Linear self-focusing of continuous UV laser beam in photo-thermo-refractive glasses.
Sidorov, Alexander I; Gorbyak, Veronika V; Nikonorov, Nikolay V
2018-03-19
The experimental and theoretical study of continuous UV laser beam propagation through thick silver-containing photo-thermo-refractive glass is presented. It is shown for the first time that self-action of UV Gaussian beam in glass results in its self-focusing. The observed linear effect is non-reversible and is caused by the transformation of subnanosized charged silver molecular clusters to neutral state under UV laser radiation. Such transformation is accompanied by the increase of molecular clusters polarizability and the refractive index increase in irradiated area. As a result, an extended positive lens is formed in glass bulk. In a theoretical study of linear self-focusing effect, the "aberration-free" approximation was used, taking into account spatial distribution of induced absorption.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chung, Moses; Qin, Hong; Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026
2013-08-15
By extending the recently developed generalized Courant-Snyder theory for coupled transverse beam dynamics, we have constructed the Gaussian beam distribution and its projections with arbitrary mode emittance ratios. The new formulation has been applied to a continuously rotating quadrupole focusing channel because the basic properties of this channel are known theoretically and could also be investigated experimentally in a compact setup such as the linear Paul trap configuration. The new formulation retains a remarkably similar mathematical structure to the original Courant-Snyder theory, and thus, provides a powerful theoretical tool to investigate coupled transverse beam dynamics in general and more complexmore » linear focusing channels.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chung, Moses; Gilson, Erik P.; Davidson, Ronald C.
2009-04-10
A random noise-induced beam degradation that can affect intense beam transport over long propagation distances has been experimentally studied by making use of the transverse beam dynamics equivalence between an alternating-gradient (AG) focusing system and a linear Paul trap system. For the present studies, machine imperfections in the quadrupole focusing lattice are considered, which are emulated by adding small random noise on the voltage waveform of the quadrupole electrodes in the Paul trap. It is observed that externally driven noise continuously produces a nonthermal tail of trapped ions, and increases the transverse emittance almost linearly with the duration of themore » noise.« less
Final Report---Optimization Under Nonconvexity and Uncertainty: Algorithms and Software
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jeff Linderoth
2011-11-06
the goal of this work was to develop new algorithmic techniques for solving large-scale numerical optimization problems, focusing on problems classes that have proven to be among the most challenging for practitioners: those involving uncertainty and those involving nonconvexity. This research advanced the state-of-the-art in solving mixed integer linear programs containing symmetry, mixed integer nonlinear programs, and stochastic optimization problems. The focus of the work done in the continuation was on Mixed Integer Nonlinear Programs (MINLP)s and Mixed Integer Linear Programs (MILP)s, especially those containing a great deal of symmetry.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chung, Moses; Qin, Hong; Gilson, Erik
2013-01-01
By extending the recently developed generalized Courant-Snyder theory for coupled transverse beam dynamics, we have constructed the Gaussian beam distribution and its projections with arbitrary mode emittance ratios. The new formulation has been applied to a continuously-rotating quadrupole focusing channel because the basic properties of this channel are known theoretically and could also be investigated experimentally in a compact setup such as the linear Paul trap configuration. The new formulation retains a remarkably similar mathematical structure to the original Courant-Snyder theory, and thus provides a powerful theoretical tool to investigate coupled transverse beam dynamics in general and more complex linearmore » focusing channels.« less
Focused ultrasound in ophthalmology
Silverman, Ronald H
2016-01-01
The use of focused ultrasound to obtain diagnostically significant information about the eye goes back to the 1950s. This review describes the historical and technological development of ophthalmic ultrasound and its clinical application and impact. Ultrasound, like light, can be focused, which is crucial for formation of high-resolution, diagnostically useful images. Focused, single-element, mechanically scanned transducers are most common in ophthalmology. Specially designed transducers have been used to generate focused, high-intensity ultrasound that through thermal effects has been used to treat glaucoma (via ciliodestruction), tumors, and other pathologies. Linear and annular transducer arrays offer synthetic focusing in which precise timing of the excitation of independently addressable array elements allows formation of a converging wavefront to create a focus at one or more programmable depths. Most recently, linear array-based plane-wave ultrasound, in which the array emits an unfocused wavefront and focusing is performed solely on received data, has been demonstrated for imaging ocular anatomy and blood flow. While the history of ophthalmic ultrasound extends back over half-a-century, new and powerful technologic advances continue to be made, offering the prospect of novel diagnostic capabilities. PMID:27757007
Focused ultrasound in ophthalmology.
Silverman, Ronald H
2016-01-01
The use of focused ultrasound to obtain diagnostically significant information about the eye goes back to the 1950s. This review describes the historical and technological development of ophthalmic ultrasound and its clinical application and impact. Ultrasound, like light, can be focused, which is crucial for formation of high-resolution, diagnostically useful images. Focused, single-element, mechanically scanned transducers are most common in ophthalmology. Specially designed transducers have been used to generate focused, high-intensity ultrasound that through thermal effects has been used to treat glaucoma (via ciliodestruction), tumors, and other pathologies. Linear and annular transducer arrays offer synthetic focusing in which precise timing of the excitation of independently addressable array elements allows formation of a converging wavefront to create a focus at one or more programmable depths. Most recently, linear array-based plane-wave ultrasound, in which the array emits an unfocused wavefront and focusing is performed solely on received data, has been demonstrated for imaging ocular anatomy and blood flow. While the history of ophthalmic ultrasound extends back over half-a-century, new and powerful technologic advances continue to be made, offering the prospect of novel diagnostic capabilities.
Globally linearized control on diabatic continuous stirred tank reactor: a case study.
Jana, Amiya Kumar; Samanta, Amar Nath; Ganguly, Saibal
2005-07-01
This paper focuses on the promise of globally linearized control (GLC) structure in the realm of strongly nonlinear reactor system control. The proposed nonlinear control strategy is comprised of: (i) an input-output linearizing state feedback law (transformer), (ii) a state observer, and (iii) an external linear controller. The synthesis of discrete-time GLC controller for single-input single-output diabatic continuous stirred tank reactor (DCSTR) has been studied first, followed by the synthesis of feedforward/feedback controller for the same reactor having dead time in process as well as in disturbance. Subsequently, the multivariable GLC structure has been designed and then applied on multi-input multi-output DCSTR system. The simulation study shows high quality performance of the derived nonlinear controllers. The better-performed GLC in conjunction with reduced-order observer has been compared with the conventional proportional integral controller on the example reactor and superior performance has been achieved by the proposed GLC control scheme.
2008-06-01
and hopefully a better linearization. The edges were treated in a different manner than before. Their voltages only varied between 0–2000-nm...followed by tilt, and then other optical aberrations such as focus, astigmatism , 54 defocus, and coma. These aberations continue to increase in complexity as...testing proved that the linearization LUT was adequate for also reproducing Zernike shapes on the DM. In the lowest-order terms ( astigmatism and tilt) the
Biographies of Exclusion: Poor Work and Poor Transitions
ERIC Educational Resources Information Center
Shildrick, Tracy; MacDonald, Robert
2007-01-01
The usefulness of the concept of transition has been hotly contested in Anglophone youth studies over the past decade. A variety of criticisms have been ranged against it, including that it: presumes the continuing predominance of linear, obvious, mainstream pathways to adulthood; excludes wider youth questions in focusing narrowly on educational…
Finite-time H∞ control for linear continuous system with norm-bounded disturbance
NASA Astrophysics Data System (ADS)
Meng, Qingyi; Shen, Yanjun
2009-04-01
In this paper, the definition of finite-time H∞ control is presented. The system under consideration is subject to time-varying norm-bounded exogenous disturbance. The main aim of this paper is focused on the design a state feedback controller which ensures that the closed-loop system is finite-time bounded (FTB) and reduces the effect of the disturbance input on the controlled output to a prescribed level. A sufficient condition is presented for the solvability of this problem, which can be reduced to a feasibility problem involving linear matrix inequalities (LMIs). A detailed solving method is proposed for the restricted linear matrix inequalities. Finally, examples are given to show the validity of the methodology.
Traveling-wave piezoelectric linear motor part II: experiment and performance evaluation.
Ting, Yung; Li, Chun-Chung; Chen, Liang-Chiang; Yang, Chieh-Min
2007-04-01
This article continues the discussion of a traveling-wave piezoelectric linear motor. Part I of this article dealt with the design and analysis of the stator of a traveling-wave piezoelectric linear motor. In this part, the discussion focuses on the structure and modeling of the contact layer and the carriage. In addition, the performance analysis and evaluation of the linear motor also are dealt with in this study. The traveling wave is created by stator, which is constructed by a series of bimorph actuators arranged in a line and connected to form a meander-line structure. Analytical and experimental results of the performance are presented and shown to be almost in agreement. Power losses due to friction and transmission are studied and found to be significant. Compared with other types of linear motors, the motor in this study is capable of supporting heavier loads and provides a larger thrust force.
Lam, Billy; Zhang, Jihua; Guo, Chunlei
2017-08-01
In this study, we develop a simple but highly effective technique that generates a continuously varying polarization within a laser beam. This is achieved by having orthogonal linear polarizations on each side of the beam. By simply focusing such a laser beam, we can attain a gradually and continuously changing polarization within the entire Rayleigh range due to diffraction. To demonstrate this polarization distribution, we apply this laser beam onto a metal surface and create a continuously rotating laser induced periodic surface structure pattern. This technique provides a very effective way to produce complex surface structures that may potentially find applications, such as polarization modulators and metasurfaces.
Detection of liquid hazardous molecules using linearly focused Raman spectroscopy
NASA Astrophysics Data System (ADS)
Cho, Soo Gyeong; Chung, Jin Hyuk
2013-05-01
In security, it is an important issue to analyze hazardous materials in sealed bottles. Particularly, prompt nondestructive checking of sealed liquid bottles in a very short time at the checkpoints of crowded malls, stadiums, or airports is of particular importance to prevent probable terrorist attack using liquid explosives. Aiming to design and fabricate a detector for liquid explosives, we have used linearly focused Raman spectroscopy to analyze liquid materials in transparent or semi-transparent bottles without opening their caps. Continuous lasers with 532 nm wavelength and 58 mW/130 mW beam energy have been used for the Raman spectroscopy. Various hazardous materials including flammable liquids and explosive materials have successfully been distinguished and identified within a couple of seconds. We believe that our technique will be one of suitable methods for fast screening of liquid materials in sealed bottles.
Flora, David B.; LaBrish, Cathy; Chalmers, R. Philip
2011-01-01
We provide a basic review of the data screening and assumption testing issues relevant to exploratory and confirmatory factor analysis along with practical advice for conducting analyses that are sensitive to these concerns. Historically, factor analysis was developed for explaining the relationships among many continuous test scores, which led to the expression of the common factor model as a multivariate linear regression model with observed, continuous variables serving as dependent variables, and unobserved factors as the independent, explanatory variables. Thus, we begin our paper with a review of the assumptions for the common factor model and data screening issues as they pertain to the factor analysis of continuous observed variables. In particular, we describe how principles from regression diagnostics also apply to factor analysis. Next, because modern applications of factor analysis frequently involve the analysis of the individual items from a single test or questionnaire, an important focus of this paper is the factor analysis of items. Although the traditional linear factor model is well-suited to the analysis of continuously distributed variables, commonly used item types, including Likert-type items, almost always produce dichotomous or ordered categorical variables. We describe how relationships among such items are often not well described by product-moment correlations, which has clear ramifications for the traditional linear factor analysis. An alternative, non-linear factor analysis using polychoric correlations has become more readily available to applied researchers and thus more popular. Consequently, we also review the assumptions and data-screening issues involved in this method. Throughout the paper, we demonstrate these procedures using an historic data set of nine cognitive ability variables. PMID:22403561
Integrability and Linear Stability of Nonlinear Waves
NASA Astrophysics Data System (ADS)
Degasperis, Antonio; Lombardo, Sara; Sommacal, Matteo
2018-03-01
It is well known that the linear stability of solutions of 1+1 partial differential equations which are integrable can be very efficiently investigated by means of spectral methods. We present here a direct construction of the eigenmodes of the linearized equation which makes use only of the associated Lax pair with no reference to spectral data and boundary conditions. This local construction is given in the general N× N matrix scheme so as to be applicable to a large class of integrable equations, including the multicomponent nonlinear Schrödinger system and the multiwave resonant interaction system. The analytical and numerical computations involved in this general approach are detailed as an example for N=3 for the particular system of two coupled nonlinear Schrödinger equations in the defocusing, focusing and mixed regimes. The instabilities of the continuous wave solutions are fully discussed in the entire parameter space of their amplitudes and wave numbers. By defining and computing the spectrum in the complex plane of the spectral variable, the eigenfrequencies are explicitly expressed. According to their topological properties, the complete classification of these spectra in the parameter space is presented and graphically displayed. The continuous wave solutions are linearly unstable for a generic choice of the coupling constants.
Beam shaping with vectorial vortex beams under low numerical aperture illumination condition
NASA Astrophysics Data System (ADS)
Dai, Jianning; Zhan, Qiwen
2008-08-01
In this paper we propose and demonstrate a novel beam shaping method using vectorial vortex beam. A vectorial vortex beam is laser beam with polarization singularity in the beam cross section. This type of beams can be decomposed into two orthogonally polarized components. Each of the polarized components could have different vortex characteristics, and consequently, different intensity distribution when focused by lens. Beam shaping in the far field can be achieved by adjusting the relative weighing of these two components. As one example, we study the vectorial vortex that consists of a linearly polarized Gaussian component and a vortex component polarized orthogonally. When such a vectorial vortex beam is focus by low NA lens, the Gaussian component gives rise to a focal intensity distribution with a solid centre while the vortex component gives rise to a donut distribution with hollow dark center. The shape of the focus can be continuously varied by continuously adjusting the relative weight of the two components. Under appropriate conditions, flat top focusing can be obtained. We experimentally demonstrate the creation of such beams with a liquid crystal spatial light modulator. Flattop focus obtained by vectorial vortex beams with topological charge of +1 has been obtained.
ERIC Educational Resources Information Center
Osborne, Jason W.
2013-01-01
Osborne and Waters (2002) focused on checking some of the assumptions of multiple linear regression. In a critique of that paper, Williams, Grajales, and Kurkiewicz correctly clarify that regression models estimated using ordinary least squares require the assumption of normally distributed errors, but not the assumption of normally distributed…
2014-06-20
zooplankton models (Lavery et al, 2007) have shown that the predicted scattering from zooplankton is dominated by copepods, amphipods, and pteropods ...which there is significant salinity gradient, the predicted scattering from the seasonal pycnocline during SW06 was not able to account for the...has focused on echoes from relatively small zooplankton, such as pteropods or copepods, potentially in the presence of microstructure or in mixed
Simulations of nonlinear continuous wave pressure fields in FOCUS
NASA Astrophysics Data System (ADS)
Zhao, Xiaofeng; Hamilton, Mark F.; McGough, Robert J.
2017-03-01
The Khokhlov - Zabolotskaya - Kuznetsov (KZK) equation is a parabolic approximation to the Westervelt equation that models the effects of diffraction, attenuation, and nonlinearity. Although the KZK equation is only valid in the far field of the paraxial region for mildly focused or unfocused transducers, the KZK equation is widely applied in medical ultrasound simulations. For a continuous wave input, the KZK equation is effectively modeled by the Bergen Code [J. Berntsen, Numerical Calculations of Finite Amplitude Sound Beams, in M. F. Hamilton and D. T. Blackstock, editors, Frontiers of Nonlinear Acoustics: Proceedings of 12th ISNA, Elsevier, 1990], which is a finite difference model that utilizes operator splitting. Similar C++ routines have been developed for FOCUS, the `Fast Object-Oriented C++ Ultrasound Simulator' (http://www.egr.msu.edu/˜fultras-web) to calculate nonlinear pressure fields generated by axisymmetric flat circular and spherically focused ultrasound transducers. This new routine complements an existing FOCUS program that models nonlinear ultrasound propagation with the angular spectrum approach [P. T. Christopher and K. J. Parker, J. Acoust. Soc. Am. 90, 488-499 (1991)]. Results obtained from these two nonlinear ultrasound simulation approaches are evaluated and compared for continuous wave linear simulations. The simulation results match closely in the farfield of the paraxial region, but the results differ in the nearfield. The nonlinear pressure field generated by a spherically focused transducer with a peak surface pressure of 0.2MPa radiating in a lossy medium with β = 3.5 is simulated, and the computation times are also evaluated. The nonlinear simulation results demonstrate acceptable agreement in the focal zone. These two related nonlinear simulation approaches are now included with FOCUS to enable convenient simulations of nonlinear pressure fields on desktop and laptop computers.
Fleet Assignment Using Collective Intelligence
NASA Technical Reports Server (NTRS)
Antoine, Nicolas E.; Bieniawski, Stefan R.; Kroo, Ilan M.; Wolpert, David H.
2004-01-01
Product distribution theory is a new collective intelligence-based framework for analyzing and controlling distributed systems. Its usefulness in distributed stochastic optimization is illustrated here through an airline fleet assignment problem. This problem involves the allocation of aircraft to a set of flights legs in order to meet passenger demand, while satisfying a variety of linear and non-linear constraints. Over the course of the day, the routing of each aircraft is determined in order to minimize the number of required flights for a given fleet. The associated flow continuity and aircraft count constraints have led researchers to focus on obtaining quasi-optimal solutions, especially at larger scales. In this paper, the authors propose the application of this new stochastic optimization algorithm to a non-linear objective cold start fleet assignment problem. Results show that the optimizer can successfully solve such highly-constrained problems (130 variables, 184 constraints).
NASA Astrophysics Data System (ADS)
Zander, C.; Plastino, A. R.; Díaz-Alonso, J.
2015-11-01
We investigate time-dependent solutions for a non-linear Schrödinger equation recently proposed by Nassar and Miret-Artés (NM) to describe the continuous measurement of the position of a quantum particle (Nassar, 2013; Nassar and Miret-Artés, 2013). Here we extend these previous studies in two different directions. On the one hand, we incorporate a potential energy term in the NM equation and explore the corresponding wave packet dynamics, while in the previous works the analysis was restricted to the free-particle case. On the other hand, we investigate time-dependent solutions while previous studies focused on a stationary one. We obtain exact wave packet solutions for linear and quadratic potentials, and approximate solutions for the Morse potential. The free-particle case is also revisited from a time-dependent point of view. Our analysis of time-dependent solutions allows us to determine the stability properties of the stationary solution considered in Nassar (2013), Nassar and Miret-Artés (2013). On the basis of these results we reconsider the Bohmian approach to the NM equation, taking into account the fact that the evolution equation for the probability density ρ =| ψ | 2 is not a continuity equation. We show that the effect of the source term appearing in the evolution equation for ρ has to be explicitly taken into account when interpreting the NM equation from a Bohmian point of view.
Mega-Scale Simulation of Multi-Layer Devices-- Formulation, Kinetics, and Visualization
1994-07-28
prototype code STRIDE, also initially developed under ARO support. The focus of the ARO supported research activities has been in the areas of multi ... FORTRAN -77. During its fifteen-year life- span several generations of researchers have modified the code . Due to this continual develop- ment, the...behavior. The replacement of the linear solver had no effect on the remainder of the code . We replaced the existing solver with a distributed multi -frontal
Spectral Analysis of Vibrational Harmonic Motion by use of a Continuous-Wave CO2 Doppler Lidar
NASA Technical Reports Server (NTRS)
Jarzembski, Maurice A.; Srivastava, Vandana
1999-01-01
Vibrational motion of a harmonic oscillator was investigated using a focused continuous wave CO2 Doppler lidar at 9.1 microns wavelength. A continuum of frequencies along with many discrete, equally spaced, resonant frequency modes was observed. The frequency modes are similar in structure to the oscillatory longitudinal modes of a laser cavity and arise because of interference of the natural resonant frequency of the oscillator with specific frequencies within the continuum. The spectra revealed departures from linear motion for vigorous vibrations of the oscillator. Each consecutive resonant frequency mode occurred for a movement of the oscillator much less than the wavelength of incident lidar radiation.
Nonsmooth modal analysis of a N-degree-of-freedom system undergoing a purely elastic impact law
NASA Astrophysics Data System (ADS)
Legrand, Mathias; Junca, Stéphane; Heng, Sokly
2017-04-01
The dynamics of a N-degree-of-freedom autonomous oscillator undergoing an energy-preserving impact law on one of its masses is investigated in the light of nonlinear modal analysis. The impacted rigid foundation provides a natural Poincaré section of the investigated system from which is formulated a smooth First Return Map well-defined away from the grazing trajectory. In order to focus on the impact-induced nonlinearity, the oscillator is assumed linear. Continuous one-parameter families of T-periodic orbits featuring one impact per period and lying on two-dimensional invariant manifolds in the state-space are shown to exist. The geometry of these piecewise-smooth manifolds is such that a linear "flat" portion (on which contact is not activated) is continuously attached to a purely nonlinear portion (on which contact is activated once per period) exhibiting a velocity discontinuity through a grazing orbit. These features explain the newly introduced terminology "Nonsmooth modal analysis". The stability of the periodic orbits lying on the invariant manifolds is also explored by calculating the eigenvalues of the linearized First Return Map. Internal resonances and multiple impacts per period are not addressed in this work. However, the pre-stressed case is succinctly described and extensions to multiple oscillators as well as self-contact are discussed.
Quantum state engineering of light with continuous-wave optical parametric oscillators.
Morin, Olivier; Liu, Jianli; Huang, Kun; Barbosa, Felippe; Fabre, Claude; Laurat, Julien
2014-05-30
Engineering non-classical states of the electromagnetic field is a central quest for quantum optics(1,2). Beyond their fundamental significance, such states are indeed the resources for implementing various protocols, ranging from enhanced metrology to quantum communication and computing. A variety of devices can be used to generate non-classical states, such as single emitters, light-matter interfaces or non-linear systems(3). We focus here on the use of a continuous-wave optical parametric oscillator(3,4). This system is based on a non-linear χ(2) crystal inserted inside an optical cavity and it is now well-known as a very efficient source of non-classical light, such as single-mode or two-mode squeezed vacuum depending on the crystal phase matching. Squeezed vacuum is a Gaussian state as its quadrature distributions follow a Gaussian statistics. However, it has been shown that number of protocols require non-Gaussian states(5). Generating directly such states is a difficult task and would require strong χ(3) non-linearities. Another procedure, probabilistic but heralded, consists in using a measurement-induced non-linearity via a conditional preparation technique operated on Gaussian states. Here, we detail this generation protocol for two non-Gaussian states, the single-photon state and a superposition of coherent states, using two differently phase-matched parametric oscillators as primary resources. This technique enables achievement of a high fidelity with the targeted state and generation of the state in a well-controlled spatiotemporal mode.
Advances in high power linearly polarized fiber laser and its application
NASA Astrophysics Data System (ADS)
Zhou, Pu; Huang, Long; Ma, Pengfei; Xu, Jiangming; Su, Rongtao; Wang, Xiaolin
2017-10-01
Fiber lasers are now attracting more and more research interest due to their advantages in efficiency, beam quality and flexible operation. Up to now, most of the high power fiber lasers have random distributed polarization state. Linearlypolarized (LP) fiber lasers, which could find wide application potential in coherent detection, coherent/spectral beam combining, nonlinear frequency conversion, have been a research focus in recent years. In this paper, we will present a general review on the achievements of various kinds of high power linear-polarized fiber laser and its application. The recent progress in our group, including power scaling by using power amplifier with different mechanism, high power linearly polarized fiber laser with diversified properties, and various applications of high power linear-polarized fiber laser, are summarized. We have achieved 100 Watt level random distributed feedback fiber laser, kilowatt level continuous-wave (CW) all-fiber polarization-maintained fiber amplifier, 600 watt level average power picosecond polarization-maintained fiber amplifier and 300 watt level average power femtosecond polarization-maintained fiber amplifier. In addition, high power linearly polarized fiber lasers have been successfully applied in 5 kilowatt level coherent beam combining, structured light field and ultrasonic generation.
Sufficient Dimension Reduction for Longitudinally Measured Predictors
Pfeiffer, Ruth M.; Forzani, Liliana; Bura, Efstathia
2013-01-01
We propose a method to combine several predictors (markers) that are measured repeatedly over time into a composite marker score without assuming a model and only requiring a mild condition on the predictor distribution. Assuming that the first and second moments of the predictors can be decomposed into a time and a marker component via a Kronecker product structure, that accommodates the longitudinal nature of the predictors, we develop first moment sufficient dimension reduction techniques to replace the original markers with linear transformations that contain sufficient information for the regression of the predictors on the outcome. These linear combinations can then be combined into a score that has better predictive performance than the score built under a general model that ignores the longitudinal structure of the data. Our methods can be applied to either continuous or categorical outcome measures. In simulations we focus on binary outcomes and show that our method outperforms existing alternatives using the AUC, the area under the receiver-operator characteristics (ROC) curve, as a summary measure of the discriminatory ability of a single continuous diagnostic marker for binary disease outcomes. PMID:22161635
Parameter Identification of Static Friction Based on An Optimal Exciting Trajectory
NASA Astrophysics Data System (ADS)
Tu, X.; Zhao, P.; Zhou, Y. F.
2017-12-01
In this paper, we focus on how to improve the identification efficiency of friction parameters in a robot joint. First, the static friction model that has only linear dependencies with respect to their parameters is adopted so that the servomotor dynamics can be linearized. In this case, the traditional exciting trajectory based on Fourier series is modified by replacing the constant term with quintic polynomial to ensure the boundary continuity of speed and acceleration. Then, the Fourier-related parameters are optimized by genetic algorithm(GA) in which the condition number of regression matrix is set as the fitness function. At last, compared with the constant-velocity tracking experiment, the friction parameters from the exciting trajectory experiment has the similar result with the advantage of time reduction.
Linear Modeling and Evaluation of Controls on Flow Response in Western Post-Fire Watersheds
NASA Astrophysics Data System (ADS)
Saxe, S.; Hogue, T. S.; Hay, L.
2015-12-01
This research investigates the impact of wildfires on watershed flow regimes throughout the western United States, specifically focusing on evaluation of fire events within specified subregions and determination of the impact of climate and geophysical variables in post-fire flow response. Fire events were collected through federal and state-level databases and streamflow data were collected from U.S. Geological Survey stream gages. 263 watersheds were identified with at least 10 years of continuous pre-fire daily streamflow records and 5 years of continuous post-fire daily flow records. For each watershed, percent changes in runoff ratio (RO), annual seven day low-flows (7Q2) and annual seven day high-flows (7Q10) were calculated from pre- to post-fire. Numerous independent variables were identified for each watershed and fire event, including topographic, land cover, climate, burn severity, and soils data. The national watersheds were divided into five regions through K-clustering and a lasso linear regression model, applying the Leave-One-Out calibration method, was calculated for each region. Nash-Sutcliffe Efficiency (NSE) was used to determine the accuracy of the resulting models. The regions encompassing the United States along and west of the Rocky Mountains, excluding the coastal watersheds, produced the most accurate linear models. The Pacific coast region models produced poor and inconsistent results, indicating that the regions need to be further subdivided. Presently, RO and HF response variables appear to be more easily modeled than LF. Results of linear regression modeling showed varying importance of watershed and fire event variables, with conflicting correlation between land cover types and soil types by region. The addition of further independent variables and constriction of current variables based on correlation indicators is ongoing and should allow for more accurate linear regression modeling.
Asymptotic aspect of derivations in Banach algebras.
Roh, Jaiok; Chang, Ick-Soon
2017-01-01
We prove that every approximate linear left derivation on a semisimple Banach algebra is continuous. Also, we consider linear derivations on Banach algebras and we first study the conditions for a linear derivation on a Banach algebra. Then we examine the functional inequalities related to a linear derivation and their stability. We finally take central linear derivations with radical ranges on semiprime Banach algebras and a continuous linear generalized left derivation on a semisimple Banach algebra.
Rapid calculation of acoustic fields from arbitrary continuous-wave sources.
Treeby, Bradley E; Budisky, Jakub; Wise, Elliott S; Jaros, Jiri; Cox, B T
2018-01-01
A Green's function solution is derived for calculating the acoustic field generated by phased array transducers of arbitrary shape when driven by a single frequency continuous wave excitation with spatially varying amplitude and phase. The solution is based on the Green's function for the homogeneous wave equation expressed in the spatial frequency domain or k-space. The temporal convolution integral is solved analytically, and the remaining integrals are expressed in the form of the spatial Fourier transform. This allows the acoustic pressure for all spatial positions to be calculated in a single step using two fast Fourier transforms. The model is demonstrated through several numerical examples, including single element rectangular and spherically focused bowl transducers, and multi-element linear and hemispherical arrays.
Thermally tunable-focus lenticular lens using liquid crystal.
Heo, Kyong Chan; Yu, Seung Hun; Kwon, Jin Hyuk; Gwag, Jin Seog
2013-12-10
A thermally tunable focusing lenticular liquid crystal (LC) lens array was fabricated using a polymer LC component, including a polarizer that produces linearly polarized light. The focal length in the proposed structure could be tuned by temperature-adjusted applied voltage to a transparent heater in a lenticular LC lens cell because it alters the birefringence of the LC and varies the difference in refractive index between the LC and the polymer. The results showed that the focal length of the E7 LC used varied continuously with temperature from 5.6 to 8.7 mm from 25°C to 54°C, respectively. The proposed lenticular LC lens has potential use in photonic devices such as biological imaging, phone cameras, and optical sensors.
1984-03-01
POWERED PLASMA FOCUS Contract No. AFOSR-83-0145 PROGRESS REPORT For the Period April 1, 1983 through March 31, 1984 Submitted to Air Force Office of...AND ACCELERATION USING LINEAR ELECTRON BEAMS AND A PULSE POWERED PLASMA FOCUS Contract No. AFOSR-83-0145 PROGRESS REPORT For the Period April 1, 1983...Acceleration Using Linear Electron Beams and a Pulse Powered Plasma Focus " 01 €,G APRIL 1, 1983 THROUGH MRCH 31, 1984 A. Collective Acceleration and Related
A continuous high-throughput bioparticle sorter based on 3D traveling-wave dielectrophoresis.
Cheng, I-Fang; Froude, Victoria E; Zhu, Yingxi; Chang, Hsueh-Chia; Chang, Hsien-Chang
2009-11-21
We present a high throughput (maximum flow rate approximately 10 microl/min or linear velocity approximately 3 mm/s) continuous bio-particle sorter based on 3D traveling-wave dielectrophoresis (twDEP) at an optimum AC frequency of 500 kHz. The high throughput sorting is achieved with a sustained twDEP particle force normal to the continuous through-flow, which is applied over the entire chip by a single 3D electrode array. The design allows continuous fractionation of micron-sized particles into different downstream sub-channels based on differences in their twDEP mobility on both sides of the cross-over. Conventional DEP is integrated upstream to focus the particles into a single levitated queue to allow twDEP sorting by mobility difference and to minimize sedimentation and field-induced lysis. The 3D electrode array design minimizes the offsetting effect of nDEP (negative DEP with particle force towards regions with weak fields) on twDEP such that both forces increase monotonically with voltage to further increase the throughput. Effective focusing and separation of red blood cells from debris-filled heterogeneous samples are demonstrated, as well as size-based separation of poly-dispersed liposome suspensions into two distinct bands at 2.3 to 4.6 microm and 1.5 to 2.7 microm, at the highest throughput recorded in hand-held chips of 6 microl/min.
Chung, Yeonseung; Noh, Heesang; Honda, Yasushi; Hashizume, Masahiro; Bell, Michelle L; Guo, Yue-Liang Leon; Kim, Ho
2017-05-15
Understanding how the temperature-mortality association worldwide changes over time is crucial to addressing questions of human adaptation under climate change. Previous studies investigated the temporal changes in the association over a few discrete time frames or assumed a linear change. Also, most studies focused on attenuation of heat-related mortality and studied the United States or Europe. This research examined continuous temporal changes (potentially nonlinear) in mortality related to extreme temperature (both heat and cold) for 15 cities in Northeast Asia (1972-2009). We used a generalized linear model with splines to simultaneously capture 2 types of nonlinearity: nonlinear association between temperature and mortality and nonlinear change over time in the association. We combined city-specific results to generate country-specific results using Bayesian hierarchical modeling. Cold-related mortality remained roughly constant over decades and slightly increased in the late 2000s, with a larger increase for cardiorespiratory deaths than for deaths from other causes. Heat-related mortality rates have decreased continuously over time, with more substantial decrease in earlier decades, for older populations and for cardiorespiratory deaths. Our findings suggest that future assessment of health effects of climate change should account for the continuous changes in temperature-related health risk and variations by factors such as age, cause of death, and location. © Crown copyright 2017.
Jenkins, Kristi Rahrig
2014-08-01
The present study uses a focused approach to compare self-reported versus administratively recorded measures of absences related to health or illness. To date, the few studies that focus on this topic produced mixed results. To help shed light on this issue, the present research has 2 related objectives: (1) examine how highly correlated self-reported and administratively recorded measures of absences related to health or illness might be, and (2) how each measure predicts various aspects of health. Using data from the 2012 StayWell® Health Management health risk appraisal (HRA) and 1 year (2011) of administratively recorded timekeeping data, bivariate analyses for continuous variables and generalized linear modeling for variables with greater than 2 response categories were used. For the multivariate analyses, linear regression models controlling for sex, age, race, income, job status, and campus location were calculated for the continuous outcomes (ie, self-rated health and chronic conditions). Results indicate that self-reported and administratively recorded absences related to health or illness were moderately correlated (correlation coefficient of 0.47). In addition, each measure functioned similarly (in direction and magnitude) to predict health outcomes. Both greater self-reported and recorded illness-related absenteeism was associated with poorer self-rated health and greater numbers of chronic conditions. These results suggest that self-rated illness-related absenteeism may be a reasonable way to assess various program outcomes meaningful to employers, particularly if administratively recorded measures are unavailable or too time consuming or expensive to analyze.
Liquid cooled, linear focus solar cell receiver
Kirpich, A.S.
1983-12-08
Separate structures for electrical insulation and thermal conduction are established within a liquid cooled, linear focus solar cell receiver for use with parabolic or Fresnel optical concentrators. The receiver includes a V-shaped aluminum extrusion having a pair of outer faces each formed with a channel receiving a string of solar cells in thermal contact with the extrusion. Each cell string is attached to a continuous glass cover secured within the channel with spring clips to isolate the string from the external environment. Repair or replacement of solar cells is effected simply by detaching the spring clips to remove the cover/cell assembly without interrupting circulation of coolant fluid through the receiver. The lower surface of the channel in thermal contact with the cells of the string is anodized to establish a suitable standoff voltage capability between the cells and the extrusion. Primary electrical insulation is provided by a dielectric tape disposed between the coolant tube and extrusion. Adjacent solar cells are soldered to interconnect members designed to accommodate thermal expansion and mismatches. The coolant tube is clamped into the extrusion channel with a releasably attachable clamping strip to facilitate easy removal of the receiver from the coolant circuit.
Liquid cooled, linear focus solar cell receiver
Kirpich, Aaron S.
1985-01-01
Separate structures for electrical insulation and thermal conduction are established within a liquid cooled, linear focus solar cell receiver for use with parabolic or Fresnel optical concentrators. The receiver includes a V-shaped aluminum extrusion having a pair of outer faces each formed with a channel receiving a string of solar cells in thermal contact with the extrusion. Each cell string is attached to a continuous glass cover secured within the channel with spring clips to isolate the string from the external environment. Repair or replacement of solar cells is effected simply by detaching the spring clips to remove the cover/cell assembly without interrupting circulation of coolant fluid through the receiver. The lower surface of the channel in thermal contact with the cells of the string is anodized to establish a suitable standoff voltage capability between the cells and the extrusion. Primary electrical insulation is provided by a dielectric tape disposed between the coolant tube and extrusion. Adjacent solar cells are soldered to interconnect members designed to accommodate thermal expansion and mismatches. The coolant tube is clamped into the extrusion channel with a releasably attachable clamping strip to facilitate easy removal of the receiver from the coolant circuit.
Ultrafast Ultrasound Imaging of Ocular Anatomy and Blood Flow
Urs, Raksha; Ketterling, Jeffrey A.; Silverman, Ronald H.
2016-01-01
Purpose Ophthalmic ultrasound imaging is currently performed with mechanically scanned single-element probes. These probes have limited capabilities overall and lack the ability to image blood flow. Linear-array systems are able to detect blood flow, but these systems exceed ophthalmic acoustic intensity safety guidelines. Our aim was to implement and evaluate a new linear-array–based technology, compound coherent plane-wave ultrasound, which offers ultrafast imaging and depiction of blood flow at safe acoustic intensity levels. Methods We compared acoustic intensity generated by a 128-element, 18-MHz linear array operated in conventionally focused and plane-wave modes and characterized signal-to-noise ratio (SNR) and lateral resolution. We developed plane-wave B-mode, real-time color-flow, and high-resolution depiction of slow flow in postprocessed data collected continuously at a rate of 20,000 frames/s. We acquired in vivo images of the posterior pole of the eye by compounding plane-wave images acquired over ±10° and produced images depicting orbital and choroidal blood flow. Results With the array operated conventionally, Doppler modes exceeded Food and Drug Administration safety guidelines, but plane-wave modalities were well within guidelines. Plane-wave data allowed generation of high-quality compound B-mode images, with SNR increasing with the number of compounded frames. Real-time color-flow Doppler readily visualized orbital blood flow. Postprocessing of continuously acquired data blocks of 1.6-second duration allowed high-resolution depiction of orbital and choroidal flow over the cardiac cycle. Conclusions Newly developed high-frequency linear arrays in combination with plane-wave techniques present opportunities for the evaluation of ocular anatomy and blood flow, as well as visualization and analysis of other transient phenomena such as vessel wall motion over the cardiac cycle and saccade-induced vitreous motion. PMID:27428169
Practical somewhat-secure quantum somewhat-homomorphic encryption with coherent states
NASA Astrophysics Data System (ADS)
Tan, Si-Hui; Ouyang, Yingkai; Rohde, Peter P.
2018-04-01
We present a scheme for implementing homomorphic encryption on coherent states encoded using phase-shift keys. The encryption operations require only rotations in phase space, which commute with computations in the code space performed via passive linear optics, and with generalized nonlinear phase operations that are polynomials of the photon-number operator in the code space. This encoding scheme can thus be applied to any computation with coherent-state inputs, and the computation proceeds via a combination of passive linear optics and generalized nonlinear phase operations. An example of such a computation is matrix multiplication, whereby a vector representing coherent-state amplitudes is multiplied by a matrix representing a linear optics network, yielding a new vector of coherent-state amplitudes. By finding an orthogonal partitioning of the support of our encoded states, we quantify the security of our scheme via the indistinguishability of the encrypted code words. While we focus on coherent-state encodings, we expect that this phase-key encoding technique could apply to any continuous-variable computation scheme where the phase-shift operator commutes with the computation.
Clean focus, dose and CD metrology for CD uniformity improvement
NASA Astrophysics Data System (ADS)
Lee, Honggoo; Han, Sangjun; Hong, Minhyung; Kim, Seungyoung; Lee, Jieun; Lee, DongYoung; Oh, Eungryong; Choi, Ahlin; Kim, Nakyoon; Robinson, John C.; Mengel, Markus; Pablo, Rovira; Yoo, Sungchul; Getin, Raphael; Choi, Dongsub; Jeon, Sanghuck
2018-03-01
Lithography process control solutions require more exacting capabilities as the semiconductor industry goes forward to the 1x nm node DRAM device manufacturing. In order to continue scaling down the device feature sizes, critical dimension (CD) uniformity requires continuous improvement to meet the required CD error budget. In this study we investigate using optical measurement technology to improve over CD-SEM methods in focus, dose, and CD. One of the key challenges is measuring scanner focus of device patterns. There are focus measurement methods based on specially designed marks on scribe-line, however, one issue of this approach is that it will report focus of scribe line which is potentially different from that of the real device pattern. In addition, scribe-line marks require additional design and troubleshooting steps that add complexity. In this study, we investigated focus measurement directly on the device pattern. Dose control is typically based on using the linear correlation behavior between dose and CD. The noise of CD measurement, based on CD-SEM for example, will not only impact the accuracy, but also will make it difficult to monitor dose signature on product wafers. In this study we will report the direct dose metrology result using an optical metrology system which especially enhances the DUV spectral coverage to improve the signal to noise ratio. CD-SEM is often used to measure CD after the lithography step. This measurement approach has the advantage of easy recipe setup as well as the flexibility to measure critical feature dimensions, however, we observe that CD-SEM metrology has limitations. In this study, we demonstrate within-field CD uniformity improvement through the extraction of clean scanner slit and scan CD behavior by using optical metrology.
Linear stability analysis of collective neutrino oscillations without spurious modes
NASA Astrophysics Data System (ADS)
Morinaga, Taiki; Yamada, Shoichi
2018-01-01
Collective neutrino oscillations are induced by the presence of neutrinos themselves. As such, they are intrinsically nonlinear phenomena and are much more complex than linear counterparts such as the vacuum or Mikheyev-Smirnov-Wolfenstein oscillations. They obey integro-differential equations, for which it is also very challenging to obtain numerical solutions. If one focuses on the onset of collective oscillations, on the other hand, the equations can be linearized and the technique of linear analysis can be employed. Unfortunately, however, it is well known that such an analysis, when applied with discretizations of continuous angular distributions, suffers from the appearance of so-called spurious modes: unphysical eigenmodes of the discretized linear equations. In this paper, we analyze in detail the origin of these unphysical modes and present a simple solution to this annoying problem. We find that the spurious modes originate from the artificial production of pole singularities instead of a branch cut on the Riemann surface by the discretizations. The branching point singularities on the Riemann surface for the original nondiscretized equations can be recovered by approximating the angular distributions with polynomials and then performing the integrals analytically. We demonstrate for some examples that this simple prescription does remove the spurious modes. We also propose an even simpler method: a piecewise linear approximation to the angular distribution. It is shown that the same methodology is applicable to the multienergy case as well as to the dispersion relation approach that was proposed very recently.
NASA Astrophysics Data System (ADS)
Huang, X.; Hu, K.; Ling, X.; Zhang, Y.; Lu, Z.; Zhou, G.
2017-09-01
This paper introduces a novel global patch matching method that focuses on how to remove fronto-parallel bias and obtain continuous smooth surfaces with assuming that the scenes covered by stereos are piecewise continuous. Firstly, simple linear iterative cluster method (SLIC) is used to segment the base image into a series of patches. Then, a global energy function, which consists of a data term and a smoothness term, is built on the patches. The data term is the second-order Taylor expansion of correlation coefficients, and the smoothness term is built by combing connectivity constraints and the coplanarity constraints are combined to construct the smoothness term. Finally, the global energy function can be built by combining the data term and the smoothness term. We rewrite the global energy function in a quadratic matrix function, and use least square methods to obtain the optimal solution. Experiments on Adirondack stereo and Motorcycle stereo of Middlebury benchmark show that the proposed method can remove fronto-parallel bias effectively, and produce continuous smooth surfaces.
Probabilistic Structural Analysis Methods (PSAM) for select space propulsion system components
NASA Technical Reports Server (NTRS)
1991-01-01
This annual report summarizes the work completed during the third year of technical effort on the referenced contract. Principal developments continue to focus on the Probabilistic Finite Element Method (PFEM) which has been under development for three years. Essentially all of the linear capabilities within the PFEM code are in place. Major progress in the application or verifications phase was achieved. An EXPERT module architecture was designed and partially implemented. EXPERT is a user interface module which incorporates an expert system shell for the implementation of a rule-based interface utilizing the experience and expertise of the user community. The Fast Probability Integration (FPI) Algorithm continues to demonstrate outstanding performance characteristics for the integration of probability density functions for multiple variables. Additionally, an enhanced Monte Carlo simulation algorithm was developed and demonstrated for a variety of numerical strategies.
Thin film absorption characterization by focus error thermal lensing
NASA Astrophysics Data System (ADS)
Domené, Esteban A.; Schiltz, Drew; Patel, Dinesh; Day, Travis; Jankowska, E.; Martínez, Oscar E.; Rocca, Jorge J.; Menoni, Carmen S.
2017-12-01
A simple, highly sensitive technique for measuring absorbed power in thin film dielectrics based on thermal lensing is demonstrated. Absorption of an amplitude modulated or pulsed incident pump beam by a thin film acts as a heat source that induces thermal lensing in the substrate. A second continuous wave collimated probe beam defocuses after passing through the sample. Determination of absorption is achieved by quantifying the change of the probe beam profile at the focal plane using a four-quadrant detector and cylindrical lenses to generate a focus error signal. This signal is inherently insensitive to deflection, which removes noise contribution from point beam stability. A linear dependence of the focus error signal on the absorbed power is shown for a dynamic range of over 105. This technique was used to measure absorption loss in dielectric thin films deposited on fused silica substrates. In pulsed configuration, a single shot sensitivity of about 20 ppm is demonstrated, providing a unique technique for the characterization of moving targets as found in thin film growth instrumentation.
Waveguides with Absorbing Boundaries: Nonlinearity Controlled by an Exceptional Point and Solitons
NASA Astrophysics Data System (ADS)
Midya, Bikashkali; Konotop, Vladimir V.
2017-07-01
We reveal the existence of continuous families of guided single-mode solitons in planar waveguides with weakly nonlinear active core and absorbing boundaries. Stable propagation of TE and TM-polarized solitons is accompanied by attenuation of all other modes, i.e., the waveguide features properties of conservative and dissipative systems. If the linear spectrum of the waveguide possesses exceptional points, which occurs in the case of TM polarization, an originally focusing (defocusing) material nonlinearity may become effectively defocusing (focusing). This occurs due to the geometric phase of the carried eigenmode when the surface impedance encircles the exceptional point. In its turn, the change of the effective nonlinearity ensures the existence of dark (bright) solitons in spite of focusing (defocusing) Kerr nonlinearity of the core. The existence of an exceptional point can also result in anomalous enhancement of the effective nonlinearity. In terms of practical applications, the nonlinearity of the reported waveguide can be manipulated by controlling the properties of the absorbing cladding.
ERIC Educational Resources Information Center
Ferrando, Pere J.
2004-01-01
This study used kernel-smoothing procedures to estimate the item characteristic functions (ICFs) of a set of continuous personality items. The nonparametric ICFs were compared with the ICFs estimated (a) by the linear model and (b) by Samejima's continuous-response model. The study was based on a conditioned approach and used an error-in-variables…
Hybrid Discrete-Continuous Markov Decision Processes
NASA Technical Reports Server (NTRS)
Feng, Zhengzhu; Dearden, Richard; Meuleau, Nicholas; Washington, Rich
2003-01-01
This paper proposes a Markov decision process (MDP) model that features both discrete and continuous state variables. We extend previous work by Boyan and Littman on the mono-dimensional time-dependent MDP to multiple dimensions. We present the principle of lazy discretization, and piecewise constant and linear approximations of the model. Having to deal with several continuous dimensions raises several new problems that require new solutions. In the (piecewise) linear case, we use techniques from partially- observable MDPs (POMDPS) to represent value functions as sets of linear functions attached to different partitions of the state space.
Accuracy of active chirp linearization for broadband frequency modulated continuous wave ladar.
Barber, Zeb W; Babbitt, Wm Randall; Kaylor, Brant; Reibel, Randy R; Roos, Peter A
2010-01-10
As the bandwidth and linearity of frequency modulated continuous wave chirp ladar increase, the resulting range resolution, precisions, and accuracy are improved correspondingly. An analysis of a very broadband (several THz) and linear (<1 ppm) chirped ladar system based on active chirp linearization is presented. Residual chirp nonlinearity and material dispersion are analyzed as to their effect on the dynamic range, precision, and accuracy of the system. Measurement precision and accuracy approaching the part per billion level is predicted.
Adaptive Multilinear Tensor Product Wavelets
Weiss, Kenneth; Lindstrom, Peter
2015-08-12
Many foundational visualization techniques including isosurfacing, direct volume rendering and texture mapping rely on piecewise multilinear interpolation over the cells of a mesh. However, there has not been much focus within the visualization community on techniques that efficiently generate and encode globally continuous functions defined by the union of multilinear cells. Wavelets provide a rich context for analyzing and processing complicated datasets. In this paper, we exploit adaptive regular refinement as a means of representing and evaluating functions described by a subset of their nonzero wavelet coefficients. We analyze the dependencies involved in the wavelet transform and describe how tomore » generate and represent the coarsest adaptive mesh with nodal function values such that the inverse wavelet transform is exactly reproduced via simple interpolation (subdivision) over the mesh elements. This allows for an adaptive, sparse representation of the function with on-demand evaluation at any point in the domain. In conclusion, we focus on the popular wavelets formed by tensor products of linear B-splines, resulting in an adaptive, nonconforming but crack-free quadtree (2D) or octree (3D) mesh that allows reproducing globally continuous functions via multilinear interpolation over its cells.« less
Solitary Waves of a $$\\mathcal {P}$$ $$\\mathcal {T}$$-Symmetric Nonlinear Dirac Equation
Cuevas-Maraver, Jesus; Kevrekidis, Panayotis G.; Saxena, Avadh; ...
2015-10-06
In our study we consider we consider a prototypical example of a mathcalP mathcalT-symmetric Dirac model. We discuss the underlying linear limit of the model and identify the threshold of the mathcalP mathcalT -phase transition in an analytical form. We then focus on the examination of the nonlinear model. We consider the continuation in the mathcalP mathcalT -symmetric model of the solutions of the corresponding Hamiltonian model and find that the solutions can be continued robustly as stable ones all the way up to the mathcalP mathcalT-transition threshold. In the latter, they degenerate into linear waves. We also examine themore » dynamics of the model. Given the stability of the waveforms in the mathcalP mathcalT-exact phase, we consider them as initial conditions for parameters outside of that phase. We also find that both oscillatory dynamics and exponential growth may arise, depending on the size of the corresponding “quench”. The former can be characterized by an interesting form of bifrequency solutions that have been predicted on the basis of the SU symmetry. Finally, we explore some special, analytically tractable, but not mathcalP mathcalT-symmetric solutions in the massless limit of t- e model.« less
NASA Astrophysics Data System (ADS)
Mitra, Anindita; Li, Y.-F.; Shimizu, T.; Klämpfl, Tobias; Zimmermann, J. L.; Morfill, G. E.
2012-10-01
Cold Atmospheric Plasma (CAP) is a fast, low cost, simple, easy to handle technology for biological application. Our group has developed a number of different CAP devices using the microwave technology and the surface micro discharge (SMD) technology. In this study, FlatPlaSter2.0 at different time intervals (0.5 to 5 min) is used for microbial inactivation. There is a continuous demand for deactivation of microorganisms associated with raw foods/seeds without loosing their properties. This research focuses on the kinetics of CAP induced microbial inactivation of naturally growing surface microorganisms on seeds. The data were assessed for log- linear and non-log-linear models for survivor curves as a function of time. The Weibull model showed the best fitting performance of the data. No shoulder and tail was observed. The models are focused in terms of the number of log cycles reduction rather than on classical D-values with statistical measurements. The viability of seeds was not affected for CAP treatment times up to 3 min with our device. The optimum result was observed at 1 min with increased percentage of germination from 60.83% to 89.16% compared to the control. This result suggests the advantage and promising role of CAP in food industry.
Spacecraft formation keeping near the libration points of the Sun-Earth/Moon system
NASA Astrophysics Data System (ADS)
Marchand, Belinda G.
Multi-spacecraft formations, evolving near the vicinity of the libration points of the Sun-Earth/Moon system, have drawn increased interest for a variety of applications. This is particularly true for space based interferometry missions such as Terrestrial Planet Finder (TPF) and the Micro Arcsecond X-Ray Imaging Mission (MAXIM). Recent studies in formation flight have focused, primarily, on the control of formations that evolve in the immediate vicinity of the Earth. However, the unique dynamical structure near the libration points requires that the effectiveness and feasibility of these methods be re-examined. The present study is divided into two main topics. First, a dynamical systems approach is employed to develop a better understanding of the natural uncontrolled formation dynamics in this region of space. The focus is formations that evolve near halo orbits and Lissajous trajectories, near the L1 and L2 libration points of the Sun-Earth/Moon system. This leads to the development of a Floquet controller designed to simplify the process of identifying naturally existing formations as well as the associated stable manifolds for deployment. The initial analysis is presented in the Circular Restricted Three-Body Problem, but the results are later transitioned into the more complete Ephemeris model. The next subject of interest in this investigation is non-natural formations. That is, formations that are not consistent with the natural dynamical flow near the libration points. Mathematically, precise formation keeping of a given nominal configuration requires continuous control. Hence, a detailed analysis is presented to contrast the effectiveness and issues associated with linear optimal control and feedback linearization methods. Of course, continuous operation of the thrusters, may not represent a feasible option for a particular mission. If discrete formation keeping is implemented, however, the formation keeping goal will be subject to increased tracking errors relative to the nominal path. With this in mind, the final phase of the analysis presented here is centered on discrete formation keeping. The initial analysis is devoted to both linear state and radial targeters. The results from these two methodologies are later employed as a starting solution for an optimal impulsive control algorithm.
Continuing evaluation of bipolar linear devices for total dose bias dependency and ELDRS effects
NASA Technical Reports Server (NTRS)
McClure, Steven S.; Gorelick, Jerry L.; Yui, Candice; Rax, Bernard G.; Wiedeman, Michael D.
2003-01-01
We present results of continuing efforts to evaluate total dose bias dependency and ELDRS effects in bipolar linear microcircuits. Several devices were evaluated, each exhibiting moderate to significant bias and/or dose rate dependency.
NASA Technical Reports Server (NTRS)
Park, K. C.; Belvin, W. Keith
1990-01-01
A general form for the first-order representation of the continuous second-order linear structural-dynamics equations is introduced to derive a corresponding form of first-order continuous Kalman filtering equations. Time integration of the resulting equations is carried out via a set of linear multistep integration formulas. It is shown that a judicious combined selection of computational paths and the undetermined matrices introduced in the general form of the first-order linear structural systems leads to a class of second-order discrete Kalman filtering equations involving only symmetric sparse N x N solution matrices.
Stretched Lens Array Photovoltaic Concentrator Technology Developed
NASA Technical Reports Server (NTRS)
Piszczor, Michael F., Jr.; O'Neill, Mark J.
2004-01-01
Solar arrays have been and continue to be the mainstay in providing power to nearly all commercial and government spacecraft. Light from the Sun is directly converted into electrical energy using solar cells. One way to reduce the cost of future space power systems is by minimizing the size and number of expensive solar cells by focusing the sunlight onto smaller cells using concentrator optics. The stretched lens array (SLA) is a unique concept that uses arched Fresnel lens concentrators to focus sunlight onto a line of high-efficiency solar cells located directly beneath. The SLA concept is based on the Solar Concentrator Array with Refractive Linear Element Technology (SCARLET) design that was used on NASA's New Millennium Deep Space 1 mission. The highly successful asteroid/comet rendezvous mission (1998 to 2001) demonstrated the performance and long-term durability of the SCARLET/SLA solar array design and set the foundation for further improvements to optimize its performance.
Overview of the CHarring Ablator Response (CHAR) Code
NASA Technical Reports Server (NTRS)
Amar, Adam J.; Oliver, A. Brandon; Kirk, Benjamin S.; Salazar, Giovanni; Droba, Justin
2016-01-01
An overview of the capabilities of the CHarring Ablator Response (CHAR) code is presented. CHAR is a one-, two-, and three-dimensional unstructured continuous Galerkin finite-element heat conduction and ablation solver with both direct and inverse modes. Additionally, CHAR includes a coupled linear thermoelastic solver for determination of internal stresses induced from the temperature field and surface loading. Background on the development process, governing equations, material models, discretization techniques, and numerical methods is provided. Special focus is put on the available boundary conditions including thermochemical ablation and contact interfaces, and example simulations are included. Finally, a discussion of ongoing development efforts is presented.
Overview of the CHarring Ablator Response (CHAR) Code
NASA Technical Reports Server (NTRS)
Amar, Adam J.; Oliver, A. Brandon; Kirk, Benjamin S.; Salazar, Giovanni; Droba, Justin
2016-01-01
An overview of the capabilities of the CHarring Ablator Response (CHAR) code is presented. CHAR is a one-, two-, and three-dimensional unstructured continuous Galerkin finite-element heat conduction and ablation solver with both direct and inverse modes. Additionally, CHAR includes a coupled linear thermoelastic solver for determination of internal stresses induced from the temperature field and surface loading. Background on the development process, governing equations, material models, discretization techniques, and numerical methods is provided. Special focus is put on the available boundary conditions including thermochemical ablation, surface-to-surface radiation exchange, and flowfield coupling. Finally, a discussion of ongoing development efforts is presented.
Modulating complex beams in amplitude and phase using fast tilt-micromirror arrays and phase masks.
Roth, Matthias; Heber, Jörg; Janschek, Klaus
2018-06-15
The Letter proposes a system for the spatial modulation of light in amplitude and phase at kilohertz frame rates and high spatial resolution. The focus is fast spatial light modulators (SLMs) consisting of continuously tiltable micromirrors. We investigate the utilization of such SLMs in combination with a static phase mask in a 4f setup. The phase mask enables the complex beam modulation in a linear optical arrangement. Furthermore, adding so-called phase steps to the phase mask increases both the number of image pixels at constant SLM resolution and the optical efficiency. We illustrate our concept based on numerical simulations.
Enhanced focus steering abilities of multi-element therapeutic arrays operating in nonlinear regimes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yuldashev, P., E-mail: petr@acs366.phys.msu.ru; Ilyin, S.; Gavrilov, L.
2015-10-28
Steering abilities of a typical HIFU therapeutic array operated in linear and nonlinear regimes were compared using numerical simulation with the 3D Westervelt equation. The array included 256 elements of 1.2 MHz frequency and 6.6 mm diameter distributed in a quasi-random pattern over a spherical shell with a 130 mm aperture and a focal length of 120 mm. In the case of linear focusing, thermal effects are proportional to the intensity level and the criterion for safe array operation is that the intensity in the grating lobes should be less than 10% of the intensity in the main focus. Inmore » the case of nonlinear focusing, the heating effect is no longer proportional to intensity; therefore the heat deposition rate was chosen as the relevant metric, using the same 10% threshold for the secondary lobe in comparison with the focal maximum. When steering the focus, the same linearly predicted intensity level at the main focus was maintained by increasing the array power. Numerical simulations of the acoustic field were performed for nonlinear propagation both in water and in tissue. It was shown that for shock-forming conditions in the main focus, the steering range of safe electronic focusing is larger than that for linear propagation conditions. Nonlinear sonication regimes therefore can be used to enlarge tissue volumes that can be sonicated using electronic steering of the focus of HIFU arrays.« less
Lerman, Gilad M; Levy, Uriel
2007-08-01
We study the tight-focusing properties of spatially variant vector optical fields with elliptical symmetry of linear polarization. We found the eccentricity of the incident polarized light to be an important parameter providing an additional degree of freedom assisting in controlling the field properties at the focus and allowing matching of the field distribution at the focus to the specific application. Applications of these space-variant polarized beams vary from lithography and optical storage to particle beam trapping and material processing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dennis C. Smolarski, S.J.
Project Abstract This project was a continuation of work begun under a subcontract issued off of TSI-DOE Grant 1528746, awarded to the University of Illinois Urbana-Champaign. Dr. Anthony Mezzacappa is the Principal Investigator on the Illinois award. A separate award was issued to Santa Clara University to continue the collaboration during the time period May 2003 ? 2004. Smolarski continued to work on preconditioner technology and its interface with various iterative methods. He worked primarily with F. Dough Swesty (SUNY-Stony Brook) in continuing software development started in the 2002-03 academic year. Special attention was paid to the development and testingmore » of difference sparse approximate inverse preconditioners and their use in the solution of linear systems arising from radiation transport equations. The target was a high performance platform on which efficient implementation is a critical component of the overall effort. Smolarski also focused on the integration of the adaptive iterative algorithm, Chebycode, developed by Tom Manteuffel and Steve Ashby and adapted by Ryan Szypowski for parallel platforms, into the radiation transport code being developed at SUNY-Stony Brook.« less
NASA Astrophysics Data System (ADS)
Bagchi, A.; Sarkar, S.; Mukhopadhyay, P. K.
