose meters in a clinical setting.

  16. Single-Walled Carbon Nanotube-Based Near-Infrared Optical Glucose Sensors toward In Vivo Continuous Glucose Monitoring

    PubMed Central

    Yum, Kyungsuk; McNicholas, Thomas P.; Mu, Bin; Strano, Michael S.

    2013-01-01

    This article reviews research efforts on developing single-walled carbon nanotube (SWNT)-based near-infrared (NIR) optical glucose sensors toward long-term in vivo continuous glucose monitoring (CGM). We first discuss the unique optical properties of SWNTs and compare SWNTs with traditional organic and nanoparticle fluorophores regarding in vivo glucose-sensing applications. We then present our development of SWNT-based glucose sensors that use glucose-binding proteins and boronic acids as a high-affinity molecular receptor for glucose and transduce binding events on the receptors to modulate SWNT fluorescence. Finally, we discuss opportunities and challenges in translating the emerging technology of SWNT-based NIR optical glucose sensors into in vivo CGM for practical clinical use. PMID:23439162

  17. Implementation of telehealth support for patients with type 2 diabetes using insulin treatment: an exploratory study.

    PubMed

    Turner, Jane; Larsen, Mark; Tarassenko, Lionel; Neil, Andrew; Farmer, Andrew

    2009-01-01

    Initiating and adjusting insulin treatment for people with type 2 diabetes (T2D) requires frequent clinician contacts both face-to-face and by telephone. We explored the use of a telehealth system to offer additional support to these patients. Twenty-three patients with uncontrolled T2D were recruited from nine general practices to assess the feasibility and acceptability of telehealth monitoring and support for insulin initiation and adjustment. The intervention included a standard algorithm for self-titration of insulin dose, a Bluetooth enabled glucose meter linked to a mobile phone, an integrated diary to record insulin dose, feedback of charted blood glucose data and telehealth nurse review with telephone follow-up. Additional contact with patients was initiated when no readings were transmitted for >3 days or when persistent hyper- or hypoglycaemia was identified. Reponses of patients and clinicians to the system were assessed informally. The mean (SD) patient age was 58 years (12) with 78% male. The mean (SD) diabetes duration was 6.4 years (4.5), HbA1c at baseline was 9.5% (2.2), and the decrease in HbA1c at three months was 0.52% (0.91) with an insulin dose increase of 9 units (26). A mean (SD) of 160 (93) blood glucose readings was transmitted per patient in these three months. Practice nurses and general practitioners (GPs) viewed the technology as having the potential to improve patient care. Most patients were able to use the equipment with training and welcomed review of their blood glucose readings by a telehealth nurse. Although the concept of telehealth monitoring is unfamiliar to most patients and practice nurses, the technology improved the support available for T2D patients commencing insulin treatment.

  18. SELF BLOOD GLUCOSE MONITORING UNDERESTIMATES HYPERGLYCEMIA AND HYPOGLYCEMIA AS COMPARED TO CONTINUOUS GLUCOSE MONITORING IN TYPE 1 AND TYPE 2 DIABETES.

    PubMed

    Mangrola, Devna; Cox, Christine; Furman, Arianne S; Krishnan, Sridevi; Karakas, Sidika E

    2018-01-01

    When glucose records from self blood glucose monitoring (SBGM) do not reflect estimated average glucose from glycosylated hemoglobin (HgBA1) or when patients' clinical symptoms are not explained by their SBGM records, clinical management of diabetes becomes a challenge. Our objective was to determine the magnitude of differences in glucose values reported by SBGM versus those documented by continuous glucose monitoring (CGM). The CGM was conducted by a clinical diabetes educator (CDE)/registered nurse by the clinic protocol, using the Medtronic iPRO2 ™ system. Patients continued SBGM and managed their diabetes without any change. Data from 4 full days were obtained, and relevant clinical information was recorded. De-identified data sets were provided to the investigators. Data from 61 patients, 27 with type 1 diabetes (T1DM) and 34 with T2DM were analyzed. The lowest, highest, and average glucose recorded by SBGM were compared to the corresponding values from CGM. The lowest glucose values reported by SBGM were approximately 25 mg/dL higher in both T1DM ( P = .0232) and T2DM ( P = .0003). The highest glucose values by SBGM were approximately 30 mg/dL lower in T1DM ( P = .0005) and 55 mg/dL lower in T2DM ( P<.0001). HgBA1c correlated with the highest and average glucose by SBGM and CGM. The lowest glucose values were seen most frequently during sleep and before breakfast; the highest were seen during the evening and postprandially. SBGM accurately estimates the average glucose but underestimates glucose excursions. CGM uncovers glucose patterns that common SBGM patterns cannot. CDE = certified diabetes educator; CGM = continuous glucose monitoring; HgBA1c = glycosylated hemoglobin; MAD = mean absolute difference; SBGM = self blood glucose monitoring; T1DM = type 1 diabetes; T2DM = type 2 diabetes.

  19. Rx for Teachers of Literature: The Rewards of Rigorous Reading.

    ERIC Educational Resources Information Center

    Marcus, Fred

    1968-01-01

    All literature teachers agree that students should read with perception, enjoy reading, and continue reading after classes have ended. Because perception promotes the pleasure that leads to continued reading, the basic step toward improved reading is to increase perception. The "index-card" system, which focuses attention on textual explication,…

  20. Using meta-differential evolution to enhance a calculation of a continuous blood glucose level.

    PubMed

    Koutny, Tomas

    2016-09-01

    We developed a new model of glucose dynamics. The model calculates blood glucose level as a function of transcapillary glucose transport. In previous studies, we validated the model with animal experiments. We used analytical method to determine model parameters. In this study, we validate the model with subjects with type 1 diabetes. In addition, we combine the analytic method with meta-differential evolution. To validate the model with human patients, we obtained a data set of type 1 diabetes study that was coordinated by Jaeb Center for Health Research. We calculated a continuous blood glucose level from continuously measured interstitial fluid glucose level. We used 6 different scenarios to ensure robust validation of the calculation. Over 96% of calculated blood glucose levels fit A+B zones of the Clarke Error Grid. No data set required any correction of model parameters during the time course of measuring. We successfully verified the possibility of calculating a continuous blood glucose level of subjects with type 1 diabetes. This study signals a successful transition of our research from an animal experiment to a human patient. Researchers can test our model with their data on-line at https://diabetes.zcu.cz. Copyright © 2016 The Author. Published by Elsevier Ireland Ltd.. All rights reserved.

  1. Toward continuous glucose monitoring with planar modified biosensors and microdialysis. Study of temperature, oxygen dependence and in vivo experiment.

    PubMed

    Ricci, Francesco; Caprio, Felice; Poscia, Alessandro; Valgimigli, Francesco; Messeri, Dimitri; Lepori, Elena; Dall'Oglio, Giorgio; Palleschi, Giuseppe; Moscone, Danila

    2007-04-15

    Glucose biosensors based on the use of planar screen-printed electrodes modified with an electrochemical mediator and with glucose oxidase have been optimised for their application in the continuous glucose monitoring in diabetic patients. A full study of their operative stability and temperature dependence has been accomplished, thus giving useful information for in vivo applications. The effect of dissolved oxygen concentration in the working solution was also studied in order to evaluate its effect on the linearity of the sensors. Glucose monitoring performed with serum samples was performed to evaluate the effect of matrix components on operative stability and demonstrated an efficient behaviour for 72 h of continuous monitoring. Finally, these studies led to a sensor capable of detecting glucose at concentrations as low as 0.04 mM and with a good linearity up to 2.0 mM (at 37 degrees C) with an operative stability of ca. 72 h, thus demonstrating the possible application of these sensors for continuous glucose monitoring in conjunction with a microdialysis probe. Moreover, preliminary in vivo experiments for ca. 20 h have demonstrated the feasibility of this system.

  2. Temporal patterns of hypoglycaemia and burden of sulfonylurea-related hypoglycaemia in UK hospitals: a retrospective multicentre audit of hospitalised patients with diabetes.

    PubMed

    Rajendran, Rajesh; Kerry, Christopher; Rayman, Gerry

    2014-07-09

    To determine whether temporal patterns of hypoglycaemia exist in inpatients with diabetes 'at risk' of hypoglycaemia (those on insulin and/or sulfonylureas), and if so whether patterns differ between hospitals and between these treatments. Retrospective multicentre audit of inpatients with diabetes involving 11 acute UK National Health Service (NHS) trusts. Capillary blood glucose readings of 3.9 mmol/L or less (hypoglycaemia) for all adult (≥18 years) inpatients with diabetes 'at risk' of hypoglycaemia were extracted from the Abbott PrecisionWeb Point-of-Care Data Management System over a 4-week period. Overall, 2521 readings of 3.9 mmol/L or less (hypoglycaemia) occurring in 866 participants between 1 June 2013 and 29 June 2013 were analysed. The majority (65%) occurred between 21:00 and 08:59, a pattern common to all Trusts. This was more frequent in sulfonylurea-treated than insulin-treated participants (75.3% vs 59.3%, p=0.0001). Furthermore, hypoglycaemic readings were more frequent between 5:00 and 7:59 in sulfonylurea-treated than insulin-treated participants (46.7% vs 22.7% of readings for respective treatments, p=0.0001). Sulfonylureas accounted for 31.8% of all hypoglycaemic readings. As a group, sulfonylurea-treated participants were older (median age 78 vs 73 years, p=0.0001) and had lower glycated haemoglobin (median 56 (7.3%) vs 69 mmol/mol (8.5%), p=0.0001). Hypoglycaemic readings per participant were as frequent for sulfonylurea-treated participants as for insulin-treated participants (median=2 for both) as were the proportions in each group with ≥5 hypoglycaemic readings (17.3% vs 17.7%). In all Trusts, hypoglycaemic readings were more frequent between 21:00 and 08:59 in 'at risk' inpatients with diabetes, with a greater frequency in the early morning period (5:00-7:59) in sulfonylurea-treated inpatients. This may have implications for the continuing use of sulfonylureas in the inpatient setting. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  3. Estimating Plasma Glucose from Interstitial Glucose: The Issue of Calibration Algorithms in Commercial Continuous Glucose Monitoring Devices

    PubMed Central

    Rossetti, Paolo; Bondia, Jorge; Vehí, Josep; Fanelli, Carmine G.

    2010-01-01

    Evaluation of metabolic control of diabetic people has been classically performed measuring glucose concentrations in blood samples. Due to the potential improvement it offers in diabetes care, continuous glucose monitoring (CGM) in the subcutaneous tissue is gaining popularity among both patients and physicians. However, devices for CGM measure glucose concentration in compartments other than blood, usually the interstitial space. This means that CGM need calibration against blood glucose values, and the accuracy of the estimation of blood glucose will also depend on the calibration algorithm. The complexity of the relationship between glucose dynamics in blood and the interstitial space, contrasts with the simplistic approach of calibration algorithms currently implemented in commercial CGM devices, translating in suboptimal accuracy. The present review will analyze the issue of calibration algorithms for CGM, focusing exclusively on the commercially available glucose sensors. PMID:22163505

  4. Continuous Glucose Monitoring in Female NOD Mice Reveals Daily Rhythms and a Negative Correlation With Body Temperature.

    PubMed

    Korstanje, Ron; Ryan, Jennifer L; Savage, Holly S; Lyons, Bonnie L; Kane, Kevin G; Sukoff Rizzo, Stacey J

    2017-09-01

    Previous studies with continuous glucose monitoring in mice have been limited to several days or weeks, with the mouse's physical attachment to the equipment affecting behavior and measurements. In the current study, we measured blood glucose and body temperature at 10-second intervals for 12 weeks in a cohort of NOD/ShiLtJ female mice using wireless telemetry. This allowed us to obtain a high-resolution profile of the circadian rhythm of these two parameters and the onset of hyperglycemic development in real time. The most striking observations were the elevated nocturnal concentrations of glucose into the diabetic range days before elevations in diurnal glucose (when glucose concentrations are historically measured) and the strong, negative correlation between elevated blood glucose concentrations and body temperature with a steady decline of the body temperature with diabetes development. Taken together, this technological advancement provides improved resolution in the study of the disease trajectory of diabetes in mouse models, including relevant translatability to the current technologies of continuous glucose monitoring now regularly used in patients. Copyright © 2017 Endocrine Society.

  5. Glucose metabolism in batch and continuous cultures of Gluconacetobacter diazotrophicus PAL 3.

    PubMed

    Luna, María F; Bernardelli, Cecilia E; Galar, María L; Boiardi, José L

    2006-03-01

    Periplasmic glucose oxidation (by way of a pyrrolo-quinoline-quinone [PQQ]-linked glucose dehydrogenase [GDH]) was observed in continuous cultures of Gluconacetobacter diazotrophicus regardless of the carbon source (glucose or gluconate) and the nitrogen source (N(2) or NH(3)). Its synthesis was stimulated by conditions of high energetic demand (i.e., N(2)-fixation) and/or C-limitation. Under C-excess conditions, PQQ-GDH synthesis increased with the glucose concentration in the culture medium. In batch cultures, PQQ-GDH was actively expressed in very early stages with higher activities under conditions of N(2)-fixation. Hexokinase activity was almost absent under any culture condition. Cytoplasmic nicotinamide adenine dinucleotide (NAD)-linked glucose dehydrogenase (GDH) was expressed in continuous cultures under all tested conditions, and its synthesis increased with the glucose concentration. In contrast, low activities of this enzyme were detected in batch cultures. Periplasmic oxidation, by way of PQQ-GDH, seems to be the principal pathway for metabolism of glucose in G. Diazotrophicus, and NAD-GDH is an alternative route under certain environmental conditions.

  6. Glucose control and use of continuous glucose monitoring in the intensive care unit: a critical review.

    PubMed

    De Block, Christophe; Manuel-y-Keenoy, Begoña; Rogiers, Peter; Jorens, Philippe; Van Gaal, Luc

    2008-08-01

    Stress hyperglycemia recently became a major therapeutic target in the Intensive Care Unit (ICU) since it occurs in most critically ill patients and is associated with adverse outcome, including increased mortality. Intensive insulin therapy to achieve normoglycemia may reduce mortality, morbidity and the length of ICU and in-hospital stay. However, obtaining normoglycemia requires extensive efforts from the medical staff, including frequent glucose monitoring and adjustment of insulin dose. Current insulin titration is based upon discrete glucose measurements, which may miss fast changes in glycemia and which does not give a full picture of overall glycemic control. Recent evidence suggests that continuous monitoring of glucose levels may help to signal glycemic excursions and eventually to optimize insulin titration in the ICU. In this review we will summarise monitoring and treatment strategies to achieve normoglycemia in the ICU, with special emphasis on the possible advantages of continuous glucose monitoring.

  7. Glucose Disappearance in Biological Treatment Systems

    PubMed Central

    Jeris, John S.; Cardenas, Raul R.

    1966-01-01

    Laboratory scale anaerobic and aerobic treatment units were conditioned with a daily slug-feed of glucose. After a period of acclimation and stabilization, glucose disappearance was monitored continuously after the slug feed. A continuous sampling apparatus is described. Mathematical analysis of the data indicate zero-order reactions for both biological treatment systems. PMID:16349685

  8. Continuous moderate-intensity exercise with or without intermittent high-intensity work: effects on acute and late glycaemia in athletes with Type 1 diabetes mellitus.

    PubMed

    Iscoe, K E; Riddell, M C

    2011-07-01

    Individuals with Type 1 diabetes mellitus are susceptible to hypoglycaemia during and after continuous moderate-intensity exercise, but hyperglycaemia during intermittent high-intensity exercise. The combination of both forms of exercise may have a moderating effect on glycaemia in recovery. The aims of this study were to compare the physiological responses and associated glycaemic changes to continuous moderate-intensity exercise vs. continuous moderate-intensity exercise + intermittent high-intensity exercise in athletes with Type 1 diabetes. Interstitial glucose levels were measured in a blinded fashion in 11 trained athletes with Type 1 diabetes during two sedentary days and during 2 days in which 45 min of afternoon continuous moderate-intensity exercise occurred either with or without intermittent high-intensity exercise. The total amount of work performed and the duration of exercise was identical between sessions. During exercise, heart rate, respiratory exchange ratio, oxygen utilization, ventilation and blood lactate levels were higher during continuous moderate-intensity + intermittent high-intensity exercise vs. continuous moderate-intensity exercise (all P < 0.05). Despite these marked cardiorespiratory differences between trials, there was no difference in the reduction of interstitial glucose or plasma glucose levels between the exercise trials. Nocturnal glucose levels were higher in continuous moderate-intensity + intermittent high-intensity exercise and in sedentary vs. continuous moderate-intensity exercise (P < 0.05). Compared with continuous moderate-intensity exercise alone, continuous moderate-intensity + intermittent high-intensity exercise was associated with less post-exercise hypoglycaemia (5.2 vs. 1.5% of the time spent with glucose < 4.0 mmol/l) and more post-exercise hyperglycaemia (33.8 vs. 20.4% of time > 11.0 mmol/l). Although the decreases in glucose level during continuous moderate-intensity exercise and continuous moderate-intensity + intermittent high-intensity exercise are similar, the latter form of exercise protects against nocturnal hypoglycaemia in athletes with Type 1 diabetes. © 2011 The Authors. Diabetic Medicine © 2011 Diabetes UK.

  9. Continuous glucose monitoring reveals different glycemic responses of moderate- vs high-carbohydrate lunch meals in people with type 2 diabetes.

    PubMed

    Powers, Margaret A; Cuddihy, Robert M; Wesley, David; Morgan, Blaine

    2010-12-01

    This single-center, meal-intervention, crossover study was conducted to determine the glycemic response to fixed meals with varying carbohydrate content. Continuous glucose monitoring was used to document the glycemic response. Participants were 14 people with type 2 diabetes on metformin only. On 4 consecutive days in March or July 2008, study participants consumed a fixed breakfast and one of two test meals (lunch) provided in random order. The two lunch types varied only in carbohydrate content; the protein, fat, fiber, and glycemic index were similar. They consumed no caloric food or beverages for 4 hours after each meal. Consuming double the carbohydrate content did not double the glycemic response variables, yet most were substantially different in glucose value (mg/dL) or minutes. General linear model analyses revealed substantial differences for peak glucose, change from baseline glucose to peak, time to return to preprandial glucose, 4-hour glucose area under the curve, and 4-hour mean glucose. Continuous glucose monitoring data provided a robust description of the glycemic response to the two meals. Such data can help improve postprandial glucose levels through more informed nutrition recommendations and synchronization of food intake, diabetes medication, and/or physical activity. Copyright © 2010 American Dietetic Association. Published by Elsevier Inc. All rights reserved.

  10. Cot-side electro-encephalography and interstitial glucose monitoring during insulin-induced hypoglycaemia in newborn lambs.

    PubMed

    Harris, Deborah L; Battin, Malcolm R; Williams, Chris E; Weston, Philip J; Harding, Jane E

    2009-01-01

    The optimal approach to detection and management of neonatal hypoglycaemia remains unclear. We sought to demonstrate whether electro-encephalography (EEG) changes could be detected on the amplitude-integrated EEG monitor during induced hypoglycaemia in newborn lambs, and also to determine the accuracy of continuously measured interstitial glucose in this situation. Needle electrodes were placed in the P3-P4, O1-O2 montages. The interstitial glucose sensor was placed subcutaneously. After 30 min baseline recordings, hypoglycaemia was induced by insulin infusion and blood glucose levels were monitored every 5 min. The infusion was adjusted to reduce blood glucose levels by 0.5 mmol/l every 15 min and then maintain a blood glucose level <1.0 mmol/l for 4 h. EEG parameters analysed included amplitude, continuity and spectral edge frequency. The interstitial and blood glucose levels were compared. All lambs (n = 15, aged 3-11 days) became hypoglycaemic, with median blood glucose levels falling from 6.5 to 1.0 mmol/l, p < 0.0001. There were no detectable changes in any of the measured EEG parameters related to hypoglycaemia, although seizures occurred in 2 lambs. There was moderate agreement between the intermittent blood glucose and continuous interstitial glucose measurements in the baseline, decline, and hypoglycaemia periods (mean difference -0.7 mmol/l, 95% confidence interval, CI, -2.8 to 1.4 mmol/l). However, agreement was poor during reversal of hypoglycaemia (mean difference 4.5 mmol/l, 95% CI -1.1 to 10.7 mmol/l). The cot-side EEG may not be a useful clinical tool in the detection of neurological changes induced by hypoglycaemia. However, continuous interstitial glucose monitoring may be useful in the management of babies at risk of hypoglycaemia. (c) 2008 S. Karger AG, Basel.

  11. Evaluation of a novel continuous glucose measurement device in patients with diabetes mellitus across the glycemic range.

    PubMed

    Morrow, Linda; Hompesch, Marcus; Tideman, Ann M; Matson, Jennifer; Dunne, Nancy; Pardo, Scott; Parkes, Joan L; Schachner, Holly C; Simmons, David A

    2011-07-01

    This glucose clamp study assessed the performance of an electrochemical continuous glucose monitoring (CGM) system for monitoring levels of interstitial glucose. This novel system does not require use of a trocar or needle for sensor insertion. Continuous glucose monitoring sensors were inserted subcutaneously into the abdominal tissue of 14 adults with type 1 or type 2 diabetes. Subjects underwent an automated glucose clamp procedure with four consecutive post-steady-state glucose plateau periods (40 min each): (a) hypoglycemic (50 mg/dl), (b) hyperglycemic (250 mg/dl), (c) second hypoglycemic (50 mg/dl), and (d) euglycemic (90 mg/dl). Plasma glucose results obtained with YSI glucose analyzers were used for sensor calibration. Accuracy was assessed retrospectively for plateau periods and transition states, when glucose levels were changing rapidly (approximately 2 mg/dl/min). Mean absolute percent difference (APD) was lowest during hypoglycemic plateaus (11.68%, 14.15%) and the euglycemic-to-hypoglycemic transition (14.21%). Mean APD during the hyperglycemic plateau was 17.11%; mean APDs were 18.12% and 19.25% during the hypoglycemic-to-hyperglycemic and hyperglycemic-to-hypoglycemic transitions, respectively. Parkes (consensus) error grid analysis (EGA) and rate EGA of the plateaus and transition periods, respectively, yielded 86.8% and 68.6% accurate results (zone A) and 12.1% and 20.0% benign errors (zone B). Continuous EGA yielded 88.5%, 75.4%, and 79.3% accurate results and 8.3%, 14.3%, and 2.4% benign errors for the euglycemic, hyperglycemic, and hypoglycemic transition periods, respectively. Adverse events were mild and unlikely to be device related. This novel CGM system was safe and accurate across the clinically relevant glucose range. © 2011 Diabetes Technology Society.

  12. Evaluation of a Novel Continuous Glucose Measurement Device in Patients with Diabetes Mellitus across the Glycemic Range

    PubMed Central

    Morrow, Linda; Hompesch, Marcus; Tideman, Ann M; Matson, Jennifer; Dunne, Nancy; Pardo, Scott; Parkes, Joan L; Schachner, Holly C; Simmons, David A

    2011-01-01

    Background This glucose clamp study assessed the performance of an electrochemical continuous glucose monitoring (CGM) system for monitoring levels of interstitial glucose. This novel system does not require use of a trocar or needle for sensor insertion. Method Continuous glucose monitoring sensors were inserted subcutaneously into the abdominal tissue of 14 adults with type 1 or type 2 diabetes. Subjects underwent an automated glucose clamp procedure with four consecutive post-steady-state glucose plateau periods (40 min each): (a) hypoglycemic (50 mg/dl), (b) hyperglycemic (250 mg/dl), (c) second hypoglycemic (50 mg/dl), and (d) euglycemic (90 mg/dl). Plasma glucose results obtained with YSI glucose analyzers were used for sensor calibration. Accuracy was assessed retrospectively for plateau periods and transition states, when glucose levels were changing rapidly (approximately 2 mg/dl/min). Results Mean absolute percent difference (APD) was lowest during hypoglycemic plateaus (11.68%, 14.15%) and the euglycemic-to-hypoglycemic transition (14.21%). Mean APD during the hyperglycemic plateau was 17.11%; mean APDs were 18.12% and 19.25% during the hypoglycemic-to-hyperglycemic and hyperglycemic-to-hypoglycemic transitions, respectively. Parkes (consensus) error grid analysis (EGA) and rate EGA of the plateaus and transition periods, respectively, yielded 86.8% and 68.6% accurate results (zone A) and 12.1% and 20.0% benign errors (zone B). Continuous EGA yielded 88.5%, 75.4%, and 79.3% accurate results and 8.3%, 14.3%, and 2.4% benign errors for the euglycemic, hyperglycemic, and hypoglycemic transition periods, respectively. Adverse events were mild and unlikely to be device related. Conclusion This novel CGM system was safe and accurate across the clinically relevant glucose range. PMID:21880226

  13. Contribution of propionate to glucose synthesis in sheep

    PubMed Central

    Leng, R. A.; Steel, J. W.; Luick, J. R.

    1967-01-01

    1. The production rate of propionate in the rumen and the entry rate of glucose into the body pool of glucose in sheep were measured by isotope-dilution methods. Propionate production rates were measured by using a continuous infusion of specifically labelled [14C]propionate. Glucose entry rates were estimated by using either a primed infusion or a continuous infusion of [U-14C]glucose. 2. The specific radioactivity of plasma glucose was constant between 4 and 9hr. after the commencement of intravenous infusion of [U-14C]glucose and between 1 and 3hr. when a primed infusion was used. 3. Infusion of [14C]propionate intraruminally resulted in a fairly constant specific radioactivity of rumen propionate between about 4 and 9hr. and of plasma glucose between 6 and 9hr. after the commencement of the infusion. Comparison of the mean specific radioactivities of glucose and propionate during these periods allowed estimates to be made of the contribution of propionate to glucose synthesis. 4. Comparisons of the specific radioactivities of plasma glucose and rumen propionate during intraruminal infusions of one of [1-14C]-, [2-14C]-, [3-14C]- and [U-14C]-propionate indicated considerable exchange of C-1 of propionate on conversion into glucose. The incorporation of C-2 and C-3 of propionate into glucose and lactate indicated that 54% of both the glucose and lactate synthesized arose from propionate carbon. 5. No differences were found for glucose entry rates measured either by a primed infusion or by a continuous infusion. The mean entry rate (±s.e.m.) of glucose estimated by using a continuous infusion into sheep was 0·33±0·03 (4) m-mole/min. and by using a primed infusion was 0·32±0·01 (4) m-mole/min. The mean propionate production rate was 1·24±0·03 (8) m-moles/min. The conversion of propionate into glucose was 0·36 m-mole/min., indicating that 32% of the propionate produced in the rumen is used for glucose synthesis. 6. It was indicated that a considerable amount of the propionate converted into glucose was first converted into lactate. PMID:4860545

  14. Audit in a diabetic clinic.

    PubMed

    Child, D F; Williams, C P

    1982-06-01

    Diabetic control was assessed in 82 established insulin-dependent diabetics using a microcapillary system for home preprandial blood glucose sampling. At initial assessment control in the majority (62%) was found to be unsatisfactory (at least 1 preprandial blood glucose greater than 13.0 mmol/l or frequent and severe hypoglycaemia). Sixty-three of these patients were assessed on more than one occasion. Only 24% were satisfactorily controlled at their first assessment, but this proportion had risen to 60% after 12 months. The ability of patients to perform unsupervised blood glucose levels using Ames Glucometers or BM-Glycemie 20-800 test strips was also assessed: 86% of the meter results were within one-third of the laboratory-based results, but there was evidence of bias towards the under-reading of higher glucose values using BM-Glycemie 20-800 test strips. Random blood glucose estimations performed in the diabetic clinic were of little value.

  15. Evaluating the Efficacy of GLUT Inhibitors Using a Seahorse Extracellular Flux Analyzer.

    PubMed

    Wei, Changyong; Heitmeier, Monique; Hruz, Paul W; Shanmugam, Mala

    2018-01-01

    Glucose is metabolized through anaerobic glycolysis and aerobic oxidative phosphorylation (OXPHOS). Perturbing glucose uptake and its subsequent metabolism can alter both glycolytic and OXPHOS pathways and consequently lactate and/or oxygen consumption. Production and secretion of lactate, as a consequence of glycolysis, leads to acidification of the extracellular medium. Molecular oxygen is the final electron acceptor in the electron transport chain, facilitating oxidative phosphorylation of ADP to ATP. The alterations in extracellular acidification and/or oxygen consumption can thus be used as indirect readouts of glucose metabolism and assessing the impact of inhibiting glucose transport through specific glucose transporters (GLUTs). The Seahorse bioenergetics analyzer can measure both the oxygen consumption rate (OCR) and extracellular acidification rate (ECAR). The proposed methodology affords a robust, high-throughput method to screen for GLUT inhibition in cells engineered to express specific GLUTs, providing live cell read-outs upon GLUT inhibition.

  16. Evaluating the clinical accuracy of two continuous glucose sensors using continuous glucose-error grid analysis.

    PubMed

    Clarke, William L; Anderson, Stacey; Farhy, Leon; Breton, Marc; Gonder-Frederick, Linda; Cox, Daniel; Kovatchev, Boris

    2005-10-01

    To compare the clinical accuracy of two different continuous glucose sensors (CGS) during euglycemia and hypoglycemia using continuous glucose-error grid analysis (CG-EGA). FreeStyle Navigator (Abbott Laboratories, Alameda, CA) and MiniMed CGMS (Medtronic, Northridge, CA) CGSs were applied to the abdomens of 16 type 1 diabetic subjects (age 42 +/- 3 years) 12 h before the initiation of the study. Each system was calibrated according to the manufacturer's recommendations. Each subject underwent a hyperinsulinemic-euglycemic clamp (blood glucose goal 110 mg/dl) for 70-210 min followed by a 1-mg.dl(-1).min(-1) controlled reduction in blood glucose toward a nadir of 40 mg/dl. Arterialized blood glucose was determined every 5 min using a Beckman Glucose Analyzer (Fullerton, CA). CGS glucose recordings were matched to the reference blood glucose with 30-s precision, and rates of glucose change were calculated for 5-min intervals. CG-EGA was used to quantify the clinical accuracy of both systems by estimating combined point and rate accuracy of each system in the euglycemic (70-180 mg/dl) and hypoglycemic (<70 mg/dl) ranges. A total of 1,104 data pairs were recorded in the euglycemic range and 250 data pairs in the hypoglycemic range. Overall correlation between CGS and reference glucose was similar for both systems (Navigator, r = 0.84; CGMS, r = 0.79, NS). During euglycemia, both CGS systems had similar clinical accuracy (Navigator zones A + B, 88.8%; CGMS zones A + B, 89.3%, NS). However, during hypoglycemia, the Navigator was significantly more clinically accurate than the CGMS (zones A + B = 82.4 vs. 61.6%, Navigator and CGMS, respectively, P < 0.0005). CG-EGA is a helpful tool for evaluating and comparing the clinical accuracy of CGS systems in different blood glucose ranges. CG-EGA provides accuracy details beyond other methods of evaluation, including correlational analysis and the original EGA.

  17. Accuracy of a Fourth-Generation Subcutaneous Continuous Glucose Sensor

    PubMed Central

    Garg, Satish K.; Brazg, Ronald; Bode, Bruce W.; Bailey, Timothy S.; Slover, Robert H.; Sullivan, Ashley; Huang, Suiying; Shin, John; Lee, Scott W.; Kaufman, Francine R.

    2017-01-01

    Abstract Background: This study evaluated the accuracy and performance of a fourth-generation subcutaneous glucose sensor (Guardian™ Sensor 3) in the abdomen and arm. Methods: Eighty-eight subjects (14–75 years of age, mean ± standard deviation [SD] of 42.0 ± 19.1 years) with type 1 or type 2 diabetes participated in the study. Subjects wore two sensors in the abdomen that were paired with either a MiniMed™ 640G insulin pump, or an iPhone® or iPod® touch® running a glucose monitoring mobile application (Guardian Connect system) and a third sensor in the arm, which was connected to a glucose sensor recorder (GSR). Subjects were also asked to undergo in-clinic visits of 12–14 h on study days 1, 3, and 7 for frequent blood glucose sample testing using a Yellow Springs Instrument (YSI) reference. Results: The overall mean absolute relative difference (MARD ± SD) between abdomen sensor glucose (SG) and YSI reference values was 9.6% ± 9.0% and 9.4% ± 9.8% for the MiniMed 640G insulin pump and Guardian Connect system, respectively; and 8.7% ± 8.0% between arm SG and YSI reference values. The percentage of SG values within 20% agreement of the YSI reference value (for YSI >80 mg/dL) was 90.7% with the MiniMed 640G insulin pump, 91.8% with the Guardian Connect system, and 93.1% for GSR-connected arm sensors. Mean functional sensor life, when calibrating 3–4 times/day, was 145.9 ± 39.3 h for sensors paired with the MiniMed 640G insulin pump, 146.1 ± 41.6 h for sensors paired with the Guardian Connect system, and 147.6 ± 40.4 h for sensors connected to the GSR. Responses to survey questions regarding sensor comfort and ease of use were favorable. Conclusions: The Guardian Sensor 3 glucose sensor, whether located in abdomen or the arm, provided accurate glucose readings when compared with the YSI reference and demonstrated functional life commensurate with the intended 7-day use. ClinicalTrials.gov: NCT02246582 PMID:28700272

  18. Accuracy of a Fourth-Generation Subcutaneous Continuous Glucose Sensor.

    PubMed

    Christiansen, Mark P; Garg, Satish K; Brazg, Ronald; Bode, Bruce W; Bailey, Timothy S; Slover, Robert H; Sullivan, Ashley; Huang, Suiying; Shin, John; Lee, Scott W; Kaufman, Francine R

    2017-08-01

    This study evaluated the accuracy and performance of a fourth-generation subcutaneous glucose sensor (Guardian ™ Sensor 3) in the abdomen and arm. Eighty-eight subjects (14-75 years of age, mean ± standard deviation [SD] of 42.0 ± 19.1 years) with type 1 or type 2 diabetes participated in the study. Subjects wore two sensors in the abdomen that were paired with either a MiniMed ™ 640G insulin pump, or an iPhone ® or iPod ® touch ® running a glucose monitoring mobile application (Guardian Connect system) and a third sensor in the arm, which was connected to a glucose sensor recorder (GSR). Subjects were also asked to undergo in-clinic visits of 12-14 h on study days 1, 3, and 7 for frequent blood glucose sample testing using a Yellow Springs Instrument (YSI) reference. The overall mean absolute relative difference (MARD ± SD) between abdomen sensor glucose (SG) and YSI reference values was 9.6% ± 9.0% and 9.4% ± 9.8% for the MiniMed 640G insulin pump and Guardian Connect system, respectively; and 8.7% ± 8.0% between arm SG and YSI reference values. The percentage of SG values within 20% agreement of the YSI reference value (for YSI >80 mg/dL) was 90.7% with the MiniMed 640G insulin pump, 91.8% with the Guardian Connect system, and 93.1% for GSR-connected arm sensors. Mean functional sensor life, when calibrating 3-4 times/day, was 145.9 ± 39.3 h for sensors paired with the MiniMed 640G insulin pump, 146.1 ± 41.6 h for sensors paired with the Guardian Connect system, and 147.6 ± 40.4 h for sensors connected to the GSR. Responses to survey questions regarding sensor comfort and ease of use were favorable. The Guardian Sensor 3 glucose sensor, whether located in abdomen or the arm, provided accurate glucose readings when compared with the YSI reference and demonstrated functional life commensurate with the intended 7-day use. ClinicalTrials.gov : NCT02246582.

  19. Microminiature Monitor for Vital Electrolyte and Metabolite Levels of Astronauts

    NASA Technical Reports Server (NTRS)

    Tohda, Koji; Gratzl, Miklos

    2004-01-01

    Ions, such as proton (pH) and potassium, play a crucial role in body fluids to maintain proper basic functioning of cells and tissues. Metabolites, such as glucose, control the energy available to the entire human body in normal as well as stress situations, and before, during, and after meals. These molecules diffuse easily between blood in the capillaries and the interstitial fluid residing between cells and tissues. We have developed and approach to monitoring of critical ions (called electrolytes) and glucose in the interstitial fluid under the human skin. Proton and potassium levels sensed using optode technology that translates the respective ionic concentrations into variable colors of corresponding ionophore/dye/polymeric liquid membranes. Glucose is monitored indirectly, by coupling through immobilized glucose oxidase with local pH that is then detected using a similar color scheme. The monitor consists of a tiny plastic bar, 100-200 microns wide and 1-2 mm long, placed just under the skin, with color changing spots for each analyte as well as blanks. The colors are read and translated into concentration values by a CCD camera. Direct optical coupling between the in vivo sensing bar and the ex vivo detector device requires no power, and thus eliminates the need for wires or optical fibers crossing the skin. The microminiature bar penetrates the skin easily and painlessly, so that astronauts could insert it themselves. The approach is fully compatible with telemetry in space, and thus, in vivo clinical data will be available real time in the Earth based command center once the device is fully developed. The information provided can be used for collecting hitherto unavailable vital data on clinical effects of space travel. Managing clinical emergencies in space with the sensor already in place should also become much more efficient than without a continuous monitor, as is currently the case. Civilian applications may include better glucose control of patients with moderate to severe diabetes: a growing health problem in the US and World-wide.

  20. Cloning and expression studies of the Dunaliella salina UDP-glucose dehydrogenase cDNA.

    PubMed

    Qinghua, He; Dairong, Qiao; Qinglian, Zhang; Shunji, He; Yin, Li; Linhan, Bai; Zhirong, Yang; Yi, Cao

    2005-06-01

    The enzyme UDP-glucose dehydrogenase (EC 1.1.1.22) converts UDP-glucose to UDP-glucuronate. Plant UDP-glucose dehydrogenase (UGDH) is an important enzyme in the formation of hemicellulose and pectin, the components of primary cell walls. A cDNA, named DsUGDH, (GeneBank accession number: AY795899) corresponding to UGDH was cloned by RT-PCR approach from Dunaliella salina. The cDNA is 1941-bp long and has an open reading frame encoded a protein of 483 amino acids with a calculated molecular weight of 53 kDa. The derived amino acids sequence shows high homology with reported plants UGDHs, and has highly conserved amino acids motifs believed to be NAD binding site and catalytic site. Although UDP-glucose dehydrogenase is a comparatively well characterized enzyme, the cloning and characterization of the green alga Dunaliella salina UDP-glucose dehydrogenase gene is very important to understand the salt tolerance mechanism of Dunaliella salina. Northern analyses indicate that NaCl can induce the expression the DsUGDH.

  1. Analytical model for real time, noninvasive estimation of blood glucose level.

    PubMed

    Adhyapak, Anoop; Sidley, Matthew; Venkataraman, Jayanti

    2014-01-01

    The paper presents an analytical model to estimate blood glucose level from measurements made non-invasively and in real time by an antenna strapped to a patient's wrist. Some promising success has been shown by the RIT ETA Lab research group that an antenna's resonant frequency can track, in real time, changes in glucose concentration. Based on an in-vitro study of blood samples of diabetic patients, the paper presents a modified Cole-Cole model that incorporates a factor to represent the change in glucose level. A calibration technique using the input impedance technique is discussed and the results show a good estimation as compared to the glucose meter readings. An alternate calibration methodology has been developed that is based on the shift in the antenna resonant frequency using an equivalent circuit model containing a shunt capacitor to represent the shift in resonant frequency with changing glucose levels. Work under progress is the optimization of the technique with a larger sample of patients.

  2. A Human Serum-Based Enzyme-Free Continuous Glucose Monitoring Technique Using a Needle-Type Bio-Layer Interference Sensor.

    PubMed

    Seo, Dongmin; Paek, Sung-Ho; Oh, Sangwoo; Seo, Sungkyu; Paek, Se-Hwan

    2016-09-24

    The incidence of diabetes is continually increasing, and by 2030, it is expected to have increased by 69% and 20% in underdeveloped and developed countries, respectively. Therefore, glucose sensors are likely to remain in high demand in medical device markets. For the current study, we developed a needle-type bio-layer interference (BLI) sensor that can continuously monitor glucose levels. Using dialysis procedures, we were able to obtain hypoglycemic samples from commercial human serum. These dialysis-derived samples, alongside samples of normal human serum were used to evaluate the utility of the sensor for the detection of the clinical interest range of glucose concentrations (70-200 mg/dL), revealing high system performance for a wide glycemic state range (45-500 mg/dL). Reversibility and reproducibility were also tested over a range of time spans. Combined with existing BLI system technology, this sensor holds great promise for use as a wearable online continuous glucose monitoring system for patients in a hospital setting.

  3. On the Nonsmooth, Nonconstant Velocity of Braille Reading and Reversals

    ERIC Educational Resources Information Center

    Hughes, Barry; McClelland, Amber; Henare, Dion

    2014-01-01

    Relative to print reading, braille-reading finger movements are held to be of more constant speed, with continuous and exhaustive contact with all words. However, the continuity of movements is intermittent in two distinct ways: (a) readers reverse direction and reread material already encountered and (b) the continual fluctuations of velocity…

  4. Announcements | High-Performance Computing | NREL

    Science.gov Websites

    12th from 12 - 3 PM. Continue reading Data Transfer Queue March 08, 2018 A new queue "data , scratch) and MSS. Continue reading Purge-Alert January 11, 2018 We now have a notification method that . Continue reading Please Move Inactive Files Off the /projects File System January 11, 2018 The /projects

  5. Treatment with continuous positive airway pressure may affect blood glucose levels in nondiabetic patients with obstructive sleep apnea syndrome.

    PubMed

    Czupryniak, Leszek; Loba, Jerzy; Pawlowski, Maciej; Nowak, Dariusz; Bialasiewicz, Piotr

    2005-05-01

    Obstructive sleep apnea syndrome (OSAS) is often associated with impaired glucose metabolism. Data on the effects of OSAS treatment with continuous positive airway pressure (CPAP) on blood glucose and insulin resistance are conflicting. The study aimed at assessing the immediate effect of CPAP on glucose control measured with a continuous glucose monitoring system (CGMS). Nine non-diabetes subjects with OSAS (mean age 53.0 +/- 8.0 years; body mass index 34.8 +/- 5.3 kg/m2) underwent 2 overnight polysomnographic examinations: a diagnostic study and one with CPAP treatment. Continuous glucose monitoring system (CGMS) was applied overnight on both occasions. Glucose metabolism was assessed with a 75-g oral glucose tolerance test, plasma insulin and homeostatic model assessment of insulin resistance (HOMA-IR) index. The mean (+/- SD) apnoea-hypopnea index (AHI) at diagnostic polysomnography was 54.3 +/- 29.3 (range 16-81). Fasting plasma insulin levels in patients with OSAS was 84.3 +/- 43.4 pM at baseline, and the HOMA-IR was 3.6 +/- 2.2. CPAP treatment in the subjects with OSAS resulted in a significant reduction in the AHI to 4.5 +/- 7.1. All of the major saturation parameters improved significantly on CPAP. CGMS showed mean glucose values significantly higher during the CPAP night than during the diagnostic night: 80 +/- 11 mg/dL versus 63 +/- 7 mg/dL (P < .01). Fasting insulin and HOMA-IR measured after the CPAP night tended to be higher than at baseline (98.4 +/- 51.0 pmol vs 84.3 +/- 43.4 pmol and 3.9 pmol +/- 2.6 vs 3.6 +/- 2.2 pmol, respectively, P > .05). CPAP treatment in nondiabetic obese patients with OSAS may have an immediate elevating effect on blood glucose.

  6. Performance of a continuous glucose monitoring system during controlled hypoglycaemia in healthy volunteers.

    PubMed

    Cheyne, E H; Cavan, D A; Kerr, D

    2002-01-01

    It has been suggested that the continuous glucose monitoring system may be a useful tool for detecting unrecognised hypoglycaemia, especially at times when finger prick testing is difficult or impossible (e.g., at night). Studies suggest that subcutaneous glucose levels closely mimic blood glucose levels with a lag time of only a few minutes. However, no studies have been published to show how well the sensor performs during sustained or in recovery from hypoglycaemia. This study involved using a hyperinsulinaemic glucose clamp (60 mU/m2) in nine healthy volunteers. Each subject had two sensors inserted the day before the study. Blood glucose levels were maintained at euglycaemia for the first 60 min, then decreased to 45 mg/dL (2.5 mmol/L) for 60 min, and finally restored to euglycaemia. Blood glucose measurements were compared with interstitial values recorded by the sensor. Sensor profiles showed acceptable agreement with blood glucose levels at each of the three plateaus with a correlation coefficient of 0.79, slope of 0.85, and mean absolute error of 7%. The sensor drop closely matched the drop in blood glucose, but the recovery from hypoglycaemia was delayed by an average of 26 min. Continuous glucose sensing provides a useful means of detecting unrecognised hypoglycaemia in type 1 diabetes, although the duration of hypoglycaemia may be overestimated.

  7. Design of an mHealth App for the Self-management of Adolescent Type 1 Diabetes: A Pilot Study

    PubMed Central

    Casselman, Mark; Hamming, Nathaniel; Katzman, Debra K; Palmert, Mark R

    2012-01-01

    Background The use of mHealth apps has shown improved health outcomes in adult populations with type 2 diabetes mellitus. However, this has not been shown in the adolescent type 1 population, despite their predisposition to the use of technology. We hypothesized that a more tailored approach and a strong adherence mechanism is needed for this group. Objective To design, develop, and pilot an mHealth intervention for the management of type 1 diabetes in adolescents. Methods We interviewed adolescents with type 1 diabetes and their family caregivers. Design principles were derived from a thematic analysis of the interviews. User-centered design was then used to develop the mobile app bant. In the 12-week evaluation phase, a pilot group of 20 adolescents aged 12–16 years, with a glycated hemoglobin (HbA1c) of between 8% and 10% was sampled. Each participant was supplied with the bant app running on an iPhone or iPod Touch and a LifeScan glucometer with a Bluetooth adapter for automated transfers to the app. The outcome measure was the average daily frequency of blood glucose measurement during the pilot compared with the preceding 12 weeks. Results Thematic analysis findings were the role of data collecting rather than decision making; the need for fast, discrete transactions; overcoming decision inertia; and the need for ad hoc information sharing. Design aspects of the resultant app emerged through the user-centered design process, including simple, automated transfer of glucometer readings; the use of a social community; and the concept of gamification, whereby routine behaviors and actions are rewarded in the form of iTunes music and apps. Blood glucose trend analysis was provided with immediate prompting of the participant to suggest both the cause and remedy of the adverse trend. The pilot evaluation showed that the daily average frequency of blood glucose measurement increased 50% (from 2.4 to 3.6 per day, P = .006, n = 12). A total of 161 rewards (average of 8 rewards each) were distributed to participants. Satisfaction was high, with 88% (14/16 participants) stating that they would continue to use the system. Demonstrating improvements in HbA1c will require a properly powered study of sufficient duration. Conclusions This mHealth diabetes app with the use of gamification incentives showed an improvement in the frequency of blood glucose monitoring in adolescents with type 1 diabetes. Extending this to improved health outcomes will require the incentives to be tied not only to frequency of blood glucose monitoring but also to patient actions and decision making based on those readings such that glycemic control can be improved. PMID:22564332

  8. Continuous non-invasive blood glucose monitoring by spectral image differencing method

    NASA Astrophysics Data System (ADS)

    Huang, Hao; Liao, Ningfang; Cheng, Haobo; Liang, Jing

    2018-01-01

    Currently, the use of implantable enzyme electrode sensor is the main method for continuous blood glucose monitoring. But the effect of electrochemical reactions and the significant drift caused by bioelectricity in body will reduce the accuracy of the glucose measurements. So the enzyme-based glucose sensors need to be calibrated several times each day by the finger-prick blood corrections. This increases the patient's pain. In this paper, we proposed a method for continuous Non-invasive blood glucose monitoring by spectral image differencing method in the near infrared band. The method uses a high-precision CCD detector to switch the filter in a very short period of time, obtains the spectral images. And then by using the morphological method to obtain the spectral image differences, the dynamic change of blood sugar is reflected in the image difference data. Through the experiment proved that this method can be used to monitor blood glucose dynamically to a certain extent.

  9. A Comparison of Computer-Based and Multisensory Interventions on At-Risk Students' Reading Achievement

    ERIC Educational Resources Information Center

    Reed, Marissa S.

    2013-01-01

    Over thirty years of extant literature exists regarding reading instruction, yet consensus in the field continues to diverge in the area of reading intervention. Despite the establishment of research-based programs in all five areas of reading (phonemic awareness, alphabetic principle, fluency, vocabulary, and comprehension), educators continue to…

  10. Gaussian Process modelling of blood glucose response to free-living physical activity data in people with type 1 diabetes.

    PubMed

    Valletta, John Joseph; Chipperfield, Andrew J; Byrne, Christopher D

    2009-01-01

    Good blood glucose control is important to people with type 1 diabetes to prevent diabetes-related complications. Too much blood glucose (hyperglycaemia) causes long-term micro-vascular complications, while a severe drop in blood glucose (hypoglycaemia) can cause life-threatening coma. Finding the right balance between quantity and type of food intake, physical activity levels and insulin dosage, is a daily challenge. Increased physical activity levels often cause changes in blood glucose due to increased glucose uptake into tissues such as muscle. To date we have limited knowledge about the minute by minute effects of exercise on blood glucose levels, in part due to the difficulty in measuring glucose and physical activity levels continuously, in a free-living environment. By using a light and user-friendly armband we can record physical activity energy expenditure on a minute-by-minute basis. Simultaneously, by using a continuous glucose monitoring system we can record glucose concentrations. In this paper, Gaussian Processes are used to model the glucose excursions in response to physical activity data, to study its effect on glycaemic control.

  11. A high-accuracy measurement method of glucose concentration in interstitial fluid based on microdialysis

    NASA Astrophysics Data System (ADS)

    Li, Dachao; Xu, Qingmei; Liu, Yu; Wang, Ridong; Xu, Kexin; Yu, Haixia

    2017-11-01

    A high-accuracy microdialysis method that can provide the reference values of glucose concentration in interstitial fluid for the accurate evaluation of non-invasive and minimally invasive continuous glucose monitoring is reported in this study. The parameters of the microdialysis process were firstly optimized by testing and analyzing three main factors that impact microdialysis recovery, including the perfusion rate, temperature, and glucose concentration in the area surrounding the microdialysis probe. The precision of the optimized microdialysis method was then determined in a simulation system that was designed and established in this study to simulate variations in continuous glucose concentration in the human body. Finally, the microdialysis method was tested for in vivo interstitial glucose concentration measurement.

  12. Comparing the Efficacy of a Mobile Phone-Based Blood Glucose Management System With Standard Clinic Care in Women With Gestational Diabetes: Randomized Controlled Trial.

    PubMed

    Mackillop, Lucy; Hirst, Jane Elizabeth; Bartlett, Katy Jane; Birks, Jacqueline Susan; Clifton, Lei; Farmer, Andrew J; Gibson, Oliver; Kenworthy, Yvonne; Levy, Jonathan Cummings; Loerup, Lise; Rivero-Arias, Oliver; Ming, Wai-Kit; Velardo, Carmelo; Tarassenko, Lionel

    2018-03-20

    Treatment of hyperglycemia in women with gestational diabetes mellitus (GDM) is associated with improved maternal and neonatal outcomes and requires intensive clinical input. This is currently achieved by hospital clinic attendance every 2 to 4 weeks with limited opportunity for intervention between these visits. We conducted a randomized controlled trial to determine whether the use of a mobile phone-based real-time blood glucose management system to manage women with GDM remotely was as effective in controlling blood glucose as standard care through clinic attendance. Women with an abnormal oral glucose tolerance test before 34 completed weeks of gestation were individually randomized to a mobile phone-based blood glucose management solution (GDm-health, the intervention) or routine clinic care. The primary outcome was change in mean blood glucose in each group from recruitment to delivery, calculated with adjustments made for number of blood glucose measurements, proportion of preprandial and postprandial readings, baseline characteristics, and length of time in the study. A total of 203 women were randomized. Blood glucose data were available for 98 intervention and 85 control women. There was no significant difference in rate of change of blood glucose (-0.16 mmol/L in the intervention and -0.14 mmol/L in the control group per 28 days, P=.78). Women using the intervention had higher satisfaction with care (P=.049). Preterm birth was less common in the intervention group (5/101, 5.0% vs 13/102, 12.7%; OR 0.36, 95% CI 0.12-1.01). There were fewer cesarean deliveries compared with vaginal deliveries in the intervention group (27/101, 26.7% vs 47/102, 46.1%, P=.005). Other glycemic, maternal, and neonatal outcomes were similar in both groups. The median time from recruitment to delivery was similar (intervention: 54 days; control: 49 days; P=.23). However, there were significantly more blood glucose readings in the intervention group (mean 3.80 [SD 1.80] and mean 2.63 [SD 1.71] readings per day in the intervention and control groups, respectively; P<.001). There was no significant difference in direct health care costs between the two groups, with a mean cost difference of the intervention group compared to control of -£1044 (95% CI -£2186 to £99). There were no unexpected adverse outcomes. Remote blood glucocse monitoring in women with GDM is safe. We demonstrated superior data capture using GDm-health. Although glycemic control and maternal and neonatal outcomes were similar, women preferred this model of care. Further studies are required to explore whether digital health solutions can promote desired self-management lifestyle behaviors and dietetic adherence, and influence maternal and neonatal outcomes. Digital blood glucose monitoring may provide a scalable, practical method to address the growing burden of GDM around the world. ClinicalTrials.gov NCT01916694; https://clinicaltrials.gov/ct2/show/NCT01916694 (Archived by WebCite at http://www.webcitation.org/6y3lh2BOQ). ©Lucy Mackillop, Jane Elizabeth Hirst, Katy Jane Bartlett, Jacqueline Susan Birks, Lei Clifton, Andrew J Farmer, Oliver Gibson, Yvonne Kenworthy, Jonathan Cummings Levy, Lise Loerup, Oliver Rivero-Arias, Wai-Kit Ming, Carmelo Velardo, Lionel Tarassenko. Originally published in JMIR Mhealth and Uhealth (http://mhealth.jmir.org), 20.03.2018.

  13. Long-Term Home Study on Nocturnal Hypoglycemic Alarms Using a New Fully Implantable Continuous Glucose Monitoring System in Type 1 Diabetes.

    PubMed

    Wang, Xiaolin; Ioacara, Sorin; DeHennis, Andrew

    2015-11-01

    This study analyzed the overall nocturnal performance during home use of a long-term subcutaneous implantable continuous glucose monitoring (CGM) sensor. In this study, 12 subjects with type 1 diabetes mellitus (T1DM) (mean±SD age, 37±8 years; mean±SD disease duration, 11±6 years) were implanted with an investigational continuous glucose sensor in the upper arm for up to 90 days. All subjects received full access to real-time glucose display and user programmable hypo- and hyperglycemic alarms. Subjects calibrated the sensors with a self-monitoring of blood glucose (SMBG) meter and continued to rely on their regular SMBG measurements for their diabetes management. Accuracy of the sensors during the home-use study was calculated using SMBG as the reference. The nocturnal sensor attenuation (NSA) concept was tested. Sensitivity and specificity of the nocturnal hypoglycemic alarm were calculated. Mean±SD glucose sensor life span was 87±7 days. The mean±SE absolute relative difference over the range of 40-400 mg/dL for the sensors in this home-use study was 12.3±0.7% using SMBG as the reference. The hypoglycemia alarms were set to be triggered when the glucose level went below 70 mg/dL. Percentage of nights with hypoglycemic alarms triggered for at least 10 min was 13.6%. Recovery into euglycemia within 30 min from the timestamp of the immediate confirmatory SMBG testing was obtained in 74% of all episodes (n=20). The implanted continuous glucose sensor showed a hypoglycemia detection sensitivity and specificity of 77% and 96%, respectively. The NSA-associated high negative rate of change of at least -4 mg/dL/min was not encountered during night use of the system. This home-use study of a fully implantable, long-term continuous glucose sensor shows excellent performance in nocturnal hypoglycemia detection in T1DM patients. The apparent lack of NSA affecting the implanted sensor and the high specificity of the hypoglycemic alarm expedite the recovery from nighttime hypoglycemia.

  14. Analysis: Continuous Glucose Monitoring in the Intensive Care Unit

    PubMed Central

    Kenneth Ward, W.

    2012-01-01

    Control of glycemia in hospitalized patients is important; hypoglycemia is associated with increased mortality, and hyperglycemia is associated with adverse outcomes. For these reasons, though no such device is currently available, continuous glucose monitoring (CGM) is an attractive option, especially in the critical care setting. Schierenbeck and coauthors, in this issue of Journal of Diabetes Science and Technology, report on the use of a specialized central catheter designed to monitor glucose continuously in post cardiac surgery patients. This catheter, which was indwelled within the great veins, was specially designed with a separate lumen and membrane that allowed continuous glucose microdialysis. Accuracy was quite good, better than has been reported with the use of commercially-available CGM devices. Ideally, further development of this quite promising catheter-based device would allow it to be used also to deliver fluids and drugs, thus avoiding the need for a second catheter elsewhere. PMID:23294782

  15. Characterizing Accuracy and Precision of Glucose Sensors and Meters

    PubMed Central

    2014-01-01

    There is need for a method to describe precision and accuracy of glucose measurement as a smooth continuous function of glucose level rather than as a step function for a few discrete ranges of glucose. We propose and illustrate a method to generate a “Glucose Precision Profile” showing absolute relative deviation (ARD) and /or %CV versus glucose level to better characterize measurement errors at any glucose level. We examine the relationship between glucose measured by test and comparator methods using linear regression. We examine bias by plotting deviation = (test – comparator method) versus glucose level. We compute the deviation, absolute deviation (AD), ARD, and standard deviation (SD) for each data pair. We utilize curve smoothing procedures to minimize the effects of random sampling variability to facilitate identification and display of the underlying relationships between ARD or %CV and glucose level. AD, ARD, SD, and %CV display smooth continuous relationships versus glucose level. Estimates of MARD and %CV are subject to relatively large errors in the hypoglycemic range due in part to a markedly nonlinear relationship with glucose level and in part to the limited number of observations in the hypoglycemic range. The curvilinear relationships of ARD and %CV versus glucose level are helpful when characterizing and comparing the precision and accuracy of glucose sensors and meters. PMID:25037194

  16. Hepatic and peripheral glucose metabolism in intensive care patients receiving continuous high- or low-carbohydrate enteral nutrition.

    PubMed

    Tappy, L; Berger, M; Schwarz, J M; McCamish, M; Revelly, J P; Schneiter, P; Jéquier, E; Chioléro, R

    1999-01-01

    The suppression of endogenous glucose production during parenteral nutrition is impaired in critically ill patients. It is, however, unknown whether enteral administration of carbohydrates, which normally promote hepatic glucose uptake, improves hepatic glucose metabolism in such patients. We studied two groups of 7 patients during a 3-day continuous isocaloric enteral nutrition. A high-carbohydrate, low-lipid (EN-C) or a high-lipid, low-carbohydrate (EN-L) nutrient mixture was administered. Endogenous glucose production assessed with [2H7]glucose was similarly increased in both groups, indicating absence of its suppression by carbohydrate feeding. Gluconeogenesis estimated from [13C]glucose synthesis during [13C]bicarbonate infusion also was not suppressed by EN-C compared with EN-L. Systemic appearance of exogenous glucose was monitored by enteral infusion of [6,6-2H]glucose and was not different from the rate of glucose equivalent administered enterally, indicating no significant hepatic uptake of glucose in both groups. Plasma glucose and insulin concentrations were slightly higher with EN-C, although not significantly, and plasma triglycerides were similar in both groups. Both nutrition formulas were well tolerated clinically. These results indicate that enteral carbohydrate administration, whatever its quantity, fails to suppress endogenous glucose production and to promote net splanchnic glucose uptake in critically ill patients.

  17. A Human Serum-Based Enzyme-Free Continuous Glucose Monitoring Technique Using a Needle-Type Bio-Layer Interference Sensor

    PubMed Central

    Seo, Dongmin; Paek, Sung-Ho; Oh, Sangwoo; Seo, Sungkyu; Paek, Se-Hwan

    2016-01-01

    The incidence of diabetes is continually increasing, and by 2030, it is expected to have increased by 69% and 20% in underdeveloped and developed countries, respectively. Therefore, glucose sensors are likely to remain in high demand in medical device markets. For the current study, we developed a needle-type bio-layer interference (BLI) sensor that can continuously monitor glucose levels. Using dialysis procedures, we were able to obtain hypoglycemic samples from commercial human serum. These dialysis-derived samples, alongside samples of normal human serum were used to evaluate the utility of the sensor for the detection of the clinical interest range of glucose concentrations (70–200 mg/dL), revealing high system performance for a wide glycemic state range (45–500 mg/dL). Reversibility and reproducibility were also tested over a range of time spans. Combined with existing BLI system technology, this sensor holds great promise for use as a wearable online continuous glucose monitoring system for patients in a hospital setting. PMID:27669267

  18. Clinical Use of Continuous Glucose Monitoring in Adults with Type 1 Diabetes.

    PubMed

    Slattery, David; Choudhary, Pratik

    2017-05-01

    With the emphasis on intensive management of type 1 diabetes, data from studies support frequent monitoring of glucose levels to improve glycemic control and reduce glucose variability, which can be related to an increase in macro and microvascular complications. However, few perform capillary blood glucose that frequently. There are currently two available alternatives that this review will discuss, continuous glucose monitoring (CGM) and flash glucose monitoring. CGM has become an important diagnostic and therapeutic option in optimizing diabetes management. CGM systems are now more accurate, smaller, and easier to use compared to original models. Randomized controlled trials (RCTs) have demonstrated that CGM can improve Hemoglobin A1c (HbA1C) and reduce glucose variability in both continuous subcutaneous insulin infusion and multiple daily injection users. When used in an automated "insulin-suspend" system, reduced frequency of hypoglycemia and shorter time spent in hypoglycemic range have been demonstrated. Despite the potential benefits CGM has to offer in clinical practice, concerns exist on the accuracy of these devices and patient compliance with therapy, which may prevent the true clinical benefit of CGM being achieved, as observed in RCTs. Flash glucose monitoring systems FreeStyle ® Libre™ (Abbott Diabetes Care, Alameda, CA) are as accurate as many CGM systems available and have the added benefit of being factory calibrated. Studies have shown that flash glucose monitoring systems are very well tolerated by patients and effectively reduce glucose variability, increasing time in range.

  19. Effect of repaglinide versus glimepiride on daily blood glucose variability and changes in blood inflammatory and oxidative stress markers.

    PubMed

    Yamazaki, Masahiro; Hasegawa, Goji; Majima, Saori; Mitsuhashi, Kazuteru; Fukuda, Takuya; Iwase, Hiroya; Kadono, Mayuko; Asano, Mai; Senmaru, Takafumi; Tanaka, Muhei; Fukui, Michiaki; Nakamura, Naoto

    2014-01-01

    Hemoglobin A1c is the main treatment target for patients with type 2 diabetes. It has also been shown recently that postprandial glucose and daily glucose fluctuations affect the progression of diabetic complications and atherosclerotic damages. Continuous glucose monitoring was performed in patients with type 2 diabetes to evaluate the efficacy of repaglinide vs. glimepiride on postprandial glucose spikes and fluctuations. A total of 10 Japanese patients with type 2 diabetes treated with glimepiride monotherapy were enrolled. After observation period for 8 weeks, glimepiride was changed to repaglinide. Continuous glucose monitoring was performed whilst consuming calorie-restricted diets for two days at baseline and at the end of the 12-week trial. Blood and urine samples were collected for measurement of glucose control parameters and inflammatory and oxidative stress markers on the last day of taking either glimepiride or repaglinide. Nine patients completed the trial. Although the glucose control parameters were not significantly different between glimepiride and repaglinide, the mean amplitude of glycemic excursions measured by continuous glucose monitoring was significantly reduced by changing treatment from glimepiride to repaglinide. The levels of plasminogen activator inhibitor-1, high sensitivity C-reactive protein, and urinary 8-hydoroxydeoxyguanosine were reduced significantly by repaglinide treatment. These results suggest that repaglinide may decrease the risk of cardiovascular disease in type 2 diabetes by minimizing glucose fluctuations thereby reducing inflammation and oxidative stress.

