Science.gov

Sample records for continuous indentation test

  1. Practical limitations to indentation testing of thin films

    SciTech Connect

    Schneider, J.A.; McCarty, K.F.; Heffelfinger, J.R.; Moody, N.R.

    1998-11-01

    A method that is becoming increasingly common for measuring the mechanical behavior of thin films is low-load indentation testing. However, there can be complications in interpreting the results as many factors can affect hardness and moduli measurements such as surface roughness and determination of the indentation contact area. To further the understanding, the mechanical properties of thin (50 nm) films of AlN on sapphire substrates were evaluated using a scanning force microscopy (SFM) based pico-indentation device to allow imaging of the surface and indentations. The primary emphasis was the types of problems or limitations involved in testing very thin, as deposited films in which properties are desired over indentation depths less than 50 nm.

  2. Indentation test for free-flowable powder excipients.

    PubMed

    Zatloukal, Zdenek; Sklubalová, Zdenka

    2008-01-01

    Indentation of a sphere into nonconsolidated powder excipients is a suitable complementary method for the evaluation of flow properties of the free-flowable noncohesive powders. To use the standard penetrometry method to indentation of nonconsolidated powder layer by a glass sphere of 16 mm in diameter, the suitable geometry of the measurement container is required to prevent undesirable moving in a direction opposite to that in which the indenting sphere moves. Thus, the powder indentation by a sphere seems to be similar to indentation by the Brinell hardness tester. In this work, the depth of indentation was measured for five pharmaceutical powder excipients: sodium chloride, sodium citrate, potassium citrate, sorbitol, and boric acid with the three size fractions in the range of 0.315-0.630 mm. To express powder flowability, the uniform mass and/or volume flow rate from the 10-mm cylindrical outlet of the cylindrical testing hopper was used. The relationships between the powder flow rate and its bulk density and/or the different characteristics of indentation were modeled by using linear regression. Out of the indentation characteristics, the mass of indentation calculated as the multiple of the volume of indentation and the powder bulk density could be recommended to estimate the powder mass flow rate due to the linear regression with the coefficient of determination equal to 0.973 and the accuracy of 4.3%. In conclusion, the indentation by the sphere could be recommended as a quick simple method for the comparison of flow properties of the nonconsolidated, noncohesive powder excipients.

  3. Improved Indentation Test for Measuring Nonlinear Elasticity

    NASA Technical Reports Server (NTRS)

    Eldridge, Jeffrey I.

    2004-01-01

    A cylindrical-punch indentation technique has been developed as a means of measuring the nonlinear elastic responses of materials -- more specifically, for measuring the moduli of elasticity of materials in cases in which these moduli vary with applied loads. This technique offers no advantage for characterizing materials that exhibit purely linear elastic responses (constant moduli of elasticity, independent of applied loads). However, the technique offers a significant advantage for characterizing such important materials as plasma-sprayed thermal-barrier coatings, which, in cyclic loading, exhibit nonlinear elasticity with hysteresis related to compaction and sliding within their microstructures.

  4. Influence of Penetration Rate and Indenter Diameter in Strength Measurement by Indentation Testing on Small Rock Specimens

    NASA Astrophysics Data System (ADS)

    Haftani, Mohammad; Bohloli, Bahman; Nouri, Alireza; Javan, Mohammad Reza Maleki; Moosavi, Mahdi; Moradi, Majid

    2015-03-01

    Indentation testing has been developed as an unconventional method to determine intact rock strength using small rock specimens within the size of drill cuttings. In previous investigations involving indentation testing, researchers have used different indenter stylus geometries, penetration rate (PR) and specimen sizes. These dissimilarities can restrict applications of this method for strength measurement and lead to non-comparable results. This paper investigates the influence of indenter diameter (ID) and PR on indentation indices for carbonate rocks to provide objective comparison and application of the existing correlations. As part of this research, several indentation tests were conducted using different IDs and PRs. The laboratory test results showed that indentation indices can be affected by ID while PR has only minor effect on the indentation indices. Thus, a normalizing function was presented to reduce the dependency of test results to ID. Verification of the findings with independent data confirms the suitability of the suggested normalizing function in determining the rock uniaxial compressive strength using testing data obtained from various IDs and PRs.

  5. Indentation Load Effect on Young's Modulus and Hardness of Porous Sialon Ceramic by Depth Sensing Indentation Tests

    NASA Astrophysics Data System (ADS)

    Osman, Sahin

    2007-11-01

    Depth sensing indentation (DSI) tests at the range of 200-1800 mN are performed on porous sialon ceramic to determine the indentation load on Young's modulus and hardness values. The Young modulus and hardness (Dynamic and Martens) values are deduced by analysing the unloading segments of the DSI test load-displacement curves using the Oliver-Pharr method. It is found that Young's modulus Er, the dynamic hardness HD and the Martens hardness HM exhibit significant indentation load dependences. The values of Young's modulus and hardness decrease with the increasing indentation load, as a result of indentation load effect. The experimental hf/hm ratios lower than the critical value 0.7, with hm being the maximum penetration depth during loading and hf the final unloading depth, indicate that our sample shows the work hardening behaviour.

  6. A simple measuring device for laboratory indentation tests on cartilage.

    PubMed

    Koeller, Wolfgang; Kunow, Julius; Ostermeyer, Oliver; Stomberg, Peter; Boos, Carsten; Russlies, Martin

    2008-04-01

    Mechanical testing of articular cartilage and repair tissue enables judgment of their capacity in withstanding mechanical loading. In the past, different methods have been developed requiring a complex technical setup and extensive data analysis. Therefore, the aim of the present project was to build up a simple measuring apparatus for laboratory indentation tests. The device consists of an incremental optical displacement transducer with a sleeve bearing guided plunger and a spherical tip made of polished steel (radius: 0.75 or 1.5 mm), a sensitive load cell and a stiff frame. The indentation force results from the plunger's gravity plus the force of the spring inside the displacement transducer and levels at 0.170 N or 0.765 N. The displacement transducer is fixed to the frame via the load cell that enables one to detect the initial contact of the tip with the tissue. The load cell has a standard uncertainty of 2 mN and the displacement transducer of 1 microm. From indentation-creep tests, a "0.25-s elastic modulus" is calculated. Measurements on thin rubber sheets were carried out to determine the quality of the measuring device. Compression tests on cylinders made of these rubber sheets yielded control data, and a good agreement with the "0.25-s elastic modulus" was found. Indentation tests on cartilage at different sites of sheep femoral condyles yielded a very good repeatability of the measurement results (+/-7.5%). PMID:18979621

  7. Indentation testing and optimized property identification for viscoelastic materials using the finite element method

    NASA Astrophysics Data System (ADS)

    Resapu, Rajeswara Reddy

    The most common approaches to determining mechanical material properties of materials are tension and compression tests. However, tension and compression testing cannot be implemented under certain loading conditions (immovable object, not enough space to hold object for testing, etc). Similarly, tensile and compression testing cannot be performed on certain types of materials (delicate, bulk, non-machinable, those that cannot be separated from a larger structure, etc). For such cases, other material testing methods need to be implemented. Indentation testing is one such method; this approach is often non-destructive and can be used to characterize regions that are not compatible with other testing methods. However, indentation testing typically leads to force-displacement data as opposed to the direct stress-strain data normally used for the mechanical characterization of materials; this data needs to be analyzed using a suitable approach to determine the associated material properties. As such, methods to establish material properties from force-displacement indentation data need to be identified. In this work, a finite element approach using parameter optimization is developed to determine the mechanical properties from the experimental indentation data. Polymers and tissues tend to have time-dependent mechanical behavior; this means that their mechanical response under load changes with time. This dissertation seeks to characterize the properties of these materials using indentation testing under the assumption that they are linear viscoelastic. An example of a material of interest is the polymer poly vinyl chloride (PVC) that is used as the insulation of some aircraft wiring. Changes in the mechanical properties of this material over years of service can indicate degradation and a potential hazard to continued use. To investigate the validity of using indentation testing to monitor polymer insulation degradation, PVC film and PVC-insulated aircraft wiring are

  8. Towards a standardized reference point indentation testing procedure.

    PubMed

    Setters, Alexander; Jasiuk, Iwona

    2014-06-01

    We study the reference point indentation (RPI) technique which has a potential to directly measure mechanical properties of bone in patients. More specifically, we tested 6 month swine femoral cortical bone at mid-diaphysis region to investigate the effect of several testing variables on the RPI outputs. They include the force magnitude, preconditioning, variation within a sample and between samples, number of cycles, indentation surface (transverse versus longitudinal, polished versus unpolished), and micro-computed tomography radiation exposure. The force magnitude variation test shows that all RPI parameters increase linearly with the increasing force magnitude except the indentation distance increase which shows a cubic trend with a plateau for force magnitudes between 4N and 8N. Preconditioning does not affect the trends for a force magnitude variation test. The cycle variation test shows that most RPI parameters reach either a maximum or minimum at 15-20 cycles. Transverse surface measurements are more consistent than the longitudinal surface measurements, but a rough surface and periosteum on the longitudinal surface could account for this difference. Exposure to the micro-computed tomography radiation in general does not have effect on the RPI measurements. For the 6 month swine femoral cortical bone, testing using 6N force and 20 cycles with preconditioning on an unpolished longitudinal surface is recommended. This study advances our knowledge on how the RPI testing variables influence the RPI outputs and provides guidance on the RPI measurements. It may also serve as a framework for developing a standardized testing procedure for the RPI technique.

  9. Young's modulus of peritubular and intertubular human dentin by nano-indentation tests.

    PubMed

    Ziskind, Daniel; Hasday, Moran; Cohen, Sidney R; Wagner, H Daniel

    2011-04-01

    The local Young modulus of dry dentin viewed as a hierarchical composite was measured by nano-indentation using two types of experiments, both in a continuous stiffness measurement mode. First, tests were performed radially along straight lines running across highly mineralized peritubular dentin sections and through less mineralized intertubular dentin areas. These tests revealed a gradual decrease in Young's modulus from the bulk of the peritubular dentin region where modulus values of up to ∼40-42GPa were observed, down to approximately constant values of ∼17GPa in the intertubular dentin region. A second set of nano-indentation experiments was performed on the facets of an irregular polyhedron specimen cut from the intertubular dentin region, so as to probe the modulus of intertubular dentin specimens at different orientations relative to the tubular direction. The results demonstrated that the intertubular dentin region may be considered to be quasi-isotropic, with a slightly higher modulus value (∼22GPa) when the indenting tip axis is parallel to the tubular direction, compared to the values (∼18GPa) obtained when the indenting tip axis is perpendicular to the tubule direction.

  10. A Comparison of Quasi-Static Indentation Testing to Low Velocity Impact Testing

    NASA Technical Reports Server (NTRS)

    Nettles, Alan T.; Douglas, Michael J.

    2001-01-01

    The need for a static test method for modeling low-velocity foreign object impact events to composites would prove to be very beneficial to researchers since much more data can be obtained from a static test than from an impact test. In order to examine if this is feasible, a series of static indentation and low velocity impact tests were carried out and compared. Square specimens of many sizes and thickness were utilized to cover the array of types of low velocity impact events. Laminates with a n/4 stacking sequence were employed since this is by the most common type of engineering laminate. Three distinct flexural rigidities under two different boundary conditions were tested in order to obtain damage due to large deflections, contact stresses and both to examine if the static indentation-impact comparisons are valid under the spectrum of damage modes that can be experienced. Comparisons between static indentation and low velocity impact tests were based on the maximum applied transverse load. The dependent parameters examined included dent depth, back surface crack length, delamination area and to a limited extent, load-deflection behavior. Results showed that no distinct differences could be seen between the static indentation tests and the low velocity impact tests, indicating that static indentation can be used to represent a low velocity impact event.

  11. Indentation Tests Reveal Geometry-Regulated Stiffening of Nanotube Junctions.

    PubMed

    Ozden, Sehmus; Yang, Yang; Tiwary, Chandra Sekhar; Bhowmick, Sanjit; Asif, Syed; Penev, Evgeni S; Yakobson, Boris I; Ajayan, Pulickel M

    2016-01-13

    Here we report a unique method to locally determine the mechanical response of individual covalent junctions between carbon nanotubes (CNTs), in various configurations such as "X", "Y", and "Λ"-like. The setup is based on in situ indentation using a picoindenter integrated within a scanning electron microscope. This allows for precise mapping between junction geometry and mechanical behavior and uncovers geometry-regulated junction stiffening. Molecular dynamics simulations reveal that the dominant contribution to the nanoindentation response is due to the CNT walls stretching at the junction. Targeted synthesis of desired junction geometries can therefore provide a "structural alphabet" for construction of macroscopic CNT networks with tunable mechanical response. PMID:26618517

  12. Mechanical characterization of soft materials using transparent indenter testing system and finite element simulation

    NASA Astrophysics Data System (ADS)

    Xuan, Yue

    Background. Soft materials such as polymers and soft tissues have diverse applications in bioengineering, medical care, and industry. Quantitative mechanical characterization of soft materials at multiscales is required to assure that appropriate mechanical properties are presented to support the normal material function. Indentation test has been widely used to characterize soft material. However, the measurement of in situ contact area is always difficult. Method of Approach. A transparent indenter method was introduced to characterize the nonlinear behaviors of soft materials under large deformation. This approach made the direct measurement of contact area and local deformation possible. A microscope was used to capture the contact area evolution as well as the surface deformation. Based on this transparent indenter method, a novel transparent indentation measurement systems has been built and multiple soft materials including polymers and pericardial tissue have been characterized. Seven different indenters have been used to study the strain distribution on the contact surface, inner layer and vertical layer. Finite element models have been built to simulate the hyperelastic and anisotropic material behaviors. Proper material constants were obtained by fitting the experimental results. Results.Homogeneous and anisotropic silicone rubber and porcine pericardial tissue have been examined. Contact area and local deformation were measured by real time imaging the contact interface. The experimental results were compared with the predictions from the Hertzian equations. The accurate measurement of contact area results in more reliable Young's modulus, which is critical for soft materials. For the fiber reinforced anisotropic silicone rubber, the projected contact area under a hemispherical indenter exhibited elliptical shape. The local surface deformation under indenter was mapped using digital image correlation program. Punch test has been applied to thin films of

  13. Evaluation of coating adhesion using a radial speckle interferometer combined with a micro-indentation test

    NASA Astrophysics Data System (ADS)

    Tendela, Lucas P.; Kaufmann, Guillermo H.

    2012-06-01

    This paper presents a technique to investigate coating adhesion which combines a radial in-plane speckle interferometer and a micro-indentation test. The proposed technique is based on the measurement of the radial in-plane displacement field produced by a micro-indentation introduced on the coated surface of the specimen. Using steel specimens coated with a thin coating of epoxy paint and subjected to different adhesive conditions, it is demonstrated that digital speckle pattern interferometry can be successfully used to measure the small local deformations generated by a micro-indentation. An empirical model, which allows to quantify the adhesion of a given coated-substrate system by the proposed combined technique, is finally presented.

  14. Limit case analysis of the "stable indenter velocity" method for obtaining creep stress exponents from constant load indentation creep tests

    NASA Astrophysics Data System (ADS)

    Campbell, J.; Dean, J.; Clyne, T. W.

    2016-06-01

    This study concerns a commonly-used procedure for evaluating the steady state creep stress exponent, n, from indentation data. The procedure involves monitoring the indenter displacement history under constant load and making the assumption that, once its velocity has stabilised, the system is in a quasi-steady state, with stage II creep dominating the behaviour. The stress and strain fields under the indenter are represented by "equivalent stress" and "equivalent strain rate" values. The estimate of n is then obtained as the gradient of a plot of the logarithm of the equivalent strain rate against the logarithm of the equivalent stress. Concerns have, however, been expressed about the reliability of this procedure, and indeed it has already been shown to be fundamentally flawed. In the present paper, it is demonstrated, using a very simple analysis, that, for a genuinely stable velocity, the procedure always leads to the same, constant value for n (either 1.0 or 0.5, depending on whether the tip shape is spherical or self-similar). This occurs irrespective of the value of the measured velocity, or indeed of any creep characteristic of the material. It is now clear that previously-measured values of n, obtained using this procedure, have varied in a more or less random fashion, depending on the functional form chosen to represent the displacement-time history and the experimental variables (tip shape and size, penetration depth, etc.), with little or no sensitivity to the true value of n.

  15. Crack initiation and growth characteristics in SiC/SiC under indentation test

    NASA Astrophysics Data System (ADS)

    Zhang, W.; Hinoki, T.; Katoh, Y.; Kohyama, A.; Noda, T.; Muroga, T.; Yu, J.

    1998-10-01

    The mechanical behavior of ceramic matrix composites (CMC) is known to be strongly influenced by fiber-matrix interfacial properties and there have been many efforts to clarify the interfacial characteristics. To understand the fracture mechanism of the materials it is necessary to clarify how the cracks initiate and propagate among fibers, interphase (coating) and matrix. The objective of this study is to investigate crack initiation and growth characteristics in SiC/SiC composites with variations in coating thickness and coating methods by means of micro-indentation technique. Micro-indentation tests and hardness tests were carried out on SiC/SiC composites produced by the chemical vapour infiltration (CVI) process. The intrinsic catastrophic mode of failure of the brittle composite was prevented by application of single carbon and multiple coatings on fibers. Thinner coatings are sensitive to make fibers debonded and may improve the toughness of the composites.

  16. Contribution to the Determination of In Vivo Mechanical Characteristics of Human Skin by Indentation Test

    PubMed Central

    Zahouani, Hassan

    2013-01-01

    This paper proposes a triphasic model of intact skin in vivo based on a general phenomenological thermohydromechanical and physicochemical (THMPC) approach of heterogeneous media. The skin is seen here as a deforming stratified medium composed of four layers and made out of different fluid-saturated materials which contain also an ionic component. All the layers are treated as linear, isotropic materials described by their own behaviour law. The numerical simulations of in vivo indentation test performed on human skin are given. The numerical results correlate reasonably well with the typical observations of indented human skin. The discussion shows the versatility of this approach to obtain a better understanding on the mechanical behaviour of human skin layers separately. PMID:24324525

  17. SPHERICAL INDENTATION OF SiC

    SciTech Connect

    Wereszczak, Andrew A; Johanns, Kurt E

    2007-01-01

    Instrumented Hertzian indentation testing was performed on several grades of SiCs and the results and preliminary interpretations are presented. The grades included hot-pressed and sintered compositions. One of the hot-pressed grades was additionally subjected to high temperature heat treatment to produce a coarsened grain microstructure to enable the examination of exaggerated grain size on indentation response. Diamond spherical indenters were used in the testing. Indentation load, indentation depth of penetration, and acoustic activity were continually measured during each indentation test. Indentation response and postmortem analysis of induced damage (e.g., ring/cone, radial and median cracking, quasi-plasticity) are compared and qualitatively as a function of grain size. For the case of SiC-N, the instrumented spherical indentation showed that yielding initiated at an average contact stress 12-13 GPa and that there was another event (i.e., a noticeable rate increase in compliance probably associated with extensive ring and radial crack formations) occurring around an estimated average contact stress of 19 GPa.

  18. Characterization of Corneal Indentation Hysteresis.

    PubMed

    Ko, Match W L; Dongming Wei; Leung, Christopher K S

    2015-01-01

    Corneal indentation is adapted for the design and development of a characterization method for corneal hysteresis behavior - Corneal Indentation Hysteresis (CIH). Fourteen porcine eyes were tested using the corneal indentation method. The CIH measured in enucleated porcine eyes showed indentation rate and intraocular pressure (IOP) dependences. The CIH increased with indentation rate at lower IOP (<; 25 mmHg) and decreased with indentation rate at higher IOP (> 25 mmHg). The CIH was linear proportional to the IOP within an individual eye. The CIH was positively correlated with the IOP, corneal in-plane tensile stress and corneal tangent modulus (E). A new method based on corneal indentation for the measurement of Corneal Indentation Hysteresis in vivo is developed. To our knowledge, this is the first study to introduce the corneal indentation hysteresis and correlate the corneal indentation hysteresis and corneal tangent modulus.

  19. A novel pillar indentation splitting test for measuring fracture toughness of thin ceramic coatings

    NASA Astrophysics Data System (ADS)

    Sebastiani, M.; Johanns, K. E.; Herbert, E. G.; Carassiti, F.; Pharr, G. M.

    2015-06-01

    The fracture toughness of thin ceramic films is an important material property that plays a role in determining the in-service mechanical performance and adhesion of this important class of engineering materials. Unfortunately, measurement of thin film fracture toughness is affected by influences from the substrate and the large residual stresses that can exist in the films. In this paper, we explore a promising new technique that potentially overcomes these issues based on nanoindentation testing of micro-pillars produced by focused ion beam milling of the films. By making the pillar diameter approximately equal to its length, the residual stress in the upper portion of the pillar is almost fully relaxed, and when indented with a sharp Berkovich indenter, the pillars fracture by splitting at reproducible loads that are readily quantified by a sudden displacement excursion in the load displacement behaviour. Cohesive finite element simulations are used for analysis and development of a simple relationship between the critical load at failure, pillar radius and fracture toughness for a given material. The main novel aspect of this work is that neither crack geometries nor crack sizes need to be measured post test. In addition, the residual stress can be measured at the same time with toughness, by comparison of the indentation results obtained on the stress-free pillars and the as-deposited film. The method is tested on three different hard coatings created by physical vapour deposition, namely titanium nitride, chromium nitride and a CrAlN/Si3N4 nanocomposite. Results compare well to independently measured values of fracture toughness for the three brittle films. The technique offers several benefits over existing methods.

  20. A novel pillar indentation splitting test for measuring fracture toughness of thin ceramic coatings

    SciTech Connect

    Sebastiani, Marco; Johanns, K. E.; Herbert, Erik G.; Carassiti, Fabio; Pharr, George Mathews

    2014-05-16

    Fracture toughness is an important material property that plays a role in determining the in-service mechanical performance and adhesion of thin ceramic films. Unfortunately, measuring thin film fracture toughness is affected by influences from the substrate and the large residual stresses that can exist in the films. In this paper, we explore a promising new technique that potentially overcomes these problems based on nanoindentation testing of micro-pillars produced by focused ion beam milling of the films. By making the pillar diameter approximately equal to its length, the residual stress in the pillar’s upper portion is almost fully relaxed, and when indented with a sharp Berkovich indenter, the pillars fracture by splitting at reproducible loads that are readily quantified by a sudden displacement excursion in the load displacement behavior. Cohesive finite element simulations are used to analyze and develop, for a given material, a simple relation between the critical load at failure, pillar radius, and fracture toughness. The main novel aspect of this work is that neither crack geometries nor crack sizes need to be measured post test. Furthermore, the residual stress can be measured at the same time with toughness, by comparing the indentation results from the stress-free pillars and the as-deposited film. The method is tested on three different hard coatings formed by physical vapor deposition: titanium nitride, chromium nitride, and a CrAlN/Si3N4 nanocomposite. Results compare well to independently measured values of fracture toughness for the three brittle films. The technique offers several benefits over existing methods.

  1. A novel pillar indentation splitting test for measuring fracture toughness of thin ceramic coatings

    DOE PAGES

    Sebastiani, Marco; Johanns, K. E.; Herbert, Erik G.; Carassiti, Fabio; Pharr, George Mathews

    2014-05-16

    Fracture toughness is an important material property that plays a role in determining the in-service mechanical performance and adhesion of thin ceramic films. Unfortunately, measuring thin film fracture toughness is affected by influences from the substrate and the large residual stresses that can exist in the films. In this paper, we explore a promising new technique that potentially overcomes these problems based on nanoindentation testing of micro-pillars produced by focused ion beam milling of the films. By making the pillar diameter approximately equal to its length, the residual stress in the pillar’s upper portion is almost fully relaxed, and whenmore » indented with a sharp Berkovich indenter, the pillars fracture by splitting at reproducible loads that are readily quantified by a sudden displacement excursion in the load displacement behavior. Cohesive finite element simulations are used to analyze and develop, for a given material, a simple relation between the critical load at failure, pillar radius, and fracture toughness. The main novel aspect of this work is that neither crack geometries nor crack sizes need to be measured post test. Furthermore, the residual stress can be measured at the same time with toughness, by comparing the indentation results from the stress-free pillars and the as-deposited film. The method is tested on three different hard coatings formed by physical vapor deposition: titanium nitride, chromium nitride, and a CrAlN/Si3N4 nanocomposite. Results compare well to independently measured values of fracture toughness for the three brittle films. The technique offers several benefits over existing methods.« less

  2. A Comparison of Quasi-Static Indentation and Drop-Weight Impact Testing on Carbon/Epoxy Laminates

    NASA Technical Reports Server (NTRS)

    Prabhakaran, R.; Douglas, Michael J.

    2000-01-01

    This project was initiated to investigate the damage tolerance of polymer matrix composites (PMC). After a low velocity impact-such as the ones that can occur during manufacturing or service there is usually very little visual damage. There are two possible methods to simulate foreign object impact on PMC: static indentation and drop weight impact. A static method for modeling low velocity foreign object impact events for composites can prove to be very beneficial to researchers since much more data can be obtained from a static test than from an impact test. In order to examine if this is feasible, a series of static indentation and low velocity impact tests were performed and compared. Square specimens of different sizes and thicknesses were tested to cover a wide array of low velocity impact events. Laminates with a 45 degree stacking sequence were used since this is a common type of engineering laminate. Three distinct flexural rigidities under two different boundary conditions were tested in order to obtain damage due to large deflections. Comparisons between static indentation and low velocity impact tests were based on the maximum applied transverse load. The dependent parameters examined were dent depth, back surface crack length, delamination area, and load-deflection behavior. Results showed that no distinct differences could be seen between the static indentation tests and the low velocity impact tests, indicating that static indentation tests can be used to simulate low velocity impact events.

  3. Experimental validation of a flat punch indentation methodology calibrated against unconfined compression tests for determination of soft tissue biomechanics.

    PubMed

    Delaine-Smith, R M; Burney, S; Balkwill, F R; Knight, M M

    2016-07-01

    Mechanical characterisation of soft biological tissues using standard compression or tensile testing presents a significant challenge due to specimen geometrical irregularities, difficulties in cutting intact and appropriately sized test samples, and issues with slippage or damage at the grips. Indentation can overcome these problems but requires fitting a model to the resulting load-displacement data in order to calculate moduli. Despite the widespread use of this technique, few studies experimentally validate their chosen model or compensate for boundary effects. In this study, viscoelastic hydrogels of different concentrations and dimensions were used to calibrate an indentation technique performed at large specimen-strain deformation (20%) and analysed with a range of routinely used mathematical models. A rigid, flat-ended cylindrical indenter was applied to each specimen from which 'indentation moduli' and relaxation properties were calculated and compared against values obtained from unconfined compression. Only one indentation model showed good agreement (<10% difference) with all moduli values obtained from compression. A sample thickness to indenter diameter ratio ≥1:1 and sample diameter to indenter diameter ratio ≥4:1 was necessary to achieve the greatest accuracy. However, it is not always possible to use biological samples within these limits, therefore we developed a series of correction factors. The approach was validated using human diseased omentum and bovine articular cartilage resulting in mechanical properties closely matching compression values. We therefore present a widely useable indentation analysis method to allow more accurate calculation of material mechanics which is important in the study of soft tissue development, ageing, health and disease. PMID:26974584

  4. Estimation of Young's modulus and of hardness by ultra-low load hardness tests with a Vickers indenter

    SciTech Connect

    Trindade, A.C. . Escola Superior de Tecnologia); Cavaleiro, A.; Fernandes, J.V. . Dept. de Engenharia Mecanica)

    1994-07-01

    The evaluation of the elastic-plastic properties of a material by using an ultra-low load hardness test requires a geometrical calibration that must take into account the imperfect form of the diamond indenter. In the present work, the Vickers indenter offset of the microindentation equipment was estimated using differently heat-treated steel samples. To this end, the dimensions of the indentations have been evaluated by two different methods: optical measurement of the diagonals and direct measurement of the penetration depth during the test. The elastic-plastic properties are then calculated from the analysis of the penetration depth/indentation load curves. The Young's modulus values determined for the different high-speed steel samples were very similar and close to the literature value for steel if the appropriate corrections are performed. The hardness values decrease when the determination procedure includes the geometrical correction of the indenter offset, and still further when using the total correction obtained by means of optical measurements of the indenter diagonal. Variation of the hardness values with the applied load is much less when the corrections are carried out.

  5. Elastic response and wrinkling onset of curved elastic membranes subjected to indentation test.

    PubMed

    Bernal, R; Tassius, Ch; Melo, F; Géminard, J-Ch

    2011-02-01

    Starting from a polymeric-fluid droplet, by vulcanization of the fluid free surface, curved elastic membranes, several nanometers thick and a few millimeters in diameter, which enclose a constant fluid volume, are produced. In an indentation-type test, carried out by pushing the membrane along its normal by means of a micro-needle, under some conditions, wrinkles are likely to appear around the contact region. Interestingly, we observe that the instability does not significantly alter the force-displacement relation: the relation between the force and the displacement remains linear and the associated stiffness is simply proportional to the tension of the membrane. In addition, we determine that the wrinkles develop when the stretching modulus of the membrane compares with its tension, which provides a useful method to estimate the elastic constant. PMID:21337016

  6. Characterization of the mechanical properties of skin by inverse analysis combined with the indentation test.

    PubMed

    Delalleau, Alexandre; Josse, Gwendal; Lagarde, Jean-Michel; Zahouani, Hassan; Bergheau, Jean-Michel

    2006-01-01

    This study proposes a new method to determine the mechanical properties of human skin by the use of the indentation test [Pailler-Mattei, 2004. Caractérisation mécanique et tribologique de la peau humaine in vivo, Ph.D. Thesis, ECL-no. 2004-31; Pailler-Mattei, Zahouani, 2004. Journal of Adhesion Science and Technology 18, 1739-1758]. The principle of the measurements consists in applying an in vivo compressive stress [Zhang et al., 1994. Proceedings of the Institution of Mechanical Engineers 208, 217-222; Bosboom et al., 2001. Journal of Biomechanics 34, 1365-1368; Oomens et al., 1984. Selected Proceedings of Meetings of European Society of Biomechanics, pp. 227-232; Oomens et al., 1987. Journal of Biomechanics 20(9), 877-885] on the skin tissue of an individual's forearm. These measurements show an increase in the normal contact force as a function of the indentation depth. The interpretation of such results usually requires a long and tedious phenomenological study. We propose a new method to determine the mechanical parameters which control the response of skin tissue. This method is threefold: experimental, numerical, and comparative. It consists combining experimental results with a numerical finite elements model in order to find out the required parameters. This process uses a scheme of extended Kalman filters (EKF) [Gu et al., 2003. Materials Science and Engineering A345, 223-233; Nakamura et al., 2000. Acta Mater 48, 4293-4306; Leustean and Rosu, 2003. Certifying Kalman filters. RIACS Technical Report 03.02, 27pp. http://gureni.cs.uiuc.edu/~grosu/download/luta + leo.pdf; Welch and Bishop, An introduction to Kalman filter, University of North Carolina at Chapel Hill, 16p. http://www.cs.unc.edu/~welch/kalman/]. The first results presented in this study correspond to a simplified numerical modeling of the global system. The skin is assumed to be a semi-infinite layer with an isotropic linear elastic mechanical behavior [Zhang et al., 1994. Proceedings of

  7. Characterization of the mechanical properties of skin by inverse analysis combined with the indentation test.

    PubMed

    Delalleau, Alexandre; Josse, Gwendal; Lagarde, Jean-Michel; Zahouani, Hassan; Bergheau, Jean-Michel

    2006-01-01

    This study proposes a new method to determine the mechanical properties of human skin by the use of the indentation test [Pailler-Mattei, 2004. Caractérisation mécanique et tribologique de la peau humaine in vivo, Ph.D. Thesis, ECL-no. 2004-31; Pailler-Mattei, Zahouani, 2004. Journal of Adhesion Science and Technology 18, 1739-1758]. The principle of the measurements consists in applying an in vivo compressive stress [Zhang et al., 1994. Proceedings of the Institution of Mechanical Engineers 208, 217-222; Bosboom et al., 2001. Journal of Biomechanics 34, 1365-1368; Oomens et al., 1984. Selected Proceedings of Meetings of European Society of Biomechanics, pp. 227-232; Oomens et al., 1987. Journal of Biomechanics 20(9), 877-885] on the skin tissue of an individual's forearm. These measurements show an increase in the normal contact force as a function of the indentation depth. The interpretation of such results usually requires a long and tedious phenomenological study. We propose a new method to determine the mechanical parameters which control the response of skin tissue. This method is threefold: experimental, numerical, and comparative. It consists combining experimental results with a numerical finite elements model in order to find out the required parameters. This process uses a scheme of extended Kalman filters (EKF) [Gu et al., 2003. Materials Science and Engineering A345, 223-233; Nakamura et al., 2000. Acta Mater 48, 4293-4306; Leustean and Rosu, 2003. Certifying Kalman filters. RIACS Technical Report 03.02, 27pp. http://gureni.cs.uiuc.edu/~grosu/download/luta + leo.pdf; Welch and Bishop, An introduction to Kalman filter, University of North Carolina at Chapel Hill, 16p. http://www.cs.unc.edu/~welch/kalman/]. The first results presented in this study correspond to a simplified numerical modeling of the global system. The skin is assumed to be a semi-infinite layer with an isotropic linear elastic mechanical behavior [Zhang et al., 1994. Proceedings of

  8. Estimating material elasticity by spherical indentation load-relaxation tests on viscoelastic samples of finite thickness.

    PubMed

    Qiang, Bo; Greenleaf, James; Oyen, Michelle; Zhang, Xiaoming

    2011-07-01

    A two-step viscoelastic spherical indentation method is proposed to compensate for 1) material relaxation and 2) sample thickness. In the first step, the indenter is moved at a constant speed and the reaction force is measured. In the second step, the indenter is held at a constant position and the relaxation response of the material is measured. Then the relaxation response is fit with a multi-exponential function which corresponds to a three-branch general Maxwell model. The relaxation modulus is derived by correcting the finite ramp time introduced in the first step. The proposed model takes into account the sample thickness, which is important for applications in which the sample thickness is less than ten times the indenter radius. The model is validated numerically by finite element simulations. Experiments are carried out on a 10% gelatin phantom and a chicken breast sample with the proposed method. The results for both the gelatin phantom and the chicken breast sample agree with the results obtained from a surface wave method. Both the finite element simulations and experimental results show improved elasticity estimations by incorporating the sample thickness into the model. The measured shear elasticities of the 10% gelatin sample are 6.79 and 6.93 kPa by the proposed finite indentation method at sample thickness of 40 and 20 mm, respectively. The elasticity of the same sample is estimated to be 6.53 kPa by the surface wave method. For the chicken breast sample, the shear elasticity is measured to be 4.51 and 5.17 kPa by the proposed indentation method at sample thickness of 40 and 20 mm, respectively. Its elasticity is measured by the surface wave method to be 4.14 kPa.

  9. New Rock Abrasivity Test Method for Tool Life Assessments on Hard Rock Tunnel Boring: The Rolling Indentation Abrasion Test (RIAT)

    NASA Astrophysics Data System (ADS)

    Macias, F. J.; Dahl, F.; Bruland, A.

    2016-05-01

    The tunnel boring machine (TBM) method has become widely used and is currently an important presence within the tunnelling industry. Large investments and high geological risk are involved using TBMs, and disc cutter consumption has a great influence on performance and cost, especially in hard rock conditions. Furthermore, reliable cutter life assessments facilitate the control of risk as well as avoiding delays and budget overruns. Since abrasive wear is the most common process affecting cutter consumption, good laboratory tests for rock abrasivity assessments are needed. A new abrasivity test method by rolling disc named Rolling Indentation Abrasion Test (RIAT) has been developed. The goal of the new test design and procedure is to reproduce wear behaviour on hard rock tunnel boring in a more realistic way than the traditionally used methods. Wear by rolling contact on intact rock samples is introduced and several rock types, covering a wide rock abrasiveness range, have been tested by RIAT. The RIAT procedure indicates a great ability of the testing method to assess abrasive wear on rolling discs. In addition and to evaluate the newly developed RIAT test method, a comprehensive laboratory testing programme including the most commonly used abrasivity test methods and the mineral composition were carried out. Relationships between the achieved results from conventional testing and RIAT results have been analysed.

  10. An indentation fatigue strength law

    NASA Astrophysics Data System (ADS)

    Xu, Baoxing; Yonezu, Akio; Chen, Xi

    2010-05-01

    Indentation fatigue, where a cyclic load is applied on the sample via an indenter, emerges as an alternative approach for measuring the fatigue properties of materials. We have carried out indentation fatigue tests on a poly(vinyl chloride) (PVC) bulk material, as well as on TiN and NiP films/coatings deposited on SUS304 steel substrates, and demonstrate that a simple power-law relationship can be established between the indentation load amplitude and number of cycles to failure. Such a law is very similar to the conventional fatigue strength law obtained from uniaxial tests. The agreement between the fatigue stress exponents obtained by uniaxial and indentation fatigue tests suggests the potential applicability of the indentation fatigue technique for extracting the fatigue properties of materials.

  11. Thermal expansion coefficients of ultralow-k dielectric films by cube corner indentation tests at elevated temperatures

    NASA Astrophysics Data System (ADS)

    Vanstreels, Kris; Zahedmanesh, Houman; Hangen, Ude

    2015-12-01

    This paper demonstrates the use of cube corner indentation tests performed at elevated temperatures to measure the coefficient of thermal expansion (CTE) of ultralow-k dielectric films. Using this approach, the CTE of organo-silicate glass low-k films with different intrinsic film stresses is estimated to vary between 8.2 ± 0.8 ppm/ °C and 10.9 ± 1.1 ppm/ °C. The advantages and limitations of the proposed test methodology are discussed.

  12. Sequential Indentation Tests to Investigate the Influence of Confining Stress on Rock Breakage by Tunnel Boring Machine Cutter in a Biaxial State

    NASA Astrophysics Data System (ADS)

    Liu, Jie; Cao, Ping; Han, Dongya

    2016-04-01

    The influence of confining stress on rock breakage by a tunnel boring machine cutter was investigated by conducting sequential indentation tests in a biaxial state. Combined with morphology measurements of breaking grooves and an analysis of surface and internal crack propagation between nicks, the effects of maximum confining stress and minimum stress on indentation efficiency, crack propagation and chip formation were investigated. Indentation tests and morphology measurements show that increasing a maximum confining stress will result in increased consumed energy in indentations, enlarged groove volumes and promoted indentation efficiency when the corresponding minimum confining stress is fixed. The energy consumed in indentations will increase with increase in minimum confining stress, however, because of the decreased groove volumes as the minimum confining stress increases, the efficiency will decrease. Observations of surface crack propagation show that more intensive fractures will be induced as the maximum confining stress increases, whereas the opposite occurs for an increase of minimum confining stress. An observation of the middle section, cracks and chips shows that as the maximum confining stress increases, chips tend to form in deeper parts when the minimum confining stress is fixed, whereas they tend to formed in shallower parts as the minimum confining stress increases when the maximum confining stress is fixed.

  13. Characterization and Evaluation of Micro-mechanical Properties of Ultra High Strength Concrete by using Micro-indentation Test

    NASA Astrophysics Data System (ADS)

    Murthy, A. Ramachandra; Iyer, Nagesh R.; Raghu Prasad, B. K.

    2016-09-01

    This work presents the details of characterization and micro-mechanical properties of ultra high strength concrete. Characterization was carried out for High Strength Concrete (HSC, HSC1) and Ultra High Strength Concrete (UHSC). Various mechanical properties, namely, compressive strength, split tensile strength and modulus of elasticity have been estimated for HSC, HSC1 and UHSC. It was observed from characterization studies that the split tensile strength is high in the case of UHSC compared to HSC and HSC1. X-ray diffraction analysis has been performed for cement, silica fume and quartz powder to know the chemical composition. The amount of quantified phases has been estimated. Micro indentation technique has been employed to evaluate the micromechanical properties such as modulus of elasticity and hardness. Oliver and Pharr method has been used to compute modulus of elasticity and hardness. It is observed that the value of modulus of elasticity obtained from the micro indentation test is in very good agreement with that of the value obtained from uniaxial compression test data of a cylindrical specimen. Finally micro-structure of the specimen has been obtained for various magnifications to examine the voids/pores in the UHSC matrix.

  14. A Comparison of Quasi-Static Indentation and Drop-Weight Impact Testing on Carbon-Epoxy Laminates

    NASA Technical Reports Server (NTRS)

    Prabhakaran, R.

    2001-01-01

    The project had two objectives: 1) The primary objective was to characterize damage tolerance of composite materials. To accomplish this, polymer matrix composites were to be subjected to static indentation as well as low-velocity impacts and the results analyzed. 2) A second objective was to investigate the effects of laser shock peening on the damage tolerance of aerospace materials, such as aluminum alloys, in terms of crack nucleation and crack propagation. The impact testing was proposed to be performed using a Dynatup drop tower. The specimens were to be placed over a square opening in a steel platen and impacted with a hemispherical tup. The damage was to be characterized in the laminate specimens. The damage tolerance of aerospace alloys was to be studied by conducting fatigue tests on aluminum alloy specimens with prior shock peening treatment. The crack length was to be monitored by a microscope and the crack propagation rate, da/dN, determined.

  15. Analysis of the biodynamic interaction between the fingertip and probe in the vibrotactile tests: the influences of the probe/fingertip contact orientation and static indentation.

    PubMed

    Wu, John Z; Krajnak, Kristine; Welcome, Daniel E; Dong, Ren G

    2009-01-19

    Vibrotactile thresholds at the fingertips are affected by a number of individual, environmental, and testing factors. In the current study, we theoretically analyzed the effects of the contact orientation of the probe on the fingertip and the static pre-indentation on the dynamic deformation of the soft tissues of the fingertip in the vibrotactile tests using a nonlinear finite element model. The fingertip considered in the 3D finite element model is the distal phalanx, the portion from the distal end to the distal interphalangeal (DIP) joint articulation. The fingertip is contacted by the probe at four different contact locations, which are regulated by contact angles (15 degrees, 30 degrees, 45 degrees, and 60 degrees), and three different pre-indentations (0.5, 1.0, and 1.5 mm). The model predictions indicated that the average spatial summation of the vibration displacement (SVD) at the fingertip depends on the static pre-indentation and the probe/indentor contact orientation; although the resonance characteristics of the fingertip are not affected by either the pre-indentation or the contact location. The location-dependence of the vibration exposure factors at the fingertip was found to increase with increasing static pre-indentation. At a static indentation of 1.5 mm, the test condition specified in the ISO-13091-1 standard, the values of the SVDs determined at different probe/fingertip contact orientations differ as much as 125%. Since the dynamic displacements of the soft tissues are believed to affect the vibrotactile threshold, the current results suggest that the contact orientation of the probe on the fingertip should be strictly defined and restricted to obtain reliable results in the vibrotactile perception threshold tests.

  16. Cracking Behavior of Fused Silica Glass in Sphere Indentation

    NASA Astrophysics Data System (ADS)

    Usami, Hatsuhiko; Ohashi, Kazuto; Sasaki, Shinnya; Sugishita, Junji

    The present paper describes cracking behavior of brittle materials in sphere indentation experiment. Fused silica glass plates were used for the specimen. An electro-mechanical testing apparatus was applied for the experiment. A silicon nitride sphere was penetrated with various cross head speed in air at room temperature. Au coating was applied on the testing surface to avoid the effect of corrosion. The cracking behavior was observed continuously during the test by installing a CCD camera with a lens assembly behind the specimen and was recorded with a digital memory. Acoustic emission (AE) measurement was also connected for the evaluation. The indentation strength based on an elastic contact theory was calculated. Reliability of the fracture load determination by AE measurement and the effect of cross head speed on the cracking behavior were evaluated. Obtained results revealed that the control of cross head speed was important for the indentation strength measurement.

  17. Deformation field heterogeneity in punch indentation

    PubMed Central

    Murthy, Tejas G.; Saldana, Christopher; Hudspeth, Matthew; M'Saoubi, Rachid

    2014-01-01

    Plastic heterogeneity in indentation is fundamental for understanding mechanics of hardness testing and impression-based deformation processing methods. The heterogeneous deformation underlying plane-strain indentation was investigated in plastic loading of copper by a flat punch. Deformation parameters were measured, in situ, by tracking the motion of asperities in high-speed optical imaging. These measurements were coupled with multi-scale analyses of strength, microstructure and crystallographic texture in the vicinity of the indentation. Self-consistency is demonstrated in description of the deformation field using the in situ mechanics-based measurements and post-mortem materials characterization. Salient features of the punch indentation process elucidated include, among others, the presence of a dead-metal zone underneath the indenter, regions of intense strain rate (e.g. slip lines) and extent of the plastic flow field. Perhaps more intriguing are the transitions between shear-type and compression-type deformation modes over the indentation region that were quantified by the high-resolution crystallographic texture measurements. The evolution of the field concomitant to the progress of indentation is discussed and primary differences between the mechanics of indentation for a rigid perfectly plastic material and a strain-hardening material are described. PMID:24910521

  18. A representative-sandwich model for simultaneously coupled mechanical-electrical-thermal simulation of a lithium-ion cell under quasi-static indentation tests

    NASA Astrophysics Data System (ADS)

    Zhang, Chao; Santhanagopalan, Shriram; Sprague, Michael A.; Pesaran, Ahmad A.

    2015-12-01

    The safety behavior of lithium-ion batteries under external mechanical crush is a critical concern, especially during large-scale deployment. We previously presented a sequentially coupled mechanical-electrical-thermal modeling approach for studying mechanical-abuse-induced short circuit. In this work, we study different mechanical test conditions and examine the interaction between mechanical failure and electrical-thermal responses, by developing a simultaneously coupled mechanical-electrical-thermal model. The present work utilizes a single representative-sandwich (RS) to model the full pouch cell with explicit representations for each individual component such as the active material, current collector, separator, etc. Anisotropic constitutive material models are presented to describe the mechanical properties of active materials and separator. The model predicts accurately the force-strain response and fracture of battery structure, simulates the local failure of separator layer, and captures the onset of short circuit for lithium-ion battery cells under sphere indentation tests with three different diameters. Electrical-thermal responses to the three different indentation tests are elaborated and discussed. Numerical studies are presented to show the potential impact of test conditions on the electrical-thermal behavior of the cell after the occurrence of short circuit.

  19. Enabling Agile Testing through Continuous Integration

    SciTech Connect

    Stolberg, Sean E.

    2009-08-24

    A Continuous Integration system is often considered one of the key elements involved in supporting an agile software development and testing environment. As a traditional software tester transitioning to an agile development environment it became clear to me that I would need to put this essential infrastructure in place and promote improved development practices in order to make the transition to agile testing possible. This experience report discusses a continuous integration implementation I lead last year. The initial motivations for implementing continuous integration are discussed and a pre and post-assessment using Martin Fowler's "Practices of Continuous Integration" is provided along with the technical specifics of the implementation. Finally, I’ll wrap up with a retrospective of my experiences implementing and promoting continuous integration within the context of agile testing.

  20. Self-Similarity Simplification Approaches for the Modeling and Analysis of Rockwell Hardness Indentation

    PubMed Central

    Ma, Li; Zhou, Jack; Lau, Alan; Low, Samuel; deWit, Roland

    2002-01-01

    The indentation process of pressing a Rockwell diamond indenter into inelastic material has been studied to provide a means for the analysis, simulation and prediction of Rockwell hardness tests. The geometrical characteristics of the spheroconical-shaped Rockwell indenter are discussed and fit to a general function in a self-similar way. The complicated moving boundary problem in Rockwell hardness tests is simplified to an intermediate stationary one for a flat die indenter using principle of similarity and cumulative superposition approach. This method is applied to both strain hardening and strain rate dependent materials. The effects of different material properties and indenter geometries on the indentation depth are discussed. PMID:27446740

  1. Indentation hardness: A simple test that correlates with the dissipated-energy predictor for fatigue-life in bovine pericardium membranes for bioprosthetic heart valves.

    PubMed

    Tobaruela, Almudena; Rojo, Francisco Javier; García Paez, José María; Bourges, Jean Yves; Herrero, Eduardo Jorge; Millán, Isabel; Alvarez, Lourdes; Cordon, Ángeles; Guinea, Gustavo V

    2016-08-01

    The aim of this study was to evaluate the variation of hardness with fatigue in calf pericardium, a biomaterial commonly used in bioprosthetic heart valves, and its relationship with the energy dissipated during the first fatigue cycle that has been shown to be a predictor of fatigue-life (García Páez et al., 2006, 2007; Rojo et al., 2010). Fatigue tests were performed in vitro on 24 pericardium specimens cut in a root-to-apex direction. The specimens were subjected to a maximum stress of 1MPa in blocks of 10, 25, 50, 100, 250, 500, 1000 and 1500 cycles. By means of a modified Shore A hardness test procedure, the hardness of the specimen was measured before and after fatigue tests. Results showed a significant correlation of such hardness with fatigue performance and with the energy dissipated in the first cycle of fatigue, a predictor of pericardium durability. The study showed indentation hardness as a simple and reliable indicator of mechanical performance, one which could be easily implemented in improving tissue selection.

  2. Hardy-Weinberg Testing for Continuous Data

    PubMed Central

    McIntyre, L. M.; Weir, B. S.

    1997-01-01

    Estimation of allelic and genotypic distributions for continuous data using kernel density estimation is discussed and illustrated for some variable number of tandem repeat data. These kernel density estimates provide a useful representation of data when only some of the many variants at a locus are present in a sample. Two Hardy-Weinberg test procedures are introduced for continuous data: a continuous chi-square test with test statistic T(CCS) and a test based on Hellinger's distance with test statistic T(HD). Simulations are used to compare the powers of these tests to each other and to the powers of a test of intraclass correlation T(IC), as well as to the power of Fisher's exact test T(FET) applied to discretized data. Results indicate that the power of T(CCS) is better than that of T(HD), but neither is as powerful as T(FET). The intraclass correlation test does not perform as well as the other tests examined in this article. PMID:9409851

  3. Indentation properties of young and old osteons.

    PubMed

    Huja, S S; Beck, F M; Thurman, D T

    2006-06-01

    The purpose of this study was to quantify differences in indentation modulus and microhardness between labeled osteons identified by epifluorescent microscopy and neighboring unlabeled osteons. In microradiographs and backscattered images, newly formed osteons appear more radiolucent (darker) than older osteons. This is ascribed to incomplete mineralization of the osteon. However, the mechanical properties of these young osteons are unknown. Nine femoral cross-sectional specimens were obtained from five skeletally mature dogs. Prior to death, the dogs received a pair of calcein bone labels. Labeled osteons were identified under an epiflourescent microscope. Bone specimens were transferred to a nanoindenter specimen holder, and the previous identified labeled osteons were located. Labeled (n = 102) and unlabeled (n = 101) osteons were examined by instrumented indentation testing. Indents were made to a depth of 500 nm at a loading rate of 10 nm/second. There were significant differences in the indentation modulus (P < 0.001) of labeled (10.02 +/- 3.61 gigapascal (GPa), mean +/- standard deviation) and unlabeled (15.11 +/- 3.72 GPa) osteons. Similar differences existed in microhardness measurements. Newly formed osteons had lower modulus (34%) and hardness (41%) than older osteons found in femoral cross sections. These data provide information on the indentation moduli of osteons during an early phase of mineralization compared to osteons that have completed mineralization.

  4. Continuous waves probing in dynamic acoustoelastic testing

    NASA Astrophysics Data System (ADS)

    Scalerandi, M.; Gliozzi, A. S.; Ait Ouarabi, M.; Boubenider, F.

    2016-05-01

    Consolidated granular media display a peculiar nonlinear elastic behavior, which is normally analysed with dynamic ultrasonic testing exploiting the dependence on amplitude of different measurable quantities, such as the resonance frequency shift, the amount of harmonics generation, or the break of the superposition principle. However, dynamic testing allows measuring effects which are averaged over one (or more) cycles of the exciting perturbation. Dynamic acoustoelastic testing has been proposed to overcome this limitation and allow the determination of the real amplitude dependence of the modulus of the material. Here, we propose an implementation of the approach, in which the pulse probing waves are substituted by continuous waves. As a result, instead of measuring a time-of-flight as a function of the pump strain, we study the dependence of the resonance frequency on the strain amplitude, allowing to derive the same conclusions but with an easier to implement procedure.

  5. Characterization of viscoelastic properties of molybdenum disulphide filled polyamide by indentation

    NASA Astrophysics Data System (ADS)

    Stan, Felicia; Fetecau, Catalin

    2013-05-01

    In this paper, the creep behavior of molybdenum disulphide (MoS2) filled polyamide 66 composite was investigated through sharp indentation at room temperature. Two types of indentation creep test, the 3-step indentation test, and the 5-step indentation test were considered in order to explore whether the measured creep response is mainly viscoelastic or includes a significant contribution from the plastic deformation developed during the loading phase. The experimental indentation creep data were analyzed within an analytical framework based on the hereditary integral operator for the ramp creep and a viscoelastic-plastic (VEP) model in order to determine the indentation creep compliance function including the short- and long-time modulus. The equivalent shear modulus calculated from the creep compliance function was compared to the indentation plane strain modulus derived from the initial slope of the unloading curve in order to investigate the validity of the Oliver and Pharr method.

  6. Continuity tests of selective flocculation in lab

    SciTech Connect

    Cai, Z.

    1999-07-01

    It is introduced to use a flotation column as separation equipment to do the selective flocculation separation, which is a new separation method to separate ultrafine pyrite from coal. A number of selective flocculation separation tests under different conditions in column have been done and the results are very encouraging. Two samples are used to do the experiments. After continuous selective flocculation separation in flotation column, the mean pyrite sulfur content of clean coal is decreased to 0.84% from 1.59%. The pyrites distribution in tailing is 59.21%. The samples are taken from Bayi and Zhangjiazhuang respectively.

  7. Fatigue Life of Postbuckled Structures with Indentation Damages

    NASA Technical Reports Server (NTRS)

    Davila, Carlos G.; Bisagni, Chiara

    2016-01-01

    The fatigue life of composite stiffened panels with indentation damage was investigated experimentally using single stringer compression specimens. Indentation damage was induced on one of the two flanges of each stringer. The experiments were conducted using advanced instrumentation, including digital image correlation, passive thermography, and in-situ ultrasonic scanning. Specimens with initial indentation damage lengths of 32 millimeters to 56 millimeters were tested quasi-statically and in fatigue, and the effects of cyclic load amplitude and damage size were studied. A means of comparison of the damage propagation rates and collapse loads based on a stress intensity measure and the Paris law is proposed.

  8. Fatigue Life of Postbuckled Structures with Indentation Damage

    NASA Technical Reports Server (NTRS)

    Davila, Carlos G.; Bisagni, Chiara

    2016-01-01

    The fatigue life of composite stiffened panels with indentation damage was investigated experimentally using single stringer compression specimens. Indentation damage was induced on one of the two flanges of the stringer. The experiments were conducted using advanced instrumentation, including digital image correlation, passive thermography, and in-situ ultrasonic scanning. Specimens with initial indentation damage lengths of 37 millimeters to 56 millimeters were tested in fatigue and the effects of cyclic load amplitude and damage size were studied. A means of comparison of the damage propagation rates and collapse loads based on a stress intensity measure and the Paris law is proposed.

  9. Indentation size effects in polydimethylsiloxane at micro- and nanometer length scales

    NASA Astrophysics Data System (ADS)

    Wrucke, Andrew J.

    2011-12-01

    Previous indentation testing on polydimethylsiloxane (PDMS) has shown amazing size dependent deformation at the micro- and millimeter length scales. PDMS is a soft silicone elastomer which has been previously investigated to lesser degrees. Nano- and micro-indentation tests have been conducted on two different PDMS formulations to study the universal hardness and elastic modulus at various indentation depths and crosslink densities to study the indentation size effects within the polymer. In these experiments, PDMS exhibited an 80 fold increase in hardness over the indentation depth range of 200 nm to 120 microm. The indentation size effects are analyzed with respect to theoretical models that rationalizes the size dependent deformation rotation gradients caused by indentation work and corresponding molecular mechanisms. The rationale is discussed in view of other experiments and explanations in the literature.

  10. Indentability of conventional and negative Poisson's ratio foams

    NASA Technical Reports Server (NTRS)

    Lakes, R. S.; Elms, K.

    1992-01-01

    The indentation resistance of foams, both of conventional structure and of re-entrant structure giving rise to negative Poisson's ratio, is studied using holographic interferometry. In holographic indentation tests, re-entrant foams had higher yield strengths sigma(sub y) and lower stiffness E than conventional foams of the same original relative density. Calculated energy absorption for dynamic impact is considerably higher for re-entrant foam than conventional foam.

  11. Dynamic indentation on layered polypropylene foams

    NASA Astrophysics Data System (ADS)

    Maheo, L.; Viot, P.

    2012-08-01

    Foams, and particularly the polypropylene foam, are more and more often used in the area of injury protection and passive safety for its energy absorption capacity. This multi-scale material is constituted of mesoscopic beads with a large variability of the material properties. First, to study the effects of these mesoscopic heterogeneities on both the macroscopic and the local behaviors, numerical simulations on virtual volumes of foam under dynamic loading have been performed. The influence of the organized system of heterogeneities has also been studied in the cases of a random distribution and a multi-layered volume. Experimental dynamic compressive tests have been performed on multi-layered volumes of foam and compared with the results of the Finite Element Method. Second, indentation experiments have also been performed using a cylindrical shape indenter.

  12. Indentation plasticity and fracture in silicon

    NASA Technical Reports Server (NTRS)

    Rybicki, George C.; Pirouz, P.

    1988-01-01

    Measurements of the ductile-brittle transition temperature of heavily doped silicon were carried out using indentation techniques. Diamond pyramid hardness tests were performed on the (100) face of heavily doped N-type and P-type and intrinsic silicon single crystals. Tests were performed over the range 200 C to 850 C and loads of 100 to 500 g were used. Samples were subsequently etched to reveal dislocation rosettes produced by indentation. Intrinsic silicon underwent a ductile-brittle transition at 660 C, P-type at 645 C and N-type at 625 C. Hardness values varied from 1.1 GPa at 700 C to 11.7 GPa at 200 C. Significant effects of hardness on doping were present only at the highest temperatures. Lower loads generally produced higher hardness but load did not affect the Ductile-Brittle Transition Temperature (DBTT). Fracture toughness values ranged from 0.9 MPa m(1/2) at 200 C to 2.75 MPa m(1/2) near the DBTT. Doping did not affect the fracture toughness of silicon. P-type doping increased the size of dislocation rosettes observed after indentation, but N-type did not, in contradiction of the expected results. Results are discussed in terms of the effect of doping on the dislocation mobility in silicon.

  13. Elastic Response, Buckling, and Instability of Microtubules under Radial Indentation

    PubMed Central

    Schaap, Iwan A. T.; Carrasco, Carolina; de Pablo, Pedro J.; MacKintosh, Frederick C.; Schmidt, Christoph F.

    2006-01-01

    We tested the mechanical properties of single microtubules by lateral indentation with the tip of an atomic force microscope. Indentations up to ∼3.6 nm, i.e., 15% of the microtubule diameter, resulted in an approximately linear elastic response, and indentations were reversible without hysteresis. At an indentation force of around 0.3 nN we observed an instability corresponding to an ∼1-nm indentation step in the taxol-stabilized microtubules, which could be due to partial or complete rupture of a relatively small number of lateral or axial tubulin-tubulin bonds. These indentations were reversible with hysteresis when the tip was retracted and no trace of damage was observed in subsequent high-resolution images. Higher forces caused substantial damage to the microtubules, which either led to depolymerization or, occasionally, to slowly reannealing holes in the microtubule wall. We modeled the experimental results using finite-element methods and find that the simple assumption of a homogeneous isotropic material, albeit structured with the characteristic protofilament corrugations, is sufficient to explain the linear elastic response of microtubules. PMID:16731557

  14. Finite size effect does not depend on the loading history in soft matter indentation

    NASA Astrophysics Data System (ADS)

    Niu, Tianxiao; Cao, Guoxin

    2014-09-01

    Due to the finite size effect (including the finite sample thickness and the indenter tip size), Hertz's solution cannot accurately describe the indentation behaviour of soft matter. In addition, soft matters are typically viscous and are thus loading history dependent. There might be a coupling between the indentation loading history and the finite size effect, and thus the indentation loading curve of soft matters might be too complex to determine the mechanical properties from it. Using finite element modelling, the indentation loading response of soft matters is investigated based on the commonly used viscous models, including the power-law rheology model and the standard linear solid model, as well as the general viscous model that we have proposed. The results show that the finite size effect does not depend upon the loading history, which also suggests that the finite size effect does not depend upon the material model but only relates to the geometric parameters, such as indenter tip size and indentation depth. With this finding, the mechanical properties of soft matter with finite size (e.g. biological cells) can be determined by indentation tests, not only from the frequency domain but also from the time domain (the quasistatic indentation loading curve), which makes the indentation technique a powerful tool to measure the mechanical properties of soft matters with finite size.

  15. The bone diagnostic instrument II: Indentation distance increase

    PubMed Central

    Hansma, Paul; Turner, Patricia; Drake, Barney; Yurtsev, Eugene; Proctor, Alexander; Mathews, Phillip; Lelujian, Jason; Randall, Connor; Adams, Jonathan; Jungmann, Ralf; Garza-de-Leon, Federico; Fantner, Georg; Mkrtchyan, Haykaz; Pontin, Michael; Weaver, Aaron; Brown, Morton B.; Sahar, Nadder; Rossello, Ricardo; Kohn, David

    2008-01-01

    The bone diagnostic instrument (BDI) is being developed with the long-term goal of providing a way for researchers and clinicians to measure bone material properties of human bone in vivo. Such measurements could contribute to the overall assessment of bone fragility in the future. Here, we describe an improved BDI, the Osteoprobe II™. In the Osteoprobe II™, the probe assembly, which is designed to penetrate soft tissue, consists of a reference probe (a 22 gauge hypodermic needle) and a test probe (a small diameter, sharpened rod) which slides through the inside of the reference probe. The probe assembly is inserted through the skin to rest on the bone. The distance that the test probe is indented into the bone can be measured relative to the position of the reference probe. At this stage of development, the indentation distance increase (IDI) with repeated cycling to a fixed force appears to best distinguish bone that is more easily fractured from bone that is less easily fractured. Specifically, in three model systems, in which previous mechanical testing and∕or tests reported here found degraded mechanical properties such as toughness and postyield strain, the BDI found increased IDI. However, it must be emphasized that, at this time, neither the IDI nor any other mechanical measurement by any technique has been shown clinically to correlate with fracture risk. Further, we do not yet understand the mechanism responsible for determining IDI beyond noting that it is a measure of the continuing damage that results from repeated loading. As such, it is more a measure of plasticity than elasticity in the bone. PMID:18601422

  16. The bone diagnostic instrument II: Indentation distance increase

    NASA Astrophysics Data System (ADS)

    Hansma, Paul; Turner, Patricia; Drake, Barney; Yurtsev, Eugene; Proctor, Alexander; Mathews, Phillip; Lelujian, Jason; Randall, Connor; Adams, Jonathan; Jungmann, Ralf; Garza-de-Leon, Federico; Fantner, Georg; Mkrtchyan, Haykaz; Pontin, Michael; Weaver, Aaron; Brown, Morton B.; Sahar, Nadder; Rossello, Ricardo; Kohn, David

    2008-06-01

    The bone diagnostic instrument (BDI) is being developed with the long-term goal of providing a way for researchers and clinicians to measure bone material properties of human bone in vivo. Such measurements could contribute to the overall assessment of bone fragility in the future. Here, we describe an improved BDI, the Osteoprobe II™. In the Osteoprobe II™, the probe assembly, which is designed to penetrate soft tissue, consists of a reference probe (a 22 gauge hypodermic needle) and a test probe (a small diameter, sharpened rod) which slides through the inside of the reference probe. The probe assembly is inserted through the skin to rest on the bone. The distance that the test probe is indented into the bone can be measured relative to the position of the reference probe. At this stage of development, the indentation distance increase (IDI) with repeated cycling to a fixed force appears to best distinguish bone that is more easily fractured from bone that is less easily fractured. Specifically, in three model systems, in which previous mechanical testing and/or tests reported here found degraded mechanical properties such as toughness and postyield strain, the BDI found increased IDI. However, it must be emphasized that, at this time, neither the IDI nor any other mechanical measurement by any technique has been shown clinically to correlate with fracture risk. Further, we do not yet understand the mechanism responsible for determining IDI beyond noting that it is a measure of the continuing damage that results from repeated loading. As such, it is more a measure of plasticity than elasticity in the bone.

  17. NASA Continues J-2X Powerpack Testing

    NASA Video Gallery

    NASA conducted a long duration test of the J-2X powerpack, 340 seconds total, at the Stennis Space Center in southern Mississippi on May 10, marking another step in SLS development, the next-genera...

  18. Fictive temperature-independent density and minimum indentation size effect in calcium aluminosilicate glass

    NASA Astrophysics Data System (ADS)

    Gross, T. M.; Tomozawa, M.

    2008-09-01

    Using the calcium aluminosilicate system a glass was developed that exhibits fictive temperature-independent density by creating an intermediate glass between normal and anomalous glasses. Normal glass, such as soda-lime silicate glass, exhibits decreasing density with increasing fictive temperature while anomalous glass, such as silica glass, exhibits increasing density with increasing fictive temperature. This intermediate glass composition was found to exhibit the minimum indentation size effect during indentation hardness testing. It appears that the indentation size effect is correlated with a deformation-induced fictive temperature increase, which is accompanied by a density change and hardness change in the vicinity of the indentation. It is suggested from these observations that indentation size effect originates from the energy required to create interfaces and defects such as shear bands, subsurface cracks, and point defects near the indenter-specimen boundary, which accompany the volume change.

  19. Fictive temperature-independent density and minimum indentation size effect in calcium aluminosilicate glass

    SciTech Connect

    Gross, T. M.; Tomozawa, M.

    2008-09-15

    Using the calcium aluminosilicate system a glass was developed that exhibits fictive temperature-independent density by creating an intermediate glass between normal and anomalous glasses. Normal glass, such as soda-lime silicate glass, exhibits decreasing density with increasing fictive temperature while anomalous glass, such as silica glass, exhibits increasing density with increasing fictive temperature. This intermediate glass composition was found to exhibit the minimum indentation size effect during indentation hardness testing. It appears that the indentation size effect is correlated with a deformation-induced fictive temperature increase, which is accompanied by a density change and hardness change in the vicinity of the indentation. It is suggested from these observations that indentation size effect originates from the energy required to create interfaces and defects such as shear bands, subsurface cracks, and point defects near the indenter-specimen boundary, which accompany the volume change.

  20. Review of fracture properties of nuclear materials determined by Hertzian indentation

    SciTech Connect

    Routbort, J.; Matzke, H.

    1985-01-01

    A brief description of the determination of the surface fracture energy and the fracture toughness from a Hertzian indentation test is given. A number of theoretical and experimental problems are discussed. Results obtained on a variety of nuclear fuels and nuclear-waste-containment materials are reviewed and compared with values measured by other techniques. The Hertzian indentation test yields reliable fracture parameters.

  1. 40 CFR 205.160-7 - Continued testing.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 26 2012-07-01 2011-07-01 true Continued testing. 205.160-7 Section 205.160-7 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) NOISE ABATEMENT PROGRAMS TRANSPORTATION EQUIPMENT NOISE EMISSION CONTROLS Motorcycles § 205.160-7 Continued testing. (a)...

  2. 40 CFR 205.160-7 - Continued testing.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 26 2013-07-01 2013-07-01 false Continued testing. 205.160-7 Section 205.160-7 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) NOISE ABATEMENT PROGRAMS TRANSPORTATION EQUIPMENT NOISE EMISSION CONTROLS Motorcycles § 205.160-7 Continued testing. (a)...