2018-02-01
Three different coloured focused laser beams were used to study the photo induced microactuation effect found in some ferromagnetic shape memory alloys. Besides trying to uncover the basic causes of this unique and as yet unexplained effect, these studies are to help find other conditions to further characterize the effect for practical use. In this study some mechanisms have been proposed to control the amplitude of actuation of the sample. Control of the actuation of the FSMA sample both linearly with the help of a continuously variable neutral density filter as well periodically with the help of a linear polarizer was achieved. Statistical analysis of the experimental data was also done by applying ANOVA studies on the data to conclusively provide evidence in support of the relationship between the actuation of the sample and the various controlling factors. This study is expected to pave the way to implement this property of the sample in fabricating and operating useful micro-mechanical systems in the near future.
Dark energy and modified gravity in the Effective Field Theory of Large-Scale Structure
NASA Astrophysics Data System (ADS)
Cusin, Giulia; Lewandowski, Matthew; Vernizzi, Filippo
2018-04-01
We develop an approach to compute observables beyond the linear regime of dark matter perturbations for general dark energy and modified gravity models. We do so by combining the Effective Field Theory of Dark Energy and Effective Field Theory of Large-Scale Structure approaches. In particular, we parametrize the linear and nonlinear effects of dark energy on dark matter clustering in terms of the Lagrangian terms introduced in a companion paper [1], focusing on Horndeski theories and assuming the quasi-static approximation. The Euler equation for dark matter is sourced, via the Newtonian potential, by new nonlinear vertices due to modified gravity and, as in the pure dark matter case, by the effects of short-scale physics in the form of the divergence of an effective stress tensor. The effective fluid introduces a counterterm in the solution to the matter continuity and Euler equations, which allows a controlled expansion of clustering statistics on mildly nonlinear scales. We use this setup to compute the one-loop dark-matter power spectrum.
Featural and temporal attention selectively enhance task-appropriate representations in human V1
Warren, Scott; Yacoub, Essa; Ghose, Geoffrey
2015-01-01
Our perceptions are often shaped by focusing our attention toward specific features or periods of time irrespective of location. We explore the physiological bases of these non-spatial forms of attention by imaging brain activity while subjects perform a challenging change detection task. The task employs a continuously varying visual stimulus that, for any moment in time, selectively activates functionally distinct subpopulations of primary visual cortex (V1) neurons. When subjects are cued to the timing and nature of the change, the mapping of orientation preference across V1 was systematically shifts toward the cued stimulus just prior to its appearance. A simple linear model can explain this shift: attentional changes are selectively targeted toward neural subpopulations representing the attended feature at the times the feature was anticipated. Our results suggest that featural attention is mediated by a linear change in the responses of task-appropriate neurons across cortex during appropriate periods of time. PMID:25501983
Forcing, feedbacks and climate sensitivity in CMIP5 coupled atmosphere-ocean climate models
Andrews, Timothy; Gregory, Jonathan M.; Webb, Mark J.; ...
2012-05-15
We quantify forcing and feedbacks across available CMIP5 coupled atmosphere-ocean general circulation models (AOGCMs) by analysing simulations forced by an abrupt quadrupling of atmospheric carbon dioxide concentration. This is the first application of the linear forcing-feedback regression analysis of Gregory et al. (2004) to an ensemble of AOGCMs. The range of equilibrium climate sensitivity is 2.1–4.7 K. Differences in cloud feedbacks continue to be important contributors to this range. Some models show small deviations from a linear dependence of top-of-atmosphere radiative fluxes on global surface temperature change. We show that this phenomenon largely arises from shortwave cloud radiative effects overmore » the ocean and is consistent with independent estimates of forcing using fixed sea-surface temperature methods. Moreover, we suggest that future research should focus more on understanding transient climate change, including any time-scale dependence of the forcing and/or feedback, rather than on the equilibrium response to large instantaneous forcing.« less
Structural Loads Analysis for Wave Energy Converters
DOE Office of Scientific and Technical Information (OSTI.GOV)
van Rij, Jennifer A; Yu, Yi-Hsiang; Guo, Yi
2017-06-03
This study explores and verifies the generalized body-modes method for evaluating the structural loads on a wave energy converter (WEC). Historically, WEC design methodologies have focused primarily on accurately evaluating hydrodynamic loads, while methodologies for evaluating structural loads have yet to be fully considered and incorporated into the WEC design process. As wave energy technologies continue to advance, however, it has become increasingly evident that an accurate evaluation of the structural loads will enable an optimized structural design, as well as the potential utilization of composites and flexible materials, and hence reduce WEC costs. Although there are many computational fluidmore » dynamics, structural analyses and fluid-structure-interaction (FSI) codes available, the application of these codes is typically too computationally intensive to be practical in the early stages of the WEC design process. The generalized body-modes method, however, is a reduced order, linearized, frequency-domain FSI approach, performed in conjunction with the linear hydrodynamic analysis, with computation times that could realistically be incorporated into the WEC design process.« less
NASA Astrophysics Data System (ADS)
Bagchi, A.; Sarkar, S.; Mukhopadhyay, P. K.
2018-07-01
Three different coloured focused laser beams were used to study the photo induced microactuation effect found in some ferromagnetic shape memory alloys. Besides trying to uncover the basic causes of this unique and as yet unexplained effect, these studies are to help find other conditions to further characterize the effect for practical use. In this study some mechanisms have been proposed to control the amplitude of actuation of the sample. Control of the actuation of the FSMA sample both linearly with the help of a continuously variable neutral density filter as well periodically with the help of a linear polarizer was achieved. Statistical analysis of the experimental data was also done by applying ANOVA studies on the data to conclusively provide evidence in support of the relationship between the actuation of the sample and the various controlling factors. This study is expected to pave the way to implement this property of the sample in fabricating and operating useful micro-mechanical systems in the near future.
From carbon nanotubes to carbon atomic chains
NASA Astrophysics Data System (ADS)
Casillas García, Gilberto; Zhang, Weijia; José-Yacamán, Miguel
2010-10-01
Carbyne is a linear allotrope of carbon. It is formed by a linear arrangement of carbon atoms with sp-hybridization. We present a reliable and reproducible experiment to obtain these carbon atomic chains using few-layer-graphene (FLG) sheets and a HRTEM. First the FLG sheets were synthesized from worm-like exfoliated graphite and then drop-casted on a lacey-carbon copper grid. Once in the TEM, two holes are opened near each other in a FLG sheet by focusing the electron beam into a small spot. Due to the radiation, the carbon atoms rearrange themselves between the two holes and form carbon fibers. The beam is concentrated on the carbon fibers in order excite the atoms and induce a tension until multi wall carbon nanotube (MWCNT) is formed. As the radiation continues the MWCNT breaks down until there is only a single wall carbon nanotube (SWCNT). Then, when the SWCNT breaks, an atomic carbon chain is formed, lasts for several seconds under the radiation and finally breaks. This demonstrates the stability of this carbon structure.
Gravitational-Wave Tests of General Relativity with Ground-Based Detectors and Pulsar-Timing Arrays.
Yunes, Nicolás; Siemens, Xavier
2013-01-01
This review is focused on tests of Einstein's theory of general relativity with gravitational waves that are detectable by ground-based interferometers and pulsar-timing experiments. Einstein's theory has been greatly constrained in the quasi-linear, quasi-stationary regime, where gravity is weak and velocities are small. Gravitational waves will allow us to probe a complimentary, yet previously unexplored regime: the non-linear and dynamical strong-field regime . Such a regime is, for example, applicable to compact binaries coalescing, where characteristic velocities can reach fifty percent the speed of light and gravitational fields are large and dynamical. This review begins with the theoretical basis and the predicted gravitational-wave observables of modified gravity theories. The review continues with a brief description of the detectors, including both gravitational-wave interferometers and pulsar-timing arrays, leading to a discussion of the data analysis formalism that is applicable for such tests. The review ends with a discussion of gravitational-wave tests for compact binary systems.
Diaz, Francisco J
2016-10-15
We propose statistical definitions of the individual benefit of a medical or behavioral treatment and of the severity of a chronic illness. These definitions are used to develop a graphical method that can be used by statisticians and clinicians in the data analysis of clinical trials from the perspective of personalized medicine. The method focuses on assessing and comparing individual effects of treatments rather than average effects and can be used with continuous and discrete responses, including dichotomous and count responses. The method is based on new developments in generalized linear mixed-effects models, which are introduced in this article. To illustrate, analyses of data from the Sequenced Treatment Alternatives to Relieve Depression clinical trial of sequences of treatments for depression and data from a clinical trial of respiratory treatments are presented. The estimation of individual benefits is also explained. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Graph-cut based discrete-valued image reconstruction.
Tuysuzoglu, Ahmet; Karl, W Clem; Stojanovic, Ivana; Castañòn, David; Ünlü, M Selim
2015-05-01
Efficient graph-cut methods have been used with great success for labeling and denoising problems occurring in computer vision. Unfortunately, the presence of linear image mappings has prevented the use of these techniques in most discrete-amplitude image reconstruction problems. In this paper, we develop a graph-cut based framework for the direct solution of discrete amplitude linear image reconstruction problems cast as regularized energy function minimizations. We first analyze the structure of discrete linear inverse problem cost functions to show that the obstacle to the application of graph-cut methods to their solution is the variable mixing caused by the presence of the linear sensing operator. We then propose to use a surrogate energy functional that overcomes the challenges imposed by the sensing operator yet can be utilized efficiently in existing graph-cut frameworks. We use this surrogate energy functional to devise a monotonic iterative algorithm for the solution of discrete valued inverse problems. We first provide experiments using local convolutional operators and show the robustness of the proposed technique to noise and stability to changes in regularization parameter. Then we focus on nonlocal, tomographic examples where we consider limited-angle data problems. We compare our technique with state-of-the-art discrete and continuous image reconstruction techniques. Experiments show that the proposed method outperforms state-of-the-art techniques in challenging scenarios involving discrete valued unknowns.
Wu, Mixia; Zhang, Dianchen; Liu, Aiyi
2016-01-01
New biomarkers continue to be developed for the purpose of diagnosis, and their diagnostic performances are typically compared with an existing reference biomarker used for the same purpose. Considerable amounts of research have focused on receiver operating characteristic curves analysis when the reference biomarker is dichotomous. In the situation where the reference biomarker is measured on a continuous scale and dichotomization is not practically appealing, an index was proposed in the literature to measure the accuracy of a continuous biomarker, which is essentially a linear function of the popular Kendall's tau. We consider the issue of estimating such an accuracy index when the continuous reference biomarker is measured with errors. We first investigate the impact of measurement errors on the accuracy index, and then propose methods to correct for the bias due to measurement errors. Simulation results show the effectiveness of the proposed estimator in reducing biases. The methods are exemplified with hemoglobin A1c measurements obtained from both the central lab and a local lab to evaluate the accuracy of the mean data obtained from the metered blood glucose monitoring against the centrally measured hemoglobin A1c from a behavioral intervention study for families of youth with type 1 diabetes.
Disformal invariance of continuous media with linear equation of state
DOE Office of Scientific and Technical Information (OSTI.GOV)
Celoria, Marco; Matarrese, Sabino; Pilo, Luigi, E-mail: marco.celoria@gssi.infn.it, E-mail: sabino.matarrese@pd.infn.it, E-mail: luigi.pilo@aquila.infn.it
We show that the effective theory describing single component continuous media with a linear and constant equation of state of the form p = w ρ is invariant under a 1-parameter family of continuous disformal transformations. In the special case of w =1/3 (ultrarelativistic gas), such a family reduces to conformal transformations. As examples, perfect fluids, irrotational dust (mimetic matter) and homogeneous and isotropic solids are discussed.
NASA Astrophysics Data System (ADS)
Taousser, Fatima; Defoort, Michael; Djemai, Mohamed
2016-01-01
This paper investigates the consensus problem for linear multi-agent system with fixed communication topology in the presence of intermittent communication using the time-scale theory. Since each agent can only obtain relative local information intermittently, the proposed consensus algorithm is based on a discontinuous local interaction rule. The interaction among agents happens at a disjoint set of continuous-time intervals. The closed-loop multi-agent system can be represented using mixed linear continuous-time and linear discrete-time models due to intermittent information transmissions. The time-scale theory provides a powerful tool to combine continuous-time and discrete-time cases and study the consensus protocol under a unified framework. Using this theory, some conditions are derived to achieve exponential consensus under intermittent information transmissions. Simulations are performed to validate the theoretical results.
Linear Approximation SAR Azimuth Processing Study
NASA Technical Reports Server (NTRS)
Lindquist, R. B.; Masnaghetti, R. K.; Belland, E.; Hance, H. V.; Weis, W. G.
1979-01-01
A segmented linear approximation of the quadratic phase function that is used to focus the synthetic antenna of a SAR was studied. Ideal focusing, using a quadratic varying phase focusing function during the time radar target histories are gathered, requires a large number of complex multiplications. These can be largely eliminated by using linear approximation techniques. The result is a reduced processor size and chip count relative to ideally focussed processing and a correspondingly increased feasibility for spaceworthy implementation. A preliminary design and sizing for a spaceworthy linear approximation SAR azimuth processor meeting requirements similar to those of the SEASAT-A SAR was developed. The study resulted in a design with approximately 1500 IC's, 1.2 cubic feet of volume, and 350 watts of power for a single look, 4000 range cell azimuth processor with 25 meters resolution.
Pulsed-focusing recirculating linacs for muon acceleration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Rolland
2014-12-31
Since the muon has a short lifetime, fast acceleration is essential for high-energy applications such as muon colliders, Higgs factories, or neutrino factories. The best one can do is to make a linear accelerator with the highest possible accelerating gradient to make the accelerating time as short as possible. However, the cost of such a single linear accelerator is prohibitively large due to expensive power sources, cavities, tunnels, and related infrastructure. As was demonstrated in the Thomas Jefferson Accelerator Facility (Jefferson Lab) Continuous Electron Beam Accelerator Facility (CEBAF), an elegant solution to reduce cost is to use magnetic return arcsmore » to recirculate the beam through the accelerating RF cavities many times, where they gain energy on each pass. In such a Recirculating Linear Accelerator (RLA), the magnetic focusing strength diminishes as the beam energy increases in a conventional linac that has constant strength quadrupoles. After some number of passes the focusing strength is insufficient to keep the beam from going unstable and being lost. In this project, the use of fast pulsed quadrupoles in the linac sections was considered for stronger focusing as a function of time to allow more successive passes of a muon beam in a recirculating linear accelerator. In one simulation, it was shown that the number of passes could be increased from 8 to 12 using pulsed magnet designs that have been developed and tested. This could reduce the cost of linac sections of a muon RLA by 8/12, where more improvement is still possible. The expense of a greater number of passes and corresponding number of return arcs was also addressed in this project by exploring the use of ramped or FFAG-style magnets in the return arcs. A better solution, invented in this project, is to use combined-function dipole-quadrupole magnets to simultaneously transport two beams of different energies through one magnet string to reduce costs of return arcs by almost a factor of two. A patent application was filed for this invention and a detailed report published in Physical Review Special Topics. A scaled model using an electron beam was developed and proposed to test the concept of a dog bone RLA with combined-function return arcs. The efforts supported by this grant were reported in a series of contributions to particle accelerator conferences that are reproduced in the appendices and summarized in the body of this report.« less
Computation of non-monotonic Lyapunov functions for continuous-time systems
NASA Astrophysics Data System (ADS)
Li, Huijuan; Liu, AnPing
2017-09-01
In this paper, we propose two methods to compute non-monotonic Lyapunov functions for continuous-time systems which are asymptotically stable. The first method is to solve a linear optimization problem on a compact and bounded set. The proposed linear programming based algorithm delivers a CPA1
Casellas, J; Bach, R
2012-06-01
Lambing interval is a relevant reproductive indicator for sheep populations under continuous mating systems, although there is a shortage of selection programs accounting for this trait in the sheep industry. Both the historical assumption of small genetic background and its unorthodox distribution pattern have limited its implementation as a breeding objective. In this manuscript, statistical performances of 3 alternative parametrizations [i.e., symmetric Gaussian mixed linear (GML) model, skew-Gaussian mixed linear (SGML) model, and piecewise Weibull proportional hazard (PWPH) model] have been compared to elucidate the preferred methodology to handle lambing interval data. More specifically, flock-by-flock analyses were performed on 31,986 lambing interval records (257.3 ± 0.2 d) from 6 purebred Ripollesa flocks. Model performances were compared in terms of deviance information criterion (DIC) and Bayes factor (BF). For all flocks, PWPH models were clearly preferred; they generated a reduction of 1,900 or more DIC units and provided BF estimates larger than 100 (i.e., PWPH models against linear models). These differences were reduced when comparing PWPH models with different number of change points for the baseline hazard function. In 4 flocks, only 2 change points were required to minimize the DIC, whereas 4 and 6 change points were needed for the 2 remaining flocks. These differences demonstrated a remarkable degree of heterogeneity across sheep flocks that must be properly accounted for in genetic evaluation models to avoid statistical biases and suboptimal genetic trends. Within this context, all 6 Ripollesa flocks revealed substantial genetic background for lambing interval with heritabilities ranging between 0.13 and 0.19. This study provides the first evidence of the suitability of PWPH models for lambing interval analysis, clearly discarding previous parametrizations focused on mixed linear models.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Polikarpov, M., E-mail: polikarpov.maxim@mail.ru; Snigireva, I.; Snigirev, A.
2016-07-27
Large-aperture cylindrical refractive lenses were manufactured by laser cutting of single-crystal diamond. Five linear single lenses with apertures of 1 mm and the depth of the structure of 1.2 mm were fabricated and tested at the ESRF ID06 beamline performing the focusing of white-beam synchrotron radiation. Uniform linear focus was stable during hours of exposure, representing such lenses as pre-focusing and collimating devices suitable for the front-end sections of today synchrotron radiation sources.
Crustal Movements and Gravity Variations in the Southeastern Po Plain, Italy
NASA Astrophysics Data System (ADS)
Zerbini, S.; Bruni, S.; Errico, M.; Santi, E.; Wilmes, H.; Wziontek, H.
2014-12-01
At the Medicina observatory, in the southeastern Po Plain, in Italy, we have started a project of continuous GPS and gravity observations in mid 1996. The experiment, focused on a comparison between height and gravity variations, is still ongoing; these uninterrupted time series certainly constitute a most important data base to observe and estimate reliably long-period behaviors but also to derive deeper insights on the nature of the crustal deformation. Almost two decades of continuous GPS observations from two closely located receivers have shown that the coordinate time series are characterized by linear and non-linear variations as well as by sudden jumps. Both over long- and short-period time scales, the GPS height series show signals induced by different phenomena, for example, those related to mass transport in the Earth system. Seasonal effects are clearly recognizable and are mainly associated with the water table seasonal behavior. To understand and separate the contribution of different forcings is not an easy task; to this end, the information provided by the superconducting gravimeter observations and also by absolute gravity measurements offers a most important means to detect and understand mass contributions. In addition to GPS and gravity data, at Medicina, a number of environmental parameters time series are also regularly acquired, among them water table levels. We present the results of study investigating correlations between height, gravity and environmental parameters time series.
A Linear-Elasticity Solver for Higher-Order Space-Time Mesh Deformation
NASA Technical Reports Server (NTRS)
Diosady, Laslo T.; Murman, Scott M.
2018-01-01
A linear-elasticity approach is presented for the generation of meshes appropriate for a higher-order space-time discontinuous finite-element method. The equations of linear-elasticity are discretized using a higher-order, spatially-continuous, finite-element method. Given an initial finite-element mesh, and a specified boundary displacement, we solve for the mesh displacements to obtain a higher-order curvilinear mesh. Alternatively, for moving-domain problems we use the linear-elasticity approach to solve for a temporally discontinuous mesh velocity on each time-slab and recover a continuous mesh deformation by integrating the velocity. The applicability of this methodology is presented for several benchmark test cases.
Using passive cavitation images to classify high-intensity focused ultrasound lesions.
Haworth, Kevin J; Salgaonkar, Vasant A; Corregan, Nicholas M; Holland, Christy K; Mast, T Douglas
2015-09-01
Passive cavitation imaging provides spatially resolved monitoring of cavitation emissions. However, the diffraction limit of a linear imaging array results in relatively poor range resolution. Poor range resolution has limited prior analyses of the spatial specificity and sensitivity of passive cavitation imaging in predicting thermal lesion formation. In this study, this limitation is overcome by orienting a linear array orthogonal to the high-intensity focused ultrasound propagation direction and performing passive imaging. Fourteen lesions were formed in ex vivo bovine liver samples as a result of 1.1-MHz continuous-wave ultrasound exposure. The lesions were classified as focal, "tadpole" or pre-focal based on their shape and location. Passive cavitation images were beamformed from emissions at the fundamental, harmonic, ultraharmonic and inharmonic frequencies with an established algorithm. Using the area under a receiver operating characteristic curve (AUROC), fundamental, harmonic and ultraharmonic emissions were found to be significant predictors of lesion formation for all lesion types. For both harmonic and ultraharmonic emissions, pre-focal lesions were classified most successfully (AUROC values of 0.87 and 0.88, respectively), followed by tadpole lesions (AUROC values of 0.77 and 0.64, respectively) and focal lesions (AUROC values of 0.65 and 0.60, respectively). Copyright © 2015 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.
How Robust Is Linear Regression with Dummy Variables?
ERIC Educational Resources Information Center
Blankmeyer, Eric
2006-01-01
Researchers in education and the social sciences make extensive use of linear regression models in which the dependent variable is continuous-valued while the explanatory variables are a combination of continuous-valued regressors and dummy variables. The dummies partition the sample into groups, some of which may contain only a few observations.…
A Linear Variable-[theta] Model for Measuring Individual Differences in Response Precision
ERIC Educational Resources Information Center
Ferrando, Pere J.
2011-01-01
Models for measuring individual response precision have been proposed for binary and graded responses. However, more continuous formats are quite common in personality measurement and are usually analyzed with the linear factor analysis model. This study extends the general Gaussian person-fluctuation model to the continuous-response case and…
Quantum error correction of continuous-variable states against Gaussian noise
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ralph, T. C.
2011-08-15
We describe a continuous-variable error correction protocol that can correct the Gaussian noise induced by linear loss on Gaussian states. The protocol can be implemented using linear optics and photon counting. We explore the theoretical bounds of the protocol as well as the expected performance given current knowledge and technology.
Common pitfalls in statistical analysis: Linear regression analysis
Aggarwal, Rakesh; Ranganathan, Priya
2017-01-01
In a previous article in this series, we explained correlation analysis which describes the strength of relationship between two continuous variables. In this article, we deal with linear regression analysis which predicts the value of one continuous variable from another. We also discuss the assumptions and pitfalls associated with this analysis. PMID:28447022
NASA Astrophysics Data System (ADS)
Bhattacharjee, Sudip; Swamy, Aravind Krishna; Daniel, Jo S.
2012-08-01
This paper presents a simple and practical approach to obtain the continuous relaxation and retardation spectra of asphalt concrete directly from the complex (dynamic) modulus test data. The spectra thus obtained are continuous functions of relaxation and retardation time. The major advantage of this method is that the continuous form is directly obtained from the master curves which are readily available from the standard characterization tests of linearly viscoelastic behavior of asphalt concrete. The continuous spectrum method offers efficient alternative to the numerical computation of discrete spectra and can be easily used for modeling viscoelastic behavior. In this research, asphalt concrete specimens have been tested for linearly viscoelastic characterization. The linearly viscoelastic test data have been used to develop storage modulus and storage compliance master curves. The continuous spectra are obtained from the fitted sigmoid function of the master curves via the inverse integral transform. The continuous spectra are shown to be the limiting case of the discrete distributions. The continuous spectra and the time-domain viscoelastic functions (relaxation modulus and creep compliance) computed from the spectra matched very well with the approximate solutions. It is observed that the shape of the spectra is dependent on the master curve parameters. The continuous spectra thus obtained can easily be implemented in material mix design process. Prony-series coefficients can be easily obtained from the continuous spectra and used in numerical analysis such as finite element analysis.
Miele, Andrew; Thompson, Morgan; Jao, Nancy C; Kalhan, Ravi; Leone, Frank; Hogarth, Lee; Hitsman, Brian; Schnoll, Robert
2018-01-01
A substantial proportion of cancer patients continue to smoke after their diagnosis but few studies have evaluated correlates of nicotine dependence and smoking rate in this population, which could help guide smoking cessation interventions. This study evaluated correlates of smoking rate and nicotine dependence among 207 cancer patients. A cross-sectional analysis using multiple linear regression evaluated disease, demographic, affective, and tobacco-seeking correlates of smoking rate and nicotine dependence. Smoking rate was assessed using a timeline follow-back method. The Fagerström Test for Nicotine Dependence measured levels of nicotine dependence. A multiple linear regression predicting nicotine dependence showed an association with smoking to alleviate a sense of addiction from the Reasons for Smoking scale and tobacco-seeking behavior from the concurrent choice task ( p < .05), but not with affect measured by the HADS and PANAS ( p > .05). Multiple linear regression predicting prequit showed an association with smoking to alleviate addiction ( p < .05). ANOVA showed that Caucasian participants reported greater rates of smoking compared to other races. The results suggest that behavioral smoking cessation interventions that focus on helping patients to manage tobacco-seeking behavior, rather than mood management interventions, could help cancer patients quit smoking.
Explicit asymmetric bounds for robust stability of continuous and discrete-time systems
NASA Technical Reports Server (NTRS)
Gao, Zhiqiang; Antsaklis, Panos J.
1993-01-01
The problem of robust stability in linear systems with parametric uncertainties is considered. Explicit stability bounds on uncertain parameters are derived and expressed in terms of linear inequalities for continuous systems, and inequalities with quadratic terms for discrete-times systems. Cases where system parameters are nonlinear functions of an uncertainty are also examined.
ERIC Educational Resources Information Center
Aydin, Sinan
2014-01-01
Linear algebra is a basic mathematical subject taught in mathematics and science depar-tments of universities. The teaching and learning of this course has always been difficult. This study aims to contribute to the research in linear algebra education, focusing on linear dependence and independence concepts. This was done by introducing…
Implementation of projective measurements with linear optics and continuous photon counting
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takeoka, Masahiro; Sasaki, Masahide; Loock, Peter van
2005-02-01
We investigate the possibility of implementing a given projection measurement using linear optics and arbitrarily fast feedforward based on the continuous detection of photons. In particular, we systematically derive the so-called Dolinar scheme that achieves the minimum-error discrimination of binary coherent states. Moreover, we show that the Dolinar-type approach can also be applied to projection measurements in the regime of photonic-qubit signals. Our results demonstrate that for implementing a projection measurement with linear optics, in principle, unit success probability may be approached even without the use of expensive entangled auxiliary states, as they are needed in all known (near-)deterministic linear-opticsmore » proposals.« less
Vector optical fields with bipolar symmetry of linear polarization.
Pan, Yue; Li, Yongnan; Li, Si-Min; Ren, Zhi-Cheng; Si, Yu; Tu, Chenghou; Wang, Hui-Tian
2013-09-15
We focus on a new kind of vector optical field with bipolar symmetry of linear polarization instead of cylindrical and elliptical symmetries, enriching members of family of vector optical fields. We design theoretically and generate experimentally the demanded vector optical fields and then explore some novel tightly focusing properties. The geometric configurations of states of polarization provide additional degrees of freedom assisting in engineering the field distribution at the focus to the specific applications such as lithography, optical trapping, and material processing.
NASA Astrophysics Data System (ADS)
Juno, J.; Hakim, A.; TenBarge, J.; Dorland, W.
2015-12-01
We present for the first time results for the turbulence dissipation challenge, with specific focus on the linear wave portion of the challenge, using a variety of continuum kinetic models: hybrid Vlasov-Maxwell, gyrokinetic, and full Vlasov-Maxwell. As one of the goals of the wave problem as it is outlined is to identify how well various models capture linear physics, we compare our results to linear Vlasov and gyrokinetic theory. Preliminary gyrokinetic results match linear theory extremely well due to the geometry of the problem, which eliminates the dominant nonlinearity. With the non-reduced models, we explore how the subdominant nonlinearities manifest and affect the evolution of the turbulence and the energy budget. We also take advantage of employing continuum methods to study the dynamics of the distribution function, with particular emphasis on the full Vlasov results where a basic collision operator has been implemented. As the community prepares for the next stage of the turbulence dissipation challenge, where we hope to do large 3D simulations to inform the next generation of observational missions such as THOR (Turbulence Heating ObserveR), we argue for the consideration of hybrid Vlasov and full Vlasov as candidate models for these critical simulations. With the use of modern numerical algorithms, we demonstrate the competitiveness of our code with traditional particle-in-cell algorithms, with a clear plan for continued improvements and optimizations to further strengthen the code's viability as an option for the next stage of the challenge.
Li, Jing; Wu, Xiaoping
2011-10-10
In this paper a model of the trapping force on nanowires is built by three dimensional finite-difference time-domain (FDTD) and Maxwell stress tensor methods, and the tightly focused laser beam is expressed by spherical vector wave functions (VSWFs). The trapping capacities on nanoscale-diameter nanowires are discussed in terms of a strongly focused linearly polarized beam and radially polarized beam. Simulation results demonstrate that the radially polarized beam has higher trapping efficiency on nanowires with higher refractive indices than linearly polarized beam.
Li, Jing; Wu, Xiaoping
2011-01-01
In this paper a model of the trapping force on nanowires is built by three dimensional finite-difference time-domain (FDTD) and Maxwell stress tensor methods, and the tightly focused laser beam is expressed by spherical vector wave functions (VSWFs). The trapping capacities on nanoscale-diameter nanowires are discussed in terms of a strongly focused linearly polarized beam and radially polarized beam. Simulation results demonstrate that the radially polarized beam has higher trapping efficiency on nanowires with higher refractive indices than linearly polarized beam. PMID:21997083
ORACLS: A system for linear-quadratic-Gaussian control law design
NASA Technical Reports Server (NTRS)
Armstrong, E. S.
1978-01-01
A modern control theory design package (ORACLS) for constructing controllers and optimal filters for systems modeled by linear time-invariant differential or difference equations is described. Numerical linear-algebra procedures are used to implement the linear-quadratic-Gaussian (LQG) methodology of modern control theory. Algorithms are included for computing eigensystems of real matrices, the relative stability of a matrix, factored forms for nonnegative definite matrices, the solutions and least squares approximations to the solutions of certain linear matrix algebraic equations, the controllability properties of a linear time-invariant system, and the steady state covariance matrix of an open-loop stable system forced by white noise. Subroutines are provided for solving both the continuous and discrete optimal linear regulator problems with noise free measurements and the sampled-data optimal linear regulator problem. For measurement noise, duality theory and the optimal regulator algorithms are used to solve the continuous and discrete Kalman-Bucy filter problems. Subroutines are also included which give control laws causing the output of a system to track the output of a prescribed model.
Shear-stress fluctuations and relaxation in polymer glasses
NASA Astrophysics Data System (ADS)
Kriuchevskyi, I.; Wittmer, J. P.; Meyer, H.; Benzerara, O.; Baschnagel, J.
2018-01-01
We investigate by means of molecular dynamics simulation a coarse-grained polymer glass model focusing on (quasistatic and dynamical) shear-stress fluctuations as a function of temperature T and sampling time Δ t . The linear response is characterized using (ensemble-averaged) expectation values of the contributions (time averaged for each shear plane) to the stress-fluctuation relation μsf for the shear modulus and the shear-stress relaxation modulus G (t ) . Using 100 independent configurations, we pay attention to the respective standard deviations. While the ensemble-averaged modulus μsf(T ) decreases continuously with increasing T for all Δ t sampled, its standard deviation δ μsf(T ) is nonmonotonic with a striking peak at the glass transition. The question of whether the shear modulus is continuous or has a jump singularity at the glass transition is thus ill posed. Confirming the effective time-translational invariance of our systems, the Δ t dependence of μsf and related quantities can be understood using a weighted integral over G (t ) .
Final Report: Subcontract B623868 Algebraic Multigrid solvers for coupled PDE systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brannick, J.
The Pennsylvania State University (“Subcontractor”) continued to work on the design of algebraic multigrid solvers for coupled systems of partial differential equations (PDEs) arising in numerical modeling of various applications, with a main focus on solving the Dirac equation arising in Quantum Chromodynamics (QCD). The goal of the proposed work was to develop combined geometric and algebraic multilevel solvers that are robust and lend themselves to efficient implementation on massively parallel heterogeneous computers for these QCD systems. The research in these areas built on previous works, focusing on the following three topics: (1) the development of parallel full-multigrid (PFMG) andmore » non-Galerkin coarsening techniques in this frame work for solving the Wilson Dirac system; (2) the use of these same Wilson MG solvers for preconditioning the Overlap and Domain Wall formulations of the Dirac equation; and (3) the design and analysis of algebraic coarsening algorithms for coupled PDE systems including Stokes equation, Maxwell equation and linear elasticity.« less
INFORMS Section on Location Analysis Dissertation Award Submission
DOE Office of Scientific and Technical Information (OSTI.GOV)
Waddell, Lucas
This research effort can be summarized by two main thrusts, each of which has a chapter of the dissertation dedicated to it. First, I pose a novel polyhedral approach for identifying polynomially solvable in- stances of the QAP based on an application of the reformulation-linearization technique (RLT), a general procedure for constructing mixed 0-1 linear reformulations of 0-1 pro- grams. The feasible region to the continuous relaxation of the level-1 RLT form is a polytope having a highly specialized structure. Every binary solution to the QAP is associated with an extreme point of this polytope, and the objective function valuemore » is preserved at each such point. However, there exist extreme points that do not correspond to binary solutions. The key insight is a previously unnoticed and unexpected relationship between the polyhedral structure of the continuous relaxation of the level-1 RLT representation and various classes of readily solvable instances. Specifically, we show that a variety of apparently unrelated solvable cases of the QAP can all be categorized in the following sense: each such case has an objective function which ensures that an optimal solution to the continuous relaxation of the level-1 RLT form occurs at a binary extreme point. Interestingly, there exist instances that are solvable by the level-1 RLT form which do not satisfy the conditions of these cases, so that the level-1 form theoretically identifies a richer family of solvable instances. Second, I focus on instances of the QAP known in the literature as linearizable. An instance of the QAP is defined to be linearizable if and only if the problem can be equivalently written as a linear assignment problem that preserves the objective function value at all feasible solutions. I provide an entirely new polyheral-based perspective on the concept of linearizable by showing that an instance of the QAP is linearizable if and only if a relaxed version of the continuous relaxation of the level-1 RLT form is bounded. We also shows that the level-1 RLT form can identify a richer family of solvable instances than those deemed linearizable by demonstrating that the continuous relaxation of the level-1 RLT form can have an optimal binary solution for instances that are not linearizable. As a byproduct, I use this theoretical framework to explicity, in closed form, characterize the dimensions of the level-1 RLT form and various other problem relaxations.« less
NASA Astrophysics Data System (ADS)
Jirka, M.; Klimo, O.; Weber, S.; Bulanov, Sergei V.; Esirkepov, Timur Zh.; Korn, G.
2015-05-01
With the continuing development of laser systems, new important and so-far unexplored fields of research related to interaction of ultra-intense laser beams with matter are opening. At intensities of the order of 1022 W=cm2, electrons may be accelerated in the electromagnetic field of the laser wave and achieve such a high energy that they can enter the regime affected by the radiation reaction. Due to the non-linear Thomson and Compton scattering the accelerated electrons emit photons. The interaction of emitted photons with the laser field may result in effective generation of electron-positron pairs by means of the Breit-Wheeler process. In this work we study the influence of laser pulse polarization on gamma-ray generation during interaction of two colliding and tightly focused laser pulses with a low density target composed of electrons. This paper focuses on evolution of electron trajectories and key parameters χe (probability of photon emission) and χγ(probability of pair generation) in the laser field. These interactions are studied using 2D PIC simulations. It is shown that in the case of circularly polarized and tightly focused laser beams, electrons are not following circular trajectories at the magnetic node of the standing wave established in the focus, which leads to lowering the radiation emission efficiency.
Varieties of quantity estimation in children.
Sella, Francesco; Berteletti, Ilaria; Lucangeli, Daniela; Zorzi, Marco
2015-06-01
In the number-to-position task, with increasing age and numerical expertise, children's pattern of estimates shifts from a biased (nonlinear) to a formal (linear) mapping. This widely replicated finding concerns symbolic numbers, whereas less is known about other types of quantity estimation. In Experiment 1, Preschool, Grade 1, and Grade 3 children were asked to map continuous quantities, discrete nonsymbolic quantities (numerosities), and symbolic (Arabic) numbers onto a visual line. Numerical quantity was matched for the symbolic and discrete nonsymbolic conditions, whereas cumulative surface area was matched for the continuous and discrete quantity conditions. Crucially, in the discrete condition children's estimation could rely either on the cumulative area or numerosity. All children showed a linear mapping for continuous quantities, whereas a developmental shift from a logarithmic to a linear mapping was observed for both nonsymbolic and symbolic numerical quantities. Analyses on individual estimates suggested the presence of two distinct strategies in estimating discrete nonsymbolic quantities: one based on numerosity and the other based on spatial extent. In Experiment 2, a non-spatial continuous quantity (shades of gray) and new discrete nonsymbolic conditions were added to the set used in Experiment 1. Results confirmed the linear patterns for the continuous tasks, as well as the presence of a subset of children relying on numerosity for the discrete nonsymbolic numerosity conditions despite the availability of continuous visual cues. Overall, our findings demonstrate that estimation of numerical and non-numerical quantities is based on different processing strategies and follow different developmental trajectories. (c) 2015 APA, all rights reserved).
Efficient Craig Interpolation for Linear Diophantine (Dis)Equations and Linear Modular Equations
2008-02-01
Craig interpolants has enabled the development of powerful hardware and software model checking techniques. Efficient algorithms are known for computing...interpolants in rational and real linear arithmetic. We focus on subsets of integer linear arithmetic. Our main results are polynomial time algorithms ...congruences), and linear diophantine disequations. We show the utility of the proposed interpolation algorithms for discovering modular/divisibility predicates
Long-Term Outcome in Pediatric Trichotillomania
Schumer, Maya C.; Panza, Kaitlyn E.; Mulqueen, Jilian M.; Jakubovski, Ewgeni; Bloch, Michael H.
2015-01-01
Objective To examine long-term outcome in children with trichotillomania. Method We conducted follow-up clinical assessments an average of 2.8 ± 0.8 years after baseline evaluation in 30 out of 39 children who previously participated in a randomized, double-blind, placebo-controlled trial of N-acetylcysteine (NAC) for pediatric trichotillomania. Our primary outcome was change in hairpulling severity on the Massachusetts General Hospital-Hairpulling Scale (MGH-HPS) between the end of the acute phase and follow-up evaluation. We also obtained secondary measures examining styles of hairpulling, comorbid anxiety and depressive symptoms, as well as continued treatment utilization. We examined both correlates and predictors of outcome (change in MGH-HPS score) using linear regression. Results None of the participants continued to take NAC at the time of follow-up assessment. No significant changes in hairpulling severity were reported over the follow-up period. Subjects reported significantly increased anxiety and depressive symptoms but improvement in automatic pulling symptoms. Increased hairpulling symptoms during the follow-up period were associated with increased depression and anxiety symptoms and increased focused pulling. Older age and greater focused pulling at baseline assessment were associated with poor long-term prognosis. Conclusions Our findings suggest that few children with trichotillomania experience a significant improvement in trichotillomania symptoms if behavioral treatments are inaccessible or have failed to produce adequate symptom relief. Our findings also confirm results of previous cross-sectional studies that suggest an increased risk of depression and anxiety symptoms with age in pediatric trichotillomania. Increased focused pulling and older age among children with trichotillomania symptoms may be associated with poorer long-term prognosis. PMID:26139231
LONG-TERM OUTCOME IN PEDIATRIC TRICHOTILLOMANIA.
Schumer, Maya C; Panza, Kaitlyn E; Mulqueen, Jilian M; Jakubovski, Ewgeni; Bloch, Michael H
2015-10-01
To examine long-term outcome in children with trichotillomania. We conducted follow-up clinical assessments an average of 2.8 ± 0.8 years after baseline evaluation in 30 of 39 children who previously participated in a randomized, double-blind, placebo-controlled trial of N-acetylcysteine (NAC) for pediatric trichotillomania. Our primary outcome was change in hairpulling severity on the Massachusetts General Hospital Hairpulling Hospital Hairpulling Scale (MGH-HPS) between the end of the acute phase and follow-up evaluation. We also obtained secondary measures examining styles of hairpulling, comorbid anxiety and depressive symptoms, as well as continued treatment utilization. We examined both correlates and predictors of outcome (change in MGH-HPS score) using linear regression. None of the participants continued to take NAC at the time of follow-up assessment. No significant changes in hairpulling severity were reported over the follow-up period. Subjects reported significantly increased anxiety and depressive symptoms but improvement in automatic pulling symptoms. Increased hairpulling symptoms during the follow-up period were associated with increased depression and anxiety symptoms and increased focused pulling. Older age and greater focused pulling at baseline assessment were associated with poor long-term prognosis. Our findings suggest that few children with trichotillomania experience a significant improvement in trichotillomania symptoms if behavioral treatments are inaccessible or have failed to produce adequate symptom relief. Our findings also confirm results of previous cross-sectional studies that suggest an increased risk of depression and anxiety symptoms with age in pediatric trichotillomania. Increased focused pulling and older age among children with trichotillomania symptoms may be associated with poorer long-term prognosis. © 2015 Wiley Periodicals, Inc.
Domain decomposition methods for the parallel computation of reacting flows
NASA Technical Reports Server (NTRS)
Keyes, David E.
1988-01-01
Domain decomposition is a natural route to parallel computing for partial differential equation solvers. Subdomains of which the original domain of definition is comprised are assigned to independent processors at the price of periodic coordination between processors to compute global parameters and maintain the requisite degree of continuity of the solution at the subdomain interfaces. In the domain-decomposed solution of steady multidimensional systems of PDEs by finite difference methods using a pseudo-transient version of Newton iteration, the only portion of the computation which generally stands in the way of efficient parallelization is the solution of the large, sparse linear systems arising at each Newton step. For some Jacobian matrices drawn from an actual two-dimensional reacting flow problem, comparisons are made between relaxation-based linear solvers and also preconditioned iterative methods of Conjugate Gradient and Chebyshev type, focusing attention on both iteration count and global inner product count. The generalized minimum residual method with block-ILU preconditioning is judged the best serial method among those considered, and parallel numerical experiments on the Encore Multimax demonstrate for it approximately 10-fold speedup on 16 processors.
Missing Data in Clinical Studies: Issues and Methods
Ibrahim, Joseph G.; Chu, Haitao; Chen, Ming-Hui
2012-01-01
Missing data are a prevailing problem in any type of data analyses. A participant variable is considered missing if the value of the variable (outcome or covariate) for the participant is not observed. In this article, various issues in analyzing studies with missing data are discussed. Particularly, we focus on missing response and/or covariate data for studies with discrete, continuous, or time-to-event end points in which generalized linear models, models for longitudinal data such as generalized linear mixed effects models, or Cox regression models are used. We discuss various classifications of missing data that may arise in a study and demonstrate in several situations that the commonly used method of throwing out all participants with any missing data may lead to incorrect results and conclusions. The methods described are applied to data from an Eastern Cooperative Oncology Group phase II clinical trial of liver cancer and a phase III clinical trial of advanced non–small-cell lung cancer. Although the main area of application discussed here is cancer, the issues and methods we discuss apply to any type of study. PMID:22649133
Fate of inflation and the natural reduction of vacuum energy
NASA Astrophysics Data System (ADS)
Nakamichi, Akika; Morikawa, Masahiro
2014-04-01
In the standard cosmology, an artificial fine tuning of the potential is inevitable for vanishing cosmological constant, though slow-rolling uniform scalar field easily causes cosmic inflation. We focus on the general fact that any potential with negative region can temporally halt the cosmic expansion at the end of inflation, where the field tends to diverge. This violent evolution naturally causes particle production and strong instability of the uniform configuration of the fields. Decaying of this uniform scalar field would leave vanishing cosmological constant as well as locally collapsed objects. The universe then continues to evolve into the standard Freedman model. We study the detail of the instability, based on the linear analysis, and the subsequent fate of the scalar field, based on the non-linear numerical analysis. The collapsed scalar field would easily exceed the Kaup limiting mass and forms primordial black holes, which may play an important role in galaxy formation in later stages of cosmic expansion. We systematically describe the above scenario by identifying the scalar field as the boson field condensation (BEC) and the inflation as the process of phase transition of them.
NASA Astrophysics Data System (ADS)
Ionin, A. A.; Mokrousova, D. V.; Piterimov, D. A.; Seleznev, L. V.; Sinitsyn, D. V.; Sunchugasheva, E. S.
2018-04-01
The critical power for self-focusing in air for ultrashort ultraviolet laser pulses, stretched due to dispersion from 90 to 730 fs, was experimentally measured. It was shown that the pulse duration enhancement due to its propagation in condensed media leads to an almost linear decrease in the critical power for self-focusing. It was also observed that when the pulse peak power exceeds the critical one, the maximum of linear plasma distribution along the ultraviolet laser filament does not shift in the direction opposite to the laser pulse propagation, as observed for infrared laser filaments, but remains at the geometrical focus.
Doros, Gheorghe; Pencina, Michael; Rybin, Denis; Meisner, Allison; Fava, Maurizio
2013-07-20
Previous authors have proposed the sequential parallel comparison design (SPCD) to address the issue of high placebo response rate in clinical trials. The original use of SPCD focused on binary outcomes, but recent use has since been extended to continuous outcomes that arise more naturally in many fields, including psychiatry. Analytic methods proposed to date for analysis of SPCD trial continuous data included methods based on seemingly unrelated regression and ordinary least squares. Here, we propose a repeated measures linear model that uses all outcome data collected in the trial and accounts for data that are missing at random. An appropriate contrast formulated after the model has been fit can be used to test the primary hypothesis of no difference in treatment effects between study arms. Our extensive simulations show that when compared with the other methods, our approach preserves the type I error even for small sample sizes and offers adequate power and the smallest mean squared error under a wide variety of assumptions. We recommend consideration of our approach for analysis of data coming from SPCD trials. Copyright © 2013 John Wiley & Sons, Ltd.
Optimal design of focused experiments and surveys
NASA Astrophysics Data System (ADS)
Curtis, Andrew
1999-10-01
Experiments and surveys are often performed to obtain data that constrain some previously underconstrained model. Often, constraints are most desired in a particular subspace of model space. Experiment design optimization requires that the quality of any particular design can be both quantified and then maximized. This study shows how the quality can be defined such that it depends on the amount of information that is focused in the particular subspace of interest. In addition, algorithms are presented which allow one particular focused quality measure (from the class of focused measures) to be evaluated efficiently. A subclass of focused quality measures is also related to the standard variance and resolution measures from linearized inverse theory. The theory presented here requires that the relationship between model parameters and data can be linearized around a reference model without significant loss of information. Physical and financial constraints define the space of possible experiment designs. Cross-well tomographic examples are presented, plus a strategy for survey design to maximize information about linear combinations of parameters such as bulk modulus, κ =λ+ 2μ/3.
Gallardo, E; Martínez, L J; Nowak, A K; van der Meulen, H P; Calleja, J M; Tejedor, C; Prieto, I; Granados, D; Taboada, A G; García, J M; Postigo, P A
2010-06-07
We study the optical emission of single semiconductor quantum dots weakly coupled to a photonic-crystal micro-cavity. The linearly polarized emission of a selected quantum dot changes continuously its polarization angle, from nearly perpendicular to the cavity mode polarization at large detuning, to parallel at zero detuning, and reversing sign for negative detuning. The linear polarization rotation is qualitatively interpreted in terms of the detuning dependent mixing of the quantum dot and cavity states. The present result is relevant to achieve continuous control of the linear polarization in single photon emitters.
Cluster geometry and survival probability in systems driven by reaction diffusion dynamics
NASA Astrophysics Data System (ADS)
Windus, Alastair; Jensen, Henrik J.
2008-11-01
We consider a reaction-diffusion model incorporating the reactions A→phi, A→2A and 2A→3A. Depending on the relative rates for sexual and asexual reproduction of the quantity A, the model exhibits either a continuous or first-order absorbing phase transition to an extinct state. A tricritical point separates the two phase lines. While we comment on this critical behaviour, the main focus of the paper is on the geometry of the population clusters that form. We observe the different cluster structures that arise at criticality for the three different types of critical behaviour and show that there exists a linear relationship for the survival probability against initial cluster size at the tricritical point only.
A rational model of function learning.
Lucas, Christopher G; Griffiths, Thomas L; Williams, Joseph J; Kalish, Michael L
2015-10-01
Theories of how people learn relationships between continuous variables have tended to focus on two possibilities: one, that people are estimating explicit functions, or two that they are performing associative learning supported by similarity. We provide a rational analysis of function learning, drawing on work on regression in machine learning and statistics. Using the equivalence of Bayesian linear regression and Gaussian processes, which provide a probabilistic basis for similarity-based function learning, we show that learning explicit rules and using similarity can be seen as two views of one solution to this problem. We use this insight to define a rational model of human function learning that combines the strengths of both approaches and accounts for a wide variety of experimental results.
A financial market model with two discontinuities: Bifurcation structures in the chaotic domain
NASA Astrophysics Data System (ADS)
Panchuk, Anastasiia; Sushko, Iryna; Westerhoff, Frank
2018-05-01
We continue the investigation of a one-dimensional piecewise linear map with two discontinuity points. Such a map may arise from a simple asset-pricing model with heterogeneous speculators, which can help us to explain the intricate bull and bear behavior of financial markets. Our focus is on bifurcation structures observed in the chaotic domain of the map's parameter space, which is associated with robust multiband chaotic attractors. Such structures, related to the map with two discontinuities, have been not studied before. We show that besides the standard bandcount adding and bandcount incrementing bifurcation structures, associated with two partitions, there exist peculiar bandcount adding and bandcount incrementing structures involving all three partitions. Moreover, the map's three partitions may generate intriguing bistability phenomena.
The value of continuity: Refined isogeometric analysis and fast direct solvers
Garcia, Daniel; Pardo, David; Dalcin, Lisandro; ...
2016-08-24
Here, we propose the use of highly continuous finite element spaces interconnected with low continuity hyperplanes to maximize the performance of direct solvers. Starting from a highly continuous Isogeometric Analysis (IGA) discretization, we introduce C0-separators to reduce the interconnection between degrees of freedom in the mesh. By doing so, both the solution time and best approximation errors are simultaneously improved. We call the resulting method “refined Isogeometric Analysis (rIGA)”. To illustrate the impact of the continuity reduction, we analyze the number of Floating Point Operations (FLOPs), computational times, and memory required to solve the linear system obtained by discretizing themore » Laplace problem with structured meshes and uniform polynomial orders. Theoretical estimates demonstrate that an optimal continuity reduction may decrease the total computational time by a factor between p 2 and p 3, with pp being the polynomial order of the discretization. Numerical results indicate that our proposed refined isogeometric analysis delivers a speed-up factor proportional to p 2. In a 2D mesh with four million elements and p=5, the linear system resulting from rIGA is solved 22 times faster than the one from highly continuous IGA. In a 3D mesh with one million elements and p=3, the linear system is solved 15 times faster for the refined than the maximum continuity isogeometric analysis.« less
Nonlinear 2D arm dynamics in response to continuous and pulse-shaped force perturbations.
Happee, Riender; de Vlugt, Erwin; van Vliet, Bart
2015-01-01
Ample evidence exists regarding the nonlinearity of the neuromuscular system but linear models are widely applied to capture postural dynamics. This study quantifies the nonlinearity of human arm postural dynamics applying 2D continuous force perturbations (0.2-40 Hz) inducing three levels of hand displacement (5, 15, 45 mm RMS) followed by force-pulse perturbations inducing large hand displacements (up to 250 mm) in a position task (PT) and a relax task (RT) recording activity of eight shoulder and elbow muscles. The continuous perturbation data were used to analyze the 2D endpoint dynamics in the frequency domain and to identify reflexive and intrinsic parameters of a linear neuromuscular shoulder-elbow model. Subsequently, it was assessed to what extent the large displacements in response to force pulses could be predicted from the 'small amplitude' linear neuromuscular model. Continuous and pulse perturbation responses with varying amplitudes disclosed highly nonlinear effects. In PT, a larger continuous perturbation induced stiffening with a factor of 1.5 attributed to task adaptation evidenced by increased co-contraction and reflexive activity. This task adaptation was even more profound in the pulse responses where reflexes and displacements were strongly affected by the presence and amplitude of preceding continuous perturbations. In RT, a larger continuous perturbation resulted in yielding with a factor of 3.8 attributed to nonlinear mechanical properties as no significant reflexive activity was found. Pulse perturbations always resulted in yielding where a model fitted to the preceding 5-mm continuous perturbations predicted only 37% of the recorded peak displacements in RT and 79% in PT. This demonstrates that linear neuromuscular models, identified using continuous perturbations with small amplitudes, strongly underestimate displacements in pulse-shaped (e.g., impact) loading conditions. The data will be used to validate neuromuscular models including nonlinear muscular (e.g., Hill and Huxley) and reflexive components.
NASA Astrophysics Data System (ADS)
Farag, Mohammed; Fleckenstein, Matthias; Habibi, Saeid
2017-02-01
Model-order reduction and minimization of the CPU run-time while maintaining the model accuracy are critical requirements for real-time implementation of lithium-ion electrochemical battery models. In this paper, an isothermal, continuous, piecewise-linear, electrode-average model is developed by using an optimal knot placement technique. The proposed model reduces the univariate nonlinear function of the electrode's open circuit potential dependence on the state of charge to continuous piecewise regions. The parameterization experiments were chosen to provide a trade-off between extensive experimental characterization techniques and purely identifying all parameters using optimization techniques. The model is then parameterized in each continuous, piecewise-linear, region. Applying the proposed technique cuts down the CPU run-time by around 20%, compared to the reduced-order, electrode-average model. Finally, the model validation against real-time driving profiles (FTP-72, WLTP) demonstrates the ability of the model to predict the cell voltage accurately with less than 2% error.
NASA Astrophysics Data System (ADS)
McCurdy, B. M. C.
2013-06-01
An overview is provided of the use of amorphous silicon electronic portal imaging devices (EPIDs) for dosimetric purposes in radiation therapy, focusing on 3D patient dose estimation. EPIDs were originally developed to provide on-treatment radiological imaging to assist with patient setup, but there has also been a natural interest in using them as dosimeters since they use the megavoltage therapy beam to form images. The current generation of clinically available EPID technology, amorphous-silicon (a-Si) flat panel imagers, possess many characteristics that make them much better suited to dosimetric applications than earlier EPID technologies. Features such as linearity with dose/dose rate, high spatial resolution, realtime capability, minimal optical glare, and digital operation combine with the convenience of a compact, retractable detector system directly mounted on the linear accelerator to provide a system that is well-suited to dosimetric applications. This review will discuss clinically available a-Si EPID systems, highlighting dosimetric characteristics and remaining limitations. Methods for using EPIDs in dosimetry applications will be discussed. Dosimetric applications using a-Si EPIDs to estimate three-dimensional dose in the patient during treatment will be overviewed. Clinics throughout the world are implementing increasingly complex treatments such as dynamic intensity modulated radiation therapy and volumetric modulated arc therapy, as well as specialized treatment techniques using large doses per fraction and short treatment courses (ie. hypofractionation and stereotactic radiosurgery). These factors drive the continued strong interest in using EPIDs as dosimeters for patient treatment verification.
Yan, Guanyong; Wang, Xiangzhao; Li, Sikun; Yang, Jishuo; Xu, Dongbo; Erdmann, Andreas
2014-03-10
We propose an in situ aberration measurement technique based on an analytical linear model of through-focus aerial images. The aberrations are retrieved from aerial images of six isolated space patterns, which have the same width but different orientations. The imaging formulas of the space patterns are investigated and simplified, and then an analytical linear relationship between the aerial image intensity distributions and the Zernike coefficients is established. The linear relationship is composed of linear fitting matrices and rotation matrices, which can be calculated numerically in advance and utilized to retrieve Zernike coefficients. Numerical simulations using the lithography simulators PROLITH and Dr.LiTHO demonstrate that the proposed method can measure wavefront aberrations up to Z(37). Experiments on a real lithography tool confirm that our method can monitor lens aberration offset with an accuracy of 0.7 nm.
Chen, Xiaofeng; Song, Qiankun; Li, Zhongshan; Zhao, Zhenjiang; Liu, Yurong
2018-07-01
This paper addresses the problem of stability for continuous-time and discrete-time quaternion-valued neural networks (QVNNs) with linear threshold neurons. Applying the semidiscretization technique to the continuous-time QVNNs, the discrete-time analogs are obtained, which preserve the dynamical characteristics of their continuous-time counterparts. Via the plural decomposition method of quaternion, homeomorphic mapping theorem, as well as Lyapunov theorem, some sufficient conditions on the existence, uniqueness, and global asymptotical stability of the equilibrium point are derived for the continuous-time QVNNs and their discrete-time analogs, respectively. Furthermore, a uniform sufficient condition on the existence, uniqueness, and global asymptotical stability of the equilibrium point is obtained for both continuous-time QVNNs and their discrete-time version. Finally, two numerical examples are provided to substantiate the effectiveness of the proposed results.
Design of Linear-Quadratic-Regulator for a CSTR process
NASA Astrophysics Data System (ADS)
Meghna, P. R.; Saranya, V.; Jaganatha Pandian, B.
2017-11-01
This paper aims at creating a Linear Quadratic Regulator (LQR) for a Continuous Stirred Tank Reactor (CSTR). A CSTR is a common process used in chemical industries. It is a highly non-linear system. Therefore, in order to create the gain feedback controller, the model is linearized. The controller is designed for the linearized model and the concentration and volume of the liquid in the reactor are kept at a constant value as required.
Wang, Mingjun; Zhou, Yufeng
2016-08-01
HIFU becomes an effective and non-invasive modality of solid tumour/cancer ablation. Simulation of the non-linear acoustic wave propagation using a phased-array transducer in multiple layered media using different focusing strategies and the consequent lesion formation are essential in HIFU planning in order to enhance the efficacy and efficiency of treatment. An angular spectrum approach with marching fractional steps was applied in the wave propagation from phased-array HIFU transducer, and diffraction, attenuation, and non-linearity effects were accounted for by a second-order operator splitting scheme. The simulated distributions of the first three harmonics along and transverse to the transducer axis were compared to the hydrophone measurements. The bioheat equation was used to simulate the subsequent temperature elevation using the deposited acoustic energy, and lesion formation was determined by the thermal dose. Better agreement was found between the measured harmonics distribution and simulation using the proposed algorithm than the Khokhlov-Zabozotskaya-Kuznetsov equation. Variable focusing of the phased-array transducer (geometric focusing, transverse shifting and the generation of multiple foci) can be simulated successfully. The shifting and splitting of focus was found to result in significantly less temperature elevation at the focus and the subsequently, the smaller lesion size, but the larger grating lobe grating lobe in the pre-focal region. The proposed algorithm could simulate the non-linear wave propagation from the source with arbitrary shape and distribution of excitation through multiple tissue layers in high computation accuracy. The performance of phased-array HIFU can be optimised in the treatment planning.
Glycemic control of diabetes patients under continuous rocket attacks.