  20. Effect of repaglinide versus glimepiride on daily blood glucose variability and changes in blood inflammatory and oxidative stress markers

    PubMed Central

    2014-01-01

    Background Hemoglobin A1c is the main treatment target for patients with type 2 diabetes. It has also been shown recently that postprandial glucose and daily glucose fluctuations affect the progression of diabetic complications and atherosclerotic damages. Methods Continuous glucose monitoring was performed in patients with type 2 diabetes to evaluate the efficacy of repaglinide vs. glimepiride on postprandial glucose spikes and fluctuations. A total of 10 Japanese patients with type 2 diabetes treated with glimepiride monotherapy were enrolled. After observation period for 8 weeks, glimepiride was changed to repaglinide. Continuous glucose monitoring was performed whilst consuming calorie-restricted diets for two days at baseline and at the end of the 12-week trial. Blood and urine samples were collected for measurement of glucose control parameters and inflammatory and oxidative stress markers on the last day of taking either glimepiride or repaglinide. Results Nine patients completed the trial. Although the glucose control parameters were not significantly different between glimepiride and repaglinide, the mean amplitude of glycemic excursions measured by continuous glucose monitoring was significantly reduced by changing treatment from glimepiride to repaglinide. The levels of plasminogen activator inhibitor-1, high sensitivity C-reactive protein, and urinary 8-hydoroxydeoxyguanosine were reduced significantly by repaglinide treatment. Conclusion These results suggest that repaglinide may decrease the risk of cardiovascular disease in type 2 diabetes by minimizing glucose fluctuations thereby reducing inflammation and oxidative stress. PMID:24843385

  1. Comparison of tofogliflozin 20 mg and ipragliflozin 50 mg used together with insulin glargine 300 U/mL using continuous glucose monitoring (CGM): A randomized crossover study.

    PubMed

    Takeishi, Soichi; Tsuboi, Hiroki; Takekoshi, Shodo

    2017-10-28

    To investigate whether sodium glucose co-transporter 2 inhibitors (SGLT2i), tofogliflozin or ipragliflozin, achieve optimal glycemic variability, when used together with insulin glargine 300 U/mL (Glargine 300). Thirty patients with type 2 diabetes were randomly allocated to 2 groups. For the first group: After admission, tofogliflozin 20 mg was administered; Fasting plasma glucose (FPG) levels were titrated using an algorithm and stabilized at 80 mg/dL level with Glargine 300 for 5 days; Next, glucose levels were continuously monitored for 2 days using continuous glucose monitoring (CGM); Tofogliflozin was then washed out over 5 days; Subsequently, ipragliflozin 50 mg was administered; FPG levels were titrated using the same algorithm and stabilized at 80 mg/dL level with Glargine 300 for 5 days; Next, glucose levels were continuously monitored for 2 days using CGM. For the second group, ipragliflozin was administered prior to tofogliflozin, and the same regimen was maintained. Glargine 300 and SGLT2i were administered at 8:00 AM. Data collected on the second day of measurement (mean amplitude of glycemic excursion [MAGE], average daily risk range [ADRR]; on all days of measurement) were analyzed. Area over the glucose curve (<70 mg/dL; 0:00 to 6:00, 24-h), M value, standard deviation, MAGE, ADRR, and mean glucose levels (24-h, 8:00 to 24:00) were significantly lower in patients on tofogliflozin than in those on ipragliflozin. Tofogliflozin, which reduces glycemic variability by preventing nocturnal hypoglycemia and decreasing postprandial glucose levels, is an ideal SGLT2i when used together with Glargine 300 during basal insulin therapy.

  2. Reliable long-term continuous blood glucose monitoring for patients in critical care using microdialysis and infrared spectrometry

    NASA Astrophysics Data System (ADS)

    Heise, H. Michael; Damm, Uwe; Kondepati, Venkata R.

    2006-02-01

    For clinical research, in-vivo blood glucose monitoring is an ongoing important topic to improve glycemic control in patients with non-adequate blood glucose regulation. Critically ill patients received much interest, since the intensive insulin therapy treatment, as established for diabetics, reduces mortality significantly. Despite the existence of commercially available, mainly amperometric biosensors, continued interest is in infrared spectroscopic techniques for reagent-free glucose monitoring. For stable long-term operation, avoiding also sensor recalibration, a bed-side device coupled to a micro-dialysis probe was developed for quasi-continuous glucose monitoring. Multivariate calibration is required for glucose concentration prediction due to the complex composition of dialysates from interstitial body fluid. Measurements were carried out with different test persons, each experiment lasting for more than 8 hours. Owing to low dialysis recovery rates, glucose concentrations in the dialysates were between 0.83 and 4.44 mM. Standard errors of prediction (SEP) obtained with Partial Least Squares (PLS) calibration and different cross-validation strategies were mainly between 0.13 and 0.18 mM based on either full interval data or specially selected spectral variables.

  3. Continuous glucose monitoring, oral glucose tolerance, and insulin - glucose parameters in adolescents with simple obesity.

    PubMed

    El Awwa, A; Soliman, A; Al-Ali, M; Yassin, M; De Sanctis, V

    2012-09-01

    In obese adolescents pancreatic beta-cells may not be able to cope with insulin resistance leading to hyperglycemia and type2 diabetes (T2DM To assess oral glucose tolerance, 72-h continuous blood glucose concentrations (CGM) and calculate homeostatic model assessment (HOMA), and the quantitative insulin sensitivity check index (QUICKI) in 13 adolescents with simple obesity (BMI SDS=4 ± 1.06). OGTT performed in 13 obese adolescents (13.47 ± 3 years) revealed 3 cases (23%) with impaired fasting glucose (IFG: fasting glucose >5.6 mmol/L), 4 cases (30%) with impaired glucose tolerance (IGT: 2h blood glucose >7.8 <11.1 mmol/L), and none with diabetes. Using the continuous glucose monitoring system ( CGMS), IFG was detected in 4 cases, the maximum serum blood glucose (BG : 2h or more after meal) was >7.8 and <11.1 mmol/L (IGT) in 9 children (69%) and >11.1 mmol/L (diabetes) in one case (7.6%). Five cases had a minimum BG recorded of <2.7 mmol/L (hypoglycemia). No glycemic abnormality was detected using HbA1C (5.7 ± 0.3%). 11/13 patients had HOMA values >2.6 and QUICKI values <0.35 denoting insulin resistance. Beta cell mass percent (B %) = 200 ± 94.8% and insulin sensitivity values (IS)=50.4 ± 45.5% denoted insulin resistance with hyper-insulinaemia and preserved beta cell mass. In obese adolescents, CGMS is superior to OGTT and HbA1C in detecting glycemic abnormalities, which appears to be secondary to insulin resistance.

  4. EMC[superscript 2] = Comprehension: A Reading Strategy Instruction Framework for All Teachers

    ERIC Educational Resources Information Center

    Klapwijk, Nanda M.

    2015-01-01

    Comprehension is a critical part of the reading process, and yet learners continue to struggle with it and teachers continue to neglect it in their teaching. Many reasons exist for the lack of focus on reading comprehension instruction, but for the most part, teachers simply do not seem to view comprehension as part of the reading process, are not…

  5. [CGM-continuous glucose monitoring - statement of the Austrian Diabetes Association].

    PubMed

    Schütz-Fuhrmann, Ingrid; Schober, Edith; Rami, Birgit; Stadler, Marietta; Bischof, Martin; Fortunat, Sandra; Laimer, Markus; Weitgasser, Raimund; Prager, Rudolf

    2012-12-01

    This position statement represents the recommendations of the Austrian Diabetes Association regarding the clinical diagnostic and therapeutic application, safety and benefits of continuous subcutaneous glucose monitoring systems in patients with diabetes mellitus, based on current evidence.

  6. [CGM-Continuous Glucose Monitoring--Statement of the Austrian Diabetes Association].

    PubMed

    Schütz-Fuhrmann, Ingrid; Rami-Merhar, Birgit; Hofer, Sabine; Stadler, Marietta; Bischof, Martin; Zlamal-Fortunat, Sandra; Laimer, Markus; Weitgasser, Raimund; Prager, Rudolf

    2016-04-01

    This position statement represents the recommendations of the Austrian Diabetes Association regarding the clinical diagnostic and therapeutic application, safety and benefits of continuous subcutaneous glucose monitoring systems in patients with diabetes mellitus, based on current evidence.

  7. Assessment of hypoglycaemia awareness using continuous glucose monitoring.

    PubMed

    Kubiak, T; Hermanns, N; Schreckling, H J; Kulzer, B; Haak, T

    2004-05-01

    To investigate the possibility of assessing hypoglycaemia awareness in patients with Type 1 diabetes using continuous glucose monitoring. Twenty patients with Type 1 diabetes were investigated. Ten patients with Type 1 diabetes and strongly impaired hypoglycaemia awareness were compared with 10 patients with intact hypoglycaemia awareness regarding quality of hypoglycaemia perception (number of undetected hypoglycaemic episodes per 24 h, glucose level < 3.3 mmol/l). Hypoglycaemia detection was assessed using the event function of the Continuous Glucose Monitoring System (CGMS; Medtronic MiniMed, Northridge, CA, USA). Patients were instructed to enter an event upon suspecting being hypoglycaemic. Satisfactory CGMS performance could be achieved [mean r = 0.893 between calibration measurements and CGMS data, mean absolute difference (MAD) = 20.6%], although artefacts were observable and had to be controlled. Hypoglycaemia unaware patients showed a significantly higher total number of hypoglycaemic episodes (P < 0.05), number of undetected hypoglycaemic episodes (P < 0.01), and mean glucose levels (P < 0.05). Even in aware patients, undetected hypoglycaemia was observable. No significant differences regarding occurrence of nocturnal hypoglycaemia were observable. The possibility of direct assessment of hypoglycaemia awareness using continuous glucose monitoring was demonstrated. Its application in clinical practice could be of use for assessing hypoglycaemia perception and evaluating the impact of treatment changes on hypoglycaemia awareness.

  8. Multisite Study of an Implanted Continuous Glucose Sensor Over 90 Days in Patients With Diabetes Mellitus.

    PubMed

    Dehennis, Andrew; Mortellaro, Mark A; Ioacara, Sorin

    2015-07-29

    Continuous glucose monitoring (CGM), which enables real-time glucose display and trend information as well as real-time alarms, can improve glycemic control and quality of life in patients with diabetes mellitus. Previous reports have described strategies to extend the useable lifetime of a single sensor from 1-2 weeks to 28 days. The present multisite study describes the characterization of a sensing platform achieving 90 days of continuous use for a single, fully implanted sensor. The Senseonics CGM system is composed of a long-term implantable glucose sensor and a wearable smart transmitter. Study subjects underwent subcutaneous implantation of sensors in the upper arm. Eight-hour clinic sessions were performed every 14 days, during which sensor glucose values were compared against venous blood lab reference measurements collected every 15 minutes using mean absolute relative differences (MARDs). All subjects (mean ± standard deviation age: 43.5 ± 11.0 years; with 10 sensors inserted in men and 14 in women) had type 1 diabetes mellitus. Most (22 of 24) sensors reported glucose values for the entire 90 days. The MARD value was 11.4 ± 2.7% (range, 8.1-19.5%) for reference glucose values between 40-400 mg/dl. There was no significant difference in MARD throughout the 90-day study (P = .31). No serious adverse events were noted. The Senseonics CGM, composed of an implantable sensor, external smart transmitter, and smartphone app, is the first system that uses a single sensor for continuous display of accurate glucose values for 3 months. © 2015 Diabetes Technology Society.

  9. Glucose Sensing for Diabetes Monitoring: Recent Developments

    PubMed Central

    Bruen, Danielle; Delaney, Colm; Florea, Larisa

    2017-01-01

    This review highlights recent advances towards non-invasive and continuous glucose monitoring devices, with a particular focus placed on monitoring glucose concentrations in alternative physiological fluids to blood. PMID:28805693

  10. Cell Based Metabolic Barriers to Glucose Diffusion: Macrophages and Continuous Glucose Monitoring

    PubMed Central

    Klueh, Ulrike; Frailey, Jackman; Qiao, Yi; Antar, Omar; Kreutzer, Donald L.

    2014-01-01

    It is assumed that MQ are central to glucose sensor bio-fouling and therefore have a major negative impact on continuous glucose monitoring (CGM) performance in vivo. However to our knowledge there is no data in the literature to directly support or refute this assumption. Since glucose and oxygen (O2) are key to glucose sensor function in vivo, understanding and controlling glucose and O2 metabolic activity of MQ is likely key to successful glucose sensor performance. We hypothesized that the accumulation of MQ at the glucose sensor-tissue interface will act as “Cell Based Metabolic Barriers” (CBMB) to glucose diffusing from the interstitial tissue compartment to the implanted glucose sensor and as such creating an artificially low sensor output, thereby compromising sensor function and CGM. Our studies demonstrated that 1) direct injections of MQ at in vivo sensor implantation sites dramatically decreased sensor output (measured in nA), 2) addition of MQ to glucose sensors in vitro resulted in a rapid and dramatic fall in sensor output and 3) lymphocytes did not affect sensor function in vitro or in vivo. These data support our hypothesis that MQ can act as metabolic barriers to glucose and O2 diffusion in vivo and in vitro. PMID:24461328

  11. Cell based metabolic barriers to glucose diffusion: macrophages and continuous glucose monitoring.

    PubMed

    Klueh, Ulrike; Frailey, Jackman T; Qiao, Yi; Antar, Omar; Kreutzer, Donald L

    2014-03-01

    It is assumed that MQ are central to glucose sensor bio-fouling and therefore have a major negative impact on continuous glucose monitoring (CGM) performance in vivo. However to our knowledge there is no data in the literature to directly support or refute this assumption. Since glucose and oxygen (O2) are key to glucose sensor function in vivo, understanding and controlling glucose and O2 metabolic activity of MQ is likely key to successful glucose sensor performance. We hypothesized that the accumulation of MQ at the glucose sensor-tissue interface will act as "Cell Based Metabolic Barriers" (CBMB) to glucose diffusing from the interstitial tissue compartment to the implanted glucose sensor and as such creating an artificially low sensor output, thereby compromising sensor function and CGM. Our studies demonstrated that 1) direct injections of MQ at in vivo sensor implantation sites dramatically decreased sensor output (measured in nA), 2) addition of MQ to glucose sensors in vitro resulted in a rapid and dramatic fall in sensor output and 3) lymphocytes did not affect sensor function in vitro or in vivo. These data support our hypothesis that MQ can act as metabolic barriers to glucose and O2 diffusion in vivo and in vitro. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. [Current status and recommendations on the use of continuous blood glucose monitoring systems in children and adolescents with type 1 diabetes mellitus].

    PubMed

    Torres Lacruz, M; Barrio Castellanos, R; García Cuartero, B; Gómez Gila, A; González Casado, I; Hermoso López, F; Luzuriaga Tomás, C; Oyarzabal Irigoyen, M; Rica Etxebarria, I; Rodríguez Rigual, M

    2011-08-01

    Glucose monitoring methods have made great advances in the last decade with the appearance of the continuous glucose monitoring systems (CGMS) that measure the glucose levels in the interstitial liquid, providing information about glucose patterns and trends, but do not replace the self-monitoring of capillary glucose. Improvement in diabetes control using the CGMS depends on the motivation and training received by the patient and family and on the continuity in its use. Due to the development and widespread use of these systems in clinical practice, the diabetes group of the Sociedad Española de Endocrinología Pediátrica has drafted a document of consensus for their indication and use in children and adolescents. Only a limited number of trials have been performed in children and adolescent populations. More data are needed on the use of this technology in order to define the impact on metabolic control. Copyright © 2010 Asociación Española de Pediatría. Published by Elsevier Espana. All rights reserved.

  13. Use of sensors in the treatment and follow-up of patients with diabetes mellitus.

    PubMed

    Torres, Isabel; Baena, Maria G; Cayon, Manuel; Ortego-Rojo, Jose; Aguilar-Diosdado, Manuel

    2010-01-01

    Glucose control is the cornerstone of Diabetes Mellitus (DM) treatment. Although self-regulation using capillary glycemia (SRCG) still remains the best procedure in clinical practice, continuous glucose monitoring systems (CGM) offer the possibility of continuous and dynamic assessment of interstitial glucose concentration. CGM systems have the potential to improve glycemic control while decreasing the incidence of hypoglycemia but the efficiency, compared with SRCG, is still debated. CGM systems have the greatest potential value in patients with hypoglycemic unawareness and in controlling daily fluctuations in blood glucose. The implementation of continuous monitoring in the standard clinical setting has not yet been established but a new generation of open and close loop subcutaneous insulin infusion devices are emerging making insulin treatment and glycemic control more reliable.

  14. Use of Sensors in the Treatment and Follow-up of Patients with Diabetes Mellitus

    PubMed Central

    Torres, Isabel; Baena, Maria G.; Cayon, Manuel; Ortego-Rojo, Jose; Aguilar-Diosdado, Manuel

    2010-01-01

    Glucose control is the cornerstone of Diabetes Mellitus (DM) treatment. Although self-regulation using capillary glycemia (SRCG) still remains the best procedure in clinical practice, continuous glucose monitoring systems (CGM) offer the possibility of continuous and dynamic assessment of interstitial glucose concentration. CGM systems have the potential to improve glycemic control while decreasing the incidence of hypoglycemia but the efficiency, compared with SRCG, is still debated. CGM systems have the greatest potential value in patients with hypoglycemic unawareness and in controlling daily fluctuations in blood glucose. The implementation of continuous monitoring in the standard clinical setting has not yet been established but a new generation of open and close loop subcutaneous insulin infusion devices are emerging making insulin treatment and glycemic control more reliable. PMID:22163609

  15. Diurnal glucose exposure profiles of patients treated with lixisenatide before breakfast or the main meal of the day: An analysis using continuous glucose monitoring.

    PubMed

    Bergenstal, Richard M; Strock, Ellie; Mazze, Roger; Powers, Margaret A; Monk, Arlene M; Richter, Sara; Souhami, Elisabeth; Ahrén, Bo

    2017-05-01

    In the parent study of this analysis, patients with type 2 diabetes received lixisenatide before breakfast or the main meal of the day. This substudy was designed to examine the effect of lixisenatide administered before breakfast or the main meal of the day on continuously assessed 24-hour patient glucose profiles. A subset of patients from the parent study underwent 2 14-day periods of continuous glucose monitoring (CGM) at the start and end of the 24-week study. Ambulatory glucose profile analysis was used to measure changes over time in detailed aspects of the glucose profiles. The breakfast group consumed a standardized meal during both CGM periods to determine change in 4-hour glycemic response. Data were available for 69 patients in the substudy, 40 from the original breakfast group and 29 from the main meal group. Between baseline and end of study, mean (standard deviation) total glucose exposure decreased from 4198.1 (652.3) to 3681.2 (699.6) mg/dL*24 h in the breakfast group (P < .0001) and from 4127.9 (876.8) to 3880.9 (1165.0) mg/dL*24 h in the main meal group (P = .0224). For patients included in the substudy, HbA 1c decreased by approximately 0.6% in both groups. Mean (standard deviation) 4-hour total glucose exposure fell by 168.9 (158.4) mg/dL*4 h (P < .0001) from baseline. This analysis demonstrates that lixisenatide has beneficial effects on components of the 24-hour glucose profile, which endure beyond the meal at which it is administered. Continuous glucose monitoring analysis detects changes not captured using HbA 1c alone. Copyright © 2016 John Wiley & Sons, Ltd.

  16. Nocturnal hypoglycaemia in Type 1 diabetic patients, assessed with continuous glucose monitoring: frequency, duration and associations.

    PubMed

    Wentholt, I M E; Maran, A; Masurel, N; Heine, R J; Hoekstra, J B L; DeVries, J H

    2007-05-01

    We quantified the occurrence and duration of nocturnal hypoglycaemia in individuals with Type 1 diabetes treated with continuous subcutaneous insulin infusion (CSII) or multiple-injection therapy (MIT) using a continuous subcutaneous glucose sensor. A microdialysis sensor was worn at home by 24 patients on CSII (mean HbA(1c) 7.8 +/- 0.9%) and 33 patients on MIT (HbA(1c) 8.7 +/- 1.3%) for 48 h. Occurrence and duration of nocturnal hypoglycaemia were assessed and using multivariate regression analysis, the association between HbA(1c), diabetes duration, treatment type (CSII vs. MIT), fasting and bedtime blood glucose values, total daily insulin dose and mean nocturnal glucose concentrations, and hypoglycaemia occurrence and duration was investigated. Nocturnal hypoglycaemia < or = 3.9 mmol/l occurred in 33.3% of both the CSII- (8/24) and MIT-treated patients (11/33). Mean (+/- sd; median, interquartile range) duration of hypoglycaemia < or = 3.9 mmol/l was 78 (+/- 76; 57, 23-120) min per night for the CSII- and 98 (+/- 80; 81, 32-158) min per night for the MIT-treated group. Multivariate regression analysis showed that bedtime glucose value had the strongest association with the occurrence (P = 0.026) and duration (P = 0.032) of nocturnal hypoglycaemia. Microdialysis continuous glucose monitoring has enabled more precise quantification of nocturnal hypoglycaemia occurrence and duration in Type 1 diabetic patients. Occurrence and duration of nocturnal hypoglycaemia were mainly associated with bedtime glucose value.

  17. HBA1C AND MEAN GLUCOSE DERIVED FROM SHORT-TERM CONTINUOUS GLUCOSE MONITORING ASSESSMENT DO NOT CORRELATE IN PATIENTS WITH HBA1C >8.

    PubMed

    Yamada, Eijiro; Okada, Shuichi; Nakajima, Yasuyo; Bastie, Claire C; Vatish, Manu; Tagaya, Yuko; Osaki, Aya; Shimoda, Yoko; Shibusawa, Ryo; Saito, Tsugumichi; Okamura, Takashi; Ozawa, Atsushi; Yamada, Masanobu

    2017-01-01

    Optimum therapy for patients with diabetes depends on both acute and long-term changes in plasma glucose, generally assessed by glycated hemoglobin (HbA1c) levels. However, the correlation between HbA1c and circulating glucose has not been fully determined. Therefore, we carefully examined this correlation when glucose levels were assessed by continuous glucose monitoring (CGM). Fifty-one patients (70% female, 30% male) were examined; among them were 28 with type 1 diabetes and 23 with type 2 diabetes. Clinically determined HbA1c levels were compared with blood glucose determined by CGM during a short time period. Changes in HbA1c levels up to 8.0% showed a clear and statistically strong correlation (R = 0.6713; P<.0001) with mean blood glucose levels measured by CGM, similar to that observed in the A1c-derived Average Glucose study in which patients were monitored for a longer period. However, we found no statistical correlation (R = 0.0498; P = .83) between HbA1c and CGM-assessed glucose levels in our patient population when HbA1c was >8.0%. Short-term CGM appears to be a good clinical indicator of long-term glucose control (HbA1c levels); however, cautions should be taken while interpreting CGM data from patients with HbA1c levels >8.0%. Over- or underestimation of the actual mean glucose from CGM data could potentially increase the risks of inappropriate treatment. As such, our results indicate that a more accurate analysis of CGM data might be useful to adequately tailor clinical treatments. ADAG = A1c-Derived Average Glucose CGM = continuous glucose monitoring %CV = percent coefficient of variation HbA1c = glycated hemoglobin.

  18. Comparison of glucose fluctuations between day- and night-time measured using a continuous glucose monitoring system in diabetic dogs.

    PubMed

    Mori, Akihiro; Kurishima, Miyuki; Oda, Hitomi; Saeki, Kaori; Arai, Toshiro; Sako, Toshinori

    2013-01-31

    Monitoring of blood glucose concentration is important to evaluate the diabetic status of dogs. Continuous glucose monitoring systems (CGMS) have been applied in veterinary medicine for glucose monitoring in diabetic dogs. The purpose of the study was to evaluate the daily glycemic profiles obtained with CGMS and compare glucose fluctuations between day- and night-time in diabetic dogs. Five diabetic dogs were used in this study and were treated with either NPH insulin or insulin detemir. For data analyses, day-time was defined as 9:00 am-9:00 pm and night-time as 9:00 pm-9:00 am. Using glucose profiles, we determined the mean glucose concentrations (1- and 12-hr intervals), and times spent in hyperglycemia >200 mg/dl or hypoglycemia <60 mg/dl. None of the parameters differed significantly between day-time and night-time in dogs treated with NPH insulin or insulin detemir. In conclusion, this study confirmed, using CGMS, that there are no differences in glucose fluctuations between day- and night-time, in diabetic dogs on a similar feeding regimen and insulin administration.

  19. Analysis of the Evaluation of a New Glucose Meter with Integrated Self-Management Software and USB Connectivity

    PubMed Central

    Crowe, Daniel J

    2011-01-01

    Glucose meter technology has not kept up with the advances that have occurred in other sectors in mobile and health care technology. A new device that combines strip-based capillary blood glucose monitoring and USB flash drive technology is evaluated in an industry-funded study in a cohort of patients and health care professionals. The expanded memory capacity of flash drives allows the software program to be stored on the device for analyzing the blood glucose readings in memory. The study analyzes the device for precision and accuracy as well as for ease of adaptability and usage. This analysis focuses on shortcomings in the design of the study and methodology in addition to features of the hardware device itself. Although the device has distinct advantages over many devices on the market, a challenge is made to device manufacturers to encourage further innovation. PMID:22027309

  20. Clinical assessment of blood glucose homeostasis in horses: comparison of a continuous glucose monitoring system with a combined intravenous glucose and insulin test protocol.

    PubMed

    Johnson, P J; Wiedmeyer, C E; LaCarrubba, A; Messer, N T; Dingfelder, H A; Cogswell, A M; Amorim, J R R; Ganjam, V K

    2011-01-01

    The combined glucose-insulin test (CGIT) is helpful for evaluating insulin sensitivity. A continuous glucose monitoring system (CGMS) reports changes in interstitial glucose concentrations as they occur in the blood. Use of the CGMS minimizes animal contact and may be useful when performing a CGIT. Results obtained using a CGMS are useful for the evaluation of glucose responses during the evaluation of insulin sensitivity in equids. Seven mature, obese ponies. Ponies were equipped with CGMS for determination of interstitial glucose concentrations. Glucose (150 mg/kg, i.v.) and insulin (0.1 U/kg, i.v.) were administered and blood glucose concentrations determined at (minutes after time zero) 1, 5, 15, 25, 35, 45, 60, 75, 90, 105, and 120 with a hand-held glucometer. Blood chemistry results were compared with simultaneously obtained results using CGMS. Concordance coefficients determined for comparison of blood glucose concentrations determined by a hand-held glucometer and those determined by CGMS after the zero time point were 0.623, 0.764, 0.834, 0.854, and 0.818 (for delays of 0, 5, 10, 15, and 20 minutes, respectively). Interstitial glucose concentrations obtained by the CGMS compared favorably to blood glucose concentrations. CGMS may be useful for assessment of glucose dynamics in the CGIT. Copyright © 2010 by the American College of Veterinary Internal Medicine.

  1. Vascular Glucose Sensor Symposium: Continuous Glucose Monitoring Systems (CGMS) for Hospitalized and Ambulatory Patients at Risk for Hyperglycemia, Hypoglycemia, and Glycemic Variability.

    PubMed

    Joseph, Jeffrey I; Torjman, Marc C; Strasma, Paul J

    2015-07-01

    Hyperglycemia, hypoglycemia, and glycemic variability have been associated with increased morbidity, mortality, length of stay, and cost in a variety of critical care and non-critical care patient populations in the hospital. The results from prospective randomized clinical trials designed to determine the risks and benefits of intensive insulin therapy and tight glycemic control have been confusing; and at times conflicting. The limitations of point-of-care blood glucose (BG) monitoring in the hospital highlight the great clinical need for an automated real-time continuous glucose monitoring system (CGMS) that can accurately measure the concentration of glucose every few minutes. Automation and standardization of the glucose measurement process have the potential to significantly improve BG control, clinical outcome, safety and cost. © 2015 Diabetes Technology Society.

  2. Develop a Prototype Personal Health Record Application (PHR-A) that Captures Information About Daily Living Important for Diabetes and Provides Decision Support with Actionable Advice for Diabetes Self Care

    DTIC Science & Technology

    2013-10-01

    diabetes self-management: 1) nutrition/ diet (healthy eating) 2) physical activity (being active); 3) blood glucose (self-monitoring); 4) medications...correctly interpret random blood glucose readings, take medications as prescribed, follow a balanced, whole foods-based diet and engage in regular...What if I ate…” analysis). The Healthy Eating Module’s focus is eating a balanced diet of the right food groups (not about calorie and/or carbohydrate

  3. Mean Levels and Variability in Affect, Diabetes Self-Care Behaviors, and Continuously Monitored Glucose: A Daily Study of Latinos With Type 2 Diabetes.

    PubMed

    Wagner, Julie; Armeli, Stephen; Tennen, Howard; Bermudez-Millan, Angela; Wolpert, Howard; Pérez-Escamilla, Rafael

    2017-09-01

    This study investigated between- and within-person associations among mean levels and variability in affect, diabetes self-care behaviors, and continuously monitored glucose in Latinos with type 2 diabetes. Fifty participants (M [SD] age = 57.8 [11.7] years, 74% women, mean [SD] glycosylated hemoglobin A1c = 8.3% [1.5%]) wore a "blinded" continuous glucose monitor for 7 days, and they responded to twice daily automated phone surveys regarding positive affect, negative affect, and self-care behaviors. Higher mean levels of NA were associated with higher mean glucose (r = .30), greater percent hyperglycemia (r = .34) and greater percentage of out-of-range glucose (r = .34). Higher NA variability was also related to higher mean glucose (r = .34), greater percent of hyperglycemia (r = .44) and greater percentage of out-of-range glucose (r = .43). Higher positive affect variability was related to lower percentage of hypoglycemia (r = -.33). Higher mean levels of self-care behaviors were related to lower glucose variability (r = -.35). Finally, higher self-care behavior variability was related to greater percentage of hyperglycemia (r = .31) and greater percentage of out-of-range glucose (r = -.28). In multilevel regression models, within-person increases from mean levels of self-care were associated with lower mean levels of glucose (b = -7.4, 95% confidence interval [CI] = -12.8 to -1.9), lower percentage of hyperglycemia (b = -0.04, 95% CI = -0.07 to -0.01), and higher percentage of hypoglycemia (b = 0.02, 95% CI = 0.01 to 0.03) in the subsequent 10-hour period. Near-to-real time sampling documented associations of glucose with affect and diabetes self-care that are not detectable with traditional measures.

  4. Evaluation of a minimally invasive glucose biosensor for continuous tissue monitoring.

    PubMed

    Sharma, Sanjiv; Huang, Zhenyi; Rogers, Michelle; Boutelle, Martyn; Cass, Anthony E G

    2016-11-01

    We describe here a minimally invasive glucose biosensor based on a microneedle array electrode fabricated from an epoxy-based negative photoresist (SU8 50) and designed for continuous measurement in the dermal compartment with minimal pain. These minimally invasive, continuous monitoring sensor devices (MICoMS) were produced by casting the structures in SU8 50, crosslinking and then metallising them with platinum or silver to obtain the working and reference electrodes, respectively. The metallised microneedle array electrodes were subsequently functionalised by entrapping glucose oxidase in electropolymerised polyphenol (PP) film. Sensor performance in vitro showed that glucose concentrations down to 0.5 mM could be measured with a response times (T 90 ) of 15 s. The effect of sterilisation by Co60 irradiation was evaluated. In preparation for further clinical studies, these sensors were tested in vivo in a healthy volunteer for a period of 3-6 h. The sensor currents were compared against point measurements obtained with a commercial capillary blood glucometer. The epoxy MICoMS devices showed currents values that could be correlated with these. Graphical Abstract Microneedle arrays for continuous glucose monitoring in dermal interstitial fluid.

  5. Islet Transplantation Provides Superior Glycemic Control With Less Hypoglycemia Compared With Continuous Subcutaneous Insulin Infusion or Multiple Daily Insulin Injections.

    PubMed

    Holmes-Walker, Deborah Jane; Gunton, Jenny E; Hawthorne, Wayne; Payk, Marlene; Anderson, Patricia; Donath, Susan; Loudovaris, Tom; Ward, Glenn M; Kay, Thomas Wh; OʼConnell, Philip J

    2017-06-01

    The aim was to compare efficacy of multiple daily injections (MDI), continuous subcutaneous insulin infusion (CSII) and islet transplantation to reduce hypoglycemia and glycemic variability in type 1 diabetes subjects with severe hypoglycemia. This was a within-subject, paired comparison of MDI and CSII and CSII with 12 months postislet transplantation in 10 type 1 diabetes subjects referred with severe hypoglycemia, suitable for islet transplantation. Individuals were assessed with HbA1c, Edmonton Hypoglycemia Score (HYPOscore), continuous glucose monitoring (CGM) and in 8 subjects measurements of glucose variability using standard deviation of glucose (SD glucose) from CGM and continuous overlapping net glycemic action using a 4 hour interval (CONGA4). After changing from MDI to CSII before transplantation, 10 subjects reduced median HYPOscore from 2028 to 1085 (P < 0.05) and hypoglycemia events from 24 to 8 per patient-year (P < 0.05). While HbA1c, mean glucose and median percent time hypoglycemic on CGM were unchanged with CSII, SD glucose and CONGA4 reduced significantly (P < 0.05). At 12 months posttransplant 9 of 10 were C-peptide positive, (5 insulin independent). Twelve months postislet transplantation, there were significant reductions in all baseline parameters versus CSII, respectively, HbA1c (6.4% cf 8.2%), median HYPOscore (0 cf 1085), mean glucose (7.1 cf 8.6 mmol L), SD glucose (1.7 cf 3.2 mmol/L), and CONGA4 (1.6 cf 3.0). In subjects with severe hypoglycemia suitable for islet transplantation, CSII decreased hypoglycemia frequency and glycemic variability compared with MDI whereas islet transplantation resolved hypoglycemia and further improved glycemic variability regardless of insulin independence.

  6. Continuous glucose monitoring in subcutaneous tissue using factory-calibrated sensors: a pilot study.

    PubMed

    Hoss, Udo; Jeddi, Iman; Schulz, Mark; Budiman, Erwin; Bhogal, Claire; McGarraugh, Geoffrey

    2010-08-01

    Commercial continuous subcutaneous glucose monitors require in vivo calibration using capillary blood glucose tests. Feasibility of factory calibration, i.e., sensor batch characterization in vitro with no further need for in vivo calibration, requires a predictable and stable in vivo sensor sensitivity and limited inter- and intra-subject variation of the ratio of interstitial to blood glucose concentration. Twelve volunteers wore two FreeStyle Navigator (Abbott Diabetes Care, Alameda, CA) continuous glucose monitoring systems for 5 days in parallel for two consecutive sensor wears (four sensors per subject, 48 sensors total). Sensors from a prototype sensor lot with a low variability in glucose sensitivity were used for the study. Median sensor sensitivity values based on capillary blood glucose were calculated per sensor and compared for inter- and intra-subject variation. Mean absolute relative difference (MARD) calculation and error grid analysis were performed using a single calibration factor for all sensors to simulate factory calibration and compared to standard fingerstick calibration. Sensor sensitivity variation in vitro was 4.6%, which increased to 8.3% in vivo (P < 0.0001). Analysis of variance revealed no significant inter-subject differences in sensor sensitivity (P = 0.134). Applying a single universal calibration factor retrospectively to all sensors resulted in a MARD of 10.4% and 88.1% of values in Clarke Error Grid Zone A, compared to a MARD of 10.9% and 86% of values in Error Grid Zone A for fingerstick calibration. Factory calibration of sensors for continuous subcutaneous glucose monitoring is feasible with similar accuracy to standard fingerstick calibration. Additional data are required to confirm this result in subjects with diabetes.

  7. Continuous Glucose Monitoring vs Conventional Therapy for Glycemic Control in Adults With Type 1 Diabetes Treated With Multiple Daily Insulin Injections: The GOLD Randomized Clinical Trial.

    PubMed

    Lind, Marcus; Polonsky, William; Hirsch, Irl B; Heise, Tim; Bolinder, Jan; Dahlqvist, Sofia; Schwarz, Erik; Ólafsdóttir, Arndís Finna; Frid, Anders; Wedel, Hans; Ahlén, Elsa; Nyström, Thomas; Hellman, Jarl

    2017-01-24

    The majority of individuals with type 1 diabetes do not meet recommended glycemic targets. To evaluate the effects of continuous glucose monitoring in adults with type 1 diabetes treated with multiple daily insulin injections. Open-label crossover randomized clinical trial conducted in 15 diabetes outpatient clinics in Sweden between February 24, 2014, and June 1, 2016 that included 161 individuals with type 1 diabetes and hemoglobin A1c (HbA1c) of at least 7.5% (58 mmol/mol) treated with multiple daily insulin injections. Participants were randomized to receive treatment using a continuous glucose monitoring system or conventional treatment for 26 weeks, separated by a washout period of 17 weeks. Difference in HbA1c between weeks 26 and 69 for the 2 treatments. Adverse events including severe hypoglycemia were also studied. Among 161 randomized participants, mean age was 43.7 years, 45.3% were women, and mean HbA1c was 8.6% (70 mmol/mol). A total of 142 participants had follow-up data in both treatment periods. Mean HbA1c was 7.92% (63 mmol/mol) during continuous glucose monitoring use and 8.35% (68 mmol/mol) during conventional treatment (mean difference, -0.43% [95% CI, -0.57% to -0.29%] or -4.7 [-6.3 to -3.1 mmol/mol]; P < .001). Of 19 secondary end points comprising psychosocial and various glycemic measures, 6 met the hierarchical testing criteria of statistical significance, favoring continuous glucose monitoring compared with conventional treatment. Five patients in the conventional treatment group and 1 patient in the continuous glucose monitoring group had severe hypoglycemia. During washout when patients used conventional therapy, 7 patients had severe hypoglycemia. Among patients with inadequately controlled type 1 diabetes treated with multiple daily insulin injections, the use of continuous glucose monitoring compared with conventional treatment for 26 weeks resulted in lower HbA1c. Further research is needed to assess clinical outcomes and longer-term adverse effects. clinicaltrials.gov Identifier: NCT02092051.

  8. Development of a nanowire based titanium needle probe sensor for glucose monitoring

    NASA Astrophysics Data System (ADS)

    Deshpande, Devesh C.

    The need for continuous monitoring of various physiological functions such as blood glucose levels, neural functions and cholesterol levels has fostered the research and development of various schemes of biosensors to sense and help control the respective function. The needs of patients for sensors with minimal discomfort, longer life and better performance have necessitated the development towards smaller and more efficient sensors. In addition, the need for higher functionality from smaller sensors has led to the development of sensors with multiple electrodes, each electrode capable of sensing a different body function. Such multi-electrode sensors need to be fabricated using micro-fabrication processes in order to achieve precise control over the size, shape and placement of the electrodes. Multielectrode sensors fabricated using silicon and polymers have been demonstrated. One physiological function that attracts widespread interest is continuous glucose monitoring in our blood, since Diabetes affects millions of people all over the world. Significant deviations of blood glucose levels from the normal levels of 4-8 mM can cause fainting, coma and damage to the eyes, kidneys, nerves and blood vessels. For chronic patients, continuous monitoring of glucose levels is essential for accurate and timely treatment. A few continuous monitoring sensors are available in the market, but they have problems and cannot replace the strip type one-time glucose monitoring systems as yet. To address this need, large scale research efforts have been targeted towards continuous monitoring. The demand for higher accuracy and sensitivity has motivated researchers to evaluate the use of nanostructures in sensing. The large surface area-to-volume ratio of such structures could enable further miniaturization and push the detection limits, potentially enabling even single molecule detection. This research involved the development of a biocompatible titanium needle probe sensor for glucose monitoring. The working electrode of the sensor comprised of vertically aligned, free standing Au nanowires to utilize the advantages of nanostructures. The sensor was fabricated on biocompatible titanium substrate using Micro/Nano fabrication processes such as Plasma Enhanced Chemical Vapor Deposition (PECVD), Electron Beam Evaporation, Lithography, aligned nanowire growth and wet and plasma etching. Arrays of free-standing nanowires were grown at room temperature and pressure using a novel template based growth process. After fabrication of the sensor, immobilization of an enzyme was carried out on the sensing electrode to ensure selectivity of the sensor to glucose. This was achieved by using self-assembled thiol monolayers and entrapment in a conducting polymer matrix. Glucose oxidase was used for this purpose, which catalyzed the conversion of glucose to gluconic acid, producing hydrogen peroxide in the process. Amperometry was used for glucose detection, in which a constant voltage was applied to the sensor. This potential oxidized the hydrogen peroxide and produced changes in the current which were correlated to the glucose concentration. This dissertation will address the importance of continuous glucose monitoring, current technology and problems faced, the design and fabrication of the sensor and electrochemical sensing to detect glucose levels in solution. Finally, the problems encountered during the process will be discussed and the future work will be detailed.

  9. Comparison of EML 105 and advantage analysers measuring capillary versus venous whole blood glucose in neonates.

    PubMed

    McNamara, P J; Sharief, N

    2001-09-01

    Near-patient blood glucose monitoring is an essential component of neonatal intensive care but the analysers currently used are unreliable and inaccurate. The aim of this study was to compare a new glucose electrode-based analyser (EML 105) and a non-wipe reflectance photometry method (Advantage) as opposed to a recognized laboratory reference method (Hexokinase). We also investigated the effect of sample route and haematocrit on the accuracy of the glucose readings obtained by each method of analysis. Whole blood glucose concentrations ranging from 0 to 3.5 mmol/l were carefully prepared in a laboratory setting and blood samples from each respective solution were then measured by EML 105 and Advantage analysers. The results obtained were then compared with the corresponding plasma glucose reading obtained by the Hexokinase method, using linear regression analysis. An in vivo study was subsequently performed on 103 neonates, over a 1-y period, using capillary and venous whole blood samples. Whole blood glucose concentration was estimated from each sample using both analysers and compared with the corresponding plasma glucose concentration estimated by the Hexokinase method. Venous blood was centrifuged and haematocrit was estimated using standardized curves. The effect of haematocrit on the agreement between whole blood and plasma glucose was investigated, estimating the degree of correlation on a scatterplot of the results and linear regression analysis. Both the EML 105 and Hexokinase methods were highly accurate, in vitro, with small proportional biases of 2% and 5%, respectively. However, in vivo, both study analysers overestimated neonatal plasma glucose, ranging from at best 0.45 mmol/l (EML 105 venous) to 0.69 mmol/l (EML capillary). There was no significant difference in the agreement of capillary (GD = 0.12, 95% CI, [-0.32,0.08], p = 0.2) or venous samples (GD = 0.05, 95% CI. [0.09, 0.19], p = 0.49) with plasma glucose when analysed by either study method (GD = glucose difference between study analyser and reference method) However, the venous samples analysed by EML 105 estimated plasma glucose significantly better than capillary samples using the same method of analysis (GD = 0.24, 95% CI. [0.09,0.38], p < 0.01). The relationship between haematocrit and the resultant glucose differences was non-linear with correlation coefficients of r = -0.057 (EML 105 capillary), r = 0.145 (EML 105 venous), r = -0.127 (Advantage capillary) and r = -0.275 (Advantage venous). There was no significant difference in the effect of haematocrit on the performance of EML 105 versus Advantage, regardless of the sample route. Both EML 105 and Advantage overestimated plasma glucose, with no significant difference in the performance of either analyser, regardless of the route of analysis. Agreement with plasma glucose was better for venous samples but this was only statistically significant when EML 105 capillary and venous results were compared. Haematocrit is not a significant confounding factor towards the performance of either EML 105 or Advantage in neonates, regardless of the route of sampling. The margin of overestimation of blood glucose prohibits the recommendation of both EML 105 and Advantage for routine neonatal glucose screening. The consequences include failure accurately to diagnose hypoglycaemia and delays in the instigation of therapeutic measures, both of which may potentially result in an adverse, long-term, neurodevelopmental outcome.

  10. Noninvasive and Painless Urine Glucose Detection by Using Computer-based Polarimeter

    NASA Astrophysics Data System (ADS)

    Sutrisno; Laksono, Y. A.; Hidayat, N.

    2017-05-01

    Diabetes kills millions of people worldwide each year. It challenges us as researchers to give contribution in early diagnosis to ensure a healthy life. As a matter of fact, common glucose testing devices that have been widely used so far are, at least, glucose meter and urine glucose test strip. The glucose meter ordinarily requires blood taken from patient’s finger. The glucose test strip uses patient’s urine but records unspecific urine glucose level, since the strip only provides the glucose level in some particular ranges. Instead of detecting the glucose level in blood and using the non-specific technique, a noninvasive and painless technique that can detect glucose level accurately will provide a more feasible approach for diabetes diagnosis. The noninvasive and painless urine glucose level monitoring by means of computer-based polarimeter is presented in this paper. The instrument consisted of a power source, a sample box, a light sensor, a polarizer, an analyzer, an analog to digital converter (ADC), and a computer. The concentration of urine glucose concentration was evaluated from the curve of the change in detected optical rotation angle and output potential by the computer-based polarimeter. Statistical analyses by means of Gaussian fitting and linear regression were applied to investigate the rotation angle and urine glucose concentration, respectively. From our experiment, the urine glucose level, measured by glucose test strips, of the normal patient was 100 mg/dl, and the diabetic patient was 500 mg/dl. Our polarimeter even read more precise values for the urine glucose concentrations of those normal and diabetic of the same patients, i.e. 50.61 mg/dl and 502.41 mg/dl, respectively. In other words, the results showed that our polarimeter was able to quantitatively measure the urine glucose level more accurate than urine glucose test strips. Hence, this computer-based polarimeter could be used as an alternative for early detection of urine glucose with noninvasive and painless characteristics.

  11. Nocturnal hypoglycemia identified by a continuous glucose monitoring system in patients with primary adrenal insufficiency (Addison's Disease).

    PubMed

    Meyer, Gesine; Hackemann, Annika; Reusch, Juergen; Badenhoop, Klaus

    2012-05-01

    Hypoglycemia can be a symptom in patients with Addison's disease. The common regimen of replacement therapy with oral glucocorticoids results in unphysiological low cortisol levels in the early morning, the time of highest insulin sensitivity. Therefore patients with Addison's disease are at risk for unrecognized and potentially severe nocturnal hypoglycemia also because of a disturbed counterregulatory function. Use of a continuous glucose monitoring system (CGMS) could help to adjust hydrocortisone treatment and to avoid nocturnal hypoglycemia in these patients. Thirteen patients with Addison's disease were screened for hypoglycemia wearing a CGMS for 3-5 days. In one patient we identified a hypoglycemic episode at 3:45 a.m. with a blood glucose level of 46 mg/dL, clearly beneath the 95% tolerance interval of minimal glucose levels between 2 and 4 a.m. (53.84 mg/dL). After the hydrocortisone replacement scheme was changed, the minimum blood glucose level between 2 and 4 a.m. normalized to 87 mg/dL. Continuous glucose monitoring can detect nocturnal hypoglycemia in patients with primary adrenal insufficiency and hence prevent in these patients an impaired quality of life and even serious adverse effects.

  12. 40 CFR 798.5265 - The salmonella typhimurium reverse mutation assay.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., exogenous glucose 6-phosphate dehydrogenase, NADH and excess of glucose-6-phosphate. (5) Control groups—(i... (CONTINUED) TOXIC SUBSTANCES CONTROL ACT (CONTINUED) HEALTH EFFECTS TESTING GUIDELINES Genetic Toxicity § 798... number of spontaneous revertants in an untreated and/or vehicle control culture. (2) Description. Several...

  13. 40 CFR 798.5265 - The salmonella typhimurium reverse mutation assay.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., exogenous glucose 6-phosphate dehydrogenase, NADH and excess of glucose-6-phosphate. (5) Control groups—(i... (CONTINUED) TOXIC SUBSTANCES CONTROL ACT (CONTINUED) HEALTH EFFECTS TESTING GUIDELINES Genetic Toxicity § 798... number of spontaneous revertants in an untreated and/or vehicle control culture. (2) Description. Several...

  14. 40 CFR 798.5265 - The salmonella typhimurium reverse mutation assay.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., exogenous glucose 6-phosphate dehydrogenase, NADH and excess of glucose-6-phosphate. (5) Control groups—(i... (CONTINUED) TOXIC SUBSTANCES CONTROL ACT (CONTINUED) HEALTH EFFECTS TESTING GUIDELINES Genetic Toxicity § 798... number of spontaneous revertants in an untreated and/or vehicle control culture. (2) Description. Several...

  15. 40 CFR 798.5265 - The salmonella typhimurium reverse mutation assay.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., exogenous glucose 6-phosphate dehydrogenase, NADH and excess of glucose-6-phosphate. (5) Control groups—(i... (CONTINUED) TOXIC SUBSTANCES CONTROL ACT (CONTINUED) HEALTH EFFECTS TESTING GUIDELINES Genetic Toxicity § 798... number of spontaneous revertants in an untreated and/or vehicle control culture. (2) Description. Several...

  16. 40 CFR 798.5265 - The salmonella typhimurium reverse mutation assay.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., exogenous glucose 6-phosphate dehydrogenase, NADH and excess of glucose-6-phosphate. (5) Control groups—(i... (CONTINUED) TOXIC SUBSTANCES CONTROL ACT (CONTINUED) HEALTH EFFECTS TESTING GUIDELINES Genetic Toxicity § 798... number of spontaneous revertants in an untreated and/or vehicle control culture. (2) Description. Several...

  17. The role of working memory and fluency practice on the reading comprehension of students who are dysfluent readers.

    PubMed

    Swanson, H Lee; O'Connor, Rollanda

    2009-01-01

    The authors investigated whether practice in reading fluency had a causal influence on the relationship between working memory (WM) and text comprehension for 155 students in Grades 2 and 4 who were poor or average readers. Dysfluent readers were randomly assigned to repeated reading or continuous reading practice conditions and compared with untreated dysfluent and fluent readers on posttest measures of fluency, word identification, vocabulary, and reading comprehension. Three main findings emerged: (a) The influence of WM on text comprehension was not related to fluency training, (b) dysfluent readers in the continuous-reading condition had higher posttest scores than dysfluent readers in the other conditions on measures of text comprehension but not on vocabulary, and (c) individual differences in WM better predicted posttest comprehension performance than word-attack skills. In general, the results suggested that although continuous reading increased comprehension, fluency practice did not compensate for WM demands. The results were interpreted within a model that viewed reading comprehension processes as competing for a limited supply of WM resources that operate independent of fluency.

  18. Introduction to the DISRUPT postprandial database: subjects, studies and methodologies.

    PubMed

    Jackson, Kim G; Clarke, Dave T; Murray, Peter; Lovegrove, Julie A; O'Malley, Brendan; Minihane, Anne M; Williams, Christine M

    2010-03-01

    Dysregulation of lipid and glucose metabolism in the postprandial state are recognised as important risk factors for the development of cardiovascular disease and type 2 diabetes. Our objective was to create a comprehensive, standardised database of postprandial studies to provide insights into the physiological factors that influence postprandial lipid and glucose responses. Data were collated from subjects (n = 467) taking part in single and sequential meal postprandial studies conducted by researchers at the University of Reading, to form the DISRUPT (DIetary Studies: Reading Unilever Postprandial Trials) database. Subject attributes including age, gender, genotype, menopausal status, body mass index, blood pressure and a fasting biochemical profile, together with postprandial measurements of triacylglycerol (TAG), non-esterified fatty acids, glucose, insulin and TAG-rich lipoprotein composition are recorded. A particular strength of the studies is the frequency of blood sampling, with on average 10-13 blood samples taken during each postprandial assessment, and the fact that identical test meal protocols were used in a number of studies, allowing pooling of data to increase statistical power. The DISRUPT database is the most comprehensive postprandial metabolism database that exists worldwide and preliminary analysis of the pooled sequential meal postprandial dataset has revealed both confirmatory and novel observations with respect to the impact of gender and age on the postprandial TAG response. Further analysis of the dataset using conventional statistical techniques along with integrated mathematical models and clustering analysis will provide a unique opportunity to greatly expand current knowledge of the aetiology of inter-individual variability in postprandial lipid and glucose responses.

  19. Safety and efficacy of blood glucose management practices at a diabetes camp.

    PubMed

    Gunasekera, Hasantha; Ambler, Geoffrey

    2006-10-01

    Camps are an important part of diabetic management in children yet data on the safety and efficacy of camps are limited. We assessed the safety and efficacy of blood glucose management guidelines at summer camps for diabetic children. Consistent management guidelines were implemented during 10 consecutive diabetes camps held in the same facility between 1998 and 2002. Using the entire sample of campers aged 9-13 years, we analysed insulin dosage alterations, the frequency of hypoglycaemia (<4 mmol/L), hyperglycaemia (>15 mmol/L) and ketosis and evaluated our overnight management guidelines. The effects of sex, year, age, insulin regimen and duration of diagnosis on hypoglycaemia frequency were determined. Mean insulin doses decreased 19.2% (95% confidence interval 16.9-21.6%) by the last day of camp (day 6) relative to the day prior to camp. Mean blood glucose levels were 11.4 mmol/L before breakfast and the main evening meal, 11.3 mmol/L before bed, 10.8 mmol/L at midnight and 9.4 mmol/L at 3 am. Of the 10 839 readings analysed, 984 (9.1%) were below 4 mmol/L (0.5 per camper/day) with no clinical grade 3 (seizure or coma) hypoglycaemia. Hypoglycaemia frequency was independent of sex, year, age, insulin regimen and duration of diagnosis (all P > 0.05). There were 2570 (23.7%) readings above 15 mmol/L (1.4 per camper/day) but only 42 (0.4%) were associated with significant ketosis. Children at diabetes camps experience considerable blood glucose variability; however, the careful application of monitoring and management guidelines can avoid serious adverse events.

  20. Towards a continuous glucose monitoring system using tunable quantum cascade lasers

    NASA Astrophysics Data System (ADS)

    Haase, Katharina; Müller, Niklas; Petrich, Wolfgang

    2018-02-01

    We present a reagent-free approach for long-term continuous glucose monitoring (cgm) of liquid samples using midinfrared absorption spectroscopy. This method could constitute an alternative to enzymatic glucose sensors in order to manage the widespread disease of Diabetes. In order to acquire spectra of the liquid specimen, we use a spectrally tunable external-cavity (EC-) quantum cascade laser (QCL) as radiation source in combination with a fiber-based in vitro sensor setup. Hereby we achieve a glucose sensitivity in pure glucose solutions of 3 mg/dL (RMSEP). Furthermore, the spectral tunability of the EC-QCL enables us to discriminate glucose from other molecules. We exemplify this by detecting glucose among other saccharides with an accuracy of 8 mg/dL (within other monosaccharides, RMSEVC) and 14 mg/dL (within other mono- and disaccharides, RMSECV). Moreover, we demonstrate a characterization of the significance of each wavenumber for an accurate prediction of glucose among other saccharides using an evolutionary algorithm. We show, that by picking 10 distinct wavenumbers we can achieve comparable accuracies to the use of a complete spectrum.

  1. Glucose metabolism disorder in obese children assessed by continuous glucose monitoring system.

    PubMed

    Zou, Chao-Chun; Liang, Li; Hong, Fang; Zhao, Zheng-Yan

    2008-02-01

    Continuous glucose monitoring system (CGMS) can measure glucose levels at 5-minute intervals over a few days, and may be used to detect hypoglycemia, guide insulin therapy, and control glucose levels. This study was undertaken to assess the glucose metabolism disorder by CGMS in obese children. Eighty-four obese children were studied. Interstitial fluid (ISF) glucose levels were measured by CGMS for 24 hours covering the time for oral glucose tolerance test (OGTT). Impaired glucose tolerance (IGT), impaired fasting glucose (IFG), type 2 diabetic mellitus (T2DM) and hypoglycemia were assessed by CGMS. Five children failed to complete CGMS test. The glucose levels in ISF measured by CGMS were highly correlated with those in capillary samples (r=0.775, P<0.001). However, the correlation between ISF and capillary glucose levels was lower during the first hour than that in the later time period (r=0.722 vs r=0.830), and the ISF glucose levels in 69.62% of children were higher than baseline levels in the initial 1-3 hours. In 79 obese children who finished the CGMS, 2 children had IFG, 2 had IGT, 3 had IFG + IGT, and 2 had T2DM. Nocturnal hypoglycemia was noted during the overnight fasting in 11 children (13.92%). Our data suggest that glucose metabolism disorder including hyperglycemia and hypoglycemia is very common in obese children. Further studies are required to improve the precision of the CGMS in children.

  2. The effectiveness of continuous subcutaneous insulin pumps with continuous glucose monitoring in outpatient adolescents with type 1 diabetes: A systematic review.

    PubMed

    Matsuda, Erin; Brennan, Patricia

    The review question is: Are metabolic outcomes improved in outpatient adolescents (aged 13 to 19 years) with type 1 diabetes on a Continuous Subcutaneous Insulin Infusion (CSII) when continuous glucose monitoring is used, compared to self-glucose monitoring alone? Type 1 diabetes is the most common childhood paediatric disease, characterised by impairment of insulin producing βeta-cells in the pancreas. Internationally, there is variation in the incidence of type 1 diabetes in paediatric patients. According to the Center for Disease Control and Prevention (CDC) and the SEARCH for Diabetes in Youth Study Group, the overall incidence rate of this autoimmune disease is 24.3/100,000 in those 19 years of age . Annually, more than 15,000 children and adolescents are diagnosed in the United States (US) . From 1990 to 1999, the World Health Organization (WHO) launched the Multinational Project for Childhood Diabetes (DIAMOND), which was tasked with assessing type 1 diabetes in those 14 years or younger worldwide . Finland was discovered to have the highest age-adjusted incidence at 40.9 cases per 100,000/year. The lowest age-adjusted incidence is in China and Venezuela at 0.1 cases per 100,000/year. Globally, the largest increase in incidence is in those aged 10 to 14 years . This systematic review will focus on adolescent patients with type 1 diabetes, aged 13 to 19 years who manage their diabetes with an insulin pump.Patients with type 1 diabetes mellitus typically present with a history of polydipsia, polyuria, polyphagia, and weight loss . Initial findings include hyperglycemia, glycosuria, and ketones in the blood or urine . In 2009, the International Expert Committee deemed a haemoglobin A1C (glycosylated haemoglobin) of 6.5% or higher to be the standard for diagnosis . The American Diabetes Association (ADA) as well as the International Diabetes Federation and the European Association Study of Diabetes (EASD) accept this measure as the diagnostic tool for diabetes. Haemoglobin A1C is the most commonly used measurement for patients with type 1 diabetes . It refers to the measurement of the amount of glucose bound to haemoglobin. It is an average of blood glucose levels for the last 120 days, which is consistent with the average life span of a red blood cell (RBC).Compensation for the lack of insulin-secreting βeta-cells is accomplished through administration of insulin. For adolescents, insulin dosing is based on pubescent status, age, weight, activity level, and amount of carbohydrates consumed . Insulin administration, carbohydrate counting, and correction of hyperglycemia are necessary for maintaining glycemic control. Insulin can be administered through multiple daily injections (MDI) of rapid, intermediate and long-acting insulin .Another form of insulin delivery is the Continuous Subcutaneous Insulin Infusion (CSII), also known as an insulin pump, which is designed to meet physiological requirements through programmable basal rates and bolus doses . CSII's utilise rapid-acting insulin and establish a basal rate, which replaces the need for long-acting insulin. Bolus dosing is accomplished through adjusting the pump and is utilised to account for nutritional intake as well as hyperglycemia correction. Adjustments are also made for physical activity and exercise, as this can affect glucose levels . All patients considered in this systematic review will be utilising insulin pumps.In 2006, the United States had more than 35,000 patients, under the age of 21 years, receiving insulin therapy through an insulin pump . In Europe, the percentage of people with type 1 diabetes utilising a CSII is lower, potentially due to variation in health care coverage . There are various forms of insulin pumps, all with similar capabilities including a dose calculator for high blood glucose correction and carbohydrate ratios, programming software, and several other features . Software and programming is specific to each manufacturer. Basal rate abilities vary in each model from 0.05 units/hour to 30 units/hour . Information from the pump can be uploaded to online registries allowing providers to review trends and usage. It is imperative the information is reviewed concurrently with glucose monitoring results in order to ensure appropriate dosing and treatment .The intervention considered in this systematic review is the use of continuous glucose monitoring (CGM) in conjunction with a CSII. CGM utilises a sensor placed in the interstitial subcutaneous tissue, which then measures glucose levels. This is accomplished with "electrochemical sensors that use glucose oxidase and measure an electric current generated when glucose reacts with oxygen. The sensors are coated with a specialised membrane to make them biocompatible" . The CGM has programmable high and low levels to alert the user when the limit is being reached. Information regarding continuous glucose levels can then be downloaded and reviewed. Based on the report, providers, patients, and caregivers may assess trends and consider changing basal rates or bolus doses .CGM sensors currently do not offer a closed-loop solution. The user must enter insulin dosing information into the pump, taking into account the present glucose level and duration of action of the insulin. Currently, CGMs are regarded as a supplemental method for assessing the effectiveness of glucose control. Existing studies are underway to improve accuracy and communication between the sensor and insulin pump with the goal to develop an artificial pancreas . Currently, CGM sensors must be calibrated with a glucometer, as specified by the manufacturer .The comparison for this review is the standard of care, self-glucose monitoring (SGM), in patients with insulin pumps . SGM is accomplished with a glucometer and blood sample typically obtained from a finger prick. The Diabetes Control and Complications Trial (DCCT) demonstrated frequency of monitoring improves glycemic control and decreases the risk of comorbidity . Data from this significant study continues to contribute to current diabetes management. According to the ADA, children and adolescents should monitor their blood glucose at least three or more times per day. Blood glucose data is utilised to calculate appropriate insulin doses. Similar to the CGM, information from the glucometers can be downloaded for assessment of results and trends. However, the result is dependent on the action of the patient to obtain the sample and only represents a specific moment in time whereas the CGM sensor continuously tracks the blood glucose level. Depending on the model, CGM can provide glucose levels every one to ten minutes. The sensor may last for up to 72 hours and results are available in real time .This systematic review will address two metabolic outcomes: a decrease in the number of hypoglycemic episodes and a haemoglobin A1C level <7.5%. These outcomes were chosen due to their significance as indicators in the management of type 1 diabetes. Glucose levels should be between 90 mg/dL and 130 mg/dL (5.0mmol/l and 7.2mmol/l) before meals and between 90 mg/dL and 150 mg/dL at night (5.0mmmol/l and 8.3mmol/l) . Optimal care of an adolescent with type 1 diabetes mellitus is to safely maintain glycemic control and avoid hypoglycemia.Haemoglobin A1C is an indicator of how well the disease is being managed and should be evaluated every three months. McCulloch recommends the haemoglobin A1C level should be compared to approximately 50 recent blood glucose readings to ensure the accuracy of patient SGM . The reliability and validity of this test is based on the evidence discovered by the DCCT demonstrating those with lower haemoglobin A1C levels have fewer complications . The target A1C for adolescents, aged 13 to 19 years of age, is <7.5% . This is consistent with the National Institute of Clinical Excellence (NICE) and diabetes management guidelines of the Australasian Paediatric Endocrine Group for the Department of Health and Ageing .An initial search for a systematic review regarding insulin pumps in adolescents with type 1 diabetes mellitus and concurrent use of CGM was conducted in the Joanna Briggs Institute Library of Systematic Reviews, Cochrane Database of Systematic Reviews, and PubMed. No systematic reviews were found.

  3. Flexible three-dimensional electrochemical glucose sensor with improved sensitivity realized in hybrid polymer microelectromechanical systems technique.