  3. 40 CFR 205.160-7 - Continued testing.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Continued testing. 205.160-7 Section 205.160-7 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) NOISE ABATEMENT PROGRAMS TRANSPORTATION EQUIPMENT NOISE EMISSION CONTROLS Motorcycles § 205.160-7 Continued testing. (a)...

  4. 40 CFR 205.160-7 - Continued testing.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 25 2014-07-01 2014-07-01 false Continued testing. 205.160-7 Section 205.160-7 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) NOISE ABATEMENT PROGRAMS TRANSPORTATION EQUIPMENT NOISE EMISSION CONTROLS Motorcycles § 205.160-7 Continued testing. (a)...

  5. Finite element analysis of the cyclic indentation of bilayer enamel

    NASA Astrophysics Data System (ADS)

    Jia, Yunfei; Xuan, Fu-zhen; Chen, Xiaoping; Yang, Fuqian

    2014-04-01

    Tooth enamel is often subjected to repeated contact and often experiences contact deformation in daily life. The mechanical strength of the enamel determines the biofunctionality of the tooth. Considering the variation of the rod arrangement in outer and inner enamel, we approximate enamel as a bilayer structure and perform finite element analysis of the cyclic indentation of the bilayer structure, to mimic the repeated contact of enamel during mastication. The dynamic deformation behaviour of both the inner enamel and the bilayer enamel is examined. The material parameters of the inner and outer enamel used in the analysis are obtained by fitting the finite element results with the experimental nanoindentation results. The penetration depth per cycle at the quasi-steady state is used to describe the depth propagation speed, which exhibits a two-stage power-law dependence on the maximum indentation load and the amplitude of the cyclic load, respectively. The continuous penetration of the indenter reflects the propagation of the plastic zone during cyclic indentation, which is related to the energy dissipation. The outer enamel serves as a protective layer due to its great resistance to contact deformation in comparison to the inner enamel. The larger equivalent plastic strain and lower stresses in the inner enamel during cyclic indentation, as calculated from the finite element analysis, indicate better crack/fracture resistance of the inner enamel.

  6. An evaluation of the advantages and limitations in simulating indentation cracking with cohesive zone finite elements

    NASA Astrophysics Data System (ADS)

    Johanns, K. E.; Lee, J. H.; Gao, Y. F.; Pharr, G. M.

    2014-01-01

    A cohesive zone model is applied to a finite element (FE) scheme to simulate indentation cracking in brittle materials. Limitations of using the cohesive zone model to study indentation cracking are determined from simulations of a standard fracture toughness specimen and a two-dimensional indentation cracking problem wherein the morphology of the crack and the geometry of the indenter are simplified. It is found that the principles of linear-elastic fracture mechanics can be applied when indentation cracks are long in comparison to the size of the cohesive zone. Vickers and Berkovich pyramidal indentation crack morphologies (3D) are also investigated and found to be controlled by the ratio of elastic modulus to yield strength (E/Y), with median type cracking dominating at low ratios (e.g. E/Y = 10) and Palmqvist type cracking at higher ratios (e.g. E/Y = 100). The results show that cohesive FE simulations of indentation cracking can indeed be used to critically examine the complex relationships between crack morphology, material properties, indenter geometry, and indentation test measurements, provided the crack length is long in comparison to the cohesive zone size.

  7. Use of Spherical Instrumented Indentation to Evaluate the Tensile Properties of 3D Combined Structures

    NASA Astrophysics Data System (ADS)

    Song, Won-Seok; Kim, Seung-Gyu; Kim, Young-Cheon; Kwon, Dongil

    2015-03-01

    In this paper we propose a novel method, spherical indentation, for evaluation of the plastic properties of combined structures. Three-dimensional (3D) printed products, for example gradient metal alloys consisting of different kinds of material, contain interfaces that can act as weak points and threaten the mechanical reliability of products. Combined structures containing an interface between Cu alloy and Ag were prepared for testing. Samples were heat-treated at 100°C and 200°C for 3 h to optimize processing conditions. The indentation tensile properties of the samples were estimated by analyzing multiple loading-unloading curves obtained by use of the representative stress and strain method. A continuous increase in both yield strength and tensile strength was observed for the Cu alloy and the Cu/Ag interface after heat treatment at up to 200°C, because of precipitation hardening. These experimental results show that mechanical characterization of combined structures by spherical indentation is highly useful on the nano and micro scales.

  8. Modeling of Indentation Damage in Single and Multilayer Coatings

    NASA Astrophysics Data System (ADS)

    Chen, J.; Bull, S. J.

    In many coating applications damage resistance is controlled by the mechanical properties of the coating, interface and substrate. As coatings become thinner and more complex, with multilayer and graded architectures now in widespread use, it is very important to obtain the mechanical properties (such as hardness, elastic modulus, fracture toughness, etc.) of individual coating layers for use in design calculations and have failure-related design criteria which are valid for such multilayer systems. Nanoindentation testing is often the only viable approach to assess the damage mechanisms and properties of very thin coatings (< 1 µm) since it can operate at the required scale and provides fingerprint of the indentation response of the coating/substrate system. Finite element analysis of indentation load displacement curves can be used to extract materials properties for design; as coating thicknesses decrease it is observed that the yield strength required to fit the curves increases and scale-dependent materials properties are essential for design. Similarly the assessment of fracture response of very thin coatings requires modeling of the indentation stress field and how it is modified by plasticity during the indentation cycle. An FE approach using a cohesive zone model has been used to assess the locus of failure and demonstrates the complexity of adhesive failure around indentations for multilayer coatings.

  9. Indentation Methods in Advanced Materials Research Introduction

    SciTech Connect

    Pharr, George Mathews; Cheng, Yang-Tse; Hutchings, Ian; Sakai, Mototsugu; Moody, Neville; Sundararajan, G.; Swain, Michael V.

    2009-01-01

    Since its commercialization early in the 20th century, indentation testing has played a key role in the development of new materials and understanding their mechanical behavior. Progr3ess in the field has relied on a close marriage between research in the mechanical behavior of materials and contact mechanics. The seminal work of Hertz laid the foundations for bringing these two together, with his contributions still widely utilized today in examining elastic behavior and the physics of fracture. Later, the pioneering work of Tabor, as published in his classic text 'The Hardness of Metals', exapdned this understanding to address the complexities of plasticity. Enormous progress in the field has been achieved in the last decade, made possible both by advances in instrumentation, for example, load and depth-sensing indentation and scanning electron microscopy (SEM) and transmission electron microscopy (TEM) based in situ testing, as well as improved modeling capabilities that use computationally intensive techniques such as finite element analysis and molecular dynamics simulation. The purpose of this special focus issue is to present recent state of the art developments in the field.

  10. Indenter geometry effects on the measurements of mechanical properties by nanoindentation with sharp indenters

    SciTech Connect

    Tsui, T.Y.; Pharr, G.M.; Oliver, W.C.

    1996-05-01

    The measurement of mechanical properties by nanoindentation methods is most often conducted using indenters with the Berkovich geometry (a triangular pyramid) or with a sphere. These indenters provide a wealth of information, but there are certain circumstances in which it would be useful to make measurements with indenters of other geometries. We have recently explored how the measurement of hardness and elastic modulus can be achieved using sharp indenters other than the Berkovich. Systematic studies in several materials were conducted with a Vickers indenter, a conical indenter with a half-included tip angle of 70.3{degrees}, and the standard Berkovich indenter. All three indenters are geometrically similar and have nominally the same area-to-depth relationship, but there are distinct differences in the behavior of each. Here, we report on the application of these indenters in the measurement of hardness and elastic modulus by nanoindentation methods and some of the difficulties that occur.

  11. Measurement of corneal tangent modulus using ultrasound indentation.

    PubMed

    Wang, Li-Ke; Huang, Yan-Ping; Tian, Lei; Kee, Chea-Su; Zheng, Yong-Ping

    2016-09-01

    Biomechanical properties are potential information for the diagnosis of corneal pathologies. An ultrasound indentation probe consisting of a load cell and a miniature ultrasound transducer as indenter was developed to detect the force-indentation relationship of the cornea. The key idea was to utilize the ultrasound transducer to compress the cornea and to ultrasonically measure the corneal deformation with the eyeball overall displacement compensated. Twelve corneal silicone phantoms were fabricated with different stiffness for the validation of measurement with reference to an extension test. In addition, fifteen fresh porcine eyes were measured by the developed system in vitro. The tangent moduli of the corneal phantoms calculated using the ultrasound indentation data agreed well with the results from the tensile test of the corresponding phantom strips (R(2)=0.96). The mean tangent moduli of the porcine corneas measured by the proposed method were 0.089±0.026MPa at intraocular pressure (IOP) of 15mmHg and 0.220±0.053MPa at IOP of 30mmHg, respectively. The coefficient of variation (CV) and intraclass correlation coefficient (ICC) of tangent modulus were 14.4% and 0.765 at 15mmHg, and 8.6% and 0.870 at 30mmHg, respectively. The preliminary study showed that ultrasound indentation could be applied to the measurement of corneal tangent modulus with good repeatability and improved measurement accuracy compared to conventional surface displacement-based measurement method. The ultrasound indentation can be a potential tool for the corneal biomechanical properties measurement in vivo.

  12. Effect of dynamic strain rate on micro-indentation properties of pure aluminum

    NASA Astrophysics Data System (ADS)

    Yamada, Hiroyuki; Hotta, Midori; Kami, Tsuyoshi; Ogasawara, Nagahisa; Chen, Xi

    2015-09-01

    Indentation is widely used to investigate the elastic and plastic properties of mechanical materials, which includes the strain rate sensitivity. The indentation exhibits an inhomogeneous strain distribution in contrast to compression and tensile tests with homogeneous deformation. Thus, the strain rate of the indentation may form the inhomogeneous distribution. Therefore, the effect of strain rate distribution of the indentation on pure aluminum with respect to the strain rate dependence of strength in order to clarify the effect of the strain rate on the indentation technique. First, the numerical simulation was established using the Cowper-Symonds equation as the dynamic constitutive equation. Secondary, the strain rate distribution was calculated from the equivalent plastic strain distribution. The strain rate distribution was quite different from the strain distribution, which showed that the strain rate at the crater rim was higher than that beneath the indenter. Finally, we try to perform the averaging of strain rate distribution in order to make an index of strain rate in the indentation. The average of strain rate distribution was calculated using the equivalent plastic strain above a boundary value that is the critical strain and the representative strain. There is correlation between the average strain rate and the loading curvature, which shows that the average strain rate can express as the representative of strain rate for the indentation technique.

  13. 40 CFR 211.212-7 - Continued compliance testing.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 26 2012-07-01 2011-07-01 true Continued compliance testing. 211.212-7 Section 211.212-7 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) NOISE ABATEMENT... section. (Sec. 13, Pub. L. 92-574, 86 Stat. 1244 (42 U.S.C. 4912))...

  14. 40 CFR 204.57-8 - Continued testing.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 26 2012-07-01 2011-07-01 true Continued testing. 204.57-8 Section 204.57-8 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) NOISE ABATEMENT PROGRAMS..., 13, Pub. L. 92-574 (42 U.S.C. 4912))...

  15. 40 CFR 211.212-7 - Continued compliance testing.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 26 2013-07-01 2013-07-01 false Continued compliance testing. 211.212-7 Section 211.212-7 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) NOISE... Administrator pursuant to paragraph (a) of this section. (Sec. 13, Pub. L. 92-574, 86 Stat. 1244 (42 U.S.C. 4912))...

  16. 40 CFR 204.57-8 - Continued testing.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 26 2013-07-01 2013-07-01 false Continued testing. 204.57-8 Section 204.57-8 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) NOISE ABATEMENT..., 13, Pub. L. 92-574 (42 U.S.C. 4912))...

  17. 40 CFR 205.57-8 - Continued testing.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Continued testing. 205.57-8 Section 205.57-8 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) NOISE ABATEMENT PROGRAMS TRANSPORTATION EQUIPMENT NOISE EMISSION CONTROLS Medium and Heavy Trucks § 205.57-8...

  18. 40 CFR 205.171-9 - Continued testing.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 26 2012-07-01 2011-07-01 true Continued testing. 205.171-9 Section 205.171-9 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) NOISE ABATEMENT PROGRAMS TRANSPORTATION EQUIPMENT NOISE EMISSION CONTROLS Motorcycle Exhaust Systems § 205.171-9...

  19. 40 CFR 205.171-9 - Continued testing.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Continued testing. 205.171-9 Section 205.171-9 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) NOISE ABATEMENT PROGRAMS TRANSPORTATION EQUIPMENT NOISE EMISSION CONTROLS Motorcycle Exhaust Systems § 205.171-9...

  20. 40 CFR 205.171-9 - Continued testing.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 25 2014-07-01 2014-07-01 false Continued testing. 205.171-9 Section 205.171-9 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) NOISE ABATEMENT PROGRAMS TRANSPORTATION EQUIPMENT NOISE EMISSION CONTROLS Motorcycle Exhaust Systems § 205.171-9...

  1. Fluorescence-based test of fiber-optic continuity.

    PubMed

    Norwood, D P; Vinches, C; Anderson, J F; Reed, W F

    1997-04-20

    There is considerable interest in the use of lasers and optical fibers for the initiation of pyrotechnics. In this application the need develops for a means of testing the continuity of the initiation fiber before initiation of the pyrotechnic. We present proof of the feasibility of an unambiguous continuity test using the fluorescence returned by the fiber from a fluorescent material in or near the pyrotechnic.

  2. Mechanical properties of pulsed laser-deposited hydroxyapatite thin films implanted at high energy with N + and Ar + ions. Part II: nano-scratch tests with spherical tipped indenter

    NASA Astrophysics Data System (ADS)

    Pelletier, H.; Nelea, V.; Mille, P.; Muller, D.

    2004-02-01

    In this study we report a method to improve the adherence of hydroxyapatite (HA) thin films, using an ion beam implantation treatment. Crystalline HA films were grown by pulsed laser deposition technique (PLD), using an excimer KrF * laser. The films were deposited at room temperature in vacuum on Ti-5Al-2.5Fe alloy substrates previously coated with a ceramic TiN buffer layer and then annealed in ambient air at (500-600) °C. After deposition the films were implanted with N + and Ar + ions accelerated at high energy (1-1.5 MeV range) at a fixed dose of 10 16 cm -2. The intrinsic mechanical resistance and adherence to the TiN buffer layer of the implanted HA films have been evaluated by nano-scratch tests. We used for measurements a spherical indenter with a tip radius of 5 μm. Different scratch tests have been performed on implanted and unimplanted areas of films to put into evidence the effects of N + and Ar + ion implantation process on the films properties. Results show an enhancement of the dynamic mechanical properties in the implanted zones and influence of the nature of the implanted species. The best results are obtained for films implanted with nitrogen.

  3. Low Temperature Plasticity of Olivine Determined by Nano-indentation

    NASA Astrophysics Data System (ADS)

    Skemer, P. A.; Kranjc, K.; Rouse, Z.; Flores, K.

    2015-12-01

    Earth's upper mantle is thought to deform mainly by dislocation creep, during which strain-rate and stress are related by a simple power law equation. However at much higher stresses there is a break-down in the power law relationship and strain-rate depends exponentially on stress. This phenomenon, known as low temperature plasticity, may be important in the shallow ductile or semi-brittle regions of the lithosphere, at the tips of cracks, or during high-stress laboratory experiments. Several studies have attempted to constrain the low-temperature rheology of olivine using micro-indentation or high pressure experiments. In this study we provide the first measurements of olivine rheology at low temperature using instrumented nano-indention. Although nano-indentation has been widely used in the materials sciences, its application in the Earth sciences has been very limited. Nano-indentation methods provide rheological measurements that are significantly more precise than other mechanical tests at high pressure and temperature. Moreover, experiments are rapid and largely non-destructive, so many tests can be conducted in a short amount of time. In this study, olivine single crystal and polycrystalline samples were tested using a Hysitron TI950 TriboIndenter. Temperature was varied using a cooling/heating stage from 0-175°C. Experiments were conducted under quasi-static and constant strain-rate conditions. Indentation hardness measurements were converted to uniaxial rheological properties to facilitate direct comparison with previous studies. Yield strengths for olivine range from 4.19 GPa at 175°C to 4.60 GPa at 0°C. Using various models for obstacles to dislocation motion, data are extrapolated to 0 Kelvin to extract a Peierls stress for olivine (5.32-6.45 GPa), which is at the lower end of the range of values determined in previous studies. This study demonstrates the efficacy of the nano-indentation method for the study of mineral rheology, and opens a

  4. Indentation of Ellipsoidal and Cylindrical Elastic Shells

    NASA Astrophysics Data System (ADS)

    Vella, Dominic; Ajdari, Amin; Vaziri, Ashkan; Boudaoud, Arezki

    2012-10-01

    Thin shells are found in nature at scales ranging from viruses to hens’ eggs; the stiffness of such shells is essential for their function. We present the results of numerical simulations and theoretical analyses for the indentation of ellipsoidal and cylindrical elastic shells, considering both pressurized and unpressurized shells. We provide a theoretical foundation for the experimental findings of Lazarus et al. [following paper, Phys. Rev. Lett. 109, 144301 (2012)PRLTAO0031-9007] and for previous work inferring the turgor pressure of bacteria from measurements of their indentation stiffness; we also identify a new regime at large indentation. We show that the indentation stiffness of convex shells is dominated by either the mean or Gaussian curvature of the shell depending on the pressurization and indentation depth. Our results reveal how geometry rules the rigidity of shells.

  5. Shear-driven damage of ductile metals induced by indentation load

    NASA Astrophysics Data System (ADS)

    Zhang, Chunyu; Xiao, Wenkang

    2015-08-01

    Although indentation does not induce apparent cracking in ductile materials, degradation of elastic stiffness of ductile metals has been found in micro-/macro- indentation tests. After comparing the predicted degradation by extended damaged-plasticity models with that measured by experimental testing, it is found that the softening caused by distortion of existing voids is inadequate to cause the notable degradation of elasticity. It is suggested that an independent damage-nucleation mechanism arising from shear deformation may exist. Although attractive in practical applications for its non-destructive nature, the damage-based indentation technique for estimating the fracture properties of ductile materials needs further investigation.

  6. S-cones in thin shells under indentation

    NASA Astrophysics Data System (ADS)

    Nasto, Alice; Ajdari, Amin; Lazarus, Arnaud; Vaziri, Ashkan; Reis, Pedro

    2012-02-01

    We perform a hybrid experimental and numerical investigation of the localization of deformation in indented thin spherical elastic shells. Past the initial linear response, an inverted cap develops as a Pogorelov circular ridge. For further indentation, this ridge looses axis-symmetry and sharp points of localized curvature form. We refer to these localized objects as s-cones (for shell-cones), in contrast with their developable cousins in plates (d-cones). We quantify the effect of systematically varying the indenter's radius of curvature (from point to plate load) on the formation and evolution of s-cones. In our precision desktop-scale experiments we use rapid prototyped elastomeric shells and rigid indenters of various shape. The mechanical response is measured through load-displacement compression tests and the deformation process is further characterized through digital imaging. In parallel, the experimental results are contrasted against nonlinear Finite Element simulations. Merging these two complementary approaches allows us to gain further physical insight towards rationalizing this geometrically nonlinear process.

  7. Negative Aspects of Minimum Competency Testing Continue to Surface: Implications.

    ERIC Educational Resources Information Center

    Partridge, Susan

    Although over half of the states in the United States have implemented minimum competency testing (MCT) programs, problems continue to be reported by researchers. Educators have been concerned with these problems since the beginning of MCT. Accounts of testing problems include: (1) Durham, North Carolina students who fail the state-mandated test…

  8. Who Are the Invalids on Continuous Performance Tests?

    ERIC Educational Resources Information Center

    O'Laughlin, Elizabeth M.; Cerny, Jerome A.; Kirby, Edward A.

    The percent and characteristics of children who produced invalid profiles on two different continuous performance tests (CPTs) tasks were examined. Sixty-one children referred for attention deficit hyperactivity disorder (ADHD) assessment and 24 non-clinical control children (all children ages 5-16) were given the Test of Variables of Attention…

  9. A Critique of Continuous Discourse Tracking as a Test Procedure.

    ERIC Educational Resources Information Center

    Tye-Murray, Nancy; Tyler, Richard S.

    1988-01-01

    Continuous discourse tracking, when used as a test of the effectiveness of aural rehabilitation strategies, has numerous uncontrolled variables related to the sender, the receiver, the text materials, and repeated presentations. Tracking is inappropriate for across-subject designs, and acceptable for within-subject test designs only when stringent…

  10. Characterization of viscoelastic materials by quasi-static and dynamic indentation

    NASA Astrophysics Data System (ADS)

    Wang, Lei; Liu, Xianping

    2014-06-01

    This paper describes the experimental measurements of the elastic modulus and hardness of viscoelastic materials under quasi-static and dynamic depth-sensing indentation using a homemade tribology probe microscope (TPM). The indentation measurements were performed using a sapphire sphere tip under various conditions. Materials such as polytetrafluoroethylene, styrene rubber and nitrile rubber were tested in both quasi-static and dynamic experiments. In quasi-static mode, the loading and unloading force curves were obtained from these specimens, and the results show a significant load effect on the measured hardness and elastic modulus. The dynamic indentation tests were conducted under a range of loading forces with various frequencies. The values of storage modulus, loss modulus and damping factor were determined by dynamic indentation. To get an accurate measurement, the stiffness and damping of the instrument were rigorously analyzed. Using dynamic indentation, it was confirmed that the variation in the frequency of the oscillation force has a significant effect on the measured results of the materials. Comparing the results obtained from the quasi-static and dynamic indentations, for the viscoelastic properties, dynamic indentation offers an advantage over the quasi-static method. Collectively, these results clearly demonstrate the capability of our homemade TPM facility to determine the constitutive behavior of viscoelastic solids in the frequency domain.

  11. Ceramic wear in indentation and sliding

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.

    1984-01-01

    The various wear mechanisms involved with single-crystal ceramic materials in indentation and in sliding contacts. Experiments simulating interfacial events have been conducted with hemispherical, conical and pyramidal indenters (riders). With spherical riders, under either abrasive or adhesive conditions, two types of fracture pits have been observed. First, spherical-shaped fracture pits and wear particles are found as a result of either indenting or sliding. These are shown to be due to a spherical-shaped fracture along the circular or spherical stress trajectories. Second, polyhedral fracture pits and debris, produced by anisotropic fracture, and also found both during indenting and sliding. These are primarily controlled by surface and subsurface cracking along cleavage planes. Several quantitative results have also been obtained from this work. For example, using a pyramidal diamond, crack length of Mn-Zn ferrite in the indentation process grows linearly with increasing normal load. Moreover, the critical load to fracture both in indentation and sliding is essentially isotropic and is found to be directly proportional to the indenter radius.

  12. Measuring Several Aspects of Attention in One Test: The Factor Structure of Conners's Continuous Performance Test

    ERIC Educational Resources Information Center

    Egeland, Jens; Kovalik-Gran, Iwona

    2010-01-01

    Objective: Continuous performance tests are known to typically measure sustained attention but usually also yield parameters that potentially measure other subprocesses of attention. The aim of the present study was to test the factor structure of the Conners's Continuous Performance Test (CCPT) in a heterogeneous clinical sample consisting of…

  13. Evaluation of Fracture Toughness of Tantalum Carbide Ceramic Layer: A Vickers Indentation Method

    NASA Astrophysics Data System (ADS)

    Song, Ke; Xu, Yunhua; Zhao, Nana; Zhong, Lisheng; Shang, Zhao; Shen, Liuliu; Wang, Juan

    2016-07-01

    A tantalum carbide (TaC) ceramic layer was produced on gray cast iron matrix by in situ technique comprising a casting process and a subsequent heat treatment at 1135 °C for 45 min. Indentation fracture toughness in TaC ceramic layer was determined by the Vickers indentation test for various loads. A Niihara approach was chosen to assess the fracture toughness of TaC ceramic layer under condition of the Palmqvist mode in the experiment. The results reveal that K IC evaluation of TaC ceramic layer by the Vickers indentation method strongly depends on the selection of crack system and K IC equations. The critical indentation load for Vickers crack initiation in TaC ceramic layer lies between 1 and 2 N and the cracks show typical intergranular fracture characteristics. Indentation fracture toughness calculated by the indentation method is independent of the indentation load on the specimen. The fracture toughness of TaC ceramic layer is 6.63 ± 0.34 MPa m1/2, and the toughening mechanism is mainly crack deflection.

  14. Interactions of Task and Subject Variables among Continuous Performance Tests

    ERIC Educational Resources Information Center

    Denney, Colin B.; Rapport, Mark D.; Chung, Kyong-Mee

    2005-01-01

    Background: Contemporary models of working memory suggest that target paradigm (TP) and target density (TD) should interact as influences on error rates derived from continuous performance tests (CPTs). The present study evaluated this hypothesis empirically in a typically developing, ethnically diverse sample of children. The extent to which…

  15. Shear-lag analysis of fiber push-out (indentation) tests for estimating interfacial friction stress in ceramic-matrix composites

    SciTech Connect

    Shetty, D.K.

    1988-02-01

    A shear-lag analysis is presented for estimating sliding friction stress at fiber-matrix interfaces in ceramic-matrix composites using the single-fiber push-out test. The analysis includes an approximate correction for the increased interfacial compression and, therefore, the interfacial friction stress arising from the transverse (Poisson) expansion of the fibers subjected to the compressive load. An exponential decrease of the interfacial shear stress along the fiber length is predicted. This result is similar to the results of a finite-element analysis reported in the literature. The analysis also provides a basis for the experimental determination of a coefficient of interfacial friction (..mu..) and a residual interfacial compression (sigma/sub O/). It is shown that the sliding friction stress (tau/sub f/=..mu..sigma/sub O/) can be overestimated if the transverse expansion of the fibers is not taken into account.

  16. Indentation of polydimethylsiloxane submerged in organic solvents

    NASA Astrophysics Data System (ADS)

    Hu, Yuhang; Chen, Xin; Whitesides, George; Vlassak, Joost; Suo, Zhigang

    2011-03-01

    This study uses a method based on indentation to characterize a polydimethylsiloxane (PDMS) elastomer submerged in an organic solvent (decane, heptane, pentane, or cyclohexane). An indenter is pressed into a disk of a swollen elastomer to a fixed depth, and the force on the indenter is recorded as a function of time. By examining how the relaxation time scales with the radius of contact, one can differentiate the poroelastic behavior from the viscoelastic behavior. By matching the relaxation curve measured experimentally to that derived from the theory of poroelasticity, one can identify elastic constants and permeability. The measured elastic constants are interpreted within the Flory-Huggins theory. The measured permeabilities indicate that the solvents migrate in PDMS by diffusion, rather than by convection. This work confirms that indentation is a reliable and convenient method to characterize swollen elastomers.

  17. Intermittent versus Continuous Incremental Field Tests: Are Maximal Variables Interchangeable?

    PubMed

    Carminatti, Lorival J; Possamai, Carlos A P; de Moraes, Marcelo; da Silva, Juliano F; de Lucas, Ricardo D; Dittrich, Naiandra; Guglielmo, Luiz G A

    2013-01-01

    The aim of the present study was to compare physiological responses derived from an incremental progressive field test with a constant speed test i.e. intermittent versus continuous protocol. Two progressive maximum tests (Carminatti`s test (T-CAR) and the Vameval test (T-VAM)), characterized by increasing speed were used. T-CAR is an intermittent incremental test, performed as shuttle runs; while T-VAM is a continuous incremental test performed on an athletic track. Eighteen physically active, healthy young subjects (21.9 ± 2.0 years; 76.5 ± 8.6 kg, 1.78 ± 0.08 m, 11.2 ± 5.4% body fat), volunteered for this study. Subjects performed four different maximum test sessions conducted in the field: two incremental tests and two time to exhaustion tests (TTE) at peak test velocities (PV). No significant differences were found for PV (T-CAR = 15.6 ± 1.2; T-VAM = 15.5 ± 1.3 km·h(-1)) and maximal HR (T-CAR = 195 ± 11; T- VAM = 194 ± 14 bpm). During TTE, there were no significant differences for HR (TTET-CAR and TTET-VAM = 192 ± 12 bpm). However, there was a significant difference in TTE (p = 0.04) (TTET-CAR = 379 ± 84, TTET-VAM = 338 ± 58 s) with a low correlation (r = 0.41). The blood lactate concentration measured at the end of the TTE tests, showed no significant difference (TTET-CAR = 13.2 ± 2.4 vs. TTET-VAM = 12.9 ± 2.4 mmol·l(-1)). Based on the present findings, it is suggested that the maximal variables derived from T-CAR and T-VAM can be interchangeable in the design of training programs. Key pointsT-CAR is an intermittent shuttle run test that predicts the maximal aerobic speed with accuracy, hence, test results could be interchangeable with continuous straight-line tests.T-CAR provides valid field data for evaluating aerobic fitness.In comparison with T-VAM, T-CAR may be a more favourable way to prescribe intermittent training using a shuttle-running protocol.

  18. Determination of mechanical properties from depth-sensing indentation data and results of finite element modeling

    NASA Astrophysics Data System (ADS)

    Isaenkova, M. G.; Perlovich, Yu A.; Krymskaya, O. A.; Zhuk, D. I.

    2016-04-01

    3D finite element model of indentation process with Berkovich tip was created. Using this model with different type of test materials, several series of calculations were made. These calculations lead to determination of material behavior features during indentation. Relations between material properties and its behavior during instrumented indentation were used for construction of dimensionless functions required for development the calculation algorithm, suitable to determine mechanical properties of materials by results of the depth-sensing indentation. Results of mechanical properties determination using elaborated algorithm for AISI 1020 steel grade were compared to properties obtained with standard compression tests. These two results differ by less than 10% for yield stress that evidence of a good accuracy of the proposed technique.

  19. Interaction of Cracks Between Two Adjacent Indents in Glass

    NASA Technical Reports Server (NTRS)

    Choi, S. R.; Salem, J. A.

    1993-01-01

    Experimental observations of the interaction behavior of cracks between two adjacent indents were made using an indentation technique in soda-lime glass. It was specifically demonstrated how one indent crack initiates and propagates in the vicinity of another indent crack. Several types of crack interactions were examined by changing the orientation and distance of one indent relative to the other. It was found that the residual stress field produced by elastic/plastic indentation has a significant influence on controlling the mode of crack interaction. The interaction of an indent crack with a free surface was also investigated for glass and ceramic specimens.

  20. Cyclic Fatigue of Brittle Materials with an Indentation-Induced Flaw System

    NASA Technical Reports Server (NTRS)

    Choi, Sung R.; Salem, Jonathan A.

    1996-01-01

    The ratio of static to cyclic fatigue life, or 'h ratio', was obtained numerically for an indentation flaw system subjected to sinusoidal loading conditions. Emphasis was placed on developing a simple, quick lifetime prediction tool. The solution for the h ratio was compared with experimental static and cyclic fatigue data obtained from as-indented 96 wt.% alumina specimens tested in room-temperature distilled water.

  1. Indentation-formed nanocontacts: an atomic-scale perspective.

    PubMed

    Paul, William; Oliver, David; Grütter, Peter

    2014-05-14

    One-to-one comparisons between indentation experiments and atomistic modelling have until recently been hampered by the discrepancy in length scales of the two approaches. Here, we review progress in atomic-scale nanoindentation experiments employing scanning probe techniques to achieve depth-sensing indentation and field ion microscopy to permit detailed indenter characterization. This perspective addresses both mechanical (dislocation nucleation, defect structures, adhesion, indenter effects) and electronic (interface, disorder, and vacancy scattering) properties of indentation-formed contacts.

  2. Testing quantum contextuality of continuous-variable states

    SciTech Connect

    McKeown, Gerard; Paternostro, Mauro; Paris, Matteo G. A.

    2011-06-15

    We investigate the violation of noncontextuality by a class of continuous-variable states, including variations of entangled coherent states and a two-mode continuous superposition of coherent states. We generalize the Kochen-Specker (KS) inequality discussed by Cabello [A. Cabello, Phys. Rev. Lett. 101, 210401 (2008)] by using effective bidimensional observables implemented through physical operations acting on continuous-variable states, in a way similar to an approach to the falsification of Bell-Clauser-Horne-Shimony-Holt inequalities put forward recently. We test for state-independent violation of KS inequalities under variable degrees of state entanglement and mixedness. We then demonstrate theoretically the violation of a KS inequality for any two-mode state by using pseudospin observables and a generalized quasiprobability function.

  3. Measurement of deformation during spherical indentation of metals

    SciTech Connect

    Mulford, R. N.; Benson, D. C.; Hampel, F. G.; Asaro, R. J.

    2004-01-01

    Spherical indentation provides an easy measure of approximate mechanical properties, particularly those of small samples or regions that are not easily measured by other means. Spherical indentation data was analyzed by two methods. An analytical method based on powerlaw hardening yields a stress-strain curve. Finite element modelling based on the Mechanical Threshold Strength (MTS) constitutive model yields constitutive parameters with adequate accuracy. Understanding dynamic fracture requires understanding of the deformation characteristics of the material of interest. A small-scale test is convenient for evaluating local properties of a material, both before and after it has been subjected to dynamic loading, including fracture or spall processes. Systematic changes in the materials properties may also include spatial variation, changes due to aging, or changes resulting from annealing or other treatment. Spherical indentation provides a simple, inexpensive test for evaluating the mechanical properties of materials, requiring only small samples. In order to examine the sensitivity of this type of measurement to changes in strength, hardening, or other deformation characteristics, we must better understand the limits of the analysis, and the sensitivity of the analysis methods to variations in material properties. Variations in the data that arise from uncontrolled characteristics of the sample must also be examined, for example the number of grains sampled, the orientation of particular grains sampled, or the location of the indent relative to grain boundaries. These variations are characteristic of the sample, and samples discussed here may or may not be typical. Several ductile materials are examined to distinguish characteristics of the method from those of the sample.

  4. Determination of the Mechanical Properties of Plasma-Sprayed Hydroxyapatite Coatings Using the Knoop Indentation Technique

    NASA Astrophysics Data System (ADS)

    Hasan, Md. Fahad; Wang, James; Berndt, Christopher

    2015-06-01

    The microhardness and elastic modulus of plasma-sprayed hydroxyapatite coatings were evaluated using Knoop indentation on the cross section and on the top surface. The effects of indentation angle, testing direction, measurement location and applied load on the microhardness and elastic modulus were investigated. The variability and distribution of the microhardness and elastic modulus data were statistically analysed using the Weibull modulus distribution. The results indicate that the dependence of microhardness and elastic modulus on the indentation angle exhibits a parabolic shape. Dependence of the microhardness values on the indentation angle follows Pythagoras's theorem. The microhardness, Weibull modulus of microhardness and Weibull modulus of elastic modulus reach their maximum at the central position (175 µm) on the cross section of the coatings. The Weibull modulus of microhardness revealed similar values throughout the thickness, and the Weibull modulus of elastic modulus shows higher values on the top surface compared to the cross section.

  5. Dent Resistance and Effect of Indentation Loading Rate on Superelastic TiNi Alloy

    NASA Astrophysics Data System (ADS)

    Farhat, Zoheir; Jarjoura, George; Shahirnia, Meisam

    2013-08-01

    The large recoverable deformation associated with reversible stress-induced martensitic transformation for superelastic TiNi alloys has been widely exploited in many applications. However, to employ superelastic TiNi in applications where high impact loading is expected, as in bearings, the effect of loading rate on superelasticity needs to be understood. In the current article, the effect of indentation loading rate on dent resistance and superelasticity of TiNi is studied. Indentation tests are performed, at different loading rates on superelastic TiNi alloy and correlated to tensile stress-strain data. It is found that the reversible deformation drops as loading rate is increased and superelasticity diminishes. Based on data collected and results analysis it is proposed that the loss in superelastic behavior under high indentation loading rate is related to retardation of the stress-induced martensitic transformation. Furthermore, a simple heat model was proposed and showed that the temperature rise during indentation is not significant.

  6. Experimental Validation of the New Modular Application of the Upper Bound Theorem in Indentation

    PubMed Central

    Bermudo, Carolina; Martín, Francisco; Martín, María Jesús; Sevilla, Lorenzo

    2015-01-01

    Nowadays, thanks to the new manufacturing processes, indentation is becoming an essential part of the new arising processes such as the Incremental Forming Processes. This work presents the experimental validation of the analytical model developed for an indentation-based process. The analytical model is originated from the Upper Bound Theorem application by means of its new modular distribution. The modules considered are composed of two Triangular Rigid Zones each. The experimental validation is performed through a series of indentation tests with work-pieces of annealed aluminium EN AW-2030 and punches of steel AISI 304, under plane strain conditions. The results are compared with the ones obtained from the application of this new modular distribution of the Upper Bound Theorem, showing a good approximation and suitability of the model developed for an indentation-based process. PMID:25826738

  7. A Comparison of Quasi-Static Indentation to Low-Velocity Impact

    NASA Technical Reports Server (NTRS)

    Nettles, A. T.; Douglas, M. J.

    2000-01-01

    A static test method for modeling low-velocity foreign object impact events to composites would prove to be very beneficial to researchers since much more data can be obtained from a static test than from an impact test. In order to examine if this is feasible, a series of static indentation and low-velocity impact tests were carried out and compared. Square specimens of many sizes and thicknesses were utilized to cover the array of types of low velocity impact events. Laminates with a pi/4 stacking sequence were employed since this is by far the most common type of engineering laminate. Three distinct flexural rigidities -under two different boundary conditions were tested in order to obtain damage ranging from that due to large deflection to contact stresses and levels in-between to examine if the static indentation-impact comparisons are valid under the spectrum of damage modes that can be experienced. Comparisons between static indentation and low-velocity impact tests were based on the maximum applied transverse load. The dependent parameters examined included dent depth, back surface crack length, delamination area, and to a limited extent, load-deflection behavior. Results showed that no distinct differences could be seen between the static indentation tests and the low-velocity impact tests, indicating that static indentation can be used to represent a low-velocity impact event.

  8. Indentation stress dependence of the temperature range of microscopic superelastic behavior of nickel-titanium thin films

    SciTech Connect

    Zhang Yijun; Cheng, Y.-T.; Grummon, David S.

    2005-08-01

    The microscopic superelastic behavior of thin-film NiTi is investigated by instrumented indentation experiments conducted at different temperatures. The indentation-induced superelastic effect is found to be persistent to about 100 K above the austenite transformation finish temperature (A{sub f}). In contrast, the upper temperature where superelastic effect exists is only around A{sub f} plus 40 K in uniaxial tension and compression tests, beyond which the plasticity of the austenite phase overwhelms the transformation-induced superelasticity. By combining the Clausius-Clapeyron equation and spherical cavity model for indentation, we show that the high hydrostatic pressure under the indenter is capable of elevating the transformation temperatures and increase the upper temperature limit of indentation-induced superelastic behavior.

  9. An Integrated Indenter-ARFI Imaging System for Tissue Stiffness Quantification

    PubMed Central

    Zhai, Liang; Palmeri, Mark L.; Bouchard, Richard R.; Nightingale, Roger W.; Nightingale, Kathryn R.

    2008-01-01

    The goal of this work is to develop and characterize an integrated indenter-ARFI (acoustic radiation force impulse) imaging system. This system is capable of acquiring matched datasets of ARFI images and stiffness profiles from ex vivo tissue samples, which will facilitate correlation of ARFI images of tissue samples with independently-characterized material properties. For large and homogeneous samples, the indenter can be used to measure the Young's moduli by using Boussinesq's solution for a load on the surface of a semi-infinite isotropic elastic medium. Experiments and finite element method (FEM) models were designed to determine the maximum indentation depth and minimum sample size for accurate modulus reconstruction using this solution. Applying these findings, indentation measurements were performed on three calibrated commercial tissue-mimicking phantoms and the results were in good agreement with the calibrated stiffness. For heterogeneous tissue samples, indentation can be used independently to characterize relative stiffness variation across the sample surface, which can then be used to validate the stiffness variation in registered ARFI images. Tests were performed on heterogeneous phantoms and freshly-excised colon cancer specimens to detect the relative stiffness and lesion sizes using the combined system. Normalized displacement curves across the lesion surface were calculated and compared. Good agreement of the lesion profiles was observed between indentation and ARFI imaging. PMID:18939611

  10. Objective assessment of limb tissue elasticity: development of a manual indentation procedure.

    PubMed

    Zheng, Y; Mak, A F; Lue, B

    1999-04-01

    An ultrasound indentation system with a pen-size hand-held probe was developed and used to obtain the effective Young's moduli of forearm and lower limb soft tissues in 12 subjects. Since the probe is manually driven, the alignment of the probe and control of the rate of indentation are parameters upon which the results obtained depend. This paper addresses whether manual indentation tests with the probe are sufficiently acceptable and repeatable for objective biomechanical characterization of limb tissues. Forearms of three normal subjects were tested in two states of muscular contraction. Six different indentation rates, ranging from 0.75 mm/s to 7.5 mm/s, were imposed. The load-indentation responses obtained were shown to be well represented by quadratic functions. A linear elastic indentation solution was used to extract the effective Young's modulus. The material parameters extracted were repeatable and rather rate-insensitive for the range of rates used. The effective Young's modulus obtained was found to significantly increase as a result of contraction of the underlying muscles. Indentor misalignment experiments demonstrated that misalignment affects the measurement from which the effective Young's modulus of soft tissues is calculated. This effect, however, was found to decrease as the tissue thickness increased. With the investigation of the above issues, a procedure has been established for the extraction of effective Young's moduli of limb soft tissues from manual cyclic indentation responses. Tests on experimental subjects' lower limbs further demonstrated that the ultrasonic indentor is a feasible instrument for characterization of the biomechanical properties of limb soft tissues. Paired-t tests showed that the effective Young's moduli of the lower limb soft tissues of three elderly persons with transtibial amputation were significantly smaller than those of six unimpaired young subjects.

  11. Does the Conners' Continuous Performance Test aid in ADHD diagnosis?

    PubMed

    McGee, R A; Clark, S E; Symons, D K

    2000-10-01

    The performance of clinic-referred children aged 6-11 (N = 100) was examined using the Conners' Continuous Performance Test (CPT) and measures of auditory attention (Auditory Continuous Performance Test; ACPT), phonological awareness, visual processing speed, and visual-motor competence. The Conners' CPT overall index was unrelated to measures of visual processing speed or visual-motor competence. Although the Conners' CPT converged with the ACPT, the latter demonstrated age and order effects. Significant variance in Conners' CPT parameters was predicted by phonological awareness measures, suggesting that Reading Disordered (RD) children could be "false positives" on the Conners' CPT. The Conners' CPT overall index, phonological awareness, and visual-motor measures were submitted to a 2 x 2 MANCOVA (ADHD vs. RD, covarying for age and socioeconomic status): a main effect for RD status was found. Children with ADHD did not have higher Conners' CPT scores than did clinical controls; however, children with Reading Disorders did. Phonological measures distinguished RD children from ADHD children and other clinical controls. ADHD children who failed the Conners' CPT were rated by teachers as more hyperactive. Despite the strengths of the Conners' CPT, its utility for differential diagnosis of ADHD is questioned.

  12. 1997 Performance Testing of Multi-Metal Continuous Emissions Monitors

    SciTech Connect

    Sky +, Inc.

    1998-09-01

    Five prototype and two commercially available multi-metals continuous emissions monitors (CEMs) were tested in September 1997 at the Rotary Kiln Incinerator Simulator facility at the EPA National Risk Management Research Laboratory, Research Triangle Park, North Carolina. The seven CEMs were tested side by side in a long section of duct following the secondary combustion chamber of the RKIS. Two different concentrations of six toxic metals were introduced into the incinerator-approximately 15 and 75 µg/dscm of arsenic, beryllium, cadmium, chromium, lead, and mercury (We also tested for antimony but we are not reporting on it here because EPA recently dropped antimony from the list of metals addressed by the draft MACT rule). These concentrations were chosen to be close to emission standards in the draft MACT rule and the estimated Method Detection Limit (MDL) required of a CEM for regulatory compliance purposes. Results from this test show that no CEMs currently meet the performance specifications in the EPA draft MACT rule for hazardous waste incinerators. Only one of the CEMs tested was able to measure all six metals at the concentrations tested. Even so, the relative accuracy of this CEM varied between 35% and 100%, not 20% or less as required in the EPA performance specification. As a result, we conclude that no CEM is ready for long-term performance validation for compliance monitoring applications. Because sampling and measuring Hg is a recurring problem for multi-metal CEMs as well as Hg CEMs, we recommended that developers participate in a 1998 DOE-sponsored workshop to solve these and other common CEM measurement issues.

  13. Characterization of Indentation Response and Stiffness Reduction of Bone using a Continuum Damage Model

    PubMed Central

    Zhang, Jingzhou; Michalenko, Michelle M.; Kuhl, Ellen; Ovaert, Timothy C.

    2009-01-01

    Indentation tests can be used to characterize the mechanical properties of bone at small load/length scales offering the possibility of utilizing very small test specimens, which can be excised using minimally-invasive procedures. In addition, the need for mechanical property data from bone may be a requirement for fundamental multi-scale experiments, changes in nano- and micro-mechanical properties (e.g., as affected by changes in bone mineral density) due to drug therapies, and/or the development of computational models. Load vs. indentation depth data, however, is more complex than those obtained from typical macro-scale experiments, primarily due to the mixed state of stress, and thus interpretation of the data and extraction of mechanical properties is more challenging. Previous studies have shown that cortical bone exhibits a visco-elastic response combined with permanent deformation during indentation tests, and that the load vs. indentation depth response can be simulated using a visco-elastic/plastic material model. The model successfully captures the loading and creep displacement behavior, however, it does not adequately reproduce the unloading response near the end of the unloading cycle, where a pronounced decrease in contact stiffness is observed. It is proposed that the stiffness reduction observed in bone results from an increase in damage; therefore, a plastic-damage model was investigated and shown capable of simulating a typical bone indentation response through an axisymmetric finite element simulation. The plastic-damage model was able to reproduce the full indentation response, especially the reduced stiffness behavior exhibited during the latter stages of unloading. The results suggest that the plastic-damage model is suitable for describing the complex indentation response of bone and may provide further insight into the relationship between model parameters and mechanical/physical properties. PMID:20129418

  14. Axisymmetric indentation of curved elastic membranes by a convex rigid indenter

    PubMed Central

    Pearce, S.P.; King, J.R.; Holdsworth, M.J.

    2011-01-01

    Motivated by applications to seed germination, we consider the transverse deflection that results from the axisymmetric indentation of an elastic membrane by a rigid body. The elastic membrane is fixed around its boundary, with or without an initial pre-stretch, and may be initially curved prior to indentation. General indenter shapes are considered, and the load–indentation curves that result for a range of spheroidal tips are obtained for both flat and curved membranes. Wrinkling may occur when the membrane is initially curved, and a relaxed strain-energy function is used to calculate the deformed profile in this case. Applications to experiments designed to measure the mechanical properties of seed endosperms are discussed. PMID:22298913

  15. Modeling and analysis of ductility of brittle materials using indentation method

    NASA Astrophysics Data System (ADS)

    Sun, Guoyan; Lu, Zhe; Bai, Jianming; Yu, Fangsu

    2014-08-01

    Nowadays, many optical elements are fabricated by means of glass molding using hard and brittle inserts such as Silicon Carbide (SiC) and Silicon Nitride (Si3N4). However, for those hard-to-machine materials, the most feasible solution is still with ultra-precision grinding and following polishing. Hence, it is necessary and meaningful to study their plastic properties for the development of optical fabrication and ultra-precision manufacturing process. However, the conventional methods including compression test and indentation fracture mechanics are not sufficient to obtain the accurate parameters and still lack of reliable supporting of the machining process. To solve this problem, this paper presents a novel way to correlate the plastic properties to the indentation data using dimensional analysis for the two sorts of hard and brittle materials of SiC and Si3N4. Through integrating the data obtained by the indentation tests and the modeling method presented in this paper, stress-strain behavior, yield stress σy, yield strain epsilony and strain hardening exponent n could be determined. The processing performance of these two materials reflected by the above parameters are consistent with the conclusions drawing from the indentation crack development under varying loads during the indentation test, which verifies the effectiveness and feasibility of the presented modeling method.

  16. A Load-based Micro-indentation Technique for Mechanical Property and NDE Evaluation

    SciTech Connect

    Bruce S. Kang; Chuanyu Feng; Jared M. Tannenbaum; M.A. Alvin

    2009-06-04

    A load-based micro-indentation technique has been developed for evaluating mechanical properties of materials. Instead of using measured indentation depth or contact area as a necessary parameter, the new technique is based on the indentation load, coupled with a multiple-partial unloading procedure for mechanical property evaluation. The proposed load-based micro-indentation method is capable of determining Young’s modulus of metals, superalloys, and single crystal matrices, and stiffness of coated material systems with flat, tubular, or curved architectures. This micro-indentation technique can be viewed as a viable non-destructive evaluation (NDE) technique for determining as-manufactured and process-exposed metal, superalloy, single crystal, and TBC-coated material properties. Based on this technique, several bond coated substrates were tested at various stages of thermal cycles. The time-series evaluation of test material surface stiffness reveals the status of coating strength without any alternation of the coating surface, making it a true time-series NDE investigation. The microindentation test results show good correlation with post mortem microstructural analyses. This technique also shows promise for the development of a portable instrument for on-line, in-situ NDE and mechanical properties measurement of structural components.

  17. Twinning and martensitic transformations in nickel-enriched 304 austenitic steel during tensile and indentation deformations

    SciTech Connect

    Gussev, Maxim N; Busby, Jeremy T; Byun, Thak Sang; Parish, Chad M

    2013-01-01

    Twinning and martensitic transformation have been investigated in nickel-enriched AISI 304 stainless steel subjected to tensile and indentation deformation. Using electron backscatter diffraction (EBSD), the morphology of alpha- and epsilon-martensite and the effect of grain orientation to load axis on phase and structure transformations were analyzed in detail. It was found that the twinning occurred less frequently under indentation than under tension; also, twinning was not observed in [001] and [101] grains. In tensile tests, the martensite particles preferably formed at the deformation twins, intersections between twins, or at twin-grain boundary intersections. Conversely, martensite formation in the indentation tests was not closely associated with twinning; instead, the majority of martensite was concentrated in the dense colonies near grain boundaries. Martensitic transformation seemed to be obstructed in the [001] grains in both tensile and indentation test cases. Under a tensile stress of 800 MPa, both alpha- and epsilon-martensite were found in the microstructure, but at 1100 MPa only -martensite presented in the specimen. Under indentation, alpha- and epsilon-martensite were observed in the material regardless of stress level.

  18. Carpal tunnel and transverse carpal ligament stiffness with changes in wrist posture and indenter size.

    PubMed

    Holmes, Michael W R; Howarth, Samuel J; Callaghan, Jack P; Keir, Peter J

    2011-11-01

    This study investigated the effects of loading and posture on mechanical properties of the transverse carpal ligament (TCL). Ten fresh-frozen cadaver arms were dissected to expose the TCL and positioned in the load frame of a servo-hydraulic testing machine, equipped with a load cell and custom made indenters. Four cylindrical indenters (5, 10, 20, and 35 mm) loaded the TCL in three wrist postures (30° extension, neutral and 30° flexion). Three loading cycles with a peak force of 50 N were applied at 5 N/s for each condition. The flexed wrist posture had significantly greater TCL stiffness (40.0 ± 3.3 N/mm) than the neutral (35.9 ± 3.5 N/mm, p = 0.045) and extended postures (34.9 ± 2.8 N/mm, p = 0.025). TCL stiffness using the 10 and 20 mm indenters was larger than the 5 mm indenter. Stiffness was greatest with the 20 mm indenter, which had the greatest indenter contact area on the TCL. The 35 mm indenter covered the carpal bones, compressed the carpal tunnel and produced the lowest stiffness. The complexity of the TCL makes it an important part of the carpal tunnel and the mechanical properties found are essential to understanding mechanisms of carpal tunnel syndrome.  PMID:21520261

  19. Carpal tunnel and transverse carpal ligament stiffness with changes in wrist posture and indenter size.

    PubMed

    Holmes, Michael W R; Howarth, Samuel J; Callaghan, Jack P; Keir, Peter J

    2011-11-01

    This study investigated the effects of loading and posture on mechanical properties of the transverse carpal ligament (TCL). Ten fresh-frozen cadaver arms were dissected to expose the TCL and positioned in the load frame of a servo-hydraulic testing machine, equipped with a load cell and custom made indenters. Four cylindrical indenters (5, 10, 20, and 35 mm) loaded the TCL in three wrist postures (30° extension, neutral and 30° flexion). Three loading cycles with a peak force of 50 N were applied at 5 N/s for each condition. The flexed wrist posture had significantly greater TCL stiffness (40.0 ± 3.3 N/mm) than the neutral (35.9 ± 3.5 N/mm, p = 0.045) and extended postures (34.9 ± 2.8 N/mm, p = 0.025). TCL stiffness using the 10 and 20 mm indenters was larger than the 5 mm indenter. Stiffness was greatest with the 20 mm indenter, which had the greatest indenter contact area on the TCL. The 35 mm indenter covered the carpal bones, compressed the carpal tunnel and produced the lowest stiffness. The complexity of the TCL makes it an important part of the carpal tunnel and the mechanical properties found are essential to understanding mechanisms of carpal tunnel syndrome. 

  20. Effective elastic properties for lower limb soft tissues from manual indentation experiment.

    PubMed

    Zheng, Y; Mak, A F

    1999-09-01

    Quantitative assessment of the biomechanical properties of limb soft tissues has become more important during the last decade because of the introduction of computer-aided design and computer-aided manufacturing (CAD/CAM) and finite element analysis to the prosthetic socket design. Because of the lack of a clinically easy-to-use apparatus, the site and posture dependences of the material properties of lower limb soft tissues have not been fully reported in the literature. In this study, an ultrasound indentation system with a pen-size hand-held probe developed earlier by the authors was used to obtain the indentation responses of lower limb soft tissues. Indentation tests were conducted on normal young subjects with four females and four males at four sites with three body postures. A linear elastic indentation solution was used to extract the effective Young's modulus from the indentation responses. The determined modulus ranged from 10.4 to 89.2 kPa for the soft tissues tested. These results were in a similar range as those reported in the literature. The thickness of the lower limb soft tissues varied slightly with body posture changes. The Young's modulus determined was demonstrated to be significantly dependent on site, posture, subject and gender. The overall mean modulus of male subjects was 40% larger than that of female subjects. No significant correlation was established between the effective Young's modulus and the thickness of entire soft tissue layers.

  1. Indentation modulus and hardness of viscoelastic thin films by atomic force microscopy: A case study.

    PubMed

    Passeri, D; Bettucci, A; Biagioni, A; Rossi, M; Alippi, A; Tamburri, E; Lucci, M; Davoli, I; Berezina, S

    2009-11-01

    We propose a nanoindentation technique based on atomic force microscopy (AFM) that allows one to deduce both indentation modulus and hardness of viscoelastic materials from the force versus penetration depth dependence, obtained by recording the AFM cantilever deflection as a function of the sample vertical displacement when the tip is pressed against (loading phase) and then removed from (unloading phase) the surface of the sample. Reliable quantitative measurements of both indentation modulus and hardness of the investigated sample are obtained by calibrating the technique through a set of different polymeric samples, used as reference materials, whose mechanical properties have been previously determined by standard indentation tests. By analyzing the dependence of the cantilever deflection versus time, the proposed technique allows one to evaluate and correct the effect of viscoelastic properties of the investigated materials, by adapting a post-experiment data processing procedure well-established for standard depth sensing indentation tests. The technique is described in the case of the measurement of indentation modulus and hardness of a thin film of poly(3,4-ethylenedioxythiophene) doped with poly(4-styrenesulfonate), deposited by chronoamperometry on an indium tin oxide (ITO) substrate. PMID:19674843

  2. Photoplastic analysis of polycarbonate loaded by spherical indentator using strain-freezing method

    SciTech Connect

    Shimamoto, Akira; Umezaki, Eisaku; Nogata, Fumio; Takahashi, Susumu

    1996-12-31

    Hardness test is one of the basic material testings. This investigates strain behavior in polycarbonate loaded by a spherical indentator using the strain-freezing method to establish a method of evaluating the material properties of polymers which have been widely used as machine parts and structural members because of a high elastic modulus and strength. As a result, the strain-freezing method was found to be effective for analyzing strains in polycarbonate loaded by a spherical indentator. Furthermore, the relation between the photoelastic fringe order and principal strain difference is found to be proportional as well as the relation between the total strain.

  3. Construct validity of the auditory continuous performance test for preschoolers.

    PubMed

    Mahone, E Mark; Pillion, Joseph P; Hoffman, Jennifer; Hiemenz, Jennifer R; Denckla, Martha B

    2005-01-01

    Development of diagnostic instruments directed toward neuropsychological assessment of preschoolers lags significantly behind those available for school-age children (DeWolfe, Byrne, & Bawden, 2000). This is particularly true for measures of executive function (EF). The Auditory Continuous Performance Test for Preschoolers (ACPT-P; Mahone, Pillion, & Hiemenz, 2001) is a computerized, Go-No-go test developed to measure selected EF skills in preschoolers. First, to determine whether performance on the ACPT-P is associated with hearing impairment, we compared performance of children with mild hearing loss (MHL) to controls on the ACPT-P, and measures of spatial working memory (SWM) and motor persistence (MP). There were no differences between performance of the MHL group and controls on any of these measures. Second, to examine the construct validity of the ACPT-P, we compared performance of 40 preschoolers with ADHD to 40 age- and sex-matched controls, using the ACPT-P to measure response preparation, sustained attention, and inhibitory control. We also compared these groups on measures of SWM and MP. The group with attention deficit hyperactivity disorder (ADHD) performed significantly worse than controls on the ACPT-P (omissions, mean response time, variability) and MP. The ACPT-P was correlated with the MP, but not with the SWM measure. Both the ACPT-P and the MP measures showed low to moderate correlations with parent ratings of behavior associated with ADHD. These findings support the use of performance-based assessment of executive control skills in preschoolers suspected of having ADHD. In this age group, the ACPT-P may be particularly useful in assessing sustained attention and response preparation and may complement behavior rating scales. PMID:15737941

  4. Indentation of poroviscoelastic vocal fold tissue using an atomic force microscope.

    PubMed

    Heris, Hossein K; Miri, Amir K; Tripathy, Umakanta; Barthelat, Francois; Mongeau, Luc

    2013-12-01

    The elastic properties of the vocal folds (VFs) vary as a function of depth relative to the epithelial surface. The poroelastic anisotropic properties of porcine VFs, at various depths, were measured using atomic force microscopy (AFM)-based indentation. The minimum tip diameter to effectively capture the local properties was found to be 25µm, based on nonlinear laser scanning microscopy data and image analysis. The effects of AFM tip dimensions and AFM cantilever stiffness were systematically investigated. The indentation tests were performed along the sagittal and coronal planes for an evaluation of the VF anisotropy. Hertzian contact theory was used along with the governing equations of linear poroelasticity to calculate the diffusivity coefficient of the tissue from AFM indentation creep testing. The permeability coefficient of the porcine VF was found to be 1.80±0.32×10(-15)m(4)/Ns. PMID:23829979

  5. Wedge indentation of an elastoviscoplastic material

    NASA Astrophysics Data System (ADS)

    Huang, Zhihong; Lucas, Margaret; Adams, Michael J.

    2002-05-01

    This paper describes the modeling of the indentation of an elasto-viscoplastic material. The finite element code ABAQUS was used to study the bulk mechanical, thermal and interface frictional characteristics for rigid wedge indenters. A series of simulations has been performed at a constant velocity to prescribed depths of penetration for a range of wedge surface temperatures and semi-included angles. Selected experimental data are provided as a basis for validating the numerical simulation. In the simulations, the constitutive behavior of the model material Plasticine is treated as non-linear elasto-viscoplastic, in which the stress scales linearly with the elastic strain and non-linearly with the plastic strain rate. The result demonstrate that the FE simulations agree well with the experimental dat of displacement, strain and stress for all the range of wedge angles and temperatures examined.

  6. Continuous Improvement in Battery Testing at the NASA/JSC Energy System Test Area

    NASA Technical Reports Server (NTRS)

    Boyd, William; Cook, Joseph

    2003-01-01

    The Energy Systems Test Area (ESTA) at the Lyndon B. Johnson Space Center in Houston, Texas conducts development and qualification tests to fulfill Energy System Division responsibilities relevant to ASA programs and projects. EST A has historically called upon a variety of fluid, mechanical, electrical, environmental, and data system capabilities spread amongst five full-service facilities to test human and human supported spacecraft in the areas of propulsion systems, fluid systems, pyrotechnics, power generation, and power distribution and control systems. Improvements at ESTA are being made in full earnest of offering NASA project offices an option to choose a thorough test regime that is balanced with cost and schedule constraints. In order to continue testing of enabling power-related technologies utilized by the Energy System Division, an especially proactive effort has been made to increase the cost effectiveness and schedule responsiveness for battery testing. This paper describes the continuous improvement in battery testing at the Energy Systems Test Area being made through consolidation, streamlining, and standardization.

  7. A novel optical coherence tomography-based micro-indentation technique for mechanical characterization of hydrogels.

    PubMed

    Yang, Ying; Bagnaninchi, Pierre O; Ahearne, Mark; Wang, Ruikang K; Liu, Kuo-Kang

    2007-12-22

    Depth-sensing micro-indentation has been well recognized as a powerful tool for characterizing mechanical properties of solid materials due to its non-destructive approach. Based on the depth-sensing principle, we have developed a new indentation method combined with a high-resolution imaging technique, optical coherence tomography, which can accurately measure the deformation of hydrogels under a spherical indenter at constant force. The Hertz contact theory has been applied for quantitatively correlating the indentation force and the deformation with the mechanical properties of the materials. Young's moduli of hydrogels estimated by the new method are comparable with those measured by conventional depth-sensing micro-indentation. The advantages of this new method include its capability to characterize mechanical properties of bulk soft materials and amenability to perform creeping tests. More importantly, the measurement can be performed under sterile conditions allowing non-destructive, in situ and real-time investigations on the changes in mechanical properties of soft materials (e.g. hydrogel). This unique character can be applied for various biomechanical investigations such as monitoring reconstruction of engineered tissues.

  8. Quasi-Static Indentation Analysis of Carbon-Fiber Laminates.

    SciTech Connect

    Briggs, Timothy; English, Shawn Allen; Nelson, Stacy Michelle

    2015-12-01

    A series of quasi - static indentation experiments are conducted on carbon fiber reinforced polymer laminates with a systematic variation of thicknesses and fixture boundary conditions. Different deformation mechanisms and their resulting damage mechanisms are activated b y changing the thickn ess and boundary conditions. The quasi - static indentation experiments have been shown to achieve damage mechanisms similar to impact and penetration, however without strain rate effects. The low rate allows for the detailed analysis on the load response. Moreover, interrupted tests allow for the incremental analysis of various damage mechanisms and pr ogressions. The experimentally tested specimens are non - destructively evaluated (NDE) with optical imaging, ultrasonics and computed tomography. The load displacement responses and the NDE are then utilized in numerical simulations for the purpose of model validation and vetting. The accompanying numerical simulation work serves two purposes. First, the results further reveal the time sequence of events and the meaning behind load dro ps not clear from NDE . Second, the simulations demonstrate insufficiencies in the code and can then direct future efforts for development.

  9. Effect of ultrasonic vibration on wedge indentation of a model elastoviscoplastic material

    NASA Astrophysics Data System (ADS)

    Huang, Zhihong; Lucas, Margaret; Adams, Michael J.

    2002-05-01

    A wedge indentation test has been carried out, in which an ultrasonic vibration was superimposed at a frequency of 20 kHz to investigate the effects of ultrasonic vibration on the indentation mechanics of Plasticine. A finite element simulation was employed as basis for interpreting the experimental data. The model incorporated material and geometric non-linearity and the slide line method for modeling contact problems. The finite element results show that stress superposition only accounts for part of the load reduction measured under superimposed ultrasonic vibration, and that there are no temperature changes during the process. Consequently, the reduction in indentation load may be attributed to a combination of stress superposition and friction reduction.

  10. Indentation of single-crystal silicon nanolines: Buckling and contact friction at nanoscalesa)

    NASA Astrophysics Data System (ADS)

    Li, Bin; Zhao, Qiu; Huang, Huai; Luo, Zhiquan; Kang, Min K.; Im, Jang-Hi; Allen, Richard A.; Cresswell, Michael W.; Huang, Rui; Ho, Paul S.

    2009-04-01

    High-quality single-crystal silicon nanolines (SiNLs) with a 24 nm linewidth and a height/width aspect ratio of 15 were fabricated. The mechanical properties of the SiNLs were characterized by nanoindentation tests with an atomic force microscope. The indentation load-displacement curves showed an instability with large displacement bursts at a critical load ranging from 9 to 30 μN. This phenomenon was attributed to a transition of the buckling mode of the SiNLs under indentation, which occurred preceding the final fracture of the nanolines. The mechanics of SiNLs under indentation was analyzed by finite element simulations, which revealed two different buckling modes depending on the contact friction at the nanoscale.

  11. The Continuized Log-Linear Method: An Alternative to the Kernel Method of Continuization in Test Equating

    ERIC Educational Resources Information Center

    Wang, Tianyou

    2008-01-01

    Von Davier, Holland, and Thayer (2004) laid out a five-step framework of test equating that can be applied to various data collection designs and equating methods. In the continuization step, they presented an adjusted Gaussian kernel method that preserves the first two moments. This article proposes an alternative continuization method that…

  12. The nano-epsilon dot method for strain rate viscoelastic characterisation of soft biomaterials by spherical nano-indentation.

    PubMed

    Mattei, G; Gruca, G; Rijnveld, N; Ahluwalia, A

    2015-10-01

    Nano-indentation is widely used for probing the micromechanical properties of materials. Based on the indentation of surfaces using probes with a well-defined geometry, the elastic and viscoelastic constants of materials can be determined by relating indenter geometry and measured load and displacement to parameters which represent stress and deformation. Here we describe a method to derive the viscoelastic properties of soft hydrated materials at the micro-scale using constant strain rates and stress-free initial conditions. Using a new self-consistent definition of indentation stress and strain and corresponding unique depth-independent expression for indentation strain rate, the epsilon dot method, which is suitable for bulk compression testing, is transformed to nano-indentation. We demonstrate how two materials can be tested with a displacement controlled commercial nano-indentor using the nano-espilon dot method (nano-ε̇M) to give values of instantaneous and equilibrium elastic moduli and time constants with high precision. As samples are tested in stress-free initial conditions, the nano-ε̇M could be useful for characterising the micro-mechanical behaviour of soft materials such as hydrogels and biological tissues at cell length scales. PMID:26143307

  13. The nano-epsilon dot method for strain rate viscoelastic characterisation of soft biomaterials by spherical nano-indentation.

    PubMed

    Mattei, G; Gruca, G; Rijnveld, N; Ahluwalia, A

    2015-10-01

    Nano-indentation is widely used for probing the micromechanical properties of materials. Based on the indentation of surfaces using probes with a well-defined geometry, the elastic and viscoelastic constants of materials can be determined by relating indenter geometry and measured load and displacement to parameters which represent stress and deformation. Here we describe a method to derive the viscoelastic properties of soft hydrated materials at the micro-scale using constant strain rates and stress-free initial conditions. Using a new self-consistent definition of indentation stress and strain and corresponding unique depth-independent expression for indentation strain rate, the epsilon dot method, which is suitable for bulk compression testing, is transformed to nano-indentation. We demonstrate how two materials can be tested with a displacement controlled commercial nano-indentor using the nano-espilon dot method (nano-ε̇M) to give values of instantaneous and equilibrium elastic moduli and time constants with high precision. As samples are tested in stress-free initial conditions, the nano-ε̇M could be useful for characterising the micro-mechanical behaviour of soft materials such as hydrogels and biological tissues at cell length scales.