Soskolne, Varda; Dekel, Rachel; Vinker, Shlomo
2016-01-01
Evidence regarding the detrimental effects of exposure to stress on glycemic control among diabetes patients has mainly focused on personal life events or acute trauma. However, the effects of continuous exposure to extreme stress on type 2 diabetes patients have rarely been studied. The aim of the current study was to examine the association of continuous exposure to rocket attacks with glycemic control and with risk factors for diabetes complications among civilian type 2 diabetes patients. We focus on patients residing in the Western Negev in the south of Israel that has been subjected to rocket attacks fired from Gaza since the end of 2001. A two-arm retrospective cohort study of type 2 diabetes patients, aged 35-70 years, residing in a region with chronic exposure to rocket attacks (N = 1697) and in a non-exposed comparison region in Israel (N = 3000). Data were retrieved from the Health Maintenance Organization (HMO)'s database for four time periods representing exposure: chronic-2008; elevated-2009 (post'Cast Lead' operation); return to chronic-2010, 2011. Data included socio-demographic variables, HbA 1c , BMI, LDL cholesterol, blood pressure. General Linear Models (GLM) were used for analysis. For HbA 1c , the model yielded a significant main effect for time, a borderline significance main effect for region, and a significant time by region interaction: no differences in HbA 1c levels between the regions in 2008 and 2009, followed by significant differences between the regions in 2010 and 2011 when HbA 1c continued to increase in the exposed region but decreased in the comparison region. Regarding risk factors, a significant main effect for time for LDL cholesterol only, and significant main effects for region were found in all factors: BMI and LDL cholesterol were higher in the exposed than in the comparison region, but blood pressure values were lower. Continuous exposure to rocket attacks is associated with glycemic control and risk factors in a complex pattern. These preliminary findings require further studies of diverse types of civilian exposure to continuous extreme stress.
Berns, G S; Song, A W; Mao, H
1999-07-15
Linear experimental designs have dominated the field of functional neuroimaging, but although successful at mapping regions of relative brain activation, the technique assumes that both cognition and brain activation are linear processes. To test these assumptions, we performed a continuous functional magnetic resonance imaging (MRI) experiment of finger opposition. Subjects performed a visually paced bimanual finger-tapping task. The frequency of finger tapping was continuously varied between 1 and 5 Hz, without any rest blocks. After continuous acquisition of fMRI images, the task-related brain regions were identified with independent components analysis (ICA). When the time courses of the task-related components were plotted against tapping frequency, nonlinear "dose- response" curves were obtained for most subjects. Nonlinearities appeared in both the static and dynamic sense, with hysteresis being prominent in several subjects. The ICA decomposition also demonstrated the spatial dynamics with different components active at different times. These results suggest that the brain response to tapping frequency does not scale linearly, and that it is history-dependent even after accounting for the hemodynamic response function. This implies that finger tapping, as measured with fMRI, is a nonstationary process. When analyzed with a conventional general linear model, a strong correlation to tapping frequency was identified, but the spatiotemporal dynamics were not apparent.
Eigensensitivity analysis of rotating clamped uniform beams with the asymptotic numerical method
NASA Astrophysics Data System (ADS)
Bekhoucha, F.; Rechak, S.; Cadou, J. M.
2016-12-01
In this paper, free vibrations of a rotating clamped Euler-Bernoulli beams with uniform cross section are studied using continuation method, namely asymptotic numerical method. The governing equations of motion are derived using Lagrange's method. The kinetic and strain energy expression are derived from Rayleigh-Ritz method using a set of hybrid variables and based on a linear deflection assumption. The derived equations are transformed in two eigenvalue problems, where the first is a linear gyroscopic eigenvalue problem and presents the coupled lagging and stretch motions through gyroscopic terms. While the second is standard eigenvalue problem and corresponds to the flapping motion. Those two eigenvalue problems are transformed into two functionals treated by continuation method, the Asymptotic Numerical Method. New method proposed for the solution of the linear gyroscopic system based on an augmented system, which transforms the original problem to a standard form with real symmetric matrices. By using some techniques to resolve these singular problems by the continuation method, evolution curves of the natural frequencies against dimensionless angular velocity are determined. At high angular velocity, some singular points, due to the linear elastic assumption, are computed. Numerical tests of convergence are conducted and the obtained results are compared to the exact values. Results obtained by continuation are compared to those computed with discrete eigenvalue problem.
Permanent magnet focused X-band photoinjector
Yu, David U. L.; Rosenzweig, James
2002-09-10
A compact high energy photoelectron injector integrates the photocathode directly into a multicell linear accelerator with no drift space between the injection and the linac. High electron beam brightness is achieved by accelerating a tightly focused electron beam in an integrated, multi-cell, X-band rf linear accelerator (linac). The photoelectron linac employs a Plane-Wave-Transformer (PWT) design which provides strong cell-to-cell coupling, easing manufacturing tolerances and costs.
Unmanned aircraft system sense and avoid integrity and continuity
NASA Astrophysics Data System (ADS)
Jamoom, Michael B.
This thesis describes new methods to guarantee safety of sense and avoid (SAA) functions for Unmanned Aircraft Systems (UAS) by evaluating integrity and continuity risks. Previous SAA efforts focused on relative safety metrics, such as risk ratios, comparing the risk of using an SAA system versus not using it. The methods in this thesis evaluate integrity and continuity risks as absolute measures of safety, as is the established practice in commercial aircraft terminal area navigation applications. The main contribution of this thesis is a derivation of a new method, based on a standard intruder relative constant velocity assumption, that uses hazard state estimates and estimate error covariances to establish (1) the integrity risk of the SAA system not detecting imminent loss of '"well clear," which is the time and distance required to maintain safe separation from intruder aircraft, and (2) the probability of false alert, the continuity risk. Another contribution is applying these integrity and continuity risk evaluation methods to set quantifiable and certifiable safety requirements on sensors. A sensitivity analysis uses this methodology to evaluate the impact of sensor errors on integrity and continuity risks. The penultimate contribution is an integrity and continuity risk evaluation where the estimation model is refined to address realistic intruder relative linear accelerations, which goes beyond the current constant velocity standard. The final contribution is an integrity and continuity risk evaluation addressing multiple intruders. This evaluation is a new innovation-based method to determine the risk of mis-associating intruder measurements. A mis-association occurs when the SAA system incorrectly associates a measurement to the wrong intruder, causing large errors in the estimated intruder trajectories. The new methods described in this thesis can help ensure safe encounters between aircraft and enable SAA sensor certification for UAS integration into the National Airspace System.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Xiaoxiao; Tian, Jingxuan; Wen, Weijia, E-mail: phwen@ust.hk
2016-04-18
We report a metasurface for focusing reflected ultrasonic waves over a wide frequency band of 0.45–0.55 MHz. The broadband focusing effect of the reflective metasurface is studied numerically and then confirmed experimentally using near-field scanning techniques. The focusing mechanism can be attributed to the hyperboloidal reflection phase profile imposed by different depths of concentric grooves on the metasurface. In particular, the focal lengths of the reflective metasurface are extracted from simulations and experiments, and both exhibit good linear dependence on frequency over the considered frequency band. The proposed broadband reflective metasurface with tunable focal length has potential applications in the broadmore » field of ultrasonics, such as ultrasonic tomographic imaging, high intensity focused ultrasound treatment, etc.« less
Some estimation formulae for continuous time-invariant linear systems
NASA Technical Reports Server (NTRS)
Bierman, G. J.; Sidhu, G. S.
1975-01-01
In this brief paper we examine a Riccati equation decomposition due to Reid and Lainiotis and apply the result to the continuous time-invariant linear filtering problem. Exploitation of the time-invariant structure leads to integration-free covariance recursions which are of use in covariance analyses and in filter implementations. A super-linearly convergent iterative solution to the algebraic Riccati equation (ARE) is developed. The resulting algorithm, arranged in a square-root form, is thought to be numerically stable and competitive with other ARE solution methods. Certain covariance relations that are relevant to the fixed-point and fixed-lag smoothing problems are also discussed.
Quantifying and visualizing variations in sets of images using continuous linear optimal transport
NASA Astrophysics Data System (ADS)
Kolouri, Soheil; Rohde, Gustavo K.
2014-03-01
Modern advancements in imaging devices have enabled us to explore the subcellular structure of living organisms and extract vast amounts of information. However, interpreting the biological information mined in the captured images is not a trivial task. Utilizing predetermined numerical features is usually the only hope for quantifying this information. Nonetheless, direct visual or biological interpretation of results obtained from these selected features is non-intuitive and difficult. In this paper, we describe an automatic method for modeling visual variations in a set of images, which allows for direct visual interpretation of the most significant differences, without the need for predefined features. The method is based on a linearized version of the continuous optimal transport (OT) metric, which provides a natural linear embedding for the image data set, in which linear combination of images leads to a visually meaningful image. This enables us to apply linear geometric data analysis techniques such as principal component analysis and linear discriminant analysis in the linearly embedded space and visualize the most prominent modes, as well as the most discriminant modes of variations, in the dataset. Using the continuous OT framework, we are able to analyze variations in shape and texture in a set of images utilizing each image at full resolution, that otherwise cannot be done by existing methods. The proposed method is applied to a set of nuclei images segmented from Feulgen stained liver tissues in order to investigate the major visual differences in chromatin distribution of Fetal-Type Hepatoblastoma (FHB) cells compared to the normal cells.
Attentional modulation of desensitization to odor.
Fallon, Nicholas; Giesbrecht, Timo; Stancak, Andrej
2018-05-22
Subjective and behavioral responsiveness to odor diminishes during prolonged exposure. The precise mechanisms underlying olfactory desensitization are not fully understood, but previous studies indicate that the phenomenon may be modulated by central-cognitive processes. The present study investigated the effect of attention on perceived intensity during exposure to a pleasant odor. A within-subjects design was utilized with 19 participants attending 2 sessions. During each session, participants continuously rated their perceived intensity of a 10-minute exposure to a pleasant fragrance administered using an olfactometer. An auditory oddball task was implemented to manipulate the focus of attention in each session. Participants were instructed to either direct their attention toward the sounds, but still to rate odor, or to focus entirely on rating the odor. Analysis revealed three 50-second time windows with significantly lower mean intensity ratings during the distraction condition. Curve fitting of the data disclosed a linear function of desensitization in the focused attention condition compared with an exponential decay function during distraction condition, indicating an increased rate of initial desensitization when attention is distracted away from the odor. In the focused-attention condition, perceived intensity demonstrated a regular pattern of odor sensitivity occurring at approximately 1-2 minutes intervals following initial desensitization. Spectral analysis of low-frequency oscillations confirmed the presence of augmented spectral power in this frequency range during focused relative to distracted conditions. The findings demonstrate for the first time modulation of odor desensitization specifically by attentional factors, exemplifying the relevance of top-down control for ongoing perception of odor.
Thermal Linear Expansion of Nine Selected AISI Stainless Steels
1978-04-01
D. Desai and C. Y. Ho CINDAS REPORT 51 April 1978i! Prepared for AMERICAN IRON AND STEEL INSTITUTE d 1000 Sixteenth Street N.W. Washington, D.C...WORDS (Continue on reverse side it necessary and Identify by~ block number) *Thermal linear expansion ---*Stainless steels --- Iron -Nickel alloys... Iron -Chromium alloys 20fIStACT (Continue on reverse side it neceearyediett b lc ubr Thstechnical report reviews the available experimental data and
Lee, Dong-Jin; Lee, Sun-Kyu
2015-01-01
This paper presents a design and control system for an XY stage driven by an ultrasonic linear motor. In this study, a hybrid bolt-clamped Langevin-type ultrasonic linear motor was manufactured and then operated at the resonance frequency of the third longitudinal and the sixth lateral modes. These two modes were matched through the preload adjustment and precisely tuned by the frequency matching method based on the impedance matching method with consideration of the different moving weights. The XY stage was evaluated in terms of position and circular motion. To achieve both fine and stable motion, the controller consisted of a nominal characteristics trajectory following (NCTF) control for continuous motion, dead zone compensation, and a switching controller based on the different NCTFs for the macro- and micro-dynamics regimes. The experimental results showed that the developed stage enables positioning and continuous motion with nanometer-level accuracy.
Knol, Mirjam J; van der Tweel, Ingeborg; Grobbee, Diederick E; Numans, Mattijs E; Geerlings, Mirjam I
2007-10-01
To determine the presence of interaction in epidemiologic research, typically a product term is added to the regression model. In linear regression, the regression coefficient of the product term reflects interaction as departure from additivity. However, in logistic regression it refers to interaction as departure from multiplicativity. Rothman has argued that interaction estimated as departure from additivity better reflects biologic interaction. So far, literature on estimating interaction on an additive scale using logistic regression only focused on dichotomous determinants. The objective of the present study was to provide the methods to estimate interaction between continuous determinants and to illustrate these methods with a clinical example. and results From the existing literature we derived the formulas to quantify interaction as departure from additivity between one continuous and one dichotomous determinant and between two continuous determinants using logistic regression. Bootstrapping was used to calculate the corresponding confidence intervals. To illustrate the theory with an empirical example, data from the Utrecht Health Project were used, with age and body mass index as risk factors for elevated diastolic blood pressure. The methods and formulas presented in this article are intended to assist epidemiologists to calculate interaction on an additive scale between two variables on a certain outcome. The proposed methods are included in a spreadsheet which is freely available at: http://www.juliuscenter.nl/additive-interaction.xls.
The linear nonthreshold (LNT) model as used in radiation protection: an NCRP update.
Boice, John D
2017-10-01
The linear nonthreshold (LNT) model has been used in radiation protection for over 40 years and has been hotly debated. It relies heavily on human epidemiology, with support from radiobiology. The scientific underpinnings include NCRP Report No. 136 ('Evaluation of the Linear-Nonthreshold Dose-Response Model for Ionizing Radiation'), UNSCEAR 2000, ICRP Publication 99 (2004) and the National Academies BEIR VII Report (2006). NCRP Scientific Committee 1-25 is reviewing recent epidemiologic studies focusing on dose-response models, including threshold, and the relevance to radiation protection. Recent studies after the BEIR VII Report are being critically reviewed and include atomic-bomb survivors, Mayak workers, atomic veterans, populations on the Techa River, U.S. radiological technologists, the U.S. Million Person Study, international workers (INWORKS), Chernobyl cleanup workers, children given computerized tomography scans, and tuberculosis-fluoroscopy patients. Methodologic limitations, dose uncertainties and statistical approaches (and modeling assumptions) are being systematically evaluated. The review of studies continues and will be published as an NCRP commentary in 2017. Most studies reviewed to date are consistent with a straight-line dose response but there are a few exceptions. In the past, the scientific consensus process has worked in providing practical and prudent guidance. So pragmatic judgment is anticipated. The evaluations are ongoing and the extensive NCRP review process has just begun, so no decisions or recommendations are in stone. The march of science requires a constant assessment of emerging evidence to provide an optimum, though not necessarily perfect, approach to radiation protection. Alternatives to the LNT model may be forthcoming, e.g. an approach that couples the best epidemiology with biologically-based models of carcinogenesis, focusing on chronic (not acute) exposure circumstances. Currently for the practical purposes of radiation protection, the LNT hypothesis reigns supreme as the best of the rest, but new epidemiology and radiobiology might change these conclusions. Stay tuned!
Study on sampling of continuous linear system based on generalized Fourier transform
NASA Astrophysics Data System (ADS)
Li, Huiguang
2003-09-01
In the research of signal and system, the signal's spectrum and the system's frequency characteristic can be discussed through Fourier Transform (FT) and Laplace Transform (LT). However, some singular signals such as impulse function and signum signal don't satisfy Riemann integration and Lebesgue integration. They are called generalized functions in Maths. This paper will introduce a new definition -- Generalized Fourier Transform (GFT) and will discuss generalized function, Fourier Transform and Laplace Transform under a unified frame. When the continuous linear system is sampled, this paper will propose a new method to judge whether the spectrum will overlap after generalized Fourier transform (GFT). Causal and non-causal systems are studied, and sampling method to maintain system's dynamic performance is presented. The results can be used on ordinary sampling and non-Nyquist sampling. The results also have practical meaning on research of "discretization of continuous linear system" and "non-Nyquist sampling of signal and system." Particularly, condition for ensuring controllability and observability of MIMO continuous systems in references 13 and 14 is just an applicable example of this paper.
Henry, B I; Langlands, T A M; Wearne, S L
2006-09-01
We have revisited the problem of anomalously diffusing species, modeled at the mesoscopic level using continuous time random walks, to include linear reaction dynamics. If a constant proportion of walkers are added or removed instantaneously at the start of each step then the long time asymptotic limit yields a fractional reaction-diffusion equation with a fractional order temporal derivative operating on both the standard diffusion term and a linear reaction kinetics term. If the walkers are added or removed at a constant per capita rate during the waiting time between steps then the long time asymptotic limit has a standard linear reaction kinetics term but a fractional order temporal derivative operating on a nonstandard diffusion term. Results from the above two models are compared with a phenomenological model with standard linear reaction kinetics and a fractional order temporal derivative operating on a standard diffusion term. We have also developed further extensions of the CTRW model to include more general reaction dynamics.
NASA Astrophysics Data System (ADS)
Donovan, Conrad Koble
The objective of this dissertation was to develop power management systems (PMS) for sediment microbial fuel cells (SFMCs) for high power and continuous applications. The first part of this dissertation covers a new method for testing the performance of SMFCs. This device called the microbial fuel cell tester was developed to automatically test power generation of PMS. The second part focuses on a PMS capable of delivering high power in burst mode. This means that for a small amount of time a large amount of power up to 2.5 Watts can be delivered from a SMFC only generating mW level power. The third part is aimed at developing a multi-potentiostat laboratory tool that measures the performance at fixed cell potentials of microbial fuel cells so that I can optimize them for use with the PMS. This tool is capable of controlling the anode potential or cathode potential and measuring current of six separate SMFCs simultaneously. By operating multiple potentiostats, I was able to run experiments that find ideal operating conditions for the sediment microbial fuel cells, and also I can optimize the power management system for these conditions. The fourth part of the dissertation is targeting a PMS that was able to operate a sensor continuously which was powered by an SMFC. In pervious applications involving SMFCs, the PMS operated in batch mode. In this PMS, the firmware on the submersible ultrasonic receiver (SUR) was modified for use with my PMS. This integration of PMS and SUR allowed for the continuous operation of the SUR without using a battery. Finally, the last part of the dissertation recommends a scale-up power management system to overcome the linearity scale up issue of SMFCs as future work. Concluding remarks are also added to summarize the goal and focus of this dissertation.
Keuper, Melanie; Berthold, Christoph; Nickel, Klaus Georg
2014-02-01
We present new findings on the low-temperature degradation of yttria-stabilized zirconia at 37°C over several years and at high and low partial pressures of water. With the aid of focused ion beam cross-section confirmation studies we are able to show an extensive linear, continuous degradation without retardation, even at low temperatures and low water pressures. The characteristic layer growth and its inferred rate constant imply a lifetime of tens of years under simple tension and open the possibility of studying the longevity of these ceramics more rigorously. In addition, we show reproducibility complications of accelerated aging tests by the use of different autoclaves and possible implications for standardized procedures. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Antenna Calibration and Measurement Equipment
NASA Technical Reports Server (NTRS)
Rochblatt, David J.; Cortes, Manuel Vazquez
2012-01-01
A document describes the Antenna Calibration & Measurement Equipment (ACME) system that will provide the Deep Space Network (DSN) with instrumentation enabling a trained RF engineer at each complex to perform antenna calibration measurements and to generate antenna calibration data. This data includes continuous-scan auto-bore-based data acquisition with all-sky data gathering in support of 4th order pointing model generation requirements. Other data includes antenna subreflector focus, system noise temperature and tipping curves, antenna efficiency, reports system linearity, and instrument calibration. The ACME system design is based on the on-the-fly (OTF) mapping technique and architecture. ACME has contributed to the improved RF performance of the DSN by approximately a factor of two. It improved the pointing performances of the DSN antennas and productivity of its personnel and calibration engineers.
Study on bridge checking evaluation based on deformation-Stress data
NASA Astrophysics Data System (ADS)
Shi, Jing Xian; Cheng, Ying Jie
2018-06-01
Bridge structure plays a very important role in human traffic. The evaluation of bridge structure after a certain period of operation has always been the focus of the bridge. Based on the data collected from the health inspection system of a continuous rigid frame bridge on a highway in Yunnan, China, it is found that there is a certain linear relationship between the deformation and stress of the bridge structure. In view of a specific section of the structure, the stress value of this section can be derived according to its deformation value. The coefficient K can be calculated by comparing the estimated value to the actual measured value. According to the range of the K value, the structural state of the bridge can be evaluated to a certain extent.
Tuning the DARHT Axis-II linear induction accelerator focusing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ekdahl, Carl A.
2012-04-24
Flash radiography of large hydrodynamic experiments driven by high explosives is a well-known diagnostic technique in use at many laboratories, and the Dual-Axis Radiography for Hydrodynamic Testing (DARHT) facility at Los Alamos produces flash radiographs of large hydrodynamic experiments. Two linear induction accelerators (LIAs) make the bremsstrahlung radiographic source spots for orthogonal views of each test. The 2-kA, 20-MeV Axis-I LIA creates a single 60-ns radiography pulse. The 1.7-kA, 16.5-MeV Axis-II LIA creates up to four radiography pulses by kicking them out of a longer pulse that has a 1.6-{mu}s flattop. The Axis-II injector, LIA, kicker, and downstream transport (DST)more » to the bremsstrahlung converter are described. Adjusting the magnetic focusing and steering elements to optimize the electron-beam transport through an LIA is often called 'tuning.' As in all high-current LIAs, the focusing field is designed to be as close to that of the ideal continuous solenoid as physically possible. In ideal continuous solenoidal transport a smoothly varying beam size can easily be found for which radial forces balance, and the beam is said to be 'matched' to the focusing field. A 'mismatched' beam exhibits unwanted oscillations in size, which are a source of free energy that contributes to emittance growth. This is undesirable, because in the absence of beam-target effects, the radiographic spot size is proportional to the emittance. Tuning the Axis-II LIA is done in two steps. First, the solenoidal focusing elements are set to values designed to provide a matched beam with little or no envelope oscillations, and little or no beam-breakup (BBU) instability growth. Then, steering elements are adjusted to minimize the motion of the centroid of a well-centered beam at the LIA exit. This article only describes the design of the tune for the focusing solenoids. The DARHT Axis-II LIA was required to be re-tuned after installing an accelerator cell to replace a failed solenoid in March of 2012. We took advantage of this opportunity to improve the design of the focusing tune with better models of the remaining partially failed solenoids, better estimates of beam initial conditions, and better values for pulsed-power voltages. As with all previous tunes for Axis-II, this one incorporates measures to mitigate beam-breakup (BBU) instability, image displacement instability (IDI), corkscrew (sweep), and emittance growth. Section II covers the general approach to of design of focusing solenoid tunes for the DARHT Axis-2 LIA. Section III explains the specific requirements and simulations needed to design the tune for the injector, which includes the thermionic electron source, diode, and six induction cells. Section IV explains the requirements and simulations for tuning the main accelerator, which consists of 68 induction cells. Finally, Section V explores sensitivity of the tune to deviations of parameters from nominal, random variations, and uncertainties in values. Four appendices list solenoid settings for this new tune, discuss comparisons of different simulation codes, show halo formation in mismatched beams, and present a brief discussion of the beam envelope equation, which is the heart of the method used to design LIA solenoid tunes.« less
NASA Technical Reports Server (NTRS)
2002-01-01
Glenn Research Center sponsored an SBIR contract with ENTECH, in which the company worked to mold its successful terrestrial concentrator technology into applications that would generate solar power for space missions. ENTECH's first application made use of small, dome-shaped Fresnel lenses to direct sunlight onto high- efficiency photovoltaic cells. After some key adjustments, the mini- dome lens array was flown as part of the U.S. Air Force/NASA Photovoltaic Array Space Power Plus Diagnostics (PASP Plus) flight experiment in 1994. Due to their three-dimensional shape, the mini- dome lenses entailed construction by a batch molding process, which is naturally more costly than a continuous process. To overcome this disadvantage and meet the requirement for precise solar pointing in two axes, ENTECH started developing solar concentrator arrays for space using a line-focus lens that can be mass-produced by a continuous process. This new technology, named Solar Concentrator Array with Refractive Linear Element Technology (SCARLET), was created with support from Glenn and the Ballistic Missile Defense Organization, and was used to power the NASA/Jet Propulsion Laboratory Deep Space 1 spacecraft.
Instability of turing patterns in reaction-diffusion-ODE systems.
Marciniak-Czochra, Anna; Karch, Grzegorz; Suzuki, Kanako
2017-02-01
The aim of this paper is to contribute to the understanding of the pattern formation phenomenon in reaction-diffusion equations coupled with ordinary differential equations. Such systems of equations arise, for example, from modeling of interactions between cellular processes such as cell growth, differentiation or transformation and diffusing signaling factors. We focus on stability analysis of solutions of a prototype model consisting of a single reaction-diffusion equation coupled to an ordinary differential equation. We show that such systems are very different from classical reaction-diffusion models. They exhibit diffusion-driven instability (turing instability) under a condition of autocatalysis of non-diffusing component. However, the same mechanism which destabilizes constant solutions of such models, destabilizes also all continuous spatially heterogeneous stationary solutions, and consequently, there exist no stable Turing patterns in such reaction-diffusion-ODE systems. We provide a rigorous result on the nonlinear instability, which involves the analysis of a continuous spectrum of a linear operator induced by the lack of diffusion in the destabilizing equation. These results are extended to discontinuous patterns for a class of nonlinearities.
Lacour, C; Joannis, C; Chebbo, G
2009-05-01
This article presents a methodology for assessing annual wet weather Suspended Solids (SS) and Chemical Oxygen Demand (COD) loads in combined sewers, along with the associated uncertainties from continuous turbidity measurements. The proposed method is applied to data from various urban catchments in the cities of Paris and Nantes. The focus here concerns the impact of the number of rain events sampled for calibration (i.e. through establishing linear SS/turbidity or COD/turbidity relationships) on the uncertainty of annual pollutant load assessments. Two calculation methods are investigated, both of which rely on Monte Carlo simulations: random assignment of event-specific calibration relationships to each individual rain event, and the use of an overall relationship built from the entire available data set. Since results indicate a fairly low inter-event variability for calibration relationship parameters, an accurate assessment of pollutant loads can be derived, even when fewer than 10 events are sampled for calibration purposes. For operational applications, these results suggest that turbidity could provide a more precise evaluation of pollutant loads at lower cost than typical sampling methods.
Non-Linear System Identification for Aeroelastic Systems with Application to Experimental Data
NASA Technical Reports Server (NTRS)
Kukreja, Sunil L.
2008-01-01
Representation and identification of a non-linear aeroelastic pitch-plunge system as a model of the NARMAX class is considered. A non-linear difference equation describing this aircraft model is derived theoretically and shown to be of the NARMAX form. Identification methods for NARMAX models are applied to aeroelastic dynamics and its properties demonstrated via continuous-time simulations of experimental conditions. Simulation results show that (i) the outputs of the NARMAX model match closely those generated using continuous-time methods and (ii) NARMAX identification methods applied to aeroelastic dynamics provide accurate discrete-time parameter estimates. Application of NARMAX identification to experimental pitch-plunge dynamics data gives a high percent fit for cross-validated data.
Systems identification and the adaptive management of waterfowl in the United States
Williams, B.K.; Nichols, J.D.
2001-01-01
Waterfowl management in the United States is one of the more visible conservation success stories in the United States. It is authorized and supported by appropriate legislative authorities, based on large-scale monitoring programs, and widely accepted by the public. The process is one of only a limited number of large-scale examples of effective collaboration between research and management, integrating scientific information with management in a coherent framework for regulatory decision-making. However, harvest management continues to face some serious technical problems, many of which focus on sequential identification of the resource system in a context of optimal decision-making. The objective of this paper is to provide a theoretical foundation of adaptive harvest management, the approach currently in use in the United States for regulatory decision-making. We lay out the legal and institutional framework for adaptive harvest management and provide a formal description of regulatory decision-making in terms of adaptive optimization. We discuss some technical and institutional challenges in applying adaptive harvest management and focus specifically on methods of estimating resource states for linear resource systems.
Laser induced white lighting of tungsten filament
NASA Astrophysics Data System (ADS)
Strek, W.; Tomala, R.; Lukaszewicz, M.
2018-04-01
The sustained bright white light emission of thin tungsten filament was induced under irradiation with focused beam of CW infrared laser diode. The broadband emission centered at 600 nm has demonstrated the threshold behavior on excitation power. Its intensity increased non-linearly with excitation power. The emission occurred only from the spot of focused beam of excitation laser diode. The white lighting was accompanied by efficient photocurrent flow and photoelectron emission which both increased non-linearly with laser irradiation power.
Wiggler plane focusing in a linear free electron laser
Scharlemann, Ernst T.
1988-01-01
Free electron laser apparatus that provides a magnetic centering force to turn or focus a non-axial electron toward the longitudinal axis as desired. The focusing effect is provided by wiggler magnet pole faces that are approximately parabolically shaped.
Topology-induced bifurcations for the nonlinear Schrödinger equation on the tadpole graph.
Cacciapuoti, Claudio; Finco, Domenico; Noja, Diego
2015-01-01
In this paper we give the complete classification of solitons for a cubic nonlinear Schrödinger equation on the simplest network with a nontrivial topology: the tadpole graph, i.e., a ring with a half line attached to it and free boundary conditions at the junction. This is a step toward the modelization of condensate propagation and confinement in quasi-one-dimensional traps. The model, although simple, exhibits a surprisingly rich behavior and in particular we show that it admits: (i) a denumerable family of continuous branches of embedded solitons vanishing on the half line and bifurcating from linear eigenstates and threshold resonances of the system; (ii) a continuous branch of edge solitons bifurcating from the previous families at the threshold of the continuous spectrum with a pitchfork bifurcation; and (iii) a finite family of continuous branches of solitons without linear analog. All the solutions are explicitly constructed in terms of elliptic Jacobian functions. Moreover we show that families of nonlinear bound states of the above kind continue to exist in the presence of a uniform magnetic field orthogonal to the plane of the ring when a well definite flux quantization condition holds true. In this sense the magnetic field acts as a control parameter. Finally we highlight the role of resonances in the linearization as a signature of the occurrence of bifurcations of solitons from the continuous spectrum.
ERIC Educational Resources Information Center
Ayalon, Michal; Watson, Anne; Lerman, Steve
2015-01-01
This study investigates students' ways of attending to linear sequential data in two tasks, and conjectures possible relationships between those ways and elements of the task design. Drawing on the substantial literature about such situations, we focus for this paper on linear rate of change, and on covariation and correspondence approaches to…
ERIC Educational Resources Information Center
Montiel, Mariana; Bhatti, Uzma
2010-01-01
This article presents an overview of some issues that were confronted when delivering an online second Linear Algebra course (assuming a previous Introductory Linear Algebra course) to graduate students enrolled in a Secondary Mathematics Education program. The focus is on performance in one particular aspect of the course: "change of basis" and…
Supporting Students' Understanding of Linear Equations with One Variable Using Algebra Tiles
ERIC Educational Resources Information Center
Saraswati, Sari; Putri, Ratu Ilma Indra; Somakim
2016-01-01
This research aimed to describe how algebra tiles can support students' understanding of linear equations with one variable. This article is a part of a larger research on learning design of linear equations with one variable using algebra tiles combined with balancing method. Therefore, it will merely discuss one activity focused on how students…
Liu, Gang; Jayathilake, Pahala Gedara; Khoo, Boo Cheong
2014-02-01
Two nonlinear models are proposed to investigate the focused acoustic waves that the nonlinear effects will be important inside the liquid around the scatterer. Firstly, the one dimensional solutions for the widely used Westervelt equation with different coordinates are obtained based on the perturbation method with the second order nonlinear terms. Then, by introducing the small parameter (Mach number), a dimensionless formulation and asymptotic perturbation expansion via the compressible potential flow theory is applied. This model permits the decoupling between the velocity potential and enthalpy to second order, with the first potential solutions satisfying the linear wave equation (Helmholtz equation), whereas the second order solutions are associated with the linear non-homogeneous equation. Based on the model, the local nonlinear effects of focused acoustic waves on certain volume are studied in which the findings may have important implications for bubble cavitation/initiation via focused ultrasound called HIFU (High Intensity Focused Ultrasound). The calculated results show that for the domain encompassing less than ten times the radius away from the center of the scatterer, the non-linear effect exerts a significant influence on the focused high intensity acoustic wave. Moreover, at the comparatively higher frequencies, for the model of spherical wave, a lower Mach number may result in stronger nonlinear effects. Copyright © 2013 Elsevier B.V. All rights reserved.
Construction of energy-stable projection-based reduced order models
Kalashnikova, Irina; Barone, Matthew F.; Arunajatesan, Srinivasan; ...
2014-12-15
Our paper aims to unify and extend several approaches for building stable projection-based reduced order models (ROMs) using the energy method and the concept of “energy-stability”. Attention is focused on linear time-invariant (LTI) systems. First, an approach for building energy stable Galerkin ROMs for linear hyperbolic or incompletely parabolic systems of partial differential equations (PDEs) using continuous projection is proposed. The key idea is to apply to the system a transformation induced by the Lyapunov function for the system, and to build the ROM in the transformed variables. The result of this procedure will be a ROM that is energy-stablemore » for any choice of reduced basis. It is shown that, for many PDE systems, the desired transformation is induced by a special inner product, termed the “symmetry inner product”. Next, attention is turned to building energy-stable ROMs via discrete projection. A discrete counterpart of the continuous symmetry inner product, termed the “Lyapunov inner product”, is derived. Moreover, it is shown that the Lyapunov inner product can be computed in a black-box fashion for a stable LTI system ari sing from the discretization of a system of PDEs in space. Projection in this inner product guarantees a ROM that is energy-stable, again for any choice of reduced basis. Connections between the Lyapunov inner product and the inner product induced by the balanced truncation algorithm are made. We also made comparisons between the symmetry inner product and the Lyapunov inner product. Performance of ROMs constructed using these inner products is evaluated on several benchmark test cases.« less
Serrano-Fernandez, Pablo; Dymerska, Dagmara; Kurzawski, Grzegorz; Derkacz, Róża; Sobieszczańska, Tatiana; Banaszkiewicz, Zbigniew; Roomere, Hanno; Oitmaa, Eneli; Metspalu, Andres; Janavičius, Ramūnas; Elsakov, Pavel; Razumas, Mindaugas; Petrulis, Kestutis; Irmejs, Arvīds; Miklaševičs, Edvīns; Scott, Rodney J.; Lubiński, Jan
2015-01-01
The continued identification of new low-penetrance genetic variants for colorectal cancer (CRC) raises the question of their potential cumulative effect among compound carriers. We focused on 6 SNPs (rs380284, rs4464148, rs4779584, rs4939827, rs6983267, and rs10795668), already described as risk markers, and tested their possible independent and combined contribution to CRC predisposition. Material and Methods. DNA was collected and genotyped from 2330 unselected consecutive CRC cases and controls from Estonia (166 cases and controls), Latvia (81 cases and controls), Lithuania (123 cases and controls), and Poland (795 cases and controls). Results. Beyond individual effects, the analysis revealed statistically significant linear cumulative effects for these 6 markers for all samples except of the Latvian one (corrected P value = 0.018 for the Estonian, corrected P value = 0.0034 for the Lithuanian, and corrected P value = 0.0076 for the Polish sample). Conclusions. The significant linear cumulative effects demonstrated here support the idea of using sets of low-risk markers for delimiting new groups with high-risk of CRC in clinical practice that are not carriers of the usual CRC high-risk markers. PMID:26101521
Serrano-Fernandez, Pablo; Dymerska, Dagmara; Kurzawski, Grzegorz; Derkacz, Róża; Sobieszczańska, Tatiana; Banaszkiewicz, Zbigniew; Roomere, Hanno; Oitmaa, Eneli; Metspalu, Andres; Janavičius, Ramūnas; Elsakov, Pavel; Razumas, Mindaugas; Petrulis, Kestutis; Irmejs, Arvīds; Miklaševičs, Edvīns; Scott, Rodney J; Lubiński, Jan
2015-01-01
The continued identification of new low-penetrance genetic variants for colorectal cancer (CRC) raises the question of their potential cumulative effect among compound carriers. We focused on 6 SNPs (rs380284, rs4464148, rs4779584, rs4939827, rs6983267, and rs10795668), already described as risk markers, and tested their possible independent and combined contribution to CRC predisposition. Material and Methods. DNA was collected and genotyped from 2330 unselected consecutive CRC cases and controls from Estonia (166 cases and controls), Latvia (81 cases and controls), Lithuania (123 cases and controls), and Poland (795 cases and controls). Results. Beyond individual effects, the analysis revealed statistically significant linear cumulative effects for these 6 markers for all samples except of the Latvian one (corrected P value = 0.018 for the Estonian, corrected P value = 0.0034 for the Lithuanian, and corrected P value = 0.0076 for the Polish sample). Conclusions. The significant linear cumulative effects demonstrated here support the idea of using sets of low-risk markers for delimiting new groups with high-risk of CRC in clinical practice that are not carriers of the usual CRC high-risk markers.
Modulational instability in a PT-symmetric vector nonlinear Schrödinger system
NASA Astrophysics Data System (ADS)
Cole, J. T.; Makris, K. G.; Musslimani, Z. H.; Christodoulides, D. N.; Rotter, S.
2016-12-01
A class of exact multi-component constant intensity solutions to a vector nonlinear Schrödinger (NLS) system in the presence of an external PT-symmetric complex potential is constructed. This type of uniform wave pattern displays a non-trivial phase whose spatial dependence is induced by the lattice structure. In this regard, light can propagate without scattering while retaining its original form despite the presence of inhomogeneous gain and loss. These constant-intensity continuous waves are then used to perform a modulational instability analysis in the presence of both non-hermitian media and cubic nonlinearity. A linear stability eigenvalue problem is formulated that governs the dynamical evolution of the periodic perturbation and its spectrum is numerically determined using Fourier-Floquet-Bloch theory. In the self-focusing case, we identify an intensity threshold above which the constant-intensity modes are modulationally unstable for any Floquet-Bloch momentum belonging to the first Brillouin zone. The picture in the self-defocusing case is different. Contrary to the bulk vector case, where instability develops only when the waves are strongly coupled, here an instability occurs in the strong and weak coupling regimes. The linear stability results are supplemented with direct (nonlinear) numerical simulations.
Using Passive Cavitation Images to Classify High-Intensity Focused Ultrasound Lesions
Haworth, Kevin J.; Salgaonkar, Vasant A.; Corregan, Nicholas M.; Holland, Christy K.; Mast, T. Douglas
2015-01-01
Passive cavitation imaging provides spatially resolved monitoring of cavitation emissions. However the diffraction limit of a linear imaging array results in relatively poor range resolution. Poor range resolution has limited prior analyses of the spatial specificity and sensitivity of passive cavitation imaging for predicting thermal lesion formation. In this study, this limitation is overcome by orienting a linear array orthogonal to the HIFU propagation direction and performing passive imaging. Fourteen lesions were formed in ex vivo bovine liver samples as a result of 1.1 MHz continuous-wave ultrasound exposure. The lesions were classified as focal, “tadpole”, or pre-focal based on their shape and location. Passive cavitation images were beam-formed from emissions at the fundamental, harmonic, ultraharmonic, and inharmonic frequencies with an established algorithm. Using the area under a receiver operator characteristic curve (AUROC), fundamental, harmonic, and ultraharmonic emissions were shown to be significant predictors of lesion formation for all lesion types. For both harmonic and ultraharmonic emissions, pre-focal lesions were classified most successfully (AUROC values of 0.87 and 0.88, respectively), followed by tadpole lesions (AUROC values of 0.77 and 0.64, respectively), and focal lesions (AUROC values of 0.65 and 0.60, respectively). PMID:26051309
Parameter Estimation and Model Selection for Indoor Environments Based on Sparse Observations
NASA Astrophysics Data System (ADS)
Dehbi, Y.; Loch-Dehbi, S.; Plümer, L.
2017-09-01
This paper presents a novel method for the parameter estimation and model selection for the reconstruction of indoor environments based on sparse observations. While most approaches for the reconstruction of indoor models rely on dense observations, we predict scenes of the interior with high accuracy in the absence of indoor measurements. We use a model-based top-down approach and incorporate strong but profound prior knowledge. The latter includes probability density functions for model parameters and sparse observations such as room areas and the building footprint. The floorplan model is characterized by linear and bi-linear relations with discrete and continuous parameters. We focus on the stochastic estimation of model parameters based on a topological model derived by combinatorial reasoning in a first step. A Gauss-Markov model is applied for estimation and simulation of the model parameters. Symmetries are represented and exploited during the estimation process. Background knowledge as well as observations are incorporated in a maximum likelihood estimation and model selection is performed with AIC/BIC. The likelihood is also used for the detection and correction of potential errors in the topological model. Estimation results are presented and discussed.
NASA Astrophysics Data System (ADS)
Baraskar, Priyanka; Chouhan, Romita; Agrawal, Arpana; Choudhary, R. J.; Sen, Pranay K.; Sen, Pratima
2018-03-01
We report the magnetic field effect on the linear and nonlinear optical properties of pulse laser ablated Ti-incorporated Cr2O3 nanostructured thin film. Optical properties have been experimentally analyzed under Voigt geometry by performing ultraviolet-visible spectroscopy and closed aperture Z-scan technique using a continuous wave He-Ne laser source. Nonlinear optical response reveals a single peak-valley feature in the far field diffraction pattern in absence of magnetic field (B = 0) confirming self-defocussing effect. This feature switches to a valley-peak configuration for B = 5000G, suggesting self-focusing effect. For B ≤ 750G, oscillations were observed revealing the occurrence of higher order nonlinearity. Origin of nonlinearity is attributed to the near resonant d-d transitions observed from the broad peak occurring around 2 eV. These transitions are of magnetic origin and get modified under the application of external magnetic field. Our results suggest that magnetic field can be used as an effective tool to monitor the sign of optical nonlinearity and hence the thermal expansion in Ti-incorporated Cr2O3 nanostructured thin film.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Diaz, Aaron A.; Chamberlin, Clyde E.; Edwards, Matthew K.
This section of the Joint summary technical letter report (TLR) describes work conducted at the Pacific Northwest National Laboratory (PNNL) during FY 2016 (FY16) on the under-sodium viewing (USV) PNNL project 58745, work package AT-16PN230102. This section of the TLR satisfies PNNL’s M3AT-16PN2301025 milestone and is focused on summarizing the design, development, and evaluation of two different phased-array ultrasonic testing (PA-UT) probe designs—a two-dimensional (2D) matrix phased-array probe, and two one-dimensional (1D) linear array probes, referred to as serial number 4 (SN4) engineering test units (ETUs). The 2D probe is a pulse-echo (PE), 32×2, 64-element matrix phased-array ETU. The 1Dmore » probes are 32×1 element linear array ETUs. This TLR also provides the results from a performance demonstration (PD) of in-sodium target detection trials at 260°C using both probe designs. This effort continues the iterative evolution supporting the longer term goal of producing and demonstrating a pre-manufacturing prototype ultrasonic probe that possesses the fundamental performance characteristics necessary to enable the development of a high-temperature sodium-cooled fast reactor (SFR) inspection system for in-sodium detection and imaging.« less
Upgrades to the LLNL flash x-ray induction linear accelerator (FXR)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scarpetti, R. D., LLNL
1997-06-30
The FXR is an induction linear accelerator used for flash radiography at the Lawrence Livermore National Laboratory's Site 300 Test Facility. The FXR was originally completed in 1982 and has been in continuous use as a radiographic tool. At that time the FXR produced a 17MeV, 2.2 kA burst of electrons for a duration of 65 ns. An upgrade of the FXR was recently completed. The purpose of this upgrade was to improve the performance of the FXR by increasing the energy of the electron injector from 1.2 MeV to 2.5 MeV and the beam current from 2.2 kA tomore » 3 kA, improving the magnetic transport system by redesigning the solenoidal transport focus coils, reducing the rf coupling of the electron beam to the accelerator cells, and by adding additional beam diagnostics. We will describe the injector upgrades and performance as well as our efforts to tune the accelerator by minimizing beam corkscrew motion and the impact of Beam Breakup Instability on beam centroid motion throughout the beam line as the current is increased to 3 kA.« less
Theoretical and Empirical Comparisons between Two Models for Continuous Item Responses.
ERIC Educational Resources Information Center
Ferrando, Pere J.
2002-01-01
Analyzed the relations between two continuous response models intended for typical response items: the linear congeneric model and Samejima's continuous response model (CRM). Illustrated the relations described using an empirical example and assessed the relations through a simulation study. (SLD)
Hagenbeek, R E; Rombouts, S A R B; Veltman, D J; Van Strien, J W; Witter, M P; Scheltens, P; Barkhof, F
2007-10-01
Changes in brain activation as a function of continuous multiparametric word recognition have not been studied before by using functional MR imaging (fMRI), to our knowledge. Our aim was to identify linear changes in brain activation and, what is more interesting, nonlinear changes in brain activation as a function of extended word repetition. Fifteen healthy young right-handed individuals participated in this study. An event-related extended continuous word-recognition task with 30 target words was used to study the parametric effect of word recognition on brain activation. Word-recognition-related brain activation was studied as a function of 9 word repetitions. fMRI data were analyzed with a general linear model with regressors for linearly changing signal intensity and nonlinearly changing signal intensity, according to group average reaction time (RT) and individual RTs. A network generally associated with episodic memory recognition showed either constant or linearly decreasing brain activation as a function of word repetition. Furthermore, both anterior and posterior cingulate cortices and the left middle frontal gyrus followed the nonlinear curve of the group RT, whereas the anterior cingulate cortex was also associated with individual RT. Linear alteration in brain activation as a function of word repetition explained most changes in blood oxygen level-dependent signal intensity. Using a hierarchically orthogonalized model, we found evidence for nonlinear activation associated with both group and individual RTs.
Non-linear continuous time random walk models★
NASA Astrophysics Data System (ADS)
Stage, Helena; Fedotov, Sergei
2017-11-01
A standard assumption of continuous time random walk (CTRW) processes is that there are no interactions between the random walkers, such that we obtain the celebrated linear fractional equation either for the probability density function of the walker at a certain position and time, or the mean number of walkers. The question arises how one can extend this equation to the non-linear case, where the random walkers interact. The aim of this work is to take into account this interaction under a mean-field approximation where the statistical properties of the random walker depend on the mean number of walkers. The implementation of these non-linear effects within the CTRW integral equations or fractional equations poses difficulties, leading to the alternative methodology we present in this work. We are concerned with non-linear effects which may either inhibit anomalous effects or induce them where they otherwise would not arise. Inhibition of these effects corresponds to a decrease in the waiting times of the random walkers, be this due to overcrowding, competition between walkers or an inherent carrying capacity of the system. Conversely, induced anomalous effects present longer waiting times and are consistent with symbiotic, collaborative or social walkers, or indirect pinpointing of favourable regions by their attractiveness. Contribution to the Topical Issue "Continuous Time Random Walk Still Trendy: Fifty-year History, Current State and Outlook", edited by Ryszard Kutner and Jaume Masoliver.
Zero entropy continuous interval maps and MMLS-MMA property
NASA Astrophysics Data System (ADS)
Jiang, Yunping
2018-06-01
We prove that the flow generated by any continuous interval map with zero topological entropy is minimally mean-attractable and minimally mean-L-stable. One of the consequences is that any oscillating sequence is linearly disjoint from all flows generated by all continuous interval maps with zero topological entropy. In particular, the Möbius function is linearly disjoint from all flows generated by all continuous interval maps with zero topological entropy (Sarnak’s conjecture for continuous interval maps). Another consequence is a non-trivial example of a flow having discrete spectrum. We also define a log-uniform oscillating sequence and show a result in ergodic theory for comparison. This material is based upon work supported by the National Science Foundation. It is also partially supported by a collaboration grant from the Simons Foundation (grant number 523341) and PSC-CUNY awards and a grant from NSFC (grant number 11571122).
NASA Astrophysics Data System (ADS)
Yang, Liang-Yi; Sun, Di-Hua; Zhao, Min; Cheng, Sen-Lin; Zhang, Geng; Liu, Hui
2018-03-01
In this paper, a new micro-cooperative driving car-following model is proposed to investigate the effect of continuous historical velocity difference information on traffic stability. The linear stability criterion of the new model is derived with linear stability theory and the results show that the unstable region in the headway-sensitivity space will be shrunk by taking the continuous historical velocity difference information into account. Through nonlinear analysis, the mKdV equation is derived to describe the traffic evolution behavior of the new model near the critical point. Via numerical simulations, the theoretical analysis results are verified and the results indicate that the continuous historical velocity difference information can enhance the stability of traffic flow in the micro-cooperative driving process.
Alternating phase focused linacs
Swenson, Donald A.
1980-01-01
A heavy particle linear accelerator employing rf fields for transverse and ongitudinal focusing as well as acceleration. Drift tube length and gap positions in a standing wave drift tube loaded structure are arranged so that particles are subject to acceleration and succession of focusing and defocusing forces which contain the beam without additional magnetic or electric focusing fields.
Arbitrary-Order Conservative and Consistent Remapping and a Theory of Linear Maps: Part II
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ullrich, Paul A.; Devendran, Dharshi; Johansen, Hans
2016-04-01
The focus on this series of articles is on the generation of accurate, conservative, consistent, and (optionally) monotone linear offline maps. This paper is the second in the series. It extends on the first part by describing four examples of 2D linear maps that can be constructed in accordance with the theory of the earlier work. The focus is again on spherical geometry, although these techniques can be readily extended to arbitrary manifolds. The four maps include conservative, consistent, and (optionally) monotone linear maps (i) between two finite-volume meshes, (ii) from finite-volume to finite-element meshes using a projection-type approach, (iii)more » from finite-volume to finite-element meshes using volumetric integration, and (iv) between two finite-element meshes. Arbitrary order of accuracy is supported for each of the described nonmonotone maps.« less
Fiber bundle phase conjugate mirror
Ward, Benjamin G.
2012-05-01
An improved method and apparatus for passively conjugating the phases of a distorted wavefronts resulting from optical phase mismatch between elements of a fiber laser array are disclosed. A method for passively conjugating a distorted wavefront comprises the steps of: multiplexing a plurality of probe fibers and a bundle pump fiber in a fiber bundle array; passing the multiplexed output from the fiber bundle array through a collimating lens and into one portion of a non-linear medium; passing the output from a pump collection fiber through a focusing lens and into another portion of the non-linear medium so that the output from the pump collection fiber mixes with the multiplexed output from the fiber bundle; adjusting one or more degrees of freedom of one or more of the fiber bundle array, the collimating lens, the focusing lens, the non-linear medium, or the pump collection fiber to produce a standing wave in the non-linear medium.
Imaging Through Random Discrete-Scatterer Dispersive Media
2015-08-27
to that of a conventional, continuous, linear - frequency-modulated chirped signal [3]. Chirped train signals are a particular realization of a class of...continuous chirp signals, characterized by linear frequency modulation [3], we assume the time instances tn to be given by 1 tn = τg ( 1− βg n 2Ng ) n...kernel Dn(z) [9] by sincN (z) = (N + 1)−1DN/2(2πz/N). DISTRIBUTION A: Distribution approved for public release. 4 We use the elementary identity5 π sin
Yang, Xiaowei; Nie, Kun
2008-03-15
Longitudinal data sets in biomedical research often consist of large numbers of repeated measures. In many cases, the trajectories do not look globally linear or polynomial, making it difficult to summarize the data or test hypotheses using standard longitudinal data analysis based on various linear models. An alternative approach is to apply the approaches of functional data analysis, which directly target the continuous nonlinear curves underlying discretely sampled repeated measures. For the purposes of data exploration, many functional data analysis strategies have been developed based on various schemes of smoothing, but fewer options are available for making causal inferences regarding predictor-outcome relationships, a common task seen in hypothesis-driven medical studies. To compare groups of curves, two testing strategies with good power have been proposed for high-dimensional analysis of variance: the Fourier-based adaptive Neyman test and the wavelet-based thresholding test. Using a smoking cessation clinical trial data set, this paper demonstrates how to extend the strategies for hypothesis testing into the framework of functional linear regression models (FLRMs) with continuous functional responses and categorical or continuous scalar predictors. The analysis procedure consists of three steps: first, apply the Fourier or wavelet transform to the original repeated measures; then fit a multivariate linear model in the transformed domain; and finally, test the regression coefficients using either adaptive Neyman or thresholding statistics. Since a FLRM can be viewed as a natural extension of the traditional multiple linear regression model, the development of this model and computational tools should enhance the capacity of medical statistics for longitudinal data.
Correlation and simple linear regression.
Eberly, Lynn E
2007-01-01
This chapter highlights important steps in using correlation and simple linear regression to address scientific questions about the association of two continuous variables with each other. These steps include estimation and inference, assessing model fit, the connection between regression and ANOVA, and study design. Examples in microbiology are used throughout. This chapter provides a framework that is helpful in understanding more complex statistical techniques, such as multiple linear regression, linear mixed effects models, logistic regression, and proportional hazards regression.
Wiggler plane focusing in a linear free electron laser
Scharlemann, E.T.
1985-11-21
This disclosure describes a free electron laser apparatus that provides a magnetic centering force to turn or focus a non-axial electron toward the longitudinal axis as desired. The focusing effect is provided by wiggler magnet pole faces that are approximately parabolically shaped.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Dong-Jin; Lee, Sun-Kyu, E-mail: skyee@gist.ac.kr
2015-01-15
This paper presents a design and control system for an XY stage driven by an ultrasonic linear motor. In this study, a hybrid bolt-clamped Langevin-type ultrasonic linear motor was manufactured and then operated at the resonance frequency of the third longitudinal and the sixth lateral modes. These two modes were matched through the preload adjustment and precisely tuned by the frequency matching method based on the impedance matching method with consideration of the different moving weights. The XY stage was evaluated in terms of position and circular motion. To achieve both fine and stable motion, the controller consisted of amore » nominal characteristics trajectory following (NCTF) control for continuous motion, dead zone compensation, and a switching controller based on the different NCTFs for the macro- and micro-dynamics regimes. The experimental results showed that the developed stage enables positioning and continuous motion with nanometer-level accuracy.« less
The structure of mode-locking regions of piecewise-linear continuous maps: II. Skew sawtooth maps
NASA Astrophysics Data System (ADS)
Simpson, D. J. W.
2018-05-01
In two-parameter bifurcation diagrams of piecewise-linear continuous maps on , mode-locking regions typically have points of zero width known as shrinking points. Near any shrinking point, but outside the associated mode-locking region, a significant proportion of parameter space can be usefully partitioned into a two-dimensional array of annular sectors. The purpose of this paper is to show that in these sectors the dynamics is well-approximated by a three-parameter family of skew sawtooth circle maps, where the relationship between the skew sawtooth maps and the N-dimensional map is fixed within each sector. The skew sawtooth maps are continuous, degree-one, and piecewise-linear, with two different slopes. They approximate the stable dynamics of the N-dimensional map with an error that goes to zero with the distance from the shrinking point. The results explain the complicated radial pattern of periodic, quasi-periodic, and chaotic dynamics that occurs near shrinking points.
Quantile Regression in the Study of Developmental Sciences
Petscher, Yaacov; Logan, Jessica A. R.
2014-01-01
Linear regression analysis is one of the most common techniques applied in developmental research, but only allows for an estimate of the average relations between the predictor(s) and the outcome. This study describes quantile regression, which provides estimates of the relations between the predictor(s) and outcome, but across multiple points of the outcome’s distribution. Using data from the High School and Beyond and U.S. Sustained Effects Study databases, quantile regression is demonstrated and contrasted with linear regression when considering models with: (a) one continuous predictor, (b) one dichotomous predictor, (c) a continuous and a dichotomous predictor, and (d) a longitudinal application. Results from each example exhibited the differential inferences which may be drawn using linear or quantile regression. PMID:24329596
Managerial and environmental factors in the continuity of mental health care across institutions.
Greenberg, Greg A; Rosenheck, Robert A
2003-04-01
The authors examined the association of continuity of care with factors assumed to be under the control of health care administrators and environmental factors not under managerial control. The authors used a facility-level administrative data set for 139 Department of Veterans Affairs medical centers over a six-year period and supplemental data on environmental factors to conduct two types of analysis. First, simple correlations were used to examine bivariate associations between eight continuity-of-care measures and nine measures of the institutional environment and the social context. Second, to control for potential autocorrelation, multivariate hierarchical linear models with all nine independent measures were created. The strongest predictors of continuity of care were per capita outpatient expenditure and the degree of emphasis on outpatient care as measured by the percentage of all mental health expenditures devoted to outpatient care. The former was significantly associated with greater continuity of care on six of eight measures and the latter on seven of eight measures. The environmental factor of social capital (the degree of civic involvement and trust at the state level) was associated with greater continuity of care on five measures. The degree to which non-VA mental health services were funded in a state was unexpectedly found to be positively associated with greater continuity of care. In multivariate analysis using hierarchical linear modeling, significant relationships with continuity of care remained for per capita outpatient expenditures, overall outpatient emphasis, and social capital, but not for non-VA mental health funding. A linear term representing the year was positively and significantly associated with six of the eight examined continuity-of-care measures, indicating improvement in continuity of care for the period under study, although the explanation for this trend over time is unclear. Several factors potentially under managerial control are associated with increased mental health continuity of care.
A method for fitting regression splines with varying polynomial order in the linear mixed model.
Edwards, Lloyd J; Stewart, Paul W; MacDougall, James E; Helms, Ronald W
2006-02-15
The linear mixed model has become a widely used tool for longitudinal analysis of continuous variables. The use of regression splines in these models offers the analyst additional flexibility in the formulation of descriptive analyses, exploratory analyses and hypothesis-driven confirmatory analyses. We propose a method for fitting piecewise polynomial regression splines with varying polynomial order in the fixed effects and/or random effects of the linear mixed model. The polynomial segments are explicitly constrained by side conditions for continuity and some smoothness at the points where they join. By using a reparameterization of this explicitly constrained linear mixed model, an implicitly constrained linear mixed model is constructed that simplifies implementation of fixed-knot regression splines. The proposed approach is relatively simple, handles splines in one variable or multiple variables, and can be easily programmed using existing commercial software such as SAS or S-plus. The method is illustrated using two examples: an analysis of longitudinal viral load data from a study of subjects with acute HIV-1 infection and an analysis of 24-hour ambulatory blood pressure profiles.
Free-piston engine linear generator for hybrid vehicles modeling study
NASA Astrophysics Data System (ADS)
Callahan, T. J.; Ingram, S. K.
1995-05-01
Development of a free piston engine linear generator was investigated for use as an auxiliary power unit for a hybrid electric vehicle. The main focus of the program was to develop an efficient linear generator concept to convert the piston motion directly into electrical power. Computer modeling techniques were used to evaluate five different designs for linear generators. These designs included permanent magnet generators, reluctance generators, linear DC generators, and two and three-coil induction generators. The efficiency of the linear generator was highly dependent on the design concept. The two-coil induction generator was determined to be the best design, with an efficiency of approximately 90 percent.
Ellis, Shane R; Soltwisch, Jens; Heeren, Ron M A
2014-05-01
In this study, we describe the implementation of a position- and time-sensitive detection system (Timepix detector) to directly visualize the spatial distributions of the matrix-assisted laser desorption ionization ion cloud in a linear-time-of-flight (MALDI linear-ToF) as it is projected onto the detector surface. These time-resolved images allow direct visualization of m/z-dependent ion focusing effects that occur within the ion source of the instrument. The influence of key parameters, namely extraction voltage (E(V)), pulsed-ion extraction (PIE) delay, and even the matrix-dependent initial ion velocity was investigated and were found to alter the focusing properties of the ion-optical system. Under certain conditions where the spatial focal plane coincides with the detector plane, so-called x-y space focusing could be observed (i.e., the focusing of the ion cloud to a small, well-defined spot on the detector). Such conditions allow for the stigmatic ion imaging of intact proteins for the first time on a commercial linear ToF-MS system. In combination with the ion-optical magnification of the system (~100×), a spatial resolving power of 11–16 μm with a pixel size of 550 nm was recorded within a laser spot diameter of ~125 μm. This study demonstrates both the diagnostic and analytical advantages offered by the Timepix detector in ToF-MS.
High-Efficiency Visible Transmitting Polarizations Devices Based on the GaN Metasurface.