    PubMed

    Patel, Jasbir N; Gray, Bonnie L; Kaminska, Bozena; Gates, Byron D

    2011-09-01

    Continuous glucose monitoring for patients with diabetes is of paramount importance to avoid severe health conditions resulting from hypoglycemia or hyperglycemia. Most available methods require an invasive setup and a health care professional. Handheld devices available on the market also require finger pricking for every measurement and do not provide continuous monitoring. Hence, continuous glucose monitoring from human tears using a glucose sensor embedded in a contact lens has been considered as a suitable option. However, the glucose concentration in human tears is very low in comparison with the blood glucose level (1/10-1/40 concentration). We propose a sensor that solves the sensitivity problem in a new way, is flexible, and is constructed onto the oxygen permeable contact lens material. To achieve such sensitivity while maintaining a small sensor footprint suitable for placement in a contact lens, we increased the active electrode area by using three-dimensional (3-D) electrode micropatterning. Fully flexible 3-D electrodes were realized utilizing ordered arrays of pillars with different shapes and heights. We successfully fabricated square and cylindrical pillars with different height (50, 100, and 200 μm) and uniform metal coverage to realize sensor electrodes. The increased surface area produces high amperometric current that increases sensor sensitivity up to 300% using 200 μm tall square pillars. The sensitivity improvement closely follows the improvement in the surface area of the electrode. The proposed flexible glucose sensors with 3-D microstructure electrodes are more sensitive to lower glucose concentrations and generate higher current signal than conventional glucose sensors. © 2011 Diabetes Technology Society.

  4. Multi-stage Continuous Culture Fermentation of Glucose-Xylose Mixtures to Fuel Ethanol using Genetically Engineered Saccharomyces cerevisiae 424A

    EPA Science Inventory

    Multi-stage continuous (chemostat) culture fermentation (MCCF) with variable fermentor volumes was carried out to study utilizing glucose and xylose for ethanol production by means of mixed sugar fermentation (MSF). Variable fermentor volumes were used to enable enhanced sugar u...

  5. ConA-based glucose sensing using the long-lifetime azadioxatriangulenium fluorophore

    NASA Astrophysics Data System (ADS)

    Cummins, Brian; Simpson, Jonathan; Gryczynski, Zygmunt; Sørensen, Thomas Just; Laursen, Bo W.; Graham, Duncan; Birch, David; Coté, Gerard

    2014-02-01

    Fluorescent glucose sensing technologies have been identified as possible alternatives to current continuous glucose monitoring approaches. We have recently introduced a new, smart fluorescent ligand to overcome the traditional problems of ConA-based glucose sensors. For this assay to be translated into a continuous glucose monitoring device where both components are free in solution, the molecular weight of the smart fluorescent ligand must be increased. We have identified ovalbumin as a naturally-occurring glycoprotein that could serve as the core-component of a 2nd generation smart fluorescent ligand. It has a single asparagine residue that is capable of displaying an N-linked glycan and a similar isoelectric point to ConA. Thus, binding between ConA and ovalbumin can potentially be monovalent and sugar specific. This work is the preliminary implementation of fluorescently-labeled ovalbumin in the ConA-based assay. We conjugate the red-emitting, long-lifetime azadioxatriangulenium (ADOTA+) dye to ovalbumin, as ADOTA have many advantageous properties to track the equilibrium binding of the assay. The ADOTA-labeled ovalbumin is paired with Alexa Fluor 647-labeled ConA to create a Förster Resonance Energy Transfer (FRET) assay that is glucose dependent. The assay responds across the physiologically relevant glucose range (0-500 mg/dL) with increasing intensity from the ADOTA-ovalbumin, showing that the strategy may allow for the translation of the smart fluorescent ligand concept into a continuous glucose monitoring device.

  6. Toward developing a standardized Arabic continuous text reading chart.

    PubMed

    Alabdulkader, Balsam; Leat, Susan Jennifer

    Near visual acuity is an essential measurement during an oculo-visual assessment. Short duration continuous text reading charts measure reading acuity and other aspects of reading performance. There is no standardized version of such chart in Arabic. The aim of this study is to create sentences of equal readability to use in the development of a standardized Arabic continuous text reading chart. Initially, 109 Arabic pairs of sentences were created for use in constructing a chart with similar layout to the Colenbrander chart. They were created to have the same grade level of difficulty and physical length. Fifty-three adults and sixteen children were recruited to validate the sentences. Reading speed in correct words per minute (CWPM) and standard length words per minute (SLWPM) was measured and errors were counted. Criteria based on reading speed and errors made in each sentence pair were used to exclude sentence pairs with more outlying characteristics, and to select the final group of sentence pairs. Forty-five sentence pairs were selected according to the elimination criteria. For adults, the average reading speed for the final sentences was 166 CWPM and 187 SLWPM and the average number of errors per sentence pair was 0.21. Childrens' average reading speed for the final group of sentences was 61 CWPM and 72 SLWPM. Their average error rate was 1.71. The reliability analysis showed that the final 45 sentence pairs are highly comparable. They will be used in constructing an Arabic short duration continuous text reading chart. Copyright © 2016 Spanish General Council of Optometry. Published by Elsevier España, S.L.U. All rights reserved.

  7. Optical detection of glucose and glycated hemoglobin using etched fiber Bragg gratings coated with functionalized reduced graphene oxide.

    PubMed

    Sridevi, S; Vasu, K S; Sampath, S; Asokan, S; Sood, A K

    2016-07-01

    An enhanced optical detection of D-glucose and glycated hemoglobin (HbA1c ) has been established in this study using etched fiber Bragg gratings (eFBG) coated with aminophenylboronic acid (APBA)-functionalized reduced graphene oxide (RGO). The read out, namely the shift in Bragg wavelength (ΔλB ) is highly sensitive to changes that occur due to the adsorption of glucose (or HbA1c ) molecules on the eFBG sensor coated with APBA-RGO complex through a five-membered cyclic ester bond formation between glucose and APBA molecules. A limit of detection of 1 nM is achieved with a linear range of detection from 1 nM to 10 mM in the case of D-glucose detection experiments. For HbA1c , a linear range of detection varying from 86 nM to 0.23 mM is achieved. The observation of only 4 pm (picometer) change in ΔλB even for the 10 mM lactose solution confirms the specificity of the APBA-RGO complex coated eFBG sensors to glucose molecules. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Continuities in Reading Acquisition, Reading Skill, and Reading Disability.

    ERIC Educational Resources Information Center

    Perfetti, Charles A.

    1986-01-01

    Learning to read depends on eventual mastery of coding procedures, and even skilled reading depends on coding processes low in cost to processing resources. Reading disability may be understood as a point on an ability continuum or a wide range of coding ability. Instructional goals of word reading skill, including rapid and fluent word…

  9. A miniaturized glucose biosensor for in vitro and in vivo studies.

    PubMed

    Yang, Yang-Li; Huang, Jian-Feng; Tseng, Ta-Feng; Lin, Chia-Ching; Lou, Shyh-Liang

    2008-01-01

    A miniaturized wireless glucose biosensor has been developed to perform in vitro and in vivo studies. It consists of an external control subsystem and an implant sensing subsystem. The implant subsystem consists of a micro-processor, which coordinates circuitries of radio frequency, power regulator, command demodulator, glucose sensing trigger and signal read-out. Except for a set of sensing electrodes, the micro-processor, the circuitries and a receiving coil were hermetically sealed with polydimethylsiloxane. The electrode set is a substrate of silicon oxide coated with platinum, which includes a working electrode and a reference electrode. Glucose oxidase was immobilized on the surface of the working electrode. The implant subsystem bi-directionally communicates with the external subsystem via radio frequency technologies. The external subsystem wirelessly supplies electricity to power the implant, issues commands to the implant to perform tasks, receives the glucose responses detected by the electrode, and relays the response signals to a computer through a RS-232 connection. Studies of in vitro and in vivo were performed to evaluate the biosensor. The linear response of the biosensor is up to 15 mM of glucose in vitro. The results of in vivo study show significant glucose variations measured from the interstitial tissue fluid of a diabetes rat in fasting and non-fasting periods.

  10. Disruption in the diabetic device care market

    PubMed Central

    Mohammed, Raihan

    2018-01-01

    As diabetes mellitus (DM) has approached pandemic proportions, the pressure for effective glycemic management is mounting. The starting point for managing and living well with DM involves early diagnosis and monitoring blood glucose levels. Therefore, self-monitoring of blood glucose (SMBG) can help patients maintain their blood glucose levels within the appropriate range. The general principle behind the current SMBG method involves a finger prick test to obtain a blood drop, which is applied onto a reagent strip and read by an automated device. Novel techniques are currently under evaluation to create the next generation of painless and accurate glucose monitoring for DM. We began by outlining how the emerging technology of the noninvasive glucose monitoring devices (NIGMDs) provides both economic and clinical benefits for health systems and patients. We further explored the engineering and techniques behind these upcoming devices. Finally, we evaluated how the NIGMDs disrupt the diabetic device care market and drive health care consumerism. We postulated that the NIGMDs play a pivotal role in the implementation of next generation of diabetes prevention strategies. PMID:29440935

  11. Use of continuous glucose monitoring in patients with type 1 diabetes.

    PubMed

    Ellis, Samuel L; Naik, Ramachandra G; Gemperline, Kate; Garg, Satish K

    2008-08-01

    The prevalence of type 1 diabetes continues to increase worldwide at a rate higher than previously projected, while the number of patients achieving American Diabetes Association (ADA) glycated hemoglobin (A1c) goals remains suboptimal. There are numerous barriers to patients achieving A1c targets including increased frequency of severe hypoglycemia associated with lowering plasma glucose as measured by lower A1c values. Continuous glucose monitoring (CGM) was first approved for retrospective analysis and now has advanced to the next step in diabetes management with the approval of real-time glucose sensing. Real-time CGM, in short term studies, has been shown to decrease A1c values, improve glucose variability (GV), and minimize the time and number of hypoglycemic events in patients with type 1 diabetes. These products are approved for adjunctive use to self-monitoring of blood glucose (SMBG), but future long-term studies are needed to document their safety, efficacy, ability to replace SMBG as a tool of monitoring, and ultimately utility into closed-loop insulin delivery systems. New algorithms will need to be developed that account for rapid changes in the glucose values, so that accuracy of the sensor data can be maintained. In addition, for better clinical care and usage, algorithms also need to be developed for both patients and the providers to guide them for their ongoing diabetes care.

  12. Hormonal control of hepatic glycogen metabolism in food-deprived, continuously swimming coho salmon Oncorhynchus kisutch

    USGS Publications Warehouse

    Vijayan, M.M.; Maule, A.G.; Schreck, C.B.; Moon, T.W.

    1993-01-01

    The plasma cortisol concentration and liver cytosolic glucocorticoid receptor activities of continuously swimming, food-deprived coho salmon (Oncorhynchus kisutch) did not differ from those of resting, fed fish. Plasma glucose concentration was significantly higher in the exercising, starved fish, but there were no significant differences in either hepatic glycogen concentration or hepatic activities of glycogen phosphorylase, glycogen synthase, pyruvate kinase, or lactate dehydrogenase between the two groups. Total glucose production by hepatocytes did not differ significantly between the two groups; glycogen breakdown accounted for all the glucose produced in the resting, fed fish whereas it explained only 59% of the glucose production in the exercised animals. Epinephrine and glucagon stimulation of glucose production by hepatocytes was decreased in the exercised fish without significantly affecting hepatocyte glycogen breakdown in either group. Insulin prevented glycogen breakdown and enhanced glycogen deposition in exercised fish. The results indicate that food-deprived, continuously swimming coho salmon conserve glycogen by decreasing the responsiveness of hepatocytes to catabolic hormones and by increasing the responsiveness to insulin (anabolic hormone).

  13. Factory-Calibrated Continuous Glucose Sensors: The Science Behind the Technology.

    PubMed

    Hoss, Udo; Budiman, Erwin Satrya

    2017-05-01

    The use of commercially available continuous glucose monitors for diabetes management requires sensor calibrations, which until recently are exclusively performed by the patient. A new development is the implementation of factory calibration for subcutaneous glucose sensors, which eliminates the need for user calibrations and the associated blood glucose tests. Factory calibration means that the calibration process is part of the sensor manufacturing process and performed under controlled laboratory conditions. The ability to move from a user calibration to factory calibration is based on several technical requirements related to sensor stability and the robustness of the sensor manufacturing process. The main advantages of factory calibration over the conventional user calibration are: (a) more convenience for the user, since no more fingersticks are required for calibration and (b) elimination of use errors related to the execution of the calibration process, which can lead to sensor inaccuracies. The FreeStyle Libre ™ and FreeStyle Libre Pro ™ flash continuous glucose monitoring systems are the first commercially available sensor systems using factory-calibrated sensors. For these sensor systems, no user calibrations are required throughout the sensor wear duration.

  14. Factory-Calibrated Continuous Glucose Sensors: The Science Behind the Technology

    PubMed Central

    Budiman, Erwin Satrya

    2017-01-01

    Abstract The use of commercially available continuous glucose monitors for diabetes management requires sensor calibrations, which until recently are exclusively performed by the patient. A new development is the implementation of factory calibration for subcutaneous glucose sensors, which eliminates the need for user calibrations and the associated blood glucose tests. Factory calibration means that the calibration process is part of the sensor manufacturing process and performed under controlled laboratory conditions. The ability to move from a user calibration to factory calibration is based on several technical requirements related to sensor stability and the robustness of the sensor manufacturing process. The main advantages of factory calibration over the conventional user calibration are: (a) more convenience for the user, since no more fingersticks are required for calibration and (b) elimination of use errors related to the execution of the calibration process, which can lead to sensor inaccuracies. The FreeStyle Libre™ and FreeStyle Libre Pro™ flash continuous glucose monitoring systems are the first commercially available sensor systems using factory-calibrated sensors. For these sensor systems, no user calibrations are required throughout the sensor wear duration. PMID:28541139

  15. Fault Detection and Safety in Closed-Loop Artificial Pancreas Systems

    PubMed Central

    2014-01-01

    Continuous subcutaneous insulin infusion pumps and continuous glucose monitors enable individuals with type 1 diabetes to achieve tighter blood glucose control and are critical components in a closed-loop artificial pancreas. Insulin infusion sets can fail and continuous glucose monitor sensor signals can suffer from a variety of anomalies, including signal dropout and pressure-induced sensor attenuations. In addition to hardware-based failures, software and human-induced errors can cause safety-related problems. Techniques for fault detection, safety analyses, and remote monitoring techniques that have been applied in other industries and applications, such as chemical process plants and commercial aircraft, are discussed and placed in the context of a closed-loop artificial pancreas. PMID:25049365

  16. Continuous glucose monitoring system in the screening of early glucose derangements in children and adolescents with cystic fibrosis.

    PubMed

    Franzese, Adriana; Valerio, Giuliana; Buono, Pietro; Spagnuolo, Maria Immacolata; Sepe, Angela; Mozzillo, Enza; De Simone, Ilaria; Raia, Valeria

    2008-02-01

    In cystic fibrosis (CF), diabetes mellitus (DM) is associated with progression of pulmonary disease and nutritional impairment. To compare oral glucose tolerance test (OGTT) and continuous glucose monitoring system (CGMS) in patients with CF with early glucose derangements. Thirty-two patients with CF (5-20 years) with intermediate glucose values > 7.7 mmol/l during OGTT received a CGMS registration. Patients were classified into those with normal glucose tolerance (NGT), impaired glucose tolerance (IGT) and DM, according to glucose values at 120 min of OGTT and during CGMS. Furthermore BMI z-scores, forced expiratory volume in 1 second (FEV1%), number of respiratory infections/year, enzyme supplementation, and HbA1c were evaluated. OGTT and CGMS derangements were in agreement in 43.7% of the patients. BMI z-scores, FEV1%, number of respiratory infections/ year, enzyme supplementation, and HbA1c did not differ among the three groups. HbA1c, correlated positively with 120 min OGTT (r = 0.34; p = 0.059), CGMS area (r = 0.35; p = 0.048) and the number of respiratory infections, and negatively with FEV1%. Intermediate glucose values during OGTT should be considered as a screening test in patients with CF. CGMS can be useful in studying the early occurrence of glucose derangements in selected patients.

  17. Professional continuous glucose monitoring for the identification of type 1 diabetes mellitus among subjects with insulin therapy.

    PubMed

    Chen, Yin-Chun; Huang, Yu-Yao; Li, Hung-Yuan; Liu, Shih-Wei; Hsieh, Sheng-Hwu; Lin, Chia-Hung

    2015-01-01

    The identification of type 1 diabetes in diabetic subjects receiving insulin therapy is sometimes difficult. The purpose of this study is to evaluate whether results of professional continuous glucose monitoring can improve the identification of type 1 diabetes.From 2007 to 2012, 119 adults receiving at least twice-daily insulin therapy and professional continuous glucose monitoring were recruited. Type 1 diabetes was diagnosed by endocrinologists according to American Diabetes Association standards, including a very low C-peptide level (<0.35  pg/mL) or the presence of diabetic ketoacidosis. Continuous glucose monitoring was applied for 3 days.Among 119 subjects, 86 were diagnosed with type 1 diabetes. Subjects with type 1 diabetes were younger (33.8 vs 52.3 years old, P < 0.001), had lower body mass index (BMI, 21.95 vs 24.42, P = 0.003), lower serum creatinine (61.77  vs 84.65 μmol/L, P = 0.001), and higher estimated glomerular filtration rate (108.71 vs 76.48 mg/mL/min/1.73m2, P < 0.001) than subjects with type 2 diabetes. Predictive scores for identification of type 1 diabetes were constructed, including age, BMI, average mean amplitude of glucose excursion in days 2 and 3, and the area under the curve of nocturnal hyperglycemic and hypoglycemic states. The area under the receiver operating characteristic curve was 0.90. With the cutoff of 0.58, the sensitivity was 86.7% and the specificity was 80.8%. The good performance was validated by the leave-one-out method (sensitivity 83.3%, specificity 73.1%).Professional continuous glucose monitoring is a useful tool that improves identification of type 1 diabetes among diabetic patients receiving insulin therapy.

  18. A diabetes-specific enteral formula improves glycemic variability in patients with type 2 diabetes.

    PubMed

    Alish, Carolyn J; Garvey, W Timothy; Maki, Kevin C; Sacks, Gordon S; Hustead, Deborah S; Hegazi, Refaat A; Mustad, Vikkie A

    2010-06-01

    Well-controlled studies have demonstrated that inpatient hyperglycemia is an indicator of poor clinical outcomes, but the use of diabetes-specific enteral formulas in hospitalized patients remains a topic of great debate. In two different protocols, postprandial glycemia and insulinemia were measured in 22 subjects with diabetes fed a diabetes-specific or standard formula (protocol 1). Continuous glucose monitoring was used to assess glucose levels in 12 enterally fed patients with diabetes receiving the standard formula followed by the diabetes-specific formula continuously for 5 days each (protocol 2). End points included postprandial glycemia and insulinemia, glycemic variability (mean amplitude of glycemic excursions [MAGE]), mean glucose, and insulin use. In the postprandial response protocol, the diabetes-specific formula resulted in lower positive areas under the postprandial curve (P < 0.001) and peak glucose (P < 0.001) and insulin (P = 0.017) levels. In the protocol using continuous glucose monitoring, glycemic variability (as measured by MAGE) was lower with continuous administration of the diabetes-specific than the standard formula (64.6 +/- 6.8 mg/dL vs. 110.6 +/-15.3 mg/dL, P = 0.003). Also, administration of the diabetes-specific formula resulted in lower mean glucose concentrations during feeding (171.1 +/- 16.1 vs. 202.1 +/- 17.4 mg/dL, P = 0.024) and insulin requirements (7.8 +/- 2.3 vs. 10.9 +/- 3.3 units/day, P = 0.039) than the standard formula. Relative to the standard formula, the diabetes-specific formula reduced postprandial glycemia, mean glucose, glycemic variability, and short-acting insulin requirements. These results suggest potential clinical usefulness of a diabetes-specific enteral formula for minimizing glycemic excursions in hospitalized patients.

  19. The performance of flash glucose monitoring in critically ill patients with diabetes.

    PubMed

    Ancona, Paolo; Eastwood, Glenn M; Lucchetta, Luca; Ekinci, Elif I; Bellomo, Rinaldo; Mårtensson, Johan

    2017-06-01

    Frequent glucose monitoring may improve glycaemic control in critically ill patients with diabetes. We aimed to assess the accuracy of a novel subcutaneous flash glucose monitor (FreeStyle Libre [Abbott Diabetes Care]) in these patients. We applied the FreeStyle Libre sensor to the upper arm of eight patients with diabetes in the intensive care unit and obtained hourly flash glucose measurements. Duplicate recordings were obtained to assess test-retest reliability. The reference glucose level was measured in arterial or capillary blood. We determined numerical accuracy using Bland- Altman methods, the mean absolute relative difference (MARD) and whether the International Organization for Standardization (ISO) and Clinical and Laboratory Standards Institute Point of Care Testing (CLSI POCT) criteria were met. Clarke error grid (CEG) and surveillance error grid (SEG) analyses were used to determine clinical accuracy. We compared 484 duplicate flash glucose measurements and observed a Pearson correlation coefficient of 0.97 and a coefficient of repeatability of 1.6 mmol/L. We studied 185 flash readings paired with arterial glucose levels, and 89 paired with capillary glucose levels. Using the arterial glucose level as the reference, we found a mean bias of 1.4 mmol/L (limits of agreement, -1.7 to 4.5 mmol/L). The MARD was 14% (95% CI, 12%-16%) and the proportion of measurements meeting ISO and CLSI POCT criteria was 64.3% and 56.8%, respectively. The proportions of values within a low-risk zone on CEG and SEG analyses were 97.8% and 99.5%, respectively. Using capillary glucose levels as the reference, we found that numerical and clinical accuracy were lower. The subcutaneous FreeStyle Libre blood glucose measurement system showed high test-retest reliability and acceptable accuracy when compared with arterial blood glucose measurement in critically ill patients with diabetes.

  20. Monte Carlo simulation of non-invasive glucose measurement based on FMCW LIDAR

    NASA Astrophysics Data System (ADS)

    Xiong, Bing; Wei, Wenxiong; Liu, Nan; He, Jian-Jun

    2010-11-01

    Continuous non-invasive glucose monitoring is a powerful tool for the treatment and management of diabetes. A glucose measurement method, with the potential advantage of miniaturizability with no moving parts, based on the frequency modulated continuous wave (FMCW) LIDAR technology is proposed and investigated. The system mainly consists of an integrated near-infrared tunable semiconductor laser and a detector, using heterodyne technology to convert the signal from time-domain to frequency-domain. To investigate the feasibility of the method, Monte Carlo simulations have been performed on tissue phantoms with optical parameters similar to those of human interstitial fluid. The simulation showed that the sensitivity of the FMCW LIDAR system to glucose concentration can reach 0.2mM. Our analysis suggests that the FMCW LIDAR technique has good potential for noninvasive blood glucose monitoring.

  1. Evaluation of Blood Glucose Meter Efficacy in an Antenatal Diabetes Clinic.

    PubMed

    McGrath, Rachel T; Donnelly, Vanessa C; Glastras, Sarah J; Preda, Veronica A; Sheriff, Nisa; Ward, Peter; Hocking, Samantha L; Fulcher, Gregory R

    2016-02-01

    The optimal treatment of diabetes in pregnancy requires accurate measurement of blood glucose levels, in order to minimize adverse outcomes for both mother and neonate. Self-monitoring of blood glucose is routinely used to measure glycemic control and to assess whether treatment targets are being met; however, the accuracy of blood glucose meters in pregnancy is unclear. Pregnant women with gestational, type 1, or type 2 diabetes mellitus were eligible to participate. Nonfasting capillary blood glucose levels were measured in duplicate using the BGStar(®) (Sanofi, Sydney, Australia) and FreeStyle Lite(®) (Abbott, Sydney) blood glucose meters. Venous blood samples were collected and analyzed for plasma glucose, hematocrit, and glycated hemoglobin. Capillary blood glucose was compared with plasma glucose and further assessed according to International Organization for Standardization (ISO) 15197:2013 standards. One hundred ten women were recruited, providing 96 samples suitable for analysis. The mean ± SD laboratory plasma glucose level was 4.6 ± 1.4 mmol/L; the BGStar and FreeStyle Lite capillary blood glucose values were 5.3 ± 1.4 mmol/L and 5.0 ± 1.3 mmol/L, respectively. Both meters showed a positive bias (0.42 mmol/L for the FreeStyle Lite and 0.65 mmol/L for the BGStar). Furthermore, neither meter fulfilled the ISO 15197:2013 standards, and there was a nonsignificant improvement in meter performance at blood glucose levels of ≤4.2 mmol/L. Hematocrit did not affect the results of either blood glucose meter. Clarke Error Grid analysis demonstrated that approximately 70% of the results of both meters would lead to appropriate clinical action. The BGStar and FreeStyle Lite blood glucose meters did not meet ISO 15197:2013 recommendations for blood glucose monitoring systems when assessed in a population of women with diabetes in pregnancy. Clinicians should consider this difference in blood glucose readings when making diabetes-related treatment decisions.

  2. Evaluating the automated blood glucose pattern detection and case-retrieval modules of the 4 Diabetes Support System.

    PubMed

    Schwartz, Frank L; Vernier, Stanley J; Shubrook, Jay H; Marling, Cynthia R

    2010-11-01

    We have developed a prototypical case-based reasoning system to enhance management of patients with type 1 diabetes mellitus (T1DM). The system is capable of automatically analyzing large volumes of life events, self-monitoring of blood glucose readings, continuous glucose monitoring system results, and insulin pump data to detect clinical problems. In a preliminary study, manual entry of large volumes of life-event and other data was too burdensome for patients. In this study, life-event and pump data collection were automated, and then the system was reevaluated. Twenty-three adult T1DM patients on insulin pumps completed the five-week study. A usual daily schedule was entered into the database, and patients were only required to upload their insulin pump data to Medtronic's CareLink® Web site weekly. Situation assessment routines were run weekly for each participant to detect possible problems, and once the trial was completed, the case-retrieval module was tested. Using the situation assessment routines previously developed, the system found 295 possible problems. The enhanced system detected only 2.6 problems per patient per week compared to 4.9 problems per patient per week in the preliminary study (p=.017). Problems detected by the system were correctly identified in 97.9% of the cases, and 96.1% of these were clinically useful. With less life-event data, the system is unable to detect certain clinical problems and detects fewer problems overall. Additional work is needed to provide device/software interfaces that allow patients to provide this data quickly and conveniently. © 2010 Diabetes Technology Society.

  3. Prevention of Hypoglycemia With Predictive Low Glucose Insulin Suspension in Children With Type 1 Diabetes: A Randomized Controlled Trial.

    PubMed

    Battelino, Tadej; Nimri, Revital; Dovc, Klemen; Phillip, Moshe; Bratina, Natasa

    2017-06-01

    To investigate whether predictive low glucose management (PLGM) of the MiniMed 640G system significantly reduces the rate of hypoglycemia compared with the sensor-augmented insulin pump in children with type 1 diabetes. This randomized, two-arm, parallel, controlled, two-center open-label study included 100 children and adolescents with type 1 diabetes and glycated hemoglobin A 1c ≤10% (≤86 mmol/mol) and using continuous subcutaneous insulin infusion. Patients were randomly assigned to either an intervention group with PLGM features enabled (PLGM ON) or a control group (PLGM OFF), in a 1:1 ratio, all using the same type of sensor-augmented insulin pump. The primary end point was the number of hypoglycemic events below 65 mg/dL (3.6 mmol/L), based on sensor glucose readings, during a 14-day study treatment. The analysis was performed by intention to treat for all randomized patients. The number of hypoglycemic events below 65 mg/dL (3.6 mmol/L) was significantly smaller in the PLGM ON compared with the PLGM OFF group (mean ± SD 4.4 ± 4.5 and 7.4 ± 6.3, respectively; P = 0.008). This was also true when calculated separately for night ( P = 0.025) and day ( P = 0.022). No severe hypoglycemic events occurred; however, there was a significant increase in time spent above 140 mg/dL (7.8 mmol/L) in the PLGM ON group ( P = 0.0165). The PLGM insulin suspension was associated with a significantly reduced number of hypoglycemic events. Although this was achieved at the expense of increased time in moderate hyperglycemia, there were no serious adverse effects in young patients with type 1 diabetes. © 2017 by the American Diabetes Association.

  4. Role of self-monitoring of blood glucose in glycemic control.

    PubMed

    Karter, Andrew J

    2006-01-01

    To examine the role of self-monitoring of blood glucose (SMBG) in the management of diabetes mellitus. Current trends and published evidence are reviewed. Despite the widespread evidence that lowering glycemic levels reduces the risks of complications in patients with diabetes, little improvement in glycemic control has been noted among patients in the United States and Europe in recent years. Although SMBG has been widely used, considerable controversy surrounds its role in achieving glycemic control. The high cost of test strips has made considerations regarding appropriate recommendations for SMBG a priority, especially in light of the current climate of health-care cost-containment. Existing clinical recommendations lack specific guidance to patients and clinicians regarding SMBG practice intensity and frequency, particularly for those patients not treated with insulin. Previous studies of the association between SMBG and glycemic control often found weak and conflicting results. A reexamination of the role of SMBG is needed, with special attention to the unique needs of patients using different diabetes treatments, within special clinical subpopulations, and during initiation of SMBG versus its ongoing use. Further understanding of the intensity and frequency of SMBG needed to reflect the variability in glycemic patterns would facilitate more specific guideline development. Educational programs that focus on teaching patients the recommended SMBG practice, specific glycemic targets, and appropriate responses to various blood glucose readings would be beneficial. Continuing medical education programs for health-care providers should suggest ways to analyze patient SMBG records to tailor medication regimens. For transfer or communication of SMBG reports to the clinical staff, a standardized format that extracts key data elements and allows quick review by health-care providers would be useful. Because the practice of SMBG is expensive, the cost-effectiveness of SMBG needs to be carefully assessed.

  5. Explaining engagement in self-monitoring among participants of the DESMOND Self-monitoring Trial: a qualitative interview study

    PubMed Central

    Eborall, Helen C; Dallosso, Helen M; McNicol, Sarah; Speight, Jane; Khunti, Kamlesh; Davies, Melanie J; Heller, Simon R

    2015-01-01

    Abstract Background. The Diabetes Education and Self-Management for Ongoing and Newly Diagnosed (DESMOND) Self-monitoring Trial reported that people with newly diagnosed type 2 diabetes attending community-based structured education and randomized to self-monitoring of blood glucose (SMBG) or urine monitoring had comparable improvements in biomedical outcomes, but differences in satisfaction with, and continued use of monitoring method, well-being and perceived threat from diabetes. Objectives. To explore experiences of SMBG and urine monitoring following structured education. We specifically addressed the perceived usefulness of each monitoring method and the associated well-being. Methods. Qualitative semi-structured interviews with 18 adults with newly diagnosed type 2 diabetes participating in the DESMOND Self-monitoring Trial (SMBG, N = 10; urine monitoring, N = 8) ~12 months into the trial. Analysis was informed by the constant comparative approach. Results. Interviewees reported SMBG as accurate, convenient and useful. Declining use was explained by having established a pattern of managing blood glucose with less frequent monitoring or lack of feedback or encouragement from health care professionals. Many initially positive views of urine monitoring progressively changed due to perceived inaccuracy, leading some to switch to SMBG. Perceiving diabetes as less serious was attributable to lack of symptoms, treatment with diet alone and—in the urine-monitoring group—consistently negative readings. Urine monitoring also provided less visible evidence of diabetes and of the effect of behaviour on glucose. Conclusions. The findings highlight the importance for professionals of considering patients’ preferences when using self-monitoring technologies, including how these change over time, when supporting the self-care behaviours of people with type 2 diabetes. PMID:26160892

  6. In-Vitro Performance of the Enlite Sensor in Various Glucose Concentrations during Hypobaric and Hyperbaric Conditions

    PubMed Central

    Adolfsson, Peter; Örnhagen, Hans; Eriksson, Bengt M.; Gautham, Raghavendhar; Jendle, Johan

    2012-01-01

    Background There is a need for reliable methods of glucose measurement in different environmental conditions. The objective of this in vitro study was to evaluate the performance of the Enlite® Sensor when connected to either the iPro™ Continuous Glucose Monitor recording device or the Guardian® REAL-Time transmitting device, in hypobaric and hyperbaric conditions. Methods Sixteen sensors connected to eight iPro devices and eight Guardian REAL-Time devices were immersed in three beakers containing separate glucose concentrations: 52, 88, and 207 mg/dl (2.9, 4.9, and 11.3 mmol/liter). Two different pressure tests were conducted: a hypobaric test, corresponding to maximum 18000 ft/5500 m height, and a hyperbaric test, corresponding to maximum 100 ft/30 m depth. The linearity of the sensor signals in the different conditions was evaluated. Results The sensors worked continuously, and the sensor signals were collected without interruption at all pressures tested. When comparing the input signals for glucose (ISIGs) and the different glucose concentrations during altered pressure, linearity (R2) of 0.98 was found. During the hypobaric test, significant differences (p < .005) were seen when comparing the ISIGs during varying pressure at two of the glucose concentrations (52 and 207 mg/dl), whereas no difference was seen at the 88 mg/dl glucose concentration. During the hyperbaric test, no differences were found. Conclusions The Enlite Sensors connected to either the iPro or the Guardian REAL-Time device provided values continuously. In hyperbaric conditions, no significant differences were seen during changes in ambient pressure; however, during hypobaric conditions, the ISIG was significantly different in the low and high glucose concentrations. PMID:23294783

  7. In-vitro performance of the Enlite Sensor in various glucose concentrations during hypobaric and hyperbaric conditions.

    PubMed

    Adolfsson, Peter; Ornhagen, Hans; Eriksson, Bengt M; Gautham, Raghavendhar; Jendle, Johan

    2012-11-01

    There is a need for reliable methods of glucose measurement in different environmental conditions. The objective of this in vitro study was to evaluate the performance of the Enlite® Sensor when connected to either the iPro™ Continuous Glucose Monitor recording device or the Guardian® REAL-Time transmitting device, in hypobaric and hyperbaric conditions. Sixteen sensors connected to eight iPro devices and eight Guardian REAL-Time devices were immersed in three beakers containing separate glucose concentrations: 52, 88, and 207 mg/dl (2.9, 4.9, and 11.3 mmol/liter). Two different pressure tests were conducted: a hypobaric test, corresponding to maximum 18000 ft/5500 m height, and a hyperbaric test, corresponding to maximum 100 ft/30 m depth. The linearity of the sensor signals in the different conditions was evaluated. The sensors worked continuously, and the sensor signals were collected without interruption at all pressures tested. When comparing the input signals for glucose (ISIGs) and the different glucose concentrations during altered pressure, linearity (R(2)) of 0.98 was found. During the hypobaric test, significant differences (p < .005) were seen when comparing the ISIGs during varying pressure at two of the glucose concentrations (52 and 207 mg/dl), whereas no difference was seen at the 88 mg/dl glucose concentration. During the hyperbaric test, no differences were found. The Enlite Sensors connected to either the iPro or the Guardian REAL-Time device provided values continuously. In hyperbaric conditions, no significant differences were seen during changes in ambient pressure; however, during hypobaric conditions, the ISIG was significantly different in the low and high glucose concentrations. © 2012 Diabetes Technology Society.

  8. Use of the continuous glucose monitoring system in Goettingen Minipigs, with a special focus on the evaluation of insulin-dependent diabetes.

    PubMed

    Strauss, A; Tiurbe, C; Chodnevskaja, I; Thiede, A; Timm, S; Ulrichs, K; Moskalenko, V

    2008-03-01

    Adult pig islet isolation has greatly improved in the past few years. Islet grafts may now be tested in large animals. Continuous Glucose Monitoring System (CGMS) was applied to diabetic Goettingen Minipigs (GMP) to improve the management of hyperglycemia and hypoglycemia and their welfare before transplantation. GMP (25-35 kg) received a minipig diet once daily. Diabetes was induced by streptozotocin (STZ; 150 mg/kg intravenous [IV]; n = 5) or by surgical pancreatectomy (PGMP; n = 3). Interstitial glucose concentration (IGC) was monitored continuously with an implanted sensor; CGMS was calibrated using conventional blood glucose tests 3-4 times per day; CGMS data were fed into the monitor memory and analyzed using CGMS software. Glucose sensors were handled accurately. Diabetes occurred 2-3 days after STZ or immediately after pancreatectomy with basal C-peptide secretion of <0.4 ng/mL (measured using intravenous glucose tolerance test) and prompt loss of body weight. Insulin substitution was necessary to keep the GMP in good condition for up to 5-6 months, with stable body weight and normal behavior. Some GMP became hypoglycemic, which was only documented by CGMS, but not by conventional glucose assays. Tight glucose control and substitution of exocrine enzymes (Creon 25,000 E/d) reduced morbidity of the PGMP, which was then comparable with that of STZ-GMP. The CGMS, developed for humans, is equally suitable for the 2 GMP diabetes models. Close-meshed glucose monitoring and insulin treatment improved the general condition of the diabetic GMP, ie, the islet graft recipients, and will thus greatly add to posttransplantation success.

  9. Detection of hypoglycemia with continuous interstitial and traditional blood glucose monitoring using the FreeStyle Navigator Continuous Glucose Monitoring System.

    PubMed

    McGarraugh, Geoffrey; Bergenstal, Richard

    2009-03-01

    The objective of the analysis was to compare detection of hypoglycemic episodes (glucose <70 mg/dL lasting >15 min) with the FreeStyle Navigator Continuous Glucose Monitoring System (FSN-CGM) (Abbott Diabetes Care, Alameda, CA) alarms to detection with traditional finger stick testing at an average frequency of eight tests per day. The performance of FSN-CGM alarms was evaluated in a clinic setting using 58 subjects with type 1 diabetes mellitus (T1DM) monitoring interstitial glucose concentration over a 5-day period compared to reference YSI measurements (instrument manufactured by YSI, Yellow Springs, OH) at 15-min intervals. Finger stick glucose testing was evaluated in the home environment with 91 subjects with TIDM monitoring with the blood glucose meter integrated into the FreeStyle Navigator (FSN-BG) over a 20-day period. The reference was FSN-CGM with results masked from the subjects. Blood glucose values <=85 mg/dL were considered the optimal treatment level to avoid or reverse hypoglycemia. With a threshold alarm setting of 85 mg/dL, 90.6% of hypoglycemic episodes were detected within +/- 30 min by FSN-CGM in the clinic study. When the alarm was activated, YSI glucose was <= 85 mg/dL 77.2% of the time. In the home environment, the average FSN-BG testing frequency was 7.9 tests per day. Hypoglycemia was verified within +/- 30 min by FSN-BG measurements <= 85 mg/dL at a rate of 27.5%. Even with a high rate of FSN-BG testing, hypoglycemia detected by FSN-CGM was verified by patients with T1DM very infrequently. A high rate of hypoglycemia detection with a moderate rate of unnecessary alarms can be attained using FSN-CGM.

  10. Simulation and qualitative analysis of glucose variability, mean glucose, and hypoglycemia after subcutaneous insulin therapy for stress hyperglycemia.

    PubMed

    Strilka, Richard J; Stull, Mamie C; Clemens, Michael S; McCaver, Stewart C; Armen, Scott B

    2016-01-27

    The critically ill can have persistent dysglycemia during the "subacute" recovery phase of their illness because of altered gene expression; it is also not uncommon for these patients to receive continuous enteral nutrition during this time. The optimal short-acting subcutaneous insulin therapy that should be used in this clinical scenario, however, is unknown. Our aim was to conduct a qualitative numerical study of the glucose-insulin dynamics within this patient population to answer the above question. This analysis may help clinicians design a relevant clinical trial. Eight virtual patients with stress hyperglycemia were simulated by means of a mathematical model. Each virtual patient had a different combination of insulin resistance and insulin deficiency that defined their unique stress hyperglycemia state; the rate of gluconeogenesis was also doubled. The patients received 25 injections of subcutaneous regular or Lispro insulin (0-6 U) with 3 rates of continuous nutrition. The main outcome measurements were the change in mean glucose concentration, the change in glucose variability, and hypoglycemic episodes. These end points were interpreted by how the ultradian oscillations of glucose concentration were affected by each insulin preparation. Subcutaneous regular insulin lowered both mean glucose concentrations and glucose variability in a linear fashion. No hypoglycemic episodes were noted. Although subcutaneous Lispro insulin lowered mean glucose concentrations, glucose variability increased in a nonlinear fashion. In patients with high insulin resistance and nutrition at goal, "rebound hyperglycemia" was noted after the insulin analog was rapidly metabolized. When the nutritional source was removed, hypoglycemia tended to occur at higher Lispro insulin doses. Finally, patients with severe insulin resistance seemed the most sensitive to insulin concentration changes. Subcutaneous regular insulin consistently lowered mean glucose concentrations and glucose variability; its linear dose-response curve rendered the preparation better suited for a sliding-scale protocol. The longer duration of action of subcutaneous regular insulin resulted in better glycemic-control metrics for patients who were continuously postprandial. Clinical trials are needed to examine whether these numerical results represent the glucose-insulin dynamics that occur in intensive care units; if present, their clinical effects should be evaluated.

  11. Nocturnal Hypoglycemia Identified by a Continuous Glucose Monitoring System in Patients with Primary Adrenal Insufficiency (Addison's Disease)

    PubMed Central

    Hackemann, Annika; Reusch, Juergen; Badenhoop, Klaus

    2012-01-01

    Abstract Background Hypoglycemia can be a symptom in patients with Addison's disease. The common regimen of replacement therapy with oral glucocorticoids results in unphysiological low cortisol levels in the early morning, the time of highest insulin sensitivity. Therefore patients with Addison's disease are at risk for unrecognized and potentially severe nocturnal hypoglycemia also because of a disturbed counterregulatory function. Use of a continuous glucose monitoring system (CGMS) could help to adjust hydrocortisone treatment and to avoid nocturnal hypoglycemia in these patients. Methods Thirteen patients with Addison's disease were screened for hypoglycemia wearing a CGMS for 3–5 days. Results In one patient we identified a hypoglycemic episode at 3:45 a.m. with a blood glucose level of 46 mg/dL, clearly beneath the 95% tolerance interval of minimal glucose levels between 2 and 4 a.m. (53.84 mg/dL). After the hydrocortisone replacement scheme was changed, the minimum blood glucose level between 2 and 4 a.m. normalized to 87 mg/dL. Conclusions Continuous glucose monitoring can detect nocturnal hypoglycemia in patients with primary adrenal insufficiency and hence prevent in these patients an impaired quality of life and even serious adverse effects. PMID:22242902

  12. Evaluation of the Effect of Carbohydrate Intake on Postprandial Glucose in Patients With Type 1 Diabetes Treated With Insulin Pumps.

    PubMed

    James, Mariel L; Green, Louisa; Amiel, Stephanie A; Choudhary, Pratik

    2016-11-01

    It has been suggested that dietary freedom in functional insulin therapy may be detrimental to glycemic control in type 1 diabetes. This study evaluates the effect of carbohydrate intake on glycemic control and postprandial blood glucose concentrations. Insulin pump data from 148 adults with type 1 diabetes, trained in functional insulin therapy, using pumps for ≥6 months, with ≥2 weeks of consecutive downloaded data, ≥80% use of a bolus calculator, ≥3 capillary blood glucose tests/day, and a concurrent HbA1C, were analyzed. More detailed periprandial data (pre- and postmeal glucose, carbohydrate intake, insulin bolus) were collected from a subset of 105 downloads (3495 meals). Mean (± SD) age of contributors was 43 ± 13 years, HbA1C 7.84% ± 0.93 (62.19 mmol/mol); daily carbohydrate intake 166 ± 71 g. HbA1C reduced with increased meals/day (r = -.370, P < .0005) and increased with mean carbohydrate content/meal (r = .198, P = .043). However, total daily carbohydrate intake had a weak but significant negative association with HbA1C (r = -.181, P = .027). There was no association between standard deviation of carbohydrate intake and HbA1C (r = .021, P = .802) or between meal carbohydrate content and postprandial change in blood glucose (r = -.004, P = .939) for meals with early postprandial (1-3 hours; n = 390) readings. There was a weak positive correlation (r = .184, P = .008) between meal carbohydrate content and late (4-7 hours; n = 390) postprandial readings. With appropriate training, patients using insulin pumps can accommodate a flexible diet with variable carbohydrate intake, without detriment to glycemic control. However, large carbohydrate meals may contribute to poorer outcomes, through impact on late postprandial glycemia. © 2016 Diabetes Technology Society.

  13. Probable hypoglycemic adverse drug reaction associated with prickly pear cactus, glipizide, and metformin in a patient with type 2 diabetes mellitus.

    PubMed

    Sobieraj, Diana M; Freyer, Craig W

    2010-01-01

    To report a case of an adverse drug reaction (ADR) in a patient with type 2 diabetes mellitus taking prickly pear cactus (PPC), glipizide, and metformin. A 58-year-old Mexican male with type 2 diabetes mellitus being treated with metformin 1000 mg twice daily and extended-release glipizide 10 mg daily was referred to the pharmacist for medication education. He denied taking herbal supplements or experiencing hypoglycemia. Two hemoglobin A(1c) values (6.8% and 6.7%) obtained over the past year demonstrated glycemic control, which was supported by his reported fasting blood glucose readings of 113-132 mg/dL. One month later, the patient reported 4 hypoglycemic events with blood glucose readings of 49-68 mg/dL, which resulted in discontinuation of glipizide. One month later, the patient denied any further hypoglycemia. During medication reconciliation he reported consuming crude PPC pads daily for 2 months for glucose control. Literature suggests that PPC has an effect on lowering blood glucose levels in patients with type 2 diabetes mellitus, although few identified data describe ADRs from combining PPC with other agents used in treating type 2 diabetes mellitus. A literature search of MEDLINE (through December 2009) using the search terms diabetes mellitus, prickly pear cactus, nopal, opuntia, metformin, glipizide, glyburide, glimepiride, and sulfonylurea revealed no case reports of the described ADR. One case report describing the blood glucose-lowering effect of PPC in a patient concurrently taking oral antihyperglycemics documented an episode of hypoglycemia, although the Naranjo probability scale was not applied. One patient survey discovered the most common drug-herbal interaction in the given population to be between PPC and antihyperglycemic agents, resulting in hypoglycemia. In our case, use of the Naranjo probability scale suggests the ADR to be probable. The mechanism may be due to the additive glucose lowering of the 3 agents consumed concurrently by the patient. Patients with type 2 diabetes mellitus should be routinely counseled about the use of herbal products to minimize the risk of ADRs.

  14. Influence of Reading Attitude on Reading Achievement: A Test of the Temporal-Interaction Model

    ERIC Educational Resources Information Center

    Martinez, Rebecca S.; Aricak, O. Tolga; Jewell, Jeremy

    2008-01-01

    Despite widespread efforts to prevent reading problems and an abundance of research about best practices in remediating reading skills deficits, reading continues to be exceptionally difficult for many students. Researchers have become interested in investigating the degree to which affective factors such as reading attitude relates to reading…

  15. A Fully Implantable, NFC Enabled, Continuous Interstitial Glucose Monitor

    PubMed Central

    Anabtawi, Nijad; Freeman, Sabrina; Ferzli, Rony

    2017-01-01

    This work presents an integrated system-on-chip (SoC) that forms the core of a long-term, fully implantable, battery assisted, passive continuous glucose monitor. It integrates an amperometric glucose sensor interface, a near field communication (NFC) wireless front-end and a fully digital switched mode power management unit for supply regulation and on board battery charging. It uses 13.56 MHz (ISM) band to harvest energy and backscatter data to an NFC reader. System was implemented in 14nm CMOS technology and validated with post layout simulations. PMID:28702512

  16. A Fully Implantable, NFC Enabled, Continuous Interstitial Glucose Monitor.

    PubMed

    Anabtawi, Nijad; Freeman, Sabrina; Ferzli, Rony

    2016-02-01

    This work presents an integrated system-on-chip (SoC) that forms the core of a long-term, fully implantable, battery assisted, passive continuous glucose monitor. It integrates an amperometric glucose sensor interface, a near field communication (NFC) wireless front-end and a fully digital switched mode power management unit for supply regulation and on board battery charging. It uses 13.56 MHz (ISM) band to harvest energy and backscatter data to an NFC reader. System was implemented in 14nm CMOS technology and validated with post layout simulations.

  17. Use of short-term real-time continuous glucose monitoring in type 1 diabetes patients on continuous intraperitoneal insulin infusion: a feasibility study.

    PubMed

    Logtenberg, Susan J J; Kleefstra, Nanne; Groenier, Klaas H; Gans, Rijk O B; Bilo, Henk J G

    2009-05-01

    In diabetes, strict glycemic control reduces risk of complications. One mode of therapy is continuous intraperitoneal insulin infusion (CIPII). With CIPII, like all intensified treatment strategies, frequent assessment of glucose levels is mandatory. Real-time (RT)-continuous glucose monitoring (CGM) gives RT information without the need for multiple invasive measurements. In theory, CIPII combined with RT-CGM could provide near normal glucose profiles. The objective of this study is to investigate effectiveness and safety of RT-CGM in patients treated with intraperitoneal insulin through an implanted pump. In an open-label, crossover, randomized study, effects of 6-day open RT-CGM use were studied in 12 type 1 diabetes patients on CIPII, with blinded RT-CGM used as a control. Primary outcome was time in euglycemia. Secondary outcomes included time in other glucose ranges, incidence of adverse events, and patient satisfaction. Agreement of self-measurement of blood glucose (SMBG) and RT-CGM measurements was assessed. Median time spent in euglycemia was 68.2% (55.9-72.3%) with open RT-CGM and 64.9% (55.3-71.2%) with blinded RT-CGM (P = 0.25). Time spent in other glucose ranges did not differ (P > 0.05). There were no serious adverse events. Patient satisfaction was good. Median relative absolute difference of SMBG and RT-CGM values was 13.9%. Bland-Altman analysis showed a mean difference of -0.31 mg/dL with lower and upper limits of agreement of -77.0 and +76.4 mg/dL, respectively. Short-term use of RT-CGM, although safe and with good patient satisfaction, does not result in more time spent in euglycemia, nor does it change time spent in other glucose ranges in our population of type 1 diabetes patients receiving CIPII.

  18. A minimally invasive chip based near infrared sensor for continuous glucose monitoring

    NASA Astrophysics Data System (ADS)

    Ben Mohammadi, L.; Sigloch, S.; Frese, I.; Stein, V.; Welzel, K.; Schmitz, F.; Klotzbücher, T.

    2012-06-01

    Assessment of glycaemia in diabetes is crucially important for prevention of both, acute and long term complications. Continuous glucose monitoring (CGM) is certainly the most appropriate way for optimizing the glycaemic control, since it prevents or delays the progression of complications associated with hypo- or hyperglycaemic events, reducing morbidity, mortality, and overall costs in health care systems. In this paper we describe the concept and first in vitro results of a minimally invasive, chip-based NIR-Sensor for continuous glucose monitoring. The sensor concept is based on difference infrared absorption spectroscopy, which was evaluated within laboratory measurements of D+-Glucose dissolved in water. The laboratory measurements revealed a linear relationship between glucose concentration and the integrated difference spectroscopy signal with a coefficient of determination of 99.6% in the concentration range of 0- 500 mg/dL. Suitable wavelength bands were identified in which the correlation is preserved and commercial light sources are available for realisation of a spectrometer-less, integrated NIR-sensor. In the designed sensor the component area (non-disposable) is separated from the detection area (disposable, low-cost). The disposable part of the sensor is fluidically connected to a micro-dialyses needle, accessing glucose subcutaneously via the ISF (interstitial fluid) or intravascularly. The non-disposable part contains all the optical elements, like LED's and photo-detectors. The in- and out-coupling of the optical signal is achieved across the plane of the chip by using total internal reflection on mirrors integrated into the fluidic chip. The glucose is continuously measured by considering the difference signals of light at the corresponding wavelengths, as a function of time or in defined intervals if the light sources are modulated. The in-vitro measurements show an absolute error of about 5 mg/dL with a relative error of 5% for glucose concentrations larger than 50 mg/dL and about 12 % in the hypoglycemic range (<50 mg /dL).

  19. A Review of the “Bolus Guide,” A New Insulin Bolus Dosing Support Tool Based on Selection of Carbohydrate Ranges

    PubMed Central

    Pańkowska, Ewa

    2010-01-01

    In this issue of Journal of Diabetes Science and Technology, Shapira and colleagues present new concepts of carbohydrate load estimation in intensive insulin therapy. By using a mathematical model, they attempt to establish how accurately carbohydrate food content should be maintained in order to keep postprandial blood glucose levels in the recommended range. Their mathematical formula, the “bolus guide” (BG), is verified by simulating prandial insulin dosing and responding to proper blood glucose levels. Different variants such as insulin sensitivity factor, insulin-to-carbohydrate ratio, and target blood glucose were taken into this formula in establishing the calculated proper insulin dose. The new approach presented here estimates the carbohydrate content by rearranging the carbohydrate load instead of the simple point estimation that the current bolus calculators (BCs) use. Computerized estimations show that the BG directives, as compared to a BC, result in more glucose levels above 200 mg/dl and thus indicate less hypoglycemia readings. PMID:20663454

  20. Performance characterization of an abiotic and fluorescent-based continuous glucose monitoring system in patients with type 1 diabetes.

    PubMed

    Mortellaro, Mark; DeHennis, Andrew

    2014-11-15

    A continuous glucose monitoring (CGM) system consisting of a wireless, subcutaneously implantable glucose sensor and a body-worn transmitter is described and clinical performance over a 28 day implant period in 12 type 1 diabetic patients is reported. The implantable sensor is constructed of a fluorescent, boronic-acid based glucose indicating polymer coated onto a miniaturized, polymer-encased optical detection system. The external transmitter wirelessly communicates with and powers the sensor and contains Bluetooth capability for interfacing with a Smartphone application. The accuracy of 19 implanted sensors were evaluated over 28 days during 6 in-clinic sessions by comparing the CGM glucose values to venous blood glucose measurements taken every 15 min. Mean absolute relative difference (MARD) for all sensors was 11.6 ± 0.7%, and Clarke error grid analysis showed that 99% of paired data points were in the combined A and B zones. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  1. Continuous glucose monitoring and its relationship to hemoglobin A1c and oral glucose tolerance testing in obese and prediabetic youth.

    PubMed

    Chan, Christine L; Pyle, Laura; Newnes, Lindsey; Nadeau, Kristen J; Zeitler, Philip S; Kelsey, Megan M

    2015-03-01

    The optimal screening test for diabetes and prediabetes in obese youth is controversial. We examined whether glycosylated hemoglobin (HbA1c) or the oral glucose tolerance test (OGTT) is a better predictor of free-living glycemia as measured by continuous glucose monitoring (CGM). This was a cross-sectional study of youth 10-18 years old, body mass index (BMI) 85th percentile or greater, with diabetes risk factors. Participants (n = 118) with BMI 85th percentile or greater, not on medications for glucose management, were recruited from primary care and pediatric endocrinology clinics around Denver, Colorado. HbA1c, fasting plasma glucose, and 2-hour glucose were collected and all participants wore a blinded CGM for 72 hours. CGM outcomes were determined and descriptive statistics calculated. Performance characteristics at current American Diabetes Association cutpoints were compared with CGM outcomes. CGM data were successfully collected on 98 obese youth. Those with prediabetes had significantly higher average glucose, area under the curve (AUC), peak glucose, and time greater than 120 and greater than 140 mg/dL (P < .01) on CGM than youth with normal HbA1c or OGTT. HbA1c had a greater magnitude of correlation to CGM average glucose, AUC, and minimum glucose; 2-hour glucose had a greater magnitude of correlation to CGM SD, peak glucose, and time greater than 140 and greater than 200 mg/dL. However, there were no overall differences in the strength comparisons between 2-hour glucose and HbA1c correlations to CGM outcomes. In obese youth, HbA1c and 2-hour glucose performed equally well at predicting free-living glycemia on CGM, suggesting that both are valid tests for dysglycemia screening.

  2. Design and preparation of open circuit potential biosensor for in vitro and in vivo glucose monitoring.

    PubMed

    Song, Yonggui; Su, Dan; Shen, Yuan; Liu, Hongyu; Wang, Li

    2017-01-01

    A novel open circuit potential biosensor (OCPS) composed of a working electrode and a Ag/AgCl reference electrode was designed for in vivo continuous glucose monitoring in this work. The macroporous carbon derived from kenaf stem (KSC) was used to construct a KSC microelectrode (denoted as KSCME) which was subsequently used to load glucose oxidase (GOD) as the working electrode. The resulting GOD/KSCMEs could catalyze the oxidation of glucose directly to result in changes of the open circuit potential (V oc ) of the OCPS. The V oc of OCPS was dependent on the glucose concentration, showing a linear range of 0.03-10.0 mM (R = 0.999) with a detection limit of 10 μM. In addition, the OCPS exhibited good selectivity for glucose over other common endogenous interferences. The feasibility of the proposed OCPS for glucose detection in mice skin tumors and normal tissue homogenate samples (in vitro experiment) and rat subcutaneous glucose monitoring (in vivo experiment) was also demonstrated with satisfactory results. The biosensor represents a novel example of a superficial cancer diagnostic device, and the proposed OCPS also provides new ideas for the development of a simple and highly selective device for continuous glucose sensing.

  3. Diurnal glycemic profile in obese and normal weight nondiabetic pregnant women.

    PubMed

    Yogev, Yariv; Ben-Haroush, Avi; Chen, Rony; Rosenn, Barak; Hod, Moshe; Langer, Oded

    2004-09-01

    A paucity of data exists concerning the normal glycemic profile in nondiabetic pregnancies. Using a novel approach that provides continuous measurement of blood glucose, we sought to evaluate the ambulatory daily glycemic profile in the second half of pregnancy in nondiabetic women. Fifty-seven obese and normal weight nondiabetic subjects were evaluated for 72 consecutive hours with continuous glucose monitoring by measurement interstitial glucose levels in subcutaneous tissue every 5 minutes. Subjects were instructed not to modify their lifestyle or to follow any dietary restriction. For each woman, mean and fasting blood glucose values were determined; for each meal during the study period, the first 180 minutes were analyzed. For the study group, the fasting blood glucose level was 75 +/- 12 mg/dL; the mean blood glucose level was 83.7 +/- 18 mg/dL; the postprandial peak glucose value level was 110 +/- 16 mg/dL, and the time interval that was needed to reach peak postprandial glucose level was 70 +/- 13 minutes. A similar postprandial glycemic profile was obtained for breakfast, lunch, and dinner. Obese women were characterized by a significantly higher postprandial glucose peak value, increased 1- and 2-hour postprandial glucose levels, increased time interval for glucose peak, and significantly lower mean blood glucose during the night. No difference was found in fasting and mean blood glucose between obese and nonobese subjects. Glycemic profile characterization in both obese and normal weight nondiabetic subjects provide a measure for the desired level of glycemic control in pregnancy that is complicated with diabetes mellitus.

  4. Effects of sitagliptin or mitiglinide as an add-on to acarbose on daily blood glucose fluctuations measured by 72 h subcutaneous continuous glucose monitoring in Japanese patients with type 2 diabetes: a prospective randomized study.

    PubMed

    Osonoi, Takeshi; Saito, Miyoko; Tamasawa, Atsuko; Ishida, Hidenori; Osonoi, Yusuke

    2014-07-01

    Postprandial hyperglycemia and blood glucose fluctuations increase the risk of macroangiopathy in patients with type 2 diabetes mellitus (T2DM). However, few studies have examined the effects of oral hypoglycemic drugs on blood glucose fluctuations in daily life. Twenty-nine T2DM patients treated with acarbose were randomized to receive either sitagliptin (14 patients) or mitiglinide (15 patients) together with acarbose for 4 weeks. Patients were then switched to a combination of 10 mg mitiglinide and 0.2 mg voglibose for 4 weeks. All patients wore a continuous glucose monitoring (CGM) device for 5 - 7 days in week 3 of each treatment period. The percentage of blood glucose levels in the hyperglycemic range, blood glucose indices derived from 24-h CGM profiles and the glycemic parameters (HbA1c, glycated albumin and fasting plasma glucose) were significantly improved by adding sitagliptin or mitiglinide to ongoing acarbose therapy. These parameters also tended to improve in the mitiglinide/voglibose combination period. Daily blood glucose fluctuations were significantly improved by adding sitagliptin or mitiglinide to acarbose, and improved after switching to the mitiglinide/voglibose combination. Larger controlled studies are needed to verify the effects of adding sitagliptin or mitiglinide to acarbose on glucose fluctuations.

  5. The effects of free-living interval-walking training on glycemic control, body composition, and physical fitness in type 2 diabetic patients: a randomized, controlled trial.

    PubMed

    Karstoft, Kristian; Winding, Kamilla; Knudsen, Sine H; Nielsen, Jens S; Thomsen, Carsten; Pedersen, Bente K; Solomon, Thomas P J

    2013-02-01

    To evaluate the feasibility of free-living walking training in type 2 diabetic patients and to investigate the effects of interval-walking training versus continuous-walking training upon physical fitness, body composition, and glycemic control. Subjects with type 2 diabetes were randomized to a control (n = 8), continuous-walking (n = 12), or interval-walking group (n = 12). Training groups were prescribed five sessions per week (60 min/session) and were controlled with an accelerometer and a heart-rate monitor. Continuous walkers performed all training at moderate intensity, whereas interval walkers alternated 3-min repetitions at low and high intensity. Before and after the 4-month intervention, the following variables were measured: VO(2)max, body composition, and glycemic control (fasting glucose, HbA(1c), oral glucose tolerance test, and continuous glucose monitoring [CGM]). Training adherence was high (89 ± 4%), and training energy expenditure and mean intensity were comparable. VO(2)max increased 16.1 ± 3.7% in the interval-walking group (P < 0.05), whereas no changes were observed in the continuous-walking or control group. Body mass and adiposity (fat mass and visceral fat) decreased in the interval-walking group only (P < 0.05). Glycemic control (elevated mean CGM glucose levels and increased fasting insulin) worsened in the control group (P < 0.05), whereas mean (P = 0.05) and maximum (P < 0.05) CGM glucose levels decreased in the interval-walking group. The continuous walkers showed no changes in glycemic control. Free-living walking training is feasible in type 2 diabetic patients. Continuous walking offsets the deterioration in glycemia seen in the control group, and interval walking is superior to energy expenditure-matched continuous walking for improving physical fitness, body composition, and glycemic control.

  6. A Low-Cost Inkjet-Printed Glucose Test Strip System for Resource-Poor Settings.

    PubMed

    Gainey Wilson, Kayla; Ovington, Patrick; Dean, Delphine

    2015-06-12

    The prevalence of diabetes is increasing in low-resource settings; however, accessing glucose monitoring is extremely difficult and expensive in these regions. Work is being done to address the multitude of issues surrounding diabetes care in low-resource settings, but an affordable glucose monitoring solution has yet to be presented. An inkjet-printed test strip solution is being proposed as a solution to this problem. The use of a standard inkjet printer is being proposed as a manufacturing method for low-cost glucose monitoring test strips. The printer cartridges are filled with enzyme and dye solutions that are printed onto filter paper. The result is a colorimetric strip that turns a blue/green color in the presence of blood glucose. Using a light-based spectroscopic reading, the strips show a linear color change with an R(2) = .99 using glucose standards and an R(2) = .93 with bovine blood. Initial testing with bovine blood indicates that the strip accuracy is comparable to the International Organization for Standardization (ISO) standard 15197 for glucose testing in the 0-350 mg/dL range. However, further testing with human blood will be required to confirm this. A visible color gradient was observed with both the glucose standard and bovine blood experiment, which could be used as a visual indicator in cases where an electronic glucose meter was unavailable. These results indicate that an inkjet-printed filter paper test strip is a feasible method for monitoring blood glucose levels. The use of inkjet printers would allow for local manufacturing to increase supply in remote regions. This system has the potential to address the dire need for glucose monitoring in low-resource settings. © 2015 Diabetes Technology Society.