  14. AULA virtual reality test as an attention measure: convergent validity with Conners' Continuous Performance Test.

    PubMed

    Díaz-Orueta, Unai; Garcia-López, Cristina; Crespo-Eguílaz, Nerea; Sánchez-Carpintero, Rocío; Climent, Gema; Narbona, Juan

    2014-01-01

    The majority of neuropsychological tests used to evaluate attention processes in children lack ecological validity. The AULA Nesplora (AULA) is a continuous performance test, developed in a virtual setting, very similar to a school classroom. The aim of the present study is to analyze the convergent validity between the AULA and the Continuous Performance Test (CPT) of Conners. The AULA and CPT were administered correlatively to 57 children, aged 6-16 years (26.3% female) with average cognitive ability (IQ mean = 100.56, SD = 10.38) who had a diagnosis of attention deficit/hyperactivity disorder (ADHD) according to DSM-IV-TR criteria. Spearman correlations analyses were conducted among the different variables. Significant correlations were observed between both tests in all the analyzed variables (omissions, commissions, reaction time, and variability of reaction time), including for those measures of the AULA based on different sensorial modalities, presentation of distractors, and task paradigms. Hence, convergent validity between both tests was confirmed. Moreover, the AULA showed differences by gender and correlation to Perceptual Reasoning and Working Memory indexes of the WISC-IV, supporting the relevance of IQ measures in the understanding of cognitive performance in ADHD. In addition, the AULA (but not Conners' CPT) was able to differentiate between ADHD children with and without pharmacological treatment for a wide range of measures related to inattention, impulsivity, processing speed, motor activity, and quality of attention focus. Additional measures and advantages of the AULA versus Conners' CPT are discussed.

  15. 2009 Continued Testing of the Orion Atmosphere Revitalization Technology

    NASA Technical Reports Server (NTRS)

    Button, Amy B.; Swerterlitsch, Jeffrey J.

    2010-01-01

    An amine-based carbon dioxide (CO2) and water vapor sorbent in pressure-swing regenerable beds has been developed by Hamilton Sundstrand and baselined for the Orion Atmosphere Revitalization System (ARS). In three previous years at this conference, reports were presented on extensive Johnson Space Center (JSC) testing of this technology in a sea-level pressure environment, with simulated and real human metabolic loads, in both open and closed-loop configurations. The test article design was iterated a third time before the latest series of such tests, which was performed in the first half of 2009. The new design incorporates a canister configuration modification for overall unit compactness and reduced pressure drop, as well as a new process flow control valve that incorporates both compressed gas purge and dual-end vacuum desorption capabilities. This newest test article is very similar to the flight article designs. Baseline tests of the new unit were performed to compare its performance to that of the previous test articles. Testing of compressed gas purge operations helped refine launchpad operating condition recommendations developed in earlier testing. Operating conditions used in flight program computer models were tested to validate the model projections. Specific operating conditions that were recommended by the JSC test team based on past test results were also tested for validation. The effects of vacuum regeneration line pressure on resulting cabin conditions was studied for high metabolic load periods, and a maximum pressure is recommended

  16. Quantitative Imaging of Young's Modulus of Soft Tissues from Ultrasound Water Jet Indentation: A Finite Element Study

    PubMed Central

    Lu, Min-Hua; Mao, Rui; Lu, Yin; Liu, Zheng; Wang, Tian-Fu; Chen, Si-Ping

    2012-01-01

    Indentation testing is a widely used approach to evaluate mechanical characteristics of soft tissues quantitatively. Young's modulus of soft tissue can be calculated from the force-deformation data with known tissue thickness and Poisson's ratio using Hayes' equation. Our group previously developed a noncontact indentation system using a water jet as a soft indenter as well as the coupling medium for the propagation of high-frequency ultrasound. The novel system has shown its ability to detect the early degeneration of articular cartilage. However, there is still lack of a quantitative method to extract the intrinsic mechanical properties of soft tissue from water jet indentation. The purpose of this study is to investigate the relationship between the loading-unloading curves and the mechanical properties of soft tissues to provide an imaging technique of tissue mechanical properties. A 3D finite element model of water jet indentation was developed with consideration of finite deformation effect. An improved Hayes' equation has been derived by introducing a new scaling factor which is dependent on Poisson's ratios v, aspect ratio a/h (the radius of the indenter/the thickness of the test tissue), and deformation ratio d/h. With this model, the Young's modulus of soft tissue can be quantitatively evaluated and imaged with the error no more than 2%. PMID:22927890

  17. Progressive evolution of microfabrics in high-temperature indentation creep experiments

    NASA Astrophysics Data System (ADS)

    Wassmann, S.; Dorner, D.; Stoeckhert, B.

    2014-12-01

    Microfabrics of natural rocks as well as of those deformed in laboratory experiments are studied post-mortem, the history of fabric evolution being inferred from a finite state. This is a major drawback when being interested in modification of fabrics related to progressive deformation. Here we present a novel approach to analyze and compare fabrics in different stages of evolution, taking spatial position to mimic a time series. Using this approach, evolution in time can be investigated on one sample deformed in a single indentation creep test. Such experiments at high temperatures and atmospheric pressure provide information on mechanical properties of rock-forming minerals as well as on microfabrics developed during inhomogeneous deformation underneath the indenter. Using a conventional creep apparatus, a cylindrical alumina indenter, 2 mm in diameter, is driven by a dead load into the flat surface of a specimen. A penetration depth of 1 mm is typically reached after hours to days, depending on material, applied temperature, and load. Previous experiments on natural, polycrystalline anhydrite carried out at temperatures between 700°C and 920 °C yield a stress exponent of 3.9 indicating deformation in the dislocation creep regime, consistent with microstructural observations (Dorner et al., 2014; Solid Earth). Within a cone-shaped region in front of the indenter, the original microfabric appears entirely unaffected. The neutral cone is mantled by highly deformed shear zones. During progressive indentation this structure of undeformed cone and shear zones propagates into the specimen. Thus, for a homogeneous starting material, serial sections of the deformed specimen normal to the indenter axis provide insight into fabrics in distinct stages of evolution. Microfabrics developed at different distance in front of the approaching indenter can be taken to represent a time series. A disadvantage of the technique is that the history of shear zone deformation is

  18. Continuous unidirectional fiber reinforced composites: Fabrication and testing

    NASA Technical Reports Server (NTRS)

    Weber, M. D.; Spiegel, F. X.; West, Harvey A.

    1994-01-01

    The study of the anisotropic mechanical properties of an inexpensively fabricated composite with continuous unidirectional fibers and a clear matrix was investigated. A method has been developed to fabricate these composites with aluminum fibers and a polymer matrix. These composites clearly demonstrate the properties of unidirectional composites and cost less than five dollars each to fabricate.

  19. Discrete dislocation plasticity analysis of the wedge indentation of films

    NASA Astrophysics Data System (ADS)

    Balint, D. S.; Deshpande, V. S.; Needleman, A.; Van der Giessen, E.

    2006-11-01

    The plane strain indentation of single crystal films on a rigid substrate by a rigid wedge indenter is analyzed using discrete dislocation plasticity. The crystals have three slip systems at ±35.3∘ and 90∘ with respect to the indentation direction. The analyses are carried out for three values of the film thickness, 2, 10 and 50 μm, and with the dislocations all of edge character modeled as line singularities in a linear elastic material. The lattice resistance to dislocation motion, dislocation nucleation, dislocation interaction with obstacles and dislocation annihilation are incorporated through a set of constitutive rules. Over the range of indentation depths considered, the indentation pressure for the 10 and 50 μm thick films decreases with increasing contact size and attains a contact size-independent value for contact lengths A>4 μm. On the other hand, for the 2 μm films, the indentation pressure first decreases with increasing contact size and subsequently increases as the plastic zone reaches the rigid substrate. For the 10 and 50 μm thick films sink-in occurs around the indenter, while pile-up occurs in the 2 μm film when the plastic zone reaches the substrate. Comparisons are made with predictions obtained from other formulations: (i) the contact size-independent indentation pressure is compared with that given by continuum crystal plasticity; (ii) the scaling of the indentation pressure with indentation depth is compared with the relation proposed by Nix and Gao [1998. Indentation size effects in crystalline materials: a law for strain gradient plasticity. J. Mech. Phys. Solids 43, 411-423]; and (iii) the computed contact area is compared with that obtained from the estimation procedure of Oliver and Pharr [1992. An improved technique for determining hardness and elastic-modulus using load and displacement sensing indentation experiments, J. Mater. Res. 7, 1564-1583].

  20. Mechanical Response of Indented Potassium Bromide Cleavages

    NASA Astrophysics Data System (ADS)

    Raveendran, R.; Pandya, J. R.

    1997-06-01

    Kick's law and modified Kick's law are emperical relations, indeed useful in carrying out the analysis of the variation of indentation dimensions (d) with applied load (p). However, it could not predict the range of applied loads within which the orientation-dependent straight line is not valid. The present study indicates that the nonlinear portion in the plot of P/d2 vs 1/d corresponds to the intermediate load region (ILR) in addition to LLR and HLR, which could not be traced out from the study of Kick's law and modified Kick's law. The implications are discussed in delatil.

  1. Traceable Micro-Force Sensor for Instrumented Indentation Calibration

    SciTech Connect

    Smith, D T; Shaw, G A; Seugling, R M; Xiang, D; Pratt, J R

    2007-04-02

    Instrumented indentation testing (IIT), commonly referred to as nanoindentation when small forces are used, is a popular technique for determining the mechanical properties of small volumes of material. Sample preparation is relatively easy, usually requiring only that a smooth surface of the material to be tested be accessible to a contact probe, and instruments that combine sophisticated automation with straightforward user interfaces are available commercially from several manufacturers. In addition, documentary standards are now becoming available from both the International Standards Organization (ISO 14577) and ASTM International (E28 WK382) that define test methods and standard practices for IIT, and will allow the technique to be used to produce material property data that can be used in product specifications. These standards also define the required level of accuracy of the force data produced by IIT instruments, as well as methods to verify that accuracy. For forces below 10 mN, these requirements can be difficult to meet, particularly for instrument owners who need to verify the performance of their instrument as it is installed at their site. In this paper, we describe the development, performance and application of an SI-traceable force sensor system for potential use in the field calibration of commercial IIT instruments. The force sensor itself, based on an elastically deforming capacitance gauge, is small enough to mount in a commercial instrument as if it were a test specimen, and is used in conjunction with an ultra-high accuracy capacitance bridge. The sensor system is calibrated with NIST-traceable masses over the range 5.0 {micro}N through 5.0 mN. We will present data on its accuracy and precision, as well its potential application to the verification of force in commercial instrumented indentation instruments.

  2. 30 CFR 74.11 - Tests of the continuous personal dust monitor.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    .... The applicant shall submit the CPDM to MSHA for testing and evaluation, pursuant to 30 CFR 18.68, to... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Tests of the continuous personal dust monitor... Monitors § 74.11 Tests of the continuous personal dust monitor. (a) Applicant testing. The applicant...

  3. 30 CFR 74.11 - Tests of the continuous personal dust monitor.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    .... The applicant shall submit the CPDM to MSHA for testing and evaluation, pursuant to 30 CFR 18.68, to... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Tests of the continuous personal dust monitor... Monitors § 74.11 Tests of the continuous personal dust monitor. (a) Applicant testing. The applicant...

  4. Visualizing dislocation nucleation by indenting colloidal crystals.

    PubMed

    Schall, Peter; Cohen, Itai; Weitz, David A; Spaepen, Frans

    2006-03-16

    The formation of dislocations is central to our understanding of yield, work hardening, fracture, and fatigue of crystalline materials. While dislocations have been studied extensively in conventional materials, recent results have shown that colloidal crystals offer a potential model system for visualizing their structure and dynamics directly in real space. Although thermal fluctuations are thought to play a critical role in the nucleation of these defects, it is difficult to observe them directly. Nano-indentation, during which a small tip deforms a crystalline film, is a common tool for introducing dislocations into a small volume that is initially defect-free. Here, we show that an analogue of nano-indentation performed on a colloidal crystal provides direct images of defect formation in real time and on the single particle level, allowing us to probe the effects of thermal fluctuations. We implement a new method to determine the strain tensor of a distorted crystal lattice and we measure the critical dislocation loop size and the rate of dislocation nucleation directly. Using continuum models, we elucidate the relation between thermal fluctuations and the applied strain that governs defect nucleation. Moreover, we estimate that although bond energies between particles are about fifty times larger in atomic systems, the difference in attempt frequencies makes the effects of thermal fluctuations remarkably similar, so that our results are also relevant for atomic crystals.

  5. Finite Element Analysis of Deformation Due to Ball Indentation and Evaluation of Tensile Properties of Tempered P92 Steel

    NASA Astrophysics Data System (ADS)

    Barbadikar, Dipika R.; Ballal, A. R.; Peshwe, D. R.; Mathew, M. D.

    2015-08-01

    Ball indentation (BI) technique has been effectively used to evaluate the tensile properties with minimal volume of material. In the present investigation, BI test carried out on P92 steel (9Cr-0.5Mo-1.8W), using 0.76 mm diameter silicon nitride ball indenter was modeled using finite element (FE) method and analyzed. The effect of test temperature [300 K and 923 K (27 °C and 650 °C)], tempering temperature [1013 K, 1033 K, and 1053 K (740 °C, 760 °C, and 780 °C)], and coefficient of friction of steel (0.0 to 0.5) on the tensile strength and material pile-up was investigated. The stress and strain distributions underneath the indenter and along the top elements of the model have been studied to understand the deformation behavior. The tensile strength was found to decrease with increase in tempering and test temperatures. The increased pile-up around the indentation was attributed to the decrease in strain hardening exponent ( n) with increase in the test temperature. The pile-up height determined from profilometry studies and FE analysis as well as the load depth curve from BI and FE analysis was in agreement. The maximum strain location below the indentation changes with the test temperature. Stress-strain curves obtained by conventional tensile, BI test, and representative stress-strain concepts of FE model were found exactly matching.

  6. 40 CFR 205.160-7 - Continued testing.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... vehicle which demonstrates conformance with the applicable standard may be distributed into commerce. (e) Any distribution into commerce of a vehicle which does not comply with the applicable standard is a... be tested before distribution in commerce. (b) The Administrator will notify the manufacturer...

  7. 40 CFR 205.57-8 - Continued testing.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... with the applicable standards may be distributed into commerce. (e) Any knowing distribution into commerce of a vehicle which does not comply with the applicable standards is a prohibited act. ... at that plant be tested before distribution in commerce. (b) The Administrator will notify...

  8. 40 CFR 204.57-8 - Continued testing.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... conformance with the applicable standards may be distributed into commerce. (e) Any knowing distribution into commerce of a compressor which does not comply with the applicable standards is a prohibited act. (Sec. 6... produced at that plant be tested before distribution in commerce. (b) The Administrator will notify...

  9. 40 CFR 205.57-8 - Continued testing.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... with the applicable standards may be distributed into commerce. (e) Any knowing distribution into commerce of a vehicle which does not comply with the applicable standards is a prohibited act. ... at that plant be tested before distribution in commerce. (b) The Administrator will notify...

  10. Elastic and viscoelastic characterization of mouse oocytes using micropipette indentation.

    PubMed

    Liu, Xinyu; Shi, Jiayi; Zong, Zong; Wan, Kai-Tak; Sun, Yu

    2012-10-01

    This paper reports the first quantitative comparison study of elastic and viscoelastic properties of oocytes from young and aged mice. A force measurement technique, including a poly(dimethylsiloxane) (PDMS) cell holding device and a sub-pixel computer vision tracking algorithm, is utilized for measuring forces applied to an oocyte and resultant cell deformations in real time during oocyte manipulation. To characterize elastic and viscoelastic properties of the oocytes, a stress-relaxation indentation test is performed. A two-step, large-deformation mechanical model is developed to extract the mechanical properties of the oocytes from the measured force-deformation data. The experimental results demonstrate that the aged oocytes are significantly softer (instantaneous modulus: 2.2 vs. 5.2 kPa in young oocytes) but more viscous (relaxation time: 4.1 vs. 2.3 s in young oocytes) than the young oocytes.

  11. Elastic and viscoelastic characterization of mouse oocytes using micropipette indentation.

    PubMed

    Liu, Xinyu; Shi, Jiayi; Zong, Zong; Wan, Kai-Tak; Sun, Yu

    2012-10-01

    This paper reports the first quantitative comparison study of elastic and viscoelastic properties of oocytes from young and aged mice. A force measurement technique, including a poly(dimethylsiloxane) (PDMS) cell holding device and a sub-pixel computer vision tracking algorithm, is utilized for measuring forces applied to an oocyte and resultant cell deformations in real time during oocyte manipulation. To characterize elastic and viscoelastic properties of the oocytes, a stress-relaxation indentation test is performed. A two-step, large-deformation mechanical model is developed to extract the mechanical properties of the oocytes from the measured force-deformation data. The experimental results demonstrate that the aged oocytes are significantly softer (instantaneous modulus: 2.2 vs. 5.2 kPa in young oocytes) but more viscous (relaxation time: 4.1 vs. 2.3 s in young oocytes) than the young oocytes. PMID:22644532

  12. Determination of Interfacial Fracture Toughness of Thermal Spray Coatings by Indentation

    NASA Astrophysics Data System (ADS)

    Yamazaki, Yasuhiro; Arai, Masayuki; Miyashita, Yukio; Waki, Hiroyuki; Suzuki, Masato

    2013-12-01

    Adhesion is an important and basic property for thermal spray coatings. The standard tensile test method "ISO 14916" is usually used to evaluate the adhesive strength of coatings. On the other hand, the indentation test method has some advantages to evaluate the interfacial fracture toughness as the adhesive strength, arising from the following reasons: the test procedure and the specimen preparation are easy in comparison with the typical testing method. Collaborative research has been conducted by "Committee on Standard Development" in the Japan Thermal Spray Society to establish a standard test method for evaluating interfacial fracture toughness of thermal spray coatings using a conventional Vickers indenter. This article reports the differences among collaborators in round-robin tests performed in this committee and discusses the validity of the test method and test conditions with respect to the test results and finite element analyses. Comparison among collaborators reveals that interfacial fracture toughness can be obtained with a small scattering from the indentation test under constraints found on the basis of the results.

  13. Gamow states as continuous linear functionals over analytical test functions

    SciTech Connect

    Bollini, C.G.; Civitarese, O.; De Paoli, A.L.; Rocca, M.C. |

    1996-09-01

    The space of analytical test functions {xi}, rapidly decreasing on the real axis (i.e., Schwartz test functions of the type S on the real axis), is used to construct the rigged Hilbert space (RHS) ({xi},H,{xi}{prime}). Gamow states (GS) can be defined in RHS starting from Dirac{close_quote}s formula. It is shown that the expectation value of a self-adjoint operator acting on a GS is real. We have computed exactly the probability of finding a system in a GS and found that it is finite. The validity of recently proposed approximations to calculate the expectation value of self-adjoint operators in a GS is discussed. {copyright} {ital 1996 American Institute of Physics.}

  14. Measurement of ultra thin film fracture toughness by nano-indentation: A numerical study

    NASA Astrophysics Data System (ADS)

    Burke, Benjamin

    As the individual layers of interconnect structures decrease in size, it becomes increasingly difficult to determine the fracture toughness, and hence the reliability, of these layers. After a layer is thinner than ˜500nm, it becomes difficult to determine the fracture toughness directly with traditional methods. Using nano-indentation, it is possible to extract the cohesive and adhesive fracture energies of these films without elaborate experimental setups. There are, however, several issues with this approach. Nano-indentation creates cracks both within the film (the cohesive cracks) and between the film and the substrate (the adhesive cracks) as well as significant plastic deformation of the film and substrate. Using SIMULA Abaqus Standard, a commercial finite element analysis tool, 2D and 3D models were created to examine the deformation characteristics associated with the nano-indentation process. The models either have pre-existing stationary cracks, or simulated by cohesive zone surfaces to account for crack nucleation and growth. The 2D model is axi-symmetric and only accounts for the adhesive crack. It is used primarily as a test the cohesive zone model and to begin to determine experimental testing limits. The 3D model is a one sixth slice of the area indented. Both cohesive and adhesive cracks are modeled and the interaction between the two cracks is investigated. While there are many parameters controlling the crack initiation and propagation process, several trends were identified. The domain of practical testing should be between one and three film thickness, so as to avoid the confluence of the indenter plastic process zone on the propagating crack front. When excursion on the load-indentation depth happens, the fracture energy is about 20% of the associated work done by the indenter (or the area under the excursion segment). The FEM simulation showed the general role of film thickness, toughness and modulus on the initiation and propagation of both

  15. Giant pop-ins and amorphization in germanium during indentation

    NASA Astrophysics Data System (ADS)

    Oliver, David J.; Bradby, Jodie E.; Williams, Jim S.; Swain, Michael V.; Munroe, Paul

    2007-02-01

    Sudden excursions of unusually large magnitude (>1 μm), "giant pop-ins," have been observed in the force-displacement curve for high load indentation of crystalline germanium (Ge). A range of techniques including Raman microspectroscopy, focused ion-beam cross sectioning, and transmission electron microscopy, are applied to study this phenomenon. Amorphous material is observed in residual indents following the giant pop-in. The giant pop-in is shown to be a material removal event, triggered by the development of shallow lateral cracks adjacent to the indent. Enhanced depth recovery, or "elbowing," observed in the force-displacement curve following the giant pop-in is explained in terms of a compliant response of plates of material around the indent detached by lateral cracking. The possible causes of amorphization are discussed, and the implications in light of earlier indentation studies of Ge are considered.

  16. Johnson-Kendall-Roberts adhesive contact for a toroidal indenter

    NASA Astrophysics Data System (ADS)

    Argatov, Ivan; Li, Qiang; Pohrt, Roman; Popov, Valentin L.

    2016-07-01

    The unilateral axisymmetric frictionless adhesive contact problem for a toroidal indenter and an elastic half-space is considered in the framework of the Johnson-Kendall-Roberts theory. In the case of a semi-fixed annular contact area, when one of the contact radii is fixed, while the other varies during indentation, we obtain the asymptotic solution of the adhesive contact problem based on the solution of the corresponding unilateral non-adhesive contact problem. In particular, the adhesive contact problem for Barber's concave indenter is considered in detail. In the case when both contact radii are variable, we construct the leading-order asymptotic solution for a narrow annular contact area. It is found that for a v-shaped generalized toroidal indenter, the pull-off force is independent of the elastic properties of the indented solid.

  17. A continuum dislocation model of Vickers indentation on a zirconia

    SciTech Connect

    Tanaka, K.; Kanari, M.; Matsui, N.

    1999-05-28

    The Vickers indentation of 3 mol% Y{sub 2}O{sub 5} partially stabilized ZrO{sub 2} (3Y-PSZ) was examined by a depth sensing technique and analyzed on a continuum dislocation model. The model is based on the punching of prismatic dislocation loops to accommodate the volume of plastic penetration at the prismatic indentation. A procedure is proposed for solving an inverse problem to estimate the plastic core zone configuration and yield stress in the indentation of brittle materials using the information obtained from the experimental indentation curve of the material. It was found that there are an infinite number of solutions as a function of the plastic zone configuration. The most appropriate solution was obtained by comparing the predicted profiles of the indentation with the profile observed by a topographic scanning electron microscope. The estimated plastic zone configuration and yield stress show reasonable agreement with experimental data of Y-PSZ in the literature.

  18. Invited Article: Indenter materials for high temperature nanoindentation.

    PubMed

    Wheeler, J M; Michler, J

    2013-10-01

    As nanoindentation at high temperatures becomes increasingly popular, a review of indenter materials for usage at high temperatures is instructive for identifying appropriate indenter-sample materials combinations to prevent indenter loss or failure due to chemical reactions or wear during indentation. This is an important consideration for nanoindentation as extremely small volumes of reacted indenter material will have a significant effect on measurements. The high temperature hardness, elastic modulus, thermal properties, and chemical reactivities of diamond, boron carbide, silicon carbide, tungsten carbide, cubic boron nitride, and sapphire are discussed. Diamond and boron carbide show the best elevated temperature hardness, while tungsten carbide demonstrates the lowest chemical reactivity with the widest array of elements.

  19. Extraction of quasi-linear viscoelastic parameters for lower limb soft tissues from manual indentation experiment.

    PubMed

    Zheng, Y P; Mak, A F

    1999-06-01

    A manual indentation protocol was established to assess the quasi-linear viscoelastic (QLV) properties of lower limb soft tissues. The QLV parameters were extracted using a curve-fitting procedure on the experimental indentation data. The load-indentation responses were obtained using an ultrasound indentation apparatus with a hand-held pen-sized probe. Limb soft tissues at four sites of eight normal young subjects were tested in three body postures. Four QLV model parameters were extracted from the experimental data. The initial modulus E0 ranged from 0.22 kPa to 58.4 kPa. The nonlinear factor E1 ranged from 21.7 kPa to 547 kPa. The time constant tau ranged from 0.05 s to 8.93 s. The time-dependent materials parameter alpha ranged from 0.029 to 0.277. Large variations of the parameters were noted among subjects, sites, and postures.

  20. Bone Tissue Properties Measurement by Reference Point Indentation in Glucocorticoid-Induced Osteoporosis.

    PubMed

    Mellibovsky, Leonardo; Prieto-Alhambra, Daniel; Mellibovsky, Fernando; Güerri-Fernández, Roberto; Nogués, Xavier; Randall, Connor; Hansma, Paul K; Díez-Perez, Adolfo

    2015-09-01

    Glucocorticoids, widely used in inflammatory disorders, rapidly increase bone fragility and, therefore, fracture risk. However, common bone densitometry measurements are not sensitive enough to detect these changes. Moreover, densitometry only partially recognizes treatment-induced fracture reductions in osteoporosis. Here, we tested whether the reference point indentation technique could detect bone tissue property changes early after glucocorticoid treatment initiation. After initial laboratory and bone density measurements, patients were allocated into groups receiving calcium + vitamin D (Ca+D) supplements or anti-osteoporotic drugs (risedronate, denosumab, teriparatide). Reference point indentation was performed on the cortical bone layer of the tibia by a handheld device measuring bone material strength index (BMSi). Bone mineral density was measured by dual-energy X-ray absorptiometry (DXA). Although Ca+D-treated patients exhibited substantial and significant deterioration, risedronate-treated patients exhibited no significant change, and both denosumab- and teriparatide-treated participants exhibited significantly improved BMSi 7 weeks after initial treatment compared with baseline; these trends remained stable for 20 weeks. In contrast, no densitometry changes were observed during this study period. In conclusion, our study is the first to our knowledge to demonstrate that reference point indentation is sensitive enough to reflect changes in cortical bone indentation after treatment with osteoporosis therapies in patients newly exposed to glucocorticoids. PMID:25736591

  1. Grid indentation analysis of mechanical properties of composite electrodes in Li-ion batteries

    DOE PAGES

    Vasconcelos, Luize Scalco de; Xu, Rong; Li, Jianlin; Zhao, Kejie

    2016-03-09

    We report that electrodes in commercial rechargeable batteries are microscopically heterogeneous materials. The constituent components, including active materials, polymeric binders, and porous conductive matrix, often have large variation in their mechanical properties, making the mechanical characterization of composite electrodes a challenging task. In a model system of LiNi0.5Mn0.3Co0.2O2 cathode, we employ the instrumented grid indentation to determine the elastic modulus and hardness of the constituent phases. The approach relies on a large array of nanoindentation experiments and statistical analysis of the resulting data provided that the maximum indentation depth is carefully chosen. The statistically extracted properties of the active particlesmore » and the surrounding medium are in good agreement with the tests of targeted indentation at selected sites. Lastly, the combinatory technique of grid indentation and statistical deconvolution represents a fast and reliable route to quantify the mechanical properties of composite electrodes that feed the parametric input for the mechanics models.« less

  2. The compelling case for indentation as a functional exploratory and characterization tool

    SciTech Connect

    Tandon, Rajan; Marshall, David B.; Cook, Robert F.; Padture, Nitin P.; Oyen, Michelle L.; Pajares, Antonia; Bradby, Jodie E.; Reimanis, Ivar E.; Page, Trevor F.; Pharr, George M.; Lawn, Brian R.

    2015-07-30

    The utility of indentation testing for characterizing a wide range of mechanical properties of brittle materials is highlighted in light of recent articles questioning its validity, specifically in relation to the measurement of toughness. Contrary to assertion by some critics, indentation fracture theory is fundamentally founded in Griffith–Irwin fracture mechanics, based on model crack systems evolving within inhomogeneous but well-documented elastic and elastic–plastic contact stress fields. Notwithstanding some numerical uncertainty in associated stress intensity factor relations, the technique remains an unrivalled quick, convenient and economical means for comparative, site-specific toughness evaluation. Most importantly, indentation patterns are unique fingerprints of mechanical behavior and thereby afford a powerful functional tool for exploring the richness of material diversity. At the same time, it is cautioned that unconditional usage without due attention to the conformation of the indentation patterns can lead to overstated toughness values. Limitations of an alternative, more engineering approach to fracture evaluation, that of propagating a precrack through a “standard” machined specimen, are also outlined. Thus misconceptions in the critical literature concerning the fundamental nature of crack equilibrium and stability within contact and other inhomogeneous stress fields are discussed.

  3. The compelling case for indentation as a functional exploratory and characterization tool

    DOE PAGES

    Tandon, Rajan; Marshall, David B.; Cook, Robert F.; Padture, Nitin P.; Oyen, Michelle L.; Pajares, Antonia; Bradby, Jodie E.; Reimanis, Ivar E.; Page, Trevor F.; Pharr, George M.; et al

    2015-07-30

    The utility of indentation testing for characterizing a wide range of mechanical properties of brittle materials is highlighted in light of recent articles questioning its validity, specifically in relation to the measurement of toughness. Contrary to assertion by some critics, indentation fracture theory is fundamentally founded in Griffith–Irwin fracture mechanics, based on model crack systems evolving within inhomogeneous but well-documented elastic and elastic–plastic contact stress fields. Notwithstanding some numerical uncertainty in associated stress intensity factor relations, the technique remains an unrivalled quick, convenient and economical means for comparative, site-specific toughness evaluation. Most importantly, indentation patterns are unique fingerprints of mechanicalmore » behavior and thereby afford a powerful functional tool for exploring the richness of material diversity. At the same time, it is cautioned that unconditional usage without due attention to the conformation of the indentation patterns can lead to overstated toughness values. Limitations of an alternative, more engineering approach to fracture evaluation, that of propagating a precrack through a “standard” machined specimen, are also outlined. Thus misconceptions in the critical literature concerning the fundamental nature of crack equilibrium and stability within contact and other inhomogeneous stress fields are discussed.« less

  4. Dislocation formation in seed crystals induced by feedstock indentation during growth of quasimono crystalline silicon ingots

    NASA Astrophysics Data System (ADS)

    Trempa, M.; Beier, M.; Reimann, C.; Roßhirth, K.; Friedrich, J.; Löbel, C.; Sylla, L.; Richter, T.

    2016-11-01

    In this work the dislocation formation in the seed crystal induced by feedstock indentation during the growth of quasimono (QM) silicon ingots for photovoltaic application was investigated. It could be shown by special laboratory indentation experiments that the formed dislocations propagate up to several millimeters deep into the volume of the seed crystal in dependence on the applied pressure of the feedstock particles on the surface of the seed crystal. Further, it was demonstrated that these dislocations if they were not back-melted during the seeding process grow further into the silicon ingot and drastically reduce its material quality. An estimation of the apparent pressure values in a G5 industrial crucible/feedstock setup reveals that the indentation phenomenon is a critical issue for the industrial production of QM silicon ingots. Therefore, some approaches to avoid/reduce the indentation events were tested with the result, that the most promising solution should be the usage of suitable feedstock particles as coverage of the seed.

  5. If mechanics of cells can be described by elastic modulus in AFM indentation experiments?

    NASA Astrophysics Data System (ADS)

    Sokolov, Igor; Dokukin, Maxim; Guz, Nataliia; Kalaparthi, Vivekanand

    2014-03-01

    We study the question if cells, being highly heterogeneous objects, can be described with an elastic modulus (the Young's modulus) in a self-consistent way. We analyze the elastic modulus using indentation done with AFM of human cervical epithelial cells. Both sharp (cone) and dull AFM probes were used. The indentation data collected were processed through different elastic models. The cell was considered as a homogeneous elastic medium which had either smooth spherical boundary (Hertz/Sneddon models) or the boundary covered with a layer of glycocalyx and membrane protrusions (``brush'' models). Validity of these approximations was investigated. Specifically, we tested the independence of the elastic modulus of the indentation depth, which is assumed in these models. We demonstrate that only one model shows consistency with treating cells as homogeneous elastic medium, the bush model when processing the indentation data collected with the dull probe. The elastic modulus demonstrates strong depth dependence in all other three models. We conclude that it is possible to describe the elastic properties of the cell body by means of an effective elastic modulus in a self-consistent way when using the brush model to analyze data collected with a dull AFM probe.

  6. An inverse finite-element model of heel-pad indentation.

    PubMed

    Erdemir, Ahmet; Viveiros, Meredith L; Ulbrecht, Jan S; Cavanagh, Peter R

    2006-01-01

    A numerical-experimental approach has been developed to characterize heel-pad deformation at the material level. Left and right heels of 20 diabetic subjects and 20 nondiabetic subjects matched for age, gender and body mass index were indented using force-controlled ultrasound. Initial tissue thickness and deformation were measured using M-mode ultrasound; indentation forces were recorded simultaneously. An inverse finite-element analysis of the indentation protocol using axisymmetric models adjusted to reflect individual heel thickness was used to extract nonlinear material properties describing the hyperelastic behavior of each heel. Student's t-tests revealed that heel pads of diabetic subjects were not significantly different in initial thickness nor were they stiffer than those from nondiabetic subjects. Another heel-pad model with anatomically realistic surface representations of the calcaneus and soft tissue was developed to estimate peak pressure prediction errors when average rather than individualized material properties were used. Root-mean-square errors of up to 7% were calculated, indicating the importance of subject-specific modeling of the nonlinear elastic behavior of the heel pad. Indentation systems combined with the presented numerical approach can provide this information for further analysis of patient-specific foot pathologies and therapeutic footwear designs.

  7. Bone Tissue Properties Measurement by Reference Point Indentation in Glucocorticoid-Induced Osteoporosis.

    PubMed

    Mellibovsky, Leonardo; Prieto-Alhambra, Daniel; Mellibovsky, Fernando; Güerri-Fernández, Roberto; Nogués, Xavier; Randall, Connor; Hansma, Paul K; Díez-Perez, Adolfo

    2015-09-01

    Glucocorticoids, widely used in inflammatory disorders, rapidly increase bone fragility and, therefore, fracture risk. However, common bone densitometry measurements are not sensitive enough to detect these changes. Moreover, densitometry only partially recognizes treatment-induced fracture reductions in osteoporosis. Here, we tested whether the reference point indentation technique could detect bone tissue property changes early after glucocorticoid treatment initiation. After initial laboratory and bone density measurements, patients were allocated into groups receiving calcium + vitamin D (Ca+D) supplements or anti-osteoporotic drugs (risedronate, denosumab, teriparatide). Reference point indentation was performed on the cortical bone layer of the tibia by a handheld device measuring bone material strength index (BMSi). Bone mineral density was measured by dual-energy X-ray absorptiometry (DXA). Although Ca+D-treated patients exhibited substantial and significant deterioration, risedronate-treated patients exhibited no significant change, and both denosumab- and teriparatide-treated participants exhibited significantly improved BMSi 7 weeks after initial treatment compared with baseline; these trends remained stable for 20 weeks. In contrast, no densitometry changes were observed during this study period. In conclusion, our study is the first to our knowledge to demonstrate that reference point indentation is sensitive enough to reflect changes in cortical bone indentation after treatment with osteoporosis therapies in patients newly exposed to glucocorticoids.

  8. Probing incipient plasticity by indenting colloidal glasses

    NASA Astrophysics Data System (ADS)

    Rahmani, Y.; Koopman, R.; Denisov, D.; Schall, P.

    2013-01-01

    Glasses are lucrative engineering materials owing to their superior mechanical properties such as high strength and large elastic strain. A central question concerns incipient plasticity - the onset of permanent deformation - that is central to their relaxation, aging, yield and fracture. Here, we use an analogue of nano-indentation performed on a colloidal glass to obtain direct images of the incipient plasticity, allowing us to elucidate the onset of permanent deformation. We visualize the microscopic strain by following distorted nearest neighbor configurations, and observe a surprising hierarchical structure of deformation: at the onset of irreversible deformation, the strain acquires a robust fractal structure, and we measure its fractal dimension. These results give direct evidence that the onset of permanent deformation has the hallmarks of a critical point, in agreement with recent theoretical works.

  9. Indentation-flexure and low-velocity impact damage in graphite/epoxy laminates

    NASA Technical Reports Server (NTRS)

    Kwon, Young S.; Sankar, Bhavani V.

    1992-01-01

    Static indentation and low velocity impact tests were performed on quasi-isotropic and cross ply graphite/epoxy composite laminates. The load deflection relations in static tests and impact force history in the impact tests were recorded. The damage was assessed by using ultrasonic C-scanning and photomicrographic techniques. The static behavior of the laminates and damage progression during loading, unloading, and reloading were explained by a simple plate delamination model. A good correlation existed between the static and impact responses. It was found that results from a few static indentation-flexture tests can be used to predict the response and damage in composite laminates due to a class of low velocity impact events.

  10. Thermal shock behavior of silicon nitride flexure beam specimens with indentation cracks

    SciTech Connect

    Choi, S.R.; Salem, J.A. . Lewis Research Center)

    1994-03-01

    The experimental results of thermal shock testing of silicon nitride flexure beam specimens containing indentation cracks are presented. The thermal stress induced by water quenching is much greater in the transverse direction than in the longitudinal direction, resulting in an insensitivity of residual bend strength to temperature differences up to 580 C. This result indicates that a flexure beam configuration is not an appropriate geometry for thermal shock testing when thermal shock behavior is to be evaluated from residual bend strength data.

  11. On the indentation failure of carbon-epoxy cross-ply laminates, and its suppression by elasto-plastic interleaves

    SciTech Connect

    Joergensen, O.; Horsewell, A.

    1997-08-01

    Elastic and elasto-plastic modelling of indentation in CFRP cross-ply laminates has been performed. Detailed knowledge of the field solutions in the volume below the indentor forms the basis for the reported micromechanical interpretation of the observed damage in test specimens. The analysis shows that matrix cracks originate at sites of maximum tensile stress perpendicular to fibers. The predicted stress fields due to indentation show that stress concentrations occur in the interface between alternating plies. It is found that microcracking in this zone is a precursor to the observed failure. This analysis is supported by in-situ scanning electron microscopy during loading by a cylindrical indentor onto the laminate supported on a rigid substrate. The microscopy reveals microdamage in the region of interfacial tensile stress concentrations. The onset of indentation failure in these layered composites suggests that plastic interleaves would delay failure. It is shown numerically that plastic deformation of the interleaves redistributes stresses and thereby weakens the tensile stress concentrations which arise during indentation. Experimentally it is shown that aluminium interleaves affect the formation of indentation failure. In a cross-ply laminate, where alternating ply groups are separated by aluminium sheets, matrix cracking and delamination failures are suppressed by the occurrence of plastic deformation. Since the aluminium is likely to be weakly bonded to the plies, it is seen that weak interlaminar fracture toughness does not necessarily cause delaminations, nor lead to a lower indentation strength. High indentation strength and delamination resistance are complex qualities which, among others, seem to be achieved in laminate geometries which have a minimum of stress concentration at interfaces between ply groups of different orientation.

  12. Improving lithographic masks with the assistance of indentations

    NASA Astrophysics Data System (ADS)

    Guo, Ying-Nan; Li, Xu-Feng; Pan, Shi; Wang, Qiao; Wang, Shuo; Wu, Yong-Kuan

    2012-05-01

    Indentations etched on the output surface of a metallic mask are proposed to produce fine lithographic patterns with a resolution of 500 nm using the finite-difference time domain (FDTD) method. Such a designed mask is capable of enhancing near field lithography (NFL) resolution more than three times compared with the structure without indentations. The simulation results show that the interference disturbance between the adjacent lithographic channels can be eliminated efficiently by employing the indentations. As a straightforward consequence, the channel-to-channel interspaces can be shortened significantly, maintaining a uniform field distribution and high contrast.

  13. Occurrence of spherical ceramic debris in indentation and sliding contact

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.

    1982-01-01

    Indenting experiments were conducted with the silicon carbide (0001) surface in contact with a spherical diamond indenter in air. Sliding friction experiments were also conducted with silicon carbide in contact with iron and iron-based binary alloys at room temperature and 800 C. Fracture pits with a spherical particle and spherical wear debris were observed as a result of indenting and sliding. Spherical debris may be produced by a mechanism that involves a spherical-shaped fracture along the circular or spherical stress trajectories under the inelastic deformation zone.

  14. Construct Validity of the Computerized Continuous Performance Test with Measures of Intelligence, Achievement, and Behavior.

    ERIC Educational Resources Information Center

    Campbell, Janice Whitten; And Others

    1991-01-01

    Administered Continuous Performance Test (CPT), Wechsler Intelligence Scale for Children-Revised, Wide Range Achievement Test-Revised, Bender Visual-Motor Gestalt Test, and reading comprehension subtest of Peabody Individual Achievement Test to 54 school-aged children and adolescents referred for evaluation of learning disabilities. Parents…

  15. Mechanical characterization of Ti-6Al-4V titanium alloy at multiple length scales using spherical indentation stress-strain measurements

    DOE PAGES

    Weaver, Jordan S.; Kalidindi, Surya R.

    2016-09-05

    Recent advances in spherical indentation stress-strain protocols and analyses have demonstrated the capability for measuring reliably the local mechanical responses in polycrystalline metal samples at different length scales, ranging from sub-micron (regions within individual grains) to several hundreds of microns (regions covering several grains). These recent advances have now made it possible to study systematically the mechanical behavior of a single material system at different length scales, with tremendous potential to obtain new insights into the role of individual phases, interfaces, and other microscale constituents on the macroscale mechanical response of the material. In this paper, we report spherical indentationmore » stress-strain measurements with different indenter sizes (microns to millimeters) on Ti-6Al-4V (Ti-64) which capture the mechanical response of single phase alpha-Ti-64, single colony (alpha-beta), few colonies, and many colonies of Ti-64. The results show that the average mechanical response (indentation modulus and yield strength) from multiple indentations remains relatively unchanged from single phase alpha to many colonies of Ti-64, while the variance in the response decreases with indenter size. In conclusion, the work-hardening response in indentation tests follows a similar behavior up to indentation zones of many colonies, which shows significantly higher work hardening rates.« less

  16. 5. Top surface of dock showing indented section (bay) on ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. Top surface of dock showing indented section (bay) on SW side; looking NW. Ferry in background is at Winslow ferry dock. - Pacific Creosoting Plant, West Dock, 5350 Creosote Place, Northeast, Bremerton, Kitsap County, WA

  17. The 5-Choice Continuous Performance Test: Evidence for a Translational Test of Vigilance for Mice

    PubMed Central

    Young, Jared W.; Light, Gregory A.; Marston, Hugh M.; Sharp, Richard; Geyer, Mark A.

    2009-01-01

    Background Attentional dysfunction is related to functional disability in patients with neuropsychiatric disorders such as schizophrenia, bipolar disorder, and Alzheimer's disease. Indeed, sustained attention/vigilance is among the leading targets for new medications designed to improve cognition in schizophrenia. Although vigilance is assessed frequently using the continuous performance test (CPT) in humans, few tests specifically assess vigilance in rodents. Methods We describe the 5-choice CPT (5C-CPT), an elaboration of the 5-choice serial reaction (5CSR) task that includes non-signal trials, thus mimicking task parameters of human CPTs that use signal and non-signal events to assess vigilance. The performances of C57BL/6J and DBA/2J mice were assessed in the 5C-CPT to determine whether this task could differentiate between strains. C57BL/6J mice were also trained in the 5CSR task and a simple reaction-time (RT) task involving only one choice (1CRT task). We hypothesized that: 1) C57BL/6J performance would be superior to DBA/2J mice in the 5C-CPT as measured by the sensitivity index measure from signal detection theory; 2) a vigilance decrement would be observed in both strains; and 3) RTs would increase across tasks with increased attentional load (1CRT task<5CSR task<5C-CPT). Conclusions C57BL/6J mice exhibited superior SI levels compared to DBA/2J mice, but with no difference in accuracy. A vigilance decrement was observed in both strains, which was more pronounced in DBA/2J mice and unaffected by response bias. Finally, we observed increased RTs with increased attentional load, such that 1CRT task<5CSR task<5C-CPT, consistent with human performance in simple RT, choice RT, and CPT tasks. Thus we have demonstrated construct validity for the 5C-CPT as a measure of vigilance that is analogous to human CPT studies. PMID:19156216

  18. Indenter growth in analogue models of Alpine-type deformation

    NASA Astrophysics Data System (ADS)

    Bonini, Marco; Sokoutis, Dimitrios; Talbot, Christopher J.; Boccaletti, Mario; Milnes, Alan G.

    1999-02-01

    A series of analogue experiments were carried out to simulate continental convergence, as seen in a profile through the Central Alps. A rigid indenter, representing the Adriatic plate, was driven laterally into a sand pack representing the brittle upper crust of Europe, detached and thickening above its subducting ductile lower crust. The rigid indenter advanced at the same steady rate in each experiment, but the dip of its front face was steepened in 15° increments from 15° to 90°. Where the rigid indenter face dipped at 45° or less, a sand wedge rose and was bound by a series of forekinks that nucleated at the toe of the indenter. Where the face of the rigid indenter dipped 60° or more, the wedge was defined by a single forekink and one or more backkinks that nucleated from a point advancing in front of the indenter toe. We interpret these results as indicating that slices of the sand pack and rising wedge are transferred across kink bands to build an "effective" indenter with a frontal dip closer to that dictated by the changing shear strength of the sand pile, which thickens vertically as it shortens laterally. One of our models (with a rigid indenter dipping 75°) simulates most of the major structures shown in recent syntheses of surface geology and deep seismic data in the Central Alps, without the isostatic lithospheric depression. This model accounts for the late collisional stage (Oligocene to Present) complex strain and metamorphic histories in the core of the orogenic wedge, the rapid rise and extrusion of small pips of Alpine eclogites, and the current passivity of the Insubric Line. It also emphasizes that lateral extension along gently dipping "thrusts" (orogen-normal horizontal escape) is confined to the extruded portion of the rising wedge.

  19. Molecular dynamics simulation of VN thin films under indentation

    NASA Astrophysics Data System (ADS)

    Fu, Tao; Peng, Xianghe; Huang, Cheng; Yin, Deqiang; Li, Qibin; Wang, Zhongchang

    2015-12-01

    We investigated with molecular dynamics simulation the mechanical responses of VN (0 0 1) thin films subjected to indentation with a diamond columnar indenter. We calculated the generalized stacking-fault energies as a function of the displacement in the rbond2 1 1 0lbond2 directions on the {0 0 1}, {1 1 0}, and {1 1 1} planes, and analyzed systematically the microstructures and their evolution during the indentation with the centro-symmetry parameters and the slices of the VN films. We found the slips on {1 1 0}rbond2 1 1 0lbond2 of the VN film under indentation at the initial stage. With the increase of indentation depth, slips are also activated on {1 1 1}rbond2 1 1 0lbond2 and {1 0 0}rbond2 0 1 1lbond2 systems. We further found that the slip system is determined by the stacking-fault energy rather than the layer spacing. The indentations with other different parameters were also performed, and the results further prove the validity of the conclusion.

  20. Results of continuous synchronous orbit testing of sealed nickel-cadmium cells

    NASA Technical Reports Server (NTRS)

    Harkness, J. D.

    1981-01-01

    Test results from continuous synchronous orbit testing of sealed nickel cadmium cells are presented. The synchronous orbit regime simulates a space satellite maintaining a position over a fixed point on earth as the earth rotates on its axis and revolves about the sun. Characteristics of each lot of cells, test conditions, and charge control methods are described.

  1. Continual Non-Condensable Gas Removal Testing -- Performance and Lessons Learned

    SciTech Connect

    Charles Mohr; Greg Mines

    2005-09-01

    The operating experience and plant benefit analysis of a membrane-based continuous non-condensable gas (NCG) removal system is discussed. Results from testing at the Mammoth Pacific (Ormat) geothermal plant provide the basis for the benefit analysis.

  2. Adhesive and cohesive properties by indentation method of plasma-sprayed hydroxyapatite coatings

    NASA Astrophysics Data System (ADS)

    Mohammadi, Z.; Ziaei-Moayyed, A. A.; Mesgar, A. Sheikh-Mehdi

    2007-03-01

    Adhesive and cohesive properties of the plasma-sprayed hydroxyapatite (HA) coatings, deposited on Ti-6Al-4V substrates by varying the plasma power level and spray distance (SD), were evaluated by an indentation method. The crystallinity and the porosity decreased with increasing both of these two parameters. The microhardness value, Young's modulus ( E) and coating fracture toughness ( KC) were found to increase with a combinational increase in spray power and SD. The Knoop and Vickers indentation methods were used to estimate E and KC, respectively. The critical point at which no crack appears at the interface was determined by the interface indentation test. This was used to define the apparent interfacial toughness ( KCa) which is representative of the crack initiation resistance of the interface. It was found that KCa reaches to a maximum at a medium increase in both spray power and SD, while other mechanical properties of the coatings reaches to the highest value with further increase in these two plasma parameters. The tensile adhesion strength of the coatings, measure by the standard adhesion test, ISO 13779-4, was shown to alter in the same manner with KCa results. It was deduced that a combinational increase in spray power and SD which leads to a higher mechanical properties in the coatings, does not necessarily tends to a better mechanical properties at the interface.

  3. Fracture toughness measurement of dental ceramics using the indentation fracture method with different formulas.

    PubMed

    Maehara, Satoshi; Fujishima, Akihiro; Hotta, Yasuhiro; Miyazaki, Takashi

    2005-09-01

    This study examined fracture toughness (KIC) measurements obtained using the indentation fracture (IF) method with a view to improving their reliability. The KIC values of five dental ceramics were measured using the IF method with five different formulas, and the single-edge precracked beam (SEPB) method was used as a control. The elastic moduli of the dental ceramics were evaluated by dynamic hardness test. Load conditions of the dental ceramics that produced a median/radial crack for the IF method formulas were investigated. Based on the resultant c/a and P/c1.5 values, the indentation load (P) required for median/radial crack occurrence varied greatly from 29.4 to 196 N depending on the ceramic used. Among the five formulas, none of the KIC values obtained by the IF method with Miyoshi's formula differed significantly (p > 0.05) from the values obtained using SEPB method. These results suggested that, after an appropriate indentation load is determined, reliable KIC values for small dental ceramic specimens can be easily obtained using the IF method if Miyoshi's formula is used in combination with the dynamic hardness test.

  4. Microstructure-dependent deformation behaviour of bcc-metals - indentation size effect and strain rate sensitivity

    NASA Astrophysics Data System (ADS)

    Maier, Verena; Schunk, Christopher; Göken, Mathias; Durst, Karsten

    2015-06-01

    In this work, the indentation size effect and the influence of the microstructure on the time-dependent deformation behaviour of body-centred cubic (bcc) metals are studied by performing nanoindentation strain rate jump tests at room temperature. During these experiments, the strain rate is abruptly changed, and from the resulting hardness difference the local strain rate sensitivity has been derived. Single-crystalline materials exhibit a strong indentation size effect; ultrafine-grained metals have nearly a depth-independent hardness. Tungsten as a bcc metal shows the opposite behaviour as generally found for face-centered cubic metals. While for UFG-W only slightly enhanced strain rate sensitivity was observed, SX-W exhibits a pronounced influence of the strain rate on the resulting hardness at room temperature. This is due to the effects of the high lattice friction of bcc metals at low temperatures, where the thermally activated motion of screw dislocations is the dominating deformation mechanisms, which causes the enhanced strain rate sensitivity. For the SX-materials, it was found that the degree of the indentation size effect directly correlates with the homologous testing temperature and thus, the material specific parameter of the critical temperature Tc. However, for the resultant strain rate sensitivity no depth-dependent change was found.

  5. Device for testing continuity and/or short circuits in a cable

    NASA Technical Reports Server (NTRS)

    Hayhurst, Arthur R. (Inventor)

    1995-01-01

    A device for testing current paths is attachable to a conductor. The device automatically checks the current paths of the conductor for continuity of a center conductor, continuity of a shield and a short circuit between the shield and the center conductor. The device includes a pair of connectors and a circuit to provide for testing of the conductive paths of the cable. The pair of connectors electrically connects the conductive paths of a cable to be tested with the circuit paths of the circuit. The circuit paths in the circuit include indicators to simultaneously indicate the results of the testing.

  6. Mechanical properties of gray and white matter brain tissue by indentation

    PubMed Central

    Budday, Silvia; Nay, Richard; de Rooij, Rijk; Steinmann, Paul; Wyrobek, Thomas; Ovaert, Timothy C.; Kuhl, Ellen

    2015-01-01

    The mammalian brain is composed of an outer layer of gray matter, consisting of cell bodies, dendrites, and unmyelinated axons, and an inner core of white matter, consisting primarily of myelinated axons. Recent evidence suggests that microstructural differences between gray and white matter play an important role during neurodevelopment. While brain tissue as a whole is rheologically well characterized, the individual features of gray and white matter remain poorly understood. Here we quantify the mechanical properties of gray and white matter using a robust, reliable, and repeatable method, flat-punch indentation. To systematically characterize gray and white matter moduli for varying indenter diameters, loading rates, holding times, post-mortem times, and locations we performed a series of n=192 indentation tests. We found that indenting thick, intact coronal slices eliminates the common challenges associated with small specimens: it naturally minimizes boundary effects, dehydration, swelling, and structural degradation. When kept intact and hydrated, brain slices maintained their mechanical characteristics with standard deviations as low as 5% throughout the entire testing period of five days post mortem. White matter, with an average modulus of 1.895kPa±0.592kPa, was on average 39% stiffer than gray matter, p<0.01, with an average modulus of 1.389kPa±0.289kPa, and displayed larger regional variations. It was also more viscous than gray matter and responded less rapidly to mechanical loading. Understanding the rheological differences between gray and white matter may have direct implications on diagnosing and understanding the mechanical environment in neurodevelopment and neurological disorders. PMID:25819199

  7. A Nano-indentation Identification Technique for Viscoelastic Constitutive Characteristics of Periodontal Ligaments

    PubMed Central

    Ashrafi, H.; Shariyat, M.

    2016-01-01

    Introduction Nano-indentation has recently been employed as a powerful tool for determining the mechanical properties of biological tissues on nano and micro scales. A majority of soft biological tissues such as ligaments and tendons exhibit viscoelastic or time-dependent behaviors. The constitutive characterization of soft tissues is among very important subjects in clinical medicine and especially, biomechanics fields. Periodontal ligament plays an important role in initiating tooth movement when loads are applied to teeth with orthodontic appliances. It is also the most accessible ligament in human body as it can be directly manipulated without any surgical intervention. From a mechanical point of view, this ligament can be considered as a thin interface made by a solid phase, consisting mainly of collagen fibers, which is immersed into a so-called ground substance. However, the viscoelastic constitutive effects of biological tissues are seldom considered rigorous during Nano-indentation tests. Methods In the present paper, a mathematical contact approach is developed to enable determining creep compliance and relaxation modulus of distinct periodontal ligaments, using constant–rate indentation and loading time histories, respectively. An adequate curve-fitting method is presented to determine these characteristics based on the Nano-indentation of rigid Berkovich tips. Generalized Voigt-Kelvin and Wiechert models are used to model constitutive equations of periodontal ligaments, in which the relaxation and creep functions are represented by series of decaying exponential functions of time. Results Time-dependent creep compliance and relaxation function have been obtained for tissue specimens of periodontal ligaments. Conclusion To improve accuracy, relaxation and creep moduli are measured from two tests separately. Stress relaxation effects appear more rapidly than creep in the periodontal ligaments.

  8. A Nano-indentation Identification Technique for Viscoelastic Constitutive Characteristics of Periodontal Ligaments

    PubMed Central

    Ashrafi, H.; Shariyat, M.

    2016-01-01

    Introduction Nano-indentation has recently been employed as a powerful tool for determining the mechanical properties of biological tissues on nano and micro scales. A majority of soft biological tissues such as ligaments and tendons exhibit viscoelastic or time-dependent behaviors. The constitutive characterization of soft tissues is among very important subjects in clinical medicine and especially, biomechanics fields. Periodontal ligament plays an important role in initiating tooth movement when loads are applied to teeth with orthodontic appliances. It is also the most accessible ligament in human body as it can be directly manipulated without any surgical intervention. From a mechanical point of view, this ligament can be considered as a thin interface made by a solid phase, consisting mainly of collagen fibers, which is immersed into a so-called ground substance. However, the viscoelastic constitutive effects of biological tissues are seldom considered rigorous during Nano-indentation tests. Methods In the present paper, a mathematical contact approach is developed to enable determining creep compliance and relaxation modulus of distinct periodontal ligaments, using constant–rate indentation and loading time histories, respectively. An adequate curve-fitting method is presented to determine these characteristics based on the Nano-indentation of rigid Berkovich tips. Generalized Voigt-Kelvin and Wiechert models are used to model constitutive equations of periodontal ligaments, in which the relaxation and creep functions are represented by series of decaying exponential functions of time. Results Time-dependent creep compliance and relaxation function have been obtained for tissue specimens of periodontal ligaments. Conclusion To improve accuracy, relaxation and creep moduli are measured from two tests separately. Stress relaxation effects appear more rapidly than creep in the periodontal ligaments. PMID:27672630

  9. Mechanical properties of gray and white matter brain tissue by indentation.

    PubMed

    Budday, Silvia; Nay, Richard; de Rooij, Rijk; Steinmann, Paul; Wyrobek, Thomas; Ovaert, Timothy C; Kuhl, Ellen

    2015-06-01

    The mammalian brain is composed of an outer layer of gray matter, consisting of cell bodies, dendrites, and unmyelinated axons, and an inner core of white matter, consisting primarily of myelinated axons. Recent evidence suggests that microstructural differences between gray and white matter play an important role during neurodevelopment. While brain tissue as a whole is rheologically well characterized, the individual features of gray and white matter remain poorly understood. Here we quantify the mechanical properties of gray and white matter using a robust, reliable, and repeatable method, flat-punch indentation. To systematically characterize gray and white matter moduli for varying indenter diameters, loading rates, holding times, post-mortem times, and locations we performed a series of n=192 indentation tests. We found that indenting thick, intact coronal slices eliminates the common challenges associated with small specimens: it naturally minimizes boundary effects, dehydration, swelling, and structural degradation. When kept intact and hydrated, brain slices maintained their mechanical characteristics with standard deviations as low as 5% throughout the entire testing period of five days post mortem. White matter, with an average modulus of 1.89 5kPa ± 0.592 kPa, was on average 39% stiffer than gray matter, p<0.01, with an average modulus of 1.389 kPa ± 0.289 kPa, and displayed larger regional variations. It was also more viscous than gray matter and responded less rapidly to mechanical loading. Understanding the rheological differences between gray and white matter may have direct implications on diagnosing and understanding the mechanical environment in neurodevelopment and neurological disorders.

  10. Micromechanical tests of ion irradiated materials: Atomistic simulations and experiments

    SciTech Connect

    Shin, C.; Jin, H. H.; Kwon, J.

    2012-07-01

    We investigated irradiation effects on Fe-Cr binary alloys by using a nano-indentation combined with a continuous stiffness measurement (CSM) technique. We modeled the nano-indentation test by using a finite element method. We could extract the intrinsic hardness and the yield stress of an irradiation hardened region by using a so-called inverse method. SiC micro-pillars of various sizes were fabricated by mask and inductively coupled plasma etching technique and compressed by using flat punch nano-indentation. Compressive fracture strength showed a clear specimen size effect. Brittle-to-Ductile transition at room temperature was observed as the specimen size decreases. The effect of irradiation on the fracture strength of SiC micro-pillars was evaluated by performing ion irradiation with Si ions. We have performed molecular dynamics simulations of nano-indentation and nano-pillar compression tests. Radiation effect was observed which is found to be due to the interaction of dislocations nucleated by spherical indenter with pre-existing radiation defects (voids). These atomistic simulations are expected to significantly contribute to the investigation of the fundamental deformation mechanism of small scale irradiated materials. (authors)

  11. Intraoperative electrophysiological evaluations of macular function during peripheral scleral indentation

    PubMed Central

    Akiyama, Goichi; Matsumoto, Celso Soiti; Shinoda, Kei; Terauchi, Gaku; Matsumoto, Harue; Watanabe, Emiko; Iwata, Takeshi; Mizota, Atsushi; Miyake, Yozo

    2016-01-01

    Scleral indentation is widely used to examine the peripheral fundus, however it can increase the intraocular pressure (IOP) to high levels which can then affect retinal function. We evaluated the effects of scleral indentation on the macular function electrophysiologically. Intraoperative focal macular electroretinograms (iFMERGs) were recorded with and without controlling the IOP in 7 eyes. Without IOP control, the IOP increased from 21.7 ± 4.9 to 92.7 ± 20.2 mmHg significantly (P = 0.020) and the amplitudes of the b-wave (from 6.29 ± 1.160 to 3.71 ± 1.98 uV, P = 0.007), on-photopic negative response (from 2.29 ± 0.99 to 0.72 ± 0.47 uV, on-PhNR, P = 0.005), and d-wave (from 2.57 ± 0.41 to 1.64 ± 0.69 uV, P = 0.007) decreased significantly soon after beginning the indentation. All values returned to the baseline levels after releasing the indentation. In the eyes with IOP controlled, the IOP and the amplitude of all components did not change significantly during and after the indentation except the on-PhNR amplitude which was significantly reduced during the indentation. The changes in the iFMERGs and macular function caused by scleral indentation were transient and reversible. The changes can be minimized by controlling the IOP. PMID:27762313

  12. SITE project. Phase 1: Continuous data bit-error-rate testing

    NASA Technical Reports Server (NTRS)

    Fujikawa, Gene; Kerczewski, Robert J.

    1992-01-01

    The Systems Integration, Test, and Evaluation (SITE) Project at NASA LeRC encompasses a number of research and technology areas of satellite communications systems. Phase 1 of this project established a complete satellite link simulator system. The evaluation of proof-of-concept microwave devices, radiofrequency (RF) and bit-error-rate (BER) testing of hardware, testing of remote airlinks, and other tests were performed as part of this first testing phase. This final report covers the test results produced in phase 1 of the SITE Project. The data presented include 20-GHz high-power-amplifier testing, 30-GHz low-noise-receiver testing, amplitude equalization, transponder baseline testing, switch matrix tests, and continuous-wave and modulated interference tests. The report also presents the methods used to measure the RF and BER performance of the complete system. Correlations of the RF and BER data are summarized to note the effects of the RF responses on the BER.

  13. Bone indentation recovery time correlates with bond reforming time

    NASA Astrophysics Data System (ADS)

    Thompson, James B.; Kindt, Johannes H.; Drake, Barney; Hansma, Helen G.; Morse, Daniel E.; Hansma, Paul K.

    2001-12-01

    Despite centuries of work, dating back to Galileo, the molecular basis of bone's toughness and strength remains largely a mystery. A great deal is known about bone microsctructure and the microcracks that are precursors to its fracture, but little is known about the basic mechanism for dissipating the energy of an impact to keep the bone from fracturing. Bone is a nanocomposite of hydroxyapatite crystals and an organic matrix. Because rigid crystals such as the hydroxyapatite crystals cannot dissipate much energy, the organic matrix, which is mainly collagen, must be involved. A reduction in the number of collagen cross links has been associated with reduced bone strength and collagen is molecularly elongated (`pulled') when bovine tendon is strained. Using an atomic force microscope, a molecular mechanistic origin for the remarkable toughness of another biocomposite material, abalone nacre, has been found. Here we report that bone, like abalone nacre, contains polymers with `sacrificial bonds' that both protect the polymer backbone and dissipate energy. The time needed for these sacrificial bonds to reform after pulling correlates with the time needed for bone to recover its toughness as measured by atomic force microscope indentation testing. We suggest that the sacrificial bonds found within or between collagen molecules may be partially responsible for the toughness of bone.

  14. Optically based-indentation technique for acute rat brain tissue slices and thin biomaterials

    PubMed Central

    Lee, S. J.; Sun, J.; Flint, J. J.; Guo, S.; Xie, H. K.; King, M. A.; Sarntinoranont, M.

    2011-01-01

    Currently, micro-indentation testing of soft biological materials is limited in its capability to test over long time scales due to accumulated instrumental drift errors. As a result, there is a paucity of measures for mechanical properties such as the equilibrium modulus. In this study, indentation combined with optical coherence tomography (OCT) was used for mechanical testing of thin tissue slices. OCT was used to measure the surface deformation profiles by placing spherical beads onto submerged test samples. Agarose-based hydrogels at low-concentrations (w/v, 0.3–0.6 %) and acute rat brain tissue slices were tested using this technique over a 30 min time window. To establish that tissue slices maintained cell viability, allowable testing times were determined by measuring neuronal death or degeneration as a function of incubation time with Fluor-Jade C (FJC) staining. Since large deformations at equilibrium were measured, displacements of surface beads were compared with finite element elastic contact simulations to predict the equilibrium modulus, μ∞. Values of μ∞ for the low- concentration hydrogels ranged from 0.07–1.8 kPa, and μ∞ for acute rat brain tissue slices was 0.13 ± 0.04 kPa for the cortex and 0.09 ± 0.015 kPa for the hippocampus (for Poisson ratio=0.35). This indentation technique offers a localized, real-time, and high resolution method for long-time scale mechanical testing of very soft materials. This test method may also be adapted for viscoelasticity, for testing of different tissues and biomaterials, and for analyzing changes in internal structures with loading. PMID:21290586

  15. Characterization of damage mechanisms associated with reference point indentation in human bone.

    PubMed

    Beutel, Bryan G; Kennedy, Oran D

    2015-06-01

    Measurement of bone mineral density (BMD) is the clinical gold standard in cases of compromised skeletal integrity, such as with osteoporosis. While BMD is a useful measurement to index skeletal health, it is also limited since it cannot directly assess any mechanical properties. The ability to directly assess mechanical properties of bone tissue would be clinically important. Reference point indentation (RPI) is a technology that has been designed to try and achieve this goal. While RPI has been shown to detect altered bone tissue properties, the underlying physical mechanism of these measurements has not been characterized. Thus, we designed a study whereby the contribution of (1) test cycle number and (2) test load level to RPI test-induced sub-surface damage was characterized and quantified. Standardized specimens were prepared from cadaveric human tibiae (n=6), such that 12 replicates of each testing condition could be carried out. A custom rig was fabricated to accurately position and map indentation sites. One set of tests was carried out with 1, 5, 10, 15 and 20 cycles (Max Load: 8 N, Freq: 2 Hz), and a second set of tests was carried out with Load levels of 2, 4, 6, 8 or 10 N (Cycle number: 20, Freq: 2 Hz). The RPI parameter Loading Slope (LS) was cycle dependent at 5, 10, 15 and 20 cycles (p<0.05). First Cycle Indentation Distance (ID 1st), Total Indentation Distance (TID), Mean Energy Dissipation (ED), First Cycle Unloading Slope (US 1st), Mean Unloading Slope (US) and LS were significantly different at 6, 8 and 10 N compared to 2 N (p<0.05). From the histomorphometric measurements, damage zone span was significantly different after 5, 10, 15 and 20 cycles compared with 1 cycle while indent profile width and indent profile depth were significantly different at 10, 15 and 20 cycles (p<0.05). With the load varying protocol, each of these parameters differed significantly at each increased load level (4, 6, 8, 10 N) compared with the basal level of 2 N (p<0

  16. Script Concordance Testing in Continuing Professional Development: Local or International Reference Panels?

    ERIC Educational Resources Information Center

    Pleguezuelos, E. M.; Hornos, E.; Dory, V.; Gagnon, R.; Malagrino, P.; Brailovsky, C. A.; Charlin, B.