Guo, Zhongyi; Xu, Haisheng; Guo, Kai; Shen, Fei; Zhou, Hongping; Zhou, Qingfeng; Gao, Jun; Yin, Zhiping
2018-05-15
Metasurfaces are capable of tailoring the amplitude, phase, and polarization of incident light to design various polarization devices. Here, we propose a metasurface based on the novel dielectric material gallium nitride (GaN) to realize high-efficiency modulation for both of the orthogonal linear polarizations simultaneously in the visible range. Both modulated transmitted phases of the orthogonal linear polarizations can almost span the whole 2π range by tailoring geometric sizes of the GaN nanobricks, while maintaining high values of transmission (almost all over 90%). At the wavelength of 530 nm, we designed and realized the beam splitter and the focusing lenses successfully. To further prove that our proposed method is suitable for arbitrary orthogonal linear polarization, we also designed a three-dimensional (3D) metalens that can simultaneously focus the X -, Y -, 45°, and 135° linear polarizations on spatially symmetric positions, which can be applied to the linear polarization measurement. Our work provides a possible method to achieve high-efficiency multifunctional optical devices in visible light by extending the modulating dimensions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sword, Charles Keith
A scanner system and method for acquisition of position-based ultrasonic inspection data are described. The scanner system includes an inspection probe and a first non-contact linear encoder having a first sensor and a first scale to track inspection probe position. The first sensor is positioned to maintain a continuous non-contact interface between the first sensor and the first scale and to maintain a continuous alignment of the first sensor with the inspection probe. The scanner system may be used to acquire two-dimensional inspection probe position data by including a second non-contact linear encoder having a second sensor and a secondmore » scale, the second sensor positioned to maintain a continuous non-contact interface between the second sensor and the second scale and to maintain a continuous alignment of the second sensor with the first sensor.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seth J. Putterman
FINAL REPORT ON : NON-LINEAR WAVES IN CONTINUOUS MEDIA Doe DE FG03-87ER13686 (001312-001) Submitted January 10, 2006 by Seth J. Putterman 310-8252269 Physics Department University of California Los Angeles, CA 90095 puherman@ritva.physics.ucla.edu NON-LINEAR WAVES IN CONTINUOUS MEDIA I am happy to report that this project has been a big success. For over 10 years the DOE [Division of Materials Sciences and Engineering] has funded our research program on the overarching theme of spontaneous energy focusing phenomena. These effects occur when a nonlinear macroscopic system is excited so as to drive it far from equilibrium. The subsequent relaxation to equilibrium doesmore » not occur smoothly but instead is accompanied by the formation of structured domains where the energy density is highly concentrated. A signature example is picosecond sonoluminescence [1] wherein a smooth sound wave has its energy density focused by 12 orders of magnitude to generate a clock-like string of picosecond flashes of ultraviolet light. Our earlier work on solitons [2] demonstrated how uniform surface waves break up into stable localized structures. Our experimental work on turbulence produced photos of localized structures lying many standard deviations outside the range of gaussian statistics[3]. This effect is referred to as intermittency. Our recent work on friction finds its motivation in those theories of sonoluminescence which invoke frictional electricity. In its most common form this is the generation of a spark when we touch a doorknob after walking over a carpet. Our reading of the literature on this subject indicated that frictional electricity like sonoluminescence is not understood. So to probe triboelectrification we set up a modern version of an experiment performed by Bernoulli in 1700. Here sparking is caused by the rubbing of glass against mercury. We indeed observed flashes of light which were accompanied by events of stick-slip friction at the interface between the mercury and glass. Furthermore, we found that a very slow relative motion of 1mm/second created repetitive macroscopic picosecond discharges wherein electrons are accelerated to at least 1% of the speed of light[4]. Following up on the Bernoulli-Picard effect we wondered if electrification played a role in ordinary friction and if friction itself might be another example of an energy focusing effect. Indeed we found that dry friction is due to the spontaneous formation of atomic/molecular bonds at the interface of two materials brought into contact. Bond formation provides for the stick in stick-slip friction. When the external force is great enough to rupture the bonds the interface slips. Thus the averaged normal force applied to an interface is focused down to the level of individual bonds where quantum mechanics comes into play in determining the properties of friction in macroscopic systems[5,6,7]. A typical applied stress is about 1bar whereas the focused stress at the bonds which spontaneously form at the interface is about 1Megabar. This stress is so great that it locally distorts the interface and leads to spot cold welding between surfaces in contact. And as these cold welds grow the change in stiffness of the junction displays quantum jumps which we have observed even when the bodies in contact have macroscopic dimensions [7]. The intellectual thrust for all the advances mentioned above has been seeded by the Division of Materials Sciences and Engineering. We believe that our efforts have generated favorable science based publicity for Basic Energy Science. The Principal Investigator has been invited to give colloquia at each of the top 20 universities at least once. The New York Times has written 3 science articles based on our effort on sonoluminescence and the mercury light. Nature has written a news-story about our work on solitons [8] and more recently a news-story about our work on cold welding [9]. Our recent success in scaling up sonoluminescence to pulses with a peak power of 1/2Watt [10] has just been reported by Physics Today[11], and a presentation to the Acoustical Society of America [12] about megakelvin sonoluminescing bubbles has been picked up by Business Week [13]. Additional news articles about our work in Nature, Science, etc. could be cited.« less
Teacher Perspectives on the Practice of Continuity of Care
ERIC Educational Resources Information Center
Longstreth, Sascha; Garrity, Sarah; Ritblatt, Shulamit N.; Olson, Kelsey; Virgilio, Ashley; Dinh, Hilary; Padamada, Shane
2016-01-01
This study aims to address gaps in the literature on continuity of care through focus group interviews with teachers at public early care and education programs in San Diego County, California, USA. To better understand various perspectives on continuity of care, focus groups were conducted at programs that currently practice continuity of care,…
Reliable gain-scheduled control of discrete-time systems and its application to CSTR model
NASA Astrophysics Data System (ADS)
Sakthivel, R.; Selvi, S.; Mathiyalagan, K.; Shi, Y.
2016-10-01
This paper is focused on reliable gain-scheduled controller design for a class of discrete-time systems with randomly occurring nonlinearities and actuator fault. Further, the nonlinearity in the system model is assumed to occur randomly according to a Bernoulli distribution with measurable time-varying probability in real time. The main purpose of this paper is to design a gain-scheduled controller by implementing a probability-dependent Lyapunov function and linear matrix inequality (LMI) approach such that the closed-loop discrete-time system is stochastically stable for all admissible randomly occurring nonlinearities. The existence conditions for the reliable controller is formulated in terms of LMI constraints. Finally, the proposed reliable gain-scheduled control scheme is applied on continuously stirred tank reactor model to demonstrate the effectiveness and applicability of the proposed design technique.
Hannemann, S; van Duijn, E-J; Ubachs, W
2007-10-01
A narrow-band tunable injection-seeded pulsed titanium:sapphire laser system has been developed for application in high-resolution spectroscopic studies at the fundamental wavelengths in the near infrared as well as in the ultraviolet, deep ultraviolet, and extreme ultraviolet after upconversion. Special focus is on the quantitative assessment of the frequency characteristics of the oscillator-amplifier system on a pulse-to-pulse basis. Frequency offsets between continuous-wave seed light and the pulsed output are measured as well as linear chirps attributed mainly to mode pulling effects in the oscillator cavity. Operational conditions of the laser are found in which these offset and chirp effects are minimal. Absolute frequency calibration at the megahertz level of accuracy is demonstrated on various atomic and molecular resonance lines.
An Expert System for the Evaluation of Cost Models
1990-09-01
contrast to the condition of equal error variance, called homoscedasticity. (Reference: Applied Linear Regression Models by John Neter - page 423...normal. (Reference: Applied Linear Regression Models by John Neter - page 125) Click Here to continue -> Autocorrelation Click Here for the index - Index...over time. Error terms correlated over time are said to be autocorrelated or serially correlated. (REFERENCE: Applied Linear Regression Models by John
NASA Technical Reports Server (NTRS)
Callier, Frank M.; Desoer, Charles A.
1991-01-01
The aim of this book is to provide a systematic and rigorous access to the main topics of linear state-space system theory in both the continuous-time case and the discrete-time case; and the I/O description of linear systems. The main thrusts of the work are the analysis of system descriptions and derivations of their properties, LQ-optimal control, state feedback and state estimation, and MIMO unity-feedback systems.
Some Statistics for Assessing Person-Fit Based on Continuous-Response Models
ERIC Educational Resources Information Center
Ferrando, Pere Joan
2010-01-01
This article proposes several statistics for assessing individual fit based on two unidimensional models for continuous responses: linear factor analysis and Samejima's continuous response model. Both models are approached using a common framework based on underlying response variables and are formulated at the individual level as fixed regression…
On solutions of the fifth-order dispersive equations with porous medium type non-linearity
NASA Astrophysics Data System (ADS)
Kocak, Huseyin; Pinar, Zehra
2018-07-01
In this work, we focus on obtaining the exact solutions of the fifth-order semi-linear and non-linear dispersive partial differential equations, which have the second-order diffusion-like (porous-type) non-linearity. The proposed equations were not studied in the literature in the sense of the exact solutions. We reveal solutions of the proposed equations using the classical Riccati equations method. The obtained exact solutions, which can play a key role to simulate non-linear waves in the medium with dispersion and diffusion, are illustrated and discussed in details.
ERIC Educational Resources Information Center
Wang, Tianyou
2008-01-01
Von Davier, Holland, and Thayer (2004) laid out a five-step framework of test equating that can be applied to various data collection designs and equating methods. In the continuization step, they presented an adjusted Gaussian kernel method that preserves the first two moments. This article proposes an alternative continuization method that…
On a q-extension of the linear harmonic oscillator with the continuous orthogonality property on ℝ
NASA Astrophysics Data System (ADS)
Alvarez-Nodarse, R.; Atakishiyeva, M. K.; Atakishiyev, N. M.
2005-11-01
We discuss a q-analogue of the linear harmonic oscillator in quantum mechanics based on a q-extension of the classical Hermite polynomials H n ( x) recently introduced by us in R. Alvarez-Nodarse et al.: Boletin de la Sociedad Matematica Mexicana (3) 8 (2002) 127. The wave functions in this q-model of the quantum harmonic oscillator possess the continuous orthogonality property on the whole real line ℝ with respect to a positive weight function. A detailed description of the corresponding q-system is carried out.
Dynamic Programming for Structured Continuous Markov Decision Problems
NASA Technical Reports Server (NTRS)
Dearden, Richard; Meuleau, Nicholas; Washington, Richard; Feng, Zhengzhu
2004-01-01
We describe an approach for exploiting structure in Markov Decision Processes with continuous state variables. At each step of the dynamic programming, the state space is dynamically partitioned into regions where the value function is the same throughout the region. We first describe the algorithm for piecewise constant representations. We then extend it to piecewise linear representations, using techniques from POMDPs to represent and reason about linear surfaces efficiently. We show that for complex, structured problems, our approach exploits the natural structure so that optimal solutions can be computed efficiently.
Dilations and the Equation of a Line
ERIC Educational Resources Information Center
Yopp, David A.
2016-01-01
Students engage in proportional reasoning when they use covariance and multiple comparisons. Without rich connections to proportional reasoning, students may develop inadequate understandings of linear relationships and the equations that model them. Teachers can improve students' understanding of linear relationships by focusing on realistic…
Gollee, Henrik; Gawthrop, Peter J; Lakie, Martin; Loram, Ian D
2017-11-01
A human controlling an external system is described most easily and conventionally as linearly and continuously translating sensory input to motor output, with the inevitable output remnant, non-linearly related to the input, attributed to sensorimotor noise. Recent experiments show sustained manual tracking involves repeated refractoriness (insensitivity to sensory information for a certain duration), with the temporary 200-500 ms periods of irresponsiveness to sensory input making the control process intrinsically non-linear. This evidence calls for re-examination of the extent to which random sensorimotor noise is required to explain the non-linear remnant. This investigation of manual tracking shows how the full motor output (linear component and remnant) can be explained mechanistically by aperiodic sampling triggered by prediction error thresholds. Whereas broadband physiological noise is general to all processes, aperiodic sampling is associated with sensorimotor decision making within specific frontal, striatal and parietal networks; we conclude that manual tracking utilises such slow serial decision making pathways up to several times per second. The human operator is described adequately by linear translation of sensory input to motor output. Motor output also always includes a non-linear remnant resulting from random sensorimotor noise from multiple sources, and non-linear input transformations, for example thresholds or refractory periods. Recent evidence showed that manual tracking incurs substantial, serial, refractoriness (insensitivity to sensory information of 350 and 550 ms for 1st and 2nd order systems respectively). Our two questions are: (i) What are the comparative merits of explaining the non-linear remnant using noise or non-linear transformations? (ii) Can non-linear transformations represent serial motor decision making within the sensorimotor feedback loop intrinsic to tracking? Twelve participants (instructed to act in three prescribed ways) manually controlled two systems (1st and 2nd order) subject to a periodic multi-sine disturbance. Joystick power was analysed using three models, continuous-linear-control (CC), continuous-linear-control with calculated noise spectrum (CCN), and intermittent control with aperiodic sampling triggered by prediction error thresholds (IC). Unlike the linear mechanism, the intermittent control mechanism explained the majority of total power (linear and remnant) (77-87% vs. 8-48%, IC vs. CC). Between conditions, IC used thresholds and distributions of open loop intervals consistent with, respectively, instructions and previous measured, model independent values; whereas CCN required changes in noise spectrum deviating from broadband, signal dependent noise. We conclude that manual tracking uses open loop predictive control with aperiodic sampling. Because aperiodic sampling is inherent to serial decision making within previously identified, specific frontal, striatal and parietal networks we suggest that these structures are intimately involved in visuo-manual tracking. © 2017 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.
A survey of packages for large linear systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Kesheng; Milne, Brent
2000-02-11
This paper evaluates portable software packages for the iterative solution of very large sparse linear systems on parallel architectures. While we cannot hope to tell individual users which package will best suit their needs, we do hope that our systematic evaluation provides essential unbiased information about the packages and the evaluation process may serve as an example on how to evaluate these packages. The information contained here include feature comparisons, usability evaluations and performance characterizations. This review is primarily focused on self-contained packages that can be easily integrated into an existing program and are capable of computing solutions to verymore » large sparse linear systems of equations. More specifically, it concentrates on portable parallel linear system solution packages that provide iterative solution schemes and related preconditioning schemes because iterative methods are more frequently used than competing schemes such as direct methods. The eight packages evaluated are: Aztec, BlockSolve,ISIS++, LINSOL, P-SPARSLIB, PARASOL, PETSc, and PINEAPL. Among the eight portable parallel iterative linear system solvers reviewed, we recommend PETSc and Aztec for most application programmers because they have well designed user interface, extensive documentation and very responsive user support. Both PETSc and Aztec are written in the C language and are callable from Fortran. For those users interested in using Fortran 90, PARASOL is a good alternative. ISIS++is a good alternative for those who prefer the C++ language. Both PARASOL and ISIS++ are relatively new and are continuously evolving. Thus their user interface may change. In general, those packages written in Fortran 77 are more cumbersome to use because the user may need to directly deal with a number of arrays of varying sizes. Languages like C++ and Fortran 90 offer more convenient data encapsulation mechanisms which make it easier to implement a clean and intuitive user interface. In addition to reviewing these portable parallel iterative solver packages, we also provide a more cursory assessment of a range of related packages, from specialized parallel preconditioners to direct methods for sparse linear systems.« less
Research on Distribution Characteristics of Lunar Faults
NASA Astrophysics Data System (ADS)
Lu, T.; Chen, S.; Lu, P.
2017-12-01
Circular and linear tectonics are two major types of tectonics on lunar surface. Tectonic characteristics are of significance for researching about lunar geological evolution. Linear tectonics refers to those structures extending linearly on a lunar surface. Their distribution are closely related to the internal geological actions of the moon. Linear tectonics can integrally or locally express the structural feature and the stress status as well as showing the geological information of the interior of the moon. Faults are of the largest number and are of a certain distribution regularity among the linear tectonics, and are always the focus of domestic and overseas lunar tectonic research. Based on remote sensing geology and theory of traditional tectonic geology, We use a variety of remote sensing data processing to establish lunar linear tectonic interpretation keys with lunar spectral, terrain and gravity data. On this basis, interpretation of faults of the whole moon was primarily conducted from Chang'e-2 CCD image data and reference to wide-angle camera data of LROC, laser altimeter data of LOLA and gravity data of GRAIL. Statistical analysis of the number and distribution characteristics of whole lunar faults are counted from three latitude ranges of low, middle and high latitudes, then analyze the azimuth characteristics of the faults at different latitudes. We concluded that S-N direction is a relatively developed orientation at low latitudes. Middle latitudes reveal six preferred orientations of N-E, N-W, NN-E, NN-W, N-EE and N-WW directions. There are sparse faults of E-W direction distribution at low and middle latitudes. Meanwhile, the largest number of faults of E-W direction on lunar surface are mainly distributed along high latitudes with continuity and regularity. Analyzing faults of Mare Imbrium by the method of Euler deconvolution. The result show that there are two different properties of faults in Mare Imbrium. In conclusion, we suggest that the dynamics mechanism of the formation of the lunar faults is mainly affected by despinning, followed by tidal force and global contraction.
Impulsive Control for Continuous-Time Markov Decision Processes: A Linear Programming Approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dufour, F., E-mail: dufour@math.u-bordeaux1.fr; Piunovskiy, A. B., E-mail: piunov@liv.ac.uk
2016-08-15
In this paper, we investigate an optimization problem for continuous-time Markov decision processes with both impulsive and continuous controls. We consider the so-called constrained problem where the objective of the controller is to minimize a total expected discounted optimality criterion associated with a cost rate function while keeping other performance criteria of the same form, but associated with different cost rate functions, below some given bounds. Our model allows multiple impulses at the same time moment. The main objective of this work is to study the associated linear program defined on a space of measures including the occupation measures ofmore » the controlled process and to provide sufficient conditions to ensure the existence of an optimal control.« less
Continuous Quantitative Measurements on a Linear Air Track
ERIC Educational Resources Information Center
Vogel, Eric
1973-01-01
Describes the construction and operational procedures of a spark-timing apparatus which is designed to record the back and forth motion of one or two carts on linear air tracks. Applications to measurements of velocity, acceleration, simple harmonic motion, and collision problems are illustrated. (CC)
An Alternative Derivation of the Energy Levels of the "Particle on a Ring" System
NASA Astrophysics Data System (ADS)
Vincent, Alan
1996-10-01
All acceptable wave functions must be continuous mathematical functions. This criterion limits the acceptable functions for a particle in a linear 1-dimensional box to sine functions. If, however, the linear box is bent round into a ring, acceptable wave functions are those which are continuous at the 'join'. On this model some acceptable linear functions become unacceptable for the ring and some unacceptable cosine functions become acceptable. This approach can be used to produce a straightforward derivation of the energy levels and wave functions of the particle on a ring. These simple wave mechanical systems can be used as models of linear and cyclic delocalised systems such as conjugated hydrocarbons or the benzene ring. The promotion energy of an electron can then be used to calculate the wavelength of absorption of uv light. The simple model gives results of the correct order of magnitude and shows that, as the chain length increases, the uv maximum moves to longer wavelengths, as found experimentally.
NASA Astrophysics Data System (ADS)
Reagor, Matthew; Pfaff, Wolfgang; Heeres, Reinier; Ofek, Nissim; Chou, Kevin; Blumoff, Jacob; Leghtas, Zaki; Touzard, Steven; Sliwa, Katrina; Holland, Eric; Albert, Victor V.; Frunzio, Luigi; Devoret, Michel H.; Jiang, Liang; Schoelkopf, Robert J.
2015-03-01
Recent advances in circuit QED have shown great potential for using microwave resonators as quantum memories. In particular, it is possible to encode the state of a quantum bit in non-classical photonic states inside a high-Q linear resonator. An outstanding challenge is to perform controlled operations on such a photonic state. We demonstrate experimentally how a continuous drive on a transmon qubit coupled to a high-Q storage resonator can be used to induce non-linear dynamics of the resonator. Tailoring the drive properties allows us to cancel or enhance non-linearities in the system such that we can manipulate the state stored in the cavity. This approach can be used to either counteract undesirable evolution due to the bare Hamiltonian of the system or, ultimately, to perform logical operations on the state encoded in the cavity field. Our method provides a promising pathway towards performing universal control for quantum states stored in high-coherence resonators in the circuit QED platform.
On the time-weighted quadratic sum of linear discrete systems
NASA Technical Reports Server (NTRS)
Jury, E. I.; Gutman, S.
1975-01-01
A method is proposed for obtaining the time-weighted quadratic sum for linear discrete systems. The formula of the weighted quadratic sum is obtained from matrix z-transform formulation. In addition, it is shown that this quadratic sum can be derived in a recursive form for several useful weighted functions. The discussion presented parallels that of MacFarlane (1963) for weighted quadratic integral for linear continuous systems.
Choreographing Patterns and Functions
ERIC Educational Resources Information Center
Hawes, Zachary; Moss, Joan; Finch, Heather; Katz, Jacques
2012-01-01
In this article, the authors begin with a description of an algebraic dance--the translation of composite linear growing patterns into choreographed movement--which was the last component of a research-based instructional unit that focused on fostering an understanding of linear functional rules through geometric growing patterns and…
Probabilistic quantum cloning of a subset of linearly dependent states
NASA Astrophysics Data System (ADS)
Rui, Pinshu; Zhang, Wen; Liao, Yanlin; Zhang, Ziyun
2018-02-01
It is well known that a quantum state, secretly chosen from a certain set, can be probabilistically cloned with positive cloning efficiencies if and only if all the states in the set are linearly independent. In this paper, we focus on probabilistic quantum cloning of a subset of linearly dependent states. We show that a linearly-independent subset of linearly-dependent quantum states {| Ψ 1⟩,| Ψ 2⟩,…,| Ψ n ⟩} can be probabilistically cloned if and only if any state in the subset cannot be expressed as a linear superposition of the other states in the set {| Ψ 1⟩,| Ψ 2⟩,…,| Ψ n ⟩}. The optimal cloning efficiencies are also investigated.
Rheological Behavior of Entangled Polystyrene-Polyhedral Oligosilsesquioxane (POSS) Copolymer
2006-08-24
analysis. The effects of the presence of tethered POSS cages on the glass transition were studied using differential scanning...studies mainly focused on the effect of the long chain branches (LCBs) on the linear and non- linear rheological properties. How spherical cage -like...apparent activation energy increasing with increasing iBuPOSS loading. Like linear polymeric coil branches, the iBuPOSS cage plays a negative effect on
ORACLS- OPTIMAL REGULATOR ALGORITHMS FOR THE CONTROL OF LINEAR SYSTEMS (CDC VERSION)
NASA Technical Reports Server (NTRS)
Armstrong, E. S.
1994-01-01
This control theory design package, called Optimal Regulator Algorithms for the Control of Linear Systems (ORACLS), was developed to aid in the design of controllers and optimal filters for systems which can be modeled by linear, time-invariant differential and difference equations. Optimal linear quadratic regulator theory, currently referred to as the Linear-Quadratic-Gaussian (LQG) problem, has become the most widely accepted method of determining optimal control policy. Within this theory, the infinite duration time-invariant problems, which lead to constant gain feedback control laws and constant Kalman-Bucy filter gains for reconstruction of the system state, exhibit high tractability and potential ease of implementation. A variety of new and efficient methods in the field of numerical linear algebra have been combined into the ORACLS program, which provides for the solution to time-invariant continuous or discrete LQG problems. The ORACLS package is particularly attractive to the control system designer because it provides a rigorous tool for dealing with multi-input and multi-output dynamic systems in both continuous and discrete form. The ORACLS programming system is a collection of subroutines which can be used to formulate, manipulate, and solve various LQG design problems. The ORACLS program is constructed in a manner which permits the user to maintain considerable flexibility at each operational state. This flexibility is accomplished by providing primary operations, analysis of linear time-invariant systems, and control synthesis based on LQG methodology. The input-output routines handle the reading and writing of numerical matrices, printing heading information, and accumulating output information. The basic vector-matrix operations include addition, subtraction, multiplication, equation, norm construction, tracing, transposition, scaling, juxtaposition, and construction of null and identity matrices. The analysis routines provide for the following computations: the eigenvalues and eigenvectors of real matrices; the relative stability of a given matrix; matrix factorization; the solution of linear constant coefficient vector-matrix algebraic equations; the controllability properties of a linear time-invariant system; the steady-state covariance matrix of an open-loop stable system forced by white noise; and the transient response of continuous linear time-invariant systems. The control law design routines of ORACLS implement some of the more common techniques of time-invariant LQG methodology. For the finite-duration optimal linear regulator problem with noise-free measurements, continuous dynamics, and integral performance index, a routine is provided which implements the negative exponential method for finding both the transient and steady-state solutions to the matrix Riccati equation. For the discrete version of this problem, the method of backwards differencing is applied to find the solutions to the discrete Riccati equation. A routine is also included to solve the steady-state Riccati equation by the Newton algorithms described by Klein, for continuous problems, and by Hewer, for discrete problems. Another routine calculates the prefilter gain to eliminate control state cross-product terms in the quadratic performance index and the weighting matrices for the sampled data optimal linear regulator problem. For cases with measurement noise, duality theory and optimal regulator algorithms are used to calculate solutions to the continuous and discrete Kalman-Bucy filter problems. Finally, routines are included to implement the continuous and discrete forms of the explicit (model-in-the-system) and implicit (model-in-the-performance-index) model following theory. These routines generate linear control laws which cause the output of a dynamic time-invariant system to track the output of a prescribed model. In order to apply ORACLS, the user must write an executive (driver) program which inputs the problem coefficients, formulates and selects the routines to be used to solve the problem, and specifies the desired output. There are three versions of ORACLS source code available for implementation: CDC, IBM, and DEC. The CDC version has been implemented on a CDC 6000 series computer with a central memory of approximately 13K (octal) of 60 bit words. The CDC version is written in FORTRAN IV, was developed in 1978, and last updated in 1989. The IBM version has been implemented on an IBM 370 series computer with a central memory requirement of approximately 300K of 8 bit bytes. The IBM version is written in FORTRAN IV and was generated in 1981. The DEC version has been implemented on a VAX series computer operating under VMS. The VAX version is written in FORTRAN 77 and was generated in 1986.
ORACLS- OPTIMAL REGULATOR ALGORITHMS FOR THE CONTROL OF LINEAR SYSTEMS (DEC VAX VERSION)
NASA Technical Reports Server (NTRS)
Frisch, H.
1994-01-01
This control theory design package, called Optimal Regulator Algorithms for the Control of Linear Systems (ORACLS), was developed to aid in the design of controllers and optimal filters for systems which can be modeled by linear, time-invariant differential and difference equations. Optimal linear quadratic regulator theory, currently referred to as the Linear-Quadratic-Gaussian (LQG) problem, has become the most widely accepted method of determining optimal control policy. Within this theory, the infinite duration time-invariant problems, which lead to constant gain feedback control laws and constant Kalman-Bucy filter gains for reconstruction of the system state, exhibit high tractability and potential ease of implementation. A variety of new and efficient methods in the field of numerical linear algebra have been combined into the ORACLS program, which provides for the solution to time-invariant continuous or discrete LQG problems. The ORACLS package is particularly attractive to the control system designer because it provides a rigorous tool for dealing with multi-input and multi-output dynamic systems in both continuous and discrete form. The ORACLS programming system is a collection of subroutines which can be used to formulate, manipulate, and solve various LQG design problems. The ORACLS program is constructed in a manner which permits the user to maintain considerable flexibility at each operational state. This flexibility is accomplished by providing primary operations, analysis of linear time-invariant systems, and control synthesis based on LQG methodology. The input-output routines handle the reading and writing of numerical matrices, printing heading information, and accumulating output information. The basic vector-matrix operations include addition, subtraction, multiplication, equation, norm construction, tracing, transposition, scaling, juxtaposition, and construction of null and identity matrices. The analysis routines provide for the following computations: the eigenvalues and eigenvectors of real matrices; the relative stability of a given matrix; matrix factorization; the solution of linear constant coefficient vector-matrix algebraic equations; the controllability properties of a linear time-invariant system; the steady-state covariance matrix of an open-loop stable system forced by white noise; and the transient response of continuous linear time-invariant systems. The control law design routines of ORACLS implement some of the more common techniques of time-invariant LQG methodology. For the finite-duration optimal linear regulator problem with noise-free measurements, continuous dynamics, and integral performance index, a routine is provided which implements the negative exponential method for finding both the transient and steady-state solutions to the matrix Riccati equation. For the discrete version of this problem, the method of backwards differencing is applied to find the solutions to the discrete Riccati equation. A routine is also included to solve the steady-state Riccati equation by the Newton algorithms described by Klein, for continuous problems, and by Hewer, for discrete problems. Another routine calculates the prefilter gain to eliminate control state cross-product terms in the quadratic performance index and the weighting matrices for the sampled data optimal linear regulator problem. For cases with measurement noise, duality theory and optimal regulator algorithms are used to calculate solutions to the continuous and discrete Kalman-Bucy filter problems. Finally, routines are included to implement the continuous and discrete forms of the explicit (model-in-the-system) and implicit (model-in-the-performance-index) model following theory. These routines generate linear control laws which cause the output of a dynamic time-invariant system to track the output of a prescribed model. In order to apply ORACLS, the user must write an executive (driver) program which inputs the problem coefficients, formulates and selects the routines to be used to solve the problem, and specifies the desired output. There are three versions of ORACLS source code available for implementation: CDC, IBM, and DEC. The CDC version has been implemented on a CDC 6000 series computer with a central memory of approximately 13K (octal) of 60 bit words. The CDC version is written in FORTRAN IV, was developed in 1978, and last updated in 1986. The IBM version has been implemented on an IBM 370 series computer with a central memory requirement of approximately 300K of 8 bit bytes. The IBM version is written in FORTRAN IV and was generated in 1981. The DEC version has been implemented on a VAX series computer operating under VMS. The VAX version is written in FORTRAN 77 and was generated in 1986.
Spread-Spectrum Beamforming and Clutter Filtering for Plane-Wave Color Doppler Imaging.
Mansour, Omar; Poepping, Tamie L; Lacefield, James C
2016-07-21
Plane-wave imaging is desirable for its ability to achieve high frame rates, allowing the capture of fast dynamic events and continuous Doppler data. In most implementations of plane-wave imaging, multiple low-resolution images from different plane wave tilt angles are compounded to form a single high-resolution image, thereby reducing the frame rate. Compounding improves the lateral beam profile in the high-resolution image, but it also acts as a low-pass filter in slow time that causes attenuation and aliasing of signals with high Doppler shifts. This paper introduces a spread-spectrum color Doppler imaging method that produces high-resolution images without the use of compounding, thereby eliminating the tradeoff between beam quality, maximum unaliased Doppler frequency, and frame rate. The method uses a long, random sequence of transmit angles rather than a linear sweep of plane wave directions. The random angle sequence randomizes the phase of off-focus (clutter) signals, thereby spreading the clutter power in the Doppler spectrum, while keeping the spectrum of the in-focus signal intact. The ensemble of randomly tilted low-resolution frames also acts as the Doppler ensemble, so it can be much longer than a conventional linear sweep, thereby improving beam formation while also making the slow-time Doppler sampling frequency equal to the pulse repetition frequency. Experiments performed using a carotid artery phantom with constant flow demonstrate that the spread-spectrum method more accurately measures the parabolic flow profile of the vessel and outperforms conventional plane-wave Doppler in both contrast resolution and estimation of high flow velocities. The spread-spectrum method is expected to be valuable for Doppler applications that require measurement of high velocities at high frame rates.
The Selection of Computed Tomography Scanning Schemes for Lengthy Symmetric Objects
NASA Astrophysics Data System (ADS)
Trinh, V. B.; Zhong, Y.; Osipov, S. P.
2017-04-01
. The article describes the basic computed tomography scan schemes for lengthy symmetric objects: continuous (discrete) rotation with a discrete linear movement; continuous (discrete) rotation with discrete linear movement to acquire 2D projection; continuous (discrete) linear movement with discrete rotation to acquire one-dimensional projection and continuous (discrete) rotation to acquire of 2D projection. The general method to calculate the scanning time is discussed in detail. It should be extracted the comparison principle to select a scanning scheme. This is because data are the same for all scanning schemes: the maximum energy of the X-ray radiation; the power of X-ray radiation source; the angle of the X-ray cone beam; the transverse dimension of a single detector; specified resolution and the maximum time, which is need to form one point of the original image and complies the number of registered photons). It demonstrates the possibilities of the above proposed method to compare the scanning schemes. Scanning object was a cylindrical object with the mass thickness is 4 g/cm2, the effective atomic number is 15 and length is 1300 mm. It analyzes data of scanning time and concludes about the efficiency of scanning schemes. It examines the productivity of all schemes and selects the effective one.
One step linear reconstruction method for continuous wave diffuse optical tomography
NASA Astrophysics Data System (ADS)
Ukhrowiyah, N.; Yasin, M.
2017-09-01
The method one step linear reconstruction method for continuous wave diffuse optical tomography is proposed and demonstrated for polyvinyl chloride based material and breast phantom. Approximation which used in this method is selecting regulation coefficient and evaluating the difference between two states that corresponding to the data acquired without and with a change in optical properties. This method is used to recovery of optical parameters from measured boundary data of light propagation in the object. The research is demonstrated by simulation and experimental data. Numerical object is used to produce simulation data. Chloride based material and breast phantom sample is used to produce experimental data. Comparisons of results between experiment and simulation data are conducted to validate the proposed method. The results of the reconstruction image which is produced by the one step linear reconstruction method show that the image reconstruction almost same as the original object. This approach provides a means of imaging that is sensitive to changes in optical properties, which may be particularly useful for functional imaging used continuous wave diffuse optical tomography of early diagnosis of breast cancer.
Fast linear feature detection using multiple directional non-maximum suppression.
Sun, C; Vallotton, P
2009-05-01
The capacity to detect linear features is central to image analysis, computer vision and pattern recognition and has practical applications in areas such as neurite outgrowth detection, retinal vessel extraction, skin hair removal, plant root analysis and road detection. Linear feature detection often represents the starting point for image segmentation and image interpretation. In this paper, we present a new algorithm for linear feature detection using multiple directional non-maximum suppression with symmetry checking and gap linking. Given its low computational complexity, the algorithm is very fast. We show in several examples that it performs very well in terms of both sensitivity and continuity of detected linear features.
Noise limitations in optical linear algebra processors.
Batsell, S G; Jong, T L; Walkup, J F; Krile, T F
1990-05-10
A general statistical noise model is presented for optical linear algebra processors. A statistical analysis which includes device noise, the multiplication process, and the addition operation is undertaken. We focus on those processes which are architecturally independent. Finally, experimental results which verify the analytical predictions are also presented.
Modules as Learning Tools in Linear Algebra
ERIC Educational Resources Information Center
Cooley, Laurel; Vidakovic, Draga; Martin, William O.; Dexter, Scott; Suzuki, Jeff; Loch, Sergio
2014-01-01
This paper reports on the experience of STEM and mathematics faculty at four different institutions working collaboratively to integrate learning theory with curriculum development in a core undergraduate linear algebra context. The faculty formed a Professional Learning Community (PLC) with a focus on learning theories in mathematics and…
Conditions for Stabilizability of Linear Switched Systems
NASA Astrophysics Data System (ADS)
Minh, Vu Trieu
2011-06-01
This paper investigates some conditions that can provide stabilizability for linear switched systems with polytopic uncertainties via their closed loop linear quadratic state feedback regulator. The closed loop switched systems can stabilize unstable open loop systems or stable open loop systems but in which there is no solution for a common Lyapunov matrix. For continuous time switched linear systems, we show that if there exists solution in an associated Riccati equation for the closed loop systems sharing one common Lyapunov matrix, the switched linear systems are stable. For the discrete time switched systems, we derive a Linear Matrix Inequality (LMI) to calculate a common Lyapunov matrix and solution for the stable closed loop feedback systems. These closed loop linear quadratic state feedback regulators guarantee the global asymptotical stability for any switched linear systems with any switching signal sequence.
Simulation and control for telerobots in space medicine
NASA Astrophysics Data System (ADS)
Haidegger, Tamás; Kovács, Levente; Precup, Radu-Emil; Benyó, Balázs; Benyó, Zoltán; Preitl, Stefan
2012-12-01
Human space exploration is continuously advancing despite the current financial difficulties, and the new missions are targeting the Moon and the Mars with more effective human-robot collaborative systems. The continuous development of robotic technology should lead to the advancement of automated technology, including space medicine. Telesurgery has already proved its effectiveness through various telemedicine procedures on Earth, and it has the potential to provide medical assistance in space as well. Aeronautical agencies have already conducted numerous experiments and developed various setups to push the boundaries of teleoperation under extreme conditions. Different control schemes have been proposed and tested to facilitate and enhance telepresence and to ensure transparency, sufficient bandwidth and latency-tolerance. This paper focuses on the modeling of a generic telesurgery setup, supported by a cascade control approach. The minimalistic models were tested with linear and PID-fuzzy control options to provide a simple, universal and scalable solution for the challenges of telesurgery over large distances. In our simulations, the control structures were capable of providing good dynamic performance indices and robustness with respect to the gain in the human operator model. This is a promising result towards the support of future teleoperational missions.
NASA Astrophysics Data System (ADS)
Hashemzadeh, M.
2018-01-01
Self-focusing and defocusing of Gaussian laser beams in collisional inhomogeneous plasmas are investigated in the presence of various laser intensities and linear density and temperature ramps. Considering the ponderomotive force and using the momentum transfer and energy equations, the nonlinear electron density is derived. Taking into account the paraxial approximation and nonlinear electron density, a nonlinear differential equation, governing the focusing and defocusing of the laser beam, is obtained. Results show that in the absence of ramps the laser beam is focused between a minimum and a maximum value of laser intensity. For a certain value of laser intensity and initial electron density, the self-focusing process occurs in a temperature range which reaches its maximum at turning point temperature. However, the laser beam is converged in a narrow range for various amounts of initial electron density. It is indicated that the σ2 parameter and its sign can affect the self-focusing process for different values of laser intensity, initial temperature, and initial density. Finally, it is found that although the electron density ramp-down diverges the laser beam, electron density ramp-up improves the self-focusing process.
Klem, S A; Farrington, J M; Leff, R D
1993-08-01
To determine whether variations in the flow rate of epinephrine solutions administered via commonly available infusion pumps lead to significant variations in blood pressure (BP) in vivo. Prospective, randomized, crossover study with factorial design, using infusion pumps with four different operating mechanisms (pulsatile diaphragm, linear piston/syringe, cyclic piston-valve, and linear peristaltic) and three drug delivery rates (1, 5, and 10 mL/hr). Two healthy, mixed-breed dogs (12 to 16 kg). Dogs were made hypotensive with methohexital bolus and continuous infusion. BP was restored to normal with constant-dose epinephrine infusion via two pumps at each rate. Femoral mean arterial pressure (MAP) was recorded every 10 secs. Pump-flow continuity was quantitated in vitro using a digital gravimetric technique. Variations in MAP and flow continuity were expressed by the coefficient of variation; analysis of variance was used for comparisons. The mean coefficients of variations for MAP varied from 3.8 +/- 3.1% (linear piston/syringe) to 6.1 +/- 6.6% (linear peristaltic), and from 3.4 +/- 2.2% (10 mL/hr) to 7.9 +/- 6.6% (1 mL/hr). The coefficients of variation for in vitro flow continuity ranged from 9 +/- 8% (linear piston-syringe) to 250 +/- 162% (pulsatile diaphragm), and from 35 +/- 44% (10 mL/hr) to 138 +/- 196% (1 mL/hr). Both the type of pump and infusion rate significantly (p < .001) influenced variation in drug delivery rate. The 1 mL/hr infusion rate significantly (p < .01) influenced MAP variation. Cyclic fluctuations in MAP of < or = 30 mm Hg were observed using the pulsatile diaphragm pump at 1 mL/hr. Factors inherent in the operating mechanisms of infusion pumps may result in clinically important hemodynamic fluctuations when administering a concentrated short-acting vasoactive medication at slow infusion rates.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, Scott A; Catalfamo, Simone; Brake, Matthew R. W.
2017-01-01
In the study of the dynamics of nonlinear systems, experimental measurements often convolute the response of the nonlinearity of interest and the effects of the experimental setup. To reduce the influence of the experimental setup on the deduction of the parameters of the nonlinearity, the response of a mechanical joint is investigated under various experimental setups. These experiments first focus on quantifying how support structures and measurement techniques affect the natural frequency and damping of a linear system. The results indicate that support structures created from bungees have negligible influence on the system in terms of frequency and damping ratiomore » variations. The study then focuses on the effects of the excitation technique on the response for a linear system. The findings suggest that thinner stingers should not be used, because under the high force requirements the stinger bending modes are excited adding unwanted torsional coupling. The optimal configuration for testing the linear system is then applied to a nonlinear system in order to assess the robustness of the test configuration. Finally, recommendations are made for conducting experiments on nonlinear systems using conventional/linear testing techniques.« less
2007-03-01
mathematical frame- 1-6 work of linear algebra and functional analysis [122, 33], while Kalman-Bucy filtering [96, 32] is an especially important...Engineering, Air Force Institute of Technology (AU), Wright- Patterson AFB, Ohio, March 2002. 85. Hoffman, Kenneth and Ray Kunze. Linear Algebra (Second Edition...Engineering, Air Force Institute of Technology (AU), Wright- Patterson AFB, Ohio, December 1989. 189. Strang, Gilbert. Linear Algebra and Its Applications
Stability analysis of a time-periodic 2-dof MEMS structure
NASA Astrophysics Data System (ADS)
Kniffka, Till Jochen; Welte, Johannes; Ecker, Horst
2012-11-01
Microelectromechanical systems (MEMS) are becoming important for all kinds of industrial applications. Among them are filters in communication devices, due to the growing demand for efficient and accurate filtering of signals. In recent developments single degree of freedom (1-dof) oscillators, that are operated at a parametric resonances, are employed for such tasks. Typically vibration damping is low in such MEM systems. While parametric excitation (PE) is used so far to take advantage of a parametric resonance, this contribution suggests to also exploit parametric anti-resonances in order to improve the damping behavior of such systems. Modeling aspects of a 2-dof MEM system and first results of the analysis of the non-linear and the linearized system are the focus of this paper. In principle the investigated system is an oscillating mechanical system with two degrees of freedom x = [x1x2]T that can be described by Mx+Cx+K1x+K3(x2)x+Fes(x,V(t)) = 0. The system is inherently non-linear because of the cubic mechanical stiffness K3 of the structure, but also because of electrostatic forces (1+cos(ωt))Fes(x) that act on the system. Electrostatic forces are generated by comb drives and are proportional to the applied time-periodic voltage V(t). These drives also provide the means to introduce time-periodic coefficients, i.e. parametric excitation (1+cos(ωt)) with frequency ω. For a realistic MEM system the coefficients of the non-linear set of differential equations need to be scaled for efficient numerical treatment. The final mathematical model is a set of four non-linear time-periodic homogeneous differential equations of first order. Numerical results are obtained from two different methods. The linearized time-periodic (LTP) system is studied by calculating the Monodromy matrix of the system. The eigenvalues of this matrix decide on the stability of the LTP-system. To study the unabridged non-linear system, the bifurcation software ManLab is employed. Continuation analysis including stability evaluations are executed and show the frequency ranges for which the 2-dof system becomes unstable due to parametric resonances. Moreover, the existence of frequency intervals are shown where enhanced damping for the system is observed for this MEMS. The results from the stability studies are confirmed by simulation results.
NASA Astrophysics Data System (ADS)
Heuzé, Thomas
2017-10-01
We present in this work two finite volume methods for the simulation of unidimensional impact problems, both for bars and plane waves, on elastic-plastic solid media within the small strain framework. First, an extension of Lax-Wendroff to elastic-plastic constitutive models with linear and nonlinear hardenings is presented. Second, a high order TVD method based on flux-difference splitting [1] and Superbee flux limiter [2] is coupled with an approximate elastic-plastic Riemann solver for nonlinear hardenings, and follows that of Fogarty [3] for linear ones. Thermomechanical coupling is accounted for through dissipation heating and thermal softening, and adiabatic conditions are assumed. This paper essentially focuses on one-dimensional problems since analytical solutions exist or can easily be developed. Accordingly, these two numerical methods are compared to analytical solutions and to the explicit finite element method on test cases involving discontinuous and continuous solutions. This allows to study in more details their respective performance during the loading, unloading and reloading stages. Particular emphasis is also paid to the accuracy of the computed plastic strains, some differences being found according to the numerical method used. Lax-Wendoff two-dimensional discretization of a one-dimensional problem is also appended at the end to demonstrate the extensibility of such numerical scheme to multidimensional problems.
Alazri, Mohammed H; Neal, Richard D; Heywood, Phil; Leese, Brenda
2006-01-01
Background Continuity of care is fundamental to general practice and type 2 diabetes is a common chronic disease with major health and social impacts. Nevertheless continuity, as experienced by patients with type 2 diabetes, remains a neglected area. Aim To explore perceptions and experiences of continuity of care in general practice from the perspectives of patients with type 2 diabetes, focusing on the advantages and disadvantages of different types of continuity. Design of study Focus groups with patients. Setting Seven practices with different organisational structures in Leeds, UK. Method Seventy-nine patients with type 2 diabetes were recruited. Focus group interviews were conducted with 79 patients with type 2 diabetes from seven practices in Leeds, UK. Results Patients experienced three different types of continuity: relational (or longitudinal) continuity, cross-boundary (or team) continuity, and continuity of information. Patients' perceptions of continuity were influenced by several factors including a personal relationship between themselves and their healthcare professional, their own beliefs and behaviours, presence of diabetes, and the systems and structures of general practices. Patients identified the advantages and disadvantages of two types of continuity. Relational or longitudinal continuity was important in providing psychosocial care, but with a risk of misdiagnosis. The advantages of cross-boundary or team continuity were to provide physical care, whereas the main disadvantages were the absence of personal care and patient confusion. Conclusion Perceptions of continuity by patients with type 2 diabetes were influenced by several factors; they perceived several advantages and disadvantages associated with different types of continuity. Patients might expect certain healthcare benefits by following certain types of continuity. PMID:16834874
Distillation of squeezing from non-Gaussian quantum states.
Heersink, J; Marquardt, Ch; Dong, R; Filip, R; Lorenz, S; Leuchs, G; Andersen, U L
2006-06-30
We show that single copy distillation of squeezing from continuous variable non-Gaussian states is possible using linear optics and conditional homodyne detection. A specific non-Gaussian noise source, corresponding to a random linear displacement, is investigated experimentally. Conditioning the signal on a tap measurement, we observe probabilistic recovery of squeezing.
Identifying the Factors That Influence Change in SEBD Using Logistic Regression Analysis
ERIC Educational Resources Information Center
Camilleri, Liberato; Cefai, Carmel
2013-01-01
Multiple linear regression and ANOVA models are widely used in applications since they provide effective statistical tools for assessing the relationship between a continuous dependent variable and several predictors. However these models rely heavily on linearity and normality assumptions and they do not accommodate categorical dependent…
Huard, Edouard; Derelle, Sophie; Jaeck, Julien; Nghiem, Jean; Haïdar, Riad; Primot, Jérôme
2018-03-05
A challenging point in the prediction of the image quality of infrared imaging systems is the evaluation of the detector modulation transfer function (MTF). In this paper, we present a linear method to get a 2D continuous MTF from sparse spectral data. Within the method, an object with a predictable sparse spatial spectrum is imaged by the focal plane array. The sparse data is then treated to return the 2D continuous MTF with the hypothesis that all the pixels have an identical spatial response. The linearity of the treatment is a key point to estimate directly the error bars of the resulting detector MTF. The test bench will be presented along with measurement tests on a 25 μm pitch InGaAs detector.
NASA Astrophysics Data System (ADS)
Pfaff, Wolfgang; Reagor, Matthew; Heeres, Reinier; Ofek, Nissim; Chou, Kevin; Blumoff, Jacob; Leghtas, Zaki; Touzard, Steven; Sliwa, Katrina; Holland, Eric; Krastanov, Stefan; Frunzio, Luigi; Devoret, Michel; Jiang, Liang; Schoelkopf, Robert
2015-03-01
High-Q microwave resonators show great promise for storing and manipulating quantum states in circuit QED. Using resonator modes as such a resource in quantum information processing applications requires the ability to manipulate the state of a resonator efficiently. Further, one must engineer appropriate coupling channels without spoiling the coherence properties of the resonator. We present an architecture that combines millisecond lifetimes for photonic quantum states stored in a linear resonator with fast measurement provided by a low-Q readout resonator. We demonstrate experimentally how a continuous drive on a transmon can be utilized to generate highly non-classical photonic states inside the high-Q resonator via effective nonlinear resonator mode interactions. Our approach opens new avenues for using modes of long-lived linear resonators in the circuit QED platform for quantum information processing tasks.
Performance of three reflectance calibration methods for airborne hyperspectral spectrometer data.
Miura, Tomoaki; Huete, Alfredo R
2009-01-01
In this study, the performances and accuracies of three methods for converting airborne hyperspectral spectrometer data to reflectance factors were characterized and compared. The "reflectance mode (RM)" method, which calibrates a spectrometer against a white reference panel prior to mounting on an aircraft, resulted in spectral reflectance retrievals that were biased and distorted. The magnitudes of these bias errors and distortions varied significantly, depending on time of day and length of the flight campaign. The "linear-interpolation (LI)" method, which converts airborne spectrometer data by taking a ratio of linearly-interpolated reference values from the preflight and post-flight reference panel readings, resulted in precise, but inaccurate reflectance retrievals. These reflectance spectra were not distorted, but were subject to bias errors of varying magnitudes dependent on the flight duration length. The "continuous panel (CP)" method uses a multi-band radiometer to obtain continuous measurements over a reference panel throughout the flight campaign, in order to adjust the magnitudes of the linear-interpolated reference values from the preflight and post-flight reference panel readings. Airborne hyperspectral reflectance retrievals obtained using this method were found to be the most accurate and reliable reflectance calibration method. The performances of the CP method in retrieving accurate reflectance factors were consistent throughout time of day and for various flight durations. Based on the dataset analyzed in this study, the uncertainty of the CP method has been estimated to be 0.0025 ± 0.0005 reflectance units for the wavelength regions not affected by atmospheric absorptions. The RM method can produce reasonable results only for a very short-term flight (e.g., < 15 minutes) conducted around a local solar noon. The flight duration should be kept shorter than 30 minutes for the LI method to produce results with reasonable accuracies. An important advantage of the CP method is that the method can be used for long-duration flight campaigns (e.g., 1-2 hours). Although this study focused on reflectance calibration of airborne spectrometer data, the methods evaluated in this study and the results obtained are directly applicable to ground spectrometer measurements.
Moore, M.J.; Knowlton, A.R.; Kraus, S.D.; McLellan, W.A.; Bonde, R.K.
2005-01-01
Fifty-four right whale mortalities have been reported from between Florida, USA and the Canadian Maritimes from 1970 to 2002. Thirty of those animals were examined: 18 adults and juveniles, and 12 calves. Morphometric data are presented such that prediction of body weight is possible if the age, or one or more measurements are known. Calves grew approximately linearly in their first year. Total length and fluke width increased asymptotically to a plateau with age, weight increased linearly with age, weight and snout to blowhole distance increased exponentially with total length, whereas total length was linearly related to fluke width and flipper length. Among the adults and juveniles examined in this study, human interaction appeared to be a major cause of mortality, where in 14/18 necropsies, trauma was a significant finding. In 10/14 of these, the cause of the trauma was presumed to be vessel collision. Entanglement in fishing gear accounted for the remaining four cases. Trauma was also present in 4/12 calves. In the majority of calf mortalities (8/12) the cause of death was not determined. Sharp ship trauma included propeller lacerations inducing multiple, deep lacerations that often incised vital organs including the brain, spinal cord, major airways, vessels and musculature. Blunt ship trauma resulted in major internal bruising and fractures often without any obvious external damage. In at least two cases fatal gear entanglements were extremely protracted: where the entanglements took at least 100 and 163 days respectively to be finally lethal. The sum of these findings show two major needs: (1) that extinction avoidance management strategies focused on reducing trauma to right whales from ship collisions and fishing gear entanglement are highly appropriate and need to be continued and; (2) that as mitigation measures continue to be introduced into shipping and fishing industry practices, there is a strong effort to maximise the diagnostic quality of post-mortem examination of right whale mortalities, to ensure an optimal understanding of resultant trends.
Higher-dimensional attractors with absolutely continuous invariant probability
NASA Astrophysics Data System (ADS)
Bocker, Carlos; Bortolotti, Ricardo
2018-05-01
Consider a dynamical system given by , where E is a linear expanding map of , C is a linear contracting map of and f is in . We provide sufficient conditions for E that imply the existence of an open set of pairs for which the corresponding dynamic T admits a unique absolutely continuous invariant probability. A geometrical characteristic of transversality between self-intersections of images of is present in the dynamic of the maps in . In addition, we give a condition between E and C under which it is possible to perturb f to obtain a pair in .
A double B1-mode 4-layer laminated piezoelectric linear motor.
Li, Xiaotian; Chen, Zhijiang; Dong, Shuxiang
2012-12-01
We report a miniature piezoelectric ultrasonic linear motor that is made of four Pb(Zr,Ti)O(3) (PZT) piezoelectric ceramic layers for low-voltage work. The 4-layer piezoelectric laminate works in two orthogonal first-bending modes for producing elliptical oscillations, which are then used to drive a contacting slider into continuous linear motion. Experimental results show that the miniature linear motor (size: 4 × 4 × 12 mm, weight: 1.7 g) can generate a large driving force of 0.48 N and a linear motion speed of up to 160 mm/s, using a 40 V(pp)/mm voltage drive at its resonance frequency of 64.5 kHz. The maximum efficiency of the linear motor is 30%.
Motivating the Concept of Eigenvectors via Cryptography
ERIC Educational Resources Information Center
Siap, Irfan
2008-01-01
New methods of teaching linear algebra in the undergraduate curriculum have attracted much interest lately. Most of this work is focused on evaluating and discussing the integration of special computer software into the Linear Algebra curriculum. In this article, I discuss my approach on introducing the concept of eigenvectors and eigenvalues,…
SOME PROBLEMS IN THE CONSTRUCTION OF AN ELECTRON LINEAR ACCELERATOR (in Dutch)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Verhaeghe, J.; Vanhuyse, V.; Van Leuven, P.
1959-01-01
Special problems encountered in the construction of the electron linear accelerator of the Natuurkundig Laboratorium der Rijksuniversiteit of Ghent are discussed. The subjects considered are magnetic focusing, magnetic screening of the electron gun cathode, abnormal attenuation-multipactor effects, and electron energy control. (J.S.R.)
From the Laboratory to the Classroom: A Technology-Intensive Curriculum for Functions and Graphs.
ERIC Educational Resources Information Center
Magidson, Susan
1992-01-01
Addresses the challenges, risks, and rewards of teaching about linear functions in a technology-rich environment from a constructivist perspective. Describes an algebra class designed for junior high school students that focuses of the representations and real-world applications of linear functions. (MDH)
A Linear Algebra Measure of Cluster Quality.
ERIC Educational Resources Information Center
Mather, Laura A.
2000-01-01
Discussion of models for information retrieval focuses on an application of linear algebra to text clustering, namely, a metric for measuring cluster quality based on the theory that cluster quality is proportional to the number of terms that are disjoint across the clusters. Explains term-document matrices and clustering algorithms. (Author/LRW)
From Arithmetic Sequences to Linear Equations
ERIC Educational Resources Information Center
Matsuura, Ryota; Harless, Patrick
2012-01-01
The first part of the article focuses on deriving the essential properties of arithmetic sequences by appealing to students' sense making and reasoning. The second part describes how to guide students to translate their knowledge of arithmetic sequences into an understanding of linear equations. Ryota Matsuura originally wrote these lessons for…
Synthesis Methods for Robust Passification and Control
NASA Technical Reports Server (NTRS)
Kelkar, Atul G.; Joshi, Suresh M. (Technical Monitor)
2000-01-01
The research effort under this cooperative agreement has been essentially the continuation of the work from previous grants. The ongoing work has primarily focused on developing passivity-based control techniques for Linear Time-Invariant (LTI) systems. During this period, there has been a significant progress made in the area of passivity-based control of LTI systems and some preliminary results have also been obtained for nonlinear systems, as well. The prior work has addressed optimal control design for inherently passive as well as non- passive linear systems. For exploiting the robustness characteristics of passivity-based controllers the passification methodology was developed for LTI systems that are not inherently passive. Various methods of passification were first proposed in and further developed. The robustness of passification was addressed for multi-input multi-output (MIMO) systems for certain classes of uncertainties using frequency-domain methods. For MIMO systems, a state-space approach using Linear Matrix Inequality (LMI)-based formulation was presented, for passification of non-passive LTI systems. An LMI-based robust passification technique was presented for systems with redundant actuators and sensors. The redundancy in actuators and sensors was used effectively for robust passification using the LMI formulation. The passification was designed to be robust to an interval-type uncertainties in system parameters. The passification techniques were used to design a robust controller for Benchmark Active Control Technology wing under parametric uncertainties. The results on passive nonlinear systems, however, are very limited to date. Our recent work in this area was presented, wherein some stability results were obtained for passive nonlinear systems that are affine in control.
Vaidya, Shyam V; Couzis, Alex; Maldarelli, Charles
2015-03-17
We report the development of barcoded polystyrene microbeads, approximately 50 μm in diameter, which are encoded by incorporating multicolored semiconductor fluorescent nanocrystals (quantum dots or QDs) within the microbeads and using the emission spectrum of the embedded QDs as a spectral label. The polymer/nanocrystal bead composites are formed by polymerizing emulsified liquid droplets of styrene monomer and QDs suspended in an immiscible continuous phase (suspension polymerization). We focus specifically on the effect of divinylbenzene (DVB) added to cross-link the linearly growing styrene polymer chains and the effect of this cross-linking on the state of aggregation of the nanocrystals in the composite. Aggregated states of multicolor QDs give rise to nonradiative resonance energy transfer (RET) which distorts the emission label from a spectrum recorded in a reference solvent in which the nanocrystals are well dispersed and unaggregated. A simple barcode is chosen of a mixture of QDs emitting at 560 (yellow) and 620 nm (red). We find that for linear chain growth (no DVB), the QDs aggregate as is evident from the emission spectrum and the QD distribution as seen from confocal laser scanning microscopy (CLSM) and transmission electron microscopy (TEM) images. Increasing the extent of cross-linking by the addition of DVB is shown to significantly decrease the aggregation and provide a clear label. We suggest that in the absence of cross-linking, linearly growing polymer chains, through enthalpic and entropic effects, drive the nanocrystals into inclusions, while cross-linking kinetically entraps the particle and prevents their aggregation.
Childhood stunting: a global perspective
Branca, Francesco
2016-01-01
Abstract Childhood stunting is the best overall indicator of children's well‐being and an accurate reflection of social inequalities. Stunting is the most prevalent form of child malnutrition with an estimated 161 million children worldwide in 2013 falling below −2 SD from the length‐for‐age/height‐for‐age World Health Organization Child Growth Standards median. Many more millions suffer from some degree of growth faltering as the entire length‐for‐age/height‐for‐age z‐score distribution is shifted to the left indicating that all children, and not only those falling below a specific cutoff, are affected. Despite global consensus on how to define and measure it, stunting often goes unrecognized in communities where short stature is the norm as linear growth is not routinely assessed in primary health care settings and it is difficult to visually recognize it. Growth faltering often begins in utero and continues for at least the first 2 years of post‐natal life. Linear growth failure serves as a marker of multiple pathological disorders associated with increased morbidity and mortality, loss of physical growth potential, reduced neurodevelopmental and cognitive function and an elevated risk of chronic disease in adulthood. The severe irreversible physical and neurocognitive damage that accompanies stunted growth poses a major threat to human development. Increased awareness of stunting's magnitude and devastating consequences has resulted in its being identified as a major global health priority and the focus of international attention at the highest levels with global targets set for 2025 and beyond. The challenge is to prevent linear growth failure while keeping child overweight and obesity at bay. PMID:27187907
Lee, Ching-Pei; Lin, Chih-Jen
2014-04-01
Linear rankSVM is one of the widely used methods for learning to rank. Although its performance may be inferior to nonlinear methods such as kernel rankSVM and gradient boosting decision trees, linear rankSVM is useful to quickly produce a baseline model. Furthermore, following its recent development for classification, linear rankSVM may give competitive performance for large and sparse data. A great deal of works have studied linear rankSVM. The focus is on the computational efficiency when the number of preference pairs is large. In this letter, we systematically study existing works, discuss their advantages and disadvantages, and propose an efficient algorithm. We discuss different implementation issues and extensions with detailed experiments. Finally, we develop a robust linear rankSVM tool for public use.
