Soil organic carbon and land use in Veneto and Friuli Venezia Giulia (Northern Italy)
NASA Astrophysics Data System (ADS)
Francaviglia, Rosa; Renzi, Gianluca; Benedetti, Anna
2014-05-01
The Italian Ministry of Agricultural Food and Forestry Policies (MiPAAF) has set up a statistical survey aimed to provide the national forecast of yields and areas related to the main Italian agricultural crops (AGRIT). The methodology is based on field surveys and remote-sensed data, covers yearly the whole national territory, and is based on 100,000 observations which are statistically selected from a predefined grid made up of about 1,200,000 georeferenced points. In 2011-2012 we determined the soil organic carbon content (SOC) of 1,160 sampling points situated in Northern Italy in the plains and hills of Veneto (VEN) and Friuli Venezia Giulia (FVG), for which the land use in the period 2008-2010 was known. Samples have been subdivided in three main classes: arable crops, orchards and fodder crops. SOC was higher in FVG samples (2.48%, n=266) than in VEN samples (1.90%, n=894). The average value (2.03%) is clearly affected by the higher number of VEN samples. FVG data have been aggregated in continuous crops (maize, soybean, wheat), 2-yr rotations (maize-wheat, soybean wheat, maize-soybean), 3-yr rotations, vineyards (totally, partially and no-grassed), alfalfa, and permanent fodder crops. No significant differences were detected among the land uses due to the low number of samples in some classes, but some important findings do exist from the agronomic point of view. Fodder crops (5.65%), alfalfa (3.41%) and vineyards (2.72%) showed the higher SOC content. SOC was 2.94% and 1.39 % in the grassed and no-grassed vineyards respectively. In the arable crops the average SOC was 2.18%, ranging from 2.32% (soybean-wheat rotation) to 2.03% (continuous soybean). SOC was 2.19% in the continuous maize, with 2.23% in corn and 1.87% in silage maize. The lower values were in the maize-wheat rotation (1.53%) and the continuous wheat (1.47%). VEN data have been aggregated in continuous crops (maize, soybean and wheat), 2-yr rotations (maize-wheat, soybean-wheat, maize-soybean, soybean-alfalfa, wheat-alfalfa, maize-alfalfa), 3-yr rotations, orchards (mulched, totally, partially and no-grassed), alfalfa, permanent fodder crops, and land use change (from arable to fodder crops and vice versa). The mean value was 1.57% in arable crops, 2.46% in orchards (including vineyards, olive groves, and fruit crops), 3.13% in fodder crops. SOC in orchards was 1.82% (no grassed), 2.46% (grassed), 2.69% (mulched); 2.10 and 2.08% in the 2-yr rotations soybean-wheat and soybean-alfalfa respectively. SOC in the other arable crops was between 1.79% (land use change) and 1.37% (continuous soybean). A higher SOC was shown in VEN samples also when comparing continuous corn (1.69%) and continuous silage maize (1.43%). Data, even limited to two Regions, have clearly shown the positive contribution to SOC storage of orchards (mainly in grassed and mulched systems) and fodder crops, which are more conservative systems due to the lower soil disturbance from tillage operations; and to a lower extent of cropping systems with alfalfa or other legume crops.
Usman Anwar; Lisa A. Schulte; Matthew Helmers; Randall K. Kolka
2017-01-01
Understanding the environmental impact of bioenergy crops is needed to inform bioenergy policy development. We determined the effects of five biomass cropping systemsâcontinuous maize (Zea mays), soybean (Glycine max)-triticale (Triticosecale Ã)/soybean-maize, maize-switchgrass (Panicum virgatum...
USDA-ARS?s Scientific Manuscript database
Nitrogen fertilizer is critical to optimize short-term crop yield, but its long-term effect on soil organic C (SOC) is actively debated. Using 60 site-years of maize (Zea mays L.) yield response to a wide range of N fertilizer rates in continuous maize and annually rotated maize-soybean [Glycine max...
USDA-ARS?s Scientific Manuscript database
On a land area and production basis, maize represents the majority of the crops that form the largest continuous ecosystem in temperate North America. Thus, any influence of atmospheric changes on maize is likely to have an impact on the region’s hydrological cycle. As a C4 crop, photosynthesis in ...
Recent patterns of crop yield growth and stagnation.
Ray, Deepak K; Ramankutty, Navin; Mueller, Nathaniel D; West, Paul C; Foley, Jonathan A
2012-01-01
In the coming decades, continued population growth, rising meat and dairy consumption and expanding biofuel use will dramatically increase the pressure on global agriculture. Even as we face these future burdens, there have been scattered reports of yield stagnation in the world's major cereal crops, including maize, rice and wheat. Here we study data from ∼2.5 million census observations across the globe extending over the period 1961-2008. We examined the trends in crop yields for four key global crops: maize, rice, wheat and soybeans. Although yields continue to increase in many areas, we find that across 24-39% of maize-, rice-, wheat- and soybean-growing areas, yields either never improve, stagnate or collapse. This result underscores the challenge of meeting increasing global agricultural demands. New investments in underperforming regions, as well as strategies to continue increasing yields in the high-performing areas, are required.
Effect of intercropping period management on runoff and erosion in a maize cropping system.
Laloy, Eric; Bielders, C L
2010-01-01
The management of winter cover crops is likely to influence their performance in reducing runoff and erosion during the intercropping period that precedes spring crops but also during the subsequent spring crop. This study investigated the impact of two dates of destruction and burial of a rye (Secale cereale L.) and ryegrass (Lolium multiflorum Lam.) cover crop on runoff and erosion, focusing on a continuous silage maize (Zea mays L.) cropping system. Thirty erosion plots with various intercrop management options were monitored for 3 yr at two sites. During the intercropping period, cover crops reduced runoff and erosion by more than 94% compared with untilled, post-maize harvest plots. Rough tillage after maize harvest proved equally effective as a late sown cover crop. There was no effect of cover crop destruction and burial dates on runoff and erosion during the intercropping period, probably because rough tillage for cover crop burial compensates for the lack of soil cover. During two of the monitored maize seasons, it was observed that plots that had been covered during the previous intercropping period lost 40 to 90% less soil compared with maize plots that had been left bare during the intercropping period. The burial of an aboveground cover crop biomass in excess of 1.5 t ha(-1) was a necessary, yet not always sufficient, condition to induce a residual effect. Because of the possible beneficial residual effect of cover crop burial on erosion reduction, the sowing of a cover crop should be preferred over rough tillage after maize harvest.
Naab, Jesse B.; Mahama, George Y.; Yahaya, Iddrisu; Prasad, P. V. V.
2017-01-01
Conservation agriculture (CA) practices are being widely promoted in many areas in sub-Saharan Africa to recuperate degraded soils and improve ecosystem services. This study examined the effects of three tillage practices [conventional moldboard plowing (CT), hand hoeing (MT) and no-tillage (NT)], and three cropping systems (continuous maize, soybean–maize annual rotation, and soybean/maize intercropping) on soil quality, crop productivity, and profitability in researcher and farmer managed on-farm trials from 2010 to 2013 in northwestern Ghana. In the researcher managed mother trial, the CA practices of NT, residue retention and crop rotation/intercropping maintained higher soil organic carbon, and total soil N compared to conventional tillage practices after 4 years. Soil bulk density was higher under NT than under CT soils in the researcher managed mother trails or farmers managed baby trials after 4 years. In the researcher managed mother trial, there was no significant difference between tillage systems or cropping systems in maize or soybean yields in the first three seasons. In the fourth season, crop rotation had the greatest impact on maize yields with CT maize following soybean increasing yields by 41 and 49% compared to MT and NT maize, respectively. In the farmers’ managed trials, maize yield ranged from 520 to 2700 kg ha-1 and 300 to 2000 kg ha-1 for CT and NT, respectively, reflecting differences in experience of farmers with NT. Averaged across farmers, CT cropping systems increased maize and soybean yield ranging from 23 to 39% compared with NT cropping systems. Partial budget analysis showed that the cost of producing maize or soybean is 20–29% cheaper with NT systems and gives higher returns to labor compared to CT practice. Benefit-to-cost ratios also show that NT cropping systems are more profitable than CT systems. We conclude that with time, implementation of CA practices involving NT, crop rotation, intercropping of maize and soybean along with crop residue retention presents a win–win scenario due to improved crop yield, increased economic return, and trends of increasing soil fertility. The biggest challenge, however, remains with producing enough biomass and retaining same on the field. PMID:28680427
NASA Astrophysics Data System (ADS)
Miller, J. N.; Black, C. K.; Bernacchi, C.
2014-12-01
Global demand for renewable energy is accelerating land conversion from common row crops such as maize and soybean to cellulosic biofuel crops such as miscanthus and switchgrass. This land conversion is expected to alter ecohydrology via changes in evapotranspiration (ET). However, the direction in which evapotranspiration will shift, either partitioning more moisture through soil evaporation (E) or through plant transpiration (T) is uncertain. To investigate how land conversion from maize to miscanthus affects ET partitioning we measured the isotopic composition of water vapor via continuous air sampling. We obtained continuous diurnal measurements of δ2H and δ18O for miscanthus and maize on multiple days over the course of the growing season. Water vapor isotopes drawn from two heights were measured at 2 Hz using a cavity ringdown spectrometer and partitioned into components of E and T using a simple mixing equation. A second approach to partitioning was accomplished by subtracting transpiration measurements, obtained through sap flow sensors, from total ET, measured via eddy covariance. Preliminary results reveal that both methods compare favorably and that transpiration dominates variations in ET in miscanthus fields more so than in fields of maize.
Residual soil nitrate content and profitability of five cropping systems in northwest Iowa
Schuiteman, Matthew A.; Vos, Ronald J.
2017-01-01
Many communities in the Midwestern United States obtain their drinking water from shallow alluvial wells that are vulnerable to contamination by NO3-N from the surrounding agricultural landscape. The objective of this research was to assess cropping systems with the potential to produce a reasonable return for farmers while simultaneously reducing the risk of NO3-N movement into these shallow aquifers. From 2009 to 2013 we conducted a field experiment in northwest Iowa in which we evaluated five cropping systems for residual (late fall) soil NO3-N content and profitability. Soil samples were taken annually from the top 30 cm of the soil profile in June and August, and from the top 180 cm in November (late fall). The November samples were divided into 30 cm increments for analysis. Average residual NO3-N content in the top 180 cm of the soil profile following the 2010 to 2013 cropping years was 134 kg ha-1 for continuous maize (Zea mays L.) with a cereal rye (Secale cereale L.) cover crop, 18 kg ha-1 for perennial grass, 60 kg ha-1 for a three year oat (Avena sativa L.)-alfalfa (Medicago sativa L.)-maize rotation, 85 kg ha-1 for a two year oat/red clover (Trifolium pratense L.)-maize rotation, and 90 kg ha-1 for a three year soybean (Glycine max (L.) Merr.)-winter wheat (Triticum aestivum L.)-maize rotation. However, residual NO3-N in the 90 to 180 cm increment of the soil profile was not significantly higher in the oat-alfalfa-maize cropping system than the perennial grass system. For 2010 to 2013, average profit ($ ha-1 yr-1) was 531 for continuous corn, 347 for soybean-winter wheat-maize, 264 for oat-alfalfa-maize, 140 for oat/red clover-maize, and -384 (loss) for perennial grass. Considering both residual soil NO3-N and profitability data, the oat-alfalfa-maize rotation performed the best in this setting. However, given current economic pressures widespread adoption is likely to require changes in public policy. PMID:28248976
Residual soil nitrate content and profitability of five cropping systems in northwest Iowa.
De Haan, Robert L; Schuiteman, Matthew A; Vos, Ronald J
2017-01-01
Many communities in the Midwestern United States obtain their drinking water from shallow alluvial wells that are vulnerable to contamination by NO3-N from the surrounding agricultural landscape. The objective of this research was to assess cropping systems with the potential to produce a reasonable return for farmers while simultaneously reducing the risk of NO3-N movement into these shallow aquifers. From 2009 to 2013 we conducted a field experiment in northwest Iowa in which we evaluated five cropping systems for residual (late fall) soil NO3-N content and profitability. Soil samples were taken annually from the top 30 cm of the soil profile in June and August, and from the top 180 cm in November (late fall). The November samples were divided into 30 cm increments for analysis. Average residual NO3-N content in the top 180 cm of the soil profile following the 2010 to 2013 cropping years was 134 kg ha-1 for continuous maize (Zea mays L.) with a cereal rye (Secale cereale L.) cover crop, 18 kg ha-1 for perennial grass, 60 kg ha-1 for a three year oat (Avena sativa L.)-alfalfa (Medicago sativa L.)-maize rotation, 85 kg ha-1 for a two year oat/red clover (Trifolium pratense L.)-maize rotation, and 90 kg ha-1 for a three year soybean (Glycine max (L.) Merr.)-winter wheat (Triticum aestivum L.)-maize rotation. However, residual NO3-N in the 90 to 180 cm increment of the soil profile was not significantly higher in the oat-alfalfa-maize cropping system than the perennial grass system. For 2010 to 2013, average profit ($ ha-1 yr-1) was 531 for continuous corn, 347 for soybean-winter wheat-maize, 264 for oat-alfalfa-maize, 140 for oat/red clover-maize, and -384 (loss) for perennial grass. Considering both residual soil NO3-N and profitability data, the oat-alfalfa-maize rotation performed the best in this setting. However, given current economic pressures widespread adoption is likely to require changes in public policy.
Projective analysis of staple food crop productivity in adaptation to future climate change in China
NASA Astrophysics Data System (ADS)
Zhang, Qing; Zhang, Wen; Li, Tingting; Sun, Wenjuan; Yu, Yongqiang; Wang, Guocheng
2017-08-01
Climate change continually affects our capabilities to feed the increasing population. Rising temperatures have the potential to shorten the crop growth duration and therefore reduce crop yields. In the past decades, China has successfully improved crop cultivars to stabilize, and even lengthen, the crop growth duration to make use of increasing heat resources. However, because of the complex cropping systems in the different regions of China, the possibility and the effectiveness of regulating crop growth duration to reduce the negative impacts of future climate change remain questionable. Here, we performed a projective analysis of the staple food crop productivity in double-rice, wheat-rice, wheat-maize, single-rice, and single-maize cropping systems in China using modeling approaches. The results indicated that from the present to the 2040s, the warming climate would shorten the growth duration of the current rice, wheat, and maize cultivars by 2-24, 11-13, and 9-29 days, respectively. The most significant shortening of the crop growth duration would be in Northeast China, where single-rice and single-maize cropping dominates the croplands. The shortened crop growth duration would consequently reduce crop productivity. The most significant decreases would be 27-31, 6-20, and 7-22% for the late crop in the double-rice rotation, wheat in the winter wheat-rice rotation, and single maize, respectively. However, our projection analysis also showed that the negative effects of the warming climate could be compensated for by stabilizing the growth duration of the crops via improvement in crop cultivars. In this case, the productivity of rice, wheat, and maize in the 2040s would increase by 4-16, 31-38, and 11-12%, respectively. Our modeling results implied that the possibility of securing future food production exists by adopting proper adaptation options in China.
Zhang, Qing; Zhang, Wen; Li, Tingting; Sun, Wenjuan; Yu, Yongqiang; Wang, Guocheng
2017-08-01
Climate change continually affects our capabilities to feed the increasing population. Rising temperatures have the potential to shorten the crop growth duration and therefore reduce crop yields. In the past decades, China has successfully improved crop cultivars to stabilize, and even lengthen, the crop growth duration to make use of increasing heat resources. However, because of the complex cropping systems in the different regions of China, the possibility and the effectiveness of regulating crop growth duration to reduce the negative impacts of future climate change remain questionable. Here, we performed a projective analysis of the staple food crop productivity in double-rice, wheat-rice, wheat-maize, single-rice, and single-maize cropping systems in China using modeling approaches. The results indicated that from the present to the 2040s, the warming climate would shorten the growth duration of the current rice, wheat, and maize cultivars by 2-24, 11-13, and 9-29 days, respectively. The most significant shortening of the crop growth duration would be in Northeast China, where single-rice and single-maize cropping dominates the croplands. The shortened crop growth duration would consequently reduce crop productivity. The most significant decreases would be 27-31, 6-20, and 7-22% for the late crop in the double-rice rotation, wheat in the winter wheat-rice rotation, and single maize, respectively. However, our projection analysis also showed that the negative effects of the warming climate could be compensated for by stabilizing the growth duration of the crops via improvement in crop cultivars. In this case, the productivity of rice, wheat, and maize in the 2040s would increase by 4-16, 31-38, and 11-12%, respectively. Our modeling results implied that the possibility of securing future food production exists by adopting proper adaptation options in China.
Soil Water Improvements with the Long Term Use of a Winter Rye Cover Crop
NASA Astrophysics Data System (ADS)
Basche, A.; Kaspar, T.; Archontoulis, S.; Jaynes, D. B.; Sauer, T. J.; Parkin, T.; Miguez, F.
2015-12-01
The Midwestern United States, a region that produces one-third of maize and one-quarter of soybeans globally, is projected to experience increasing rainfall variability with future climate change. One approach to mitigate climate impacts is to utilize crop and soil management practices that enhance soil water storage, reducing the risks of flooding and runoff as well as drought-induced crop water stress. While some research indicates that a winter cover crop in a maize-soybean rotation increases soil water, producers continue to be concerned that water use by cover crops will reduce water for a following cash crop. We analyzed continuous in-field soil moisture measurements over from 2008-2014 at a Central Iowa research site that has included a winter rye cover crop in a maize-soybean rotation for thirteen years. This period of study included years in the top third of wettest years on record (2008, 2010, 2014) as well as years in the bottom third of driest years (2012, 2013). We found the cover crop treatment to have significantly higher soil water storage from 2012-2014 when compared to the no cover crop treatment and in most years greater soil water content later in the growing season when a cover crop was present. We further found that the winter rye cover crop significantly increased the field capacity water content and plant available water compared to the no cover crop treatment. Finally, in 2012 and 2013, we measured maize and soybean biomass every 2-3 weeks and did not see treatment differences in crop growth, leaf area or nitrogen uptake. Final crop yields were not statistically different between the cover and no cover crop treatment in any of the years of this analysis. This research indicates that the long-term use of a winter rye cover crop can improve soil water dynamics without sacrificing cash crop growth.
Conversion to No-Till Improves Maize Nitrogen Use Efficiency in a Continuous Cover Cropping System
Habbib, Hazzar; Verzeaux, Julien; Nivelle, Elodie; Roger, David; Lacoux, Jérôme; Catterou, Manuella; Hirel, Bertrand; Dubois, Frédéric; Tétu, Thierry
2016-01-01
A two-year experiment was conducted in the field to measure the combined impact of tilling and N fertilization on various agronomic traits related to nitrogen (N) use efficiency and to grain yield in maize cultivated in the presence of a cover crop. Four years after conversion to no-till, a significant increase in N use efficiency N harvest index, N remobilization and N remobilization efficiency was observed both under no and high N fertilization conditions. Moreover, we observed that grain yield and grain N content were higher under no-till conditions only when N fertilizers were applied. Thus, agronomic practices based on continuous no-till appear to be a promising for increasing N use efficiency in maize. PMID:27711154
Sorghum - An alternative energy crop for marginal lands and reclamation sites
NASA Astrophysics Data System (ADS)
Lukas, Stefan; Theiß, Markus; Jäkel, Kerstin
2017-04-01
The production of biogas and the associated cultivation of energy crops are still of great importance. Considering increasing restrictions for the cultivation of standard biogas crop maize regarding an environmentally friendly production of biomass, a wider range of energy crops is needed. The cultivation of sorghum can contribute to this. As maize, sorghum is a C4-plant and offers a high biomass yield potential. Originated in the semi-arid tropics, sorghum is well adapted to warm and dry climate and particularly noted for its drought tolerance compared to maize. It also makes few demands on soil quality and shows a good capability of nutrient acquisition. Therefore, particularly on marginal areas and reclamation sites with low soil nutrient and water content sorghum can contribute to secure crop yield and income of farmers. The applied research project aims at and reflects on the establishment of sorghum as a profitable and ecological friendly cropping alternative to maize, especially in the face of probable climate change with increasing risks for agriculture. For this purpose, site differentiated growing and cultivar trials with a standardized planting design as well as several practical on-farm field experiments were conducted. The agronomical and economic results will lead to scientifically based procedures and standards for agricultural practice with respect to cultivation methods (drilling, pest-management, fertilization), cropping sequence and technique, cropping period or position in crop rotation. Even by now there is a promising feedback from the agricultural practice linked with an increasing demand for information. Moreover, the specific cropping area is increasing continuously. Therefore, the leading signs for the establishment of sorghum as profitable alternative to maize biogas production are positive. Sorghum cultures perform best as main crops in the warm D locations in the middle and East German dry areas. Here, the contribution margin differences between maize and sorghum were the least pronounced due to the poorer performance of maize under these site conditions. Furthermore, the comparatively lower land-lease rates in these regions allowed for positive equity capital formation also in sorghum crops.
USDA-ARS?s Scientific Manuscript database
Maize- and prairie-based systems were investigated as cellulosic feedstocks by conducting a 9 ha side-by-side comparison on fertile soils in the Midwestern United States. Maize was grown continuously with adequate fertilization over years both with and without a winter rye cover crop, and the 31-spe...
Higo, Masao; Takahashi, Yuichi; Gunji, Kento; Isobe, Katsunori
2018-03-01
Better cover crop management options aiming to maximize the benefits of arbuscular mycorrhizal fungi (AMF) to subsequent crops are largely unknown. We investigated the impact of cover crop management methods on maize growth performance and assemblages of AMF colonizing maize roots in a field trial. The cover crop treatments comprised Italian ryegrass, wheat, brown mustard and fallow in rotation with maize. The diversity of AMF communities among cover crops used for maize management was significantly influenced by the cover crop and time course. Cover crops did not affect grain yield and aboveground biomass of subsequent maize but affected early growth. A structural equation model indicated that the root colonization, AMF diversity and maize phosphorus uptake had direct strong positive effects on yield performance. AMF variables and maize performance were related directly or indirectly to maize grain yield, whereas root colonization had a positive effect on maize performance. AMF may be an essential factor that determines the success of cover crop rotational systems. Encouraging AMF associations can potentially benefit cover cropping systems. Therefore, it is imperative to consider AMF associations and crop phenology when making management decisions. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
Weed Dynamics during Transition to Conservation Agriculture in Western Kenya Maize Production
Odhiambo, Judith A.; Norton, Urszula; Ashilenje, Dennis; Omondi, Emmanuel C.; Norton, Jay B.
2015-01-01
Weed competition is a significant problem in maize (Zea mays, L.) production in Sub-Saharan Africa. Better understanding of weed management and costs in maize intercropped with beans (Phaseolus vulgaris, L.) during transition to conservation agricultural systems is needed. Changes in weed population and maize growth were assessed for a period of three years at Bungoma where crops are grown twice per year and at Trans-Nzoia where crops are grown once per year. Treatments included three tillage practices: minimum (MT), no-till (NT) and conventional (CT) applied to three cropping systems: continuous maize/bean intercropping (TYPICAL), maize/bean intercropping with relayed mucuna after bean harvest (RELAY) and maize, bean and mucuna planted in a strip intercropping arrangement (STRIP). Herbicides were used in NT, shallow hand hoeing and herbicides were used in MT and deep hoeing with no herbicides were used in CT. Weed and maize performance in the maize phase of each cropping system were assessed at both locations and costs of weed control were estimated at Manor House only. Weed density of grass and forb species declined significantly under MT and NT at Manor House and of grass species only at Mabanga. The greatest declines of more than 50% were observed as early as within one year of the transition to MT and NT in STRIP and TYPICAL cropping systems at Manor House. Transitioning to conservation based systems resulted in a decline of four out of five most dominant weed species. At the same time, no negative impact of MT or NT on maize growth was observed. Corresponding costs of weed management were reduced by $148.40 ha-1 in MT and $149.60 ha-1 in NT compared with CT. In conclusion, farmers can benefit from effective and less expensive weed management alternatives early in the process of transitioning to reduced tillage operations. PMID:26237404
Weed Dynamics during Transition to Conservation Agriculture in Western Kenya Maize Production.
Odhiambo, Judith A; Norton, Urszula; Ashilenje, Dennis; Omondi, Emmanuel C; Norton, Jay B
2015-01-01
Weed competition is a significant problem in maize (Zea mays, L.) production in Sub-Saharan Africa. Better understanding of weed management and costs in maize intercropped with beans (Phaseolus vulgaris, L.) during transition to conservation agricultural systems is needed. Changes in weed population and maize growth were assessed for a period of three years at Bungoma where crops are grown twice per year and at Trans-Nzoia where crops are grown once per year. Treatments included three tillage practices: minimum (MT), no-till (NT) and conventional (CT) applied to three cropping systems: continuous maize/bean intercropping (TYPICAL), maize/bean intercropping with relayed mucuna after bean harvest (RELAY) and maize, bean and mucuna planted in a strip intercropping arrangement (STRIP). Herbicides were used in NT, shallow hand hoeing and herbicides were used in MT and deep hoeing with no herbicides were used in CT. Weed and maize performance in the maize phase of each cropping system were assessed at both locations and costs of weed control were estimated at Manor House only. Weed density of grass and forb species declined significantly under MT and NT at Manor House and of grass species only at Mabanga. The greatest declines of more than 50% were observed as early as within one year of the transition to MT and NT in STRIP and TYPICAL cropping systems at Manor House. Transitioning to conservation based systems resulted in a decline of four out of five most dominant weed species. At the same time, no negative impact of MT or NT on maize growth was observed. Corresponding costs of weed management were reduced by $148.40 ha(-1) in MT and $149.60 ha(-1) in NT compared with CT. In conclusion, farmers can benefit from effective and less expensive weed management alternatives early in the process of transitioning to reduced tillage operations.
Mikac, K M; Douglas, J; Spencer, J L
2013-08-01
The western corn rootworm, Diabrotica virgifera virgifera LeConte, is a major pest of maize in the United States and more recently, Europe. Understanding the dispersal dynamics of this species will provide crucial information for its management. This study used geometric morphometric analysis of hind wing venation based on 13 landmarks in 223 specimens from nine locations in Illinois, Nebraska, Iowa, and Missouri, to assess whether wing shape and size differed between rotated and continuously grown maize where crop rotation-resistant and susceptible individuals are found, respectively. Before assessing differences between rotation-resistant and susceptible individuals, sexual dimorphism was investigated. No significant difference in wing (centroid) size was found between males and females; however, females had significantly different shaped (more elongated) wings compared with males. Wing shape and (centroid) size were significantly larger among individuals from rotated maize where crop-rotation resistance was reported; however, cross-validation of these results revealed that collection site resistance status was an only better than average predictor of shape in males and females. This study provides preliminary evidence of wing shape and size differences in D. v. virgifera from rotated versus continuous maize. Further study is needed to confirm whether wing shape and size can be used to track the movement of rotation-resistant individuals and populations as a means to better inform management strategies.
NASA Astrophysics Data System (ADS)
Nichols, Virginia A.