    2013-01-01

    Context: The PRACTICUM Institute has developed large-scale international programs of on-line continuing professional development (CPD) based on self-testing and feedback using the Practicum Script Concordance Test© (PSCT). Aims: To examine the psychometric consequences of pooling the responses of panelists from different countries (composite…

  17. Force response and actin remodeling (agglomeration) in fibroblasts due to lateral indentation.

    PubMed

    Yang, Shengyuan; Saif, M Taher A

    2007-01-01

    We report the loading and unloading force response of single living adherent fibroblasts due to large lateral indentation obtained by a two-component microelectromechanical systems force sensor. Strong hysteretic force response is observed for all the tested cells. For the loading process, the force response is linear (often with small initial non-linearity) to a deformation scale comparable to the undeformed cell size, followed by plastic yielding. In situ visualization of actin fibers by tagging with green fluorescent protein indicates that during the indentation process, actin network possibly decomposes irreversibly at discrete locations where well-defined circular actin agglomerates appear all over the cell, which explains the irreversibility of the force response. Similar agglomeration is observed when the cell is compressed laterally by a micro plate. The distribution pattern of the agglomerates strongly correlates with the arrangement of the actin fibers of the pre-indented cell. The size of the agglomerates increases with time as t(alpha), initially with alpha=2-3 followed by alpha=0.5-1. The higher growth rate suggests influx of actin into the agglomerates. The slower rate suggests a diffusive spreading, but the diffusion constant is two orders of magnitude lower than that of an actin monomer through the cytoplasm. Actin agglomeration has previously been observed due to biochemical treatment, gamma-radiation, and ischemic injury, and has been identified as a precursor to cell death. We believe this is the first evidence of actin agglomeration due to mechanical indentation/compression. The study demonstrates that living cells may initiate similar functionalities in response to dissimilar mechanical and biochemical stimuli.

  18. Shear elastic modulus estimation from indentation and SDUV on gelatin phantoms

    PubMed Central

    Amador, Carolina; Urban, Matthew W.; Chen, Shigao; Chen, Qingshan; An, Kai-Nan; Greenleaf, James F.

    2011-01-01

    Tissue mechanical properties such as elasticity are linked to tissue pathology state. Several groups have proposed shear wave propagation speed to quantify tissue mechanical properties. It is well known that biological tissues are viscoelastic materials; therefore velocity dispersion resulting from material viscoelasticity is expected. A method called Shearwave Dispersion Ultrasound Vibrometry (SDUV) can be used to quantify tissue viscoelasticity by measuring dispersion of shear wave propagation speed. However, there is not a gold standard method for validation. In this study we present an independent validation method of shear elastic modulus estimation by SDUV in 3 gelatin phantoms of differing stiffness. In addition, the indentation measurements are compared to estimates of elasticity derived from shear wave group velocities. The shear elastic moduli from indentation were 1.16, 3.40 and 5.6 kPa for a 7, 10 and 15% gelatin phantom respectively. SDUV measurements were 1.61, 3.57 and 5.37 kPa for the gelatin phantoms respectively. Shear elastic moduli derived from shear wave group velocities were 1.78, 5.2 and 7.18 kPa for the gelatin phantoms respectively. The shear elastic modulus estimated from the SDUV, matched the elastic modulus measured by indentation. On the other hand, shear elastic modulus estimated by group velocity did not agree with indentation test estimations. These results suggest that shear elastic modulus estimation by group velocity will be bias when the medium being investigated is dispersive. Therefore a rheological model should be used in order to estimate mechanical properties of viscoelastic materials. PMID:21317078

  19. Indentation stiffness of young canine knee articular cartilage--influence of strenuous joint loading.

    PubMed

    Jurvelin, J; Kiviranta, I; Säämänen, A M; Tammi, M; Helminen, H J

    1990-01-01

    The indentation stiffness of knee articular cartilage subjected to strenuous physical training (SPT: treadmill running 20 km day-1 for 15 weeks, n = 6) of young Beagles was tested and compared to that obtained from age-matched (55 weeks, n = 9) controls. The mathematical solution for the shear modulus, as determined from indentation of an elastic layer bonded to a rigid half space, was extended to small Poisson's ratios and applied to the analysis of cartilage response after a step stress (0.39 MPa) application. In these measurements with an impervious, plane-ended indenter, the equilibrium deformation was systematically greater than values predicted from the instant response by the linear biphasic theory. Therefore, the accurate determination of Poisson's ratio from the creep curves was not possible. The mean shear modulus (calculated by using the deformation at 900 s after load application and assuming a constant Poisson's ratio of 0.40 for the matrix) of canine knee articular cartilage was 0.37 MPa. While the cartilage thickness was not affected by SPT, the cartilage of the lateral tibial plateau was stiffer (13.3%, p less than 0.05) than that in controls. However, in the femoral condyles, the stiffness was at the control level or even below. Our results on cartilage structure and properties suggest that SPT, in contrast to our previous findings with moderate training, does not necessarily improve the biological properties of articular cartilage in young animals.

  20. Assessing strain mapping by electron backscatter diffraction and confocal Raman microscopy using wedge-indented Si.

    PubMed

    Friedman, Lawrence H; Vaudin, Mark D; Stranick, Stephan J; Stan, Gheorghe; Gerbig, Yvonne B; Osborn, William; Cook, Robert F

    2016-04-01

    The accuracy of electron backscatter diffraction (EBSD) and confocal Raman microscopy (CRM) for small-scale strain mapping are assessed using the multi-axial strain field surrounding a wedge indentation in Si as a test vehicle. The strain field is modeled using finite element analysis (FEA) that is adapted to the near-indentation surface profile measured by atomic force microscopy (AFM). The assessment consists of (1) direct experimental comparisons of strain and deformation and (2) comparisons in which the modeled strain field is used as an intermediate step. Direct experimental methods (1) consist of comparisons of surface elevation and gradient measured by AFM and EBSD and of Raman shifts measured and predicted by CRM and EBSD, respectively. Comparisons that utilize the combined FEA-AFM model (2) consist of predictions of distortion, strain, and rotation for comparison with EBSD measurements and predictions of Raman shift for comparison with CRM measurements. For both EBSD and CRM, convolution of measurements in depth-varying strain fields is considered. The interconnected comparisons suggest that EBSD was able to provide an accurate assessment of the wedge indentation deformation field to within the precision of the measurements, approximately 2×10(-4) in strain. CRM was similarly precise, but was limited in accuracy to several times this value. PMID:26939030

  1. Residual stress and plastic anisotropy in indented 2024-T351 aluminum disks

    SciTech Connect

    Clausen, Bjorn; Prime, Michael B; Saurabh, Kabra; Brown, Donald W; Pagliaro, Pierluigi; Backlund, Peter; Shaw, Sanjiv; Criss, Everett

    2009-01-01

    Recent studies have proven that generating a well defined residual stress state using the indented disk approach is an excellent way to validate experimental and modeling techniques for measuring and predicting residual stresses. The previous studies dealt with indented stainless steel disks, and included experimental determination of residual stresses using the Contour Method and neutron diffraction measurements. The measured residual stress states showed good agreement between the techniques, and a Finite Element Model predicted residual stress state based upon material properties determined form standard tension and compression/tension tests was also in good agreement with the measurements. In the present work, disks of 2024-T351 Aluminum were investigated. As before, the residual stress profile was measured using neutron diffraction and the Contour Method and Finite Element Modeling was employed to predict the residual stress profile. Analysis and comparison of the three techniques were complicated by the fact that the experimental data shows evidence of plastic anisotropy and strong Bauschinger effect within the indented disks.

  2. Highly nonlinear stress-relaxation response of articular cartilage in indentation: Importance of collagen nonlinearity.

    PubMed

    Mäkelä, J T A; Korhonen, R K

    2016-06-14

    Modern fibril-reinforced computational models of articular cartilage can include inhomogeneous tissue composition and structure, and nonlinear mechanical behavior of collagen, proteoglycans and fluid. These models can capture well experimental single step creep and stress-relaxation tests or measurements under small strains in unconfined and confined compression. Yet, it is known that in indentation, especially at high strain velocities, cartilage can express highly nonlinear response. Different fibril reinforced poroelastic and poroviscoelastic models were used to assess measured highly nonlinear stress-relaxation response of rabbit articular cartilage in indentation. Experimentally measured depth-dependent volume fractions of different tissue constituents and their mechanical nonlinearities were taken into account in the models. In particular, the collagen fibril network was modeled using eight separate models that implemented five different constitutive equations to describe the nonlinearity. These consisted of linear elastic, nonlinear viscoelastic and multiple nonlinear elastic representations. The model incorporating the most nonlinearly increasing Young׳s modulus of collagen fibrils as a function of strain captured best the experimental data. Relative difference between the model and experiment was ~3%. Surprisingly, the difference in the peak forces between the experiment and the model with viscoelastic collagen fibrils was almost 20%. Implementation of the measured volume fractions did not improve the ability of the model to capture the measured mechanical data. These results suggest that a highly nonlinear formulation for collagen fibrils is needed to replicate multi-step stress-relaxation response of rabbit articular cartilage in indentation with high strain rates. PMID:27130474

  3. AFM nanoscale indentation in air of polymeric and hybrid materials with highly different stiffness

    NASA Astrophysics Data System (ADS)

    Suriano, Raffaella; Credi, Caterina; Levi, Marinella; Turri, Stefano

    2014-08-01

    In this study, nanomechanical properties of a variety of polymeric materials was investigated by means of AFM. In particular, selecting different AFM probes, poly(methyl methacrylate) (PMMA), polydimethylsiloxane (PDMS) bulk samples, sol-gel hybrid thin films and hydrated hyaluronic acid hydrogels were indented in air to determine the elastic modulus. The force-distance curves and the indentation data were found to be greatly affected by the cantilever stiffness and by tip geometry. AFM indentation tests show that the choice of the cantilever spring constant and of tip shape is crucially influenced by elastic properties of samples. When adhesion-dominated interactions occur between the tip and the surface of samples, force-displacement curves reveal that a suitable functionalization of AFM probes allows the control of such interactions and the extraction of Young' modulus from AFM curves that would be otherwise unfeasible. By applying different mathematical models depending on AFM probes and materials under investigation, the values of Young's modulus were obtained and compared to those measured by rheological and dynamic mechanical analysis or to literature data. Our results show that a wide range of elastic moduli (10 kPa-10 GPa) can be determined by AFM in good agreement with those measured by conventional macroscopic measurements.

  4. Highly nonlinear stress-relaxation response of articular cartilage in indentation: Importance of collagen nonlinearity.

    PubMed

    Mäkelä, J T A; Korhonen, R K

    2016-06-14

    Modern fibril-reinforced computational models of articular cartilage can include inhomogeneous tissue composition and structure, and nonlinear mechanical behavior of collagen, proteoglycans and fluid. These models can capture well experimental single step creep and stress-relaxation tests or measurements under small strains in unconfined and confined compression. Yet, it is known that in indentation, especially at high strain velocities, cartilage can express highly nonlinear response. Different fibril reinforced poroelastic and poroviscoelastic models were used to assess measured highly nonlinear stress-relaxation response of rabbit articular cartilage in indentation. Experimentally measured depth-dependent volume fractions of different tissue constituents and their mechanical nonlinearities were taken into account in the models. In particular, the collagen fibril network was modeled using eight separate models that implemented five different constitutive equations to describe the nonlinearity. These consisted of linear elastic, nonlinear viscoelastic and multiple nonlinear elastic representations. The model incorporating the most nonlinearly increasing Young׳s modulus of collagen fibrils as a function of strain captured best the experimental data. Relative difference between the model and experiment was ~3%. Surprisingly, the difference in the peak forces between the experiment and the model with viscoelastic collagen fibrils was almost 20%. Implementation of the measured volume fractions did not improve the ability of the model to capture the measured mechanical data. These results suggest that a highly nonlinear formulation for collagen fibrils is needed to replicate multi-step stress-relaxation response of rabbit articular cartilage in indentation with high strain rates.

  5. No-observed-effect concentrations in batch and continuous algal toxicity tests

    SciTech Connect

    Chao, M.R.; Chen, C.Y.

    2000-06-01

    In this study, the authors compare the no-observed-effect concentrations (NOECs) of Cd, Ni, Zn, Cu, and Pb based on different response parameters, using batch and continuous algal toxicity tests. For both batch and continuous tests, parameters based on total cell volume (TCV) were found to be less sensitive than those related to cell densities. The above observation mainly occurred because, under the stresses from metal toxicants evaluated in this and a previous study, the mean cell volume (MCV) of algae increased considerably. The increase of MCV compensates for the effects brought about by the reduction in cell density and eventually results in less variation in TCVs. This study shows that parameters based on cell density are quite sensitive and ideal for the estimation of NOECs. In addition, comparison of the NOEC values derived from different culture techniques shows that the continuous methods generally yields lower NOEC values than that obtained by the batch tests. The results of this study also indicate that the NOEC provides more protection to the test organism than the effective concentration at 10% growth reduction (EC10). For toxicity test methods that produce small variations among replicates, the NOEC is still a good indicator of low toxic effect. Furthermore, for the continuous algal toxicity test, a relatively simple approach is proposed to determine the NOEC values based on the algal culture's control charts. The proposed method produced identical results as those based on conventional hypothesis-testing methods.

  6. Indentation size effect and the plastic compressibility of glass

    SciTech Connect

    Smedskjaer, Morten M.

    2014-06-23

    Oxide glasses exhibit significant densification under an applied isostatic pressure at the glass transition temperature. The glass compressibility is correlated with the chemical composition and atomic packing density, e.g., borate glasses with planar triangular BO{sub 3} units are more disposed for densification than silicate glasses with tetrahedral units. We here show that there is a direct relation between the plastic compressibility following hot isostatic compression and the extent of the indentation size effect (ISE), which is the decrease of hardness with indentation load exhibited by most materials. This could suggest that the ISE is correlated with indentation-induced shear bands, which should form in greater density when the glass network is more adaptable to volume changes through structural and topological rearrangements under an applied pressure.

  7. Performance testing of multi-metal continuous emissions monitors. Appendix Volume 1

    SciTech Connect

    Haas, W.J. Jr.; French, N.B.; Brown, C.H.; Burns, D.B.; Lemieux, P.M.; Ryan, J.V.; Priebe, S.J.; Waterland, L.R.

    1997-11-17

    This report contains appendices to the study of three prototype multi-metal continuous emission monitors (CEMs). The appendices are: Final report of the Diagnostic Instrumentation and Analytical Laboratory (DIAL) CEM developer team; Final report of Navy/Thermo Jarrell Ash Corp. CEM developer team; Final report of Sandia National Laboratories CEM developer team; Developer team comments; and Performance specification 10 -- Specifications and test procedures for multi-metals continuous monitoring systems in stationary sources.

  8. Development of a diagnostic test based on multiple continuous biomarkers with an imperfect reference test.

    PubMed

    García Barrado, Leandro; Coart, Els; Burzykowski, Tomasz

    2016-02-20

    Ignoring the fact that the reference test used to establish the discriminative properties of a combination of diagnostic biomarkers is imperfect can lead to a biased estimate of the diagnostic accuracy of the combination. In this paper, we propose a Bayesian latent-class mixture model to select a combination of biomarkers that maximizes the area under the ROC curve (AUC), while taking into account the imperfect nature of the reference test. In particular, a method for specification of the prior for the mixture component parameters is developed that allows controlling the amount of prior information provided for the AUC. The properties of the model are evaluated by using a simulation study and an application to real data from Alzheimer's disease research. In the simulation study, 100 data sets are simulated for sample sizes ranging from 100 to 600 observations, with a varying correlation between biomarkers. The inclusion of an informative as well as a flat prior for the diagnostic accuracy of the reference test is investigated. In the real-data application, the proposed model was compared with the generally used logistic-regression model that ignores the imperfectness of the reference test. Conditional on the selected sample size and prior distributions, the simulation study results indicate satisfactory performance of the model-based estimates. In particular, the obtained average estimates for all parameters are close to the true values. For the real-data application, AUC estimates for the proposed model are substantially higher than those from the 'traditional' logistic-regression model.

  9. Optimization of transonic wind tunnel data acquisition and control systems for providing continuous mode tests

    NASA Astrophysics Data System (ADS)

    Petronevich, V. V.

    2016-10-01

    The paper observes the issues related to the increase of efficiency and information content of experimental research in transonic wind tunnels (WT). In particular, questions of optimizing the WT Data Acquisition and Control Systems (DACS) to provide the continuous mode test method are discussed. The problem of Mach number (M number) stabilization in the test section of the large transonic compressor-type wind tunnels at subsonic flow conditions with continuous change of the aircraft model angle of attack is observed on the example of T-128 wind tunnel. To minimize the signals distortion in T-128 DACS measurement channels the optimal MGCplus filter settings of the data acquisition system used in T-128 wind tunnel to measure loads were experimentally determined. As a result of the tests performed a good agreement of the results of balance measurements for pitch/pause and continuous test modes was obtained. Carrying out balance tests for pitch/pause and continuous test methods was provided by the regular data acquisition and control system of T-128 wind tunnel with unified software package POTOK. The architecture and functional abilities of POTOK software package are observed.

  10. A New Tissue Resonator Indenter Device and Reliability Study

    PubMed Central

    Jia, Ming; Zu, Jean W.; Hariri, Alireza

    2011-01-01

    Knowledge of tissue mechanical properties is widely required by medical applications, such as disease diagnostics, surgery operation, simulation, planning, and training. A new portable device, called Tissue Resonator Indenter Device (TRID), has been developed for measurement of regional viscoelastic properties of soft tissues at the Bio-instrument and Biomechanics Lab of the University of Toronto. As a device for soft tissue properties in-vivo measurements, the reliability of TRID is crucial. This paper presents TRID’s working principle and the experimental study of TRID’s reliability with respect to inter-reliability, intra-reliability, and the indenter misalignment effect as well. PMID:22346623

  11. Assessing a Critical Aspect of Construct Continuity when Test Specifications Change or Test Forms Deviate from Specifications

    ERIC Educational Resources Information Center

    Liu, Jinghua; Dorans, Neil J.

    2013-01-01

    We make a distinction between two types of test changes: inevitable deviations from specifications versus planned modifications of specifications. We describe how score equity assessment (SEA) can be used as a tool to assess a critical aspect of construct continuity, the equivalence of scores, whenever planned changes are introduced to testing…

  12. Development of a diagnostic test based on multiple continuous biomarkers with an imperfect reference test.

    PubMed

    García Barrado, Leandro; Coart, Els; Burzykowski, Tomasz

    2016-02-20

    Ignoring the fact that the reference test used to establish the discriminative properties of a combination of diagnostic biomarkers is imperfect can lead to a biased estimate of the diagnostic accuracy of the combination. In this paper, we propose a Bayesian latent-class mixture model to select a combination of biomarkers that maximizes the area under the ROC curve (AUC), while taking into account the imperfect nature of the reference test. In particular, a method for specification of the prior for the mixture component parameters is developed that allows controlling the amount of prior information provided for the AUC. The properties of the model are evaluated by using a simulation study and an application to real data from Alzheimer's disease research. In the simulation study, 100 data sets are simulated for sample sizes ranging from 100 to 600 observations, with a varying correlation between biomarkers. The inclusion of an informative as well as a flat prior for the diagnostic accuracy of the reference test is investigated. In the real-data application, the proposed model was compared with the generally used logistic-regression model that ignores the imperfectness of the reference test. Conditional on the selected sample size and prior distributions, the simulation study results indicate satisfactory performance of the model-based estimates. In particular, the obtained average estimates for all parameters are close to the true values. For the real-data application, AUC estimates for the proposed model are substantially higher than those from the 'traditional' logistic-regression model. PMID:26388206

  13. Oak Ridge Toxic Substances Control Act (TSCA) Incinerator test bed for continuous emissions monitoring systems (CEMS)

    SciTech Connect

    Gibson, L.V. Jr.

    1997-12-31

    The Toxic Substances Control Act (TSCA) Incinerator, located on the K-25 Site at Oak Ridge, Tennessee, continues to be the only operational incinerator in the country that can process hazardous and radioactively contaminated polychlorinated biphenyl (PCB) waste. During 1996, the US Department of Energy (DOE) Environmental Management Office of Science and Technology (EM-50) and Lockheed Martin Energy Systems established a continuous emissions monitoring systems (CEMS) test bed and began conducting evaluations of CEMS under development to measure contaminants from waste combustion and thermal treatment stacks. The program was envisioned to promote CEMS technologies meeting requirements of the recently issued Proposed Standards for Hazardous Waste Combustors as well as monitoring technologies that will allay public concerns about mixed waste thermal treatment and accelerate the development of innovative treatment technologies. Fully developed CEMS, as well as innovative continuous or semi-continuous sampling systems not yet interfaced with a pollutant analyzer, were considered as candidates for testing and evaluation. Complementary to other Environmental Protection Agency and DOE sponsored CEMS testing and within compliant operating conditions of the TSCA Incinerator, prioritization was given to multiple metals monitors also having potential to measure radionuclides associated with particulate emissions. In August 1996, developers of two multiple metals monitors participated in field activities at the incinerator and a commercially available radionuclide particulate monitor was acquired for modification and testing planned in 1997. This paper describes the CEMS test bed infrastructure and summarizes completed and planned activities.

  14. The Ufa indenter: stratigraphic and geophysic evidences for an actual indentation of the Southern Urals by the East European craton

    NASA Astrophysics Data System (ADS)

    Lefort, Jean-Pierre; Danukalova, Guzel

    2014-07-01

    Study of the altitudes of the lowest part of the Upper Cretaceous-Eocene and Aktschagylian-Quaternary stratigraphic ensembles known on the western slope of the Southern Urals evidences the existence of an East-West elongated dome which follows the N53° latitude. This ridge is superimposed at depth with the remnants of the Sernovodsk-Abdulino Aulacogen and with the Belaya tear fault, which support the existence of a recent rejuvenation of these old structures. North of these disruptions the Southern Urals display a clear bent towards the East. Detailed microstructural studies show that this curvature is associated with a typical stress pattern which suggests the existence of an indentation of the fold belt by the East European craton. The hypothesis of an Ufa indenter is not supported by an equivalent East-West deep fault north of the bend. However, a long N100° magnetic anomaly, interpreted as a shear zone, suggests that the indenter is a reality. Quaternary uplift and crustal thickening at its front as well as seismological data support our interpretation. It is not stressed that the curvature of the Urals observed at 56° latitude results solely from this recent indentation. It is only assumed that the actual indentation is rejuvenating a former unevenness which existed before in the East European craton. Study of the inner part of the indenter shows that this type of structure is not necessarily rigid and undeformed. Some of the structures described on the URSEIS deep seismic line could be much younger than previously expected.

  15. Indentation experiments and simulation of ovine bone using a viscoelastic-plastic damage model

    PubMed Central

    Zhao, Yang; Wu, Ziheng; Turner, Simon; MacLeay, Jennifer; Niebur, Glen L.; Ovaert, Timothy C.

    2015-01-01

    Indentation methods have been widely used to study bone at the micro- and nanoscales. It has been shown that bone exhibits viscoelastic behavior with permanent deformation during indentation. At the same time, damage due to microcracks is induced due to the stresses beneath the indenter tip. In this work, a simplified viscoelastic-plastic damage model was developed to more closely simulate indentation creep data, and the effect of the model parameters on the indentation curve was investigated. Experimentally, baseline and 2-year postovariectomized (OVX-2) ovine (sheep) bone samples were prepared and indented. The damage model was then applied via finite element analysis to simulate the bone indentation data. The mechanical properties of yielding, viscosity, and damage parameter were obtained from the simulations. The results suggest that damage develops more quickly for OVX-2 samples under the same indentation load conditions as the baseline data. PMID:26136623

  16. Gender Differences among Children with ADHD on Continuous Performance Tests: A Meta-Analytic Review

    ERIC Educational Resources Information Center

    Hasson, Ramzi; Fine, Jodene Goldenring

    2012-01-01

    Objective: Gender differences among children with ADHD are not well understood. The continuous performance test (CPT) is the most frequently used direct measure of inattention and impulsivity. This meta-analysis compared CPT performance between boys and girls with and without ADHD. Method: All peer-reviewed ADHD studies published between 1980 and…

  17. Prediction of Indentation Behavior of Superelastic TiNi

    NASA Astrophysics Data System (ADS)

    Neupane, Rabin; Farhat, Zoheir

    2014-09-01

    Superelastic TiNi shape memory alloys have been extensively used in various applications. The great interest in TiNi alloys is due to its unique shape memory and superelastic effects, along with its superior wear and dent resistance. Assessment of mechanical properties and dent resistance of superelastic TiNi is commonly performed using indentation techniques. However, the coupling of deformation and reversible martensitic transformation of TiNi under indentation conditions makes the interpretation of results challenging. An attempt is made to enhance current interpretation of indentation data. A load-depth curve is predicted that takes into consideration the reversible martensitic transformation. The predicted curve is in good agreement with experimental results. It is found in this study that the elastic modulus is a function of indentation depth. At shallow depths, the elastic modulus is high due to austenite dominance, while at high depths, the elastic modulus drops as the depth increases due to austenite to martensite transition, i.e., martensite dominance. It is also found that TiNi exhibits superior dent resistance compared to AISI 304 steel. There is two orders of magnitude improvement in dent resistance of TiNi in comparison to AISI 304 steel.

  18. Rigid indented cylindrical cathode for X-ray tube

    DOEpatents

    Hudgens, Claude R.

    1985-01-01

    A cathode assembly for a vacuum tube includes a wire filament, a straight bular anode parallel to and surrounding the wire filament, and insulating spacers for rigidly fastening the filament with respect to the anode, and with one side of the anode indented or flattened such that only one portion of the anode is heated to emitting temperatures by the filament.

  19. The effect of adhesion on the contact radius in atomic force microscopy indentation.

    PubMed

    Sirghi, L; Rossi, F

    2009-09-01

    The effect of adhesion on nanoscale indentation experiments makes the interpretation of force-displacement curves acquired in these experiments very difficult. The indentation force results from the addition of adhesive and elastic forces at the indenter-sample contact. The evolution of the two forces during the indentation is determined by the variation of the indenter-sample contact radius. In the present work the variation of contact radius during atomic force microscopy (AFM) indentation of elastic and adhesive samples with conical indenters (AFM tips) is indirectly determined by measurements of the contact dynamic stiffness. For weak sample deformations, the contact radius is determined mainly by the adhesion force and indenter apex radius. For strong sample deformations, the contact radius increases linearly with the increase of the indenter displacement, the slope of this linear dependence being in agreement with Sneddon's theory of indentation (Sneddon 1965 Int. J. Eng. Sci. 3 47). Based on these results, a theoretical expression of indentation force dependence on displacement is found. This expression allows for determination of the thermodynamic work of adhesion at the indenter-sample interface and the sample elasticity modulus.

  20. Continuous-flow stirred-tank reactor 20-L demonstration test: Final report

    SciTech Connect

    Lee, D.D.; Collins, J.L.

    2000-02-01

    One of the proposed methods of removing the cesium, strontium, and transuranics from the radioactive waste storage tanks at Savannah River is the small-tank tetraphenylborate (TPB) precipitation process. A two-reactor-in-series (15-L working volume each) continuous-flow stirred-tank reactor (CSTR) system was designed, constructed, and installed in a hot cell to test the Savannah River process. The system also includes two cross-flow filtration systems to concentrate and wash the slurry produced in the process, which contains the bulk of radioactivity from the supernatant processed through the system. Installation, operational readiness reviews, and system preparation and testing were completed. The first test using the filtration systems, two CSTRs, and the slurry concentration system was conducted over a 61-h period with design removal of Cs, Sr, and U achieved. With the successful completion of Test 1a, the following tests, 1b and 1c, were not required.

  1. Reproductive toxicity of ethylene glycol monoethyl ether tested by continuous breeding of CD-1 mice

    SciTech Connect

    Lamb, J.C. IV; Gulati, D.K.; Russell, V.S.; Hommel, L.; Sabharwal, P.S.

    1984-08-01

    The reproductive toxicity of ethylene glycol monoethyl ether (EGEE) was evaluated in the Fertility Assessment by Continuous Breeding protocol. Both male and female CD-1 mice were given 0, 0.5, 1.0 or 2% EGEE in the drinking water and were housed as breeding pairs continuously for 14 weeks. Significant adverse effects on fertility were seen at 1 and 2% but not at 0.5%. After the continuous breeding phase of this test was completed, treated males were housed with control females and treated females with control males and fertility and reproduction were compared to the corresponding pairs of control male and control female mice. Both males and females from the 1 and 2% groups were affected. Testicular atrophy decreased sperm motility and increased abnormal sperm were noted in the treated males, but no specific anomalies were detected in the females. 7 references, 1 figure, 7 tables.

  2. Fabrication and wear test of a continuous fiber/particulate composite total surface hip replacement

    NASA Technical Reports Server (NTRS)

    Roberts, J. C.; Ling, F. F.; Jones, W. R., Jr.

    1981-01-01

    Continuous fiber woven E-glass composite femoral shells having the ame elastic properties as bone were fabricated. The shells were then encrusted with filled epoxy wear resistant coatings and run dry against ultrahigh molecular weight polyethylene acetabular cups in 42,000 and 250,000 cycle were tests on a total hip simulator. The tribological characteristics of these shells atriculating with the acetabular cups are comparable to a vitallium bal articulating with an ultrahigh molecular weight polyethylene cup.

  3. Design, fabrication and test of prototype furnace for continuous growth of wide silicon ribbon

    NASA Technical Reports Server (NTRS)

    Duncan, C. S.; Seidensticker, R. G.

    1976-01-01

    A program having the overall objective of growing wide, thin silicon dendritic web crystals quasi-continuously from a semi-automated facility is discussed. The design considerations and fabrication of the facility as well as the test and operation phase are covered; detailed engineering drawings are included as an appendix. During the test and operation phase of the program, more than eighty growth runs and numerous thermal test runs were performed. At the conclusion of the program, 2.4 cm wide web was being grown at thicknesses of 100 to 300 micrometers. As expected, the thickness and growth rate are closely related. Solar cells made from this material were tested at NASA-Lewis and found to have conversion efficiencies comparable to devices fabricated from Czochralski material.

  4. Crack nucleation criterion and its application to impact indentation in glasses

    PubMed Central

    Luo, Jian; Vargheese, K. Deenamma; Tandia, Adama; Hu, Guangli; Mauro, John C

    2016-01-01

    Molecular dynamics (MD) simulations are used to directly observe nucleation of median cracks in oxide glasses under indentation. Indenters with sharp angles can nucleate median cracks in samples with no pre-existing flaws, while indenters with larger indenter angles cannot. Increasing the tip radius increases the critical load for nucleation of the median crack. Based upon an independent set of simulations under homogeneous loading, the fracture criterion in the domain of the principal stresses is constructed. The fracture criterion, or “fracture locus”, can quantitatively explain the observed effects of indenter angle and indenter tip radius on median crack nucleation. Our simulations suggest that beyond the maximum principal stress, plasticity and multi-axial stresses should also be considered for crack nucleation under indentation, even for brittle glassy systems. PMID:27079431

  5. Hertzian indentation of colloidally processed titanium carbide-nickel aluminide composites

    NASA Astrophysics Data System (ADS)

    Collier, R. Bradley

    Advanced cermets based on titanium carbide (TiC), with a ductile nickel aluminide (Ni3Al) binder, have shown significant promise for use in a variety of demanding wear environments, due to a combination of high strength and good corrosion behaviour. A unique feature of TiC-Ni3Al cermets is that they show increasing strength from room temperature up to ˜1,000°C, while current materials such as tungsten carbide/cobalt (WC/Co) show significant strength degradation above ˜500°C. In this thesis, aqueous colloidal forming methods have been applied to process TiC preforms. The mechanisms and effectiveness of suspension stabilization were examined using methods such as zeta potential analysis, rheological measurements, and sedimentation trials for two common dispersants; an ammonium salt of polymethacrylate (PMA-NH 4) and two molecular weights (l,800 and 10,000) of polyethylenimine (PEI). TiC preforms were prepared by slip casting suspensions of up to 50 vol. % solids content. After drying, the TiC-based cermets were processed by melt infiltration with the Ni3Al alloy (IC-50) at 1475°C.Ni 3Al content was varied between 20 and 50 vol. % using this approach, resulting in final densities that exceeded 98% of theoretical. These samples were subjected to Hertzian indentation testing with loads ranging from 250 -- 2000 N, using WC-Co spheres with sizes ranging from 1.191 to 2.38 mm. Indentation stress-strain curves were produced from the indentation data and compared to the calculated elastic Hertzian response. The bonded interface method was used to examine the subsurface deformation of the material under load. Significant deformation of the binder and the eventual fracture of the TiC grains were observed. The nature of the quasi-plasticity of TiC-Ni 3Al and the effects of binder content on surface and subsurface deformation is examined.

  6. Surface tension measurement from the indentation of clamped thin films.

    PubMed

    Xu, Xuejuan; Jagota, Anand; Paretkar, Dadhichi; Hui, Chung-Yuen

    2016-06-21

    We developed an indentation technique to measure the surface tension of relatively stiff solids. In the proposed method, a suspended thin solid film is indented by a rigid sphere and its deflection is measured by optical interferometry. The film deflection is jointly resisted by surface tension, elasticity and residual stress. Using a version of nonlinear von Karman plate theory that includes surface tension, we are able to separate the contribution of elasticity to the total tension in the film. Surface tension is determined by extrapolating the sum of surface tension and residual stress to zero film thickness. We measured the surface tension of polydimethylsiloxane (PDMS) using this technique and obtained a value of 19.5 ± 3.6 mN m(-1), consistent with the surface energy of PDMS reported in the literature. PMID:27189735

  7. Shear-banding Induced Indentation Size Effect in Metallic Glasses

    NASA Astrophysics Data System (ADS)

    Lu, Y. M.; Sun, B. A.; Zhao, L. Z.; Wang, W. H.; Pan, M. X.; Liu, C. T.; Yang, Y.

    2016-06-01

    Shear-banding is commonly regarded as the “plasticity carrier” of metallic glasses (MGs), which usually causes severe strain localization and catastrophic failure if unhindered. However, through the use of the high-throughput dynamic nanoindentation technique, here we reveal that nano-scale shear-banding in different MGs evolves from a “distributed” fashion to a “localized” mode when the resultant plastic flow extends over a critical length scale. Consequently, a pronounced indentation size effect arises from the distributed shear-banding but vanishes when shear-banding becomes localized. Based on the critical length scales obtained for a variety of MGs, we unveil an intrinsic interplay between elasticity and fragility that governs the nanoscale plasticity transition in MGs. Our current findings provide a quantitative insight into the indentation size effect and transition mechanisms of nano-scale plasticity in MGs.

  8. Shear-banding Induced Indentation Size Effect in Metallic Glasses

    PubMed Central

    Lu, Y. M.; Sun, B. A.; Zhao, L. Z.; Wang, W. H.; Pan, M. X.; Liu, C. T.; Yang, Y.

    2016-01-01

    Shear-banding is commonly regarded as the “plasticity carrier” of metallic glasses (MGs), which usually causes severe strain localization and catastrophic failure if unhindered. However, through the use of the high-throughput dynamic nanoindentation technique, here we reveal that nano-scale shear-banding in different MGs evolves from a “distributed” fashion to a “localized” mode when the resultant plastic flow extends over a critical length scale. Consequently, a pronounced indentation size effect arises from the distributed shear-banding but vanishes when shear-banding becomes localized. Based on the critical length scales obtained for a variety of MGs, we unveil an intrinsic interplay between elasticity and fragility that governs the nanoscale plasticity transition in MGs. Our current findings provide a quantitative insight into the indentation size effect and transition mechanisms of nano-scale plasticity in MGs. PMID:27324835

  9. Surface tension measurement from the indentation of clamped thin films.

    PubMed

    Xu, Xuejuan; Jagota, Anand; Paretkar, Dadhichi; Hui, Chung-Yuen

    2016-06-21

    We developed an indentation technique to measure the surface tension of relatively stiff solids. In the proposed method, a suspended thin solid film is indented by a rigid sphere and its deflection is measured by optical interferometry. The film deflection is jointly resisted by surface tension, elasticity and residual stress. Using a version of nonlinear von Karman plate theory that includes surface tension, we are able to separate the contribution of elasticity to the total tension in the film. Surface tension is determined by extrapolating the sum of surface tension and residual stress to zero film thickness. We measured the surface tension of polydimethylsiloxane (PDMS) using this technique and obtained a value of 19.5 ± 3.6 mN m(-1), consistent with the surface energy of PDMS reported in the literature.

  10. Group sequential testing of the predictive accuracy of a continuous biomarker with unknown prevalence.

    PubMed

    Koopmeiners, Joseph S; Feng, Ziding

    2016-04-15

    Group sequential testing procedures have been proposed as an approach to conserving resources in biomarker validation studies. Previously, we derived the asymptotic properties of the sequential empirical positive predictive value (PPV) and negative predictive value (NPV) curves, which summarize the predictive accuracy of a continuous marker, under case-control sampling. A limitation of this approach is that the prevalence cannot be estimated from a case-control study and must be assumed known. In this paper, we consider group sequential testing of the predictive accuracy of a continuous biomarker with unknown prevalence. First, we develop asymptotic theory for the sequential empirical PPV and NPV curves when the prevalence must be estimated, rather than assumed known in a case-control study. We then discuss how our results can be combined with standard group sequential methods to develop group sequential testing procedures and bias-adjusted estimators for the PPV and NPV curve. The small sample properties of the proposed group sequential testing procedures and estimators are evaluated by simulation, and we illustrate our approach in the context of a study to validate a novel biomarker for prostate cancer.

  11. Graphene mechanics: II. Atomic stress distribution during indentation until rupture.

    PubMed

    Costescu, Bogdan I; Gräter, Frauke

    2014-06-28

    Previous Atomic Force Microscopy (AFM) experiments found single layers of defect-free graphene to rupture at unexpectedly high loads in the micronewton range. Using molecular dynamics simulations, we modeled an AFM spherical tip pressing on a circular graphene sheet and studied the stress distribution during the indentation process until rupture. We found the graphene rupture force to have no dependency on the sheet size and a very weak dependency on the indenter velocity, allowing a direct comparison to experiment. The deformation showed a non-linear elastic behavior, with a two-dimensional elastic modulus in good agreement with previous experimental and computational studies. In line with theoretical predictions for linearly elastic sheets, rupture forces of non-linearly elastic graphene are proportional to the tip radius. However, as a deviation from the theory, the atomic stress concentrates under the indenter tip more strongly than predicted and causes a high probability of bond breaking only in this area. In turn, stress levels decrease rapidly towards the edge of the sheet, most of which thus only serves the role of mechanical support for the region under the indenter. As a consequence, the high ratio between graphene sheets and sphere radii, hitherto supposed to be necessary for reliable deformation and rupture studies, could be reduced to a factor of only 5-10 without affecting the outcome. Our study suggests time-resolved analysis of forces at the atomic level as a valuable tool to predict and interpret the nano-scale response of stressed materials beyond graphene.

  12. Depth-sensing nano-indentation on a myelinated axon at various stages

    NASA Astrophysics Data System (ADS)

    Huang, Wei-Chin; Liao, Jiunn-Der; Lin, Chou-Ching K.; Ju, Ming-Shaung

    2011-07-01

    A nano-mechanical characterization of a multi-layered myelin sheath structure, which enfolds an axon and plays a critical role in the transmission of nerve impulses, is conducted. Schwann cells co-cultured in vitro with PC12 cells for various co-culture times are differentiated to form a myelinated axon, which is then observed using a transmission electron microscope. Three major myelination stages, with distinct structural characteristics and thicknesses around the axon, can be produced by varying the co-culture time. A dynamic contact module and continuous depth-sensing nano-indentation are used on the myelinated structure to obtain the load-on-sample versus measured displacement curve of a multi-layered myelin sheath, which is used to determine the work required for the nano-indentation tip to penetrate the myelin sheath. By analyzing the harmonic contact stiffness versus the measured displacement profile, the results can be used to estimate the three stages of the multi-layered structure on a myelinated axon. The method can also be used to evaluate the development stages of myelination or demyelination during nerve regeneration.

  13. On determining the most appropriate test cut-off value: the case of tests with continuous results

    PubMed Central

    Habibzadeh, Parham; Yadollahie, Mahboobeh

    2016-01-01

    There are several criteria for determination of the most appropriate cut-off value in a diagnostic test with continuous results. Mostly based on receiver operating characteristic (ROC) analysis, there are various methods to determine the test cut-off value. The most common criteria are the point on ROC curve where the sensitivity and specificity of the test are equal; the point on the curve with minimum distance from the left-upper corner of the unit square; and the point where the Youden’s index is maximum. There are also methods mainly based on Bayesian decision analysis. Herein, we show that a proposed method that maximizes the weighted number needed to misdiagnose, an index of diagnostic test effectiveness we previously proposed, is the most appropriate technique compared to the aforementioned ones. For determination of the cut-off value, we need to know the pretest probability of the disease of interest as well as the costs incurred by misdiagnosis. This means that even for a certain diagnostic test, the cut-off value is not universal and should be determined for each region and for each disease condition. PMID:27812299

  14. Evaluation of a Fourier transform infrared continuous emission monitor field test at a TSCA incinerator

    SciTech Connect

    Mao, Z.; Demirgian, J.C.; Reedy, G.

    1994-06-01

    A Fourier transform infrared (FTIR) spectrometer was field tested as a continuous emission monitor (CEM) at the Toxic Substances Control Act (TSCA) incinerator at K-25 in Oak Ridge, Tenn., from August 23 to September 3, 1993. This paper reports results obtained from this field test. The FTIR spectrometer and the long-path cell used for the field test were specially designed and constructed, so that optical alignment of the system can be easily performed in the field. The system was tested in the laboratory and then in the field for instrument stability and signal-to-noise ratio. Time interval required for taking a new background spectrum was determined. It appears that the system performs well both in the laboratory and in the field. The field test followed a standard operation procedure (SOP), developed for the test, based on a proposed EPA protocol for applying FTIR in emission testing. Sixteen compounds were selected as target analytes. Ethylene was used as a calibration transfer standard to ensure that spectral performance of the FTIR spectrometer in the field is consistent with that in the laboratory. Spike tests were regularly conducted with a known concentration of a mixture of six compounds and also with SF{sub 6} to check the accuracy of the monitoring system. Data sampling, processing, and reporting were automated to collect data every 10 min, and data were collected throughout the test as long as liquid nitrogen was available in the detector. The instrumentation and software performed flawlessly. Although the field test was a success, further improvement is necessary. Suggestions for revising the SOP and the proposed EPA protocol are discussed.

  15. Plastically deformed region around indentations on Si angle crystal

    NASA Astrophysics Data System (ADS)

    Yoshioka, M.

    1994-12-01

    Expansion of a hemispherical shell by inner pressure has been widely applied for the model of the deformation by an indentation on a flat surface; however, the deformed region is not necessarily spherically symmetric, especially in anisotropic materials such as single crystals. Therefore, whether the spherical model is applicable in an indentation process for objective materials must always be kept in mind. Indentations have been made on the (111) surface of silicon crystal at various temperatures. The three-dimensional shape of the plastically deformed region was experimentally measured by means of an etching technique and its difference from the hemisphere was observed. It was never spherical but much more complicated, similar to a bottle gourd. The slip mechanism, which resulted in the observed shape of the plastic region, is discussed further. The plastic region was analytically obtained also on the assumption that the stress distribution was spherically symmetrical. The result is approximately in accordance with the observed shape. It is therefore concluded that the stress distribution is nearly spherical although the plastic region is far from it. The yield strength of silicon crystals and their temperature dependence were obtained based on the spherical model.

  16. Online measurement of motivational processes: introducing the Continuous Delay Aversion Test (ConDAT).

    PubMed

    Müller, Ueli C; Sonuga-Barke, Edmund J S; Brandeis, Daniel; Steinhausen, Hans-Christoph

    2006-02-15

    The Continuous Delay Aversion Test (ConDAT), a new computer task for online monitoring and continuously measuring delay aversion (DA), is introduced. DA is a motivational style related to a shortened delay gradient which is proposed as a major endophenotype of attention deficit hyperactivity disorder (ADHD). It is characterised by avoiding or escaping from delay-rich situations despite the prospects of a reward. In each ConDAT trial the rapidly diminishing reward/delay ratio, which tends asymptotically towards zero, is visually presented on the computer screen. The test subject is permanently confronted with the question whether to quit or to continue the trial in the face of the deteriorating reward/time ratio. An elaborated control of stimuli and responses, including the sending of trigger codes to external recording devices, makes the task useful for neurophysiological or brain imaging experiments. Compared to existing tasks, the ConDAT is more flexible and sensitive due to its asymptotic open-ended trials and the interval-scaled output measure. Pilot data give evidence for satisfactory reliability and external validity of the task. PMID:16376991

  17. Biomechanical assessment of plantar foot tissue in diabetic patients using an ultrasound indentation system.

    PubMed

    Zheng, Y P; Choi, Y K; Wong, K; Chan, S; Mak, A F

    2000-03-01

    The biomechanical properties of plantar tissues were investigated for four older neuropathic diabetic patients and four healthy younger subjects. Indentation tests were performed at four high-pressure areas with three postures in each subject. The tissue thickness and effective Young's modulus were measured by an ultrasound (US) indentation system. The system comprised a pen-size probe having a US transducer at the tip and a load cell connected in series with it. Results showed that the plantar soft tissues of the elderly diabetic patients were significantly stiffer and thinner when compared with the healthy young subjects. For the diabetic subjects tested, the Young's modulus at the 1st metatarsal head was significantly larger than those at the other three sites. This site-dependence was not observed in the healthy young subjects. The plantar tissue became significantly stiffer in the healthy young subjects as a result of posture changes. This posture-dependence of the Young's modulus was not established for the elderly diabetic group.

  18. The characterization of Vicker`s microhardness indentations and pile-up profiles as a strain-hardening microprobe

    SciTech Connect

    Santos, C. Jr.; Odette, G.R.; Lucas, G.E.; Schroeter, B.; Klinginsmith, D.; Yamamoto, T.

    1998-04-01

    Microhardness measurements have long been used to examine strength properties and changes in strength properties in metals, for example, as induced by irradiation. Microhardness affords a relatively simple test that can be applied to very small volumes of material. Microhardness is nominally related to the flow stress of the material at a fixed level of plastic strain. Further, the geometry of the pile-up of material around the indentation is related to the strain-hardening behavior of a material; steeper pile-ups correspond to smaller strain-hardening rates. In this study the relationship between pile-up profiles and strain hardening is examined using both experimental and analytical methods. Vickers microhardness tests have been performed on a variety of metal alloys including low alloy, high Cr and austenitic stainless steels. The pile-up topology around the indentations has been quantified using confocal microscopy techniques. In addition, the indentation and pile-up geometry has been simulated using finite element method techniques. These results have been used to develop an improved quantification of the relationship between the pile-up geometry and the strain-hardening constitutive behavior of the test material.

  19. Continuous bench-scale slurry catalyst testing direct coal liquefaction rawhide sub-bituminous coal

    SciTech Connect

    Bauman, R.F.; Coless, L.A.; Davis, S.M.

    1995-12-31

    In 1992, the Department of Energy (DOE) sponsored research to demonstrate a dispersed catalyst system using a combination of molybdenum and iron precursors for direct coal liquefaction. This dispersed catalyst system was successfully demonstrated using Black Thunder sub-bituminous coal at Wilsonville, Alabama by Southern Electric International, Inc. The DOE sponsored research continues at Exxon Research and Development Laboratories (ERDL). A six month continuous bench-scale program using ERDL`s Recycle Coal Liquefaction Unit (RCLU) is planned, three months in 1994 and three months in 1995. The initial conditions in RCLU reflect experience gained from the Wilsonville facility in their Test Run 263. Rawhide sub-bituminous coal which is similar to the Black Thunder coal tested at Wilsonville was used as the feed coal. A slate of five dispersed catalysts for direct coal liquefaction of Rawhide sub-bituminous coal has been tested. Throughout the experiments, the molybdenum addition rate was held constant at 100 wppm while the iron oxide addition rate was varied from 0.25 to 1.0 weight percent (dry coal basis). This report covers the 1994 operations and accomplishments.

  20. Experimental test of the no-go theorem for continuous ψ-epistemic models

    PubMed Central

    Liao, Kai-Yu; Zhang, Xin-Ding; Guo, Guang-Zhou; Ai, Bao-Quan; Yan, Hui; Zhu, Shi-Liang

    2016-01-01

    Quantum states are the key mathematical objects in quantum theory; however, there is still much debate concerning what a quantum state truly represents. One such century-old debate is whether a quantum state is ontic or epistemic. Recently, a no-go theorem was proposed, stating that the continuous ψ-epistemic models cannot reproduce the measurement statistic of quantum states. Here we experimentally test this theorem with high-dimensional single photon quantum states without additional assumptions except for the fair-sampling assumption. Our experimental results reproduce the prediction of quantum theory and support the no-go theorem. PMID:27241283

  1. Experimental test of the no-go theorem for continuous ψ-epistemic models.

    PubMed

    Liao, Kai-Yu; Zhang, Xin-Ding; Guo, Guang-Zhou; Ai, Bao-Quan; Yan, Hui; Zhu, Shi-Liang

    2016-01-01

    Quantum states are the key mathematical objects in quantum theory; however, there is still much debate concerning what a quantum state truly represents. One such century-old debate is whether a quantum state is ontic or epistemic. Recently, a no-go theorem was proposed, stating that the continuous ψ-epistemic models cannot reproduce the measurement statistic of quantum states. Here we experimentally test this theorem with high-dimensional single photon quantum states without additional assumptions except for the fair-sampling assumption. Our experimental results reproduce the prediction of quantum theory and support the no-go theorem.

  2. Study on the machined depth when nanoscratching on 6H-SiC using Berkovich indenter: Modelling and experimental study

    NASA Astrophysics Data System (ADS)

    Zhang, Feihu; Meng, Binbin; Geng, Yanquan; Zhang, Yong

    2016-04-01

    In order to investigate the deformation characteristics and material removing mechanism of the single crystal silicon carbide at the nanoscale, the nanoscratching tests were conducted on the surface of 6H-SiC (0 0 0 1) by using Berkovich indenter. In this paper, a theoretical model for nanoscratching with Berkovich indenter is proposed to reveal the relationship between the applied normal load and the machined depth. The influences of the elastic recovery and the stress distribution of the material are considered in the developed theoretical model. Experimental and theoretical machined depths are compared when scratching in different directions. Results show that the effects of the elastic recovery of the material, the geometry of the tip and the stress distribution of the interface between the tip and sample have large influences on the machined depth which should be considered for this kind of hard brittle material of 6H-SiC.

  3. Nano-indentation of single-layer optical oxide thin films grown by electron-beam deposition

    SciTech Connect

    Mehrotra, K.; Oliver, J. B.; Lambropoulos, J. C.

    2015-01-01

    Mechanical characterization of optical oxide thin films is performed using nano-indentation, and the results are explained based on the deposition conditions used. These oxide films are generally deposited to have a porous microstructure that optimizes laser induced damage thresholds, but changes in deposition conditions lead to varying degrees of porosity, density, and possibly the microstructure of the thin film. This can directly explain the differences in the mechanical properties of the film studied here and those reported in literature. Of the four single-layer thin films tested, alumina was observed to demonstrate the highest values of nano-indentation hardness and elastic modulus. This is likely a result of the dense microstructure of the thin film arising from the particular deposition conditions used.

  4. Use of Continuous Exponential Families to Link Forms via Anchor Tests. Research Report. ETS RR-11-11

    ERIC Educational Resources Information Center

    Haberman, Shelby J.; Yan, Duanli

    2011-01-01

    Continuous exponential families are applied to linking test forms via an internal anchor. This application combines work on continuous exponential families for single-group designs and work on continuous exponential families for equivalent-group designs. Results are compared to those for kernel and equipercentile equating in the case of chained…

  5. Contraceptive social marketing: a continuous cycle of planning, testing and evaluating.

    PubMed

    1985-01-01

    This article outlines the contraceptive marketing process used by the Social Marketing for Change (SOMARC) project. The 1st stage of the process involves analysis of the market, the consumer, and the social marketing organization's capabilities. In the 2nd stage, planning, data collected in the analysis stage are used to define objectives, segment target markets, and devise strategies for each element in the marketing mix. In the 3rd stage, all the elements in the marketing mix are developed and tested (e.g. product concepts, pricing, packaging, communication messages) and refined on the basis of test results. In stage 4, the action plan is implemented and marketing progress and institutional performance are monitored. Stage 5 includes an assessment of in-market effectiveness in terms of responses from consumers, retailers, and health professionals. The last stage feeds back to the 1st. All the reviewed data are recycled into analysis to begin again the continuous process of refinement and improvement.

  6. Test of the Isotropy of the Speed of Light Using a Continuously Rotating Optical Resonator

    SciTech Connect

    Herrmann, Sven; Senger, Alexander; Peters, Achim; Kovalchuk, Evgeny; Mueller, Holger

    2005-10-07

    We report on a test of Lorentz invariance performed by comparing the resonance frequencies of one stationary optical resonator and one continuously rotating on a precision air bearing turntable. Special attention is paid to the control of rotation induced systematic effects. Within the photon sector of the standard model extension, we obtain improved limits on combinations of 8 parameters at a level of a few parts in 10{sup -16}. For the previously least well known parameter we find {kappa}-tilde{sub e-}{sup ZZ}=(-1.9{+-}5.2)x10{sup -15}. Within the Robertson-Mansouri-Sexl test theory, our measurement restricts the isotropy violation parameter {beta}-{delta}-(1/2) to (-2.1{+-}1.9)x10{sup -10}, corresponding to an eightfold improvement with respect to previous nonrotating measurements.

  7. Design and testing of a new, simple continuous bent sagittally focusing monochromator

    SciTech Connect

    Kycia, S.; Inoue, K.; Shen, Q.

    1996-09-01

    A continuous bent sagittally focusing monochromator has been designed and built. The monochromator is compatible with the present single-point bender apparatus designed for polygonal (ribbed) triangular sagittally focusing monochromators. This monochromator implements a new design concept taking advantage of a tapered rectangular wafer to allow for sagittal bending while simultaneously minimizing anticlastic bending. The monochromator was optimized to operate at x-ray energies in the range of 5 to 25 keV. The design was derived from finite element analysis using ANSYS. The monochromator performance was tested by means of an apparatus implementing an x-ray tube source and a double-crystal configuration. This method yields precise contour maps of the entire monochromator surface. Details of the monochromator design, test apparatus, and corresponding results will be presented. {copyright} {ital 1996 American Institute of Physics.}

  8. Effect of Heparin on Coagulation Tests: A Comparison of Continuous and Bolus Infusion in Haemodialysis Patients

    PubMed Central

    Nasiri, Ali Akbar; Ahmadidarrehsima, Sudabeh; Balouchi, Abbas; Moghadam, Mahdiye Poodine

    2016-01-01

    Introduction Haemodialysis is one of the most conventional treatments of chronic renal failure. The risk of clot formation is high during haemodialysis due to regular contact of blood with the surfaces of foreign objects such as catheters, dialyzers’ membrane, and other materials used for dialysis. Therefore, to prevent clot formation during haemodialysis, the dialysis system requires anticoagulation; this is usually done by heparin. Aim The present study aimed to compare two heparinization methods and determine the proper impacts of these methods. Materials and Methods In this quasi-experimental study, 80 haemodialysis patients covered by the dialysis center of Amir-al-momenin Hospital of Zabol were studied in two 40-member groups of heparin therapy methods of bolus injection and continuous infusion. PT and PTT were measured in blood samples collected from all patients before starting haemodialysis. The first group received 3000 units of heparin once the haemodialysis machine started to work and 2000 units of heparin two hours later as bolus injection. In the second group, 1500 units of heparin was injected at the start of dialysis after then, 5000 units of heparin (one mL) were mixed with 11 mL of distilled water and infused using a heparin injection pump up to half an hour before the end of dialysis. At 30 minutes after starting dialysis and at the end of 4 hours of haemodialysis, PT and PTT were measured and compared between the two groups. Results According to the results, the mean partial thromboplastin time in the bolus and continuous heparin-receiving group was 41.75±6.29 and 37.90±4.77, respectively, which was statistically significant (p=0.036). But PT was 14.45±1.82 in the bolus heparin group and 13.95±1.39 in the continuous heparin group, which was not significant according to the results of independent t-test (p=0.336). Conclusion The results indicated a statistically significant difference between the bolus heparin injection and the continuous

  9. Attention and response control in ADHD. Evaluation through integrated visual and auditory continuous performance test.

    PubMed

    Moreno-García, Inmaculada; Delgado-Pardo, Gracia; Roldán-Blasco, Carmen

    2015-01-01

    This study assesses attention and response control through visual and auditory stimuli in a primary care pediatric sample. The sample consisted of 191 participants aged between 7 and 13 years old. It was divided into 2 groups: (a) 90 children with ADHD, according to diagnostic (DSM-IV-TR) (APA, 2002) and clinical (ADHD Rating Scale-IV) (DuPaul, Power, Anastopoulos, & Reid, 1998) criteria, and (b) 101 children without a history of ADHD. The aims were: (a) to determine and compare the performance of both groups in attention and response control, (b) to identify attention and response control deficits in the ADHD group. Assessments were carried out using the Integrated Visual and Auditory Continuous Performance Test (IVA/CPT, Sandford & Turner, 2002). Results showed that the ADHD group had visual and auditory attention deficits, F(3, 170) = 14.38; p < .01, deficits in fine motor regulation (Welch´s t-test = 44.768; p < .001) and sensory/motor activity (Welch'st-test = 95.683, p < .001; Welch's t-test = 79.537, p < .001). Both groups exhibited a similar performance in response control, F(3, 170) = .93, p = .43.Children with ADHD showed inattention, mental processing speed deficits, and loss of concentration with visual stimuli. Both groups yielded a better performance in attention with auditory stimuli.

  10. Adoption of Test Driven Development and Continuous Integration for the Development of the Trick Simulation Toolkit

    NASA Technical Reports Server (NTRS)

    Penn, John M.

    2013-01-01

    This paper describes the adoption of a Test Driven Development approach and a Continuous Integration System in the development of the Trick Simulation Toolkit, a generic simulation development environment for creating high fidelity training and engineering simulations at the NASA/Johnson Space Center and many other NASA facilities. It describes what was learned and the significant benefits seen, such as fast, thorough, and clear test feedback every time code is checked-in to the code repository. It also describes a system that encourages development of code that is much more flexible, maintainable, and reliable. The Trick Simulation Toolkit development environment provides a common architecture for user-defined simulations. Trick builds executable simulations using user-supplied simulation-definition files (S_define) and user supplied "model code". For each Trick-based simulation, Trick automatically provides job scheduling, checkpoint / restore, data-recording, interactive variable manipulation (variable server), and an input-processor. Also included are tools for plotting recorded data and various other supporting tools and libraries. Trick is written in C/C++ and Java and supports both Linux and MacOSX. Prior to adopting this new development approach, Trick testing consisted primarily of running a few large simulations, with the hope that their complexity and scale would exercise most of Trick's code and expose any recently introduced bugs. Unsurprising, this approach yielded inconsistent results. It was obvious that a more systematic, thorough approach was required. After seeing examples of some Java-based projects that used the JUnit test framework, similar test frameworks for C and C++ were sought. Several were found, all clearly inspired by JUnit. Googletest, a freely available Open source testing framework, was selected as the most appropriate and capable. The new approach was implemented while rewriting the Trick memory management component, to eliminate a

  11. Crystallographic Analysis of Nucleation at Hardness Indentations in High-Purity Aluminum

    NASA Astrophysics Data System (ADS)

    Xu, Chaoling; Zhang, Yubin; Lin, Fengxiang; Wu, Guilin; Liu, Qing; Juul Jensen, Dorte

    2016-08-01

    Nucleation at Vickers hardness indentations has been studied in high-purity aluminum cold-rolled 12 pct. Electron channeling contrast was used to measure the size of the indentations and to detect nuclei, while electron backscattering diffraction was used to determine crystallographic orientations. It is found that indentations are preferential nucleation sites. The crystallographic orientations of the deformed grains affect the hardness and the nucleation potentials at the indentations. Higher hardness gives increased nucleation probabilities. Orientation relationships between nuclei developed at different indentations within one original grain are analyzed and it is found that the orientation distribution of the nuclei is far from random. It is suggested that it relates to the orientations present near the indentation tips which in turn depend on the orientation of the selected grain in which they form. Finally, possible nucleation mechanisms are briefly discussed.

  12. Substrate-dependent cell elasticity measured by optical tweezers indentation

    NASA Astrophysics Data System (ADS)

    Yousafzai, Muhammad S.; Ndoye, Fatou; Coceano, Giovanna; Niemela, Joseph; Bonin, Serena; Scoles, Giacinto; Cojoc, Dan

    2016-01-01

    In the last decade, cell elasticity has been widely investigated as a potential label free indicator for cellular alteration in different diseases, cancer included. Cell elasticity can be locally measured by pulling membrane tethers, stretching or indenting the cell using optical tweezers. In this paper, we propose a simple approach to perform cell indentation at pN forces by axially moving the cell against a trapped microbead. The elastic modulus is calculated using the Hertz-model. Besides the axial component, the setup also allows us to examine the lateral cell-bead interaction. This technique has been applied to measure the local elasticity of HBL-100 cells, an immortalized human cell line, originally derived from the milk of a woman with no evidence of breast cancer lesions. In addition, we have studied the influence of substrate stiffness on cell elasticity by performing experiments on cells cultured on two substrates, bare and collagen-coated, having different stiffness. The mean value of the cell elastic modulus measured during indentation was 26±9 Pa for the bare substrate, while for the collagen-coated substrate it diminished to 19±7 Pa. The same trend was obtained for the elastic modulus measured during the retraction of the cell: 23±10 Pa and 13±7 Pa, respectively. These results show the cells adapt their stiffness to that of the substrate and demonstrate the potential of this setup for low-force probing of modifications to cell mechanics induced by the surrounding environment (e.g. extracellular matrix or other cells).

  13. The Effect of Indenter Ball Radius on the Static Load Capacity of the Superelastic 60NiTi for Rolling Element Bearings

    NASA Technical Reports Server (NTRS)

    Dellacorte, Christopher; Moore, Lewis E.; Clifton, Joshua S.

    2014-01-01

    Static load capacity is a critical design parameter for rolling element bearings used in space mechanisms because of the potential for Brinell (surface dent) damage due to shock and vibration loading events during rocket launch. Brinell damage to bearing raceways can lead to torque variations (noise) and reduced bearing life. The growing use of ceramic rolling elements with high stiffness in hybrid bearings exacerbates the situation. A new family of hard yet resilient materials based upon nickel-titanium is emerging to address such bearing challenges. 60NiTi is a superelastic material that simultaneously exhibits high hardness and a relatively low elastic modulus (100GPa) and has been shown to endure higher indentation loads than conventional and high performance steel. Indentation load capacity has been reported for relatively large (12.7mm diameter) ceramic (Si3N4) indenter balls pressed against flat plates of 60NiTi. In order to develop damage load threshold criteria applicable to a wide range of bearing designs and sizes, the effects of indenter ball radius and the accuracy of interpolation of the Hertz contact stress relations for 60NiTi must be ascertained. In this paper, results of indentation tests involving ceramic balls ranging from 6.4 to 12.7mm in diameter and highly polished 60NiTi flat plates are presented. When the resulting dent depth data for all the indenter ball sizes are normalized using the Hertz equations, the data (dent depth vs. stress) are comparable. Thus when designing bearings made from 60NiTi, the Hertz stress relations can be applied with relative confidence over a range of rolling element sizes and internal geometries.

  14. The Effect of Indenter Ball Radius on the Static Load Capacity of the Superelastic 60NiTi for Rolling Element Bearings

    NASA Technical Reports Server (NTRS)

    Dellacorte, Christopher; Moore, Lewis E.

    2014-01-01

    Static load capacity is a critical design parameter for rolling element bearings used in space mechanisms because of the potential for Brinell (surface dent) damage due to shock and vibration loading events during rocket launch. Brinell damage to bearing raceways can lead to torque variations (noise) and reduced bearing life. The growing use of ceramic rolling elements with high stiffness in hybrid bearings exacerbates the situation. A new family of hard yet resilient materials based upon nickel-titanium is emerging to address such bearing challenges. 60NiTi is a superelastic material that simultaneously exhibits high hardness and a relatively low elastic modulus (approx. 100 GPa) and has been shown to endure higher indentation loads than conventional and high performance steel. Indentation load capacity has been reported for relatively large (12.7 mm diameter) ceramic (Si3N4) indenter balls pressed against flat plates of 60NiTi. In order to develop damage load threshold criteria applicable to a wide range of bearing designs and sizes, the effects of indenter ball radius and the accuracy of interpolation of the Hertz contact stress relations for 60NiTi must be ascertained. In this paper, results of indentation tests involving ceramic balls ranging from 6.4 to 12.7 mm in diameter and highly polished 60NiTi flat plates are presented. When the resulting dent depth data for all the indenter ball sizes are normalized using the Hertz equations, the data (dent depth versus stress) are comparable. Thus when designing bearings made from 60NiTi, the Hertz stress relations can be applied with relative confidence over a range of rolling element sizes and internal geometries.

  15. The Effect of Indenter Ball Radius on the Static Load Capacity of the Superelastic 60NiTi for Rolling Element Bearings

    NASA Technical Reports Server (NTRS)

    DellaCorte, Christopher; Moore, Lewis E., III; Clifton, Joshua S.

    2014-01-01

    Static load capacity is a critical design parameter for rolling element bearings used in space mechanisms because of the potential for Brinell (surface dent) damage due to shock and vibration loading events during rocket launch. Brinell damage to bearing raceways can lead to torque variations (noise) and reduced bearing life. The growing use of ceramic rolling elements with high stiffness in hybrid bearings exacerbates the situation. A new family of hard yet resilient materials based upon nickel-titanium is emerging to address such bearing challenges. 60NiTi is a superelastic material that simultaneously exhibits high hardness and a relatively low elastic modulus (approx. 100 GigaPascals) and has been shown to endure higher indentation loads than conventional and high performance steel. Indentation load capacity has been reported for relatively large (12.7 millimeters diameter) ceramic (Si3N4) indenter balls pressed against flat plates of 60NiTi. In order to develop damage load threshold criteria applicable to a wide range of bearing designs and sizes, the effects of indenter ball radius and the accuracy of interpolation of the Hertz contact stress relations for 60NiTi must be ascertained. In this paper, results of indentation tests involving ceramic balls ranging from 6.4 to 12.7 mm in diameter and highly polished 60NiTi flat plates are presented. When the resulting dent depth data for all the indenter ball sizes are normalized using the Hertz equations, the data (dent depth versus stress) are comparable. Thus when designing bearings made from 60NiTi, the Hertz stress relations can be applied with relative confidence over a range of rolling element sizes and internal geometries.

  16. Preliminary tests on a new near-infrared continuous-wave tissue oximeter

    NASA Astrophysics Data System (ADS)

    Casavola, Claudia; Cicco, Giuseppe; Pirrelli, Anna; Lugara, Pietro M.

    2000-11-01

    We present a preliminary study, in vitro and in vivo, with a novel device for near-infrared tissue oximetry. The light sources used are two quasi-continuous-wave LEDs, emitting at 656 and 851 nm, and the detector is a photodiode. The data are acquired in back-scattering configuration, thus allowing the non-invasive characterization of thick tissues. Stability tests were performed by placing the optical probe on a tissue- like phantom and acquiring data for periods of time ranging from 5 to 40 minutes. No significant drifts in the DC signal were observed after a warm-up period of no more than 10 minutes. We performed reproducibility tests by repositioning the optical probe on the phantom for a number of times. We found a reproducibility better than 5% in the DC signal. We also present the results of a preliminary study conducted in vivo, on the calf muscle of human subjects. We report a comparison of the results obtained with the near-infrared oximeter with the values of blood oxygenation ctO2 measured with conventional chemical tests.