Analysis of radial and longitudinal force of plasma wakefield generated by a chirped pulse laser
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghasemi, Leila; Afhami, Saeedeh; Eslami, Esmaeil, E-mail: eeslami@iust.ac.ir
2015-08-15
In present paper, the chirp effect of an electromagnetic pulse via an analytical model of wakefield generation is studied. Different types of chirps are employed in this study. Our results show that by the use of nonlinear chirped pulse the longitudinal wakefield and focusing force is stronger than that of linear chirped pulse. It is indicated that quadratic nonlinear chirped pulses are globally much efficient than periodic nonlinear chirped pulses. Our calculations also predict that in nonlinear chirped pulse case, the overlap of focusing and accelerating regions is broader than that achieved in linear chirped pulse.
A Note on Recurring Misconceptions When Fitting Nonlinear Mixed Models.
Harring, Jeffrey R; Blozis, Shelley A
2016-01-01
Nonlinear mixed-effects (NLME) models are used when analyzing continuous repeated measures data taken on each of a number of individuals where the focus is on characteristics of complex, nonlinear individual change. Challenges with fitting NLME models and interpreting analytic results have been well documented in the statistical literature. However, parameter estimates as well as fitted functions from NLME analyses in recent articles have been misinterpreted, suggesting the need for clarification of these issues before these misconceptions become fact. These misconceptions arise from the choice of popular estimation algorithms, namely, the first-order linearization method (FO) and Gaussian-Hermite quadrature (GHQ) methods, and how these choices necessarily lead to population-average (PA) or subject-specific (SS) interpretations of model parameters, respectively. These estimation approaches also affect the fitted function for the typical individual, the lack-of-fit of individuals' predicted trajectories, and vice versa.
Shehla, Romana; Khan, Athar Ali
2016-01-01
Models with bathtub-shaped hazard function have been widely accepted in the field of reliability and medicine and are particularly useful in reliability related decision making and cost analysis. In this paper, the exponential power model capable of assuming increasing as well as bathtub-shape, is studied. This article makes a Bayesian study of the same model and simultaneously shows how posterior simulations based on Markov chain Monte Carlo algorithms can be straightforward and routine in R. The study is carried out for complete as well as censored data, under the assumption of weakly-informative priors for the parameters. In addition to this, inference interest focuses on the posterior distribution of non-linear functions of the parameters. Also, the model has been extended to include continuous explanatory variables and R-codes are well illustrated. Two real data sets are considered for illustrative purposes.
NASA Technical Reports Server (NTRS)
Levine, H.
1982-01-01
The calculation of power output from a (finite) linear array of equidistant point sources is investigated with allowance for a relative phase shift and particular focus on the circumstances of small/large individual source separation. A key role is played by the estimates found for a twin parameter definite integral that involves the Fejer kernel functions, where N denotes a (positive) integer; these results also permit a quantitative accounting of energy partition between the principal and secondary lobes of the array pattern. Continuously distributed sources along a finite line segment or an open ended circular cylindrical shell are considered, and estimates for the relatively lower output in the latter configuration are made explicit when the shell radius is small compared to the wave length. A systematic reduction of diverse integrals which characterize the energy output from specific line and strip sources is investigated.
Oscillatory Dynamics of One-Dimensional Homogeneous Granular Chains
NASA Astrophysics Data System (ADS)
Starosvetsky, Yuli; Jayaprakash, K. R.; Hasan, Md. Arif; Vakakis, Alexander F.
The acoustics of the homogeneous granular chains has been studied extensively both numerically and experimentally in the references cited in the previous chapters. This chapter focuses on the oscillatory behavior of finite dimensional homogeneous granular chains. It is well known that normal vibration modes are the building blocks of the vibrations of linear systems due to the applicability of the principle of superposition. One the other hand, nonlinear theory is deprived of such a general superposition principle (although special cases of nonlinear superpositions do exist), but nonlinear normal modes ‒ NNMs still play an important role in the forced and resonance dynamics of these systems. In their basic definition [1], NNMs were defined as time-periodic nonlinear oscillations of discrete or continuous dynamical systems where all coordinates (degrees-of-freedom) oscillate in-unison with the same frequency; further extensions of this definition have been considered to account for NNMs of systems with internal resonances [2]...
[Disciplinar thematic integration in medicine: a proposal from histology and embryology].
Bassan, N D; D'Ottavio, A E
2013-01-01
This paper intends to clarify a concept with multiple meanings and a complex reality. It starts providing varied histological and embryological examples apt to contribute the stimulation of teacher and student imaginations in favor of a crucial skill, as thematic integration is, into the present and changing curricula in Medicine in particular and Health Sciences in general. In this sense, it offers linear and branched sequences as well as consolidation graphics which focusing in both disciplines may also include other basic ones, key for clinic diagnosis, among the competences to be developed. After registering some preliminary results revealing the need of its continuous and progressive training along the complete medical career, its own integrative value and the integrative one for their teachers due to its natural link with other basic ones is outlined, its relevance for undergraduate is reaffirmed and possible future variations for them are previewed, considering the present exponential growth of science and technology.
The power of a critical heat engine
Campisi, Michele; Fazio, Rosario
2016-01-01
Since its inception about two centuries ago thermodynamics has sparkled continuous interest and fundamental questions. According to the second law no heat engine can have an efficiency larger than Carnot's efficiency. The latter can be achieved by the Carnot engine, which however ideally operates in infinite time, hence delivers null power. A currently open question is whether the Carnot efficiency can be achieved at finite power. Most of the previous works addressed this question within the Onsager matrix formalism of linear response theory. Here we pursue a different route based on finite-size-scaling theory. We focus on quantum Otto engines and show that when the working substance is at the verge of a second order phase transition diverging energy fluctuations can enable approaching the Carnot point without sacrificing power. The rate of such approach is dictated by the critical indices, thus showing the universal character of our analysis. PMID:27320127
Feist, Armin; Bach, Nora; Rubiano da Silva, Nara; Danz, Thomas; Möller, Marcel; Priebe, Katharina E; Domröse, Till; Gatzmann, J Gregor; Rost, Stefan; Schauss, Jakob; Strauch, Stefanie; Bormann, Reiner; Sivis, Murat; Schäfer, Sascha; Ropers, Claus
2017-05-01
We present the development of the first ultrafast transmission electron microscope (UTEM) driven by localized photoemission from a field emitter cathode. We describe the implementation of the instrument, the photoemitter concept and the quantitative electron beam parameters achieved. Establishing a new source for ultrafast TEM, the Göttingen UTEM employs nano-localized linear photoemission from a Schottky emitter, which enables operation with freely tunable temporal structure, from continuous wave to femtosecond pulsed mode. Using this emission mechanism, we achieve record pulse properties in ultrafast electron microscopy of 9Å focused beam diameter, 200fs pulse duration and 0.6eV energy width. We illustrate the possibility to conduct ultrafast imaging, diffraction, holography and spectroscopy with this instrument and also discuss opportunities to harness quantum coherent interactions between intense laser fields and free-electron beams. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
Optimized Quasi-Interpolators for Image Reconstruction.
Sacht, Leonardo; Nehab, Diego
2015-12-01
We propose new quasi-interpolators for the continuous reconstruction of sampled images, combining a narrowly supported piecewise-polynomial kernel and an efficient digital filter. In other words, our quasi-interpolators fit within the generalized sampling framework and are straightforward to use. We go against standard practice and optimize for approximation quality over the entire Nyquist range, rather than focusing exclusively on the asymptotic behavior as the sample spacing goes to zero. In contrast to previous work, we jointly optimize with respect to all degrees of freedom available in both the kernel and the digital filter. We consider linear, quadratic, and cubic schemes, offering different tradeoffs between quality and computational cost. Experiments with compounded rotations and translations over a range of input images confirm that, due to the additional degrees of freedom and the more realistic objective function, our new quasi-interpolators perform better than the state of the art, at a similar computational cost.
Dissipative discrete breathers: periodic, quasiperiodic, chaotic, and mobile.
Martínez, P J; Meister, M; Floría, L M; Falo, F
2003-06-01
The properties of discrete breathers in dissipative one-dimensional lattices of nonlinear oscillators subject to periodic driving forces are reviewed. We focus on oscillobreathers in the Frenkel-Kontorova chain and rotobreathers in a ladder of Josephson junctions. Both types of exponentially localized solutions are easily obtained numerically using adiabatic continuation from the anticontinuous limit. Linear stability (Floquet) analysis allows the characterization of different types of bifurcations experienced by periodic discrete breathers. Some of these bifurcations produce nonperiodic localized solutions, namely, quasiperiodic and chaotic discrete breathers, which are generally impossible as exact solutions in Hamiltonian systems. Within a certain range of parameters, propagating breathers occur as attractors of the dissipative dynamics. General features of these excitations are discussed and the Peierls-Nabarro barrier is addressed. Numerical scattering experiments with mobile breathers reveal the existence of two-breather bound states and allow a first glimpse at the intricate phenomenology of these special multibreather configurations. (c) 2003 American Institute of Physics.
Focusing light through dynamical samples using fast continuous wavefront optimization.
Blochet, B; Bourdieu, L; Gigan, S
2017-12-01
We describe a fast continuous optimization wavefront shaping system able to focus light through dynamic scattering media. A micro-electro-mechanical system-based spatial light modulator, a fast photodetector, and field programmable gate array electronics are combined to implement a continuous optimization of a wavefront with a single-mode optimization rate of 4.1 kHz. The system performances are demonstrated by focusing light through colloidal solutions of TiO 2 particles in glycerol with tunable temporal stability.
A sequential linear optimization approach for controller design
NASA Technical Reports Server (NTRS)
Horta, L. G.; Juang, J.-N.; Junkins, J. L.
1985-01-01
A linear optimization approach with a simple real arithmetic algorithm is presented for reliable controller design and vibration suppression of flexible structures. Using first order sensitivity of the system eigenvalues with respect to the design parameters in conjunction with a continuation procedure, the method converts a nonlinear optimization problem into a maximization problem with linear inequality constraints. The method of linear programming is then applied to solve the converted linear optimization problem. The general efficiency of the linear programming approach allows the method to handle structural optimization problems with a large number of inequality constraints on the design vector. The method is demonstrated using a truss beam finite element model for the optimal sizing and placement of active/passive-structural members for damping augmentation. Results using both the sequential linear optimization approach and nonlinear optimization are presented and compared. The insensitivity to initial conditions of the linear optimization approach is also demonstrated.
SUBOPT: A CAD program for suboptimal linear regulators
NASA Technical Reports Server (NTRS)
Fleming, P. J.
1985-01-01
An interactive software package which provides design solutions for both standard linear quadratic regulator (LQR) and suboptimal linear regulator problems is described. Intended for time-invariant continuous systems, the package is easily modified to include sampled-data systems. LQR designs are obtained by established techniques while the large class of suboptimal problems containing controller and/or performance index options is solved using a robust gradient minimization technique. Numerical examples demonstrate features of the package and recent developments are described.
Activity recognition of assembly tasks using body-worn microphones and accelerometers.
Ward, Jamie A; Lukowicz, Paul; Tröster, Gerhard; Starner, Thad E
2006-10-01
In order to provide relevant information to mobile users, such as workers engaging in the manual tasks of maintenance and assembly, a wearable computer requires information about the user's specific activities. This work focuses on the recognition of activities that are characterized by a hand motion and an accompanying sound. Suitable activities can be found in assembly and maintenance work. Here, we provide an initial exploration into the problem domain of continuous activity recognition using on-body sensing. We use a mock "wood workshop" assembly task to ground our investigation. We describe a method for the continuous recognition of activities (sawing, hammering, filing, drilling, grinding, sanding, opening a drawer, tightening a vise, and turning a screwdriver) using microphones and three-axis accelerometers mounted at two positions on the user's arms. Potentially "interesting" activities are segmented from continuous streams of data using an analysis of the sound intensity detected at the two different locations. Activity classification is then performed on these detected segments using linear discriminant analysis (LDA) on the sound channel and hidden Markov models (HMMs) on the acceleration data. Four different methods at classifier fusion are compared for improving these classifications. Using user-dependent training, we obtain continuous average recall and precision rates (for positive activities) of 78 percent and 74 percent, respectively. Using user-independent training (leave-one-out across five users), we obtain recall rates of 66 percent and precision rates of 63 percent. In isolation, these activities were recognized with accuracies of 98 percent, 87 percent, and 95 percent for the user-dependent, user-independent, and user-adapted cases, respectively.
On the Existence of Star Products on Quotient Spaces of Linear Hamiltonian Torus Actions
NASA Astrophysics Data System (ADS)
Herbig, Hans-Christian; Iyengar, Srikanth B.; Pflaum, Markus J.
2009-08-01
We discuss BFV deformation quantization (Bordemann et al. in A homological approach to singular reduction in deformation quantization, singularity theory, pp. 443-461. World Scientific, Hackensack, 2007) in the special case of a linear Hamiltonian torus action. In particular, we show that the Koszul complex on the moment map of an effective linear Hamiltonian torus action is acyclic. We rephrase the nonpositivity condition of Arms and Gotay (Adv Math 79(1):43-103, 1990) for linear Hamiltonian torus actions. It follows that reduced spaces of such actions admit continuous star products.
Rajeswaran, Jeevanantham; Blackstone, Eugene H
2017-02-01
In medical sciences, we often encounter longitudinal temporal relationships that are non-linear in nature. The influence of risk factors may also change across longitudinal follow-up. A system of multiphase non-linear mixed effects model is presented to model temporal patterns of longitudinal continuous measurements, with temporal decomposition to identify the phases and risk factors within each phase. Application of this model is illustrated using spirometry data after lung transplantation using readily available statistical software. This application illustrates the usefulness of our flexible model when dealing with complex non-linear patterns and time-varying coefficients.
Correlation and simple linear regression.
Zou, Kelly H; Tuncali, Kemal; Silverman, Stuart G
2003-06-01
In this tutorial article, the concepts of correlation and regression are reviewed and demonstrated. The authors review and compare two correlation coefficients, the Pearson correlation coefficient and the Spearman rho, for measuring linear and nonlinear relationships between two continuous variables. In the case of measuring the linear relationship between a predictor and an outcome variable, simple linear regression analysis is conducted. These statistical concepts are illustrated by using a data set from published literature to assess a computed tomography-guided interventional technique. These statistical methods are important for exploring the relationships between variables and can be applied to many radiologic studies.
NASA Astrophysics Data System (ADS)
Rossi, Giuliana; Fabris, Paolo; Zuliani, David
2013-04-01
The northern tip of the Adria micro-plate (NE-Italy) is continuously monitored by the Friuli Regional Deformation Network (FReDNet) of OGS (Istituto Nazionale di Oceanografia e Geofisica Sperimentale), consisting of 15 GNSS permanent sites, the first eight of which were installed between 2002 and 2004. Additional information on the strain field in the region comes from the 10 GNSS permanent sites of the Marussi network of the Friuli-Venezia Giulia regional council, some of which record continuously since 1999. Having at disposal time-series of a certain length (around ten-years), it is possible to evaluate with reliability not only the plate motion direction and velocity, represented by the linear trend of the horizontal components of the records, but also the possible plate acceleration, due to the superposition of other terms of the strain field time-space variations, with different frequency. With the aim of investigating such terms, we first processed the GPS data of the longest time series from both networks, starting from 2002, using GAMIT/GLOBK, eliminated the outliers, and filled the eventual short gaps in the data through linear interpolation. A low-band pass filter allowed obtaining the time-series cleaned from the components with frequencies higher than 1.5 years, so to eliminate the annual and quasi-annual terms, and the highest frequencies. The so-obtained time-series for the two horizontal components result dominated by a linear trend, as expected, to which clear oscillations of some years of duration are superimposed. From the analysis of the linear trend, the resulting velocity field suggest crustal shortening, with values ranging between 0.6 and 2.8 mm/year, decreasing from South to North and, more slightly, from East to West. This is in agreement with preceding observations and with the geodynamic character of the region, located in the area of convergence between Adria microplate and Eurasia. As regards as the deviations from the linear trend, the present work focuses on a sort of transient, of "period" between 1.5 and 2.0 years, involving 11 of the 13 stations considered, distributed over the whole area, and causing a bending along the main tectonic directions. In order to state, whether the transient is due to hydrologic or tectonic phenomena, data from rainfalls from the meteorological stations of the regional council networks nearest to each of the GNSS stations have been similarly analysed and compared. In particular, the cumulative de-trended curves have been considered and cross-correlated with the deformation data. The correlation, however, is generally poor. The next step will be the comparison with the seismic activity in the region, from the catalogue of the Friuli-Venezia Giulia seismological network, managed and ruled by OGS.
Review of LFTs, LMIs, and mu. [Linear Fractional Transformations, Linear Matrix Inequalities
NASA Technical Reports Server (NTRS)
Doyle, John; Packard, Andy; Zhou, Kemin
1991-01-01
The authors present a tutorial overview of linear fractional transformations (LFTs) and the role of the structured singular value, mu, and linear matrix inequalities (LMIs) in solving LFT problems. The authors first introduce the notation for LFTs and briefly discuss some of their properties. They then describe mu and its connections with LFTs. They focus on two standard notions of robust stability and performance, mu stability and performance and Q stability and performance, and their relationship is discussed. Comparisons with the L1 theory of robust performance with structured uncertainty are considered.
Li, Yongfeng; Ma, Hua; Wang, Jiafu; Pang, Yongqiang; Zheng, Qiqi; Chen, Hongya; Han, Yajuan; Zhang, Jieqiu; Qu, Shaobo
2017-01-01
A high-efficiency tri-band quasi-continuous phase gradient metamaterial is designed and demonstrated based on spoof surface plasmon polaritons (SSPPs). High-efficiency polarizaiton conversion transmission is firstly achieved via tailoring phase differece between the transmisive SSPP and the space wave in orthogonal directions. As an example, a tri-band circular-to-circular (CTC) polarization conversion metamateiral (PCM) was designed by a nonlinearly dispersive phase difference. Using such PCM unit cell, a tri-band quasi-continuous phase gradient metamaterial (PGM) was then realized by virtue of the Pancharatnam-Berry phase. The distribution of the cross-polarization transmission phase along the x-direction is continuous except for two infinitely small intervals near the phases 0° and 360°, and thus the phase gradient has definition at any point along the x-direction. The simulated normalized polarization conversion transmission spectrums together with the electric field distributions for circularly polarized wave and linearly polarized wave demonstrated the high-efficiency anomalous refraction of the quasi-continuous PGM. The experimental verification for the linearly polarized incidence was also provided. PMID:28079185
Lectures on algebraic system theory: Linear systems over rings
NASA Technical Reports Server (NTRS)
Kamen, E. W.
1978-01-01
The presentation centers on four classes of systems that can be treated as linear systems over a ring. These are: (1) discrete-time systems over a ring of scalars such as the integers; (2) continuous-time systems containing time delays; (3) large-scale discrete-time systems; and (4) time-varying discrete-time systems.
An electron beam linear scanning mode for industrial limited-angle nano-computed tomography.
Wang, Chengxiang; Zeng, Li; Yu, Wei; Zhang, Lingli; Guo, Yumeng; Gong, Changcheng
2018-01-01
Nano-computed tomography (nano-CT), which utilizes X-rays to research the inner structure of some small objects and has been widely utilized in biomedical research, electronic technology, geology, material sciences, etc., is a high spatial resolution and non-destructive research technique. A traditional nano-CT scanning model with a very high mechanical precision and stability of object manipulator, which is difficult to reach when the scanned object is continuously rotated, is required for high resolution imaging. To reduce the scanning time and attain a stable and high resolution imaging in industrial non-destructive testing, we study an electron beam linear scanning mode of nano-CT system that can avoid mechanical vibration and object movement caused by the continuously rotated object. Furthermore, to further save the scanning time and study how small the scanning range could be considered with acceptable spatial resolution, an alternating iterative algorithm based on ℓ 0 minimization is utilized to limited-angle nano-CT reconstruction problem with the electron beam linear scanning mode. The experimental results confirm the feasibility of the electron beam linear scanning mode of nano-CT system.
An electron beam linear scanning mode for industrial limited-angle nano-computed tomography
NASA Astrophysics Data System (ADS)
Wang, Chengxiang; Zeng, Li; Yu, Wei; Zhang, Lingli; Guo, Yumeng; Gong, Changcheng
2018-01-01
Nano-computed tomography (nano-CT), which utilizes X-rays to research the inner structure of some small objects and has been widely utilized in biomedical research, electronic technology, geology, material sciences, etc., is a high spatial resolution and non-destructive research technique. A traditional nano-CT scanning model with a very high mechanical precision and stability of object manipulator, which is difficult to reach when the scanned object is continuously rotated, is required for high resolution imaging. To reduce the scanning time and attain a stable and high resolution imaging in industrial non-destructive testing, we study an electron beam linear scanning mode of nano-CT system that can avoid mechanical vibration and object movement caused by the continuously rotated object. Furthermore, to further save the scanning time and study how small the scanning range could be considered with acceptable spatial resolution, an alternating iterative algorithm based on ℓ0 minimization is utilized to limited-angle nano-CT reconstruction problem with the electron beam linear scanning mode. The experimental results confirm the feasibility of the electron beam linear scanning mode of nano-CT system.
Undergraduate Mathematics Students' Emotional Experiences in Linear Algebra Courses
ERIC Educational Resources Information Center
Martínez-Sierra, Gustavo; García-González, María del Socorro
2016-01-01
Little is known about students' emotions in the field of Mathematics Education that go beyond students' emotions in problem solving. To start filling this gap this qualitative research has the aim to identify emotional experiences of undergraduate mathematics students in Linear Algebra courses. In order to obtain data, retrospective focus group…
Secondary Pre-Service Teachers' Algebraic Reasoning about Linear Equation Solving
ERIC Educational Resources Information Center
Alvey, Christina; Hudson, Rick A.; Newton, Jill; Males, Lorraine M.
2016-01-01
This study analyzes the responses of 12 secondary pre-service teachers on two tasks focused on reasoning when solving linear equations. By documenting the choices PSTs made while engaging in these tasks, we gain insight into how new teachers work mathematically, reason algebraically, communicate their thinking, and make pedagogical decisions. We…
ERIC Educational Resources Information Center
Wawro, Megan; Sweeney, George F.; Rabin, Jeffrey M.
2011-01-01
This paper reports on a study investigating students' ways of conceptualizing key ideas in linear algebra, with the particular results presented here focusing on student interactions with the notion of subspace. In interviews conducted with eight undergraduates, we found students' initial descriptions of subspace often varied substantially from…
An Authentic Task That Models Quadratics
ERIC Educational Resources Information Center
Baron, Lorraine M.
2015-01-01
As students develop algebraic reasoning in grades 5 to 9, they learn to recognize patterns and understand expressions, equations, and variables. Linear functions are a focus in eighth-grade mathematics, and by algebra 1, students must make sense of functions that are not linear. This article describes how students worked through a classroom task…
Definitions Are Important: The Case of Linear Algebra
ERIC Educational Resources Information Center
Berman, Abraham; Shvartsman, Ludmila
2016-01-01
In this paper we describe an experiment in a linear algebra course. The aim of the experiment was to promote the students' understanding of the studied concepts focusing on their definitions. It seems to be a given that students should understand concepts' definitions before working substantially with them. Unfortunately, in many cases they do…
Surface treatment with linearly polarized laser beam at oblique incidence
NASA Astrophysics Data System (ADS)
Gutu, I.; Petre, C.; Mihailescu, I. N.; Taca, M.; Alexandrescu, E.; Ivanov, I.
2002-07-01
An effective method for surface heat treatment with 10.6 μm linear polarized laser beam at oblique incidence is reported. A circular focused laser spot on the workpiece surface, simultaneously with 2.2-4 times increasing of the absorption are obtained in the 70-80° range of the incidence angle. The main element of the experimental setup is the astigmatic focusing head which focalize the laser beam into an elliptical spot of ellipticity ɛ>3 at normal incidence. At a proper incidence angle (obtained by the focusing head tilting) the focused laser spot on the work piece surface gets a circular form and p-state of polarization is achieved. We performed laser heat treatment (transformation hardening, surface remelting) of the uncoated surface, as well as the alloying and cladding processes by powder injection. An enhancement of the processing efficiency was obtained; in this way the investment and operation costs for surface treatment with CO 2 laser can be significantly reduced. Several technical advantages concerning the pollution of the focusing optical components, powder jet flowing and reflected radiation by the work piece surface are obtained.
Focus Groups: A Tool in Planning and Evaluation in Continuing Education.
ERIC Educational Resources Information Center
Kleiber, Pamela B.; Holt, Margaret E.
A study was conducted to analyze and describe faculty usage of the Georgia Center for Continuing Education at the University of Georgia and to determine the usefulness of using focus groups in such research. Focus group methods and survey questionnaires were used during a series of five dinner discussion sessions with a total of 31 participants…
NASA Astrophysics Data System (ADS)
Saulskiy, V. K.
2005-01-01
Multisatellite systems with linear structure (SLS) are defined, and their application for a continuous global or zonal coverage of the Earth’s surface is justified. It is demonstrated that in some cases these systems turned out to be better than usually recommended kinematically regular systems by G.V. Mozhaev, delta systems of J.G. Walker, and polar systems suggested by F.W. Gobets, L. Rider, and W.S. Adams. When a comparison is made using the criterion of a minimum radius of one-satellite coverage circle, the SLS beat the other systems for the majority of satellite numbers from the range 20 63, if the global continuous single coverage of the Earth is required. In the case of a zonal continuous single coverage of the latitude belt ±65°, the SLS are preferable at almost all numbers of satellites from 38 to 100, and further at any values up to 200 excluding 144.
A Study of Alternative Quantile Estimation Methods in Newsboy-Type Problems
1980-03-01
decision maker selects to have on hand. The newsboy cost equation may be formulated as a two-piece continuous linear function in the following manner. C(S...number of observations, some approximations may be possible. Three points which are near each other can be assumed to be linear and some estimator using...respectively. Define the value r as: r = [nq + 0.5] , (6) where [X] denotes the largest integer of X. Let us consider an estimate of X as the linear
Analysis of periodically excited non-linear systems by a parametric continuation technique
NASA Astrophysics Data System (ADS)
Padmanabhan, C.; Singh, R.
1995-07-01
The dynamic behavior and frequency response of harmonically excited piecewise linear and/or non-linear systems has been the subject of several recent investigations. Most of the prior studies employed harmonic balance or Galerkin schemes, piecewise linear techniques, analog simulation and/or direct numerical integration (digital simulation). Such techniques are somewhat limited in their ability to predict all of the dynamic characteristics, including bifurcations leading to the occurrence of unstable, subharmonic, quasi-periodic and/or chaotic solutions. To overcome this problem, a parametric continuation scheme, based on the shooting method, is applied specifically to a periodically excited piecewise linear/non-linear system, in order to improve understanding as well as to obtain the complete dynamic response. Parameter regions exhibiting bifurcations to harmonic, subharmonic or quasi-periodic solutions are obtained quite efficiently and systematically. Unlike other techniques, the proposed scheme can follow period-doubling bifurcations, and with some modifications obtain stable quasi-periodic solutions and their bifurcations. This knowledge is essential in establishing conditions for the occurrence of chaotic oscillations in any non-linear system. The method is first validated through the Duffing oscillator example, the solutions to which are also obtained by conventional one-term harmonic balance and perturbation methods. The second example deals with a clearance non-linearity problem for both harmonic and periodic excitations. Predictions from the proposed scheme match well with available analog simulation data as well as with multi-term harmonic balance results. Potential savings in computational time over direct numerical integration is demonstrated for some of the example cases. Also, this work has filled in some of the solution regimes for an impact pair, which were missed previously in the literature. Finally, one main limitation associated with the proposed procedure is discussed.
Quadratic constrained mixed discrete optimization with an adiabatic quantum optimizer
NASA Astrophysics Data System (ADS)
Chandra, Rishabh; Jacobson, N. Tobias; Moussa, Jonathan E.; Frankel, Steven H.; Kais, Sabre
2014-07-01
We extend the family of problems that may be implemented on an adiabatic quantum optimizer (AQO). When a quadratic optimization problem has at least one set of discrete controls and the constraints are linear, we call this a quadratic constrained mixed discrete optimization (QCMDO) problem. QCMDO problems are NP-hard, and no efficient classical algorithm for their solution is known. Included in the class of QCMDO problems are combinatorial optimization problems constrained by a linear partial differential equation (PDE) or system of linear PDEs. An essential complication commonly encountered in solving this type of problem is that the linear constraint may introduce many intermediate continuous variables into the optimization while the computational cost grows exponentially with problem size. We resolve this difficulty by developing a constructive mapping from QCMDO to quadratic unconstrained binary optimization (QUBO) such that the size of the QUBO problem depends only on the number of discrete control variables. With a suitable embedding, taking into account the physical constraints of the realizable coupling graph, the resulting QUBO problem can be implemented on an existing AQO. The mapping itself is efficient, scaling cubically with the number of continuous variables in the general case and linearly in the PDE case if an efficient preconditioner is available.
NASA Astrophysics Data System (ADS)
Charlemagne, S.; Ture Savadkoohi, A.; Lamarque, C.-H.
2018-07-01
The continuous approximation is used in this work to describe the dynamics of a nonlinear chain of light oscillators coupled to a linear main system. A general methodology is applied to an example where the chain has local nonlinear restoring forces. The slow invariant manifold is detected at fast time scale. At slow time scale, equilibrium and singular points are sought around this manifold in order to predict periodic regimes and strongly modulated responses of the system. Analytical predictions are in good accordance with numerical results and represent a potent tool for designing nonlinear chains for passive control purposes.
A FORTRAN program for the analysis of linear continuous and sample-data systems
NASA Technical Reports Server (NTRS)
Edwards, J. W.
1976-01-01
A FORTRAN digital computer program which performs the general analysis of linearized control systems is described. State variable techniques are used to analyze continuous, discrete, and sampled data systems. Analysis options include the calculation of system eigenvalues, transfer functions, root loci, root contours, frequency responses, power spectra, and transient responses for open- and closed-loop systems. A flexible data input format allows the user to define systems in a variety of representations. Data may be entered by inputing explicit data matrices or matrices constructed in user written subroutines, by specifying transfer function block diagrams, or by using a combination of these methods.
Preliminary design of a high-intensity continuous-wave deuteron RFQ
NASA Astrophysics Data System (ADS)
Liu, X.; Kamigaito, O.; Sakamoto, N.; Yamada, K.
2017-07-01
A high-intensity deuteron linear accelerator is currently being studied as a promising candidate to treat high-level radioactive waste through the nuclear transmutation process. This paper presents the study on a design of a 75.5 MHz, 400 mA, continuous-wave deuteron radio-frequency quadrupole (RFQ), which is proposed as the front-end of such a linear accelerator. The results of the beam dynamics simulation suggest that the designed RFQ can accelerate a 400-mA deuteron beam from 100 keV to 2.5 MeV with a transmission rate of 92.0 ∼ 93.3%, depending on the assumed input transverse emittance.
Robust Adaptive Dynamic Programming of Two-Player Zero-Sum Games for Continuous-Time Linear Systems.
Fu, Yue; Fu, Jun; Chai, Tianyou
2015-12-01
In this brief, an online robust adaptive dynamic programming algorithm is proposed for two-player zero-sum games of continuous-time unknown linear systems with matched uncertainties, which are functions of system outputs and states of a completely unknown exosystem. The online algorithm is developed using the policy iteration (PI) scheme with only one iteration loop. A new analytical method is proposed for convergence proof of the PI scheme. The sufficient conditions are given to guarantee globally asymptotic stability and suboptimal property of the closed-loop system. Simulation studies are conducted to illustrate the effectiveness of the proposed method.
Valeri, Linda; Lin, Xihong; VanderWeele, Tyler J.
2014-01-01
Mediation analysis is a popular approach to examine the extent to which the effect of an exposure on an outcome is through an intermediate variable (mediator) and the extent to which the effect is direct. When the mediator is mis-measured the validity of mediation analysis can be severely undermined. In this paper we first study the bias of classical, non-differential measurement error on a continuous mediator in the estimation of direct and indirect causal effects in generalized linear models when the outcome is either continuous or discrete and exposure-mediator interaction may be present. Our theoretical results as well as a numerical study demonstrate that in the presence of non-linearities the bias of naive estimators for direct and indirect effects that ignore measurement error can take unintuitive directions. We then develop methods to correct for measurement error. Three correction approaches using method of moments, regression calibration and SIMEX are compared. We apply the proposed method to the Massachusetts General Hospital lung cancer study to evaluate the effect of genetic variants mediated through smoking on lung cancer risk. PMID:25220625
Levene, Louis S; Baker, Richard; Walker, Nicola; Williams, Christopher; Wilson, Andrew; Bankart, John
2018-06-01
Increased relationship continuity in primary care is associated with better health outcomes, greater patient satisfaction, and fewer hospital admissions. Greater socioeconomic deprivation is associated with lower levels of continuity, as well as poorer health outcomes. To investigate whether deprivation scores predicted variations in the decline over time of patient-perceived relationship continuity of care, after adjustment for practice organisational and population factors. An observational study in 6243 primary care practices with more than one GP, in England, using a longitudinal multilevel linear model, 2012-2017 inclusive. Patient-perceived relationship continuity was calculated using two questions from the GP Patient Survey. The effect of deprivation on the linear slope of continuity over time was modelled, adjusting for nine confounding variables (practice population and organisational factors). Clustering of measurements within general practices was adjusted for by using a random intercepts and random slopes model. Descriptive statistics and univariable analyses were also undertaken. Relationship continuity declined by 27.5% between 2012 and 2017, and at all deprivation levels. Deprivation scores from 2012 did not predict variations in the decline of relationship continuity at practice level, after accounting for the effects of organisational and population confounding variables, which themselves did not predict, or weakly predicted with very small effect sizes, the decline of continuity. Cross-sectionally, continuity and deprivation were negatively correlated within each year. The decline in relationship continuity of care has been marked and widespread. Measures to maximise continuity will need to be feasible for individual practices with diverse population and organisational characteristics. © British Journal of General Practice 2018.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Phinney, N.
The SLAC Linear Collider (SLC) is the first example of an entirely new type of lepton collider. Many years of effort were required to develop the understanding and techniques needed to approach design luminosity. This paper discusses some of the key issues and problems encountered in producing a working linear collider. These include the polarized source, techniques for emittance preservation, extensive feedback systems, and refinements in beam optimization in the final focus. The SLC experience has been invaluable for testing concepts and developing designs for a future linear collider.
Lin, Han; Jia, Baohua; Gu, Min
2011-07-01
An axially super-resolved quasi-spherical focal spot can be generated by focusing an amplitude-modulated radially polarized beam through a high numerical aperture objective. A method based on the unique depolarization properties of a circular focus is proposed to design the amplitude modulation. The generated focal spot shows a ratio of x:y:z=1:1:1.48 for the normalized FWHM in three dimensions, compared to that of x:y:z=1:0.74:1.72 under linear polarization (in the x direction) illumination. Moreover, the focusable light efficiency of the designed amplitude-modulated beam is 65%, which is more than 3 times higher than the optimized case under linear polarization and thus make the amplitude-modulated radial polarization beam more suitable for a wide range of applications.
Superstrong Adjustable Permanent Magnet for a Linear Collider Final Focus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mihara, T.
A superstrong permanent magnet quadrupole (PMQ) is one of the candidates for the final focus lens for the linear collider because of its compactness and low power consumption. The first fabricated prototype of our PMQ achieved a 300T/m superstrong field gradient with a 100mm overall magnet radius and a 7mm bore radius, but a drawback is its fixed strength. Therefore, a second prototype of PMQ, whose strength is adjustable, was fabricated. Its strength adjustability is based on the ''double ring structure'', rotating subdivided magnet slices separately. This second prototype is being tested. Some of the early results are presented.
Construction of energy-stable Galerkin reduced order models.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kalashnikova, Irina; Barone, Matthew Franklin; Arunajatesan, Srinivasan
2013-05-01
This report aims to unify several approaches for building stable projection-based reduced order models (ROMs). Attention is focused on linear time-invariant (LTI) systems. The model reduction procedure consists of two steps: the computation of a reduced basis, and the projection of the governing partial differential equations (PDEs) onto this reduced basis. Two kinds of reduced bases are considered: the proper orthogonal decomposition (POD) basis and the balanced truncation basis. The projection step of the model reduction can be done in two ways: via continuous projection or via discrete projection. First, an approach for building energy-stable Galerkin ROMs for linear hyperbolicmore » or incompletely parabolic systems of PDEs using continuous projection is proposed. The idea is to apply to the set of PDEs a transformation induced by the Lyapunov function for the system, and to build the ROM in the transformed variables. The resulting ROM will be energy-stable for any choice of reduced basis. It is shown that, for many PDE systems, the desired transformation is induced by a special weighted L2 inner product, termed the %E2%80%9Csymmetry inner product%E2%80%9D. Attention is then turned to building energy-stable ROMs via discrete projection. A discrete counterpart of the continuous symmetry inner product, a weighted L2 inner product termed the %E2%80%9CLyapunov inner product%E2%80%9D, is derived. The weighting matrix that defines the Lyapunov inner product can be computed in a black-box fashion for a stable LTI system arising from the discretization of a system of PDEs in space. It is shown that a ROM constructed via discrete projection using the Lyapunov inner product will be energy-stable for any choice of reduced basis. Connections between the Lyapunov inner product and the inner product induced by the balanced truncation algorithm are made. Comparisons are also made between the symmetry inner product and the Lyapunov inner product. The performance of ROMs constructed using these inner products is evaluated on several benchmark test cases.« less
Structure and Reversibility of 2D von Neumann Cellular Automata Over Triangular Lattice
NASA Astrophysics Data System (ADS)
Uguz, Selman; Redjepov, Shovkat; Acar, Ecem; Akin, Hasan
2017-06-01
Even though the fundamental main structure of cellular automata (CA) is a discrete special model, the global behaviors at many iterative times and on big scales could be a close, nearly a continuous, model system. CA theory is a very rich and useful phenomena of dynamical model that focuses on the local information being relayed to the neighboring cells to produce CA global behaviors. The mathematical points of the basic model imply the computable values of the mathematical structure of CA. After modeling the CA structure, an important problem is to be able to move forwards and backwards on CA to understand their behaviors in more elegant ways. A possible case is when CA is to be a reversible one. In this paper, we investigate the structure and the reversibility of two-dimensional (2D) finite, linear, triangular von Neumann CA with null boundary case. It is considered on ternary field ℤ3 (i.e. 3-state). We obtain their transition rule matrices for each special case. For given special triangular information (transition) rule matrices, we prove which triangular linear 2D von Neumann CAs are reversible or not. It is known that the reversibility cases of 2D CA are generally a much challenged problem. In the present study, the reversibility problem of 2D triangular, linear von Neumann CA with null boundary is resolved completely over ternary field. As far as we know, there is no structure and reversibility study of von Neumann 2D linear CA on triangular lattice in the literature. Due to the main CA structures being sufficiently simple to investigate in mathematical ways, and also very complex to obtain in chaotic systems, it is believed that the present construction can be applied to many areas related to these CA using any other transition rules.
2016-04-01
incorporated with nonlinear elements to produce a continuous, quasi -nonlinear simulation model. Extrapolation methods within the model stitching architecture...Simulation Model, Quasi -Nonlinear, Piloted Simulation, Flight-Test Implications, System Identification, Off-Nominal Loading Extrapolation, Stability...incorporated with nonlinear elements to produce a continuous, quasi -nonlinear simulation model. Extrapolation methods within the model stitching
Lee, Paul H
2017-06-01
Some confounders are nonlinearly associated with dependent variables, but they are often adjusted using a linear term. The purpose of this study was to examine the error of mis-specifying the nonlinear confounding effect. We carried out a simulation study to investigate the effect of adjusting for a nonlinear confounder in the estimation of a causal relationship between the exposure and outcome in 3 ways: using a linear term, binning into 5 equal-size categories, or using a restricted cubic spline of the confounder. Continuous, binary, and survival outcomes were simulated. We examined the confounder across varying measurement error. In addition, we performed a real data analysis examining the 3 strategies to handle the nonlinear effects of accelerometer-measured physical activity in the National Health and Nutrition Examination Survey 2003-2006 data. The mis-specification of a nonlinear confounder had little impact on causal effect estimation for continuous outcomes. For binary and survival outcomes, this mis-specification introduced bias, which could be eliminated using spline adjustment only when there is small measurement error of the confounder. Real data analysis showed that the associations between high blood pressure, high cholesterol, and diabetes and mortality adjusted for physical activity with restricted cubic spline were about 3% to 11% larger than their counterparts adjusted with a linear term. For continuous outcomes, confounders with nonlinear effects can be adjusting with a linear term. Spline adjustment should be used for binary and survival outcomes on confounders with small measurement error.
Ackermann, Mark R [Albuquerque, NM; Diels, Jean-Claude M [Albuquerque, NM
2007-06-26
An optical system comprising a concave primary mirror reflects light through an intermediate focus to a secondary mirror. The secondary mirror re-focuses the image to a final image plane. Optical limiter material is placed near the intermediate focus to optically limit the intensity of light so that downstream components of the optical system are protected from intense optical transients. Additional lenses before and/or after the intermediate focus correct optical aberrations.
A Second-Order Conditionally Linear Mixed Effects Model with Observed and Latent Variable Covariates
ERIC Educational Resources Information Center
Harring, Jeffrey R.; Kohli, Nidhi; Silverman, Rebecca D.; Speece, Deborah L.
2012-01-01
A conditionally linear mixed effects model is an appropriate framework for investigating nonlinear change in a continuous latent variable that is repeatedly measured over time. The efficacy of the model is that it allows parameters that enter the specified nonlinear time-response function to be stochastic, whereas those parameters that enter in a…
Linear utility corridors—a simulated visual field trip
Robert W. Ross Jr.
1979-01-01
With the increase in various utility corridors continuing to find their way across the American landscape, more and more people are becoming concerned about their ecological as well as visual impact. This paper examines "linear utility corridors" in terms of those that transport energy and those that transport fuels, their various components, and the types of...
Cancer risk assessments for inorganic arsenic have been based on human epidemiological data, assuming a linear dose-response below the range of observation of tumors. Part of the reason for the continued use of the linear approach in arsenic risk assessments is the lack of an ad...
NASA Astrophysics Data System (ADS)
Okutsu, Kenichi; Nakashima, Yuji; Yamazaki, Kenichiro; Fujimoto, Keita; Nakano, Motoyoshi; Ohshimo, Keijiro; Misaizu, Fuminori
2017-05-01
An ion imaging apparatus with a double linear reflectron mass spectrometer has been developed, in order to measure velocity and angular distributions of mass-analyzed fragment ions produced by photodissociation of mass-selected gas phase complex ions. The 1st and the 2nd linear reflectrons were placed facing each other and controlled by high-voltage pulses in order to perform the mass-separation of precursor ions in the 1st reflectron and to observe the focused image of the photofragment ions in the 2nd reflectron. For this purpose, metal meshes were attached on all electrodes in the 1st reflectron, whereas the mesh was attached only on the last electrode in the 2nd reflectron. The performance of this apparatus was evaluated using imaging measurement of Ca+ photofragment ions from photodissociation reaction of Ca+Ar complex ions at 355 nm photoexcitation. The focused ion images were obtained experimentally with the double linear reflectron at the voltages of the reflection electrodes close to the predictions by ion trajectory simulations. The velocity and angular distributions of the produced Ca+ ([Ar] 4p1, 2P3/2) ion were analyzed from the observed images. The binding energy D0 of Ca+Ar in the ground state deduced in the present measurement was consistent with those determined theoretically and by spectroscopic measurements. The anisotropy parameter β of the transition was evaluated for the first time by this instrument.
The Effects of Multiple Linked Representations on Students' Learning of Linear Relationships
ERIC Educational Resources Information Center
Ozgun-Koca, S. Asli
2004-01-01
The focus of this study was on comparing three groups of Algebra I 9th-year students: one group using linked representation software, the second group using similar software but with semi-linked representations, and the control group in order to examine the effects on students' understanding of linear relationships. Data collection methods…
Flipping an Algebra Classroom: Analyzing, Modeling, and Solving Systems of Linear Equations
ERIC Educational Resources Information Center
Kirvan, Rebecca; Rakes, Christopher R.; Zamora, Regie
2015-01-01
The present study investigated whether flipping an algebra classroom led to a stronger focus on conceptual understanding and improved learning of systems of linear equations for 54 seventh- and eighth-grade students using teacher journal data and district-mandated unit exam items. Multivariate analysis of covariance was used to compare scores on…
The Role of Graphic Elements in the Accurate Portrayal of Instructional Design.
ERIC Educational Resources Information Center
Branch, Robert C.; Bloom, Janet R.
This study explores the interpretation of two types of flow diagrams composed of different visual elements intended to communicate the same meaning. Using linear and cyclical diagrams, the study focused on whether, given a series of diagrams using linear elements and a series using cyclical elements, both types of visuals convey the same message…
A Multiphase Non-Linear Mixed Effects Model: An Application to Spirometry after Lung Transplantation
Rajeswaran, Jeevanantham; Blackstone, Eugene H.
2014-01-01
In medical sciences, we often encounter longitudinal temporal relationships that are non-linear in nature. The influence of risk factors may also change across longitudinal follow-up. A system of multiphase non-linear mixed effects model is presented to model temporal patterns of longitudinal continuous measurements, with temporal decomposition to identify the phases and risk factors within each phase. Application of this model is illustrated using spirometry data after lung transplantation using readily available statistical software. This application illustrates the usefulness of our flexible model when dealing with complex non-linear patterns and time varying coefficients. PMID:24919830
The NASA High Speed ASE Project: Computational Analyses of a Low-Boom Supersonic Configuration
NASA Technical Reports Server (NTRS)
Silva, Walter A.; DeLaGarza, Antonio; Zink, Scott; Bounajem, Elias G.; Johnson, Christopher; Buonanno, Michael; Sanetrik, Mark D.; Yoo, Seung Y.; Kopasakis, George; Christhilf, David M.;
2014-01-01
A summary of NASA's High Speed Aeroservoelasticity (ASE) project is provided with a focus on a low-boom supersonic configuration developed by Lockheed-Martin and referred to as the N+2 configuration. The summary includes details of the computational models developed to date including a linear finite element model (FEM), linear unsteady aerodynamic models, structured and unstructured CFD grids, and discussion of the FEM development including sizing and structural constraints applied to the N+2 configuration. Linear results obtained to date include linear mode shapes and linear flutter boundaries. In addition to the tasks associated with the N+2 configuration, a summary of the work involving the development of AeroPropulsoServoElasticity (APSE) models is also discussed.
Reduction Continuous Rank Probability Score for Hydrological Ensemble Prediction System
NASA Astrophysics Data System (ADS)
Trinh, Nguyen Bao; Thielen Del-Pozo, Jutta; Pappenberger, Florian; Cloke, Hannah L.; Bogner, Konrad
2010-05-01
Ensemble Prediction System (EPS), calculated operationally by the weather services for various lead-times, are increasingly used as input to hydrological models to extend warning times from short- to medium and even long-range. Although the general skill of EPS has been demonstrated to increase continuously over the past decades, it remains comparatively low for precipitation, one of the driving forces of hydrological processes. Due to the non-linear integrating nature of river runoff and the complexities of catchment runoff processes, one cannot assume that the skill of the hydrological forecasts is necessarily similar to the skill of the meteorological predictions. Furthermore, due to the integrating nature of discharge, which accumulates effects from upstream catchment and slow-responding groundwater processes, commonly applied skill scores in meteorology may not be fully adapted to describe the skill of probabilistic discharge predictions. For example, while for hydrological applications it may be interesting to compare the forecast skill between upstream and downstream stations, meteorological applications focus more on climatologically relevant regions. In this paper, a range of widely used probabilistic skill scores for assessing reliability, spread-skill, sharpness and bias are calculated for a 12 months case study in the Danube river basin. The Continuous Rank Probability Score (CRPS) is demonstrated to have deficiencies when comparing skill of discharge forecast for different hydrological stations. Therefore, we propose a modified CRPS that allows this comparison and is therefore particularly useful for hydrological applications.
KINK AND SAUSAGE MODES IN NONUNIFORM MAGNETIC SLABS WITH CONTINUOUS TRANSVERSE DENSITY DISTRIBUTIONS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Hui; Li, Bo; Chen, Shao-Xia
2015-11-20
We examine the influence of a continuous density structuring transverse to coronal slabs on the dispersive properties of fundamental standing kink and sausage modes supported therein. We derive generic dispersion relations (DRs) governing linear fast waves in pressureless straight slabs with general transverse density distributions, and focus on cases where the density inhomogeneity takes place in a layer of arbitrary width and in arbitrary form. The physical relevance of the solutions to the DRs is demonstrated by the corresponding time-dependent computations. For all profiles examined, the lowest order kink modes are trapped regardless of longitudinal wavenumber k. A continuous density distribution introducesmore » a difference to their periods of ≲13% when k is the observed range relative to the case where the density profile takes a step function form. Sausage modes and other branches of kink modes are leaky at small k, and their periods and damping times are heavily influenced by how the transverse density profile is prescribed, in particular the length scale. These modes have sufficiently high quality to be observable only for physical parameters representative of flare loops. We conclude that while the simpler DR pertinent to a step function profile can be used for the lowest order kink modes, the detailed information on the transverse density structuring needs to be incorporated into studies of sausage modes and higher order kink modes.« less
Patient safety culture among nurses.
Ammouri, A A; Tailakh, A K; Muliira, J K; Geethakrishnan, R; Al Kindi, S N
2015-03-01
Patient safety is considered to be crucial to healthcare quality and is one of the major parameters monitored by all healthcare organizations around the world. Nurses play a vital role in maintaining and promoting patient safety due to the nature of their work. The purpose of this study was to investigate nurses' perceptions about patient safety culture and to identify the factors that need to be emphasized in order to develop and maintain the culture of safety among nurses in Oman. A descriptive and cross-sectional design was used. Patient safety culture was assessed by using the Hospital Survey on Patient Safety Culture among 414 registered nurses working in four major governmental hospitals in Oman. Descriptive statistics and general linear regression were employed to assess the association between patient safety culture and demographic variables. Nurses who perceived more supervisor or manager expectations, feedback and communications about errors, teamwork across hospital units, and hospital handoffs and transitions had more overall perception of patient safety. Nurses who perceived more teamwork within units and more feedback and communications about errors had more frequency of events reported. Furthermore, nurses who had more years of experience and were working in teaching hospitals had more perception of patient safety culture. Learning and continuous improvement, hospital management support, supervisor/manager expectations, feedback and communications about error, teamwork, hospital handoffs and transitions were found to be major patient safety culture predictors. Investing in practices and systems that focus on improving these aspects is likely to enhance the culture of patient safety in Omani hospitals and others like them. Strategies to nurture patient safety culture in Omani hospitals should focus upon building leadership capacity that support open communication, blame free, team work and continuous organizational learning. © 2014 International Council of Nurses.
[Patterns of coping strategies after bereavement among spouses of cancer patients].
Asai, Mariko; Matsui, Yutaka; Uchitomi, Yosuke
2013-12-01
The purposes of this study were (1) to identify healthy and unhealthy patterns of coping strategies after bereavement among spouses of cancer patients and 2) to explore the characteristics of patients and spouses associated with these patterns of coping strategies. The participants were 821 bereaved individuals whose spouses had died at the National Cancer Center Hospital East. Three patterns of coping strategies after bereavement were found: "Distraction Focused" (healthy), "Continuing Bonds Focused" (unhealthy), and "General Coping" (almost healthy). Two strategies for improving the unhealthy coping patterns of "Continuing Bonds Focused" were (1) enhancing "Distraction" and reducing "Continuing Bonds" for achieving "Distraction Focused" (healthy) and (2) enhancing both "Distraction" and "Social Sharing/Reconstruction" for achieving "General Coping" (almost healthy). The patients' characteristics associated with the bereaved spouses' coping strategy of "Continuing Bonds Focused" were "under 65 years", "history of psychiatric consultation", "duration of last hospital admission was less than one week", and "time since cancer diagnosis to death was less than one year". These four characteristics of the deceased patients were considered to be risk factors for spouses who would utilize unhealthy coping patterns after bereavement.
Compressed Continuous Computation v. 12/20/2016
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gorodetsky, Alex
2017-02-17
A library for performing numerical computation with low-rank functions. The (C3) library enables performing continuous linear and multilinear algebra with multidimensional functions. Common tasks include taking "matrix" decompositions of vector- or matrix-valued functions, approximating multidimensional functions in low-rank format, adding or multiplying functions together, integrating multidimensional functions.
A Bayesian Semiparametric Latent Variable Model for Mixed Responses
ERIC Educational Resources Information Center
Fahrmeir, Ludwig; Raach, Alexander
2007-01-01
In this paper we introduce a latent variable model (LVM) for mixed ordinal and continuous responses, where covariate effects on the continuous latent variables are modelled through a flexible semiparametric Gaussian regression model. We extend existing LVMs with the usual linear covariate effects by including nonparametric components for nonlinear…
Efficacy of Two Different Instructional Methods Involving Complex Ecological Content
ERIC Educational Resources Information Center
Randler, Christoph; Bogner, Franz X.
2009-01-01
Teaching and learning approaches in ecology very often follow linear conceptions of ecosystems. Empirical studies with an ecological focus consistent with existing syllabi and focusing on cognitive achievement are scarce. Consequently, we concentrated on a classroom unit that offers learning materials and highlights the existing complexity rather…
Zhang, Xuefeng; Chen, YangQuan
2017-11-01
The paper considers the stabilization issue of linear continuous singular systems by dealing with strict linear matrix inequalities (LMIs) without invoking equality constraint and proposes a complete and effective solved LMIs formulation. The criterion is necessary and sufficient condition and can be directly solved the feasible solutions with LMI toolbox and is much more tractable and reliable in numerical simulation than existing results, which involve positive semi-definite LMIs with equality constraints. The most important property of the criterion proposed in the paper is that it can overcome the drawbacks of the invalidity caused by the singularity of Ω=PE T +SQ for stabilization of singular systems. Two counterexamples are presented to avoid the disadvantages of the existing condition of stabilization of continuous singular systems. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Spatial generalised linear mixed models based on distances.
Melo, Oscar O; Mateu, Jorge; Melo, Carlos E
2016-10-01
Risk models derived from environmental data have been widely shown to be effective in delineating geographical areas of risk because they are intuitively easy to understand. We present a new method based on distances, which allows the modelling of continuous and non-continuous random variables through distance-based spatial generalised linear mixed models. The parameters are estimated using Markov chain Monte Carlo maximum likelihood, which is a feasible and a useful technique. The proposed method depends on a detrending step built from continuous or categorical explanatory variables, or a mixture among them, by using an appropriate Euclidean distance. The method is illustrated through the analysis of the variation in the prevalence of Loa loa among a sample of village residents in Cameroon, where the explanatory variables included elevation, together with maximum normalised-difference vegetation index and the standard deviation of normalised-difference vegetation index calculated from repeated satellite scans over time. © The Author(s) 2013.
Localization of non-linear neutralizing B cell epitopes on ricin toxin's enzymatic subunit (RTA).
O'Hara, Joanne M; Kasten-Jolly, Jane C; Reynolds, Claire E; Mantis, Nicholas J
2014-01-01
Efforts to develop a vaccine for ricin toxin are focused on identifying highly immunogenic, safe, and thermostable recombinant derivatives of ricin's enzymatic A subunit (RTA). As a means to guide vaccine design, we have embarked on an effort to generate a comprehensive neutralizing and non-neutralizing B cell epitope map of RTA. In a series of previous studies, we identified three spatially distinct linear (continuous), neutralizing epitopes on RTA, as defined by monoclonal antibodies (mAbs) PB10 (and R70), SyH7, and GD12. In this report we now describe a new collection of 19 toxin-neutralizing mAbs that bind non-linear epitopes on RTA. The most potent toxin-neutralizing mAbs in this new collection, namely WECB2, TB12, PA1, PH12 and IB2 each had nanamolar (or sub-nanomolar) affinities for ricin and were each capable of passively protecting mice against a 5-10xLD50 toxin challenge. Competitive binding assays by surface plasmon resonance revealed that WECB2 binds an epitope that overlaps with PB10 and R70; TB12, PA1, PH12 recognize epitope(s) close to or overlapping with SyH7's epitope; and GD12 and IB2 recognize epitopes that are spatially distinct from all other toxin-neutralizing mAbs. We estimate that we have now accounted for ∼75% of the predicted epitopes on the surface of RTA and that toxin-neutralizing mAbs are directed against a very limited number of these epitopes. Having this information provides a framework for further refinement of RTA mutagenesis and vaccine design. Copyright © 2013 Elsevier B.V. All rights reserved.
Peng, Ke; Nguyen, Dang Khoa; Vannasing, Phetsamone; Tremblay, Julie; Lesage, Frédéric; Pouliot, Philippe
2016-02-01
Functional near-infrared spectroscopy (fNIRS) can be combined with electroencephalography (EEG) to continuously monitor the hemodynamic signal evoked by epileptic events such as seizures or interictal epileptiform discharges (IEDs, aka spikes). As estimation methods assuming a canonical shape of the hemodynamic response function (HRF) might not be optimal, we sought to model patient-specific HRF (sHRF) with a simple deconvolution approach for IED-related analysis with EEG-fNIRS data. Furthermore, a quadratic term was added to the model to account for the nonlinearity in the response when IEDs are frequent. Prior to analyzing clinical data, simulations were carried out to show that the HRF was estimable by the proposed deconvolution methods under proper conditions. EEG-fNIRS data of five patients with refractory focal epilepsy were selected due to the presence of frequent clear IEDs and their unambiguous focus localization. For each patient, both the linear sHRF and the nonlinear sHRF were estimated at each channel. Variability of the estimated sHRFs was seen across brain regions and different patients. Compared with the SPM8 canonical HRF (cHRF), including these sHRFs in the general linear model (GLM) analysis led to hemoglobin activations with higher statistical scores as well as larger spatial extents on all five patients. In particular, for patients with frequent IEDs, nonlinear sHRFs were seen to provide higher sensitivity in activation detection than linear sHRFs. These observations support using sHRFs in the analysis of IEDs with EEG-fNIRS data. Copyright © 2015 Elsevier Inc. All rights reserved.
Sub-one-third wavelength focusing of surface plasmon polaritons excited by linearly polarized light.
Wang, Jiayuan; Zhang, Jiasen
2018-05-28
We report the generation of a subwavelength focal spot for surface plasmon polaritons (SPPs) by increasing the proportion of high-spatial-frequency components in the plasmonic focusing field. We have derived an analytical expression for the angular-dependent contribution of an arbitrary-shaped SPP line source to the focal field and have found that the proportion for high-spatial-frequency components can be significantly increased by launching SPPs from a horizontal line source. Accordingly, we propose a rectangular-groove plasmonic lens (PL) consisting of horizontally-arrayed central grooves and slantingly-arrayed flanking grooves on gold film. We demonstrate both numerically and experimentally that, under linearly polarized illumination, such a PL generates a focal spot of full width half maximum 274 nm at an operating wavelength of 830 nm. The method we describe provides guidance to the further structure design and optimization for plasmonic focusing devices.