  7. Gluconeogenesis continues in premature infants receiving total parenteral nutrition

    USDA-ARS?s Scientific Manuscript database

    To determine the contribution of total gluconeogenesis, to glucose production in preterm infants receiving total parenteral nutrition (TPN) providing glucose exceeding normal infant glucose turnover rate, eight infants (0.955 +/- 0.066 kg, 26.5 - 0.5 wks, 4-1 d) were studied while receiving routine ...

  8. A Simple Composite Metric for the Assessment of Glycemic Status from Continuous Glucose Monitoring Data: Implications for Clinical Practice and the Artificial Pancreas.

    PubMed

    Hirsch, Irl B; Balo, Andrew K; Sayer, Kevin; Garcia, Arturo; Buckingham, Bruce A; Peyser, Thomas A

    2017-06-01

    The potential clinical benefits of continuous glucose monitoring (CGM) have been recognized for many years, but CGM is used by a small fraction of patients with diabetes. One obstacle to greater use of the technology is the lack of simplified tools for assessing glycemic control from CGM data without complicated visual displays of data. We developed a simple new metric, the personal glycemic state (PGS), to assess glycemic control solely from continuous glucose monitoring data. PGS is a composite index that assesses four domains of glycemic control: mean glucose, glycemic variability, time in range and frequency and severity of hypoglycemia. The metric was applied to data from six clinical studies for the G4 Platinum continuous glucose monitoring system (Dexcom, San Diego, CA). The PGS was also applied to data from a study of artificial pancreas comparing results from open loop and closed loop in adolescents and in adults. The new metric for glycemic control, PGS, was able to characterize the quality of glycemic control in a wide range of study subjects with various mean glucose, minimal, moderate, and excessive glycemic variability and subjects on open loop versus closed loop control. A new composite metric for the assessment of glycemic control based on CGM data has been defined for use in assessing glycemic control in clinical practice and research settings. The new metric may help rapidly identify problems in glycemic control and may assist with optimizing diabetes therapy during time-constrained physician office visits.

  9. Continuous glucose monitoring in acute coronary syndrome.

    PubMed

    Rodríguez-Quintanilla, Karina Alejandra; Lavalle-González, Fernando Javier; Mancillas-Adame, Leonardo Guadalupe; Zapata-Garrido, Alfonso Javier; Villarreal-Pérez, Jesús Zacarías; Tamez-Pérez, Héctor Eloy

    2013-01-01

    Diabetes mellitus is an independent risk factor for cardiovascular disease. To compare the efficacy of devices for continuous glucose monitoring and capillary glucose monitoring in hospitalized patients with acute coronary syndrome using the following parameters: time to achieve normoglycemia, period of time in normoglycemia, and episodes of hypoglycemia. We performed a pilot, non-randomized, unblinded clinical trial that included 16 patients with acute coronary artery syndrome, a capillary or venous blood glucose ≥ 140 mg/dl, and treatment with a continuous infusion of fast acting human insulin. These patients were randomized into 2 groups: a conventional group, in which capillary measurement and recording as well as insulin adjustment were made every 4h, and an intervention group, in which measurement and recording as well as insulin adjustment were made every hour with a subcutaneous continuous monitoring system. Student's t-test was applied for mean differences and the X(2) test for qualitative variables. We observed a statistically significant difference in the mean time for achieving normoglycemia, favoring the conventional group with a P = 0.02. Continuous monitoring systems are as useful as capillary monitoring for achieving normoglycemia. Copyright © 2012 Instituto Nacional de Cardiología Ignacio Chávez. Published by Masson Doyma México S.A. All rights reserved.

  10. Clarifying Linguistic Comprehension in the Simple View of Reading: The Influence of Word-, Sentence-, and Discourse-Level Linguistic Skills on Reading Comprehension

    ERIC Educational Resources Information Center

    Santoro, Julie Kay

    2012-01-01

    There are a high number of students who struggle with reading comprehension beyond the primary grades and understanding the skills involved in successful reading comprehension continues to be a topic of investigation. The Simple View of Reading (SVR) is a viable theory of reading that suggests reading comprehension results from developing skills…

  11. A microfluidic glucose sensor incorporating a novel thread-based electrode system.

    PubMed

    Gaines, Michelle; Gonzalez-Guerrero, Maria Jose; Uchida, Kathryn; Gomez, Frank A

    2018-05-01

    An electrochemical sensor for the detection of glucose using thread-based electrodes and fabric is described. This device is relatively simple to fabricate and can be used for multiple readings after washing with ethanol. The fabrication of the chip consisted of two steps. First, three thread-based electrodes (reference, working, and counter) were fabricated by painting pieces of nylon thread with either layered silver ink and carbon ink or silver/silver chloride ink. The threads were then woven into a fabric chip with a beeswax barrier molded around the edges in order to prevent leaks from the tested solutions. A thread-based working electrode consisting of one layer of silver underneath two layers of carbon was selected to fabricate the final sensor system. Using the chip, a PBS solution containing glucose oxidase (GOx) (10 mg/mL), potassium ferricyanide (K 3 [Fe(CN) 6 ]) (10 mg/mL) as mediator, and different concentrations of glucose (0-25 mM), was measured by cyclic voltammetry (CV). It was found that the current output from the oxidation of glucose was proportional to the glucose concentrations. This thread-based electrode system is a viable sensor platform for detecting glucose in the physiological range. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  12. Non-invasive determination of glucose directly in raw fruits using a continuous flow system based on microdialysis sampling and amperometric detection at an integrated enzymatic biosensor.

    PubMed

    Vargas, E; Ruiz, M A; Campuzano, S; Reviejo, A J; Pingarrón, J M

    2016-03-31

    A non-destructive, rapid and simple to use sensing method for direct determination of glucose in non-processed fruits is described. The strategy involved on-line microdialysis sampling coupled with a continuous flow system with amperometric detection at an enzymatic biosensor. Apart from direct determination of glucose in fruit juices and blended fruits, this work describes for the first time the successful application of an enzymatic biosensor-based electrochemical approach to the non-invasive determination of glucose in raw fruits. The methodology correlates, through previous calibration set-up, the amperometric signal generated from glucose in non-processed fruits with its content in % (w/w). The comparison of the obtained results using the proposed approach in different fruits with those provided by other method involving the same commercial biosensor as amperometric detector in stirred solutions pointed out that there were no significant differences. Moreover, in comparison with other available methodologies, this microdialysis-coupled continuous flow system amperometric biosensor-based procedure features straightforward sample preparation, low cost, reduced assay time (sampling rate of 7 h(-1)) and ease of automation. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Precision and costs of techniques for self-monitoring of serum glucose levels.

    PubMed Central

    Chiasson, J. L.; Morrisset, R.; Hamet, P.

    1984-01-01

    The poor correlation between serum and urine glucose measurements has led to the development of new techniques for monitoring the blood glucose level in diabetic patients. Either a nurse or the patient can perform these tests, which involve spreading a single drop of blood onto a reagent strip. A colour change that is proportional to the serum glucose level can be read visually or with a reflectance meter. Evaluated against simultaneous serum glucose levels determined by the hospital biochemistry laboratory, those of the new techniques employing reflectance meters all showed excellent correlation (r2 = 0.85 to 0.96). Reagent strips used without meters showed poorer correlation (r2 = 0.69 to 0.90). The instruction given to the patients and one nurse enabled them to obtain more accurate results with one of the meters than nurses not specially trained (r2 = 0.94 and 0.92 v. 0.85 respectively). The mean cost per glucose determination with the new techniques was 75, compared with +1.45 for the laboratory determinations done with automated equipment. It was concluded that the new techniques compared well with the reference method, particularly when reflectance meters were used, and that they were easily applied by the patient, as well as the medical staff, at a reasonable cost. PMID:6689988

  14. Simulation of an enzyme-based glucose sensor

    NASA Astrophysics Data System (ADS)

    Sha, Xianzheng; Jablecki, Michael; Gough, David A.

    2001-09-01

    An important biosensor application is the continuous monitoring blood or tissue fluid glucose concentration in people with diabetes. Our research focuses on the development of a glucose sensor based on potentiostatic oxygen electrodes and immobilized glucose oxidase for long- term application as an implant in tissues. As the sensor signal depends on many design variables, a trial-and-error approach to sensor optimization can be time-consuming. Here, the properties of an implantable glucose sensor are optimized by a systematic computational simulation approach.

  15. Improved blood glucose estimation through multi-sensor fusion.

    PubMed

    Xiong, Feiyu; Hipszer, Brian R; Joseph, Jeffrey; Kam, Moshe

    2011-01-01

    Continuous glucose monitoring systems are an integral component of diabetes management. Efforts to improve the accuracy and robustness of these systems are at the forefront of diabetes research. Towards this goal, a multi-sensor approach was evaluated in hospitalized patients. In this paper, we report on a multi-sensor fusion algorithm to combine glucose sensor measurements in a retrospective fashion. The results demonstrate the algorithm's ability to improve the accuracy and robustness of the blood glucose estimation with current glucose sensor technology.

  16. Glucose Transporters at the Blood-Brain Barrier: Function, Regulation and Gateways for Drug Delivery.

    PubMed

    Patching, Simon G

    2017-03-01

    Glucose transporters (GLUTs) at the blood-brain barrier maintain the continuous high glucose and energy demands of the brain. They also act as therapeutic targets and provide routes of entry for drug delivery to the brain and central nervous system for treatment of neurological and neurovascular conditions and brain tumours. This article first describes the distribution, function and regulation of glucose transporters at the blood-brain barrier, the major ones being the sodium-independent facilitative transporters GLUT1 and GLUT3. Other GLUTs and sodium-dependent transporters (SGLTs) have also been identified at lower levels and under various physiological conditions. It then considers the effects on glucose transporter expression and distribution of hypoglycemia and hyperglycemia associated with diabetes and oxygen/glucose deprivation associated with cerebral ischemia. A reduction in glucose transporters at the blood-brain barrier that occurs before the onset of the main pathophysiological changes and symptoms of Alzheimer's disease is a potential causative effect in the vascular hypothesis of the disease. Mutations in glucose transporters, notably those identified in GLUT1 deficiency syndrome, and some recreational drug compounds also alter the expression and/or activity of glucose transporters at the blood-brain barrier. Approaches for drug delivery across the blood-brain barrier include the pro-drug strategy whereby drug molecules are conjugated to glucose transporter substrates or encapsulated in nano-enabled delivery systems (e.g. liposomes, micelles, nanoparticles) that are functionalised to target glucose transporters. Finally, the continuous development of blood-brain barrier in vitro models is important for studying glucose transporter function, effects of disease conditions and interactions with drugs and xenobiotics.

  17. Impact of videogame playing on glucose metabolism in children with type 1 diabetes.

    PubMed

    Phan-Hug, Franziska; Thurneysen, Esther; Theintz, Gerald; Ruffieux, Christiane; Grouzmann, Eric

    2011-12-01

    Time spent playing videogames (VG) occupies a continually increasing part of children's leisure time. They can generate an important state of excitation, representing a form of mental and physical stress. This pilot study aimed to assess whether VG influences glycemic balance in children with type 1 diabetes. Twelve children with type 1 diabetes were subjected to two distinct tests at a few weeks interval: (i) a 60-min VG session followed by a 60-min rest period and (ii) a 60-min reading session followed by a 60-min rest period. Heart rate, blood pressure, glycemia, epinephrine (E), norepinephrine (NE), cortisol (F), and growth hormone (GH) were measured at 30 min intervals from -60 to +120 min. Non-parametric Wilcoxon tests for paired data were performed on Δ-values computed from baseline (0 min). Rise in heart rate (p = 0.05) and NE increase (p = 0.03) were shown to be significantly higher during the VG session when compared to the reading session and a significant difference of Δ-glycemic values was measured between the respective rest periods. This pilot study suggests that VG playing could induce a state of excitation sufficient to activate the sympathetic system and alter the course of glycemia. Dietary and insulin dose recommendations may be needed to better control glycemic excursion in children playing VG. © 2011 John Wiley & Sons A/S.

  18. Radiofrequency ablation during continuous saline infusion can extend ablation margins

    PubMed Central

    Ishikawa, Toru; Kubota, Tomoyuki; Horigome, Ryoko; Kimura, Naruhiro; Honda, Hiroki; Iwanaga, Akito; Seki, Keiichi; Honma, Terasu; Yoshida, Toshiaki

    2013-01-01

    AIM: To determine whether fluid injection during radiofrequency ablation (RFA) can increase the coagulation area. METHODS: Bovine liver (1-2 kg) was placed on an aluminum tray with a return electrode affixed to the base, and the liver was punctured by an expandable electrode. During RFA, 5% glucose; 50% glucose; or saline fluid was infused continuously at a rate of 1.0 mL/min through the infusion line connected to the infusion port. The area and volume of the thermocoagulated region of bovine liver were determined after RFA. The Joule heat generated was determined from the temporal change in output during the RFA experiment. RESULTS: No liquid infusion was 17.3 ± 1.6 mL, similar to the volume of a 3-cm diameter sphere (14.1 mL). Mean thermocoagulated volume was significantly larger with continuous infusion of saline (29.3 ± 3.3 mL) than with 5% glucose (21.4 ± 2.2 mL), 50% glucose (16.5 ± 0.9 mL) or no liquid infusion (17.3 ± 1.6 mL). The ablated volume for RFA with saline was approximately 1.7-times greater than for RFA with no liquid infusion, representing a significant difference between these two conditions. Total Joule heat generated during RFA was highest with saline, and lowest with 50% glucose. CONCLUSION: RFA with continuous saline infusion achieves a large ablation zone, and may help inhibit local recurrence by obtaining sufficient ablation margins. RFA during continuous saline infusion can extend ablation margins, and may be prevent local recurrence. PMID:23483097

  19. Reducing the risk of fatal and disabling hypoglycaemia: a comparison of arterial blood sampling systems.

    PubMed

    Brennan, K A; Eapen, G; Turnbull, D

    2010-04-01

    In 2008, the National Patient Safety Agency (NPSA) published a report after 42 incidents and two deaths where glucose-containing flush solutions were attached to the arterial line. The molar concentration of 5% glucose is 277 mmol litre(-1). Only a tiny amount of sample contamination will lead to an artificially high glucose. As the NPSA sought a solution, a bench model was constructed to compare the performance of three open and three closed arterial line systems in limiting sample contamination. All arterial line systems were set up in a standard manner and pressurized to 300 mm Hg with 5% glucose used as the flush solution. This was connected to the 'radial artery' using an 18 G needle representing the radial cannula. The radial artery was simulated using a wide-bore extension set with 'blood' flow at 60 ml min(-1). Blood was simulated by the addition of red dye to Hartmann's solution. Increasing multiples of arterial line dead space were aspirated and discarded. Blood samples were then obtained and glucose concentration was measured. Significant glucose contamination (3 mmol litre(-1) +/-3.4) was detected in all open arterial line systems up to an aspiration volume of five times the dead space. No samples from the closed systems recorded glucose concentration >1 mmol litre(-1). Recommended minimal discard volumes are inadequate in the presence of glucose as the flush solution and can lead to high blood glucose readings, inappropriate insulin use, and iatrogenic neuroglycopaenia. Our study demonstrates that the closed-loop arterial sampling system could be the universal solution sought by the NPSA.

  20. Determining the Variables That Affect the Reading Motivation of Educational Faculty Students

    ERIC Educational Resources Information Center

    Savaskan, Vafa; Özdemir, Atilla

    2017-01-01

    Reading motivation has a significant contribution to acquire the necessary reading skills, and it has an indisputable effect on continuing to read. When the importance of the role model effect of school teachers in acquiring reading skills is considered, it is expected that reading motivation of the students will be high whose teachers also have a…

  1. Enhancing the Lives of Aged in a Retirement Center through a Program of Reading.

    ERIC Educational Resources Information Center

    Wilson, Molly M.

    Readarama, a weekly reading group, was conducted in a retirement center in Athens, Georgia. Participants in the voluntary group were retired women who were lifelong readers and who continued to enjoy reading as a hobby. Because of differences in reading interests and in time available for reading, members read independently during the week;…

  2. Management of fever, hyperglycemia, and swallowing dysfunction following hospital admission for acute stroke in New South Wales, Australia.

    PubMed

    Drury, Peta; Levi, Christopher; McInnes, Elizabeth; Hardy, Jennifer; Ward, Jeanette; Grimshaw, Jeremy M; D' Este, Catherine; Dale, Simeon; McElduff, Patrick; Cheung, N Wah; Quinn, Clare; Griffiths, Rhonda; Evans, Malcolm; Cadilhac, Dominique; Middleton, Sandy

    2014-01-01

    Fever, hyperglycemia, and swallow dysfunction poststroke are associated with significantly worse outcomes. We report treatment and monitoring practices for these three items from a cohort of acute stroke patients prior to randomization in the Quality in Acute Stroke Care trial. Retrospective medical record audits were undertaken for prospective patients from 19 stroke units. For the first three-days following stroke, we recorded all temperature readings and administration of paracetamol for fever (≥37·5°C) and all glucose readings and administration of insulin for hyperglycemia (>11 mmol/L). We also recorded swallow screening and assessment during the first 24 h of admission. Data for 718 (98%) patients were available; 138 (19%) had four hourly or more temperature readings and 204 patients (29%) had a fever, with 44 (22%) receiving paracetamol. A quarter of patients (n = 102/412, 25%) had six hourly or more glucose readings and 23% (95/412) had hyperglycemia, with 31% (29/95) of these treated with insulin. The majority of patients received a swallow assessment (n = 562, 78%) by a speech pathologist in the first instance rather than a swallow screen by a nonspeech pathologist (n = 156, 22%). Of those who passed a screen (n = 108 of 156, 69%), 68% (n = 73) were reassessed by a speech pathologist and 97% (n = 71) were reconfirmed to be able to swallow safely. Our results showed that acute stroke patients were: undermonitored and undertreated for fever and hyperglycemia; and underscreened for swallowing dysfunction and unnecessarily reassessed by a speech pathologist, indicating the need for urgent behavior change. © 2013 The Authors. International Journal of Stroke © 2013 World Stroke Organization.

  3. Continuous Subcutaneous Insulin Infusion in Children: A Pilot Study Validating a Protocol to Avoid Hypoglycemia at Initiation.

    PubMed

    Manousaki, Despoina; Deladoëy, Johnny; Geoffroy, Louis; Olivier, Patricia

    2017-01-01

    The occurrence of hypoglycemia and hyperglycemia during the first days after transition to continuous subcutaneous insulin infusion (CSII) in patients with type 1 diabetes has not been systematically studied in children. The aim of this prospective study was to demonstrate that the protocol applied in our diabetes clinic is safe at CSII initiation in children. We assessed 22 pediatric patients with type 1 diabetes, using continuous glucose monitoring (CGM) before and after CSII initiation (±3 days). After CSII initiation, there was no difference in the rates of hypoglycemic events expressed as relative rates (RRs) per person-reading (RR = 0.85, p  = 0.52, 95% CI 0.52-1.39), as well as in the number of prolonged hypoglycemic events (>1 h) per day (RR = 1.12, p  = 0.56, 95% CI 0.75-1.68). We observed only a trend toward prolonged episodes of hyperglycemia after pump initiation (RR = 1.52, p  = 0.06, 95% CI 0.97-2.35). Our study is the first to assess, through CGM and in a prospective way, the impact of a CSII initiation protocol on glycemic values. Our protocol provides a safe model to avoid hypoglycemia at CSII initiation in children. www.ClinicalTrials.gov, identifier NCT01840358.

  4. An Adaptive Nonlinear Basal-Bolus Calculator for Patients With Type 1 Diabetes

    PubMed Central

    Boiroux, Dimitri; Aradóttir, Tinna Björk; Nørgaard, Kirsten; Poulsen, Niels Kjølstad; Madsen, Henrik; Jørgensen, John Bagterp

    2016-01-01

    Background: Bolus calculators help patients with type 1 diabetes to mitigate the effect of meals on their blood glucose by administering a large amount of insulin at mealtime. Intraindividual changes in patients physiology and nonlinearity in insulin-glucose dynamics pose a challenge to the accuracy of such calculators. Method: We propose a method based on a continuous-discrete unscented Kalman filter to continuously track the postprandial glucose dynamics and the insulin sensitivity. We augment the Medtronic Virtual Patient (MVP) model to simulate noise-corrupted data from a continuous glucose monitor (CGM). The basal rate is determined by calculating the steady state of the model and is adjusted once a day before breakfast. The bolus size is determined by optimizing the postprandial glucose values based on an estimate of the insulin sensitivity and states, as well as the announced meal size. Following meal announcements, the meal compartment and the meal time constant are estimated, otherwise insulin sensitivity is estimated. Results: We compare the performance of a conventional linear bolus calculator with the proposed bolus calculator. The proposed basal-bolus calculator significantly improves the time spent in glucose target (P < .01) compared to the conventional bolus calculator. Conclusion: An adaptive nonlinear basal-bolus calculator can efficiently compensate for physiological changes. Further clinical studies will be needed to validate the results. PMID:27613658

  5. Continuous glucose monitoring on the ICU using a subcutaneous sensor.

    PubMed

    Punke, M A; Decker, C; Wodack, K; Reuter, D A; Kluge, S

    2015-06-01

    Hypoglycemia is a frequent and feared complication of insulin therapy on the intensive care unit (ICU). Sedated patients in particular are at risk for hypoglycemia due to the absence of clinical symptoms. Furthermore, recent studies point to a correlation between the variability of blood glucose and mortality. Therefore, continuous glucose monitoring has the potential to influence outcome due to a better control of blood glucose in critically ill patients. We evaluated the efficacy, accuracy and safety of a new commercially available subcutaneous continuous glucose monitoring system (sCGM; Sentrino®, Medtronic) in a pilot study in critically ill adult patients. sCGM data were recorded for up to 72 h and values were compared with blood glucose values measured by cassette-based blood gas analyzer (BGA). A total of 14 patients (eight male, six female), with a mean age of 62.1 ± 9.8 years, referred to the ICU after major abdominal surgery were studied. The average simplified acute physiology score (SAPS II) was 35 ± 9. Three patients had known type II diabetes. The average runtime of sensors was 44.1 ± 22.1 h. In comparison to BGA, measurement of blood glucose by sCGM revealed an accuracy of 1.5 mg/dl, and a precision of +34.2 mg/dl to -31.2 mg/dl. Linn's concordance correlation coefficient yielded 0.74 with a 95% confidence interval of 0.68-0.78. No hypoglycemic events, defined as a blood glucose level below 70 mg/dl, occurred during treatment. sCGM monitoring via a subcutaneous sensor demonstrated high accuracy and considerable variability compared to blood gas samples, even in critically ill patients.

  6. An In-Line Photonic Biosensor for Monitoring of Glucose Concentrations

    PubMed Central

    Al-Halhouli, Ala'aldeen; Demming, Stefanie; Alahmad, Laila; LIobera, Andreu; Büttgenbach, Stephanus

    2014-01-01

    This paper presents two PDMS photonic biosensor designs that can be used for continuous monitoring of glucose concentrations. The first design, the internally immobilized sensor, consists of a reactor chamber, micro-lenses and self-alignment structures for fiber optics positioning. This sensor design allows optical detection of glucose concentrations under continuous glucose flow conditions of 33 μL/h based on internal co-immobilization of glucose oxidase (GOX) and horseradish peroxidase (HRP) on the internal PDMS surface of the reactor chamber. For this design, two co-immobilization methods, the simple adsorption and the covalent binding (PEG) methods were tested. Experiments showed successful results when using the covalent binding (PEG) method, where glucose concentrations up to 5 mM with a coefficient of determination (R2) of 0.99 and a limit of detection of 0.26 mM are detectable. The second design is a modified version of the internally immobilized sensor, where a microbead chamber and a beads filling channel are integrated into the sensor. This modification enabled external co-immobilization of enzymes covalently onto functionalized silica microbeads and allows binding a huge amount of HRP and GOX enzymes on the microbeads surfaces which increases the interaction area between immobilized enzymes and the analyte. This has a positive effect on the amount and rate of chemical reactions taking place inside the chamber. The sensor was tested under continuous glucose flow conditions and was found to be able to detect glucose concentrations up to 10 mM with R2 of 0.98 and a limit of detection of 0.7 mM. Such results are very promising for the application in photonic LOC systems used for online analysis. PMID:25157552

  7. Transcutaneous blood glucose monitoring system based on an ISFET glucose sensor and studies on diabetic patients.

    PubMed

    Ito, N; Saito, A; Kayashima, S; Kimura, J; Kuriyama, T; Nagata, N; Arai, T; Kikuchi, M

    1995-01-01

    A transcutaneous blood glucose monitoring system consists of an ion-sensitive field-effect transistor (ISFET) glucose sensor unit and a suction effusion fluid (SEF) collecting unit. The SEF is directly collected by a weak suction (400 mmHg absolute pressure) through the skin from which the corneum layer of the epidermis has been previously removed. An ISFET glucose sensor unit is able to measure glucose concentrations in a microliter order sampling volume. The system was applied to three diabetic patients during a 75 g oral glucose tolerance test for monitoring blood glucose levels. During the experiments, glucose changes in the SEF followed actual blood glucose levels with 10 min delays. Results suggest the feasibility of utilizing quasi-continuous, transcutaneous blood glucose monitoring for individual patients with various diabetic histories or diabetic complications.

  8. Key Reading Recovery Strategies to Support Classroom Guided Reading Instruction

    ERIC Educational Resources Information Center

    Lipp, Jamie R.; Helfrich, Sara R.

    2016-01-01

    Effective teachers are continuously striving to improve their instruction. Reading Recovery teachers have detailed and specific literacy training and expertise that can be of great value to classroom teachers, especially in the area of guided reading instruction. This article explores the ways in which key Reading Recovery strategies can be…

  9. A data driven nonlinear stochastic model for blood glucose dynamics.

    PubMed

    Zhang, Yan; Holt, Tim A; Khovanova, Natalia

    2016-03-01

    The development of adequate mathematical models for blood glucose dynamics may improve early diagnosis and control of diabetes mellitus (DM). We have developed a stochastic nonlinear second order differential equation to describe the response of blood glucose concentration to food intake using continuous glucose monitoring (CGM) data. A variational Bayesian learning scheme was applied to define the number and values of the system's parameters by iterative optimisation of free energy. The model has the minimal order and number of parameters to successfully describe blood glucose dynamics in people with and without DM. The model accounts for the nonlinearity and stochasticity of the underlying glucose-insulin dynamic process. Being data-driven, it takes full advantage of available CGM data and, at the same time, reflects the intrinsic characteristics of the glucose-insulin system without detailed knowledge of the physiological mechanisms. We have shown that the dynamics of some postprandial blood glucose excursions can be described by a reduced (linear) model, previously seen in the literature. A comprehensive analysis demonstrates that deterministic system parameters belong to different ranges for diabetes and controls. Implications for clinical practice are discussed. This is the first study introducing a continuous data-driven nonlinear stochastic model capable of describing both DM and non-DM profiles. Copyright © 2015 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  10. Development of Cu nanoflowers modified the flexible needle-type microelectrode and its application in continuous monitoring glucose in vivo.

    PubMed

    Fang, Yuxin; Wang, Shenjun; Liu, Yangyang; Xu, Zhifang; Zhang, Kuo; Guo, Yi

    2018-07-01

    A minimally invasive glucose microbiosensor based the flexibly integrated electrode for continuous monitoring glucose in vivo has been developed in this study. This was achieved by coating needle-type microelectrode with Cu nanoflowers, nafion, glucose oxidase (GOD) and polyurethane (PU) membranes, successfully prepared with layer-by-layer deposition. The Cu nanomaterials provided a large specific surface area and electrocatalytic activity for glucose detection. The PU layers as mass-transport limiting membranes significantly enhanced the linearity and stability of sensors. The resulting biosensor exhibited a wide linear range of 0-20 mM, with a good sensitivity of 42.38 nA mM -1 (correlation coefficient r 2 was 0.99) and a fast response time of less than 15 s. In vivo implantable experiments using anesthetized rats showed excellent real-time response to the variation of blood glucose concentration. And the variation tendency of sensor output was consistent with that using the glucose meter. Overall, the results supported the suitability of this microsensor for measuring rapid changes of glucose in vivo. This work offers a promising approach in implantable device applications related to diabetes management as well as other medical diagnosis. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Identification and characterization of the gltK gene encoding a membrane-associated glucose transport protein of pseudomonas aeruginosa.

    PubMed

    Adewoye, L O; Worobec, E A

    2000-08-08

    The Pseudomonas aeruginosa oprB gene encodes the carbohydrate-selective OprB porin, which translocates substrate molecules across the outer membrane to the periplasmic glucose-binding protein. We identified and cloned two open reading frames (ORFs) flanking the oprB gene but are not in operonic arrangement with the oprB gene. The downstream ORF encodes a putative polypeptide homologous to members of a family of transcriptional repressors, whereas the oprB gene is preceded by an ORF encoding a putative product, which exhibits strong homology to several carbohydrate transport ATP-binding cassette (ABC) proteins. The genomic copy of the upstream ORF was mutagenized by homologous recombination. Analysis of the deletion mutant in comparison with the wild type revealed a significant reduction in [14C] glucose transport activity in the mutant strain, suggesting that this ORF likely encodes the inner membrane component of the glucose ABC transporter. It is thus designated gltK gene to reflect its homology to the Pseudomona fluorescens mtlK and its involvement in the high-affinity glucose transport system. Multiple alignment analysis revealed that the P. aeruginosa gltK gene product is a member of the MalK subfamily of ABC proteins.

  12. Metrics for glycaemic control - from HbA1c to continuous glucose monitoring.

    PubMed

    Kovatchev, Boris P

    2017-07-01

    As intensive treatment to lower levels of HbA 1c characteristically results in an increased risk of hypoglycaemia, patients with diabetes mellitus face a life-long optimization problem to reduce average levels of glycaemia and postprandial hyperglycaemia while simultaneously avoiding hypoglycaemia. This optimization can only be achieved in the context of lowering glucose variability. In this Review, I discuss topics that are related to the assessment, quantification and optimal control of glucose fluctuations in diabetes mellitus. I focus on markers of average glycaemia and the utility and/or shortcomings of HbA 1c as a 'gold-standard' metric of glycaemic control; the notion that glucose variability is characterized by two principal dimensions, amplitude and time; measures of glucose variability that are based on either self-monitoring of blood glucose data or continuous glucose monitoring (CGM); and the control of average glycaemia and glucose variability through the use of pharmacological agents or closed-loop control systems commonly referred to as the 'artificial pancreas'. I conclude that HbA 1c and the various available metrics of glucose variability reflect the management of diabetes mellitus on different timescales, ranging from months (for HbA 1c ) to minutes (for CGM). Comprehensive assessment of the dynamics of glycaemic fluctuations is therefore crucial for providing accurate and complete information to the patient, physician, automated decision-support or artificial-pancreas system.

  13. Cot-side electroencephalography monitoring is not clinically useful in the detection of mild neonatal hypoglycemia.

    PubMed

    Harris, Deborah L; Weston, Philip J; Williams, Christopher E; Pleasants, Anthony B; Battin, Malcolm R; Spooner, Claire G; Harding, Jane E

    2011-11-01

    To determine whether there is a relationship between electroencephalography patterns and hypoglycemia, by using simultaneous cot-side amplitude integrated electroencephalography (aEEG) and continuous interstitial glucose monitoring, and whether non-glucose cerebral fuels modified these patterns. Eligible babies were ≥ 32 weeks gestation, at risk for hypoglycemia, and admitted to the neonatal intensive care unit. Electrodes were placed in C3-P3, C4-P4 O1-O2 montages. A continuous interstitial glucose sensor was placed subcutaneously, and blood glucose was measured by using the glucose oxidase method. Non-glucose cerebral fuels were measured at study entry, exit, and during recognized hypoglycemia. A total of 101 babies were enrolled, with a median weight of 2179 g and gestation of 35 weeks. Twenty-four of the babies had aEEG recordings, and glucose concentrations were low (< 2.6 mM). There were 103 episodes of low glucose concentrations lasting 5 to 475 minutes, but no observable changes in aEEG variables. Plasma concentrations of lactate, beta-hydroxybutyrate, and glycerol were low and did not alter during hypoglycemia. Cot-side aEEG was not useful for the detection of neurological changes during mild hypoglycemia. Plasma concentrations of non-glucose cerebral fuels were low and unlikely to provide substantial neuroprotection. Copyright © 2011 Mosby, Inc. All rights reserved.

  14. Effect of glucose concentration on peritoneal inflammatory cytokines in continuous ambulatory peritoneal dialysis patients.

    PubMed Central

    Sayarlioglu, Hayriye; Topal, Cevat; Sayarlioglu, Mehmet; Dulger, Haluk; Dogan, Ekrem; Erkoc, Reha

    2004-01-01

    OBJECTIVE: It is known that glucose concentrations of peritoneal dialysis solutions are detrimental to the peritoneal membrane. In order to determine the effect of glucose concentration on cytokine levels of peritoneal fluid of continuous ambulatory peritoneal dialysis (CAPD) patients, a cross-sectional study was performed. METHODS: Nine non-diabetic CAPD patients participated in two 8-h dwell sessions of overnight exchanges in consecutive days, with 1.36% and 3.86% glucose containing peritoneal dialysis solutions (Baxter-Eczacibas). Peritoneal dialysis fluid tumor necrosis factor (TNF)-alpha and interleukin (IL)-6 levels were measured. RESULTS: TNF-alpha levels after 1.36% and 3.86% glucose used dwells were 23+/-14 pg/ml and 28+/-4 pg/ml, respectively (p=0.78). The IL-6 levels were 106+/-57 pg/ml and 115+/-63 pg/ml (p=0.81), respectively. CONCLUSION: In our in vivo study we found that the glucose concentration of the conventional lactate-based CAPD solution has no effect on basal IL-6 and TNF-alpha levels of peritoneal fluid. Further in vivo studies with non-lactate-based CAPD solutions are needed in order to determine the effect of glucose concentration per se on cytokine release. PMID:15203553

  15. Enhanced self-monitoring blood glucose in non-insulin requiring Type 2 diabetes: A qualitative study in primary care.

    PubMed

    Brackney, Dana Elisabeth

    2018-03-31

    To contribute to both theoretical and practical understanding of the role of self-monitoring blood glucose for self-management by describing the experience of people with non-insulin requiring Type 2 diabetes in an enhanced structured self-monitoring blood glucose intervention. The complex context of self-monitoring blood glucose in Type 2 diabetes requires a deeper understanding of the clients' illness experience with structured self-monitoring of blood glucose. Clients' numeracy skills contribute to their response to blood glucose readings. Nurses' use of motivational interviewing to increase clients' regulatory self-efficacy is important to the theoretical perspective of the study. A qualitative descriptive study. A purposive sample of eleven adults recently (<2 years) diagnosed with non-insulin requiring Type 2 diabetes who had experienced a structured self-monitoring blood glucose intervention participated in this study. Audio recordings of semi-structured interviews and photos of logbooks were analyzed for themes using constant comparison and member checking. The illness experience states of Type 2 diabetes include 'Diagnosis', 'Behavior change', and 'Routine checking'. People check blood glucose to confirm their Type 2 diabetes diagnosis, to console their diabetes related fears, to create personal explanations of health behavior's impact on blood glucose, to activate behavior change and to congratulate their diabetes self-management efforts. These findings support the Transtheoretical model's stages of change and change processes. Blood glucose checking strengthens the relationships between theoretical concepts found in Diabetes Self-management Education-Support including: engagement, information sharing, and behavioral support. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  16. The effectiveness of glucose, sucrose, and fructose in treating hypoglycemia in children with type 1 diabetes.

    PubMed

    Husband, Allison C; Crawford, Susan; McCoy, Lesley A; Pacaud, Danièle

    2010-05-01

    There is a lack of evidence regarding the most effective treatment option for managing naturally occurring hypoglycemia in children with type 1 diabetes. The objectives of this study were (i) to determine if sucrose and fructose are equally effective as glucose in the treatment of spontaneous hypoglycemia in children with type 1 diabetes; and (ii) to determine prestudy and poststudy hypoglycemia treatment preferences. Thirty-three subjects [aged 5.4-15.5 yr and average duration of type 1 diabetes of 3.1 yr (SD = 2.3)] participated in a randomized, crossover design. The main outcome was the effectiveness of treatment as defined by a blood glucose meter reading that was > or = 4.0 mmol/L 15 min after treatment. Each subject treated five hypoglycemic events with each treatment type: glucose (BD Glucose Tablets), sucrose (Skittles), and fructose (Fruit to Go). There was a significant difference between the effectiveness of the three treatments [Wilk's Lambda F(2,28) = 8.64, p = 0.001]. No significant difference between treatment with glucose and treatment with sucrose was noted, but the treatment effectiveness for fructose was significantly lower than sucrose [F (1,29) = 16.09, p < 0.001] and glucose [F (1,29) = 15.64, p < 0.001]. The preferred treatment choices before the study were as follows: 36% glucose, 18% sucrose, and 33% fructose sources. Poststudy, 52% of children preferred the same treatment, which was effective (glucose or sucrose), followed by 35% who changed their preference to an effective treatment. Skittles are as effective in treating hypoglycemia as more expensive BD Glucose Tablets in children with type 1 diabetes.

  17. Glycogen synthase from the parabasalian parasite Trichomonas vaginalis: An unusual member of the starch/glycogen synthase family.

    PubMed

    Wilson, Wayne A; Pradhan, Prajakta; Madhan, Nayasha; Gist, Galen C; Brittingham, Andrew

    2017-07-01

    Trichomonas vaginalis, a parasitic protist, is the causative agent of the common sexually-transmitted infection trichomoniasis. The organism has long been known to synthesize substantial glycogen as a storage polysaccharide, presumably mobilizing this compound during periods of carbohydrate limitation, such as might be encountered during transmission between hosts. However, little is known regarding the enzymes of glycogen metabolism in T. vaginalis. We had previously described the identification and characterization of two forms of glycogen phosphorylase in the organism. Here, we measure UDP-glucose-dependent glycogen synthase activity in cell-free extracts of T. vaginalis. We then demonstrate that the TVAG_258220 open reading frame encodes a glycosyltransferase that is presumably responsible for this synthetic activity. We show that expression of TVAG_258220 in a yeast strain lacking endogenous glycogen synthase activity is sufficient to restore glycogen accumulation. Furthermore, when TVAG_258220 is expressed in bacteria, the resulting recombinant protein has glycogen synthase activity in vitro, transferring glucose from either UDP-glucose or ADP-glucose to glycogen and using both substrates with similar affinity. This protein is also able to transfer glucose from UDP-glucose or ADP-glucose to maltose and longer oligomers of glucose but not to glucose itself. However, with these substrates, there is no evidence of processivity and sugar transfer is limited to between one and three glucose residues. Taken together with our earlier work on glycogen phosphorylase, we are now well positioned to define both how T. vaginalis synthesizes and utilizes glycogen, and how these processes are regulated. Copyright © 2017 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  18. The artificial pancreas: evaluating risk of hypoglycaemia following errors that can be expected with prolonged at-home use.

    PubMed

    Wolpert, H; Kavanagh, M; Atakov-Castillo, A; Steil, G M

    2016-02-01

    Artificial pancreas systems show benefit in closely monitored at-home studies, but may not have sufficient power to assess safety during infrequent, but expected, system or user errors. The aim of this study was to assess the safety of an artificial pancreas system emulating the β-cell when the glucose value used for control is improperly calibrated and participants forget to administer pre-meal insulin boluses. Artificial pancreas control was performed in a clinic research centre on three separate occasions each lasting from 10 p.m. to 2 p.m. Sensor glucose values normally used for artificial pancreas control were replaced with scaled blood glucose values calculated to be 20% lower than, equal to or 33% higher than the true blood glucose. Safe control was defined as blood glucose between 3.9 and 8.3 mmol/l. Artificial pancreas control resulted in fasting scaled blood glucose values not different from target (6.67 mmol/l) at any scaling factor. Meal control with scaled blood glucose 33% higher than blood glucose resulted in supplemental carbohydrate to prevent hypoglycaemia in four of six participants during breakfast, and one participant during the night. In all instances, scaled blood glucose reported blood glucose as safe. Outpatient trials evaluating artificial pancreas performance based on sensor glucose may not detect hypoglycaemia when sensor glucose reads higher than blood glucose. Because these errors are expected to occur, in-hospital artificial pancreas studies using supplemental carbohydrate in anticipation of hypoglycaemia, which allow safety to be assessed in a controlled non-significant environment should be considered as an alternative. Inpatient studies provide a definitive alternative to model-based computer simulations and can be conducted in parallel with closely monitored outpatient artificial pancreas studies used to assess benefit. © 2015 The Authors. Diabetic Medicine published by John Wiley & Sons Ltd on behalf of Diabetes UK.

  19. Moderate glucose supply reduces hemolysis during systemic inflammation

    PubMed Central

    Jägers, Johannes; Brauckmann, Stephan; Kirsch, Michael; Effenberger-Neidnicht, Katharina

    2018-01-01

    Background Systemic inflammation alters energy metabolism. A sufficient glucose level, however, is most important for erythrocytes, since erythrocytes rely on glucose as sole source of energy. Damage to erythrocytes leads to hemolysis. Both disorders of glucose metabolism and hemolysis are associated with an increased risk of death. The objective of the study was to investigate the impact of intravenous glucose on hemolysis during systemic inflammation. Materials and methods Systemic inflammation was accomplished in male Wistar rats by continuous lipopolysaccharide (LPS) infusion (1 mg LPS/kg and h, 300 min). Sham control group rats received Ringer’s solution. Glucose was supplied moderately (70 mg glucose/kg and h) or excessively (210 mg glucose/kg and h) during systemic inflammation. Vital parameters (eg, systemic blood pressure) as well as blood and plasma parameters (eg, concentrations of glucose, lactate and cell-free hemoglobin, and activity of lactate dehydrogenase) were measured hourly. Clot formation was analyzed by thromboelastometry. Results Continuous infusion of LPS led to a so-called post-aggression syndrome with disturbed electrolyte homeostasis (hypocalcemia, hyperkalemia, and hypernatremia), changes in hemodynamics (tachycardia and hypertension), and a catabolic metabolism (early hyperglycemia, late hypoglycemia, and lactate formation). It induced severe tissue injury (significant increases in plasma concentrations of transaminases and lactate dehydrogenase), alterations in blood coagulation (disturbed clot formation), and massive hemolysis. Both moderate and excessive glucose supply reduced LPS-induced increase in systemic blood pressure. Excessive but not moderate glucose supply increased blood glucose level and enhanced tissue injury. Glucose supply did not reduce LPS-induced alterations in coagulation, but significantly reduced hemolysis induced by LPS. Conclusion Intravenous glucose infusion can diminish LPS-related changes in hemodynamics, glucose metabolism, and, more interestingly, LPS-induced hemolysis. Since cell-free hemoglobin is known to be a predictor for patient’s survival, a reduction of hemolysis by 35% only by the addition of a small amount of glucose is another step to minimize mortality during systemic inflammation. PMID:29559805

  20. Closed-loop controlled noninvasive ultrasonic glucose sensing and insulin delivery

    NASA Astrophysics Data System (ADS)

    Park, Eun-Joo; Werner, Jacob; Jaiswal, Devina; Smith, Nadine Barrie

    2010-03-01

    To prevent complications in diabetes, the proper management of blood glucose levels is essential. Previously, ultrasonic transdermal methods using a light-weight cymbal transducer array has been studied for noninvasive methods of insulin delivery for Type-1 diabetes and glucose level monitoring. In this study, the ultrasound systems of insulin delivery and glucose sensing have been combined by a feedback controller. This study was designed to show the feasibility of the feedback controlled ultrasound system for the noninvasive glucose control. For perspective human application, in vivo experiments were performed on large animals that have a similar size to humans. Four in vivo experiments were performed using about 200 lbs pigs. The cymbal array of 3×3 pattern has been used for insulin delivery at 30 kHz with the spatial-peak temporal-peak intensity (Isptp) of 100 mW/cm2. For glucose sensing, a 2×2 array was operated at 20 kHz with Isptp = 100 mW/cm2. Based on the glucose level determined by biosensors after the ultrasound exposure, the ultrasound system for the insulin delivery was automatically operated. The glucose level of 115 mg/dl was set as a reference value for operating the insulin delivery system. For comparison, the glucose levels of blood samples collected from the ear vein were measured by a commercial glucose meter. Using the ultrasound system operated by the close-loop, feed-back controller, the glucose levels of four pigs were determined every 20 minutes and continuously controlled for 120 minutes. In comparison to the commercial glucose meter, the glucose levels determined by the biosensor were slightly higher. The results of in vivo experiments indicate the feasibility of the feedback controlled ultrasound system using the cymbal array for noninvasive glucose sensing and insulin delivery. Further studies on the extension of the glucose control will be continued for the effective method of glucose control.

  1. Microcirculation and its relation to continuous subcutaneous glucose sensor accuracy in cardiac surgery patients in the intensive care unit.

    PubMed

    Siegelaar, Sarah E; Barwari, Temo; Hermanides, Jeroen; van der Voort, Peter H J; Hoekstra, Joost B L; DeVries, J Hans

    2013-11-01

    Continuous glucose monitoring could be helpful for glucose regulation in critically ill patients; however, its accuracy is uncertain and might be influenced by microcirculation. We investigated the microcirculation and its relation to the accuracy of 2 continuous glucose monitoring devices in patients after cardiac surgery. The present prospective, observational study included 60 patients admitted for cardiac surgery. Two continuous glucose monitoring devices (Guardian Real-Time and FreeStyle Navigator) were placed before surgery. The relative absolute deviation between continuous glucose monitoring and the arterial reference glucose was calculated to assess the accuracy. Microcirculation was measured using the microvascular flow index, perfused vessel density, and proportion of perfused vessels using sublingual sidestream dark-field imaging, and tissue oxygenation using near-infrared spectroscopy. The associations were assessed using a linear mixed-effects model for repeated measures. The median relative absolute deviation of the Navigator was 11% (interquartile range, 8%-16%) and of the Guardian was 14% (interquartile range, 11%-18%; P = .05). Tissue oxygenation significantly increased during the intensive care unit admission (maximum 91.2% [3.9] after 6 hours) and decreased thereafter, stabilizing after 20 hours. A decrease in perfused vessel density accompanied the increase in tissue oxygenation. Microcirculatory variables were not associated with sensor accuracy. A lower peripheral temperature (Navigator, b = -0.008, P = .003; Guardian, b = -0.006, P = .048), and for the Navigator, also a higher Acute Physiology and Chronic Health Evaluation IV predicted mortality (b = 0.017, P < .001) and age (b = 0.002, P = .037) were associated with decreased sensor accuracy. The results of the present study have shown acceptable accuracy for both sensors in patients after cardiac surgery. The microcirculation was impaired to a limited extent compared with that in patients with sepsis and healthy controls. This impairment was not related to sensor accuracy but the peripheral temperature for both sensors and patient age and Acute Physiology and Chronic Health Evaluation IV predicted mortality for the Navigator were. Copyright © 2013 The American Association for Thoracic Surgery. Published by Mosby, Inc. All rights reserved.

  2. Use of a continuous glucose sensor in an extracorporeal life support circuit.

    PubMed

    Steil, Garry M; Alexander, Jamin; Papas, Alexandra; Monica, Langer; Modi, Biren P; Piper, Hannah; Jaksic, Tom; Gottlieb, Rebecca; Agus, Michael S D

    2011-01-01

    Standard care for infants on extracorporeal life support (ECLS) relies on intermittent measurement of blood glucose (BG); however, this can lead to significant changes in BG that go unrecognized for several hours. The present study was designed to assess performance and clinical applicability of a subcutaneous glucose sensor technology modified for use as a blood-contacting sensor within the ECLS circuit. Twelve children, aged 3 years or less, requiring ECLS support were studied. Three continuous glucose sensors (Medtronic MiniMed) were inserted into hubs placed in line with the ECLS circuit. Blood glucose was assessed with a laboratory analyzer (BG(LAB); Bayer Rapidlab 860) approximately every 5 h (mean 4.9 ± 3.3 h) with more frequent samples obtained with a bedside monitor (HemoCue) as needed. Sensor current (I(SIG)) was transmitted to a laptop computer and retrospectively calibrated using BGLAB. Sensor performance was assessed by mean absolute relative difference (MARD), linear regression slope and intercept, and correlation, all with BGLAB as reference. The BGLAB averaged 107.6 ± 36.4 mg/dl (mean ± standard deviation) ranging from 58 to 366 mg/dl. The MARD was 11.4%, with linear regression slope (0.86 ± 0.030) and intercept (9.0 ± 3.2 mg/dl) different from 1 and 0, respectively (p < .05), and correlation (r² = 0.76; p < .001). The system was not associated with any adverse events, and placement and removal into the hubs was easily accomplished. Instances in which more frequent BG values were obtained using a bedside HemoCue (BGHEMO) monitor showed the sensor to respond rapidly to changes. We conclude that continuous sensors can be adapted for use in an ECLS circuit with accuracy similar to or better than that achieved with the subcutaneous site. Continuous glucose monitoring in this population can rapidly detect changes in BG that would not otherwise be observed. Further studies will be needed to assess the benefit of continuous glucose monitoring in this population. © 2010 Diabetes Technology Society.

  3. Automated integration of continuous glucose monitor data in the electronic health record using consumer technology

    PubMed Central

    Kumar, Rajiv B; Goren, Nira D; Stark, David E; Wall, Dennis P; Longhurst, Christopher A

    2016-01-01

    The diabetes healthcare provider plays a key role in interpreting blood glucose trends, but few institutions have successfully integrated patient home glucose data in the electronic health record (EHR). Published implementations to date have required custom interfaces, which limit wide-scale replication. We piloted automated integration of continuous glucose monitor data in the EHR using widely available consumer technology for 10 pediatric patients with insulin-dependent diabetes. Establishment of a passive data communication bridge via a patient’s/parent’s smartphone enabled automated integration and analytics of patient device data within the EHR between scheduled clinic visits. It is feasible to utilize available consumer technology to assess and triage home diabetes device data within the EHR, and to engage patients/parents and improve healthcare provider workflow. PMID:27018263

  4. Continuous Glucose Monitoring (CGM) or Blood Glucose Monitoring (BGM): Interactions and Implications.

    PubMed

    Heinemann, Lutz

    2018-04-01

    At the 2017 10th annual International Conference on Advanced Technologies and Treatments for Diabetes (ATTD) in Paris, France, four speakers presented their perspectives on the roles of continuous glucose monitoring (CGM) and of blood glucose monitoring (BGM) in patient management within one symposium. These presentations included discussions of the differences in the accuracy of CGM and BGM, a clinical perspective on the physiological reasons behind differences in CGM and BGM values, and an overview of the impact of variations in device accuracy on patients with diabetes. Subsequently a short summary of these presentations is given, highlighting the value of good accuracy of BGM or CGM systems and the ongoing need for standardization. The important role of both BGM and CGM in patient management was a theme across all presentations.

  5. Reliable glucose monitoring by ex-vivo blood microdialysis and infrared spectrometry for patients in critical care

    NASA Astrophysics Data System (ADS)

    Vahlsing, Thorsten; Delbeck, Sven; Budde, Janpeter; Ihrig, Dieter; Leonhardt, Steffen; Heise, H. Michael

    2017-02-01

    Blood glucose monitoring has been realised by biosensors in combination with micro-dialysis, using either subcutaneously or intravascularly implanted catheters. Another alternative is ex-vivo micro-dialysis of continuously sampled heparinized whole blood available from the patient even under critical care conditions. However, most devices suffer from inaccuracies due to variable recovery rates. Infrared spectrometry has been suggested for analyte quantification, since besides glucose other clinically relevant analytes can be simultaneously determined that are, e.g., important for intensive care patients. Perfusates with acetate and mannitol have been investigated as recovery markers (internal standards). In contrast to the previously used acetate, an almost linear dependency between mannitol loss and glucose recovery was observed for micro-dialysis of glucose spiked aqueous albumin solutions or porcine heparinized whole blood when testing flat membranes within a custom-made micro-dialysator. By this, a straightforward compensation of any dialysis recovery rate variation during patient monitoring is possible. The combination of microdialysis with infrared spectrometry provides a calibration-free assay for accurate continuous glucose monitoring, as reference spectra of dialysate components can be a-priori allocated.

  6. An Implantable RFID Sensor Tag toward Continuous Glucose Monitoring.

    PubMed

    Xiao, Zhibin; Tan, Xi; Chen, Xianliang; Chen, Sizheng; Zhang, Zijian; Zhang, Hualei; Wang, Junyu; Huang, Yue; Zhang, Peng; Zheng, Lirong; Min, Hao

    2015-05-01

    This paper presents a wirelessly powered implantable electrochemical sensor tag for continuous blood glucose monitoring. The system is remotely powered by a 13.56-MHz inductive link and utilizes an ISO 15693 radio frequency identification (RFID) standard for communication. This paper provides reliable and accurate measurement for changing glucose level. The sensor tag employs a long-term glucose sensor, a winding ferrite antenna, an RFID front-end, a potentiostat, a 10-bit sigma-delta analog to digital converter, an on-chip temperature sensor, and a digital baseband for protocol processing and control. A high-frequency external reader is used to power, command, and configure the sensor tag. The only off-chip support circuitry required is a tuned antenna and a glucose microsensor. The integrated chip fabricated in SMIC 0.13-μm CMOS process occupies an area of 1.2 mm ×2 mm and consumes 50 μW. The power sensitivity of the whole system is -4 dBm. The sensor tag achieves a measured glucose range of 0-30 mM with a sensitivity of 0.75 nA/mM.

  7. Update on Neonatal Hypoglycemia

    PubMed Central

    Rozance, Paul J.

    2014-01-01

    Purpose of Review Neonatal hypoglycemia is one of the most common biochemical abnormalities encountered in the newborn. However, controversy remains surrounding its definition and management especially in asymptomatic patients. Recent Findings New information has been published that describes the incidence and timing of low glucose concentrations in the groups most at risk for asymptomatic neonatal hypoglycemia. Furthermore, one large prospective study failed to find an association between repetitive low glucose concentrations and poor neurodevelopmental outcomes in preterm infants. But hypoglycemia due to hyperinsulinism, especially genetic causes, continued to be associated with brain injury. New advances were made in the diagnosis and management of hyperinsulinism, including acquired hyperinsulinism in small for gestational age infants and others. Continuous glucose monitoring remains an attractive strategy for future research in this area. Summary The fundamental question of how best to manage asymptomatic newborns with low glucose concentrations remains unanswered. Balancing the risks of over treating newborns with low glucose concentrations who are undergoing a normal transition following birth against the risks of under treating those in whom low glucose concentrations are pathological, dangerous, and/or a harbinger of serious metabolic disease remains a challenge. PMID:24275620

  8. Update on neonatal hypoglycemia.

    PubMed

    Rozance, Paul J

    2014-02-01

    Neonatal hypoglycemia is one of the most common biochemical abnormalities encountered in the newborn. However, controversy remains surrounding its definition and management especially in asymptomatic patients. New information has been published that describes the incidence and timing of low glucose concentrations in the groups most at risk for asymptomatic neonatal hypoglycemia. Furthermore, one large prospective study failed to find an association between repetitive low glucose concentrations and poor neurodevelopmental outcomes in preterm infants. But hypoglycemia due to hyperinsulinism, especially genetic causes, continued to be associated with brain injury. New advances were made in the diagnosis and management of hyperinsulinism, including acquired hyperinsulinism in small for gestational age infants and others. Continuous glucose monitoring remains an attractive strategy for future research in this area. The fundamental question of how best to manage asymptomatic newborns with low glucose concentrations remains unanswered. Balancing the risks of overtreating newborns with low glucose concentrations who are undergoing a normal transition following birth against the risks of undertreating those in whom low glucose concentrations are pathological, dangerous, and/or a harbinger of serious metabolic disease remains a challenge.

  9. Generation of an immortalized mesenchymal stem cell line producing a secreted biosensor protein for glucose monitoring

    PubMed Central

    Weisman, Itamar; Romano, Jacob; Ivics, Zoltán; Izsvák, Zsuzsanna; Barkai, Uriel

    2017-01-01

    Diabetes is a chronic disease characterized by high levels of blood glucose. Diabetic patients should normalize these levels in order to avoid short and long term clinical complications. Presently, blood glucose monitoring is dependent on frequent finger pricking and enzyme based systems that analyze the drawn blood. Continuous blood glucose monitors are already on market but suffer from technical problems, inaccuracy and short operation time. A novel approach for continuous glucose monitoring is the development of implantable cell-based biosensors that emit light signals corresponding to glucose concentrations. Such devices use genetically modified cells expressing chimeric genes with glucose binding properties. MSCs are good candidates as carrier cells, as they can be genetically engineered and expanded into large numbers. They also possess immunomodulatory properties that, by reducing local inflammation, may assist long operation time. Here, we generated a novel immortalized human MSC line co-expressing hTERT and a secreted glucose biosensor transgene using the Sleeping Beauty transposon technology. Genetically modified hMSCs retained their mesenchymal characteristics. Stable transgene expression was validated biochemically. Increased activity of hTERT was accompanied by elevated and constant level of stem cell pluripotency markers and subsequently, by MSC immortalization. Furthermore, these cells efficiently suppressed PBMC proliferation in MLR transwell assays, indicating that they possess immunomodulatory properties. Finally, biosensor protein produced by MSCs was used to quantify glucose in cell-free assays. Our results indicate that our immortalized MSCs are suitable for measuring glucose concentrations in a physiological range. Thus, they are appropriate for incorporation into a cell-based, immune-privileged, glucose-monitoring medical device. PMID:28949988

  10. Alarm characterization for a continuous glucose monitor that replaces traditional blood glucose monitoring.

    PubMed

    McGarraugh, Geoffrey

    2010-01-01

    Continuous glucose monitoring (CGM) devices available in the United States are approved for use as adjuncts to self-monitoring of blood glucose (SMBG); all CGM alarms require SMBG confirmation before treatment. In this report, an analysis method is proposed to determine the CGM threshold alarm accuracy required to eliminate SMBG confirmation. The proposed method builds on the Clinical and Laboratory Standards Institute (CLSI) guideline for evaluating CGM threshold alarms using data from an in-clinic study of subjects with type 1 diabetes. The CLSI method proposes a maximum time limit of +/-30 minutes for the detection of hypo- and hyperglycemic events but does not include limits for glucose measurement accuracy. The International Standards Organization (ISO) standard for SMBG glucose measurement accuracy (ISO 15197) is +/-15 mg/dl for glucose <75 mg/dl and +/-20% for glucose > or = 75 mg/dl. This standard was combined with the CLSI method to more completely characterize the accuracy of CGM alarms. Incorporating the ISO 15197 accuracy margins, FreeStyle Navigator CGM system alarms detected 70 mg/dl hypoglycemia within 30 minutes at a rate of 70.3%, with a false alarm rate of 11.4%. The device detected high glucose in the range of 140-300 mg/dl within 30 minutes at an average rate of 99.2%, with a false alarm rate of 2.1%. Self-monitoring of blood glucose confirmation is necessary for detecting and treating hypoglycemia with the FreeStyle Navigator CGM system, but at high glucose levels, SMBG confirmation adds little incremental value to CGM alarms. 2010 Diabetes Technology Society.

  11. Evaluation of a Novel Glucose Area Under the Curve (AUC) Monitoring System: Comparison with the AUC by Continuous Glucose Monitoring

    PubMed Central

    Maegawa, Hiroshi; Morino, Katsutaro; Nishio, Yoshihiko; Sato, Toshiyuki; Okada, Seiki; Kikkawa, Yasuo; Watanabe, Toshihiro; Nakajima, Hiromu; Kashiwagi, Atsunori

    2016-01-01

    Background Management of postprandial hyperglycemia is a key aspect in diabetes treatment. We developed a novel system to measure glucose area under the curve (AUC) using minimally invasive interstitial fluid extraction technology (MIET) for simple monitoring of postprandial glucose excursions. In this study, we evaluated the relationship between our system and continuous glucose monitoring (CGM) by comparing glucose AUC obtained using MIET with that obtained using CGM for a long duration. Methods Twenty diabetic inpatients wearing a CGM system were enrolled. For MIET measurement, a plastic microneedle array was applied to the skin as pretreatment, and hydrogels were placed on the pretreated area to collect interstitial fluid. Hydrogels were replaced every 2 or 4 hours and AUC was predicted on the basis of glucose and sodium ion levels. Results AUC predicted by MIET correlated well with that measured by CGM (r=0.93). Good performances of both consecutive 2- and 4-hour measurements were observed (measurement error: 11.7%±10.2% for 2 hours and 11.1%±7.9% for 4 hours), indicating the possibility of repetitive measurements up to 8 hours. The influence of neither glucose fluctuation nor average glucose level over the measurement accuracy was observed through 8 hours. Conclusion Our system showed good relationship with AUC values from CGM up to 8 hours, indicating that single pretreatment can cover a large portion of glucose excursion in a day. These results indicated possibility of our system to contribute to convenient monitoring of glucose excursions for a long duration. PMID:27535643

  12. Evaluation of a Novel Glucose Area Under the Curve (AUC) Monitoring System: Comparison with the AUC by Continuous Glucose Monitoring.

    PubMed

    Ugi, Satoshi; Maegawa, Hiroshi; Morino, Katsutaro; Nishio, Yoshihiko; Sato, Toshiyuki; Okada, Seiki; Kikkawa, Yasuo; Watanabe, Toshihiro; Nakajima, Hiromu; Kashiwagi, Atsunori

    2016-08-01

    Management of postprandial hyperglycemia is a key aspect in diabetes treatment. We developed a novel system to measure glucose area under the curve (AUC) using minimally invasive interstitial fluid extraction technology (MIET) for simple monitoring of postprandial glucose excursions. In this study, we evaluated the relationship between our system and continuous glucose monitoring (CGM) by comparing glucose AUC obtained using MIET with that obtained using CGM for a long duration. Twenty diabetic inpatients wearing a CGM system were enrolled. For MIET measurement, a plastic microneedle array was applied to the skin as pretreatment, and hydrogels were placed on the pretreated area to collect interstitial fluid. Hydrogels were replaced every 2 or 4 hours and AUC was predicted on the basis of glucose and sodium ion levels. AUC predicted by MIET correlated well with that measured by CGM (r=0.93). Good performances of both consecutive 2- and 4-hour measurements were observed (measurement error: 11.7%±10.2% for 2 hours and 11.1%±7.9% for 4 hours), indicating the possibility of repetitive measurements up to 8 hours. The influence of neither glucose fluctuation nor average glucose level over the measurement accuracy was observed through 8 hours. Our system showed good relationship with AUC values from CGM up to 8 hours, indicating that single pretreatment can cover a large portion of glucose excursion in a day. These results indicated possibility of our system to contribute to convenient monitoring of glucose excursions for a long duration.

  13. Glucose monitoring using a polymer brush modified polypropylene hollow fiber-based hydraulic flow sensor.

    PubMed

    Fortin, Nicolas; Klok, Harm-Anton

    2015-03-04

    Tight regulation of blood glucose levels of diabetic patients requires durable and robust continuous glucose sensing schemes. This manuscript reports the fabrication of ultrathin, phenylboronic acid (PBA) functionalized polymer brushes that swell upon glucose binding and which were integrated as the sensing interface in a new polypropylene hollow fiber (PPHF)-based hydraulic flow glucose sensor prototype. The polymer brushes were prepared via surface-initiated atom transfer radical polymerization of sodium methacrylate followed by postpolymerization modification with 3-aminophenyl boronic acid. In a first series of experiments, the glucose-response of PBA-functionalized poly(methacrylic acid) (PMAA) brushes grafted from planar silicon surfaces was investigated by quartz crystal microbalance with dissipation (QCM-D) and atomic force microscopy (AFM) experiments. The QCM-D experiments revealed a more or less linear change of the frequency shift for glucose concentrations up to ∼10 mM and demonstrated that glucose binding was completely reversible for up to seven switching cycles. The AFM experiments indicated that glucose binding was accompanied by an increase in the film thickness of the PBA functionalized PMAA brushes. The PBA functionalized PMAA brushes were subsequently grafted from the surface of PPHF membranes. The hydraulic permeability of these porous fibers depends on the thickness and swelling of the PMAA brush coating. PBA functionalized brush-coated PPHFs showed a decrease in flux upon exposure to glucose, which is consistent with swelling of the brush coating. Because they avoid the use of enzymes and do not rely on an electrochemical transduction scheme, these PPHF-based hydraulic flow sensors could represent an interesting alternative class of continuous glucose sensors.