  17. Measuring Depth-dependent Dislocation Densities and Elastic Strains in an Indented Ni-based Superalloy

    SciTech Connect

    Barabash, O.M.; Santella, M.; Barabash, R.I.; Ice, G.E.; Tischler, J.

    2011-12-14

    The indentation-induced elastic-plastic zone in an IN 740 Ni-based superalloy was studied by three-dimensional (3-D) x-ray microdiffraction and electron back scattering diffraction (EBSD). Large lattice reorientations and the formation of geometrically necessary dislocations are observed in the area with a radius of {approx}75 {mu}m. A residual compression zone is found close to the indent edge. An elastic-plastic transition is observed at {approx}20 {mu}m from the indent edge. Depth dependent dislocation densities are determined at different distances from the indent edge.

  18. Detection of indentation induced Fe-to-Afe phase transformation in lead zirconate titanate.

    SciTech Connect

    Baddorf, Arthur P.; Shin, Junsoo; Gogotsi, Yury G.; Buchheit, Thomas Edward; Watson, Chad Samuel; Kalinin, Sergei; Juliano, Thomas F.

    2005-08-01

    Instrumented indentation was combined with microscopy and spectroscopy analysis to investigate the local mechanically induced ferroelectric to anti-ferroelectric phase transformation of niobium-modified lead zirconate titanate 95/5. Indentation experiments to a depth of 2 {micro}m were performed using a Berkovich pyramidal three-sided diamond tip. Subsequent Raman spectroscopy and piezoelectric force microscopy revealed that indentation locally induced the ferroelectric to antiferroelectric phase transformation. Piezoelectric force microscopy demonstrated the ability to map the individual phases within and near indented regions on the niobium-modified lead zirconate titanate ceramics.

  19. Detection of Indentation Induced FE-to-AFE Phase Transformation in Lead Zirconate Titanate

    SciTech Connect

    Baddorf, Arthur P; Kalinin, Sergei V; Shin, Junsoo; Juliano, Thomas F.; Gogotsi, Yury G.; Buchheit, Thomas E.; Watson, Chad S.

    2006-01-01

    Instrumented indentation was combined with microscopy and spectroscopy analysis to investigate the local mechanically induced ferroelectric to anti-ferroelectric phase transformation of niobium-modified lead zirconate titanate 95/5. Indentation experiments to a depth of 2 {micro}m were performed using a Berkovich pyramidal three-sided diamond tip. Subsequent Raman spectroscopy and piezoelectric force microscopy revealed that indentation locally induced the ferroelectric to antiferroelectric phase transformation. Piezoelectric force microscopy demonstrated the ability to map the individual phases within and near indented regions on the niobium-modified lead zirconate titanate ceramics.

  20. Slab pull and indentation tectonics: insights from 3D laboratory experiments

    NASA Astrophysics Data System (ADS)

    Regard, Vincent; Faccenna, Claudio; Martinod, Joseph; Bellier, Olivier

    2005-03-01

    We investigate, using 3D laboratory experiments, how the dynamics of indentation process are affected by the evolution at depth of the oceanic and continental subductions. Lithospheric plates are modelled by sand-silicone plates floating on glucose syrup, and the density contrast between oceanic and continental lithospheric plates and asthenosphere is reproduced. Analogue experiments model the convergence between two lithospheric plates, a small continent indenting a large continental plate. We show that the surface deformation in front of the indenter and above the oceanic subduction zone depends on the behaviour of the slab below the collision zone. Slab break-off following the subduction of the small continent favours the indentation process, because it results in an increasing compression in front of the indenter, and extension above the neighbouring oceanic subduction, both of them being responsible for the appearance of the indenter-like geometry of the plate boundary. When the slab does not deform significantly at depth, in contrast, the closure of the oceanic domain in front of the indenter is followed by a longer period of continental subduction, during which the tectonic regime within the wide continent remains quite homogeneous. Comparing the presented analogue experiments with the subductions both part of the Arabian indenter within Eurasia, our results suggest that the different tectonic regime on both sides of the Arabia indenter may partly result from the probable occurrence of a detachment at depth under eastern Anatolia.

  1. Effects of water molecules on tribological behavior and property measurements in nano-indentation processes - a numerical analysis

    PubMed Central

    2013-01-01

    Nano/micro-manufacturing under wet condition is an important consideration for various tool-based processes such as indentation, scratching, and machining. The existence of liquids adds complexity to the system, changes the tool/work interfacial condition, and affects material behaviors. For indentation, it may also affect material property measurements. However, little effort has been made to study this challenging issue at nano- or atomistic scale. In this study, we tackle this challenge by investigating nano-indentation processes submerged in water using the molecular dynamics (MD) simulation approach. Compared with dry indentation in which no water molecules are present, the existence of water molecules causes the increase of indentation force in initial penetration, but the decrease of indentation force in full penetration. It also reduces the sticking phenomenon between the work and tool atoms during indenter retraction, such that the indentation geometry can be better retained. Meanwhile, nano-indentation under wet condition exhibits the indentation size effect, while dry nano-indentation exhibits the reverse indentation size effect. The existence of water leads to higher computed hardness values at low indentation loads and a smaller value of Young's modulus. In addition, the friction along the tool/work interface is significantly reduced under wet indentation. PMID:24044504

  2. Confidence intervals for the symmetry point: an optimal cutpoint in continuous diagnostic tests.

    PubMed

    López-Ratón, Mónica; Cadarso-Suárez, Carmen; Molanes-López, Elisa M; Letón, Emilio

    2016-01-01

    Continuous diagnostic tests are often used for discriminating between healthy and diseased populations. For this reason, it is useful to select an appropriate discrimination threshold. There are several optimality criteria: the North-West corner, the Youden index, the concordance probability and the symmetry point, among others. In this paper, we focus on the symmetry point that maximizes simultaneously the two types of correct classifications. We construct confidence intervals for this optimal cutpoint and its associated specificity and sensitivity indexes using two approaches: one based on the generalized pivotal quantity and the other on empirical likelihood. We perform a simulation study to check the practical behaviour of both methods and illustrate their use by means of three real biomedical datasets on melanoma, prostate cancer and coronary artery disease. PMID:26756550

  3. Optimization and testing of a continuous rotary motor based on shape memory wires and overrunning clutches

    NASA Astrophysics Data System (ADS)

    Scirè Mammano, Giovanni; Dragoni, Eugenio

    2015-04-01

    A relatively unexplored but extremely attractive field for the application of the shape memory technology is the area of rotary actuators, especially for generating continuous rotations. This paper deals with a novel design of a rotary motor based on SMA wires and overrunning clutches which features high output torque and boundless angular stroke in a compact package. The concept uses a long SMA wire wound round a low-friction cylindrical drum upon which the wire can contract and extend with minimum effort and limited space demand. Fitted to the output shaft by means of an overrunning clutch the output shaft rotates unidirectionally despite the sequence of contractions-elongation cycles of the wire. Following a design procedure developed in a former paper, a six-stage miniature prototype is built and tested showing excellent performance in terms of torque, speed and power density. Characteristic performances of the motor are as follows: size envelope = 48×22×30 mm3; maximum torque = 20 Nmm; specific torque = 6.31×10-4 Nmm/mm3; rotation per module = 15 deg; continuous speed (unloaded) = 4 rpm.

  4. Sleep deprivation impairs performance in the 5-choice continuous performance test: similarities between humans and mice.

    PubMed

    van Enkhuizen, Jordy; Acheson, Dean; Risbrough, Victoria; Drummond, Sean; Geyer, Mark A; Young, Jared W

    2014-03-15

    Several groups undergo extended periods without sleep due to working conditions or mental illness. Such sleep deprivation (SD) can deleteriously affect attentional processes and disrupt work and family functioning. Understanding the biological underpinnings of SD effects may assist in developing sleep therapies and cognitive enhancers. Utilizing cross-species tests of attentional processing in humans and rodents would aid in mechanistic studies examining SD-induced inattention. We assessed the effects of 36h of: (1) Total SD (TSD) in healthy male and female humans (n=50); and (2) REM SD (RSD) in male C57BL/6 mice (n=26) on performance in the cross-species 5-choice continuous performance test (5C-CPT). The 5C-CPT includes target trials on which subjects were required to respond and non-target trials on which subjects were required to inhibit from responding. TSD-induced effects on human psychomotor vigilance test (PVT) were also examined. Effects of SD were also examined on mice split into good and poor performance groups based on pre-deprivation scores. In the human 5C-CPT, TSD decreased hit rate and vigilance with trend-level effects on accuracy. In the PVT, TSD slowed response times and increased lapses. In the mouse 5C-CPT, RSD reduced accuracy and hit rate with trend-level effects on vigilance, primarily in good performers. In conclusion, SD induced impaired 5C-CPT performance in both humans and mice and validates the 5C-CPT as a cross-species translational task. The 5C-CPT can be used to examine mechanisms underlying SD-induced deficits in vigilance and assist in testing putative cognitive enhancers.

  5. Single cell metastatic phenotyping using pulsed nanomechanical indentations

    NASA Astrophysics Data System (ADS)

    Babahosseini, Hesam; Strobl, Jeannine S.; Agah, Masoud

    2015-09-01

    The existing approach to characterize cell biomechanical properties typically utilizes switch-like models of mechanotransduction in which cell responses are analyzed in response to a single nanomechanical indentation or a transient pulsed stress. Although this approach provides effective descriptors at population-level, at a single-cell-level, there are significant overlaps in the biomechanical descriptors of non-metastatic and metastatic cells which precludes the use of biomechanical markers for single cell metastatic phenotyping. This study presents a new promising marker for biosensing metastatic and non-metastatic cells at a single-cell-level using the effects of a dynamic microenvironment on the biomechanical properties of cells. Two non-metastatic and two metastatic epithelial breast cell lines are subjected to a pulsed stresses regimen exerted by atomic force microscopy. The force-time data obtained for the cells revealed that the non-metastatic cells increase their resistance against deformation and become more stiffened when subjected to a series of nanomechanical indentations. On the other hand, metastatic cells become slightly softened when their mechanical microenvironment is subjected to a similar dynamical changes. This distinct behavior of the non-metastatic and metastatic cells to the pulsed stresses paradigm provided a signature for single-cell-level metastatic phenotyping with a high confidence level of ∼95%.

  6. How can Continuous Performance Test help to assess inattention when mood and ADHD symptoms coexist?

    PubMed

    Mesquita, Cintia; Nazar, Bruno P; Pinna, Camilla M S; Rabelo, Beatriz; Serra-Pinheiro, Maria Antonia; Sergeant, Joseph; Mattos, Paulo

    2016-09-30

    Depression and attention-deficit/hyperactivity disorder (ADHD) are prevalent, and often comorbid, disorders, with varying severity levels among patients. Inattention is a symptom present in both disorders, which often makes their differential diagnosis difficult in clinical practice (depression only versus comorbidity). This study aimed to investigate the influence of depressive symptoms on attention performance using one of the most common tasks in clinical practice, the continuous performance test (CPT). Ninety-three college students (60 men, 33 women) with a mean age of 24 years old were investigated with self-reports and semi-structured interviews for ADHD; the Beck Depression Inventory (BDI) was used for depression ratings. Attention measures were derived from the CPT. There was no correlation between depression and ADHD symptoms; in addition, depression was not correlated with any of the CPT scores; ADHD symptomatology was the only predictor of changes in those CPT variables (commission and omission errors and d prime). ADHD-associated impairment on the CPT was not augmented by the presence of depressive symptoms, making neuropsychological results on this test helpful for the differential diagnosis. When attention deficits are observed in individuals with mild or moderate depression, they are most likely not attributed to depression.

  7. How can Continuous Performance Test help to assess inattention when mood and ADHD symptoms coexist?

    PubMed

    Mesquita, Cintia; Nazar, Bruno P; Pinna, Camilla M S; Rabelo, Beatriz; Serra-Pinheiro, Maria Antonia; Sergeant, Joseph; Mattos, Paulo

    2016-09-30

    Depression and attention-deficit/hyperactivity disorder (ADHD) are prevalent, and often comorbid, disorders, with varying severity levels among patients. Inattention is a symptom present in both disorders, which often makes their differential diagnosis difficult in clinical practice (depression only versus comorbidity). This study aimed to investigate the influence of depressive symptoms on attention performance using one of the most common tasks in clinical practice, the continuous performance test (CPT). Ninety-three college students (60 men, 33 women) with a mean age of 24 years old were investigated with self-reports and semi-structured interviews for ADHD; the Beck Depression Inventory (BDI) was used for depression ratings. Attention measures were derived from the CPT. There was no correlation between depression and ADHD symptoms; in addition, depression was not correlated with any of the CPT scores; ADHD symptomatology was the only predictor of changes in those CPT variables (commission and omission errors and d prime). ADHD-associated impairment on the CPT was not augmented by the presence of depressive symptoms, making neuropsychological results on this test helpful for the differential diagnosis. When attention deficits are observed in individuals with mild or moderate depression, they are most likely not attributed to depression. PMID:27434202

  8. Simulation of Watts Bar Unit 1 Initial Startup Tests with Continuous Energy Monte Carlo Methods

    SciTech Connect

    Godfrey, Andrew T; Gehin, Jess C; Bekar, Kursat B; Celik, Cihangir

    2014-01-01

    The Consortium for Advanced Simulation of Light Water Reactors* is developing a collection of methods and software products known as VERA, the Virtual Environment for Reactor Applications. One component of the testing and validation plan for VERA is comparison of neutronics results to a set of continuous energy Monte Carlo solutions for a range of pressurized water reactor geometries using the SCALE component KENO-VI developed by Oak Ridge National Laboratory. Recent improvements in data, methods, and parallelism have enabled KENO, previously utilized predominately as a criticality safety code, to demonstrate excellent capability and performance for reactor physics applications. The highly detailed and rigorous KENO solutions provide a reliable nu-meric reference for VERAneutronics and also demonstrate the most accurate predictions achievable by modeling and simulations tools for comparison to operating plant data. This paper demonstrates the performance of KENO-VI for the Watts Bar Unit 1 Cycle 1 zero power physics tests, including reactor criticality, control rod worths, and isothermal temperature coefficients.

  9. [Effects of load and loading time on fracture toughness with indentation method].

    PubMed

    Okada, T; Shinya, A; Yokozuka, S

    1990-10-01

    For clinical application of ceramics such as porcelains that are frequently used as crown restoration materials, it is important to quantitatively evaluate and determine brittleness. This quality is expressed as a fracture toughness value, KIC, but no distinct method for its determination has yet been established. In order to standardize conditions for the determination of KIC by the indentation method, effects of indentation load and loading time on KIC of calcium phosphate crystalline ceramics (CP) were studied at various Vickers indentation loads and various loading times in CP plate-like segments. Furthermore, plate-like segments of each of CP, apatite (AP), mica-beta-spodumene (MIS) and mica (MIC) groups were subjected to experiment at various indentation loads at a fixed loading time to study the effects of indentation load on KIC in four kinds of Castable Ceramics. The results are summarized as follows: 1) The Vickers hardness degree of CP was decreased with an increase in indentation load and loading time, reaching the maximum value (499Hv) at 1kgf of indentation load and 5s of loading time. 2) The value of half of the crack length of CP was increased with an increase in indentation load and loading time, reaching a maximum (530 microns) at 20kgf of indentation load and 30s of loading time. 3) KIC of CP reached the maximum value (2.78MNm-3/2) at 5kgf of indentation load and 5s of loading time, and the minimum (1.52MNm-3/2) at 20kgf of indentation load and 30s of loading time. 4) Optimal experimental conditions for KIC of CP determined by indentation method were 5kgf or 10kgf of indentation load and 15s of loading time. 5) KIC values (MNm-3/2) determined at 5kgf of indentation load and 15s of loading time for CP, AP, MIS and MI were 2.27, 0.95, 1.82 and 1.81, respectively. 6) The course of cracks due to indentation force showed a linear pattern of intra-granular fracture. 7) The cracks were revealed to show median cracks by fractography.

  10. Deformation mechanisms in advanced structural ceramics due to indentation and scratch processes

    NASA Astrophysics Data System (ADS)

    Ghosh, Dipankar

    Plasma pressure compaction technique was used to develop boron carbide (B4C) and zirconium diboride-silicon carbide (ZrB2-SiC) composite. B4C ceramics are extensively used as body armor in military and civilian applications, and ZrB2-SiC composite has been recognized as a potential candidate for high-temperature aerospace applications. In this dissertation, processing parameters, quasistatic and high-strain rate mechanical response, and fundamental deformation mechanisms of these materials have been investigated. In the case of B4C, the rate sensitivity of indentation hardness was determined using a dynamic indentation hardness tester that can deliver loads in 100 micros. By comparing dynamic hardness with the static hardness, it was found that B4C exhibits a lower hardness at high-strain rate, contrary to known behavior in many structural ceramics. However, these results are consistent with the ballistic testing of B4C armors as reported in recent literature. This behavior was further investigated using a series of spectroscopic techniques such as visible and UV micro-Raman, photoluminescence and infrared. These studies not only confirmed that structural transformation occurred during indentation experiments similar to that in ballistic testing of B4C but also suggested a greater degree of structural changes under dynamic loading compared to static loading. Due to the potential application as external heat shields in supersonic vehicles, scratch studies were conducted on the ZrB2-SiC composite. These studies revealed metal-like slip-line patterns which are indeed an unusual in brittle solids at room-temperature. Utilizing classical stress field solutions under combined normal and tangential loads, a rationale was developed for understanding the formation of scratch-induced deformation features. Also, an analytical framework was developed, combining the concept of 'blister field' and the 'secular equation' relating Raman peaks to strain, to measure scratch

  11. Smart-actuated continuous moldline technology (CMT) mini wind tunnel test

    NASA Astrophysics Data System (ADS)

    Pitt, Dale M.; Dunne, James P.; Kilian, Kevin J.

    1999-07-01

    The Smart Aircraft and Marine Propulsion System Demonstration (SAMPSON) Program will culminate in two separate demonstrations of the application of Smart Materials and Structures technology. One demonstration will be for an aircraft application and the other for marine vehicles. The aircraft portion of the program will examine the application of smart materials to aircraft engine inlets which will deform the inlet in-flight in order to regulate the airflow rate into the engine. Continuous Moldline Technology (CMT), a load-bearing reinforced elastomer, will enable the use of smart materials in this application. The capabilities of CMT to withstand high-pressure subsonic and supersonic flows were tested in a sub-scale mini wind- tunnel. The fixture, used as the wind-tunnel test section, was designed to withstand pressure up to 100 psi. The top and bottom walls were 1-inch thick aluminum and the side walls were 1-inch thick LEXAN. High-pressure flow was introduced from the Boeing St. Louis poly-sonic wind tunnel supply line. CMT walls, mounted conformal to the upper and lower surfaces, were deflected inward to obtain a converging-diverging nozzle. The CMT walls were instrumented for vibration and deflection response. Schlieren photography was used to establish shock wave motion. Static pressure taps, embedded within one of the LEXAN walls, monitored pressure variation in the mini-wind tunnel. High mass flow in the exit region. This test documented the response of CMT technology in the presence of high subsonic flow and provided data to be used in the design of the SAMPSON Smart Inlet.

  12. 42 CFR 84.155 - Airflow resistance test; Type C supplied-air respirator, continuous flow class and Type CE...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... respirator, continuous flow class and Type CE supplied-air respirator; minimum requirements. 84.155 Section... Respirators § 84.155 Airflow resistance test; Type C supplied-air respirator, continuous flow class and Type... shall not exceed 25 mm. (1 inch) of water-column height when the air flow into the...

  13. Temperature-dependent indentation behavior of transformation-toughened zirconia-based ceramics

    NASA Technical Reports Server (NTRS)

    Tikare, Veena; Heuer, Arthur H.

    1991-01-01

    Indentation behavior of Ce-TZP, Y-TZP, and Mg-PSZ between room temperature and 1300 C was investigated. Hardness decreased with increasing temperature for all three materials, but indentation cracking increased with increasing temperature. The opposing temperature dependences are discussed in terms of dislocation and transformation plasticity.

  14. Experimental observations of shear band nucleation and propagation in a bulk metallic glass using wedge-like cylindrical indentation

    NASA Astrophysics Data System (ADS)

    Antoniou, Antonia Maki

    2006-12-01

    Bulk metallic glasses (BMGs), or amorphous metal alloys, have a unique combination of properties such as high strength, large elastic strain limit (up to 2%), corrosion resistance and formability. These unique properties make them candidates for precision mechanical elements, hinge supports, contact surfaces as well as miniaturized systems (MEMS). However, their limited ductility hinders further realizations of their industrial potential. Under uniaxial tension tests, metallic glass fails in a brittle manner with unstable propagation of a single shear band. There is a need to understand the conditions for shear band nucleation and propagation in order to achieve a superior material system with adequate toughness to ensure in-service reliability. This dissertation focuses on understanding the nucleation and propagation mechanisms of shear bands in BMGs under constrained deformation. The nature of the work is primarily experimental with integrated finite element simulations to elucidate the observed trends. Wedge indentation with a circular profile of different radii is used to provide a stable loading path for in situ monitoring of shear band nucleation, propagation in Vitreloy-1. Detailed analyses of the in-plane finite deformation fields are carried out using digital image correlation. The incremental surface analysis showed that multiple shear bands are developed beneath the indenter. The observed pattern closely follow the traces of slip line field for a pressure sensitive material. The first shear bands initiate in the bulk beneath the indenter when a critical level of mean pressure is achieved. Two distinct shear band patterns are developed, that conform to either the alpha or beta lines for each sector. The deformation zones developed under indenters with different radii were found to be self-similar. The evolution of shear bands beneath the indenter is also characterized into two different categories. A set of primary bands is identified to evolve with the

  15. Continuing education course #3: current practices and future trends in neuropathology assessment for developmental neurotoxicity testing.

    PubMed

    Bolon, Brad; Garman, Robert H; Gundersen, Hans Jørgen G; Allan Johnson, G; Kaufmann, Wolfgang; Krinke, Georg; Little, Peter B; Makris, Susan L; Mellon, R Daniel; Sulik, Kathleen K; Jensen, Karl

    2011-01-01

    The continuing education course on Developmental Neurotoxicity Testing (DNT) was designed to communicate current practices for DNT neuropathology, describe promising innovations in quantitative analysis and noninvasive imaging, and facilitate a discussion among experienced neuropathologists and regulatory scientists regarding suitable DNT practices. Conventional DNT neuropathology endpoints are qualitative histopathology and morphometric endpoints of particularly vulnerable sites (e.g., cerebral, cerebellar, or hippocampal thickness). Novel imaging and stereology measurements hold promise for automated analysis of factors that cannot be effectively examined in routinely processed specimens (e.g., cell numbers, fiber tract integrity). The panel recommended that dedicated DNT neuropathology data sets be acquired on a minimum of 8 sections (for qualitative assessment) or 3 sections (for quantitative linear and stereological analyses) using a small battery of stains to examine neurons and myelin. Where guidelines permit discretion, immersion fixation is acceptable for younger animals (postnatal day 22 or earlier), and peripheral nerves may be embedded in paraffin. Frequent concerns regarding DNT data sets include false-negative outcomes due to processing difficulties (e.g., lack of concordance among sections from different animals) and insensitive analytical endpoints (e.g., qualitative evaluation) as well as false-positive results arising from overinterpretation or misreading by inexperienced pathologists. PMID:21075916

  16. Performance of a continuous flow ventricular assist device: magnetic bearing design, construction, and testing.

    PubMed

    Allaire, P; Hilton, E; Baloh, M; Maslen, E; Bearnson, G; Noh, D; Khanwilkar, P; Olsen, D

    1998-06-01

    A new centrifugal continuous flow ventricular assist device, the CFVAD III, which is fully magnetic bearing suspended, has been developed. It has only one moving part (the impeller), has no contact (magnetic suspension), is compact, and has minimal heating. A centrifugal impeller of 2 inch outer diameter is driven by a permanent magnet brushless DC motor. This paper discusses the design, construction, testing, and performance of the magnetic bearings in the unit. The magnetic suspension consists of an inlet side magnetic bearing and an outlet side magnetic bearing, each divided into 8 pole segments to control axial and radial displacements as well as angular displacements. The magnetic actuators are composed of several different materials to minimize size and weight while having sufficient load capacity to support the forces on the impeller. Flux levels in the range of 0.1 T are employed in the magnetic bearings. Self sensing electronic circuits (without physical sensors) are employed to determine the impellar position and provide the feedback control signal needed for the magnetic bearing control loops. The sensors provide position sensitivity of approximately 0.025 mm. A decentralized 5 axis controller has been developed using modal control techniques. Proportional integral derivative controls are used for each axis to levitate the magnetically supported impeller. PMID:9650668

  17. Fatigue testing and damage development in continuous fiber reinforced metal matrix composites

    NASA Technical Reports Server (NTRS)

    Johnson, W. S.

    1988-01-01

    A general overview of the fatigue behavior of metal matrix composites (MMC) is presented. The first objective is to present experimental procedures and techniques for conducting a meaningful fatigue test to detect and quantify fatigue damage in MMC. These techniques include interpretation of stress-strain responses, acid etching of the matrix, edge replicas of the specimen under load, radiography, and micrographs of the failure surfaces. In addition, the paper will show how stiffness loss in continuous fiber reinforced metal matrix composites can be a useful parameter for detecting fatigue damage initiation and accumulation. Second, numerous examples of how fatigue damage can initiate and grow in various MMC are given. Depending on the relative fatigue behavior of the fiber and matrix, and the interface properties, the failure modes of MMC can be grouped into four categories: (1) matrix dominated, (2) fiber dominated, (3) self-similar damage growth, and (4) fiber/matrix interfacial failures. These four types of damage will be discussed and illustrated by examples with the emphasis on the fatigue of unnotched laminates.

  18. Fatigue testing and damage development in continuous fiber reinforced metal matrix composites

    NASA Technical Reports Server (NTRS)

    Johnson, W. S.

    1989-01-01

    A general overview of the fatigue behavior of metal matrix composites (MMC) is presented. The first objective is to present experimental procedures and techniques for conducting a meaningful fatigue test to detect and quantify fatigue damage in MMC. These techniques include interpretation of stress-strain responses, acid etching of the matrix, edge replicas of the specimen under load, radiography, and micrographs of the failure surfaces. In addition, the paper will show how stiffness loss in continuous fiber reinforced metal matrix composites can be a useful parameter for detecting fatigue damage initiation and accumulation. Second, numerous examples of how fatigue damage can initiate and grow in various MMC are given. Depending on the relative fatigue behavior of the fiber and matrix, and the interface properties, the failure modes of MMC can be grouped into four categories: (1) matrix dominated, (2) fiber dominated, (3) self-similar damage growth, and (4) fiber/matrix interfacial failures. These four types of damage will be discussed and illustrated by examples with the emphasis on the fatigue of unnotched laminates.

  19. Comparison of Numerical Analyses with a Static Load Test of a Continuous Flight Auger Pile

    NASA Astrophysics Data System (ADS)

    Hoľko, Michal; Stacho, Jakub

    2014-12-01

    The article deals with numerical analyses of a Continuous Flight Auger (CFA) pile. The analyses include a comparison of calculated and measured load-settlement curves as well as a comparison of the load distribution over a pile's length. The numerical analyses were executed using two types of software, i.e., Ansys and Plaxis, which are based on FEM calculations. Both types of software are different from each other in the way they create numerical models, model the interface between the pile and soil, and use constitutive material models. The analyses have been prepared in the form of a parametric study, where the method of modelling the interface and the material models of the soil are compared and analysed. Our analyses show that both types of software permit the modelling of pile foundations. The Plaxis software uses advanced material models as well as the modelling of the impact of groundwater or overconsolidation. The load-settlement curve calculated using Plaxis is equal to the results of a static load test with a more than 95 % degree of accuracy. In comparison, the load-settlement curve calculated using Ansys allows for the obtaining of only an approximate estimate, but the software allows for the common modelling of large structure systems together with a foundation system.

  20. Design and testing of a unique randomized gravity, continuous flow bioreactor

    NASA Technical Reports Server (NTRS)

    Lassiter, Carroll B.

    1993-01-01

    A rotating, null gravity simulator, or Couette bioreactor was successfully used for the culture of mammalian cells in a simulated microgravity environment. Two limited studies using Lipomyces starkeyi and Streptomyces clavuligerus were also conducted under conditions of simulated weightlessness. Although these studies with microorganisms showed promising preliminary results, oxygen limitations presented significant limitations in studying the biochemical and cultural characteristics of these cell types. Microbial cell systems such as bacteria and yeast promise significant potential as investigative models to study the effects of microgravity on membrane transport, as well as substrate induction of inactive enzyme systems. Additionally, the smaller size of the microorganisms should further reduce the gravity induced oscillatory particle motion and thereby improve the microgravity simulation on earth. Focus is on the unique conceptual design, and subsequent development of a rotating bioreactor that is compatible with the culture and investigation of microgravity effects on microbial systems. The new reactor design will allow testing of highly aerobic cell types under simulated microgravity conditions. The described reactor affords a mechanism for investigating the long term effects of reduced gravity on cellular respiration, membrane transfer, ion exchange, and substrate conversions. It offers the capability of dynamically altering nutrients, oxygenation, pH, carbon dioxide, and substrate concentration without disturbing the microgravity simulation, or Couette flow, of the reactor. All progeny of the original cell inoculum may be acclimated to the simulated microgravity in the absence of a substrate or nutrient. The reactor has the promise of allowing scientists to probe the long term effects of weightlessness on cell interactions in plants, bacteria, yeast, and fungi. The reactor is designed to have a flow field growth chamber with uniform shear stress, yet transfer

  1. Nanoscale Etching and Indentation of Silicon Surfaces with Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Dzegilenko, Fedor N.; Srivastava, Deepak; Saini, Subhash

    1998-01-01

    The possibility of nanolithography of silicon and germanium surfaces with bare carbon nanotube tips of scanning probe microscopy devices is considered with large scale classical molecular dynamics (MD) simulations employing Tersoff's reactive many-body potential for heteroatomic C/Si/Ge system. Lithography plays a key role in semiconductor manufacturing, and it is expected that future molecular and quantum electronic devices will be fabricated with nanolithographic and nanodeposition techniques. Carbon nanotubes, rolled up sheets of graphene made of carbon, are excellent candidates for use in nanolithography because they are extremely strong along axial direction and yet extremely elastic along radial direction. In the simulations, the interaction of a carbon nanotube tip with silicon surfaces is explored in two regimes. In the first scenario, the nanotubes barely touch the surface, while in the second they are pushed into the surface to make "nano holes". The first - gentle scenario mimics the nanotube-surface chemical reaction induced by the vertical mechanical manipulation of the nanotube. The second -digging - scenario intends to study the indentation profiles. The following results are reported in the two cases. In the first regime, depending on the surface impact site, two major outcomes outcomes are the selective removal of either a single surface atom or a surface dimer off the silicon surface. In the second regime, the indentation of a silicon substrate by the nanotube is observed. Upon the nanotube withdrawal, several surface silicon atoms are adsorbed at the tip of the nanotube causing significant rearrangements of atoms comprising the surface layer of the silicon substrate. The results are explained in terms of relative strength of C-C, C-Si, and Si-Si bonds. The proposed method is very robust and does not require applied voltage between the nanotube tips and the surface. The implications of the reported controllable etching and hole-creating for

  2. 42 CFR 84.155 - Airflow resistance test; Type C supplied-air respirator, continuous flow class and Type CE...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 1 2013-10-01 2013-10-01 false Airflow resistance test; Type C supplied-air... Respirators § 84.155 Airflow resistance test; Type C supplied-air respirator, continuous flow class and Type CE supplied-air respirator; minimum requirements. The resistance to air flowing from the...

  3. 42 CFR 84.155 - Airflow resistance test; Type C supplied-air respirator, continuous flow class and Type CE...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 1 2011-10-01 2011-10-01 false Airflow resistance test; Type C supplied-air... Respirators § 84.155 Airflow resistance test; Type C supplied-air respirator, continuous flow class and Type CE supplied-air respirator; minimum requirements. The resistance to air flowing from the...

  4. 42 CFR 84.155 - Airflow resistance test; Type C supplied-air respirator, continuous flow class and Type CE...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 1 2012-10-01 2012-10-01 false Airflow resistance test; Type C supplied-air... Respirators § 84.155 Airflow resistance test; Type C supplied-air respirator, continuous flow class and Type CE supplied-air respirator; minimum requirements. The resistance to air flowing from the...

  5. 42 CFR 84.155 - Airflow resistance test; Type C supplied-air respirator, continuous flow class and Type CE...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 1 2014-10-01 2014-10-01 false Airflow resistance test; Type C supplied-air... Respirators § 84.155 Airflow resistance test; Type C supplied-air respirator, continuous flow class and Type CE supplied-air respirator; minimum requirements. The resistance to air flowing from the...

  6. Attribution and Self-Evaluation of Continuous Performance Test Task Performance in Medicated and Unmedicated Adults with ADHD

    ERIC Educational Resources Information Center

    Barrilleaux, Katie; Advokat, Claire

    2009-01-01

    Objective: To determine if adults with ADHD differed from children with ADHD, in assessing their performance on the Conners Continuous Performance Test (CPT). Method: ADHD-diagnosed adults (n = 13) and adults without ADHD (n = 17) were tested twice on the CPT and then completed self-evaluation and attribution surveys. Results: Nonmedicated…

  7. Preliminary evaluation of LTPP continuously reinforced concrete (CRC) pavement test sections. Final report, February 1995--October 1998

    SciTech Connect

    Tayabji, S.D.; Selezneva, O.; Jiang, Y.J.

    1999-07-01

    As part of the study reported here, analysis of data from the LTPP GPS-5 test sections was conducted to identify factors that influence long-term crack spacing in continuously reinforced concrete (CRC) pavements and to determine that effect of crack spacing on pavement performance. Data from the 85 test sections from the GPS-5 experiment were analyzed.

  8. Stop Signal and Conners' Continuous Performance Tasks: Test-Retest Reliability of Two Inhibition Measures in ADHD Children

    ERIC Educational Resources Information Center

    Soreni, Noam; Crosbie, Jennifer; Ickowicz, Abel; Schachar, Russell

    2009-01-01

    Objective: To measure test-retest reliability of the Stop-Signal Task (SST) and the Conners' Continuous Performance Test (CPT) in children with ADHD. Methods: 12 children with ADHD (age 11.46 plus or minus 1.66) participated in the study. Primary outcome measures were stop-signal reaction time (SSRT) for the SST and CPT's commission errors (%FP).…

  9. An evaluation of indentation and finishing properties of bearing grade silicon nitrides

    SciTech Connect

    Dill, J.F.; Gardos, M.N.; Hardisty, R.G.

    1997-01-01

    This paper describes the results of studies of the machining performance and the indentation hardness and fracture toughness of different silicon nitride materials as part of an effort to better define the optimum machining conditions for bearing components. This work builds on prior efforts by two of the authors, Gardos and Hardisty (1993) who formulated a simple relationship between diamond grinding performance of silicon nitride bearing balls and a wear equation first detailed by Evans and Wilshaw (1976). The goal of this present work was to determine the general applicability of such a relationship, i.e., could simple indentation studies be used to define finishing conditions for different silicon nitride materials? The availability of such a simple test would reduce the time required for developing an acceptable process when a supplier changes his formulation, or when a new material becomes available. Quicker development of optimum finishing conditions would eventually result in a lower-cost product for users. The initial study by Gardos and Hardisty (1993) was based on limited data taken at a fixed set of conditions. This study expanded the range of conditions evaluated and the number of ceramic materials studied in an effort to define the universality of the relationship between grinding wear, hardness, and toughness. This study has shown that no simple relationship like that first envisioned by the authors exists. The results showed that the grinding wear of the individual silicon nitride materials increased at different rates as a function of load. Because of the differences found in the load dependence of grinding rates, no simple relationship between hardness, fracture toughness, and grinding rate could be found that fit the data over the range of conditions studied.

  10. Development and beam test of a continuous wave radio frequency quadrupole accelerator

    NASA Astrophysics Data System (ADS)

    Ostroumov, P. N.; Mustapha, B.; Barcikowski, A.; Dickerson, C.; Kolomiets, A. A.; Kondrashev, S. A.; Luo, Y.; Paskvan, D.; Perry, A.; Schrage, D.; Sharamentov, S. I.; Sommer, R.; Toter, W.; Zinkann, G.

    2012-11-01

    The front end of any modern ion accelerator includes a radio frequency quadrupole (RFQ). While many pulsed ion linacs successfully operate RFQs, several ion accelerators worldwide have significant difficulties operating continuous wave (CW) RFQs to design specifications. In this paper we describe the development and results of the beam commissioning of a CW RFQ designed and built for the National User Facility: Argonne Tandem Linac Accelerator System (ATLAS). Several innovative ideas were implemented in this CW RFQ. By selecting a multisegment split-coaxial structure, we reached moderate transverse dimensions for a 60.625-MHz resonator and provided a highly stabilized electromagnetic field distribution. The accelerating section of the RFQ occupies approximately 50% of the total length and is based on a trapezoidal vane tip modulation that increased the resonator shunt impedance by 60% in this section as compared to conventional sinusoidal modulation. To form an axially symmetric beam exiting the RFQ, a very short output radial matcher with a length of 0.75βλ was developed. The RFQ is designed as a 100% oxygen-free electronic (OFE) copper structure and fabricated with a two-step furnace brazing process. The radio frequency (rf) measurements show excellent rf properties for the resonator, with a measured intrinsic Q equal to 94% of the simulated value for OFE copper. An O5+ ion beam extracted from an electron cyclotron resonance ion source was used for the RFQ commissioning. In off-line beam testing, we found excellent coincidence of the measured beam parameters with the results of beam dynamics simulations performed using the beam dynamics code TRACK, which was developed at Argonne. These results demonstrate the great success of the RFQ design and fabrication technology developed here, which can be applied to future CW RFQs.

  11. Analytical Methodology Used To Assess/Refine Observatory Thermal Vacuum Test Conditions For the Landsat 8 Data Continuity Mission

    NASA Technical Reports Server (NTRS)

    Fantano, Louis

    2015-01-01

    Thermal and Fluids Analysis Workshop Silver Spring, MD NCTS 21070-15 The Landsat 8 Data Continuity Mission, which is part of the United States Geologic Survey (USGS), launched February 11, 2013. A Landsat environmental test requirement mandated that test conditions bound worst-case flight thermal environments. This paper describes a rigorous analytical methodology applied to assess refine proposed thermal vacuum test conditions and the issues encountered attempting to satisfy this requirement.

  12. Surface testing and evaluation of the multiple-unit continuous haulage system. Information Circular/1989

    SciTech Connect

    Jaspal, J.S.; Erhard, L.A.; Mayercheck, W.D.

    1989-01-01

    Most of the underground coal in the United States is mined via room-and-pillar mining methods with continuous miners. The machines operate intermittently because they have to wait for shuttle cars to interchange positions. To overcome this discontinuity in shuttle car haulage and to realize the full production potential of continuous miners, the U.S. Bureau of Mines developed a multiple-unit continuous haulage (MUCH) system. The MUCH system consists of 12 rubber-tired vehicles and a bridge conveyor. The rubber-tired vehicles are connected by a unique mechanical linkage system to form a 250-ft train. The mechanical linkage permits the vehicles to track-retrack the preceding vehicle in both inby and outby directions. The cut coal cascades from one vehicle to another until it is discharged on the section conveyor belt. The MUCH system provides continuous haulage to the continuous miner.

  13. Survival and growth of newly transformed Lampsilis cardium and Lampsilis siliquoidea in a flow-through, continuous feeding test system

    USGS Publications Warehouse

    Meinertz, Jeffery R.; Schreier, Theresa M.; Hess, Karina R.; Bartsch, Michelle

    2011-01-01

    A test system was evaluated for assessing chronic toxicity of waterborne chemicals with early life stage mussels. To determine if the test system could result in ≥80% survival in a control (unexposed) group, fat mucket mussels (Lampsilis siliquoidea Barnes, 1823) and plain pocketbook mussels (L. cardium Rafinesque, 1820) 1 day post transformation were stocked into test chambers (250 mL beakers, water volume, 200 mL, 21 °C, 40 mussels of 1 species per chamber) within a test system constructed for conducting chronic, continuous exposure, flow-through toxicity tests. The test system contained 60 chambers containing silica sand, 30 chambers with L. siliquoidea, and 30 with L. cardium. Each chamber in the continuous feeding system received 1 of 6 food types prepared with concentrated algal products. After 28 days, mussels were harvested from chambers to assess survival and growth. For L. siliquoidea, mean survival ranged from 34 to 80% and mean shell length ranged from 464 to 643 μm. For L. cardium, mean survival ranged from 12 to 66% and mean shell length ranged from 437 to 612 μm. The maximum mean growth rate for L. siliquoidea was 12.7 μm/d and for L. cardium was 11.8 μm/d. When offered a continuous diet of Nannochloropsis, Tetraselmis, and Chlorella for 28 days in the test system, the survival of 1 day post transformation L. siliquoidea was 80%. The test system can be easily enhanced with a pumping system continuously delivering test chemical to the test system's flow stream allowing for chronic toxicity tests with 1 day post transformation mussels.

  14. Nonparametric statistical tests for the continuous data: the basic concept and the practical use

    PubMed Central

    2016-01-01

    Conventional statistical tests are usually called parametric tests. Parametric tests are used more frequently than nonparametric tests in many medical articles, because most of the medical researchers are familiar with and the statistical software packages strongly support parametric tests. Parametric tests require important assumption; assumption of normality which means that distribution of sample means is normally distributed. However, parametric test can be misleading when this assumption is not satisfied. In this circumstance, nonparametric tests are the alternative methods available, because they do not required the normality assumption. Nonparametric tests are the statistical methods based on signs and ranks. In this article, we will discuss about the basic concepts and practical use of nonparametric tests for the guide to the proper use. PMID:26885295

  15. Measuring the mechanical properties of plant cells by combining micro-indentation with osmotic treatments

    PubMed Central

    Weber, Alain; Braybrook, Siobhan; Huflejt, Michal; Mosca, Gabriella; Routier-Kierzkowska, Anne-Lise; Smith, Richard S.

    2015-01-01

    Growth in plants results from the interaction between genetic and signalling networks and the mechanical properties of cells and tissues. There has been a recent resurgence in research directed at understanding the mechanical aspects of growth, and their feedback on genetic regulation. This has been driven in part by the development of new micro-indentation techniques to measure the mechanical properties of plant cells in vivo. However, the interpretation of indentation experiments remains a challenge, since the force measures results from a combination of turgor pressure, cell wall stiffness, and cell and indenter geometry. In order to interpret the measurements, an accurate mechanical model of the experiment is required. Here, we used a plant cell system with a simple geometry, Nicotiana tabacum Bright Yellow-2 (BY-2) cells, to examine the sensitivity of micro-indentation to a variety of mechanical and experimental parameters. Using a finite-element mechanical model, we found that, for indentations of a few microns on turgid cells, the measurements were mostly sensitive to turgor pressure and the radius of the cell, and not to the exact indenter shape or elastic properties of the cell wall. By complementing indentation experiments with osmotic experiments to measure the elastic strain in turgid cells, we could fit the model to both turgor pressure and cell wall elasticity. This allowed us to interpret apparent stiffness values in terms of meaningful physical parameters that are relevant for morphogenesis. PMID:25873663

  16. Measuring the mechanical properties of plant cells by combining micro-indentation with osmotic treatments.

    PubMed

    Weber, Alain; Braybrook, Siobhan; Huflejt, Michal; Mosca, Gabriella; Routier-Kierzkowska, Anne-Lise; Smith, Richard S

    2015-06-01

    Growth in plants results from the interaction between genetic and signalling networks and the mechanical properties of cells and tissues. There has been a recent resurgence in research directed at understanding the mechanical aspects of growth, and their feedback on genetic regulation. This has been driven in part by the development of new micro-indentation techniques to measure the mechanical properties of plant cells in vivo. However, the interpretation of indentation experiments remains a challenge, since the force measures results from a combination of turgor pressure, cell wall stiffness, and cell and indenter geometry. In order to interpret the measurements, an accurate mechanical model of the experiment is required. Here, we used a plant cell system with a simple geometry, Nicotiana tabacum Bright Yellow-2 (BY-2) cells, to examine the sensitivity of micro-indentation to a variety of mechanical and experimental parameters. Using a finite-element mechanical model, we found that, for indentations of a few microns on turgid cells, the measurements were mostly sensitive to turgor pressure and the radius of the cell, and not to the exact indenter shape or elastic properties of the cell wall. By complementing indentation experiments with osmotic experiments to measure the elastic strain in turgid cells, we could fit the model to both turgor pressure and cell wall elasticity. This allowed us to interpret apparent stiffness values in terms of meaningful physical parameters that are relevant for morphogenesis.

  17. One year continuous soil gas monitoring above an EGR test site

    NASA Astrophysics Data System (ADS)

    Furche, Markus; Schlömer, Stefan; Faber, Eckhard; Dumke, Ingolf

    2010-05-01

    Setup and first results of an ongoing research activity are presented, which is funded by the German Geotechnologien program within in the joint project CLEAN (CO2 Large Scale Enhanced Gas Recovery in the Altmark Natural Gas Field). The task is to establish several soil gas monitoring stations above a partly exhausted gas field in the Altmark which will be used for an enhanced gas recovery (EGR) test by injecting CO2 into the reservoir. The aim is to optimize the monitoring technique including automatic data transfer and data exploitation and to understand mechanisms of natural variations of soil gas concentrations in the specific area. Furthermore the suitability of these measurements as a contribution to leakage detection shall be evaluated. A network of 13 gauging stations for the measurement of CO2 is working continuously for about one year. They are spread over an area of 8 x 3 km and are situated in direct vicinity of existing deep boreholes as the most likely locations for possible leakage. In addition one station is placed far outside the gasfield as a reference point. The technique applied to measure soil gas concentrations uses a gas stream circulating in a tube going down a shallow borehole where the circulating gas is in contact with the soil gas phase via a gas permeable membrane. Above surface, moisture is removed from the gas stream before it reaches several gas sensors for CO2. Besides these, several other parameters are determined as well, e.g. soil moisture and soil temperature, water level, gas flow and gas moisture. In addition a meteorological station gives information about precipitation, air humidity, temperature and pressure, global radiation, wind direction and velocity in the area. Data are continuously collected by dataloggers at each station (5 minutes interval), transferred via GSM routers to the BGR server in Hannover and are stored in a specially designed database. The database does not only contain the measurements but also

  18. A comparison of healthy human and swine articular cartilage dynamic indentation mechanics.

    PubMed

    Ronken, S; Arnold, M P; Ardura García, H; Jeger, A; Daniels, A U; Wirz, D

    2012-05-01

    Articular cartilage is a multicomponent, poroviscoelastic tissue with nonlinear mechanical properties vital to its function. A consequent goal of repair or replacement of injured cartilage is to achieve mechanical properties in the repair tissue similar to healthy native cartilage. Since fresh healthy human articular cartilage (HC) is not readily available, we tested whether swine cartilage (SC) could serve as a suitable substitute for mechanical comparisons. To a first approximation, cartilage tissue and surgical substitutes can be evaluated mechanically as viscoelastic materials. Stiffness measurements (dynamic modulus, loss angle) are vital to function and are also a non-destructive means of evaluation. Since viscoelastic material stiffness is strongly strain rate dependent, stiffness was tested under different loading conditions related to function. Stiffness of healthy HC and SC specimens was determined and compared using two non-destructive, mm-scale indentation test modes: fast impact and slow sinusoidal deformation. Deformation resistance (dynamic modulus) and energy handling (loss angle) were determined. For equivalent anatomic locations, there was no difference in dynamic modulus. However, the HC loss angle was ~35% lower in fast impact and ~12% higher in slow sinusoidal mode. Differences seem attributable to age (young SC, older HC) but also to species anatomy and biology. Test mode-related differences in human-swine loss angle support use of multiple function-related test modes. Keeping loss angle differences in mind, swine specimens could serve as a standard of comparison for mechanical evaluation of e.g. engineered cartilage or synthetic repair materials.

  19. Testing the Ability of TOPMODEL to Assess the Spatial Continuity and Connectivity of Soil Moisture Patterns

    NASA Astrophysics Data System (ADS)

    Ali, G.; Roy, A.

    2006-05-01

    Examining hydrologic connectivity as a major control on stormflow generation has emerged as an important field of research in forest hydrology. Knowledge on this new concept, however, has yet to be incorporated in most hydrological models and to be proven useful to simulate the "on-off" behaviour of small humid temperate catchments. In this study, we examine the hydrologic behaviour of a small headwater forested catchment, the Hermine, located in the Laurentians near Montreal, Quebec. This watershed is a textbook case for the application of the popular TOPMODEL. Still, the model does not perform well, especially following extended dry periods. Several explanations have been proposed regarding this issue, chiefly the existence of two or more preferential states and threshold-like processes associated with the spatio-temporal variations of antecedent moisture conditions (AMC). As these dominantly govern the initiation of stormflow, we test here the ability of the model to differentiate random patterns of soil moisture from organized ones. Using the topographic index distribution and the local storage deficit maps produced at each daily time step, the spatial correlation structure of potentially saturated areas and moisture conditions is studied through the use of geostatistical techniques. We also examine the methods of Western et al. (2001) in reference to the use of connectivity statistics to relate different soil moisture patterns with simulated hydrologic responses. From the spatial patterns of soil moisture simulated, TOPMODEL is capable of isolating several hydrologic preferential states, more or less wet with respect to a threshold value based on the mean catchment deficit. The changes in the disruption of spatial continuity of soil moisture are easier to identify when the correlation length among the patterns exhibits a high degree of seasonality. On the other hand, TOPMODEL falls short of representing some complex spatial patterns of disconnected saturated

  20. Functional characterization of normal and degraded bovine meniscus: rate-dependent indentation and friction studies.

    PubMed

    Baro, Vincent J; Bonnevie, Edward D; Lai, Xiaohan; Price, Christopher; Burris, David L; Wang, Liyun

    2012-08-01

    The menisci are known to play important roles in normal joint function and the development of diseases such as osteoarthritis. However, our understanding of meniscus' load bearing and lubrication properties at the tissue level remains limited. The objective of this investigation was to characterize the site- and rate-dependency of the compressive and frictional responses of the meniscus under a spherical contact load. Using a custom testing device, indentation tests with rates of 1, 10, 25, 50, and 100μm/s were performed on bovine medial meniscus explants, which were harvested from five locations including the femoral apposing surface at the anterior, central, and posterior locations and the central portion at the deep layer and at the tibial apposing surface (n=5 per location). Sliding tests with rates of 0.05, 0.25, 1, and 5mm/s were performed on the central femoral aspect and central tibial aspect superficial samples (n=6 per location). A separate set of superficial samples were subjected to papain digestion and tested prior to and post treatment. Our findings are: i) the Hertz contact model can be used to fit the force responses of meniscus under the conditions tested; ii) the anterior region is significantly stiffer than the posterior region and tissue modulus does not vary with tissue depth at the central region; iii) the friction coefficient of the meniscus is on the order of 0.02 under migratory contacts and the femoral apposing surface tends to show lower friction than the tibial apposing surface; iv) the meniscus exhibits increased modulus and lubrication with increased indentation and sliding rates; v) matrix degradation impedes the functional load support and lubrication properties of the tissue. The site- and rate-dependent properties of the meniscus may be attributed to spatial variations of the tissue's biphasic structure. These properties substantiate the role of the meniscus as one of the important bearing surfaces of the knee. These data

  1. Self-assembly and crystallisation of indented colloids at a planar wall.

    PubMed

    Ashton, Douglas J; Ivell, Samantha J; Dullens, Roel P A; Jack, Robert L; Wilding, Nigel B; Aarts, Dirk G A L

    2015-08-14

    We report experimental and simulation studies of the structure of a monolayer of indented ("lock and key") colloids, on a planar surface. On adding a non-absorbing polymer with prescribed radius and volume fraction, depletion interactions are induced between the colloids, with controlled range and strength. For spherical particles, this leads to crystallisation, but the indented colloids crystallise less easily than spheres, in both simulation and experiment. Nevertheless, simulations show that indented colloids do form plastic (rotator) crystals. We discuss the conditions under which this occurs, and the possibilities of lower-symmetry crystal states. We also comment on the kinetic accessibility of these states. PMID:26133286

  2. In situ spectroscopic study of the plastic deformation of amorphous silicon under nonhydrostatic conditions induced by indentation

    DOE PAGES

    Gerbig, Yvonne B.; Michaels, C. A.; Bradby, Jodie E.; Haberl, Bianca; Cook, Robert F.

    2015-12-17

    Indentation-induced plastic deformation of amorphous silicon (a-Si) thin films was studied by in situ Raman imaging of the deformed contact region of an indented sample, employing a Raman spectroscopy-enhanced instrumented indentation technique (IIT). The occurrence and evolving spatial distribution of changes in the a-Si structure caused by processes, such as polyamorphization and crystallization, induced by indentation loading were observed. Furthermore, the obtained experimental results are linked with previously published work on the plastic deformation of a-Si under hydrostatic compression and shear deformation to establish a model for the deformation behavior of a-Si under indentation loading.

  3. The choice of test in phase II cancer trials assessing continuous tumour shrinkage when complete responses are expected

    PubMed Central

    Mander, Adrian P

    2015-01-01

    Traditionally, phase II cancer trials test a binary endpoint formed from a dichotomisation of the continuous change in tumour size. Directly testing the continuous endpoint provides considerable gains in power, although also results in several statistical issues. One such issue is when complete responses, i.e. complete tumour removal, are observed in multiple patients; this is a problem when normality is assumed. Using simulated data and a recently published phase II trial, we investigate how the choice of test affects the operating characteristics of the trial. We propose using parametric tests based on the censored normal distribution, comparing them to the t-test and Wilcoxon non-parametric test. The censored normal distribution fits the real dataset well, but simulations indicate its type-I error rate is inflated, and its power is only slightly higher than the t-test. The Wilcoxon test has deflated type I error. For two-arm designs, the differences are much smaller. We conclude that the t-test is suitable for use when complete responses are present, although positively skewed data can result in the non-parametric test having higher power. PMID:22179821

  4. Deformation Behavior Immediately After Indentation Load Change in Ultrafine-Grained Al-Mg Solid Solution Alloys

    NASA Astrophysics Data System (ADS)

    Takagi, Hidenari; Fujiwara, Masami

    2016-06-01

    Instrumented indentation tests were performed to study how grain boundaries and solute atoms affect creep and instantaneous plastic deformation in ultrafine-grained (UFG) Al-Mg solid solution alloys with average grain size d = 0.3 - 1.0 μm at T = 373 K. In the results for Al-1.0 mol% Mg, the degree of instantaneous plastic displacement generated with a rapid increase in the load was smaller when the grain diameter was smaller. On the other hand, creep occurs more readily in materials with a smaller grain diameter. When the load was rapidly decreased during creep, the indenter displacement gradually decreased over time. The degree of reverse creep that occurs is greater when the grain diameter is smaller. In light of these test results and reports in the related literature, reverse creep is thought to occur because of inverted movement of piled-up dislocations near the grain boundaries. For the case of Al- xMg ( x = 0.5, 1.0, 2.0 mol%), the results show that as the solute concentration increases, the occurrence of instantaneous plastic deformation, creep, and reverse creep becomes less likely. Overall, the results indicate that the plastic deformation behavior obtained by the testing conditions of present study for UFG Al-Mg alloys could be explained based on understanding of the behavior of course-grained materials.

  5. Continuing the Validation of CCIM Processability for Glass Ceramic HLLW Forms: Plan for Test AFY14CCIM-GC1

    SciTech Connect

    Vince Maio

    2014-04-01

    This test plan covers test AFY14CCIM-GC1which is the first of two scheduled FY-2014 test runs involving glass ceramic waste forms in the Idaho National Laboratory’s Cold Crucible Induction Melter Pilot Plant. The test plan is based on the successes and challenges of previous tests performed in FY-2012 and FY-2013. The purpose of this test is to continue to collect data for validating the glass ceramic High Level Liquid Waste form processability advantages using Cold Crucible Induction Melter technology. The major objective of AFYCCIM-GC1 is to complete additional proposed crucible pouring and post tapping controlled cooling experiments not completed during previous tests due to crucible drain failure. This is necessary to qualify that no heat treatments in standard waste disposal canisters are necessary for the operational scale production of glass ceramic waste forms. Other objectives include the production and post-test analysis of surrogate waste forms made from separate pours into the same graphite mold canister, testing the robustness of an upgraded crucible bottom drain and drain heater assembly, testing the effectiveness of inductive melt initiation using a resistive starter ring with a square wave configuration, and observing the tapped molten flow behavior in pans with areas identical to standard High Level Waste disposal canisters. Testing conditions, the surrogate waste composition, key testing steps, testing parameters, and sampling and analysis requirements are defined.

  6. The Effect of Pre-Stressing on the Static Indentation Load Capacity of the Superelastic 60NiTi

    NASA Technical Reports Server (NTRS)

    DellaCorte, Christopher; Moore, Lewis E., III; Clifton, Joshua S.

    2013-01-01

    Superelastic nickel-titanium alloys, such as 60NiTi (60Ni-40Ti by wt.%), are under development for use in mechanical components like rolling element bearings and gears. Compared to traditional bearing steels, these intermetallic alloys, when properly heat-treated, are hard but exhibit much lower elastic modulus (approx.100 GPa) and a much broader elastic deformation range (approx.3 percent or more). These material characteristics lead to high indentation static load capacity, which is important for certain applications especially space mechanisms. To ensure the maximum degree of elastic behavior, superelastic materials must be pre-stressed, a process referred to as "training" in shape memory effect (SME) terminology, at loads and stresses beyond expected use conditions. In this paper, static indentation load capacity tests are employed to assess the effects of pre-stressing on elastic response behavior of 60NiTi. The static load capacity is measured by pressing 12.7 mm diameter ceramic Si3N4 balls into highly polished, hardened 60NiTi flat plates that have previously been exposed to varying levels of pre-stress (up to 2.7 GPa) to determine the load that results in shallow but measurable (0.6 m, 25 in. deep) permanent dents. Hertz stress calculations are used to estimate contact stress. Without exposure to pre-stress, the 60NiTi surface can withstand an approximately 3400 kN load before significant denting (>0.4 m deep) occurs. When pre-stressed to 2.7 GPa, a static load of 4900 kN is required to achieve a comparable dent, a 30 percent increase. These results suggest that stressing contact surfaces prior to use enhances the static indentation load capacity of the superelastic 60NiTi. This approach may be adaptable to the engineering and manufacture of highly resilient mechanical components such as rolling element bearings.

  7. Discrete-State and Continuous Models of Recognition Memory: Testing Core Properties under Minimal Assumptions

    ERIC Educational Resources Information Center

    Kellen, David; Klauer, Karl Christoph

    2014-01-01

    A classic discussion in the recognition-memory literature concerns the question of whether recognition judgments are better described by continuous or discrete processes. These two hypotheses are instantiated by the signal detection theory model (SDT) and the 2-high-threshold model, respectively. Their comparison has almost invariably relied on…

  8. Prediction of Participation in Continuing Professional Education: A Test of Two Behavioral Intention Models.

    ERIC Educational Resources Information Center

    Yang, Baiyn; And Others

    1994-01-01

    Analysis of 551 Alberta veterinarians' intention to participate in continuing education revealed that the Triandis model of behavioral intention had greater predictive utility than the Fishbein-Azjen. Participation was largely determined by behavioral intention, which was influenced by attitude toward the program. (SK)

  9. The Funding of Adult and Continuing Education in Britain: The Acid Test.

    ERIC Educational Resources Information Center

    McIlroy, John

    1989-01-01

    Sketches the historical and contemporary context of special funding for university adult and continuing education in Britain. Examines in detail developments in extramural education since 1979. Considers the impact of the Thatcher government's decision to transfer funding to the new Universities Funding Council. (SK)

  10. Analysis of dose distribution changes in radiation processing using a continuous variable F-test and p-value

    NASA Astrophysics Data System (ADS)

    Lundahl, Brad

    2011-06-01

    A process monitoring practice is established from the evaluation of dose distribution within simulant or phantom materials. As a part of change control, an evaluation of potential changes to dose distribution is conducted when change activities occur to the irradiator. ( AAMI/AAMI/ISO 11137-1, 2006) The dose distribution evaluation is conducted to verify either the continued validity of an established process monitoring practice or demonstrate that the monitoring practice is no longer valid. Historically, change control evaluation of a process monitoring practice has been based on a non-statistical evaluation of dose distribution data for potential change. A statistical method has been developed using a continuous variable F-test and p-value, which tests a null hypothesis of no change in dose distribution, and provides a means of either substantiating or refuting the continued validity of a process monitoring practice.

  11. Response Switching Process in Children with Attention-Deficit-Hyperactivity Disorder on the Novel Continuous Performance Test

    ERIC Educational Resources Information Center

    Inoue, Yuki; Inagaki, Masumi; Gunji, Atsuko; Furushima, Wakana; Kaga, Makiko

    2008-01-01

    We examined the effects of previous trials on subsequent trials on performance in the continuous performance test (CPT) in children with attention-deficit-hyperactivity disorder (ADHD). Thirty-five non-medicated children with ADHD (31 males, four females; mean age 9y 10mo [SD 2y 4mo]) and 33 comparison children (20 males, 13 females; mean age 10y…

  12. Determination of work of adhesion of biological cell under AFM bead indentation.

    PubMed

    Zhu, Xinyao; Siamantouras, E; Liu, K K; Liu, X

    2016-03-01

    Hertz contact theory has been widely used for the determination of cell elasticity based on AFM indentation experiments. In light of the adhesive contact between AFM tip and cell, this study applied Johnson-Kendall-Roberts (JKR) model to fit the indentation force-displacement (F-D) curves reported previously. A MIN6 cell has been modeled as first a sphere and then a flattened cell with different thicknesses. The results have shown that both basic JKR model and "generalized" JKR model can best describe the unloading force-displacement behaviors of the indentation curves. The Young׳s modulus of the cell and the work of adhesion of the cell-indenter interface are obtained. In comparison to the Hertzian contact model, the JKR model provides obviously better fitting to the experimental results, indicating that the adhesion is significant in the cell interaction. PMID:26688423

  13. Scanning electron acoustic microscopy of indentation-induced cracks and residual stresses in ceramics

    NASA Technical Reports Server (NTRS)

    Cantrell, John H.; Qian, Menglu; Ravichandran, M. V.; Knowles, K. M.

    1990-01-01

    The ability of scanning electron acoustic microscopy (SEAM) to characterize ceramic materials is assessed. SEAM images of Vickers indentations in SiC whisker-reinforced alumina clearly reveal not only the radial cracks, the length of which can be used to estimate the fracture toughness of the material, but also reveal strong contrast, interpreted as arising from the combined effects of lateral cracks and the residual stress field left in the SiC whisker-reinforced alumina by the indenter. The strong contrast is removed after the material is heat treated at 1000 C to relieve the residual stresses around the indentations. A comparison of these observations with SEAM and reflected polarized light observations of Vickers indentations in soda-lime glass both before and after heat treatment confirms the interpretation of the strong contrast.

  14. Coupling between pressure solution and fracturing processes discussed from indenter experiments

    NASA Astrophysics Data System (ADS)

    Gratier, J.; Renard, F.; Bernard, D.

    2007-12-01

    Pressure solution is a mechanism competing with cataclasis during sediment deformation. For example, both mechanisms are well documented in fault zones where they interact to make sedimentary rocks behave in both brittle and viscous manners. Cataclasis is associated with earthquake rupture whereas pressure solution accommodates post-seismic creep and sealing processes. In basins, sedimentary grains deform both by pressure solution and cataclastic deformation and are responsible for sediment compaction and porosity loss. As a consequence, the coupling between pressure solution and fracturing processes is a major issue, which we have studied experimentally. Indenter technique is a good technique for pressure solution studies since it allows controlling the distance of mass transfer, a crucial parameter in pressure solution constitutive laws. We have performed pressure solution indenter experiments on various kinds of single crystals leading to contrasting effects of the fracturing process on the kinetics of pressure solution creep. Indenting of quartz crystals leads to various hole shapes under the indenter. Cylindrical holes with a diameter equal to the indenter diameter are obtained at low stress (25-50 MPa), whereas hole larger than the indenter diameter are obtained at higher stresses (100-300 MPa). Reverse crown-shaped fractures below the indenter are associated with such a hole enlarging process. Successive fracture sets are created, then partially healed during the progressive indenting. However, displacement rates showed an exponential dependence on the stress values, as predicted theoretically. So the development of such fractures does not seem to significantly increase the kinetics of pressure solution. Conversely, indenting halite crystal in presence of brine solution led to different fracturing effects. At low stress no fracturing could be observed and the diameter of the hole was equal to the diameter of the indenter. However, near halite yield stress

  15. Hardware in the Loop Testing of Continuous Control Algorithms for a Precision Formation Flying Demonstration Mission

    NASA Astrophysics Data System (ADS)

    Naasz, B. J.; Burns, R. D.; Gaylor, D.; Higinbotham, J.

    A sample mission sequence is defined for a low earth orbit demonstration of Precision Formation Flying (PFF). Various guidance navigation and control strategies are discussed for use in the PFF experiment phases. A sample PFF experiment is implemented and tested in a realistic Hardware-in-the-Loop (HWIL) simulation using the Formation Flying Test Bed (FFTB) at NASA's Goddard Space Flight Center.

  16. Effects of Item Exposure for Conventional Examinations in a Continuous Testing Environment.

    ERIC Educational Resources Information Center

    Hertz, Norman R.; Chinn, Roberta N.

    This study explored the effect of item exposure on two conventional examinations administered as computer-based tests. A principal hypothesis was that item exposure would have little or no effect on average difficulty of the items over the course of an administrative cycle. This hypothesis was tested by exploring conventional item statistics and…

  17. Continuing life test of a xenon hollow cathode for a space plasma contactor

    NASA Technical Reports Server (NTRS)

    Sarver-Verhey, Timothy R.

    1994-01-01

    Implementation of a hollow cathode plasma contactor for charge control on the Space Station has required validation of long-life hollow cathodes. A test series of hollow cathodes and hollow cathode plasma contactors was initiated as part of the plasma contactor development program. An on-going wear-test of a hollow cathode has demonstrated cathode operation in excess of 10,000 hours with small changes in operating parameters. The discharge has experienced 10 shutdowns during the test, all of which were due to test facility failures or expellant replenishment. In all cases, the cathode was re-ignited at approximately 42 volts and resumed typical operation. This test represents the longest demonstrated stable operation of a high current (greater than 1 A) xenon hollow cathode reported to date.

  18. Indentation Versus Tensile Measurements of Young's Modulus for Soft Biological Tissues

    PubMed Central

    McKee, Clayton T.; Last, Julie A.

    2011-01-01

    In this review, we compare the reported values of Young's modulus (YM) obtained from indentation and tensile deformations of soft biological tissues. When the method of deformation is ignored, YM values for any given tissue typically span several orders of magnitude. If the method of deformation is considered, then a consistent and less ambiguous result emerges. On average, YM values for soft tissues are consistently lower when obtained by indentation deformations. We discuss the implications and potential impact of this finding. PMID:21303220

  19. Determination of the elastic modulus of native collagen fibrils via radial indentation

    NASA Astrophysics Data System (ADS)

    Heim, August J.; Matthews, William G.; Koob, Thomas J.

    2006-10-01

    The authors studied the elastic response of single, native collagen fibrils extracted from tissues of the inner dermis of the sea cucumber, Cucumaria frondosa, via local nanoscale indentation with an atomic force microscope (AFM). AFM imaging of fibrils under ambient conditions are presented, demonstrating a peak-to-peak periodicity, the d band, of dehydrated, unfixed fibrils to be ˜64.5nm. Radial indentation experiments were performed, and the measured value for the reduced modulus is 1-2GPa.

  20. Dynamic acousto-elastic test using continuous probe wave and transient vibration to investigate material nonlinearity.