Radio frequency focused interdigital linear accelerator
Swenson, Donald A.; Starling, W. Joel
2006-08-29
An interdigital (Wideroe) linear accelerator employing drift tubes, and associated support stems that couple to both the longitudinal and support stem electromagnetic fields of the linac, creating rf quadrupole fields along the axis of the linac to provide transverse focusing for the particle beam. Each drift tube comprises two separate electrodes operating at different electrical potentials as determined by cavity rf fields. Each electrode supports two fingers, pointing towards the opposite end of the drift tube, forming a four-finger geometry that produces an rf quadrupole field distribution along its axis. The fundamental periodicity of the structure is equal to one half of the particle wavelength .beta..lamda., where .beta. is the particle velocity in units of the velocity of light and .lamda. is the free space wavelength of the rf. Particles are accelerated in the gaps between drift tubes. The particle beam is focused in regions inside the drift tubes.
Matching by linear programming and successive convexification.
Jiang, Hao; Drew, Mark S; Li, Ze-Nian
2007-06-01
We present a novel convex programming scheme to solve matching problems, focusing on the challenging problem of matching in a large search range and with cluttered background. Matching is formulated as metric labeling with L1 regularization terms, for which we propose a novel linear programming relaxation method and an efficient successive convexification implementation. The unique feature of the proposed relaxation scheme is that a much smaller set of basis labels is used to represent the original label space. This greatly reduces the size of the searching space. A successive convexification scheme solves the labeling problem in a coarse to fine manner. Importantly, the original cost function is reconvexified at each stage, in the new focus region only, and the focus region is updated so as to refine the searching result. This makes the method well-suited for large label set matching. Experiments demonstrate successful applications of the proposed matching scheme in object detection, motion estimation, and tracking.
Reduced Order Modeling for Prediction and Control of Large-Scale Systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kalashnikova, Irina; Arunajatesan, Srinivasan; Barone, Matthew Franklin
2014-05-01
This report describes work performed from June 2012 through May 2014 as a part of a Sandia Early Career Laboratory Directed Research and Development (LDRD) project led by the first author. The objective of the project is to investigate methods for building stable and efficient proper orthogonal decomposition (POD)/Galerkin reduced order models (ROMs): models derived from a sequence of high-fidelity simulations but having a much lower computational cost. Since they are, by construction, small and fast, ROMs can enable real-time simulations of complex systems for onthe- spot analysis, control and decision-making in the presence of uncertainty. Of particular interest tomore » Sandia is the use of ROMs for the quantification of the compressible captive-carry environment, simulated for the design and qualification of nuclear weapons systems. It is an unfortunate reality that many ROM techniques are computationally intractable or lack an a priori stability guarantee for compressible flows. For this reason, this LDRD project focuses on the development of techniques for building provably stable projection-based ROMs. Model reduction approaches based on continuous as well as discrete projection are considered. In the first part of this report, an approach for building energy-stable Galerkin ROMs for linear hyperbolic or incompletely parabolic systems of partial differential equations (PDEs) using continuous projection is developed. The key idea is to apply a transformation induced by the Lyapunov function for the system, and to build the ROM in the transformed variables. It is shown that, for many PDE systems including the linearized compressible Euler and linearized compressible Navier-Stokes equations, the desired transformation is induced by a special inner product, termed the “symmetry inner product”. Attention is then turned to nonlinear conservation laws. A new transformation and corresponding energy-based inner product for the full nonlinear compressible Navier-Stokes equations is derived, and it is demonstrated that if a Galerkin ROM is constructed in this inner product, the ROM system energy will be bounded in a way that is consistent with the behavior of the exact solution to these PDEs, i.e., the ROM will be energy-stable. The viability of the linear as well as nonlinear continuous projection model reduction approaches developed as a part of this project is evaluated on several test cases, including the cavity configuration of interest in the targeted application area. In the second part of this report, some POD/Galerkin approaches for building stable ROMs using discrete projection are explored. It is shown that, for generic linear time-invariant (LTI) systems, a discrete counterpart of the continuous symmetry inner product is a weighted L2 inner product obtained by solving a Lyapunov equation. This inner product was first proposed by Rowley et al., and is termed herein the “Lyapunov inner product“. Comparisons between the symmetry inner product and the Lyapunov inner product are made, and the performance of ROMs constructed using these inner products is evaluated on several benchmark test cases. Also in the second part of this report, a new ROM stabilization approach, termed “ROM stabilization via optimization-based eigenvalue reassignment“, is developed for generic LTI systems. At the heart of this method is a constrained nonlinear least-squares optimization problem that is formulated and solved numerically to ensure accuracy of the stabilized ROM. Numerical studies reveal that the optimization problem is computationally inexpensive to solve, and that the new stabilization approach delivers ROMs that are stable as well as accurate. Summaries of “lessons learned“ and perspectives for future work motivated by this LDRD project are provided at the end of each of the two main chapters.« less
Martinek, Radek; Nedoma, Jan; Fajkus, Marcel; Kahankova, Radana; Konecny, Jaromir; Janku, Petr; Kepak, Stanislav; Bilik, Petr; Nazeran, Homer
2017-04-18
This paper focuses on the design, realization, and verification of a novel phonocardiographic- based fiber-optic sensor and adaptive signal processing system for noninvasive continuous fetal heart rate (fHR) monitoring. Our proposed system utilizes two Mach-Zehnder interferometeric sensors. Based on the analysis of real measurement data, we developed a simplified dynamic model for the generation and distribution of heart sounds throughout the human body. Building on this signal model, we then designed, implemented, and verified our adaptive signal processing system by implementing two stochastic gradient-based algorithms: the Least Mean Square Algorithm (LMS), and the Normalized Least Mean Square (NLMS) Algorithm. With this system we were able to extract the fHR information from high quality fetal phonocardiograms (fPCGs), filtered from abdominal maternal phonocardiograms (mPCGs) by performing fPCG signal peak detection. Common signal processing methods such as linear filtering, signal subtraction, and others could not be used for this purpose as fPCG and mPCG signals share overlapping frequency spectra. The performance of the adaptive system was evaluated by using both qualitative (gynecological studies) and quantitative measures such as: Signal-to-Noise Ratio-SNR, Root Mean Square Error-RMSE, Sensitivity-S+, and Positive Predictive Value-PPV.
Martinek, Radek; Nedoma, Jan; Fajkus, Marcel; Kahankova, Radana; Konecny, Jaromir; Janku, Petr; Kepak, Stanislav; Bilik, Petr; Nazeran, Homer
2017-01-01
This paper focuses on the design, realization, and verification of a novel phonocardiographic- based fiber-optic sensor and adaptive signal processing system for noninvasive continuous fetal heart rate (fHR) monitoring. Our proposed system utilizes two Mach-Zehnder interferometeric sensors. Based on the analysis of real measurement data, we developed a simplified dynamic model for the generation and distribution of heart sounds throughout the human body. Building on this signal model, we then designed, implemented, and verified our adaptive signal processing system by implementing two stochastic gradient-based algorithms: the Least Mean Square Algorithm (LMS), and the Normalized Least Mean Square (NLMS) Algorithm. With this system we were able to extract the fHR information from high quality fetal phonocardiograms (fPCGs), filtered from abdominal maternal phonocardiograms (mPCGs) by performing fPCG signal peak detection. Common signal processing methods such as linear filtering, signal subtraction, and others could not be used for this purpose as fPCG and mPCG signals share overlapping frequency spectra. The performance of the adaptive system was evaluated by using both qualitative (gynecological studies) and quantitative measures such as: Signal-to-Noise Ratio—SNR, Root Mean Square Error—RMSE, Sensitivity—S+, and Positive Predictive Value—PPV. PMID:28420215
Chernysheva, Maria; Araimi, Mohammed Al; Rance, Graham A; Weston, Nicola J; Shi, Baogui; Saied, Sayah; Sullivan, John L; Marsh, Nicholas; Rozhin, Aleksey
2018-05-10
Composites of single-walled carbon nanotubes (SWNTs) and water-soluble polymers (WSP) are the focus of significant worldwide research due to a number of applications in biotechnology and photonics, particularly for ultrashort pulse generation. Despite the unique possibility of constructing non-linear optical SWNT-WSP composites with controlled optical properties, their thermal degradation threshold and limit of operational power remain unexplored. In this study, we discover the nature of the SWNT-polyvinyl alcohol (PVA) film thermal degradation and evaluate the modification of the composite properties under continuous high-power ultrashort pulse laser operation. Using high-precision optical microscopy and micro-Raman spectroscopy, we have examined SWNT-PVA films before and after continuous laser radiation exposure (up to 40 hours) with a maximum optical fluence of 2.3 mJ·cm -2 . We demonstrate that high-intensity laser radiation results in measurable changes in the composition and morphology of the SWNT-PVA film due to efficient heat transfer from SWNTs to the polymer matrix. The saturable absorber modification does not affect the laser operational performance. We anticipate our work to be a starting point for more sophisticated research aimed at the enhancement of SWNT-PVA films fabrication for their operation as reliable saturable absorbers in high-power ultrafast lasers.
Record statistics of a strongly correlated time series: random walks and Lévy flights
NASA Astrophysics Data System (ADS)
Godrèche, Claude; Majumdar, Satya N.; Schehr, Grégory
2017-08-01
We review recent advances on the record statistics of strongly correlated time series, whose entries denote the positions of a random walk or a Lévy flight on a line. After a brief survey of the theory of records for independent and identically distributed random variables, we focus on random walks. During the last few years, it was indeed realized that random walks are a very useful ‘laboratory’ to test the effects of correlations on the record statistics. We start with the simple one-dimensional random walk with symmetric jumps (both continuous and discrete) and discuss in detail the statistics of the number of records, as well as of the ages of the records, i.e. the lapses of time between two successive record breaking events. Then we review the results that were obtained for a wide variety of random walk models, including random walks with a linear drift, continuous time random walks, constrained random walks (like the random walk bridge) and the case of multiple independent random walkers. Finally, we discuss further observables related to records, like the record increments, as well as some questions raised by physical applications of record statistics, like the effects of measurement error and noise.
Wearable physiological sensors and real-time algorithms for detection of acute mountain sickness.
Muza, Stephen R
2018-03-01
This is a minireview of potential wearable physiological sensors and algorithms (process and equations) for detection of acute mountain sickness (AMS). Given the emerging status of this effort, the focus of the review is on the current clinical assessment of AMS, known risk factors (environmental, demographic, and physiological), and current understanding of AMS pathophysiology. Studies that have examined a range of physiological variables to develop AMS prediction and/or detection algorithms are reviewed to provide insight and potential technological roadmaps for future development of real-time physiological sensors and algorithms to detect AMS. Given the lack of signs and nonspecific symptoms associated with AMS, development of wearable physiological sensors and embedded algorithms to predict in the near term or detect established AMS will be challenging. Prior work using [Formula: see text], HR, or HRv has not provided the sensitivity and specificity for useful application to predict or detect AMS. Rather than using spot checks as most prior studies have, wearable systems that continuously measure SpO 2 and HR are commercially available. Employing other statistical modeling approaches such as general linear and logistic mixed models or time series analysis to these continuously measured variables is the most promising approach for developing algorithms that are sensitive and specific for physiological prediction or detection of AMS.
NASA Astrophysics Data System (ADS)
Lamarche, Leslie J.; Makarevich, Roman A.
2017-03-01
We present observations of plasma density gradients, electric fields, and small-scale plasma irregularities near a polar cap patch made by the Super Dual Auroral Radar Network radar at Rankin Inlet (RKN) and the northern face of Resolute Bay Incoherent Scatter Radar (RISR-N). RKN echo power and occurrence are analyzed in the context of gradient-drift instability (GDI) theory, with a particular focus on the previously uninvestigated 2-D dependencies on wave propagation, electric field, and gradient vectors, with the latter two quantities evaluated directly from RISR-N measurements. It is shown that higher gradient and electric field components along the wave vector generally lead to the higher observed echo occurrence, which is consistent with the expected higher GDI growth rate, but the relationship with echo power is far less straightforward. The RKN echo power increases monotonically as the predicted linear growth rate approaches zero from negative values but does not continue this trend into positive growth rate values, in contrast with GDI predictions. The observed greater consistency of echo occurrence with GDI predictions suggests that GDI operating in the linear regime can control basic plasma structuring, but measured echo strength may be affected by other processes and factors, such as multistep or nonlinear processes or a shear-driven instability.
Unobtrusive Detection of Mild Cognitive Impairment in Older Adults Through Home Monitoring.
Akl, Ahmad; Snoek, Jasper; Mihailidis, Alex
2017-03-01
The early detection of dementias such as Alzheimer's disease can in some cases reverse, stop, or slow cognitive decline and in general greatly reduce the burden of care. This is of increasing significance as demographic studies are warning of an aging population in North America and worldwide. Various smart homes and systems have been developed to detect cognitive decline through continuous monitoring of high risk individuals. However, the majority of these smart homes and systems use a number of predefined heuristics to detect changes in cognition, which has been demonstrated to focus on the idiosyncratic nuances of the individual subjects, and thus, does not generalize. In this paper, we address this problem by building generalized linear models of home activity of older adults monitored using unobtrusive sensing technologies. We use inhomogenous Poisson processes to model the presence of the recruited older adults within different rooms throughout the day. We employ an information theoretic approach to compare the generalized linear models learned, and we observe significant statistical differences between the cognitively intact and impaired older adults. Using a simple thresholding approach, we were able to detect mild cognitive impairment in older adults with an average area under the ROC curve of 0.716 and an average area under the precision-recall curve of 0.706 using activity models estimated over a time window of 12 weeks.
Discrete breathers for a discrete nonlinear Schrödinger ring coupled to a central site.
Jason, Peter; Johansson, Magnus
2016-01-01
We examine the existence and properties of certain discrete breathers for a discrete nonlinear Schrödinger model where all but one site are placed in a ring and coupled to the additional central site. The discrete breathers we focus on are stationary solutions mainly localized on one or a few of the ring sites and possibly also the central site. By numerical methods, we trace out and study the continuous families the discrete breathers belong to. Our main result is the discovery of a split bifurcation at a critical value of the coupling between neighboring ring sites. Below this critical value, families form closed loops in a certain parameter space, implying that discrete breathers with and without central-site occupation belong to the same family. Above the split bifurcation the families split up into several separate ones, which bifurcate with solutions with constant ring amplitudes. For symmetry reasons, the families have different properties below the split bifurcation for even and odd numbers of sites. It is also determined under which conditions the discrete breathers are linearly stable. The dynamics of some simpler initial conditions that approximate the discrete breathers are also studied and the parameter regimes where the dynamics remain localized close to the initially excited ring site are related to the linear stability of the exact discrete breathers.
Learning accurate and interpretable models based on regularized random forests regression
2014-01-01
Background Many biology related research works combine data from multiple sources in an effort to understand the underlying problems. It is important to find and interpret the most important information from these sources. Thus it will be beneficial to have an effective algorithm that can simultaneously extract decision rules and select critical features for good interpretation while preserving the prediction performance. Methods In this study, we focus on regression problems for biological data where target outcomes are continuous. In general, models constructed from linear regression approaches are relatively easy to interpret. However, many practical biological applications are nonlinear in essence where we can hardly find a direct linear relationship between input and output. Nonlinear regression techniques can reveal nonlinear relationship of data, but are generally hard for human to interpret. We propose a rule based regression algorithm that uses 1-norm regularized random forests. The proposed approach simultaneously extracts a small number of rules from generated random forests and eliminates unimportant features. Results We tested the approach on some biological data sets. The proposed approach is able to construct a significantly smaller set of regression rules using a subset of attributes while achieving prediction performance comparable to that of random forests regression. Conclusion It demonstrates high potential in aiding prediction and interpretation of nonlinear relationships of the subject being studied. PMID:25350120
Theoretical foundations of spatially-variant mathematical morphology part ii: gray-level images.
Bouaynaya, Nidhal; Schonfeld, Dan
2008-05-01
In this paper, we develop a spatially-variant (SV) mathematical morphology theory for gray-level signals and images in the Euclidean space. The proposed theory preserves the geometrical concept of the structuring function, which provides the foundation of classical morphology and is essential in signal and image processing applications. We define the basic SV gray-level morphological operators (i.e., SV gray-level erosion, dilation, opening, and closing) and investigate their properties. We demonstrate the ubiquity of SV gray-level morphological systems by deriving a kernel representation for a large class of systems, called V-systems, in terms of the basic SV graylevel morphological operators. A V-system is defined to be a gray-level operator, which is invariant under gray-level (vertical) translations. Particular attention is focused on the class of SV flat gray-level operators. The kernel representation for increasing V-systems is a generalization of Maragos' kernel representation for increasing and translation-invariant function-processing systems. A representation of V-systems in terms of their kernel elements is established for increasing and upper-semi-continuous V-systems. This representation unifies a large class of spatially-variant linear and non-linear systems under the same mathematical framework. Finally, simulation results show the potential power of the general theory of gray-level spatially-variant mathematical morphology in several image analysis and computer vision applications.
Kumar, Rajesh; Dogra, Vishal; Rani, Khushbu; Sahu, Kanti
2017-01-01
District level determinants of total fertility rate in Empowered Action Group states of India can help in ongoing population stabilization programs in India. Present study intends to assess the role of district level determinants in predicting total fertility rate among districts of the Empowered Action Group states of India. Data from Annual Health Survey (2011-12) was analysed using STATA and R software packages. Multiple linear regression models were built and evaluated using Akaike Information Criterion. For further understanding, recursive partitioning was used to prepare a regression tree. Female married illiteracy positively associated with total fertility rate and explained more than half (53%) of variance. Under multiple linear regression model, married illiteracy, infant mortality rate, Ante natal care registration, household size, median age of live birth and sex ratio explained 70% of total variance in total fertility rate. In regression tree, female married illiteracy was the root node and splits at 42% determined TFR <= 2.7. The next left side branch was again married illiteracy with splits at 23% to determine TFR <= 2.1. We conclude that female married illiteracy is one of the most important determinants explaining total fertility rate among the districts of an Empowered Action Group states. Focus on female literacy is required to stabilize the population growth in long run.
La Peyre, M.K.; Mendelssohn, I.A.; Reams, M.A.; Templet, P.H.; Grace, J.B.
2001-01-01
Integrated management and policy models suggest that solutions to environmental issues may be linked to the socioeconomic and political Characteristics of a nation. In this study, we empirically explore these suggestions by applying them to the wetland management activities of nations. Structural equation modeling was used to evaluate a model of national wetland management effort and one of national wetland protection. Using five predictor variables of social capital, economic capital, environmental and political characteristics, and land-use pressure, the multivariate models were able to explain 60% of the variation in nations' wetland protection efforts based on data from 90 nations, as defined by level of participation, in the international wetland convention. Social capital had the largest direct effect on wetland protection efforts, suggesting that increased social development may eventually lead to better wetland protection. In contrast, increasing economic development had a negative linear relationship with wetland protection efforts, suggesting the need for explicit wetland protection programs as nations continue to focus on economic development. Government, environmental characteristics, and land-use pressure also had a positive direct effect on wetland protection, and mediated the effect of social capital on wetland protection. Explicit wetland protection policies, combined with a focus on social development, would lead to better wetland protection at the national level.
SAR System for UAV Operation with Motion Error Compensation beyond the Resolution Cell
González-Partida, José-Tomás; Almorox-González, Pablo; Burgos-García, Mateo; Dorta-Naranjo, Blas-Pablo
2008-01-01
This paper presents an experimental Synthetic Aperture Radar (SAR) system that is under development in the Universidad Politécnica de Madrid. The system uses Linear Frequency Modulated Continuous Wave (LFM-CW) radar with a two antenna configuration for transmission and reception. The radar operates in the millimeter-wave band with a maximum transmitted bandwidth of 2 GHz. The proposed system is being developed for Unmanned Aerial Vehicle (UAV) operation. Motion errors in UAV operation can be critical. Therefore, this paper proposes a method for focusing SAR images with movement errors larger than the resolution cell. Typically, this problem is solved using two processing steps: first, coarse motion compensation based on the information provided by an Inertial Measuring Unit (IMU); and second, fine motion compensation for the residual errors within the resolution cell based on the received raw data. The proposed technique tries to focus the image without using data of an IMU. The method is based on a combination of the well known Phase Gradient Autofocus (PGA) for SAR imagery and typical algorithms for translational motion compensation on Inverse SAR (ISAR). This paper shows the first real experiments for obtaining high resolution SAR images using a car as a mobile platform for our radar. PMID:27879884
SAR System for UAV Operation with Motion Error Compensation beyond the Resolution Cell.
González-Partida, José-Tomás; Almorox-González, Pablo; Burgos-Garcia, Mateo; Dorta-Naranjo, Blas-Pablo
2008-05-23
This paper presents an experimental Synthetic Aperture Radar (SAR) system that is under development in the Universidad Politécnica de Madrid. The system uses Linear Frequency Modulated Continuous Wave (LFM-CW) radar with a two antenna configuration for transmission and reception. The radar operates in the millimeter-wave band with a maximum transmitted bandwidth of 2 GHz. The proposed system is being developed for Unmanned Aerial Vehicle (UAV) operation. Motion errors in UAV operation can be critical. Therefore, this paper proposes a method for focusing SAR images with movement errors larger than the resolution cell. Typically, this problem is solved using two processing steps: first, coarse motion compensation based on the information provided by an Inertial Measuring Unit (IMU); and second, fine motion compensation for the residual errors within the resolution cell based on the received raw data. The proposed technique tries to focus the image without using data of an IMU. The method is based on a combination of the well known Phase Gradient Autofocus (PGA) for SAR imagery and typical algorithms for translational motion compensation on Inverse SAR (ISAR). This paper shows the first real experiments for obtaining high resolution SAR images using a car as a mobile platform for our radar.
ERIC Educational Resources Information Center
Ferrando, Pere J.
2008-01-01
This paper develops results and procedures for obtaining linear composites of factor scores that maximize: (a) test information, and (b) validity with respect to external variables in the multiple factor analysis (FA) model. I treat FA as a multidimensional item response theory model, and use Ackerman's multidimensional information approach based…
A Nonlinear Transfer Operator Theorem
NASA Astrophysics Data System (ADS)
Pollicott, Mark
2017-02-01
In recent papers, Kenyon et al. (Ergod Theory Dyn Syst 32:1567-1584 2012), and Fan et al. (C R Math Acad Sci Paris 349:961-964 2011, Adv Math 295:271-333 2016) introduced a form of non-linear thermodynamic formalism based on solutions to a non-linear equation using matrices. In this note we consider the more general setting of Hölder continuous functions.
Porter, Marianne E; Ewoldt, Randy H; Long, John H
2016-09-15
During swimming in dogfish sharks, Squalus acanthias, both the intervertebral joints and the vertebral centra undergo significant strain. To investigate this system, unique among vertebrates, we cyclically bent isolated segments of 10 vertebrae and nine joints. For the first time in the biomechanics of fish vertebral columns, we simultaneously characterized non-linear elasticity and viscosity throughout the bending oscillation, extending recently proposed techniques for large-amplitude oscillatory shear (LAOS) characterization to large-amplitude oscillatory bending (LAOB). The vertebral column segments behave as non-linear viscoelastic springs. Elastic properties dominate for all frequencies and curvatures tested, increasing as either variable increases. Non-linearities within a bending cycle are most in evidence at the highest frequency, 2.0 Hz, and curvature, 5 m -1 Viscous bending properties are greatest at low frequencies and high curvatures, with non-linear effects occurring at all frequencies and curvatures. The range of mechanical behaviors includes that of springs and brakes, with smooth transitions between them that allow for continuously variable power transmission by the vertebral column to assist in the mechanics of undulatory propulsion. © 2016. Published by The Company of Biologists Ltd.
Continuous-variable phase estimation with unitary and random linear disturbance
NASA Astrophysics Data System (ADS)
Delgado de Souza, Douglas; Genoni, Marco G.; Kim, M. S.
2014-10-01
We address the problem of continuous-variable quantum phase estimation in the presence of linear disturbance at the Hamiltonian level by means of Gaussian probe states. In particular we discuss both unitary and random disturbance by considering the parameter which characterizes the unwanted linear term present in the Hamiltonian as fixed (unitary disturbance) or random with a given probability distribution (random disturbance). We derive the optimal input Gaussian states at fixed energy, maximizing the quantum Fisher information over the squeezing angle and the squeezing energy fraction, and we discuss the scaling of the quantum Fisher information in terms of the output number of photons, nout. We observe that, in the case of unitary disturbance, the optimal state is a squeezed vacuum state and the quadratic scaling is conserved. As regards the random disturbance, we observe that the optimal squeezing fraction may not be equal to one and, for any nonzero value of the noise parameter, the quantum Fisher information scales linearly with the average number of photons. Finally, we discuss the performance of homodyne measurement by comparing the achievable precision with the ultimate limit imposed by the quantum Cramér-Rao bound.
Del Prete, Valeria; Treves, Alessandro
2002-04-01
In a previous paper we have evaluated analytically the mutual information between the firing rates of N independent units and a set of multidimensional continuous and discrete stimuli, for a finite population size and in the limit of large noise. Here, we extend the analysis to the case of two interconnected populations, where input units activate output ones via Gaussian weights and a threshold linear transfer function. We evaluate the information carried by a population of M output units, again about continuous and discrete correlates. The mutual information is evaluated solving saddle-point equations under the assumption of replica symmetry, a method that, by taking into account only the term linear in N of the input information, is equivalent to assuming the noise to be large. Within this limitation, we analyze the dependence of the information on the ratio M/N, on the selectivity of the input units and on the level of the output noise. We show analytically, and confirm numerically, that in the limit of a linear transfer function and of a small ratio between output and input noise, the output information approaches asymptotically the information carried in input. Finally, we show that the information loss in output does not depend much on the structure of the stimulus, whether purely continuous, purely discrete or mixed, but only on the position of the threshold nonlinearity, and on the ratio between input and output noise.
Thresholds for linear amplitude change of a continuous pure tone.
Jerlvall, L B; Arlinger, S D; Holmgren, E C
1978-01-01
The human auditory sensitivity in detecting linear amplitude change of a continuous pure tone has been studied in normal-hearing subjects. It is shown that for short glide durations (less than 100 ms) the duration of the following plateau exerts a significant influence on the DLI. The average DLI at 1 kHz and 60 dB HL was found to be of the order of 0.8 dB when the intensity glide had a duration of 10 ms and was followed by a much longer plateau. For longer glide durations (greater than or equal to 200 ms) the DLI increased significantly as compared with shorter durations. There was no significant difference between increasing and decreasing intensity change. Significantly larger DLIs were found at 250 and 500 Hz than at 1, 2 and 4 kHz. The sound level was found to have a significant influence on the DLI. At low levels of 40 dB HL, and lower, the increase in DLI for detecting sound levels is highly significant. A falling exponential function offers a mathematical description of the relationship with good fit. It is concluded that an integrating mechanism with an integration time of approx. 200 ms could explain the auditory ability to detect linear amplitude glides of a continuous tone. The results are discussed in relation to previous intensity discrimination data, where pulse pairs, continuous intensity modulation or intensity glides were used as stimuli.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Haixia; Zhang, Jing
We propose a scheme for continuous-variable quantum cloning of coherent states with phase-conjugate input modes using linear optics. The quantum cloning machine yields M identical optimal clones from N replicas of a coherent state and N replicas of its phase conjugate. This scheme can be straightforwardly implemented with the setups accessible at present since its optical implementation only employs simple linear optical elements and homodyne detection. Compared with the original scheme for continuous-variable quantum cloning with phase-conjugate input modes proposed by Cerf and Iblisdir [Phys. Rev. Lett. 87, 247903 (2001)], which utilized a nondegenerate optical parametric amplifier, our scheme losesmore » the output of phase-conjugate clones and is regarded as irreversible quantum cloning.« less
NASA Astrophysics Data System (ADS)
Palmesi, P.; Exl, L.; Bruckner, F.; Abert, C.; Suess, D.
2017-11-01
The long-range magnetic field is the most time-consuming part in micromagnetic simulations. Computational improvements can relieve problems related to this bottleneck. This work presents an efficient implementation of the Fast Multipole Method [FMM] for the magnetic scalar potential as used in micromagnetics. The novelty lies in extending FMM to linearly magnetized tetrahedral sources making it interesting also for other areas of computational physics. We treat the near field directly and in use (exact) numerical integration on the multipole expansion in the far field. This approach tackles important issues like the vectorial and continuous nature of the magnetic field. By using FMM the calculations scale linearly in time and memory.
NASA Astrophysics Data System (ADS)
Sedukhin, Andrey G.; Poleshchuk, Alexander G.
2018-01-01
A method is proposed for efficient, rotationally symmetric, tight mirror focusing of laser beams that is optimally matched to their thin-film linear-to-radial polarization conversion by a constant near-Brewster angle of incidence of the beams onto a polarizing element. Two optical systems and their modifications are considered that are based on this method and on the use of Toraldo filters. If focusing components of these systems operate in media with refractive indices equal to that of the focal region, they take the form of an axicon and an annular reflector generated by the revolution of an inclined parabola around the optical axis. Vectorial formulas for calculating the diffracted field near the focus of these systems are derived. Also presented are the results of designing a thin-film obliquely illuminated polarizer and a numerical simulation of deep UV laser beams generated by one of the systems and focused in an immersion liquid. The transverse and axial sizes of a needle longitudinally polarized field generated by the system with a simplest phase Toraldo filter were found to be 0.39 λ and 10.5 λ, with λ being the wavelength in the immersion liquid.
Design and Implement of Low Ripple and Quasi-digital Power Supply
NASA Astrophysics Data System (ADS)
Xiangli, Li; Yanjun, Wei; Hanhong, Qi; Yan, Ma
A switch linearity hybrid power supply based on single chip microcomputer is designed which merged the merits of the switching and linear power supply. Main circuit includes pre-regulator which works in switching mode and series regulator which works in linear mode. Two-stage regulation mode was adopted in the main circuit of the power. A single chip computer (SCM) and high resolution of series D/A and A/D converters are applied to control and measurement which achieved continuous adjustable and low ripple constant current or voltage power supply
Direct use of linear time-domain aerodynamics in aeroservoelastic analysis: Aerodynamic model
NASA Technical Reports Server (NTRS)
Woods, J. A.; Gilbert, Michael G.
1990-01-01
The work presented here is the first part of a continuing effort to expand existing capabilities in aeroelasticity by developing the methodology which is necessary to utilize unsteady time-domain aerodynamics directly in aeroservoelastic design and analysis. The ultimate objective is to define a fully integrated state-space model of an aeroelastic vehicle's aerodynamics, structure and controls which may be used to efficiently determine the vehicle's aeroservoelastic stability. Here, the current status of developing a state-space model for linear or near-linear time-domain indicial aerodynamic forces is presented.
Maurits, Erica E M; de Veer, Anke J E; van der Hoek, Lucas S; Francke, Anneke L
2015-09-02
It is important to learn how employers in European countries can prevent nursing staff from changing occupation or taking early retirement in order to counteract expected nursing shortages. However, to date research on nursing staff's ability to remain working until retirement age has been limited. The purpose of this study was to gain insight into the associations between different job and organisational characteristics, job satisfaction, occupational commitment and the self-perceived ability to continue working in the current line of work until the official retirement age. The questionnaire-based, cross-sectional study included 730 nursing staff members employed in Dutch hospitals, nursing homes, organisations for psychiatric care, homes for the elderly, care organisations for disabled people and home care organisations (mean age: 48; 89% female). Linear and logistic regression analyses and mediation analyses were applied to test hypothesised associations. Reducing work pressure and increasing appreciation by senior management in particular have positive consequences for nursing staff's self-perceived ability to continue working until the official retirement age. The job and organisational characteristics of autonomy, work pressure, supportive leadership, educational opportunities, communication within the organisation and appreciation of nursing staff by senior management together have substantial impact on nursing staff's job satisfaction. Job satisfaction in turn is related to the self-perceived ability to continue working until the retirement age. However, job satisfaction mainly summarises the joint effect of job and organisational characteristics and has no supplementary effect on the self-perceived ability to continue working. Employers should primarily focus on work pressure and the appreciation of nursing staff by senior management in order to retain nursing staff even as they get older.
Continued Impact of SunSmart Advertising on Youth and Adults' Behaviors.
Dobbinson, Suzanne J; Volkov, Angela; Wakefield, Melanie A
2015-07-01
Televised advertising campaigns play a central role in public education for skin cancer prevention in Australia. Continued impact on behavior is crucial to optimize these investments. This study examines whether exposure to increased intensity of summer campaigns in the past decade has continued to influence sun protection behaviors and to examine behavioral impact across age groups. Cross-sectional weekly telephone surveys of Melbourne residents were conducted over summers from 1987-1988 to 2010-2011, and analyzed in 2012-2014. Respondents' sun-related attitudes and their sun protection and sunburn on the weekend prior to interview were assessed. Population exposure to campaign TV advertising was measured as cumulated weekly target audience rating points (TARPs) for 4 weeks prior to interviews. Multiple logistic and linear regression models examined the relationship of campaign advertising with tanning preference and behavioral outcomes (N=11,881). Respondents' attitudes and behaviors in 1987-2011 were associated with TARPs. Increasing TARPs were related to increased preference for no tan (OR=1.12, 95% CI=1.07, 1.17); sunscreen use (OR=1.09, 95% CI=1.02, 1.17); and overall reduced mean percentage of skin exposed to the sun (B=-0.01, 95% CI=-0.01, 0.00). These effects had limited interaction with time period, age group, gender, or skin type. There was evidence of diminishing returns at the highest TARP quartile for tan preference but not for behavioral outcomes. Sustained youth-focused advertising campaigns (for adolescents and young adults), when broadcast with sufficient TARPs during the summer months, continue to provide consistent beneficial impact on sun protection behaviors population-wide. Copyright © 2015 American Journal of Preventive Medicine. Published by Elsevier Inc. All rights reserved.
Overview of NASA GRC Stirling Technology Development
NASA Technical Reports Server (NTRS)
Schreiber, Jeffrey G.; Thieme, Lanny G.
2004-01-01
The Stirling Radioisotope Generator (SRG) is currently being developed by Lockheed Martin Astronautics (LMA) under contract to the Department of Energy (DOE). The generator will be a high efficiency electric power source for NASA Space Science missions with the ability to operate in vacuum or in an atmosphere such as on Mars. High efficiency is obtained through the use of free-piston Stirling power conversion. Power output will be greater than 100 watts at the beginning of life with the decline in power largely due to the decay of the plutonium heat source. In support of the DOE SRG project, the NASA Glenn Research Center (GRC) has established a technology effort to provide data to ensure a successful transition to flight for what will be the first dynamic power system in space. Initially, a limited number of areas were selected for the effort, however this is now being expanded to more thoroughly cover key technical issues. There is also an advanced technology effort that is complementary to the near-term technology effort. Many of the tests use the 55-We Technology Demonstration Convertor (TDC). There have been multiple controller tests to support the LMA flight controller design effort. Preparation is continuing for a thermal/vacuum system demonstration. A pair of flight prototype TDC s have been placed on continuous operation. Heater head life assessment continues, with the material data being refined and the analysis moving toward the system perspective. Magnet aging tests continue to characterize any possible aging in the strength or demagnetization resistance of the magnets in the linear alternator. A reliability effort has been initiated to help guide the development activities with focus on the key components and subsystems. This paper will provide an overview of some of the GRC technical efforts, including the status, and a description of future efforts.
Optimization of insulation of a linear Fresnel collector
NASA Astrophysics Data System (ADS)
Ardekani, Mohammad Moghimi; Craig, Ken J.; Meyer, Josua P.
2017-06-01
This study presents a simulation based optimization study of insulation around the cavity receiver of a Linear Fresnel Collector. This optimization study focuses on minimizing heat losses from a cavity receiver (maximizing plant thermal efficiency), while minimizing insulation cross-sectional area (minimizing material cost and cavity dead load), which leads to a cheaper and thermally more efficient LFC cavity receiver.
ERIC Educational Resources Information Center
Leff, H. Stephen; Turner, Ralph R.
This report focuses on the use of linear programming models to address the issues of how vocational rehabilitation (VR) resources should be allocated in order to maximize program efficiency within given resource constraints. A general introduction to linear programming models is first presented that describes the major types of models available,…
ERIC Educational Resources Information Center
Ishitani, Terry T.
2010-01-01
This study applied hierarchical linear modeling to investigate the effect of congruence on intrinsic and extrinsic aspects of job satisfaction. Particular focus was given to differences in job satisfaction by gender and by Holland's first-letter codes. The study sample included nationally represented 1462 female and 1280 male college graduates who…
Space station structures development
NASA Technical Reports Server (NTRS)
Teller, V. B.
1986-01-01
A study of three interrelated tasks focusing on deployable Space Station truss structures is discussed. Task 1, the development of an alternate deployment system for linear truss, resulted in the preliminary design of an in-space reloadable linear motor deployer. Task 2, advanced composites deployable truss development, resulted in the testing and evaluation of composite materials for struts used in a deployable linear truss. Task 3, assembly of structures in space/erectable structures, resulted in the preliminary design of Space Station pressurized module support structures. An independent, redundant support system was developed for the common United States modules.
Non-Linear Approach in Kinesiology Should Be Preferred to the Linear--A Case of Basketball.
Trninić, Marko; Jeličić, Mario; Papić, Vladan
2015-07-01
In kinesiology, medicine, biology and psychology, in which research focus is on dynamical self-organized systems, complex connections exist between variables. Non-linear nature of complex systems has been discussed and explained by the example of non-linear anthropometric predictors of performance in basketball. Previous studies interpreted relations between anthropometric features and measures of effectiveness in basketball by (a) using linear correlation models, and by (b) including all basketball athletes in the same sample of participants regardless of their playing position. In this paper the significance and character of linear and non-linear relations between simple anthropometric predictors (AP) and performance criteria consisting of situation-related measures of effectiveness (SE) in basketball were determined and evaluated. The sample of participants consisted of top-level junior basketball players divided in three groups according to their playing time (8 minutes and more per game) and playing position: guards (N = 42), forwards (N = 26) and centers (N = 40). Linear (general model) and non-linear (general model) regression models were calculated simultaneously and separately for each group. The conclusion is viable: non-linear regressions are frequently superior to linear correlations when interpreting actual association logic among research variables.
Stochastic Stability of Sampled Data Systems with a Jump Linear Controller
NASA Technical Reports Server (NTRS)
Gonzalez, Oscar R.; Herencia-Zapana, Heber; Gray, W. Steven
2004-01-01
In this paper an equivalence between the stochastic stability of a sampled-data system and its associated discrete-time representation is established. The sampled-data system consists of a deterministic, linear, time-invariant, continuous-time plant and a stochastic, linear, time-invariant, discrete-time, jump linear controller. The jump linear controller models computer systems and communication networks that are subject to stochastic upsets or disruptions. This sampled-data model has been used in the analysis and design of fault-tolerant systems and computer-control systems with random communication delays without taking into account the inter-sample response. This paper shows that the known equivalence between the stability of a deterministic sampled-data system and the associated discrete-time representation holds even in a stochastic framework.
A Three Parsec-Scale Jet-Driven Outflow from Sgr A
NASA Technical Reports Server (NTRS)
Yusef-Zadeh, F.; Arendt, R.; Bushouse, H.; Cotton, W.; Haggard, D.; Pound, M. W.; Roberts, D. A.; Royster, M.; Wardle, M.
2012-01-01
The compact radio source Sgr A* is coincident with a 4x 10(exp 6) solar Mass black hole at the dynamical center of the Galaxy and is surrounded by dense orbiting ionized and molecular gas. We present high resolution radio continuum images of the central 3' and report a faint continuous linear structure centered on Sgr A*. This feature is rotated by 28 deg in PA with respect to the Galactic plane. A number of weak blobs of radio emission with X-ray counterparts are detected along the axis of the linear structure. In addition, the continuous linear feature appears to be terminated symmetrically by two linearly polarized structures at 8.4 GHz, approx 75" from Sgr A*. The linear structure is best characterized by a mildly relativistic jet-driven outflow from Sgr A*, and an outflow rate 10(exp 6) solar M / yr. The near and far-sides of the jet are interacting with orbiting ionized and molecular gas over the last 1-3 hundred years and are responsible for the origin of a 2" hole, the "minicavity", where disturbed kinematics, enhanced FeII/III line emission, and diffuse X-ray gas have been detected. The estimated kinetic luminosity of the outflow is approx 1.2 X 10(exp 41) erg/s which can produce the Galactic center X-ray flash that has recently been identified
Rf linearity in low dimensional nanowire mosfets
NASA Astrophysics Data System (ADS)
Razavieh, Ali
Ever decreasing cost of electronics due to unique scaling potential of today's VLSI processes such as CMOS technology along with innovations in RF devices, circuits and architectures make wireless communication an un-detachable part of everyday's life. This rapid transition of communication systems toward wireless technologies over last couple of decades resulted in operation of numerous standards within a small frequency window. More traffic in adjacent frequency ranges imposes more constraints on the linearity of RF front-end stages, and increases the need for more effective linearization techniques. Long-established ways to improve linearity in DSM CMOS technology are focused on system level methods which require complex circuit design techniques due to challenges such as nonlinear output conductance, and mobility degradation especially when low supply voltage is a key factor. These constrains have turned more focus toward improvement of linearity at the device level in order to simplify the existing linearization techniques. This dissertation discusses the possibility of employing nanostructures particularly nanowires in order to achieve and improve RF linearity at the device level by making a connection between the electronic transport properties of nanowires and their circuit level RF characteristics (RF linearity). Focus of this work is mainly on transconductance (gm) linearity because of the following reasons: 1) due to good electrostatics, nanowire transistors show fine current saturation at very small supply voltages. Good current saturation minimizes the output conductance nonlinearities. 2) non-linearity due to the gate to source capacitances (Cgs) can also be ignored in today's operating frequencies due to small gate capacitance values. If three criteria: i) operation in the quantum capacitance limit (QCL), ii) one-dimensional (1-D) transport, and iii) operation in the ballistic transport regime are met at the same time, a MOSFET will exhibit an ideal linear Id-Vgs characteristics with a constant gm of which is independent of the choice of channel material when operated under high enough drain voltages. Unique scaling potential of nanowires in terms of body thickness, channel length, and oxide thickness makes nanowire transistors an excellent device structure of choice to operate in 1-D ballistic transport regime in the QCL. A set of guidelines is provided for material parameters and device dimensions for nanowire FETs, which meet the three criteria of i) 1-D transport ii) operation in the QCL iii) ballistic transport, and challenges and limitations of fulfilling any of the above transport conditions from materials point of view are discussed. This work also elaborates how a non-ideal device, one that approaches but does not perfectly fulfill criteria i) through iii), can be analyzed in terms of its linearity performance. In particular the potential of silicon based devices will be discussed in this context, through mixture of experiment and simulation. 1-D transport is successfully achieved in the lab. QCL is simulated through back calculation of the band movement of the transistors in on-state. Quasi-ballistic transport conditions can be achieved by cooling down the samples to 77K. Since, ballistic transport is challenging to achieve for practical channel lengths in today's leading semiconductor device technologies the effect of carrier back-scattering on RF linearity is explored through third order intercept point (IIP3) analysis. These findings show that for the devices which operate in the QCL, while 1-D sub-bands are involved in carrier transport, current linearity is directly related to the nature of the dominant scattering mechanism in the channel, and can be improved by proper choice of channel material in order to enforce a specific scattering mechanism to prevail in the channel. Usually, in semiconductors, the dominant scattering mechanism in the channel is the superposition of different mechanisms. Suitable choice of channel material and bias conditions can magnify the effect of a particular scattering mechanism to achieve higher linearity levels. The closing section of this thesis focuses on InAS due to its potential for high linearity since it has small effective mass and large mean-free-path.
NASA Astrophysics Data System (ADS)
Dingel, Benjamin
2017-01-01
In this invited paper, we summarize the current developments in linear optical field modulators (LOFMs) for coherent multilevel optical transmitters. Our focus is the presentation of a new, novel LOFM design that provides beneficial and necessary features such as lowest hardware component counts, lowered insertion loss, smaller RF power consumption, smaller footprint, simple structure, and lowered cost. We refer to this modulator as called Double-Pass LOFM (DP-LOFM) that becomes the building block for high-performance, linear Dual-Polarization, In-Phase- Quadrature-Phase (DP-IQ) modulator. We analyze its performance in term of slope linearity, and present one of its unique feature -- a built-in compensation functionality that no other linear modulators possessed till now.
Song, Kang-Ho; Fan, Alexander C; Hinkle, Joshua J; Newman, Joshua; Borden, Mark A; Harvey, Brandon K
2017-01-01
Focused ultrasound with microbubbles is being developed to transiently, locally and noninvasively open the blood-brain barrier (BBB) for improved pharmaceutical delivery. Prior work has demonstrated that, for a given concentration dose, microbubble size affects both the intravascular circulation persistence and extent of BBB opening. When matched to gas volume dose, however, the circulation half-life was found to be independent of microbubble size. In order to determine whether this holds true for BBB opening as well, we independently measured the effects of microbubble size (2 vs. 6 µm diameter) and concentration, covering a range of overlapping gas volume doses (1-40 µL/kg). We first demonstrated precise targeting and a linear dose-response of Evans Blue dye extravasation to the rat striatum for a set of constant microbubble and ultrasound parameters. We found that dye extravasation increased linearly with gas volume dose, with data points from both microbubble sizes collapsing to a single line. A linear trend was observed for both the initial sonication (R 2 =0.90) and a second sonication on the contralateral side (R 2 =0.68). Based on these results, we conclude that microbubble gas volume dose, not size, determines the extent of BBB opening by focused ultrasound (1 MHz, ~0.5 MPa at the focus). This result may simplify planning for focused ultrasound treatments by constraining the protocol to a single microbubble parameter - gas volume dose - which gives equivalent results for varying size distributions. Finally, using optimal parameters determined for Evan Blue, we demonstrated gene delivery and expression using a viral vector, dsAAV1-CMV-EGFP, one week after BBB disruption, which allowed us to qualitatively evaluate neuronal health.
Shear and elongational rheology of photo-oxidative degraded HDPE and LLDPE
NASA Astrophysics Data System (ADS)
Wagner, Manfred Hermann; Zheng, Wang; Wang, Peng; Talamante, Sebastián Ramos; Narimissa, Esmaeil
2017-05-01
The effect of photo-oxidative degradation of high-density polyethylene (HDPE) and linear low-density polyethylene (LLDPE) was investigated by linear and non-linear rheological measurements. The linear-viscoelastic rheological measurements were performed at different temperatures, while the elongational viscosity was measured at 170°C and at different strain rates. The rheological data are indicative of structural changes caused by photo-oxidative degradation including formation of long-chain branches (LCB), cross-linking, and chain scission, and they revealed a cyclic and continuing competition between chain scission and LCB/gel formation. These findings are supported by additional FTIR measurements and direct measurements of the gel content of the degraded samples.
A linear polarization converter with near unity efficiency in microwave regime
NASA Astrophysics Data System (ADS)
Xu, Peng; Wang, Shen-Yun; Geyi, Wen
2017-04-01
In this paper, we present a linear polarization converter in the reflective mode with near unity conversion efficiency. The converter is designed in an array form on the basis of a pair of orthogonally arranged three-dimensional split-loop resonators sharing a common terminal coaxial port and a continuous metallic ground slab. It converts the linearly polarized incident electromagnetic wave at resonance to its orthogonal counterpart upon the reflection mode. The conversion mechanism is explained by an equivalent circuit model, and the conversion efficiency can be tuned by changing the impedance of the terminal port. Such a scheme of the linear polarization converter has potential applications in microwave communications, remote sensing, and imaging.
Towards a Future Linear Collider and The Linear Collider Studies at CERN
Heuer, Rolf-Dieter
2018-06-15
During the week 18-22 October, more than 400 physicists will meet at CERN and in the CICG (International Conference Centre Geneva) to review the global progress towards a future linear collider. The 2010 International Workshop on Linear Colliders will study the physics, detectors and accelerator complex of a linear collider covering both the CLIC and ILC options. Among the topics presented and discussed will be the progress towards the CLIC Conceptual Design Report in 2011, the ILC Technical Design Report in 2012, physics and detector studies linked to these reports, and an increasing numbers of common working group activities. The seminar will give an overview of these topics and also CERNâs linear collider studies, focusing on current activities and initial plans for the period 2011-16. n.b: The Council Chamber is also reserved for this colloquium with a live transmission from the Main Auditorium.
Sixth SIAM conference on applied linear algebra: Final program and abstracts. Final technical report
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1997-12-31
Linear algebra plays a central role in mathematics and applications. The analysis and solution of problems from an amazingly wide variety of disciplines depend on the theory and computational techniques of linear algebra. In turn, the diversity of disciplines depending on linear algebra also serves to focus and shape its development. Some problems have special properties (numerical, structural) that can be exploited. Some are simply so large that conventional approaches are impractical. New computer architectures motivate new algorithms, and fresh ways to look at old ones. The pervasive nature of linear algebra in analyzing and solving problems means that peoplemore » from a wide spectrum--universities, industrial and government laboratories, financial institutions, and many others--share an interest in current developments in linear algebra. This conference aims to bring them together for their mutual benefit. Abstracts of papers presented are included.« less
Linear models: permutation methods
Cade, B.S.; Everitt, B.S.; Howell, D.C.
2005-01-01
Permutation tests (see Permutation Based Inference) for the linear model have applications in behavioral studies when traditional parametric assumptions about the error term in a linear model are not tenable. Improved validity of Type I error rates can be achieved with properly constructed permutation tests. Perhaps more importantly, increased statistical power, improved robustness to effects of outliers, and detection of alternative distributional differences can be achieved by coupling permutation inference with alternative linear model estimators. For example, it is well-known that estimates of the mean in linear model are extremely sensitive to even a single outlying value of the dependent variable compared to estimates of the median [7, 19]. Traditionally, linear modeling focused on estimating changes in the center of distributions (means or medians). However, quantile regression allows distributional changes to be estimated in all or any selected part of a distribution or responses, providing a more complete statistical picture that has relevance to many biological questions [6]...
Towards a Future Linear Collider and The Linear Collider Studies at CERN
Stapnes, Steinar
2017-12-18
During the week 18-22 October, more than 400 physicists will meet at CERN and in the CICG (International Conference Centre Geneva) to review the global progress towards a future linear collider. The 2010 International Workshop on Linear Colliders will study the physics, detectors and accelerator complex of a linear collider covering both the CLIC and ILC options. Among the topics presented and discussed will be the progress towards the CLIC Conceptual Design Report in 2011, the ILC Technical Design Report in 2012, physics and detector studies linked to these reports, and an increasing numbers of common working group activities. The seminar will give an overview of these topics and also CERNâs linear collider studies, focusing on current activities and initial plans for the period 2011-16. n.b: The Council Chamber is also reserved for this colloquium with a live transmission from the Main Auditorium.
NASA Astrophysics Data System (ADS)
Wu, Jiang; Liao, Fucheng; Tomizuka, Masayoshi
2017-01-01
This paper discusses the design of the optimal preview controller for a linear continuous-time stochastic control system in finite-time horizon, using the method of augmented error system. First, an assistant system is introduced for state shifting. Then, in order to overcome the difficulty of the state equation of the stochastic control system being unable to be differentiated because of Brownian motion, the integrator is introduced. Thus, the augmented error system which contains the integrator vector, control input, reference signal, error vector and state of the system is reconstructed. This leads to the tracking problem of the optimal preview control of the linear stochastic control system being transformed into the optimal output tracking problem of the augmented error system. With the method of dynamic programming in the theory of stochastic control, the optimal controller with previewable signals of the augmented error system being equal to the controller of the original system is obtained. Finally, numerical simulations show the effectiveness of the controller.
Chen, Rui; Hyrien, Ollivier
2011-01-01
This article deals with quasi- and pseudo-likelihood estimation in a class of continuous-time multi-type Markov branching processes observed at discrete points in time. “Conventional” and conditional estimation are discussed for both approaches. We compare their properties and identify situations where they lead to asymptotically equivalent estimators. Both approaches possess robustness properties, and coincide with maximum likelihood estimation in some cases. Quasi-likelihood functions involving only linear combinations of the data may be unable to estimate all model parameters. Remedial measures exist, including the resort either to non-linear functions of the data or to conditioning the moments on appropriate sigma-algebras. The method of pseudo-likelihood may also resolve this issue. We investigate the properties of these approaches in three examples: the pure birth process, the linear birth-and-death process, and a two-type process that generalizes the previous two examples. Simulations studies are conducted to evaluate performance in finite samples. PMID:21552356
Linear motor drive system for continuous-path closed-loop position control of an object
Barkman, William E.
1980-01-01
A precision numerical controlled servo-positioning system is provided for continuous closed-loop position control of a machine slide or platform driven by a linear-induction motor. The system utilizes filtered velocity feedback to provide system stability required to operate with a system gain of 100 inches/minute/0.001 inch of following error. The filtered velocity feedback signal is derived from the position output signals of a laser interferometer utilized to monitor the movement of the slide. Air-bearing slides mounted to a stable support are utilized to minimize friction and small irregularities in the slideway which would tend to introduce positioning errors. A microprocessor is programmed to read command and feedback information and converts this information into the system following error signal. This error signal is summed with the negative filtered velocity feedback signal at the input of a servo amplifier whose output serves as the drive power signal to the linear motor position control coil.
Optimisation of substrate blends in anaerobic co-digestion using adaptive linear programming.
García-Gen, Santiago; Rodríguez, Jorge; Lema, Juan M
2014-12-01
Anaerobic co-digestion of multiple substrates has the potential to enhance biogas productivity by making use of the complementary characteristics of different substrates. A blending strategy based on a linear programming optimisation method is proposed aiming at maximising COD conversion into methane, but simultaneously maintaining a digestate and biogas quality. The method incorporates experimental and heuristic information to define the objective function and the linear restrictions. The active constraints are continuously adapted (by relaxing the restriction boundaries) such that further optimisations in terms of methane productivity can be achieved. The feasibility of the blends calculated with this methodology was previously tested and accurately predicted with an ADM1-based co-digestion model. This was validated in a continuously operated pilot plant, treating for several months different mixtures of glycerine, gelatine and pig manure at organic loading rates from 1.50 to 4.93 gCOD/Ld and hydraulic retention times between 32 and 40 days at mesophilic conditions. Copyright © 2014 Elsevier Ltd. All rights reserved.
Finned Tube With Vortex Generators For A Heat Exchanger.
Sohal, Manohar S.; O'Brien, James E.
2005-12-20
A system for and method of manufacturing a finned tube for a heat exchanger is disclosed herein. A continuous fin strip is provided with at one pair of vortex generators. A tube is rotated and linearly displaced while the continuous fin strip with vortex generators is spirally wrapped around the tube.
Finned Tube With Vortex Generators For A Heat Exchanger.
Sohal, Monohar S.; O'Brien, James E.
2004-09-14
A system for and method of manufacturing a finned tube for a heat exchanger is disclosed herein. A continuous fin strip is provided with at least one pair of vortex generators. A tube is rotated and linearly displaced while the continuous fin strip with vortex generators is spirally wrapped around the tube.
40 CFR 86.316-79 - Carbon monoxide and carbon dioxide analyzer specifications.
Code of Federal Regulations, 2010 CFR
2010-07-01
... AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND...) The use of linearizing circuits is permitted. (c) The minimum water rejection ratio (maximum CO 2...) The minimum CO 2 rejection ratio (maximum CO 2 interference) as measured by § 86.322 for CO analyzers...
Linear lesions in heart tissue using diffused laser radiation
NASA Astrophysics Data System (ADS)
Fried, Nathaniel M.; Lardo, Albert C.; Berger, Ronald D.; Calkins, Hugh; Halperin, Henry R.
2000-05-01
Transmural, continuous, and linear lesions may be necessary for successful catheter ablation of cardiac arrythmias such as atrial fibrillation. Laser ablation was studied as an alternative to radiofrequency ablation, which is noted to produce superficial and discontinuous lesions as well as tissue charring and vaporization. Samples of canine myocardium were placed in a saline bath and irradiated with an 1.06- micrometer Nd:YAG laser operated in either pulsed or continuous mode. For pulsed mode, the laser pulse duration was 10 s with 10 s cooling between pulses. Laser radiation was delivered radially through diffusing optical fiber tips oriented parallel to the endocardial surface. In CW mode, transmural (6-mm-deep), linear (16-mm-long), and continuous lesions were produced using a laser power of 30 W and an irradiation time of 180 s. Peak tissue temperatures measured 51 plus or minus 1 degree Celsius at the endocardial surface, 61 plus or minus 6 degrees Celsius in the mid-myocardium, and 55 plus or minus 6 degree Celsius at the epicardial surface. There was no evidence of tissue charring or vaporization. Pulsed laser irradiation produced comparable lesion depths to CW irradiation with more uniform heating of the subsurface myocardium, but at the expense of longer operation times. Further in vivo study of laser ablation is warranted for possible clinical applications.
An analysis of hypercritical states in elastic and inelastic systems
NASA Astrophysics Data System (ADS)
Kowalczk, Maciej
The author raises a wide range of problems whose common characteristic is an analysis of hypercritical states in elastic and inelastic systems. the article consists of two basic parts. The first part primarily discusses problems of modelling hypercritical states, while the second analyzes numerical methods (so-called continuation methods) used to solve non-linear problems. The original approaches for modelling hypercritical states found in this article include the combination of plasticity theory and an energy condition for cracking, accounting for the variability and cyclical nature of the forms of fracture of a brittle material under a die, and the combination of plasticity theory and a simplified description of the phenomenon of localization along a discontinuity line. The author presents analytical solutions of three non-linear problems for systems made of elastic/brittle/plastic and elastic/ideally plastic materials. The author proceeds to discuss the analytical basics of continuation methods and analyzes the significance of the parameterization of non-linear problems, provides a method for selecting control parameters based on an analysis of the rank of a rectangular matrix of a uniform system of increment equations, and also provides a new method for selecting an equilibrium path originating from a bifurcation point. The author provides a general outline of continuation methods based on an analysis of the rank of a matrix of a corrective system of equations. The author supplements his theoretical solutions with numerical solutions of non-linear problems for rod systems and problems of the plastic disintegration of a notched rectangular plastic plate.
High-throughput linear optical stretcher for mechanical characterization of blood cells.
Roth, Kevin B; Neeves, Keith B; Squier, Jeff; Marr, David W M
2016-04-01
This study describes a linear optical stretcher as a high-throughput mechanical property cytometer. Custom, inexpensive, and scalable optics image a linear diode bar source into a microfluidic channel, where cells are hydrodynamically focused into the optical stretcher. Upon entering the stretching region, antipodal optical forces generated by the refraction of tightly focused laser light at the cell membrane deform each cell in flow. Each cell relaxes as it flows out of the trap and is compared to the stretched state to determine deformation. The deformation response of untreated red blood cells and neutrophils were compared to chemically treated cells. Statistically significant differences were observed between normal, diamide-treated, and glutaraldehyde-treated red blood cells, as well as between normal and cytochalasin D-treated neutrophils. Based on the behavior of the pure, untreated populations of red cells and neutrophils, a mixed population of these cells was tested and the discrete populations were identified by deformability. © 2015 International Society for Advancement of Cytometry. © 2015 International Society for Advancement of Cytometry.
Back-focal-plane position detection with extended linear range for photonic force microscopy.
Martínez, Ignacio A; Petrov, Dmitri
2012-09-01
In photonic force microscopes, the position detection with high temporal and spatial resolution is usually implemented by a quadrant position detector placed in the back focal plane of a condenser. An objective with high numerical aperture (NA) for the optical trap has also been used to focus a detection beam. In that case the displacement of the probe at a fixed position of the detector produces a unique and linear response only in a restricted region of the probe displacement, usually several hundred nanometers. There are specific experiments where the absolute position of the probe is a relevant measure together with the probe position relative the optical trap focus. In our scheme we introduce the detection beam into the condenser with low NA through a pinhole with tunable size. This combination permits us to create a wide detection spot and to achieve the linear range of several micrometers by the probe position detection without reducing the trapping force.