It has been suggested that strategic incorporation of perennial vegetation into agricultural landscapes could provide ecosystem services while maintaining agricultural productivity. To evaluate potential use of prairie as a Midwestern cellulosic feedstock, we investigated theoretical cellulosic fuel yields, as well as soil-surface carbon dioxide emissions of prairie-based biofuel systems as compared to maize-based systems on fertile soils in Boone County, IA, USA. Investigated systems were: a maize-soybean rotation grown for grain only, continuous maize grown for grain and stover both with and without a winter rye cover crop, and a 31-species reconstructed prairie grown with and without spring nitrogen fertilization for fall-harvested biomass. From 2009-2013, the highest producing system was N-fertilized prairie, averaging 10.4 Mg ha -1 yr-1 above-ground biomass with average harvest removals of 7.8 Mg ha-1 yr-1. The unfertilized prairie produced 7.4 Mg ha-1 yr-1, averaging harvests of 5.3 Mg ha-1 yr-1. Lowest cellulosic biomass harvests were realized from continuous maize systems, averaging 3.5 Mg ha -1 yr-1 when grown with, and 3.7 Mg ha-1 yr-1 when grown without a winter rye cover crop, respectively. Un-fertilized prairie biomass and maize stover had equivalent dietary conversion ratios at 330 g ethanol kg-1 dry biomass, but N-fertilized prairie was lower at 315. Over four years prairie systems averaged 1287 L cellulosic ethanol ha-1 yr-1 more than maize systems, with fertilization increasing prairie ethanol production by 865 L ha-1 yr-1. Harvested biomass accounted for >90% of ethanol yield variation. A major hurdle in carbon cycling studies is the separation of the soil-surface CO2 flux into its respective components. From 2012-2013 we used a shading method to separate soil-surface CO2 resulting from oxidation of soil organic matter and CO2 derived from live-root activity in three systems: unfertilized prairie, N-fertilized prairie, and continuous maize. Contrary to our hypothesis, total growing-season root CO2 flux was not proportional to end-of-season root biomass of cropping systems; unfertilized prairie contained nearly twice the root biomass of N-fertilized prairie, but the two systems' total root CO2 fluxes were not significantly different in either year. We found that the total growing-season flux of both root- and organic matter-derived CO 2 was higher in the prairie systems compared to the maize system. However, on a percentage basis, the prairies' soil-surface CO2 flux from May-September averaged 29% root-derived while from mid-June through September the maize averaged 22% root-derived. The percentage of the total CO2 flux that was root-derived in a given system varied from year to year, indicating there is no set relationship for a given cropping system.
Li, Xiaoyun; Liu, Nianjie; You, Liangzhi; Ke, Xinli; Liu, Haijun; Huang, Malan; Waddington, Stephen R.
2016-01-01
After a remarkable 86% increase in cereal production from 1980 to 2005, recent crop yield growth in China has been slow. County level crop production data between 1980 and 2010 from eastern and middle China were used to analyze spatial and temporal patterns of rice, wheat and maize yield in five major farming systems that include around 90% of China's cereal production. Site-specific yield trends were assessed in areas where those crops have experienced increasing yield or where yields have stagnated or declined. We find that rice yields have continued to increase on over 12.3 million hectares (m. ha) or 41.8% of the rice area in China between 1980 and 2010. However, yields stagnated on 50% of the rice area (around 14.7 m. ha) over this time period. Wheat yields increased on 13.8 m. ha (58.2% of the total harvest area), but stagnated on around 3.8 m. ha (15.8% of the harvest area). Yields increased on a smaller proportion of the maize area (17.7% of harvest area, 5.3 m. ha), while yields have stagnated on over 54% (16.3 m. ha). Many parts of the lowland rice and upland intensive sub-tropical farming systems were more prone to stagnation with rice, the upland intensive sub-tropical system with wheat, and maize in the temperate mixed system. Large areas where wheat yield continues to rise were found in the lowland rice and temperate mixed systems. Land and water constraints, climate variability, and other environmental limitations undermine increased crop yield and agricultural productivity in these systems and threaten future food security. Technology and policy innovations must be implemented to promote crop yields and the sustainable use of agricultural resources to maintain food security in China. In many production regions it is possible to better match the crop with input resources to raise crop yields and benefits. Investments may be especially useful to intensify production in areas where yields continue to improve. For example, increased support to maize production in southern China, where yields are still rising, seems justified. PMID:27404110
NASA Astrophysics Data System (ADS)
Miller, J. N.; Bernacchi, C.
2016-12-01
Second-generation biofuel crops are being planted at an increasing extent around the globe. Changing land use from common field crops to perennial biofuel crops such as miscanthus or switchgrass is expected to alter ecohydrology via changes in evapotranspiration (ET). However, the direction in which evapotranspiration will shift, either partitioning more moisture through soil evaporation (E) or through plant transpiration (T) is uncertain. To investigate how land conversion from maize to miscanthus affects ET partitioning we measured the isotopic composition of water vapor via continuous air sampling. We obtained continuous diurnal measurements of δ2H and δ18O for miscanthus and maize on multiple days over the course of the growing season. Water vapor isotopes drawn from two heights were measured at 2 Hz using a cavity ringdown spectrometer and partitioned into components of E and T using a simple mixing equation. Partitioning was also accomplished with a combination of sap flow sensors and soil lysimeters. Preliminary results reveal that while daily transpiration fraction can be strongly influenced by meteorological events, the whole season transpiration fraction dominates variations in ET in miscanthus fields more so than in fields of maize.
NASA Astrophysics Data System (ADS)
Cabrera, V. D.; Jankowski, K.; Neill, C.; Macedo, M.; Deegan, L.; Brando, P. M.; Nascimento, S.; Nascimento, E.; Rocha, S.; Coe, M. T.; Nunes, D.
2015-12-01
Globalization and the increasing demand for food create pressure to both expand and intensify agriculture. These changes have potentially large consequences for the solute concentrations and functioning of streams. In the Brazilian Amazon, crop agriculture expanded greatly during the last 20 years. More recently, farmers have intensified production on existing cropland by double cropping of soy and maize during the same year. Maize, a novel crop for the region, requires much higher applications of nitrogen (N) fertilizer than soybeans. To determine whether this novel land use and associated N addition influenced N concentrations in groundwater and stream water, we measured N concentrations in groundwater wells and streams from small headwater watersheds across three land uses (soy-maize, soy, and tropical forest) in the Upper Xingu Basin, a region of rapid cropland intensification in the southern Amazon. Each watershed contained six groundwater wells arranged in a transect reaching cropland field edge on either side of the stream. Total inorganic N concentrations were higher in wells adjacent to fields where double cropping occurred, while stream concentrations did not differ overall among land uses. This suggests the riparian zones are critical in the removal of N, but as the intensification of agriculture continues the ability of the riparian zone to prevent N from traveling to streams is unknown. Their protection is critical to the functioning of tropical watersheds.
Singh, Raman Jeet; Meena, Roshan Lal; Sharma, N K; Kumar, Suresh; Kumar, Kuldeep; Kumar, Dileep
2016-02-01
Reducing the carbon footprint and increasing energy use efficiency of crop rotations are the two most important sustainability issues of the modern agriculture. Present study was undertaken to assess economics, energy, and environmental parameters of common diversified crop rotations (maize-tomato, and maize-toria-wheat) vis-a-vis traditional crop rotations like maize-wheat, maize + ginger and rice-wheat of the north-western Himalayan region of India. Results revealed that maize-tomato and maize + ginger crop rotations being on par with each other produced significantly higher system productivity in terms of maize equivalent yield (30.2-36.2 t/ha) than other crop rotations (5.04-7.68 t/ha). But interestingly in terms of energy efficiencies, traditional maize-wheat system (energy efficiency 7.9, human energy profitability of 177.8 and energy profitability of 6.9 MJ/ha) was significantly superior over other systems. Maize + ginger rotation showed greater competitive advantage over other rotations because of less consumption of non-renewable energy resources. Similarly, maize-tomato rotation had ability of the production process to exploit natural resources due to 14-38% less use of commercial or purchased energy sources over other crop rotations. Vegetable-based crop rotations (maize + ginger and maize-tomato) maintained significantly the least carbon footprint (0.008 and 0.019 kg CO2 eq./kg grain, respectively) and the highest profitability (154,322 and 274,161 Rs./ha net return, respectively) over other crop rotations. As the greatest inputs of energy and carbon across the five crop rotations were nitrogen fertilizer (15-29% and 17-28%, respectively), diesel (14-24% and 8-19%, respectively) and irrigation (10-27% and 11-44%, respectively), therefore, alternative sources like organic farming, conservation agriculture practices, soil and water conservation measures, rain water harvesting etc. should be encouraged to reduce dependency of direct energy and external carbon inputs particularly in sub-Himalayas of India.
Assessment of Climate Suitability of Maize in South Korea
NASA Astrophysics Data System (ADS)
Hyun, S.; Choi, D.; Seo, B.
2017-12-01
Assessing suitable areas for crops would be useful to design alternate cropping systems as an adaptation option to climate change adaptation. Although suitable areas could be identified by using a crop growth model, it would require a number of input parameters including cultivar and soil. Instead, a simple climate suitability model, e.g., EcoCrop model, could be used for an assessment of climate suitability for a major grain crop. The objective of this study was to assess of climate suitability for maize using the EcoCrop model under climate change conditions in Korea. A long term climate data from 2000 - 2100 were compiled from weather data source. The EcoCrop model implemented in R was used to determine climate suitability index at each grid cell. Overall, the EcoCrop model tended to identify suitable areas for maize production near the coastal areas whereas the actual major production areas located in inland areas. It is likely that the discrepancy between assessed and actual crop production areas would result from the socioeconomic aspects of maize production. Because the price of maize is considerably low, maize has been grown in an area where moisture and temperature conditions would be less than optimum. In part, a simple algorithm to predict climate suitability for maize would caused a relatively large error in climate suitability assessment under the present climate conditions. In 2050s, the climate suitability for maize increased in a large areas in southern and western part of Korea. In particular, the plain areas near the coastal region had considerably greater suitability index in the future compared with mountainous areas. The expansion of suitable areas for maize would help crop production policy making such as the allocation of rice production area for other crops due to considerably less demand for the rice in Korea.
NASA Astrophysics Data System (ADS)
Yang, Xiaolin; Chen, Yuanquan; Pacenka, Steven; Gao, Wangsheng; Ma, Li; Wang, Guangya; Yan, Peng; Sui, Peng; Steenhuis, Tammo S.
2015-03-01
Water shortage is the major bottleneck that limits sustainable yield of agriculture in the North China Plain. Due to the over-exploitation of groundwater for irrigating the winter wheat-summer maize double cropping systems, a groundwater crisis is becoming increasingly serious. To help identify more efficient and sustainable utilization of the limited water resources, the water consumption and water use efficiency of five irrigated cropping systems were calculated and the effect of cropping systems on groundwater table changes was estimated based on a long term field experiment from 2003 to 2013 in the North China Plain interpreted using a soil-water-balance model. The five cropping systems included sweet potato → cotton → sweet potato → winter wheat-summer maize (SpCSpWS, 4-year cycle), ryegrass-cotton → peanuts → winter wheat-summer maize (RCPWS, 3-year cycle), peanuts → winter wheat-summer maize (PWS, 2-year cycle), winter wheat-summer maize (WS, 1-year cycle), and continuous cotton (Cont C). The five cropping systems had a wide range of annual average actual evapotranspiration (ETa): Cont C (533 mm/year) < SpCSpWS (556 mm/year) < PWS (615 mm/year) < RCPWS (650 mm/year) < WS rotation (734 mm/year). The sequence of the simulated annual average groundwater decline due to the five cropping systems was WS (1.1 m/year) > RCPWS (0.7 m/year) > PWS (0.6 m/year) > SPCSPWS and Cont C (0.4 m/year). The annual average economic output water use efficiency (WUEe) increased in the order SpCSpWS (11.6 yuan ¥ m-3) > RCPWS (9.0 ¥ m-3) > PWS (7.3 ¥ m-3) > WS (6.8 ¥ m-3) > Cont C (5.6 ¥ m-3) from 2003 to 2013. Results strongly suggest that diversifying crop rotations could play a critically important role in mitigating the over-exploitation of the groundwater, while ensuring the food security or boosting the income of farmers in the North China Plain.
Liu, Ling; Hu, Liangliang; Tang, Jianjun; Li, Yuefang; Zhang, Qian; Chen, Xin
2012-01-01
A field experiment was conducted to assess the effect of crop and planting pattern on levels of cadmium (Cd), lead (Pb), and copper (Cu) in crops grown in soil contaminated by electronic waste. The crops were maize (Zea mays L. var. Shentian-1), tomato (Solanum lycopersicum L. var. Zhongshu-4), cabbage (Brassica oleracea L. var. Jingfeng-1), and pakchoi (Brassica chinensis (L.) Makino. var. Youdonger-Hangzhou). The planting patterns were crop monoculture, crop co-planted with a legume, and crop co-planted with another crop. Metal concentrations in the edible parts of the crops varied with types of metals and crops. Pb concentration was higher in leafy vegetables (cabbage and pakchoi) than in maize or tomato, Cd concentration was higher in tomato and pakchoi than in maize or cabbage, and Cu concentration was higher in maize and pakchoi than in tomato or cabbage. Metal concentrations in the edible part were also influenced by planting pattern. Relative to monoculture, co-planting and especially co-planting with Japanese clover tended to decrease Pb accumulation and increase Cd accumulation. According to the maximum permissible concentration (MPC) standard of the National Standard Agency in China, only maize (under all planting patterns) could be safely consumed. Because co-planting tended to increase Cd accumulation even in maize, however, the results suggest that maize monoculture is the optimal crop and planting pattern for this kind of contaminated soil. Copyright © 2011 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Kantola, I. B.; Blanc-Betes, E.; Gomez-Casanovas, N.; Masters, M. D.; Bernacchi, C.; DeLucia, E. H.
2017-12-01
Increased variability and intensity of precipitation in the Midwest agricultural belt due to climate change is a major concern. The success of perennial bioenergy crops in replacing maize for bioethanol production is dependent on sustained yields that exceed maize, and the marketing of perennial crops often emphasizes the resilience of perennial agriculture to climate stressors. Land conversion from maize for bioethanol to Miscanthus x giganteus (miscanthus) increases yields and annual evapotranspiration rates (ET). However, establishment of miscanthus also increases biome water use efficiency (the ratio between net ecosystem productivity after harvest and ET), due to greater belowground biomass in miscanthus than in maize or soybean. In 2012, a widespread drought reduced the yield of 5-year-old miscanthus plots in central Illinois by 36% compared to the previous two years. Eddy covariance data indicated continued soil water deficit during the hydrologically-normal growing season in 2013 and miscanthus yield failed to rebound as expected, lagging behind pre-drought yields by an average of 53% over the next three years. In early 2014, nitrogen fertilizer was applied to half of mature (7-year-old) miscanthus plots in an effort to improve yields. In plots with annual post-emergence application of 60 kg ha-1 of urea, peak biomass was 29% greater than unfertilized miscanthus in 2014, and 113% greater in 2015, achieving statistically similar yields to the pre-drought average. Regional-scale models of perennial crop productivity use 30-year climate averages that are inadequate for predicting long-term effects of short-term extremes on perennial crops. Modeled predictions of perennial crop productivity incorporating repeated extreme weather events, observed crop response, and the use of management practices to mitigate water deficit demonstrate divergent effects on predicted yields.
Inexplicable or Simply Unexplained? The Management of Maize Seed in Mexico
Dyer, George A.; López-Feldman, Alejandro
2013-01-01
Farmer management of plant germplasm pre-dates crop domestication, but humans’ role in crop evolution and diversity remains largely undocumented and often contested. Seemingly inexplicable practices observed throughout agricultural history, such as exchanging or replacing seed, continue to structure crop populations across the developing world. Seed management practices can be construed as events in the life history of crops and management data used to model crop demography, but this requires suitable quantitative data. As a prerequisite to addressing the causes and implications of maize seed management, we describe its patterns of variation across Mexico by drawing from the literature and new analysis. We find that rates of seed replacement, introduction and diffusion differ significantly across regions and altitudinal zones, but interactions among explanatory factors can obscure patterns of variation. The type, source, geographic origin and ownership of seed help explain observed rates. Yet, controlling for the characteristics of germplasm barely reduces interregional differences vastly exceeding variation across elevations. With few exceptions, monotonic altitudinal trends are absent. Causal relationships between management practices and the physical environment could determine farmers’ wellbeing and crop conservation in the face of climate change. Scarce and inconsistent data on management nevertheless could prevent an understanding of these relationships. Current conceptions on the management and dynamics of maize diversity are founded on a patchwork of observations in surprisingly few and dissimilar environments. Our estimates of management practices should shed light on differences in maize population dynamics across Mexico. Consistency with previous studies spanning over a decade suggests that common sets of forces are present within large areas, but causal associations remain unknown. The next step in explaining crop diversity should address variation in seed management across space and time simultaneously while identifying farmers’ values and motivations as underlying forces. PMID:23840847
Inexplicable or simply unexplained? The management of maize seed in Mexico.
Dyer, George A; López-Feldman, Alejandro
2013-01-01
Farmer management of plant germplasm pre-dates crop domestication, but humans' role in crop evolution and diversity remains largely undocumented and often contested. Seemingly inexplicable practices observed throughout agricultural history, such as exchanging or replacing seed, continue to structure crop populations across the developing world. Seed management practices can be construed as events in the life history of crops and management data used to model crop demography, but this requires suitable quantitative data. As a prerequisite to addressing the causes and implications of maize seed management, we describe its patterns of variation across Mexico by drawing from the literature and new analysis. We find that rates of seed replacement, introduction and diffusion differ significantly across regions and altitudinal zones, but interactions among explanatory factors can obscure patterns of variation. The type, source, geographic origin and ownership of seed help explain observed rates. Yet, controlling for the characteristics of germplasm barely reduces interregional differences vastly exceeding variation across elevations. With few exceptions, monotonic altitudinal trends are absent. Causal relationships between management practices and the physical environment could determine farmers' wellbeing and crop conservation in the face of climate change. Scarce and inconsistent data on management nevertheless could prevent an understanding of these relationships. Current conceptions on the management and dynamics of maize diversity are founded on a patchwork of observations in surprisingly few and dissimilar environments. Our estimates of management practices should shed light on differences in maize population dynamics across Mexico. Consistency with previous studies spanning over a decade suggests that common sets of forces are present within large areas, but causal associations remain unknown. The next step in explaining crop diversity should address variation in seed management across space and time simultaneously while identifying farmers' values and motivations as underlying forces.
Estimating demand for perennial pigeon pea in Malawi using choice experiments.
Waldman, Kurt B; Ortega, David L; Richardson, Robert B; Snapp, Sieglinde S
2017-01-01
Perennial crops have numerous ecological and agronomic advantages over their annual counterparts. We estimate discrete choice models to evaluate farmers' preferences for perennial attributes of pigeon pea intercropped with maize in central and southern Malawi. Pigeon pea is a nitrogen-fixing leguminous crop, which has the potential to ameliorate soil fertility problems related to continuous maize cultivation, which are common in Southern Africa. Adoption of annual pigeon pea is relatively low but perennial production of pigeon pea may be more appealing to farmers due to some of the ancillary benefits associated with perenniality. We model perennial production of pigeon pea as a function of the attributes that differ between annual and perennial production: lower labor and seed requirements resulting from a single planting with multiple harvests, enhanced soil fertility and higher levels of biomass production. The primary tradeoff associated with perennial pigeon pea intercropped with maize is competition with maize in subsequent years of production. While maize yield is approximately twice as valuable to farmers as pigeon pea yield, we find positive yet heterogeneous demand for perenniality driven by soil fertility improvements and pigeon pea grain yield.
Adapting to warmer climate through prolonged maize grain filling period in the US Midwest
NASA Astrophysics Data System (ADS)
Zhu, P.; Zhuang, Q.; Jin, Z.
2017-12-01
Climate warming is expected to negatively impact the US food productivity. How to adapt to the future warmer environment and meet the rising food requirement becomes unprecedented urgent. Continuous satellite observational data provides an opportunity to examine the historic responses of crop plants to climate variation. Here 16 years crop growing phases information across US Midwest is generated based on satellite observations. We found a prolonged grain-filling period during 2000-2015, which could partly explain the increasing trend in Midwest maize yield. This longer grain-filling period might be resulted from the adoption of longer maturity group varieties or more resistant varieties to temperature variation. Other management practice changes like advance in planting date could be also an effective way of adapting future warmer climate through lowering the possibility of exposure to heat and drought stresses. If the progress in breeding technology enables the maize grain-filling period to prolong with the current rate, the maize grain filling length could be longer and maize yield in Midwest could adapt to future climate despite of the warming.
Future Warming Increases Global Maize Yield Variability with Implications for Food Markets
NASA Astrophysics Data System (ADS)
Tigchelaar, M.; Battisti, D. S.; Naylor, R. L.; Ray, D. K.
2017-12-01
If current trends in population growth and dietary shifts continue, the world will need to produce about 70% more food by 2050, while earth's climate is rapidly changing. Rising temperatures in particular are projected to negatively impact agricultural production, as the world's staple crops perform poorly in extreme heat. Theoretical models suggest that as temperatures rise above plants' optimal temperature for performance, not only will mean yields decline rapidly, but the variability of yields will increase, even as interannual variations in climate remain unchanged. Here we use global datasets of maize production and climate variability combined with CMIP5 temperature projections to quantify how yield variability will change in major maize producing countries under 2°C and 4°C of global warming. Maize is the world's most produced crop, and is linked to other staple crops through substitution in consumption and production. We find that in warmer climates - absent any breeding gains in heat tolerance - the Coefficient of Variation (CV) of maize yields increases almost everywhere, to values much larger than present-day. This increase in CV is due both to an increase in the standard deviation of yields, and a decrease in mean yields. In locations where crop failures become the norm under high (4°C) warming (mostly in tropical, low-yield environments), the standard deviation of yields ultimately decreases. The probability that in any given year the most productive areas in the top three maize producing countries (United States, China, Brazil) have simultaneous production losses greater than 10% is virtually zero under present-day climate conditions, but increases to 12% under 2°C warming, and 89% under 4°C warming. This has major implications for global food markets and staple crop prices, affecting especially the 2.5 billion people that comprise the world's poor, who already spend the majority of their disposable income on food and are particularly vulnerable to agricultural price spikes.
NASA Technical Reports Server (NTRS)
Ruane, Alex C.; Cecil, L. Dewayne; Horton, Radley M.; Gordon, Roman; McCollum, Raymond (Brown, Douglas); Brown, Douglas; Killough, Brian; Goldberg, Richard; Greeley, Adam P.; Rosenzweig, Cynthia
2011-01-01
We present results from a pilot project to characterize and bound multi-disciplinary uncertainties around the assessment of maize (Zea mays) production impacts using the CERES-Maize crop model in a climate-sensitive region with a variety of farming systems (Panama). Segunda coa (autumn) maize yield in Panama currently suffers occasionally from high water stress at the end of the growing season, however under future climate conditions warmer temperatures accelerate crop maturation and elevated CO (sub 2) concentrations improve water retention. This combination reduces end-of-season water stresses and eventually leads to small mean yield gains according to median projections, although accelerated maturation reduces yields in seasons with low water stresses. Calibrations of cultivar traits, soil profile, and fertilizer amounts are most important for representing baseline yields, however sensitivity to all management factors is reduced in an assessment of future yield changes (most dramatically for fertilizers), suggesting that yield changes may be more generalizable than absolute yields. Uncertainty around General Circulation Model (GCM)s' projected changes in rainfall gain in importance throughout the century, with yield changes strongly correlated with growing season rainfall totals. Climate changes are expected to be obscured by the large inter-annual variations in Panamanian climate that will continue to be the dominant influence on seasonal maize yield into the coming decades. The relatively high (A2) and low (B1) emissions scenarios show little difference in their impact on future maize yields until the end of the century. Uncertainties related to the sensitivity of CERES-Maize to carbon dioxide concentrations have a substantial influence on projected changes, and remain a significant obstacle to climate change impacts assessment. Finally, an investigation into the potential of simple statistical yield emulators based upon key climate variables characterizes the important uncertainties behind the selection of climate change metrics and their performance against more complex process-based crop model simulations, revealing a danger in relying only on long-term mean quantities for crop impact assessment.
Niu, Jiaojiao; Chao, Jin; Xiao, Yunhua; Chen, Wu; Zhang, Chao; Liu, Xueduan; Rang, Zhongwen; Yin, Huaqun; Dai, Linjian
2017-01-01
Rotation is an effective strategy to control crop disease and improve plant health. However, the effects of crop rotation on soil bacterial community composition and structure, and crop health remain unclear. In this study, using 16S rRNA gene sequencing, we explored the soil bacterial communities under four different cropping systems, continuous tobacco cropping (control group), tobacco-maize rotation, tobacco-lily rotation, and tobacco-turnip rotation. Results of detrended correspondence analysis and dissimilarity tests showed that soil bacterial community composition and structure changed significantly among the four groups, such that Acidobacteria and Actinobacteria were more abundant in the maize rotation group (16.6 and 11.5%, respectively) than in the control (8.5 and 7.1%, respectively). Compared with the control group (57.78%), maize and lily were effective rotation crops in controlling tobacco bacterial wilt (about 23.54 and 48.67%). On the other hand, tobacco bacterial wilt rate was increased in the turnip rotation (59.62%) relative to the control. Further study revealed that the abundances of several bacterial populations were directly correlated with tobacco bacterial wilt. For example, Acidobacteria and Actinobacteria were significantly negatively correlated to the tobacco bacterial wilt rate, so they may be probiotic bacteria. Canonical correspondence analysis showed that soil pH and calcium content were key factors in determining soil bacterial communities. In conclusion, our study revealed the composition and structure of bacterial communities under four different cropping systems and may unveil molecular mechanisms for the interactions between soil microorganisms and crop health. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Early allelic selection in maize as revealed by ancient DNA.
Jaenicke-Després, Viviane; Buckler, Ed S; Smith, Bruce D; Gilbert, M Thomas P; Cooper, Alan; Doebley, John; Pääbo, Svante
2003-11-14
Maize was domesticated from teosinte, a wild grass, by approximately 6300 years ago in Mexico. After initial domestication, early farmers continued to select for advantageous morphological and biochemical traits in this important crop. However, the timing and sequence of character selection are, thus far, known only for morphological features discernible in corn cobs. We have analyzed three genes involved in the control of plant architecture, storage protein synthesis, and starch production from archaeological maize samples from Mexico and the southwestern United States. The results reveal that the alleles typical of contemporary maize were present in Mexican maize by 4400 years ago. However, as recently as 2000 years ago, allelic selection at one of the genes may not yet have been complete.
Wang, Lin; Zheng, You-fei; Yu, Qiang; Wang, En-li
2007-11-01
The Agricultural Production Systems Simulator (APSIM) was applied to simulate the 1999-2001 field experimental data and the 2002-2003 water use data at the Yucheng Experiment Station under Chinese Ecosystem Research Network, aimed to verify the applicability of the model to the wheat-summer maize continuous cropping system in North China Plain. The results showed that the average errors of the simulations of leaf area index (LAI), biomass, and soil moisture content in 1999-2000 and 2000-2001 field experiments were 27.61%, 24.59% and 7.68%, and 32.65%, 35.95% and 10.26%, respectively, and those of LAI and biomass on the soils with high and low moisture content in 2002-2003 were 26.65% and 14.52%, and 23.91% and 27.93%, respectively. The simulations of LAI and biomass accorded well with the measured values, with the coefficients of determination being > 0.85 in 1999-2000 and 2002-2003, and 0.78 in 2000-2001, indicating that APSIM had a good applicability in modeling the crop biomass and soil moisture content in the continuous cropping system, but the simulation error of LAI was a little larger.
Weeds and their effect on the performance of maize and fingermillet in the mid-hills of Nepal
USDA-ARS?s Scientific Manuscript database
Relay cropping of maize with fingermillet (maize/fingermillet) is the predominant cropping system for sustaining food security in the hilly regions of Nepal. In this region weed pressure severely reduces crop yields, yet basic information on weed species composition, biomass production and their eff...