    PubMed

    Eiras, J N; Vu, Q A; Lott, M; Payá, J; Garnier, V; Payan, C

    2016-07-01

    This study demonstrates the feasibility of the dynamic acousto-elastic effect of a continuous high frequency wave for investigating the material nonlinearity upon transient vibration. The approach is demonstrated on a concrete sample measuring 15×15×60cm(3). Two ultrasonic transducers (emitter and receiver) are placed at its middle span. A continuous high frequency wave of 500kHz propagates through the material and is modulated with a hammer blow. The position of the hammer blow on the sample is configured to promote the first bending mode of vibration. The use of a continuous wave allows discrete time extraction of the nonlinear behavior by a short-time Fourier transform approach, through the simultaneous comparison of a reference non-modulated signal and an impact-modulated signal. The hammer blow results in phase shifts and variations of signal amplitude between reference and perturbed signals, which are driven by the resonant frequency of the sample. Finally, a comprehensive analysis of the relaxation mechanisms (modulus and attenuation recovery) is conducted to untangle the coupled fast and slow hysteretic effects. PMID:27018754

  1. Indenter size effect on the reversible incipient plasticity of Al (001) surface: Quasicontinuum study

    NASA Astrophysics Data System (ADS)

    Tang, Dan; Shao, Yu-Fei; Li, Jiu-Hui; Zhao, Xing; Qi, Yang

    2015-08-01

    Indenter size effect on the reversible incipient plasticity of Al (001) surface is studied by quasicontinuum simulations. Results show that the incipient plasticity under small indenter, the radius of which is less than ten nanometers, is dominated by a simple planar fault defect that can be fully removed after withdrawal of the indenter; otherwise, irreversible incipient plastic deformation driven by a complex dislocation activity is preferred, and the debris of deformation twins, dislocations, and stacking fault ribbons still remain beneath the surface when the indenter has been completely retracted. Based on stress distributions calculated at an atomic level, the reason why the dislocation burst instead of a simple fault ribbon is observed under a large indenter is the release of the intensely accumulated shear stress. Finally, the critical load analysis implies that there exists a reversible-irreversible transition of incipient plasticity induced by indenter size. Our findings provide a further insight into the incipient surface plasticity of face-centered-cubic metals in nano-sized contact issues. Project supported by the National Natural Science Foundation of China (Grant No. 51172040), the National Basic Research Program of China (Grant No. 2011CB606403), and the General Project of Scientific Research from Liaoning Educational Committee, China (Grant No. L2014135).

  2. Report on environmental effects at Yuma Proving Ground from continued testing of projectiles containing beryllium and depleted uranium

    SciTech Connect

    Shinn, J.H.; Sharmer, L.A.; Cederwall, R.T.; Novo, M.G.; Mitchell, C.S.

    1988-02-01

    The purpose of this report is to determine, from the available information, the potential environmental effects at Yuma Proving Ground (YPG), resulting from further testing of surface-burst artillery projectiles (XM785) containing amounts of beryllium (Be) and depleted uranium (DU). A model was applied to assess the downwind deposition and air concentrations of Be and DU during actual tests with the XM753 and XM785 at YPG. In addition, one single, static test of an XM785 was conducted at Tonopah Test Range. The potential effects of continued testing of devices such as the XM753 and XM785 appear to be insignificant, providing that prudent mitigations and environmental management practices are carried out. 44 refs., 17 figs., 11 tabs.

  3. Evaluation of flow properties in the weldments of vanadium alloys using a novel indentation technique

    SciTech Connect

    Gubbi, A.N.; Rowcliffe, A.F.; Lee, E.H.; King, J.F.; Goodwin, G.M.

    1996-10-01

    Automated Ball Indentation (ABI) testing, was successfully employed to determine the flow properties of the fusion zone, heat affected zone (HAZ), and base metal of the gas tungsten arc (GTA) and electron beam (EB) welds of the V-4Cr-4Ti (large heat no. 832665) and the V-5Cr-5Ti (heat 832394) alloys. ABI test results showed a clear distinction among the properties of the fusion zone, HAZ, and base metal in both GTA and EB welds of the two alloys. GTA and EB welds of both V-4Cr-4Ti and V-5Cr-5Ti alloys show strengthening of both the fusion zone and the HAZ (compared to base metal) with the fusion zone having higher strength than the HAZ. These data correlate well with the Brinell hardness. On the other hand, GTA welds of both alloys, after a post-weld heat treatment of 950{degrees}C for 2 h, show a recovery of the properties to base metal values with V-5Cr-5Ti showing a higher degree of recovery compared to V-4Cr-4Ti. These measurements correlate with the reported recovery of the Charpy impact properties.

  4. Optical properties and indentation hardness of thin-film acrylated epoxidized oil

    NASA Astrophysics Data System (ADS)

    Rahman, Mohammad Syuhaimi Ab.; Shaktur, Khaled Mohamed; Mohammad, Rahmah; Zalikha, Wan Aimi; Nawi, Norwimie; Mohd, Ahmad Faiza

    2012-02-01

    Epoxy acrylate has been widely used as optical resin for applications such as cladding, the core of a waveguide, and other photonic devices. In this study, sustainable resin from edible oil was used as an alternative to epoxy acrylate. Structural features and the transmission of planar thin-film resin from an ultraviolet-visible spectroscopy (UV-VIS) spectrometer were investigated upon UV exposure. It was found that high transmission still persists for all samples with and without an UV absorber for exposed and unexposed samples. The film was found to absorb strongly below 400 nm. A change in the cut-off wavelength was observed upon exposure. Thin-film hardness and its dynamic indentation in the load-unload mode with different test forces were evaluated. Vickers hardness and the elastic modulus were determined for unacrylated epoxidized soybean oil (ESO) and acrylated epoxidized soybean oil (AESO). It was found that the AESO has a higher Vickers hardness and elastic modulus than those of unacrylated thin film. The Vickers hardness and elastic modulus were found to increase as the applied test force increased. The refractive index, thickness, and modes present were characterized from a spin-coated planar thin film. The refractive index in the transverse electric mode (TE) and transverse magnetic mode (TM) were determined and compared for unacrylated and acrylated epoxidized oil.

  5. The Continued Need for Modeling and Scaled Testing to Advance the Hanford Tank Waste Mission

    SciTech Connect

    Peurrung, Loni M.; Fort, James A.; Rector, David R.

    2013-09-03

    Hanford tank wastes are chemically complex slurries of liquids and solids that can exhibit changes in rheological behavior during retrieval and processing. The Hanford Waste Treatment and Immobilization Plant (WTP) recently abandoned its planned approach to use computational fluid dynamics (CFD) supported by testing at less than full scale to verify the design of vessels that process these wastes within the plant. The commercial CFD tool selected was deemed too difficult to validate to the degree necessary for use in the design of a nuclear facility. Alternative, but somewhat immature, CFD tools are available that can simulate multiphase flow of non-Newtonian fluids. Yet both CFD and scaled testing can play an important role in advancing the Hanford tank waste mission—in supporting the new verification approach, which is to conduct testing in actual plant vessels; in supporting waste feed delivery, where scaled testing is ongoing; as a fallback approach to design verification if the Full Scale Vessel Testing Program is deemed too costly and time-consuming; to troubleshoot problems during commissioning and operation of the plant; and to evaluate the effects of any proposed changes in operating conditions in the future to optimize plant performance.

  6. A continuous damage model based on stepwise-stress creep rupture tests

    NASA Technical Reports Server (NTRS)

    Robinson, D. N.

    1985-01-01

    A creep damage accumulation model is presented that makes use of the Kachanov damage rate concept with a provision accounting for damage that results from a variable stress history. This is accomplished through the introduction of an additional term in the Kachanov rate equation that is linear in the stress rate. Specification of the material functions and parameters in the model requires two types of constituting a data base: (1) standard constant-stress creep rupture tests, and (2) a sequence of two-step creep rupture tests.

  7. Continued life test results for an ensemble of CO2 lasers

    NASA Technical Reports Server (NTRS)

    Hochuli, U. E.

    1981-01-01

    The life test results of five 16 low pressure CW CO2 lasers with a nominal output of 1 watt are presented. One laser quickly died while the remaining four lasers reached half power output at 38,000, 40,000, 40,000 and 40,000 hours respectively. These results show the potential for a 50,000 hour laser while the average life of the 16 tested lasers was 22,500 hours. It is further indicated that the cathode sputtering products, which settle on the glass walls of the cathode sleeve, form an increasingly heavy film as the laser ages.

  8. A multi-sphere indentation method to determine Young's modulus of soft polymeric materials based on the Johnson-Kendall-Roberts contact model

    NASA Astrophysics Data System (ADS)

    Peng, Xiaoling; Huang, Jianyong; Deng, Hao; Xiong, Chunyang; Fang, Jing

    2011-02-01

    Tissue cells can sense mechanical properties of their surroundings, which, in vitro, generally refer to substrates coated with proteins. The elastic moduli of soft polymers used as substrates have been proved to affect many cellular processes, such as migration, development, and even differentiation. In this note, we present a cost-effective experimental design by using multi-sphere indentations to find the relation between indentation depth and sphere radius, and then apply the Johnson-Kendall-Roberts (JKR) contact theory with consideration of adhesive work to fit the experimental results so as to assess the value of Young's modulus. Two compliant polymeric materials, polyacrylamide gels and polydimethylsiloxane elastomers, are tested with this method. The results are in good agreement with those reported by previous experiments. Comparisons between JKR and traditional Hertz fittings highlight the demand for taking adhesive forces into account to measure Young's modulus of soft sticky polymeric substrates in cell-substrate interaction studies.

  9. Improvement of cathode-electrolyte interfaces of tubular solid oxide fuel cells by fabricating dense YSZ electrolyte membranes with indented surfaces

    NASA Astrophysics Data System (ADS)

    Dong, Dehua; Liu, Mingfei; Xie, Kui; Sheng, Jin; Wang, Yonghong; Peng, Xiaobo; Liu, Xingqin; Meng, Guangyao

    To improve cathode-electrolyte interfaces of solid oxide fuel cells (SOFCs), dense YSZ electrolyte membranes with indented surfaces were fabricated on tubular NiO/YSZ anode supports by two comparable methods. Electrochemistry impedance spectroscopy (EIS) and current-voltage tests of the cells were carried out to characterize the cathode-electrolyte interfaces. Results showed that the electrode polarization resistances of the modified cells were reduced by 52% and 35% at 700 °C, and the maximum power densities of cells were remarkably increased, even by 146.6% and 117.8% at lower temperature (700 °C), respectively. The indented surfaces extended the active zone of cathode and enhanced interfacial adhesion, which led to the major improvement in the cell performance.

  10. A hybrid approach to determining cornea mechanical properties in vivo using a combination of nano-indentation and inverse finite element analysis.

    PubMed

    Abyaneh, M H; Wildman, R D; Ashcroft, I A; Ruiz, P D

    2013-11-01

    An analysis of the material properties of porcine corneas has been performed. A simple stress relaxation test was performed to determine the viscoelastic properties and a rheological model was built based on the Generalized Maxwell (GM) approach. A validation experiment using nano-indentation showed that an isotropic GM model was insufficient for describing the corneal material behaviour when exposed to a complex stress state. A new technique was proposed for determining the properties, using a combination of nano-indentation experiment, an isotropic and orthotropic GM model and inverse finite element method. The good agreement using this method suggests that this is a promising technique for measuring material properties in vivo and further work should focus on the reliability of the approach in practice. PMID:23816808

  11. Thickness of the Meniscal Lamellar Layer: Correlation with Indentation Stiffness and Comparison of Normal and Abnormally Thick Layers by Using Multiparametric Ultrashort Echo Time MR Imaging.

    PubMed

    Choi, Ja-Young; Biswas, Reni; Bae, Won C; Healey, Robert; Im, Michael; Statum, Sheronda; Chang, Eric Y; Du, Jiang; Bydder, Graeme M; D'Lima, Darryl; Chung, Christine B

    2016-07-01

    Purpose To determine the relationship between lamellar layer thickness on ultrashort echo time (UTE) magnetic resonance (MR) images and indentation stiffness of human menisci and to compare quantitative MR imaging values between two groups with normal and abnormally thick lamellar layers. Materials and Methods This was a HIPAA-compliant, institutional review board-approved study. Nine meniscal pieces were obtained from seven donors without gross meniscal pathologic results (mean age, 57.4 years ± 14.5 [standard deviation]). UTE MR imaging and T2, UTE T2*, and UTE T1ρ mapping were performed. The presence of abnormal lamellar layer thickening was determined and thicknesses were measured. Indentation testing was performed. Correlation between the thickness and indentation stiffness was assessed, and mean quantitative MR imaging values were compared between the groups. Results Thirteen normal lamellar layers had mean thickness of 232 μm ± 85 and indentation peak force of 1.37 g ± 0.87. Four abnormally thick lamellar layers showed mean thickness of 353.14 μm ± 98.36 and peak force 0.72 g ± 0.31. In most cases, normal thicknesses showed highly positive correlation with the indentation peak force (r = 0.493-0.912; P < .001 to .05). However, the thickness in two abnormal lamellar layers showed highly negative correlation (r = -0.90, P < .001; and r = -0.23, P = .042) and no significant correlation in the others. T2, UTE T2*, and UTE T1ρ values in abnormally thick lamellar layers were increased compared with values in normal lamellar layers, although only the UTE T2* value showed significant difference (P = .010). Conclusion Variation of lamellar layer thickness in normal human menisci was evident on two-dimensional UTE images. In normal lamellar layers, thickness is highly and positively correlated with surface indentation stiffness. UTE T2* values may be used to differentiate between normal and abnormally thickened lamellar layers. (©) RSNA, 2016.

  12. Assessing Attitudes about Genetic Testing as a Component of Continuing Medical Education

    ERIC Educational Resources Information Center

    Mrazek, Michael; Koenig, Barbara; Skime, Michelle; Snyder, Karen; Hook, Christopher; Black, John, III; Mrazek, David

    2007-01-01

    Objective: To investigate the attitudes among mental health professionals regarding the use of genetic testing. Methods: Psychiatrists and other mental health professionals (N = 41) who were enrolled in a week-long course in psychiatric genomics completed questionnaires before and after the course designed to assess how diagnostic genetic tests…

  13. Neonatal Responsiveness to the Odor of Amniotic and Lacteal Fluids: A Test of Perinatal Chemosensory Continuity.

    ERIC Educational Resources Information Center

    Marlier, Luc; Schaal, Benoist; Soussignan, Robert

    1998-01-01

    Studied head-orientation response of breast-feeding neonates in paired-choice odor tests. Found that 2-day olds detected amniotic fluid and colostrum, treating them as similar sensorily and/or hedonically. Four-day olds exhibited a preference for breast milk. Three-day olds oriented longer toward the odor of their own amniotic fluid than alien…

  14. Participation in Anti-War Demonstrations: A Test of the Parental Continuity Hypothesis.

    ERIC Educational Resources Information Center

    Spreitzer, Elmer; And Others

    This study replicates earlier research on student activism, but within the context of a non-elite and relatively apolitical university campus, namely, Bowling Green University. A basic finding of the earlier research is that student activists represent an extension of parental values rather than a generational rebellion. This paper tests the…

  15. Cardio-Pulmonary Function Testing. Continuing Education Curriculum for Respiratory Therapy.

    ERIC Educational Resources Information Center

    Saint Paul Technical Vocational Inst., MN.

    Compiled from interviews with personnel in pulmonary function testing (PFT) laboratories in the Minneapolis/St. Paul area, this competency-based curriculum guide is intended to provide a knowledge of PFT for persons who provide respiratory care. The guide contains 20 sections covering the following topics: vital capacity, flow measurements,…

  16. 49 CFR 232.211 - Class III brake tests-trainline continuity inspection.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... pressure is being restored, the operator of the train shall know that the air brakes function as intended... determined that the brakes on the rear car of the train apply and release in response to air pressure changes... train that has previously received a Class I brake test and that has not been off air for more than...

  17. 49 CFR 232.211 - Class III brake tests-trainline continuity inspection.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... pressure is being restored, the operator of the train shall know that the air brakes function as intended... determined that the brakes on the rear car of the train apply and release in response to air pressure changes... train that has previously received a Class I brake test and that has not been off air for more than...

  18. 49 CFR 232.211 - Class III brake tests-trainline continuity inspection.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... pressure is being restored, the operator of the train shall know that the air brakes function as intended... determined that the brakes on the rear car of the train apply and release in response to air pressure changes... train that has previously received a Class I brake test and that has not been off air for more than...

  19. 49 CFR 232.211 - Class III brake tests-trainline continuity inspection.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... pressure is being restored, the operator of the train shall know that the air brakes function as intended... determined that the brakes on the rear car of the train apply and release in response to air pressure changes... train that has previously received a Class I brake test and that has not been off air for more than...

  20. 49 CFR 232.211 - Class III brake tests-trainline continuity inspection.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... pressure is being restored, the operator of the train shall know that the air brakes function as intended... determined that the brakes on the rear car of the train apply and release in response to air pressure changes... train that has previously received a Class I brake test and that has not been off air for more than...

  1. Exploring the wake of a dust particle by a continuously approaching test grain

    SciTech Connect

    Jung, Hendrik Greiner, Franko; Asnaz, Oguz Han; Piel, Alexander; Carstensen, Jan

    2015-05-15

    The structure of the ion wake behind a dust particle in the plasma sheath of an rf discharge is studied in a two-particle system. The wake formation leads to attractive forces between the negatively charged dust and can cause a reduction of the charge of a particle. By evaluating the dynamic response of the particle system to small external perturbations, these quantities can be measured. Plasma inherent etching processes are used to achieve a continuous mass loss and hence an increasing levitation height of the lower particle, so that the structure of the wake of the upper particle, which is nearly unaffected by etching, can be probed. The results show a significant modification of the wake structure in the plasma sheath to one long potential tail.

  2. Temperature dependence of dislocation dynamics during nano-indentation in metals

    NASA Astrophysics Data System (ADS)

    Rathinam, Murugavel

    Temperature dictates mechanical properties of materials. In present day applications, materials are rarely utilized at room temperature alone. Meanwhile, temperatures may have drastic effects on the mechanical responses of materials, such as the deformation and fracture properties at different temperatures. Nanoscale testing of materials at non-ambient temperatures is now possible. The ability to perform nanotest measurements at elevated temperatures opens up significant new possibilities in nanotechnology. Sub-zero and high temperature analysis using nanoindentation technology is the first of its kind. Materials behave differently in real-life environments due to thermal loading. The objective of this thesis is to investigate the response of metals to nanoindentation at temperatures above and below the normal room temperature, using a combination of experiments and computer simulations. The metals studied include both face-center-cubic (FCC) and body-center-cubic (BCC) elements, and dislocation dynamics is the focus of this mechanics study. The experiments are performed with tailor-made Berkovitch tip of radius 100 nm at temperatures of 265 K, 388 K, 348 K, 473 K and 623 K. Single-crystals of tungsten, gold, Aluminum and polycrystalline copper are considered for the investigation. The indentation is done for BCC tungsten on the (111) and (110) crystallographic surfaces, FCC gold on the (111) and (110) crystallographic surfaces, single crystal aluminum with (100) crystallographic orientation and polycrystalline copper at different temperatures. Both the behaviour of material during loading and unloading are analyzed, and the processes are examined both experimentally and by computer simulations. Emphases are placed on the defects generation mechanisms during the elastic plastic contact of crystals. Special attention has been devoted to the elastic response before the onset of plastic yield. The temperature dependency experiments and computer simulations yield very

  3. Intercomparison of active, passive and continuous instruments for radon and radon progeny measurements in the EML chamber and test facility

    SciTech Connect

    George, A.C.; Knutson, E.O.; Tu, K.W.; Fisenne, I.M.

    1995-12-01

    The results from the May 1995 Intercomparison of Active, Passive and Continuous Instruments for Radon and Radon Progeny Measurement conducted in the EML radon exposure and test facility are presented. Represented were 13 participants that measure radon with open faced and diffusion barrier activated carbon collectors, 10 with nuclear alpha track detectors, 9 with short-term and long-term electret/ionization chambers, and 13 with active and passive commercial electronic continuous monitors. For radon progeny, there were four participants that came in person to take part in the grab sampling methodology for measuring individual radon progeny and the potential alpha energy concentration (PAEC). There were 11 participants with continuous and integrating commercial electronic instruments that are used for measuring the PAEC. The results indicate that all the tested instruments that measure radon fulfill their intended purpose. All instruments and methods used for grab sampling for radon progeny did very well. However, most of the continuous and integrating electronic instruments used for measuring the PAEC or working level appear to underestimate the potential risk from radon progeny when the concentration of particles onto which the radon progeny are attached is <5,000 cm{sup -3}.

  4. Continued Testing of Head-Mounted Displays for Deaf Education in a Planetarium

    NASA Astrophysics Data System (ADS)

    Hintz, Eric G.; Jones, M.; Lawler, J.; Bench, N.; Mangrubang, F. R.

    2013-06-01

    For more than a year now we have been developing techniques for using Head-Mounted Displays (HMD) to help accommodate a deaf audience in a planetarium environment. Our target audience is primarily children from 8 to 13 years of age, but the methodologies can be used for a wide variety of audiences. Applications also extend beyond the planetarium environment. Three tests have been done to determine if American Sign Language (ASL) can be delivered to the HMD and the student view both the planetarium show and the ASL ‘sound track’. From those early results we are now at the point of testing for comprehension improvement on a number of astronomical subjects. We will present a number of these early results.

  5. Intercomparison of active, passive and continuous instruments for radon and radon progeny measurements in the EML chamber and test facility

    SciTech Connect

    Scarpitta, S.C.; Tu, K.W.; Fisenne, I.M.; Cavallo, A.; Perry, P.

    1996-10-01

    Results are presented from the Fifth Intercomparison of Active, Passive and Continuous Instruments for Radon and Radon Progeny Measurements conducted in the EML radon exposure and test facility in May 1996. In total, thirty-four government, private and academic facilities participated in the exercise with over 170 passive and electronic devices exposed in the EML test chamber. During the first week of the exercise, passive and continuous measuring devices were exposed (usually in quadruplicate) to about 1,280 Bq m{sup {minus}3} {sup 222}Rn for 1--7 days. Radon progeny measurements were made during the second week of the exercise. The results indicate that all of the tested devices that measure radon gas performed well and fulfill their intended purpose. The grand mean (GM) ratio of the participants` reported values to the EML values, for all four radon device categories, was 0.99 {plus_minus} 0.08. Eighty-five percent of all the radon measuring devices that were exposed in the EML radon test chamber were within {plus_minus}1 standard deviation (SD) of the EML reference values. For the most part, radon progeny measurements were also quite good as compared to the EML values. The GM ratio for the 10 continuous PAEC instruments was 0.90 {plus_minus} 0.12 with 75% of the devices within 1 SD of the EML reference values. Most of the continuous and integrating electronic instruments used for measuring the PAEC underestimated the EML values by about 10--15% probably because the concentration of particles onto which the radon progeny were attached was low (1,200--3,800 particles cm{sup {minus}3}). The equilibrium factor at that particle concentration level was 0.10--0.22.

  6. A review of acceptance testing of the Los Alamos/Canberra Alpha Sentry Continuous Air Monitor (CAM)

    SciTech Connect

    Rodgers, J.C.

    1998-09-01

    Los Alamos National Laboratory (LANL) undertook the design and development of a new generation of alpha continuous air monitor (CAM) instrumentation that would incorporate advanced technologies in the design of the sampling inlet, multi-channel analyzer (MCA) electronics, solid state alpha detectors, radon background interference suppression, background interference compensation and based on spectral analysis, and microcomputer based data communication, processing, storage, and retrieval. The ANSI air monitoring instrument standards (Performance Specifications for Health Physics Instrumentation -- Occupational Airborne Radioactivity Monitoring Instrumentation, N42.17B) specify performance criteria and testing procedures for instruments and instrument systems designed to continuously sample and quantify airborne radioactivity in the workplace. Although the intent of the standard is to provide performance testing criteria for type testing, it is appropriate to evaluate the performance of a new instrument such as the Alpha Sentry against certain of these criteria for purposes of an acceptance test based on stated specifications and the Los Alamos CAM Requirements document. This report provides an overview of the results of these tests, as they pertain to instruments designed to detect alpha-emitting radionuclides in particulate form.

  7. Testing continuous earthquake detection and location in Alentejo (South Portugal) by waveform coherency analysis

    NASA Astrophysics Data System (ADS)

    Matos, Catarina; Grigoli, Francesco; Cesca, Simone; Custódio, Susana

    2015-04-01

    In the last decade a permanent seismic network of 30 broadband stations, complemented by dense temporary deployments, covered Portugal. This extraordinary network coverage enables now the computation of a high-resolution image of the seismicity of Portugal, which in turn will shed light on the seismotectonics of Portugal. The large data volumes available cannot be analyzed by traditional time-consuming manual location procedures. In this presentation we show first results on the automatic detection and location of earthquakes occurred in a selected region in the south of Portugal Our main goal is to implement an automatic earthquake detection and location routine in order to have a tool to quickly process large data sets, while at the same time detecting low magnitude earthquakes (i.e., lowering the detection threshold). We present a modified version of the automatic seismic event location by waveform coherency analysis developed by Grigoli et al. (2013, 2014), designed to perform earthquake detections and locations in continuous data. The event detection is performed by continuously computing the short-term-average/long-term-average of two different characteristic functions (CFs). For the P phases we used a CF based on the vertical energy trace, while for S phases we used a CF based on the maximum eigenvalue of the instantaneous covariance matrix (Vidale 1991). Seismic event detection and location is obtained by performing waveform coherence analysis scanning different hypocentral coordinates. We apply this technique to earthquakes in the Alentejo region (South Portugal), taking advantage from a small aperture seismic network installed in the south of Portugal for two years (2010 - 2011) during the DOCTAR experiment. In addition to the good network coverage, the Alentejo region was chosen for its simple tectonic setting and also because the relationship between seismicity, tectonics and local lithospheric structure is intriguing and still poorly understood. Inside

  8. Continued Investigation of Leakage and Power Loss Test Results for Competing Turbine Engine Seals

    NASA Technical Reports Server (NTRS)

    Delgado, Irebert R.; Proctor, Margaret P.

    2006-01-01

    Secondary seal leakage in jet engine applications results in power losses to the engine cycle. Likewise, seal power loss in jet engines not only result in efficiency loss but also increase the heat input into the engine resulting in reduced component lives. Experimental work on labyrinth and annular seals was performed at NASA Glenn Research Center to quantify seal leakage and power loss at various temperatures, seal pressure differentials, and surface speeds. Data from annular and labyrinth seals are compared with previous brush and finger seal test results. Data are also compared to literature. Annular and labyrinth seal leakage rates are 2 to 3 times greater than brush and finger seal rates. Seal leakage decreases with increasing speed but increases with increasing test temperature due to thermal expansion mismatch. Also seal power loss increases with surface speed, seal pressure differential, mass flow rate, and radial clearance. Annular and labyrinth seal power losses were higher than those of brush or finger seal data. The brush seal power loss was 15 to 30 percent lower than annular and labyrinth seal power loss.

  9. Mechanomyographic and metabolic responses during continuous cycle ergometry at critical power from the 3-min all-out test.

    PubMed

    Bergstrom, Haley C; Housh, Terry J; Zuniga, Jorge M; Traylor, Daniel A; Lewis, Robert W; Camic, Clayton L; Schmidt, Richard J; Johnson, Glen O

    2013-04-01

    There are limited data regarding metabolic responses during continuous exhaustive rides at critical power (CP) from the 3-min all-out test. In addition, no previous studies have examined the mechanomyographic (MMG) responses at CP from the 3-min all-out test. Therefore, this study examined the metabolic and MMG responses during continuous exercise at CP determined from the 3-min all-out test. Nine college-aged females (mean±SD: age 23.0±3.6yrs) performed an incremental test to exhaustion on a cycle ergometer to identify the gas exchange threshold, peak oxygen consumption rate (V˙O2 peak) and heart rate peak (HR peak). The V˙O2, HR, MMG amplitude and mean power frequency (MPF) responses were examined during continuous rides to exhaustion at CP (81±6% peak power). There were significant increases in V˙O2 and HR over time and there was no significant difference between V˙O2 peak and V˙O2 at exhaustion or HR peak and HR at exhaustion. There were, however, no significant changes for MMG amplitude or MPF over time. Therefore, the current findings suggested that the 3-min all-out test overestimated CP and the demarcation between the heavy and severe intensity domains. Specifically, the V˙O2 and HR responses did not reach a steady state and were driven to peak values. Furthermore, the non-significant change in MMG amplitude and MPF were consistent with the responses observed at fatiguing power outputs (i.e., >80% peak power).

  10. Continued Investigation of Leakage and Power Loss Test Results for Competing Turbine Engine Seals

    NASA Technical Reports Server (NTRS)

    Delgado, Irebert R.; Proctor, Margaret P.

    2007-01-01

    Seal leakage decreases with increasing surface speed due to reduced clearances from disk centrifugal growth. Annular and labyrinth seal leakage are 2-3 times greater than brush and finger seal leakage. Seal leakage rates increase with increasing temperature because of seal clearance growth due to different coefficients of thermal expansion between the seal and test disk. Seal power loss is not strongly affected by inlet temperature. Seal power loss increases with increasing surface speed, seal pressure differential, mass flow rate or flow factor, and radial clearance. The brush and finger seals had nearly the same power loss. Annular and labyrinth seal power loss were higher than finger or brush seal power loss. The brush seal power loss was the lowest and 15-30% lower than annular and labyrinth seal power loss.

  11. Penetrometer compatible, fiber-optic sensor for continuous monitoring of chlorinated hydrocarbons -- field test results

    SciTech Connect

    Milanovich, F.P.; Brown, S.B.; Colston, B.W. Jr.

    1993-04-01

    We have developed and field tested a fiber optic chemical sensor for use in environmental monitoring and remediation. The principle of detection is colorimetric and is based on an irreversible chemical reaction between a specific reagent and the target compound. The formation of reaction products are monitored remotely with optical fibers. Successive or on-demand measurements are made possible with a reagent reservoir and a miniature pumping system. The sensor has been evaluated against gas chromatography standards and has demonstrated accuracy and sensitivity (>5ppb w/w) sufficient for the environmental monitoring of the contaminants triceoroethlyene (TCE) and chloroform. The sensor system can be used for bench-top analyses or for in-situ measurements such as groundwater and vadose monitoring wells or in Penetrometry mediated placements.

  12. Viscoelastic characterization of the primate finger pad in vivo by microstep indentation and three-dimensional finite element models for tactile sensation studies.

    PubMed

    Kumar, Siddarth; Liu, Gang; Schloerb, David W; Srinivasan, Mandayam A

    2015-06-01

    When we touch an object, surface loads imposed on the skin are transmitted to thousands of specialized nerve endings (mechanoreceptors) embedded within the skin. These mechanoreceptors transduce the mechanical signals imposed on them into a neural code of the incident stimuli, enabling us to feel the object. To understand the mechanisms of tactile sensation, it is critical to understand the relationship between the applied surface loads, mechanical state at the mechanoreceptor locations, and transduced neural codes. In this paper, we characterize the bulk viscoelastic properties of the primate finger pad and show its relationship to the dynamic firing rate of SA-1 mechanoreceptors. Two three-dimensional (3D) finite element viscoelastic models, a homogeneous and a multilayer model, of the primate fingertip are developed and calibrated with data from a series of force responses to micro-indentation experiments on primate finger pads. We test these models for validation by simulating indentation with a line load and comparing surface deflection with data in the literature (Srinivasan, 1989, "Surface Deflection of Primate Fingertip Under Line Load," J. Biomech., 22(4), pp. 343-349). We show that a multilayer model with an elastic epidermis and viscoelastic core predicts both the spatial and temporal biomechanical response of the primate finger pad. Finally, to show the utility of the model, ramp and hold indentation with a flat plate is simulated. The multilayer model predicts the strain energy density at a mechanoreceptor location would decay at the same rate as the average dynamic firing rate of SA-1 mechanoreceptors in response to flat plate indentation (previously observed by Srinivasan and LaMotte, 1991 "Encoding of Shape in the Responses of Cutaneous Mechanoreceptors," Information Processing in the Somatosensory System (Wenner-Gren International Symposium Series), O. Franzen and J. Westman, eds., Macmillan Press, London, UK), suggesting that the rate of

  13. Nano-indentation study on the (001) face of KDP crystal based on SPH method

    NASA Astrophysics Data System (ADS)

    Xiaoguang, Guo; Ziyuan, Liu; Hang, Gao; Dongming, Guo

    2015-08-01

    In order to avoid the defects of mesh distortion when dealing with large deformation problems through using the finite element method, a mess-free simulation method—smooth particle hydrodynamics (SPH) has been introduced. The material constitutive model of KDP crystal has been established based on the elastic-plastic theory. Then the nano-indentation on the (001) face of KDP crystal has been carried out using SPH method. Simulation results show that the maximum equivalent stress and the maximum plastic strain concentrate on the area that located near the tip of the indenter during the loading process. The distribution shape of Von Mises stress is similar to concentric circles. During the unloading process, no obvious variation of plastic strain distribution exists. The maximum Von Mises stress is mainly located at the indentation and its edge at the end of the unloading process. The approximate direct proportion relationship between the maximum indentation depth and the depth of the maximum Von Mises stress distribution has been discovered when the maximum load is lower than 8 mN. In addition, the nano-indentation experiments on KDP crystal's (001) face have been carried out. Both the material parameters and the adjusted stress-strain curve have been verified. The hindering role of the affected layer has been found and analyzed. Project supported by the National Basic Research Program of China (No. 51135002), and the Science Fund for Creative Research Groups (No. 51321004).

  14. A numerical investigation on mechanical property improvement of styrene butadine rubber by static straight blade indentation

    NASA Astrophysics Data System (ADS)

    Setiyana, B.; Ismail, R.; Jamari, J.; Schipper, D. J.

    2016-04-01

    Mechanical property improvement of rubber is widely carried out by adding carbon black or silica as a filler in rubber. In general, this improvement aims on the increase of stiffness and abrasion resistance. By means of the static straight blade indentation technique, this paper studies the mechanical properties of Unfilled Styrene Butadiene Rubber (SBR-0) and Filled Styrene Butadiene Rubber that is compounded with carbon black (SBR-25). The numerical method applied was Finite Element Analysis (FEA) in which the rubber was modeled as a hyper-elastic material and indented by a blade indenter with various wedge angles i.e. 30, 45 and 60 degrees. At the same depth of indentation, the results showed that there was an increase in both rubber stiffness and maximum stress if the rubber was compounded. However, it is found that the rubber stiffness showed a regular slight increase, while the maximum stress experienced an irregularly significant increase. Especially for the 30 degree wedge angle, the maximum stress extremely increased at a certain depth of indentation.

  15. Evaluation of the degradation of plasma sprayed thermal barrier coatings using nano-indentation.

    PubMed

    Kim, Dae-Jin; Cho, Sung-Keun; Choi, Jung-Hun; Koo, Jae-Mean; Seok, Chang-Sung; Kim, Moon-Young

    2009-12-01

    In this study, the disk type of a thermal barrier coating (TBC) system for a gas turbine blade was isothermally aged at 1100 degrees C for various times up to 400 hours. For each aging condition, the thickness of the thermally grown oxide (TGO) was measured by optical microscope and mechanical properties such as the elastic modulus and hardness were measured by micro-indentation and nano-indentation on the cross-section of a coating specimen. In the case of micro-indentation, the mechanical properties of a Ni-base superalloy substrate and MCrAlY bond coat material did not significantly change with an increase in exposure time. In the case of nano-indentation, the gamma-Ni phase and beta-NiAl phase in the bond coat and top coat material show no significant change in their properties. However, the elastic modulus and the hardness of TGO show a remarkable decrease from 100 h to 200 h then remain nearly constant after 200 h due to the internal delamination of TBC. It has been confirmed that the nano-indentation technique is a very effective way to evaluate the degradation of a thermal barrier coating system. PMID:19908771

  16. Indentation Size Effects in Single Crystal Copper as Revealed by Synchrotron X-ray Microdiffraction

    SciTech Connect

    Feng, G.; Budiman, A. S.; Nix, W. D.; Tamura, N.; Patel, J. R.

    2007-11-19

    The indentation size effect (ISE) has been observed in numerous nanoindentation studies on crystalline materials; it is found that the hardness increases dramatically with decreasing indentation size - a 'smaller is stronger' phenomenon. Some have attributed the ISE to the existence of strain gradients and the geometrically necessary dislocations (GNDs). Since the GND density is directly related to the local lattice curvature, the Scanning X-ray Microdiffraction ({mu}SXRD) technique, which can quantitatively measure relative lattice rotations through the streaking of Laue diffractions, can used to study the strain gradients. The synchrotron {mu}SXRD technique we use - which was developed at the Advanced Light Source (ALS), Berkeley Lab - allows for probing the local plastic behavior of crystals with sub-micrometer resolution. Using this technique, we studied the local plasticity for indentations of different depths in a Cu single crystal. Broadening of Laue diffractions (streaking) was observed, showing local crystal lattice rotation due to the indentation-induced plastic deformation. A quantitative analysis of the streaking allows us to estimate the average GND density in the indentation plastic zones. The size dependence of the hardness, as found by nanoindentation, will be described, and its correlation to the observed lattice rotations will be discussed.

  17. Deformation Microstructures Near Vickers Indentations in SNO2/SI Coated Systems

    NASA Astrophysics Data System (ADS)

    Daria, G.; Evghenii, H.; Olga, S.; Zinaida, D.; Iana, M.; Victor, Z.

    The micromechanical properties (hardness and brittleness) of the hard-on-hard SnO2 / Si-coated system (CS) and their modification depending the on load value has been studied. A nonmonotonic changing of microhardness with load growth was detected. The brittle/plastic behavior of the rigid/hard-on-hard SnO2 / Si CS and its response to concentrated load action explains it.A specific evolution of the indentation-deformed zone vs. load value attributed to the change in the internal stress redistribution between film and substrate was detected. It results in a brittleness indentation size effect (BISE) of the SnO2 / Si CS revealed in this experiment.It was shown that the greater portion of internal stresses under indentation is concentrated in the coating layer at small loads. This fact causes a strong elastic-plastic relaxation in the film and its delamination from substrate. The increase of brittle failure in the indentation-deformed zone with a decrease of indentation load was revealed.

  18. Continuous bench-scale tests to assess METHOXYCOAL process performance. [Quarterly] technical report, December 1, 1991--February 29, 1992

    SciTech Connect

    Knight, R.A.; Carty, R.H.

    1992-08-01

    Laboratory-scale research conducted at Southern Illinois University of Carbondale (SIUC) has shown that coal pyrolysis in the presence of CH{sub 4} and small quantities of O{sub 2} (the METHOXYCOAL process) can produce high yields of liquids and valuable chemicals compared to conventional pyrolysis. The addition of MgO, coal ash, and clays have been shown to further enhance coal conversion. The goal of this two-year project is to build upon that laboratory research by conducting continuous benchscale tests at IGT. Tests are being conducted with IBC-101 coal under CH{sub 4}/O{sub 2} blends with and without added coal ash, MgO, and/or clays, at temperatures and pressures up to 1000{degrees}F and 200 psig. These tests will provide data to select preferred operating conditions for production of targeted chemicals (phenol, cresols, naphthalene, C{sub 1}-naphthalenes) from high-sulfur Illinois coals.

  19. Reference point indentation is insufficient for detecting alterations in traditional mechanical properties of bone under common experimental conditions.

    PubMed

    Krege, John B; Aref, Mohammad W; McNerny, Erin; Wallace, Joseph M; Organ, Jason M; Allen, Matthew R

    2016-06-01

    Reference point indentation (RPI) was developed as a novel method to assess mechanical properties of bone in vivo, yet it remains unclear what aspects of bone dictate changes/differences in RPI-based parameters. The main RPI parameter, indentation distance increase (IDI), has been proposed to be inversely related to the ability of bone to form/tolerate damage. The goal of this work was to explore the relationshipre-intervention RPI measurebetween RPI parameters and traditional mechanical properties under varying experimental conditions (drying and ashing bones to increase brittleness, demineralizing bones and soaking in raloxifene to decrease brittleness). Beams were machined from cadaveric bone, pre-tested with RPI, subjected to experimental manipulation, post-tested with RPI, and then subjected to four-point bending to failure. Drying and ashing significantly reduced RPI's IDI, as well as ultimate load (UL), and energy absorption measured from bending tests. Demineralization increased IDI with minimal change to bending properties. Ex vivo soaking in raloxifene had no effect on IDI but tended to enhance post-yield behavior at the structural level. These data challenge the paradigm of an inverse relationship between IDI and bone toughness, both through correlation analyses and in the individual experiments where divergent patterns of altered IDI and mechanical properties were noted. Based on these results, we conclude that RPI measurements alone, as compared to bending tests, are insufficient to reach conclusions regarding mechanical properties of bone. This proves problematic for the potential clinical use of RPI measurements in determining fracture risk for a single patient, as it is not currently clear that there is an IDI, or even a trend of IDI, that can determine clinically relevant changes in tissue properties that may contribute to whole bone fracture resistance. PMID:27072518

  20. Skin irritation to glass wool or continuous glass filaments as observed by a patch test among human Japanese volunteers.

    PubMed

    Tsunoda, Masashi; Kido, Takamasa; Mogi, Sachiyo; Sugiura, Yumiko; Miyajima, Eriko; Kudo, Yuichiro; Kumazawa, Tatenao; Aizawa, Yoshiharu

    2014-01-01

    Glass wool and continuous glass filaments have been used in industry. We examined the irritability of those among Japanese. A patch test was performed on 43 volunteers for the followings: glass wool for non-residential use with and without a urea-modified phenolic resin binder, that for residential use with and without the binder, and continuous glass filaments with diameters of 4, 7, 9, and 13 µm. Materials were applied to an upper arm of each volunteer for 24 h. The skin was observed at 1 and 24 h after the removal. At 1 h after removal, slight erythema was observed on the skin of a woman after the exposure to glass wool for residential use without the binder. Erythema was observed on the skin of another woman at 1 h after a 24-h exposure to glass wool for non-residential use without the binder. There were no reactions at 24 h after the removal. The low reactions in the patch test suggested that the irritability caused by glass wool, irrespective of a resin component, could be induced mechanically, and that the irritability caused by continuous glass filaments with resin could be slight and either mechanical or chemical.

  1. Skin Irritation to Glass Wool or Continuous Glass Filaments as Observed by a Patch Test among Human Japanese Volunteers

    PubMed Central

    TSUNODA, Masashi; KIDO, Takamasa; MOGI, Sachiyo; SUGIURA, Yumiko; MIYAJIMA, Eriko; KUDO, Yuichiro; KUMAZAWA, Tatenao; AIZAWA, Yoshiharu

    2014-01-01

    Glass wool and continuous glass filaments have been used in industry. We examined the irritability of those among Japanese. A patch test was performed on 43 volunteers for the followings: glass wool for non-residential use with and without a urea-modified phenolic resin binder, that for residential use with and without the binder, and continuous glass filaments with diameters of 4, 7, 9, and 13 µm. Materials were applied to an upper arm of each volunteer for 24 h. The skin was observed at 1 and 24 h after the removal. At 1 h after removal, slight erythema was observed on the skin of a woman after the exposure to glass wool for residential use without the binder. Erythema was observed on the skin of another woman at 1 h after a 24-h exposure to glass wool for non-residential use without the binder. There were no reactions at 24 h after the removal. The low reactions in the patch test suggested that the irritability caused by glass wool, irrespective of a resin component, could be induced mechanically, and that the irritability caused by continuous glass filaments with resin could be slight and either mechanical or chemical. PMID:25070402

  2. Continuous bench-scale tests to assess METHOXYCOAL process performance. Final technical report, September 1, 1991--August 31, 1992

    SciTech Connect

    Knight, R.A.; Carty, R.H.

    1992-12-31

    Laboratory-scale research conducted at Southern Illinois University at Carbondale (SIUC) has shown that coal pyrolysis in the presence of CH{sub 4}/O{sub 2} in a 97:3 mole ratio (the METHOXYCOAL process) can produce high yields of liquids and valuable chemical feedstocks, particularly phenols, cresols, and xylenols (PCX). The addition of magnesia, coal ash, or clays have been shown to further enhance coal conversion to these chemicals. The goal of this two-year project was to build upon that laboratory research by conducting continuous bench-scale tests at IGT. Tests were conducted with IBC-101 and IBC-105 coals under N{sub 2}, CH{sub 4}, and CH{sub 4}/O{sub 2} blends, with and without mineral additives, at temperatures and pressures up to 1000{degree}F and 200 psig. These tests have provided data valuable to further development efforts on the process. In the first year, fluidized-bed tests were conducted using inert bed diluents (coke and sand) to retard agglomeration. PCX yields of 0.99 wt% maf coal were achieved in CH{sub 4} atmosphere, tripling the yield in N, atmosphere, while overall liquid yields were 18--20 wt% maf in either atmosphere. However, control of caking was difficult in spite of a very high bed dilution ratio of 4.5:1. During the second year, agglomeration was controlled by slurry impregnation of the coal with coal ash, magnesia, or montmorillonite at levels as low as 10 wt%. Thirteen continuous tests were conducted in 2-inch fluidized-bed and moving-bed reactors at test conditions of 900{degree}--1000{degree}F and 120 psig.

  3. Development and Field Testing of a Continuously Operating CO2 Lidar Profiling System

    NASA Astrophysics Data System (ADS)

    Ismail, S.; Refaat, T.; Koch, G. J.; Davis, K.; Abedin, N. M.; Rubio, M. A.; Singh, U. N.

    2009-05-01

    A ground-based 2-micron DIAL system for profiling atmospheric CO2 was developed at NASA Langley Research Center (LaRC) under the NASA Instrument Incubator Program. This system leverages 2-micron laser technology developed under a number of NASA programs to develop new solid-state YLF laser technology that provides high pulse energy, tunable, wavelength-stabilized, and double-pulsed lasers that are operable over pre-selected temperature insensitive strong CO2 absorption lines suitable for profiling of lower tropospheric CO2. It also incorporates new high quantum efficiency, high gain, and relatively low noise phototransistors, and a new receiver/signal processor system to achieve high precision DIAL measurements. The DIAL system was integrated and tested at LaRC, and then incorporated in a field experiment for evaluation. The field experiment was conducted during June-July 2008, at West Branch, Iowa, which is located at the center of a domain rich in complementary CO2 measurements. The objective of the experiment was to evaluate the accuracy and precision of the system and its ability to distinguish contents between boundary layer and free troposphere. Therefore, the experiment was co-located with other CO2 measurement setups that aid the evaluation. These setups include NOAA WBI tower with in-situ CO2 sampling sensors at 31, 99 and 379 m altitudes; NOAA airborne CO2 profiling; and radiosondes for atmospheric temperature, pressure and relative humidity profiling at the site. The lidar operations included daytime CO2 measurements to sense the well-mixed atmospheric boundary layer and overlying troposphere; day-to-night and night-to-day transitions; and night observations to capture CO2 mixing ratio differences within the boundary layer. Measurements included atmospheric CO2 spatial and temporal profiles as well as column measurements using high altitude clouds. Examples of CO2 DIAL system capability and measurements from the field experiment will be presented.

  4. Predicting the continued use of overlays in school children--a comparison of the Developmental Eye Movement test and the Rate of Reading test.

    PubMed

    Northway, Nadia

    2003-09-01

    Coloured overlays have been advocated to enhance reading speed and ability in children with reading difficulty or dyslexia. Assessing the efficacy of overlays has to date been largely subjective. Objective assessment is presently carried out with the Rate of Reading test (RRT), where an increase in reading speed of more than 5% is considered to indicate a positive prognosis for continued use of the overlay. The Developmental Eye Movement (DEM) test is used to assess horizontal scanning behaviour in a number naming task. In this study both tests were utilised to determine whether coloured overlays could enhance reading performance or scanning. This article shows that for some children rate of reading is not improved with coloured overlays although performance on the DEM test does improve. Improvements to the DEM scores occurred in 88% of children who continued to use overlays for more than 3 months. This compared with 60% sensitivity in the RRT. The possible reasons for this phenomenon and the clinical implications are discussed. PMID:12950892

  5. Ulnar focal cortical indentation: a previously unrecognised form of ulnar dysplasia.

    PubMed

    Kazuki, K; Hiroshima, K; Kawahara, K

    2005-04-01

    Deformity of the forearm due to growth disturbance of the ulna occurs in a number of conditions such as ulnar deficiency, multiple exostoses, and neurofibromatosis. We report a previously unrecognised form, caused by focal cortical indentation. We have treated five children with this condition, three girls and two boys; the mean age at presentation was 5 years (2 to 8). The deformity was first recognised about the age of two years, and progressed gradually. The radiological findings were the same in all cases. The focal cortical indentation was seen at the distal end of the ulna with anteromedial bowing and dysplasia. The radial head was dislocated posterolaterally. In one patient the histological findings at the site of indentation were of a fold of tissue resembling periosteum, which interfered with enchondral ossification. Treatment by ulnar lengthening using an external fixator and osteotomy which corrected both the ulnar deformity and reduced the dislocated radial head in two cases gave the best results. PMID:15795207

  6. Deformation Behaviors of Zr-BASED Bulk Metallic Glass Under Impact Indentation

    NASA Astrophysics Data System (ADS)

    Shin, Hyung-Seop; Chang, Soon-Nam; Kim, Do Kyung

    Metallic glasses are amorphous meta-stable solids and are now being processed in bulk form suitable for structural applications under impact loading. Bulk metallic glasses have many unique mechanical properties such as high yield strength and fracture toughness, good corrosion and wear resistance that distinguish them from crystalline metals and alloys. However, only a few studies could be found mentioning the dynamic response and damage of metallic glasses under impact or shock loading. In this study, we employed a small explosive detonator for the dynamic indentation to a Zr-based bulk amorphous metal in order to evaluate the damage behavior of bulk amorphous metal under impact or shock loading conditions. Results were compared with those of spherical indentation under quasi-static and impact loading and were discussed. The interface bonded specimen method was adopted in order to observe the subsurface damage, especially the formation of shear bands induced during indentation under different loading conditions.

  7. Molecular dynamics simulation of the indentation of nanoscale films on a substrate

    NASA Astrophysics Data System (ADS)

    Redkov, A. V.; Osipov, A. V.; Kukushkin, S. A.

    2016-06-01

    It is shown that atomistic modeling of the indentation of thin films using the method of molecular dynamics (MD) has some advantages on the nanoscale level in comparison to the traditional method of finite elements. Effects revealed by the MD simulations, including delamination and cracking of the film under indenter and the formation and propagation of dislocations are considered. Elastic properties of a nanoscale film on substrate have been studied using the Tersoff potential in application to the silicon carbide film on silicon (SiC/Si). The results of MD simulation qualitatively agree with recent experimental data for indentation in the SiC/Si system. The influence of parameters of the Tersoff potential on the Young's modulus of simulated materials has been studied for silicon.

  8. Mesoscopic Nonlinear Elastic Modulus of Thermal Barrier Coatings Determined by Cylindrical Punch Indentation

    NASA Technical Reports Server (NTRS)

    Eldridge, Jeffrey I.; Zhu, Dong-Ming; Miller, Robert A.

    2000-01-01

    Cylindrical punch indentations are performed to determine the effective modulus of a plasma-sprayed ZrO2-8Wt%Y2O3 thermal barrier coating (TBC) as a function of coating depth. Cylindrical punch indentations offer significant advantages over pointed (Vickers, Berkovich, or Knoop) indentations for materials that do not exhibit linear elastic behavior. Cyclic loading with a cylindrical punch clearly shows the TBCs to exhibit nonlinear elastic behavior with significant hysteresis that is related to the compaction and internal sliding within the plasma-spray splat microstructure. In addition, the effect of a high heat flux laser treatment was shown to produce a gradient both in the effective TBC modulus and degree of loading/unloading hysteresis with depth.

  9. Postcollisional cooling history of the Eastern and Southern Alps and its linkage to Adria indentation

    NASA Astrophysics Data System (ADS)

    Heberer, Bianca; Reverman, Rebecca Lee; Fellin, Maria Giuditta; Neubauer, Franz; Dunkl, István; Zattin, Massimiliano; Seward, Diane; Genser, Johann; Brack, Peter

    2016-07-01

    Indentation of rigid blocks into rheologically weak orogens is generally associated with spatiotemporally variable vertical and lateral block extrusion. The European Eastern and Southern Alps are a prime example of microplate indentation, where most of the deformation was accommodated north of the crustal indenter within the Tauern Window. However, outside of this window only the broad late-stage exhumation pattern of the indented units as well as of the indenter itself is known. In this study we refine the exhumational pattern with new (U-Th-Sm)/He and fission-track thermochronology data on apatite from the Karawanken Mountains adjacent to the eastern Periadriatic fault and from the central-eastern Southern Alps. Apatite (U-Th-Sm)/He ages from the Karawanken Mountains range between 12 and 5 Ma and indicate an episode of fault-related exhumation leading to the formation of a positive flower structure and an associated peripheral foreland basin. In the Southern Alps, apatite (U-Th-Sm)/He and fission-track data combined with previous data also indicate a pulse of mainly Late Miocene exhumation, which was maximized along thrust systems, with highly differential amounts of displacement along individual structures. Our data contribute to mounting evidence for widespread Late Miocene tectonic activity, which followed a phase of major exhumation during strain localization in the Tauern Window. We attribute this exhumational phase and more distributed deformation during Adriatic indentation to a major change in boundary conditions operating on the orogen, likely due to a shift from a decoupled to a coupled system, possibly enhanced by a shift in convergence direction.

  10. Microhardness evaluations of resin-dentin bonding areas by nano-indentation.

    PubMed

    Nakazawa, Y; Seino, E; Ushiki, T; Ogata, T; Hirai, Y; Kawada, E; Oda, Y

    1999-02-01

    The purpose of this experiment was to determine the hardness values of the hybrid layer and its surroundings through the continuous use of a microhardness measuring device. Black's Class V cavities were prepared in nine dog teeth. The cavities were divided into four groups according to the dentin adhesive system applied. The adhesive systems were: "Bond One System", "Liner Bond II sigma System", "One Step System", and "Single Bond System". The treated teeth were observed at seven days post-application. Specimens were cross-sectioned perpendicularly or horizontally to the resin-dentin interface and embedded in epoxy resin. Their surfaces were polished. The microhardness of the resin-dentin bonding area was measured with a nano-indentation tester. The hardness values at a point of 10 microns distant from the interface in the direction of the dentin differed between systems. It appeared that this was influenced by the presence of the decalcified dentin not impregnated by resin, differences in the chemistry forming the hybrid layer, and the composition of the bonding resin. The hardness of the dentin-bonding interface and its surroundings was determined, and these areas were observed using SEM. Three layers were confirmed the healthy dentin layer, the composite resin layer, and the hybrid layer, (in which decalcified dentin impregnated by resin and that not impregnated by resin are considered to be mix). In the hybrid layer, no impression was found by SEM although the hardness in the bonding interface was significantly different. These layers appear to be more elastic and softer than the healthy dentin. PMID:10522177

  11. Viscoelastic properties of healthy human artery measured in saline solution by AFM based indentation technique

    SciTech Connect

    Lundkvist, A.; Lilleodden, E.; Sickhaus, W.; Kinney, J.; Pruitt, L.; Balooch, M.

    1998-02-09

    Using an Atomic Force Microscope with an attachment for indentation, we have measured local, in vitro mechanical properties of healthy femoral artery tissue held in saline solution. The elastic modulus (34. 3 kPa) and viscoelastic response ({tau}sub{epsilon} {equals} 16.9 s and {tau}sub{sigma} {equals} 29.3 s) of the unstretched,intimal vessel wall have been determined using Sneddon theory and a three element model(standard linear solid) for viscoelastic materials. The procedures necessary to employ the indenting attachment to detect elastic moduli in the kPa range in liquid are described.

  12. Microstructures of galvannealing coats plated on an iron substrate deformed by indentation.

    PubMed

    Kobayashi, Koji; Saka, Hiroyasu

    2004-01-01

    Two different galvannealed (GA) steels with different formability performances were deformed at room temperature with a micro-Vickers indenter. Cross-sectional specimens for transmission electron microscopy were prepared from the indented areas using a focused ion beam technique. Direct evidence of plastic deformation of the GA coats was obtained. Cracks were observed to nucleate at triple points of two neighbouring Gamma and substrate Fe. The GA coat with better formability has finer grains than the GA coat, with worse formability. PMID:15582965

  13. Development of an advanced continuous mild gasification process for the production of coproducts. Task 4, Mild gasification tests

    SciTech Connect

    Merriam, N.W.; Cha, C.Y.; Kang, T.W.; Vaillancourt, M.B.

    1990-12-01

    Western Research Institute (WRI) teamed with the AMAX Research and Development Center and Riley Stoker Corporation on Development of an Advanced, Continuous Mild-Gasification Process for the Production of Coproducts under contract DE-AC21-87MC24268 with the Morgantown Energy Technology of the US Department of Energy. The strategy for this project is to produce electrode binder pitch and diesel fuel blending stock by mild gasification of Wyodak coal. The char is upgraded to produce anode-grade carbon, carbon black, and activated carbon. This report describes results of mild-gasification tests conducted by WRI. Char upgrading tests conducted by AMAX will be described in a separate report.

  14. Vickers indentation hardness of stoichiometric and reduced single crystal TiO2 (rutile) from 25 to 800 C

    NASA Technical Reports Server (NTRS)

    Dellacorte, Christopher; Deadmore, Daniel L.

    1993-01-01

    The indentation microhardness of stoichiometric and reduced single crystal rutile (TiO2) from 25 to 800 C is presented in this paper. The results serve two main purposes. One is to assess the effect of rutile's stoichiometry on its hardness. The other is to test recently suggested theory on solid lubrication with sub Stoichiometric rutile in an effort to better understand shear controlled phenomenon. Microhardness was measured using a Vickers diamond indentor on both vacuum and hydrogen reduced single crystal rutile from 25 to 800 C. The results indicate that stoichiometry and temperature have a pronounced effect on rutile's hardness. The measured effects lend support to theory on solid lubrication by enhanced crystallographic slip and suggest that solid lubricant materials may be produced by careful atomic level tailoring (stoichiometry control).

  15. A test on a Neuro-Fuzzy algorithm used to reduce continuous gravity records for the effect of meteorological parameters

    NASA Astrophysics Data System (ADS)

    Andò, Bruno; Carbone, Daniele

    2004-05-01

    Gravity measurements are utilized at active volcanoes to detect mass changes linked to magma transfer processes and thus to recognize forerunners to paroxysmal volcanic events. Continuous gravity measurements are now increasingly performed at sites very close to active craters, where there is the greatest chance to detect meaningful gravity changes. Unfortunately, especially when used against the adverse environmental conditions usually encountered at such places, gravimeters have been proved to be affected by meteorological parameters, mainly by changes in the atmospheric temperature. The pseudo-signal generated by these perturbations is often stronger than the signal generated by actual changes in the gravity field. Thus, the implementation of well-performing algorithms for reducing the gravity signal for the effect of meteorological parameters is vital to obtain sequences useful from the volcano surveillance standpoint. In the present paper, a Neuro-Fuzzy algorithm, which was already proved to accomplish the required task satisfactorily, is tested over a data set from three gravimeters which worked continuously for about 50 days at a site far away from active zones, where changes due to actual fluctuation of the gravity field are expected to be within a few microgal. After accomplishing the reduction of the gravity series, residuals are within about 15 μGal peak-to-peak, thus confirming the capabilities of the Neuro-Fuzzy algorithm under test of performing the required task satisfactorily.

  16. Chronic toxicity of hydrogen peroxide to Daphnia magna in a continuous exposure, flow-through test system

    USGS Publications Warehouse

    Meinertz, J.R.; Greseth, Shari L.; Gaikowski, M.P.; Schmidt, L.J.

    2008-01-01

    A flow-through, continuous exposure test system was developed to expose Daphnia magna to an unstable compound. 35% Perox-Aid?? is a specially formulated hydrogen peroxide (a highly oxidative chemical) product approved for use in U.S. aquaculture and therefore has the potential to be released from aquaculture facilities and pose a risk to aquatic invertebrates. The study objective was to assess the effects of 35% Perox-Aid?? on an aquatic invertebrate by evaluating the survival, growth, production, and gender ratio of progeny from a representative aquatic invertebrate continuously exposed to 35% Perox-Aid??. The study design consisted of 6 treatment groups (10 test chambers each) with target hydrogen peroxide concentrations of 0.0, 0.32, 0.63, 1.25, 2.5, and 5.0??mg L- 1. The study was initiated with < 24-h-old Daphnia (1 daphnid per chamber) that were exposed to hydrogen peroxide for 21??days. Hydrogen peroxide concentrations ??? 1.25??mg L- 1 had no significant effect on Daphnia time to death compared to controls and no significant effect on the time to first brood production and the number of broods produced. Concentrations ??? 0.63??mg L- 1 had no significant effect on the total number of young produced. Concentrations ??? 0.32??mg L- 1 had a negative effect on Daphnia growth. Hydrogen peroxide had no significant effect on the gender ratio of young produced. All second generation Daphnia were female. A continuous discharge of hydrogen peroxide into aquatic ecosystems is not likely to affect cladocerans if the concentration is maintained at ??? 0.63??mg L- 1 for less than 21??days.

  17. Non-contact, Ultrasound-based Indentation Method for Measuring Elastic Properties of Biological Tissues Using Harmonic Motion Imaging (HMI)

    PubMed Central

    Vappou, Jonathan; Hou, Gary Y.; Marquet, Fabrice; Shahmirzadi, Danial; Grondin, Julien; Konofagou, Elisa E.

    2015-01-01

    Noninvasive measurement of mechanical properties of biological tissues in vivo could play a significant role in improving the current understanding of tissue biomechanics. In this study, we propose a method for measuring elastic properties non-invasively by using internal indentation as generated by Harmonic Motion Imaging (HMI). In HMI, an oscillating acoustic radiation force is produced by a focused ultrasound transducer at the focal region, and the resulting displacements are estimated by tracking RF signals acquired by an imaging transducer. In this study, the focal spot region was modeled as a rigid cylindrical piston that exerts an oscillatory, uniform internal force to the underlying tissue. The HMI elastic modulus EHMI was defined as the ratio of the applied force to the axial strain measured by 1D ultrasound imaging. The accuracy and the precision of the EHMI estimate were assessed both numerically and experimentally in polyacrylamide tissue-mimicking phantoms. Initial feasibility of this method in soft tissues was also shown in canine liver specimens in vitro. Very good correlation and agreement was found between the actual Young’s modulus and the HMI modulus in the numerical study (r2>0.99, relative error <10%) and on polyacrylamide gels (r2=0.95, relative error <24%). The average HMI modulus on five liver samples was found to EHMI=2.62±0.41 kPa, compared to EMechTesting=4.2±2.58 kPa measured by rheometry. This study has demonstrated for the first time the initial feasibility of a non-invasive, model-independent method to estimate local elastic properties of biological tissues at a submillimeter scale using an internal indentation-like approach. Ongoing studies include in vitro experiments in a larger number of samples and feasibility testing in in vivo models as well as pathological human specimens. PMID:25776065

  18. Non-contact, ultrasound-based indentation method for measuring elastic properties of biological tissues using harmonic motion imaging (HMI).

    PubMed

    Vappou, Jonathan; Hou, Gary Y; Marquet, Fabrice; Shahmirzadi, Danial; Grondin, Julien; Konofagou, Elisa E

    2015-04-01

    Noninvasive measurement of mechanical properties of biological tissues in vivo could play a significant role in improving the current understanding of tissue biomechanics. In this study, we propose a method for measuring elastic properties non-invasively by using internal indentation as generated by harmonic motion imaging (HMI). In HMI, an oscillating acoustic radiation force is produced by a focused ultrasound transducer at the focal region, and the resulting displacements are estimated by tracking radiofrequency signals acquired by an imaging transducer. In this study, the focal spot region was modeled as a rigid cylindrical piston that exerts an oscillatory, uniform internal force to the underlying tissue. The HMI elastic modulus EHMI was defined as the ratio of the applied force to the axial strain measured by 1D ultrasound imaging. The accuracy and the precision of the EHMI estimate were assessed both numerically and experimentally in polyacrylamide tissue-mimicking phantoms. Initial feasibility of this method in soft tissues was also shown in canine liver specimens in vitro. Very good correlation and agreement was found between the measured Young's modulus and the HMI modulus in the numerical study (r(2) > 0.99, relative error <10%) and on polyacrylamide gels (r(2) = 0.95, relative error <24%). The average HMI modulus on five liver samples was found to EHMI = 2.62  ±  0.41 kPa, compared to EMechTesting = 4.2  ±  2.58 kPa measured by rheometry. This study has demonstrated for the first time the initial feasibility of a non-invasive, model-independent method to estimate local elastic properties of biological tissues at a submillimeter scale using an internal indentation-like approach. Ongoing studies include in vitro experiments in a larger number of samples and feasibility testing in in vivo models as well as pathological human specimens.

  19. Non-contact, ultrasound-based indentation method for measuring elastic properties of biological tissues using Harmonic Motion Imaging (HMI)

    NASA Astrophysics Data System (ADS)

    Vappou, Jonathan; Hou, Gary Y.; Marquet, Fabrice; Shahmirzadi, Danial; Grondin, Julien; Konofagou, Elisa E.

    2015-04-01

    Noninvasive measurement of mechanical properties of biological tissues in vivo could play a significant role in improving the current understanding of tissue biomechanics. In this study, we propose a method for measuring elastic properties non-invasively by using internal indentation as generated by harmonic motion imaging (HMI). In HMI, an oscillating acoustic radiation force is produced by a focused ultrasound transducer at the focal region, and the resulting displacements are estimated by tracking radiofrequency signals acquired by an imaging transducer. In this study, the focal spot region was modeled as a rigid cylindrical piston that exerts an oscillatory, uniform internal force to the underlying tissue. The HMI elastic modulus EHMI was defined as the ratio of the applied force to the axial strain measured by 1D ultrasound imaging. The accuracy and the precision of the EHMI estimate were assessed both numerically and experimentally in polyacrylamide tissue-mimicking phantoms. Initial feasibility of this method in soft tissues was also shown in canine liver specimens in vitro. Very good correlation and agreement was found between the measured Young’s modulus and the HMI modulus in the numerical study (r2 > 0.99, relative error <10%) and on polyacrylamide gels (r2 = 0.95, relative error <24%). The average HMI modulus on five liver samples was found to EHMI = 2.62  ±  0.41 kPa, compared to EMechTesting = 4.2  ±  2.58 kPa measured by rheometry. This study has demonstrated for the first time the initial feasibility of a non-invasive, model-independent method to estimate local elastic properties of biological tissues at a submillimeter scale using an internal indentation-like approach. Ongoing studies include in vitro experiments in a larger number of samples and feasibility testing in in vivo models as well as pathological human specimens.

  20. Evaluation of barely visible indentation damage (BVID) in CF/EP sandwich composites using guided wave signals

    NASA Astrophysics Data System (ADS)

    Mustapha, Samir; Ye, Lin; Dong, Xingjian; Alamdari, Mehrisadat Makki

    2016-08-01

    Barely visible indentation damage after quasi-static indentation in sandwich CF/EP composites was assessed using ultrasonic guided wave signals. Finite element analyses were conducted to investigate the interaction between guided waves and damage, further to assist in the selection process of the Lamb wave sensitive modes for debonding identification. Composite sandwich beams and panels structures were investigated. Using the beam structure, a damage index was defined based on the change in the peak magnitude of the captured wave signals before and after the indentation, and the damage index was correlated with the residual deformation (defined as the depth of the dent), that was further correlated with the amount of crushing within the core. Both A0 and S0 Lamb wave modes showed high sensitivity to the presence of barely visible indentation damage with residual deformation of 0.2 mm. Furthermore, barely visible indentation damage was assessed in composite sandwich panels after indenting to 3 and 5 mm, and the damage index was defined, based on (a) the peak magnitude of the wave signals before and after indentation or (b) the mismatch between the original and reconstructed wave signals based on a time-reversal algorithm, and was subsequently applied to locate the position of indentation.