  14. Generation of an immortalized mesenchymal stem cell line producing a secreted biosensor protein for glucose monitoring.

    PubMed

    Siska, Evangelia K; Weisman, Itamar; Romano, Jacob; Ivics, Zoltán; Izsvák, Zsuzsanna; Barkai, Uriel; Petrakis, Spyros; Koliakos, George

    2017-01-01

    Diabetes is a chronic disease characterized by high levels of blood glucose. Diabetic patients should normalize these levels in order to avoid short and long term clinical complications. Presently, blood glucose monitoring is dependent on frequent finger pricking and enzyme based systems that analyze the drawn blood. Continuous blood glucose monitors are already on market but suffer from technical problems, inaccuracy and short operation time. A novel approach for continuous glucose monitoring is the development of implantable cell-based biosensors that emit light signals corresponding to glucose concentrations. Such devices use genetically modified cells expressing chimeric genes with glucose binding properties. MSCs are good candidates as carrier cells, as they can be genetically engineered and expanded into large numbers. They also possess immunomodulatory properties that, by reducing local inflammation, may assist long operation time. Here, we generated a novel immortalized human MSC line co-expressing hTERT and a secreted glucose biosensor transgene using the Sleeping Beauty transposon technology. Genetically modified hMSCs retained their mesenchymal characteristics. Stable transgene expression was validated biochemically. Increased activity of hTERT was accompanied by elevated and constant level of stem cell pluripotency markers and subsequently, by MSC immortalization. Furthermore, these cells efficiently suppressed PBMC proliferation in MLR transwell assays, indicating that they possess immunomodulatory properties. Finally, biosensor protein produced by MSCs was used to quantify glucose in cell-free assays. Our results indicate that our immortalized MSCs are suitable for measuring glucose concentrations in a physiological range. Thus, they are appropriate for incorporation into a cell-based, immune-privileged, glucose-monitoring medical device.

  15. Measurement of Glucose in Blood with a Phenylboronic Acid Optical Sensor

    PubMed Central

    Worsley, Graham J.; Tourniaire, Guilhem A.; Medlock, Kathryn E. S.; Sartain, Felicity K.; Harmer, Hazel E.; Thatcher, Michael; Horgan, Adrian M.; Pritchard, John

    2008-01-01

    Background Current methods of glucose monitoring rely predominantly on enzymes such as glucose oxidase for detection. Phenylboronic acid receptors have been proposed as alternative glucose binders. A unique property of these molecules is their ability to bind glucose in a fully reversible covalent manner that facilitates direct continuous measurements. We examined (1) the ability of a phenylboronic-based sensor to measure glucose in blood and blood plasma and (2) the effect on measurement accuracy of a range of potential interferents. We also showed that the sensor is able to track glucose fluctuations occurring at rates mimicking those experienced in vivo. Method In vitro static measurements of glucose in blood and blood plasma were conducted using holographic sensors containing acrylamide, N,N′-methylenebisacrylamide, 3-acrylamidophenylboronic acid, and (3-acrylamidopropyl) trimethylammonium chloride. The same sensors were also used for in vitro measurements performed under flow conditions. Results The opacity of the liquid had no affect on the ability of the optical sensor to measure glucose in blood or blood plasma. The presence of common antibiotics, diabetic drugs, pain killers, and endogenous substances did not affect the measurement accuracy, as shown by error grid analysis. Ex vivo flow experiments showed that the sensor is able to track changes accurately in concentration occurring in real time without lag or evidence of hysteresis. Conclusions The ability of phenylboronic acid sensors to measure glucose in whole blood was demonstrated for the first time. Holographic sensors are ideally suited to continuous blood glucose measurements, being physically and chemically robust and potentially calibration free. PMID:19885345

  16. Computer Vision Syndrome for Non-Native Speaking Students: What Are the Problems with Online Reading?

    ERIC Educational Resources Information Center

    Tseng, Min-chen

    2014-01-01

    This study investigated the online reading performances and the level of visual fatigue from the perspectives of non-native speaking students (NNSs). Reading on a computer screen is more visually more demanding than reading printed text. Online reading requires frequent saccadic eye movements and imposes continuous focusing and alignment demand.…

  17. 32 CFR 518.9 - Reading room.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 3 2014-07-01 2014-07-01 false Reading room. 518.9 Section 518.9 National Defense Department of Defense (Continued) DEPARTMENT OF THE ARMY AID OF CIVIL AUTHORITIES AND PUBLIC RELATIONS THE FREEDOM OF INFORMATION ACT PROGRAM FOIA Reading Rooms § 518.9 Reading room. (a) Reading room location. The DA shall provide an appropriate...

  18. 32 CFR 518.9 - Reading room.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 3 2012-07-01 2009-07-01 true Reading room. 518.9 Section 518.9 National Defense Department of Defense (Continued) DEPARTMENT OF THE ARMY AID OF CIVIL AUTHORITIES AND PUBLIC RELATIONS THE FREEDOM OF INFORMATION ACT PROGRAM FOIA Reading Rooms § 518.9 Reading room. (a) Reading room location. The DA shall provide an appropriate...

  19. 32 CFR 518.9 - Reading room.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 3 2013-07-01 2013-07-01 false Reading room. 518.9 Section 518.9 National Defense Department of Defense (Continued) DEPARTMENT OF THE ARMY AID OF CIVIL AUTHORITIES AND PUBLIC RELATIONS THE FREEDOM OF INFORMATION ACT PROGRAM FOIA Reading Rooms § 518.9 Reading room. (a) Reading room location. The DA shall provide an appropriate...

  20. The Effects of a Comprehensive Reading Program on Reading Outcomes for Middle School Students with Disabilities

    ERIC Educational Resources Information Center

    Hock, Michael F.; Brasseur-Hock, Irma F.; Hock, Alyson J.; Duvel, Brenda

    2017-01-01

    Reading achievement scores for adolescents with disabilities are markedly lower than the scores of adolescents without disabilities. For example, 62% of students with disabilities read "below" the basic level on the NAEP Reading assessment, compared to 19% of their nondisabled peers. This achievement gap has been a continuing challenge…

  1. Extensive Reading through the Internet: Is It Worth the While?

    ERIC Educational Resources Information Center

    Silva, Juan Pino

    2009-01-01

    Reading materials written in English is the prime goal of many reading programs around the world. Extensive reading (ER) has for years aided new students at my institution to gradually acquire large vocabularies and other sub-skills that are needed to read fluently. To continue to do that effectively, a new scheme involving the use of…

  2. Intensive insulin therapy combined with metformin is associated with reduction in both glucose variability and nocturnal hypoglycaemia in patients with type 2 diabetes.

    PubMed

    Zhang, Yifei; Zhao, Zhiyun; Wang, Shujie; Zhu, Wei; Jiang, Yiran; Sun, Shouyue; Chen, Chen; Wang, Kai; Mu, Liangshan; Cao, Jinyi; Zhou, Yingxia; Gu, Weiqiong; Hong, Jie; Wang, Weiqing; Ning, Guang

    2017-10-01

    The effect on glucose variability in patients with intensive insulin therapy has not been fully understood. This observational study investigated the different glucose variability and hypoglycaemia patterns in type 2 diabetes patients treated with continuous subcutaneous insulin infusion (CSII) or multiple daily injections (MDI) with or without metformin administration. During hospitalization, a total of 501 patients with poor glycaemic control and in initial treatment with either CSII alone (n = 187), CSII + Metformin (n = 81), MDI alone (n = 146), or MDI + Metformin (n = 87) were involved in the final analysis. Data obtained from continuous glucose monitoring were used to assess blood glucose fluctuation and nocturnal hypoglycaemia. Among the 4 groups, no difference was found in mean blood glucose levels. Results in parameters reflecting glucose fluctuation: continuous overlapping net glycaemic action in CSII + Metformin and mean amplitude of glycaemic excursions in MDI + Metformin were significantly lower than those in either CSII alone or MDI alone, respectively, even after adjustment (P = .031 and .006). Frequency of nocturnal hypoglycaemia was significantly decreased in CSII + Metformin as compared with CSII alone (0.6% vs 1.8%) and in MDI + Metformin as compared with MDI alone (1.6% vs 2.3%), with the highest frequency observed in MDI alone and the lowest in CSII + Metformin (all between group P < .001). Consistent results were obtained in between-group comparisons for hypoglycaemia duration. Subgroup analysis matched with baseline body mass index, and glycated haemoglobin and fasting blood glucose further confirmed these findings. Metformin added to initial CSII or MDI therapy is associated with a reduction in both glucose fluctuation and nocturnal hypoglycaemic risk in patients with type 2 diabetes. Copyright © 2017 John Wiley & Sons, Ltd.

  3. Blood Glucose Monitoring Devices

    MedlinePlus

    ... of interferences ability to transmit data to a computer cost of the meter cost of the test ... Performance FDA expands indication for continuous glucose monitoring system, first to replace fingerstick testing for diabetes treatment ...

  4. Effect of mode of hydrocortisone administration on glycemic control in patients with septic shock: a prospective randomized trial.

    PubMed

    Loisa, Pekka; Parviainen, Ilkka; Tenhunen, Jyrki; Hovilehto, Seppo; Ruokonen, Esko

    2007-01-01

    Low-dose hydrocortisone treatment is widely accepted therapy for the treatment of vasopressor-dependent septic shock. The question of whether corticosteroids should be given to septic shock patients by continuous or by bolus infusion is still unanswered. Hydrocortisone induces hyperglycemia and it is possible that continuous hydrocortisone infusion would reduce the fluctuations in blood glucose levels and that tight blood glucose control could be better achieved with this approach. In this prospective randomized study, we compared the blood glucose profiles, insulin requirements, amount of nursing workload needed, and shock reversal in 48 septic shock patients who received hydrocortisone treatment either by bolus or by continuous infusion with equivalent dose (200 mg/day). Duration of hydrocortisone treatment was five days. The mean blood glucose levels were similar in the two groups, but the number of hyperglycemic episodes was significantly higher in those patients who received bolus therapy (15.7 +/- 8.5 versus 10.5 +/- 8.6 episodes per patient, p = 0.039). Also, more changes in insulin infusion rate were needed to maintain strict normoglycemia in the bolus group (4.7 +/- 2.2 versus 3.4 +/- 1.9 adjustments per patient per day, p = 0.038). Hypoglycemic episodes were rare in both groups. No difference was seen in shock reversal. Strict normoglycemia is more easily achieved if the hydrocortisone therapy is given to septic shock patients by continuous infusion. This approach also reduces nursing workload needed to maintain tight blood glucose control.

  5. AMERICAN ASSOCIATION OF CLINICAL ENDOCRINOLOGISTS AND AMERICAN COLLEGE OF ENDOCRINOLOGY 2018 POSITION STATEMENT ON INTEGRATION OF INSULIN PUMPS AND CONTINUOUS GLUCOSE MONITORING IN PATIENTS WITH DIABETES MELLITUS.

    PubMed

    Grunberger, George; Handelsman, Yehuda; Bloomgarden, Zachary T; Fonseca, Vivian A; Garber, Alan J; Haas, Richard A; Roberts, Victor L; Umpierrez, Guillermo E

    2018-03-01

    This document represents the official position of the American Association of Clinical Endocrinologists and American College of Endocrinology. Where there are no randomized controlled trials or specific U.S. FDA labeling for issues in clinical practice, the participating clinical experts utilized their judgment and experience. Every effort was made to achieve consensus among the committee members. Position statements are meant to provide guidance, but they are not to be considered prescriptive for any individual patient and cannot replace the judgment of a clinician. AACE/ACE Task Force on Integration of Insulin Pumps and Continuous Glucose Monitoring in the Management of Patients With Diabetes Mellitus Chair George Grunberger, MD, FACP, FACE Task Force Members Yehuda Handelsman, MD, FACP, FNLA, MACE Zachary T. Bloomgarden, MD, MACE Vivian A. Fonseca, MD, FACE Alan J. Garber, MD, PhD, FACE Richard A. Haas, MD, FACE Victor L. Roberts, MD, MBA, FACP, FACE Guillermo E. Umpierrez, MD, CDE, FACP, FACE Abbreviations: AACE = American Association of Clinical Endocrinologists ACE = American College of Endocrinology A1C = glycated hemoglobin BGM = blood glucose monitoring CGM = continuous glucose monitoring CSII = continuous subcutaneous insulin infusion DM = diabetes mellitus FDA = Food & Drug Administration MDI = multiple daily injections T1DM = type 1 diabetes mellitus T2DM = type 2 diabetes mellitus SAP = sensor-augmented pump SMBG = self-monitoring of blood glucose STAR 3 = Sensor-Augmented Pump Therapy for A1C Reduction phase 3 trial.

  6. Continuous glucose monitoring for patients with diabetes: an evidence-based analysis.

    PubMed

    2011-01-01

    To determine the effectiveness and cost-effectiveness of continuous glucose monitoring combined with self-monitoring of blood glucose compared with self-monitoring of blood glucose alone in the management of diabetes. CONDITION AND TARGET POPULATION Diabetes is a chronic metabolic disorder that interferes with the body's ability to produce or effectively use insulin. In 2005, an estimated 816,000 Ontarians had diabetes representing 8.8% of the province's population. Type 1 or juvenile onset diabetes is a life-long disorder that commonly manifests in children and adolescents. It represents about 10% of the total diabetes population and involves immune-mediated destruction of insulin producing cells in the pancreas. The loss of these cells necessitates insulin therapy. Type 2 or "adult-onset" diabetes represents about 90% of the total diabetes population and is marked by a resistance to insulin or insufficient insulin secretion. The risk of developing type 2 diabetes increases with age, obesity and lack of physical activity. Approximately 30% of patients with type 2 diabetes eventually require insulin therapy. Continuous glucose monitors (CGM) measure glucose levels in the interstitial fluid surrounding skin cells. These measurements supplement conventional self monitoring of blood glucose (SMBG) by monitoring the glucose fluctuations continuously over a stipulated period of time, thereby identifying fluctuations that would not be identified with SMBG alone. To use a CGM, a sensor is inserted under the skin to measure glucose in the interstitial fluid. The sensor is wired to a transmitter. The device requires calibration using a capillary blood glucose measurement. Each sensor continuously measures glucose every 5-10 seconds averaging these values every 5 minutes and storing this data in the monitors memory. Depending on the device used, the algorithm in the device can measure glucose over a 3 or 6 day period using one sensor. After the 3 or 6 day period, a new sensor is required. The device is equipped with alarms which warn the patient of impending hypo-or hyperglycemia. Two types of CGM are available: Systems that is stored in a monitor and can be downloaded later.Real time systems that continuously provide the actual glucose concentration on a display. What is the effectiveness and cost-effectiveness of CGM combined with SMBG compared with SMBG alone in the management of diabetes? A literature search was performed on September 15, 2010 using OVID MEDLINE, MEDLINE In-Process and Other Non-Indexed Citations, EMBASE, the Cumulative Index to Nursing & Allied Health Literature (CINAHL), the Cochrane Library, and the International Agency for Health Technology Assessment (INAHTA) for studies published from January 1, 2002 until September 15, 2010. Abstracts were reviewed by a single reviewer and, for those studies meeting the eligibility criteria, full-text articles were obtained. Reference lists were also examined for any additional relevant studies not identified through the search. Articles with unknown eligibility were reviewed with a second clinical epidemiologist, then a group of epidemiologists until consensus was established. The quality of evidence was assessed as high, moderate, low or very low according to GRADE methodology. English languageRandomized controlled trials (N>30 patients)Adults or pediatric patients with insulin dependent diabetes (type 1 or 2 or gestational)Studies comparing CGM plus SMBG versus SMBG alone Case studiesStudies that did not compare CGM plus SMBG versus SMBG aloneStudies that did not report statistical analysis of outcomes or data was unextractable Change in glycosylated hemoglobin (HbA1c)Frequency or duration of hypo-or hyperglycemic episodes or euglycemiaAdverse effects Moderate quality evidence that CGM + SMBG: is not more effective than self monitoring of blood glucose (SMBG) alone in the reduction of HbA1c using insulin infusion pumps for Type 1 diabetes.is not more effective than SMBG alone in the reduction of hypoglycemic or severe hypoglycemic events using insulin infusion pumps for Type 1 diabetes.

  7. Method for converting sucrose to .beta.-D-glucose

    DOEpatents

    Simmons, Blake A [San Francisco, CA; Volponi, Joanne V [Livermore, CA; Ingersoll, David [Albuquerque, NM; Walker, Andrew [Woodinville, WA

    2009-07-07

    Disclosed is an apparatus and method for continuously converting sucrose to .beta.-D-glucose. The method comprises a three-stage enzymatic reactor in which an aqueous solution of sucrose is first converted into a solution of fructose and .alpha.-D-glucose by passing it through a porous, packed column containing an inert media on which invertase is immobilized. This solution is then sent through a second packed column containing glucose isomerase and finally a third packed column containing mutarotase. Solution temperature and pH are adjusted to maximize glucose output.

  8. Automated Yeast Transformation Protocol to Engineer S. cerevisiae Strains for Cellulosic Ethanol Production with Open Reading Frames that Express Proteins Binding to Xylose Isomerase Identified using Robotic Two-hybrid Screen

    USDA-ARS?s Scientific Manuscript database

    Commercialization of fuel ethanol production from lignocellulosic biomass has focused on engineering the glucose-fermenting industrial yeast Saccharomyces cerevisiae to utilize pentose sugars. Since S. cerevisiae naturally metabolizes xylulose, one approach involves introducing xylose isomerase (XI...

  9. Continuous Glucose Monitoring

    MedlinePlus

    ... transmit- ter sends information about glucose levels via radio waves from the sensor to a pagerlike wireless ... 703–738–4929 Email: ndep@mail.nih.gov Internet: www.ndep.nih.gov American Diabetes Association 1701 ...

  10. Investigation of a submerged membrane reactor for continuous biomass hydrolysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malmali, Mohammadmahdi; Stickel, Jonathan; Wickramasinghe, S. Ranil

    Enzymatic hydrolysis of cellulose is one of the most costly steps in the bioconversion of lignocellulosic biomass. Use of a submerged membrane reactor has been investigated for continuous enzymatic hydrolysis of cellulose thus allowing for greater use of the enzyme compared to a batch process. Moreover, the submerged 0.65 μm polyethersulfone microfiltration membrane avoids the need to pump a cellulose slurry through an external loop. Permeate containing glucose is withdrawn at pressures slightly below atmospheric pressure. The membrane rejects cellulose particles and cellulase enzyme bound to cellulose. Our proof-of-concept experiments have been conducted using a modified, commercially available membrane filtrationmore » cell under low fluxes around 75 L/(m2 h). The operating flux is determined by the rate of glucose production. Maximizing the rate of glucose production involves optimizing mixing, reactor holding time, and the time the feed is held in the reactor prior to commencement of membrane filtration and continuous operation. When we maximize glucose production rates it will require that we operate it at low glucose concentration in order to minimize the adverse effects of product inhibition. Consequently practical submerged membrane systems will require a combined sugar concentration step in order to concentrate the product sugar stream prior to fermentation.« less

  11. Action Research and Differentiating Reading Instruction in Mississippi: Fourth-Grade Students' Reading Success

    ERIC Educational Resources Information Center

    Mims, Wyn, M.; Lockley, Jeannie

    2017-01-01

    A fourth-grade teacher utilized action research in order to make data-driven decisions about reading interventions with her students. The teacher decided on a broad intervention, which was differentiating reading instruction, implemented differentiated instruction, collected data and continuously adjusted interventions based on monitoring data.…

  12. A multicenter study of the accuracy of the One Touch Ultra home glucose meter in children with type 1 diabetes.

    PubMed

    2003-01-01

    Data are not readily available on the accuracy of one of the most commonly used home blood glucose meters, the One Touch Ultra (LifeScan, Milpitas, California). The purpose of this report is to provide information on the accuracy of this home glucose meter in children with type 1 diabetes. During a 24-h clinical research center stay, the accuracy of the Ultra meter was assessed in 91 children, 3-17 years old, with type 1 diabetes by comparing the Ultra glucose values with concurrent reference serum glucose values measured in a central laboratory. The Pearson correlation between the 2,068 paired Ultra and reference values was 0.97, with the median relative absolute difference being 6%. Ninety-four percent of all Ultra values (96% of venous and 84% of capillary samples) met the proposed International Organisation for Standardisation (ISO) standard for instruments used for self-monitoring of glucose when compared with venous reference values. Ninety-nine percent of values were in zones A + B of the Modified Error Grid. A high degree of accuracy was seen across the full range of glucose values. For 353 data points during an insulin-induced hypoglycemia test, the Ultra meter was found to have accuracy that was comparable to concurrently used benchmark instruments (Beckman, YSI, or i-STAT); 95% and 96% of readings from the Ultra meter and the benchmark instruments met the proposed ISO criteria, respectively. These results confirm that the One Touch Ultra meter provides accurate glucose measurements for both hypoglycemia and hyperglycemia in children with type 1 diabetes.

  13. Optical glucose monitoring using vertical cavity surface emitting lasers (VCSELs)

    NASA Astrophysics Data System (ADS)

    Talebi Fard, Sahba; Hofmann, Werner; Talebi Fard, Pouria; Kwok, Ezra; Amann, Markus-Christian; Chrostowski, Lukas

    2009-08-01

    Diabetes Mellitus is a common chronic disease that has become a public health issue. Continuous glucose monitoring improves patient health by stabilizing the glucose levels. Optical methods are one of the painless and promising methods that can be used for blood glucose predictions. However, having accuracies lower than what is acceptable clinically has been a major concern. Using lasers along with multivariate techniques such as Partial Least Square (PLS) can improve glucose predictions. This research involves investigations for developing a novel optical system for accurate glucose predictions, which leads to the development of a small, low power, implantable optical sensor for diabetes patients.

  14. Beach Books: 2014-2016. What Do Colleges and Universities Want Students to Read outside Class?

    ERIC Educational Resources Information Center

    Randall, David

    2016-01-01

    Hundreds of American colleges and universities continue to assign a summer reading to entering freshmen--typically one book, which the students are asked to read outside their courses. Many institutions embed the common reading in a larger program of campus activities: typically, they invite the common reading author to help open the academic year…

  15. High glycemic variability assessed by continuous glucose monitoring after surgical treatment of obesity by gastric bypass.

    PubMed

    Hanaire, Helene; Bertrand, Monelle; Guerci, Bruno; Anduze, Yves; Guillaume, Eric; Ritz, Patrick

    2011-06-01

    Obesity surgery elicits complex changes in glucose metabolism that are difficult to observe with discontinuous glucose measurements. We aimed to evaluate glucose variability after gastric bypass by continuous glucose monitoring (CGM) in a real-life setting. CGM was performed for 4.2 ± 1.3 days in three groups of 10 subjects each: patients who had undergone gastric bypass and who were referred for postprandial symptoms compatible with mild hypoglycemia, nonoperated diabetes controls, and healthy controls. The maximum interstitial glucose (IG), SD of IG values, and mean amplitude of glucose excursions (MAGE) were significantly higher in operated patients and in diabetes controls than in healthy controls. The time to the postprandial peak IG was significantly shorter in operated patients (42.8 ± 6.0 min) than in diabetes controls (82.2 ± 11.1 min, P = 0.0002), as were the rates of glucose increase to the peak (2.4 ± 1.6 vs. 1.2 ± 0.3 mg/mL/min; P = 0.041). True hypoglycemia (glucose <60 mg/dL) was rare: the symptoms were probably more related to the speed of IG decrease than to the glucose level achieved. Half of the operated patients, mostly those with a diabetes background before surgery, had postprandial glucose concentrations above 200 mg/dL (maximum IG, 306 ± 59 mg/dL), in contrast to the normal glucose concentrations in the fasting state and 2 h postmeal. Glucose variability is exaggerated after gastric bypass, combining unusually high and early hyperglycemic peaks and rapid IG decreases. This might account for postprandial symptoms mimicking hypoglycemia but often seen without true hypoglycemia. Early postprandial hyperglycemia might be underestimated if glucose measurements are done 2 h postmeal.

  16. Effect of acarbose to delay progression of carotid intima-media thickness in early diabetes.

    PubMed

    Patel, Y R; Kirkman, M S; Considine, R V; Hannon, T S; Mather, K J

    2013-10-01

    The anti-diabetic agent acarbose reduces postprandial glucose excursions. We have evaluated the effect of randomized treatment with acarbose on the progression of carotid intima-media thickness (IMT) in early diabetes. The Early Diabetes Intervention Program was a randomized trial of acarbose versus placebo in 219 participants with early diabetes characterized by glucose values over 11.1 mmol/L 2 h after a 75 g oral glucose load and a mean HbA1c of 6.3%. IMT was measured at baseline and yearly. Follow-up was discontinued if participants progressed to the study glucose endpoints; IMT readings were available for a median of 2 years, with 72 subjects followed for 5 years. Progressive increases in IMT were seen in both treatment groups, but progression was reduced in participants randomized to acarbose (p = 0.047). In age, sex and smoking-adjusted analyses, IMT progression was associated with greater fasting and oral glucose tolerance test-excursion glucose, fasting insulin, cholesterol and glycated low-density lipoprotein concentrations. IMT progression was reduced with study-related changes in weight, insulin and non-esterified fatty acids; these features were more strongly associated with reduced IMT progression than acarbose treatment. Despite strong associations of baseline glycemia with IMT progression, study-related changes in glucose were not important determinants of IMT progression. Acarbose can delay progression of carotid intima-media thickness in early diabetes defined by an oral glucose tolerance test. Glucose, weight, insulin and lipids contributed to risk of progression but reductions in glycemia were not major determinants of reduced rate of IMT progression. Vascular benefits of acarbose may be independent of its glycemic effects. Copyright © 2013 John Wiley & Sons, Ltd.

  17. Basement Membrane-Based Glucose Sensor Coatings Enhance Continuous Glucose Monitoring in Vivo.

    PubMed

    Klueh, Ulrike; Qiao, Yi; Czajkowski, Caroline; Ludzinska, Izabela; Antar, Omar; Kreutzer, Donald L

    2015-08-25

    Implantable glucose sensors demonstrate a rapid decline in function that is likely due to biofouling of the sensor. Previous efforts directed at overcoming this issue has generally focused on the use of synthetic polymer coatings, with little apparent effect in vivo, clearly a novel approach is required. We believe that the key to extending sensor life span in vivo is the development of biocompatible basement membrane (BM) based bio-hydrogels as coatings for glucose sensors. BM based bio-hydrogel sensor coatings were developed using purified BM preparations (ie, Cultrex from Trevigen Inc). Modified Abbott sensors were coated with Cultrex BM extracts. Sensor performance was evaluated for the impact of these coatings in vitro and in vivo in a continuous glucose monitoring (CGM) mouse model. In vivo sensor function was assessed over a 28-day time period expressed as mean absolute relative difference (MARD) values. Tissue reactivity of both Cultrex coated and uncoated glucose sensors was evaluated at 7, 14, 21 and 28 days post-sensor implantation with standard histological techniques. The data demonstrate that Cultrex-based sensor coatings had no effect on glucose sensor function in vitro. In vivo glucose sensor performance was enhanced following BM coating as determined by MARD analysis, particularly in weeks 2 and 3. In vivo studies also demonstrated that Cultrex coatings significantly decreased sensor-induced tissue reactions at the sensor implantation sites. Basement-membrane-based sensor coatings enhance glucose sensor function in vivo, by minimizing or preventing sensor-induced tissues reactions. © 2015 Diabetes Technology Society.

  18. First clinical evaluation of a new percutaneous optical fiber glucose sensor for continuous glucose monitoring in diabetes.

    PubMed

    Müller, Achim Josef; Knuth, Monika; Nikolaus, Katharina Sibylle; Krivánek, Roland; Küster, Frank; Hasslacher, Christoph

    2013-01-01

    This article describes a new fiber-coupled, percutaneous fluorescent continuous glucose monitoring (CGM) system that has shown 14 days of functionality in a human clinical trial. The new optical CGM system (FiberSense) consists of a transdermal polymer optical fiber containing a biochemical glucose sensor and a small fluorescence photometer optically coupled to the fiber. The glucose-sensitive optical fiber was implanted in abdominal and upper-arm subcutaneous tissue of six diabetes patients and remained there for up to 14 days. The performance of the system was monitored during six visits to the study center during the trial. Blood glucose changes were induced by oral carbohydrate intake and insulin injections, and capillary blood glucose samples were obtained from the finger tip. The data were analyzed using linear regression and the consensus error grid analysis. The FiberSense worn at the upper arm exhibited excellent results during 14 wearing days, with an overall mean absolute relative difference (MARD) of 8.3% and 94.6% of the data in zone A of the consensus error grid. At the abdominal application site, FiberSense resulted in a MARD of 11.4 %, with 93.8% of the data in zone A. The FiberSense CGM system provided consistent, reliable measurements of subcutaneous glucose levels in human clinical trial patients with diabetes for up to 14 days. © 2013 Diabetes Technology Society.

  19. Measurement properties of continuous text reading performance tests.

    PubMed

    Brussee, Tamara; van Nispen, Ruth M A; van Rens, Ger H M B

    2014-11-01

    Measurement properties of tests to assess reading acuity or reading performance have not been extensively evaluated. This study aims to provide an overview of the literature on available continuous text reading tests and their measurement properties. A literature search was performed in PubMed, Embase and PsycInfo. Subsequently, information on design and content of reading tests, study design and measurement properties were extracted using consensus-based standards for selection of health measurement instruments. Quality of studies, reading tests and measurement properties were systematically assessed using pre-specified criteria. From 2334 identified articles, 20 relevant articles were found on measurement properties of three reading tests in various languages: IReST, MNread Reading Test and Radner Reading Charts. All three reading tests scored high on content validity. Reproducibility studies (repeated measurements between different testing sessions) of the IReST and MNread of commercially available reading tests in different languages were missing. The IReST scored best on inter-language comparison, the MNread scored well in repeatability studies (repeated measurements under the same conditions) and the Radner showed good reproducibility in studies. Although in daily practice there are other continuous text reading tests available meeting the criteria of this review, measurement properties were described in scientific studies for only three of them. Of the few available studies, the quality and content of study design and methodology used varied. For testing existing reading tests and the development of new ones, for example in other languages, we make several recommendations, including careful description of patient characteristics, use of objective and subjective lighting levels, good control of working distance, documentation of the number of raters and their training, careful documentation of scoring rules and the use of Bland-Altman analyses or similar for reproducibility and repeatability studies. © 2014 The Authors Ophthalmic & Physiological Optics © 2014 The College of Optometrists.

  20. Evaluation of glucose response to 3 types of insulin using a continuous glucose monitoring system in healthy alpacas.

    PubMed

    Byers, S R; Beemer, O M; Lear, A S; Callan, R J

    2014-01-01

    Persistent hyperglycemia is common in alpacas and typically requires insulin administration for resolution; however, little is known about alpacas' response to different insulin formulations. To evaluate the effects of 3 insulin formulations on blood glucose concentrations and the use of a continuous glucose monitoring (CGM) system in alpacas. Six healthy alpacas. The CGM was installed in the left paralumbar fossa at the start of this crossover study and recorded data every 5 minutes. Regular insulin, NPH insulin, insulin glargine, and dextrose were administered to each alpaca over a 2-week period. Blood samples were collected for glucose testing at 0, 1, 2, 4, 6, 8, and 12 hours, and then every 6 hours after each administration of insulin or dextrose. Data were compared by using method comparison techniques, error grid plots, and ANOVA. Blood glucose concentrations decreased most rapidly after regular insulin administration when administered IV or SC as compared to the other formulations. The NPH insulin produced the longest suppression of blood glucose. The mean CGM interstitial compartment glucose concentrations were typically lower than the intravascular compartment glucose concentrations. The alpacas had no adverse reactions to the different insulin formulations. The NPH insulin might be more appropriate for long-term use in hyperglycemic alpacas because of its extended duration of action. A CGM is useful in monitoring glucose trends and reducing blood collection events, but it should not be the sole method for determining treatment protocols. Copyright © 2014 by the American College of Veterinary Internal Medicine.

  1. Translating glucose variability metrics into the clinic via Continuous Glucose Monitoring: a Graphical User Interface for Diabetes Evaluation (CGM-GUIDE©).

    PubMed

    Rawlings, Renata A; Shi, Hang; Yuan, Lo-Hua; Brehm, William; Pop-Busui, Rodica; Nelson, Patrick W

    2011-12-01

    Several metrics of glucose variability have been proposed to date, but an integrated approach that provides a complete and consistent assessment of glycemic variation is missing. As a consequence, and because of the tedious coding necessary during quantification, most investigators and clinicians have not yet adopted the use of multiple glucose variability metrics to evaluate glycemic variation. We compiled the most extensively used statistical techniques and glucose variability metrics, with adjustable hyper- and hypoglycemic limits and metric parameters, to create a user-friendly Continuous Glucose Monitoring Graphical User Interface for Diabetes Evaluation (CGM-GUIDE©). In addition, we introduce and demonstrate a novel transition density profile that emphasizes the dynamics of transitions between defined glucose states. Our combined dashboard of numerical statistics and graphical plots support the task of providing an integrated approach to describing glycemic variability. We integrated existing metrics, such as SD, area under the curve, and mean amplitude of glycemic excursion, with novel metrics such as the slopes across critical transitions and the transition density profile to assess the severity and frequency of glucose transitions per day as they move between critical glycemic zones. By presenting the above-mentioned metrics and graphics in a concise aggregate format, CGM-GUIDE provides an easy to use tool to compare quantitative measures of glucose variability. This tool can be used by researchers and clinicians to develop new algorithms of insulin delivery for patients with diabetes and to better explore the link between glucose variability and chronic diabetes complications.

  2. A randomised trial of glucose tablets to aid smoking cessation.

    PubMed

    West, Robert; May, Sylvia; McEwen, Andy; McRobbie, Hayden; Hajek, Peter; Vangeli, Eleni

    2010-01-01

    Oral glucose has been found to decrease tobacco craving among abstaining smokers. One study has demonstrated an effect of glucose on short-term abstinence. There is a need to examine any long-term benefit of glucose on abstinence. To assess whether glucose tablets improve 6-month continuous abstinence rates compared with low-calorie placebo tablets. Smokers attempting to stop (n = 928) were randomised to receive glucose or sorbitol (placebo) in a double-blind placebo-controlled trial. All participants received group-based psychological support, and approximately half (n = 474) received nicotine replacement therapy (NRT), buproprion, or both. Smokers were seen weekly for 5 weeks and used tablets ad libitum, with a recommended minimum of 12 per day. Participants were recruited through general practitioner referral, word of mouth, and advertising. The participants were 38% male, smoked an average of 23.5 cigarettes per day, and had a mean age of 44 years. There were no significant pretreatment differences between groups. The primary outcome measure was continuous, CO-verified abstinence from the target quit date for 6 months. No significant effect of glucose tablets on abstinence was found (14.6% vs 13.4% abstinence in the glucose and placebo groups, respectively). However, there was a significant interaction with a glucose effect observed in smokers also receiving other medication (18.2% vs 12.6%, p < 0.05) but not otherwise (10.7% vs 14.3% ; p < 0.05 for the interaction). No significant effect of glucose tablets over and above sweet tasting tablets could be detected overall, but the possibility of an effect as an adjunct to NRT or bupropion merits further investigation.

  3. Translating Glucose Variability Metrics into the Clinic via Continuous Glucose Monitoring: A Graphical User Interface for Diabetes Evaluation (CGM-GUIDE©)

    PubMed Central

    Rawlings, Renata A.; Shi, Hang; Yuan, Lo-Hua; Brehm, William; Pop-Busui, Rodica

    2011-01-01

    Abstract Background Several metrics of glucose variability have been proposed to date, but an integrated approach that provides a complete and consistent assessment of glycemic variation is missing. As a consequence, and because of the tedious coding necessary during quantification, most investigators and clinicians have not yet adopted the use of multiple glucose variability metrics to evaluate glycemic variation. Methods We compiled the most extensively used statistical techniques and glucose variability metrics, with adjustable hyper- and hypoglycemic limits and metric parameters, to create a user-friendly Continuous Glucose Monitoring Graphical User Interface for Diabetes Evaluation (CGM-GUIDE©). In addition, we introduce and demonstrate a novel transition density profile that emphasizes the dynamics of transitions between defined glucose states. Results Our combined dashboard of numerical statistics and graphical plots support the task of providing an integrated approach to describing glycemic variability. We integrated existing metrics, such as SD, area under the curve, and mean amplitude of glycemic excursion, with novel metrics such as the slopes across critical transitions and the transition density profile to assess the severity and frequency of glucose transitions per day as they move between critical glycemic zones. Conclusions By presenting the above-mentioned metrics and graphics in a concise aggregate format, CGM-GUIDE provides an easy to use tool to compare quantitative measures of glucose variability. This tool can be used by researchers and clinicians to develop new algorithms of insulin delivery for patients with diabetes and to better explore the link between glucose variability and chronic diabetes complications. PMID:21932986

  4. Early alterations in soleus GLUT-4, glucose transport, and glycogen in voluntary running rats

    NASA Technical Reports Server (NTRS)

    Henriksen, Erik J.; Halseth, Amy E.

    1994-01-01

    Voluntary wheel running (WR) by juvenile female rats was used as a noninterventional model of soleus muscle functional overload to study the regulation of insulin-stimulated glucose transport activity by the glucose transporter (GLUT-4 isoform) protein level and glycogen concentration. Soleus total protein content was significantly greater (+18%;P greater than 0.05) than in age-matched controls after 1 wk of WR, and this hypertrophic response continued in weeks 2-4 (+24-32%). GLUT-4 protein was 39% greater than in controls in 1-wk WR soleus, and this adaptation was accompanied by a similar increase in in vitro insulin-stimulated glucose transport activity(+29%). After 2 and 4 wk of WR, however, insulin-stimulated glucose transport activity had returned to control levels, despite a continued elevation (+25-28%) of GLUT-4 protein. At these two time points, glycogen concentration was significantly enhanced in WR soleus (+21-42%), which coincided with significant reductions in glycogen synthase activity ratios (-23 to-41%). These results indicate that, in this model of soleus muscle functional overload, the GLUT-4 protein level may initially regulate insulin-stimulated glucose transport activity in the absence of changes in other modifying factors. However,this regulation of glucose transport activity by GLUT-4 protein may be subsequently overridden by elevated glycogen concentration.

  5. Physical activity measured by physical activity monitoring system correlates with glucose trends reconstructed from continuous glucose monitoring.

    PubMed

    Zecchin, Chiara; Facchinetti, Andrea; Sparacino, Giovanni; Dalla Man, Chiara; Manohar, Chinmay; Levine, James A; Basu, Ananda; Kudva, Yogish C; Cobelli, Claudio

    2013-10-01

    In type 1 diabetes mellitus (T1DM), physical activity (PA) lowers the risk of cardiovascular complications but hinders the achievement of optimal glycemic control, transiently boosting insulin action and increasing hypoglycemia risk. Quantitative investigation of relationships between PA-related signals and glucose dynamics, tracked using, for example, continuous glucose monitoring (CGM) sensors, have been barely explored. In the clinic, 20 control and 19 T1DM subjects were studied for 4 consecutive days. They underwent low-intensity PA sessions daily. PA was tracked by the PA monitoring system (PAMS), a system comprising accelerometers and inclinometers. Variations on glucose dynamics were tracked estimating first- and second-order time derivatives of glucose concentration from CGM via Bayesian smoothing. Short-time effects of PA on glucose dynamics were quantified through the partial correlation function in the interval (0, 60 min) after starting PA. Correlation of PA with glucose time derivatives is evident. In T1DM, the negative correlation with the first-order glucose time derivative is maximal (absolute value) after 15 min of PA, whereas the positive correlation is maximal after 40-45 min. The negative correlation between the second-order time derivative and PA is maximal after 5 min, whereas the positive correlation is maximal after 35-40 min. Control subjects provided similar results but with positive and negative correlation peaks anticipated of 5 min. Quantitative information on correlation between mild PA and short-term glucose dynamics was obtained. This represents a preliminary important step toward incorporation of PA information in more realistic physiological models of the glucose-insulin system usable in T1DM simulators, in development of closed-loop artificial pancreas control algorithms, and in CGM-based prediction algorithms for generation of hypoglycemic alerts.

  6. Accuracy of subcutaneous continuous glucose monitoring in critically ill adults: improved sensor performance with enhanced calibrations.

    PubMed

    Leelarathna, Lalantha; English, Shane W; Thabit, Hood; Caldwell, Karen; Allen, Janet M; Kumareswaran, Kavita; Wilinska, Malgorzata E; Nodale, Marianna; Haidar, Ahmad; Evans, Mark L; Burnstein, Rowan; Hovorka, Roman

    2014-02-01

    Accurate real-time continuous glucose measurements may improve glucose control in the critical care unit. We evaluated the accuracy of the FreeStyle(®) Navigator(®) (Abbott Diabetes Care, Alameda, CA) subcutaneous continuous glucose monitoring (CGM) device in critically ill adults using two methods of calibration. In a randomized trial, paired CGM and reference glucose (hourly arterial blood glucose [ABG]) were collected over a 48-h period from 24 adults with critical illness (mean±SD age, 60±14 years; mean±SD body mass index, 29.6±9.3 kg/m(2); mean±SD Acute Physiology and Chronic Health Evaluation score, 12±4 [range, 6-19]) and hyperglycemia. In 12 subjects, the CGM device was calibrated at variable intervals of 1-6 h using ABG. In the other 12 subjects, the sensor was calibrated according to the manufacturer's instructions (1, 2, 10, and 24 h) using arterial blood and the built-in point-of-care glucometer. In total, 1,060 CGM-ABG pairs were analyzed over the glucose range from 4.3 to 18.8 mmol/L. Using enhanced calibration median (interquartile range) every 169 (122-213) min, the absolute relative deviation was lower (7.0% [3.5, 13.0] vs. 12.8% [6.3, 21.8], P<0.001), and the percentage of points in the Clarke error grid Zone A was higher (87.8% vs. 70.2%). Accuracy of the Navigator CGM device during critical illness was comparable to that observed in non-critical care settings. Further significant improvements in accuracy may be obtained by frequent calibrations with ABG measurements.

  7. Benefits of a Continuous Ambulatory Peritoneal Dialysis (CAPD) Technique with One Icodextrin-Containing and Two Biocompatible Glucose-Containing Dialysates for Preservation of Residual Renal Function and Biocompatibility in Incident CAPD Patients

    PubMed Central

    2014-01-01

    In a prospective randomized controlled study, the efficacy and safety of a continuous ambulatory peritoneal dialysis (CAPD) technique has been evaluated using one icodextrin-containing and two glucose-containing dialysates a day. Eighty incident CAPD patients were randomized to two groups; GLU group continuously using four glucose-containing dialysates (n=39) and ICO group using one icodextrin-containing and two glucose-containing dialysates (n=41). Variables related to residual renal function (RRF), metabolic and fluid control, dialysis adequacy, and dialysate effluent cancer antigen 125 (CA125) and interleukin 6 (IL-6) levels were measured. The GLU group showed a significant decrease in mean renal urea and creatinine clearance (-Δ1.2±2.9 mL/min/1.73 m2, P=0.027) and urine volume (-Δ363.6±543.0 mL/day, P=0.001) during 12 months, but the ICO group did not (-Δ0.5±2.7 mL/min/1.73 m2, P=0.266; -Δ108.6±543.3 mL/day, P=0.246). Peritoneal glucose absorption and dialysate calorie load were significantly lower in the ICO group than the GLU group. The dialysate CA125 and IL-6 levels were significantly higher in the ICO group than the GLU group. Dialysis adequacy, β2-microglobulin clearance and blood pressure did not differ between the two groups. The CAPD technique using one icodextrin-containing and two glucose-containing dialysates tends to better preserve RRF and is more biocompatible, with similar dialysis adequacy compared to that using four glucose-containing dialysates in incident CAPD patients. [Clincal Trial Registry, ISRCTN23727549] Graphical Abstract PMID:25246739

  8. Accuracy of Subcutaneous Continuous Glucose Monitoring in Critically Ill Adults: Improved Sensor Performance with Enhanced Calibrations

    PubMed Central

    Leelarathna, Lalantha; English, Shane W.; Thabit, Hood; Caldwell, Karen; Allen, Janet M.; Kumareswaran, Kavita; Wilinska, Malgorzata E.; Nodale, Marianna; Haidar, Ahmad; Evans, Mark L.; Burnstein, Rowan

    2014-01-01

    Abstract Objective: Accurate real-time continuous glucose measurements may improve glucose control in the critical care unit. We evaluated the accuracy of the FreeStyle® Navigator® (Abbott Diabetes Care, Alameda, CA) subcutaneous continuous glucose monitoring (CGM) device in critically ill adults using two methods of calibration. Subjects and Methods: In a randomized trial, paired CGM and reference glucose (hourly arterial blood glucose [ABG]) were collected over a 48-h period from 24 adults with critical illness (mean±SD age, 60±14 years; mean±SD body mass index, 29.6±9.3 kg/m2; mean±SD Acute Physiology and Chronic Health Evaluation score, 12±4 [range, 6–19]) and hyperglycemia. In 12 subjects, the CGM device was calibrated at variable intervals of 1–6 h using ABG. In the other 12 subjects, the sensor was calibrated according to the manufacturer's instructions (1, 2, 10, and 24 h) using arterial blood and the built-in point-of-care glucometer. Results: In total, 1,060 CGM–ABG pairs were analyzed over the glucose range from 4.3 to 18.8 mmol/L. Using enhanced calibration median (interquartile range) every 169 (122–213) min, the absolute relative deviation was lower (7.0% [3.5, 13.0] vs. 12.8% [6.3, 21.8], P<0.001), and the percentage of points in the Clarke error grid Zone A was higher (87.8% vs. 70.2%). Conclusions: Accuracy of the Navigator CGM device during critical illness was comparable to that observed in non–critical care settings. Further significant improvements in accuracy may be obtained by frequent calibrations with ABG measurements. PMID:24180327

  9. Automatic Detection and Estimation of Unannounced Meals for Multivariable Artificial Pancreas System.

    PubMed

    Samadi, Sediqeh; Rashid, Mudassir; Turksoy, Kamuran; Feng, Jianyuan; Hajizadeh, Iman; Hobbs, Nicole; Lazaro, Caterina; Sevil, Mert; Littlejohn, Elizabeth; Cinar, Ali

    2018-03-01

    Automatically attenuating the postprandial rise in the blood glucose concentration without manual meal announcement is a significant challenge for artificial pancreas (AP) systems. In this study, a meal module is proposed to detect the consumption of a meal and to estimate the amount of carbohydrate (CHO) intake. The meals are detected based on qualitative variables describing variation of continuous glucose monitoring (CGM) readings. The CHO content of the meals/snacks is estimated by a fuzzy system using CGM and subcutaneous insulin delivery data. The meal bolus amount is computed according to the patient's insulin to CHO ratio. Integration of the meal module into a multivariable AP system allows revision of estimated CHO based on knowledge about physical activity, sleep, and the risk of hypoglycemia before the final decision for a meal bolus is made. The algorithm is evaluated by using 117 meals/snacks in retrospective data from 11 subjects with type 1 diabetes. Sensitivity, defined as the percentage of correctly detected meals and snacks, is 93.5% for meals and 68.0% for snacks. The percentage of false positives, defined as the proportion of false detections relative to the total number of detected meals and snacks, is 20.8%. Integration of a meal detection module in an AP system is a further step toward an automated AP without manual entries. Detection of a consumed meal/snack and infusion of insulin boluses using an estimate of CHO enables the AP system to automatically prevent postprandial hyperglycemia.

  10. Change in blood glucose level in rats after immobilization

    NASA Technical Reports Server (NTRS)

    Platonov, R. D.; Baskakova, G. M.; Chepurnov, S. A.

    1981-01-01

    Experiments were carried out on male white rats divided into four groups. In group one the blood glucose level was determined immediately after immobilization. In the other three groups, two hours following immobilization, the blood glucose level was determined every 20 minutes for 3 hours 40 minutes by the glucose oxidase method. Preliminary immobilization for 2 hours removed the increase in the blood glucose caused by the stress reaction. By the 2nd hour of immobilization in the presence of continuing stress, the blood glucose level stabilized and varied within 42 + or - 5.5 and 47 + or - 8.1 mg %. Within 2 hours after the immobilization, the differences in the blood glucose level of the rats from the control groups were statistically insignificant.

  11. 45 CFR 1602.5 - Public reading room.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 45 Public Welfare 4 2014-10-01 2014-10-01 false Public reading room. 1602.5 Section 1602.5 Public Welfare Regulations Relating to Public Welfare (Continued) LEGAL SERVICES CORPORATION PROCEDURES FOR DISCLOSURE OF INFORMATION UNDER THE FREEDOM OF INFORMATION ACT § 1602.5 Public reading room. (a) The Corporation will maintain a public reading room...

  12. 45 CFR 1602.5 - Public reading room.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 45 Public Welfare 4 2013-10-01 2013-10-01 false Public reading room. 1602.5 Section 1602.5 Public Welfare Regulations Relating to Public Welfare (Continued) LEGAL SERVICES CORPORATION PROCEDURES FOR DISCLOSURE OF INFORMATION UNDER THE FREEDOM OF INFORMATION ACT § 1602.5 Public reading room. (a) The Corporation will maintain a public reading room...

  13. 45 CFR 1602.5 - Public reading room.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 45 Public Welfare 4 2012-10-01 2012-10-01 false Public reading room. 1602.5 Section 1602.5 Public Welfare Regulations Relating to Public Welfare (Continued) LEGAL SERVICES CORPORATION PROCEDURES FOR DISCLOSURE OF INFORMATION UNDER THE FREEDOM OF INFORMATION ACT § 1602.5 Public reading room. (a) The Corporation will maintain a public reading room...

  14. Educational Factors and Experiences in English Language Learner Reading Fluency Development

    ERIC Educational Resources Information Center

    Weber, Christina J. T.

    2013-01-01

    Reading fluency has been an area of struggle for students. Certain populations of students, such as English language learners (ELLs), have struggled even more so, affecting their overall achievement. Interventions have been implemented and studied regarding the reading fluency of ELLs, yet reading fluency has continued to be problematic in this…

  15. Black Dialect, Reading Interference and Classroom Interaction.

    ERIC Educational Resources Information Center

    Simons, Herbert D.

    A major problem that continues to plague United States education is the fact that large numbers of disadvantaged black students are not learning to read well enough to function in society. This paper discusses three reasons for the problem of teaching reading to these students. First, there exist no comprehensive developmental reading theories, no…

  16. Europe Report, Science and Technology.

    DTIC Science & Technology

    1986-06-18

    amylase, heat stable alpha-amylase and glucoamylase for processing starch as a substrate for 71 glucose and its isomerization to fructose using an...continuous column process under laboratory conditions. We have demonstrated that these preparations isomerize glucose syrups up to 42 percent, converting...food industry is the leading consumer of microbial enzymes devouring about 80 percent of the world production of enzymes -- glucose isomerase, alpha

  17. Identification of individualised empirical models of carbohydrate and insulin effects on T1DM blood glucose dynamics

    NASA Astrophysics Data System (ADS)

    Cescon, Marzia; Johansson, Rolf; Renard, Eric; Maran, Alberto

    2014-07-01

    One of the main limiting factors in improving glucose control for type 1 diabetes mellitus (T1DM) subjects is the lack of a precise description of meal and insulin intake effects on blood glucose. Knowing the magnitude and duration of such effects would be useful not only for patients and physicians, but also for the development of a controller targeting glycaemia regulation. Therefore, in this paper we focus on estimating low-complexity yet physiologically sound and individualised multi-input single-output (MISO) models of the glucose metabolism in T1DM able to reflect the basic dynamical features of the glucose-insulin metabolic system in response to a meal intake or an insulin injection. The models are continuous-time second-order transfer functions relating the amount of carbohydrate of a meal and the insulin units of the accordingly administered dose (inputs) to plasma glucose evolution (output) and consist of few parameters clinically relevant to be estimated. The estimation strategy is continuous-time data-driven system identification and exploits a database in which meals and insulin boluses are separated in time, allowing the unique identification of the model parameters.

  18. Early Glucose Derangement Detected by Continuous Glucose Monitoring and Progression of Liver Fibrosis in Nonalcoholic Fatty Liver Disease: An Independent Predictive Factor?

    PubMed

    Schiaffini, Riccardo; Liccardo, Daniela; Alisi, Anna; Benevento, Danila; Cappa, Marco; Cianfarani, Stefano; Nobili, Valerio

    2016-01-01

    Glucose derangement has been reported to increase oxidative stress, one of the most important factors underlying the progression of hepatic fibrosis in adults with nonalcoholic fatty liver disease (NAFLD). To date, careful evaluation of the glucose profile in pediatric NAFLD has not been performed. A total of 30 severely obese children (15 males; mean age 12.87 ± 2.19 years) with biopsy-proven NAFLD were enrolled in this study from September to December 2013. All patients underwent anthropometric and laboratory evaluation, including the oral glucose tolerance test (OGTT) and continuous glucose monitoring (CGM). Our study reveals some differences between OGTT and CGM in detecting NAFLD children with impaired fasting glucose (IFG) and impaired glucose tolerance (IGT). OGTT showed 2 (6.67%) patients with IFG and 1 (3.34%) with IGT, while CGM showed 5 (16.67%) patients with IFG and 6 (20%) with IGT. The daily blood glucose profile positively correlated with the baseline blood glucose (r = 0.39, p = 0.04) and the homeostatic model assessment (r = 0.56, p = 0.05). A positive correlation between hyperglycemia and liver fibrosis was found (r = 0.65, p < 0.05). Mean glucose values (F3-F4 group: 163.2 ± 35.92 mg/dl vs. F1 group: 136.58 ± 46.83 mg/dl and F2 group: 154.12 ± 22.51 mg/dl) and the difference between the minimum and maximum blood glucose levels (F3-F4 group: 110.21 ± 25.26 mg/dl vs. F1 group: 91.67 ± 15.97 mg/dl and F2 group: 92 ± 15.48 mg/dl) were significantly (p < 0.05) higher in the F3-F4 group compared to the F1 and F2 groups. Glucose profile derangement as detected by CGM is associated with the severity of hepatic fibrosis in children with NAFLD. © 2015 S. Karger AG, Basel.

  19. Enzymatic cascade bioreactor

    DOEpatents

    Simmons, Blake A.; Volponi, Joanne V.; Ingersoll, David; Walker, Andrew

    2007-09-04

    Disclosed is an apparatus and method for continuously converting sucrose to .beta.-D-glucose. The method comprises a three stage enzymatic reactor in which an aqueous solution of sucrose is first converted into a solution of fructose and .alpha.-D-glucose by passing it through a porous, packed column containing an inert media on which invertase is immobilized. This solution is then sent through a second packed column containing glucose isomerase and finally a third packed column containing mutarotase. Solution temperature and pH are adjusted to maximize glucose output.

  20. Glucose-Sensitive Hydrogel Optical Fibers Functionalized with Phenylboronic Acid.

    PubMed

    Yetisen, Ali K; Jiang, Nan; Fallahi, Afsoon; Montelongo, Yunuen; Ruiz-Esparza, Guillermo U; Tamayol, Ali; Zhang, Yu Shrike; Mahmood, Iram; Yang, Su-A; Kim, Ki Su; Butt, Haider; Khademhosseini, Ali; Yun, Seok-Hyun

    2017-04-01

    Hydrogel optical fibers are utilized for continuous glucose sensing in real time. The hydrogel fibers consist of poly(acrylamide-co-poly(ethylene glycol) diacrylate) cores functionalized with phenylboronic acid. The complexation of the phenylboronic acid and cis-diol groups of glucose enables reversible changes of the hydrogel fiber diameter. The analyses of light propagation loss allow for quantitative glucose measurements within the physiological range. © 2017 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Can gingival crevicular blood be relied upon for assessment of blood glucose level?

    PubMed

    Dwivedi, Shivani; Verma, Sharmila J; Shah, Monali; Jain, Kapil

    2014-11-01

    Diabetes mellitus (DM) is undiagnosed in approximately half of the patients actually suffering from the disease. In addition, the prevalence of DM is more than twice as high as in patients with periodontitis when compared to periodontally healthy subjects. Thus, a high number of patients with periodontitis may have undiagnosed DM. The purpose of the present study was to evaluate whether blood oozing from a gingival crevice during routine periodontal examination can be used for determining glucose levels. Observational cross-sectional studies were carried out in 75 patients (43 males and 32 females) with chronic periodontitis who were divided into two groups: Group I and Group II, respectively. Blood oozing from the gingival crevices of anterior teeth following periodontal probing was collected with the stick of glucose self-monitoring device, and the blood glucose levels were measured. At the same time, finger-prick blood was taken for glucometric analysis and subsequent readings were recorded. The patient's blood glucose values ranged from 74 to 256 mg/dl. The comparison between gingival crevicular blood and finger-prick blood showed a very strong correlation, with a t value of 3.97 (at P value = 0.001). The data from this study has shown that GCB collected during diagnostic periodontal examination can be an excellent source of blood for glucometric analysis.

  2. Divided dosing reduces prednisolone-induced hyperglycaemia and glycaemic variability: a randomized trial after kidney transplantation.

    PubMed

    Yates, Christopher J; Fourlanos, Spiros; Colman, Peter G; Cohney, Solomon J

    2014-03-01

    Prednisolone is a major risk factor for hyperglycaemia and new-onset diabetes after transplantation. Uncontrolled observational data suggest that divided dosing may reduce requirements for hypoglycaemic agents. This study aims to compare the glycaemic effects of divided twice daily (BD) and once daily (QD) prednisolone. Twenty-two kidney transplant recipients without diabetes were randomized to BD or QD prednisolone. Three weeks post-transplant, a continuous glucose monitor (iPro2(®) Medtronic) was applied for 5 days with subjects continuing their initial prednisolone regimen (Days 1-2) before crossover to the alternative regimen. Mean glucose, peak glucose, nadir glucose, exposure to hyperglycaemia (glucose ≥7.8 mmol/L) and glycaemic variability were assessed. The mean ± standard deviation (SD) age of subjects was 50 ± 10 years and 77% were male. Median (interquartile range) daily prednisolone dose was 25 (20, 25) mg. BD prednisolone was associated with decreased mean glucose (mean 7.9 ± 1.7 versus 8.1 ± 2.3 mmol/L, P < 0.001), peak glucose [median 10.4 (9.5, 11.4) versus 11.4 (10.3, 13.4) mmol/L, P< 0.001] and exposure to hyperglycaemia [median 25.5 (14.6, 30.3) versus 40.4 (33.2, 51.2) mmol/L/h, P = 0.003]. Median glucose peaked between 14:55-15.05 h with BD and 15:25-15:30 h with QD. Median glycaemic variability scores were decreased with BD: SD (1.1 versus 1.9, P < 0.001), mean amplitude of glycaemic excursion (1.5 versus 2.2, P = 0.001), continuous overlapping net glycaemic action-1 (CONGA-1; 1.0 versus 1.2, P = 0.039), CONGA-2 (1.2 versus 1.4, P = 0.008) and J-index (25 versus 31, P = 0.003). Split prednisolone dosing reduces glycaemic variability and hyperglycaemia early post-kidney transplant.

  3. [Continuous glucose monitoring using the Glucoday system, in children and adolescents who have type one diabetes].

    PubMed

    López Gutiérrez, Sònia; Pavía Sesma, Carlos

    2010-10-01

    At present times, Continuous Glucose Monitoring is a recommended method to detect glucemia fluctuations in patients who have diabetes, due to the fine correlation between interstitial glucose and capillary glucemia. The objective of this project is obtain a glucose register during a 48 hour period in a group of Type I diabetes patients who have an irregular metabolic control and to evaluate effectiveness of treatment employed, as well as evaluating compliance of the therapeutic norms established for each patient. At the same time, the authors plan to test the usefulness of a graphical register for diabetic education. After applying an anesthetic cream in the lateral umbilical zone, a subcutaneous catheter connected to a GLUCODAY, Menarini Diagnostics glucose sensor is inserted which, by means of a continuous sequence taking measures in interstitial liquid, registers a value every three minutes for as long as this connection is maintained. After a maximum 48 hour period, data are transferred to a computer and by means of the corresponding computer program, a graphic register for each patient is produced. Informed consent has been obtained from each patient. There were 23 patients in this study group, each diagnosed to have Type I diabetes; eight of these patients, two girls and six boys, were pre-puberty aged while 15, six girls and nine boys, were adolescents. Two of the pre-puberty patients had pathological antecedents, in one case celiac and the other thyroid disease. Two of the puberty aged patients had a history of chronic lymphocytic thyroid disease under opo-therapeutic treatment. Individual analysis of each case permits health professionals to detect a series of facts: it is difficult to comply with glucemic objectives in this group of adolescents having diabetes, with insulin treatment installed and researchers detect postprandial hyper-glucemia which do not appear when using capillary glucemias carried out by habitual methods. Study observations manifest a lack of compliance in indicated agreed upon schedules and researchers detect dietary transgressions. Continuous Glucose Monitoring makes it possible to obtain a graphic which can include those incidences which have occurred, facilitate commenting on the errors detected with adolescent patients and permit proposing a series of therapeutic modifications based on concrete, real data. Continuous Glucose Monitoring promises to be a useful tool to educate patients about diabetes.

  4. Skin-like biosensor system via electrochemical channels for noninvasive blood glucose monitoring.

    PubMed

    Chen, Yihao; Lu, Siyuan; Zhang, Shasha; Li, Yan; Qu, Zhe; Chen, Ying; Lu, Bingwei; Wang, Xinyan; Feng, Xue

    2017-12-01

    Currently, noninvasive glucose monitoring is not widely appreciated because of its uncertain measurement accuracy, weak blood glucose correlation, and inability to detect hyperglycemia/hypoglycemia during sleep. We present a strategy to design and fabricate a skin-like biosensor system for noninvasive, in situ, and highly accurate intravascular blood glucose monitoring. The system integrates an ultrathin skin-like biosensor with paper battery-powered electrochemical twin channels (ETCs). The designed subcutaneous ETCs drive intravascular blood glucose out of the vessel and transport it to the skin surface. The ultrathin (~3 μm) nanostructured biosensor, with high sensitivity (130.4 μA/mM), fully absorbs and measures the glucose, owing to its extreme conformability. We conducted in vivo human clinical trials. The noninvasive measurement results for intravascular blood glucose showed a high correlation (>0.9) with clinically measured blood glucose levels. The system opens up new prospects for clinical-grade noninvasive continuous glucose monitoring.

  5. Skin-like biosensor system via electrochemical channels for noninvasive blood glucose monitoring

    PubMed Central

    Chen, Yihao; Lu, Siyuan; Zhang, Shasha; Li, Yan; Qu, Zhe; Chen, Ying; Lu, Bingwei; Wang, Xinyan; Feng, Xue

    2017-01-01

    Currently, noninvasive glucose monitoring is not widely appreciated because of its uncertain measurement accuracy, weak blood glucose correlation, and inability to detect hyperglycemia/hypoglycemia during sleep. We present a strategy to design and fabricate a skin-like biosensor system for noninvasive, in situ, and highly accurate intravascular blood glucose monitoring. The system integrates an ultrathin skin-like biosensor with paper battery–powered electrochemical twin channels (ETCs). The designed subcutaneous ETCs drive intravascular blood glucose out of the vessel and transport it to the skin surface. The ultrathin (~3 μm) nanostructured biosensor, with high sensitivity (130.4 μA/mM), fully absorbs and measures the glucose, owing to its extreme conformability. We conducted in vivo human clinical trials. The noninvasive measurement results for intravascular blood glucose showed a high correlation (>0.9) with clinically measured blood glucose levels. The system opens up new prospects for clinical-grade noninvasive continuous glucose monitoring. PMID:29279864

  6. Immobilized phosphorylase for synthesis of polysaccharides from glucose

    NASA Technical Reports Server (NTRS)

    Marshall, D. L.