Deep soil layer is fundamental for evaluating carbon accumulation in agroecosystems
NASA Astrophysics Data System (ADS)
Dal Ferro, Nicola; Morari, Francesco; Simonetti, Gianluca; Polese, Riccardo; Berti, Antonio
2015-04-01
Soil organic carbon (SOC) is essential to secure key ecosystem services such as the provision of food and other biomass production, the filtering, buffering and transformation capacity and the climate regulation. It has been estimated that approximately 57% of the globally emitted C (8.7 Gt y-1) to the atmosphere is adsorbed by biospheric C pools, ascertaining the potential soil C sink capacity of managed ecosystems at 55 to 78 Gt, of which only 50 to 66% attainable. Therefore it is essential the full knowledge of soil management practices that can affect SOC dynamics and, in turn, climate change. Several studies focussed on the evaluation of the best cropping management practices to accumulate C in the soil profile. Nevertheless, in most cases soil analyses were made in the topsoil (generally in the 0-30 cm layer), ignoring the effect of C translocation in the deeper soil profile as a result of tillage practices, crop root deepening etc. In this context, in a long-term experiment established in the early 1960s, we quantified the SOC accumulation within the soil profile (0-90 cm) and evaluate the effects of different cropping system on SOC dynamics. The experiment is located at the experimental farm of the University of Padova, in northeastern Italy. The trial compares four rotations with three levels of mineral fertilisation and with or without organic fertilisation. The rotations considered are: continuous crops (grain maize, forage maize, winter wheat and permanent meadow); two-year (maize-wheat); four-year (sugarbeet, soybean, wheat, maize) and six-year (maize, sugarbeet, maize, wheat, alfalfa, alfalfa) with different levels of mineral, organic and mixed fertilisations. Crops with superficially developed rooting systems (e.g. permanent meadow) highly increased SOC only in the topsoil. This effect was enhanced by the contribution of organic amendment-C. Root-derived carbon played a pivotal role also in the deepest soil profile (60-90 cm) by increasing the SOC translocation. Considering the whole profile, the highest C accumulation was observed in cropping systems with high biomass production and deep rooting systems. Results indicated that for estimating the effects of cropping systems and agricultural practices on C accumulation, analyses in the topsoil can be misleading and it is necessary to consider the whole profile.
Sensible heat balance measurements of soil water evaporation beneath a maize canopy
USDA-ARS?s Scientific Manuscript database
Soil water evaporation is an important component of the water budget in a cropped field. Few methods are available for continuous and independent measurement of soil water evaporation. A sensible heat balance (SHB) approach has recently been demonstrated for continuously determining soil water evapo...
Zhang, Yitao; Liu, Jian; Zhang, Jizong; Liu, Hongbin; Liu, Shen; Zhai, Limei; Wang, Hongyuan; Lei, Qiuliang; Ren, Tianzhi; Yin, Changbin
2015-01-01
Intercropping is regarded as an important agricultural practice to improve crop production and environmental quality in the regions with intensive agricultural production, e.g., northern China. To optimize agronomic advantage of maize (Zea mays L.) and soybean (Glycine max L.) intercropping system compared to monoculture of maize, two sequential experiments were conducted. Experiment 1 was to screening the optimal cropping system in summer that had the highest yields and economic benefits, and Experiment 2 was to identify the optimum row ratio of the intercrops selected from Experiment 1. Results of Experiment 1 showed that maize intercropping with soybean (maize || soybean) was the optimal cropping system in summer. Compared to conventional monoculture of maize, maize || soybean had significant advantage in yield, economy, land utilization ratio and reducing soil nitrate nitrogen (N) accumulation, as well as better residual effect on the subsequent wheat (Triticum aestivum L.) crop. Experiment 2 showed that intercropping systems reduced use of N fertilizer per unit land area and increased relative biomass of intercropped maize, due to promoted photosynthetic efficiency of border rows and N utilization during symbiotic period. Intercropping advantage began to emerge at tasseling stage after N topdressing for maize. Among all treatments with different row ratios, alternating four maize rows with six soybean rows (4M:6S) had the largest land equivalent ratio (1.30), total N accumulation in crops (258 kg ha-1), and economic benefit (3,408 USD ha-1). Compared to maize monoculture, 4M:6S had significantly lower nitrate-N accumulation in soil both after harvest of maize and after harvest of the subsequent wheat, but it did not decrease yield of wheat. The most important advantage of 4M:6S was to increase biomass of intercropped maize and soybean, which further led to the increase of total N accumulation by crops as well as economic benefit. In conclusion, alternating four maize rows with six soybean rows was the optimum row ratio in maize || soybean system, though this needs to be further confirmed by pluri-annual trials. PMID:26061566
Connections Between Soil Fertility Declines, Land Use, Ethnicity, Education, and Wealth In Uganda
NASA Astrophysics Data System (ADS)
Tiemann, L. K.; Hartter, J.; Grandy, S.
2016-12-01
Food security issues are particularly acute in Uganda, where the world's 8th highest population growth rate will lead to cultivation of all land available for agriculture by 2022. Agricultural intensification in Uganda, which includes continuous cropping, mono-cropping and expansion of agriculture into marginal areas, has put unprecedented pressure on soils. In western Uganda, we surveyed 474 households, collecting demographic data, information on land use practices and perceptions of risk to crop yields and food security. We also sampled soils from maize fields associated with each surveyed household and measured total organic C and nutrients such as nitrogen (N) and phosphorus (P). Using these data, we sought to determine how risk perceptions, ethnicity, household wealth and education combine to determine land use decisions and ultimately, declines in soil organic matter and soil nutrients. We conducted our study within 5 km of an un-cultivated native tropical forest reserve, Kibale National Park (KNP), which serves as a reference point for potential soil fertility. Of 470 respondents, only 29 answered `no' when asked if they noticed year to year declines in crop yields. Across all maize fields we found soil C has been reduced by 30% and soil N by 45% relative to KNP soils and declines were more pronounced when survey respondents were Bakiga rather than Batooro. Households that indicated they were "very much" dependent upon profits from maize had a 31% increase in soil C:N while those indicating no dependence on maize profits had a significantly lower increase in soil C:N of 21%. Ethnicity and education influenced land use decisions; the Batooro and people with a lower level of education were more likely to burn their fields or crop residues. Additionally, the Bakiga were more likely to use rock P in their fields and in consequence had 108% while Batooro soils had 65% of the P found in KNP soils. Across all respondents, the top two ranked risks to crop yields and food security were weather related, with soil fertility ranked third on average, regardless of ethnicity, education or wealth. While crop yields are being noticeably affected by declining soil organic matter and soil nutrients, in particular soil N, people in this region continue to be worried more about changing weather patterns than soil fertility.
NASA Astrophysics Data System (ADS)
Xiao, Dengpan; Qi, Yongqing; Shen, Yanjun; Tao, Fulu; Moiwo, Juana P.; Liu, Jianfeng; Wang, Rede; Zhang, He; Liu, Fengshan
2016-05-01
As climate change could significantly influence crop phenology and subsequent crop yield, adaptation is a critical mitigation process of the vulnerability of crop growth and production to climate change. Thus, to ensure crop production and food security, there is the need for research on the natural (shifts in crop growth periods) and artificial (shifts in crop cultivars) modes of crop adaptation to climate change. In this study, field observations in 18 stations in North China Plain (NCP) are used in combination with Agricultural Production Systems Simulator (APSIM)-Maize model to analyze the trends in summer maize phenology in relation to climate change and cultivar shift in 1981-2008. Apparent warming in most of the investigated stations causes early flowering and maturity and consequently shortens reproductive growth stage. However, APSIM-Maize model run for four representative stations suggests that cultivar shift delays maturity and thereby prolongs reproductive growth (flowering to maturity) stage by 2.4-3.7 day per decade (d 10a-1). The study suggests a gradual adaptation of maize production process to ongoing climate change in NCP via shifts in high thermal cultivars and phenological processes. It is concluded that cultivation of maize cultivars with longer growth periods and higher thermal requirements could mitigate the negative effects of warming climate on crop production and food security in the NCP study area and beyond.
Jin, Zhenong; Zhuang, Qianlai; Tan, Zeli; Dukes, Jeffrey S; Zheng, Bangyou; Melillo, Jerry M
2016-09-01
Stresses from heat and drought are expected to increasingly suppress crop yields, but the degree to which current models can represent these effects is uncertain. Here we evaluate the algorithms that determine impacts of heat and drought stress on maize in 16 major maize models by incorporating these algorithms into a standard model, the Agricultural Production Systems sIMulator (APSIM), and running an ensemble of simulations. Although both daily mean temperature and daylight temperature are common choice of forcing heat stress algorithms, current parameterizations in most models favor the use of daylight temperature even though the algorithm was designed for daily mean temperature. Different drought algorithms (i.e., a function of soil water content, of soil water supply to demand ratio, and of actual to potential transpiration ratio) simulated considerably different patterns of water shortage over the growing season, but nonetheless predicted similar decreases in annual yield. Using the selected combination of algorithms, our simulations show that maize yield reduction was more sensitive to drought stress than to heat stress for the US Midwest since the 1980s, and this pattern will continue under future scenarios; the influence of excessive heat will become increasingly prominent by the late 21st century. Our review of algorithms in 16 crop models suggests that the impacts of heat and drought stress on plant yield can be best described by crop models that: (i) incorporate event-based descriptions of heat and drought stress, (ii) consider the effects of nighttime warming, and (iii) coordinate the interactions among multiple stresses. Our study identifies the proficiency with which different model formulations capture the impacts of heat and drought stress on maize biomass and yield production. The framework presented here can be applied to other modeled processes and used to improve yield predictions of other crops with a wide variety of crop models. © 2016 John Wiley & Sons Ltd.
Semu, Ernest; Mrema, Jerome P.; Nalivata, Patson C.
2017-01-01
Mycorrhizal associations contribute to the sustainability of crop production systems through their roles in nutrient cycling and other benefits in the soil-plant ecosystems. A two-year study was conducted on the Alfisols of Lilongwe and Dowa districts, Central Malawi, to assess the vesicular-arbuscular mycorrhizal (VAM) fungal colonisation levels in pigeon pea, cowpea, and maize grown in sole cropping, legume-cereal, and legume-legume intercropping systems and in the maize grown in short rotation (year 2) as influenced by the previous cropping systems and N fertilizer application. The gridline intersect method was used to assess the VAM fungal colonisation levels. Results showed that all treatments that included legumes whether grown as sole crop, in legume-cereal or in legume-legume cropping systems in the previous year, had significantly higher (P < 0.05) VAM fungal colonisation of the rotational maize crop roots by a range 39% to 50% and 19% to 47% than those in maize supplied and not supplied with N fertilizer, respectively, in a maize-maize short rotation, at the Lilongwe site. A similar trend was reported for the Dowa site. Furthermore, there were positive correlations between VAM fungal colonisation and the plant P content, dry matter yield, and nodule numbers. Further studies may help to assess the diversity of VAM fungal species in Malawi soils and identify more adaptive ones for inoculation studies. PMID:28584528
Njira, Keston O W; Semu, Ernest; Mrema, Jerome P; Nalivata, Patson C
2017-01-01
Mycorrhizal associations contribute to the sustainability of crop production systems through their roles in nutrient cycling and other benefits in the soil-plant ecosystems. A two-year study was conducted on the Alfisols of Lilongwe and Dowa districts, Central Malawi, to assess the vesicular-arbuscular mycorrhizal (VAM) fungal colonisation levels in pigeon pea, cowpea, and maize grown in sole cropping, legume-cereal, and legume-legume intercropping systems and in the maize grown in short rotation (year 2) as influenced by the previous cropping systems and N fertilizer application. The gridline intersect method was used to assess the VAM fungal colonisation levels. Results showed that all treatments that included legumes whether grown as sole crop, in legume-cereal or in legume-legume cropping systems in the previous year, had significantly higher ( P < 0.05) VAM fungal colonisation of the rotational maize crop roots by a range 39% to 50% and 19% to 47% than those in maize supplied and not supplied with N fertilizer, respectively, in a maize-maize short rotation, at the Lilongwe site. A similar trend was reported for the Dowa site. Furthermore, there were positive correlations between VAM fungal colonisation and the plant P content, dry matter yield, and nodule numbers. Further studies may help to assess the diversity of VAM fungal species in Malawi soils and identify more adaptive ones for inoculation studies.
Truter, J; Van Hamburg, H; Van Den Berg, J
2014-02-01
The biodiversity of an agroecosystem is not only important for its intrinsic value but also because it influences ecological functions that are vital for crop production in sustainable agricultural systems and the surrounding environment. A concern about genetically modified (GM) crops is the potential negative impact that such crops could have on diversity and abundance of nontarget organisms, and subsequently on ecosystem functions. Therefore, it is essential to assess the potential environmental risk of the release of a GM crop and to study its effect on species assemblages within that ecosystem. Assessment of the impact of Bt maize on the environment is hampered by the lack of basic checklists of species present in maize agroecosystems. The aims of the study were to compile a checklist of arthropods that occur on maize in South Africa and to compare the diversity and abundance of arthropods and functional groups on Bt maize and non-Bt maize. Collections of arthropods were carried out during two growing seasons on Bt maize and non-Bt maize plants at two localities. Three maize fields were sampled per locality during each season. Twenty plants, each of Bt maize and non-Bt maize, were randomly selected from the fields at each site. The arthropods collected during this study were classified to morphospecies level and grouped into the following functional groups: detritivores, herbivores, predators, and parasitoids. Based on feeding strategy, herbivores and predators were further divided into sucking herbivores or predators (piercing-sucking mouthparts) and chewing herbivores or predators (chewing mouthparts). A total of 8,771 arthropod individuals, comprising 288 morphospecies and presenting 20 orders, were collected. Results from this short-term study indicated that abundance and diversity of arthropods in maize and the different functional guilds were not significantly affected by Bt maize, either in terms of diversity or abundance.
Schelfhout, Stephanie; De Schrijver, An; Verheyen, Kris; De Beelde, Robbe; Haesaert, Geert; Mertens, Jan
2018-07-29
High soil P concentrations hinder ecological restoration of biological communities typical for nutrient-poor soils. Phosphorus mining, i.e., growing crops with fertilization other than P, might reduce soil P concentrations. However, crop species have different P-uptake rates and can affect subsequent P removal in crop rotation, both of which may also vary with soil P concentration. In a pot experiment with three soil-P-levels (High-P: 125-155 mg P Olsen /kg; Mid-P: 51-70 mg P Olsen /kg; Low-P: 6-21 mg P Olsen /kg), we measured how much P was removed by five crop species (buckwheat, maize, sunflower, flax, and triticale). Total P removal decreased with soil-P-level and depended upon crop identity. Buckwheat and maize removed most P from High-P and Mid-P soils and triticale removed less P than buckwheat, maize, and sunflower at every soil-P-level. The difference in P removal between crops was, however, almost absent in Low-P soils. Absolute and relative P removal with seeds depended upon crop species and, for maize and triticale, also upon soil-P-level. None of the previously grown crop species significantly affected P removal by the follow-up crop (perennial ryegrass). We can conclude that for maximizing P removal, buckwheat or maize could be grown.
The role of biotechnology for agricultural sustainability in Africa.
Thomson, Jennifer A
2008-02-27
Sub-Saharan Africa could have a shortfall of nearly 90Mt of cereals by the year 2025 if current agricultural practices are maintained. Biotechnology is one of the ways to improve agricultural production. Insect-resistant varieties of maize and cotton suitable for the subcontinent have been identified as already having a significant impact. Virus-resistant crops are under development. These include maize resistant to the African endemic maize streak virus and cassava resistant to African cassava mosaic virus. Parasitic weeds such as Striga attack the roots of crops such as maize, millet, sorghum and upland rice. Field trials in Kenya using a variety of maize resistant to a herbicide have proven very successful. Drought-tolerant crops are also under development as are improved varieties of local African crops such as bananas, cassava, sorghum and sweet potatoes.
Detecting crop growth stages of maize and soybeans by using time-series MODIS data
NASA Astrophysics Data System (ADS)
Sakamoto, T.; Wardlow, B. D.; Gitelson, A. A.; Verma, S. B.; Suyker, A. E.; Arkebauer, T. J.
2009-12-01
The crop phenological stages are one of essential parameters for evaluating crop productivity based on a crop simulation model. In this study, we improved a method named the Wavelet-based Filter for detecting Crop Phenology (WFCP) for detecting the specific phenological dates of maize and soybeans. The improved method was applied to MODIS-derived Wide Dynamic Range Vegetation Index (WDRVI) over a 6-year period (2003 to 2008) for three experimental fields planted to either maize or soybeans as part of the Carbon Sequestration Program (CSP) at the University of Nebraska-Lincoln (UNL). Using the ground-based crop growth stage observations collected by the CSP, it was confirmed that the improved method can estimate the specific phenological dates of maize (V2.5, R1, R5 and R6) and soybeans (V1, R5, R6 and R7) with reasonable accuracy.
Bauböck, Roland; Karpenstein-Machan, Marianne; Kappas, Martin
2014-01-01
Lower Saxony (Germany) has the highest installed electric capacity from biogas in Germany. Most of this electricity is generated with maize. Reasons for this are the high yields and the economic incentive. In parts of Lower Saxony, an expansion of maize cultivation has led to ecological problems and a negative image of bioenergy as such. Winter triticale and cup plant have both shown their suitability as alternative energy crops for biogas production and could help to reduce maize cultivation. The model Biomass Simulation Tool for Agricultural Resources (BioSTAR) has been validated with observed yield data from the region of Hannover for the cultures maize and winter wheat. Predicted yields for the cultures show satisfactory error values of 9.36% (maize) and 11.5% (winter wheat). Correlations with observed data are significant ( P < 0.01) with R = 0.75 for maize and 0.6 for winter wheat. Biomass potential calculations for triticale and cup plant have shown both crops to be high yielding and a promising alternative to maize in the region of Hanover and other places in Lower Saxony. The model BioSTAR simulated yields for maize and winter wheat in the region of Hannover at a good overall level of accuracy (combined error 10.4%). Due to input data aggregation, individual years show high errors though (up to 30%). Nevertheless, the BioSTAR crop model has proven to be a functioning tool for the prediction of agricultural biomass potentials under varying environmental and crop management frame conditions.
Do Refuge Plants Favour Natural Pest Control in Maize Crops?
Quispe, Reinaldo; Mazón, Marina; Rodríguez-Berrío, Alexander
2017-01-01
The use of non-crop plants to provide the resources that herbivorous crop pests’ natural enemies need is being increasingly incorporated into integrated pest management programs. We evaluated insect functional groups found on three refuges consisting of five different plant species each, planted next to a maize crop in Lima, Peru, to investigate which refuge favoured natural control of herbivores considered as pests of maize in Peru, and which refuge plant traits were more attractive to those desirable enemies. Insects occurring in all the plants, including the maize crop itself, were sampled weekly during the crop growing cycle, from February to June 2011. All individuals collected were identified and classified into three functional groups: herbivores, parasitoids, and predators. Refuges were compared based on their effectiveness in enhancing the populations of predator and parasitoid insects of the crop enemies. Refuges A and B were the most effective, showing the highest richness and abundance of both predators and parasitoids, including several insect species that are reported to attack the main insect pests of maize (Spodoptera frugiperda and Rhopalosiphum maidis), as well as other species that serve as alternative hosts of these natural enemies. PMID:28718835
Fagúndez, Jaime; Olea, Pedro P; Tejedo, Pablo; Mateo-Tomás, Patricia; Gómez, David
2016-07-01
The intensification of agriculture has increased production at the cost of environment and biodiversity worldwide. To increase crop yield in dry cereal systems, vast farmland areas of high conservation value are being converted into irrigation, especially in Mediterranean countries. We analyze the effect of irrigation-driven changes on the farm biota by comparing species diversity, community composition, and species traits of arable plants within crop fields from two contrasting farming systems (dry and irrigated) in Spain. We sampled plant species within 80 fields of dry wheat, irrigated wheat, and maize (only cultivated under irrigation). Wheat crops held higher landscape and per field species richness, and beta diversity than maize. Within the same type of crop, irrigated wheat hosted lower plant diversity than dry wheat at both field and landscape scales. Floristic composition differed between crop types, with higher frequencies of perennials, cosmopolitan, exotic, wind-pollinated and C4 species in maize. Our results suggest that irrigation projects, that transform large areas of dry cereal agro-ecosystems into irrigated crop systems dominated by maize, erode plant diversity. An adequate planning on the type and proportion of crops used in the irrigated agro-ecosystems is needed in order to balance agriculture production and biodiversity conservation.
USDA-ARS?s Scientific Manuscript database
Since 1996, genetically modified (GM) crops have been grown on an ever increasing area worldwide. Maize producing a Cry protein from the bacterium Bacillus thuringiensis (Bt) was among the first GM crops released for commercial production and it is the only GM crop currently cultivated in Europe. A ...
Sensitivity of simulated maize crop yields to regional climate in the Southwestern United States
NASA Astrophysics Data System (ADS)
Kim, S.; Myoung, B.; Stack, D.; Kim, J.; Hatzopoulos, N.; Kafatos, M.
2013-12-01
The sensitivity of maize yield to the regional climate in the Southwestern United States (SW US) has been investigated by using a crop-yield simulation model (APSIM) in conjunction with meteorological forcings (daily minimum and maximum temperature, precipitation, and radiation) from the North American Regional Reanalysis (NARR) dataset. The primary focus of this study is to look at the effects of interannual variations of atmospheric components on the crop productivity in the SW US over the 21-year period (1991 to 2011). First of all, characteristics and performance of APSIM was examined by comparing simulated maize yields with observed yields from United States Department of Agriculture (USDA) and the leaf-area index (LAI) from MODIS satellite data. Comparisons of the simulated maize yield with the available observations show that the crop model can reasonably reproduce observed maize yields. Sensitivity tests were performed to assess the relative contribution of each climate driver to regional crop yield. Sensitivity experiments show that potential crop production responds nonlinearly to climate drivers and the yield sensitivity varied among geographical locations depending on their mean climates. Lastly, a detailed analysis of both the spatial and temporal variations of each climate driver in the regions where maize is actually grown in three states (CA, AZ, and NV) in the SW US was performed.
Aflatoxin regulations and global pistachio trade: insights from social network analysis.
Bui-Klimke, Travis R; Guclu, Hasan; Kensler, Thomas W; Yuan, Jian-Min; Wu, Felicia
2014-01-01
Aflatoxins, carcinogenic toxins produced by Aspergillus fungi, contaminate maize, peanuts, and tree nuts in many regions of the world. Pistachios are the main source of human dietary aflatoxins from tree nuts worldwide. Over 120 countries have regulations for maximum allowable aflatoxin levels in food commodities. We developed social network models to analyze the association between nations' aflatoxin regulations and global trade patterns of pistachios from 1996-2010. The main pistachio producing countries are Iran and the United States (US), which together contribute to nearly 75% of the total global pistachio market. Over this time period, during which many nations developed or changed their aflatoxin regulations in pistachios, global pistachio trade patterns changed; with the US increasingly exporting to countries with stricter aflatoxin standards. The US pistachio crop has had consistently lower levels of aflatoxin than the Iranian crop over this same time period. As similar trading patterns have also been documented in maize, public health may be affected if countries without aflatoxin regulations, or with more relaxed regulations, continually import crops with higher aflatoxin contamination. Unlike the previous studies on maize, this analysis includes a dynamic element, examining how trade patterns change over time with introduction or adjustment of aflatoxin regulations.
Aflatoxin Regulations and Global Pistachio Trade: Insights from Social Network Analysis
Bui-Klimke, Travis R.; Guclu, Hasan; Kensler, Thomas W.; Yuan, Jian-Min; Wu, Felicia
2014-01-01
Aflatoxins, carcinogenic toxins produced by Aspergillus fungi, contaminate maize, peanuts, and tree nuts in many regions of the world. Pistachios are the main source of human dietary aflatoxins from tree nuts worldwide. Over 120 countries have regulations for maximum allowable aflatoxin levels in food commodities. We developed social network models to analyze the association between nations’ aflatoxin regulations and global trade patterns of pistachios from 1996–2010. The main pistachio producing countries are Iran and the United States (US), which together contribute to nearly 75% of the total global pistachio market. Over this time period, during which many nations developed or changed their aflatoxin regulations in pistachios, global pistachio trade patterns changed; with the US increasingly exporting to countries with stricter aflatoxin standards. The US pistachio crop has had consistently lower levels of aflatoxin than the Iranian crop over this same time period. As similar trading patterns have also been documented in maize, public health may be affected if countries without aflatoxin regulations, or with more relaxed regulations, continually import crops with higher aflatoxin contamination. Unlike the previous studies on maize, this analysis includes a dynamic element, examining how trade patterns change over time with introduction or adjustment of aflatoxin regulations. PMID:24670581
Mtangadura, Tongai J; Mtambanengwe, Florence; Nezomba, Hatirarami; Rurinda, Jairos; Mapfumo, Paul
2017-01-01
Sustainability of maize-based cropping systems is a major challenge for southern Africa, yet the demand for maize as staple food and animal feed in the region continues to increase. A study was conducted on a sandy clay loam (220 g clay kg-1 soil) at Domboshawa in Zimbabwe to investigate the long-term effects of organic resource quality and application rate, and nitrogen (N) fertilization on soil chemical properties and maize (Zea mays L.) productivity. Crotalaria juncea (high quality), Calliandra calothyrsus (medium quality), cattle manure (variable quality), maize stover and Pinus patula sawdust (both low quality) were incorporated into soil at 4.0 t C ha-1 (high rate) and 1.2 t C ha-1 (low rate) at the start of each cropping season for nine consecutive years. At both high and low application rates, each of the five organic resources was applied in combination with or without mineral nitrogen (N) fertilizer at 120 kg N ha-1. The nine-year period saw maize grain yields declining by 22% to 84% across treatments despite increases in soil organic carbon, total N and available P from 6% to 80%. Crotalaria, Calliandra and manure led to a less steep yield decline. Exchangeable calcium (Ca), magnesium (Mg) and potassium (K), and soil pH explained much of the variation in yield patterns observed under the different organic resource applications. Maize grain yield was positively correlated with exchangeable Ca (r = 0.51), Mg (r = 0.62) and K (r = 0.53), and soil pH (r = 0.49), but negatively correlated with other soil properties over the 9-year period. We concluded that declining soil exchangeable basic cations were the underlying causes of decreasing maize productivity, and was aggravated by use of low rates of organic resource inputs, particularly with N fertilization. Current nutrient management and fertilizer recommendations that emphasize inorganic N, P and K significantly undervalue the role played by organic resources in sustainability of maize cropping systems in southern Africa.
Mtangadura, Tongai J.
2017-01-01
Sustainability of maize-based cropping systems is a major challenge for southern Africa, yet the demand for maize as staple food and animal feed in the region continues to increase. A study was conducted on a sandy clay loam (220 g clay kg-1 soil) at Domboshawa in Zimbabwe to investigate the long-term effects of organic resource quality and application rate, and nitrogen (N) fertilization on soil chemical properties and maize (Zea mays L.) productivity. Crotalaria juncea (high quality), Calliandra calothyrsus (medium quality), cattle manure (variable quality), maize stover and Pinus patula sawdust (both low quality) were incorporated into soil at 4.0 t C ha-1 (high rate) and 1.2 t C ha-1 (low rate) at the start of each cropping season for nine consecutive years. At both high and low application rates, each of the five organic resources was applied in combination with or without mineral nitrogen (N) fertilizer at 120 kg N ha-1. The nine-year period saw maize grain yields declining by 22% to 84% across treatments despite increases in soil organic carbon, total N and available P from 6% to 80%. Crotalaria, Calliandra and manure led to a less steep yield decline. Exchangeable calcium (Ca), magnesium (Mg) and potassium (K), and soil pH explained much of the variation in yield patterns observed under the different organic resource applications. Maize grain yield was positively correlated with exchangeable Ca (r = 0.51), Mg (r = 0.62) and K (r = 0.53), and soil pH (r = 0.49), but negatively correlated with other soil properties over the 9-year period. We concluded that declining soil exchangeable basic cations were the underlying causes of decreasing maize productivity, and was aggravated by use of low rates of organic resource inputs, particularly with N fertilization. Current nutrient management and fertilizer recommendations that emphasize inorganic N, P and K significantly undervalue the role played by organic resources in sustainability of maize cropping systems in southern Africa. PMID:28797062
NASA Astrophysics Data System (ADS)
Gines, G. A.; Bea, J. G.; Palaoag, T. D.