  1. Continuous testing system for Baeyer-Villiger biooxidation using recombinant Escherichia coli expressing cyclohexanone monooxygenase encapsulated in polyelectrolyte complex capsules.

    PubMed

    Bučko, Marek; Schenkmayerová, Andrea; Gemeiner, Peter; Vikartovská, Alica; Mihovilovič, Marko D; Lacík, Igor

    2011-08-10

    An original strategy for universal laboratory testing of Baeyer-Villiger monooxygenases based on continuous packed-bed minireactor connected with flow calorimeter and integrated with bubble-free oxygenation is reported. Model enantioselective Baeyer-Villiger biooxidations of rac-bicyclo[3.2.0]hept-2-en-6-one to corresponding lactones (1R,5S)-3-oxabicyclo-[3.3.0]oct-6-en-3-one and (1S,5R)-2-oxabicyclo-[3.3.0]oct-6-en-3-one as important chiral synthons for the synthesis of bioactive compounds were performed in the minireactor equipped with a column packed with encapsulated recombinant cells Escherichia coli overexpressing cyclohexanone monooxygenase. The cells were encapsulated in polyelectrolyte complex capsules formed by reaction of oppositely charged polymers utilizing highly reproducible and controlled encapsulation process. Encapsulated cells tested in minireactor exhibited high operational stability with 4 complete substrate conversions to products and 6 conversions above 80% within 14 repeated consecutive biooxidation tests. Moreover, encapsulated cells showed high enzyme stability during 91 days of storage with substrate conversions above 80% up to 60 days of storage. Furthermore, usable thermometric signal of Baeyer-Villiger biooxidation obtained by flow calorimetry using encapsulated cells was utilized for preparatory kinetic study in order to guarantee sub-inhibitory initial substrate concentration for biooxidation tests.

  2. Automated Lab-on-a-Chip Technology for Fish Embryo Toxicity Tests Performed under Continuous Microperfusion (μFET).

    PubMed

    Zhu, Feng; Wigh, Adriana; Friedrich, Timo; Devaux, Alain; Bony, Sylvie; Nugegoda, Dayanthi; Kaslin, Jan; Wlodkowic, Donald

    2015-12-15

    The fish embryo toxicity (FET) biotest has gained popularity as one of the alternative approaches to acute fish toxicity tests in chemical hazard and risk assessment. Despite the importance and common acceptance of FET, it is still performed in multiwell plates and requires laborious and time-consuming manual manipulation of specimens and solutions. This work describes the design and validation of a microfluidic Lab-on-a-Chip technology for automation of the zebrafish embryo toxicity test common in aquatic ecotoxicology. The innovative device supports rapid loading and immobilization of large numbers of zebrafish embryos suspended in a continuous microfluidic perfusion as a means of toxicant delivery. Furthermore, we also present development of a customized mechatronic automation interface that includes a high-resolution USB microscope, LED cold light illumination, and miniaturized 3D printed pumping manifolds that were integrated to enable time-resolved in situ analysis of developing fish embryos. To investigate the applicability of the microfluidic FET (μFET) in toxicity testing, copper sulfate, phenol, ethanol, caffeine, nicotine, and dimethyl sulfoxide were tested as model chemical stressors. Results obtained on a chip-based system were compared with static protocols performed in microtiter plates. This work provides evidence that FET analysis performed under microperfusion opens a brand new alternative for inexpensive automation in aquatic ecotoxicology.

  3. Rehydration of vertebral trabecular bone: influences on its anisotropy, its stiffness and the indentation work with a view to age, gender and vertebral level.

    PubMed

    Wolfram, Uwe; Wilke, Hans-Joachim; Zysset, Philippe K

    2010-02-01

    For understanding the fracture risk of vertebral bodies the macroscopic mechanical properties of the cancellous core are of major interest. Due to the hierarchical nature of bone, these depend in turn on the micromechanical properties of bone extracellular matrix which is at least linear elastic transverse isotropic. The experimental determination of local elastic properties of bone ex vivo necessitates a high spatial resolution which can be provided by depth-sensing indentation techniques. Using microindentation, this study investigated the effects of rehydration on the transverse isotropic elastic properties of vertebral trabecular bone matrix obtained from two orthogonal directions with a view to microanatomical location, age, gender, vertebral level and anatomic direction in a conjoint statistics. Biopsies were gained from 104 human vertebrae (T1-L3) with a median age of 65 years (21-94). Wet elastic moduli were 29% lower (p<0.05) than dry elastic moduli. For wet indentation the ratio of mean elastic moduli tested in axial to those tested in transverse indentation direction were 1.13 to 1.23 times higher than for dry indentation. The ratio of elastic moduli tested in the core to those tested in the periphery of trabeculae was 1.05 to 1.16 times higher when testing wet. Age and gender did not show any influence on the elastic moduli for wet and dry measurements. The correlation between vertebral level and elastic moduli became weaker after rehydration (p(wet)<0.09, r(wet)(2)=0.14) and (p(dry)<0.01, r(wet)(2)=0.38). Elastic and dissipated energies were similarly affected by rehydration compared to the elastic modulus. No significant difference in the energies could be found for gender (p>0.05). Significant differences in the energies were found for age (p<0.05) after rehydration. Qualitative and quantitative insights into the transverse isotropic elastic properties of trabecular bone matrix under two testing conditions over a broad spectrum of vertebrae could be

  4. Indentation Fracture Resistance Vs Conventional Fracture Toughness of Carbon Nanotube/Alumina Nanocomposites

    NASA Astrophysics Data System (ADS)

    Sarkar, Soumya; Das, Probal Kumar

    2015-11-01

    Multiwalled carbon nanotube (MWCNT)/alumina (Al2O3) nanocomposites were fabricated using two varieties of CNT to access the effect of morphological variation of the filler on fracture resistance ( K R)/toughness ( K IC) of studied specimens. Special attention was also given to compare K R and K IC values for tracing out the primary selection criterion of appropriate indentation fracture (IF) equation used in relatively faster and simpler `direct crack measurement' (DCM) technique to evaluate K R values close to stringent `single edge notched beam' (SENB) derived K IC data. While K IC was calculated using the unique expression suitable for specimens tested under four-point flexure, K R values were evaluated using a series of IF equations suitable for Palmqvist and/or median crack systems. As far as change in K R and/or K IC of nanocomposites was concerned, it was noticed that for longer/thicker CNTs having relatively higher internal bamboo structures, much lower amount (0.15 vol pct) was adequate to achieve the highest improvement in K R (~87 pct) or K IC (~50 pct) over pure Al2O3 (Laugier K R ≈ 3.83 MPa-m0.5; K IC ≈ 3.48 MPa-m0.5) than that required for smaller/thinner CNTs (≥0.3 vol pct). On contrary, resistance to fracture up to 1.2 vol pct CNT loading was much enhanced in specimens fabricated with smaller/thinner CNTs over those fabricated using longer/thicker CNTs. Comparatively better morphology, adequate CNT dispersion, and higher population of bridging elements in specimens containing smaller/thinner CNTs were the key factors behind such toughness retention.

  5. Super-resolution microscopy reveals LINC complex recruitment at nuclear indentation sites.

    PubMed

    Versaevel, Marie; Braquenier, Jean-Baptiste; Riaz, Maryam; Grevesse, Thomas; Lantoine, Joséphine; Gabriele, Sylvain

    2014-01-01

    Increasing evidences show that the actin cytoskeleton is a key parameter of the nuclear remodeling process in response to the modifications of cellular morphology. However, detailed information on the interaction between the actin cytoskeleton and the nuclear lamina was still lacking. We addressed this question by constraining endothelial cells on rectangular fibronectin-coated micropatterns and then using Structured Illumination Microscopy (SIM) to observe the interactions between actin stress fibers, nuclear lamina and LINC complexes at a super-resolution scale. Our results show that tension in apical actin stress fibers leads to deep nuclear indentations that significantly deform the nuclear lamina. Interestingly, indented nuclear zones are characterized by a local enrichment of LINC complexes, which anchor apical actin fibers to the nuclear lamina. Moreover, our findings indicate that nuclear indentations induce the formation of segregated domains of condensed chromatin. However, nuclear indentations and condensed chromatin domains are not irreversible processes and both can relax in absence of tension in apical actin stress fibers.

  6. Using Indentation to Quantify Transport Properties of Nanophase-Segregated Polymer Thin Films.

    PubMed

    Nadermann, Nichole K; Davis, Eric M; Page, Kirt A; Stafford, Christopher M; Chan, Edwin P

    2015-09-01

    Indentation of hydrated Nafion thin films reveals that both the in-plane diffusivity of water and the intrinsic permeability of the phase-segregated network decrease dramatically with decreasing film thickness. Using pore-network theory, this decrease in diffusivity is attributed to both an increase in ionic-domain heterogeneity and a reduction in ionic-domain connectivity upon confinement.

  7. Intraoperative measurement of indenter-induced brain deformation: a feasibility study

    NASA Astrophysics Data System (ADS)

    Ji, Songbai; Fan, Xiaoyao; Roberts, David W.; Paulsen, Keith D.

    2014-03-01

    Accurate measurement of soft tissue material properties is critical for characterizing its biomechanical behaviors but can be challenging especially for the human brain in vivo. In this study, we investigated the feasibility of inducing and detecting cortical surface deformation intraoperatively for patients undergoing open skull neurosurgeries. A custom diskshaped indenter made of high-density tungsten (diameter of 15 mm with a thickness of 6 mm) was used to induce deformation on the brain cortical surface immediately after dural opening. Before and after placing the indenter, sequences (typically 250 frames at 15 frames-per-second, or ~17 seconds) of high-resolution stereo image pairs were acquired to capture the harmonic motion of the exposed cortical surface as due to blood pressure pulsation and respiration. For each sequence with the first left image serving as a baseline, an optical-flow motion-tracking algorithm was used to detect in-sequence cortical surface deformation. The resulting displacements of the exposed features within the craniotomy were spatially averaged to identify the temporal frames corresponding to motion peak magnitudes. Corresponding image pairs were then selected to reconstruct full-field three-dimensional (3D) cortical surfaces before and after indentation, respectively, from which full 3D displacement fields were obtained by registering their projection images. With one clinical patient case, we illustrate the feasibility of the technique in detecting indenter-induced cortical surface deformation in order to allow subsequent processing to determine material properties of the brain in vivo.

  8. Insights into Reference Point Indentation Involving Human Cortical Bone: Sensitivity to Tissue Anisotropy and Mechanical Behavior

    PubMed Central

    Granke, Mathilde; Coulmier, Aurélie; Uppuganti, Sasidhar; Gaddy, Jennifer A; Does, Mark D; Nyman, Jeffry S

    2014-01-01

    Reference point indentation (RPI) is a microindentation technique involving 20 cycles of loading in “force-control” that can directly assess a patient’s bone tissue properties. Even though preliminary clinical studies indicate a capability for fracture discrimination, little is known about what mechanical behavior the various RPI properties characterize and how these properties relate to traditional mechanical properties of bone. To address this, the present study investigated the sensitivity of RPI properties to anatomical location and tissue organization as well as examined to what extent RPI measurements explain the intrinsic mechanical properties of human cortical bone. Multiple indents with a target force of 10 N were done in 2 orthogonal directions (longitudinal and transverse) per quadrant (anterior, medial, posterior, and lateral) of the femoral mid-shaft acquired from 26 donors (25–101 years old). Additional RPI measurements were acquired for 3 orthogonal directions (medial only). Independent of age, most RPI properties did not vary among these locations, but they did exhibit transverse isotropy such that resistance to indentation is greater in the longitudinal (axial) direction than in the transverse direction (radial or circumferential). Next, beam specimens (~ 2 mm × 5 mm × 40 mm) were extracted from the medial cortex of femoral mid-shafts, acquired from 34 donors (21–99 years old). After monotonically loading the specimens in three-point bending to failure, RPI properties were acquired from an adjacent region outside the span. Indent direction was orthogonal to the bending axis. A significant inverse relationship was found between resistance to indentation and the apparent-level mechanical properties. Indentation distance increase (IDI) and a linear combination of IDI and the loading slope, averaged over cycles 3 through 20, provided the best explanation of the variance in ultimate stress (r2=0.25, p=0.003) and toughness (r2=0.35, p=0

  9. Indented Cu2MoS4 nanosheets with enhanced electrocatalytic and photocatalytic activities realized through edge engineering.

    PubMed

    Chen, Bang-Bao; Ma, De-Kun; Ke, Qing-Ping; Chen, Wei; Huang, Shao-Ming

    2016-03-01

    Edges often play a role as active centers for catalytic reactions in some nanomaterials. Therefore it is highly desirable to enhance catalytic activity of a material through modulating the microstructure of the edges. However, the study associated with edge engineering is less investigated and still at its preliminary stage. Here we report that Cu2MoS4 nanosheets with indented edges can be fabricated through a simple chemical etching route at room temperature, using Cu2MoS4 nanosheets with flat ones as sacrifice templates. Taking the electrocatalytic hydrogen evolution reaction (HER), photocatalytic degradation of rhodamine B (RhB) and conversion of benzyl alcohol as examples, the catalytic activity of Cu2MoS4 indented nanosheets (INSs) obtained through edge engineering was comparatively studied with those of Cu2MoS4 flat nanosheets (FNSs) without any modification. The photocatalytic tests revealed that the catalytic active sites of Cu2MoS4 nanosheets were associated with their edges rather than basal planes. Cu2MoS4 INSs were endowed with larger electrochemically active surface area (ECSA), more active edges and better hydrophilicity through the edge engineering. As a result, the as-fabricated Cu2MoS4 INSs exhibited an excellent HER activity with a small Tafel slope of 77 mV dec(-1), which is among the best records for Cu2MoS4 catalysts. The present work demonstrated the validity of adjusting catalytic activity of the material through edge engineering and provided a new strategy for designing and developing highly efficient catalysts.

  10. Continuity and change in the development of category-based induction: The test case of diversity-based reasoning.

    PubMed

    Rhodes, Marjorie; Liebenson, Peter

    2015-11-01

    The present research examined the extent to which the cognitive mechanisms available to support inductive inference stay constant across development or undergo fundamental change. Four studies tested how children (ages 5-10) incorporate information about sample composition into their category-based generalizations. Children's use of sample composition varied across age and type of category. For familiar natural kinds, children ages 5-8 generalized similarly from diverse and non-diverse samples of evidence, whereas older children generalized more broadly from more diverse sets. In contrast, for novel categories, children of each age made broader generalizations from diverse than non-diverse samples. These studies provide the first clear evidence that young children are able to incorporate sample diversity into their inductive reasoning. These findings suggest developmental continuity in the cognitive mechanisms available for inductive inference, but developmental changes in the role that prior knowledge plays in shaping these processes.

  11. Enabling real time release testing by NIR prediction of dissolution of tablets made by continuous direct compression (CDC).

    PubMed

    Pawar, Pallavi; Wang, Yifan; Keyvan, Golshid; Callegari, Gerardo; Cuitino, Alberto; Muzzio, Fernando

    2016-10-15

    A method for predicting dissolution profiles of directly compressed tablets for a fixed sustained release formulation manufactured in a continuous direct compaction (CDC) system is presented. The methodology enables real-time release testing (RTRt). Tablets were made at a target drug concentration of 9% Acetaminophen, containing 90% lactose and 1% Magnesium Stearate, and at a target compression force of 24kN. A model for predicting dissolution profiles was developed using a 3(4-1) fractional factorial experimental design built around this targeted condition. Four variables were included: API concentration (low, medium, high), blender speed (150rpm, 200rpm, 250rpm), feed frame speed (20rpm, 25rpm, 30rpm), compaction force (8KN, 16KN, 24KN). The tablets thus obtained were scanned at-line in transmission mode using Near IR spectroscopy. The dissolution profiles were described using two approaches, a model-independent "shape and level" method, and a model-dependent approach based on Weibull's model. Multivariate regression was built between the NIR scores as the predictor variables and the dissolution profile parameters as the response. The model successfully predicted the dissolution profiles of the individual tablets (similarity factor, f2 ∼72) manufactured at the targeted set point. This is a first ever published manuscript addressing RTRt for dissolution prediction in continuous manufacturing, a novel and state of art technique for tablet manufacturing. PMID:27543350

  12. Measuring soft tissue material properties using stereovision and indentation: a proof-of-concept study

    NASA Astrophysics Data System (ADS)

    Ji, Songbai; Fan, Xiaoyao; Hartov, Alex; Roberts, David W.; Paulsen, Keith D.

    2013-03-01

    Accurate measurement of soft tissue material properties is critical for characterizing its biomechanical behaviors but can be challenging especially for the human brain. Recently, we have applied stereovision to track motion of the exposed cortical surface noninvasively for patients undergoing open skull neurosurgical operations. In this paper, we conduct a proof-of-concept study to evaluate the feasibility of the technique in measuring material properties of soft tissue in vivo using a tofu phantom. A block of soft tofu was prepared with black pepper randomly sprinkled on the top surface to provide texture to facilitate image-based displacement mapping. A disk-shaped indenter made of high-density tungsten was placed on the top surface to induce deformation through its weight. Stereoscopic images were acquired before and after indentation using a pair of stereovision cameras mounted on a surgical microscope with its optical path perpendicular to the imaging surface. Rectified left camera images obtained from stereovision reconstructions were then co-registered using optical flow motion tracking from which a 2D surface displacement field around the indenter disk was derived. A corresponding finite element model of the tofu was created subjected to the indenter weight and a hyperelastic material model was chosen to account for large deformation around the intender edges. By successively assigning different shear stiffness constant, computed tofu surface deformation was obtained, and an optimal shear stiffness was obtained that matched the model-derived surface displacements with those measured from the images. The resulting quasi-static, long-term shear stiffness for the tofu was 1.04 k Pa, similar to that reported in the literature. We show that the stereovision and free-weight indentation techniques coupled with an FE model are feasible for in vivo measurement of the human brain material properties, and it may also be feasible for other soft tissues.

  13. Indentation Size Effect (ISE) in Copper Subjected to Severe Plastic Deformation (SPD)

    NASA Astrophysics Data System (ADS)

    Gale, Joshua D.; Achuthan, Ajit; Morrison, David J.

    2014-05-01

    The characteristic length scale of deformation in copper specimens subjected to severe plastic deformation (SPD) through surface mechanical attrition treatment (SMAT) was studied with indentation experiments. Annealed copper disks were shot peened with 6-mm diameter tungsten carbide spheres with an average velocity of 2.3 m/s for 15 minutes in a vibrating chamber. The SMAT-treated specimens were cross-sectioned, and the exposed face was studied under nanoindentation in order to determine the effect of dislocation density on surface hardness and indentation size effect (ISE). Since the specimen preparation of the exposed face involved mechanical polishing, which in turn introduced additional SPD on the indenting face, the effect of mechanical polishing on hardness measurement was investigated first. To this end, the mechanically polished specimens were subjected to various durations of electrochemical polishing. Hardness measurements on these specimens showed that the effect of mechanical polishing was substantial for both microindentation and nanoindentation, the impact being significantly larger for nanoindentation. Consequently, the measured depth of influence of the SMAT process, determined on specimens subjected to longer durations of electrochemical polishing, shows larger values compared to those previously reported in the literature. The ISE shows a bilinear relationship between the square of hardness and the reciprocal of indentation depth. The slope of this behavior, corresponding to smaller indentation loads, which is a measure of the ISE associated with a strain gradient, shows a power-law relationship with an increase in the distance away from the SMAT surface, instead of the constant value expected with the Nix-Gao type model.

  14. Effects of gel thickness on microscopic indentation measurements of gel modulus.

    PubMed

    Long, Rong; Hall, Matthew S; Wu, Mingming; Hui, Chung-Yuen

    2011-08-01

    In vitro, animal cells are mostly cultured on a gel substrate. It was recently shown that substrate stiffness affects cellular behaviors in a significant way, including adhesion, differentiation, and migration. Therefore, an accurate method is needed to characterize the modulus of the substrate. In situ microscopic measurements of the gel substrate modulus are based on Hertz contact mechanics, where Young's modulus is derived from the indentation force and displacement measurements. In Hertz theory, the substrate is modeled as a linear elastic half-space with an infinite depth, whereas in practice, the thickness of the substrate, h, can be comparable to the contact radius and other relevant dimensions such as the radius of the indenter or steel ball, R. As a result, measurements based on Hertz theory overestimate the Young's modulus. In this work, we discuss the limitations of Hertz theory and then modify it, taking into consideration the nonlinearity of the material and large deformation using a finite-element method. We present our results in a simple correction factor, ψ, the ratio of the corrected Young's modulus and the Hertz modulus in the parameter regime of δ/h ≤ min (0.6, R/h) and 0.3 ≤R/h ≤ 12.7. The ψ factor depends on two dimensionless parameters, R/h and δ/h (where δ is the indentation depth), both of which are easily accessible to experiments. This correction factor agrees with experimental observations obtained with the use of polyacrylamide gel and a microsphere indentation method in the parameter range of 0.1 ≤δ/h ≤ 0.4 and 0.3 ≤R/h ≤ 6.2. The effect of adhesion on the use of Hertz theory for small indentation depth is also discussed.

  15. Single fiber push-out characterization of interfacial mechanical properties in unidirectional CVI-C/SiC composites by the nano-indentation technique

    NASA Astrophysics Data System (ADS)

    Zhang, Lifeng; Ren, Chengzu; Zhou, Changling; Xu, Hongzhao; Jin, Xinmin

    2015-12-01

    The characterization of interfaces in woven ceramic matrix composites is one of the most challenging problems in composite application. In this investigation, a new model material consisting of the chemical vapor infiltration unidirectional C/SiC composites with PyC fiber coating were prepared and evaluated to predict the interfacial mechanic properties of woven composites. Single fiber push-out/push-back tests with the Berkovich indenter were conducted on the thin sliced specimens using nano-indentation technique. To give a detailed illustration of the interfacial crack propagation and failure mechanism, each sector during the push-out process was analyzed at length. The test results show that there is no detectable difference between testing a fiber in a direct vicinity to an already tested fiber and testing a fiber in vicinity to not-pushed fibers. Moreover, the interface debonding and fiber sliding mainly occur at the PyC coating, and both the fiber and surrounding matrix have no plastic deformation throughout the process. Obtained from the load-displacement curve, the interfacial debonding strength (IDS) and friction stress (IFS) amount to, respectively, 35 ± 5 MPa and 10 ± 1 MPa. Based on the findings, the interfacial properties with PyC fiber coating can be predicted. Furthermore, it is expected to provide a useful guideline for the design, evaluation and optimal application of CVI-C/SiC.

  16. Determination of the mechanical and physical properties of cartilage by coupling poroelastic-based finite element models of indentation with artificial neural networks.

    PubMed

    Arbabi, Vahid; Pouran, Behdad; Campoli, Gianni; Weinans, Harrie; Zadpoor, Amir A

    2016-03-21

    One of the most widely used techniques to determine the mechanical properties of cartilage is based on indentation tests and interpretation of the obtained force-time or displacement-time data. In the current computational approaches, one needs to simulate the indentation test with finite element models and use an optimization algorithm to estimate the mechanical properties of cartilage. The modeling procedure is cumbersome, and the simulations need to be repeated for every new experiment. For the first time, we propose a method for fast and accurate estimation of the mechanical and physical properties of cartilage as a poroelastic material with the aid of artificial neural networks. In our study, we used finite element models to simulate the indentation for poroelastic materials with wide combinations of mechanical and physical properties. The obtained force-time curves are then divided into three parts: the first two parts of the data is used for training and validation of an artificial neural network, while the third part is used for testing the trained network. The trained neural network receives the force-time curves as the input and provides the properties of cartilage as the output. We observed that the trained network could accurately predict the properties of cartilage within the range of properties for which it was trained. The mechanical and physical properties of cartilage could therefore be estimated very fast, since no additional finite element modeling is required once the neural network is trained. The robustness of the trained artificial neural network in determining the properties of cartilage based on noisy force-time data was assessed by introducing noise to the simulated force-time data. We found that the training procedure could be optimized so as to maximize the robustness of the neural network against noisy force-time data. PMID:26944689

  17. Determination of the mechanical and physical properties of cartilage by coupling poroelastic-based finite element models of indentation with artificial neural networks.

    PubMed

    Arbabi, Vahid; Pouran, Behdad; Campoli, Gianni; Weinans, Harrie; Zadpoor, Amir A

    2016-03-21

    One of the most widely used techniques to determine the mechanical properties of cartilage is based on indentation tests and interpretation of the obtained force-time or displacement-time data. In the current computational approaches, one needs to simulate the indentation test with finite element models and use an optimization algorithm to estimate the mechanical properties of cartilage. The modeling procedure is cumbersome, and the simulations need to be repeated for every new experiment. For the first time, we propose a method for fast and accurate estimation of the mechanical and physical properties of cartilage as a poroelastic material with the aid of artificial neural networks. In our study, we used finite element models to simulate the indentation for poroelastic materials with wide combinations of mechanical and physical properties. The obtained force-time curves are then divided into three parts: the first two parts of the data is used for training and validation of an artificial neural network, while the third part is used for testing the trained network. The trained neural network receives the force-time curves as the input and provides the properties of cartilage as the output. We observed that the trained network could accurately predict the properties of cartilage within the range of properties for which it was trained. The mechanical and physical properties of cartilage could therefore be estimated very fast, since no additional finite element modeling is required once the neural network is trained. The robustness of the trained artificial neural network in determining the properties of cartilage based on noisy force-time data was assessed by introducing noise to the simulated force-time data. We found that the training procedure could be optimized so as to maximize the robustness of the neural network against noisy force-time data.

  18. Field testing of particulate matter continuous emission monitors at the DOE Oak Ridge TSCA incinerator. Toxic Substances Control Act.

    PubMed

    Dunn, James E; Davis, Wayne T; Calcagno, James A; Allen, Marshall W

    2002-01-01

    A field study to evaluate the performance of three commercially available particulate matter (PM) continuous emission monitors (CEMs) was conducted in 1999-2000 at the US Department of Energy (DOE) Toxic Substances Control Act (TSCA) Incinerator. This study offers unique features that are believed to enhance the collective US experience with PM CEMs. The TSCA Incinerator is permitted to treat PCB-contaminated RCRA hazardous low-level radioactive wastes. The air pollution control system utilizes MACT control technology and is comprised of a rapid quench, venturi scrubber, packed bed scrubber, and two ionizing wet scrubbers in series, which create a saturated flue gas that must be conditioned by the CEMs prior to measurement. The incinerator routinely treats a wide variety of wastes including high and low BTU organic liquids, aqueous, and solid wastes. The various possible combinations for treating liquid and solid wastes may present a challenge in establishing a single, acceptable correlation relationship for individual CEMs. The effect of low-level radioactive material present in the waste is a unique site-specific factor not evaluated in previous tests. The three systems chosen for evaluation were two beta gauge devices and a light scattering device. The performance of the CEMs was evaluated using the requirements in draft Environmental Protection Agency (EPA) Performance Specification 11 (PS11) and Procedure 2. The results of Reference Method 5i stack tests for establishing statistical correlations between the reference method data and the CEMs responses are discussed.

  19. Fluid Dynamic Characterization of a Polymeric Heart Valve Prototype (Poli-Valve) tested under Continuous and Pulsatile Flow Conditions

    PubMed Central

    De Gaetano, Francesco; Serrani, Marta; Bagnoli, Paola; Brubert, Jacob; Stasiak, Joanna; Moggridge, Geoff D.; Costantino, Maria Laura

    2016-01-01

    Introduction Only mechanical and biological heart valve prostheses are currently commercially available. The former show longer durability but require anticoagulant therapy, the latter display better fluid dynamic behaviour but do not have adequate durability. New Polymeric Heart Valves (PHVs) could potentially combine the haemodynamic properties of biological valves with the durability of mechanical valves. This work presents a hydrodynamic evaluation of two groups of newly developed supra-annular tri-leaflet prosthetic heart valves made from styrenic block copolymers (SBC): Poli-Valves. Methods Two types of Poli-Valves made of SBC differing in polystyrene fraction content were tested under continuous and pulsatile flow conditions as prescribed by ISO 5840 Standard. An ad - hoc designed pulse duplicator allowed the valve prototypes to be tested at different flow rates and frequencies. Pressure and flow were recorded; pressure drops, effective orifice area (EOA), and regurgitant volume were computed to assess the valve’s behaviour. Results Both types Poli-Valves met the minimum requirements in terms of regurgitation and EOA as specified by ISO 5840 Standard. Results were compared with five mechanical heart valves (MHVs) and five tissue heart valves (THVs), currently available on the market. Conclusion Based on these results, polymeric heart valves based on styrenic block copolymers, as Poli-Valves are, can be considered as promising alternative for heart valve replacement in near future. PMID:26689146

  20. In situ spectroscopic study of the plastic deformation of amorphous silicon under nonhydrostatic conditions induced by indentation

    NASA Astrophysics Data System (ADS)

    Gerbig, Y. B.; Michaels, C. A.; Bradby, J. E.; Haberl, B.; Cook, R. F.

    2015-12-01

    Indentation-induced plastic deformation of amorphous silicon (a-Si) thin films was studied by in situ Raman imaging of the deformed contact region of an indented sample, employing a Raman spectroscopy-enhanced instrumented indentation technique. Quantitative analyses of the generated in situ Raman maps provide unique insight into the phase behavior of as-implanted a-Si. In particular, the occurrence and evolving spatial distribution of changes in the a-Si structure caused by processes, such as polyamorphization and crystallization, induced by indentation loading were measured. The experimental results are linked with previously published papers on the plastic deformation of a-Si under hydrostatic compression and shear deformation to establish a sequence for the development of deformation of a-Si under indentation loading. The sequence involves three distinct deformation mechanisms of a-Si: (1) reversible deformation, (2) increase in coordination defects (onset of plastic deformation), and (3) phase transformation. Estimated conditions for the occurrence of these mechanisms are given with respect to relevant intrinsic and extrinsic parameters, such as indentation stress, volumetric strain, and bond angle distribution (a measure for the structural order of the amorphous network). The induced volumetric strains are accommodated solely by reversible deformation of the tetrahedral network when exposed to small indentation stresses. At greater indentation stresses, the increased volumetric strains in the tetrahedral network lead to the formation of predominately fivefold coordination defects, which seems to mark the onset of irreversible or plastic deformation of the a-Si thin film. Further increase in the indentation stress appears to initiate the formation of sixfold coordinated atomic arrangements. These sixfold coordinated arrangements may maintain their amorphous tetrahedral structure with a high density of coordination defects or nucleate as a new crystalline

  1. In situ spectroscopic study of the plastic deformation of amorphous silicon under non-hydrostatic conditions induced by indentation

    PubMed Central

    Gerbig, Y.B; Michaels, C.A.; Bradby, J.E.; Haberl, B.; Cook, R.F.

    2016-01-01

    Indentation-induced plastic deformation of amorphous silicon (a-Si) thin films was studied by in situ Raman imaging of the deformed contact region of an indented sample, employing a Raman spectroscopy-enhanced instrumented indentation technique. Quantitative analyses of the generated in situ Raman maps provide unique, new insight into the phase behavior of as-implanted a-Si. In particular, the occurrence and evolving spatial distribution of changes in the a-Si structure caused by processes, such as polyamorphization and crystallization, induced by indentation loading were measured. The experimental results are linked with previously published work on the plastic deformation of a-Si under hydrostatic compression and shear deformation to establish a sequence for the development of deformation of a-Si under indentation loading. The sequence involves three distinct deformation mechanisms of a-Si: (1) reversible deformation, (2) increase in coordination defects (onset of plastic deformation), and (3) phase transformation. Estimated conditions for the occurrence of these mechanisms are given with respect to relevant intrinsic and extrinsic parameters, such as indentation stress, volumetric strain, and bond angle distribution (a measure for the structural order of the amorphous network). The induced volumetric strains are accommodated solely by reversible deformation of the tetrahedral network when exposed to small indentation stresses. At greater indentation stresses, the increased volumetric strains in the tetrahedral network lead to the formation of predominately five-fold coordination defects, which seems to mark the onset of irreversible or plastic deformation of the a-Si thin film. Further increase in the indentation stress appears to initiate the formation of six-fold coordinated atomic arrangements. These six-fold coordinated arrangements may maintain their amorphous tetrahedral structure with a high density of coordination defects or nucleate as a new crystalline

  2. Communication—indentation of Li-ion pouch cell: Effect of material homogenization on prediction of internal short circuit

    DOE PAGES

    Kumar, A.; Kalnaus, Sergiy; Simunovic, Srdjan; Gorti, Sarma B.; Allu, Srikanth; Turner, John A.

    2016-09-12

    We performed finite element simulations of spherical indentation of Li-ion pouch cells. Our model fully resolves different layers in the cell. The results of the layer resolved models were compared to the models available in the literature that treat the cell as an equivalent homogenized continuum material. Simulations were carried out for different sizes of the spherical indenter. Here, we show that calibration of a failure criterion for the cell in the homogenized model depends on the indenter size, whereas in the layer-resoled model, such dependency is greatly diminished.

  3. In situ spectroscopic study of the plastic deformation of amorphous silicon under nonhydrostatic conditions induced by indentation

    SciTech Connect

    Gerbig, Yvonne B.; Michaels, C. A.; Bradby, Jodie E.; Haberl, Bianca; Cook, Robert F.

    2015-12-17

    Indentation-induced plastic deformation of amorphous silicon (a-Si) thin films was studied by in situ Raman imaging of the deformed contact region of an indented sample, employing a Raman spectroscopy-enhanced instrumented indentation technique (IIT). The occurrence and evolving spatial distribution of changes in the a-Si structure caused by processes, such as polyamorphization and crystallization, induced by indentation loading were observed. Furthermore, the obtained experimental results are linked with previously published work on the plastic deformation of a-Si under hydrostatic compression and shear deformation to establish a model for the deformation behavior of a-Si under indentation loading.

  4. Insight into the nanomechanical properties under indentation of β-Si3N4 nano-thin layers in the basal plane using molecular dynamics simulation.

    PubMed

    Lu, Xuefeng; Guo, Xin; La, Peiqing; Wei, Yupeng; Nan, Xueli; He, Ling

    2014-09-21

    Molecular dynamics simulations were performed to clarify the nanomechanical responses of β-Si3N4 nano-thin layers in the basal plane for indenters of various radii, different indentation velocities and at different temperatures. It was found that the maximum loading stress and indenter displacement both increase with increasing radius of the indenter. A large number of N(6h)-Si bond-breaking defects and one N(2c)-Si bond-breaking defects are responsible for the initiation of fracturing. With increasing loading velocity, the maximum loading stresses show almost no change; however, a high loading velocity can shorten the displacement of the indenter and contributes to the formation of new N(2c)-Si bond-breaking defects. Thermal fluctuations can decrease the mechanical properties of the thin layer. The maximum loading stresses and indenter displacements are sensitive to both the radius of the indenter and the loading temperature.

  5. Testing laser-based sensors for continuous in situ monitoring of suspended sediment in the Colorado River, Arizona

    USGS Publications Warehouse

    Melis, T.S.; Topping, D.J.; Rubin, D.M.; Bogen, J.; Fergus, T.; Walling, D.

    2003-01-01

    High-resolution monitoring of sand mass balance in the Colorado River below Glen Canyon Dam, Arizona, USA, is needed for environmental management. In the Grand Canyon, frequent collection of suspended-sediment samples from cableways is logistically complicated, costly and provides limited spatial and temporal resolution. In situ laser sensors were tested in the Colorado River as an alternative method for monitoring the river's suspended transport. LISST data were collected at a fixed-depth, near-shore site while isokinetic measurements were simultaneously made from a nearby cableway. Diurnal variations in LISST grain size and concentration data compared well with depth-integrated, cross-section data. Tbe LISST was also successfully used to electronically trigger an ISCO 6712 pump sampler to provide continuous monitoring during periods when suspended concentrations exceeded the LISST's measurement range. Initial results indicate that the LISST can provide useful high-resolution suspended-sediment data within the Colorado River, when optics are maintained on a weekly basis.

  6. Nondestructive testing potential evaluation of a terahertz frequency-modulated continuous-wave imager for composite materials inspection

    NASA Astrophysics Data System (ADS)

    Cristofani, Edison; Friederich, Fabian; Wohnsiedler, Sabine; Matheis, Carsten; Jonuscheit, Joachim; Vandewal, Marijke; Beigang, René

    2014-03-01

    The sub-terahertz (THz) frequency band has proved to be a noteworthy option for nondestructive testing (NDT) of nonmetal aeronautics materials. Composite structures or laminates can be inspected for foreign objects (water or debris), delaminations, debonds, etc., using sub-THz sensors during the manufacturing process or maintenance. Given the harmless radiation to the human body of this frequency band, no special security measures are needed for operation. Moreover, the frequency-modulated continuous-wave sensor used in this study offers a very light, compact, inexpensive, and high-performing solution. An automated two-dimensional scanner carrying three sensors partially covering the 70- to 320-GHz band is operated, using two complementary measurement approaches: conventional focused imaging, where focusing lenses are used; and synthetic aperture (SA) or unfocused wide-beam imaging, for which lenses are no longer needed. Conventional focused imagery offers finer spatial resolutions but imagery is depth-limited due to the beam waist effect, whereas SA measurements allow imaging of thicker samples with depth-independent but coarser spatial resolutions. The present work is a compendium of a much larger study and describes the key technical aspects of the proposed imaging techniques and reports on results obtained from human-made samples (A-sandwich, C-sandwich, solid laminates) which include diverse defects and damages typically encountered in aeronautics multilayered structures. We conclude with a grading of the achieved results in comparison with measurements performed by other NDT techniques on the same samples.

  7. The Impact of Hypnotic Suggestions on Reaction Times in Continuous Performance Test in Adults with ADHD and Healthy Controls

    PubMed Central

    Virta, Maarit; Hiltunen, Seppo; Mattsson, Markus; Kallio, Sakari

    2015-01-01

    Attention is one of the key factors in both hypnotic processes and patients with ADHD. In addition, the brain areas associated with hypnosis and ADHD overlap in many respects. However, the use of hypnosis in ADHD patients has still received only minor attention in research. The main purpose of the present work was to investigate whether hypnosis and hypnotic suggestions influence the performance of adult ADHD (n = 27) and control participants (n = 31) in the continuous performance test (CPT). The hypnotic susceptibility of the participants was measured by the Harvard Group Scale of Hypnotic Susceptibility (HGSHS:A) and the attentional task was a three minute long auditory version of the CPT. The CPT task was administered four times: before hypnosis (CPT1), after a hypnotic induction (CPT2), after suggestions about speed and accuracy (CPT3), and after the termination of hypnosis (CPT4). The susceptibility of the groups measured by HGSHS:A did not differ. There was a statistically significant decrease in reaction times in both ADHD and control groups between CPT2 and CPT3. The differences between CPT1 and CPT2, even though non-significant, were different in the two groups: in the ADHD group reaction times decreased whereas in the control group they increased. Both groups made very few errors in the short CPT. This study indicates that hypnotic suggestions have an effect on reaction times in the sustained attention task both in adult ADHD patients and control subjects. The theoretical and clinical implications are discussed. PMID:25962151

  8. Cerebral networks of sustained attention and working memory: a functional magnetic resonance imaging study based on the Continuous Performance Test.

    PubMed

    Bartés-Serrallonga, M; Adan, A; Solé-Casals, J; Caldú, X; Falcón, C; Pérez-Pàmies, M; Bargalló, N; Serra-Grabulosa, J M

    2014-04-01

    Introduccion. Uno de los paradigmas mas utilizados en el estudio de la atencion es el Continuous Performance Test (CPT). La version de pares identicos (CPT-IP) se ha utilizado ampliamente para evaluar los deficits de atencion en los trastornos del neurodesarrollo, neurologicos y psiquiatricos. Sin embargo, la localizacion de la activacion cerebral de las redes atencionales varia significativamente segun el diseño de resonancia magnetica funcional (RMf) usado. Objetivo. Diseñar una tarea para evaluar la atencion sostenida y la memoria de trabajo mediante RMf para proporcionar datos de investigacion relacionados con la localizacion y el papel de estas funciones. Sujetos y metodos. El estudio conto con la participacion de 40 estudiantes, todos ellos diestros (50%, mujeres; rango: 18-25 años). La tarea de CPT-IP se diseño como una tarea de bloques, en la que se combinaban los periodos CPT-IP con los de reposo. Resultados. La tarea de CPT-IP utilizada activa una red formada por regiones frontales, parietales y occipitales, y estas se relacionan con funciones ejecutivas y atencionales. Conclusiones. La tarea de CPT-IP utilizada en nuestro trabajo proporciona datos normativos en adultos sanos para el estudio del sustrato neural de la atencion sostenida y la memoria de trabajo. Estos datos podrian ser utiles para evaluar trastornos que cursan con deficits en memoria de trabajo y en atencion sostenida.

  9. Middle molecules in peritoneal equilibration test as a marker of peritoneal stress in children on continuous peritoneal dialysis.

    PubMed

    Laux, C; Weiss, B; Bonzel, K E

    1999-01-01

    At 1 month, 3 months, 6 months, and more than 6 months after healed peritonitis, we evaluated repeated peritoneal equilibration tests (PETs) for small molecules such as urea, and middle molecules such as cystatin C, beta 2-microglobulin, and alpha 1-microglobulin. We analyzed a total of 104 PETs in 21 children aged 1.7-18.6 years (median: 9.9 years). Equilibration quotients (D/P)--that is, substrate concentration in dialysis fluid (D) divided by substrate concentration in plasma (P)--were calculated after a dwell time of 4 hours. The D/P for urea did not change after healed peritonitis. In a cross-sectional study, the D/P for middle molecules showed an increase in peritoneal permeability between 3 months and 6 months after a healed peritonitis. In a consecutive follow-up of 4 patients for more than 6 months, beta 2-microglobulin and, more impressively, alpha 1-microglobulin showed a statistically significant increase in D/P (p < 0.05) 3 months after a healed peritonitis. All differences seen were completely reversible after more than 6 months, showing that peritoneal function is rather stable if peritonitis is healed. It is noteworthy that peritoneal dysfunction lasts for up to 6 months after a completely healed peritonitis. This period might be a vulnerable phase in continuation of peritoneal dialysis. PMID:10682119

  10. Cutting Mechanism and Load Characteristic of Trapezoidal Center Bevel Cutter Indented on Aluminum Sheet

    NASA Astrophysics Data System (ADS)

    Murayama, Mitsuhiro; Nagasawa, Shigeru; Fukuzawa, Yasushi; Katayama, Isamu

    This paper reports about the fundamental relationship between tip thickness of crushed cutter and thickness of wedged sheet. By varying the tip thickness of a trapezoidal center bevel cutter, the resistance of cutter indentation and the shared profile of aluminum sheet were investigated experimentally. To discuss the deformation mechanism of aluminum sheet in the necking stage, Hill's solution with slip line theory and finite element analysis with elasto-plastic model were applied to this wedge indentation. The derived results were as follows: the necked height of sheet material varies with the tip thickness of cutter; the occurrence limit of necking deformation exists in terms of sheet thickness; the line force at the deflection point varies with the tip thickness of the cutter, but not with sheet thickness; the residual sheet thickness beneath the cutter tip depends on the thickness of cutter tip.

  11. In situ SEM micro-indentation of single wood pulp fibres in transverse direction.

    PubMed

    Adusumalli, Ramesh-Babu; Raghavan, Rejin; Schwaller, Patrick; Zimmermann, Tanja; Michler, Johann

    2010-01-01

    Fibre deformations such as kinks and micro-compressions are significant parameters in determining the quality of industrial pulps. Undoubtedly, very little information has been obtained so far on fibre deformation because it is very tedious to handle the specimens. In this study, a novel in situ scanning electron microscope (SEM) micro-indentation technique was adopted for the first time to study the deformation of single industrial pulp fibres in the transverse direction. A one-to-one correspondence between load drops in load-displacement curve and cell wall deformation was obtained by using the SEM video sequence recorded during micro-indentation. The cell wall deformation occurred by 'elastic' sinking-in and lateral bulging of the microfibrils. Finally, the critical load (stress) required to initiate a crack in the cell wall was measured for different unbleached pulp fibres.

  12. Constitutive Modeling of Porcine Liver in Indentation Using 3D Ultrasound Imaging

    PubMed Central

    Jordan, P.; Socrate, S.; Zickler, T.E.; Howe, R.D.

    2009-01-01

    In this work we present an inverse finite-element modeling framework for constitutive modeling and parameter estimation of soft tissues using full-field volumetric deformation data obtained from 3D ultrasound. The finite-element model is coupled to full-field visual measurements by regularization springs attached at nodal locations. The free ends of the springs are displaced according to the locally estimated tissue motion and the normalized potential energy stored in all springs serves as a measure of model-experiment agreement for material parameter optimization. We demonstrate good accuracy of estimated parameters and consistent convergence properties on synthetically generated data. We present constitutive model selection and parameter estimation for perfused porcine liver in indentation and demonstrate that a quasilinear viscoelastic model with shear modulus relaxation offers good model-experiment agreement in terms of indenter displacement (0.19 mm RMS error) and tissue displacement field (0.97 mm RMS error). PMID:19627823

  13. Mechanical properties of polycrystalline translucent cubic boron nitride as characterized by the Vickers indentation method

    SciTech Connect

    Taniguchi, Takashi; Akaishi, Minoru; Yamaoka, Shinobu

    1996-02-01

    Mechanical properties of polycrystalline translucent cubic boron nitride (cBN) were characterized by Vickers indentation measurement. The calculated hardness decreased from 54 to 49 GPa as the load increased to 39 N, and then remained constant for values above this load. According to the relationship between crack length and applied indentation load, the formation of the median/radial type of cracks seems to take place at an applied load above 29 N. Assuming that the ratio of hardness and Young`s modulus is constant in the polycrystalline cBN, the fracture toughness, K{sub IC}, of cBN was estimated to be 5.0 {+-} 0.5 MPa {center_dot} m{sup 1/2}.

  14. Single Cell Wall Nonlinear Mechanics Revealed by a Multiscale Analysis of AFM Force-Indentation Curves.

    PubMed

    Digiuni, Simona; Berne-Dedieu, Annik; Martinez-Torres, Cristina; Szecsi, Judit; Bendahmane, Mohammed; Arneodo, Alain; Argoul, Françoise

    2015-05-01

    Individual plant cells are rather complex mechanical objects. Despite the fact that their wall mechanical strength may be weakened by comparison with their original tissue template, they nevertheless retain some generic properties of the mother tissue, namely the viscoelasticity and the shape of their walls, which are driven by their internal hydrostatic turgor pressure. This viscoelastic behavior, which affects the power-law response of these cells when indented by an atomic force cantilever with a pyramidal tip, is also very sensitive to the culture media. To our knowledge, we develop here an original analyzing method, based on a multiscale decomposition of force-indentation curves, that reveals and quantifies for the first time the nonlinearity of the mechanical response of living single plant cells upon mechanical deformation. Further comparing the nonlinear strain responses of these isolated cells in three different media, we reveal an alteration of their linear bending elastic regime in both hyper- and hypotonic conditions. PMID:25954881

  15. Single Cell Wall Nonlinear Mechanics Revealed by a Multiscale Analysis of AFM Force-Indentation Curves

    PubMed Central

    Digiuni, Simona; Berne-Dedieu, Annik; Martinez-Torres, Cristina; Szecsi, Judit; Bendahmane, Mohammed; Arneodo, Alain; Argoul, Françoise

    2015-01-01

    Individual plant cells are rather complex mechanical objects. Despite the fact that their wall mechanical strength may be weakened by comparison with their original tissue template, they nevertheless retain some generic properties of the mother tissue, namely the viscoelasticity and the shape of their walls, which are driven by their internal hydrostatic turgor pressure. This viscoelastic behavior, which affects the power-law response of these cells when indented by an atomic force cantilever with a pyramidal tip, is also very sensitive to the culture media. To our knowledge, we develop here an original analyzing method, based on a multiscale decomposition of force-indentation curves, that reveals and quantifies for the first time the nonlinearity of the mechanical response of living single plant cells upon mechanical deformation. Further comparing the nonlinear strain responses of these isolated cells in three different media, we reveal an alteration of their linear bending elastic regime in both hyper- and hypotonic conditions. PMID:25954881

  16. Structural and phase transformation of apatite and quartz in the indentation process single crystals

    SciTech Connect

    Chaikina, Marina

    2014-11-14

    Using the method of scanning and high-resolution electron microscopy, the zones of indentation by scratching for apatite and quartz single crystals were investigated. The textural, structural and phase transformations revealed have been conventionally ascribed to “deformation” and “diffusion” processes of plastic deformation. In zones of indentation by scratching of single crystals there have been two levels of structural transformations revealed, with a sharp boundary between them, at a stress equal to the theoretical ultimate stress limit (σ{sub TSL}). In the top zone of scratches, within the range of stress from the microhardness value H{sub s} up to the σ{sub TSL} value the substance undergoes profound structural and phase transformations. In the bed of scratches at the stress value lower than σ{sub TSL} values, single crystal fragmentation occurs with the formation of blocks and steps.

  17. Predict human body indentation lying on a spring mattress using a neural network approach.

    PubMed

    Zhong, Shilu; Shen, Liming; Zhou, Lijuan; Guan, Zhongwei

    2014-08-01

    This article presents a method to predict and assess the interaction between a human body and a spring mattress. A three-layer artificial neural network model was developed to simulate and predict an indentation curve of human spine, characterized with the depth of lumbar lordosis and four inclination angles: cervicothoracic, thoracolumbar, lumbosacral and the back-hip (β). By comparing the spinal indentation curves described by the optimal evaluation parameters (depth of lumbar lordosis, cervicothoracic, thoracolumbar and lumbosacral), a better design of five-zone spring mattresses was obtained for individuals to have an effective support to the main part of the body. Using such approach, an operating process was further introduced, in which appropriate stiffness proportions were proposed to design mattress for the normal body types of Chinese young women. Finally, case studies were undertaken, which show that the method developed is feasible and practical. PMID:25150192

  18. Predict human body indentation lying on a spring mattress using a neural network approach.

    PubMed

    Zhong, Shilu; Shen, Liming; Zhou, Lijuan; Guan, Zhongwei

    2014-08-01

    This article presents a method to predict and assess the interaction between a human body and a spring mattress. A three-layer artificial neural network model was developed to simulate and predict an indentation curve of human spine, characterized with the depth of lumbar lordosis and four inclination angles: cervicothoracic, thoracolumbar, lumbosacral and the back-hip (β). By comparing the spinal indentation curves described by the optimal evaluation parameters (depth of lumbar lordosis, cervicothoracic, thoracolumbar and lumbosacral), a better design of five-zone spring mattresses was obtained for individuals to have an effective support to the main part of the body. Using such approach, an operating process was further introduced, in which appropriate stiffness proportions were proposed to design mattress for the normal body types of Chinese young women. Finally, case studies were undertaken, which show that the method developed is feasible and practical.

  19. Web-based Continuing Medical Education (I): Field Test of a Hybrid Computer-Mediated Instructional Delivery System. Web-based Continuing Medical Education (II): Evaluation Study of Computer-Mediated Continuing Medical Education.

    ERIC Educational Resources Information Center

    Curran, Vernon R.; Hoekman, Theodore; Gulliver, Wayne; Landells, Ian; Hatcher, Lydia

    2000-01-01

    Reviews the Web as an instructional delivery medium and describes a hybrid model for continuing medical education (CME) delivery that merges the Web and CD-ROM. Discusses an evaluation that demonstrated the effectiveness of the model for delivering CME to rural physicians in regions with low bandwidth. (SK)

  20. Evaluation of bone-tendon junction healing using water jet ultrasound indentation method.

    PubMed

    Lu, Min-Hua; Zheng, Yong-Ping; Lu, Hong-Bin; Huang, Qing-Hua; Qin, Ling

    2009-11-01

    The re-establishment of bone-tendon junction (BTJ) tissues with the junction, characterized as a unique transitional fibrocartilage zone, is involved in many trauma and reconstructive surgeries. Experimental and clinical findings have shown that a direct BTJ repair requires a long period of immobilization, which may be associated with a postoperative weak knee. Therefore, it is necessary to evaluate the morphologic and mechanical properties of BTJ tissues in situ to better understand the healing process for the purpose of reducing the adverse effects of immobilization. We previously reported a noncontact ultrasound water jet indentation system for measuring and mapping tissue mechanical properties. The key idea was to utilize a water jet as an indenter as well as the coupling medium for high-frequency ultrasound. In this article, we used ultrasound water jet indentation to evaluate the BTJ healing process. The system's capability of measuring the material elastic modulus was first validated using tissue-mimicking phantoms. Then it was employed to assess the healing of the BTJ tissues after partial patellectomy over time on twelve 18-week-old female New Zealand White rabbits. It was found that in comparison with the normal control samples, the elastic modulus of the fibrocartilage of the postoperative samples was significantly smaller, while its thickness increased significantly. Among the postoperative sample groups, the elastic modulus of the fibrocartilage of the samples harvested at week 18 was significantly higher than those harvested at week 6 and week 12, which was even comparable with the value of the control samples at the same sacrifice time. The results suggested that the noncontact ultrasound water jet indentation system provided a nondestructive way to evaluate the material properties of small animal tissues in situ and thus had the ability to evaluate the healing process of BTJ.

  1. Method of determining elastic and plastic mechanical properties of ceramic materials using spherical indenters

    DOEpatents

    Adler, Thomas A.

    1996-01-01

    The invention pertains a method of determining elastic and plastic mechanical properties of ceramics, intermetallics, metals, plastics and other hard, brittle materials which fracture prior to plastically deforming when loads are applied. Elastic and plastic mechanical properties of ceramic materials are determined using spherical indenters. The method is most useful for measuring and calculating the plastic and elastic deformation of hard, brittle materials with low values of elastic modulus to hardness.

  2. [Experiences and results of 1300 indentation operations for proximal medialization of the patella].

    PubMed

    Villiger, K J

    1980-07-01

    Of 1039 patients, 1300 knee joints were operated on for chondropathia patellae or patellofemoral osteoarthrosis; the results are arranged in tabular form. The basic operation was proximal medialization of the patella by indent operation. Additional interventions like retropatellar should be indicated by an experienced surgeon. The excellent results found 6, 12, 40, and 60 months after the operation recommmend this procedure for the treatment of chondropathia patellae or osteoarthrosis.

  3. Cracks formed by Vickers indentation adjacent to the interface in bonded dental ceramics with various marginal angles.

    PubMed

    Nishide, Akihito; Yamamoto, Takatsugu; Momoi, Yasuko; Swain, Michael V

    2011-01-01

    The objective of this study was to assess the influence of the ceramic marginal angle on the length and nature of indentation cracks in ceramics near the ceramic/resin bonded interface. Disks of a leucite-reinforced ceramic or a diopside-based glass-ceramic bonded to a resin composite were sectioned so that the ceramic marginal angles were 45, 60, and 90°. Vickers indentations were placed in the ceramic at various distances from the bonded interface. The lengths of the indentation cracks running near parallel to the interface were measured and the orientation of crack propagation was characterized. The crack length and orientation were significantly affected by the distance from the interface and by the marginal angle, respectively. The crack length extended as the distance from the interface was shortened. Smaller marginal angles resulted in more oblique cracks. The toughness of the ceramic affected the indentation crack length, shape, and direction.

  4. Variations of photoacoustic signals within the Vickers indent in metals under external stresses by the examples of steel and nanocopper

    NASA Astrophysics Data System (ADS)

    Glazov, A. L.; Morozov, N. F.; Muratikov, K. L.

    2016-09-01

    The effect of external mechanical stresses on the parameters of photoacoustic signals within Vickers indents in steel and nanocopper has been experimentally revealed. It has been shown that changes in photoacoustic signals can be reversible and irreversible, depending on the indent orientation and the stress applied to the sample. In this case, reversible changes can reach significant values at the level of tens of percent of the average signal from the sample. The relative changes in the photoacoustic signal amplitudes have been theoretically evaluated for indented and unindented areas, taking into account the temperature dependence of the elastic modulus of metals. It has been shown that its consideration allows qualitative explanation of the differences in the behavior of photoacoustic signals under stresses in indented and unindented areas.

  5. Biphasic indentation of articular cartilage--II. A numerical algorithm and an experimental study.

    PubMed

    Mow, V C; Gibbs, M C; Lai, W M; Zhu, W B; Athanasiou, K A

    1989-01-01

    Part I (Mak et al., 1987, J. Biomechanics 20, 703-714) presented the theoretical solutions for the biphasic indentation of articular cartilage under creep and stress-relaxation conditions. In this study, using the creep solution, we developed an efficient numerical algorithm to compute all three material coefficients of cartilage in situ on the joint surface from the indentation creep experiment. With this method we determined the average values of the aggregate modulus. Poisson's ratio and permeability for young bovine femoral condylar cartilage in situ to be HA = 0.90 MPa, vs = 0.39 and k = 0.44 x 10(-15) m4/Ns respectively, and those for patellar groove cartilage to be HA = 0.47 MPa, vs = 0.24, k = 1.42 x 10(-15) m4/Ns. One surprising finding from this study is that the in situ Poisson's ratio of cartilage (0.13-0.45) may be much less than those determined from measurements performed on excised osteochondral plugs (0.40-0.49) reported in the literature. We also found the permeability of patellar groove cartilage to be several times higher than femoral condyle cartilage. These findings may have important implications on understanding the functional behavior of cartilage in situ and on methods used to determine the elastic moduli of cartilage using the indentation experiments.

  6. Loading-unloading response of circular GLARE fiber-metal laminates under lateral indentation

    NASA Astrophysics Data System (ADS)

    Tsamasphyros, George J.; Bikakis, George S.

    2015-01-01

    GLARE is a Fiber-Metal laminated material used in aerospace structures which are frequently subjected to various impact damages. Hence, the response of GLARE plates subjected to lateral indentation is very important. In this paper, analytical expressions are derived and a non-linear finite element modeling procedure is proposed in order to predict the static load-indentation curves of circular GLARE plates during loading and unloading by a hemispherical indentor. We have recently published analytical formulas and a finite element procedure for the static indentation of circular GLARE plates which are now used during the loading stage. Here, considering that aluminum layers are in a state of membrane yield and employing energy balance during unloading, the unloading path is determined. Using this unloading path, an algebraic equation is derived for calculating the permanent dent depth of the GLARE plate after the indentor's withdrawal. Furthermore, our finite element procedure is modified in order to simulate the unloading stage as well. The derived formulas and the proposed finite element modeling procedure are applied successfully to GLARE 2-2/1-0.3 and to GLARE 3-3/2-0.4 circular plates. The analytical results are compared with corresponding FEM results and a good agreement is found. The analytically calculated permanent dent depth is within 6 % for the GLARE 2 plate, and within 7 % for the GLARE 3 plate, of the corresponding numerically calculated result. No other solution of this problem is known to the authors.

  7. A novel sample preparation method to avoid influence of embedding medium during nano-indentation

    NASA Astrophysics Data System (ADS)

    Meng, Yujie; Wang, Siqun; Cai, Zhiyong; Young, Timothy M.; Du, Guanben; Li, Yanjun

    2013-02-01

    The effect of the embedding medium on the nano-indentation measurements of lignocellulosic materials was investigated experimentally using nano-indentation. Both the reduced elastic modulus and the hardness of non-embedded cell walls were found to be lower than those of the embedded samples, proving that the embedding medium used for specimen preparation on cellulosic material during nano-indentation can modify cell-wall properties. This leads to structural and chemical changes in the cell-wall constituents, changes that may significantly alter the material properties. Further investigation was carried out to detect the influence of different vacuum times on the cell-wall mechanical properties during the embedding procedure. Interpretation of the statistical analysis revealed no linear relationships between vacuum time and the mechanical properties of cell walls. The quantitative measurements confirm that low-viscosity resin has a rapid penetration rate early in the curing process. Finally, a novel sample preparation method aimed at preventing resin diffusion into lignocellulosic cell walls was developed using a plastic film to wrap the sample before embedding. This method proved to be accessible and straightforward for many kinds of lignocellulosic material, but is especially suitable for small, soft samples.

  8. Deformation Microstructure Under Micro-Indents In Cu Single Crystals Using X-Ray Microbeam Diffraction*

    NASA Astrophysics Data System (ADS)

    Yang, Wenge; Larson, B. C.; Pharr, G. M.; Ice, G. E.; Budai, J. D.; Tischler, J. Z.

    2004-03-01

    The three dimensional microstructure associated with plastic deformation introduced by Berkovich, conical, and spherical micro-indents has been studied using 3D x-ray structural microscopy using the UNI-CAT 34 ID-E beamline at the Advanced Photon Source (APS). The recently developed differential-aperture x-ray structural microscopy technique was used. This technique provides non-destructive, submicron resolution measurements of local orientations and rotation axes, from which the local dislocation tensor and geometrically necessary dislocation (GND) distributions accommodating the plastic deformation can be determined. Local lattice rotations and GND distributions will be presented for off-center slices through the plastic deformation fields below 100 mN Berkovich, conical, and spherical indents in <111> oriented single crystal Cu. The deformation microstructures for the three indent tip geometries will compared and discussed in relation to deformation modeling possibilities. *Research supported by the DOE Office of Science, Division of Materials Sciences under contract with ORNL, managed by UT-Battelle, LLC; UNI-CAT is supported by UIUC, ORNL, NIST and UOP Res., Inc; APS is supported by the DOE.

  9. Giant panda׳s tooth enamel: Structure, mechanical behavior and toughening mechanisms under indentation.

    PubMed

    Weng, Z Y; Liu, Z Q; Ritchie, R O; Jiao, D; Li, D S; Wu, H L; Deng, L H; Zhang, Z F

    2016-12-01

    The giant panda׳s teeth possess remarkable load-bearing capacity and damage resistance for masticating bamboos. In this study, the hierarchical structure and mechanical behavior of the giant panda׳s tooth enamel were investigated under indentation. The effects of loading orientation and location on mechanical properties of the enamel were clarified and the evolution of damage in the enamel under increasing load evaluated. The nature of the damage, both at and beneath the indentation surfaces, and the underlying toughening mechanisms were explored. Indentation cracks invariably were seen to propagate along the internal interfaces, specifically the sheaths between enamel rods, and multiple extrinsic toughening mechanisms, e.g., crack deflection/twisting and uncracked-ligament bridging, were active to shield the tips of cracks from the applied stress. The giant panda׳s tooth enamel is analogous to human enamel in its mechanical properties, yet it has superior hardness and Young׳s modulus but inferior toughness as compared to the bamboo that pandas primarily feed on, highlighting the critical roles of the integration of underlying tissues in the entire tooth and the highly hydrated state of bamboo foods. Our objective is that this study can aid the understanding of the structure-mechanical property relations in the tooth enamel of mammals and further provide some insight on the food habits of the giant pandas. PMID:27498423

  10. Characterizing Multiscale Mechanical Properties of Brain Tissue Using Atomic Force Microscopy, Impact Indentation, and Rheometry.

    PubMed

    Canovic, Elizabeth Peruski; Qing, Bo; Mijailovic, Aleksandar S; Jagielska, Anna; Whitfield, Matthew J; Kelly, Elyza; Turner, Daria; Sahin, Mustafa; Van Vliet, Krystyn J

    2016-01-01

    To design and engineer materials inspired by the properties of the brain, whether for mechanical simulants or for tissue regeneration studies, the brain tissue itself must be well characterized at various length and time scales. Like many biological tissues, brain tissue exhibits a complex, hierarchical structure. However, in contrast to most other tissues, brain is of very low mechanical stiffness, with Young's elastic moduli E on the order of 100s of Pa. This low stiffness can present challenges to experimental characterization of key mechanical properties. Here, we demonstrate several mechanical characterization techniques that have been adapted to measure the elastic and viscoelastic properties of hydrated, compliant biological materials such as brain tissue, at different length scales and loading rates. At the microscale, we conduct creep-compliance and force relaxation experiments using atomic force microscope-enabled indentation. At the mesoscale, we perform impact indentation experiments using a pendulum-based instrumented indenter. At the macroscale, we conduct parallel plate rheometry to quantify the frequency dependent shear elastic moduli. We also discuss the challenges and limitations associated with each method. Together these techniques enable an in-depth mechanical characterization of brain tissue that can be used to better understand the structure of brain and to engineer bio-inspired materials. PMID:27684097

  11. Giant panda׳s tooth enamel: Structure, mechanical behavior and toughening mechanisms under indentation.

    PubMed

    Weng, Z Y; Liu, Z Q; Ritchie, R O; Jiao, D; Li, D S; Wu, H L; Deng, L H; Zhang, Z F

    2016-12-01

    The giant panda׳s teeth possess remarkable load-bearing capacity and damage resistance for masticating bamboos. In this study, the hierarchical structure and mechanical behavior of the giant panda׳s tooth enamel were investigated under indentation. The effects of loading orientation and location on mechanical properties of the enamel were clarified and the evolution of damage in the enamel under increasing load evaluated. The nature of the damage, both at and beneath the indentation surfaces, and the underlying toughening mechanisms were explored. Indentation cracks invariably were seen to propagate along the internal interfaces, specifically the sheaths between enamel rods, and multiple extrinsic toughening mechanisms, e.g., crack deflection/twisting and uncracked-ligament bridging, were active to shield the tips of cracks from the applied stress. The giant panda׳s tooth enamel is analogous to human enamel in its mechanical properties, yet it has superior hardness and Young׳s modulus but inferior toughness as compared to the bamboo that pandas primarily feed on, highlighting the critical roles of the integration of underlying tissues in the entire tooth and the highly hydrated state of bamboo foods. Our objective is that this study can aid the understanding of the structure-mechanical property relations in the tooth enamel of mammals and further provide some insight on the food habits of the giant pandas.

  12. 42 CFR 84.162 - Man test for gases and vapors; Type C respirators, continuous-flow class and Type CE supplied-air...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 1 2014-10-01 2014-10-01 false Man test for gases and vapors; Type C respirators, continuous-flow class and Type CE supplied-air respirators; test requirements. 84.162 Section 84.162 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES OCCUPATIONAL SAFETY AND HEALTH RESEARCH AND RELATED ACTIVITIES...

  13. 42 CFR 84.162 - Man test for gases and vapors; Type C respirators, continuous-flow class and Type CE supplied-air...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 1 2011-10-01 2011-10-01 false Man test for gases and vapors; Type C respirators, continuous-flow class and Type CE supplied-air respirators; test requirements. 84.162 Section 84.162 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES OCCUPATIONAL SAFETY AND HEALTH RESEARCH AND RELATED ACTIVITIES...

  14. 42 CFR 84.162 - Man test for gases and vapors; Type C respirators, continuous-flow class and Type CE supplied-air...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Man test for gases and vapors; Type C respirators, continuous-flow class and Type CE supplied-air respirators; test requirements. 84.162 Section 84.162 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES OCCUPATIONAL SAFETY AND HEALTH RESEARCH AND RELATED ACTIVITIES...

  15. 42 CFR 84.162 - Man test for gases and vapors; Type C respirators, continuous-flow class and Type CE supplied-air...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 1 2013-10-01 2013-10-01 false Man test for gases and vapors; Type C respirators, continuous-flow class and Type CE supplied-air respirators; test requirements. 84.162 Section 84.162 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES OCCUPATIONAL SAFETY AND HEALTH RESEARCH AND RELATED ACTIVITIES...

  16. 42 CFR 84.162 - Man test for gases and vapors; Type C respirators, continuous-flow class and Type CE supplied-air...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 1 2012-10-01 2012-10-01 false Man test for gases and vapors; Type C respirators, continuous-flow class and Type CE supplied-air respirators; test requirements. 84.162 Section 84.162 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES OCCUPATIONAL SAFETY AND HEALTH RESEARCH AND RELATED ACTIVITIES...