    1972-01-01

    Continuous processes for enzymatic production of carbohydrates from glucose are discussed. Key reactant in process is identified as phosphorylase which catalyzes reversible formation or degradation of polysaccharide. Chemical compounds and reactions to synthesize polysaccharides are analyzed.

  7. An Overview of Insulin Pumps and Glucose Sensors for the Generalist

    PubMed Central

    McAdams, Brooke H.; Rizvi, Ali A.

    2016-01-01

    Continuous subcutaneous insulin, or the insulin pump, has gained popularity and sophistication as a near-physiologic programmable method of insulin delivery that is flexible and lifestyle-friendly. The introduction of continuous monitoring with glucose sensors provides unprecedented access to, and prediction of, a patient’s blood glucose levels. Efforts are underway to integrate the two technologies, from “sensor-augmented” and “sensor-driven” pumps to a fully-automated and independent sensing-and-delivery system. Implantable pumps and an early-phase “bionic pancreas” are also in active development. Fine-tuned “pancreas replacement” promises to be one of the many avenues that offers hope for individuals suffering from diabetes. Although endocrinologists and diabetes specialists will continue to maintain expertise in this field, it behooves the primary care physician to have a working knowledge of insulin pumps and sensors to ensure optimal clinical care and decision-making for their patients. PMID:26742082

  8. Automated integration of continuous glucose monitor data in the electronic health record using consumer technology.

    PubMed

    Kumar, Rajiv B; Goren, Nira D; Stark, David E; Wall, Dennis P; Longhurst, Christopher A

    2016-05-01

    The diabetes healthcare provider plays a key role in interpreting blood glucose trends, but few institutions have successfully integrated patient home glucose data in the electronic health record (EHR). Published implementations to date have required custom interfaces, which limit wide-scale replication. We piloted automated integration of continuous glucose monitor data in the EHR using widely available consumer technology for 10 pediatric patients with insulin-dependent diabetes. Establishment of a passive data communication bridge via a patient's/parent's smartphone enabled automated integration and analytics of patient device data within the EHR between scheduled clinic visits. It is feasible to utilize available consumer technology to assess and triage home diabetes device data within the EHR, and to engage patients/parents and improve healthcare provider workflow. © The Author 2016. Published by Oxford University Press on behalf of the American Medical Informatics Association.

  9. Favouring butyrate production for a new generation biofuel by acidogenic glucose fermentation using cells immobilised on γ-alumina.

    PubMed

    Syngiridis, Kostas; Bekatorou, Argyro; Kandylis, Panagiotis; Larroche, Christian; Kanellaki, Maria; Koutinas, Athanasios A

    2014-06-01

    The effect of γ-alumina as a fermentation advancing tool and as carrier for culture immobilisation, regarding VFAs and ethanol production during acidogenic fermentation of glucose, was examined at various process conditions (sugar concentration, pH) and operation modes (continuous with and without effluent recirculation and batch). The results showed that at high initial pH (8.9) the continuous acidogenic fermentation of glucose led to high yields of VFAs and favoured the accumulation of butyric acid. The batch process on the other hand at pH 6.5, favoured the ethanol-type fermentation. The results indicate that in the frame of technology development for new generation biofuels, using γ-alumina as a process advancing tool at optimum process conditions (pH, initial glucose concentration and mode of operation), the produced VFAs profile and ethanol concentration may be manipulated. Copyright © 2014. Published by Elsevier Ltd.

  10. 40 CFR 86.343-79 - Chart reading.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 19 2013-07-01 2013-07-01 false Chart reading. 86.343-79 Section 86.343-79 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Emission Regulations for New Gasoline-Fueled and Diesel-Fueled Heavy-Duty...

  11. 40 CFR 86.343-79 - Chart reading.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 19 2012-07-01 2012-07-01 false Chart reading. 86.343-79 Section 86.343-79 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Emission Regulations for New Gasoline-Fueled and Diesel-Fueled Heavy-Duty...

  12. COMPUTER TECHNIQUES FOR WEEKLY MULTIPLE-CHOICE TESTING.

    ERIC Educational Resources Information Center

    BROYLES, DAVID

    TO ENCOURAGE POLITICAL SCIENCE STUDENTS TO READ PROPERLY AND CONTINUOUSLY, THE AUTHOR GIVES FREQUENT SHORT QUIZZES BASED ON THE ASSIGNED READINGS. FOR EASE IN ADMINISTRATION AND SCORING, HE USES MARK-SENSE CARDS, ON WHICH THE STUDENT MARKS DESIGNATED AREAS TO INDICATE HIS NUMBER AND HIS CHOICE OF ANSWERS. TO EMPHASIZE THE VALUE OF CONTINUED HIGH…

  13. Oceans: Our Continuing Frontier. A Courses by Newspaper Reader.

    ERIC Educational Resources Information Center

    Menard, H. William, Ed.; Scheiber, Jane L., Ed.

    This reader is one of several supplementary materials for a 16-week newspaper course about oceans. Six units contain 77 readings from primary sources such as personal diaries, historical documents, novels and poems. The readings present a mosaic of viewpoints, concerns, and controversial issues about the sea. "Our Continuing Frontier" provides a…

  14. Basement Membrane-Based Glucose Sensor Coatings Enhance Continuous Glucose Monitoring in Vivo

    PubMed Central

    Klueh, Ulrike; Qiao, Yi; Czajkowski, Caroline; Ludzinska, Izabela; Antar, Omar; Kreutzer, Donald L.

    2015-01-01

    Background: Implantable glucose sensors demonstrate a rapid decline in function that is likely due to biofouling of the sensor. Previous efforts directed at overcoming this issue has generally focused on the use of synthetic polymer coatings, with little apparent effect in vivo, clearly a novel approach is required. We believe that the key to extending sensor life span in vivo is the development of biocompatible basement membrane (BM) based bio-hydrogels as coatings for glucose sensors. Method: BM based bio-hydrogel sensor coatings were developed using purified BM preparations (ie, Cultrex from Trevigen Inc). Modified Abbott sensors were coated with Cultrex BM extracts. Sensor performance was evaluated for the impact of these coatings in vitro and in vivo in a continuous glucose monitoring (CGM) mouse model. In vivo sensor function was assessed over a 28-day time period expressed as mean absolute relative difference (MARD) values. Tissue reactivity of both Cultrex coated and uncoated glucose sensors was evaluated at 7, 14, 21 and 28 days post–sensor implantation with standard histological techniques. Results: The data demonstrate that Cultrex-based sensor coatings had no effect on glucose sensor function in vitro. In vivo glucose sensor performance was enhanced following BM coating as determined by MARD analysis, particularly in weeks 2 and 3. In vivo studies also demonstrated that Cultrex coatings significantly decreased sensor-induced tissue reactions at the sensor implantation sites. Conclusion: Basement-membrane-based sensor coatings enhance glucose sensor function in vivo, by minimizing or preventing sensor-induced tissues reactions. PMID:26306494

  15. Impact of Ramadan fasting on glucose levels in women with gestational diabetes mellitus treated with diet alone or diet plus metformin: a continuous glucose monitoring study.

    PubMed

    Afandi, Bachar O; Hassanein, Mohamed M; Majd, Lina M; Nagelkerke, Nico J D

    2017-01-01

    Women with gestational diabetes mellitus (GDM) are categorized as at high risk for adverse events during Ramadan fasting. However, this is largely based on clinical opinion. In this study, we shed some light on what happens to glucose levels during Ramadan fasting. This is a prospective observational study. A total of 32 patients with GDM were recruited; 10 patients, treated with diet only (group 1), to observe their glucose levels before fasting and 22 patients who insisted on fasting the month of Ramadan, 13 treated with diet only (group 2) and nine treated with diet plus metformin 500 mg twice daily (group 3), to evaluate their glucose levels during fasting. Interstitial glucose was monitored in all by using the iPro2 Professional continuous glucose monitoring (CGM) system. Mean glucose level was 116±21 mg/dL (6.16±1.16 mmol/L), 106±9 mg/dL (5.88±0.49 mmol/L) and 99±7 mg/dL (5.49±0.34 mmol/L) in groups 1, 2 and 3, respectively. Patients in group 1 had the lowest rate of hypoglycemia (50%), followed by patients in group 2 (60%), whereas patients in group 3 had the highest rate of hypoglycemia (78%). CGM data indicates that Ramadan fasting in women with GDM treated with diet alone or with diet plus metformin was associated with lower mean glucose levels and higher rates of hypoglycemia when compared with non-fasting glucose levels. Women with GDM should be advised against fasting during Ramadan until further data is available.

  16. Assessing performance of closed-loop insulin delivery systems by continuous glucose monitoring: drawbacks and way forward.

    PubMed

    Hovorka, Roman; Nodale, Marianna; Haidar, Ahmad; Wilinska, Malgorzata E

    2013-01-01

    We investigated whether continuous glucose monitoring (CGM) levels can accurately assess glycemic control while directing closed-loop insulin delivery. Data were analyzed retrospectively from 33 subjects with type 1 diabetes who underwent closed-loop and conventional pump therapy on two separate nights. Glycemic control was evaluated by reference plasma glucose and contrasted against three methods based on Navigator (Abbott Diabetes Care, Alameda, CA) CGM levels. Glucose mean and variability were estimated by unmodified CGM levels with acceptable clinical accuracy. Time when glucose was in target range was overestimated by CGM during closed-loop nights (CGM vs. plasma glucose median [interquartile range], 86% [65-97%] vs. 75% [59-91%]; P=0.04) but not during conventional pump therapy (57% [32-72%] vs. 51% [29-68%]; P=0.82) providing comparable treatment effect (mean [SD], 28% [29%] vs. 23% [21%]; P=0.11). Using the CGM measurement error of 15% derived from plasma glucose-CGM pairs (n=4,254), stochastic interpretation of CGM gave unbiased estimate of time in target during both closed-loop (79% [62-86%] vs. 75% [59-91%]; P=0.24) and conventional pump therapy (54% [33-66%] vs. 51% [29-68%]; P=0.44). Treatment effect (23% [24%] vs. 23% [21%]; P=0.96) and time below target were accurately estimated by stochastic CGM. Recalibrating CGM using reference plasma glucose values taken at the start and end of overnight closed-loop was not superior to stochastic CGM. CGM is acceptable to estimate glucose mean and variability, but without adjustment it may overestimate benefit of closed-loop. Stochastic CGM provided unbiased estimate of time when glucose is in target and below target and may be acceptable for assessment of closed-loop in the outpatient setting.

  17. First step toward near-infrared continuous glucose monitoring: in vivo evaluation of antibody coupled biomaterials

    PubMed Central

    Gellynck, Karolien; Kodeck, Valérie; Van De Walle, Elke; Kersemans, Ken; De Vos, Filip; Declercq, Heidi; Dubruel, Peter; Vlaminck, Lieven

    2015-01-01

    Continuous glucose monitoring (CGM) is crucial in diabetic care. Long-term CGM systems however require an accurate sensor as well as a suitable measuring environment. Since large intravenous sensors are not feasible, measuring inside the interstitial fluid is considered the best alternative. This option, unfortunately, has the drawback of a lag time with blood glucose values. A good strategy to circumvent this is to enhance tissue integration and enrich the peri-implant vasculature. Implants of different optically transparent biomaterials (poly(methyl-methacrylate) [PMMA] and poly(dimethylsiloxane) [PDMS]) – enabling glucose monitoring in the near-infrared (NIR) spectrum – were surface-treated and subsequently implanted in goats at various implantation sites for up to 3 months. The overall in vivo biocompatibility, tissue integration, and vascularization at close proximity of the surfaces of these materials were assessed. Histological screening showed similar tissue reactions independent of the implantation site. No significant inflammation reaction was observed. Tissue integration and vascularization correlated, to some extent, with the biomaterial composition. A modification strategy, in which a vascular endothelial-cadherin antibody was coupled to the biomaterials surface through a dopamine layer, showed significantly enhanced vascularization 3 months after subcutaneous implantation. Our results suggest that the developed strategy enables the creation of tissue interactive NIR transparent packaging materials, opening the possibility of continuous glucose monitoring. PMID:25304314

  18. Continuous bio-catalytic conversion of sugar mixture to acetone-butanol-ethanol by immobilized Clostridium acetobutylicum DSM 792.

    PubMed

    Survase, Shrikant A; van Heiningen, Adriaan; Granström, Tom

    2012-03-01

    Continuous production of acetone, n-butanol, and ethanol (ABE) was carried out using immobilized cells of Clostridium acetobutylicum DSM 792 using glucose and sugar mixture as a substrate. Among various lignocellulosic materials screened as a support matrix, coconut fibers and wood pulp fibers were found to be promising in batch experiments. With a motive of promoting wood-based bio-refinery concept, wood pulp was used as a cell holding material. Glucose and sugar mixture (glucose, mannose, galactose, arabinose, and xylose) comparable to lignocellulose hydrolysate was used as a substrate for continuous production of ABE. We report the best solvent productivity among wild-type strains using column reactor. The maximum total solvent concentration of 14.32 g L(-1) was obtained at a dilution rate of 0.22 h(-1) with glucose as a substrate compared to 12.64 g L(-1) at 0.5 h(-1) dilution rate with sugar mixture. The maximum solvent productivity (13.66 g L(-1) h(-1)) was obtained at a dilution rate of 1.9 h(-1) with glucose as a substrate whereas solvent productivity (12.14 g L(-1) h(-1)) was obtained at a dilution rate of 1.5 h(-1) with sugar mixture. The immobilized column reactor with wood pulp can become an efficient technology to be integrated with existing pulp mills to convert them into wood-based bio-refineries.

  19. Reading without Teachers: Literature Circles in an EFL Classroom

    ERIC Educational Resources Information Center

    Hsu, Jeng-yih Tim

    2004-01-01

    Unsuccessful college education often turns our students into book haters who will stop reading as soon as they graduate. The idea of literature circles embraces the concept of "reading for fun" and is intended to create more independent readers and book addicts who will continuously read for the rest of their lives. Pioneers in literacy…

  20. A Comparison of Two Reading Programs on Third Grade Reading Achievement

    ERIC Educational Resources Information Center

    Miller, Tawana D.

    2008-01-01

    Background: The No Child Left Behind Act legislation requires both higher standards and higher success rates at the same time. Failure of students to learn to read adequately as shown by national and state test results and the need for continued school success had prompted education officials to implement two reading programs--Voyager Universal…

  1. 32 CFR 806.11 - FOIA reading rooms.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 6 2013-07-01 2013-07-01 false FOIA reading rooms. 806.11 Section 806.11 National Defense Department of Defense (Continued) DEPARTMENT OF THE AIR FORCE ADMINISTRATION AIR FORCE FREEDOM OF INFORMATION ACT PROGRAM § 806.11 FOIA reading rooms. Each FOIA office will arrange for a reading room where the public may inspect releasabl...

  2. 32 CFR 806.11 - FOIA reading rooms.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 6 2011-07-01 2011-07-01 false FOIA reading rooms. 806.11 Section 806.11 National Defense Department of Defense (Continued) DEPARTMENT OF THE AIR FORCE ADMINISTRATION AIR FORCE FREEDOM OF INFORMATION ACT PROGRAM § 806.11 FOIA reading rooms. Each FOIA office will arrange for a reading room where the public may inspect releasabl...

  3. 32 CFR 806.11 - FOIA reading rooms.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 6 2012-07-01 2012-07-01 false FOIA reading rooms. 806.11 Section 806.11 National Defense Department of Defense (Continued) DEPARTMENT OF THE AIR FORCE ADMINISTRATION AIR FORCE FREEDOM OF INFORMATION ACT PROGRAM § 806.11 FOIA reading rooms. Each FOIA office will arrange for a reading room where the public may inspect releasabl...

  4. 32 CFR 806.11 - FOIA reading rooms.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 6 2014-07-01 2014-07-01 false FOIA reading rooms. 806.11 Section 806.11 National Defense Department of Defense (Continued) DEPARTMENT OF THE AIR FORCE ADMINISTRATION AIR FORCE FREEDOM OF INFORMATION ACT PROGRAM § 806.11 FOIA reading rooms. Each FOIA office will arrange for a reading room where the public may inspect releasabl...

  5. Teaching Reading and Spelling to Adult Learners: The Multisensory Structured Language Approach

    ERIC Educational Resources Information Center

    Ali, Shamim

    2012-01-01

    All over the World most effective methods for teaching reading to beginning-level adults have been applied. My continuing challenge has been to determine how reading acquisition research can be applied to teaching reading to adults. In this article, I describe the techniques I have found most useful; I hope other teachers working with beginning…

  6. The Impact of Past Language Arts Teachers on the Reading Motivation of Twelfth Grade Students

    ERIC Educational Resources Information Center

    Shepard, Courtney A.

    2017-01-01

    Adolescents' motivation to read continues to decline. The purpose of this embedded single case study was to explore adolescent reading motivation to determine some ways in which adolescents are motivated to read. Through purposeful sampling, the participants included seven twelfth grade students and three English Language Arts teachers in grades…

  7. The Multi-Faceted Role of Ohio's Elementary Reading Specialists: Instruction, Assessment, Leadership and beyond

    ERIC Educational Resources Information Center

    Lipp, Jamie R.

    2017-01-01

    Over the past 65 years, the roles of the reading specialist have continually evolved. Historically, reading specialists have been hired by schools to work predominantly with struggling readers (Bean, Cassidy, Grumet, Shelton & Wallis, 2002; Bean, Swan & Knaub, 2003). Reading specialists today serve in a variety of roles within their…

  8. The PCRS (Parent-Child Reading System) Specialist's Guide; The Des Moines Family Learning Project.

    ERIC Educational Resources Information Center

    Miller, Martin, Ed.

    The Parent-Child Reading System (PCRS), a way of organizing instructional materials for reading so that parents can become continuously involved in helping to improve their children's reading abilities, may be used in connection with family learning center (FLC) workshops, in schools, or in institutions maintaining contact with schools. This…

  9. The Impact of Differentiated Reading Homework Assignments on Students' Attitudes toward Homework, Motivation to Read, Interest in Reading, and Reading Achievement

    ERIC Educational Resources Information Center

    Hickerson, Danielle

    2012-01-01

    Previous research has indicated that there is no relationship between traditional homework completion and academic achievement among elementary grade students. Yet, elementary school teachers continue to utilize this practice. The purpose of this quantitative study was to investigate the relationship between nontraditional, differentiated reading…

  10. Effects of pH, lactate, hematocrit and potassium level on the accuracy of continuous glucose monitoring (CGM) in pediatric intensive care unit.

    PubMed

    Marics, Gábor; Koncz, Levente; Eitler, Katalin; Vatai, Barbara; Szénási, Boglárka; Zakariás, David; Mikos, Borbála; Körner, Anna; Tóth-Heyn, Péter

    2015-03-19

    Continuous glucose monitoring (CGM) originally was developed for diabetic patients and it may be a useful tool for monitoring glucose changes in pediatric intensive care unit (PICU). Its use is, however, limited by the lack of sufficient data on its reliability at insufficient peripheral perfusion. We aimed to correlate the accuracy of CGM with laboratory markers relevant to disturbed tissue perfusion. In 38 pediatric patients (age range, 0-18 years) requiring intensive care we tested the effect of pH, lactate, hematocrit and serum potassium on the difference between CGM and meter glucose measurements. Guardian® (Medtronic®) CGM results were compared to GEM 3000 (Instrumentation laboratory®) and point-of-care measurements. The clinical accuracy of CGM was evaluated by Clarke Error Grid -, Bland-Altman analysis and Pearson's correlation. We used Friedman test for statistical analysis (statistical significance was established as a p < 0.05). CGM values exhibited a considerable variability without any correlation with the examined laboratory parameters. Clarke, Bland-Altman analysis and Pearson's correlation coefficient demonstrated a good clinical accuracy of CGM (zone A and B = 96%; the mean difference between reference and CGM glucose was 1,3 mg/dL, 48 from the 780 calibration pairs overrunning the 2 standard deviation; Pearson's correlation coefficient: 0.83). The accuracy of CGM measurements is independent of laboratory parameters relevant to tissue hypoperfusion. CGM may prove a reliable tool for continuous monitoring of glucose changes in PICUs, not much influenced by tissue perfusion, but still not appropriate for being the base for clinical decisions.

  11. Nanopillar based electrochemical biosensor for monitoring microfluidic based cell culture

    NASA Astrophysics Data System (ADS)

    Gangadharan, Rajan

    In-vitro assays using cultured cells have been widely performed for studying many aspects of cell biology and cell physiology. These assays also form the basis of cell based sensing. Presently, analysis procedures on cell cultures are done using techniques that are not integrated with the cell culture system. This approach makes continuous and real-time in-vitro measurements difficult. It is well known that the availability of continuous online measurements for extended periods of time will help provide a better understanding and will give better insight into cell physiological events. With this motivation we developed a highly sensitive, selective and stable microfluidic electrochemical glucose biosensor to make continuous glucose measurements in cell culture media. The performance of the microfluidic biosensor was enhanced by adding 3D nanopillars to the electrode surfaces. The microfluidic glucose biosensor consisted of three electrodes---Enzyme electrode, Working electrode, and Counter electrode. All these electrodes were enhanced with nanopillars and were optimized in their respective own ways to obtain an effective and stable biosensing device in cell culture media. For example, the 'Enzyme electrode' was optimized for enzyme immobilization via either a polypyrrole-based or a self-assembled-monolayer-based immobilization method, and the 'Working electrode' was modified with Prussian Blue or electropolymerized Neutral Red to reduce the working potential and also the interference from other interacting electro-active species. The complete microfluidic biosensor was tested for its ability to monitor glucose concentration changes in cell culture media. The significance of this work is multifold. First, the developed device may find applications in continuous and real-time measurements of glucose concentrations in in-vitro cell cultures. Second, the development of a microfluidic biosensor will bring technical know-how toward constructing continuous glucose monitoring devices. Third, the methods used to develop 3D electrodes incorporated with nanopillars can be used for other applications such as neural probes, fuel cells, solar cells etc., and finally, the knowledge obtained from the immobilization of enzymes onto nanostructures sheds some new insight into nanomaterial/biomolecule interactions.

  12. Role of Vascular Networks in Extending Glucose Sensor Function: Impact of Angiogenesis and Lymphangiogenesis on Continuous Glucose Monitoring in vivo

    PubMed Central

    Klueh, Ulrike; Antar, Omar; Qiao, Yi; Kreutzer, Donald L.

    2014-01-01

    The concept of increased blood vessel (BV) density proximal to glucose sensors implanted in the interstitial tissue increases the accuracy and lifespan of sensors is accepted, despite limited existing experimental data. Interestingly, there is no previous data or even conjecture in the literature on the role of lymphatic vessels (LV) alone, or in combination with BV, in enhancing continuous glucose monitoring (CGM) in vivo. To investigate the impact of inducing vascular networks (BV and LV) at sites of glucose sensor implantation, we utilized adenovirus based local gene therapy of vascular endothelial cell growth factor-A (VEGF-A) to induce vessels at sensor implantation sites. The results of these studies demonstrated that 1) VEGF-A based local gene therapy increases vascular networks (blood vessels and lymphatic vessels) at sites of glucose sensor implantation; and 2) this local increase of vascular networks enhances glucose sensor function in vivo from 7 days to greater than 28 days post sensor implantation. This data provides “proof of concept” for the effective usage of local angiogenic factor (AF) gene therapy in mammalian models in an effort to extend CGM in vivo. It also supports the practice of a variety of viral and non-viral vectors as well as gene products (e.g. anti-inflammatory and anti-fibrosis genes) to engineer “implant friendly tissues” for the usage with implantable glucose sensors as well as other implantable devices. PMID:24243850

  13. Continuous Glucose Monitoring

    MedlinePlus

    ... costs will be covered. What is an artificial pancreas? A CGM is one part of the “artificial pancreas” systems that are beginning to reach people with ... has played an important role in developing artificial pancreas technology. An artificial pancreas replaces manual blood glucose ...

  14. Effects of Acarbose to Delay Progression of Carotid Intima-Media Thickness in Early Diabetes

    PubMed Central

    Patel, YR; Kirkman, MS; Considine, RV; Hannon, TS; Mather, KJ

    2014-01-01

    Background The antidiabetic agent acarbose reduces postprandial glucose excursions. We have evaluated the effect of randomized treatment with acarbose on the progression of carotid intima-media thickness (IMT) in early diabetes. Methods The Early Diabetes Intervention Program (EDIP) was a randomized trial of acarbose versus placebo, in 219 participants with early diabetes characterized by glucose values over 11.1 mmol/L 2 hours after a 75g oral glucose load, and mean HbA1c 6.3%. IMT was measured at baseline and yearly. Follow-up was discontinued if participants progressed to the study glucose endpoints; IMT readings were available for a median of 2 years, with 72 subjects followed for 5 years. Results Progressive increases in IMT were seen in both treatment groups, but this was reduced in participants randomized to acarbose (p=0.047). In age, sex and smoking-adjusted analyses IMT progression was associated with greater fasting and OGTT-excursion glucose, fasting insulin, cholesterol, and glycated LDL concentrations. IMT progression was reduced with study-related changes in weight, insulin, and nonesterified fatty acids; these features were more strongly associated with reduced IMT progression than acarbose treatment. Despite strong associations of baseline glycemia with IMT progression, study-related changes in glucose were not important determinants of IMT progression. Conclusions Acarbose can delay progression of carotid intima-media thickness in early diabetes defined by an oral glucose tolerance test. Glucose, weight, insulin and lipids contributed to risk of progression but reductions in glycemia were not major determinants of reduced rate of IMT progression. Vascular benefits of acarbose may be independent of its glycemic effects. PMID:23908125

  15. A stratification approach using logit-based models for confounder adjustment in the study of continuous outcomes.

    PubMed

    Tan, Chuen Seng; Støer, Nathalie C; Chen, Ying; Andersson, Marielle; Ning, Yilin; Wee, Hwee-Lin; Khoo, Eric Yin Hao; Tai, E-Shyong; Kao, Shih Ling; Reilly, Marie

    2017-01-01

    The control of confounding is an area of extensive epidemiological research, especially in the field of causal inference for observational studies. Matched cohort and case-control study designs are commonly implemented to control for confounding effects without specifying the functional form of the relationship between the outcome and confounders. This paper extends the commonly used regression models in matched designs for binary and survival outcomes (i.e. conditional logistic and stratified Cox proportional hazards) to studies of continuous outcomes through a novel interpretation and application of logit-based regression models from the econometrics and marketing research literature. We compare the performance of the maximum likelihood estimators using simulated data and propose a heuristic argument for obtaining the residuals for model diagnostics. We illustrate our proposed approach with two real data applications. Our simulation studies demonstrate that our stratification approach is robust to model misspecification and that the distribution of the estimated residuals provides a useful diagnostic when the strata are of moderate size. In our applications to real data, we demonstrate that parity and menopausal status are associated with percent mammographic density, and that the mean level and variability of inpatient blood glucose readings vary between medical and surgical wards within a national tertiary hospital. Our work highlights how the same class of regression models, available in most statistical software, can be used to adjust for confounding in the study of binary, time-to-event and continuous outcomes.

  16. Analysis of Continuous Glucose Monitoring in Pregnant Women With Diabetes: Distinct Temporal Patterns of Glucose Associated With Large-for-Gestational-Age Infants.

    PubMed

    Law, Graham R; Ellison, George T H; Secher, Anna L; Damm, Peter; Mathiesen, Elisabeth R; Temple, Rosemary; Murphy, Helen R; Scott, Eleanor M

    2015-07-01

    Continuous glucose monitoring (CGM) is increasingly used to assess glucose control in diabetes. The objective was to examine how analysis of glucose data might improve our understanding of the role temporal glucose variation has on large-for-gestational-age (LGA) infants born to women with diabetes. Functional data analysis (FDA) was applied to 1.68 million glucose measurements from 759 measurement episodes, obtained from two previously published randomized controlled trials of CGM in pregnant women with diabetes. A total of 117 women with type 1 diabetes (n = 89) and type 2 diabetes (n = 28) who used repeated CGM during pregnancy were recruited from secondary care multidisciplinary obstetric clinics for diabetes in the U.K. and Denmark. LGA was defined as birth weight ≥90th percentile adjusted for sex and gestational age. A total of 54 of 117 (46%) women developed LGA. LGA was associated with lower mean glucose (7.0 vs. 7.1 mmol/L; P < 0.01) in trimester 1, with higher mean glucose in trimester 2 (7.0 vs. 6.7 mmol/L; P < 0.001) and trimester 3 (6.5 vs. 6.4 mmol/L; P < 0.01). FDA showed that glucose was significantly lower midmorning (0900-1100 h) and early evening (1900-2130 h) in trimester 1, significantly higher early morning (0330-0630 h) and throughout the afternoon (1130-1700 h) in trimester 2, and significantly higher during the evening (2030-2330 h) in trimester 3 in women whose infants were LGA. FDA of CGM data identified specific times of day that maternal glucose excursions were associated with LGA. It highlights trimester-specific differences, allowing treatment to be targeted to gestational glucose patterns. © 2015 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  17. Cook and Chill: Effect of Temperature on the Performance of Nonequilibrated Blood Glucose Meters.

    PubMed

    Deakin, Sherine; Steele, Dominic; Clarke, Sarah; Gribben, Cathryn; Bexley, Anne-Marie; Laan, Remmert; Kerr, David

    2015-08-20

    Exposure to extreme temperature can affect the performance of blood glucose monitoring systems. The aim was to determine the non-equilibrated performance of these systems at extreme high and low temperatures that can occur in daily life. The performances of 5 test systems, (1) Abbott FreeStyle Freedom Lite, (2) Roche AccuChek Aviva, (3) Bayer Contour, (4) LifeScan OneTouch Verio, and (5) Sanofi BG Star, were compared after "cooking" (50°C for 1 hour) or "chilling" (-5°C for 1 hour) with room temperature controls (23°C) using whole blood with glucose concentrations of 50, 100, and 200 mg/dl. The equilibration period (time from the end of incubation to when the test system is operational) was between 1 and 8 minutes, and each test system took between 15 and 30 minutes after incubation to obtain stable measurements at room temperature. Incubating the strips at -5°C or 50°C had little effect on the glucose measurement, whereas incubating the meters introduced bias in performance between 0 and 15 minutes but not subsequently, compared to room temperature controls and at all 3 glucose levels. Compensating technologies embedded within blood glucose monitoring systems studied here perform well at extreme temperatures. People with diabetes need to be alerted to this feature to avoid perceptions of malperformance of their devices and the possible inability to get blood glucose readings on short notice (eg, during time of suspected rapid change or before an unplanned meal). © 2015 Diabetes Technology Society.

  18. Hypoglycemia in glyburide-treated gestational diabetes: is it dose-dependent?

    PubMed

    Brustman, Lois; Langer, Oded; Scarpelli, Sophia; El Daouk, Manal; Fuchs, Anna; Rosenn, Barak

    2011-02-01

    To estimate whether there is a relationship between glyburide dose and the rate of hypoglycemic episodes in women with gestational diabetes mellitus (GDM). We studied 674 women with GDM who were treated with glyburide and diagnosed from 2000 to 2009. Glucose data were downloaded from memory-based meters at each visit and analyzed to estimate the incidence of recorded episodes of hypoglycemia and the association with concurrent dose of glyburide therapy (2.5, 5, 10, 15, or 20 mg). Hypoglycemia was defined as a blood glucose of less than 50 mg/dL, further classified as "severe hypoglycemia" if the event required the assistance of another person for resuscitation, "symptomatic hypoglycemia" if it was associated with typical neurogenic symptoms, or "asymptomatic hypoglycemia" if the biochemical reading was less than 50 mg/dL with no symptoms or accompanied by mild symptoms that did not impair the patient's ability to function. Patients recorded a mean of 272 glucose values. Sixty-seven percent of the patients experienced no blood glucose values in the hypoglycemic range. 33% had 1-7% of their total blood glucose values within the hypoglycemic range. All recordings of hypoglycemic episodes were asymptomatic; no patient reported a severe or symptomatic hypoglycemic episode. A significant association was found between the incidence of asymptomatic hypoglycemia and mean blood glucose (P<.001). No association was found between glyburide dose and incidence of asymptomatic hypoglycemia. No association between glyburide dose or mean blood glucose value and the incidence of neonatal hypoglycemia was found. Incremental increases in glyburide dose are not associated with an increase in the incidence of hypoglycemic episodes. II.

  19. Rapamycin impairs HPD-induced beneficial effects on glucose homeostasis

    PubMed Central

    Chang, Geng-Ruei; Chiu, Yi-Shin; Wu, Ying-Ying; Lin, Yu-Chi; Hou, Po-Hsun; Mao, Frank Chiahung

    2015-01-01

    Background and Purpose Rapamycin, which is used clinically to treat graft rejection, has also been proposed to have an effect on metabolic syndrome; however, very little information is available on its effects in lean animals/humans. The purpose of this study was to characterize further the effects of the continuous use of rapamycin on glucose homeostasis in lean C57BL6/J mice. Experimental Approach Mice were fed a high-protein diet (HPD) for 12 weeks to develop a lean model and then were treated daily with rapamycin for 5 weeks while remaining on a HPD. Metabolic parameters, endocrine profiles, glucose tolerance tests, insulin sensitivity index, the expression of the glucose transporter GLUT4 and chromium distribution were measured in vivo. Key Results Lower body weight gain as well as a decreased caloric intake, fat pads, fatty liver scores, adipocyte size and glucose tolerance test values were observed in HPD-fed mice compared with mice fed a high-fat or standard diet. Despite these beneficial effects, rapamycin-treated lean mice showed greater glucose intolerance, reduced insulin sensitivity, lower muscle GLUT4 expression and changes in chromium levels in tissues even with high insulin levels. Conclusion and Implications Our findings demonstrate that continuous rapamycin administration may lead to the development of diabetes syndrome, as it was found to induce hyperglycaemia and glucose intolerance in a lean animal model. PMID:25884889

  20. Italian Contributions to the Development of Continuous Glucose Monitoring Sensors for Diabetes Management

    PubMed Central

    Sparacino, Giovanni; Zanon, Mattia; Facchinetti, Andrea; Zecchin, Chiara; Maran, Alberto; Cobelli, Claudio

    2012-01-01

    Monitoring glucose concentration in the blood is essential in the therapy of diabetes, a pathology which affects about 350 million people around the World (three million in Italy), causes more than four million deaths per year and consumes a significant portion of the budget of national health systems (10% in Italy). In the last 15 years, several sensors with different degree of invasiveness have been proposed to monitor glycemia in a quasi-continuous way (up to 1 sample/min rate) for relatively long intervals (up to 7 consecutive days). These continuous glucose monitoring (CGM) sensors have opened new scenarios to assess, off-line, the effectiveness of individual patient therapeutic plans from the retrospective analysis of glucose time-series, but have also stimulated the development of innovative on-line applications, such as hypo/hyper-glycemia alert systems and artificial pancreas closed-loop control algorithms. In this review, we illustrate some significant Italian contributions, both from industry and academia, to the growth of the CGM sensors research area. In particular, technological, algorithmic and clinical developments performed in Italy will be discussed and put in relation with the advances obtained in the field in the wider international research community. PMID:23202020

  1. Italian contributions to the development of continuous glucose monitoring sensors for diabetes management.

    PubMed

    Sparacino, Giovanni; Zanon, Mattia; Facchinetti, Andrea; Zecchin, Chiara; Maran, Alberto; Cobelli, Claudio

    2012-10-12

    Monitoring glucose concentration in the blood is essential in the therapy of diabetes, a pathology which affects about 350 million people around the World (three million in Italy), causes more than four million deaths per year and consumes a significant portion of the budget of national health systems (10% in Italy). In the last 15 years, several sensors with different degree of invasiveness have been proposed to monitor glycemia in a quasi-continuous way (up to 1 sample/min rate) for relatively long intervals (up to 7 consecutive days). These continuous glucose monitoring (CGM) sensors have opened new scenarios to assess, off-line, the effectiveness of individual patient therapeutic plans from the retrospective analysis of glucose time-series, but have also stimulated the development of innovative on-line applications, such as hypo/hyper-glycemia alert systems and artificial pancreas closed-loop control algorithms. In this review, we illustrate some significant Italian contributions, both from industry and academia, to the growth of the CGM sensors research area. In particular, technological, algorithmic and clinical developments performed in Italy will be discussed and put in relation with the advances obtained in the field in the wider international research community.

  2. Psychology, technology, and diabetes management.

    PubMed

    Gonder-Frederick, Linda A; Shepard, Jaclyn A; Grabman, Jesse H; Ritterband, Lee M

    2016-10-01

    Use of technology in diabetes management is rapidly advancing and has the potential to help individuals with diabetes achieve optimal glycemic control. Over the past 40 years, several devices have been developed and refined, including the blood glucose meter, insulin pump, and continuous glucose monitor. When used in tandem, the insulin pump and continuous glucose monitor have prompted the Artificial Pancreas initiative, aimed at developing control system for fully automating glucose monitoring and insulin delivery. In addition to devices, modern technology, such as the Internet and mobile phone applications, have been used to promote patient education, support, and intervention to address the behavioral and emotional challenges of diabetes management. These state-of-the-art technologies not only have the potential to improve clinical outcomes, but there are possible psychological benefits, such as improved quality of life, as well. However, practical and psychosocial limitations related to advanced technology exist and, in the context of several technology-related theoretical frameworks, can influence patient adoption and continued use. It is essential for future diabetes technology research to address these barriers given that the clinical benefits appear to largely depend on patient engagement and consistence of technology use. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  3. Twenty-four-hour variations in blood glucose level in Japanese type 2 diabetes patients based on continuous glucose monitoring.

    PubMed

    Hajime, Maiko; Okada, Yosuke; Mori, Hiroko; Otsuka, Takashi; Kawaguchi, Mayuko; Miyazaki, Megumi; Kuno, Fumi; Sugai, Kei; Sonoda, Satomi; Tanaka, Kenichi; Kurozumi, Akira; Narisawa, Manabu; Torimoto, Keiichi; Arao, Tadashi; Tanaka, Yoshiya

    2018-01-01

    High fluctuations in blood glucose are associated with various complications. The correlation between glycated hemoglobin (HbA1c) level and fluctuations in blood glucose level has not been studied in Japanese patients with type 2 diabetes. In the present study, blood glucose profile stratified by HbA1c level was evaluated by continuous glucose monitoring (CGM) in Japanese type 2 diabetes patients. Our retrospective study included 294 patients with type 2 diabetes who were divided by HbA1c level into five groups (≥6.0 to <7.0%, ≥7.0 to <8.0%, ≥8.0 to <9.0%, ≥9.0 to <10.0% and ≥10%). The correlation between HbA1c level and CGM data was analyzed. The primary end-point was the difference in blood glucose fluctuations among the HbA1c groups. The mean blood glucose level increased significantly with increasing HbA1c (P trend  < 0.01). The standard deviation increased with increases in HbA1c (P trend  < 0.01). The mean amplitude of glycemic excursions did not vary significantly with HbA1c. The levels of maximum blood glucose, minimum blood glucose, each preprandial blood glucose, each postprandial maximum blood glucose, range of increase in postprandial glucose from pre-meal to after breakfast, the area under the blood concentration-time curve >180 mg/dL and percentage of the area under the blood concentration-time curve >180 mg/dL were higher with higher HbA1c. Mean glucose level and pre-breakfast blood glucose level were significant and independent determinants of HbA1c. In Japanese patients treated for type 2 diabetes, the mean amplitude of glycemic excursions did not correlate with HbA1c, making it difficult to assess blood glucose fluctuations using HbA1c. Parameters other than HbA1c are required to evaluate fluctuations in blood glucose level in patients receiving treatment for type 2 diabetes. © 2017 The Authors. Journal of Diabetes Investigation published by Asian Association for the Study of Diabetes (AASD) and John Wiley & Sons Australia, Ltd.

  4. A Stacked Approach to Reading Intervention: Increasing 2nd- and 3rd-Graders' Independent Reading Levels with an Intervention Program

    ERIC Educational Resources Information Center

    Young, Chase; Durham, Patricia; Rosenbaum-Martinez, Crystal

    2018-01-01

    Fifty 2nd- and 3rd-grade students identified as experiencing difficulty reading were randomly assigned to experimental and control groups. In the experimental group, students received a reading intervention called Read Two Impress for a total of 360 min. Students in the control continued to receive regular instruction from their teacher. A 2 × 3…

  5. Continuous Glucose Monitoring For Patients with Diabetes

    PubMed Central

    2011-01-01

    Executive Summary Objective To determine the effectiveness and cost-effectiveness of continuous glucose monitoring combined with self-monitoring of blood glucose compared with self-monitoring of blood glucose alone in the management of diabetes. Clinical Need: Condition and Target Population Diabetes is a chronic metabolic disorder that interferes with the body’s ability to produce or effectively use insulin. In 2005, an estimated 816,000 Ontarians had diabetes representing 8.8% of the province’s population. Type 1 or juvenile onset diabetes is a life-long disorder that commonly manifests in children and adolescents. It represents about 10% of the total diabetes population and involves immune-mediated destruction of insulin producing cells in the pancreas. The loss of these cells necessitates insulin therapy. Type 2 or “adult-onset” diabetes represents about 90% of the total diabetes population and is marked by a resistance to insulin or insufficient insulin secretion. The risk of developing type 2 diabetes increases with age, obesity and lack of physical activity. Approximately 30% of patients with type 2 diabetes eventually require insulin therapy. Technology Continuous glucose monitors (CGM) measure glucose levels in the interstitial fluid surrounding skin cells. These measurements supplement conventional self monitoring of blood glucose (SMBG) by monitoring the glucose fluctuations continuously over a stipulated period of time, thereby identifying fluctuations that would not be identified with SMBG alone. To use a CGM, a sensor is inserted under the skin to measure glucose in the interstitial fluid. The sensor is wired to a transmitter. The device requires calibration using a capillary blood glucose measurement. Each sensor continuously measures glucose every 5-10 seconds averaging these values every 5 minutes and storing this data in the monitors memory. Depending on the device used, the algorithm in the device can measure glucose over a 3 or 6 day period using one sensor. After the 3 or 6 day period, a new sensor is required. The device is equipped with alarms which warn the patient of impending hypo-or hyperglycemia. Two types of CGM are available: Systems that is stored in a monitor and can be downloaded later. Real time systems that continuously provide the actual glucose concentration on a display. Research Questions What is the effectiveness and cost-effectiveness of CGM combined with SMBG compared with SMBG alone in the management of diabetes? Research Methods Literature Search Search Strategy A literature search was performed on September 15, 2010 using OVID MEDLINE, MEDLINE In-Process and Other Non-Indexed Citations, EMBASE, the Cumulative Index to Nursing & Allied Health Literature (CINAHL), the Cochrane Library, and the International Agency for Health Technology Assessment (INAHTA) for studies published from January 1, 2002 until September 15, 2010. Abstracts were reviewed by a single reviewer and, for those studies meeting the eligibility criteria, full-text articles were obtained. Reference lists were also examined for any additional relevant studies not identified through the search. Articles with unknown eligibility were reviewed with a second clinical epidemiologist, then a group of epidemiologists until consensus was established. The quality of evidence was assessed as high, moderate, low or very low according to GRADE methodology. Inclusion Criteria English language Randomized controlled trials (N>30 patients) Adults or pediatric patients with insulin dependent diabetes (type 1 or 2 or gestational) Studies comparing CGM plus SMBG versus SMBG alone Exclusion Criteria Case studies Studies that did not compare CGM plus SMBG versus SMBG alone Studies that did not report statistical analysis of outcomes or data was unextractable Outcomes of Interest Change in glycosylated hemoglobin (HbA1c) Frequency or duration of hypo-or hyperglycemic episodes or euglycemia Adverse effects Summary of Findings Moderate quality evidence that CGM + SMBG: is not more effective than self monitoring of blood glucose (SMBG) alone in the reduction of HbA1c using insulin infusion pumps for Type 1 diabetes. is not more effective than SMBG alone in the reduction of hypoglycemic or severe hypoglycemic events using insulin infusion pumps for Type 1 diabetes. PMID:23074416

  6. Measurement of tissue optical properties with optical coherence tomography: Implication for noninvasive blood glucose concentration monitoring

    NASA Astrophysics Data System (ADS)

    Larin, Kirill V.

    Approximately 14 million people in the USA and more than 140 million people worldwide suffer from diabetes mellitus. The current glucose sensing technique involves a finger puncture several times a day to obtain a droplet of blood for analysis. There have been enormous efforts by many scientific groups and companies to quantify glucose concentration noninvasively using different optical techniques. However, these techniques face limitations associated with low sensitivity, accuracy, and insufficient specificity of glucose concentrations over a physiological range. Optical coherence tomography (OCT), a new technology, is being applied for noninvasive imaging in tissues with high resolution. OCT utilizes sensitive detection of photons coherently scattered from tissue. The high resolution of this technique allows for exceptionally accurate measurement of tissue scattering from a specific layer of skin compared with other optical techniques and, therefore, may provide noninvasive and continuous monitoring of blood glucose concentration with high accuracy. In this dissertation work I experimentally and theoretically investigate feasibility of noninvasive, real-time, sensitive, and specific monitoring of blood glucose concentration using an OCT-based biosensor. The studies were performed in scattering media with stable optical properties (aqueous suspensions of polystyrene microspheres and milk), animals (New Zealand white rabbits and Yucatan micropigs), and normal subjects (during oral glucose tolerance tests). The results of these studies demonstrated: (1) capability of the OCT technique to detect changes in scattering coefficient with the accuracy of about 1.5%; (2) a sharp and linear decrease of the OCT signal slope in the dermis with the increase of blood glucose concentration; (3) the change in the OCT signal slope measured during bolus glucose injection experiments (characterized by a sharp increase of blood glucose concentration) is higher than that measured in the glucose clamping experiments (characterized by slow, controlled increase of the blood glucose concentration); and (4) the accuracy of glucose concentration monitoring may substantially be improved if optimal dimensions of the probed skin area are used. The results suggest that high-resolution OCT technique has a potential for noninvasive, accurate, and continuous glucose monitoring with high sensitivity.

  7. Recent Advances in Fluorescent Arylboronic Acids for Glucose Sensing

    PubMed Central

    Hansen, Jon Stefan; Christensen, Jørn Bolstad

    2013-01-01

    Continuous glucose monitoring (CGM) is crucial in order to avoid complications caused by change in blood glucose for patients suffering from diabetes mellitus. The long-term consequences of high blood glucose levels include damage to the heart, eyes, kidneys, nerves and other organs, among others, caused by malign glycation of vital protein structures. Fluorescent monitors based on arylboronic acids are promising candidates for optical CGM, since arylboronic acids are capable of forming arylboronate esters with 1,2-cis-diols or 1,3-diols fast and reversibly, even in aqueous solution. These properties enable arylboronic acid dyes to provide immediate information of glucose concentrations. Thus, the replacement of the commonly applied semi-invasive and non-invasive techniques relying on glucose binding proteins, such as concanavalin A, or enzymes, such as glucose oxidase, glucose dehydrogenase and hexokinases/glucokinases, might be possible. The recent progress in the development of fluorescent arylboronic acid dyes will be emphasized in this review. PMID:25586415

  8. Analyzing "Inconsistencies" in Practice: Teachers' Continued Use of Round Robin Reading

    ERIC Educational Resources Information Center

    Ash, Gwynne Ellen; Kuhn, Melanie R.; Walpole, Sharon

    2009-01-01

    This study analyzed in-service teachers' and literacy coaches' perceptions of Round Robin Reading to begin developing an understanding of the persistence of this practice in public schools in the United States. Surveying 80 teachers and 27 literacy coaches using an open-ended instrument, we found that many teachers continued to use Round Robin…

  9. The Development of SAH Reading Passage Compendium: A Tool for the Assessment of Reading Performance Related to Visual Function

    ERIC Educational Resources Information Center

    Chen, Ai-Hong; Buari, Noor Halilah; Jufri, Shauqiah

    2017-01-01

    Passages with continuous sentences are commonly used for the assessment of reading performance related to visual function, and rehabilitation in optometric practices. Passages created in native languages are crucial for a reliable interpretation in a real scenario. This study aimed to report the development of SAH Reading Passage Compendium…

  10. The Effects of a Reader's Theater Instructional Intervention on Second Grade Students' Reading Fluency and Comprehension Skills

    ERIC Educational Resources Information Center

    Johnson, Diane D.

    2011-01-01

    An estimated 75% of students who are poor readers in third grade continue to be lower achieving readers in ninth grade. The National Reading Panel has identified fluency as a prominent cause of reading comprehension problems which ultimately affect overall reading development. The purpose of this study was to test the theoretical framework of…

  11. Reading Instruction: Preschool and Elementary: Abstracts of Doctoral Dissertations Published in "Dissertation Abstracts International," April through June 1978 (Vol. 38 Nos. 10 through 12).

    ERIC Educational Resources Information Center

    ERIC Clearinghouse on Reading and Communication Skills, Urbana, IL.

    This collection of abstracts is part of a continuing series providing information on recent doctoral dissertations. The 22 titles deal with the following topics: computer-assisted instruction; school characteristics and reading achievement; the process of reading acquisition; on-task behavior, teacher involvement, and reading achievement; the…

  12. Why Do Children Differ in Their Development of Reading and Related Skills?

    ERIC Educational Resources Information Center

    Olson, Richard K.; Keenan, Janice M.; Byrne, Brian; Samuelsson, Stefan

    2014-01-01

    Modern behavior-genetic studies of twins in the United States, Australia, Scandinavia, and the United Kingdom show that genes account for most of the variance in children's reading ability by the end of the 1st year of formal reading instruction. Strong genetic influence continues across the grades, though the relevant genes vary for reading words…

  13. The Effects of Teaching Reading Using the Gradual Release of Responsibility Model and 4th Grade Reading

    ERIC Educational Resources Information Center

    Young, Marthel I.

    2017-01-01

    Students' inability to meet grade level standards in reading on state and national assessments continues to be a problem across the nation. This causal comparative cohort model sought to examine the effect of the Gradual Release of Responsibility Model (GRRM) on 4th grade reading achievement, gender, and socio-economic status, and to examine…

  14. The Effects of Formative Reading Assessments Closely Linked to Classroom Texts on High School Reading Comprehension

    ERIC Educational Resources Information Center

    Hooley, Diana S.; Thorpe, Justin

    2017-01-01

    Older student reading of informational texts like those found in most high school classrooms continue to be a concern. College entrance exams scores attest to the fact that this age group of readers remain largely unprepared for the rigorous, discipline area reading and comprehension demands of higher education. In response to this issue content…

  15. The effect of an instant hand sanitizer on blood glucose monitoring results.

    PubMed

    Mahoney, John J; Ellison, John M; Glaeser, Danielle; Price, David

    2011-11-01

    People with diabetes mellitus are instructed to clean their skin prior to self-monitoring of blood glucose to remove any dirt or food residue that might affect the reading. Alcohol-based hand sanitizers have become popular when soap and water are not available. The aim of this study was to determine whether a hand sanitizer is compatible with glucose meter testing and effective for the removal of exogenous glucose. We enrolled 34 nonfasting subjects [14 male/20 female, mean ages 45 (standard deviation, 9.4)] years, 2 with diagnosed diabetes/32 without known diabetes]. Laboratory personnel prepared four separate fingers on one hand of each subject by (1) cleaning the second finger with soap and water and towel drying (i.e., control finger), (2) cleaning the third finger with an alcohol-based hand sanitizer, (3) coating the fourth finger with cola and allowing it to air dry, and (4) coating the fifth finger with cola and then cleaning it with the instant hand sanitizer after the cola had dried. Finger sticks were performed on each prepared finger and blood glucose was measured. Several in vitro studies were also performed to investigate the effectiveness of the hand sanitizer for removal of exogenous glucose.z Mean blood glucose values from fingers cleaned with instant hand sanitizer did not differ significantly from the control finger (p = .07 and .08, respectively) and resulted in 100% accurate results. Blood glucose data from the fourth (cola-coated) finger were substantially higher on average compared with the other finger conditions, but glucose data from the fifth finger (cola-coated then cleaned with hand sanitizer) was similar to the control finger. The data from in vitro experiments showed that the hand sanitizer did not adversely affect glucose meter results, but when an exogenous glucose interference was present, the effectiveness of the hand sanitizer on glucose bias (range: 6% to 212%) depended on the surface area and degree of dilution. In our study, use of an instant hand sanitizer was compatible with the results of a blood glucose monitor and did not affect finger stick blood glucose results. However, depending on surface area, hand sanitizers may not be adequate for cleaning the skin prior to glucose meter testing. © 2011 Diabetes Technology Society.

  16. The Effect of an Instant Hand Sanitizer on Blood Glucose Monitoring Results

    PubMed Central

    Mahoney, John J; Ellison, John M; Glaeser, Danielle; Price, David

    2011-01-01

    Background People with diabetes mellitus are instructed to clean their skin prior to self-monitoring of blood glucose to remove any dirt or food residue that might affect the reading. Alcohol-based hand sanitizers have become popular when soap and water are not available. The aim of this study was to determine whether a hand sanitizer is compatible with glucose meter testing and effective for the removal of exogenous glucose. Methods We enrolled 34 nonfasting subjects [14 male/20 female, mean ages 45 (standard deviation, 9.4)] years, 2 with diagnosed diabetes/32 without known diabetes]. Laboratory personnel prepared four separate fingers on one hand of each subject by (1) cleaning the second finger with soap and water and towel drying (i.e., control finger), (2) cleaning the third finger with an alcohol-based hand sanitizer, (3) coating the fourth finger with cola and allowing it to air dry, and (4) coating the fifth finger with cola and then cleaning it with the instant hand sanitizer after the cola had dried. Finger sticks were performed on each prepared finger and blood glucose was measured. Several in vitro studies were also performed to investigate the effectiveness of the hand sanitizer for removal of exogenous glucose.z Results Mean blood glucose values from fingers cleaned with instant hand sanitizer did not differ significantly from the control finger (p = .07 and .08, respectively) and resulted in 100% accurate results. Blood glucose data from the fourth (cola-coated) finger were substantially higher on average compared with the other finger conditions, but glucose data from the fifth finger (cola-coated then cleaned with hand sanitizer) was similar to the control finger. The data from in vitro experiments showed that the hand sanitizer did not adversely affect glucose meter results, but when an exogenous glucose interference was present, the effectiveness of the hand sanitizer on glucose bias (range: 6% to 212%) depended on the surface area and degree of dilution. Conclusions In our study, use of an instant hand sanitizer was compatible with the results of a blood glucose monitor and did not affect finger stick blood glucose results. However, depending on surface area, hand sanitizers may not be adequate for cleaning the skin prior to glucose meter testing. PMID:22226262

  17. The long-term significance of teacher-rated hyperactivity and reading ability in childhood: findings from two longitudinal studies.

    PubMed

    McGee, Rob; Prior, Margot; Willams, Sheila; Smart, Diana; Sanson, Anne

    2002-11-01

    The aims of this study were twofold: first, to examine behavioural and academic outcomes of children with hyperactivity, using data from two longitudinal studies; and second, to examine comparable psychosocial outcomes for children with early reading difficulties. Measures of teacher-rated persistent hyperactivity, and reading ability obtained during early primary school were available for children from the Australian Temperament Project and the Dunedin Multidisciplinary Health and Development Study. Both samples were followed up to assess behavioural and academic outcomes during the adolescent and early adult years. Family background, antisocial behaviour and literacy were controlled in the first set of analyses to examine the influence of early hyperactivity. There were strong linear relationships between early hyperactivity and later adverse outcomes. Adjustment for other childhood variables suggested that early hyperactivity was associated with continuing school difficulties, problems with attention and poor reading in adolescence. Early reading difficulties, after controlling for early hyperactivity, predicted continuing reading problems in high school and leaving school with no qualifications. The findings suggest that there are dual pathways from early inattentive behaviours to later inattention and reading problems, and from early reading difficulties to substantial impairments in later academic outcomes.

  18. Pseudohyperglycemia: Effects of Unwashed Hand after Fruit Peeling or Handling on Fingertips Blood Glucose Monitoring Results.

    PubMed

    Olamoyegun, M A; Oloyede, T; Adewoye, O G; Abdulkarim, S O; Adeleke, A A

    2016-01-01

    Self-monitoring of blood glucose (SMBG) is an important component of management for diabetes mellitus (DM), especially in T1DM and T2DM patients who are on insulin therapy. Adequate blood glucose monitoring and prompt intervention are necessary to prevent blood glucose (BG) fluctuation and delay long-term diabetes complications. People with DM are advised to clean their hands before SMBG to remove any dirt or food residue that might affect the reading. The study tested the hypothesis that falsely elevated BG levels from fingertip occur after peeling or handling fruits in an unwashed hand. Fifty apparently healthy nondiabetes volunteers were enrolled. Capillary BG samples were collected from the fingertips after peeling or handling apple, orange, banana, watermelon, and pawpaw, followed by no hand washing for 1 h, cleaning the fingertip with alcohol swab once, five times, and washing hand thoroughly with tap water and drying. These samples were then analyzed with two different glucose meters. The mean BG values, measured from fingertip blood samples after peeling, and handling any of the fruits followed by no hand washing were significantly high, even after cleaning fingertip with a swab of alcohol once. However, there were no significant difference in BG levels measured after peeling and handling fruits followed by hand washing and the level of BG before peeling and handling fruits. Handling of peeled fruits with no hand washing with tap water is associated with overestimation of capillary BG (Pseudohyperglycemia) monitored with glucose meters.

  19. Insulin pump use compared with intravenous insulin during labour and delivery: the INSPIRED observational cohort study.

    PubMed

    Drever, E; Tomlinson, G; Bai, A D; Feig, D S

    2016-09-01

    To assess the safety and efficacy of pump therapy (continuous subcutaneous insulin infusion; CSII) during labour and delivery in women with Type 1 diabetes. A retrospective cohort study of 161 consecutive Type 1 diabetic pregnancies delivered during 2000-2010 at Mount Sinai Hospital, Toronto, Canada. Capillary blood glucose levels during labour and delivery and time in/out of target (target: 4-6 mmol/l) were compared along with neonatal outcomes for three groups: (1) women on pumps who stayed on pumps during labour (pump/pump n = 31), (2) women on pumps who switched to intravenous (IV) insulin infusion during labour (pump/IVn = 25), and (3) women on multiple daily injections who switched to IV insulin infusion during labour (MDIn = 105). There were no significant differences between the mean or median glucose values during labour and delivery across all three groups, and no significant difference in time spent hypoglycaemic. However, women in the pump/pump group had significantly better glycaemic control as defined by mean glucose (5.5 vs. 6.4 mmol/l; P = 0.01), median glucose (5.4 vs. 6.3 mmol/l; P = 0.02), and more time spent in target (60.9% vs. 39.2%; P = 0.06) compared with women in the pump/IV group (after removing one outlier). This study demonstrates that the continuation of CSII therapy during labour and delivery appears safe and efficacious. Moreover, women who choose to continue CSII have better glucose control during delivery than those who switch to IV insulin, suggesting that it should be standard practice to allow women the option of continuing CSII during labour and delivery. © 2016 Diabetes UK.

  20. Management of Hypoglycemia in Children and Adolescents with Type 1 Diabetes Mellitus.

    PubMed

    McGill, Dayna E; Levitsky, Lynne L

    2016-09-01

    Hypoglycemia and fear of hypoglycemia limit appropriate glycemic control in many children and adolescents with type 1 diabetes. Traditional approaches to the prevention of hypoglycemia including patient education about modifiable risk factors for hypoglycemia (changes in insulin, diet, and exercise) and frequency of self glucose monitoring remain important for hypoglycemia prevention. Continuous glucose monitoring systems with or without a partial closed-loop control of insulin infusion have been very useful in the prevention of hypoglycemia. Oral carbohydrate and parenteral glucagon continue to be the mainstays of hypoglycemia treatment. In the future, we can look forward to regulatory approval of closed-loop insulin delivery and glucose monitoring systems to facilitate euglycemia, as well as glucagon administered by the intranasal route to treat hypoglycemia.

  1. Cloning and expression of UDP-glucose: flavonoid 7-O-glucosyltransferase from hairy root cultures of Scutellaria baicalensis.

    PubMed

    Hirotani, M; Kuroda, R; Suzuki, H; Yoshikawa, T

    2000-05-01

    A cDNA encoding UDP-glucose: baicalein 7-O-glucosyltransferase (UBGT) was isolated from a cDNA library from hairy root cultures of Scutellaria baicalensis Georgi probed with a partial-length cDNA clone of a UDP-glucose: flavonoid 3-O-glucosyltransferase (UFGT) from grape (Vitis vinifera L.). The heterologous probe contained a glucosyltransferase consensus amino acid sequence which was also present in the Scutellaria cDNA clones. The complete nucleotide sequence of the 1688-bp cDNA insert was determined and the deduced amino acid sequences are presented. The nucleotide sequence analysis of UBGT revealed an open reading frame encoding a polypeptide of 476 amino acids with a calculated molecular mass of 53,094 Da. The reaction product for baicalein and UDP-glucose catalyzed by recombinant UBGT in Escherichia coli was identified as authentic baicalein 7-O-glucoside using high-performance liquid chromatography and proton nuclear magnetic resonance spectroscopy. The enzyme activities of recombinant UBGT expressed in E. coli were also detected towards flavonoids such as baicalein, wogonin, apigenin, scutellarein, 7,4'-dihydroxyflavone and kaempferol, and phenolic compounds. The accumulation of UBGT mRNA in hairy roots was in response to wounding or salicylic acid treatments.

  2. Is type 2 diabetes really resolved after laparoscopic sleeve gastrectomy? Glucose variability studied by continuous glucose monitoring.

    PubMed

    Capoccia, D; Coccia, F; Guida, A; Rizzello, M; De Angelis, F; Silecchia, G; Leonetti, F

    2015-01-01

    The study was carried out on type 2 diabetic obese patients who underwent laparoscopic sleeve gastrectomy (LSG). Patients underwent regular glycemic controls throughout 3 years and all patients were defined cured from diabetes according to conventional criteria defined as normalization of fasting glucose levels and glycated hemoglobin in absence of antidiabetic therapy. After 3 years of follow-up, Continuous Glucose Monitoring (CGM) was performed in each patient to better clarify the remission of diabetes. In this study, we found that the diabetes resolution after LSG occurred in 40% of patients; in the other 60%, even if they showed a normal fasting glycemia and A1c, patients spent a lot of time in hyperglycemia. During the oral glucose tolerance test (OGTT), we found that 2 h postload glucose determinations revealed overt diabetes only in a small group of patients and might be insufficient to exclude the diagnosis of diabetes in the other patients who spent a lot of time in hyperglycemia, even if they showed a normal glycemia (<140 mg/dL) at 120 minutes OGTT. These interesting data could help clinicians to better individualize patients in which diabetes is not resolved and who could need more attention in order to prevent chronic complications of diabetes.

  3. Toward minimally invasive, continuous glucose monitoring in vivo

    NASA Astrophysics Data System (ADS)

    Vrancic, Christian; Gretz, Norbert; Kröger, Niels; Neudecker, Sabine; Pucci, Annemarie; Petrich, Wolfgang

    2012-01-01

    Diabetes mellitus is a disorder of glucose metabolism and it is one of the most challenging diseases, both from a medical and economic perspective. People with diabetes can benefit from a frequent or even continuous monitoring of their blood glucose concentrations. The approach presented here takes advantage of the observational nature of biomedical vibrational spectroscopy in contrast to chemical reactions which consume glucose. The particular technique employed here is based on the high sensitivity of mid-infrared transmission spectroscopy where strong vibrational bands of glucose can be monitored at wavelengths around 10 μm. The strong absorption of water in this spectral region was mitigated by the use of quantum cascade lasers and very short interaction path lengths below 50 μm. Various sensor concepts have been explored. In one of the concepts, the interaction of mid-infrared radiation with glucose is established within a miniature measurement cavity, formed by a gap between two silver halide fibers. In recent experiments, an additional quantum cascade laser was used for reference purposes. The long-term drift could significantly be reduced for time intervals > 1000 s, e. g., by more than 60% for a 3 hour interval. This extension for the compensation of long-term drifts of the measurement system in vitro is an important contribution towards the applicability in vivo.