2018-03-01
Soil serves a medium for plants growth. One factor that affects soil moisture is drought. Drought has been a major cause of agricultural disaster. Agricultural drought is said to occur when soil moisture is insufficient to meet crop water requirements, resulting in yield losses. In this research, it aimed to characterize soil moisture level for Rice and Maize Crops using Arduino and applying fuzzy logic. System architecture for soil moisture sensor and water pump were the basis in developing the equipment. The data gathered was characterized by applying fuzzy logic. Based on the results, applying fuzzy logic in validating the characterization of soil moisture level for Rice and Maize crops is accurate as attested by the experts. This will help the farmers in monitoring the soil moisture level of the Rice and Maize crops.
Jin, Zhenong; Zhuang, Qianlai; Wang, Jiali; Archontoulis, Sotirios V; Zobel, Zachary; Kotamarthi, Veerabhadra R
2017-07-01
Heat and drought are two emerging climatic threats to the US maize and soybean production, yet their impacts on yields are collectively determined by the magnitude of climate change and rising atmospheric CO 2 concentrations. This study quantifies the combined and separate impacts of high temperature, heat and drought stresses on the current and future US rainfed maize and soybean production and for the first time characterizes spatial shifts in the relative importance of individual stress. Crop yields are simulated using the Agricultural Production Systems Simulator (APSIM), driven by high-resolution (12 km) dynamically downscaled climate projections for 1995-2004 and 2085-2094. Results show that maize and soybean yield losses are prominent in the US Midwest by the late 21st century under both Representative Concentration Pathway (RCP) 4.5 and RCP8.5 scenarios, and the magnitude of loss highly depends on the current vulnerability and changes in climate extremes. Elevated atmospheric CO 2 partially but not completely offsets the yield gaps caused by climate extremes, and the effect is greater in soybean than in maize. Our simulations suggest that drought will continue to be the largest threat to US rainfed maize production under RCP4.5 and soybean production under both RCP scenarios, whereas high temperature and heat stress take over the dominant stress of drought on maize under RCP8.5. We also reveal that shifts in the geographic distributions of dominant stresses are characterized by the increase in concurrent stresses, especially for the US Midwest. These findings imply the importance of considering heat and drought stresses simultaneously for future agronomic adaptation and mitigation strategies, particularly for breeding programs and crop management. The modeling framework of partitioning the total effects of climate change into individual stress impacts can be applied to the study of other crops and agriculture systems. © 2017 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Myoung, B.; Kim, S.; Kim, J.; Kafatos, M.
2013-12-01
Despite advancements in agricultural technology, agricultural productivity remains vulnerable to extreme meteorological conditions. This study has found significant impacts of North Atlantic Oscillation (NAO) on extreme temperatures and in turn on crop yields in the Southwestern United States (SW US) region. Analyses of multi-year data of observed temperatures and simulated maize yields reveal that NAO affects positively the daily temperature maxima and minima in the green-up periods (March-June) and that the response of maize yields to NAO varies according to the climatological mean temperatures. In warmer regions, a combination of above-normal NAO in the planting periods and below-normal NAO in the growing periods is favorable for high maize yields by reducing extremely cold days during the planting periods and extremely hot days in the later periods, respectively. In colder regions, continuously above-normal NAO conditions favor higher yields via above normal thermal conditions. Results in this study suggest that NAO predictions can benefit agricultural planning in SW US.
Predicting maize phenology: Intercomparison of functions for developmental response to temperature
USDA-ARS?s Scientific Manuscript database
Accurate prediction of phenological development in maize is fundamental to determining crop adaptation and yield potential. A number of thermal functions are used in crop models, but their relative precision in predicting maize development has not been quantified. The objectives of this study were t...
NASA Astrophysics Data System (ADS)
Guo, Jianping; Zhao, Junfang; Xu, Yanhong; Chu, Zheng; Mu, Jia; Zhao, Qian
Quantitatively evaluating the effects of adjusting cropping systems on the utilization efficiency of climatic resources under climate change is an important task for assessing food security in China. To understand these effects, we used daily climate variables obtained from the regional climate model RegCM3 from 1981 to 2100 under the A1B scenario and crop observations from 53 agro-meteorological experimental stations from 1981 to 2010 in Northeast China. Three one-grade zones of cropping systems were divided by heat, water, topography and crop-type, including the semi-arid areas of the northeast and northwest (III), the one crop area of warm-cool plants in semi-humid plain or hilly regions of the northeast (IV), and the two crop area in irrigated farmland in the Huanghuaihai Plain (VI). An agro-ecological zone model was used to calculate climatic potential productivities. The effects of adjusting cropping systems on climate resource utilization in Northeast China under the A1B scenario were assessed. The results indicated that from 1981 to 2100 in the III, IV and VI areas, the planting boundaries of different cropping systems in Northeast China obviously shifted toward the north and the east based on comprehensively considering the heat and precipitation resources. However, due to high temperature stress, the climatic potential productivity of spring maize was reduced in the future. Therefore, adjusting the cropping system is an effective way to improve the climatic potential productivity and climate resource utilization. Replacing the one crop in one year model (spring maize) by the two crops in one year model (winter wheat and summer maize) significantly increased the total climatic potential productivity and average utilization efficiencies. During the periods of 2011-2040, 2041-2070 and 2071-2100, the average total climatic potential productivities of winter wheat and summer maize increased by 9.36%, 11.88% and 12.13% compared to that of spring maize, respectively. Additionally, compared with spring maize, the average utilization efficiencies of thermal resources of winter wheat and summer maize dramatically increased by 9.2%, 12.1% and 12.0%, respectively. The increases in the average utilization efficiencies of precipitation resources of winter wheat and summer maize were 1.78 kg hm-2 mm-1, 2.07 kg hm-2 mm-1 and 1.92 kg hm-2 mm-1 during 2011-2040, 2041-2070 and 2071-2100, respectively. Our findings highlight that adjusting cropping systems can dominantly contribute to utilization efficiency increases of agricultural climatic resources in Northeast China in the future.
Pradhan, Aliza; Idol, Travis; Roul, Pravat K
2016-01-01
Traditional agriculture in rainfed uplands of India has been experiencing low agricultural productivity as the lands suffer from poor soil fertility, susceptibility to water erosion and other external pressures of development and climate change. A shift toward more sustainable cropping systems such as conservation agriculture production systems (CAPSs) may help in maintaining soil quality as well as improving crop production and farmer's net economic benefit. This research assessed the effects over 3 years (2011-2014) of reduced tillage, intercropping, and cover cropping practices customized for maize-based production systems in upland areas of Odisha, India. The study focused on crop yield, system productivity and profitability through maize equivalent yield and dominance analysis. Results showed that maize grain yield did not differ significantly over time or among CAPS treatments while cowpea yield was considered as an additional yield in intercropping systems. Mustard and horsegram grown in plots after maize cowpea intercropping recorded higher grain yields of 25 and 37%, respectively, as compared to those without intercropping. Overall, the full CAPS implementation, i.e., minimum tillage, maize-cowpea intercropping and mustard residue retention had significantly higher system productivity and net benefits than traditional farmer practices, i.e., conventional tillage, sole maize cropping, and no mustard residue retention. The dominance analysis demonstrated increasing benefits of combining conservation practices that exceeded thresholds for farmer adoption. Given the use of familiar crops and technologies and the magnitude of yield and income improvements, these types of CAPS should be acceptable and attractive for smallholder farmers in the area. This in turn should support a move toward sustainable intensification of crop production to meet future household income and nutritional needs.
NASA Astrophysics Data System (ADS)
Otieno, O. M.
2015-12-01
The study proposes to use Geographic Information Systems and Remote Sensing techniques to spatially model Maize Lethal Necrosis (MLN) disease in maize growing areas in Kenya. Results from this work will be used for prediction, monitoring and to guide intervention on MLN. This will minimize maize yield losses resulting from MLN infestation and thus safeguard the livelihoods of maize farmers in Kenya. MLN was first reported in Kenya in September 2011 in Bomet county. It then subsequently spread to other parts in Kenya. Maize crops are susceptible to MLN at all growth stages. Once infected the only option left for the farmers is to burn their maize plantations. Infection rate and damage is very high affecting yields and sometimes causing complete loss of maize yield.The modelling exercise will cover the period prior to and after the incidence of MLN. Specifically, the analysis will integrate spatio-temporal information on maize phenology and field surveys with the intention of delineating the extent of MLN infestation and the degree of damage as a result of MLN. Additionally, the task will identify potential predisposing factors leading to MLN resurgence and spread and to predict potential areas where MLN is likely to spread and to estimate the potential impact of MLN on the farm holders. The area of study for this task will be Bomet County. Historical and current environmental and spatial indicators including temperature, rainfall, soil moisture, vegetation health and crop cover will be fed into a model in order to determine the main factors that aide the occurrence and the spread of MLN. Multi-spectral image processing will be used to produce indices to study maize crop health whilst image classification techniques will be used to identify crop cover clusters by differentiating the variations in spectral signatures in the area of study and hence distinguish infected, unaffected maize crops and other crop cover classes. Variables from these indicators will then be weighted in a spatial model and be used as a basis for generating site-specific MLN prediction maps that will guide policy on MLN management in Kenya. The broaderobjective is to document a model that can be up-scaled and replicated in other maize producing areas in Kenya affected by MLN.
Life-History Traits of Spodoptera frugiperda Populations Exposed to Low-Dose Bt Maize
Sousa, Fernanda F.; Mendes, Simone M.; Santos-Amaya, Oscar F.; Araújo, Octávio G.; Oliveira, Eugenio E.
2016-01-01
Exposure to Bacillus thuringiensis (Bt) toxins in low- and moderate-dose transgenic crops may induce sublethal effects and increase the rate of Bt resistance evolution, potentially compromising control efficacy against target pests. We tested this hypothesis using the fall armyworm Spodoptera frugiperda, a major polyphagous lepidopteran pest relatively tolerant to Bt notorious for evolving field-relevant resistance to single-gene Bt maize. Late-instar larvae were collected from Bt Cry1Ab and non-Bt maize fields in five locations in Brazil, and their offspring was compared for survival, development, and population growth in rearing environment without and with Cry1Ab throughout larval development. Larval survival on Cry1Ab maize leaves varied from 20 to 80% among the populations. Larvae reared on Cry1Ab maize had seven-day delay in development time in relation to control larvae, and such delay was shorter in offspring of armyworms from Cry1Ab maize. Population growth rates were 50–70% lower for insects continuously exposed to Cry1Ab maize relative to controls, showing the population-level effect of Cry1Ab, which varied among the populations and prior exposure to Cry1Ab maize in the field. In three out of five populations, armyworms derived from Bt maize reared on Cry1Ab maize showed higher larval weight, faster larval development and better reproductive performance than the armyworms derived from non-Bt maize, and one of these populations showed better performance on both Cry1Ab and control diets, indicating no fitness cost of the resistance trait. Altogether, these results indicate that offspring of armyworms that developed on field-grown, single-gene Bt Cry1Ab maize had reduced performance on Cry1Ab maize foliage in two populations studied, but in other three populations, these offspring had better overall performance on the Bt maize foliage than that of the armyworms from non-Bt maize fields, possibly because of Cry1Ab resistance alleles in these populations. Implications of these findings for resistance management of S. frugiperda in Bt crops are discussed. PMID:27243977
Life-History Traits of Spodoptera frugiperda Populations Exposed to Low-Dose Bt Maize.
Sousa, Fernanda F; Mendes, Simone M; Santos-Amaya, Oscar F; Araújo, Octávio G; Oliveira, Eugenio E; Pereira, Eliseu J G
2016-01-01
Exposure to Bacillus thuringiensis (Bt) toxins in low- and moderate-dose transgenic crops may induce sublethal effects and increase the rate of Bt resistance evolution, potentially compromising control efficacy against target pests. We tested this hypothesis using the fall armyworm Spodoptera frugiperda, a major polyphagous lepidopteran pest relatively tolerant to Bt notorious for evolving field-relevant resistance to single-gene Bt maize. Late-instar larvae were collected from Bt Cry1Ab and non-Bt maize fields in five locations in Brazil, and their offspring was compared for survival, development, and population growth in rearing environment without and with Cry1Ab throughout larval development. Larval survival on Cry1Ab maize leaves varied from 20 to 80% among the populations. Larvae reared on Cry1Ab maize had seven-day delay in development time in relation to control larvae, and such delay was shorter in offspring of armyworms from Cry1Ab maize. Population growth rates were 50-70% lower for insects continuously exposed to Cry1Ab maize relative to controls, showing the population-level effect of Cry1Ab, which varied among the populations and prior exposure to Cry1Ab maize in the field. In three out of five populations, armyworms derived from Bt maize reared on Cry1Ab maize showed higher larval weight, faster larval development and better reproductive performance than the armyworms derived from non-Bt maize, and one of these populations showed better performance on both Cry1Ab and control diets, indicating no fitness cost of the resistance trait. Altogether, these results indicate that offspring of armyworms that developed on field-grown, single-gene Bt Cry1Ab maize had reduced performance on Cry1Ab maize foliage in two populations studied, but in other three populations, these offspring had better overall performance on the Bt maize foliage than that of the armyworms from non-Bt maize fields, possibly because of Cry1Ab resistance alleles in these populations. Implications of these findings for resistance management of S. frugiperda in Bt crops are discussed.
Maurino, Fernanda; Dumón, Analía D; Llauger, Gabriela; Alemandri, Vanina; de Haro, Luis A; Mattio, M Fernanda; Del Vas, Mariana; Laguna, Irma Graciela; Giménez Pecci, María de la Paz
2018-01-01
A rhabdovirus infecting maize and wheat crops in Argentina was molecularly characterized. Through next-generation sequencing (NGS) of symptomatic leaf samples, the complete genome was obtained of two isolates of maize yellow striate virus (MYSV), a putative new rhabdovirus, differing by only 0.4% at the nucleotide level. The MYSV genome consists of 12,654 nucleotides for maize and wheat virus isolates, and shares 71% nucleotide sequence identity with the complete genome of barley yellow striate mosaic virus (BYSMV, NC028244). Ten open reading frames (ORFs) were predicted in the MYSV genome from the antigenomic strand and were compared with their BYSMV counterparts. The highest amino acid sequence identity of the MYSV and BYSMV proteins was 80% between the L proteins, and the lowest was 37% between the proteins 4. Phylogenetic analysis suggested that the MYSV isolates are new members of the genus Cytorhabdovirus, family Rhabdoviridae. Yellow striate, affecting maize and wheat crops in Argentina, is an emergent disease that presents a potential economic risk for these widely distributed crops.
Variation in Yield Gap Induced by Nitrogen, Phosphorus and Potassium Fertilizer in North China Plain
Dai, Xiaoqin; Ouyang, Zhu; Li, Yunsheng; Wang, Huimin
2013-01-01
A field experiment was conducted under a wheat-maize rotation system from 1990 to 2006 in North China Plain (NCP) to determine the effects of N, P and K on yield and yield gap. There were five treatments: NPK, PK, NK, NP and a control. Average wheat and maize yields were the highest in the NPK treatment, followed by those in the NP plots among all treatments. For wheat and maize yield, a significant increasing trend over time was found in the NPK-treated plots and a decreasing trend in the NK-treated plots. In the absence of N or P, wheat and maize yields were significantly lower than those in the NPK treatment. For both crops, the increasing rate of the yield gap was the highest in the P omission plots, i.e., 189.1 kg ha−1 yr−1 for wheat and 560.6 kg ha−1 yr−1 for maize. The cumulative omission of P fertilizer induced a deficit in the soil available N and extractable P concentrations for maize. The P fertilizer was more pivotal in long-term wheat and maize growth and soil fertility conservation in NCP, although the N fertilizer input was important for both crops growth. The crop response to K fertilizers was much lower than that to N or P fertilizers, but for maize, the cumulative omission of K fertilizer decreased the yield by 26% and increased the yield gap at a rate of 322.7 kg ha−1 yr−1. The soil indigenous K supply was not sufficiently high to meet maize K requirement over a long period. The proper application of K fertilizers is necessary for maize production in the region. Thus, the appropriate application of N and P fertilizers for the growth of both crops, while regularly combining K fertilizers for maize growth, is absolutely necessary for sustainable crop production in the NCP. PMID:24349204
Dai, Xiaoqin; Ouyang, Zhu; Li, Yunsheng; Wang, Huimin
2013-01-01
A field experiment was conducted under a wheat-maize rotation system from 1990 to 2006 in North China Plain (NCP) to determine the effects of N, P and K on yield and yield gap. There were five treatments: NPK, PK, NK, NP and a control. Average wheat and maize yields were the highest in the NPK treatment, followed by those in the NP plots among all treatments. For wheat and maize yield, a significant increasing trend over time was found in the NPK-treated plots and a decreasing trend in the NK-treated plots. In the absence of N or P, wheat and maize yields were significantly lower than those in the NPK treatment. For both crops, the increasing rate of the yield gap was the highest in the P omission plots, i.e., 189.1 kg ha(-1) yr(-1) for wheat and 560.6 kg ha(-1) yr(-1) for maize. The cumulative omission of P fertilizer induced a deficit in the soil available N and extractable P concentrations for maize. The P fertilizer was more pivotal in long-term wheat and maize growth and soil fertility conservation in NCP, although the N fertilizer input was important for both crops growth. The crop response to K fertilizers was much lower than that to N or P fertilizers, but for maize, the cumulative omission of K fertilizer decreased the yield by 26% and increased the yield gap at a rate of 322.7 kg ha(-1) yr(-1). The soil indigenous K supply was not sufficiently high to meet maize K requirement over a long period. The proper application of K fertilizers is necessary for maize production in the region. Thus, the appropriate application of N and P fertilizers for the growth of both crops, while regularly combining K fertilizers for maize growth, is absolutely necessary for sustainable crop production in the NCP.
NASA Astrophysics Data System (ADS)
Kurniasih, E.; Impron; Perdinan
2017-03-01
Drought impacts on crop yield loss depend on drought magnitude and duration and on plant genotype at every plant growth stages when droughts occur. This research aims to assess the difference calculation results of 2 drought index methods and to study the maize yield loss variability impacted by drought magnitude and duration during maize growth stages in Bandung district, province of West Java, Indonesia. Droughts were quantified by the Standardized Precipitation Index (SPI) and the Standardized Precipitation Evapotranspiration Index (SPEI) at 1- to 3-month lags for the January1986-December 2015 period data. Maize yield responses to droughts were simulated by AquaCrop for the January 1986-May 2016 period of growing season. The analysis showed that the SPI and SPEI methods provided similar results in quantifying drought event. Droughts during maize reproductive stages caused the highest maize yield loss.
Yang, Fei; Kerns, David L.; Brown, Sebe; Kurtz, Ryan; Dennehy, Tim; Braxton, Bo; Head, Graham; Huang, Fangneng
2016-01-01
Transgenic crops producing Bacillus thuringiensis (Bt) proteins have become a primary tool in pest management. Due to the intensive use of Bt crops, resistance of the fall armyworm, Spodoptera frugiperda, to Cry1F maize has occurred in Puerto Rico, Brazil, and some areas of the southeastern U.S. The sustainability of Bt crops faces a great challenge because the Cry1F-maize resistant S. frugiperda may also infest other Bt crops in multiple cropping ecosystems. Here we examined the survival and plant injury of a S. frugiperda population selected with Cry1F maize on three single-gene and five pyramided Bt cotton products. Larvae of Cry1F-susceptible (SS), -heterozygous (RS), and -resistant (RR) genotypes of S. frugiperda were all susceptible to the pyramided cotton containing Cry1Ac/Cry2Ab, Cry1Ac/Cry1F/Vip3A, Cry1Ab/Cry2Ae, or Cry1Ab/Cry2Ae/Vip3A, and the single-gene Cry2Ae cotton. Pyramided cotton containing Cry1Ac/Cry1F was effective against SS and RS, but not for RR. These findings show that the Cry1F-maize selected S. frugiperda can cause cross-crop resistance to other Bt crops expressing similar insecticidal proteins. Resistance management and pest management programs that utilize diversify mortality factors must be implemented to ensure the sustainability of Bt crops. This is especially important in areas where resistance to single-gene Bt crops is already widespread. PMID:27301612
Yang, Fei; Kerns, David L; Brown, Sebe; Kurtz, Ryan; Dennehy, Tim; Braxton, Bo; Head, Graham; Huang, Fangneng
2016-06-15
Transgenic crops producing Bacillus thuringiensis (Bt) proteins have become a primary tool in pest management. Due to the intensive use of Bt crops, resistance of the fall armyworm, Spodoptera frugiperda, to Cry1F maize has occurred in Puerto Rico, Brazil, and some areas of the southeastern U.S. The sustainability of Bt crops faces a great challenge because the Cry1F-maize resistant S. frugiperda may also infest other Bt crops in multiple cropping ecosystems. Here we examined the survival and plant injury of a S. frugiperda population selected with Cry1F maize on three single-gene and five pyramided Bt cotton products. Larvae of Cry1F-susceptible (SS), -heterozygous (RS), and -resistant (RR) genotypes of S. frugiperda were all susceptible to the pyramided cotton containing Cry1Ac/Cry2Ab, Cry1Ac/Cry1F/Vip3A, Cry1Ab/Cry2Ae, or Cry1Ab/Cry2Ae/Vip3A, and the single-gene Cry2Ae cotton. Pyramided cotton containing Cry1Ac/Cry1F was effective against SS and RS, but not for RR. These findings show that the Cry1F-maize selected S. frugiperda can cause cross-crop resistance to other Bt crops expressing similar insecticidal proteins. Resistance management and pest management programs that utilize diversify mortality factors must be implemented to ensure the sustainability of Bt crops. This is especially important in areas where resistance to single-gene Bt crops is already widespread.
Development of Bt Rice and Bt Maize in China and Their Efficacy in Target Pest Control
Liu, Qingsong; Hallerman, Eric; Peng, Yufa; Li, Yunhe
2016-01-01
Rice and maize are important cereal crops that serve as staple foods, feed, and industrial material in China. Multiple factors constrain the production of both crops, among which insect pests are an important one. Lepidopteran pests cause enormous yield losses for the crops annually. In order to control these pests, China plays an active role in development and application of genetic engineering (GE) to crops, and dozens of GE rice and GE maize lines expressing insecticidal proteins from the soil bacterium Bacillus thuringiensis (Bt) have been developed. Many lines have entered environmental release, field testing, and preproduction testing, and laboratory and field experiments have shown that most of the Bt rice and Bt maize lines developed in China exhibited effective control of major target lepidopteran pests on rice (Chilo suppressalis, Scirpophaga incertulas, and Cnaphalocrocis medinalis) and maize (Ostrinia furnacalis), demonstrating bright prospects for application. However, none of these Bt lines has yet been commercially planted through this writing in 2016. Challenges and perspectives for development and application of Bt rice and maize in China are discussed. This article provides a general context for colleagues to learn about research and development of Bt crops in China, and may shed light on future work in this field. PMID:27763554
Development of Bt Rice and Bt Maize in China and Their Efficacy in Target Pest Control.
Liu, Qingsong; Hallerman, Eric; Peng, Yufa; Li, Yunhe
2016-10-18
Rice and maize are important cereal crops that serve as staple foods, feed, and industrial material in China. Multiple factors constrain the production of both crops, among which insect pests are an important one. Lepidopteran pests cause enormous yield losses for the crops annually. In order to control these pests, China plays an active role in development and application of genetic engineering (GE) to crops, and dozens of GE rice and GE maize lines expressing insecticidal proteins from the soil bacterium Bacillus thuringiensis ( Bt ) have been developed. Many lines have entered environmental release, field testing, and preproduction testing, and laboratory and field experiments have shown that most of the Bt rice and Bt maize lines developed in China exhibited effective control of major target lepidopteran pests on rice ( Chilo suppressalis , Scirpophaga incertulas , and Cnaphalocrocis medinalis ) and maize ( Ostrinia furnacalis ), demonstrating bright prospects for application. However, none of these Bt lines has yet been commercially planted through this writing in 2016. Challenges and perspectives for development and application of Bt rice and maize in China are discussed. This article provides a general context for colleagues to learn about research and development of Bt crops in China, and may shed light on future work in this field.
Using observed warming to identify hazards to Mozambique maize production
Funk, Christopher C.; Harrison, Laura; Eilerts, Gary
2011-01-01
New Perspectives on Crop Yield Constraints because of Climate Change. Climate change impact assessments usually focus on changes to precipitation because most global food production is from rainfed cropping systems; however, other aspects of climate change may affect crop growth and potential yields.A recent (2011) study by the University of California, Santa Barbara (UCSB) Climate Hazards Group, determined that climate change may be affecting Mozambique's primary food crop in a usually overlooked, but potentially significant way (Harrison and others, 2011). The study focused on the direct relation between maize crop development and growing season temperature. It determined that warming during the past three decades in Mozambique may be causing more frequent crop stress and yield reductions in that country's maize crop, independent of any changes occurring in rainfall. This report summarizes the findings and conclusions of that study.
An assessment of the effect of human faeces and urine on maize production and water productivity
NASA Astrophysics Data System (ADS)
Guzha, Edward; Nhapi, Innocent; Rockstrom, Johan
The key challenge facing many catchment authorities in Zimbabwe and elsewhere is the challenge of feeding the growing populations within their catchment boundaries. Modern agricultural practices continue to mine valuable crop nutrients through increased food production to satisfy ever-increasing food demand. In recent diagnostic survey of smallholder agricultural sector in the Manyame catchments of Zimbabwe it was revealed that exhausted soils depleted of their natural mineral and organic constituents by many years of cropping with little fertilization or manuring were the major factors contributing to low yields and poor food security in this sector in Zimbabwe. The objective of the study was to assess the effect of using sanitized human excreta on maize production and water productivity. The study involved six volunteer farmers with four 10 m × 10 m trial plots each with the following treatments the control, commercial fertilizer treatment urine only plot, and the feacal matter and urine plot. Harvest determination was carried by weighing the yield from each of the treatment plots and comparisons done. Water productivity was computed by calculating the amount of water used to produce a tone of maize per ha. The study showed that human excreta improves maize crop production and water productivity in rain-fed agriculture. The study recommends that the ecological sanitation concept and the reuse of human excreta both humanure and (ecofert) urine can be considered as alternative excreta management options in catchment areas.
Market-level assessment of the economic benefits of atrazine in the United States
Mitchell, Paul D
2014-01-01
BACKGROUND Atrazine and other triazine herbicides are widely used in US maize and sorghum production, yet the most recent market-level assessment of the economic benefits of atrazine is for market conditions prevalent in the early 1990s, before commercialization of transgenic crops. Grain markets have changed substantially since that time; for example, the size of the US maize market increased by 170% from 1990–1992 to 2007–2009. This paper reports a current assessment of the economic benefits of atrazine. RESULTS Yield increases and cost changes implied by triazine herbicides are projected to reduce maize prices by 7–8% and sorghum prices by 19–20%. Projected consumer benefits from lower prices range from $US 3.6 to 4.4 × 109 annually, with the net projected economic benefit for triazine herbicides to the US economy ranging from $US 2.9 to 3.4 × 109 annually because lower prices imply reduced producer income. Productivity gains from triazine herbicides maintain an estimated 270 000–390 000 ha of land in non-crop uses that generate environmental benefits not accounted for in this analysis. CONCLUSION Even in the current era, with transgenic varieties dominating crop production, atrazine and the other triazine herbicides continue to be a key part of maize and sorghum production and generate substantial economic benefits. © 2013 The Authors. PestManagement Science published by JohnWiley & Sons Ltd on behalf of Society of Chemical Industry. PMID:24318916
Market-level assessment of the economic benefits of atrazine in the United States.