Modeling of second order space charge driven coherent sum and difference instabilities
NASA Astrophysics Data System (ADS)
Yuan, Yao-Shuo; Boine-Frankenheim, Oliver; Hofmann, Ingo
2017-10-01
Second order coherent oscillation modes in intense particle beams play an important role for beam stability in linear or circular accelerators. In addition to the well-known second order even envelope modes and their instability, coupled even envelope modes and odd (skew) modes have recently been shown in [Phys. Plasmas 23, 090705 (2016), 10.1063/1.4963851] to lead to parametric instabilities in periodic focusing lattices with sufficiently different tunes. While this work was partly using the usual envelope equations, partly also particle-in-cell (PIC) simulation, we revisit these modes here and show that the complete set of second order even and odd mode phenomena can be obtained in a unifying approach by using a single set of linearized rms moment equations based on "Chernin's equations." This has the advantage that accurate information on growth rates can be obtained and gathered in a "tune diagram." In periodic focusing we retrieve the parametric sum instabilities of coupled even and of odd modes. The stop bands obtained from these equations are compared with results from PIC simulations for waterbag beams and found to show very good agreement. The "tilting instability" obtained in constant focusing confirms the equivalence of this method with the linearized Vlasov-Poisson system evaluated in second order.
Mechanical testing and modelling of carbon-carbon composites for aircraft disc brakes
NASA Astrophysics Data System (ADS)
Bradley, Luke R.
The objective of this study is to improve the understanding of the stress distributions and failure mechanisms experienced by carbon-carbon composite aircraft brake discs using finite element (FE) analyses. The project has been carried out in association with Dunlop Aerospace as an EPSRC CASE studentship. It therefore focuses on the carbon-carbon composite brake disc material produced by Dunlop Aerospace, although it is envisaged that the approach will have broader applications for modelling and mechanical testing of carbon-carbon composites in general. The disc brake material is a laminated carbon-carbon composite comprised of poly(acrylonitrile) (PAN) derived carbon fibres in a chemical vapour infiltration (CVI) deposited matrix, in which the reinforcement is present in both continuous fibre and chopped fibre forms. To pave the way for the finite element analysis, a comprehensive study of the mechanical properties of the carbon-carbon composite material was carried out. This focused largely, but not entirely, on model composite materials formulated using structural elements of the disc brake material. The strengths and moduli of these materials were measured in tension, compression and shear in several orientations. It was found that the stress-strain behaviour of the materials were linear in directions where there was some continuous fibre reinforcement, but non-linear when this was not the case. In all orientations, some degree of non-linearity was observed in the shear stress-strain response of the materials. However, this non-linearity was generally not large enough to pose a problem for the estimation of elastic moduli. Evidence was found for negative Poisson's ratio behaviour in some orientations of the material in tension. Additionally, the through-thickness properties of the composite, including interlaminar shear strength, were shown to be positively related to bulk density. The in-plane properties were mostly unrelated to bulk density over the range of densities of the tested specimens.Two types of FE model were developed using a commercially available program. The first type was designed to analyse the model composite materials for comparison with mechanical test data for the purpose of validation of the FE model. Elastic moduli predicted by this type of FE model showed good agreement with the experimentally measured elastic moduli of the model composite materials. This result suggested that the use of layered FE models, which rely upon an isostrain assumption between the layers, can be useful in predicting the elastic properties of different lay-ups of the disc brake material.The second type of FE model analysed disc brake segments, using the experimentally measured bulk mechanical properties of the disc brake material. This FE model approximated the material as a continuum with in-plane isotropy but with different properties in the through-thickness direction. In order to validate this modelling approach, the results of the FE analysis were compared with mechanical tests on disc brake segments, which were loaded by their drive tenons in a manner intended to simulate in-service loading. The FE model showed good agreement with in-plane strains measured on the disc tenon face close to the swept area of the disc, but predicted significantly higher strains than those experimentally measured on the tenon fillet curve. This discrepancy was attributed to the existence of a steep strain gradient on the fillet curve.
Newton's method: A link between continuous and discrete solutions of nonlinear problems
NASA Technical Reports Server (NTRS)
Thurston, G. A.
1980-01-01
Newton's method for nonlinear mechanics problems replaces the governing nonlinear equations by an iterative sequence of linear equations. When the linear equations are linear differential equations, the equations are usually solved by numerical methods. The iterative sequence in Newton's method can exhibit poor convergence properties when the nonlinear problem has multiple solutions for a fixed set of parameters, unless the iterative sequences are aimed at solving for each solution separately. The theory of the linear differential operators is often a better guide for solution strategies in applying Newton's method than the theory of linear algebra associated with the numerical analogs of the differential operators. In fact, the theory for the differential operators can suggest the choice of numerical linear operators. In this paper the method of variation of parameters from the theory of linear ordinary differential equations is examined in detail in the context of Newton's method to demonstrate how it might be used as a guide for numerical solutions.
Smith, Joanna M; Sullivan, S John; Baxter, G David
2009-01-01
To explore opinions of why clients use, value and continue to seek massage therapy as a healthcare option. Telephone focus group methodology was used. Current and repeat users (n = 19) of either relaxation, remedial or sports massage therapy services participated in three telephone focus groups. Audiotaped semi-structured interviews were conducted. Telephone focus group with massage clients from provincial and urban localities in New Zealand. Summary of reported themes of the massage experience and suggested drivers for return to, or continuing with massage therapy. Data were transcribed, categorised (NVivo7) and thematically analysed using the general inductive approach. Key drivers for return to, or continuing with, massage therapy were: positive outcomes, expectations of goals being met, a regular appointment and the massage therapy culture. Massage therapy is perceived and valued as a personalised, holistic and hands-on approach to health management, which focuses on enhancing relaxation in conjunction with effective touch, within a positive client-therapist relationship and a pleasant non-rushed environment. Massage therapy as a health service is result and client driven but is reinforced by the culture of the experience.
Computational process to study the wave propagation In a non-linear medium by quasi- linearization
NASA Astrophysics Data System (ADS)
Sharath Babu, K.; Venkata Brammam, J.; Baby Rani, CH
2018-03-01
Two objects having distinct velocities come into contact an impact can occur. The impact study i.e., in the displacement of the objects after the impact, the impact force is function of time‘t’ which is behaves similar to compression force. The impact tenure is very short so impulses must be generated subsequently high stresses are generated. In this work we are examined the wave propagation inside the object after collision and measured the object non-linear behavior in the one-dimensional case. Wave transmission is studied by means of material acoustic parameter value. The objective of this paper is to present a computational study of propagating pulsation and harmonic waves in nonlinear media using quasi-linearization and subsequently utilized the central difference scheme. This study gives focus on longitudinal, one- dimensional wave propagation. In the finite difference scheme Non-linear system is reduced to a linear system by applying quasi-linearization method. The computed results exhibit good agreement on par with the selected non-liner wave propagation.
Nearly spherical constant power detonation waves driven by focused radiation
NASA Technical Reports Server (NTRS)
George, Y. H.
1973-01-01
Shape and inner flow of a tridimensional spark are studied. The spark is created by focusing a laser beam in a gas. A second order fully non-linear equation is derived for the radial velocity on the axis of symmetry in the neighborhood of the origin. Solutions to that equation display the existence of a forbidden region near the focus, thus indicating the limits of applicability of a small perturbation solution.
Analysis of Fresnel Zone Plates Focusing Dependence on Operating Frequency
Fuster, José Miguel; Candelas, Pilar; Castiñeira-Ibáñez, Sergio; Pérez-López, Sergio
2017-01-01
The focusing properties of Fresnel Zone Plates (FZPs) against frequency are analyzed in this work. It is shown that the FZP focal length depends almost linearly on the operating frequency. Focal depth and focal distortion are also considered, establishing a limit on the frequency span at which the operating frequency can be shifted. An underwater FZP ultrasound focusing system is demonstrated, and experimental results agree with the theoretical analysis and simulations. PMID:29206137
Communication Avoiding and Overlapping for Numerical Linear Algebra
2012-05-08
future exascale systems, communication cost must be avoided or overlapped. Communication-avoiding 2.5D algorithms improve scalability by reducing...linear algebra problems to future exascale systems, communication cost must be avoided or overlapped. Communication-avoiding 2.5D algorithms improve...will continue to grow relative to the cost of computation. With exascale computing as the long-term goal, the community needs to develop techniques
Phase-shift focus monitoring techniques
NASA Astrophysics Data System (ADS)
McQuillan, Matthew; Roberts, Bill
2006-03-01
Depth of focus (DOF) has become a victim of its mathematical relationship with Numerical Aperture (NA). While NA is being increased towards one to maximize scanner resolution capabilities, DOF is being minimized because of its inverse relationship with NA. Moore's law continues to drive the semiconductor industry towards smaller and smaller devices the need for high NA to resolve these shrinking devices will continue to consume the usable depth of focus (UDOF). Due to the shrinking UDOF a demand has been created for a feature or technology that will give engineers the capability to monitor scanner focus. Developing and implementation of various focus monitoring techniques have been used to prevent undetected tool focus excursions. Two overlay techniques to monitor ArF Scanner focus have been evaluated; our evaluation results will be presented here.
ERIC Educational Resources Information Center
Wu, Wei; Jia, Fan; Kinai, Richard; Little, Todd D.
2017-01-01
Spline growth modelling is a popular tool to model change processes with distinct phases and change points in longitudinal studies. Focusing on linear spline growth models with two phases and a fixed change point (the transition point from one phase to the other), we detail how to find optimal data collection designs that maximize the efficiency…
Non-Linear Editing for the Smaller College-Level Production Program, Rev. 2.0.
ERIC Educational Resources Information Center
Tetzlaff, David
This paper focuses on a specific topic and contention: Non-linear editing earns its place in a liberal arts setting because it is a superior tool to teach the concepts of how moving picture discourse is constructed through editing. The paper first points out that most students at small liberal arts colleges are not going to wind up working…
An Example of Competence-Based Learning: Use of Maxima in Linear Algebra for Engineers
ERIC Educational Resources Information Center
Diaz, Ana; Garcia, Alfonsa; de la Villa, Agustin
2011-01-01
This paper analyses the role of Computer Algebra Systems (CAS) in a model of learning based on competences. The proposal is an e-learning model Linear Algebra course for Engineering, which includes the use of a CAS (Maxima) and focuses on problem solving. A reference model has been taken from the Spanish Open University. The proper use of CAS is…
Experience Differences and Continuance Intention of Blog Sharing
ERIC Educational Resources Information Center
Lu, Hsi-Peng; Lee, Ming-Ren
2012-01-01
Although many studies focus on information sharing in communities and organisations, little research has been carried out on the antecedents of continuance intention of blog sharing. This study focuses on amateur blogs, which are the major customers for blog service providers (BSPs). The purposes are to investigate the antecedents of continuous…
Continuing Medical Education Speakers with High Evaluation Scores Use more Image-based Slides.
Ferguson, Ian; Phillips, Andrew W; Lin, Michelle
2017-01-01
Although continuing medical education (CME) presentations are common across health professions, it is unknown whether slide design is independently associated with audience evaluations of the speaker. Based on the conceptual framework of Mayer's theory of multimedia learning, this study aimed to determine whether image use and text density in presentation slides are associated with overall speaker evaluations. This retrospective analysis of six sequential CME conferences (two annual emergency medicine conferences over a three-year period) used a mixed linear regression model to assess whether post-conference speaker evaluations were associated with image fraction (percentage of image-based slides per presentation) and text density (number of words per slide). A total of 105 unique lectures were given by 49 faculty members, and 1,222 evaluations (70.1% response rate) were available for analysis. On average, 47.4% (SD=25.36) of slides had at least one educationally-relevant image (image fraction). Image fraction significantly predicted overall higher evaluation scores [F(1, 100.676)=6.158, p=0.015] in the mixed linear regression model. The mean (SD) text density was 25.61 (8.14) words/slide but was not a significant predictor [F(1, 86.293)=0.55, p=0.815]. Of note, the individual speaker [χ 2 (1)=2.952, p=0.003] and speaker seniority [F(3, 59.713)=4.083, p=0.011] significantly predicted higher scores. This is the first published study to date assessing the linkage between slide design and CME speaker evaluations by an audience of practicing clinicians. The incorporation of images was associated with higher evaluation scores, in alignment with Mayer's theory of multimedia learning. Contrary to this theory, however, text density showed no significant association, suggesting that these scores may be multifactorial. Professional development efforts should focus on teaching best practices in both slide design and presentation skills.
Boutonnet, Audrey; Morin, Arnaud; Petit, Pierre; Vicendo, Patricia; Poinsot, Véréna; Couderc, François
2016-03-17
Pulsed lasers are widely used in capillary electrophoresis (CE) studies to provide laser induced fluorescence (LIF) detection. Unfortunately pulsed lasers do not give linear calibration curves over a wide range of concentrations. While this does not prevent their use in CE/LIF studies, the non-linear behavior must be understood. Using 7-hydroxycoumarin (7-HC) (10-5000 nM), Tamra (10-5000 nM) and tryptophan (1-200 μM) as dyes, we observe that continuous lasers and LEDs result in linear calibration curves, while pulsed lasers give polynomial ones. The effect is seen with both visible light (530 nm) and with UV light (355 nm, 266 nm). In this work we point out the formation of byproducts induced by pulsed laser upon irradiation of 7-HC. Their separation by CE using two Zeta LIF detectors clearly shows that this process is related to the first laser detection. All of these photodegradation products can be identified by an ESI-/MS investigation and correspond to at least two 7HC dimers. By using the photodegradation model proposed by Heywood and Farnsworth (2010) and by taking into account the 7-HC results and the fact that in our system we do not have a constant concentration of fluorophore, it is possible to propose a new photochemical model of fluorescence in LIF detection. The model, like the experiment, shows that it is difficult to obtain linear quantitation curves with pulsed lasers while UV-LEDs used in continuous mode have this advantage. They are a good alternative to UV pulsed lasers. An application involving the separation and linear quantification of oligosaccharides labeled with 2-aminobezoic acid is presented using HILIC and LED (365 nm) induced fluorescence. Copyright © 2016 Elsevier B.V. All rights reserved.
Maximizing the optical network capacity
Bayvel, Polina; Maher, Robert; Liga, Gabriele; Shevchenko, Nikita A.; Lavery, Domaniç; Killey, Robert I.
2016-01-01
Most of the digital data transmitted are carried by optical fibres, forming the great part of the national and international communication infrastructure. The information-carrying capacity of these networks has increased vastly over the past decades through the introduction of wavelength division multiplexing, advanced modulation formats, digital signal processing and improved optical fibre and amplifier technology. These developments sparked the communication revolution and the growth of the Internet, and have created an illusion of infinite capacity being available. But as the volume of data continues to increase, is there a limit to the capacity of an optical fibre communication channel? The optical fibre channel is nonlinear, and the intensity-dependent Kerr nonlinearity limit has been suggested as a fundamental limit to optical fibre capacity. Current research is focused on whether this is the case, and on linear and nonlinear techniques, both optical and electronic, to understand, unlock and maximize the capacity of optical communications in the nonlinear regime. This paper describes some of them and discusses future prospects for success in the quest for capacity. PMID:26809572
Computation in Dynamically Bounded Asymmetric Systems
Rutishauser, Ueli; Slotine, Jean-Jacques; Douglas, Rodney
2015-01-01
Previous explanations of computations performed by recurrent networks have focused on symmetrically connected saturating neurons and their convergence toward attractors. Here we analyze the behavior of asymmetrical connected networks of linear threshold neurons, whose positive response is unbounded. We show that, for a wide range of parameters, this asymmetry brings interesting and computationally useful dynamical properties. When driven by input, the network explores potential solutions through highly unstable ‘expansion’ dynamics. This expansion is steered and constrained by negative divergence of the dynamics, which ensures that the dimensionality of the solution space continues to reduce until an acceptable solution manifold is reached. Then the system contracts stably on this manifold towards its final solution trajectory. The unstable positive feedback and cross inhibition that underlie expansion and divergence are common motifs in molecular and neuronal networks. Therefore we propose that very simple organizational constraints that combine these motifs can lead to spontaneous computation and so to the spontaneous modification of entropy that is characteristic of living systems. PMID:25617645
Self-organized cooperative swimming at low Reynolds numbers.
Reinmüller, Alexander; Schöpe, Hans Joachim; Palberg, Thomas
2013-02-12
Investigations of swimming at low Reynolds numbers (Re < 10(-4)) so far have focused on individual or collectively moving autonomous microswimmers consisting of a single active building unit. Here we show that linear propulsion can also be reproducibly generated in a self-assembled dynamic complex formed from a granular, HCl-releasing particle settled on a charged quartz wall and a swarm of micrometer-sized negatively charged colloids. In isolation, none of the constituents shows motion beyond diffusion. When brought together, they self-assemble into a complex capable of directed swimming. It is stabilized by toroidal solvent flow centered about the granular particle. Propulsion is then launched by an asymmetric distribution of the colloids. Motion is self-stabilizing and continues for up to 25 min with velocities of 1-3 μm/s. Although the details of the mechanisms involved pose a formidable experimental and theoretical challenge, our observations offer a conceptually new, well-reproduced, versatile approach to swimming and transport at low Reynolds numbers.
Bayesian multivariate hierarchical transformation models for ROC analysis.
O'Malley, A James; Zou, Kelly H
2006-02-15
A Bayesian multivariate hierarchical transformation model (BMHTM) is developed for receiver operating characteristic (ROC) curve analysis based on clustered continuous diagnostic outcome data with covariates. Two special features of this model are that it incorporates non-linear monotone transformations of the outcomes and that multiple correlated outcomes may be analysed. The mean, variance, and transformation components are all modelled parametrically, enabling a wide range of inferences. The general framework is illustrated by focusing on two problems: (1) analysis of the diagnostic accuracy of a covariate-dependent univariate test outcome requiring a Box-Cox transformation within each cluster to map the test outcomes to a common family of distributions; (2) development of an optimal composite diagnostic test using multivariate clustered outcome data. In the second problem, the composite test is estimated using discriminant function analysis and compared to the test derived from logistic regression analysis where the gold standard is a binary outcome. The proposed methodology is illustrated on prostate cancer biopsy data from a multi-centre clinical trial.
Bayesian multivariate hierarchical transformation models for ROC analysis
O'Malley, A. James; Zou, Kelly H.
2006-01-01
SUMMARY A Bayesian multivariate hierarchical transformation model (BMHTM) is developed for receiver operating characteristic (ROC) curve analysis based on clustered continuous diagnostic outcome data with covariates. Two special features of this model are that it incorporates non-linear monotone transformations of the outcomes and that multiple correlated outcomes may be analysed. The mean, variance, and transformation components are all modelled parametrically, enabling a wide range of inferences. The general framework is illustrated by focusing on two problems: (1) analysis of the diagnostic accuracy of a covariate-dependent univariate test outcome requiring a Box–Cox transformation within each cluster to map the test outcomes to a common family of distributions; (2) development of an optimal composite diagnostic test using multivariate clustered outcome data. In the second problem, the composite test is estimated using discriminant function analysis and compared to the test derived from logistic regression analysis where the gold standard is a binary outcome. The proposed methodology is illustrated on prostate cancer biopsy data from a multi-centre clinical trial. PMID:16217836
Geothermal materials development
NASA Astrophysics Data System (ADS)
Kukacka, L. E.
1991-12-01
Advances in the development of new materials, the commercial availabilities of which are essential for the attainment of Hydrothermal Category Level 1 and 2 Objectives, continue to be made in the Geothermal Materials Development Project. Many successes have already been accrued and the results used commercially. In FY-91, utility company sponsored 'full cost' recovery programs based upon materials technology developed in this project were initiated on topics such as condensing heat exchangers, high temperature composites for utility vaults used in district heating systems, and corrosion resistant coatings for use in oil-fired electric generating processes. In FY-91, the DOE/GD-sponsored R&D project was focused on reducing well drilling, fluid transport and energy conversion costs. Specific activities being performed included lightweight CO2-resistant well cements, chemical systems for lost circulation control, thermally conductive and scale resistant protective linear systems, corrosion mitigation in process components at The Geysers, and elastomer-metal bonding systems needed for use in high temperature well drilling and safety related applications.
Super-linear Precision in Simple Neural Population Codes
NASA Astrophysics Data System (ADS)
Schwab, David; Fiete, Ila
2015-03-01
A widely used tool for quantifying the precision with which a population of noisy sensory neurons encodes the value of an external stimulus is the Fisher Information (FI). Maximizing the FI is also a commonly used objective for constructing optimal neural codes. The primary utility and importance of the FI arises because it gives, through the Cramer-Rao bound, the smallest mean-squared error achievable by any unbiased stimulus estimator. However, it is well-known that when neural firing is sparse, optimizing the FI can result in codes that perform very poorly when considering the resulting mean-squared error, a measure with direct biological relevance. Here we construct optimal population codes by minimizing mean-squared error directly and study the scaling properties of the resulting network, focusing on the optimal tuning curve width. We then extend our results to continuous attractor networks that maintain short-term memory of external stimuli in their dynamics. Here we find similar scaling properties in the structure of the interactions that minimize diffusive information loss.
NASA Technical Reports Server (NTRS)
Katow, M. S.
1990-01-01
The focusing adjustments of the subreflectors of an az-el Cassegrainian antenna that uses only linear motions have always ended in lateral offsets of the phase centers at the subreflector's focus points at focused positions, which have resulted in small gain losses. How lateral offsets at the two focus points were eliminated by tilting the subreflector, resulting in higher radio frequency (RF) efficiencies at all elevation angles rotated from the rigging angles are described.
Lunisolar tidal force and its relationship to chlorophyll fluorescence in Arabidopsis thaliana.
Fisahn, Joachim; Klingelé, Emile; Barlow, Peter
2015-01-01
The yield of chlorophyll fluorescence Ft was measured in leaves of Arabidopsis thaliana over periods of several days under conditions of continuous illumination (LL) without the application of saturating light pulses. After linearization of the time series of the chlorophyll fluorescence yield (ΔFt), oscillations became apparent with periodicities in the circatidal range. Alignments of these linearized time series ΔFt with the lunisolar tidal acceleration revealed high degrees of synchrony and phase congruence. Similar congruence with the lunisolar tide was obtained with the linearized quantum yield of PSII (ΔФII), recorded after application of saturating light pulses. These findings strongly suggest that there is an exogenous timekeeper which is a stimulus for the oscillations detected in both the linearized yield of chlorophyll fluorescence (ΔFt) and the linearized quantum yield of PSII (ΔФII).
Lunisolar tidal force and its relationship to chlorophyll fluorescence in Arabidopsis thaliana
Fisahn, Joachim; Klingelé, Emile; Barlow, Peter
2015-01-01
The yield of chlorophyll fluorescence Ft was measured in leaves of Arabidopsis thaliana over periods of several days under conditions of continuous illumination (LL) without the application of saturating light pulses. After linearization of the time series of the chlorophyll fluorescence yield (ΔFt), oscillations became apparent with periodicities in the circatidal range. Alignments of these linearized time series ΔFt with the lunisolar tidal acceleration revealed high degrees of synchrony and phase congruence. Similar congruence with the lunisolar tide was obtained with the linearized quantum yield of PSII (ΔФII), recorded after application of saturating light pulses. These findings strongly suggest that there is an exogenous timekeeper which is a stimulus for the oscillations detected in both the linearized yield of chlorophyll fluorescence (ΔFt) and the linearized quantum yield of PSII (ΔФII). PMID:26376108
NASA Astrophysics Data System (ADS)
Choudhary, S.; Garg, A.; Mondal, K.
2016-07-01
The present work discusses continuous corrosion assessment from a unique correlation of open circuit potential (OCP) and linear polarization resistance with rust formation on mild steel after prolong exposure in 3.5% NaCl salt fog environment. The OCP measurement and linear polarization tests were carried out of the rusted samples only without the removal of rust. It also discusses the strong influence of the composition, fraction, and morphology of the rust layers with OCP and linear polarization resistance. The rust characterization was done after the measurement of OCP and linear polarization resistance of the rusted steel samples. Therefore, monitoring of both the OCP and linear polarization resistance of the rusted mild steels coupled with rust characterization could be used for easy and dynamic assessment of the nature of corrosion.
Functional linear models to test for differences in prairie wetland hydraulic gradients
Greenwood, Mark C.; Sojda, Richard S.; Preston, Todd M.; Swayne, David A.; Yang, Wanhong; Voinov, A.A.; Rizzoli, A.; Filatova, T.
2010-01-01
Functional data analysis provides a framework for analyzing multiple time series measured frequently in time, treating each series as a continuous function of time. Functional linear models are used to test for effects on hydraulic gradient functional responses collected from three types of land use in Northeastern Montana at fourteen locations. Penalized regression-splines are used to estimate the underlying continuous functions based on the discretely recorded (over time) gradient measurements. Permutation methods are used to assess the statistical significance of effects. A method for accommodating missing observations in each time series is described. Hydraulic gradients may be an initial and fundamental ecosystem process that responds to climate change. We suggest other potential uses of these methods for detecting evidence of climate change.
A guidance and navigation system for continuous low-thrust vehicles. M.S. Thesis
NASA Technical Reports Server (NTRS)
Jack-Chingtse, C.
1973-01-01
A midcourse guidance and navigation system for continuous low thrust vehicles was developed. The equinoctial elements are the state variables. Uncertainties are modelled statistically by random vector and stochastic processes. The motion of the vehicle and the measurements are described by nonlinear stochastic differential and difference equations respectively. A minimum time trajectory is defined; equations of motion and measurements are linearized about this trajectory. An exponential cost criterion is constructed and a linear feedback quidance law is derived. An extended Kalman filter is used for state estimation. A short mission using this system is simulated. It is indicated that this system is efficient for short missions, but longer missions require accurate trajectory and ground based measurements.
LINEAR AND NONLINEAR CORRECTIONS IN THE RHIC INTERACTION REGIONS.
DOE Office of Scientific and Technical Information (OSTI.GOV)
PILAT,F.; CAMERON,P.; PTITSYN,V.
2002-06-02
A method has been developed to measure operationally the linear and non-linear effects of the interaction region triplets, that gives access to the multipole content through the action kick, by applying closed orbit bumps and analysing tune and orbit shifts. This technique has been extensively tested and used during the RHIC operations in 2001. Measurements were taken at 3 different interaction regions and for different focusing at the interaction point. Non-linear effects up to the dodecapole have been measured as well as the effects of linear, sextupolar and octupolar corrections. An analysis package for the data processing has been developedmore » that through a precise fit of the experimental tune shift data (measured by a phase lock loop technique to better than 10{sup -5} resolution) determines the multipole content of an IR triplet.« less
Spatial correlation analysis of seismic noise for STAR X-ray infrastructure design
NASA Astrophysics Data System (ADS)
D'Alessandro, Antonino; Agostino, Raffaele; Festa, Lorenzo; Gervasi, Anna; Guerra, Ignazio; Palmer, Dennis T.; Serafini, Luca
2014-05-01
The Italian PON MaTeRiA project is focused on the creation of a research infrastructure open to users based on an innovative and evolutionary X-ray source. This source, named STAR (Southern Europe TBS for Applied Research), exploits the Thomson backscattering process of a laser radiation by fast-electron beams (Thomson Back Scattering - TBS). Its main performances are: X-ray photon flux 109-1010 ph/s, Angular divergence variable between 2 and 10 mrad, X-ray energy continuously variable between 8 keV and 150 keV, Bandwidth ΔE/E variable between 1 and 10%, ps time resolved structure. In order to achieve this performances, bunches of electrons produced by a photo-injector are accelerated to relativistic velocities by a linear accelerator section. The electron beam, few hundreds of micrometer wide, is driven by magnetic fields to the interaction point along a 15 m transport line where it is focused in a 10 micrometer-wide area. In the same area, the laser beam is focused after being transported along a 12 m structure. Ground vibrations could greatly affect the collision probability and thus the emittance by deviating the paths of the beams during their travel in the STAR source. Therefore, the study program to measure ground vibrations in the STAR site can be used for site characterization in relation to accelerator design. The environmental and facility noise may affect the X-ray operation especially if the predominant wavelengths in the microtremor wavefield are much smaller than the size of the linear accelerator. For wavelength much greater, all the accelerator parts move in phase, and therefore also large displacements cannot generate any significant effect. On the other hand, for wavelengths equal or less than half the accelerator size several parts could move in phase opposition and therefore small displacements could affect its proper functioning. Thereafter, it is important to characterize the microtremor wavefield in both frequencies and wavelengths domains. For this reason, we performed some measurements of seismic noise in order to characterize the environmental noise in the site in which the X-ray accelerator arise. For the characterization of the site, we carried out several passive seismic monitoring experiments at different times of the day and in different weather conditions. We recorded microtremor using an array of broadband 3C seismic sensors arranged along the linear accelerator. For each measurement point, we determined the displacement, velocity and acceleration spectrogram and power spectral density of both horizontal and vertical components. We determined also the microtremor horizontal to vertical spectral ratio as function of azimuth to individuate the main ground vibration direction and detect the existence of site or building resonance frequencies. We applied a rotation matrix to transform the North-South and East-West signal components in transversal and radial components, respect to the direction of the linear accelerator. Subsequently, for each couple of seismic stations we determined the coherence function to analyze the seismic noise spatial correlation. These analyses have allowed us to exhaustively characterize the seismic noise of the study area, from the point of view of the power and space-time variability, both in frequency and wavelength.
ERIC Educational Resources Information Center
Song, Xin-Yuan; Lee, Sik-Yum
2006-01-01
Structural equation models are widely appreciated in social-psychological research and other behavioral research to model relations between latent constructs and manifest variables and to control for measurement error. Most applications of SEMs are based on fully observed continuous normal data and models with a linear structural equation.…
ERIC Educational Resources Information Center
Tarasenko, Larissa V.; Ougolnitsky, Guennady A.; Usov, Anatoly B.; Vaskov, Maksim A.; Kirik, Vladimir A.; Astoyanz, Margarita S.; Angel, Olga Y.
2016-01-01
A dynamic game theoretic model of concordance of interests in the process of social partnership in the system of continuing professional education is proposed. Non-cooperative, cooperative, and hierarchical setups are examined. Analytical solution for a linear state version of the model is provided. Nash equilibrium algorithms (for non-cooperative…
ERIC Educational Resources Information Center
Foley, Greg
2011-01-01
Continuous feed and bleed ultrafiltration, modeled with the gel polarization model for the limiting flux, is shown to provide a rich source of non-linear algebraic equations that can be readily solved using numerical and graphical techniques familiar to undergraduate students. We present a variety of numerical problems in the design, analysis, and…
NASA Astrophysics Data System (ADS)
Okishev, Andrey V.; Zuegel, Jonathan D.
2006-12-01
Intracavity-pumped Raman laser action in a fiber-laser pumped, single-resonant, continuous-wave (cw) MgO:PPLN optical parametric oscillator with a high-Q linear resonator has been observed for the first time to our knowledge. Experimental results of this phenomenon investigation will be discussed.
Prakash, J; Srinivasan, K
2009-07-01
In this paper, the authors have represented the nonlinear system as a family of local linear state space models, local PID controllers have been designed on the basis of linear models, and the weighted sum of the output from the local PID controllers (Nonlinear PID controller) has been used to control the nonlinear process. Further, Nonlinear Model Predictive Controller using the family of local linear state space models (F-NMPC) has been developed. The effectiveness of the proposed control schemes has been demonstrated on a CSTR process, which exhibits dynamic nonlinearity.
Remote Vibration Measurements at a Sud Aviation Alouette III Helicopter with a CW CO2-Laser System
1993-09-28
mrad and a continuous output of 0.4 Watt. The purpose of our measurements was to measure the vibration spectra of a helicopter from the Dutch Air Force...detection 13 3.2.1 Non-linear effects in vibrometry 15 4 THE VIBRATION SOURCES OF A HELICOPTER 24 5 MEASUREMENTS 29 5.1 Measuring Method 29 5.2 Scenario...vibration in Hz. 3.2.1 Non-linear effects in vibrometry A brief explanation of the non-linear effects is given below. A FM receiver has a built-in limiter
Second-order discrete Kalman filtering equations for control-structure interaction simulations
NASA Technical Reports Server (NTRS)
Park, K. C.; Belvin, W. Keith; Alvin, Kenneth F.
1991-01-01
A general form for the first-order representation of the continuous, second-order linear structural dynamics equations is introduced in order to derive a corresponding form of first-order Kalman filtering equations (KFE). Time integration of the resulting first-order KFE is carried out via a set of linear multistep integration formulas. It is shown that a judicious combined selection of computational paths and the undetermined matrices introduced in the general form of the first-order linear structural systems leads to a class of second-order discrete KFE involving only symmetric, N x N solution matrix.
Robust control of a parallel hybrid drivetrain with a CVT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mayer, T.; Schroeder, D.
1996-09-01
In this paper the design of a robust control system for a parallel hybrid drivetrain is presented. The drivetrain is based on a continuously variable transmission (CVT) and is therefore a highly nonlinear multiple-input-multiple-output system (MIMO-System). Input-Output-Linearization offers the possibility of linearizing and of decoupling the system. Since for example the vehicle mass varies with the load and the efficiency of the gearbox depends strongly on the actual working point, an exact linearization of the plant will mostly fail. Therefore a robust control algorithm based on sliding mode is used to control the drivetrain.
NASA Astrophysics Data System (ADS)
J, Joy Sebastian Prakash; G, Vinitha; Ramachandran, Murugesan; Rajamanickam, Karunanithi
2017-10-01
Three different stabilizing agents, namely, L-cysteine, Thioglycolic acid and cysteamine hydrochloride were used to synthesize Cd(Zn)Se quantum dots (QDs). It was characterized using UV-vis spectroscopy, x-ray diffraction (XRD) and transmission electron microscopy (TEM). The non-linear optical properties (non-linear absorption and non-linear refraction) of synthesized Cd(Zn)Se quantum dots were studied with z-scan technique using diode pumped continuous wavelaser system at a wavelength of 532 nm. Our (organic) synthesized quantum dots showed optical properties similar to the inorganic materials reported elsewhere.
Measurement of the tensile forces during bone lengthening.
Ohnishi, Isao; Kurokawa, Takahide; Sato, Wakyo; Nakamura, Kozo
2005-05-01
The purpose of this study was to investigate the effects of lengthening frequency on mechanical environment in limb lengthening. Tensile forces were continuously monitored using a load sensor attached to a unilateral external fixator. Twenty patients were monitored. Ten patients were with acquired femoral shortening, and five of them underwent quasi-continuous lengthening of 1440 steps per day, and the other five received step lengthening twice a day. The other 10 patients were with achondropalsia. Five of them underwent the same quasi-continuous lengthening, and the other five received the same step lengthening. The circadian change and the daily course of the tensile forces were assessed and compared between quasi-continuous lengthening and step lengthening. As for circadian change, an acute increase in the force took place simultaneously with each step of lengthening in the step-lengthening group, but very little change of the baseline force level was seen during quasi-continuous lengthening. As for daily course of the tensile force, it increased almost linearly in both lengthening frequency groups in the initial stage of lengthening. No significant difference of the average force increment rate in this phase was recognized between the quasi-continuous and step lengthening groups irrespective of the etiologies. The lengthening frequency greatly affected the circadian change of the tensile force, but did not affect the increment rate of the force in the linear phase.
Classification of ictal and seizure-free HRV signals with focus on lateralization of epilepsy.
Behbahani, Soroor; Dabanloo, Nader Jafarnia; Nasrabadi, Ali Motie; Dourado, Antonio
2016-01-01
Epileptic onsets often affect the autonomic function of the body during a seizure, whether it is in ictal, interictal or post-ictal periods. The different effects of localization and lateralization of seizures on heart rate variability (HRV) emphasize the importance of autonomic function changes in epileptic patients. On the other hand, the detection of seizures is of primary interests in evaluating the epileptic patients. In the current paper, we analyzed the HRV signal to develop a reliable offline seizure-detection algorithm to focus on the effects of lateralization on HRV. We assessed the HRV during 5-min segments of continuous electrocardiogram (ECG) recording with a total number of 170 seizures occurred in 16 patients, composed of 86 left-sided and 84 right-sided focus seizures. Relatively high and low-frequency components of the HRV were computed using spectral analysis. Poincaré parameters of each heart rate time series considered as non-linear features. We fed these features to the Support Vector Machines (SVMs) to find a robust classification method to classify epileptic and non-epileptic signals. Leave One Out Cross-Validation (LOOCV) approach was used to demonstrate the consistency of the classification results. Our obtained classification accuracy confirms that the proposed scheme has a potential in classifying HRV signals to epileptic and non-epileptic classes. The accuracy rates for right-sided and left-sided focus seizures were obtained as 86.74% and 79.41%, respectively. The main finding of our study is that the patients with right-sided focus epilepsy showed more reduction in parasympathetic activity and more increase in sympathetic activity. It can be a marker of impaired vagal activity associated with increased cardiovascular risk and arrhythmias. Our results suggest that lateralization of the seizure onset zone could exert different influences on heart rate changes. A right-sided seizure would cause an ictal tachycardia whereas a left-sided seizure would result in an ictal bradycardia.
Design of general apochromatic drift-quadrupole beam lines
NASA Astrophysics Data System (ADS)
Lindstrøm, C. A.; Adli, E.
2016-07-01
Chromatic errors are normally corrected using sextupoles in regions of large dispersion. In low emittance linear accelerators, use of sextupoles can be challenging. Apochromatic focusing is a lesser-known alternative approach, whereby chromatic errors of Twiss parameters are corrected without the use of sextupoles, and has consequently been subject to renewed interest in advanced linear accelerator research. Proof of principle designs were first established by Montague and Ruggiero and developed more recently by Balandin et al. We describe a general method for designing drift-quadrupole beam lines of arbitrary order in apochromatic correction, including analytic expressions for emittance growth and other merit functions. Worked examples are shown for plasma wakefield accelerator staging optics and for a simple final focus system.
Henrard, S; Speybroeck, N; Hermans, C
2015-11-01
Haemophilia is a rare genetic haemorrhagic disease characterized by partial or complete deficiency of coagulation factor VIII, for haemophilia A, or IX, for haemophilia B. As in any other medical research domain, the field of haemophilia research is increasingly concerned with finding factors associated with binary or continuous outcomes through multivariable models. Traditional models include multiple logistic regressions, for binary outcomes, and multiple linear regressions for continuous outcomes. Yet these regression models are at times difficult to implement, especially for non-statisticians, and can be difficult to interpret. The present paper sought to didactically explain how, why, and when to use classification and regression tree (CART) analysis for haemophilia research. The CART method is non-parametric and non-linear, based on the repeated partitioning of a sample into subgroups based on a certain criterion. Breiman developed this method in 1984. Classification trees (CTs) are used to analyse categorical outcomes and regression trees (RTs) to analyse continuous ones. The CART methodology has become increasingly popular in the medical field, yet only a few examples of studies using this methodology specifically in haemophilia have to date been published. Two examples using CART analysis and previously published in this field are didactically explained in details. There is increasing interest in using CART analysis in the health domain, primarily due to its ease of implementation, use, and interpretation, thus facilitating medical decision-making. This method should be promoted for analysing continuous or categorical outcomes in haemophilia, when applicable. © 2015 John Wiley & Sons Ltd.
Shan, Mingguang; Tan, Jiubin
2007-12-10
A theoretical model is established using Rayleigh-Sommerfeld diffraction theory to describe the diffraction focusing characteristics of low F-number diffractive optical elements with continuous relief fabricated by laser direct writing, and continuous-relief diffractive optical elements with a design wavelength of 441.6nm and a F-number of F/4 are fabricated and measured to verify the validity of the diffraction focusing model. The measurements made indicate that the spot size is 1.75mum and the diffraction efficiency is 70.7% at the design wavelength, which coincide well with the theoretical results: a spot size of 1.66mum and a diffraction efficiency of 71.2%.
Analysis of an inventory model for both linearly decreasing demand and holding cost
NASA Astrophysics Data System (ADS)
Malik, A. K.; Singh, Parth Raj; Tomar, Ajay; Kumar, Satish; Yadav, S. K.
2016-03-01
This study proposes the analysis of an inventory model for linearly decreasing demand and holding cost for non-instantaneous deteriorating items. The inventory model focuses on commodities having linearly decreasing demand without shortages. The holding cost doesn't remain uniform with time due to any form of variation in the time value of money. Here we consider that the holding cost decreases with respect to time. The optimal time interval for the total profit and the optimal order quantity are determined. The developed inventory model is pointed up through a numerical example. It also includes the sensitivity analysis.
Electrostatic quadrupole focused particle accelerating assembly with laminar flow beam
Maschke, A.W.
1984-04-16
A charged particle accelerating assembly provided with a predetermined ratio of parametric structural characteristics and with related operating voltages applied to each of its linearly spaced focusing and accelerating quadrupoles, thereby to maintain a particle beam traversing the electrostatic fields of the quadrupoles in the assembly in an essentially laminar flow through the assembly.
Electrostatic quadrupole focused particle accelerating assembly with laminar flow beam
Maschke, Alfred W.
1985-01-01
A charged particle accelerating assembly provided with a predetermined ratio of parametric structural characteristics and with related operating voltages applied to each of its linearly spaced focusing and accelerating quadrupoles, thereby to maintain a particle beam traversing the electrostatic fields of the quadrupoles in the assembly in an essentially laminar flow throughout the assembly.
Image-Guided Surgery of Primary Breast Cancer Using Ultrasound Phased Arrays
2005-07-01
dual-mode array is ing high-intensity focused ultrasound ( HIFU ) exhibit non- is used), perhaps a result of rectified diffusion. linear behavior that...applications using high-intensity focused ultrasound ( HIFU ). We tems. Once the real-time imaging capability is available for have shown that this dual-mode...INTRODUCTION two effects lead to echo time-shift that can be estimated High intensity focused ultrasound ( HIFU ) is a and have been shown to be related local
Investigation of the Effect of Oil Modification on Critical Characteristics of Asphalt Binders
NASA Astrophysics Data System (ADS)
Golalipour, Amir
Thermally induced cracking of asphalt pavement continues to be a serious issue in cold climate regions as well as in areas which experience extreme daily temperature differentials. Low temperature cracking of asphalt pavements is attributed to thermal stresses and strains developed during cooling cycles. Improving asphalt binder low temperature fracture and stiffness properties continues to be a subject of particular concern. Therefore, significant amount of research has been focused on improving asphalt binder properties through modification. In recent years, wide ranges of oil based modifications have been introduced to improve asphalt binder performance, especially at the low service temperatures. Although, significant use of these oils is seen in practice, knowledge of the fundamental mechanisms of oil modification and their properties for achieving optimum characteristics is limited. Hence, this study focuses on better understanding of the effect of oil modifiers which would help better material selection and achieve optimum performance in terms of increasing the life span of pavements. In this study, the effect of oil modification on the rheological properties of the asphalt binder is investigated. To examine the effect of oil modification on binder characteristics, low temperature properties as well as high temperature performance of oil modified binders were evaluated. It is found that oils vary in their effects on asphalt binder performance. However, for all oils used in the study, adding an oil to binder can improve binder low temperature performance, and this result mainly attributed to the softening effect. In addition to that, a simple linear model is proposed to predict the performance grade of oil modified binder based on the properties of its constituents at high and low temperatures. Another part of this study focuses on the oil modification effect on asphalt binder thermal strain and stresses. A viscoelastic analytical procedure is combined with experimentally derived failure stress and strain envelopes to determine the controlling failure mechanism, strain tolerance or critical stress, in thermal cracking of oil modified binders. The low temperature failure results depict that oil modification has a good potential of improving the cracking resistance of asphalt binders during thermal cycles.
Overview of NASA GRC Stirling Technology Development
NASA Technical Reports Server (NTRS)
Schreiber, Jeffrey; Thieme, Lanny
2003-01-01
The Stirling Radioisotope Generator (SRG) is currently being developed by Lockheed Martin Astronautics (LMA) under contract to the Depar1ment of Energy (DOE). The generator will be a high efficiency electric power source for NASA Space Science missions with the capability to operate in the vacuum of deep space or in an atmosphere such as on the surface of Mars. High system efficiency is obtained through the use of free-piston Stirling power conversion technology. Power output of the generator will be greater than 100 watts at the beginning of life with the decline in power being largely due to the decay of the plutonium heat source. In suppOl1 of the DOE SRG project, the NASA Glenn Research Center (GRC) has established a near-term technology effort to provide some of the critical data to ensure a successful transition to flight for what will be the first dynamic power system used in space. Initially, a limited number of technical areas were selected for the GRC effort, however this is now being expanded to more thoroughly cover a range of technical issues. The tasks include in-house testing of Stirling convertors and controllers, materials evaluation and heater head life assessment, structural dynamics, electromagnetic interference, organics evaluation, and reliability analysis. Most of these high-level tasks have several subtasks within. There is also an advanced technology effort that is complementary near-term technology effort. Many of the tests make use of the 55-We Technology Demonstration Convel10r (TDC). There have been multiple controller tests to support the LMA flight controller design effort. Preparation is continuing for a thermal/vacuum system demonstration. A pair of flight prototype TDC's have recently been placed on an extended test with unattended, continuous operation. Heater head life assessment efforts continue, with the material data being refined and the analysis moving toward the system perspective. Long-term magnet aging tests are continuing to characterize any possible aging in the strength or demagnetization resistance of the permanent magnets used in the linear alternator. In a parallel effort, higher performance magnets are also being evaluated. A reliability effort is being initiated that will help to guide the development activities with an increased focus on the necessary components and subsystems. Some other disciplines that are active in the GRC technology effort include structural dynamics, linear alternator analysis, EMI/EMC, controls, and mechanical design evaluation. This paper will provide an overview of some of the GRC technical efforts, including the current status, and a description of future efforts.
Beam dynamics simulation of a double pass proton linear accelerator
Hwang, Kilean; Qiang, Ji
2017-04-03
A recirculating superconducting linear accelerator with the advantage of both straight and circular accelerator has been demonstrated with relativistic electron beams. The acceleration concept of a recirculating proton beam was recently proposed and is currently under study. In order to further support the concept, the beam dynamics study on a recirculating proton linear accelerator has to be carried out. In this paper, we study the feasibility of a two-pass recirculating proton linear accelerator through the direct numerical beam dynamics design optimization and the start-to-end simulation. This study shows that the two-pass simultaneous focusing without particle losses is attainable including fullymore » 3D space-charge effects through the entire accelerator system.« less
Stochastic Dynamic Mixed-Integer Programming (SD-MIP)
2015-05-05
stochastic linear programming ( SLP ) problems. By using a combination of ideas from cutting plane theory of deterministic MIP (especially disjunctive...developed to date. b) As part of this project, we have also developed tools for very large scale Stochastic Linear Programming ( SLP ). There are...several reasons for this. First, SLP models continue to challenge many of the fastest computers to date, and many applications within the DoD (e.g
Optimal Control of Stochastic Systems Driven by Fractional Brownian Motions
2014-10-09
problems for stochastic partial differential equations driven by fractional Brownian motions are explicitly solved. For the control of a continuous time...linear systems with Brownian motion or a discrete time linear system with a white Gaussian noise and costs 1. REPORT DATE (DD-MM-YYYY) 4. TITLE AND...Army Research Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 stochastic optimal control, fractional Brownian motion , stochastic
On High-Order Upwind Methods for Advection
NASA Technical Reports Server (NTRS)
Huynh, Hung T.
2017-01-01
Scheme III (piecewise linear) and V (piecewise parabolic) of Van Leer are shown to yield identical solutions provided the initial conditions are chosen in an appropriate manner. This result is counter intuitive since it is generally believed that piecewise linear and piecewise parabolic methods cannot produce the same solutions due to their different degrees of approximation. The result also shows a key connection between the approaches of discontinuous and continuous representations.
NASA Astrophysics Data System (ADS)
Vasilenko, Georgii Ivanovich; Taratorin, Aleksandr Markovich
Linear, nonlinear, and iterative image-reconstruction (IR) algorithms are reviewed. Theoretical results are presented concerning controllable linear filters, the solution of ill-posed functional minimization problems, and the regularization of iterative IR algorithms. Attention is also given to the problem of superresolution and analytical spectrum continuation, the solution of the phase problem, and the reconstruction of images distorted by turbulence. IR in optical and optical-digital systems is discussed with emphasis on holographic techniques.
Arbitrary nonlinearity is sufficient to represent all functions by neural networks - A theorem
NASA Technical Reports Server (NTRS)
Kreinovich, Vladik YA.
1991-01-01
It is proved that if we have neurons implementing arbitrary linear functions and a neuron implementing one (arbitrary but smooth) nonlinear function g(x), then for every continuous function f(x sub 1,..., x sub m) of arbitrarily many variables, and for arbitrary e above 0, we can construct a network that consists of g-neurons and linear neurons, and computes f with precision e.
Formulation of the linear model from the nonlinear simulation for the F18 HARV
NASA Technical Reports Server (NTRS)
Hall, Charles E., Jr.
1991-01-01
The F-18 HARV is a modified F-18 Aircraft which is capable of flying in the post-stall regime in order to achieve superagility. The onset of aerodynamic stall, and continued into the post-stall region, is characterized by nonlinearities in the aerodynamic coefficients. These aerodynamic coefficients are not expressed as analytic functions, but rather in the form of tabular data. The nonlinearities in the aerodynamic coefficients yield a nonlinear model of the aircraft's dynamics. Nonlinear system theory has made many advances, but this area is not sufficiently developed to allow its application to this problem, since many of the theorems are existance theorems and that the systems are composed of analytic functions. Thus, the feedback matrices and the state estimators are obtained from linear system theory techniques. It is important, in order to obtain the correct feedback matrices and state estimators, that the linear description of the nonlinear flight dynamics be as accurate as possible. A nonlinear simulation is run under the Advanced Continuous Simulation Language (ACSL). The ACSL simulation uses FORTRAN subroutines to interface to the look-up tables for the aerodynamic data. ACSL has commands to form the linear representation for the system. Other aspects of this investigation are discussed.
NASA Astrophysics Data System (ADS)
Sun, Zhuangzhi; Zhao, Gang; Qiao, Dongpan; Song, Wenlong
2017-12-01
Artificial muscles have attracted great attention for their potentials in intelligent robots, biomimetic devices, and micro-electromechanical system. However, there are many performance bottlenecks restricting the development of artificial muscles in engineering applications, e.g., the little blocking force and short working life. Focused on the larger requirements of the output force and the lack characteristics of the linear motion, an innovative muscle-like linear actuator based on two segmented IPMC strips was developed to imitate linear motion of artificial muscles. The structures of the segmented IPMC strip of muscle-like linear actuator were developed and the established mathematical model was to determine the appropriate segmented proportion as 1:2:1. The muscle-like linear actuator with two segmented IPMC strips assemble by two supporting link blocks was manufactured for the study of electromechanical properties. Electromechanical properties of muscle-like linear actuator under the different technological factors were obtained to experiment, and the corresponding changing rules of muscle-like linear actuators were presented to research. Results showed that factors of redistributed resistance and surface strain on both end-sides were two main reasons affecting the emergence of different electromechanical properties of muscle-like linear actuators.
NASA Astrophysics Data System (ADS)
Hsieh, Chang-Yu; Cao, Jianshu
2018-01-01
We use the "generalized hierarchical equation of motion" proposed in Paper I [C.-Y. Hsieh and J. Cao, J. Chem. Phys. 148, 014103 (2018)] to study decoherence in a system coupled to a spin bath. The present methodology allows a systematic incorporation of higher-order anharmonic effects of the bath in dynamical calculations. We investigate the leading order corrections to the linear response approximations for spin bath models. Two kinds of spin-based environments are considered: (1) a bath of spins discretized from a continuous spectral density and (2) a bath of localized nuclear or electron spins. The main difference resides with how the bath frequency and the system-bath coupling parameters are distributed in an environment. When discretized from a continuous spectral density, the system-bath coupling typically scales as ˜1 /√{NB } where NB is the number of bath spins. This scaling suppresses the non-Gaussian characteristics of the spin bath and justifies the linear response approximations in the thermodynamic limit. For the nuclear/electron spin bath models, system-bath couplings are directly deduced from spin-spin interactions and do not necessarily obey the 1 /√{NB } scaling. It is not always possible to justify the linear response approximations in this case. Furthermore, if the spin-spin Hamiltonian is highly symmetrical, there exist additional constraints that generate highly non-Markovian and persistent dynamics that is beyond the linear response treatments.
Re-Culturing Educator Preparation Programs: A Collaborative Case Study of Continuous Improvement
ERIC Educational Resources Information Center
Snow, Jennifer; Dismuke, Sherry; Zenkert, A. J.; Loffer, Carolyn
2017-01-01
Teacher educators at one institution of higher education collaborated to reculture systems for a focus on continuous improvement even within mounting accountability pressures. A framework of social network theory allowed for themes to develop around layered interactions of faculty, processes, and professional capital. Findings focused on people,…
Multiple focused EMAT designs for improved surface breaking defect characterization
NASA Astrophysics Data System (ADS)
Thring, C. B.; Fan, Y.; Edwards, R. S.
2017-02-01
Ultrasonic Rayleigh waves can be employed for the detection of surface breaking defects such as rolling contact fatigue and stress corrosion cracking. Electromagnetic Acoustic Transducers (EMATs) are well suited to this technique as they can directly generate Rayleigh waves within the sample without the requirement for wedges, and they are robust and inexpensive compared to laser ultrasonics. Three different EMAT coil types have been developed, and these are compared to assess their ability to detect and characterize small (down to 0.5 mm depth, 1 mm diameter) surface breaking defects in aluminium. These designs are: a pair of linear meander coils used in a pseudo-pulse-echo mode, a pair of focused meander coils also used in pseudo-pulse-echo mode, and a pair of focused racetrack coils used in pitch-catch mode. The linear meander coils are able to detect most of the defects tested, but have a much lower signal to noise ratio and give limited sizing information. The focused meander coils and the focused racetrack coils can detect all defects tested, but have the advantage that they can also characterize the defect sizes on the sample surface, and have a stronger sensitivity at their focal point. Measurements using all three EMAT designs are presented and compared for high resolution imaging of surface-breaking defects.
NASA Technical Reports Server (NTRS)
Rosen, I. G.; Wang, C.
1990-01-01
The convergence of solutions to the discrete or sampled time linear quadratic regulator problem and associated Riccati equation for infinite dimensional systems to the solutions to the corresponding continuous time problem and equation, as the length of the sampling interval (the sampling rate) tends toward zero (infinity) is established. Both the finite and infinite time horizon problems are studied. In the finite time horizon case, strong continuity of the operators which define the control system and performance index together with a stability and consistency condition on the sampling scheme are required. For the infinite time horizon problem, in addition, the sampled systems must be stabilizable and detectable, uniformly with respect to the sampling rate. Classes of systems for which this condition can be verified are discussed. Results of numerical studies involving the control of a heat/diffusion equation, a hereditary of delay system, and a flexible beam are presented and discussed.
NASA Technical Reports Server (NTRS)
Rosen, I. G.; Wang, C.
1992-01-01
The convergence of solutions to the discrete- or sampled-time linear quadratic regulator problem and associated Riccati equation for infinite-dimensional systems to the solutions to the corresponding continuous time problem and equation, as the length of the sampling interval (the sampling rate) tends toward zero(infinity) is established. Both the finite-and infinite-time horizon problems are studied. In the finite-time horizon case, strong continuity of the operators that define the control system and performance index, together with a stability and consistency condition on the sampling scheme are required. For the infinite-time horizon problem, in addition, the sampled systems must be stabilizable and detectable, uniformly with respect to the sampling rate. Classes of systems for which this condition can be verified are discussed. Results of numerical studies involving the control of a heat/diffusion equation, a hereditary or delay system, and a flexible beam are presented and discussed.
NASA Technical Reports Server (NTRS)
Young, Laurence R.; Merfeld, D.
1994-01-01
Significant progress was achieved during the period of this grant on a number of different fronts. A list of publications, abstracts, and theses supported by this grant is provided at the end of this document. The completed studies focused on three general areas: eye movements induced by dynamic linear acceleration, eye movements and vection reports induced by visual roll stimulation, and the separation of gravito-inertial force into central estimates of gravity and linear acceleration.
Reconfigurable Analog PDE computation for Baseband and RFComputation
2017-03-01
waveguiding PDEs. One-dimensional ladder topologies enable linear delays, linear-phase analog filters , as well as analog beamforming, potentially at RF...performance. This discussion focuses on ODE / PDE analog computation available in SoC FPAA structures. One such computation is a ladder filter (Fig...Implementation of a one-dimensional ladder filter for computing inductor (L) and capacitor (C) lines. These components can be implemented in CABs or as
Transition of recollision trajectories from linear to elliptical polarization
Li, Yingbin; Yu, Benhai; Tang, Qingbin; ...
2016-03-15
Using a classical ensemble method, we revisit the topic of recollision and nonsequential double ionization with elliptically polarized laser fields. We focus on how the recollision mechanism transitions from short trajectories with linear polarization to long trajectories with elliptical polarization. Furthermore, we propose how this transition can be observed by measuring the carrier-envelop-phase dependence of the correlated electron momentum spectra using currently available few-cycle laser pulses.
Using Linear Gluon Polarization Inside an Unpolarized Proton to Determine the Higgs Spin and Parity
NASA Astrophysics Data System (ADS)
den Dunnen, Wilco J.
2014-06-01
Gluons inside an unpolarized proton are in general linearly polarized in the direction of their transverse momentum, rendering the LHC effectively a polarized gluon collider. This polarization can be utilized in the determination of the spin and parity of the newly found Higgs-like boson. We focus here on the determination of the spin using the azimuthal Collins-Soper angle distribution.
NASA Astrophysics Data System (ADS)
Wang, Wentao; Zhang, Hui; Lynch, Jerome P.; Cesnik, Carlos E. S.; Li, Hui
2017-04-01
A novel d36-type piezoelectric wafer fabricated from lead magnesium niobate-lead titanate (PMN-PT) is explored for the generation of in-plane horizontal shear waves in plate structures. The study focuses on the development of a linear phased array (PA) of PMN-PT wafers to improve the damage detection capabilities of a structural health monitoring (SHM) system. An attractive property of in-plane horizontal shear waves is that they are nondispersive yet sensitive to damage. This study characterizes the directionality of body waves (Lamb and horizontal shear) created by a single PMN-PT wafer bonded to the surface of a metallic plate structure. Second, a linear PA is designed from PMN-PT wafers to steer and focus Lamb and horizontal shear waves in a plate structure. Numerical studies are conducted to explore the capabilities of a PMN-PT-based PA to detect damage in aluminum plates. Numerical simulations are conducted using the Local Interaction Simulation Approach (LISA) implemented on a parallelized graphical processing unit (GPU) for high-speed execution. Numerical studies are further validated using experimental tests conducted with a linear PA. The study confirms the ability of an PMN-PT phased array to accurately detect and localize damage in aluminum plates.
Speyer, Gavriel; Kaczkowski, Peter J.; Brayman, Andrew A.; Crum, Lawrence A.
2010-01-01
Accurate monitoring of high intensity focused ultrasound (HIFU) therapy is critical for widespread clinical use. Pulse-echo diagnostic ultrasound (DU) is known to exhibit temperature sensitivity through relative changes in time-of-flight between two sets of radio frequency (RF) backscatter measurements, one acquired before and one after therapy. These relative displacements, combined with knowledge of the exposure protocol, material properties, heat transfer, and measurement noise statistics, provide a natural framework for estimating the administered heating, and thereby therapy. The proposed method, termed displacement analysis, identifies the relative displacements using linearly independent displacement patterns, or modes, each induced by a particular time-varying heating applied during the exposure interval. These heating modes are themselves linearly independent. This relationship implies that a linear combination of displacement modes aligning the DU measurements is the response to an identical linear combination of heating modes, providing the heating estimate. Furthermore, the accuracy of coefficient estimates in this approximation is determined a priori, characterizing heating, thermal dose, and temperature estimates for any given protocol. Predicted performance is validated using simulations and experiments in alginate gel phantoms. Evidence for a spatially distributed interaction between temperature and time-of-flight changes is presented. PMID:20649206
A DERATING METHOD FOR THERAPEUTIC APPLICATIONS OF HIGH INTENSITY FOCUSED ULTRASOUND
Bessonova, O.V.; Khokhlova, V.A.; Canney, M.S.; Bailey, M.R.; Crum, L.A.