  17. Electrostimulation of the magnetoplastic effect in LiF crystals by an "internal" electric field induced during indentation

    NASA Astrophysics Data System (ADS)

    Galustashvili, M. V.; Driaev, D. G.; Akopov, F. Kh.; Tsakadze, S. D.

    2013-08-01

    Indented LiF crystals demonstrate a change in the length of the dislocation rosette rays during their exposure to jointly acting dc magnetic and electric fields. It is shown that magnetic field with induction B = 1 T causes the electrostimulation or electrosuppression depending on the magnitude and direction of the external electric field with respect to the "internal" electric field induced by the charge transfer due to dislocations moving during the indentation.

  18. The effect of friction on indenter force and pile-up in numerical simulations of bone nanoindentation.

    PubMed

    Adam, C J; Swain, M V

    2011-10-01

    Nanoindentation is a useful technique for probing the mechanical properties of bone, and finite element (FE) modeling of the indentation allows inverse determination of elastoplastic constitutive properties. However, all but one FE study to date have assumed frictionless contact between indenter and bone. The aim of this study was to explore the effect of friction in simulations of bone nanoindentation. Two-dimensional axisymmetric FE simulations were performed using a spheroconical indenter of tip radius 0.6 μm and angle 90°. The coefficient of friction between indenter and bone was varied between 0.0 (frictionless) and 0.3. Isotropic linear elasticity was used in all simulations, with bone elastic modulus E = 13.56 GPa and Poisson's ratio of 0.3. Plasticity was incorporated using both Drucker-Prager and von Mises yield surfaces. Friction had a modest effect on the predicted force-indentation curve for both von Mises and Drucker-Prager plasticity, reducing maximum indenter displacement by 10% and 20% respectively as friction coefficient was increased from zero to 0.3 (at a maximum indenter force of 5 mN). However, friction has a much greater effect on predicted pile-up after indentation, reducing predicted pile-up from 0.27 to 0.11 μm with a von Mises model, and from 0.09 to 0.02 μm with Drucker-Prager plasticity. We conclude that it is potentially important to include friction in nanoindentation simulations of bone if pile-up is used to compare simulation results with experiment.

  19. Prototype development and test results of a continuous ambient air monitoring system for hydrazine at the 10 ppb level

    NASA Astrophysics Data System (ADS)

    Meneghelli, Barry; Parrish, Clyde; Barile, Ron; Lueck, Dale E.

    1995-01-01

    A Hydrazine Vapor Area Monitor (HVAM) system is currently being field tested as a detector for the presence of hydrazine in ambient air. The MDA/Polymetron Hydrazine Analyzer has been incorporated within the HVAM system as the core detector. This analyzer is a three-electrode liquid analyzer typically used in boiler feed water applications. The HVAM system incorporates a dual-phase sample collection/transport method which simultaneously pulls ambient air samples containing hydrazine and a very dilute sulfuric acid solution (0.0001 M) down a length of 1/4 inch outside diameter (OD) tubing from a remote site to the analyzer. The hydrazine-laden dilute acid stream is separated from the air and the pH is adjusted by addition of a dilute caustic solution to a pH greater than 10.2 prior to analysis. Both the dilute acid and caustic used by the HVAM are continuously generated during system operation on an "as needed" basis by mixing a metered amount of concentrated acid/base with dilution water. All of the waste water generated by the analyzer is purified for reuse by Barnstead ion-exchange cartridges so that the entire system minimizes the generation of waste materials. The pumping of all liquid streams and mixing of the caustic solution and dilution water with the incoming sample are done by a single pump motor fitted with the appropriate mix of peristaltic pump heads. The signal to noise (S/N) ratio of the analyzer has been enhanced by adding a stirrer in the MDA liquid cell to provide mixing normally generated by the high liquid flow rate designed by the manufacturer. An onboard microprocessor continuously monitors liquid levels, sample vacuum, and liquid leak sensors, as well as handles communications and other system functions (such as shut down should system malfunctions or errors occur). The overall system response of the HVAM can be automatically checked at regular intervals by measuring the analyzer response to a metered amount of calibration standard injected

  20. Prototype development and test results of a continuous ambient air monitoring system for hydrazine at the 10 ppb level

    NASA Technical Reports Server (NTRS)

    Meneghelli, Barry; Parrish, Clyde; Barile, Ron; Lueck, Dale E.

    1995-01-01

    A Hydrazine Vapor Area Monitor (HVAM) system is currently being field tested as a detector for the presence of hydrazine in ambient air. The MDA/Polymetron Hydrazine Analyzer has been incorporated within the HVAM system as the core detector. This analyzer is a three-electrode liquid analyzer typically used in boiler feed water applications. The HVAM system incorporates a dual-phase sample collection/transport method which simultaneously pulls ambient air samples containing hydrazine and a very dilute sulfuric acid solution (0.0001 M) down a length of 1/4 inch outside diameter (OD) tubing from a remote site to the analyzer. The hydrazine-laden dilute acid stream is separated from the air and the pH is adjusted by addition of a dilute caustic solution to a pH greater than 10.2 prior to analysis. Both the dilute acid and caustic used by the HVAM are continuously generated during system operation on an "as needed" basis by mixing a metered amount of concentrated acid/base with dilution water. All of the waste water generated by the analyzer is purified for reuse by Barnstead ion-exchange cartridges so that the entire system minimizes the generation of waste materials. The pumping of all liquid streams and mixing of the caustic solution and dilution water with the incoming sample are done by a single pump motor fitted with the appropriate mix of peristaltic pump heads. The signal to noise (S/N) ratio of the analyzer has been enhanced by adding a stirrer in the MDA liquid cell to provide mixing normally generated by the high liquid flow rate designed by the manufacturer. An onboard microprocessor continuously monitors liquid levels, sample vacuum, and liquid leak sensors, as well as handles communications and other system functions (such as shut down should system malfunctions or errors occur). The overall system response of the HVAM can be automatically checked at regular intervals by measuring the analyzer response to a metered amount of calibration standard injected

  1. True Gold or Pyrite: A Review of Reference Point Indentation for Assessing Bone Mechanical Properties In Vivo.

    PubMed

    Allen, Matthew R; McNerny, Erin Mb; Organ, Jason M; Wallace, Joseph M

    2015-09-01

    Although the gold standard for determining bones' mechanical integrity is the direct measure of mechanical properties, clinical evaluation has long relied on surrogates of mechanical properties for assessment of fracture risk. Nearly a decade ago, reference point indentation (RPI) emerged as an innovative way to potentially assess mechanical properties of bone in vivo. Beginning with the BioDent device, and then followed by the newer generation OsteoProbe, this RPI technology has been utilized in several publications. In this review we present an overview of the technology and some important details about the two devices. We also highlight select key studies, focused specifically on the in vivo application of these devices, as a way of synthesizing where the technology stands in 2015. The BioDent machine has been shown, in two clinical reports, to be able to differentiate fracture versus nonfracture patient populations and in preclinical studies to detect treatment effects that are consistent with those quantified using traditional mechanical tests. The OsteoProbe appears able to separate clinical cohorts yet there exists a lack of clarity regarding details of testing, which suggests more rigorous work needs to be undertaken with this machine. Taken together, RPI technology has shown promising results, yet much more work is needed to determine if its theoretical potential to assess mechanical properties in vivo can be realized.

  2. Late-stage cooling history of the Eastern and Southern Alps and its linkage to Adria indentation

    NASA Astrophysics Data System (ADS)

    Heberer, Bianca; Reverman, Rebecca; Fellin, Maria; Neubauer, Franz; Dunkl, István; Zattin, Massimiliano; Seward, Diane; Brack, Peter; Genser, Johann

    2016-04-01

    Late-orogenic indentation by rigid lithospheric plates and microplates into softer orogenic wedges leads to post-collisional shortening, lithospheric thickening and vertical and lateral extrusion. The European Eastern and Southern Alps represent a prime example of indenter tectonics. Their Late Neogene geodynamic framework is influenced primarily by the ca. NW-ward motion and counterclockwise rotation of the Adriatic microplate with respect to Europe, which resulted in an oblique, dextral transpressional setting. In this study we refine the late-stage exhumation pattern related to indentation of the eastern Adriatic indenter, i.e. the still northward pushing triangular northeastern part of the Southalpine block that indented the Eastern Alps. New apatite (U-Th)/He and apatite fission track thermochronometry data come from (1) the Karawanken Mountains adjacent to the eastern Periadriatic fault along the northeastern edge of the indenter and from (2) the central-eastern Southern Alps from within the indenter and from its western edge. We find apatite (U-Th)/He ages from the Karawanken Mountains ranging between 11 and 6 Ma, which indicate an episode of fault-related exhumation leading to the formation of a positive flower structure and an associated peripheral foreland basin as well as lateral activity along the Periadriatic fault system. Apatite (U/Th)/He and fission-track data combined with previous data from the Southern Alps indicate that exhumation largely occurred during the Late Miocene, too, and was maximized along thrust systems, with highly differential amounts of vertical displacement along individual structures. Our new data contribute to mounting evidence for widespread Late Miocene tectonic activity in the Eastern and Southern Alps. They demonstrate a shift from deformation and exhumation concentrated within the Tauern Window at the beginning of the indentation process, to less pronounced, but more widespread exhumation along the edges as well as the

  3. Atomic force microscopy indentation and inverse analysis for non-linear viscoelastic identification of breast cancer cells.

    PubMed

    Nguyen, Nhung; Shao, Yue; Wineman, Alan; Fu, Jianping; Waas, Anthony

    2016-07-01

    Breast cancer cells (MCF-7 and MCF-10A) are studied through indentation with spherical borosilicate glass particles in atomic force microscopy (AFM) contact mode in fluid. Their mechanical properties are obtained by analyzing the recorded reaction force-time response. The analysis is based on comparing experimental data with predictions from finite element (FE) simulation. Here, FE modeling is employed to simulate the AFM indentation experiment which is neither a displacement nor a force controlled test. This approach is expected to overcome many underlying problems of the widely used models such as Hertz contact model due to its capability to capture the contact behaviors between the spherical indentor and the cell, account for cell geometry, and incorporate with large strain theory. In this work, a non-linear viscoelastic (NLV) model in which the viscoelastic part is described by Prony series terms is used for the constitutive model of the cells. The time-dependent material parameters are extracted through an inverse analysis with the use of a surrogate model based on a Kriging estimator. The purpose is to automatically extract the NLV properties of the cells with a more efficient process compared to the iterative inverse technique that has been mostly applied in the literature. The method also allows the use of FE modeling in the analysis of a large amount of experimental data. The NLV parameters are compared between MCF-7 and MCF-10A and MCF-10A treated and untreated with the drug Cytochalasin D to examine the possibility of using relaxation properties as biomarkers for distinguishing these types of breast cancer cells. The comparisons indicate that malignant cells (MCF-7) are softer and exhibit more relaxation than benign cells (MCF-10A). Disrupting the cytoskeleton using the drug Cytochalasin D also results in a larger amount of relaxation in the cell's response. In addition, relaxation properties indicate larger differences as compared to the elastic moduli

  4. Methodologies for the thermomechanical characterization of continuous-fiber ceramic matrix composites: A review of test methods

    SciTech Connect

    Lara-Curzio, E.; Ferber, M.K.; Jenkins, M.G.

    1994-05-01

    Requirements for thermomechanical characterization of ceramic matrix composite materials are reviewed. Feasibility of adapting existent room temperature test methods for polymer and metal matrix composites to test ceramic matrix composites at room and elevated temperatures is investigated.

  5. Do Sequentially-Presented Answer Options Prevent the Use of Testwiseness Cues on Continuing Medical Education Tests?

    ERIC Educational Resources Information Center

    Willing, Sonja; Ostapczuk, Martin; Musch, Jochen

    2015-01-01

    Testwiseness--that is, the ability to find subtle cues towards the solution by the simultaneous comparison of the available answer options--threatens the validity of multiple-choice (MC) tests. Discrete-option multiple-choice (DOMC) has recently been proposed as a computerized alternative testing format for MC tests, and presumably allows for a…

  6. A Comparison of Rebound to Indentation Tonometry in Supine Sedated Children with Glaucoma

    PubMed Central

    AlHarkan, Dora H.; Al-Shamlan, Fatemah T.; Edward, Deepak P.; Khan, Arif O.

    2016-01-01

    Purpose: To compare intraocular pressure (IOP) measurements by rebound tonometry (Icare PRO; Icare Finland Oy, Helsinki, Finland) to measurements by indentation tonometry (Pneumotonometer Model 30 classic and Tono-Pen XL; Reichert, Buffalo, NY, USA) in supine sedated children with glaucoma. Methods: Prospective comparative observational study of Saudi Arabian children with glaucoma undergoing chloral hydrate sedation for ophthalmic examination (February 2012 - February 2013). Nonglaucomatous eyes were included as controls. Eyes with corneal scars or prior corneal transplant or lamellar surgery were excluded. Results: Fifty-two eyes (26 OD, 26 OS) of 28 children were included. Thirty-six eyes had glaucoma (32 primary congenital glaucoma, two Sturge-Weber related, and two aphakia related). Sixteen eyes did not have glaucoma (six with pediatric cataract, five normal eyes, two strabismic eyes, two eyes with simple megalocornea, and one eye had peripheral corneal laceration repair. In the glaucoma group, the mean IOP was 17.55 ± 5.97 mmHg (range, 8-31.5 mmHg) with the Icare PRO and 20 ± 6.4 mmHg (range, 8-35.5 mmHg) with the Pneumotonometer from 20.47 ± 6.81 mmHg (range, 10-43 mmHg) with the Tono-Pen XL. The Icare PRO readings were significantly lower than each of the indentation tonometers. For the control group, there was no statistically significant difference in IOP measured by the Icare PRO and the indentation tonometers. Conclusions: In this population of supine sedated children with glaucoma, IOP measurements with the Icare PRO tend to be lower than readings from the Pneumotonometer and Tono-Pen XL. PMID:27162450

  7. Indentation creep of nanocrystalline Cu-TiC alloys prepared by mechanical alloying

    SciTech Connect

    Shen, B.L.; Itoi, T.; Yamasaki, T.; Ogino, Y.

    2000-04-01

    In recent years, nanocrystalline materials have attracted much attention in materials research because they behave differently from conventional materials. For example, the nanocrystalline materials exhibit enhanced mechanical properties, such as high strength and hardness. The present study was performed to investigate the indentation creep mechanism of nanocrystalline Cu-TiC alloys which were prepared by HIP (Hot Isostatic Press) processing of MA (Mechanical Alloying) powders and hot rolling afterwards. As these materials have high densities and high structural stability, the authors could investigate creep behavior at wide temperature ranges below 0.5Tm (Tm is the melting temperature of copper).

  8. Measuring the elastic properties of living cells with atomic force microscopy indentation.

    PubMed

    Mackay, Joanna L; Kumar, Sanjay

    2013-01-01

    Atomic force microscopy (AFM) is a powerful and versatile tool for probing the mechanical properties of biological samples. This chapter describes the procedures for using AFM indentation to measure the elastic moduli of living cells. We include step-by-step instructions for cantilever calibration and data acquisition using a combined AFM/optical microscope system, as well as a detailed protocol for data analysis. Our protocol is written specifically for the BioScope™ Catalyst™ AFM system (Bruker AXS Inc.); however, most of the general concepts can be readily translated to other commercial systems.

  9. The influence of lateral forces on the cell stiffness measurement by optical tweezers vertical indentation

    NASA Astrophysics Data System (ADS)

    Ndoye, Fatou; Sulaiman Yousafzai, Muhammad; Coceano, Giovanna; Bonin, Serena; Scoles, Giacinto; Ka, Oumar; Niemela, Joseph; Cojoc, Dan

    2016-01-01

    We studied the lateral forces arising during the vertical indentation of the cell membrane by an optically trapped microbead, using back focal plane interferometry to determine force components in all directions. We analyzed the cell-microbead interaction and showed that indeed the force had also lateral components. Using the Hertz model, we calculated and compared the elastic moduli resulting from the total and vertical forces, showing that the differences are important and the total force should be considered. To confirm our results we analyzed cells from two breast cancer cell lines: MDA-MB-231 and HBL-100, known to have different cancer aggressiveness and hence stiffness.

  10. Nanoscale Etching and Indentation of Silicon(001) Surface with Carbon Nanotube Tips

    NASA Technical Reports Server (NTRS)

    Dzegilenko, Fendor N.; Srivastava, Deepak; Saini, Subhash

    1998-01-01

    The possibility of nanoscale etching and indentation of Si(001)(2x1) surface by (8,0) and (10,10) carbon nanotube tips is demonstrated, for the first time, by classical molecular dynamics simulations employing Tersoff's many-body potential for a mixed C/Si/Ge system. In the nanotube tip barely touching the surface scenario atomistic etching is observed, where as in the nanoindentation scenario nanotube tip penetrates the surface without much hindrance. The results are explained in terms of the relative strength of C-C, C-Si, and Si-Si bonds.

  11. Young tectonics of a complex plate boundary zone: Indentation, rotation, and escape in Alaska

    NASA Astrophysics Data System (ADS)

    Wallace, W. K.; Ruppert, N. A.

    2012-12-01

    Convergence of thick crust of the Yakutat block with the southern margin of Alaska is widely recognized as a dominant influence on the tectonics of Alaska since at least late Miocene time. It is less clear how this convergence relates to the distribution, type, and orientation of geologic structures, and to the boundaries between the tectonic provinces that they define. We propose that convergence of Yakutat block includes two distinct components that influence deformation and topography in different ways: 1) The crust of the exposed, southern Yakutat block is too thick to subduct, which has caused the collisional St. Elias orogen. Detachment of the upper part of the mafic basement allows delamination and sinking of the remaining mafic crust and lithospheric mantle. The collisional orogen drives rigid counterclockwise rotation of the southern Alaska block south of the arcuate, right-lateral Denali fault. The western boundary of this block is a zone of distributed contraction in the western Alaska Range and Cook Inlet. 2) The northern part of the Yakutat block is thin enough to subduct but thick and buoyant enough to cause localized flat-slab subduction orthogonal to rotation of the southern Alaska block. Consequences include the gently antiformal Talkeetna Mountains that span the forearc basin, a gap in the magmatic arc, and a basement-involved fold-and-thrust belt in the northern Alaska Range. An arcuate oroclinal hinge from southern Alaska to the northeastern Brooks Range reflects indentation since at least Paleocene time. Traction above the subducted Yakutat block along the southern part of this hinge drives current indentation. North of the subducted Yakutat block, indentation is reflected by left-lateral block rotation that accommodates shortening between the Denali and Tintina faults and by contraction farther north along the northern edge of the arcuate northeastern Brooks Range. Western Alaska accommodates both northward indentation and westward convergence

  12. Congenital skull indentation: a case report and review of the literature

    PubMed Central

    Shamsian, Negin; Robertson, Andrew Tristan; Anslow, Philip

    2012-01-01

    Congenital depressions of the skull are rare in Western countries. The majority relate to obstetric trauma at delivery. We present a case of a congenital depression of a neonate's skull not relating to obstetric trauma. The child had an ovoid indentation behind the right coronal suture in the temperoparietal region. This skull depression was thought to relate to the position of her right hand in utero. We report her management, neuro-imaging and outcome on follow-up. A literature review is given in brief. PMID:22922910

  13. On the use of Raman spectroscopy and instrumented indentation for characterizing damage in machined carbide ceramics

    NASA Astrophysics Data System (ADS)

    Groth, Benjamin Peter

    Machining is a necessary post-processing step in the manufacturing of many ceramic materials. Parts are machined to meet specific dimensions, with tight tolerances, not attainable from forming alone, as well as to achieve a desired surface finish. However, the machining process is very harsh, often employing the use of high temperatures and pressures to achieve the wanted result. In the case of silicon carbide, a material with extremely high hardness and stiffness, machining is very difficult and requires machining conditions that are highly aggressive. This can leave behind residual stresses in the surface of the material, cause unwanted phase transformations, and produce sub-surface deformation that can lead to failure. This thesis seeks to determine the effect of various machining conditions on the Raman spectra and elastic properties of sintered silicon carbide materials. Sample sets examined included hot-pressed silicon carbide tiles with four different surface finishes, as well as "ideal" single crystal silicon carbide wafers. The surface finishes studied were as follows: an as-pressed finish; a grit blast finish; a harsh rotary ground finish; and a mirror polish. Each finish imparts a different amount, as well as type, of deformation to the sample and are each utilized for a specific application. The sample surfaces were evaluated using a combination of Raman spectroscopy, for phase identification and stress analysis, and nanoindentation, for obtaining elastic properties and imparting uniform controlled deformation to the samples. Raman spectroscopy was performed over each sample surface using 514- and 633-nm wavelength excitation, along with confocal and non-confocal settings to study depth variation. Surfaces stresses were determined using peak shift information extracted from Raman spectra maps, while other spectral variations were used to compare levels of machining damage. Elastic modulus, hardness, and plastic work of indentation maps were generated

  14. Pulse testing reveals poor lateral and vertical continuity in a reservoir consisting of distributary-channel sands

    SciTech Connect

    Roest, J.A.; Jolly, D.C.; Rodriguez, R.A.

    1986-01-01

    Pulse testing revealed that free gas had accumulated against an unexpected permeability barrier in a watered-out sandstone reservoir. It also suggested vertical permeabilities to be poor. This interpretation, which was confirmed by production tests and build-up surveys, led to a refinement of the geological reservoir model. Furthermore. valuable insight was obtained into the interpretation of pulse tests in areally heterogeneous reservoirs.

  15. The Practicum Script Concordance Test: An Online Continuing Professional Development Format to Foster Reflection on Clinical Practice

    ERIC Educational Resources Information Center

    Hornos, Eduardo H.; Pleguezuelos, Eduardo M.; Brailovsky, Carlos A.; Harillo, Leandro D.; Dory, Valerie; Charlin, Bernard

    2013-01-01

    Introduction: Judgment in the face of uncertainty is an important dimension of expertise and clinical competence. However, it is challenging to conceive continuing professional development (CPD) initiatives aimed at helping physicians enhance their clinical judgment skills in ill-defined situations. We present an online script concordance-based…

  16. Policy Implications for Continuous Employment Decisions of High School Principals: An Alternative Methodological Approach for Using High-Stakes Testing Outcomes

    ERIC Educational Resources Information Center

    Young, I. Phillip; Fawcett, Paul

    2013-01-01

    Several teacher models exist for using high-stakes testing outcomes to make continuous employment decisions for principals. These models are reviewed, and specific flaws are noted if these models are retrofitted for principals. To address these flaws, a different methodology is proposed on the basis of actual field data. Specially addressed are…

  17. Information Processing Differences and Similarities in Adults with Dyslexia and Adults with Attention Deficit Hyperactivity Disorder during a Continuous Performance Test: A Study of Cortical Potentials

    ERIC Educational Resources Information Center

    Dhar, Monica; Been, Pieter H.; Minderaa, Ruud B.; Althaus, Monika

    2010-01-01

    Twenty male adults with ADHD, 16 dyslexic adults, 15 comorbid adults, and 16 normal controls were compared on performance and underlying brain responses, during a cued Continuous Performance Test (O-X CPT), with the aim of discovering features of information processing differentiating between the groups. The study evaluated both cue- and…

  18. Conservativeness in Rejection of the Null Hypothesis when Using the Continuity Correction in the MH Chi-Square Test in DIF Applications

    ERIC Educational Resources Information Center

    Paek, Insu

    2010-01-01

    Conservative bias in rejection of a null hypothesis from using the continuity correction in the Mantel-Haenszel (MH) procedure was examined through simulation in a differential item functioning (DIF) investigation context in which statistical testing uses a prespecified level [alpha] for the decision on an item with respect to DIF. The standard MH…

  19. Blend uniformity evaluation during continuous mixing in a twin screw granulator by in-line NIR using a moving F-test.

    PubMed

    Fonteyne, Margot; Vercruysse, Jurgen; De Leersnyder, Fien; Besseling, Rut; Gerich, Ad; Oostra, Wim; Remon, Jean Paul; Vervaet, Chris; De Beer, Thomas

    2016-09-01

    This study focuses on the twin screw granulator of a continuous from-powder-to-tablet production line. Whereas powder dosing into the granulation unit is possible from a container of preblended material, a truly continuous process uses several feeders (each one dosing an individual ingredient) and relies on a continuous blending step prior to granulation. The aim of the current study was to investigate the in-line blending capacity of this twin screw granulator, equipped with conveying elements only. The feasibility of in-line NIR (SentroPAT, Sentronic GmbH, Dresden, Germany) spectroscopy for evaluating the blend uniformity of powders after the granulator was tested. Anhydrous theophylline was used as a tracer molecule and was blended with lactose monohydrate. Theophylline and lactose were both fed from a different feeder into the twin screw granulator barrel. Both homogeneous mixtures and mixing experiments with induced errors were investigated. The in-line spectroscopic analyses showed that the twin screw granulator is a useful tool for in-line blending in different conditions. The blend homogeneity was evaluated by means of a novel statistical method being the moving F-test method in which the variance between two blocks of collected NIR spectra is evaluated. The α- and β-error of the moving F-test are controlled by using the appropriate block size of spectra. The moving F-test method showed to be an appropriate calibration and maintenance free method for blend homogeneity evaluation during continuous mixing. PMID:27543030

  20. A Load-based Depth-sensing Indentation Technique for NDE and Life Assessment of Thermal Barrier Coatings

    SciTech Connect

    B. S.-J. Kang; C. Feng; J. M. Tannenbaum; M.A. Alvin

    2009-06-12

    In this paper, we present a load-based micro-indentation technique for evaluating material mechanical properties as well as degradation evaluation and debonding/spallation detection of thermal barrier coating (TBC) materials. Instead of using contact area as a necessary parameter, the new technique is based on the indentation load. Coupled with a multiple-partial unloading procedure during the indentation process, this technique results in a load-depth sensing indentation system capable of determining Young’s modulus of metals, superalloys, and single crystal matrices, and stiffness of coated material systems with flat, tubular, or curved architectures. This micro-indentation technique can be viewed as a viable non-destructive evaluation (NDE) technique for determining as-manufactured and process-exposed metal, superalloy, single crystal, and TBC-coated material properties. This technique also shows promise for the development of a portable instrument for on-line, in-situ NDE and mechanical properties measurement of structural components.

  1. Chipping fracture resistance of dental CAD/CAM restorative materials: Part 2. Phenomenological model and the effect of indenter type

    PubMed Central

    Quinn, G.D.; Giuseppetti, A.A.; Hoffman, K.H.

    2014-01-01

    The edge chipping resistances of six CAD/CAM dental restoration materials are analyzed and correlated to other mechanical properties. A new quadratic relationship that is based on a phenomenological model is presented. Objective The purpose of this study was to further analyze the edge chipping resistance of the brittle materials evaluated in Part 1. One objective was to determine why some force-distance trends were linear and others were nonlinear. A second objective was to account for differences in chipping resistance with indenter type. Methods Edge chipping experiments were conducted with different indenters, including some custom-made sharp conical indenters. A new force – distance quadratic expression was correlated to the data and compared to the linear and power law trends. Results The new quadratic function was an excellent fit in every instance. It can account for why some materials can be fit by a linear trend, while others can be fit by the power law trend. The effects of indenter type are accounted for variations in crack initiation and by the wedging stresses once an indentation hole is created. Significance The new quadratic force – edge distance function can be used with edge chipping data for all brittle materials, not just those evaluated in this study. The data trends vary from linear to nonlinear depending upon the material’s hardness, fracture toughness, and elastic modulus. PMID:24685179

  2. Continuing assessment of the 5 day sodium carbonate-ammonium nitrate extraction assay as an indicator test for silicon fertilizers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The five day sodium carbonate-ammonium nitrate extraction assay has been proposed by the AAFPCO as a standard test to identify fertilizers that provide plant-available Si. A single-lab validation test was previously performed; however, the analysis lacked any correlation to a grow-out study. To do...

  3. Hardware-In-The-Loop Testing of Continuous Control Algorithms for a Precision Formation Flying Demonstration Mission

    NASA Technical Reports Server (NTRS)

    Naasz, Bo J.; Burns, Richard D.; Gaylor, David; Higinbotham, John

    2004-01-01

    A sample mission sequence is defined for a low earth orbit demonstration of Precision Formation Flying (PFF). Various guidance navigation and control strategies are discussed for use in the PFF experiment phases. A sample PFF experiment is implemented and tested in a realistic Hardware-in-the-Loop (HWIL) simulation using the Formation Flying Test Bed (FFTB) at NASA's Goddard Space Flight Center.

  4. The indentation of pressurized elastic shells: from polymeric capsules to yeast cells

    PubMed Central

    Vella, Dominic; Ajdari, Amin; Vaziri, Ashkan; Boudaoud, Arezki

    2012-01-01

    Pressurized elastic capsules arise at scales ranging from the 10 m diameter pressure vessels used to store propane at oil refineries to the microscopic polymeric capsules that may be used in drug delivery. Nature also makes extensive use of pressurized elastic capsules: plant cells, bacteria and fungi have stiff walls, which are subject to an internal turgor pressure. Here, we present theoretical, numerical and experimental investigations of the indentation of a linearly elastic shell subject to a constant internal pressure. We show that, unlike unpressurized shells, the relationship between force and displacement demonstrates two linear regimes. We determine analytical expressions for the effective stiffness in each of these regimes in terms of the material properties of the shell and the pressure difference. As a consequence, a single indentation experiment over a range of displacements may be used as a simple assay to determine both the internal pressure and elastic properties of capsules. Our results are relevant for determining the internal pressure in bacterial, fungal or plant cells. As an illustration of this, we apply our results to recent measurements of the stiffness of baker's yeast and infer from these experiments that the internal osmotic pressure of yeast cells may be regulated in response to changes in the osmotic pressure of the external medium. PMID:21831894

  5. Nano-indentation on amorphous calcium phosphate splats: effect of droplet size on mechanical properties.

    PubMed

    Saber-Samandari, Saeed; Gross, Karlis A

    2012-12-01

    Droplet processing technologies and many biological processes use disk-like or hemispherical shapes for construction or the design of surfaces. The ability to tune the characteristics and properties of a surface is important at the micro- and nano-scale. The influence of size on the mechanical properties is presently unknown. This work set out to produce splats from different droplet sizes (20-40 μm, 40-60 μm and 60-80 μm), and then determine the deposit characteristics and mechanical properties. All splats produced by melting particles in a flame and depositing onto a polished titanium surface were amorphous, as determined by Raman micro-spectrometry. The topography shown in an optical and scanning electron microscope and topographically mapped using the scanning mode of the nano-indenter revealed a flattened hemispherical deposit. The critical nano-indentation load for determining the true hardness decreased with increasing splat size; for 20-40 μm, 40-60 μm and 60-80 μm splats the critical load was 19, 16, 11 mN respectively compared to 30 mN for sintered hydroxyapatite. Higher loads are required to cause cracking and delamination in smaller splats. A load between 40 and 60 mN was required for delamination of the splat. Delamination of the splats could offer a new means to determine the adhesion of splats on low roughness surfaces. PMID:23137620

  6. Indentation size effect of cortical bones submitted to different soft tissue removals.

    PubMed

    Bandini, A; Chicot, D; Berry, P; Decoopman, X; Pertuz, A; Ojeda, D

    2013-04-01

    Properties of elasticity, hardness and viscosity are determined for the study of the visco-elastoplastic behavior of bones. The mechanical properties are compared in two upright sections of the bone due to their anisotropy. Besides, influence of hydration treatments leading to structural modifications of collagen and ground substance contents of bones on the mechanical properties is studied on a femoral cortical bovine bone. The treatments applied to the bone are used by forensic anthropologists to remove the soft tissue and modifying the hydration degree coupled to the collagen content. From instrumented indentation experiments, the hardness is characterized by the macrohardness and a hardness length-scale factor stating the hardness-load dependence. The elastic modulus results from the application of the methodology of Oliver and Pharr (1992). The coefficient of viscosity is deduced from a rheological model representing the indenter time-displacement observed under the application of a constant load. As a result, all the mechanical properties are found to be lower in the transverse section in an extent depending on the hydration treatment, i.e. the different values are located between 5% and 25% for the hardness around 0.5GPa, between 25% and 40% for the elastic modulus around 20GPa and between 2% and 35% for the coefficient of viscosity around 60GPa.s. Unexpectedly, the elastic modulus to coefficient of viscosity ratio is found to be independent on the hydration treatment.

  7. Indentation and overall compression behavior of multilayered thin-film composites. Effect of undulating layer geometry

    DOE PAGES

    Jamison, Ryan D.; Shen, Y. -L.

    2015-03-19

    Two finite element models are used to investigate the behavior of aluminum/silicon carbide thin-film layered composites with imperfect internal geometry when subjected to various loadings. In both models, undulating layers are represented by regular waveforms with various amplitudes, wavelengths, and phase offsets. First, uniaxial compressive loading of the composite is considered. The modulus and stress/strain response of the composite is sensitive to both loading direction and frequency of the undulation. Second, the nanoindentation response of the composite is investigated. The derived hardness and modulus are shown to be sensitive to the presence of undulating layers and the relative size ofmore » the indenter to the undulation. Undulating layers create bands of tensile and compressive stress in the indentation direction that are significantly different from the flat layers. The amount of equivalent plastic strain in the Al layers is increased by the presence of undulating layers. The correlations between the two forms of loading, and the implications to composite property measurement are carefully examined in this study.« less

  8. Static Indentation Load Capacity of the Superelastic 60NiTi for Rolling Element Bearings

    NASA Technical Reports Server (NTRS)

    DellaCorte, Christopher; Moore, Lewis E., III; Clifton, Joshua S.

    2012-01-01

    The nickel-rich, binary nickel-titanium alloys, such as 60NiTi (60Ni-40Ti by wt%), are emerging as viable materials for use in mechanical components like rolling element bearings and gears. 60NiTi is a superelastic material that simultaneously exhibits high hardness and a relatively low elastic modulus (approx.100 GPa). These properties result in the potential to endure extremely high indentation loads such as those encountered in bearings, gears and other mechanical components. In such applications, quantifying the load that results in permanent deformation that can affect component performance and life is important. In this paper, the static load capacity is measured by conducting indentation experiments in which 12.7 mm diameter balls made from the ceramic Si3N4 are pressed into highly polished, hardened 60NiTi flat plates. Hertz stress calculations are used to estimate contact stress. The results show that the 60NiTi surface can withstand an approximately 3400 kN load before significant denting (>0.6 microns deep) occurs. This load capacity is approximately twice that of high performance bearing steels suggesting that the potential exists to make highly resilient bearings and components from such materials.

  9. Effect of processing on fracture toughness of silicon carbide as determined by Vickers indentations

    NASA Technical Reports Server (NTRS)

    Dannels, Christine M.; Dutta, Sunil

    1989-01-01

    Several alpha-SiC materials were processed by hot isostatic pressing (HIPing) and by sintering an alpha-SiC powder containing boron and carbon. Several beta-SiC materials were processed by HIPing a beta-SiC powder with boron and carbon additions. The fracture toughnesses K(sub 1c) of these beta- and alpha-SiC materials were estimated from measurements of Vickers indentations. The three formulas used to estimate K(sub 1c) from the indentation fracture patterns resulted in three ranges of K(sub 1c) estimates. Furthermore, each formula measured the effects of processing differently. All three estimates indicated that fine-grained HIPed alpha-SiC has a higher K(sub 1c) than coarsed-grained sintered alpha-SiC. Hot isostatically pressed beta-SiC, which had an ultrafine grain structure, exhibited a K(sub 1c) comparable to that of HIPed alpha-SiC.

  10. Indentation and overall compression behavior of multilayered thin-film composites. Effect of undulating layer geometry

    SciTech Connect

    Jamison, Ryan D.; Shen, Y. -L.

    2015-03-19

    Two finite element models are used to investigate the behavior of aluminum/silicon carbide thin-film layered composites with imperfect internal geometry when subjected to various loadings. In both models, undulating layers are represented by regular waveforms with various amplitudes, wavelengths, and phase offsets. First, uniaxial compressive loading of the composite is considered. The modulus and stress/strain response of the composite is sensitive to both loading direction and frequency of the undulation. Second, the nanoindentation response of the composite is investigated. The derived hardness and modulus are shown to be sensitive to the presence of undulating layers and the relative size of the indenter to the undulation. Undulating layers create bands of tensile and compressive stress in the indentation direction that are significantly different from the flat layers. The amount of equivalent plastic strain in the Al layers is increased by the presence of undulating layers. The correlations between the two forms of loading, and the implications to composite property measurement are carefully examined in this study.

  11. SI traceable calibration of an instrumented indentation sensor spring constant using electrostatic force

    SciTech Connect

    Chung, Koo-Hyun; Scholz, Stefan; Shaw, Gordon A.; Kramar, John A.; Pratt, Jon R.

    2008-09-15

    We present a measurement scheme for creating reference electrostatic forces that are traceable to the International System of Units. This scheme yields reference forces suitable for calibrating the force sensitivity of instrumented indentation machines and atomic force microscopes. Forces between 10 and 200 {mu}N were created and expressed in terms of the voltage, length, and capacitance between a pair of interacting electrodes. The electrodes comprised an electrically conductive sphere mounted as a tip on an instrumented indentation sensor, and a planar counterelectrode fixed to a sample stage in close proximity to the sphere. For comparison, we applied mechanical forces of similar magnitudes, first using deadweights and then using a reference force sensor. The deflection of the sensor due to the various applied forces was measured using an interferometer. A spring constant for the sensor was computed from the observed records of force versus displacement. Each procedure yielded a relative standard uncertainty of approximately 1%; however, the electrostatic technique is scalable and could provide traceable reference forces as small as a few hundred piconewtons, a range far below anything yet achieved using deadweights.

  12. Driving force for indentation cracking in glass: composition, pressure and temperature dependence

    PubMed Central

    Rouxel, Tanguy

    2015-01-01

    The occurrence of damage at the surface of glass parts caused by sharp contact loading is a major issue for glass makers, suppliers and end-users. Yet, it is still a poorly understood problem from the viewpoints both of glass science and solid mechanics. Different microcracking patterns are observed at indentation sites depending on the glass composition and indentation cracks may form during both the loading and the unloading stages. Besides, we do not know much about the fracture toughness of glass and its composition dependence, so that setting a criterion for crack initiation and predicting the extent of the damage yet remain out of reach. In this study, by comparison of the behaviour of glasses from very different chemical systems and by identifying experimentally the individual contributions of the different rheological processes leading to the formation of the imprint—namely elasticity, densification and shear flow—we obtain a fairly straightforward prediction of the type and extent of the microcracks which will most likely form, depending on the physical properties of the glass. Finally, some guidelines to reduce the driving force for microcracking are proposed in the light of the effects of composition, temperature and pressure, and the areas for further research are briefly discussed. PMID:25713446

  13. Bivalve, Mytilus edulis, as a test organism for bioconcentration studies. I. Designing a continuous-flow system and its application to some organochlorine compounds

    SciTech Connect

    Renberg, L.; Tarkpea, M.; Linden, E.

    1985-04-01

    Most bioconcentration studies have previously been carried out using fish as a test organism. Equally important is the use of bivalves for this purpose, from both an ecological and an economic point of view. A continuous-flow system has thus been designed for use also with extremely hydrophobic substances and evaluated using 2,4',5-trichlorobiphenyl, methoxychlor, pentachlorobenzene, and lindane. The variation of the uptake in the individuals after 3 weeks exposure was quite small (relative standard errors varied from 10.1 to 15.3% depending on the test substance), indicating a high degree of reproducibility. The bivalves, however, are known to close their valves under unfavorable conditions, which occasionally may bias the results. To overcome this disadvantage, it is suggested that an internal standard--i.e., a chemically defined compound--be added to the water simultaneously with the test substances. Although there is a principal risk for interactive effects, unexpected variations in the uptake can thus be compensated for by relating the concentration of the test substance to the concentration of the internal standard in the organisms. Comparisons between continuous-flow systems and static systems have also been made. It is concluded that continuous-flow systems are more suitable for studying hydrophobic compounds than static systems.

  14. A Pearson-type goodness-of-fit test for stationary and time-continuous Markov regression models.

    PubMed

    Aguirre-Hernández, R; Farewell, V T

    2002-07-15

    Markov regression models describe the way in which a categorical response variable changes over time for subjects with different explanatory variables. Frequently it is difficult to measure the response variable on equally spaced discrete time intervals. Here we propose a Pearson-type goodness-of-fit test for stationary Markov regression models fitted to panel data. A parametric bootstrap algorithm is used to study the distribution of the test statistic. The proposed technique is applied to examine the fit of a Markov regression model used to identify markers for disease progression in psoriatic arthritis.

  15. High-Stakes Tests: Comparative Study Examining the Impact on the Achievement Gap that Causes Minority Students Continued Failure

    ERIC Educational Resources Information Center

    Taylor-Smith, Carol J.

    2011-01-01

    The purpose of this comparative qualitative study examined the impact of the achievement gap on the lack of highly qualified teachers instructing African American students consistently from K-12th grades and its effects on high-stakes testing. In addition, the study examined teacher perceptions that could also be contributing factors of the…

  16. Chronic toxicity of erythromycin thiocyanate to Daphnia magna in a flow-through, continuous exposure test system

    USGS Publications Warehouse

    Meinertz, J.R.; Schreier, T.M.; Bernardy, J.A.

    2011-01-01

    Approval of a new animal drug application for AQUAMYCIN 100?? (erythromycin thiocyanate; ET) to treat freshwater salmonid species with bacterial kidney disease is being pursued in the US. As part of the approval process, ETs impact on an aquatic environment had to be described in an environmental assessment. The environmental assessment was lacking data to characterize the effect ET would have on a chronically exposed aquatic invertebrate organism. A major step to fulfilling the environmental assessment was completed after conducting a comprehensive study continuously exposing Daphnia magna to ET for 21 days. Results indicated that the no observable effect concentration for ET was 179 ??g/L. ?? 2011 Springer Science+Business Media, LLC (outside the USA).

  17. Chronic toxicity of diphenhydramine hydrochloride and erythromycin thiocyanate to Daphnia, Daphnia magna, in a continuous exposure test system

    USGS Publications Warehouse

    Meinertz, J.R.; Schreier, T.M.; Bernardy, J.A.; Franz, J.L.

    2010-01-01

    Diphenhydramine hydrochloride (DH; Benadryl TM, an over-the-counter antihistamine) and erythromycin thiocyanate (ET; a commonly used macrolide antibiotic) are pharmaceutical compounds whose chronic toxicity to Daphnia magna had not been characterized. Continuous exposure to DH concentrations about 5 times greater than the maximum reported environmental concentration of 0.023 lg/L for 21 days or to ET concentrations about 40 times the maximum reported environmental concentration of 6 (mu or u)g/L for 21 days did not significantly impact D. magna survival and production. In this study the no observable effect concentration for DH was 0.12 (mu or u)g/L and for ET was 248 (mu or u)g/L.

  18. Design and testing of a continuous metal biosorption system. Final report, March 10, 1994--June 9, 1995

    SciTech Connect

    Faison, B.D.; Hu, M.Z.C.; Reeves, M.E.; McGraw, T.F.; Gupte, U.; Haris, W.G.

    1995-12-31

    The research pursued in this project consisted of two portions that were conducted with constant coordination to allow the ultimate merger of research results. ORNL was assigned the task of developing the biomass portion of the bioreactor, while SCSC was responsible for the mechanical portions of the bioreactor. This report describes the technical aspects of a novel biological sorbent, consisting of microbial biomass immobilized within a polyurethane gel matrix, that was developed and characterized (on a bench scale, within batch and flow-through systems) for use in a novel, continuous-flow bioreactor system. The report also addresses an initial effort to develop a delivery technology that takes advantage of the specific characteristics of the biosorbent material to permits its deployment against contamination problems. The report concludes with recommendations for future work that would allow the designated wastes to be treated on a large scale.

  19. Addressing case specific biogas plant tasks: industry oriented methane yields derived from 5L Automatic Methane Potential Test Systems in batch or semi-continuous tests using realistic inocula, substrate particle sizes and organic loading.

    PubMed

    Kolbl, Sabina; Paloczi, Attila; Panjan, Jože; Stres, Blaž

    2014-02-01

    The primary aim of the study was to develop and validate an in-house upscale of Automatic Methane Potential Test System II for studying real-time inocula and real-scale substrates in batch, codigestion and enzyme enhanced hydrolysis experiments, in addition to semi-continuous operation of the developed equipment and experiments testing inoculum functional quality. The successful upscale to 5L enabled comparison of different process configurations in shorter preparation times with acceptable accuracy and high-through put intended for industrial decision making. The adoption of the same scales, equipment and methodologies in batch and semi-continuous tests mirroring those at full scale biogas plants resulted in matching methane yields between the two laboratory tests and full-scale, confirming thus the increased decision making value of the approach for industrial operations. PMID:24368269

  20. Addressing case specific biogas plant tasks: industry oriented methane yields derived from 5L Automatic Methane Potential Test Systems in batch or semi-continuous tests using realistic inocula, substrate particle sizes and organic loading.

    PubMed

    Kolbl, Sabina; Paloczi, Attila; Panjan, Jože; Stres, Blaž

    2014-02-01

    The primary aim of the study was to develop and validate an in-house upscale of Automatic Methane Potential Test System II for studying real-time inocula and real-scale substrates in batch, codigestion and enzyme enhanced hydrolysis experiments, in addition to semi-continuous operation of the developed equipment and experiments testing inoculum functional quality. The successful upscale to 5L enabled comparison of different process configurations in shorter preparation times with acceptable accuracy and high-through put intended for industrial decision making. The adoption of the same scales, equipment and methodologies in batch and semi-continuous tests mirroring those at full scale biogas plants resulted in matching methane yields between the two laboratory tests and full-scale, confirming thus the increased decision making value of the approach for industrial operations.

  1. Filter Efficiency and Leak Testing of Returned ISS Bacterial Filter Elements After 2.5 Years of Continuous Operation

    NASA Technical Reports Server (NTRS)

    Green, Robert D.; Agui, Juan H.; Berger, Gordon M.; Vijayakumar, R.; Perry, Jay L.

    2016-01-01

    The atmosphere revitalization equipment aboard the International Space Station (ISS) and future deep space exploration vehicles provides the vital functions of maintaining a habitable environment for the crew as well as protecting the hardware from fouling by suspended particulate matter. Providing these functions are challenging in pressurized spacecraft cabins because no outside air ventilation is possible and a larger particulate load is imposed on the filtration system due to lack of sedimentation in reduced gravity conditions. The ISS Environmental Control and Life Support (ECLS) system architecture in the U.S. Segment uses a distributed particulate filtration approach consisting of traditional High-Efficiency Particulate Adsorption (HEPA) filters deployed at multiple locations in each module. These filters are referred to as Bacteria Filter Elements (BFEs). As more experience has been gained with ISS operations, the BFE service life, which was initially one year, has been extended to two to five years, dependent on the location in the U.S. Segment. In previous work we developed a test facility and test protocol for leak testing the ISS BFEs. For this work, we present results of leak testing a sample set of returned BFEs with a service life of 2.5 years, along with particulate removal efficiency and pressure drop measurements. The results can potentially be utilized by the ISS Program to ascertain whether the present replacement interval can be maintained or extended to balance the on-ground filter inventory with extension of the lifetime of ISS to 2024. These results can also provide meaningful guidance for particulate filter designs under consideration for future deep space exploration missions.

  2. Finite element modeling of indentation-induced superelastic effect using a three-dimensional constitutive model for shape memory materials with plasticity

    SciTech Connect

    Zhang, Yijun; Cheng, Yang-Tse; Grummon, David S.

    2007-03-01

    Indentation-induced shape memory and superelastic effects are recently discovered thermo-mechanical behaviors that may find important applications in many areas of science and engineering. Theoretical understanding of these phenomena is challenging because both martensitic phase transformation and slip plasticity exist under complex contact loading conditions. In this paper, we develop a three-dimensional constitutive model of shape memory alloys with plasticity. Spherical indentation-induced superelasticity in a NiTi shape memory alloy was simulated and compared to experimental results on load-displacement curves and recovery ratios. We show that shallow indents have complete recovery upon unloading, where the size of the phase transformation region is about two times the contact radius. Deep indents have only partial recovery when plastic deformation becomes more prevalent in the indent-affected zone.

  3. Continuing Assessment of the 5-Day Sodium Carbonate-Ammonium Nitrate Extraction Assay as an Indicator Test for Silicon Fertilizers.

    PubMed

    Zellner, Wendy; Friedrich, Russell L; Kim, Sujin; Sturtz, Douglas; Frantz, Jonathan; Altland, James; Krause, Charles

    2015-01-01

    The 5-day sodium carbonate-ammonium nitrate extraction assay (5-day method) has been recognized by the American Association of Plant Food Control Officials as a validated test method to identify fertilizers or beneficial substances that provide plant-available silicon (Si). The test method used the molybdenum blue colorimetric assay to quantify percentage Si; however, laboratories may use inductively coupled plasma optical emission spectroscopy (ICP-OES) for elemental analysis. To examine the use of either colorimetric or ICP-OES methods for Si determination, the 5-day method was performed on the following Si-containing compounds; wollastonite, sand, biochar, and a basic oven furnace (BOF) slag. Grow-out studies using Zinnia elegans were also performed using varying rates of the wollastonite, biochar, and BOF slag. Our results show using the 5-day method, wollastonite had the highest extracted amounts of silicic acid (H4SiO4) at 4% followed by biochar (2%), BOF slag (1%), and sand (0%). Extraction values calculated using either the molybdenum blue colorimetric assay or ICP-OES for detection of the H4SiO4 had a significant correlation, supporting the application of either detection method for this type of analysis. However, when extracted values were compared to amounts of Si taken up by the plants, the 5-day method overestimated both wollastonite and biochar. While this method is a valid indicator test for determining a soluble Si source, other plant species and methods should be perused to potentially provide more quantitative analyses for plant-available Si content of all materials.

  4. Continuing Assessment of the 5-Day Sodium Carbonate-Ammonium Nitrate Extraction Assay as an Indicator Test for Silicon Fertilizers.

    PubMed

    Zellner, Wendy; Friedrich, Russell L; Kim, Sujin; Sturtz, Douglas; Frantz, Jonathan; Altland, James; Krause, Charles

    2015-01-01

    The 5-day sodium carbonate-ammonium nitrate extraction assay (5-day method) has been recognized by the American Association of Plant Food Control Officials as a validated test method to identify fertilizers or beneficial substances that provide plant-available silicon (Si). The test method used the molybdenum blue colorimetric assay to quantify percentage Si; however, laboratories may use inductively coupled plasma optical emission spectroscopy (ICP-OES) for elemental analysis. To examine the use of either colorimetric or ICP-OES methods for Si determination, the 5-day method was performed on the following Si-containing compounds; wollastonite, sand, biochar, and a basic oven furnace (BOF) slag. Grow-out studies using Zinnia elegans were also performed using varying rates of the wollastonite, biochar, and BOF slag. Our results show using the 5-day method, wollastonite had the highest extracted amounts of silicic acid (H4SiO4) at 4% followed by biochar (2%), BOF slag (1%), and sand (0%). Extraction values calculated using either the molybdenum blue colorimetric assay or ICP-OES for detection of the H4SiO4 had a significant correlation, supporting the application of either detection method for this type of analysis. However, when extracted values were compared to amounts of Si taken up by the plants, the 5-day method overestimated both wollastonite and biochar. While this method is a valid indicator test for determining a soluble Si source, other plant species and methods should be perused to potentially provide more quantitative analyses for plant-available Si content of all materials. PMID:26268968

  5. Injecting parameters design and performance test of the pre-igniter for continuous wave DF/HF chemical lasers

    NASA Astrophysics Data System (ADS)

    Huang, Bing; Yuan, Shengfu; Yang, Lijia; Fang, Xiaoting

    2014-11-01

    Combustion-driven continuous wave (CW) DF/HF chemical lasers cannot be inflamed successfully sometimes because the spark-plug-igniter is intolerant of ablation especially after long-time operation which deeply affected the reliability of the lasers. In this paper, a pre-igniter is designed as a new igniter system to produce F2 to solve the problem. Based on the engineering practices and the principle that high-intensity spontaneous combustion will happen when mixing F2 and H2. The results of NF3 and H2 reacting with different mole ratios were calculated by CEA software. The operation reliability of the pre-igniter, the mole concentration of F2 in the mixing gas, and the equilibrium temperature were validated by a series of experiments. The experimental results were consistent with the calculated data: with the mole ratio of NF3 to H2 increasing, the equilibrium temperature decreased gradually and finally leveled off; the mole concentration of F2 in the mixing gas first increased and then decreased, achieving the maximum of about 40% when the mole ratio of NF3 to H2 was about 3.2. Experimental results outlined that the pre-igniter performed reliability and could produce high output of F2. The ignition system with a pre-igniter and a spark plug could provide a new alternative for combustion-driven CW DF/HF chemical lasers.

  6. Mapping residual stress fields from Vickers hardness indents using Raman microprobe spectroscopy

    SciTech Connect

    Sparks, R.G.; Enloe, W.S.; Paesler, M.A.

    1988-12-01

    Micro-Raman spectroscopy is used to map the residual stress fields in the vicinity of Vickers hardness indents. Both 514.5 and 488.0 nm, light is used to excite the effect and the resulting shifted and broadened Raman peaks are analyzed using computer deconvolution. Half-wave plates are used to vary the orientation of the incident later light`s polarization state with respect to crystal orientation. The Raman scattered light is then analyzed for polarization dependences which are indicative of the various components of the Raman scattering tensor. Such studies can yield valuable information about the orientation of stress components in a well known stress field. The results can then be applied to the determination of stress components in machined semiconductor materials.

  7. Development of a precision indentation and scratching system with a tool force and displacement control module.

    PubMed

    Park, Jae-Jun; Kwon, Kihwan; Bang, Jinhyeok; Cho, Nahmgyoo; Han, Chang-Soo; Choi, Nak-Sam

    2007-04-01

    This article presents a tip-based micropatterning system with a precision device for measuring the machine force and the tool path. The machine force is obtained by a tool control module with a leaf spring and a capacitive displacement sensor. It is controlled to provide a force that ranges from 80 microN to 8 N. The force sensing unit, which is part of the module, is mounted on a PZT (PbZrTi) driven in-feed motion stage with a resolution of 1 nm. The work piece is set on an X-Y motion stage, and the position can be controlled with a tool path accuracy of 5 nm. Micropatterning and precision indentation experiments were performed, while the machined surfaces were examined by atomic force microscopy. From these results, the feasibility of the system for precise force-displacement control was verified for application in tip-based precision machining.

  8. Measurement of Interfacial Adhesion in Glass-Epoxy Systems Using the Indentation Method

    SciTech Connect

    Hutchins, Karen Isabel

    2015-07-01

    The adhesion of coatings often controls the performance of the substrate-coating system. Certain engineering applications require an epoxy coating on a brittle substrate to protect and improve the performance of the substrate. Experimental observations and measurements of interfacial adhesion in glass-epoxy systems are described in this thesis. The Oliver and Pharr method was utilized to calculate the bulk epoxy hardness and elastic modulus. Spherical indentations were used to induce delaminations at the substrate-coating interface. The delamination sizes as a function of load were used to calculate the interfacial toughness. The interfacial fracture energy of my samples is an order of magnitude higher than a previous group who studied a similar glass-epoxy system. A comparison study of how different glass treatments affect adhesion was also conducted: smooth versus rough, clean versus dirty, stressed versus non-stressed.

  9. Indentation-derived elastic modulus of multilayer thin films: Effect of unloading induced plasticity

    SciTech Connect

    Jamison, Ryan Dale; Shen, Yu -Lin

    2015-08-13

    Nanoindentation is useful for evaluating the mechanical properties, such as elastic modulus, of multilayer thin film materials. A fundamental assumption in the derivation of the elastic modulus from nanoindentation is that the unloading process is purely elastic. In this work, the validity of elastic assumption as it applies to multilayer thin films is studied using the finite element method. The elastic modulus and hardness from the model system are compared to experimental results to show validity of the model. Plastic strain is shown to increase in the multilayer system during the unloading process. Additionally, the indentation-derived modulus of a monolayer material shows no dependence on unloading plasticity while the modulus of the multilayer system is dependent on unloading-induced plasticity. Lastly, the cyclic behavior of the multilayer thin film is studied in relation to the influence of unloading-induced plasticity. Furthermore, it is found that several cycles are required to minimize unloading-induced plasticity.

  10. Molecular dynamics simulation of nano-indentation of (111) cubic boron nitride with optimized Tersoff potential

    NASA Astrophysics Data System (ADS)

    Zhao, Yinbo; Peng, Xianghe; Fu, Tao; Huang, Cheng; Feng, Chao; Yin, Deqiang; Wang, Zhongchang

    2016-09-01

    We conduct molecular dynamics simulation of nanoindentation on (111) surface of cubic boron nitride and find that shuffle-set dislocations slip along <112> direction on {111} plane at the initial stage of the indentation. The shuffle-set dislocations are then found to meet together, forming surfaces of a tetrahedron. We also find that the surfaces are stacking-fault zones, which intersect with each other, forming edges of stair-rod dislocations along <110> direction. Moreover, we also calculate the generalized stacking fault (GSF) energies along various gliding directions on several planes and find that the GSF energies of the <112>{111} and <110>{111} systems are relatively smaller, indicating that dislocations slip more easily along <110> and <112> directions on the {111} plane.

  11. Experimental characterization of biphasic materials using rate-controlled Hertzian indentation

    PubMed Central

    Moore, A.C.; Zimmerman, B.K.; Chen, X; Lu, X.L.; Burris, D.L.

    2015-01-01

    This paper describes a new method, based on Hertzian biphasic theory (HBT), to characterize properties of biphasic materials with reduced time demands, increased surface sensitivity, and reduced computational demands compared to the current gold standards. Indentation experiments were conducted at a single location on a representative osteochondral plug to demonstrate and validate the HBT method against two gold standards, linear biphasic theory (LBT) and tension-compression nonlinear biphasic theory (TCN). The 1) aggregate moduli, 2) permeability and 3) tensile moduli from HBT, LBT, and TCN were 1) HA=0.47, 0.47, and 0.40 MPa, 2) k=0.0026, 0.0014 and 0.0016mm4/Ns, and 3) Et=8.7, 0.46, and 10.3MPa, respectively. The results support the HBT method and encourage its use, especially in light of its practical advantages. PMID:26160994

  12. Indentation fracture toughness of sintered silicon carbide in the Palmqvist crack regime

    NASA Technical Reports Server (NTRS)

    Li, Zhuang; Ghosh, Asish; Kobayashi, Albert S.; Bradt, Richard C.

    1989-01-01

    The fracture toughness of a sintered dense alpha-SiC was estimated by the Vickers indentation microfracture method in the low-load Palmqvist crack regime. It was observed that the use of simultaneously obtained Vickers hardnesses does not yield reliable fracture toughness values, nor does application of the median-crack-derived equations. It is necessary to utilize a load-independent, crack-free hardness value with this toughness estimation method. Although several of the curve-fitting equations yield similar toughnesses, it is concluded for the Palmqvist crack system in this alpha-SiC that the Niihara-Morena-Hasselman (1982) equation is the only one which yields fracture toughness values in agreement with conventional measurement techniques.

  13. Surface hardening induced by high flux plasma in tungsten revealed by nano-indentation

    NASA Astrophysics Data System (ADS)

    Terentyev, D.; Bakaeva, A.; Pardoen, T.; Favache, A.; Zhurkin, E. E.

    2016-08-01

    Surface hardness of tungsten after high flux deuterium plasma exposure has been characterized by nanoindentation. The effect of plasma exposure was rationalized on the basis of available theoretical models. Resistance to plastic penetration is enhanced within the 100 nm sub-surface region, attributed to the pinning of geometrically necessary dislocations on nanometric deuterium cavities - signature of plasma-induced defects and deuterium retention. Sub-surface extension of thereby registered plasma-induced damage is in excellent agreement with the results of alternative measurements. The study demonstrates suitability of nano-indentation to probe the impact of deposition of plasma-induced defects in tungsten on near surface plasticity under ITER-relevant plasma exposure conditions.

  14. Molecular dynamics simulation of nanoindentation on Cu/Ni nanotwinned multilayer films using a spherical indenter

    PubMed Central

    Fu, Tao; Peng, Xianghe; Chen, Xiang; Weng, Shayuan; Hu, Ning; Li, Qibin; Wang, Zhongchang

    2016-01-01

    We performed molecular dynamics simulation of nanoindentation on Cu/Ni nanotwinned multilayer films using a spherical indenter, aimed to investigate the effects of hetero-twin interface and twin thickness on hardness. We found that both twinning partial slip (TPS) and partial slip parallel with twin boundary (PSPTB) can reduce hardness and therefore should not be ignored when evaluating mechanical properties at nanoscale. There is a critical range of twin thickness λ (~25 Å < λ < ~31 Å), in which hardness of the multilayer films is maximized. At a smaller λ, TPSs appear due to the reaction between partial dislocations and twin boundary accounts for the softening-dominated mechanism. We also found that the combination of the lowered strengthening due to confined layer slips and the softening due to TPSs and PSPTBs results in lower hardness at a larger λ. PMID:27767046

  15. Dynamic impact indentation of hydrated biological tissues and tissue surrogate gels

    NASA Astrophysics Data System (ADS)

    Ilke Kalcioglu, Z.; Qu, Meng; Strawhecker, Kenneth E.; Shazly, Tarek; Edelman, Elazer; VanLandingham, Mark R.; Smith, James F.; Van Vliet, Krystyn J.

    2011-03-01

    For both materials engineering research and applied biomedicine, a growing need exists to quantify mechanical behaviour of tissues under defined hydration and loading conditions. In particular, characterisation under dynamic contact-loading conditions can enable quantitative predictions of deformation due to high rate 'impact' events typical of industrial accidents and ballistic insults. The impact indentation responses were examined of both hydrated tissues and candidate tissue surrogate materials. The goals of this work were to determine the mechanical response of fully hydrated soft tissues under defined dynamic loading conditions, and to identify design principles by which synthetic, air-stable polymers could mimic those responses. Soft tissues from two organs (liver and heart), a commercially available tissue surrogate gel (Perma-Gel™) and three styrenic block copolymer gels were investigated. Impact indentation enabled quantification of resistance to penetration and energy dissipative constants under the rates and energy densities of interest for tissue surrogate applications. These analyses indicated that the energy dissipation capacity under dynamic impact increased with increasing diblock concentration in the styrenic gels. Under the impact rates employed (2 mm/s to 20 mm/s, corresponding to approximate strain energy densities from 0.4 kJ/m3 to 20 kJ/m3), the energy dissipation capacities of fully hydrated soft tissues were ultimately well matched by a 50/50 triblock/diblock composition that is stable in ambient environments. More generally, the methodologies detailed here facilitate further optimisation of impact energy dissipation capacity of polymer-based tissue surrogate materials, either in air or in fluids.

  16. Testing the distinctness of shoot ionomes of angiosperm families using the Rothamsted Park Grass Continuous Hay Experiment.

    PubMed

    White, Philip J; Broadley, Martin R; Thompson, Jacqueline A; McNicol, James W; Crawley, Mick J; Poulton, Paul R; Johnston, A E

    2012-10-01

    • The ionome is the elemental composition of a tissue or organism. Phylogenetic variation in the ionomes of plant shoots has been widely reported based on controlled experiments, vegetation surveys and literature meta-analyses. However, environmental effects on phylogenetic variation in shoot ionomes have not been quantified. This study tests the hypothesis that phylogenetic variation in shoot ionomes is robust to environmental perturbation and that plant families can be distinguished by their shoot ionomes. • Herbage was sampled from six subplots of the Rothamsted Park Grass Experiment. Subplots had received contrasting fertilizer treatments since 1856. Herbage was separated into its constituent species (n = 21) and concentrations of eleven mineral elements were determined in dried shoot material. • Shoot concentrations of calcium (Ca), zinc (Zn), manganese (Mn), magnesium (Mg) and sodium (Na) showed significant variation associated with plant species, and responded similarly to fertilizer treatments in diverse plant species. Species × treatment interactions were indicated for phosphorus (P), potassium (K), nickel (Ni), copper (Cu) and iron (Fe). Plant families could be distinguished by their shoot ionomes. The most informative elements for discriminant analysis were Ca > Mg > Ni > S > Na > Zn > K > Cu > Fe > Mn > P. • Whilst shoot ionomes were sensitive to fertilizer treatment, phylogenetic variation in a subset of the shoot ionome (Ca, Zn, Mn, Mg) was robust to this environmental perturbation.

  17. Apparatus for performing high-temperature fiber push-out testing

    NASA Astrophysics Data System (ADS)

    Eldridge, Jeffrey I.; Ebihara, Ben T.

    1994-11-01

    The apparatus disclosed in the present invention measures the force at which a fiber resist the motion of an indenter driven at constant speed. This apparatus conducts these test in a vacuum of about 10(exp -6) tort and at temperatures up to 1100 C. Temperature and vacuum environment are maintained while controlling indenter motion, sample position, and providing magnified visual inspection during the test.

  18. Apparatus for performing high-temperature fiber push-out testing

    NASA Technical Reports Server (NTRS)

    Eldridge, Jeffrey I. (Inventor); Ebihara, Ben T. (Inventor)

    1994-01-01

    The apparatus disclosed in the present invention measures the force at which a fiber resist the motion of an indenter driven at constant speed. This apparatus conducts these test in a vacuum of about 10(exp -6) tort and at temperatures up to 1100 C. Temperature and vacuum environment are maintained while controlling indenter motion, sample position, and providing magnified visual inspection during the test.

  19. Continuous improvement of medical test reliability using reference methods and matrix-corrected target values in proficiency testing schemes: application to glucose assay.

    PubMed

    Delatour, Vincent; Lalere, Beatrice; Saint-Albin, Karène; Peignaux, Maryline; Hattchouel, Jean-Marc; Dumont, Gilles; De Graeve, Jacques; Vaslin-Reimann, Sophie; Gillery, Philippe

    2012-11-20

    The reliability of biological tests is a major issue for patient care in terms of public health that involves high economic stakes. Reference methods, as well as regular external quality assessment schemes (EQAS), are needed to monitor the analytical performance of field methods. However, control material commutability is a major concern to assess method accuracy. To overcome material non-commutability, we investigated the possibility of using lyophilized serum samples together with a limited number of frozen serum samples to assign matrix-corrected target values, taking the example of glucose assays. Trueness of the current glucose assays was first measured against a primary reference method by using human frozen sera. Methods using hexokinase and glucose oxidase with spectroreflectometric detection proved very accurate, with bias ranging between -2.2% and +2.3%. Bias of methods using glucose oxidase with spectrophotometric detection was +4.5%. Matrix-related bias of the lyophilized materials was then determined and ranged from +2.5% to -14.4%. Matrix-corrected target values were assigned and used to assess trueness of 22 sub-peer groups. We demonstrated that matrix-corrected target values can be a valuable tool to assess field method accuracy in large scale surveys where commutable materials are not available in sufficient amount with acceptable costs. PMID:22885373

  20. Mechanical properties and Raman scattering investigation under indentation of CdGa2S4 and CdGa2Se4

    NASA Astrophysics Data System (ADS)

    Shikimaka, O.; Burlacu, A.; Grabco, D.; Parvan, V.; Pyrtsac, C.; Ursaki, V.

    2016-05-01

    The behavior of CdGa2S4 and CdGa2Se4 single crystalline semiconductors under Berkovich indentation of the (1 1 2) face in the load range of 10-700 mN has been investigated. Values of hardness and Young’s modulus have been determined for this load range. A comparative analysis of crack development under indentation was performed for these two compounds. The observed indentation size effect was analyzed from the point of view of energy consumed for the formation of the residual imprint, fracture and relaxation processes. It was found that crack development affects the energy-load and hardness-load dependences, which show specific features for each compound. The effect of indentation on eventual phase transitions was investigated by comparing the micro-Raman spectra from a non-indented site with those measured in the indentation. Evidence of a phase transition under indentation from the initial defect chalcopyrite structure to a disordered zincblende phase is found.