Mitchell, Paul D
2014-11-01
Atrazine and other triazine herbicides are widely used in US maize and sorghum production, yet the most recent market-level assessment of the economic benefits of atrazine is for market conditions prevalent in the early 1990s, before commercialization of transgenic crops. Grain markets have changed substantially since that time; for example, the size of the US maize market increased by 170% from 1990-1992 to 2007-2009. This paper reports a current assessment of the economic benefits of atrazine. Yield increases and cost changes implied by triazine herbicides are projected to reduce maize prices by 7-8% and sorghum prices by 19-20%. Projected consumer benefits from lower prices range from $US 3.6 to 4.4 × 10(9) annually, with the net projected economic benefit for triazine herbicides to the US economy ranging from $US 2.9 to 3.4 × 10(9) annually because lower prices imply reduced producer income. Productivity gains from triazine herbicides maintain an estimated 270 000-390 000 ha of land in non-crop uses that generate environmental benefits not accounted for in this analysis. Even in the current era, with transgenic varieties dominating crop production, atrazine and the other triazine herbicides continue to be a key part of maize and sorghum production and generate substantial economic benefits. © 2013 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Row and forage crop rotation effects on maize mineral nutrition and yield
USDA-ARS?s Scientific Manuscript database
Extended crop rotations provide many attributes in support of sustainable agriculture. Objectives were to investigate rotations that included row crops and forages in terms of their effects on soil characteristics as well as on maize (Zea mays L.) stover biomass, grain yield, and mineral components...
Estimating maize water stress by standard deviation of canopy temperature in thermal imagery
USDA-ARS?s Scientific Manuscript database
A new crop water stress index using standard deviation of canopy temperature as an input was developed to monitor crop water status. In this study, thermal imagery was taken from maize under various levels of deficit irrigation treatments in different crop growing stages. The Expectation-Maximizatio...
Fodor, Nándor; Challinor, Andrew; Droutsas, Ioannis; Ramirez-Villegas, Julian; Zabel, Florian; Koehler, Ann-Kristin; Foyer, Christine H
2017-11-01
Increasing global CO2 emissions have profound consequences for plant biology, not least because of direct influences on carbon gain. However, much remains uncertain regarding how our major crops will respond to a future high CO2 world. Crop model inter-comparison studies have identified large uncertainties and biases associated with climate change. The need to quantify uncertainty has drawn the fields of plant molecular physiology, crop breeding and biology, and climate change modeling closer together. Comparing data from different models that have been used to assess the potential climate change impacts on soybean and maize production, future yield losses have been predicted for both major crops. When CO2 fertilization effects are taken into account significant yield gains are predicted for soybean, together with a shift in global production from the Southern to the Northern hemisphere. Maize production is also forecast to shift northwards. However, unless plant breeders are able to produce new hybrids with improved traits, the forecasted yield losses for maize will only be mitigated by agro-management adaptations. In addition, the increasing demands of a growing world population will require larger areas of marginal land to be used for maize and soybean production. We summarize the outputs of crop models, together with mitigation options for decreasing the negative impacts of climate on the global maize and soybean production, providing an overview of projected land-use change as a major determining factor for future global crop production. © The Author 2017. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists.
Post-harvest insect infestation and mycotoxin levels in maize markets in the Middle Belt of Ghana
USDA-ARS?s Scientific Manuscript database
This study focused on assessing maize post-harvest losses in three maize markets in the Middle Belt of Ghana during the storage periods after the harvest of major and minor cropping seasons, September– to December and January– to April, respectively. The major and minor cropping seasons in the Middl...
Advances in Maize Transformation Technologies and Development of Transgenic Maize
Yadava, Pranjal; Abhishek, Alok; Singh, Reeva; Singh, Ishwar; Kaul, Tanushri; Pattanayak, Arunava; Agrawal, Pawan K.
2017-01-01
Maize is the principal grain crop of the world. It is also the crop where genetic engineering has been employed to a great extent to improve its various traits. The ability to transform maize is a crucial step for application of gene technology in maize improvement. There have been constant improvements in the maize transformation technologies over past several years. The choice of genotype and the explant material to initiate transformation and the different types of media to be used in various stages of tissue culture can have significant impact on the outcomes of the transformation efforts. Various methods of gene transfer, like the particle bombardment, protoplast transformation, Agrobacterium-mediated, in planta transformation, etc., have been tried and improved over years. Similarly, various selection systems for retrieval of the transformants have been attempted. The commercial success of maize transformation and transgenic development is unmatched by any other crop so far. Maize transformation with newer gene editing technologies is opening up a fresh dimension in transformation protocols and work-flows. This review captures the various past and recent facets in improvement in maize transformation technologies and attempts to present a comprehensive updated picture of the current state of the art in this area. PMID:28111576
Advances in Maize Transformation Technologies and Development of Transgenic Maize.
Yadava, Pranjal; Abhishek, Alok; Singh, Reeva; Singh, Ishwar; Kaul, Tanushri; Pattanayak, Arunava; Agrawal, Pawan K
2016-01-01
Maize is the principal grain crop of the world. It is also the crop where genetic engineering has been employed to a great extent to improve its various traits. The ability to transform maize is a crucial step for application of gene technology in maize improvement. There have been constant improvements in the maize transformation technologies over past several years. The choice of genotype and the explant material to initiate transformation and the different types of media to be used in various stages of tissue culture can have significant impact on the outcomes of the transformation efforts. Various methods of gene transfer, like the particle bombardment, protoplast transformation, Agrobacterium -mediated, in planta transformation, etc., have been tried and improved over years. Similarly, various selection systems for retrieval of the transformants have been attempted. The commercial success of maize transformation and transgenic development is unmatched by any other crop so far. Maize transformation with newer gene editing technologies is opening up a fresh dimension in transformation protocols and work-flows. This review captures the various past and recent facets in improvement in maize transformation technologies and attempts to present a comprehensive updated picture of the current state of the art in this area.
Maize diversity and ethnolinguistic diversity in Chiapas, Mexico
Perales, Hugo R.; Benz, Bruce F.; Brush, Stephen B.
2005-01-01
The objective of this study is to investigate whether ethnolinguistic diversity influences crop diversity. Factors suggest a correlation between biological diversity of crops and cultural diversity. Although this correlation has been noted, little systematic research has focused on the role of culture in shaping crop diversity. This paper reports on research in the Maya highlands (altitude > 1,800 m) of central Chiapas in southern Mexico that examined the distribution of maize (Zea mays) types among communities of two groups, the Tzeltal and Tzotzil. The findings suggest that maize populations are distinct according to ethnolinguistic group. However, a study of isozymes indicates no clear separation of the region's maize into two distinct populations based on ethnolin-guistic origin. A reciprocal garden experiment shows that there is adaptation of maize to its environment but that Tzeltal maize sometimes out-yields Tzotzil maize in Tzotzil environments. Because of the proximity of the two groups and selection for yield, we would expect that the superior maize would dominate both groups' maize populations, but we find that such domination is not the case. The role of ethnolinguistic identity in shaping social networks and information exchange is discussed in relation to landrace differentiation. PMID:15640353
Maize diversity and ethnolinguistic diversity in Chiapas, Mexico.
Perales, Hugo R; Benz, Bruce F; Brush, Stephen B
2005-01-18
The objective of this study is to investigate whether ethnolinguistic diversity influences crop diversity. Factors suggest a correlation between biological diversity of crops and cultural diversity. Although this correlation has been noted, little systematic research has focused on the role of culture in shaping crop diversity. This paper reports on research in the Maya highlands (altitude >1,800 m) of central Chiapas in southern Mexico that examined the distribution of maize (Zea mays) types among communities of two groups, the Tzeltal and Tzotzil. The findings suggest that maize populations are distinct according to ethnolinguistic group. However, a study of isozymes indicates no clear separation of the region's maize into two distinct populations based on ethnolinguistic origin. A reciprocal garden experiment shows that there is adaptation of maize to its environment but that Tzeltal maize sometimes out-yields Tzotzil maize in Tzotzil environments. Because of the proximity of the two groups and selection for yield, we would expect that the superior maize would dominate both groups' maize populations, but we find that such domination is not the case. The role of ethnolinguistic identity in shaping social networks and information exchange is discussed in relation to landrace differentiation.
Kermah, Michael; Franke, Angelinus C; Adjei-Nsiah, Samuel; Ahiabor, Benjamin D K; Abaidoo, Robert C; Giller, Ken E
2017-11-01
Smallholder farmers in the Guinea savanna practise cereal-legume intercropping to mitigate risks of crop failure in mono-cropping. The productivity of cereal-legume intercrops could be influenced by the spatial arrangement of the intercrops and the soil fertility status. Knowledge on the effect of soil fertility status on intercrop productivity is generally lacking in the Guinea savanna despite the wide variability in soil fertility status in farmers' fields, and the productivity of within-row spatial arrangement of intercrops relative to the distinct-row systems under on-farm conditions has not been studied in the region. We studied effects of maize-legume spatial intercropping patterns and soil fertility status on resource use efficiency, crop productivity and economic profitability under on-farm conditions in the Guinea savanna. Treatments consisted of maize-legume intercropped within-row, 1 row of maize alternated with one row of legume, 2 rows of maize alternated with 2 rows of legume, a sole maize crop and a sole legume crop. These were assessed in the southern Guinea savanna (SGS) and the northern Guinea savanna (NGS) of northern Ghana for two seasons using three fields differing in soil fertility in each agro-ecological zone. Each treatment received 25 kg P and 30 kg K ha -1 at sowing, while maize received 25 kg (intercrop) or 50 kg (sole) N ha -1 at 3 and 6 weeks after sowing. The experiment was conducted in a randomised complete block design with each block of treatments replicated four times per fertility level at each site. Better soil conditions and rainfall in the SGS resulted in 48, 38 and 9% more maize, soybean and groundnut grain yield, respectively produced than in the NGS, while 11% more cowpea grain yield was produced in the NGS. Sole crops of maize and legumes produced significantly more grain yield per unit area than the respective intercrops of maize and legumes. Land equivalent ratios (LERs) of all intercrop patterns were greater than unity indicating more efficient and productive use of environmental resources by intercrops. Sole legumes intercepted more radiation than sole maize, while the interception by intercrops was in between that of sole legumes and sole maize. The intercrop however converted the intercepted radiation more efficiently into grain yield than the sole crops. Economic returns were greater for intercrops than for either sole crop. The within-row intercrop pattern was the most productive and lucrative system. Larger grain yields in the SGS and in fertile fields led to greater economic returns. However, intercropping systems in poorly fertile fields and in the NGS recorded greater LERs (1.16-1.81) compared with fertile fields (1.07-1.54) and with the SGS. This suggests that intercropping is more beneficial in less fertile fields and in more marginal environments such as the NGS. Cowpea and groundnut performed better than soybean when intercropped with maize, though the larger absolute grain yields of soybean resulted in larger net benefits.
NASA Astrophysics Data System (ADS)
Zhang, J.; Ives, A. R.; Turner, M. G.; Kucharik, C. J.
2017-12-01
Previous studies have identified global agricultural regions where "stagnation" of long-term crop yield increases has occurred. These studies have used a variety of simple statistical methods that often ignore important aspects of time series regression modeling. These methods can lead to differing and contradictory results, which creates uncertainty regarding food security given rapid global population growth. Here, we present a new statistical framework incorporating time series-based algorithms into standard regression models to quantify spatiotemporal yield trends of US maize, soybean, and winter wheat from 1970-2016. Our primary goal was to quantify spatial differences in yield trends for these three crops using USDA county level data. This information was used to identify regions experiencing the largest changes in the rate of yield increases over time, and to determine whether abrupt shifts in the rate of yield increases have occurred. Although crop yields continue to increase in most maize-, soybean-, and winter wheat-growing areas, yield increases have stagnated in some key agricultural regions during the most recent 15 to 16 years: some maize-growing areas, except for the northern Great Plains, have shown a significant trend towards smaller annual yield increases for maize; soybean has maintained an consistent long-term yield gains in the Northern Great Plains, the Midwest, and southeast US, but has experienced a shift to smaller annual increases in other regions; winter wheat maintained a moderate annual increase in eastern South Dakota and eastern US locations, but showed a decline in the magnitude of annual increases across the central Great Plains and western US regions. Our results suggest that there were abrupt shifts in the rate of annual yield increases in a variety of US regions among the three crops. The framework presented here can be broadly applied to additional yield trend analyses for different crops and regions of the Earth.
USDA-ARS?s Scientific Manuscript database
Water deficit is the most common adverse environmental condition that can seriously reduce crop productivity. Crop simulation models could assist in determining alternate crop management scenarios to deal with water-limited conditions. However, prior to the application of crop models, the appropriat...
Definition and feasibility of isolation distances for transgenic maize cultivation.
Sanvido, Olivier; Widmer, Franco; Winzeler, Michael; Streit, Bernhard; Szerencsits, Erich; Bigler, Franz
2008-06-01
A major concern related to the adoption of genetically modified (GM) crops in agricultural systems is the possibility of unwanted GM inputs into non-GM crop production systems. Given the increasing commercial cultivation of GM crops in the European Union (EU), there is an urgent need to define measures to prevent mixing of GM with non-GM products during crop production. Cross-fertilization is one of the various mechanisms that could lead to GM-inputs into non-GM crop systems. Isolation distances between GM and non-GM fields are widely accepted to be an effective measure to reduce these inputs. However, the question of adequate isolation distances between GM and non-GM maize is still subject of controversy both amongst scientists and regulators. As several European countries have proposed largely differing isolation distances for maize ranging from 25 to 800 m, there is a need for scientific criteria when using cross-fertilization data of maize to define isolation distances between GM and non-GM maize. We have reviewed existing cross-fertilization studies in maize, established relevant criteria for the evaluation of these studies and applied these criteria to define science-based isolation distances. To keep GM-inputs in the final product well below the 0.9% threshold defined by the EU, isolation distances of 20 m for silage and 50 m for grain maize, respectively, are proposed. An evaluation using statistical data on maize acreage and an aerial photographs assessment of a typical agricultural landscape by means of Geographic Information Systems (GIS) showed that spatial resources would allow applying the defined isolation distances for the cultivation of GM maize in the majority of the cases under actual Swiss agricultural conditions. The here developed approach, using defined criteria to consider the agricultural context of maize cultivation, may be of assistance for the analysis of cross-fertilization data in other countries.
How do various maize crop models vary in their responses to climate change factors?
USDA-ARS?s Scientific Manuscript database
Potential consequences of climate change on crop production can be studied using mechanistic crop simulation models. While a broad variety of maize simulation models exist, it is not known whether different models give similar grain yield responses to changes in climatic factors, or whether they agr...
Integrating winter camelina into maize and soybean cropping systems
USDA-ARS?s Scientific Manuscript database
Camelina [Camelina sativa (L.) Crantz.] is an industrial oilseed crop in the Brassicaceae family with multiple uses. Currently, camelina is not used as a cover crop, but it has the potential to be used as such in maize (Zea mays L.)-soybean [Glycine max (L.) Merr.] systems. The objectives of this st...
NASA Astrophysics Data System (ADS)
Meng, Qingfeng; Wang, Hongfei; Yan, Peng; Pan, Junxiao; Lu, Dianjun; Cui, Zhenling; Zhang, Fusuo; Chen, Xinping
2017-02-01
The food supply is being increasingly challenged by climate change and water scarcity. However, incremental changes in traditional cropping systems have achieved only limited success in meeting these multiple challenges. In this study, we applied a systematic approach, using model simulation and data from two groups of field studies conducted in the North China Plain, to develop a new cropping system that improves yield and uses water in a sustainable manner. Due to significant warming, we identified a double-maize (M-M; Zea mays L.) cropping system that replaced the traditional winter wheat (Triticum aestivum L.) -summer maize system. The M-M system improved yield by 14-31% compared with the conventionally managed wheat-maize system, and achieved similar yield compared with the incrementally adapted wheat-maize system with the optimized cultivars, planting dates, planting density and water management. More importantly, water usage was lower in the M-M system than in the wheat-maize system, and the rate of water usage was sustainable (net groundwater usage was ≤150 mm yr-1). Our study indicated that systematic assessment of adaptation and cropping system scale have great potential to address the multiple food supply challenges under changing climatic conditions.
Yang, Bin-Juan; Huang, Guo-Qin; Xu, Ning; Wang, Shu-Bin
2013-09-01
Based on a long term field experiment, this paper studied the effects of different multiple cropping systems on the weed community composition and species diversity under paddy-upland rotation. The multiple cropping rotation systems could significantly decrease weed density and inhibited weed growth. Among the rotation systems, the milk vetch-early rice-late maize --> milk vetchearly maize intercropped with early soybean-late rice (CCSR) had the lowest weed species dominance, which inhibited the dominant weeds and decreased their damage. Under different multiple cropping systems, the main weed community was all composed of Monochoia vaginalis, Echinochloa crusgalli, and Sagittaria pygmae, and the similarity of weed community was higher, with the highest similarity appeared in milk vetch-early rice-late maize intercropped with late soybean --> milk vetch-early maize-late rice (CSCR) and in CCSR. In sum, the multiple cropping rotations in paddy field could inhibit weeds to a certain extent, but attentions should be paid to the damage of some less important weeds.
Yang, Xiao-Lin; Chen, Yuan-Quan; Steenhuis, Tammo S.; Pacenka, Steven; Gao, Wang-Sheng; Ma, Li; Zhang, Min; Sui, Peng
2017-01-01
In the North China Plain, groundwater tables have been dropping at unsustainable rates of 1 m per year due to irrigation of a double cropping system of winter wheat and summer maize. To reverse the trend, we examined whether alternative crop rotations could save water. Moisture contents were measured weekly at 20 cm intervals in the top 180 cm of soil as part of a 12-year field experiment with four crop rotations: sweet potato→ cotton→ sweet potato→ winter wheat-summer maize (SpCSpWS, 4-year cycle); peanuts → winter wheat-summer maize (PWS, 2-year cycle); ryegrass–cotton→ peanuts→ winter wheat-summer maize (RCPWS, 3-year cycle); and winter wheat-summer maize (WS, each year). We found that, compared to WS, the SpCSpWS annual evapotranspiration was 28% lower, PWS was 19% lower and RCPWS was 14% lower. The yield per unit of water evaporated improved for wheat within any alternative rotation compared to WS, increasing up to 19%. Average soil moisture contents at the sowing date of wheat in the SpCSpWS, PWS, and RCPWS rotations were 7, 4, and 10% higher than WS, respectively. The advantage of alternative rotations was that a deep rooted crop of winter wheat reaching down to 180 cm followed shallow rooted crops (sweet potato and peanut drawing soil moisture from 0 to 120 cm). They benefited from the sequencing and vertical complementarity of soil moisture extraction. Thus, replacing the traditional crop rotation with cropping system that involves rotating with annual shallow rooted crops is promising for reducing groundwater depletion in the North China Plain. PMID:28642779
Effect of preceding crop on Fusarium species and mycotoxin contamination of wheat grains.
Qiu, Jianbo; Dong, Fei; Yu, Mingzheng; Xu, Jianhong; Shi, Jianrong
2016-10-01
The Fusarium graminearum species complex infects several cereals and causes the reduction of grain yield and quality. Many factors influence the extent of Fusarium infection and mycotoxin levels. Such factors include crop rotation. In the present study, we explored the effect of rice or maize as former crops on mycotoxin accumulation in wheat grains. More than 97% of samples were contaminated with deoxynivalenol (DON). DON concentrations in wheat grains from rice and maize rotation fields were 884.37 and 235.78 µg kg(-1) . Zearalenone (ZEN) was detected in 45% of samples which were mainly collected from maize-wheat rotation systems. Fusarium strains were isolated and more F. graminearum sensu stricto (s. str.) isolates were cultured from wheat samples obtained from maize rotation fields. DON levels produced by Fusarium isolates from rice rotation fields were higher than those of samples from maize rotation fields. Rice-wheat rotation favours DON accumulation, while more ZEN contamination may occur in maize-wheat rotation models. Appropriate crop rotation may help to reduce toxin levels in wheat grains. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
Srisa-Ard, K
2007-04-15
This pot experiment was carried out at Suranaree Technology University Experimental Farm, Northeast Thailand to investigate effects of crop residues of sunflower, maize and soybean on total dry weight, top dry weight, plant height, root dry weight and seed yield of sunflower plants with the use of Korat soil series (Oxic Paleustults) during the rainy season (July-October) of the 2001. The experiment was laid in a split plot arranged in a Completely Randomized Design (CRD) with four replications where the crop residues of maize, sunflower and soybean were used as main plots. Whilst crop residues of roots, top growth and roots+top growth were used as subplots. The results showed that crop residues derived from roots of both sunflower and soybean plants had their significant inhibition effects of allelopathic substances on plant height, root dry weight, top growth dry weight and total dry weight plant(-1) of the sunflower plants than those derived from top growth of both crops alone (sunflower and soybean). Maize plant residues had no significant inhibition effect on growth of subsequent crop of sunflower.
Shifts in comparative advantages for maize, oat and wheat cropping under climate change in Europe.
Elsgaard, L; Børgesen, C D; Olesen, J E; Siebert, S; Ewert, F; Peltonen-Sainio, P; Rötter, R P; Skjelvåg, A O
2012-01-01
Climate change is anticipated to affect European agriculture, including the risk of emerging or re-emerging feed and food hazards. Indirectly, climate change may influence such hazards (e.g. the occurrence of mycotoxins) due to geographic shifts in the distribution of major cereal cropping systems and the consequences this may have for crop rotations. This paper analyses the impact of climate on cropping shares of maize, oat and wheat on a 50-km square grid across Europe (45-65°N) and provides model-based estimates of the changes in cropping shares in response to changes in temperature and precipitation as projected for the time period around 2040 by two regional climate models (RCM) with a moderate and a strong climate change signal, respectively. The projected cropping shares are based on the output from the two RCMs and on algorithms derived for the relation between meteorological data and observed cropping shares of maize, oat and wheat. The observed cropping shares show a south-to-north gradient, where maize had its maximum at 45-55°N, oat had its maximum at 55-65°N, and wheat was more evenly distributed along the latitudes in Europe. Under the projected climate changes, there was a general increase in maize cropping shares, whereas for oat no areas showed distinct increases. For wheat, the projected changes indicated a tendency towards higher cropping shares in the northern parts and lower cropping shares in the southern parts of the study area. The present modelling approach represents a simplification of factors determining the distribution of cereal crops, and also some uncertainties in the data basis were apparent. A promising way of future model improvement could be through a systematic analysis and inclusion of other variables, such as key soil properties and socio-economic conditions, influencing the comparative advantages of specific crops.
NASA Astrophysics Data System (ADS)
Bachy, Aurélie; Aubinet, Marc; Schoon, Niels; Amelynck, Crist; Bodson, Bernard; Moureaux, Christine; Heinesch, Bernard
2016-04-01
Although maize is the second most important crop worldwide, and the most important C4 crop, no study on biogenic volatile organic compounds (BVOCs) has yet been conducted on this crop at ecosystem scale and over a whole growing season. This has led to large uncertainties in cropland BVOC emission estimations. This paper seeks to fill this gap by presenting, for the first time, BVOC fluxes measured in a maize field at ecosystem scale (using the disjunct eddy covariance by mass scanning technique) over a whole growing season in Belgium. The maize field emitted mainly methanol, although exchanges were bi-directional. The second most exchanged compound was acetic acid, which was taken up mainly in the growing season. Bi-directional exchanges of acetaldehyde, acetone and other oxygenated VOCs also occurred, whereas the terpenes, benzene and toluene exchanges were small, albeit significant. Surprisingly, BVOC exchanges were of the same order of magnitude on bare soil and on well developed vegetation, suggesting that soil is a major BVOC reservoir in agricultural ecosystems. Quantitatively, the maize BVOC emissions observed were lower than those reported in other maize, crops and grasses studies. The standard emission factors (SEFs) estimated in this study (231 ± 19 µg m-2 h-1 for methanol, 8 ± 5 µg m-2 h-1 for isoprene and 4 ± 6 µg m-2 h-1 for monoterpenes) were also much lower than those currently used by models for C4 crops, particularly for terpenes. These results suggest that maize fields are small BVOC exchangers in north-western Europe, with a lower BVOC emission impact than that modelled for growing C4 crops in this part of the world. They also reveal the high variability in BVOC exchanges across world regions for maize and suggest that SEFs should be estimated for each region separately.
Weed Diversity Affects Soybean and Maize Yield in a Long Term Experiment in Michigan, USA.
Ferrero, Rosana; Lima, Mauricio; Davis, Adam S; Gonzalez-Andujar, Jose L
2017-01-01
Managing production environments in ways that promote weed community diversity may enhance both crop production and the development of a more sustainable agriculture. This study analyzed data of productivity of maize (corn) and soybean in plots in the Main Cropping System Experiment (MCSE) at the W. K. Kellogg Biological Station Long-Term Ecological Research (KBS-LTER) in Michigan, USA, from 1996 to 2011. We used models derived from population ecology to explore how weed diversity, temperature, and precipitation interact with crop yields. Using three types of models that considered internal and external (climate and weeds) factors, with additive or non-linear variants, we found that changes in weed diversity were associated with changes in rates of crop yield increase over time for both maize and soybeans. The intrinsic capacity for soybean yield increase in response to the environment was greater under more diverse weed communities. Soybean production risks were greatest in the least weed diverse systems, in which each weed species lost was associated with progressively greater crop yield losses. Managing for weed community diversity, while suppressing dominant, highly competitive weeds, may be a helpful strategy for supporting long term increases in soybean productivity. In maize, there was a negative and non-additive response of yields to the interaction between weed diversity and minimum air temperatures. When cold temperatures constrained potential maize productivity through limited resources, negative interactions with weed diversity became more pronounced. We suggest that: (1) maize was less competitive in cold years allowing higher weed diversity and the dominance of some weed species; or (2) that cold years resulted in increased weed richness and prevalence of competitive weeds, thus reducing crop yields. Therefore, we propose to control dominant weed species especially in the years of low yield and extreme minimum temperatures to improve maize yields. Results of our study indicate that through the proactive management of weed diversity, it may be possible to promote both high productivity of crops and environmental sustainability.
Weed Diversity Affects Soybean and Maize Yield in a Long Term Experiment in Michigan, USA
Ferrero, Rosana; Lima, Mauricio; Davis, Adam S.; Gonzalez-Andujar, Jose L.
2017-01-01
Managing production environments in ways that promote weed community diversity may enhance both crop production and the development of a more sustainable agriculture. This study analyzed data of productivity of maize (corn) and soybean in plots in the Main Cropping System Experiment (MCSE) at the W. K. Kellogg Biological Station Long-Term Ecological Research (KBS-LTER) in Michigan, USA, from 1996 to 2011. We used models derived from population ecology to explore how weed diversity, temperature, and precipitation interact with crop yields. Using three types of models that considered internal and external (climate and weeds) factors, with additive or non-linear variants, we found that changes in weed diversity were associated with changes in rates of crop yield increase over time for both maize and soybeans. The intrinsic capacity for soybean yield increase in response to the environment was greater under more diverse weed communities. Soybean production risks were greatest in the least weed diverse systems, in which each weed species lost was associated with progressively greater crop yield losses. Managing for weed community diversity, while suppressing dominant, highly competitive weeds, may be a helpful strategy for supporting long term increases in soybean productivity. In maize, there was a negative and non-additive response of yields to the interaction between weed diversity and minimum air temperatures. When cold temperatures constrained potential maize productivity through limited resources, negative interactions with weed diversity became more pronounced. We suggest that: (1) maize was less competitive in cold years allowing higher weed diversity and the dominance of some weed species; or (2) that cold years resulted in increased weed richness and prevalence of competitive weeds, thus reducing crop yields. Therefore, we propose to control dominant weed species especially in the years of low yield and extreme minimum temperatures to improve maize yields. Results of our study indicate that through the proactive management of weed diversity, it may be possible to promote both high productivity of crops and environmental sustainability. PMID:28286509
Pradhan, Aliza; Idol, Travis; Roul, Pravat K.