  4. Mediating effects of motor performance, cardiorespiratory fitness, physical activity, and sedentary behaviour on the associations of adiposity and other cardiometabolic risk factors with academic achievement in children.

    PubMed

    Haapala, Eero A; Lintu, Niina; Eloranta, Aino-Maija; Venäläinen, Taisa; Poikkeus, Anna-Maija; Ahonen, Timo; Lindi, Virpi; Lakka, Timo A

    2018-03-09

    We investigated the associations of cardiometabolic risk factors with academic achievement and whether motor performance, cardiorespiratory fitness, physical activity, or sedentary behaviour mediated these associations. Altogether 175 children 6-8 years-of-age participated in the study. We assessed body fat percentage (BF%), waist circumference, insulin, glucose, triglycerides, HDL cholesterol, and systolic and diastolic blood pressure, leptin, alanine aminotransferase, and gamma-glutamyltransferase (GGT). Reading fluency, reading comprehension, and arithmetic skills were assessed using standardized tests. Speed/agility, balance, and manual dexterity test results were used to calculate motor performance score and physical activity was assessed by combined heart rate and movement sensor and cardiorespiratory fitness by maximal cycle ergometer test. In boys, BF% was inversely associated with reading fluency (β = -0.262, P = 0.007) and reading comprehension (β = -0.216, P = 0.025). Motor performance mediated these associations. Leptin was inversely related to reading fluency (β = -0.272, P = 0.006) and reading comprehension (β = -0.287, P = 0.003). The inverse association of leptin with reading fluency was mediated by motor performance. In girls, GGT was inversely associated with reading fluency independent of confounders (β = -0.325, P = 0.007). The inverse association of BF% with academic achievement among boys was largely explained by motor performance. Leptin in boys and GGT in girls were inversely associated with academic achievement independent of confounding factors.

  5. Hydrogel-based electrochemical sensor for non-invasive and continuous glucose monitoring

    NASA Astrophysics Data System (ADS)

    Park, Habeen; Lee, Ji-Young; Kim, Dong-Chul; Koh, Younggook; Cha, Junhoe

    2017-07-01

    Monitoring blood glucose level of diabetic patients is crucial in diabetes care from life threating complications. Selfmonitoring blood glucose (SMBG) that involves finger prick to draw blood samples into the measurement system is a widely-used method of routine measurement of blood glucose levels to date. SMBG includes, however, unavoidable pain problems resulting from the repetitive measurements. We hereby present a hydrogel-based electrochemical (H-EC) sensor to monitor the glucose level, non-invasively. Glucose oxidase (GOx) was immobilized in the disc-type hydroxyethyl methacrylate (HEMA) based hydrogel and kept intact in the hydrogel. Fast electron transfer mediated by Prussian blue (PB, hexacyanoferrate) generated efficient signal amplifications to facilitate the detection of the extracted glucose from the interstitial fluid. The linear response and the selectivity against glucose of the H-EC sensor were validated by chronoamperometry. For the practical use, the outcomes from the correlation of the extracted glucose concentration and the blood glucose value by on-body extraction, as well as the validation of the hydrogel-based electrochemical (H-EC) device, were applied to the on-body glucose monitoring.

  6. Mitochondria DNA replication and DNA methylation in the metabolic memory associated with continued progression of diabetic retinopathy.

    PubMed

    Tewari, Shikha; Zhong, Qing; Santos, Julia M; Kowluru, Renu A

    2012-07-24

    Diabetic retinopathy fails to halt after cessation of hyperglycemic insult, and a vicious cycle of mitochondria damage continues. The aim of our study was to investigate the effect of termination of hyperglycemia on retinal mtDNA replication, and elucidate the mechanism responsible for the continued mtDNA damage. Polymerase gamma 1 (POLG1), the catalytic subunit of the mitochondrial DNA replication enzyme, and the damage to the displacement loop region of mtDNA (D-loop) were analyzed in the retina from streptozotocin-diabetic rats maintained in poor glycemic control (PC, glycated hemoglobin ∼11%) or in good glycemic control (GC, glycated hemoglobin ∼6%) for 6 months, or in PC for three months followed by GC for three months (Rev). To understand the mechanism DNA methylation status of POLG1 promoter was investigated by methylation-specific PCR. The key parameters were confirmed in the isolated retinal endothelial cells exposed to high glucose, followed by normal glucose. POLG1 continued to be down-regulated, the D-loop region damaged, and the CpG islands at the regulatory region of POLG hyper-methylated even after three months of GC that had followed three months of PC (Rev group). Similar results were observed in the retinal endothelial cells exposed to normal glucose after being exposed to high glucose. Continued hypermethylation of the CpG sites at the regulatory region of POLG affects its binding to the mtDNA, compromising the transcriptional activity. Modulation of DNA methylation using pharmaceutic or molecular means could help maintain mitochondria homeostasis, and prevent further progression of diabetic retinopathy.

  7. Determinants of hemoglobin A1c level in patients with type 2 diabetes after in-hospital diabetes education: A study based on continuous glucose monitoring.

    PubMed

    Torimoto, Keiichi; Okada, Yosuke; Sugino, Sachiko; Tanaka, Yoshiya

    2017-05-01

    We investigated the relationship between blood glucose profile at hospital discharge, evaluated by continuous glucose monitoring (CGM), and hemoglobin A1c (HbA1c) level at 12 weeks after discharge in patients with type 2 diabetes who received inpatient diabetes education. This was a retrospective study. The participants were 54 patients with type 2 diabetes who did not change their medication after discharge. The mean blood glucose (MBG), standard deviation, coefficient of variation, mean postprandial glucose excursion, maximum blood glucose, minimum blood glucose, percentage of time with blood glucose at ≥180 mg/dL (time at ≥180), percentage of time with blood glucose at ≥140 mg/dL, and percentage of time with blood glucose at <70 mg/dL were measured at admission and discharge using CGM. The primary end-point was the relationship between CGM parameters and HbA1c level at 12 weeks after discharge. The HbA1c level at 12 weeks after discharge correlated with MBG level (r = 0.30, P = 0.029). Multivariate analysis showed that MBG level and disease duration were predictors of 12-week HbA1c level. Multivariate logistic regression analysis was carried out considering goal achievement as a HbA1c level <7.0% 12 weeks after discharge. Disease duration and time at ≥180 were associated with goal achievement. The present results suggested that blood glucose profile at discharge using CGM seems useful to predict HbA1c level after discharge in patients with type 2 diabetes who received inpatient diabetes education. Early treatment to improve MBG level, as well as postprandial hyperglycemia, is important to achieve strict glycemic control. © 2016 The Authors. Journal of Diabetes Investigation published by Asian Association for the Study of Diabetes (AASD) and John Wiley & Sons Australia, Ltd.

  8. The Effects of Sheltered Instruction on Struggling Readers

    ERIC Educational Resources Information Center

    Norwood, Stephanie Deneen

    2012-01-01

    The consequences of less than proficient reading skills are well documented. In educational settings, as children progress through the grades, the expectation that they acquire content knowledge through reading continually increases. However, many children lack the proficient reading skills that would enable them to acquire content knowledge…

  9. A prospective study of low fasting glucose with cardiovascular disease events and all-cause mortality: The Women's Health Initiative.

    PubMed

    Mongraw-Chaffin, Morgana; LaCroix, Andrea Z; Sears, Dorothy D; Garcia, Lorena; Phillips, Lawrence S; Salmoirago-Blotcher, Elena; Zaslavsky, Oleg; Anderson, Cheryl A M

    2017-05-01

    While there is increasing recognition of the risks associated with hypoglycemia in patients with diabetes, few studies have investigated incident cause-specific cardiovascular outcomes with regard to low fasting glucose in the general population. We hypothesized that low fasting glucose would be associated with cardiovascular disease risk and all-cause mortality in postmenopausal women. To test our hypothesis, we used both continuous incidence rates and Cox proportional hazards models in 17,287 participants from the Women's Health Initiative with fasting glucose measured at baseline. Participants were separated into groups based on fasting glucose level: low (<80mg/dL), normal/reference (80-99mg/dL), impaired (100-125mg/dL), and diabetic (≥126mg/dL). Participants were free of cardiovascular disease at enrollment, had mean age of 62years, and were 52% Caucasian, 24% African American, 8% Asian, and 12% Hispanic. Median follow-up was 15years. Graphs of continuous incidence rates compared to fasting glucose distribution exhibited evidence of a weak J-shaped association with heart failure and mortality that was predominantly due to participants with treated diabetes. Impaired and diabetic fasting glucose were positively associated with all outcomes. Associations for low fasting glucose differed, with coronary heart disease (HR=0.64 (0.42, 0.98)) significantly inverse; stroke (0.73 (0.48, 1.13)), combined cardiovascular disease (0.91 (0.73, 1.14)), and all-cause mortality (0.97 (0.79, 1.20)) null or inverse and not significant; and heart failure (1.27 (0.80, 2.02)) positive and not significant. Fasting glucose at the upper range, but not the lower range, was significantly associated with incident cardiovascular disease and all-cause mortality. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Glucose excursions and glycaemic control during Ramadan fasting in diabetic patients: insights from continuous glucose monitoring (CGM).

    PubMed

    Lessan, N; Hannoun, Z; Hasan, H; Barakat, M T

    2015-02-01

    Ramadan fasting represents a major shift in meal timing and content for practicing Muslims. This study used continuous glucose monitoring (CGM) to assess changes in markers of glycaemic excursions during Ramadan fasting to investigate the short-term safety of this practice in different groups of patients with diabetes. A total of 63 subjects (56 with diabetes, seven healthy volunteers; 39 male, 24 female) had CGM performed during, before and after Ramadan fasting. Mean CGM curves were constructed for each group for these periods that were then used to calculate indicators of glucose control and excursions. Post hoc data analyses included comparisons of different medication categories (metformin/no medication, gliptin, sulphonylurea and insulin). Medication changes during Ramadan followed American Diabetes Association guidelines. Among patients with diabetes, there was a significant difference in mean CGM curve during Ramadan, with a slow fall during fasting hours followed by a rapid rise in glucose level after the sunset meal (iftar). The magnitude of this excursion was greatest in the insulin-treated group, followed by the sulphonylurea-treated group. Markers of control deteriorated in a small number (n=3) of patients. Overall, whether fasting or non-fasting, subjects showed no statistically significant changes in mean interstitial glucose (IG), mean amplitude of glycaemic excursion (MAGE), high and low blood glucose indices (HBGI/LBGI), and number of glucose excursions and rate of hypoglycaemia. The main change in glycaemic control with Ramadan fasting in patients with diabetes is in the pattern of excursions. Ramadan fasting caused neither overall deterioration nor improvement in the majority of patients with good baseline glucose control. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  11. Optimal insulin pump dosing and postprandial glycemia following a pizza meal using the continuous glucose monitoring system.

    PubMed

    Jones, Susan M; Quarry, Jill L; Caldwell-McMillan, Molly; Mauger, David T; Gabbay, Robert A

    2005-04-01

    We attempted to identify an optimal insulin pump meal bolus by comparing postprandial sensor glucose values following three methods of insulin pump meal bolusing for a consistent pizza meal. Twenty-four patients with type 1 diabetes participated in a study to compare postprandial glucose values following three meal bolus regimens for a consistent evening pizza meal. Each participant utilized the following insulin lispro regimens on consecutive evenings, and glucose values were tracked by the Continuous Glucose Monitoring System (CGMS, Medtronic MiniMed, Northridge, CA): (a) single-wave bolus (100% of insulin given immediately); (b) 4-h dual-wave bolus (50% of insulin given immediately and 50% given over a 4-h period); and (c) 8-h dual-wave bolus (50% of insulin given immediately and 50% given over a 8-h period). Total insulin bolus amount was kept constant for each pizza meal. Divergence in blood glucose among the regimens was greatest at 8-12 h. The 8-h dual-wave bolus provided the best glycemic control and lowest mean glucose values (singlewave bolus, 133 mg/dL; 4-h dual-wave bolus, 145 mg/dL; 8-h dual-wave bolus, 104 mg/dL), leading to a difference in mean glucose of 29 mg/dL for the single-wave bolus versus the 8-h dual-wave bolus and 42 mg/dL for the 4-h dual-wave bolus versus the 8-h dual-wave bolus. The lower mean glucose in the 8-h dual-wave bolus was not associated with any increased incidence of hypoglycemia. Use of a dual-wave bolus extended over an 8-h period following a pizza meal provided significantly less postprandial hyperglycemia in the late postprandial period (8-12 h) with no increased risk of hypoglycemia.

  12. Comparison of Glucose Area Under the Curve Measured Using Minimally Invasive Interstitial Fluid Extraction Technology with Continuous Glucose Monitoring System in Diabetic Patients

    PubMed Central

    Uemura, Mei; Suzuki, Toshinari; Yasuma, Taro; Sato, Toshiyuki; Morimoto, Aya; Hosoya, Samiko; Suminaka, Chihiro; Nakajima, Hiromu; Gabazza, Esteban C.; Takei, Yoshiyuki

    2017-01-01

    Background Continuous glucose monitoring (CGM) is reported to be a useful technique, but difficult or inconvenient for some patients and institutions. We are developing a glucose area under the curve (AUC) monitoring system without blood sampling using a minimally invasive interstitial fluid extraction technology (MIET). Here we evaluated the accuracy of interstitial fluid glucose (IG) AUC measured by MIET in patients with diabetes for an extended time interval and the potency of detecting hyperglycemia using CGM data as a reference. Methods Thirty-eight inpatients with diabetes undergoing CGM were enrolled. MIET comprised a pretreatment step using a plastic microneedle array and glucose accumulation step with a hydrogel patch, which was placed on two sites from 9:00 AM to 5:00 PM or from 10:00 PM to 6:00 AM. IG AUC was calculated by accumulated glucose extracted by hydrogel patches using sodium ion as standard. Results A significant correlation was observed between the predicted AUC by MIET and CGM in daytime (r=0.76) and nighttime (r=0.82). The optimal cutoff for the IG AUC value of MIET to predict hyperglycemia over 200 mg/dL measured by CGM for 8 hours was 1,067.3 mg·hr/dL with 88.2% sensitivity and 81.5% specificity. Conclusion We showed that 8-hour IG AUC levels using MIET were valuable in estimating the blood glucose AUC without blood sampling. The results also supported the concept of using this technique for evaluating glucose excursion and for screening hyperglycemia during 8 hours in patients with diabetes at any time of day. PMID:28868824

  13. Comparison of Glucose Area Under the Curve Measured Using Minimally Invasive Interstitial Fluid Extraction Technology with Continuous Glucose Monitoring System in Diabetic Patients.

    PubMed

    Uemura, Mei; Yano, Yutaka; Suzuki, Toshinari; Yasuma, Taro; Sato, Toshiyuki; Morimoto, Aya; Hosoya, Samiko; Suminaka, Chihiro; Nakajima, Hiromu; Gabazza, Esteban C; Takei, Yoshiyuki

    2017-08-01

    Continuous glucose monitoring (CGM) is reported to be a useful technique, but difficult or inconvenient for some patients and institutions. We are developing a glucose area under the curve (AUC) monitoring system without blood sampling using a minimally invasive interstitial fluid extraction technology (MIET). Here we evaluated the accuracy of interstitial fluid glucose (IG) AUC measured by MIET in patients with diabetes for an extended time interval and the potency of detecting hyperglycemia using CGM data as a reference. Thirty-eight inpatients with diabetes undergoing CGM were enrolled. MIET comprised a pretreatment step using a plastic microneedle array and glucose accumulation step with a hydrogel patch, which was placed on two sites from 9:00 AM to 5:00 PM or from 10:00 PM to 6:00 AM. IG AUC was calculated by accumulated glucose extracted by hydrogel patches using sodium ion as standard. A significant correlation was observed between the predicted AUC by MIET and CGM in daytime (r=0.76) and nighttime (r=0.82). The optimal cutoff for the IG AUC value of MIET to predict hyperglycemia over 200 mg/dL measured by CGM for 8 hours was 1,067.3 mg·hr/dL with 88.2% sensitivity and 81.5% specificity. We showed that 8-hour IG AUC levels using MIET were valuable in estimating the blood glucose AUC without blood sampling. The results also supported the concept of using this technique for evaluating glucose excursion and for screening hyperglycemia during 8 hours in patients with diabetes at any time of day. Copyright © 2017 Korean Diabetes Association

  14. The application of simple metrics in the assessment of glycaemic variability.

    PubMed

    Monnier, L; Colette, C; Owens, D R

    2018-03-06

    The assessment of glycaemic variability (GV) remains a subject of debate with many indices proposed to represent either short- (acute glucose fluctuations) or long-term GV (variations of HbA 1c ). For the assessment of short-term within-day GV, the coefficient of variation for glucose (%CV) defined as the standard deviation adjusted on the 24-h mean glucose concentration is easy to perform and with a threshold of 36%, recently adopted by the international consensus on use of continuous glucose monitoring, separating stable from labile glycaemic states. More complex metrics such as the Low Blood Glucose Index (LBGI) or High Blood Glucose Index (HBGI) allow the risk of hypo or hyperglycaemic episodes, respectively to be assessed although in clinical practice its application is limited due to the need for more complex computation. This also applies to other indices of short-term intraday GV including the mean amplitude of glycemic excursions (MAGE), Shlichtkrull's M-value and CONGA. GV is important clinically as exaggerated glucose fluctuations are associated with an enhanced risk of adverse cardiovascular outcomes due primarily to hypoglycaemia. In contrast, there is at present no compelling evidence that elevated short-term GV is an independent risk factor of microvascular complications of diabetes. Concerning long-term GV there are numerous studies supporting its association with an enhanced risk of cardiovascular events. However, this association raises the question as to whether the impact of long-term variability is not simply the consequence of repeated exposure to short-term GV or ambient chronic hyperglycaemia. The renewed emphasis on glucose monitoring with the introduction of continuous glucose monitoring technologies can benefit from the introduction and application of simple metrics for describing GV along with supporting recommendations. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  15. Annual Research Review: The nature and classification of reading disorders – a commentary on proposals for DSM-5

    PubMed Central

    Snowling, Margaret J; Hulme, Charles

    2012-01-01

    This article reviews our understanding of reading disorders in children and relates it to current proposals for their classification in DSM-5. There are two different, commonly occurring, forms of reading disorder in children which arise from different underlying language difficulties. Dyslexia (as defined in DSM-5), or decoding difficulty, refers to children who have difficulty in mastering the relationships between the spelling patterns of words and their pronunciations. These children typically read aloud inaccurately and slowly, and experience additional problems with spelling. Dyslexia appears to arise principally from a weakness in phonological (speech sound) skills, and there is good evidence that it can be ameliorated by systematic phonic teaching combined with phonological awareness training. The other major form of reading difficulty is reading comprehension impairment. These children read aloud accurately and fluently, but have difficulty understanding what they have read. Reading comprehension impairment appears to arise from weaknesses in a range of oral language skills including poor vocabulary knowledge, weak grammatical skills and difficulties in oral language comprehension. We suggest that the omission of reading comprehension impairment from DSM-5 is a serious one that should be remedied. Both dyslexia and reading comprehension impairment are dimensional in nature, and show strong continuities with other disorders of language. We argue that recognizing the continuities between reading and language disorders has important implications for assessment and treatment, and we note that the high rates of comorbidity between reading disorders and other seemingly disparate disorders (including ADHD and motor disorders) raises important challenges for understanding these disorders. PMID:22141434

  16. Pascal's wager: combining continuous glucose monitoring and continuous subcutaneous insulin infusion.

    PubMed

    Kerr, David; Olateju, Tolu

    2010-06-01

    Pascal's Wager is a suggestion posed by the French Philosopher, Blaise Pascal, that even though the existence of God cannot be determined through reason, a person should wager that God exists because he or she has everything to gain and nothing to lose. In the area of consideration here, the optimum experimental trial of the combined use of continuous subcutaneous insulin infusion and real-time continuous glucose monitoring in free-living individuals with type 1 diabetes providing rock-solid evidence of clinical benefit has not been performed. Nevertheless, there is considerable enthusiasm for combining the technologies among healthcare professionals, patients, and manufacturers based on the belief that this approach to diabetes care must be beneficial beyond the available evidence (i.e., reason).

  17. Metabolic regulation during constant moderate physical exertion in extreme conditions in Type 1 diabetes.

    PubMed

    Valletta, J J; Chipperfield, A J; Clough, G F; Byrne, C D

    2012-06-01

    Constant moderate intensity physical exertion in humid environments at altitude poses a considerable challenge to maintaining euglycaemia with Type 1 diabetes. Blood glucose concentrations and energy expenditure were continuously recorded in a person trekking at altitude in a tropical climate to quantify changes in glucose concentrations in relation to energy expenditure. Blood glucose concentrations and energy expenditure were continuously monitored with a Guardian® real-time continuous glucose monitoring system (CGMS) and a SenseWear® Pro3 armband (BodyMedia Inc., USA), in a 27-year-old woman with Type 1 diabetes, during her climb up Mount Kinabalu in Borneo (c. 4095 m). Comparative control data from the same person was collected in the UK (temperate climate at sea level) and Singapore (tropical climate at sea level). Maximum physical effort during the climb was < 60% VO(2MAX) (maximal oxygen consumption). Mean daily calorific intakes were 2300 kcal (UK), 2370 kcal (Singapore) and 2274 kcal (Mount Kinabalu), and mean daily insulin doses were 54 U (UK), 40 U (Singapore) and 47 U (Mount Kinabalu). Despite markedly increased energy expenditure during the climb [4202 kcal (Mount Kinabalu) vs. 2948 kcal (UK) and 2662 kcal (Singapore)], mean blood glucose was considerably higher during the trek up Mount Kinabalu [13.2 ± 5.9 mmol/l, vs. 7.9 ± 3.8 mmol/l (UK) and 8.6 ± 4.0 mmol/l (Singapore)]. Marked unexpected hyperglycaemia occurred while trekking on Mount Kinabalu, despite similar calorie consumption and insulin doses to control conditions. Because of the risk of unexpected hyperglycaemia in these conditions, we recommend that patients embarking on similar activity holidays undertake frequent blood glucose monitoring. © 2011 The Authors. Diabetic Medicine © 2011 Diabetes UK.

  18. Dysglycemia and long-term mortality: observations from the Israel study of glucose intolerance, obesity and hypertension.

    PubMed

    Bergman, Michael; Chetrit, Angela; Roth, Jesse; Dankner, Rachel

    2015-05-01

    We describe the relationship between dysglycemia and long-term mortality and elucidate the relationship between blood glucose levels during an oral glucose tolerance test (OGTT) and haemoglobin A1 (HbA1) and mortality. A cohort of 1410 individuals was followed for 33 years since 1980. Fasting and post-OGTT glucose parameters were used to categorize the cohort according to baseline glycemic status. The mortality rate increased from 43% in normoglycemic individuals to 53.3, 61.7, 72.9 and 88.0% in those with impaired fasting glucose (IFG), impaired glucose tolerance (IGT), IFG/IGT and diabetes, respectively. The highest mortality rate, compared with the normoglycemic category, was observed in individuals with IFG/IGT and diabetes according to a Cox proportional hazard model (HR = 1.38, 95%CI 1.10-1.74 and HR = 2.14, 95%CI 1.70-2.70, respectively), followed by individuals with IGT and IFG, but this did not reach statistical significance. We speculate that the IFG group may represent a mixture of individuals en route from normal to the next two categories as well as another cohort whose glucose levels are stably set at the upper reaches of the normal distribution. Significant differences were found between 1 and 2 h glucose values (p < 0.001). Fasting, 60 and 120 min glucose values were positively associated with increasing HbA1 quintiles (p < 0.05). The mean HbA1 was significantly higher in those who died (p = 0.01). The highest mortality (58.8%) was observed in the upper HbA1 quintile that was also associated with the highest prevalence of the metabolic syndrome (17.2%). This study shows a continuous relationship between the severity of dysglycemia and long-term mortality and should promote the early recognition of prediabetes. The 1 h post-load glucose level was continuously associated with increasing HbA1 concentrations and may therefore serve as an early marker for abnormalities in glucose tolerance. An elevated 1 h post-load glucose level may potentially identify at-risk individuals well before the traditional 2 h glucose value. Copyright © 2014 John Wiley & Sons, Ltd.

  19. Alarm characterization for continuous glucose monitors used as adjuncts to self-monitoring of blood glucose.

    PubMed

    McGarraugh, Geoffrey

    2010-01-01

    Continuous glucose monitoring (CGM) devices available in the United States are approved for use as adjuncts to self-monitoring of blood glucose (SMBG). Alarm evaluation in the Clinical and Laboratory Standards Institute (CLSI) guideline for CGM does not specifically address devices that employ both CGM and SMBG. In this report, an alarm evaluation method is proposed for these devices. The proposed method builds on the CLSI method using data from an in-clinic study of subjects with type 1 diabetes. CGM was used to detect glycemic events, and SMBG was used to determine treatment. To optimize detection of a single glucose level, such as 70 mg/dl, a range of alarm threshold settings was evaluated. The alarm characterization provides a choice of alarm settings that trade off detection and false alarms. Detection of a range of high glucose levels was similarly evaluated. Using low glucose alarms, detection of 70 mg/dl within 30 minutes increased from 64 to 97% as alarm settings increased from 70 to 100 mg/dl, and alarms that did not require treatment (SMBG >85 mg/dl) increased from 18 to 52%. Using high glucose alarms, detection of 180 mg/dl within 30 minutes increased from 87 to 96% as alarm settings decreased from 180 to 165 mg/dl, and alarms that did not require treatment (SMBG <180 mg/dl) increased from 24 to 42%. The proposed alarm evaluation method provides information for choosing appropriate alarm thresholds and reflects the clinical utility of CGM alarms. 2010 Diabetes Technology Society.

  20. A Promising Solution to Enhance the Sensocompatibility of Biosensors in Continuous Glucose Monitoring Systems

    PubMed Central

    van den Bosch, Edith E.M.; de Bont, Nik H.M.; Qiu, Jun; Gelling, Onko-Jan

    2013-01-01

    Background Continuous glucose monitors (CGMs) measure glucose in real time, making it possible to improve glycemic control. A promising technique involves glucose sensors implanted in subcutaneous tissue measuring glucose concentration in interstitial fluid. A major drawback of this technique is sensor bioinstability, which can lead to unpredictable drift and reproducibility. The bioinstability is partly due to sensor design but is also affected by naturally occurring subcutaneous inflammations. Applying a nonbiofouling coating to the sensor membrane could be a means to enhancing sensocompatibility. Methods This study evaluates the suitability of a polyethylene-glycol-based coating on sensors in CGMs. Methods used include cross hatch, wet paper rub, paper double rub, bending, hydrophilicity, protein adsorption, bio-compatibility, hemocompatibility, and glucose/oxygen permeability testing. Results Results demonstrate that coating homogeneity, adhesion, integrity, and scratch resistance are good. The coating repels lysozyme and bovine serum albumin, and only a low level of fibrin and blood platelet adsorption to the coating was recorded when testing in whole human blood. Cytotoxicity, irritation, sensitization, and hemolysis were assessed, and levels suggested good biocompatibility of the coating in subcutaneous tissue. Finally, it was shown that the coating can be applied to cellulose acetate membranes of different porosity without changing their permeability for glucose and oxygen. Conclusions These results suggest that the mechanical properties of the coating are sufficient for the given application, that the coating is effective in preventing protein adsorption and blood clot formation on the sensor surface, and that the coating can be applied to membranes without hindering their glucose and oxygen transport. PMID:23567005

  1. Levels of Understanding of L2 Literary Texts under Repeated Readings: Factors Contributing to Readers' Processing of Second Language Literature and Their Learning Outcomes.

    ERIC Educational Resources Information Center

    Carroli, Piera

    This study investigated college students' levels of understanding of texts and reading processes, noting how they changed through a cycle of individual reading and writing followed by classroom comparison of students' responses, text re-reading, and re-writing. The study, which followed 17 students of continuing Italian over 6 weeks, involved…

  2. A needle-type glucose biosensor based on PANI nanofibers and PU/E-PU membrane for long-term invasive continuous monitoring.

    PubMed

    Fang, Lu; Liang, Bo; Yang, Guang; Hu, Yichuan; Zhu, Qin; Ye, Xuesong

    2017-11-15

    A minimally invasive glucose biosensor capable of continuous monitoring of subcutaneous glucose has been developed in this study. This sensor was prepared using electropolymerized conductive polymer polyaniline (PANI) nanofibers as an enzyme immobilization material and polyurethane (PU)/epoxy-enhanced polyurethane (E-PU) bilayer coating as a protective membrane. The sensor showed almost the same sensitivity (63nA/mM) and linearity (0-20mM with the correlation coefficient r 2 of 0.9997) in both PBS and bovine serum tests. When stored in 37°C bovine serum, the sensor's sensitivity gradually increased about 30% of the initial value within the first 13 days and then remained stable for the rest of the study period of 53 days. In vivo implantation experiments using mice models showed real-time response to the variation of blood glucose with an average signal delay of about 8min. Continuous monitoring showed that the sensor response increased for the first 12 days and then entered a stable period for 14 days. The sensor's baseline (530±10nA) and the total response to 1ml 50% dextrose injection were almost the same (267±15nA) in the stable period. The in vivo stable performances indicated that the sensor could be used as an implantable device for long-term invasive monitoring of blood glucose. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. [Continuous glucose monitoring with type 1 diabetes mellitus].

    PubMed

    López-Siguero, J P; García Arias, M J; del Pino de la Fuente, A; Moreno Molina, J A

    2003-03-01

    Appropriate metabolic control of children with type 1 diabetes mellitus (DM) is based on frequent measurements of capillary glycemia. However, this method offers only partial information on fluctuations in glycemia during the day, while episodes of postprandial hyperglycemia and hypoglycemia, mainly nocturnal, go unnoticed. To analyze pre- and postprandial blood glucose levels, as well as the presence and duration of hypoglycemic episodes in diabetic children aged more than 8 years old with more than one year of disease duration. Seventeen patients of both sexes (mean age: 12 years old) with type 1 DM were monitored with the continuous glucose monitoring system (CGMS) during working days. Maximum values of pre- and postprandial glucose (1-3 hours after breakfast, lunch and dinner) were registered. Data were downloaded with a Com-station. The mean duration of sensor-wearing was 2.97 days. Pre- and postprandial values were high: mean preprandial values were between 144.9 and 160.5 mg % and mean postprandial values were between 230.4 and 248.8 mg %. The mean number of hypoglycemic episodes detected with the sensor was 4.9 compared with 1.8 detected with the glucometer (p < 0.05). Episodes of mainly nocturnal asymptomatic hypoglycemia were detected with a mean duration of 145 minutes during the night and 75 minutes during the day. The use of continuous subcutaneous glucose monitoring demonstrates that glycemic objectives are not achieved by conventional insulin therapy. It also shows that there are a high number of hypoglycemic episodes, most of which are asymptomatic.

  4. Pre-exercise blood glucose affects glycemic variation of aerobic exercise in patients with type 2 diabetes treated with continuous subcutaneous insulin infusion.

    PubMed

    Hu, Yun; Zhang, Dan-Feng; Dai, Lu; Li, Zheng; Li, Hui-Qin; Li, Feng-Fei; Liu, Bing-Li; Sun, Xiao-Juan; Ye, Lei; He, Ke; Ma, Jian-Hua

    2018-05-03

    Considering the insulin sensitivity may increase by exercise particularly in patients with type 2 diabetes (T2D), glycemic variation during exercise needs to be studied when the patients are treated with insulin. This study aimed to explore the influence factors of the efficacy and safety of aerobic exercise in patients with T2D treated with Continuous Subcutaneous Insulin Infusion (CSII). A total of 267 patients with T2D, treated with CSII, were included. Glycemic variations were assessed by continuous glucose monitoring (CGM). Patients were asked to complete 30 min aerobic exercise for at least one time during CGM. The patients were divided into effective and ineffective group by incremental glucose area under curve from 0 to 60 min after exercise (AUC 0-60 min ). The patients completed a total of 776 times of aerobic exercises. Blood glucose decreased fastest in the first 60 min of exercise. Pre-exercise blood glucose (PEBG) was negatively correlated with AUC 0-60 min (standardized β = -0.386, P < 0.001) and incremental AUC of blood glucose ≤ 4.4 mmol/L (standardized β = -0.078, P = 0.034), and was significantly higher in effective group than in ineffective group (P < 0.001). The Δglucose AUC 0-60 min during post-dinner was significantly higher than that during pre-lunch, post-lunch and pre-dinner (P < 0.05 for all). PEBG is positively correlated with efficacy of aerobic exercise. Aerobic exercise will not worsen hyperglycemia when the PEBG > 16.7 mmol/L. Post-dinner exercise decreases the blood glucose better than other periods of the day. ChiCTR-ONC-17010400, www.chictr.org.cn. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Precursors of Reading Skill from Infancy to First Grade in Finnish: Continuity and Change in a Highly Inflected Language

    ERIC Educational Resources Information Center

    Silven, Maarit; Poskiparta, Elisa; Niemi, Pekka; Voeten, Marinus

    2007-01-01

    The course of language acquisition from infancy to public primary school was followed in a sample of 56 Finnish children to examine precursors to reading at first grade. Structural equation modeling of continuity suggested effects from growth in early vocabulary to mastery of inflectional forms at preschool age. The early language directly…

  6. The Unaccompanied Choral Rehearsal.

    ERIC Educational Resources Information Center

    Guelker-Cone, Leslie

    1998-01-01

    Contends that many choral programs suffer from a continued dependence on the piano for music learning and intonation. Provides suggestions that will help students develop sight-reading and singing skills that are not centered around the piano, such as creating a sight-reading system and having students read choral music immediately. (CMK)

  7. Fa Keih Reading Series. Book 1.

    ERIC Educational Resources Information Center

    Sung, Robert

    This is the first of a reading series designed primarily for students who are interested in continuing to learn Chinese in a Chinese bilingual program at the secondary level. It follows "The Golden Mountain Reading Series" developed for students in the elementary grades. Each lesson contains the following elements: vocabulary,…

  8. Research-Based Integrated Reading and Writing Course Development

    ERIC Educational Resources Information Center

    Pierce, Calisa A.

    2017-01-01

    With the continuing national emphases on acceleration and completion, an integrated reading and writing course (a combined developmental reading and developmental writing course, with all levels compressed into a single course) is one way to move students more quickly and efficiently through the developmental sequence while still maintaining…

  9. Improving Content Knowledge and Comprehension for English Language Learners: Findings from a Randomized Control Trial

    ERIC Educational Resources Information Center

    Vaughn, Sharon; Martinez, Leticia R.; Wanzek, Jeanne; Roberts, Greg; Swanson, Elizabeth; Fall, Anna-Mária

    2017-01-01

    Supporting the reading comprehension and content knowledge acquisition of English language learners (ELs) requires instructional practices that continue beyond developing the foundational skills of reading. In particular, the challenges ELs face highlight the importance of teaching reading comprehension practices in the middle grades through…

  10. Abnormal oral glucose tolerance and glucose malabsorption after vagotomy and pyloroplasty. A tracer method for measuring glucose absorption rates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Radziuk, J.; Bondy, D.C.

    1982-11-01

    The mechanisms underlying the abnormal glucose tolerance in patients who had undergone vagotomy and pyloroplasty were investigated by measuring the rates of absorption of ingested glucose and the clearance rate of glucose using tracer methods. These methods are based on labeling a 100-g oral glucose load with (1-/sup 14/C)glucose and measuring glucose clearance using plasma levels of infused (3-/sup 3/H)glucose. The rate of appearance of both ingested and total glucose is then calculated continuously using a two-compartment model of glucose kinetics. It was found that about 30% of the ingested glucose (100 g) failed to appear in the systemic circulation.more » That this was due to malabsorption was confirmed using breath-hydrogen analysis. The absorption period is short (101 +/- 11 min) compared with normal values but the clearance of glucose is identical to that in control subjects, and it peaks 132 +/- 7 min after glucose loading. The peak plasma insulin values were more than four times higher in patients than in normal subjects, and this may afford an explanation of rates of glucose clearance that are inappropriate for the short absorption period. The combination of glucose malabsorption and this clearance pattern could yield the hypoglycemia that may be observed in patients after gastric surgery.« less

  11. Performance and System Validation of a New Cellular-Enabled Blood Glucose Monitoring System Using a New Standard Reference Measurement Procedure of Isotope Dilution UPLC-MRM Mass Spectrometry

    PubMed Central

    Angelides, Kimon; Matsunami, Risë K.; Engler, David A.

    2015-01-01

    Background: We evaluated the accuracy, precision, and linearity of the In Touch® blood glucose monitoring system (BGMS), a new color touch screen and cellular-enabled blood glucose meter, using a new rapid, highly precise and accurate 13C6 isotope-dilution liquid chromatography-mass spectrometry method (IDLC-MS). Methods: Blood glucose measurements from the In Touch® BGMS were referenced to a validated UPLC-MRM standard reference measurement procedure previously shown to be highly accurate and precise. Readings from the In Touch® BGMS were taken over the blood glucose range of 24-640 mg/dL using 12 concentrations of blood glucose. Ten In Touch® BGMS and 3 lots of test strips were used with 10 replicates at each concentration. A lay user study was also performed to assess the ease of use. Results: At blood glucose concentrations <75 mg/dL 100% of the measurements are within ±8 mg/dL from the true reference standard; at blood glucose levels >75 mg/dL 100% of the measurements are within ±15% of the true reference standard. 100% of the results are within category A of the consensus grid. Within-run precision show CV < 3.72% between 24-50 mg/dL and CV<2.22% between 500 and 600 mg/dL. The results show that the In Touch® meter exceeds the minimum criteria of both the ISO 15197:2003 and ISO 15197:2013 standards. The results from a user panel show that 100% of the respondents reported that the color touch screen, with its graphic user interface (GUI), is well labeled and easy to navigate. Conclusions: To our knowledge this is the first touch screen glucose meter and the first study where accuracy of a new BGMS has been measured against a true primary reference standard, namely IDLC-MS. PMID:26002836

  12. A new strategy of glucose supply in a microbial fermentation model

    NASA Astrophysics Data System (ADS)

    Kasbawati, Gunawan, A. Y.; Sidarto, K. A.; Hertadi, R.

    2015-09-01

    Strategy of glucose supply to achieve an optimal productivity of ethanol production of a yeast cell is one of the main features in a microbial fermentation process. Beside a known continuous glucose supply, in this study we consider a new supply strategy so called the on-off supply. An optimal control theory is applied to the fermentation system to find the optimal rate of glucose supply and time of supply. The optimization problem is solved numerically using Differential Evolutionary algorithm. We find two alternative solutions that we can choose to get the similar result: either long period process with low supply or short period process with high glucose supply.

  13. The Effects of Mitiglinide and Repaglinide on Postprandial Hyperglycemia in Patients Undergoing Methylprednisolone Pulse Therapy.

    PubMed

    Tanaka, Kenichi; Okada, Yosuke; Mori, Hiroko; Torimoto, Keiichi; Arao, Tadashi; Tanaka, Yoshiya

    2018-01-01

    One adverse effect of methylprednisolone (MP) pulse therapy is an acute dose-dependent increase in the blood glucose level. Five patients with thyroid ophthalmopathy but normal glucose tolerance received MP pulse therapy (3 cycles, 3 days/week) and were assessed by continuous glucose monitoring. Steroid therapy increased the mean sensor glucose level, and all patients developed steroid-induced diabetes. The patients were treated alternately with mitiglinide (30 mg/day) and repaglinide (1.5 mg/day) during the second or third MP pulse therapy. The sensor glucose levels before lunch and dinner were more favorable during treatment with repaglinide than during treatment with mitiglinide. Repaglinide may be more clinically appropriate than mitiglinide.

  14. Nocturnal hypoglycaemia in type 1 diabetes--consequences and assessment.

    PubMed

    DeVries, J Hans; Wentholt, Iris M E; Masurel, Nathalie; Mantel, Itske; Poscia, Alessandro; Maran, Alberto; Heine, Robert J

    2004-01-01

    Hypoglycaemia is inevitable when striving for low HbA1c values. Nocturnal hypoglycaemia often occurs without symptoms, but results in diminished next day well-being and hypoglycaemia unawareness. Frequency of nocturnal hypoglycaemia was first assessed in research ward settings, but suffered from insufficient glucose sampling frequency. This may have resulted in overestimation of the duration of hypoglycaemic episodes. The advent of the first continuous glucose sensor, the needle-type MedtronicMiniMed Continuous Glucose Measurement System, revolutionized the assessment of glucose values. However, on scrutiny, the first version of this sensor showed a drift into the hypoglycaemic area and delayed recovery from hypoglycaemia. Using the microdialysis-based GlucoDay system, our group reported a lower frequency of nocturnal hypoglycaemia in type 1 diabetes patients using an insulin pump, than that expected from the existing literature. Today, more than 80 years after the introduction of insulin for the treatment of type 1 diabetes, the associated frequency of nocturnal hypoglycaemia still awaits its definitive assessment. Copyright 2004 John Wiley & Sons, Ltd.

  15. Sensor-Augmented Insulin Pumps and Hypoglycemia Prevention in Type 1 Diabetes.

    PubMed

    Steineck, Isabelle; Ranjan, Ajenthen; Nørgaard, Kirsten; Schmidt, Signe

    2017-01-01

    Hypoglycemia can lead to seizures, unconsciousness, or death. Insulin pump treatment reduces the frequency of severe hypoglycemia compared with multiple daily injections treatment. The addition of a continuous glucose monitor, so-called sensor-augmented pump (SAP) treatment, has the potential to further limit the duration and severity of hypoglycemia as the system can detect and in some systems act on impending and prevailing low blood glucose levels. In this narrative review we summarize the available knowledge on SAPs with and without automated insulin suspension, in relation to hypoglycemia prevention. We present evidence from randomized trials, observational studies, and meta-analyses including nonpregnant individuals with type 1 diabetes mellitus. We also outline concerns regarding SAPs with and without automated insulin suspension. There is evidence that SAP treatment reduces episodes of moderate and severe hypoglycemia compared with multiple daily injections plus self-monitoring of blood glucose. There is some evidence that SAPs both with and without automated suspension reduces the frequency of severe hypoglycemic events compared with insulin pumps without continuous glucose monitoring.

  16. A history of continuous glucose monitors (CGMs) in self-monitoring of diabetes mellitus.

    PubMed

    Olczuk, David; Priefer, Ronny

    Self-monitoring of glucose for individuals afflicted with diabetes mellitus has allowed patients to take control of their disease and thus directly affect the outcomes related to it. It has been almost a century since the first test to monitor one's sugar was developed; that being a urine test. The most well-known and prominent medical device for monitor blood glucose for individuals with diabetes are the finger-prick devices. This itself is an approximately 50year old technology. More recently has been the introduction of continuous glucose monitors (CGMs) which entered the market place in the last year of the 20th century. As this technology has been further refined and improved, limitations associated with it have decreased. The scope of this review is to present a brief history of CGMs, both with the development of these medical devices and the challenges/limitations that they have shown. Copyright © 2017 Diabetes India. Published by Elsevier Ltd. All rights reserved.

  17. Managing Patient-Generated Health Data Through Mobile Personal Health Records: Analysis of Usage Data.

    PubMed

    Park, Yu Rang; Lee, Yura; Kim, Ji Young; Kim, Jeonghoon; Kim, Hae Reong; Kim, Young-Hak; Kim, Woo Sung; Lee, Jae-Ho

    2018-04-09

    Personal health records (PHRs) and mHealth apps are considered essential tools for patient engagement. Mobile PHRs (mPHRs) can be a platform to integrate patient-generated health data (PGHD) and patients' medical information. However, in previous studies, actual usage data and PGHD from mPHRs have not been able to adequately represent patient engagement. By analyzing 5 years' PGHD from an mPHR system developed by a tertiary hospital in South Korea, we aimed to evaluate how PGHD were managed and identify issues in PGHD management based on actual usage data. Additionally, we analyzed how to improve patient engagement with mPHRs by analyzing the actively used services and long-term usage patterns. We gathered 5 years (December 2010 to December 2015) of log data from both hospital patients and general users of the app. We gathered data from users who entered PGHD on body weight, blood pressure (BP), blood glucose levels, 10-year cardiovascular disease (CVD) risk, metabolic syndrome risk, medication schedule, insulin, and allergy. We classified users according to whether they were patients or general users based on factors related to continuous use (≥28 days for weight, BP, and blood glucose, and ≥180 days for CVD and metabolic syndrome), and analyzed the patients' characteristics. We compared PGHD entry counts and the proportion of continuous users for each PGHD by user type. The total number of mPHR users was 18,265 (patients: n=16,729, 91.59%) with 3620 users having entered weight, followed by BP (n=1625), blood glucose (n=1374), CVD (n=764), metabolic syndrome (n=685), medication (n=252), insulin (n=72), and allergy (n=61). Of those 18,256 users, 3812 users had at least one PGHD measurement, of whom 175 used the PGHD functions continuously (patients: n=142, 81.14%); less than 1% of the users had used it for more than 4 years. Except for weight, BP, blood glucose, CVD, and metabolic syndrome, the number of PGHD records declined. General users' continuous use of PGHD was significantly higher than that of patients in the blood glucose (P<.001) and BP (P=.03) functions. Continuous use of PGHD in health management (BP, blood glucose, and weight) was significantly greater among older users (P<.001) and men (P<.001). In health management (BP, weight, and blood glucose), overall chronic disease and continuous use of PGHD were not statistically related (P=.08), but diabetes (P<.001) and cerebrovascular diseases (P=.03) were significant. Although a small portion of users managed PGHD continuously, PGHD has the potential to be useful in monitoring patient health. To realize the potential, specific groups of continuous users must be identified, and the PGHD service must target them. Further evaluations for the clinical application of PGHD, feedback regarding user interfaces, and connections with wearable devices are needed. ©Yu Rang Park, Yura Lee, Ji Young Kim, Jeonghoon Kim, Hae Reong Kim, Young-Hak Kim, Woo Sung Kim, Jae-Ho Lee. Originally published in JMIR Mhealth and Uhealth (http://mhealth.jmir.org), 09.04.2018.

  18. Keeping Up with the Diabetes Technology: 2016 Endocrine Society Guidelines of Insulin Pump Therapy and Continuous Glucose Monitor Management of Diabetes.

    PubMed

    Galderisi, Alfonso; Schlissel, Elise; Cengiz, Eda

    2017-09-23

    Decades after the invention of insulin pump, diabetes management has encountered a technology revolution with the introduction of continuous glucose monitoring, sensor-augmented insulin pump therapy and closed-loop/artificial pancreas systems. In this review, we discuss the significance of the 2016 Endocrine Society Guidelines for insulin pump therapy and continuous glucose monitoring and summarize findings from relevant diabetes technology studies that were conducted after the publication of the 2016 Endocrine Society Guidelines. The 2016 Endocrine Society Guidelines have been a great resource for clinicians managing diabetes in this new era of diabetes technology. There is good body of evidence indicating that using diabetes technology systems safely tightens glycemic control while managing both type 1 and type 2 diabetes. The first-generation diabetes technology systems will evolve as we gain more experience and collaboratively work to improve them with an ultimate goal of keeping people with diabetes complication and burden-free until the cure for diabetes becomes a reality.

  19. Design of a Mechanical-Tunable Filter Spectrometer for Noninvasive Glucose Measurement

    NASA Astrophysics Data System (ADS)

    Saptari, Vidi; Youcef-Toumi, Kamal

    2004-05-01

    The development of an accurate and reliable noninvasive near-infrared (NIR) glucose sensor hinges on the success in addressing the sensitivity and the specificity problems associated with the weak glucose signals and the overlapping NIR spectra. Spectroscopic hardware parameters most relevant to noninvasive blood glucose measurement are discussed, which include the optical throughput, integration time, spectral range, and the spectral resolution. We propose a unique spectroscopic system using a continuously rotating interference filter, which produces a signal-to-noise ratio of the order of 10^5 and is estimated to be the minimum required for successful in vivo glucose sensing. Using a classical least-squares algorithm and a spectral range between 2180 and 2312 nm, we extracted clinically relevant glucose concentrations in multicomponent solutions containing bovine serum albumin, triacetin, lactate, and urea.

  20. Crosslinked basement membrane-based coatings enhance glucose sensor function and continuous glucose monitoring in vivo.

    PubMed

    Klueh, Ulrike; Ludzinska, Izabela; Czajkowski, Caroline; Qiao, Yi; Kreutzer, Donald L

    2018-01-01

    Overcoming sensor-induced tissue reactions is an essential element of achieving successful continuous glucose monitoring (CGM) in the management of diabetes, particularly when used in closed loop technology. Recently, we demonstrated that basement membrane (BM)-based glucose sensor coatings significantly reduced tissue reactions at sites of device implantation. However, the biocompatible BM-based biohydrogel sensor coating rapidly degraded over a less than a 3-week period, which effectively eliminated the protective sensor coating. In an effort to increase the stability and effectiveness of the BM coating, we evaluated the impact of crosslinking BM utilizing glutaraldehyde as a crosslinking agent, designated as X-Cultrex. Sensor performance (nonrecalibrated) was evaluated for the impact of these X-Cultrex coatings in vitro and in vivo. Sensor performance was assessed over a 28-day time period in a murine CGM model and expressed as mean absolute relative difference (MARD) values. Tissue reactivity of Cultrex-coated, X-Cultrex-coated, and uncoated glucose sensors was evaluated over a 28-day time period in vivo using standard histological techniques. These studies demonstrated that X-Cultrex-based sensor coatings had no effect on glucose sensor function in vitro. In vivo, glucose sensor performance was significantly enhanced following X-Cultrex coating throughout the 28-day study. Histological evaluations of X-Cultrex-treated sensors demonstrated significantly less tissue reactivity when compared to uncoated sensors. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 7-16, 2018. © 2017 Wiley Periodicals, Inc.

  1. Biohydrogen production from arabinose and glucose using extreme thermophilic anaerobic mixed cultures

    PubMed Central

    2012-01-01

    Background Second generation hydrogen fermentation technologies using organic agricultural and forestry wastes are emerging. The efficient microbial fermentation of hexoses and pentoses resulting from the pretreatment of lingocellulosic materials is essential for the success of these processes. Results Conversion of arabinose and glucose to hydrogen, by extreme thermophilic, anaerobic, mixed cultures was studied in continuous (70°C, pH 5.5) and batch (70°C, pH 5.5 and pH 7) assays. Two expanded granular sludge bed (EGSB) reactors, Rarab and Rgluc, were continuously fed with arabinose and glucose, respectively. No significant differences in reactor performance were observed for arabinose and glucose organic loading rates (OLR) ranging from 4.3 to 7.1 kgCOD m-3 d-1. However, for an OLR of 14.2 kgCOD m-3 d-1, hydrogen production rate and hydrogen yield were higher in Rarab than in Rgluc (average hydrogen production rate of 3.2 and 2.0 LH2 L-1 d-1 and hydrogen yield of 1.10 and 0.75 molH2 mol-1substrate for Rarab and Rgluc, respectively). Lower hydrogen production in Rgluc was associated with higher lactate production. Denaturing gradient gel electrophoresis (DGGE) results revealed no significant difference on the bacterial community composition between operational periods and between the reactors. Increased hydrogen production was observed in batch experiments when hydrogen partial pressure was kept low, both with arabinose and glucose as substrate. Sugars were completely consumed and hydrogen production stimulated (62% higher) when pH 7 was used instead of pH 5.5. Conclusions Continuous hydrogen production rate from arabinose was significantly higher than from glucose, when higher organic loading rate was used. The effect of hydrogen partial pressure on hydrogen production from glucose in batch mode was related to the extent of sugar utilization and not to the efficiency of substrate conversion to hydrogen. Furthermore, at pH 7.0, sugars uptake, hydrogen production and yield were higher than at pH 5.5, with both arabinose and glucose as substrates. PMID:22330180

  2. Noninvasive Diagnostic Devices for Diabetes through Measuring Tear Glucose

    PubMed Central

    Zhang, Jin; Hodge, William; Hutnick, Cindy; Wang, Xianbin

    2011-01-01

    This article reviews the development of a noninvasive diagnostic for diabetes by detecting ocular glucose. Early diagnosis and daily management are very important to diabetes patients to ensure a healthy life. Commercial blood glucose sensors have been used since the 1970s. Millions of diabetes patients have to prick their finger for a drop of blood 4–5 times a day to check blood glucose levels—almost 1800 times annually. There is a strong need to have a noninvasive device to help patients to manage the disease easily and painlessly. Instead of detecting the glucose in blood, monitoring the glucose level in other body fluids may provide a feasible approach for noninvasive diagnosis and diabetes control. Tear glucose has been studied for several decades. This article reviews studies on ocular glucose and its monitoring methods. Attempts to continuously monitor the concentration of tear glucose by using contact lens-based sensors are discussed as well as our current development of a nanostructured lens-based sensor for diabetes. This disposable biosensor for the detection of tear glucose may provide an alternative method to help patients manage the disease conveniently. PMID:21303640

  3. Further Evidence of Severe Allergic Contact Dermatitis From Isobornyl Acrylate While Using a Continuous Glucose Monitoring System.

    PubMed

    Kamann, Stefanie; Aerts, Olivier; Heinemann, Lutz

    2018-05-01

    In the past decade, new diabetes technologies, including continuous glucose monitoring (CGM) systems, support patients with diabetes in their daily struggle with achieving a good glucose control. However, shortly after the first CGM systems appeared on the market, also the first concerns about adverse skin reactions were raised. Most patients claimed to suffer from (sometimes severe) skin irritation, or even allergy, which they related to the (acrylate-based) adhesive part of the device. For a long time the actual substance that caused these skin reactions with, for example, the Flash Glucose Monitoring system (iscCGM; Freestyle® Libre) could not be identified; however, recently Belgian and Swedish dermatologists reported that the majority of their patients that have developed a contact-allergic while using iscCGM react sensitively to a specific acrylate, that is, isobornyl acrylate (IBOA). Subsequently they showed by means of gas chromatography-mass spectrometry that this substance is present in the case of the glucose sensor attached by an adhesive to the skin. We report three additional cases from Germany, including a 10-year-old boy, suffering from severe allergic contact dermatitis to IBOA.

  4. Sensing glucose concentrations at GHz frequencies with a fully embedded Biomicro-electromechanical system (BioMEMS)

    NASA Astrophysics Data System (ADS)

    Birkholz, M.; Ehwald, K.-E.; Basmer, T.; Kulse, P.; Reich, C.; Drews, J.; Genschow, D.; Haak, U.; Marschmeyer, S.; Matthus, E.; Schulz, K.; Wolansky, D.; Winkler, W.; Guschauski, T.; Ehwald, R.

    2013-06-01

    The progressive scaling in semiconductor technology allows for advanced miniaturization of intelligent systems like implantable biosensors for low-molecular weight analytes. A most relevant application would be the monitoring of glucose in diabetic patients, since no commercial solution is available yet for the continuous and drift-free monitoring of blood sugar levels. We report on a biosensor chip that operates via the binding competition of glucose and dextran to concanavalin A. The sensor is prepared as a fully embedded micro-electromechanical system and operates at GHz frequencies. Glucose concentrations derive from the assay viscosity as determined by the deflection of a 50 nm TiN actuator beam excited by quasi-electrostatic attraction. The GHz detection scheme does not rely on the resonant oscillation of the actuator and safely operates in fluidic environments. This property favorably combines with additional characteristics—(i) measurement times of less than a second, (ii) usage of biocompatible TiN for bio-milieu exposed parts, and (iii) small volume of less than 1 mm3—to qualify the sensor chip as key component in a continuous glucose monitor for the interstitial tissue.

  5. Banting Memorial Lecture 2014* Technology and diabetes care: appropriate and personalized.

    PubMed

    Pickup, J C

    2015-01-01

    Continuous subcutaneous insulin infusion was initially developed as a research procedure in the 1970s but quickly became a routine treatment for selected people with Type 1 diabetes. Continuous subcutaneous insulin infusion and other diabetes technologies, such as continuous glucose monitoring, are now an established and evidence-based part of diabetes care, but there has been some confusion about effectiveness and best use, particularly because of conflicting results from meta-analyses. This is because literature summary meta-analyses (including all trials) are inappropriate for therapeutic and economic decision-making; such meta-analyses should only include trials representative of groups likely to benefit. For example, for continuous subcutaneous insulin infusion, this would be those with continued disabling hypoglycaemia or elevated HbA1c levels. Alternatively, individual patient data meta-analysis allows modelling of covariates that determine effect size, e.g. in the case of continuous glucose monitoring, baseline HbA1c and frequency of sensor usage. Diabetes technology is therefore an example of personalized medicine, where evaluation and use should be both appropriate and targeted. This will also apply to future technologies such as new 'patch' pumps for Type 2 diabetes, closed-loop insulin delivery systems and nanomedicine applications in diabetes that we are currently researching. These include fluorescence lifetime-based non-invasive glucose monitoring and nanoencapsulation of islets for improved post-transplant survival. © 2014 The Author. Diabetic Medicine © 2014 Diabetes UK.

  6. Diabetes Technology-Continuous Subcutaneous Insulin Infusion Therapy and Continuous Glucose Monitoring in Adults: An Endocrine Society Clinical Practice Guideline.

    PubMed

    Peters, Anne L; Ahmann, Andrew J; Battelino, Tadej; Evert, Alison; Hirsch, Irl B; Murad, M Hassan; Winter, William E; Wolpert, Howard

    2016-11-01

    To formulate clinical practice guidelines for the use of continuous glucose monitoring and continuous subcutaneous insulin infusion in adults with diabetes. The participants include an Endocrine Society-appointed Task Force of seven experts, a methodologist, and a medical writer. The American Association for Clinical Chemistry, the American Association of Diabetes Educators, and the European Society of Endocrinology co-sponsored this guideline. The Task Force developed this evidence-based guideline using the Grading of Recommendations, Assessment, Development, and Evaluation system to describe the strength of recommendations and the quality of evidence. The Task Force commissioned one systematic review and used the best available evidence from other published systematic reviews and individual studies. One group meeting, several conference calls, and e-mail communications enabled consensus. Committees and members of the Endocrine Society, the American Association for Clinical Chemistry, the American Association of Diabetes Educators, and the European Society of Endocrinology reviewed and commented on preliminary drafts of these guidelines. Continuous subcutaneous insulin infusion and continuous glucose monitoring have an important role in the treatment of diabetes. Data from randomized controlled trials are limited on the use of medical devices, but existing studies support the use of diabetes technology for a wide variety of indications. This guideline presents a review of the literature and practice recommendations for appropriate device use.

  7. [Application of the Salzburg reading desk in accommodation and presbyopic research].

    PubMed

    Dexl, A K

    2011-08-01

    The determination of reading acuity is still the most important clinical examination, whenever the potential benefits of "presbyopic surgery" are compared. Reading distance--the by far most critical parameter in testing reading acuity--seems to be quite variable for every patient tested, whenever patients are allowed to freely choose a subjectively convenient reading distance. Therefore, measuring reading acuity with a fixed reading distance does not allow conclusions to be drawn on the "every-day reading ability" of individual patients. Since 2004, the Eye Clinic of Salzburg University has been continuously working on the development of a standardised device that enables clinicians and researchers to systematically evaluate every patient's individual reading performance under standardised conditions. © Georg Thieme Verlag KG Stuttgart · New York.

  8. Developmental reading disorder

    MedlinePlus

    ... important. Many students with learning disabilities have poor self-esteem. Psychological counseling may be helpful. ... Problems in school, including behavior problems Loss of self-esteem Reading problems that continue Problems with job performance

  9. Reading First, or Is It? An Examination of the Interrelationship between Reading Achievement and Behavioral Problem Trajectories across Elementary School for Children from Disadvantaged Circumstances

    ERIC Educational Resources Information Center

    Clark, Teresa Parton

    2011-01-01

    Reading is a necessary skill in our modern society and is increasingly critical for success in our highly technological society. Yet many children from low-SES backgrounds struggle to develop reading proficiency (Lee, Grigg, & Donahue, 2007) and continuing concerns about this pervasive relationship has led to an increased focus on creating…

  10. Remedial and Compensatory Reading Instruction: Abstracts of Doctoral Dissertations Published in "Dissertation Abstracts International," July through December 1981 (Vol. 42 Nos. 1 through 6).

    ERIC Educational Resources Information Center

    ERIC Clearinghouse on Reading and Communication Skills, Urbana, IL.

    This collection of abstracts is part of a continuing series providing information on recent doctoral dissertations. The 35 titles deal with a variety of topics, including the following: (1) the oral, written, and reading syntax of 46 learning disabled children; (2) the effects of oral reading rate and reinforcement on reading comprehension; (3)…

  11. 21 CFR 862.1345 - Glucose test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Glucose test system. 862.1345 Section 862.1345 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems § 862...

  12. 21 CFR 862.1340 - Urinary glucose (nonquantitative) test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Urinary glucose (nonquantitative) test system. 862.1340 Section 862.1340 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry...

  13. 21 CFR 862.1345 - Glucose test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Glucose test system. 862.1345 Section 862.1345 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems § 862...

  14. 21 CFR 862.1340 - Urinary glucose (nonquantitative) test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Urinary glucose (nonquantitative) test system. 862.1340 Section 862.1340 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry...

  15. Comparison of standard (self-directed) versus intensive patient training for the human insulin inhalation powder (HIIP) delivery system in patients with type 2 diabetes: efficacy, safety, and training measures.

    PubMed

    Rosenstock, Julio; Nakano, Masako; Silverman, Bernard L; Sun, Bin; de la Peña, Amparo; Suri, Ajit; Muchmore, Douglas B

    2007-02-01

    The Lilly/Alkermes human insulin inhalation powder (HIIP) delivery system [AIR (a registered trademark of Alkermes, Inc., Cambridge, MA) Inhaled Insulin System] was designed to be easy to use. Training methods were compared in insulin-naive patients with type 2 diabetes. Patients (n = 102) were randomized to standard or intensive training. With standard training, patients learned how to use the HIIP delivery system by reading directions for use (DFU) and trying on their own. Intensive training included orientation to the HIIP delivery system with individual coaching and inspiratory flow rate training. Both groups received preprandial HIIP + metformin with or without a thiazolidinedione for 4 weeks. Overall 2-h postprandial blood glucose (PPBG) excursion was the primary measure. Noninferiority was defined as the upper limit of the two-sided 95% confidence interval of the mean difference between groups being 1.2 < or = mmol/L. Overall 2-h PPBG excursions (least squares mean +/- SE) at endpoint were -0.11 +/- 0.38 (standard training) and 0.23 +/- 0.36 (intensive training) mmol/L. The mean difference (standard minus intensive training) and two-sided 95% confidence interval were -0.35 (-1.02, 0.33) mmol/L. No statistically or clinically significant differences were observed between training methods in premeal, postmeal, or bedtime blood glucose values, HIIP doses at endpoint, or blood glucose values after a test meal. No discontinuations occurred because of difficulty of use or dislike of the HIIP system. DFU compliance was >90% in both training groups. There were no significant differences between training methods in safety measures. The HIIP delivery system is easy to use, and most patients can learn to use it by reading the DFU without assistance from health care professionals.

  16. Preventing exercise-induced hypoglycemia in type 1 diabetes using real-time continuous glucose monitoring and a new carbohydrate intake algorithm: an observational field study.