2010-01-01
Current methods of determining high intensity focused ultrasound (HIFU) fields in tissue rely on extrapolation of measurements in water assuming linear wave propagation both in water and in tissue. Neglecting nonlinear propagation effects in the derating process can result in significant errors. In this work, a new method based on scaling the source amplitude is introduced to estimate focal parameters of nonlinear HIFU fields in tissue. Focal values of acoustic field parameters in absorptive tissue are obtained from a numerical solution to a KZK-type equation and are compared to those simulated for propagation in water. Focal waveforms, peak pressures, and intensities are calculated over a wide range of source outputs and linear focusing gains. Our modeling indicates, that for the high gain sources which are typically used in therapeutic medical applications, the focal field parameters derated with our method agree well with numerical simulation in tissue. The feasibility of the derating method is demonstrated experimentally in excised bovine liver tissue. PMID:20582159
A derating method for therapeutic applications of high intensity focused ultrasound
NASA Astrophysics Data System (ADS)
Bessonova, O. V.; Khokhlova, V. A.; Canney, M. S.; Bailey, M. R.; Crum, L. A.
2010-05-01
Current methods of determining high intensity focused ultrasound (HIFU) fields in tissue rely on extrapolation of measurements in water assuming linear wave propagation both in water and in tissue. Neglecting nonlinear propagation effects in the derating process can result in significant errors. A new method based on scaling the source amplitude is introduced to estimate focal parameters of nonlinear HIFU fields in tissue. Focal values of acoustic field parameters in absorptive tissue are obtained from a numerical solution to a KZK-type equation and are compared to those simulated for propagation in water. Focal wave-forms, peak pressures, and intensities are calculated over a wide range of source outputs and linear focusing gains. Our modeling indicates, that for the high gain sources which are typically used in therapeutic medical applications, the focal field parameters derated with our method agree well with numerical simulation in tissue. The feasibility of the derating method is demonstrated experimentally in excised bovine liver tissue.
A DERATING METHOD FOR THERAPEUTIC APPLICATIONS OF HIGH INTENSITY FOCUSED ULTRASOUND.
Bessonova, O V; Khokhlova, V A; Canney, M S; Bailey, M R; Crum, L A
2010-01-01
Current methods of determining high intensity focused ultrasound (HIFU) fields in tissue rely on extrapolation of measurements in water assuming linear wave propagation both in water and in tissue. Neglecting nonlinear propagation effects in the derating process can result in significant errors. In this work, a new method based on scaling the source amplitude is introduced to estimate focal parameters of nonlinear HIFU fields in tissue. Focal values of acoustic field parameters in absorptive tissue are obtained from a numerical solution to a KZK-type equation and are compared to those simulated for propagation in water. Focal waveforms, peak pressures, and intensities are calculated over a wide range of source outputs and linear focusing gains. Our modeling indicates, that for the high gain sources which are typically used in therapeutic medical applications, the focal field parameters derated with our method agree well with numerical simulation in tissue. The feasibility of the derating method is demonstrated experimentally in excised bovine liver tissue.
Programmable growth of branched silicon nanowires using a focused ion beam.
Jun, Kimin; Jacobson, Joseph M
2010-08-11
Although significant progress has been made in being able to spatially define the position of material layers in vapor-liquid-solid (VLS) grown nanowires, less work has been carried out in deterministically defining the positions of nanowire branching points to facilitate more complicated structures beyond simple 1D wires. Work to date has focused on the growth of randomly branched nanowire structures. Here we develop a means for programmably designating nanowire branching points by means of focused ion beam-defined VLS catalytic points. This technique is repeatable without losing fidelity allowing multiple rounds of branching point definition followed by branch growth resulting in complex structures. The single crystal nature of this approach allows us to describe resulting structures with linear combinations of base vectors in three-dimensional (3D) space. Finally, by etching the resulting 3D defined wire structures branched nanotubes were fabricated with interconnected nanochannels inside. We believe that the techniques developed here should comprise a useful tool for extending linear VLS nanowire growth to generalized 3D wire structures.
Electrostatic focusing of directly heated linear filament gun using EGUN
NASA Astrophysics Data System (ADS)
Iqbal, Munawar; Lodhi, M. A. K.; Majeed, Zahid; Batani, Dimitri
2011-06-01
This paper presents the optimization of a line source rectangular electron gun using electrostatic focusing. We optimized the gun by shaping the configuration of its electrodes in order to achieve the desired focusing characteristics, namely maximum focusing distance and minimum beam spread. The optimization has been carried out using the software EGUN. We have also simplified the gun design using only one focusing electrode at the same potential as that of the cathode and by avoiding magnetic focusing field, separate focusing electrodes and additional power supply, thus minimizing the cost without any loss in its accuracy and efficient performance. This gun with the optimum configuration was used in actual experiment and the results of the simulation were compared with the experimental measurements.
Fasmer, Ole Bernt; Mjeldheim, Kristin; Førland, Wenche; Hansen, Anita L; Syrstad, Vigdis Elin Giæver; Oedegaard, Ketil J; Berle, Jan Øystein
2016-08-11
Attention Deficit Hyperactivity Disorder (ADHD) is a heterogeneous disorder. Therefore it is important to look for factors that can contribute to better diagnosis and classification of these patients. The aims of the study were to characterize adult psychiatric out-patients with a mixture of mood, anxiety and attentional problems using an objective neuropsychological test of attention combined with an assessment of mood instability. Newly referred patients (n = 99; aged 18-65 years) requiring diagnostic evaluation of ADHD, mood or anxiety disorders were recruited, and were given a comprehensive diagnostic evaluation including the self-report form of the cyclothymic temperament scale and Conner's Continuous Performance Test II (CPT-II). In addition to the traditional measures from this test we have extracted raw data and analysed time series using linear and non-linear mathematical methods. Fifty patients fulfilled criteria for ADHD, while 49 did not, and were given other psychiatric diagnoses (clinical controls). When compared to the clinical controls the ADHD patients had more omission and commission errors, and higher reaction time variability. Analyses of response times showed higher values for skewness in the ADHD patients, and lower values for sample entropy and symbolic dynamics. Among the ADHD patients 59 % fulfilled criteria for a cyclothymic temperament, and this group had higher reaction time variability and lower scores on complexity than the group without this temperament. The CPT-II is a useful instrument in the assessment of ADHD in adult patients. Additional information from this test was obtained by analyzing response times using linear and non-linear methods, and this showed that ADHD patients with a cyclothymic temperament were different from those without this temperament.
Scovazzi, Guglielmo; Carnes, Brian; Zeng, Xianyi; ...
2015-11-12
Here, we propose a new approach for the stabilization of linear tetrahedral finite elements in the case of nearly incompressible transient solid dynamics computations. Our method is based on a mixed formulation, in which the momentum equation is complemented by a rate equation for the evolution of the pressure field, approximated with piece-wise linear, continuous finite element functions. The pressure equation is stabilized to prevent spurious pressure oscillations in computations. Incidentally, it is also shown that many stabilized methods previously developed for the static case do not generalize easily to transient dynamics. Extensive tests in the context of linear andmore » nonlinear elasticity are used to corroborate the claim that the proposed method is robust, stable, and accurate.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scovazzi, Guglielmo; Carnes, Brian; Zeng, Xianyi
Here, we propose a new approach for the stabilization of linear tetrahedral finite elements in the case of nearly incompressible transient solid dynamics computations. Our method is based on a mixed formulation, in which the momentum equation is complemented by a rate equation for the evolution of the pressure field, approximated with piece-wise linear, continuous finite element functions. The pressure equation is stabilized to prevent spurious pressure oscillations in computations. Incidentally, it is also shown that many stabilized methods previously developed for the static case do not generalize easily to transient dynamics. Extensive tests in the context of linear andmore » nonlinear elasticity are used to corroborate the claim that the proposed method is robust, stable, and accurate.« less
Short Round Sub-Linear Zero-Knowledge Argument for Linear Algebraic Relations
NASA Astrophysics Data System (ADS)
Seo, Jae Hong
Zero-knowledge arguments allows one party to prove that a statement is true, without leaking any other information than the truth of the statement. In many applications such as verifiable shuffle (as a practical application) and circuit satisfiability (as a theoretical application), zero-knowledge arguments for mathematical statements related to linear algebra are essentially used. Groth proposed (at CRYPTO 2009) an elegant methodology for zero-knowledge arguments for linear algebraic relations over finite fields. He obtained zero-knowledge arguments of the sub-linear size for linear algebra using reductions from linear algebraic relations to equations of the form z = x *' y, where x, y ∈ Fnp are committed vectors, z ∈ Fp is a committed element, and *' : Fnp × Fnp → Fp is a bilinear map. These reductions impose additional rounds on zero-knowledge arguments of the sub-linear size. The round complexity of interactive zero-knowledge arguments is an important measure along with communication and computational complexities. We focus on minimizing the round complexity of sub-linear zero-knowledge arguments for linear algebra. To reduce round complexity, we propose a general transformation from a t-round zero-knowledge argument, satisfying mild conditions, to a (t - 2)-round zero-knowledge argument; this transformation is of independent interest.
ERIC Educational Resources Information Center
Lee, Yi-Hsuan; von Davier, Alina A.
2008-01-01
The kernel equating method (von Davier, Holland, & Thayer, 2004) is based on a flexible family of equipercentile-like equating functions that use a Gaussian kernel to continuize the discrete score distributions. While the classical equipercentile, or percentile-rank, equating method carries out the continuization step by linear interpolation,…
Ricci, Francesco; Caprio, Felice; Poscia, Alessandro; Valgimigli, Francesco; Messeri, Dimitri; Lepori, Elena; Dall'Oglio, Giorgio; Palleschi, Giuseppe; Moscone, Danila
2007-04-15
Glucose biosensors based on the use of planar screen-printed electrodes modified with an electrochemical mediator and with glucose oxidase have been optimised for their application in the continuous glucose monitoring in diabetic patients. A full study of their operative stability and temperature dependence has been accomplished, thus giving useful information for in vivo applications. The effect of dissolved oxygen concentration in the working solution was also studied in order to evaluate its effect on the linearity of the sensors. Glucose monitoring performed with serum samples was performed to evaluate the effect of matrix components on operative stability and demonstrated an efficient behaviour for 72 h of continuous monitoring. Finally, these studies led to a sensor capable of detecting glucose at concentrations as low as 0.04 mM and with a good linearity up to 2.0 mM (at 37 degrees C) with an operative stability of ca. 72 h, thus demonstrating the possible application of these sensors for continuous glucose monitoring in conjunction with a microdialysis probe. Moreover, preliminary in vivo experiments for ca. 20 h have demonstrated the feasibility of this system.
Anderson, Carl A; McRae, Allan F; Visscher, Peter M
2006-07-01
Standard quantitative trait loci (QTL) mapping techniques commonly assume that the trait is both fully observed and normally distributed. When considering survival or age-at-onset traits these assumptions are often incorrect. Methods have been developed to map QTL for survival traits; however, they are both computationally intensive and not available in standard genome analysis software packages. We propose a grouped linear regression method for the analysis of continuous survival data. Using simulation we compare this method to both the Cox and Weibull proportional hazards models and a standard linear regression method that ignores censoring. The grouped linear regression method is of equivalent power to both the Cox and Weibull proportional hazards methods and is significantly better than the standard linear regression method when censored observations are present. The method is also robust to the proportion of censored individuals and the underlying distribution of the trait. On the basis of linear regression methodology, the grouped linear regression model is computationally simple and fast and can be implemented readily in freely available statistical software.
Laser-assisted solar-cell metallization processing
NASA Technical Reports Server (NTRS)
Dutta, S.
1984-01-01
A photolytic metal deposition system using a focused continuous wave ultraviolet laser, a photolytic metal deposition system using a mask and ultraviolet flood illumination, and a pyrolytic metal deposition system using a focused continuous wave laser were studied. Fabrication of solar cells, as well as characterization to determine the effects of transient heat on solar cell junctions were investigated.
ERIC Educational Resources Information Center
Haugh, Michael
2016-01-01
International students have continued to be the focus of simplistic stereotyping in media discourse where they are frequently identified as one of the forces behind declining academic standards in Australian universities. Their English language skills, in particular, have continued to be the focus of debate both in the mainstream media and in…
Linear monogamy of entanglement in three-qubit systems
NASA Astrophysics Data System (ADS)
Liu, Feng; Gao, Fei; Wen, Qiao-Yan
2015-11-01
For any three-qubit quantum systems ABC, Oliveira et al. numerically found that both the concurrence and the entanglement of formation (EoF) obey the linear monogamy relations in pure states. They also conjectured that the linear monogamy relations can be saturated when the focus qubit A is maximally entangled with the joint qubits BC. In this work, we prove analytically that both the concurrence and EoF obey linear monogamy relations in an arbitrary three-qubit state. Furthermore, we verify that all three-qubit pure states are maximally entangled in the bipartition A|BC when they saturate the linear monogamy relations. We also study the distribution of the concurrence and EoF. More specifically, when the amount of entanglement between A and B equals to that of A and C, we show that the sum of EoF itself saturates the linear monogamy relation, while the sum of the squared EoF is minimum. Different from EoF, the concurrence and the squared concurrence both saturate the linear monogamy relations when the entanglement between A and B equals to that of A and C.
Linear monogamy of entanglement in three-qubit systems.
Liu, Feng; Gao, Fei; Wen, Qiao-Yan
2015-11-16
For any three-qubit quantum systems ABC, Oliveira et al. numerically found that both the concurrence and the entanglement of formation (EoF) obey the linear monogamy relations in pure states. They also conjectured that the linear monogamy relations can be saturated when the focus qubit A is maximally entangled with the joint qubits BC. In this work, we prove analytically that both the concurrence and EoF obey linear monogamy relations in an arbitrary three-qubit state. Furthermore, we verify that all three-qubit pure states are maximally entangled in the bipartition A|BC when they saturate the linear monogamy relations. We also study the distribution of the concurrence and EoF. More specifically, when the amount of entanglement between A and B equals to that of A and C, we show that the sum of EoF itself saturates the linear monogamy relation, while the sum of the squared EoF is minimum. Different from EoF, the concurrence and the squared concurrence both saturate the linear monogamy relations when the entanglement between A and B equals to that of A and C.
Linear monogamy of entanglement in three-qubit systems
Liu, Feng; Gao, Fei; Wen, Qiao-Yan
2015-01-01
For any three-qubit quantum systems ABC, Oliveira et al. numerically found that both the concurrence and the entanglement of formation (EoF) obey the linear monogamy relations in pure states. They also conjectured that the linear monogamy relations can be saturated when the focus qubit A is maximally entangled with the joint qubits BC. In this work, we prove analytically that both the concurrence and EoF obey linear monogamy relations in an arbitrary three-qubit state. Furthermore, we verify that all three-qubit pure states are maximally entangled in the bipartition A|BC when they saturate the linear monogamy relations. We also study the distribution of the concurrence and EoF. More specifically, when the amount of entanglement between A and B equals to that of A and C, we show that the sum of EoF itself saturates the linear monogamy relation, while the sum of the squared EoF is minimum. Different from EoF, the concurrence and the squared concurrence both saturate the linear monogamy relations when the entanglement between A and B equals to that of A and C. PMID:26568265
On Discontinuous Piecewise Linear Models for Memristor Oscillators
NASA Astrophysics Data System (ADS)
Amador, Andrés; Freire, Emilio; Ponce, Enrique; Ros, Javier
2017-06-01
In this paper, we provide for the first time rigorous mathematical results regarding the rich dynamics of piecewise linear memristor oscillators. In particular, for each nonlinear oscillator given in [Itoh & Chua, 2008], we show the existence of an infinite family of invariant manifolds and that the dynamics on such manifolds can be modeled without resorting to discontinuous models. Our approach provides topologically equivalent continuous models with one dimension less but with one extra parameter associated to the initial conditions. It is possible to justify the periodic behavior exhibited by three-dimensional memristor oscillators, by taking advantage of known results for planar continuous piecewise linear systems. The analysis developed not only confirms the numerical results contained in previous works [Messias et al., 2010; Scarabello & Messias, 2014] but also goes much further by showing the existence of closed surfaces in the state space which are foliated by periodic orbits. The important role of initial conditions that justify the infinite number of periodic orbits exhibited by these models, is stressed. The possibility of unsuspected bistable regimes under specific configurations of parameters is also emphasized.
Sjöblom, I; Glorioso, J C; Sjögren-Jansson, E; Olofsson, S
1992-03-01
A continuous epitope, situated within or in close proximity to antigenic site II of the herpes simplex virus type 1-specified glycoprotein C (gC-1), was identified. The continuous linear nature of the epitope, defined by a monoclonal antibody C2H12, was established by three independent lines of evidence: (i) The epitope was detectable by immunoblot under denaturing and reducing conditions. (ii) The epitope was detectable by RIPA of extracts from TM-treated HSV-infected cells, despite the malfolding caused by this treatment. (iii) The epitope was detected in an approximately 5,000-dalton papain fragment of gC-1. A mapping analysis, primarily based on use of mutant virus, expressing truncated gC-1 molecules, suggested that the mapping position of the epitope was delimited by amino acids 120 and 230. Other epitopes of this region of gC-1 are highly conformation-dependent, and the existence of a linear epitope, accessible on native gC-1, may facilitate the elucidation of the functional anatomy of gC-1.
Influence of laser radiation polarisation on small-scale self-focusing in isotropic crystals
NASA Astrophysics Data System (ADS)
Ginzburg, V. N.; Kochetkov, A. A.; Kuz'mina, M. S.; Burdonov, K. F.; Shaykin, A. A.; Khazanov, E. A.
2017-04-01
The gain of spatial noise in the field of an intense linearly polarised wave, propagating in a BaF2 cubic crystal with orientation [001], is directly measured. The previously predicted strong dependence of the evolution of small-scale self-focusing on the angle between the radiation polarisation vector and the crystallographic axis of crystal is demonstrated.
"This Is the Best Lesson Ever, Miss...": Disrupting Linear Logics of Visual Arts Teaching Practice
ERIC Educational Resources Information Center
Mitchell, Donna Mathewson
2016-01-01
Research in visual arts education is often focused on philosophical issues or broad concerns related to approaches to curriculum. In focusing on the everyday work of teaching, this article addresses a gap in the literature to report on collaborative research exploring the experiences of secondary visual arts teachers in regional New South Wales,…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rosnitskiy, P., E-mail: pavrosni@yandex.ru; Yuldashev, P., E-mail: petr@acs366.phys.msu.ru; Khokhlova, V., E-mail: vera@acs366.phys.msu.ru
2015-10-28
An equivalent source model was proposed as a boundary condition to the nonlinear parabolic Khokhlov-Zabolotskaya (KZ) equation to simulate high intensity focused ultrasound (HIFU) fields generated by medical ultrasound transducers with the shape of a spherical shell. The boundary condition was set in the initial plane; the aperture, the focal distance, and the initial pressure of the source were chosen based on the best match of the axial pressure amplitude and phase distributions in the Rayleigh integral analytic solution for a spherical transducer and the linear parabolic approximation solution for the equivalent source. Analytic expressions for the equivalent source parametersmore » were derived. It was shown that the proposed approach allowed us to transfer the boundary condition from the spherical surface to the plane and to achieve a very good match between the linear field solutions of the parabolic and full diffraction models even for highly focused sources with F-number less than unity. The proposed method can be further used to expand the capabilities of the KZ nonlinear parabolic equation for efficient modeling of HIFU fields generated by strongly focused sources.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Granita, E-mail: granitafc@gmail.com; Bahar, A.
This paper discusses on linear birth and death with immigration and emigration (BIDE) process to stochastic differential equation (SDE) model. Forward Kolmogorov equation in continuous time Markov chain (CTMC) with a central-difference approximation was used to find Fokker-Planckequation corresponding to a diffusion process having the stochastic differential equation of BIDE process. The exact solution, mean and variance function of BIDE process was found.
Acute toxicity to goldfish of mixtures of chloramines, copper, and linear alkylate sulfonate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsai, C.F.; McKee, J.A.
1980-01-01
The toxicity to goldfish (Carassius auratus) of mixtures of chloramines, copper, and linear alkylate sulfonate (LAS) was studied by continuous-flow toxicity tests during an exposure period of 96 hours. The individual toxicities of these three chemicals are either additive or synergistic in mixtures, depending on the rate of toxic action of the individual chemical, the toxicity ratio of the chemicals in the mixtures, and the concentration of the mixtures.
Mixed-Integer Conic Linear Programming: Challenges and Perspectives
2013-10-01
The novel DCCs for MISOCO may be used in branch- and-cut algorithms when solving MISOCO problems. The experimental software CICLO was developed to...perform limited, but rigorous computational experiments. The CICLO solver utilizes continuous SOCO solvers, MOSEK, CPLES or SeDuMi, builds on the open...submitted Fall 2013. Software: 1. CICLO : Integer conic linear optimization package. Authors: J.C. Góez, T.K. Ralphs, Y. Fu, and T. Terlaky
A low-voltage fully balanced CMFF transconductor with improved linearity
NASA Astrophysics Data System (ADS)
Calvo, B.; Celma, S.; Alegre, J. P.; Sanz, M. T.
2007-05-01
This paper presents a new low-voltage pseudo-differential continuous-time CMOS transconductor for wideband applications. The proposed cell is based on a feedforward cancellation of the input common-mode signal and keeps the input common mode voltage constant, while the transconductance is easily tunable through a continuous bias voltage. Linearity is preserved during the tuning process for a moderate range of transconductance values. Simulation results for a 0.35 μm CMOS design show a 1:2 G m tuning range with an almost constant bandwidth over 600 MHz. Total harmonic distortion figures are below -60 dB over the whole range at 10 MHz up to a 200 μA p-p differential output. The proposed cell consumes less than 1.2 mW from a single 2.0 V supply.
A proof of the Woodward-Lawson sampling method for a finite linear array
NASA Technical Reports Server (NTRS)
Somers, Gary A.
1993-01-01
An extension of the continuous aperture Woodward-Lawson sampling theorem has been developed for a finite linear array of equidistant identical elements with arbitrary excitations. It is shown that by sampling the array factor at a finite number of specified points in the far field, the exact array factor over all space can be efficiently reconstructed in closed form. The specified sample points lie in real space and hence are measurable provided that the interelement spacing is greater than approximately one half of a wavelength. This paper provides insight as to why the length parameter used in the sampling formulas for discrete arrays is larger than the physical span of the lattice points in contrast with the continuous aperture case where the length parameter is precisely the physical aperture length.
Closed-form solution for Eshelby's elliptic inclusion in antiplane elasticity using complex variable
NASA Astrophysics Data System (ADS)
Chen, Y. Z.
2013-12-01
This paper provides a closed-form solution for the Eshelby's elliptic inclusion in antiplane elasticity. In the formulation, the prescribed eigenstarins are not only for the uniform distribution, but also for the linear form. After using the complex variable and the conformal mapping, the continuation condition for the traction and displacement along the interface in the physical plane can be reduced to a condition along the unit circle. The relevant complex potentials defined in the inclusion and the matrix can be separated from the continuation conditions of the traction and displacement along the interface. The expressions of the real strains and stresses in the inclusion from the assumed eigenstrains are presented. Results for the case of linear distribution of eigenstrain are first obtained in the paper.
Formal methods for modeling and analysis of hybrid systems
NASA Technical Reports Server (NTRS)
Tiwari, Ashish (Inventor); Lincoln, Patrick D. (Inventor)
2009-01-01
A technique based on the use of a quantifier elimination decision procedure for real closed fields and simple theorem proving to construct a series of successively finer qualitative abstractions of hybrid automata is taught. The resulting abstractions are always discrete transition systems which can then be used by any traditional analysis tool. The constructed abstractions are conservative and can be used to establish safety properties of the original system. The technique works on linear and non-linear polynomial hybrid systems: the guards on discrete transitions and the continuous flows in all modes can be specified using arbitrary polynomial expressions over the continuous variables. An exemplar tool in the SAL environment built over the theorem prover PVS is detailed. The technique scales well to large and complex hybrid systems.
Electron beam throughput from raster to imaging
NASA Astrophysics Data System (ADS)
Zywno, Marek
2016-12-01
Two architectures of electron beam tools are presented: single beam MEBES Exara designed and built by Etec Systems for mask writing, and the Reflected E-Beam Lithography tool (REBL), designed and built by KLA-Tencor under a DARPA Agreement No. HR0011-07-9-0007. Both tools have implemented technologies not used before to achieve their goals. The MEBES X, renamed Exara for marketing purposes, used an air bearing stage running in vacuum to achieve smooth continuous scanning. The REBL used 2 dimensional imaging to distribute charge to a 4k pixel swath to achieve writing times on the order of 1 wafer per hour, scalable to throughput approaching optical projection tools. Three stage architectures were designed for continuous scanning of wafers: linear maglev, rotary maglev, and dual linear maglev.
NASA Astrophysics Data System (ADS)
Vásquez Lavín, F. A.; Hernandez, J. I.; Ponce, R. D.; Orrego, S. A.
2017-07-01
During recent decades, water demand estimation has gained considerable attention from scholars. From an econometric perspective, the most used functional forms include log-log and linear specifications. Despite the advances in this field and the relevance for policymaking, little attention has been paid to the functional forms used in these estimations, and most authors have not provided justifications for their selection of functional forms. A discrete continuous choice model of the residential water demand is estimated using six functional forms (log-log, full-log, log-quadratic, semilog, linear, and Stone-Geary), and the expected consumption and price elasticity are evaluated. From a policy perspective, our results highlight the relevance of functional form selection for both the expected consumption and price elasticity.
A primary shift rotation nurse scheduling using zero-one linear goal programming.
Huarng, F
1999-01-01
In this study, the author discusses the effect of nurse shift schedules on circadian rhythm and some important ergonomics criteria. The author also reviews and compares different nurse shift scheduling methods via the criteria of flexibility, fairness, continuity in shift assignments, nurses' preferences, and ergonomics principles. In this article, a primary shift rotation system is proposed to provide better continuity in shift assignments to satisfy nurses' preferences. The primary shift rotation system is modeled as a zero-one linear goal programming (LGP) problem. To generate the shift assignment for a unit with 13 nurses, the zero-one LGP model takes less than 3 minutes on average, whereas the head nurses spend approximately 2 to 3 hours on shift scheduling. This study reports the process of implementing the primary shift rotation system.
Kumar, Rajesh; Dogra, Vishal; Rani, Khushbu; Sahu, Kanti
2017-01-01
Background: District level determinants of total fertility rate in Empowered Action Group states of India can help in ongoing population stabilization programs in India. Objective: Present study intends to assess the role of district level determinants in predicting total fertility rate among districts of the Empowered Action Group states of India. Material and Methods: Data from Annual Health Survey (2011-12) was analysed using STATA and R software packages. Multiple linear regression models were built and evaluated using Akaike Information Criterion. For further understanding, recursive partitioning was used to prepare a regression tree. Results: Female married illiteracy positively associated with total fertility rate and explained more than half (53%) of variance. Under multiple linear regression model, married illiteracy, infant mortality rate, Ante natal care registration, household size, median age of live birth and sex ratio explained 70% of total variance in total fertility rate. In regression tree, female married illiteracy was the root node and splits at 42% determined TFR <= 2.7. The next left side branch was again married illiteracy with splits at 23% to determine TFR <= 2.1. Conclusion: We conclude that female married illiteracy is one of the most important determinants explaining total fertility rate among the districts of an Empowered Action Group states. Focus on female literacy is required to stabilize the population growth in long run. PMID:29416999
A low-cost FMCW radar for footprint detection from a mobile platform
NASA Astrophysics Data System (ADS)
Boutte, David; Taylor, Paul; Hunt, Allan
2015-05-01
Footprint and human trail detection in rugged all-weather environments is an important and challenging problem for perimeter security, passive surveillance and reconnaissance. To address this challenge a low-cost, wideband, frequency-modulated continuous wave (FMCW) radar operating at 33.4GHz - 35.5GHz is being developed through a Department of Homeland Security Science and Technology Directorate Phase I SBIR and has been experimentally demonstrated to be capable of detecting footprints and footprint trails on unimproved roads in an experimental setting. It uses a low-cost digital signal processor (DSP) that makes important operating parameters reconfigurable and allows for frequency sweep linearization, a key technique developed to increase footprint signal-to-noise ratio (SNR). This paper discusses the design, DSP implementation and experimental results of a low-cost FMCW radar for mobile footprint detection. A technique for wideband sweep linearization is detailed along with system performance metrics and experimental results showing receive-SNR from footprint trails in sand and on unimproved dirt roads. Results from a second stepped frequency CW (SFCW) Ka-band system are also shown, verifying the ability of both systems to detect footprints and footprint trails in an experimental setting. The results show that there is sufficient receive-SNR to detect even shallow footprints (~1cm) using a radar based detection system in Ka-band. Field experimental results focus on system proof of concept from a static position with mobile results also presented highlighting necessary improvements to both systems.
Deng, Wei Hai; Fredriksen, Per Morten
2018-05-01
The objective was to investigate moderate-to-vigorous physical activity levels (MVPA) of primary school children at baseline of the Health Oriented Pedagogical Project (HOPP), Norway. Data on 2123 children aged 6-12 years were included for analysis (75% participation rate). Average minutes per day in MVPA was objectively measured using accelerometry based on seven-day averages. The sample was analysed for age-, sex-, socioeconomic-, and season-related patterns. A linear regression investigated the moderating effect of these factors as well as body mass index and waist circumference. Some 86.5% of the sample had at least 60 min/day MVPA, averaging 90.7 min/day. The main differences in daily averages were between age groups 6½-9 and 10-12 ( p < .05). Boys (95.8 min/day, 95% CI: 94.1-97.5) were more active than girls (85.6 min/day, 95% CI: 83.9-87.2) in all age groups ( p < .0001). MVPA was lower by 3.5 min ( p < .0001) per additional year of age in the linear regression (R 2 = 0.176) and was reduced by 20 min less per day in MVPA in the winter months compared with the summer months ( p < .0001). Physical activity levels are already in decline from 6-7 years old and are likely to continue to decline into adolescence. Interventions must therefore focus on primary school children.
Spatial patterns of agricultural expansion determine impacts on biodiversity and carbon storage.
Chaplin-Kramer, Rebecca; Sharp, Richard P; Mandle, Lisa; Sim, Sarah; Johnson, Justin; Butnar, Isabela; Milà I Canals, Llorenç; Eichelberger, Bradley A; Ramler, Ivan; Mueller, Carina; McLachlan, Nikolaus; Yousefi, Anahita; King, Henry; Kareiva, Peter M
2015-06-16
The agricultural expansion and intensification required to meet growing food and agri-based product demand present important challenges to future levels and management of biodiversity and ecosystem services. Influential actors such as corporations, governments, and multilateral organizations have made commitments to meeting future agricultural demand sustainably and preserving critical ecosystems. Current approaches to predicting the impacts of agricultural expansion involve calculation of total land conversion and assessment of the impacts on biodiversity or ecosystem services on a per-area basis, generally assuming a linear relationship between impact and land area. However, the impacts of continuing land development are often not linear and can vary considerably with spatial configuration. We demonstrate what could be gained by spatially explicit analysis of agricultural expansion at a large scale compared with the simple measure of total area converted, with a focus on the impacts on biodiversity and carbon storage. Using simple modeling approaches for two regions of Brazil, we find that for the same amount of land conversion, the declines in biodiversity and carbon storage can vary two- to fourfold depending on the spatial pattern of conversion. Impacts increase most rapidly in the earliest stages of agricultural expansion and are more pronounced in scenarios where conversion occurs in forest interiors compared with expansion into forests from their edges. This study reveals the importance of spatially explicit information in the assessment of land-use change impacts and for future land management and conservation.
NASA Astrophysics Data System (ADS)
Ballarini, F.; Alloni, D.; Facoetti, A.; Mairani, A.; Nano, R.; Ottolenghi, A.
Astronauts in space are continuously exposed to low doses of ionizing radiation from Galactic Cosmic Rays During the last ten years the effects of low radiation doses have been widely re-discussed following a large number of observations on the so-called non targeted effects in particular bystander effects The latter consist of induction of cytogenetic damage in cells not directly traversed by radiation most likely as a response to molecular messengers released by directly irradiated cells Bystander effects which are observed both for lethal endpoints e g clonogenic inactivation and apoptosis and for non-lethal ones e g mutations and neoplastic transformation tend to show non-linear dose responses This might have significant consequences in terms of low-dose risk which is generally calculated on the basis of the Linear No Threshold hypothesis Although the mechanisms underlying bystander effects are still largely unknown it is now clear that two types of cellular communication i e via gap junctions and or release of molecular messengers into the extracellular environment play a fundamental role Theoretical models and simulation codes can be of help in elucidating such mechanisms In the present paper we will review different available modelling approaches including one that is being developed at the University of Pavia The focus will be on the different assumptions adopted by the various authors and on the implications of such assumptions in terms of non-targeted radiobiological damage and more generally low-dose
Leveraging prognostic baseline variables to gain precision in randomized trials
Colantuoni, Elizabeth; Rosenblum, Michael
2015-01-01
We focus on estimating the average treatment effect in a randomized trial. If baseline variables are correlated with the outcome, then appropriately adjusting for these variables can improve precision. An example is the analysis of covariance (ANCOVA) estimator, which applies when the outcome is continuous, the quantity of interest is the difference in mean outcomes comparing treatment versus control, and a linear model with only main effects is used. ANCOVA is guaranteed to be at least as precise as the standard unadjusted estimator, asymptotically, under no parametric model assumptions and also is locally semiparametric efficient. Recently, several estimators have been developed that extend these desirable properties to more general settings that allow any real-valued outcome (e.g., binary or count), contrasts other than the difference in mean outcomes (such as the relative risk), and estimators based on a large class of generalized linear models (including logistic regression). To the best of our knowledge, we give the first simulation study in the context of randomized trials that compares these estimators. Furthermore, our simulations are not based on parametric models; instead, our simulations are based on resampling data from completed randomized trials in stroke and HIV in order to assess estimator performance in realistic scenarios. We provide practical guidance on when these estimators are likely to provide substantial precision gains and describe a quick assessment method that allows clinical investigators to determine whether these estimators could be useful in their specific trial contexts. PMID:25872751
Surface wave tomography of Europe from ambient seismic noise
NASA Astrophysics Data System (ADS)
Lu, Yang; Stehly, Laurent; Paul, Anne
2017-04-01
We present a European scale high-resolution 3-D shear wave velocity model derived from ambient seismic noise tomography. In this study, we collect 4 years of continuous seismic recordings from 1293 stations across much of the European region (10˚W-35˚E, 30˚N-75˚N), which yields more than 0.8 million virtual station pairs. This data set compiles records from 67 seismic networks, both permanent and temporary from the EIDA (European Integrated Data Archive). Rayleigh wave group velocity are measured at each station pair using the multiple-filter analysis technique. Group velocity maps are estimated through a linearized tomographic inversion algorithm at period from 5s to 100s. Adaptive parameterization is used to accommodate heterogeneity in data coverage. We then apply a two-step data-driven inversion method to obtain the shear wave velocity model. The two steps refer to a Monte Carlo inversion to build the starting model, followed by a linearized inversion for further improvement. Finally, Moho depth (and its uncertainty) are determined over most of our study region by identifying and analysing sharp velocity discontinuities (and sharpness). The resulting velocity model shows good agreement with main geological features and previous geophyical studies. Moho depth coincides well with that obtained from active seismic experiments. A focus on the Greater Alpine region (covered by the AlpArray seismic network) displays a clear crustal thinning that follows the arcuate shape of the Alps from the southern French Massif Central to southern Germany.
Spatial patterns of agricultural expansion determine impacts on biodiversity and carbon storage
Chaplin-Kramer, Rebecca; Sharp, Richard P.; Mandle, Lisa; Sim, Sarah; Johnson, Justin; Butnar, Isabela; Milà i Canals, Llorenç; Eichelberger, Bradley A.; Ramler, Ivan; Mueller, Carina; McLachlan, Nikolaus; Yousefi, Anahita; King, Henry; Kareiva, Peter M.
2015-01-01
The agricultural expansion and intensification required to meet growing food and agri-based product demand present important challenges to future levels and management of biodiversity and ecosystem services. Influential actors such as corporations, governments, and multilateral organizations have made commitments to meeting future agricultural demand sustainably and preserving critical ecosystems. Current approaches to predicting the impacts of agricultural expansion involve calculation of total land conversion and assessment of the impacts on biodiversity or ecosystem services on a per-area basis, generally assuming a linear relationship between impact and land area. However, the impacts of continuing land development are often not linear and can vary considerably with spatial configuration. We demonstrate what could be gained by spatially explicit analysis of agricultural expansion at a large scale compared with the simple measure of total area converted, with a focus on the impacts on biodiversity and carbon storage. Using simple modeling approaches for two regions of Brazil, we find that for the same amount of land conversion, the declines in biodiversity and carbon storage can vary two- to fourfold depending on the spatial pattern of conversion. Impacts increase most rapidly in the earliest stages of agricultural expansion and are more pronounced in scenarios where conversion occurs in forest interiors compared with expansion into forests from their edges. This study reveals the importance of spatially explicit information in the assessment of land-use change impacts and for future land management and conservation. PMID:26082547
Simple and multiple linear regression: sample size considerations.
Hanley, James A
2016-11-01
The suggested "two subjects per variable" (2SPV) rule of thumb in the Austin and Steyerberg article is a chance to bring out some long-established and quite intuitive sample size considerations for both simple and multiple linear regression. This article distinguishes two of the major uses of regression models that imply very different sample size considerations, neither served well by the 2SPV rule. The first is etiological research, which contrasts mean Y levels at differing "exposure" (X) values and thus tends to focus on a single regression coefficient, possibly adjusted for confounders. The second research genre guides clinical practice. It addresses Y levels for individuals with different covariate patterns or "profiles." It focuses on the profile-specific (mean) Y levels themselves, estimating them via linear compounds of regression coefficients and covariates. By drawing on long-established closed-form variance formulae that lie beneath the standard errors in multiple regression, and by rearranging them for heuristic purposes, one arrives at quite intuitive sample size considerations for both research genres. Copyright © 2016 Elsevier Inc. All rights reserved.
Kröner, Frieder; Hubbuch, Jürgen
2013-04-12
pH gradient protein separations are widely used techniques in the field of protein analytics, of which isoelectric focusing is the most well known application. The chromatographic variant, based on the formation of pH gradients in ion exchange columns is only rarely applied due to the difficulties to form controllable, linear pH gradients over a broad pH range. This work describes a method for the systematic generation of buffer compositions with linear titration curves, resulting in well controllable pH gradients. To generate buffer compositions with linear titration curves an in silico method was successfully developed. With this tool, buffer compositions for pH gradient ion exchange chromatography with pH ranges spanning up to 7.5 pH units were established and successfully validated. Subsequently, the buffer systems were used to characterize the elution behavior of 22 different model proteins in cation and anion exchange pH gradient chromatography. The results of both chromatographic modes as well as isoelectric focusing were compared to describe differences in between the methods. Copyright © 2013 Elsevier B.V. All rights reserved.
Polskaia, Nadia; Richer, Natalie; Dionne, Eliane; Lajoie, Yves
2015-02-01
Research has demonstrated clear advantages of using an external focus of attention in postural control tasks, presumably since it allows a more automatic control of posture to emerge. However, the influence of cognitive tasks on postural stability has produced discordant results. This study aimed to compare the effects of an internal focus of attention, an external focus of attention and a continuous cognitive task on postural control. Twenty healthy participants (21.4±2.6 years) were recruited for this study. They were asked to stand quietly on a force platform with their feet together in three different attentional focus conditions: an internal focus condition (minimizing movements of the hips), an external focus condition (minimizing movements of markers placed on the hips) and a cognitive task condition (silently counting the total number of times a single digit was verbalized in a 3-digit sequence comprised of 30 numbers). Results demonstrated improved stability while performing the cognitive task as opposed to the internal and external focus conditions, as evidenced by a reduction in sway area, sway variability in the anterior-posterior (AP) and medial-lateral (ML) directions, and mean velocity (ML only). Results suggest that the use of a continuous cognitive task permits attention to be withdrawn from the postural task, thereby facilitating a more automatic control of posture. Copyright © 2014 Elsevier B.V. All rights reserved.
Non-modal linear stability analysis of thin film spreading by Marangoni stresses
NASA Astrophysics Data System (ADS)
Fischer, Benjamin John
The spontaneous spreading and stability characteristics of a thin Newtonian liquid film partially coated by an insoluble surfactant monolayer are investigated in this thesis. Thin films sheared by Marangoni stresses ire characterized by film thinning in the upstream region near the terminating edge of the initial monolayer and an advancing ridge further downstream. For sufficiently thin films, experiments have shown there develops dendritic fingering patterns upstream of the ridge. To probe the mechanisms responsible for unstable flow, a non-modal linear stability analysis is required because the base-states describing these flows are space and time-dependent. A new measure of disturbance amplification is introduced, based on the relative kinetic energy of the perturbations to the base-states, to analyze surfactant monolayers spreading either from a finite or infinite source. These studies reveal that disturbance amplification is most significant in highly curved regions of the film characterized by a large: change in the shear stress, which can develop at the advancing ridge and at the edge of the initial monolayer. For spreading from both a finite and infinite source, disturbances that convect through the ridge undergo transient amplification but eventually decay to restore film stability. By contrast, disturbances that localize to the thinned region undergo sustained amplification when surfactant is continuously supplied to the liquid film thereby promoting film instability. By focusing on these susceptible regions, the relevant evolution equations are simplified to extract more information about the mechanism leading to instability. The length-scale controlling these "inner" regions represents the balance of viscous, capillary and Marangoni stresses. Simplification of these equations allows identification of steady travelling wave solutions whose linearized stability behavior shows that a flat film subject to a jump increase in shear stress is asymptotically unstable. This thesis concludes by comparing recent experiments in our laboratory of a droplet of low surface tension liquid (oleic acid) spreading on a thin Newtonian film (glycerol) before the onset of instability with numerical simulations. Similar power law behavior for the ridge advance and qualitatively similar film profiles shapes occur when the simulations utilize a non-linear equation of state for the surfactant monolayer.
Li, Deyong; Zhang, Yawei; Cui, Zhenliang; He, Liwen; Chen, Wanbao; Meng, Qingxiang; Ren, Liping
2016-01-01
The objective of this study was to evaluate the effects of supplementation of phytoecdysteroids (PEDS) extracted from Cyanotis arachnoidea on rumen fermentation, enzymes activity and microbial efficiency in a dual flow continuous-culture system. A single-factor experimental design was used with twelve fermenters in 4 groups with 3 replicates each. Fermenters were incubated for a total of 7 days that included first 4 days for adaptation and last 3 days for sampling. PEDS was added at levels of zero (as control), 5, 10, and 15 mg/g of the substrate (DM). The results showed that increasing supplementation levels of PEDS resulted in incremental digestibility of dry matter (DMD) (quadratic, P = 0.001) and organic matter (OMD) (quadratic, P = 0.031), but unchanged digestibility of neutral detergent fiber (NDFD), crude protein (CPD) and acid detergent acid (ADFD). As supplementation levels of PEDS increased, there were decreased response in the concentration of ammonia nitrogen (NH3-N) (linear, P = 0.015) and increased response in molar proportions of butyrate (linear, P = 0.004), but unchanged response in total volatile fatty acid (TVFA) and the molar proportion of acetate and propionate, respectively. Increasing PEDS supplementation levels decreased the ratio of acetate to propionate (linear, P = 0.038), suggesting an alteration of rumen fermentation pattern occurring due to PEDS supplementation in the diet. Supplementation of PEDS significantly increased activities of glutamate dehydrogenase (quadratic, P = 0.001), alanine dehydrogenase (quadratic, P = 0.004), glutamate synthase (linear, P = 0.038), glutamine synthetase (quadratic, P = 0.011), respectively. There were no discernible differences in the activity of carboxymethyl cellulose (CMCase), xylanase and protease regardless of the treatments. The daily production of microbial nitrogen (linear, P = 0.002) and microbial efficiency (MOEEF) (linear, P = 0.001) increased linearly as supplementation levels of PEDS increased. The decreased response of fluid NH3-N and the increased response of MN indicated that PEDS positively increased the synthesis of microbial proteins.
Some comparisons of complexity in dictionary-based and linear computational models.
Gnecco, Giorgio; Kůrková, Věra; Sanguineti, Marcello
2011-03-01
Neural networks provide a more flexible approximation of functions than traditional linear regression. In the latter, one can only adjust the coefficients in linear combinations of fixed sets of functions, such as orthogonal polynomials or Hermite functions, while for neural networks, one may also adjust the parameters of the functions which are being combined. However, some useful properties of linear approximators (such as uniqueness, homogeneity, and continuity of best approximation operators) are not satisfied by neural networks. Moreover, optimization of parameters in neural networks becomes more difficult than in linear regression. Experimental results suggest that these drawbacks of neural networks are offset by substantially lower model complexity, allowing accuracy of approximation even in high-dimensional cases. We give some theoretical results comparing requirements on model complexity for two types of approximators, the traditional linear ones and so called variable-basis types, which include neural networks, radial, and kernel models. We compare upper bounds on worst-case errors in variable-basis approximation with lower bounds on such errors for any linear approximator. Using methods from nonlinear approximation and integral representations tailored to computational units, we describe some cases where neural networks outperform any linear approximator. Copyright © 2010 Elsevier Ltd. All rights reserved.
Mylvaganam, Saba
2018-01-01
This paper presents a concept for soft field tomographic scan of all the projections of electromagnetic waves emanating from an array of electrodes. Instead of the sequential excitation of all pairs of electrodes in the list of all projections, the new method present here consists of a single and continuous excitation. This excitation signal is the linear combination of the excitation signals in the projection set at different AC frequencies. The response to a given projection is discriminated by selecting the corresponding AC frequency component in the signal spectra of the digitally demodulated signals. The main advantage of this method is the suppression of transients after each projection, which is particularly problematic in electrical impedance tomography due to contact impedance phenomena and skin effect. The second benefit over the sequential scan method is the increased number of samples for each measurement for reduced noise sensitivity with digital demodulation. The third benefit is the increased temporal resolution in high-speed applications. The main drawback is the increased number of signal sources required (one per electrode). This paper focuses on electrical impedance tomography, based on earlier work by the authors. An experimental proof-of-concept using a simple 4-electrodes electrical impedance tomographic system is presented using simulations and laboratory data. The method presented here may be extended to other modalities (ultrasonic, microwave, optical, etc.). PMID:29597327
Calorimetry of electron beams and the calibration of dosimeters at high doses
NASA Astrophysics Data System (ADS)
Humphreys, J. C.; McLaughlin, W. L.
Graphite or metal calorimeters are used to make absolute dosimetric measurements of high-energy electron beams. These calibrated beams are then used to calibrate several types of dosimeters for high-dose applications such as medical-product sterilization, polymer modification, food processing, or electronic-device hardness testing. The electron beams are produced either as continuous high-power beams at approximately 4.5 MeV by d.c. type accelerators or in the energy range of approximately 8 to 50 MeV using pulsed microwave linear accelerators (linacs). The continuous beams are generally magnetically scanned to produce a broad, uniform radiation environment for the processing of materials of extended lateral dimensions. The higher-energy pulsed beams may also be scanned for processing applications or may be used in an unscanned, tightly-focused mode to produce maximum absorbed dose rates such as may be required for electronic-device radiation hardness testing. The calorimeters are used over an absorbed dose range of 10 2 to 10 4 Gy. Intercomparison studies are reported between National Institute of Standards and Technology (NIST) and UK National Physical Laboratory (NPL) graphite disk calorimeters at high doses, using the NPL 10-MeV linac, and agreement was found within 1.5%. It was also shown that the electron-beam responses of radiochromic film dosimeters and alanine pellet dosimeters can be accurately calibrated by comparison with calorimeter readings.
Gonçalves, Thaís Dos Santos; Crenitte, Patrícia Abreu Pinheiro
2011-01-01
Distance education has emerged to minimize the anxiety of many professionals who need to update their knowledge, but do not have the time and opportunity to travel to educational centers. To describe the development of a CD-ROM to provide distance continuing education to basic school teachers that addresses issues related to written language. Previously, a script was developed with themes related to the acquisition and development of written language. Subsequently, a technical team transformed the texts in multimedia language. The titles of each content area addressed are available on buttons and links. The files can be viewed in a linear sequence, allowing the teacher to start learning at the desired moment and go straight to the file that he or she wants to access. Videos that show practical applications of the concepts available in text are included. Brazil is a developing country. The use of technologies for education reduces cultural isolation among education professionals. It is necessary to focus on making teaching materials for distance education. In order to provide an effective learning environment, the learners reality should be considered. A multidisciplinary team should prepare the materials. The development of educational material for distance education on the acquisition and development of written language seems not only appropriate, but also warranted to provide professional growth opportunity for teachers who need time flexibility and/or live far away from academic centers.
Machine learning for fab automated diagnostics
NASA Astrophysics Data System (ADS)
Giollo, Manuel; Lam, Auguste; Gkorou, Dimitra; Liu, Xing Lan; van Haren, Richard
2017-06-01
Process optimization depends largely on field engineer's knowledge and expertise. However, this practice turns out to be less sustainable due to the fab complexity which is continuously increasing in order to support the extreme miniaturization of Integrated Circuits. On the one hand, process optimization and root cause analysis of tools is necessary for a smooth fab operation. On the other hand, the growth in number of wafer processing steps is adding a considerable new source of noise which may have a significant impact at the nanometer scale. This paper explores the ability of historical process data and Machine Learning to support field engineers in production analysis and monitoring. We implement an automated workflow in order to analyze a large volume of information, and build a predictive model of overlay variation. The proposed workflow addresses significant problems that are typical in fab production, like missing measurements, small number of samples, confounding effects due to heterogeneity of data, and subpopulation effects. We evaluate the proposed workflow on a real usecase and we show that it is able to predict overlay excursions observed in Integrated Circuits manufacturing. The chosen design focuses on linear and interpretable models of the wafer history, which highlight the process steps that are causing defective products. This is a fundamental feature for diagnostics, as it supports process engineers in the continuous improvement of the production line.
Array Phase Shifters: Theory and Technology
NASA Technical Reports Server (NTRS)
Romanofsky, Robert R.
2007-01-01
While there are a myriad of applications for microwave phase shifters in instrumentation and metrology, power combining, amplifier linearization, and so on, the most prevalent use is in scanning phased-array antennas. And while this market continues to be dominated by military radar and tracking platforms, many commercial applications have emerged in the past decade or so. These new and potential applications span low-Earth-orbit (LEO) communications satellite constellations and collision warning radar, an aspect of the Intelligent Vehicle Highway System or Automated Highway System. In any case, the phase shifters represent a considerable portion of the overall antenna cost, with some estimates approaching 40 percent for receive arrays. Ferrite phase shifters continue to be the workhorse in military-phased arrays, and while there have been advances in thin film ferrite devices, the review of this device technology in the previous edition of this book is still highly relevant. This chapter will focus on three types of phase shifters that have matured in the past decade: GaAs MESFET monolithic microwave integrated circuit (MMIC), micro-electromechanical systems (MEMS), and thin film ferroelectric-based devices. A brief review of some novel devices including thin film ferrite phase shifters and superconducting switches for phase shifter applications will be provided. Finally, the effects of modulo 2 phase shift limitations, phase errors, and transient response on bit error rate degradation will be considered.
Separating Mass and Height Contributions in Gravity Variations at Medicina, Italy
NASA Astrophysics Data System (ADS)
Zerbini, S.; Bruni, S.; Errico, M.; Santi, E.; Wziontek, H.
2016-12-01
During 1996, at the Medicina station, a GPS and a superconducting gravimeter (SG) were installed in the framework of an experiment focused on the comparison between height and gravity variations. Absolute gravity observations are also performed twice a year and environmental parameters, among others water table levels, are recorded continuously. The station is also equipped with a second GPS system, the two antennas are very close to each other, and both are located in close proximity to the VLBI dish. Two decades of continuous height and gravity observations are now available which allow investigating both long and short period signals and the relevant correlations between the two measured quantities. Long period signatures are observed, a principal component is due to subsidence which is well known to occur in the area; however, also non-linear long-period behaviors are observed. Seasonal effects are also clearly recognizable in the time series and are mainly associated with the water table seasonal behavior. The station is characterized by clayey soil which is subject to consolidation effects when the water table lowers during the summer period. This effect is particularly recognizable in the SG data since the instrument is installed on a shallow foundation pillar which may suffer for height decreases in the order of 2,5-3 cm for water table lowering of 2 m.
On a family of nonoscillatory equations y double prime = phi(x)y
NASA Technical Reports Server (NTRS)
Gingold, H.
1988-01-01
The oscillation or nonoscillation of a class of second-order linear differential equations is investigated analytically, with a focus on cases in which the functions phi(x) and y are complex-valued. Two linear transformations are introduced, and an asymptotic-decomposition procedure involving Shur triangularization is applied. The relationship of the present analysis to the nonoscillation criterion of Kneser (1896) and other more recent results is explored in two examples.
R&D status of linear collider technology at KEK
NASA Astrophysics Data System (ADS)
Urakawa, Junji
1992-02-01
This paper gives an outline of the Japan Linear Collider (JLC) project, especially JLC-I. The status of the various R&D works is particularly presented for the following topics: (1) electron and positron sources, (2) S-band injector linacs, (3) damping rings, (4) high power klystrons and accelerating structures, (5) the final focus system. Finally, the status of the construction and design studies for the Accelerator Test Facility (ATF) is summarized.
Interpretation of commonly used statistical regression models.
Kasza, Jessica; Wolfe, Rory
2014-01-01
A review of some regression models commonly used in respiratory health applications is provided in this article. Simple linear regression, multiple linear regression, logistic regression and ordinal logistic regression are considered. The focus of this article is on the interpretation of the regression coefficients of each model, which are illustrated through the application of these models to a respiratory health research study. © 2013 The Authors. Respirology © 2013 Asian Pacific Society of Respirology.
First heavy ion beam tests with a superconducting multigap CH cavity
NASA Astrophysics Data System (ADS)
Barth, W.; Aulenbacher, K.; Basten, M.; Busch, M.; Dziuba, F.; Gettmann, V.; Heilmann, M.; Kürzeder, T.; Miski-Oglu, M.; Podlech, H.; Rubin, A.; Schnase, A.; Schwarz, M.; Yaramyshev, S.
2018-02-01
Very compact accelerating-focusing structures, as well as short focusing periods, high accelerating gradients and short drift spaces are strongly required for superconducting (sc) accelerator sections operating at low and medium energies for continuous wave (cw) heavy ion beams. To keep the GSI-super heavy element (SHE) program competitive on a high level and even beyond, a standalone sc cw linac (Helmholtz linear accelerator) in combination with the GSI high charge state injector (HLI), upgraded for cw operation, is envisaged. Recently the first linac section (financed by Helmholtz Institute Mainz (HIM) and GSI) as a demonstration of the capability of 217 MHz multigap crossbar H-mode structures (CH) has been commissioned and extensively tested with heavy ion beam from the HLI. The demonstrator setup reached acceleration of heavy ions up to the design beam energy. The required acceleration gain was achieved with heavy ion beams even above the design mass to charge ratio at high beam intensity and full beam transmission. This paper presents systematic beam measurements with varying rf amplitudes and phases of the CH cavity, as well as phase space measurements for heavy ion beams with different mass to charge ratio. The worldwide first and successful beam test with a superconducting multigap CH cavity is a milestone of the R&D work of HIM and GSI in collaboration with IAP in preparation of the HELIAC project and other cw-ion beam applications.
Reichert Award Talk: Preparing Physics Students in an Era of Virtual Reality
NASA Astrophysics Data System (ADS)
Akerlof, Carl; Torres-Isea, Ramón
2015-03-01
Like many other institutions with a large and active faculty, the University of Michigan Physics Department has a rich curriculum of undergraduate courses that focus on the use of 19th Century mathematics to understand the behavior of matter and energy. Most people who have pursued a career in this field appreciate that success usually depends on a much wider variety of skills. Addressing those needs has been the major emphasis of our undergraduate advanced lab program. This covers a broad range of topics. First of all, physics will continue to enlarge its encroachment into new areas. Thus, we have added experiments in radio astrophysics and non-linear dynamics. Computational and statistical methods are integrated into the experiments as appropriate and development of effective communication skills is heavily stressed. While there are efforts elsewhere to replace traditional hands- on experimentation with simulations, interactive video-based laboratory modules, and remotely controlled laboratory experiments, we consider these tools to be appropriate only for pre-lab and post-lab activities. None of these tools can provide the long-lasting experimental skills and knowledge-packed memories that a well-designed teaching experiment can. Hence, we choose to focus on providing a comprehensive list of experiments in a safe, well-equipped, teaching environment. The overall guiding principle is to provide a multi-faceted introduction to a rewarding career in science.
Implementing interorganizational cooperation in labour market reintegration: a case study.
Ståhl, Christian
2012-06-01
To bring people with complex medical, social and vocational needs back to the labour market, interorganizational cooperation is often needed. Yet, studies of processes and strategies for achieving sustainable interorganizational cooperation are sparse. The aim of this study was to analyse the implementation processes of Swedish legislation on financial coordination, with specific focus on different strategies for and perspectives on implementing interorganizational cooperation. A multiple-case study was used, where two local associations for financial coordination were studied in order to elucidate and compare the development of cooperative work in two settings. The material, collected during a 3-year period, consisted of documents, individual interviews with managers, and focus groups with officials. Two different implementation strategies were identified. In case 1, a linear strategy was used to implement cooperative projects, which led to difficulties in maintaining cooperative work forms due to a fragmented and time-limited implementation process. In case 2, an interactive strategy was used, where managers and politicians were continuously involved in developing a central cooperation team that became a central part of a developing structure for interorganizational cooperation. An interactive cooperation strategy with long-term joint financing was here shown to be successful in overcoming organizational barriers to cooperation. It is suggested that a strategy based on adaptation to local conditions, flexibility and constant evaluation is preferred for developing sustainable interorganizational cooperation when implementing policies or legislation affecting interorganizational relationships.
Exact folded-band chaotic oscillator.
Corron, Ned J; Blakely, Jonathan N
2012-06-01
An exactly solvable chaotic oscillator with folded-band dynamics is shown. The oscillator is a hybrid dynamical system containing a linear ordinary differential equation and a nonlinear switching condition. Bounded oscillations are provably chaotic, and successive waveform maxima yield a one-dimensional piecewise-linear return map with segments of both positive and negative slopes. Continuous-time dynamics exhibit a folded-band topology similar to Rössler's oscillator. An exact solution is written as a linear convolution of a fixed basis pulse and a discrete binary sequence, from which an equivalent symbolic dynamics is obtained. The folded-band topology is shown to be dependent on the symbol grammar.
2015-11-16
Dantu crater on Ceres, seen here at left, reveals structures hinting at tectonic processes that formed the dwarf planet's surface. Linear structures are spread over the crater floor. Outside the crater's rim, the occurrence of linear structures continues the in form of scarps (linear, cliff-like slopes) and ridges. Dantu's diameter is 78 miles (125 kilometers). The image was taken by NASA's Dawn spacecraft on Oct. 3, 2015, from an altitude of 915 miles (1,470 kilometers). It has a resolution of 450 feet (140 meters) per pixel. The image is located at 31 degrees north latitude, 149 degrees east longitude. http://photojournal.jpl.nasa.gov/catalog/PIA20122
Design of linear quadratic regulators with eigenvalue placement in a specified region
NASA Technical Reports Server (NTRS)
Shieh, Leang-San; Zhen, Liu; Coleman, Norman P.
1990-01-01
Two linear quadratic regulators are developed for placing the closed-loop poles of linear multivariable continuous-time systems within the common region of an open sector, bounded by lines inclined at +/- pi/2k (for a specified integer k not less than 1) from the negative real axis, and the left-hand side of a line parallel to the imaginary axis in the complex s-plane, and simultaneously minimizing a quadratic performance index. The design procedure mainly involves the solution of either Liapunov equations or Riccati equations. The general expression for finding the lower bound of a constant gain gamma is also developed.