2016-01-01
Traditional agriculture in rainfed uplands of India has been experiencing low agricultural productivity as the lands suffer from poor soil fertility, susceptibility to water erosion and other external pressures of development and climate change. A shift toward more sustainable cropping systems such as conservation agriculture production systems (CAPSs) may help in maintaining soil quality as well as improving crop production and farmer’s net economic benefit. This research assessed the effects over 3 years (2011–2014) of reduced tillage, intercropping, and cover cropping practices customized for maize-based production systems in upland areas of Odisha, India. The study focused on crop yield, system productivity and profitability through maize equivalent yield and dominance analysis. Results showed that maize grain yield did not differ significantly over time or among CAPS treatments while cowpea yield was considered as an additional yield in intercropping systems. Mustard and horsegram grown in plots after maize cowpea intercropping recorded higher grain yields of 25 and 37%, respectively, as compared to those without intercropping. Overall, the full CAPS implementation, i.e., minimum tillage, maize–cowpea intercropping and mustard residue retention had significantly higher system productivity and net benefits than traditional farmer practices, i.e., conventional tillage, sole maize cropping, and no mustard residue retention. The dominance analysis demonstrated increasing benefits of combining conservation practices that exceeded thresholds for farmer adoption. Given the use of familiar crops and technologies and the magnitude of yield and income improvements, these types of CAPS should be acceptable and attractive for smallholder farmers in the area. This in turn should support a move toward sustainable intensification of crop production to meet future household income and nutritional needs. PMID:27471508
Zhang, Wenju; Liu, Kailou; Wang, Jinzhou; Shao, Xingfang; Xu, Minggang; Li, Jianwei; Wang, Xiujun; Murphy, Daniel V.
2015-01-01
We aimed to quantify the relative contributions of plant residue and organic manure to soil carbon sequestration. Using a 27-year-long inorganic fertilizer and manure amendment experiment in a maize (Zea mays L.) double-cropping system, we quantified changes in harvestable maize biomass and soil organic carbon stocks (0–20 cm depth) between 1986-2012. By employing natural 13C tracing techniques, we derived the proportional contributions of below-ground crop biomass return (maize-derived carbon) and external manure amendment (manure-derived carbon) to the total soil organic carbon stock. The average retention of maize-derived carbon plus manure-derived carbon during the early period of the trial (up to 11 years) was relatively high (10%) compared to the later period (22 to 27 years, 5.1–6.3%). About 11% of maize-derived carbon was converted to soil organic carbon, which was double the retention of manure-derived carbon (4.4–5.1%). This result emphasized that organic amendments were necessary to a win-win strategy for both SOC sequestration and maize production. PMID:26039186
NASA Astrophysics Data System (ADS)
Waha, K.; Müller, C.; Rolinski, S.
2013-07-01
Maize (Zea mays L.) is one of the most important food crops and very common in all parts of sub-Saharan Africa. In 2010 53 million tons of maize were produced in sub-Saharan Africa on about one third of the total harvested cropland area (~ 33 million ha). Our aim is to identify the limiting agroclimatic variable for maize growth and development in sub-Saharan Africa by analyzing the separated and combined effects of temperature and precipitation. Under changing climate, both climate variables are projected to change severely, and their impacts on crop yields are frequently assessed using process-based crop models. However it is often unclear which agroclimatic variable will have the strongest influence on crop growth and development under climate change and previous studies disagree over this question.
NASA Astrophysics Data System (ADS)
Manivasagam, V. S.; Nagarajan, R.
2018-04-01
Water stress due to uneven rainfall distribution causes a significant impact on the agricultural production of monsoon-dependent peninsular India. In the present study, water stress assessment for rainfed maize crop is carried out for kharif (June-October) and rabi (October-February) cropping seasons which coincide with two major Indian monsoons. Rainfall analysis (1976-2010) shows that the kharif season receives sufficient weekly rainfall (28 ± 32 mm) during 26th-39th standard meteorological weeks (SMWs) from southwest monsoon, whereas the rabi season experiences a major portion of its weekly rainfall due to northeast monsoon between the 42nd and 51st SMW (31 ± 42 mm). The later weeks experience minimal rainfall (5.5 ± 15 mm) and thus expose the late sown maize crops to a severe water stress during its maturity stage. Wet and dry spell analyses reveal a substantial increase in the rainfall intensity over the last few decades. However, the distribution of rainfall shows a striking decrease in the number of wet spells, with prolonged dry spells in both seasons. Weekly rainfall classification shows that the flowering and maturity stages of kharif maize (33rd-39th SMWs) can suffer around 30-40% of the total water stress. In the case of rabi maize, the analysis reveals that a shift in the sowing time from the existing 42nd SMW (16-22 October) to the 40th SMW (1-7 October) can avoid terminal water stress. Further, AquaCrop modeling results show that one or two minimal irrigations during the flowering and maturity stages (33rd-39th SMWs) of kharif maize positively avoid the mild water stress exposure. Similarly, rabi maize requires an additional two or three lifesaving irrigations during its flowering and maturity stages (48th-53rd SMWs) to improve productivity. Effective crop planning with appropriate sowing time, short duration crop, and high yielding drought-resistant varieties will allow for better utilization of the monsoon rain, thus reducing water stress with an increase in rainfed maize productivity.
De la Cruz-Barrón, Magali; Cruz-Mendoza, Alejandra; Navarro-Noya, Yendi E; Ruiz-Valdiviezo, Victor M; Ortíz-Gutiérrez, Daniel; Ramírez-Villanueva, Daniel A; Luna-Guido, Marco; Thierfelder, Cristian; Wall, Patrick C; Verhulst, Nele; Govaerts, Bram; Dendooven, Luc
2017-01-01
Water infiltration, soil carbon content, aggregate stability and yields increased in conservation agriculture practices compared to conventionally ploughed control treatments at the Henderson research station near Mazowe (Zimbabwe). How these changes in soil characteristics affect the bacterial community structure and the bacteria involved in the degradation of applied organic material remains unanswered. Soil was sampled from three agricultural systems at Henderson, i.e. (1) conventional mouldboard ploughing with continuous maize (conventional tillage), (2) direct seeding with a Fitarelli jab planter and continuous maize (direct seeding with continuous maize) and (3) direct seeding with a Fitarelli jab planter with rotation of maize sunn hemp (direct seeding with crop rotation). Soil was amended with young maize plants or their neutral detergent fibre (NDF) and incubated aerobically for 56 days, while C and N mineralization and the bacterial community structure were monitored. Bacillus (Bacillales), Micrococcaceae (Actinomycetales) and phylotypes belonging to the Pseudomonadales were first degraders of the applied maize plants. At day 3, Streptomyces (Actinomycetales), Chitinophagaceae ([Saprospirales]) and Dyella (Xanthomonadales) participated in the degradation of the applied maize and at day 7 Oxalobacteraceae (Burkholderiales). Phylotypes belonging to Halomonas (Oceanospirillales) were the first degraders of NDF and were replaced by Phenylobacterium (Caulobacterales) and phylotypes belonging to Pseudomonadales at day 3. Afterwards, similar bacterial groups were favoured by application of NDF as they were by the application of maize plants, but there were also clear differences. Phylotypes belonging to the Micrococcaceae and Bacillus did not participate in the degradation of NDF or its metabolic products, while phylotypes belonging to the Acidobacteriaceae participated in the degradation of NDF but not in that of maize plants. It was found that agricultural practices had a limited effect on the bacterial community structure, but application of organic material altered it substantially.
NASA Astrophysics Data System (ADS)
Qiao, Jianmin; Yu, Deyong; Wang, Qianfeng; Liu, Yupeng
2018-06-01
Both crop distribution and climate change are important drivers for crop production and can affect food security, which is an important requirement for sustainable development. However, their effects on crop production are confounded and warrant detailed investigation. As a key area for food production that is sensitive to climate change, the agro-pastoral transitional zone (APTZ) plays a significant role in regional food security. To investigate the respective effects of crop distribution and climate change on crop production, the well-established GIS-based Environmental Policy Integrated Climate (EPIC) model was adopted with different scenario designs in this study. From 1980 to 2010, the crop distribution for wheat, maize, and rice witnessed a dramatic change due to agricultural policy adjustments and ecological engineering-related construction in the APTZ. At the same time, notable climate change was observed. The simulation results indicated that the climate change had a positive impact on the crop production of wheat, maize, and rice, while the crop distribution change led to an increase in the production of maize and rice, but a decrease in the wheat production. Comparatively, crop distribution change had a larger impact on wheat (-1.71 × 106 t) and maize (8.53 × 106 t) production, whereas climate change exerted a greater effect on rice production (0.58 × 106 t), during the period from 1980 to 2010 in the APTZ. This study is helpful to understand the mechanism of the effects of crop distribution and climate change on crop production, and aid policy makers in reducing the threat of future food insecurity.
NASA Astrophysics Data System (ADS)
Qiao, Jianmin; Yu, Deyong; Wang, Qianfeng; Liu, Yupeng
2017-07-01
Both crop distribution and climate change are important drivers for crop production and can affect food security, which is an important requirement for sustainable development. However, their effects on crop production are confounded and warrant detailed investigation. As a key area for food production that is sensitive to climate change, the agro-pastoral transitional zone (APTZ) plays a significant role in regional food security. To investigate the respective effects of crop distribution and climate change on crop production, the well-established GIS-based Environmental Policy Integrated Climate (EPIC) model was adopted with different scenario designs in this study. From 1980 to 2010, the crop distribution for wheat, maize, and rice witnessed a dramatic change due to agricultural policy adjustments and ecological engineering-related construction in the APTZ. At the same time, notable climate change was observed. The simulation results indicated that the climate change had a positive impact on the crop production of wheat, maize, and rice, while the crop distribution change led to an increase in the production of maize and rice, but a decrease in the wheat production. Comparatively, crop distribution change had a larger impact on wheat (-1.71 × 106 t) and maize (8.53 × 106 t) production, whereas climate change exerted a greater effect on rice production (0.58 × 106 t), during the period from 1980 to 2010 in the APTZ. This study is helpful to understand the mechanism of the effects of crop distribution and climate change on crop production, and aid policy makers in reducing the threat of future food insecurity.
NASA Astrophysics Data System (ADS)
Estes, L. D.; Chaney, N.; Herrera-Estrada, J.; Caylor, K. K.; Sheffield, J.; Wood, E. F.
2013-12-01
Understanding how climate change will affect crop water use (evapotranspiration) is fundamental to understanding food security. This is particularly true in sub-Saharan Africa, where crops are largely grown in dryland systems, and agricultural production is expected to expand dramatically this century. Yet analyzing how climate change has impacted crop evapotranspiration (ET) has been hampered by the lack of long-term and spatially continuous meteorological data. Here we use a newly developed, spatio-temporally corrected meteorological dataset to 1) identify trends in individual ET components [rainfall (RF), temperature (T), specific humidity (SH), windspeed (WS), long- and shortwave radiation (LWR, SWR)] in Africa since 1979 and 2) determine the impact of these trends on crop water use. The meteorological data was developed from the Princeton University global meteorological dataset (PGF), which merges gridded station data, satellite retrievals and reanalysis to create a 1.0° resolution, 3-hourly weather dataset for the years 1948-2012. The PGF was downscaled to 0.25° resolution using bilinear interpolation, correcting T, SH, and LWR for elevation, and then merged (using state-space estimation) with meteorological station data (~1000, obtained from the Global Summary of Day database) and corrected for temporal inhomogeneities (due to instrument changes, etc) and gap-filled for missing days. This resulted in a bias-corrected gridded set of daily observations for the variables of interest over southern, East, and West Africa (Central Africa was excluded because of insufficient station observations) for the period 1979-2012, focusing on the satellite period. Using Kendall-Theil Robust line and Mann-Kendall tests, we identify and map significant (p<0.05) trends in ET components in each 0.25° cell over the time period. To estimate the crop water use impact of significant changes in ET components, we undertook a series of crop modeling experiments to isolate the impact of each component. The experiments were based on generated meteorological datasets representing average weather during the first (1979-1989, hereafter '1985') and last 10 years of the period (2002-2012, or '2008'). For each ET component showing significant trends, we created a counterfactual dataset representing average weather for 2002-2012, but with the trend in that component removed (we adjusted other variables' climatologies to preserve covariances). We used these three datasets, together with gridded estimates of crop planting dates and soil texture, to estimate maize evapotranspiration using the FAO-56 method, where reference ET is modified by maize specific coefficients representing a) maize potential transpiration and b) maize water stress. We used the ET estimates resulting from the 1985 and 2008 datasets to map maize water use changes for the study period. To isolate the impact of individual ET components on overall maize water use, we calculated the differences between the ET estimates from the 2008 dataset and from each counterfactual weather scenario. This analysis demonstrates how improved forcing data can improve understanding of the impact that understudied global change factors (e.g. changing WS) have on crop response.
NASA Astrophysics Data System (ADS)
Zhao, Jin; Yang, Xiaoguang
2018-02-01
The available agro-climate resources that can be absorbed and converted into dry matter could directly affect crop growth and yield under climate change. Knowledge of the average amount and stability of available agro-climate resources for maize in the main cropping regions of China under climate change is essential for farmers and advisors to optimize cropping choices and develop adaptation strategies under limited resources. In this study, the three main maize cropping regions in China—the North China spring maize region (NCS), the Huanghuaihai summer maize region (HS), and the Southwest China mountain maize region (SCM)—were selected as study regions. Based on observed solar radiation, temperature, and precipitation data, we analyzed the spatial distributions and temporal trends in the available agro-climate resources for maize during 1981-2010. During this period, significantly prolonged climatological growing seasons for maize [3.3, 2.0, and 4.7 day (10 yr)-1 in NCS, HS, and SCM] were found in all three regions. However, the spatiotemporal patterns of the available agro-climate resources differed among the three regions. The available heating resources for maize increased significantly in the three regions, and the rates of increase were higher in NCS [95.5°C day (10 yr)-1] and SCM [93.5°C day (10 yr)-1] than that in HS [57.7°C day (10 yr)-1]. Meanwhile, decreasing trends in the available water resources were found in NCS [-5.3 mm (10 yr)-1] and SCM [-5.8 mm (10 yr)-1], whereas an increasing trend was observed in HS [3.0 mm (10 yr)-1]. Increasing trends in the available radiation resources were found in NCS [20.9 MJ m-2 (10 yr)-1] and SCM [25.2 MJ m-2 (10 yr)-1], whereas a decreasing trend was found in HS [11.6 MJ m-2 (10 yr)-1]. Compared with 1981-90, the stability of all three resource types decreased during 1991-2000 and 2001-10 in the three regions. More consideration should be placed on the extreme events caused by more intense climate fluctuations. The results can provide guidance in the development of suitable adaptations to climate change in the main maize cropping regions in China.
Meng, Qingfeng; Wang, Hongfei; Yan, Peng; Pan, Junxiao; Lu, Dianjun; Cui, Zhenling; Zhang, Fusuo; Chen, Xinping
2017-01-01
The food supply is being increasingly challenged by climate change and water scarcity. However, incremental changes in traditional cropping systems have achieved only limited success in meeting these multiple challenges. In this study, we applied a systematic approach, using model simulation and data from two groups of field studies conducted in the North China Plain, to develop a new cropping system that improves yield and uses water in a sustainable manner. Due to significant warming, we identified a double-maize (M-M; Zea mays L.) cropping system that replaced the traditional winter wheat (Triticum aestivum L.) –summer maize system. The M-M system improved yield by 14–31% compared with the conventionally managed wheat-maize system, and achieved similar yield compared with the incrementally adapted wheat-maize system with the optimized cultivars, planting dates, planting density and water management. More importantly, water usage was lower in the M-M system than in the wheat-maize system, and the rate of water usage was sustainable (net groundwater usage was ≤150 mm yr−1). Our study indicated that systematic assessment of adaptation and cropping system scale have great potential to address the multiple food supply challenges under changing climatic conditions. PMID:28155860
Current situation of pests targeted by Bt crops in Latin America.
Blanco, C A; Chiaravalle, W; Dalla-Rizza, M; Farias, J R; García-Degano, M F; Gastaminza, G; Mota-Sánchez, D; Murúa, M G; Omoto, C; Pieralisi, B K; Rodríguez, J; Rodríguez-Maciel, J C; Terán-Santofimio, H; Terán-Vargas, A P; Valencia, S J; Willink, E
2016-06-01
Transgenic crops producing Bacillus thuringiensis- (Bt) insecticidal proteins (Bt crops) have provided useful pest management tools to growers for the past 20 years. Planting Bt crops has reduced the use of synthetic insecticides on cotton, maize and soybean fields in 11 countries throughout Latin America. One of the threats that could jeopardize the sustainability of Bt crops is the development of resistance by targeted pests. Governments of many countries require vigilance in measuring changes in Bt-susceptibility in order to proactively implement corrective measures before Bt-resistance is widespread, thus prolonging the usefulness of Bt crops. A pragmatic approach to obtain information on the effectiveness of Bt-crops is directly asking growers, crop consultants and academics about Bt-resistance problems in agricultural fields, first-hand information that not necessarily relies on susceptibility screens performed in laboratories. This type of information is presented in this report. Problematic pests of cotton and soybeans in five Latin American countries currently are effectively controlled by Bt crops. Growers that plant conventional (non-Bt) cotton or soybeans have to spray synthetic insecticides against multiple pests that otherwise are controlled by these Bt crops. A similar situation has been observed in six Latin American countries where Bt maize is planted. No synthetic insecticide applications are used to control corn pests because they are controlled by Bt maize, with the exception of Spodoptera frugiperda. While this insect in some countries is still effectively controlled by Bt maize, in others resistance has evolved and necessitates supplemental insecticide applications and/or the use of Bt maize cultivars that express multiple Bt proteins. Partial control of S. frugiperda in certain countries is due to its natural tolerance to the Bt bacterium. Of the 31 pests targeted and controlled by Bt crops in Latin America, only S. frugiperda has shown tolerance to certain Bt proteins in growers' fields, the most reliable indication of the status of Bt-susceptibility in most of the American continent. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Cora, Jose; Marcelo, Adolfo
2013-04-01
Plant residues are considered the primarily resource for soil organic matter (SOM) formation and the amounts and properties of plant litter are important controlling factors for the SOM quality. We determined the amounts, quality and decomposition rate of plant residues and the effects of summer and winter crop sequences on soil organic C (TOC) content, both particulate organic C (POC) and mineral-associated organic C (MOC) pools and humic substances in a Brazilian Rhodic Eutrudox soil under a no-tillage system. The organic C analysis in specifics pools used in this study was effective and should be adopted in tropical climates to evaluate the soil quality and the sustainability of various cropping systems. Continuous growth of soybean (Glycine max L. Merrill) on summer provided higher contents of soil POC and continuous growth of maize (Zea mays L.) provided higher soil humic acid and MOC contents. Summer soybean-maize rotation provided the higher plant diversity, which likely improved the soil microbial activity and the soil organic C consumption. The winter sunn hemp (Crotalaria juncea L.), pigeon pea (Cajanus cajan (L.) Millsp), oilseed radish (Raphanus sativus L.) and pearl millet (Pennisetum americanum (L.) Leeke) enhanced the soil MOC, a finding that is attributable to the higher N content of the crop residue. Sunn hemp and pigeon pea provided the higher soil POC content. Sunn hemp showed better performance and positive effects on the SOM quality, making it a suitable winter crop choice for tropical conditions with a warm and dry winter.
Crop and non-crop productivity in a traditional maize agroecosystem of the highland of Mexico
2009-01-01
Background In Mexico, the traditional maize cultivation system has resisted intensification attempts for many decades in some areas, even in some well-connected regions of the temperate highlands. We suggest that this is due to economics. Methods The total useful biomass of several fields in Nanacamilpa, Tlaxcala, are evaluated for productivity and costs. Results Maize grain production is low (1.5 t ha-1) and does not cover costs. However, maize stover demands a relatively high price. If it included, a profit is possible (about 110 US $ ha-1). We show that non-crop production (weeds for food and forage) potentially has a higher value than the crop. It is only partially used, as there are constraints on animal husbandry, but it diversifies production and plays a role as a back-up system in case of crop failure. Conclusion The diversified system described is economically rational under current conditions and labor costs. It is also stable, low-input and ecologically benign, and should be recognized as an important example of integrated agriculture, though some improvements could be investigated. PMID:19943939
AmeriFlux US-Ne1 Mead - irrigated continuous maize site
Suyker, Andy [University of Nebraska - Lincoln
2016-01-01
This is the AmeriFlux version of the carbon flux data for the site US-Ne1 Mead - irrigated continuous maize site. Site Description - The study site is one of three fields (all located within 1.6 km of each other) at the University of Nebraska Agricultural Research and Development Center near Mead, Nebraska. This site is irrigated with a center pivot system. Prior to the initiation of the study, the irrigated site had a 10-yr history of maize-soybean rotation under no-till. A tillage operation (disking) was done just prior to the 2001 planting to homogenize the top 0.1 m of soil, incorporate P and K fertilizers, as well as previously accumulated surface residues. Since the tillage operation, the site has been under no-till management until the harvest of 2005. Following harvest, a conservation-plow tillage operation was initiated where a small amount of N fertilizer is sprayed on the residue immediately prior to the plow operation. Approximately 1/3 of the crop residue is left on the surface. The post-harvest conservation-plow operation continues as the current practice.
Impact of living mulches on the physical properties of Planosol in monocropped maize cultivation
NASA Astrophysics Data System (ADS)
Romaneckas, Kęstutis; Adamavičienė, Aida; Šarauskis, Egidijus; Kriaučiūnienė, Zita; Marks, Marek; Vaitauskienė, Kristina
2018-04-01
The complex mutual interactions between soil properties and plants in high-biodiversity mono-cropping agro ecosystems have not been widely investigated. For this purpose, during 2009-2011, a stationary field experiment was conducted at the Experimental Station of the Aleksandras Stulginskis University to establish the effect of a multi-component agrocenose (maize, living mulch, weeds) on the physical properties of the soil. Spring oilseed rape, white mustard, spring barley, Italian ryegrass, black medic, Persian clover and red clover were sown as living mulch into maize inter-rows. The stability of >1.0 mm aggregates increased between the beginning and end of the maize vegetative period in almost all of the crops containing living mulch. The greatest competition for moisture content between the inter-crops and maize was observed at the beginning of the vegetative period because of living mulches of long growing seasons using the most moisture. In many cases, the shear strength of the soil was significantly reduced by the living mulch in the middle of summer, when it covered the maize inter-rows. These findings show that the monocropping of maize with living mulch stabilises or improves the physical characteristics of the soil, highlighting its potential for sustainable maize growing.
MaizeGDB: Curation and outreach go hand-in-hand
USDA-ARS?s Scientific Manuscript database
This is a brief synopsis of the formal and informal interactions among MaizeGDB (www.maizegdb.org) and maize researchers; and among MaizeGDB and other stakeholders, especially the MaizeGDB Working Group and farmers growing this important crop. Particular note is made of the efficacy in distribution ...
Economics of plant production on marginal sites in the state Mecklenburg-Vorpommern
NASA Astrophysics Data System (ADS)
Ziesemer, Andrea; Andreas, Gurgel; Ines, Bull
2017-04-01
Marginal sites are defined by economics. It is not possible to produce any profit there under given conditions of markets and policy even when management is optimized. In the state Mecklenburg-Vorpommern, a portion of nearly 20 % of arable land is characterized by such conditions. There are often to find sandy sites below 28 soil points with low storage capacity and irregular water supply. Animal husbandry as a type of agricultural upgrading has a more important role in the south and southwest of the state than in the regions with better soil quality. The percentage of Maize was already in 2003 twice as high in the regions with more marginal sites. After implementation of the Renewable Energy Act many enterprises started built biogas plants. In 2010, the portion of maize was raised to 20 %. The increase of Maize was combined with a reduction of growing other fodder crops, rye and also by reducing set-aside areas. The scale of the cash crops Rape (16%), Wheat (15 %) and barley (9 %) stayed the same. The yields and production processes of several selected farms in Mecklenburg-Vorpommern were analyzed for the years 2011 to 2016. The farms reached 6.6 tons per hectare of wheat and 6.1 tons per hectare of barley on soils below 28 soil points. Hybrid rye achieved 5.4 tons per hectare and rape 3.0. Maize was especially dependent on water supply and made between 30 and 35 tons per hectare. The big problem in these regions is caused by high production costs in cropping. More than a half of the costs is required for seeds, fertilization and crop protection. However, the remaining revenues are not adequate for paying work and fix costs as an evaluation of farms in Mecklenburg-Vorpommern shows. It is not a valid option to set more land that is arable aside in regions with much marginal sites because cropping is a strategic investment there. Therefore, it is important to make effort on crop rotations and optimization of production intensities to decrease costs per unit and to save a certain level of yields. A calculation of crop rotations shows that the contribution margin of three-year crop rotations and four-year rotations containing maize is lower by 20 to 25 percent compared with crop rotations on sites with better soil quality. Besides the four-year rotations demonstrate that maize is able to increase the profit for farms. These rotations with maize obtain better contribution margins than cash crop rotations on the margin sites. Furthermore, maize will be a good instrument to come up to requirements on nitrogen balances in future.
Future climate impacts on maize farming and food security in Malawi
NASA Astrophysics Data System (ADS)
Stevens, Tilele; Madani, Kaveh
2016-11-01
Agriculture is the mainstay of Malawi’s economy and maize is the most important crop for food security. As a Least Developed Country (LDC), adverse effects of climate change (CC) on agriculture in Malawi are expected to be significant. We examined the impacts of CC on maize production and food security in Malawi’s dominant cereal producing region, Lilongwe District. We used five Global Circulation Models (GCMs) to make future (2011 to 2100) rainfall and temperature projections and simulated maize yields under these projections. Our future rainfall projections did not reveal a strong increasing or decreasing trend, but temperatures are expected to increase. Our crop modelling results, for the short-term future, suggest that maize farming might benefit from CC. However, faster crop growth could worsen Malawi’s soil fertility problem. Increasing temperature could drive lower maize yields in the medium to long-term future. Consequently, up to 12% of the population in Lilongwe District might be vulnerable to food insecurity by the end of the century. Measures to increase soil fertility and moisture must be developed to build resilience into Malawi’s agriculture sector.
Land Husbandry: Biochar application to reduce land degradation and erosion on cassava production
NASA Astrophysics Data System (ADS)
Yuniwati, E. D.
2017-12-01
This field experiment was carried out to examine the effect of increasing crop yield on land degradation and erosion in cassava-based cropping systems. The experiment was also aimed at showing that with proper crop management, the planting of cassava does not result in land degradation, and therefore, a sustainable production system can be obtained. The experiment was done in a farmer's fields in Batu, about 15 km south east of Malang, East Java, Indonesia. The soils are Alfisols with a surface slope of about 8%. There were 8 experimental treatments with two replications. The experiment results show that biochar applications reduce of soil erosion rate of the cassava field were not necessarily higher than those of maize in terms of crop yield and crop management. At low-to-medium yield, also observed the nutrient uptake of cassava was lower than that of maize. At high yield, only the K uptake of cassava was higher than that of maize, whereas the N and P uptake was more or less similar. Soil erosion on the cassava field was significantly higher than that on the maize field; however, this only occurred when there was no suitable crop management. Simple crop managements, such as ridging, biochar application, or manure application could significantly reduce soil erosion. The results also revealed that proper management could prevent land degradation and increase crop yield. In turn, the increase in crop yield could decrease soil erosion and plant nutrient depletion.