    PubMed

    Riddell, Michael C; Milliken, Jill

    2011-08-01

    Real-time (RT) continuous glucose monitoring (CGM) offers the possibility to better manage glucose levels during exercise in active individuals with type 1 diabetes mellitus (T1DM). However, studies have yet to determine the appropriate actions to take when glucose levels are trending toward hypoglycemia. The purpose of this observational field study was to test the effectiveness of RT-GCM and a new carbohydrate intake algorithm designed for maintaining euglycemia during sports. During a 2-week sports camp, 25 adolescents (8-17 years old) with T1DM were fitted with a RT-CGM device and instructed to ingest fast-acting carbohydrates (8-20 g, depending on the concentration of glucose at the time of RT-CGM alert and rates of change in glycemia) when glucose levels were trending toward hypoglycemia. Rates of change in glucose were measured before and after algorithm use, and the incidence of hypoglycemia was documented. With RT-CGM and algorithm use, euglycemia was largely maintained with modest amounts of carbohydrate intake, even when glucose levels were initially dropping at an elevated rate (>0.55 mmol/L per 5 min). Mild biochemical hypoglycemia (3.0-3.9 mmol/L) occurred just twice out of 22 uses of the algorithm (9%) when trend arrows alerted the subjects that glucose levels were dropping. When glucose levels were already below target (<5.0 mmol/L), mild hypoglycemia occurred five times out of 13 events (38%), despite 16 g of carbohydrate being ingested. Average glucose levels during sports in the 60 min following algorithm use were 5.8 ± 1.2 mmol/L, 5.3 ± 1.0 mmol/L, and 6.2 ± 0.8 mmol/L in the 20-, 16-, and 8-g carbohydrate intake protocols when glucose levels were initially on target but dropping toward hypoglycemia. When coupled with RT-CGM, a new carbohydrate intake algorithm prevents hypoglycemia and maintains euglycemia during exercise, particularly if patients ingest carbohydrate when trend arrows alert them of a drop in glycemia.

  17. Icodextrine and insulin resistance in continuous ambulatory peritoneal dialysis patients.

    PubMed

    Canbakan, Mustafa; Sahin, Gülizar Manga

    2007-01-01

    Insulin resistance is commonly observed in uremic patients. Glucose-based peritoneal dialysis solutions have long-term metabolic complications like hyperinsulinemia, hyperlipidemia, and obesity. The purpose of this study was to examine the insulin resistance in patients undergoing continuous ambulatory peritoneal dialysis (CAPD) with standard glucose and icodextrin containing solutions. The entire non diabetic CAPD patients of our center were studied: forty-four patients in all who were on CAPD treatment for 36.2 +/- 23.7 months. Twenty-seven of them (11 male and 16 female) with a mean age of 46 +/- 16 years were treated with standard glucose solutions (glucose group). The other 17 patients (10 male and 7 female) with a mean age of 49 +/- 16 years were treated with standard glucose solutions during the day and icodextrin dwell during the night, for a median of 12 +/- 6.3 months (icodextrin group). Morning fasting serum insulin levels were 20.59 +/- 17.86 in the glucose group and 10.15 +/- 6.87 in the icodextrin group (p = 0.0001). Homeostasis Model Assessment Method scores of the glucose group were significantly higher (4.8+/-4.1 vs 2.3+/- 1.7; p = 0.025) than the icodextrin group. A significant positive correlation of HOMA score with insulin, fasting plasma glucose, and triglyceride levels were found in HOMA (IR+) patients. Twenty patients of the icodextrin group (74%) and 15 patients of the glucose group (88%) were hypertensive, but there was no statistically significant difference between the two groups (p = 0.13). The groups showed no significant differences for body mass index and serum levels of glucose, total cholesterol, LDL cholesterol, VLDL cholesterol, HDL cholesterol, triglyceride, intact parathyroid hormone (iPTH), and fibrinogen. In conclusion, the use of icodextrin in the long nighttime dwell can reduce serum insulin levels and increase insulin sensitivity in CAPD patients.

  18. Safety of using real-time sensor glucose values for treatment decisions in adolescents with poorly controlled type 1 diabetes mellitus: a pilot study.

    PubMed

    Fox, Larry A; Balkman, Emilie; Englert, Kim; Hossain, Jobayer; Mauras, Nelly

    2017-06-01

    This study explored the safety of using real-time sensor glucose (SG) data for treatment decisions in adolescents with poorly controlled type 1 diabetes. Ten adolescents with type 1 diabetes, HbA1c ≥9% on insulin pumps were admitted to the clinical research center and a continuous glucose sensor was inserted. Plasma glucose was measured at least hourly using Yellow Springs Instrument's (YSI) glucose analyzer. Starting at dinner, SG rather than YSI was used for treatment decisions unless YSI was <70 mg/dL (<3.9 mmol/L) or specific criteria indicating SG and YSI were very discordant were met. Participants were discharged after lunch the next day. Ten participants (seven males; 15.2-17.8 year old) completed the study. The range of differences between high glucose correction doses using SG vs YSI for calculations was -2 (SG < YSI dose) to +1 (SG > YSI dose); this difference was two units in only 2 of 23 correction doses given (all SG < YSI dose). There were five episodes of mild hypoglycemia in two patients, two of which occurred after using SG for dose calculations. There was no severe hypoglycemia and no YSI glucose >350 mg/dL (19.4 mmol/L). Mean (±SE) pre- and postmeal YSI glucose were 163 ± 11 and 183 ± 12 mg/dL (9.1 ± 0.6 and 10.2 ± 0.7 mmol/L), respectively. Use of real-time continuous glucose monitoring for treatment decisions was safe and did not result in significant over- or undertreatment. Use of SG for treatment decisions under supervised inpatient conditions is a suitable alternative to repeated fingerstick glucose monitoring. Outpatient studies using SG in real-time are needed. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. Redundancy in Glucose Sensing: Enhanced Accuracy and Reliability of an Electrochemical Redundant Sensor for Continuous Glucose Monitoring.

    PubMed

    Sharifi, Amin; Varsavsky, Andrea; Ulloa, Johanna; Horsburgh, Jodie C; McAuley, Sybil A; Krishnamurthy, Balasubramanian; Jenkins, Alicia J; Colman, Peter G; Ward, Glenn M; MacIsaac, Richard J; Shah, Rajiv; O'Neal, David N

    2016-05-01

    Current electrochemical glucose sensors use a single electrode. Multiple electrodes (redundancy) may enhance sensor performance. We evaluated an electrochemical redundant sensor (ERS) incorporating two working electrodes (WE1 and WE2) onto a single subcutaneous insertion platform with a processing algorithm providing a single real-time continuous glucose measure. Twenty-three adults with type 1 diabetes each wore two ERSs concurrently for 168 hours. Post-insertion a frequent sampling test (FST) was performed with ERS benchmarked against a glucose meter (Bayer Contour Link). Day 4 and 7 FSTs were performed with a standard meal and venous blood collected for reference glucose measurements (YSI and meter). Between visits, ERS was worn with capillary blood glucose testing ≥8 times/day. Sensor glucose data were processed prospectively. Mean absolute relative deviation (MARD) for ERS day 1-7 (3,297 paired points with glucose meter) was (mean [SD]) 10.1 [11.5]% versus 11.4 [11.9]% for WE1 and 12.0 [11.9]% for WE2; P < .0001. ERS Clarke A and A+B were 90.2% and 99.8%, respectively. ERS day 4 plus day 7 MARD (1,237 pairs with YSI) was 9.4 [9.5]% versus 9.6 [9.7]% for WE1 and 9.9 [9.7]% for WE2; P = ns. ERS day 1-7 precision absolute relative deviation (PARD) was 9.9 [3.6]% versus 11.5 [6.2]% for WE1 and 10.1 [4.4]% for WE2; P = ns. ERS sensor display time was 97.8 [6.0]% versus 91.0 [22.3]% for WE1 and 94.1 [14.3]% for WE2; P < .05. Electrochemical redundancy enhances glucose sensor accuracy and display time compared with each individual sensing element alone. ERS performance compares favorably with 'best-in-class' of non-redundant sensors. © 2015 Diabetes Technology Society.

  20. Annual research review: the nature and classification of reading disorders--a commentary on proposals for DSM-5.

    PubMed

    Snowling, Margaret J; Hulme, Charles

    2012-05-01

    This article reviews our understanding of reading disorders in children and relates it to current proposals for their classification in DSM-5. There are two different, commonly occurring, forms of reading disorder in children which arise from different underlying language difficulties. Dyslexia (as defined in DSM-5), or decoding difficulty, refers to children who have difficulty in mastering the relationships between the spelling patterns of words and their pronunciations. These children typically read aloud inaccurately and slowly, and experience additional problems with spelling. Dyslexia appears to arise principally from a weakness in phonological (speech sound) skills, and there is good evidence that it can be ameliorated by systematic phonic teaching combined with phonological awareness training. The other major form of reading difficulty is reading comprehension impairment. These children read aloud accurately and fluently, but have difficulty understanding what they have read. Reading comprehension impairment appears to arise from weaknesses in a range of oral language skills including poor vocabulary knowledge, weak grammatical skills and difficulties in oral language comprehension. We suggest that the omission of reading comprehension impairment from DSM-5 is a serious one that should be remedied. Both dyslexia and reading comprehension impairment are dimensional in nature, and show strong continuities with other disorders of language. We argue that recognizing the continuities between reading and language disorders has important implications for assessment and treatment, and we note that the high rates of comorbidity between reading disorders and other seemingly disparate disorders (including ADHD and motor disorders) raises important challenges for understanding these disorders. © 2011 The Authors. Journal of Child Psychology and Psychiatry © 2011 Association for Child and Adolescent Mental Health.

  1. A Model for Developing a Continuous Progress Program, April 1977. A Manual for Teachers and Administrators Concerned with Improving Reading.

    ERIC Educational Resources Information Center

    Goldman, Rosalie; And Others

    The focus of this manual is on the step-by-step development and implementation of a continuous-progress reading program--a system that permits instruction at each student's diagnosed level of ability. Analysis of program development includes advice on choosing a committee, writing the program, and presenting the program to others. The implications…

  2. Non-invasive, transdermal, path-selective and specific glucose monitoring via a graphene-based platform

    NASA Astrophysics Data System (ADS)

    Lipani, Luca; Dupont, Bertrand G. R.; Doungmene, Floriant; Marken, Frank; Tyrrell, Rex M.; Guy, Richard H.; Ilie, Adelina

    2018-06-01

    Currently, there is no available needle-free approach for diabetics to monitor glucose levels in the interstitial fluid. Here, we report a path-selective, non-invasive, transdermal glucose monitoring system based on a miniaturized pixel array platform (realized either by graphene-based thin-film technology, or screen-printing). The system samples glucose from the interstitial fluid via electroosmotic extraction through individual, privileged, follicular pathways in the skin, accessible via the pixels of the array. A proof of principle using mammalian skin ex vivo is demonstrated for specific and `quantized' glucose extraction/detection via follicular pathways, and across the hypo- to hyper-glycaemic range in humans. Furthermore, the quantification of follicular and non-follicular glucose extraction fluxes is clearly shown. In vivo continuous monitoring of interstitial fluid-borne glucose with the pixel array was able to track blood sugar in healthy human subjects. This approach paves the way to clinically relevant glucose detection in diabetics without the need for invasive, finger-stick blood sampling.

  3. Visual Factors Which Affect Reading Achievement.

    ERIC Educational Resources Information Center

    Flax, Nathan

    The relationship between vision and reading achievement is complex. In this paper, a number of terms relating to vision are defined and some of the limitations of specific measures of vision are discussed. In order to relate vision to reading, it is necessary to segment arbitrarily the continuous process of vision into a series of subsystems, or…

  4. Aural Skills: At the Juncture of Research in Early Reading and Music Literacy

    ERIC Educational Resources Information Center

    Hansen, Dee; Milligan, Sarah A.

    2012-01-01

    Pressure on music educators to accommodate reading initiatives in their schools continues to challenge genuine music-learning experiences. Children are taken out of music classrooms for additional reading time, although mounting research informs us of the value of music as a formidable avenue for developing crucial auditory skills needed for…

  5. The Effect of High School Literacy Programs on Standardized Test Scores

    ERIC Educational Resources Information Center

    Brock, Kathryn

    2013-01-01

    Current National Assessment of Educational Progress results continued their 40-year pattern with two-thirds of U.S. 8th graders not proficient in reading, yet formal reading and literacy instruction ends in elementary school. Lack of reading proficiency can undermine academic progress in high school. Elementary literacy instruction provides…

  6. The Effects of Leveled Literacy Intervention for Students in the RtI Process

    ERIC Educational Resources Information Center

    Taylor, Lisa

    2017-01-01

    Low reading skills constitute a serious achievement problem. Although there are remedial support in schools, between 2% and 6% of the student population continues to show persistent reading difficulties despite intensive intervention. The research problem in this study addressed the lack of effective reading interventions for students who were in…

  7. 32 CFR 724.812 - Responsibilities of the Reading Room.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 5 2011-07-01 2011-07-01 false Responsibilities of the Reading Room. 724.812 Section 724.812 National Defense Department of Defense (Continued) DEPARTMENT OF THE NAVY PERSONNEL NAVAL DISCHARGE REVIEW BOARD Procedures of Naval Discharge Review Board § 724.812 Responsibilities of the Reading Room. (a) Copies of decisional...

  8. 32 CFR 724.812 - Responsibilities of the Reading Room.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 5 2013-07-01 2013-07-01 false Responsibilities of the Reading Room. 724.812 Section 724.812 National Defense Department of Defense (Continued) DEPARTMENT OF THE NAVY PERSONNEL NAVAL DISCHARGE REVIEW BOARD Procedures of Naval Discharge Review Board § 724.812 Responsibilities of the Reading Room. (a) Copies of decisional...

  9. 21 CFR 886.5820 - Closed-circuit television reading system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Closed-circuit television reading system. 886.5820 Section 886.5820 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES OPHTHALMIC DEVICES Therapeutic Devices § 886.5820 Closed-circuit television reading system. (a) Identification. A...

  10. 21 CFR 886.5820 - Closed-circuit television reading system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Closed-circuit television reading system. 886.5820 Section 886.5820 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES OPHTHALMIC DEVICES Therapeutic Devices § 886.5820 Closed-circuit television reading system. (a) Identification. A...

  11. 21 CFR 886.5820 - Closed-circuit television reading system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Closed-circuit television reading system. 886.5820 Section 886.5820 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES OPHTHALMIC DEVICES Therapeutic Devices § 886.5820 Closed-circuit television reading system. (a) Identification. A...

  12. Active Reading Experience Questionnaire: Development and Validation of an Instrument for Studying Active Reading Activities

    ERIC Educational Resources Information Center

    Palilonis, Jennifer; Butler, Darrell

    2015-01-01

    The increasing adoption of mobile platforms and digital textbooks in university classrooms continues to have a profound impact on higher education. Advocates believe that providing students digital textbooks with built-in annotation features and interactive study tools will improve learning by facilitating active reading, a task essential to…

  13. Teaching Reading to the Disadvantaged Adult.

    ERIC Educational Resources Information Center

    Dinnan, James A.; Ulmer, Curtis, Ed.

    This manual is designed to assess the background of the individual and to bring him to the stage of unlocking the symbolic codes called Reading and Mathematics. The manual begins with Introduction to a Symbolic Code (The Thinking Process and The Key to Learning Basis), and continues with Basic Reading Skills (Readiness, Visual Discrimination,…

  14. Making Meaning: Children's Sensitivity to Morphological Information during Word Reading

    ERIC Educational Resources Information Center

    Mccutchen, Deborah; Logan, Becky; Biangardi-Orpe, Ulrike

    2009-01-01

    In the present study, 81 fifth grade and 82 eighth grade children completed a continuous lexical decision priming task that examined their reading times for evidence of sensitivity to the morphological structure of words during reading. A lexical decision task measured students' response times to target words preceded by a prime (which children…

  15. American Literature; Study Guide and Reading List. Revised.

    ERIC Educational Resources Information Center

    Lewis, John

    Intended for use by adult readers who wish to independently continue their education at the college level, this study guide and reading list, compiled for the Dallas public library system, provides suggestions for the study of American literature. Readings from the works of major authors from each of the following historical periods are…

  16. Evidence-Based Strategies for Improving the Reading Comprehension of Secondary Students: Implications for Students with Learning Disabilities

    ERIC Educational Resources Information Center

    Watson, Silvana M. R.; Gable, Robert A.; Gear, Sabra B.; Hughes, Kimberly C.

    2012-01-01

    Reading comprehension is a complex skill that places significant demands on students, beginning with elementary school and continuing through the secondary grades. In this article, we provide an overview of possible factors associated with problems in reading comprehension among secondary students with learning disabilities. Discussion underscores…

  17. Acquiring Responsive Practices: Preservice Teachers Learn to Conduct Interactive Read-Alouds

    ERIC Educational Resources Information Center

    Pendergast, Meghan; May, Laura; Bingham, Gary; Kurumada, Katie Simon

    2015-01-01

    As U.S. schools continue to grow more culturally and linguistically diverse, it is important for teacher-educator programs to include pedagogy that promotes engaging learning opportunities for all children. One way these learning opportunities can occur is through interactive read-alouds. Interactive read-alouds provide the teacher and child an…

  18. Beach Books: 2016-2017. What Do Colleges and Universities Want Students to Read outside Class?

    ERIC Educational Resources Information Center

    Randall, David

    2017-01-01

    "Beach Books 2016-17," which covers 348 colleges and universities, continues the National Association of Scholars' long-running record of providing the most comprehensive information about colleges and universities that assign common readings to incoming freshmen. Although there are several databases of common reading assignments, Beach…

  19. Effects of Differentiated Instruction on Student Achievement in Reading

    ERIC Educational Resources Information Center

    Gilbert, Darryl L.

    2011-01-01

    Reading teachers are faced with the challenge of providing instruction to a population of diverse students with various abilities and styles of learning within local and state school districts. In an effort to improve student performance on high-stake examinations in reading, teachers continue to seek the most effective instructional strategies.…

  20. In Vivo and Ex Vivo Transcutaneous Glucose Detection Using Surface-Enhanced Raman Spectroscopy

    NASA Astrophysics Data System (ADS)

    Ma, Ke

    Diabetes mellitus is widely acknowledged as a large and growing health concern. The lack of practical methods for continuously monitoring glucose levels causes significant difficulties in successful diabetes management. Extensive validation work has been carried out using surface-enhanced Raman spectroscopy (SERS) for in vivo glucose sensing. This dissertation details progress made towards a Raman-based glucose sensor for in vivo, transcutaneous glucose detection. The first presented study combines spatially offset Raman spectroscopy (SORS) with SERS (SESORS) to explore the possibility of in vivo, transcutaneous glucose sensing. A SERS-based glucose sensor was implanted subcutaneously in Sprague-Dawley rats. SERS spectra were acquired transcutaneously and analyzed using partial least-squares (PLS). Highly accurate and consistent results were obtained, especially in the hypoglycemic range. Additionally, the sensor demonstrated functionality at least17 days after implantation. A subsequent study further extends the application of SESORS to the possibility of in vivo detection of glucose in brain through skull. Specifically, SERS nanoantennas were buried in an ovine tissue behind a bone with 8 mm thickness and detected by using SESORS. In addition, quantitative detection through bones by using SESORS was also demonstrated. A device that could measure glucose continuously as well as noninvasively would be of great use to patients with diabetes. The inherent limitation of the SESORS approach may prevent this technique from becoming a noninvasive method. Therefore, the prospect of using normal Raman spectroscopy for glucose detection was re-examined. Quantitative detection of glucose and lactate in the clinically relevant range was demonstrated by using normal Raman spectroscopy with low power and short acquisition time. Finally, a nonlinear calibration method called least-squares support vector machine regression (LS-SVR) was investigated for analyzing spectroscopic data sets of glucose detection. Comparison studies were demonstrated between LS-SVR and PLS. LS-SVR demonstrated significant improvements in accuracy over PLS for glucose detection, especially when a global calibration model was required. The improvements imparted by LS-SVR open up the possibility of developing an accurate prediction algorithm for Raman-based glucose sensing applicable to a large human population. Overall, these studies show the high promise held by the Raman-based sensor for the challenge of optimal glycemic control.

  1. Nutrient Regulation by Continuous Feeding Removes Limitations on Cell Yield in the Large-Scale Expansion of Mammalian Cell Spheroids

    PubMed Central

    Weegman, Bradley P.; Nash, Peter; Carlson, Alexandra L.; Voltzke, Kristin J.; Geng, Zhaohui; Jahani, Marjan; Becker, Benjamin B.; Papas, Klearchos K.; Firpo, Meri T.

    2013-01-01

    Cellular therapies are emerging as a standard approach for the treatment of several diseases. However, realizing the promise of cellular therapies across the full range of treatable disorders will require large-scale, controlled, reproducible culture methods. Bioreactor systems offer the scale-up and monitoring needed, but standard stirred bioreactor cultures do not allow for the real-time regulation of key nutrients in the medium. In this study, β-TC6 insulinoma cells were aggregated and cultured for 3 weeks as a model of manufacturing a mammalian cell product. Cell expansion rates and medium nutrient levels were compared in static, stirred suspension bioreactors (SSB), and continuously fed (CF) SSB. While SSB cultures facilitated increased culture volumes, no increase in cell yields were observed, partly due to limitations in key nutrients, which were consumed by the cultures between feedings, such as glucose. Even when glucose levels were increased to prevent depletion between feedings, dramatic fluctuations in glucose levels were observed. Continuous feeding eliminated fluctuations and improved cell expansion when compared with both static and SSB culture methods. Further improvements in growth rates were observed after adjusting the feed rate based on calculated nutrient depletion, which maintained physiological glucose levels for the duration of the expansion. Adjusting the feed rate in a continuous medium replacement system can maintain the consistent nutrient levels required for the large-scale application of many cell products. Continuously fed bioreactor systems combined with nutrient regulation can be used to improve the yield and reproducibility of mammalian cells for biological products and cellular therapies and will facilitate the translation of cell culture from the research lab to clinical applications. PMID:24204645

  2. Accuracy Evaluation of a CE-Marked Glucometer System for Self-Monitoring of Blood Glucose With Three Reagent Lots Following ISO 15197:2013.

    PubMed

    Hehmke, Bernd; Berg, Sabine; Salzsieder, Eckhard

    2017-05-01

    Continuous standardized verification of the accuracy of blood glucose meter systems for self-monitoring after their introduction into the market is an important clinically tool to assure reliable performance of subsequently released lots of strips. Moreover, such published verification studies permit comparison of different blood glucose monitoring systems and, thus, are increasingly involved in the process of evidence-based purchase decision making.

  3. Biohydrogen production from enzymatic hydrolysis of food waste in batch and continuous systems

    PubMed Central

    Han, Wei; Yan, Yingting; Shi, Yiwen; Gu, Jingjing; Tang, Junhong; Zhao, Hongting

    2016-01-01

    In this study, the feasibility of biohydrogen production from enzymatic hydrolysis of food waste was investigated. Food waste (solid-to-liquid ratio of 10%, w/v) was first hydrolyzed by commercial glucoamylase to release glucose (24.35 g/L) in the food waste hydrolysate. Then, the obtained food waste hydrolysate was used as substrate for biohydrogen production in the batch and continuous (continuous stirred tank reactor, CSTR) systems. It was observed that the maximum cumulative hydrogen production of 5850 mL was achieved with a yield of 245.7 mL hydrogen/g glucose (1.97 mol hydrogen/mol glucose) in the batch system. In the continuous system, the effect of hydraulic retention time (HRT) on biohydrogen production from food waste hydrolysate was investigated. The optimal HRT obtained from this study was 6 h with the highest hydrogen production rate of 8.02 mmol/(h·L). Ethanol and acetate were the major soluble microbial products with low propionate production at all HRTs. Enzymatic hydrolysis of food waste could effectively accelerate hydrolysis speed, improve substrate utilization rate and increase hydrogen yield. PMID:27910937

  4. Continuous glucose determination using fiber-based tunable mid-infrared laser spectroscopy

    NASA Astrophysics Data System (ADS)

    Yu, Songlin; Li, Dachao; Chong, Hao; Sun, Changyue; Xu, Kexin

    2014-04-01

    Wavelength-tunable laser spectroscopy in combination with a small-sized fiber-optic attenuated total reflection (ATR) sensor (fiber-based evanescent field analysis, FEFA) is reported for the continuous measurement of the glucose level. We propose a method of controlling and stabilizing the wavelength and power of laser emission and present a newly developed mid-infrared wavelength-tunable laser with a broad emission spectrum band of 9.19-9.77 μm (1024-1088 cm-1). The novel small-sized flow-through fiber-optic ATR sensor with long optical sensing length was used for glucose level determination. The experimental results indicate that the noise-equivalent concentration of this laser measurement system is as low as 3.8 mg/dL, which is among the most precise glucose measurements using mid-infrared spectroscopy. The sensitivity, which is three times that of conventional Fourier transform infrared spectrometer, was acquired because of the higher laser power and higher spectral resolution. The best prediction of the glucose concentration in phosphate buffered saline solution was achieved using the five-variable partial least-squares model, yielding a root-mean-square error of prediction as small as 3.5 mg/dL. The high sensitivity, multiple tunable wavelengths and small fiber-based sensor with long optical sensing length make glucose determination possible in blood or interstitial fluid in vivo.

  5. Lowering Cost Share May Improve Rates of Home Glucose Monitoring Among Patients with Diabetes Using Insulin.

    PubMed

    Xie, Yiqiong; Agiro, Abiy; Bowman, Kevin; DeVries, Andrea

    2017-08-01

    Not much is known about the extent to which lower cost share for blood glucose strips is associated with persistent filling. To evaluate the relationship between cost sharing for blood glucose testing strips and continued use of testing strips. This is a retrospective observational study using medical and pharmacy claims data integrated with laboratory hemoglobin A1c (A1c) values for patients using insulin and blood glucose testing strips. Diabetic patients using insulin who had at least 1 fill of blood glucose testing strips between 2010 and 2012 were included. Patients were divided into a low cost-share group (out-of-pocket cost percentage of total testing strip costs over a 1-year period from the initial fill < 20%; n = 3,575) and a high cost-share group (out-of-pocket cost percentage ≥ 20%; n = 3,580). We compared the likelihood of continued testing strip fills after the initial fill between the 2 groups by using modified Poisson regression models. Patients with low cost share had higher rates of continued testing strip fills compared with those with high cost share (89% vs. 82%, P < 0.001). Lower cost share was associated with greater probability of continued fills (adjusted risk ratio [aRR] = 1.05, 95% CI = 1.03-1.07, P < 0.001). Other patient characteristics associated with continued fills included type 1 diabetes diagnosis, types of insulin regimens, and health insurance plan type. In a subset analysis of patients whose A1c values at baseline were above the target level (8%) set by the National Committee for Quality Assurance guidelines, we saw a slight increase in magnitude of relationship between cost share and continued fills (RR = 1.06, 95% CI = 1.03-1.10, P < 0.01). There was a statistically significant association between cost share for testing strips and continued blood glucose self-monitoring. Among patients not achieving A1c control at baseline, there was an increase in the magnitude of relationship. Lowering cost share for testing strips can remove a barrier to persistence in diabetes self-management. Funding for this study was provided by Anthem, which had no role in the study design, data interpretation, or preparation or review of the manuscript. The decision to publish was strictly that of the authors. Xie, Agiro, and DeVries are employees of HealthCore, a wholly owned subsidiary of Anthem. Bowman is an employee of Anthem. Study concept and design were contributed by all the authors. Xie took the lead in data collection, along with Agiro, and data interpretation was performed by all the authors. The manuscript was written by Xie and Agiro, along with DeVries, and revised by Xie, Agiro, and Devries, along with Bowman.

  6. Comparison of dual-hormone artificial pancreas, single-hormone artificial pancreas, and conventional insulin pump therapy for glycaemic control in patients with type 1 diabetes: an open-label randomised controlled crossover trial.

    PubMed

    Haidar, Ahmad; Legault, Laurent; Messier, Virginie; Mitre, Tina Maria; Leroux, Catherine; Rabasa-Lhoret, Rémi

    2015-01-01

    The artificial pancreas is an emerging technology for the treatment of type 1 diabetes and two configurations have been proposed: single-hormone (insulin alone) and dual-hormone (insulin and glucagon). We aimed to delineate the usefulness of glucagon in the artificial pancreas system. We did a randomised crossover trial of dual-hormone artificial pancreas, single-hormone artificial pancreas, and conventional insulin pump therapy (continuous subcutaneous insulin infusion) in participants aged 12 years or older with type 1 diabetes. Participants were assigned in a 1:1:1:1:1:1 ratio with blocked randomisation to the three interventions and attended a research facility for three 24-h study visits. During visits when the patient used the single-hormone artificial pancreas, insulin was delivered based on glucose sensor readings and a predictive dosing algorithm. During dual-hormone artificial pancreas visits, glucagon was also delivered during low or falling glucose. During conventional insulin pump therapy visits, patients received continuous subcutaneous insulin infusion. The study was not masked. The primary outcome was the time for which plasma glucose concentrations were in the target range (4·0-10·0 mmol/L for 2 h postprandially and 4·0-8·0 mmol/L otherwise). Hypoglycaemic events were defined as plasma glucose concentration of less than 3·3 mmol/L with symptoms or less than 3·0 mmol/L irrespective of symptoms. Analysis was by modified intention to treat, in which we included data for all patients who completed at least two visits. A p value of less than 0·0167 (0·05/3) was regarded as significant. This trial is registered with ClinicalTrials.gov, number NCT01754337. The mean proportion of time spent in the plasma glucose target range over 24 h was 62% (SD 18), 63% (18), and 51% (19) with single-hormone artificial pancreas, dual-hormone artificial pancreas, and conventional insulin pump therapy, respectively. The mean difference in time spent in the target range between single-hormone artificial pancreas and conventional insulin pump therapy was 11% (17; p=0·002) and between dual-hormone artificial pancreas and conventional insulin pump therapy was 12% (21; p=0·00011). There was no difference (15; p=0·75) in the proportion of time spent in the target range between the single-hormone and dual-hormone artificial pancreas systems. There were 52 hypoglycaemic events with conventional insulin pump therapy (12 of which were symptomatic), 13 with the single-hormone artificial pancreas (five of which were symptomatic), and nine with the dual-hormone artificial pancreas (0 of which were symptomatic); the number of nocturnal hypoglycaemic events was 13 (0 symptomatic), 0, and 0, respectively. Single-hormone and dual-hormone artificial pancreas systems both provided better glycaemic control than did conventional insulin pump therapy. The single-hormone artificial pancreas might be sufficient for hypoglycaemia-free overnight glycaemic control. Canadian Diabetes Association; Fondation J A De Sève; Juvenile Diabetes Research Foundation; and Medtronic. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Financial implications of glycemic control: results of an inpatient diabetes management program.

    PubMed

    Newton, Christopher A; Young, Sandra

    2006-01-01

    (1) To determine the financial implications associated with changes in clinical outcomes resulting from implementation of an inpatient diabetes management program and (2) to describe the strategies involved in the formation of this program. The various factors that influence financial outcomes are examined, and previous and current outcomes are compared. Associations exist between hyperglycemia, length of stay, and hospital costs. Implementation of an inpatient diabetes management program, based on published guidelines, has been shown to increase the use of scheduled medications to treat hyperglycemia and increase the frequency of physician intervention for glucose readings outside desired ranges. Results from implementing this program have included a reduction in the average glucose level in the medical intensive care unit through use of protocols driven to initiate intravenous insulin once the glucose level exceeds 140 mg/dL. Additionally, glucose levels have been reduced throughout the hospital, primarily because of interactions between diabetes nurse care managers and the primary care team. Associated with these lower glucose levels are a decreased prevalence of central line infections and shorter lengths of stay. The reduction in the length of stay for patients with diabetes has resulted in a savings of more than 2 million dollars for the year and has yielded a 467% return on investment for the hospital. Improved blood glucose control during the hospitalization of patients with known hyperglycemia is associated with reduced morbidity, reduced hospital length of stay, and cost savings. The implementation of an inpatient diabetes management program can provide better glycemic control, thereby improving outcomes for hyperglycemic patients while saving the hospital money.

  8. A Disposable Tear Glucose Biosensor—Part 4

    PubMed Central

    Engelschall, Erica; Lan, Kenneth; Shah, Pankti; Saez, Neil; Maxwell, Stephanie; Adamson, Teagan; Abou-Eid, Michelle; McAferty, Kenyon; Patel, Dharmendra R.; Cook, Curtiss B.

    2014-01-01

    Objective: A prototype tear glucose (TG) sensor was tested in New Zealand white rabbits to assess eye irritation, blood glucose (BG) and TG lag time, and correlation with BG. Methods: A total of 4 animals were used. Eye irritation was monitored by Lissamine green dye and analyzed using image analysis software. Lag time was correlated with an oral glucose load while recording TG and BG readings. Correlation between TG and BG were plotted against one another to form a correlation diagram, using a Yellow Springs Instrument (YSI) and self-monitoring of blood glucose as the reference measurements. Finally, TG levels were calculated using analytically derived expressions. Results: From repeated testing carried over the course of 12 months, little to no eye irritation was detected. TG fluctuations over time visually appeared to trace the same pattern as BG with an average lag times of 13 minutes. TG levels calculated from the device current measurements ranged from 4 to 20 mg/dL and correlated linearly with BG levels of 75-160 mg/dL (TG = 0.1723 BG = 7.9448 mg/dL; R2 = .7544). Conclusion: The first steps were taken toward preliminary development of a sensor for self-monitoring of tear glucose (SMTG). No conjunctival irritation in any of the animals was noted. Lag time between TG and BG was found to be noticeable, but a quantitative modeling to correlate lag time in this study is unnecessary. Measured currents from the sensors and the calculated TG showed promising correlation to BG levels. Previous analytical bench marking showed BG and TG levels consistent with other literature. PMID:24876546

  9. Use of the Cygnus GlucoWatch biographer at a diabetes camp.

    PubMed

    Gandrud, Laura M; Paguntalan, Helen U; Van Wyhe, M Michelle; Kunselman, Betsy L; Leptien, Amy D; Wilson, Darrell M; Eastman, Richard C; Buckingham, Bruce A

    2004-01-01

    Detection and prevention of nocturnal hypoglycemia is a major medical concern at diabetes camps. We conducted an open-label trial of the Cygnus GlucoWatch biographer to detect nocturnal hypoglycemia in a diabetes camp, a nonclinical environment with multiple activities. Forty-five campers (7-17 years old) wore a biographer. The biographer was placed on the arm at 6:00 PM, with the low alarm set to 85 mg/dL (4.7 mmol/L). Overnight glucose monitoring occurred per usual camp protocol. Counselors were to check and record blood glucose values if the biographer alarmed. Biographers were worn for 154 nights by 45 campers. After a 3-hour warm-up period, 67% of biographers were calibrated, of which 28% were worn the entire night (12 hours). Thirty-four percent of readings were skipped because of: "data errors" (65%), sweat (20%), and temperature change (16%). Reported biographer values correlated with meter glucose values measured 11 to 20 minutes later (r = 0.90). Of 20 low-glucose alarms with corresponding meter values measured within 20 minutes, there were 10 true-positive alarms, 10 false-positive alarms, and no false-negative alarms. Campers reported sleep disruption 32% of the nights, and 74% found the biographer helpful. Campers reported they would wear the biographer 4 to 5 nights each week. Half of the biographer low-glucose alarms that had corresponding blood meter values were true-positive alarms, and the remaining were false-positive alarms. There was close correlation between the biographer and meter glucose values. The majority of campers found the biographer helpful and would use it at home.

  10. Longitudinal Stability in Reading Comprehension Is Largely Heritable from Grades 1 to 6

    PubMed Central

    Soden, Brooke; Christopher, Micaela E.; Hulslander, Jacqueline; Olson, Richard K.; Cutting, Laurie; Keenan, Janice M.; Thompson, Lee A.; Wadsworth, Sally J.; Willcutt, Erik G.; Petrill, Stephen A.

    2015-01-01

    Reading comprehension is a foundational academic skill and significant attention has focused on reading development. This report is the first to examine the stability and change in genetic and environmental influences on reading comprehension across Grades 1 to 6. This developmental range is particularly important because it encompasses the timespan in which most children move from learning how to read to using reading for learning. Longitudinal simplex models were fitted separately for two independent twin samples (N = 706; N = 976). Results suggested that the shared environment contributed to variance in early but not later reading. Instead, stability in reading development was largely mediated by continuous genetic influences. Thus, although reading is clearly a learned skill and the environment remains important for reading development, individual differences in reading comprehension appear to be also influenced by a core of genetic stability that persists through the developmental course of reading. PMID:25602760

  11. Reflex reading epilepsy: effect of linguistic characteristics on spike frequency.

    PubMed

    Safi, Dima; Lassonde, Maryse; Nguyen, Dang Khoa; Denault, Carole; Macoir, Joël; Rouleau, Isabelle; Béland, Renée

    2011-04-01

    Reading epilepsy is a rare reflex epilepsy in which seizures are provoked by reading. Several cases have been described in the literature, but the pathophysiological processes vary widely and remain unclear. We describe a 42-year-old male patient with reading epilepsy evaluated using clinical assessments and continuous video/EEG recordings. We administered verbal, nonverbal, and reading tasks to determine factors precipitating seizures. Linguistic characteristics of the words were manipulated. Results indicated that reading-induced seizures were significantly more numerous than those observed during verbal and nonverbal tasks. In reading tasks, spike frequency significantly increased with involvement of the phonological reading route. Spikes were recorded predominantly in left parasagittal regions. Future cerebral imaging studies will enable us to visualize the spatial localization and temporal course of reading-induced seizures and brain activity involved in reading. A better understanding of reading epilepsy is crucial for reading rehabilitation in these patients. Copyright © 2011 Elsevier Inc. All rights reserved.

  12. National Pancreas Foundation

    MedlinePlus

    ... Stay Informed - Join The Fight Animated Pancreas Patient Animations, Expert and Patient interviews on Pancreas Diseases State ... pancreatic experts at the American Pancreatic Association … Continue Reading More NPF News Social Media Post Read More ...

  13. 21 CFR 168.120 - Glucose sirup.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 2 2012-04-01 2012-04-01 false Glucose sirup. 168.120 Section 168.120 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... saccharides obtained from edible starch. (b) The food shall meet the following specifications: (1) The total...

  14. 21 CFR 168.111 - Dextrose monohydrate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 2 2012-04-01 2012-04-01 false Dextrose monohydrate. 168.111 Section 168.111 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR...-glucose containing one molecule of water of crystallization with each molecule of D-glucose. (b) The food...

  15. 21 CFR 168.120 - Glucose sirup.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 2 2013-04-01 2013-04-01 false Glucose sirup. 168.120 Section 168.120 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... saccharides obtained from edible starch. (b) The food shall meet the following specifications: (1) The total...

  16. 21 CFR 168.111 - Dextrose monohydrate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 2 2013-04-01 2013-04-01 false Dextrose monohydrate. 168.111 Section 168.111 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR...-glucose containing one molecule of water of crystallization with each molecule of D-glucose. (b) The food...

  17. Decreased complexity of glucose dynamics in diabetes: evidence from multiscale entropy analysis of continuous glucose monitoring system data.

    PubMed

    Chen, Jin-Long; Chen, Pin-Fan; Wang, Hung-Ming

    2014-07-15

    Parameters of glucose dynamics recorded by the continuous glucose monitoring system (CGMS) could help in the control of glycemic fluctuations, which is important in diabetes management. Multiscale entropy (MSE) analysis has recently been developed to measure the complexity of physical and physiological time sequences. A reduced MSE complexity index indicates the increased repetition patterns of the time sequence, and, thus, a decreased complexity in this system. No study has investigated the MSE analysis of glucose dynamics in diabetes. This study was designed to compare the complexity of glucose dynamics between the diabetic patients (n = 17) and the control subjects (n = 13), who were matched for sex, age, and body mass index via MSE analysis using the CGMS data. Compared with the control subjects, the diabetic patients revealed a significant increase (P < 0.001) in the mean (diabetic patients 166.0 ± 10.4 vs. control subjects 93.3 ± 1.5 mg/dl), the standard deviation (51.7 ± 4.3 vs. 11.1 ± 0.5 mg/dl), and the mean amplitude of glycemic excursions (127.0 ± 9.2 vs. 27.7 ± 1.3 mg/dl) of the glucose levels; and a significant decrease (P < 0.001) in the MSE complexity index (5.09 ± 0.23 vs. 7.38 ± 0.28). In conclusion, the complexity of glucose dynamics is decreased in diabetes. This finding implies the reactivity of glucoregulation is impaired in the diabetic patients. Such impairment presenting as an increased regularity of glycemic fluctuating pattern could be detected by MSE analysis. Thus, the MSE complexity index could potentially be used as a biomarker in the monitoring of diabetes.

  18. Real-time continuous glucose monitoring versus conventional glucose monitoring in critically ill patients: a systematic review study protocol.

    PubMed

    Zhu, Weidong; Jiang, Libing; Jiang, Shouyin; Ma, Yuefeng; Zhang, Mao

    2015-01-23

    Stress-induced hyperglycaemia, which has been shown to be associated with an unfavourable prognosis, is common among critically ill patients. Additionally, it has been reported that hypoglycaemia and high glucose variabilities are also associated with adverse outcomes. Thus, continuous glucose monitoring (CGM) may be the optimal method to detect severe hypoglycaemia, hyperglycaemia and decrease glucose excursion. However, the overall accuracy and reliability of CGM systems and the effects of CGM systems on glucose control and prognosis in critically ill patients remain inconclusive. Therefore, we will conduct a systematic review and meta-analysis to clarify the associations between CGM systems and clinical outcome. We will search PubMed, EMBASE and the Cochrane Library from inception to October 2014. Studies comparing CGM systems with any other glucose monitoring methods in critically ill patients will be eligible for our meta-analysis. The primary endpoints include the incidence of hypoglycaemia and hyperglycaemia, mean glucose level, and percentage of time within the target range. The second endpoints include intensive care unit (ICU) mortality, hospital mortality, duration of mechanical ventilation, length of ICU and hospital stay, and the Pearson correlation coefficient and the results of error grid analysis. In addition, we will record all complications (eg, acquired infections) in control and intervention groups and local adverse events in intervention groups (eg, bleeding or infections). Ethics approval is not required as this is a protocol for a systematic review. The findings will be disseminated in a peer-reviewed journal and presented at a relevant conference. PROSPERO registration number: CRD42014013488. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  19. Accuracy of continuous glucose monitoring during exercise in type 1 diabetes pregnancy.

    PubMed

    Kumareswaran, Kavita; Elleri, Daniela; Allen, Janet M; Caldwell, Karen; Nodale, Marianna; Wilinska, Malgorzata E; Amiel, Stephanie A; Hovorka, Roman; Murphy, Helen R

    2013-03-01

    Performance of continuous glucose monitors (CGMs) may be lower when glucose levels are changing rapidly, such as occurs during physical activity. Our aim was to evaluate accuracy of a current-generation CGM during moderate-intensity exercise in type 1 diabetes (T1D) pregnancy. As part of a study of 24-h closed-loop insulin delivery in 12 women with T1D (disease duration, 17.6 years; glycosylated hemoglobin, 6.4%) during pregnancy (gestation, 21 weeks), we evaluated the Freestyle Navigator(®) sensor (Abbott Diabetes Care, Alameda, CA) during afternoon (15:00-18:00 h) and morning (09:30-12:30 h) exercise (55 min of brisk walking on a treadmill followed by a 2-h recovery), compared with sedentary conditions (18:00-09:00 h). Plasma (reference) glucose, measured at regular 15-30-min intervals with the YSI Ltd. (Fleet, United Kingdom) model YSI 2300 analyzer, was used to assess CGM performance. Sensor accuracy, as indicated by the larger relative absolute difference (RAD) between paired sensor and reference glucose values, was lower during exercise compared with rest (median RAD, 11.8% vs. 18.4%; P<0.001). These differences remained significant when correcting for plasma glucose relative rate of change (P<0.001). Analysis by glucose range showed lower accuracy during hypoglycemia for both sedentary (median RAD, 24.4%) and exercise (median RAD, 32.1%) conditions. Using Clarke error grid analysis, 96% of CGM values were clinically safe under resting conditions compared with only 87% during exercise. Compared with sedentary conditions, accuracy of the Freestyle Navigator CGM was lower during moderate-intensity exercise in pregnant women with T1D. This difference was particularly marked in hypoglycemia and could not be solely explained by the glucose rate of change associated with physical activity.

  20. Use of continuous glucose monitoring as an outcome measure in clinical trials.

    PubMed

    Beck, Roy W; Calhoun, Peter; Kollman, Craig

    2012-10-01

    Although developed to be a management tool for individuals with diabetes, continuous glucose monitoring (CGM) also has potential value for the assessment of outcomes in clinical studies. We evaluated using CGM as such an outcome measure. Data were analyzed from six previously completed inpatient studies in which both CGM (Freestyle Navigator™ [Abbott Diabetes Care, Alameda, CA] or Guardian(®) [Medtronic, Northridge, CA]) and reference glucose measurements were available. The analyses included 97 days of data from 93 participants with type 1 diabetes (age range, 5-57 years; mean, 18 ± 12 years). Mean glucose levels per day were similar for the CGM and reference measurements (median, 148 mg/dL vs. 143 mg/dL, respectively; P = 0.92), and the correlation of the two was high (r = 0.89). Similarly, most glycemia metrics showed no significant differences comparing CGM and reference values, except that the nadir glucose tended to be slightly lower and peak glucose slightly higher with reference measurements than CGM measurements (respective median, 59 mg/dL vs. 66 mg/dL [P = 0.05] and 262 mg/dL vs. 257 mg/dL [P = 0.003]) and glucose variability as measured with the coefficient of variation was slightly lower with CGM than reference measurements (respective median, 31% vs. 35%; P<0.001). A reasonably high degree of concordance exists when comparing outcomes based on CGM measurements with outcomes based on reference blood glucose measurements. CGM inaccuracy and underestimation of the extremes of hyperglycemia and hypoglycemia can be accounted for in a clinical trial's study design. Thus, in appropriate settings, CGM can be a very meaningful and feasible outcome measure for clinical trials.

  1. Clinical update on optimal prandial insulin dosing using a refined run-to-run control algorithm.

    PubMed

    Zisser, Howard; Palerm, Cesar C; Bevier, Wendy C; Doyle, Francis J; Jovanovic, Lois

    2009-05-01

    This article provides a clinical update using a novel run-to-run algorithm to optimize prandial insulin dosing based on sparse glucose measurements from the previous day's meals. The objective was to use a refined run-to-run algorithm to calculate prandial insulin-to-carbohydrate ratios (I:CHO) for meals of variable carbohydrate content in subjects with type 1 diabetes (T1DM). The open-labeled, nonrandomized study took place over a 6-week period in a nonprofit research center. Nine subjects with T1DM using continuous subcutaneous insulin infusion participated. Basal insulin rates were optimized using continuous glucose monitoring, with a target fasting blood glucose of 90 mg/dl. Subjects monitored blood glucose concentration at the beginning of the meal and at 60 and 120 minutes after the start of the meal. They were instructed to start meals with blood glucose levels between 70 and 130 mg/dl. Subjects were contacted daily to collect data for the previous 24-hour period and to give them the physician-approved, algorithm-derived I:CHO ratios for the next 24 hours. Subjects calculated the amount of the insulin bolus for each meal based on the corresponding I:CHO and their estimate of the meal's carbohydrate content. One- and 2-hour postprandial glucose concentrations served as the main outcome measures. The mean 1-hour postprandial blood glucose level was 104 +/- 19 mg/dl. The 2-hour postprandial levels (96.5 +/- 18 mg/dl) approached the preprandial levels (90.1 +/- 13 mg/dl). Run-to-run algorithms are able to improve postprandial blood glucose levels in subjects with T1DM. 2009 Diabetes Technology Society.

  2. Use of Continuous Glucose Monitoring as an Outcome Measure in Clinical Trials

    PubMed Central

    Calhoun, Peter; Kollman, Craig

    2012-01-01

    Abstract Objective Although developed to be a management tool for individuals with diabetes, continuous glucose monitoring (CGM) also has potential value for the assessment of outcomes in clinical studies. We evaluated using CGM as such an outcome measure. Research Design and Methods Data were analyzed from six previously completed inpatient studies in which both CGM (Freestyle Navigator™ [Abbott Diabetes Care, Alameda, CA] or Guardian® [Medtronic, Northridge, CA]) and reference glucose measurements were available. The analyses included 97 days of data from 93 participants with type 1 diabetes (age range, 5–57 years; mean, 18±12 years). Results Mean glucose levels per day were similar for the CGM and reference measurements (median, 148 mg/dL vs. 143 mg/dL, respectively; P=0.92), and the correlation of the two was high (r=0.89). Similarly, most glycemia metrics showed no significant differences comparing CGM and reference values, except that the nadir glucose tended to be slightly lower and peak glucose slightly higher with reference measurements than CGM measurements (respective median, 59 mg/dL vs. 66 mg/dL [P=0.05] and 262 mg/dL vs. 257 mg/dL [P=0.003]) and glucose variability as measured with the coefficient of variation was slightly lower with CGM than reference measurements (respective median, 31% vs. 35%; P<0.001). Conclusions A reasonably high degree of concordance exists when comparing outcomes based on CGM measurements with outcomes based on reference blood glucose measurements. CGM inaccuracy and underestimation of the extremes of hyperglycemia and hypoglycemia can be accounted for in a clinical trial's study design. Thus, in appropriate settings, CGM can be a very meaningful and feasible outcome measure for clinical trials. PMID:23013201

  3. A label-free fiber-optic Turbidity Affinity Sensor (TAS) for continuous glucose monitoring.

    PubMed

    Dutt-Ballerstadt, Ralph; Evans, Colton; Pillai, Arun P; Gowda, Ashok

    2014-11-15

    In this paper, we describe the concept of a novel implantable fiber-optic Turbidity Affinity Sensor (TAS) and report on the findings of its in-vitro performance for continuous glucose monitoring. The sensing mechanism of the TAS is based on glucose-specific changes in light scattering (turbidity) of a hydrogel suspension consisting of small particles made of crosslinked dextran (Sephadex G100), and a glucose- and mannose-specific binding protein - Concanavalin A (ConA). The binding of ConA to Sephadex particles results in a significant turbidity increase that is much greater than the turbidity contribution by the individual components. The turbidity of the TAS was measured by determining the intensity of light passing through the suspension enclosed within a small semi-permeable hollow fiber (OD: 220 μm, membrane thickness: 20 μm, molecular weight cut-off: 10 kDa) using fiber optics. The intensity of measured light of the TAS was proportional to the glucose concentration over the concentration range from 50mg/dL to 400mg/dL in PBS and whole blood at 37°C (R>0.96). The response time was approximately 4 min. The stability of the glucose response of the TAS decreased only slightly (by 20%) over an 8-day study period at 37°C. In conclusion, this study demonstrated proof-of-concept of the TAS for interstitial glucose monitoring. Due to the large signal amplitude of the turbidity change, and the lack of need for wavelength-specific emission and excitation filters, a very small, robust and compact TAS device with an extremely short optical pathlength could be feasibly designed and implemented for in-vivo glucose monitoring in people with diabetes. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Application of optical coherence tomography for noninvasive blood glucose monitoring during hyperglycemia

    NASA Astrophysics Data System (ADS)

    Larin, Kirill V.; Ashitkov, Taras V.; Motamedi, Massoud; Esenaliev, Rinat O.

    2003-10-01

    Approximately 14 million people in the USA and more than 140 million people worldwide suffer from Diabetes Mellitus. The current glucose sensing technique involves a finger puncture several times a day to obtain a droplet of blood for chemical analysis. Recently we proposed to use optical coherence tomography (OCT) for continuous noninvasive blood glucose sensing through skin. In this paper we tested the OCT technique for noninvasive monitoring of blood glucose concentration in lip tissue of New Zealand rabbits and Yucatan micropigs during glucose clamping experiments. Obtained results show good agreement with results obtained in skin studies, good correlation of changes in the OCT signal slope measured at the depth of 250 to 500 μm with changes in blood glucose concentration, and higher stability of the OCT data points than that obtained from skin.

  5. Dominance of rumen microorganisms during cheese whey acidification: acidogenesis can be governed by a rare Selenomonas lacticifex-type fermentation.

    PubMed

    Ntougias, Spyridon; Tsiamis, George; Soultani, Despoina; Melidis, Paraschos

    2015-11-01

    The microbial basis of acidification process during spontaneous cheese whey wastewater fermentation was decrypted by implementing both culture-dependent and culture-independent techniques. Lac tobacillus and Bifidobacterium were the predominant taxa among the microbiota growing on MRS (deMan, Rogosa, and Sharpe), while Kazachstania unispora and Dekkera anomala yeast species were also isolated. Almost all Lactobacillus isolates were heterofermentative that could ferment glucose and lactose, with most of them being related to Lactobacillus hilgardii (99.0-100 % similarity). By employing fluorescence techniques, the dominance of long crescent-shaped bacteria in the acidogenic sludge was observed. Temperature gradient gel electrophoresis (TGGE), clone library, and next-generation sequencing techniques revealed the dominance of Selenomonas lacticifex. Based on Illumina data, Selenomonas in the continuous stirred-tank reactor (CSTR) represented 70.13 ± 4.64 % of the bacterial reads, while other Veillonellaceae taxa (Megasphaera and Pectinatus) represented a notable proportion (6.54 %). Prevotella was only detected by Illumina sequencing as an important constituent of the microbial population (14.97 ± 1.71 %). Budding yeasts represented 97 % of the fungal population in the CSTR, with Yarrowia strains representing 88.85 ± 5.52 % of the fungal reads. Spontaneous cheese whey acidification can favor the dominance of rumen bacteria and here was driven by the rarely reported S. lacticifex-type fermentation, which should be taken into consideration during evaluation of acidogenesis in process simulation and modelling. Moreover, the important nervonic acid content detected indicates that acidogenic sludge can be used as a source for the production of high value-added biomedical substrates.

  6. Glucose-sensitive silicone hydrogel contact lens toward tear glucose monitoring.

    PubMed

    Badugu, Ramachandram; Reece, Edward Albert; Lakowicz, Joseph R

    2018-05-01

    Accurate and reliable monitoring of blood glucose is needed for the treatment of diabetes, which has many challenges, including lack of patient compliance. Measuring tear glucose is an alternative to traditional finger-stick tests used to track blood sugar levels, but glucose sensing using tears has yet to be achieved. We report a methodology for possible tear glucose monitoring using glucose-sensitive silicone hydrogel (SiHG) contact lenses, the primary type of lenses available in today's market. Initially, we assessed the interpenetrating polymer network, with nearly pure silicone and water regions, existing in the SiHGs using a polarity-sensitive probe Prodan. We then synthesized a glucose-sensitive fluorophore Quin-C18 with a hydrophobic side chain for localization of probe at the interfacial region. Using our glucose-sensing contact lens, we were able to measure varying concentrations of glucose in an in-vitro system. The Quin-C18 strongly bound to the lenses with insignificant leaching even after multiple rinses. The lenses displayed a similar response to glucose after three months of storage in water. This study demonstrates that it may be possible to develop a contact lens for continuous glucose monitoring in the near term, using our concept of fluorophore binding at the silicone-water interface. (2018) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  7. Instructor Special Report: RIF (Reading Is FUNdamental)

    ERIC Educational Resources Information Center

    Instructor, 1976

    1976-01-01

    At a time when innovative programs of the sixties are quickly falling out of the picture, Reading Is FUNdamental, after ten years and five million free paperbacks, continues to expand and show results. (Editor)

  8. Impact of exercise on diurnal and nocturnal markers of glycaemic variability and oxidative stress in obese individuals with type 2 diabetes or impaired glucose tolerance.

    PubMed

    Farabi, Sarah S; Carley, David W; Smith, Donald; Quinn, Lauretta

    2015-09-01

    We measured the effects of a single bout of exercise on diurnal and nocturnal oxidative stress and glycaemic variability in obese subjects with type 2 diabetes mellitus or impaired glucose tolerance versus obese healthy controls. Subjects (in random order) performed either a single 30-min bout of moderate-intensity exercise or remained sedentary for 30 min at two separate visits. To quantify glycaemic variability, standard deviation of glucose (measured by continuous glucose monitoring system) and continuous overlapping net glycaemic action of 1-h intervals (CONGA-1) were calculated for three 12-h intervals during each visit. Oxidative stress was measured by 15-isoprostane F(2t) levels in urine collections for matching 12-h intervals. Exercise reduced daytime glycaemic variability (ΔCONGA-1 = -12.62 ± 5.31 mg/dL, p = 0.04) and urinary isoprostanes (ΔCONGA-1 = -0.26 ± 0.12 ng/mg, p = 0.04) in the type 2 diabetes mellitus/impaired glucose tolerance group. Daytime exercise-induced change in urinary 15-isoprostane F(2t) was significantly correlated with both daytime standard deviation (r = 0.68, p = 0.03) and with subsequent overnight standard deviation (r = 0.73, p = 0.027) in the type 2 diabetes mellitus/impaired glucose tolerance group. Exercise significantly impacts the relationship between diurnal oxidative stress and nocturnal glycaemic variability in individuals with type 2 diabetes mellitus/impaired glucose tolerance. © The Author(s) 2015.

  9. The assessment of potentially interfering metabolites and dietary components in blood using an osmotic glucose sensor based on the concanavalin A-dextran affinity assay.

    PubMed

    Krushinitskaya, Olga; Tønnessen, Tor Inge; Jakobsen, Henrik; Johannessen, Erik

    2011-10-15

    Continuous surveillance of blood glucose is a prerogative of maintaining a tight glycaemic control in people suffering from diabetes mellitus. Implantable sensor technology offers the potential of conducting direct long term continuous glucose measurements, but current size restrictions and operational challenges have limited their applications. The osmotic sensor utilises diffusion to create a hydrostatic pressure that is independent of sensor operation and power consumption. This permits ultra-low power architectures to be realized with a minimal start-up time in a package suitable for miniaturization. In contrast, osmotic sensors suffer from the inability of their membranes to discriminate between different constituents in blood or the interstitial fluid that are of comparable size to glucose. By implementing an affinity assay based on the competitive bonding between concanavalin A and dextran, the selectivity of the membrane can be transferred to the glucose specific recognition of the affinity assay. The osmotic effect from the physiological levels of several key metabolites and nutritional components has been addressed identifying in particular ethanol, lactate and amino acids as potential interfering constituents. Both ascorbic acid and mannose would have a normal physiological concentration that is too low to be detected. The studies shows that an osmotic glucose sensor equipped with the con A-dextran affinity assay, is able to filter out potential interfering constituents present in blood, plasma and the interstitial fluid yet retaining a pressure that is proportional to glucose only. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. Calibration of a subcutaneous amperometric glucose sensor implanted for 7 days in diabetic patients. Part 2. Superiority of the one-point calibration method.

    PubMed

    Choleau, C; Klein, J C; Reach, G; Aussedat, B; Demaria-Pesce, V; Wilson, G S; Gifford, R; Ward, W K

    2002-08-01

    Calibration, i.e. the transformation in real time of the signal I(t) generated by the glucose sensor at time t into an estimation of glucose concentration G(t), represents a key issue for the development of a continuous glucose monitoring system. To compare two calibration procedures. In the one-point calibration, which assumes that I(o) is negligible, S is simply determined as the ratio I/G, and G(t) = I(t)/S. The two-point calibration consists in the determination of a sensor sensitivity S and of a background current I(o) by plotting two values of the sensor signal versus the concomitant blood glucose concentrations. The subsequent estimation of G(t) is given by G(t) = (I(t)-I(o))/S. A glucose sensor was implanted in the abdominal subcutaneous tissue of nine type 1 diabetic patients during 3 (n = 2) and 7 days (n = 7). The one-point calibration was performed a posteriori either once per day before breakfast, or twice per day before breakfast and dinner, or three times per day before each meal. The two-point calibration was performed each morning during breakfast. The percentages of points present in zones A and B of the Clarke Error Grid were significantly higher when the system was calibrated using the one-point calibration. Use of two one-point calibrations per day before meals was virtually as accurate as three one-point calibrations. This study demonstrates the feasibility of a simple method for calibrating a continuous glucose monitoring system.

  11. Building Word Knowledge: Opportunities for Direct Vocabulary Instruction in General Education for Students with Reading Difficulties

    ERIC Educational Resources Information Center

    Wanzek, Jeanne

    2014-01-01

    Direct vocabulary instruction is 1 critical component of reading instruction. Although most students in the elementary grades need to continue building their vocabulary knowledge, students with reading difficulties are at the greatest risk of falling further behind each year in vocabulary and concept knowledge without effective instruction. This…

  12. Motivating Struggling Middle School Readers: Digital Images as an Aid for Self-Monitoring and Enhancing Retellings of Text

    ERIC Educational Resources Information Center

    Parenti, Melissa A.

    2016-01-01

    The benefits of motivation, mental imagery, self-monitoring and guided retellings on reading comprehension have long been lauded as effective methods for improving reading achievement. At a time when technology continues to flourish, yet secondary reading performance remains at a level far below proficiency, identifying strategies that assist in…

  13. Inspiring Reading Success: Interest and Motivation in an Age of High-Stakes Testing

    ERIC Educational Resources Information Center

    Fink, Rosalee, Ed.; Samuels, S. Jay, Ed.

    2007-01-01

    Although recent U.S. legislation has had a profound impact on reading instruction and student achievement, some students continue to fall behind. This provocative text addresses this gap with a new perspective on reading instruction that goes beyond the realms of teacher content knowledge and methodology. The book shows how motivation and interest…

  14. Five Years of "The Electric Company"; Television and Reading 1971-76.

    ERIC Educational Resources Information Center

    Cooney, Joan Ganz

    "The Electric Company" was created by the Children's Television Workshop (CTW) as an experiment in using television to teach reading skills to children in grades 2-4 who were having difficulty learning to read in school. With more than 500 shows completed and four seasons behind it, the series continues to be an experiment. The methods…

  15. Profiling Classroom Reading Comprehension Development Practices from the PIRLS 2006 in South Africa

    ERIC Educational Resources Information Center

    Zimmerman, Lisa; Smit, Brigitte

    2014-01-01

    The South African 2006 and 2011 Progress in International Reading Literacy Study (PIRLS) findings continue to highlight major concerns about the quality of reading literacy teaching in primary schools. Of specific concern is the lack of representation of the sampled South African learners at the PIRLS international benchmarks, revealing a distinct…

  16. Has First-Grade Core Reading Program Text Complexity Changed across Six Decades?

    ERIC Educational Resources Information Center

    Fitzgerald, Jill; Elmore, Jeff; Relyea, Jackie Eunjung; Hiebert, Elfrieda H.; Stenner, A. Jackson

    2016-01-01

    The purpose of the study was to address possible text complexity shifts across the past six decades for a continually best-selling first-grade core reading program. The anthologies of one publisher's seven first-grade core reading programs were examined using computer-based analytics, dating from 1962 to 2013. Variables were Overall Text…

  17. The Oprah Revolution: Book Clubs in Library Media Centers

    ERIC Educational Resources Information Center

    Littlejohn, Carol

    2006-01-01

    When Oprah Winfrey began her successful book club in 1996, she continued a tradition that public libraries have provided for decades. Oprah placed a spotlight on reading that encouraged many women who had never read a book "to read." Book clubs sprang up in neighborhoods, bookstores, and on Web sites. Library media centers began offering book…

  18. An Oral Language Based Reading Remedial Program for Special Education Children.

    ERIC Educational Resources Information Center

    Langdon, Tom

    A problem was addressed within the context of the action based research practicum model. The problem was junior high school special education students who read at or below the 10th percentile when compared to age appropriate peers on standardized achievement instruments; and who have had all manner of reading interventions and yet continue to fall…

  19. "Cold Sassy Tree" and "Song of Solomon": Novels in the Composition Class.

    ERIC Educational Resources Information Center

    Bridges, Jean B.

    Promoting lifelong reading is one objective of East Georgia College's English courses--all of them, even composition--because learning is a lifelong pursuit and to read is to continue to learn. This 2-year college's students range in age from 16-66 with varied interests but similar cultural backgrounds. Most come from non-reading, economically…

  20. Reading for 11-13-Year-Old Students in the Digital Age: New Zealand Case Studies

    ERIC Educational Resources Information Center

    Fletcher, Jo; Nicholas, Karen

    2018-01-01

    ABSTRACT In New Zealand schools, the focus continues to be on improving the reading achievement of all students situated across a range of socio-economic groups. This is particularly so for our young adolescent students, where research investigations have indicated some concerning trends which influence reading development for this age group. This…

Top