USDA-ARS?s Scientific Manuscript database
It is critical to evaluate conservation practices that protect soil and water resources from climate change in the Midwestern United States, a region that produces one-quarter of the world’s soybeans and one-third of the world’s maize. An over-winter cover crop in a maize-soybean rotation offers mul...
NASA Astrophysics Data System (ADS)
Kenjabaev, Shavkat; Dernedde, Yvonne; Frede, Hans-Georg; Stulina, Galina
2014-05-01
Determination of the actual crop evapotranspiration (ETc) during the growing period is important for accurate irrigation scheduling in arid and semi-arid regions. Development of a crop coefficient (Kc) can enhance ETc estimations in relation to specific crop phenological development. This research was conducted to determine daily and growth-stage-specific Kc and ETc values for cotton (Gossypium hirsutum L.), winter wheat (Triticum aestivum L.) and maize (Zea mays L.) for silage at fields in Fergana Valley (Uzbekistan). The soil water balance model - Budget with integration of the dual crop procedure of the FAO-56 was used to estimate the ETc and separate it into evaporation (Ec) and transpiration (Tc) components. An empirical equation was developed to determine the daily Kc values based on the estimated Ec and Tc. The ETc, Kc determination and comparison to existing FAO Kc values were performed based on 10, 5 and 6 study cases for cotton, wheat and maize, respectively. Mean seasonal amounts of crop water consumption in terms of ETc were 560±50, 509±27 and 243±39 mm for cotton, wheat and maize, respectively. The growth-stage-specific Kc for cotton, wheat and maize was 0.15, 0.27 and 0.11 at initial; 1.15, 1.03 and 0.56 at mid; and 0.45, 0.89 and 0.53 at late season stages. These values correspond to those reported by the FAO-56. Development of site specific Kc helps tremendously in irrigation management and furthermore provides precise water applications in the region. The developed simple approach to estimate daily Kc for the three main crops grown in the Fergana region was a first attempt to meet this issue. Keywords: Actual crop evapotranspiration, evaporation and transpiration, crop coefficient, model BUDGET, Fergana Valley.
Multi-Seasonal Nitrogen Recoveries from Crop Residue in Soil and Crop in a Temperate Agro-Ecosystem
Hu, Guoqing; Liu, Xiao; He, Hongbo; Zhang, Wei; Xie, Hongtu; Wu, Yeye; Cui, Jiehua; Sun, Ci; Zhang, Xudong
2015-01-01
In conservation tillage systems, at least 30% of the soil surface was covered by crop residues which generally contain significant amounts of nitrogen (N). However, little is known about the multi-seasonal recoveries of the N derived from these crop residues in soil-crop systems, notably in northeastern China. In a temperate agro-ecosystem, 15N-labeled maize residue was applied to field surfaces in the 1st year (2009). From the 2nd to 4th year (2010-2012), one treatment halted the application of maize residue, whereas the soil in the second treatment was re-applied with unlabeled maize residue. Crop and soil samples were collected after each harvest, and their 15N enrichments were determined on an isotope ratio mass spectrometer to trace the allocation of N derived from the initially applied maize residue in the soil-crop systems. On average, 8.4% of the maize residue N was recovered in the soil-crop in the 1st year, and the vast majority (61.9%-91.9%) was recovered during subsequent years. Throughout the experiment, the cumulative recovery of the residue N in the crop increased gradually (18.2%-20.9%), but most of the residue N was retained in the soil, notably in the 0-10 cm soil layer. Compared to the single application, the sequential residue application significantly increased the recovery of the residue N in the soil profile (73.8% vs. 40.9%) and remarkably decreased the total and the initially applied residue derived mineral N along the soil profile. Our results suggested that the residue N was actively involved in N cycling, and its release and recovery in crop and soil profile were controlled by the decomposition process. Sequential residue application significantly enhanced the retention and stabilization of the initially applied residue N in the soil and retarded its translocation along the soil profile. PMID:26192436
Assessing the regional impacts of increased energy maize cultivation on farmland birds.
Brandt, Karoline; Glemnitz, Michael
2014-02-01
The increasing cultivation of energy crops in Germany substantially affects the habitat function of agricultural landscapes. Precise ex ante evaluations regarding the impacts of this cultivation on farmland bird populations are rare. The objective of this paper was to implement a methodology to assess the regional impacts of increasing energy maize cultivation on the habitat quality of agricultural lands for farmland birds. We selected five farmland bird indicator species with varying habitat demands. Using a crop suitability modelling approach, we analysed the availability of potential habitat areas according to different land use scenarios for a real landscape in Northeast Germany. The model was based on crop architecture, cultivation period, and landscape preconditions. Our results showed that the habitat suitability of different crops varied between bird species, and scenario calculations revealed an increase and a decrease in the size of the potential breeding and feeding habitats, respectively. The effects observed in scenario 1 (increased energy maize by 15%) were not reproduced in all cases in scenario 2 (increased energy maize by 30%). Spatial aggregation of energy maize resulted in a negative effect for some species. Changes in the composition of the farmland bird communities, the negative effects on farmland bird species limited in distribution and spread and the relevance of the type of agricultural land use being replaced by energy crops are also discussed. In conclusion, we suggest a trade-off between biodiversity and energy targets by identifying biodiversity-friendly energy cropping systems.
Assessment of energy crops alternative to maize for biogas production in the Greater Region.
Mayer, Frédéric; Gerin, Patrick A; Noo, Anaïs; Lemaigre, Sébastien; Stilmant, Didier; Schmit, Thomas; Leclech, Nathael; Ruelle, Luc; Gennen, Jerome; von Francken-Welz, Herbert; Foucart, Guy; Flammang, Jos; Weyland, Marc; Delfosse, Philippe
2014-08-01
The biomethane yield of various energy crops, selected among potential alternatives to maize in the Greater Region, was assessed. The biomass yield, the volatile solids (VS) content and the biochemical methane potential (BMP) were measured to calculate the biomethane yield per hectare of all plant species. For all species, the dry matter biomass yield and the VS content were the main factors that influence, respectively, the biomethane yield and the BMP. Both values were predicted with good accuracy by linear regressions using the biomass yield and the VS as independent variable. The perennial crop miscanthus appeared to be the most promising alternative to maize when harvested as green matter in autumn and ensiled. Miscanthus reached a biomethane yield of 5.5 ± 1 × 10(3)m(3)ha(-1) during the second year after the establishment, as compared to 5.3 ± 1 × 10(3)m(3)ha(-1) for maize under similar crop conditions. Copyright © 2014. Published by Elsevier Ltd.
Gao, Bing; Ju, Xiaotang; Su, Fang; Gao, Fengbin; Cao, Qingsen; Oenema, Oene; Christie, Peter; Chen, Xinping; Zhang, Fusuo
2013-01-01
We monitored soil respiration (Rs), soil temperature (T) and volumetric water content (VWC%) over four years in one typical conventional and four alternative cropping systems to understand Rs in different cropping systems with their respective management practices and environmental conditions. The control was conventional double-cropping system (winter wheat and summer maize in one year - Con.W/M). Four alternative cropping systems were designed with optimum water and N management, i.e. optimized winter wheat and summer maize (Opt.W/M), three harvests every two years (first year, winter wheat and summer maize or soybean; second year, fallow then spring maize - W/M-M and W/S-M), and single spring maize per year (M). Our results show that Rs responded mainly to the seasonal variation in T but was also greatly affected by straw return, root growth and soil moisture changes under different cropping systems. The mean seasonal CO2 emissions in Con.W/M were 16.8 and 15.1 Mg CO2 ha−1 for summer maize and winter wheat, respectively, without straw return. They increased significantly by 26 and 35% in Opt.W/M, respectively, with straw return. Under the new alternative cropping systems with straw return, W/M-M showed similar Rs to Opt.W/M, but total CO2 emissions of W/S-M decreased sharply relative to Opt.W/M when soybean was planted to replace summer maize. Total CO2 emissions expressed as the complete rotation cycles of W/S-M, Con.W/M and M treatments were not significantly different. Seasonal CO2 emissions were significantly correlated with the sum of carbon inputs of straw return from the previous season and the aboveground biomass in the current season, which explained 60% of seasonal CO2 emissions. T and VWC% explained up to 65% of Rs using the exponential-power and double exponential models, and the impacts of tillage and straw return must therefore be considered for accurate modeling of Rs in this geographical region. PMID:24278340
Current warming will reduce yields unless maize breeding and seed systems adapt immediately
NASA Astrophysics Data System (ADS)
Challinor, A. J.; Koehler, A.-K.; Ramirez-Villegas, J.; Whitfield, S.; Das, B.
2016-10-01
The development of crop varieties that are better suited to new climatic conditions is vital for future food production. Increases in mean temperature accelerate crop development, resulting in shorter crop durations and reduced time to accumulate biomass and yield. The process of breeding, delivery and adoption (BDA) of new maize varieties can take up to 30 years. Here, we assess for the first time the implications of warming during the BDA process by using five bias-corrected global climate models and four representative concentration pathways with realistic scenarios of maize BDA times in Africa. The results show that the projected difference in temperature between the start and end of the maize BDA cycle results in shorter crop durations that are outside current variability. Both adaptation and mitigation can reduce duration loss. In particular, climate projections have the potential to provide target elevated temperatures for breeding. Whilst options for reducing BDA time are highly context dependent, common threads include improved recording and sharing of data across regions for the whole BDA cycle, streamlining of regulation, and capacity building. Finally, we show that the results have implications for maize across the tropics, where similar shortening of duration is projected.
2011-01-01
Background The use of energy crops and agricultural residues is expected to increase to fulfil the legislative demands of bio-based components in transport fuels. Ensiling methods, adapted from the feed sector, are suitable storage methods to preserve fresh crops throughout the year for, for example, biogas production. Various preservation methods, namely ensiling with and without acid addition for whole crop maize, fibre hemp and faba bean were investigated. For the drier fibre hemp, alkaline urea treatment was studied as well. These treatments were also explored as mild pretreatment methods to improve the disassembly and hydrolysis of these lignocellulosic substrates. Results The investigated storage treatments increased the availability of the substrates for biogas production from hemp and in most cases from whole maize but not from faba bean. Ensiling of hemp, without or with addition of formic acid, increased methane production by more than 50% compared to fresh hemp. Ensiling resulted in substantially increased methane yields also from maize, and the use of formic acid in ensiling of maize further enhanced methane yields by 16%, as compared with fresh maize. Ensiled faba bean, in contrast, yielded somewhat less methane than the fresh material. Acidic additives preserved and even increased the amount of the valuable water-soluble carbohydrates during storage, which affected most significantly the enzymatic hydrolysis yield of maize. However, preservation without additives decreased the enzymatic hydrolysis yield especially in maize, due to its high content of soluble sugars that were already converted to acids during storage. Urea-based preservation significantly increased the enzymatic hydrolysability of hemp. Hemp, preserved with urea, produced the highest carbohydrate increase of 46% in enzymatic hydrolysis as compared to the fresh material. Alkaline pretreatment conditions of hemp improved also the methane yields. Conclusions The results of the present work show that ensiling and alkaline preservation of fresh crop materials are useful pretreatment methods for methane production. Improvements in enzymatic hydrolysis were also promising. While all three crops still require a more powerful pretreatment to release the maximum amount of carbohydrates, anaerobic preservation is clearly a suitable storage and pretreatment method prior to production of platform sugars from fresh crops. PMID:21771298
Gao, Bing; Ju, Xiaotang; Su, Fang; Gao, Fengbin; Cao, Qingsen; Oenema, Oene; Christie, Peter; Chen, Xinping; Zhang, Fusuo
2013-01-01
We monitored soil respiration (Rs), soil temperature (T) and volumetric water content (VWC%) over four years in one typical conventional and four alternative cropping systems to understand Rs in different cropping systems with their respective management practices and environmental conditions. The control was conventional double-cropping system (winter wheat and summer maize in one year--Con.W/M). Four alternative cropping systems were designed with optimum water and N management, i.e. optimized winter wheat and summer maize (Opt.W/M), three harvests every two years (first year, winter wheat and summer maize or soybean; second year, fallow then spring maize--W/M-M and W/S-M), and single spring maize per year (M). Our results show that Rs responded mainly to the seasonal variation in T but was also greatly affected by straw return, root growth and soil moisture changes under different cropping systems. The mean seasonal CO2 emissions in Con.W/M were 16.8 and 15.1 Mg CO2 ha(-1) for summer maize and winter wheat, respectively, without straw return. They increased significantly by 26 and 35% in Opt.W/M, respectively, with straw return. Under the new alternative cropping systems with straw return, W/M-M showed similar Rs to Opt.W/M, but total CO2 emissions of W/S-M decreased sharply relative to Opt.W/M when soybean was planted to replace summer maize. Total CO2 emissions expressed as the complete rotation cycles of W/S-M, Con.W/M and M treatments were not significantly different. Seasonal CO2 emissions were significantly correlated with the sum of carbon inputs of straw return from the previous season and the aboveground biomass in the current season, which explained 60% of seasonal CO2 emissions. T and VWC% explained up to 65% of Rs using the exponential-power and double exponential models, and the impacts of tillage and straw return must therefore be considered for accurate modeling of Rs in this geographical region.
Quanqi, Li; Yuhai, Chen; Xunbo, Zhou; Songlie, Yu; Changcheng, Guo
2012-01-01
In north China, double cropping of winter wheat and summer maize is a widely adopted agricultural practice, and irrigation is required to obtain a high yield from winter wheat, which results in rapid aquifer depletion. In this experiment conducted in 2001-2002, 2002-2003, and 2004-2005, we studied the effects of irrigation regimes during specific winter wheat growing stage with winter wheat and summer maize double cropping systems; we measured soil moisture before sowing (SMBS), the photosynthetic active radiation (PAR) capture ratio, grain yield, and the radiation use efficiency (RUE) of summer maize. During the winter wheat growing season, irrigation was applied at the jointing, heading, or milking stage, respectively. The results showed that increased amounts of irrigation and irrigation later in the winter wheat growing season improved SMBS for summer maize. The PAR capture ratio significantly (LSD, P < 0.05) increased with increased SMBS, primarily in the 3 spikes leaves. With improved SMBS, both the grain yield and RUE increased in all the treatments. These results indicate that winter wheat should be irrigated in later stages to achieve reasonable grain yield for both crops. PMID:22654613
Monitoring growth condition of spring maize in Northeast China using a process-based model
NASA Astrophysics Data System (ADS)
Wang, Peijuan; Zhou, Yuyu; Huo, Zhiguo; Han, Lijuan; Qiu, Jianxiu; Tan, Yanjng; Liu, Dan
2018-04-01
Early and accurate assessment of the growth condition of spring maize, a major crop in China, is important for the national food security. This study used a process-based Remote-Sensing-Photosynthesis-Yield Estimation for Crops (RS-P-YEC) model, driven by satellite-derived leaf area index and ground-based meteorological observations, to simulate net primary productivity (NPP) of spring maize in Northeast China from the first ten-day (FTD) of May to the second ten-day (STD) of August during 2001-2014. The growth condition of spring maize in 2014 in Northeast China was monitored and evaluated spatially and temporally by comparison with 5- and 13-year averages, as well as 2009 and 2013. Results showed that NPP simulated by the RS-P-YEC model, with consideration of multi-scattered radiation inside the crop canopy, could reveal the growth condition of spring maize more reasonably than the Boreal Ecosystem Productivity Simulator. Moreover, NPP outperformed other commonly used vegetation indices (e.g., Normalized Difference Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI)) for monitoring and evaluating the growth condition of spring maize. Compared with the 5- and 13-year averages, the growth condition of spring maize in 2014 was worse before the STD of June and after the FTD of August, and it was better from the third ten-day (TTD) of June to the TTD of July across Northeast China. Spatially, regions with slightly worse and worse growth conditions in the STD of August 2014 were concentrated mainly in central Northeast China, and they accounted for about half of the production area of spring maize in Northeast China. This study confirms that NPP is a good indicator for monitoring and evaluating growth condition because of its capacity to reflect the physiological characteristics of crops. Meanwhile, the RS-P-YEC model, driven by remote sensing and ground-based meteorological data, is effective for monitoring crop growth condition over large areas in a near real time.
NASA Astrophysics Data System (ADS)
Chu, Yingmin; Shen, Yanjun; Yuan, Zaijian
2017-06-01
The North China Plain (NCP) has a serious shortage of freshwater resources, and crop production consumes approximately 75 % of the region's water. To estimate water consumption of different crops and crop structures in the NCP, the Hebei southern plain (HSP) was selected as a study area, as it is a typical region of groundwater overdraft in the NCP. In this study, the water footprint (WF) of crop production, comprised of green, blue and grey water footprints, and its annual variation were analyzed. The results demonstrated the following: (1) the WF from the production of main crops was 41.8 km3 in 2012. Winter wheat, summer maize and vegetables were the top water-consuming crops in the HSP. The water footprint intensity (WFI) of cotton was the largest, and for vegetables, it was the smallest; (2) the total WF, WFblue, WFgreen and WFgrey for 13 years (2000-2012) of crop production were 604.8, 288.5, 141.3 and 175.0 km3, respectively, with an annual downtrend from 2000 to 2012; (3) winter wheat, summer maize and vegetables consumed the most groundwater, and their blue water footprint (WFblue) accounted for 74.2 % of the total WFblue in the HSP; (4) the crop structure scenarios analysis indicated that, with approximately 20 % of arable land cultivated with winter wheat-summer maize in rotation, 38.99 % spring maize, 10 % vegetables and 10 % fruiters, a sustainable utilization of groundwater resources can be promoted, and a sufficient supply of food, including vegetables and fruits, can be ensured in the HSP.
Pretreatment of Whole-Crop Harvested, Ensiled Maize for Ethanol Production
NASA Astrophysics Data System (ADS)
Thomsen, M. H.; Holm-Nielsen, J. B.; Oleskowicz-Popiel, P.; Thomsen, A. B.
To have all-year-round available feedstock, whole-crop maize is harvested premature, when it still contains enough moisture for the anaerobic ensiling process. Silage preparation is a well-known procedure for preserving plant material. At first, this method was applied to obtain high-quality animal feed. However, it was found that such ensiled crops are very suitable for bioenergy production. Maize silage, which consists of hardly degradable lignocellulosic material, hemicellulosic material, and starch, was evaluated for its potential as a feedstock in the production of bioethanol. It was pretreated at low severity (185 °C, 15 min) giving very high glucan (˜100%) and hemicellulose recoveries (<80%)—as well as very high ethanol yield in simultaneous saccharification and fermentation experiments (98% of the theoretical production based on available glucan in the medium). The theoretical ethanol production of maize silage pretreated at 185 °C for 15 min without oxygen or catalyst was 392 kg ethanol per ton of dry maize silage.
NASA Astrophysics Data System (ADS)
Black, C. K.; Miller, J. N.; Masters, M. D.; Bernacchi, C.; DeLucia, E. H.
2014-12-01
Annually-harvested agroecosystems have the potential to be net carbon sinks only if their root systems allocate sufficient carbon belowground and if this carbon is then retained as stable soil organic matter. Soil respiration measurements are the most common approach to evaluate the stability of soil carbon at experimental time scales, but valid inferences require the partitioning of soil respiration into root-derived (current-year C) and heterotrophic (older C) components. This partitioning is challenging at the field scale because roots and soil are intricately mixed and physical separation in impossible without disturbing the fluxes to be measured. To partition soil flux and estimate the C sink potential of bioenergy crops, we used the carbon isotope difference between C3 and C4 plant species to quantify respiration from roots of three C4 grasses (maize, Miscanthus, and switchgrass) grown in a site with a mixed cropping history where respiration from the breakdown of old soil carbon has a mixed C3-C4 signature. We used a Keeling plot approach to partition fluxes both at the soil surface using soil chambers and from the whole field using continuous flow sampling of air within and above the canopy. Although soil respiration rates from perennial grasses were higher than those from maize, the isotopic signature of respired carbon indicated that the fraction of soil CO2 flux attributable to current-year vegetation was 1.5 (switchgrass) to 2 (Miscanthus) times greater in perennials than that from maize, indicating that soil CO2 flux came mostly from roots and turnover of soil organic matter was reduced in the perennial crops. This reduction in soil heterotrophic respiration, combined with the much greater quantities of C allocated belowground by perennial grasses compared to maize, suggests that perennial grasses grown as bioenergy crops may be able to provide an additional climate benefit by acting as carbon sinks in addition to reducing fossil fuel consumption.
Effects of temperature changes on maize production in Mozambique
Harrison, L.; Michaelsen, J.; Funk, Chris; Husak, G.
2011-01-01
We examined intraseasonal changes in maize phenology and heat stress exposure over the 1979-2008 period, using Mozambique meteorological station data and maize growth requirements in a growing degree-day model. Identifying historical effects of warming on maize growth is particularly important in Mozambique because national food security is highly dependent on domestic food production, most of which is grown in already warm to hot environments. Warming temperatures speed plant development, shortening the length of growth periods necessary for optimum plant and grain size. This faster phenological development also alters the timing of maximum plant water demand. In hot growing environments, temperature increases during maize pollination threaten to make midseason crop failure the norm. In addition to creating a harsher thermal environment, we find that early season temperature increases have caused the maize reproductive period to start earlier, increasing the risk of heat and water stress. Declines in time to maize maturation suggest that, independent of effects to water availability, yield potential is becoming increasingly limited by warming itself. Regional variations in effects are a function of the timing and magnitude of temperature increases and growing season characteristics. Continuation of current climatic trends could induce substantial yield losses in some locations. Farmers could avoid some losses through simple changes to planting dates and maize varietal types.
MaizeGDB: The Maize Genetics and Genomics Database.
USDA-ARS?s Scientific Manuscript database
MaizeGDB is the community database for biological information about the crop plant Zea mays. Genomic, genetic, sequence, gene product, functional characterization, literature reference, and person/organization contact information are among the datatypes stored at MaizeGDB. At the project’s website...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Friesen, D.K.; Juo, A.S.R.; Miller, M.H.
1982-01-01
A long-term experiment was conducted on a highly acidic (pH 4.6), coarse-textured Ultisol in the high rainfall region of southeastern Nigeria in order to evaluate the requirement for and residual value of lime (Ca(OH)/sub 2/) to a continuous crop rotation, and to determine the fate of applied Ca in the soil profile. The initial lime rates used were 0, 0.5, 1, 2, and 4 t of Ca(OH)/sub 2/ per hectare. Maize (Zea mays) was planted in the first season and cowpea (Vigna unguiculata) in the second season under a no-tillage, stubble conservation system. Relatively low rates of lime are adequatemore » to sustain yields in a continuous maize-cowpea rotation system. Liming at a rate of 0.5 t/ha maintained maize yield near maximum for 2 years after application. Sustained maize yields for 5 years or more were possible with a lime rate of 2 t/ha. Cowpeas performed well and showed strong tolerance to soil acidity when planted as a late second-season crop after maize without additional fertilizer application. The critical level of exchangeable Al ranged from 25 to 55% depending upon rate of chemical fertilizer as well as cowpea variety used. Leaching losses of Ca from the surface soil during the first 3 years were <0.5 t/ha of Ca(OH)/sub 2/-equivalents in the 0- to 2-t/ha treatments. Exchangeable-Al saturation in all subsoil layers of all treatments 3 years after liming exceeded 40% and soil pH (H/sub 2/O) was <4.3 indicating that lime was leached as neutral Ca salts and had little effect in ameliorating subsoil acidity. 17 references, 5 figures, 5 tables.« less
Yan, Li; Zhang, Zhi-Dan; Zhang, Jin-Jing; Gao, Qiang; Feng, Guo-Zhong; Abelrahman, A M; Chen, Yuan
2016-03-01
Traditional fertilization led to higher apparent N surplus, and optimized fertilization can reduce residual nitrogen in soils with keeping high yield. But in continuous spring maize cropping zone in Mollisol in Northeast China, the effect of the optimized N management on N balance and comprehensive environment was not clear. The primary objective of this study was to compare the differences of two fertilizations (traditional farmer N management (FNM) with single basal fertilizer and improvement N management (INM) by soil testing with top-dressing) in gain yield, N uptake and N efficiency, soil N balance, reactive N losses, and environment assessment. The results showed that INM treatment has no remarkable effect on grain yield and N uptake; N partial factor productivity (PFPN) of INM treatment was 19.8 % significantly higher than the FNM treatment. Nmin in soils of INM treatment reached to 111.0 kg ha(-1), which was 27.1 % lower than the FNM treatment after 6 years of continuous maize cropping; the apparent N Losses (ANL) and apparent N surplus (ANS) of INM were only half of FNM by soil N balance analysis. In reactive N losses, comparing with FNM treatment, INM treatment reduced NH3 volatilization, N2O emission, N leaching, and N runoff by 17.8, 35.6, 45, and 38.3 %, respectively, during planting period, and in integrated environment assessment by life cycle assessment (LCA) method, producing 1 t maize grain, energy depletion, acidification, eutrophication, and climate change impacts of INM treatment decreased 26.19, 30.16, 32.61, and 22.75 %, respectively. Therefore, INM treatment is a better N management strategy in comprehensive analysis.
Quantitative disease resistance: dissection and adoption in maize
USDA-ARS?s Scientific Manuscript database
Maize is the world’s most widely cultivated crop, providing food, feed, and biofuel. Maize production is constantly threatened by the presence of devastating pathogens worldwide. Characterization of the genetic components underlying disease resistance is a major research area in maize which is highl...
MaizeGDB: New tools and resource
USDA-ARS?s Scientific Manuscript database
MaizeGDB, the USDA-ARS genetics and genomics database, is a highly curated, community-oriented informatics service to researchers focused on the crop plant and model organism Zea mays. MaizeGDB facilitates maize research by curating, integrating, and maintaining a database that serves as the central...
USDA-ARS?s Scientific Manuscript database
Research was conducted in northern Colorado in 2011 to estimate the Crop Water Stress Index (CWSI) and actual water transpiration (Ta) of maize under a range of irrigation regimes. The main goal was to obtain these parameters with minimum instrumentation and measurements. The results confirmed that ...
USDA-ARS?s Scientific Manuscript database
In a long-term cropping systems trial comparing organically and conventionally managed systems, organic maize production sustained crop yields equal to conventional methods despite higher weed levels. In 2005 and 2006, an experiment nested within the trial was conducted to analyze the mechanisms und...
Yang, Jing-min; Dou, Sen; Yang, Jing-yi; Hoogenboom, Gerrit; Jiang, Xu; Zhang, Zhong-qing; Jiang, Hong-wei; Jia, Li-hui
2011-08-01
By using the CERES-Maize crop model and Century soil model in Decision Support System of Agrotechnology Transfer (DSSAT) model, this paper studied the effects of crop management parameters, fertilizer N application rate, soil initial N supply, and crop residue application on the maize growth, crop-soil N cycling, and soil organic C and N ecological balance in black soil (Mollisol) zone of Jilin Province, Northeast China. Taking 12,000-15,000 kg x hm(-2) as the target yield of maize, the optimum N application rate was 200-240 kg N x hm(-2). Under this fertilization, the aboveground part N uptake was 250-290 kg N x hm(-2), among which, 120-140 kg N x hm(-2) came from soil, and 130-150 kg N x hm(-2) came from fertilizer. Increasing the N application rate (250-420 kg N x hm(-2)) induced an obvious increase of soil residual N (63-183 kg x hm(-2)); delaying the N topdressing date also induced the increase of the residual N. When the crop residue application exceeded 6000 kg x hm(-2), the soil active organic C and N could maintain the supply/demand balance during maize growth season. To achieve the target maize yield and maintain the ecological balance of soil organic C and N in black soil zone of Jilin Province, the chemical N application rate would be controlled in the range of 200-240 kg N x hm(-2), topdressing N should be at proper date, and the application amount of crop residue would be up to 6000 kg x hm(-2).
Sequence Resources at MaizeGDB with Emphasis on POPcorn: A Project Portal for Corn
USDA-ARS?s Scientific Manuscript database
MaizeGDB is the maize research community’s centralized, long-term repository for genetic and genomic information about the crop plant and model organism Zea mays ssp. mays. The MaizeGDB team endeavors to meet the needs of the maize research community based on feedback and guidance. Recent work has f...
Johnsongrass mosaic virus contributes to maize lethal necrosis in East Africa
USDA-ARS?s Scientific Manuscript database
Maize lethal necrosis (MLN), a severe virus disease of maize, has emerged in East Africa in recent years with devastating effects on production and food security where maize is a staple subsistence crop. In extensive surveys of MLN-symptomatic plants in East Africa, sequences of Johnsongrass mosaic ...
USDA-ARS?s Scientific Manuscript database
Aflatoxins are carcinogenic mycotoxins produced by the fungus Aspergillus flavus during infection of various grain crops including maize (Zea mays). Contamination of maize with aflatoxins has been shown to be exasperated by late season drought stress. Previous studies have identified numerous resist...
Wang, Zhi-Gang; Jin, Xin; Bao, Xing-Guo; Li, Xiao-Fei; Zhao, Jian-Hua; Sun, Jian-Hao; Christie, Peter; Li, Long
2014-01-01
Yield and nutrient acquisition advantages are frequently found in intercropping systems. However, there are few published reports on soil fertility in intercropping relative to monocultures. A field experiment was therefore established in 2009 in Gansu province, northwest China. The treatments comprised maize/faba bean, maize/soybean, maize/chickpea and maize/turnip intercropping, and their correspoding monocropping. In 2011 (the 3rd year) and 2012 (the 4th year) the yields and some soil chemical properties and enzyme activities were examined after all crop species were harvested or at later growth stages. Both grain yields and nutrient acquisition were significantly greater in all four intercropping systems than corresponding monocropping over two years. Generally, soil organic matter (OM) did not differ significantly from monocropping but did increase in maize/chickpea in 2012 and maize/turnip in both years. Soil total N (TN) did not differ between intercropping and monocropping in either year with the sole exception of maize/faba bean intercropping receiving 80 kg P ha−1 in 2011. Intercropping significantly reduced soil Olsen-P only in 2012, soil exchangeable K in both years, soil cation exchangeable capacity (CEC) in 2012, and soil pH in 2012. In the majority of cases soil enzyme activities did not differ across all the cropping systems at different P application rates compared to monocrops, with the exception of soil acid phosphatase activity which was higher in maize/legume intercropping than in the corresponding monocrops at 40 kg ha−1 P in 2011. P fertilization can alleviate the decline in soil Olsen-P and in soil CEC to some extent. In summary, intercropping enhanced productivity and maintained the majority of soil fertility properties for at least three to four years, especially at suitable P application rates. The results indicate that maize-based intercropping may be an efficient cropping system for sustainable agriculture with carefully managed fertilizer inputs. PMID:25486249
Arrieta, E M; Cuchietti, A; Cabrol, D; González, A D
2018-06-01
Of all human activities, agriculture has one of the highest environmental impacts, particularly related to Greenhouse Gas (GHG) emissions, energy use and land use change. Soybean and maize are two of the most commercialized agricultural commodities worldwide. Argentina contributes significantly to this trade, being the third major producer of soybeans, the first exporter of soymeal and soybean oil, and the third exporter of maize. Despite the economic importance of these crops and the products derived, there are very few studies regarding GHG emissions, energy use and efficiencies associated to Argentinean soybean and maize production. Therefore, the aim of this work is to determine the carbon and energy footprint, as well as the carbon and energy efficiencies, of soybeans and maize produced in Argentina, by analyzing 18 agronomic zones covering an agricultural area of 1.53millionkm 2 . Our results show that, for both crops, the GHG and energy efficiencies at the Pampean region were significantly higher than those at the extra-Pampean region. The national average for production of soybeans in Argentina results in 6.06ton/ton CO 2 -eq emitted to the atmosphere, while 0.887ton of soybean were produced per GJ of energy used; and for maize 5.01ton/ton CO 2 -eq emitted to the atmosphere and 0.740ton of maize were produced per each GJ of energy used. We found that the large differences on yields, GHGs and energy efficiencies between agronomic regions for soybean and maize crop production are mainly driven by climate, particularly mean annual precipitation. This study contributes for the first time to understand the carbon and energy footprint of soybean and maize production throughout several agronomic zones in Argentina. The significant differences found in the productive efficiencies questions on the environmental viability of expanding the agricultural frontier to less suitable lands for crop production. Copyright © 2017 Elsevier B.V. All rights reserved.
Douglas, Margaret R; Tooker, John F
2015-04-21
Neonicotinoids are the most widely used class of insecticides worldwide, but patterns of their use in the U.S. are poorly documented, constraining attempts to understand their role in pest management and potential nontarget effects. We synthesized publicly available data to estimate and interpret trends in neonicotinoid use since their introduction in 1994, with a special focus on seed treatments, a major use not captured by the national pesticide-use survey. Neonicotinoid use increased rapidly between 2003 and 2011, as seed-applied products were introduced in field crops, marking an unprecedented shift toward large-scale, preemptive insecticide use: 34-44% of soybeans and 79-100% of maize hectares were treated in 2011. This finding contradicts recent analyses, which concluded that insecticides are used today on fewer maize hectares than a decade or two ago. If current trends continue, neonicotinoid use will increase further through application to more hectares of soybean and other crop species and escalation of per-seed rates. Alternatively, our results, and other recent analyses, suggest that carefully targeted efforts could considerably reduce neonicotinoid use in field crops without yield declines or economic harm to farmers, reducing the potential for pest resistance, nontarget pest outbreaks, environmental contamination, and harm to wildlife, including pollinator species.
Adaptability and performance of short-season maize hybrids in the southern high plains
USDA-ARS?s Scientific Manuscript database
Drought incidences change with year and location, and are prevalent in the Southern High Plains where annual rainfall is low and highly variable and most maize and other crops are irrigated. The low rainfall and groundwater overuse are leading to shortages of water for crop irrigation in this regio...
Zhao, Yu-xin; Lu, Jiao-yun; Yang, Hui-min
2015-04-01
A field study was conducted to investigate the influences of no-tillage, stubble retention and crop type on weed density, species composition and community feature in a rotation system (winter wheat-common vetch-maize) established 12 years ago on the Loess Plateau of eastern Gansu. This study showed that the weed species composition, density and community feature varied with the change of crop phases. No-tillage practice increased the weed density at maize phase, while rotation with common vetch decreased the density in the no-tillage field. Stubble retention reduced the weed density under maize phase and the lowest density was observed in the no-tillage plus stubble retention field. No-tillage practice significantly increased the weed species diversity under winter wheat phase and decreased the diversity under common vetch phase. At maize phase, a greater species diversity index was observed in the no-tillage field. These results suggested that no-tillage practice and stubble retention possibly suppress specific weeds with the presence of some crops and crop rotation is a vital way to controlling weeds in a farming system.
NASA Astrophysics Data System (ADS)
Sukartono, S.; Utomo, W.
2012-04-01
A field study was conducted to evaluate the effect of biochar on crop water use efficiency under three consecutive maize cropping system on sandy loam of Lombok, eastern Indonesia from December 2010 to October 2011.The treatments tested were: coconut shell- biochar (CSB), cattle dung-biochar (CDB), cattle manure applied at only early first crop (CM1) and cattle manure applied at every planting time (CM2) and no organic amendment as the control. Evaluation after the end of third maize, the application of organic amendments (biochar and cattle manure) slightly altered the pore size distribution resulting changes in water retention and the available water capacity. The available water capacity was relatively comparable between biochar treated soils (0.206 cm3 cm-3) and soil treated with cattle manure applied at every planting time (0.220 cm3 cm-3). Water use efficiency (WUE) of maize under biochars were 9.44 kg/mm (CSB) and 9.24 kg/mm (CDB) while WUE for CM1 and CM2 were 8.54 and 9.97 kg/mm respectively, and control was 8.08 kg/mm. Thus, biochars as well as cattle manure applied at every planting time improved water use efficiency by 16.83% and 23.39 respectively compared to control. Overall, this study confirms that biochar and cattle manure are both valuable amendments for improving water use efficiency and to sustain maize production in the sandy loam soils of semiarid North Lombok, eastern Indonesia. However, unlike bicohar, in order to maintain its posivtive effect, cattle manure should be applied at every planting time, and this make cattle manure application is more costly. Keywords: Biochar, organic management, catle manure, water retention, maize yield
NASA Astrophysics Data System (ADS)
Bachy, Aurélie; Aubinet, Marc; Schoon, Niels; Amelynck, Crist; Bodson, Bernard; Moureaux, Christine; Heinesch, Bernard
2016-04-01
Maize is the most important C4 crop worldwide. It is also the second most important crop worldwide (C3 and C4 mixed), and is a dominant crop in some world regions. Therefore, it can potentially influence local climate and air quality through its exchanges of gases with the atmosphere. Among others, biogenic volatile organic compounds (BVOC) are known to influence the atmospheric composition and thereby modify greenhouse gases lifetime and pollutant formation in the atmosphere. However, so far, only two studies have dealt with BVOC exchanges from maize. Moreover, these studies were conducted on a limited range of meteorological and phenological conditions, so that the knowledge of BVOC exchanges by this crop remains poor. Here, we present the first BVOC measurement campaign performed at ecosystem-scale on a maize field during a whole growing season. It was carried out in the Lonzée Terrestrial Observatory (LTO), an ICOS site. BVOC fluxes were measured by the disjunct by mass-scanning eddy covariance technique with a proton transfer reaction mass spectrometer for BVOC mixing ratios measurements. Outstanding results are (i) BVOC exchanges from soil were as important as BVOC exchanges from maize itself; (ii) BVOC exchanges observed on our site were much lower than exchanges observed by other maize studies, even under normalized temperature and light conditions, (iii) they were also lower than those observed on other crops grown in Europe. Lastly (iv), BVOC exchanges observed on our site under standard environmental conditions, i.e., standard emission factors SEF, were much lower than those currently considered by BVOC exchange up-scaling models. From those observations, we deduced that (i) soil BVOC exchanges should be better understood and should be incorporated in terrestrial BVOC exchanges models, and that (ii) SEF for the C4 crop plant functional type cannot be evaluated at global scale but should be determined for each important agronomic and pedo-climatic region. Moreover, as in our region (i.e., temperate climate, silty-loam soils), SEF observed on maize were much lower than SEF currently considered by models, our results tend to lower the impact of agricultural ecosystems on BVOC exchanges.
NASA Astrophysics Data System (ADS)
Ogindo, H. O.; Walker, S.
Seasonal water content fluctuation within the effective root zone was monitored during the growing season for a maize-bean intercrop (IMB), sole maize (SM) and sole bean (SB) in Free State Province, Republic of South Africa. Comparisons were undertaken for progressive depths of extraction 0-300 mm; 300-600 mm and 600-900 mm respectively. These enabled the understanding of water extraction behavior of the cropping systems within the different soil layers including the topsoil surface normally influenced by soil surface evaporation. Additive intercrops have been known to conserve water, largely due to the early high leaf area index and the higher total leaf area. In this study, the combined effect of the intercrop components seemed to lower the total water demand by the intercrop compared to the sole crops. During the two seasons (2000/2001 and 2001/2002) the drained upper limit (DUL) and crop lower limits (CLL) were determined. The maize-bean intercrop, sole maize and sole bean had CLL of 141 mm/m, 149 mm/m and 159 mm/m respectively. The DUL was 262 mm/m for the site and therefore the potential plant extractable soil water for the cropping systems were: 121 mm/m (IMB); 114 mm/m (SM) and 103 mm/m (SB). Overall, the intercrop did not have significantly different total soil water extraction during both seasons, although it was additive, showing that it had higher water to biomass conversion.
NASA Astrophysics Data System (ADS)
Tian, D.; Cammarano, D.
2017-12-01
Modeling changes of crop production at regional scale is important to make adaptation measures for sustainably food supply under global change. In this study, we explore how changing climate extremes in the 20th and 21st century affect maize (summer crop) and wheat (winter crop) yields in an agriculturally important region: the southeast United States. We analyze historical (1950-1999) and projected (2006-2055) precipitation and temperature extremes by calculating the changes of 18 climate extreme indices using the statistically downscaled CMIP5 data from 10 general circulation models (GCMs). To evaluate how these climate extremes affect maize and wheat yields, historical baseline and projected maize and wheat yields under RCP4.5 and RCP8.5 scenarios are simulated using the DSSAT-CERES maize and wheat models driven by the same downscaled GCMs data. All of the changes are examined at 110 locations over the study region. The results show that most of the precipitation extreme indices do not have notable change; mean precipitation, precipitation intensity, and maximum 1-day precipitation are generally increased; the number of rainy days is decreased. The temperature extreme indices mostly showed increased values on mean temperature, number of high temperature days, diurnal temperature range, consecutive high temperature days, maximum daily maximum temperature, and minimum daily minimum temperature; the number of low temperature days and number of consecutive low temperature days are decreased. The conditional probabilistic relationships between changes in crop yields and changes in extreme indices suggested different responses of crop yields to climate extremes during sowing to anthesis and anthesis to maturity periods. Wheat yields and crop water productivity for wheat are increased due to an increased CO2 concentration and minimum temperature; evapotranspiration, maize yields, and crop water productivity for wheat are decreased owing to the increased temperature extremes. We found the effects of precipitation changes on both yields are relatively uncertain.
Measuring and modeling maize evapotranspiration under plastic film-mulching condition
NASA Astrophysics Data System (ADS)
Li, Sien; Kang, Shaozhong; Zhang, Lu; Ortega-Farias, Samuel; Li, Fusheng; Du, Taisheng; Tong, Ling; Wang, Sufen; Ingman, Mark; Guo, Weihua
2013-10-01
Plastic film-mulching techniques have been widely used over a variety of agricultural crops for saving water and improving yield. Accurate estimation of crop evapotranspiration (ET) under the film-mulching condition is critical for optimizing crop water management. After taking the mulching effect on soil evaporation (Es) into account, our study adjusted the original Shuttleworth-Wallace model (MSW) in estimating maize ET and Es under the film-mulching condition. Maize ET and Es respectively measured by eddy covariance and micro-lysimeter methods during 2007 and 2008 were used to validate the performance of the Penman-Monteith (PM), the original Shuttleworth-Wallace (SW) and the MSW models in arid northwest China. Results indicate that all three models significantly overestimated ET during the initial crop stage in the both years, which may be due to the underestimation of canopy resistance induced by the Jarvis model for the drought stress in the stage. For the entire experimental period, the SW model overestimated half-hourly maize ET by 17% compared with the eddy covariance method (ETEC) and overestimated daily Es by 241% compared with the micro-lysimeter measurements (EL), while the PM model only underestimated daily maize ET by 6%, and the MSW model only underestimated half-hourly maize ET by 2% and Es by 7% during the whole period. Thus the PM and MSW models significantly improved the accuracy against the original SW model and can be used to estimate ET and Es under the film-mulching condition.
Silva, R B; Cruz, I; Penteado-Dias, A M
2014-08-01
In the context of the modern agriculture, pest control is important in order to increase productivity in maize (Zea mays L.). However, this control should be done rationally, prioritising environmentally safer methods such as biological control. This paper aims to report the occurrence of Dolichozele koebelei Viereck, 1911 (Hymenoptera: Braconidae) in Spodoptera frugiperda (J. E. Smith, 1797) (Lepidoptera: Noctuidae) larvae collected in maize subjected to different cropping systems. The experiment was conducted at the Centro Nacional de Pesquisa de Milho e Sorgo (CNPMS) in Sete Lagoas, Minas Gerais State, Brazil, using organic and conventional production. Ten plants were sampled from each of the 24 plots and for each production system, three times a week during the entire cycle of maize (variety BR 106). In the laboratory, larvae were distributed in individual rearing containers with artificial diet until the end of the biological cycle. An increased number of S. frugiperda larvae was observed in organic single crop maize; hence a higher percentage of S. frugiperda larvae parasitised by Hymenoptera and Diptera also occurred in the maize under this production system. Dolichozele koebelei had not yet been described in association with larvae of S. frugiperda. The percentage of parasitism of S. frugiperda larvae was high in both experiments, indicating the importance of natural control agents in reducing the population density of S. frugiperda, and especially the importance of an appropriate crop management.
No-tillage and fertilization management on crop yields and nitrate leaching in North China Plain
Huang, Manxiang; Liang, Tao; Wang, Lingqing; Zhou, Chenghu
2015-01-01
A field experiment was performed from 2003 to 2008 to evaluate the effects of tillage system and nitrogen management regimes on crop yields and nitrate leaching from the fluvo-aquic soil with a winter wheat (Triticum aestivum L.)–maize (Zea mays L.) double-cropping system. The tillage systems consisted of conventional tillage (CT) and no-tillage (NT). Three nitrogen management regimes were included: 270 kg N ha−1 of urea for wheat and 225 kg N ha−1 of urea for maize (U), 180 kg N ha−1 of urea and 90 kg N ha−1 of straw for wheat and 180 kg N of urea and 45 kg N ha−1 of straw for maize (S), 180 kg N ha−1 of urea and 90 kg N ha−1 of manure for wheat and 180 kg N ha−1 of urea and 45 kg N ha−1 of manure for maize (M). An array of tension-free pan lysimeters (50 cm × 75 cm) were installed (1.2 m deep) to measure water flow and -N movement. No significant effect of the N management regime on yields of winter wheat and maize grain was found in the 5-year rotation. Tillage systems had significant influences on -N leaching from the second year and thereafter interacted with N management regimes on -N loads during all maize seasons. The average yield-scaled -N leaching losses were in order of CTS < NTS< CTU < NTU
Replacing fallow by cover crops: economic sustainability
NASA Astrophysics Data System (ADS)
Gabriel, José Luis; Garrido, Alberto; Quemada, Miguel
2013-04-01
Replacing fallow by cover crops in intensive fertilized systems has been demonstrated as an efficient tool for reducing nitrate leaching. However, despite the evident environmental services provided and the range of agronomic benefits documented in the literature, farmers' adoption of this new technology is still limited because they are either unwilling or unable, although adoption reluctance is frequently rooted in low economic profitability, low water se efficiency or poor knowledge. Economic analyses permit a comparison between the profit that farmers obtain from agricultural products and the cost of adopting specific agricultural techniques. The goal of this study was to evaluate the economic impact of replacing the usual winter fallow with cover crops (barley (Hordeum vulgare L., cv. Vanessa), vetch (Vicia villosa L., cv. Vereda) and rapeseed (Brassica napus L., cv. Licapo)) in irrigated maize systems and variable Mediterranean weather conditions using stochastic Monte-Carlo simulations of key farms' financial performance indicators. The three scenarios studied for each cover crop were: i) just leaving the cover crop residue in the ground, ii) leaving the cover crop residue but reduce following maize fertilization according to the N available from the previous cover crop and iii) selling the cover crop residue for animal feeding. All the scenarios were compared with respect to a typical maize-fallow rotation. With observed data from six different years and in various field trials, looking for different weather conditions, probability distribution functions of maize yield, cover crop biomass production and N fertilizer saving was fitted. Based in statistical sources maize grain price, different forage prices and the cost of fertilizer were fitted to probability distribution functions too. As result, introducing a cover crop involved extra costs with respect to fallow as the initial investment, because new seed, herbicide or extra field operations. Additional costs varied from 28 to 73 € ha-1 but, results suggest that barley and vetch as cover crops increases maize yields, being a strategy that stochastically dominates the fallow. In this case, even without selling residue and without fertilizer reduction, vetch treatment increased the benefits with respect to the fallow in almost two out of three years and barley treatment did so in one year out of two. When biomass was sold as forage, benefits increase in 80% of the years for the vetch and in 70% of years for the barley with respect to the fallow. However, rapeseed was not a good cover crop for the Mediterranean region because poorly adaptation to the weather conditions. Then, cover crops can lead to increase of economical benefits improving environmental conditions at the same time. Acknowledgements: Financial support by Spain CICYT (ref. AGL2005-00163 and AGL 2011-24732), Comunidad de Madrid (project AGRISOST, S2009/AGR-1630), Belgium FSR 2012 (ref. SPER/DST/340-1120525) and Marie Curie actions.
Novel Loci Underlie Natural Variation in Vitamin E Levels in Maize Grain[OPEN
Diepenbrock, Christine H.; Kandianis, Catherine B.; Lipka, Alexander E.; Magallanes-Lundback, Maria; Vaillancourt, Brieanne; Cepela, Jason; Bradbury, Peter J.; Mateos-Hernandez, Maria; Hamilton, John; Owens, Brenda F.; Tiede, Tyler; Rocheford, Torbert
2017-01-01
Tocopherols, tocotrienols, and plastochromanols (collectively termed tocochromanols) are lipid-soluble antioxidants synthesized by all plants. Their dietary intake, primarily from seed oils, provides vitamin E and other health benefits. Tocochromanol biosynthesis has been dissected in the dicot Arabidopsis thaliana, which has green, photosynthetic seeds, but our understanding of tocochromanol accumulation in major crops, whose seeds are nonphotosynthetic, remains limited. To understand the genetic control of tocochromanols in grain, we conducted a joint linkage and genome-wide association study in the 5000-line U.S. maize (Zea mays) nested association mapping panel. Fifty-two quantitative trait loci for individual and total tocochromanols were identified, and of the 14 resolved to individual genes, six encode novel activities affecting tocochromanols in plants. These include two chlorophyll biosynthetic enzymes that explain the majority of tocopherol variation, which was not predicted given that, like most major cereal crops, maize grain is nonphotosynthetic. This comprehensive assessment of natural variation in vitamin E levels in maize establishes the foundation for improving tocochromanol and vitamin E content in seeds of maize and other major cereal crops. PMID:28970338
Liu, J; Zhang, F
2000-06-01
The effects of long-term applying fertilizer P and manure on the pools of soil total P and inorganic P and the crop yield in rotation of winter wheat-summer maize-->spring maize were studied. The results showed that the pool of soil total P and inorganic P were increased by applying fertilizer P and manure, and the phosphorus mostly accumulated in soil was inorganic P. The critical amounts of fertilizer P (P2O5) for balancing soil P were 94.7 kg.hm-2 to winter wheat-summer maize and 51.5 kg.hm-2 to spring maize. Based on regression equations, the application rates of fertilizer P (P2O5) for economic optimum and highest yields were 135.8 and 149.8 kg.hm-2 to winter wheat-summer maize, and 88.6 and 95.9 kg.hm-2 to spring maize, respectively.
Post-Domestication Selection in the Maize Starch Pathway
Fan, Longjiang; Bao, Jiandong; Wang, Yu; Yao, Jianqiang; Gui, Yijie; Hu, Weiming; Zhu, Jinqing; Zeng, Mengqian; Li, Yu; Xu, Yunbi
2009-01-01
Modern crops have usually experienced domestication selection and subsequent genetic improvement (post-domestication selection). Chinese waxy maize, which originated from non-glutinous domesticated maize (Zea mays ssp. mays), provides a unique model for investigating the post-domestication selection of maize. In this study, the genetic diversity of six key genes in the starch pathway was investigated in a glutinous population that included 55 Chinese waxy accessions, and a selective bottleneck that resulted in apparent reductions in diversity in Chinese waxy maize was observed. Significant positive selection in waxy (wx) but not amylose extender1 (ae1) was detected in the glutinous population, in complete contrast to the findings in non-glutinous maize, which indicated a shift in the selection target from ae1 to wx during the improvement of Chinese waxy maize. Our results suggest that an agronomic trait can be quickly improved into a target trait with changes in the selection target among genes in a crop pathway. PMID:19859548
A hybrid framework for assessing maize drought vulnerability in Sub-Saharan Africa
NASA Astrophysics Data System (ADS)
Kamali, B.; Abbaspour, K. C.; Wehrli, B.; Yang, H.
2017-12-01
Drought has devastating impacts on crop yields. Quantifying drought vulnerability is the first step to better design of mitigation policies. The vulnerability of crop yield to drought has been assessed with different methods, however they lack a standardized base to measure its components and a procedure that facilitates spatial and temporal comparisons. This study attempts to quantify maize drought vulnerability through linking the Drought Exposure Index (DEI) to the Crop Failure Index (CFI). DEI and CFI were defined by fitting probability distribution functions to precipitation and maize yield respectively. To acquire crop drought vulnerability index (CDVI), DEI and CFI were combined in a hybrid framework which classifies CDVI with the same base as DEI and CFI. The analysis were implemented on Sub-Saharan African countries using maize yield simulated with the Environmental Policy Integrated Climate (EPIC) model at 0.5° resolution. The model was coupled with the Sequential Uncertainty Fitting algorithm for calibration at country level. Our results show that Central Africa and those Western African countries located below the Sahelian strip receive higher amount of precipitation, but experience high crop failure. Therefore, they are identified as more vulnerable regions compared to countries such as South Africa, Tanzania, and Kenya. We concluded that our hybrid approach complements information on crop drought vulnerability quantification and can be applied to different regions and scales.
Regional pest suppression associated with widespread Bt maize adoption benefits vegetable growers.
Dively, Galen P; Venugopal, P Dilip; Bean, Dick; Whalen, Joanne; Holmstrom, Kristian; Kuhar, Thomas P; Doughty, Hélène B; Patton, Terry; Cissel, William; Hutchison, William D
2018-03-27
Transgenic crops containing the bacterium Bacillus thuringiensis (Bt) genes reduce pests and insecticide usage, promote biocontrol services, and economically benefit growers. Area-wide Bt adoption suppresses pests regionally, with declines expanding beyond the planted Bt crops into other non-Bt crop fields. However, the offsite benefits to growers of other crops from such regional suppression remain uncertain. With data spanning 1976-2016, we demonstrate that vegetable growers benefit via decreased crop damage and insecticide applications in relation to pest suppression in the Mid-Atlantic United States. We provide evidence for the regional suppression of Ostrinia nubilalis (Hübner), European corn borer, and Helicoverpa zea (Boddie), corn earworm, populations in association with widespread Bt maize adoption (1996-2016) and decreased economic levels for injury in vegetable crops [peppers ( Capsicum annuum L.), green beans ( Phaseolus vulgaris L.), and sweet corn ( Zea mays L., convar. saccharata )] compared with the pre-Bt period (1976-1995). Moth populations of both species significantly declined in association with widespread Bt maize (field corn) adoption, even as increased temperatures buffered the population reduction. We show marked decreases in the number of recommended insecticidal applications, insecticides applied, and O. nubilalis damage in vegetable crops in association with widespread Bt maize adoption. These offsite benefits to vegetable growers in the agricultural landscape have not been previously documented, and the positive impacts identified here expand on the reported ecological effects of Bt adoption. Our results also underscore the need to account for offsite economic benefits of pest suppression, in addition to the direct economic benefits of Bt crops.
Maize kernel evolution:From teosinte to maize
USDA-ARS?s Scientific Manuscript database
Maize is the most productive and highest value commodity in the US and around the world: over 1 billion tons were produced each year in 2013 and 2014. Together, maize, rice and wheat comprise over 60% of the world’s caloric intake, with wide regional variability in the importance of each crop. The i...
Wang, Jinzhou; Wang, Xiujun; Xu, Minggang; Feng, Gu; Zhang, Wenju; Yang, Xueyun; Huang, Shaomin
2015-06-23
Soil organic carbon (SOC) dynamics in agro-ecosystem is largely influenced by cropping. However, quantifying the contributions of various crops has been lacking. Here we employed a stable isotopic approach to evaluate the contributions of wheat and maize residues to SOC at three long-term experimental sites in north China. Soil samples were collected from 0-20, 20-40, 40-60, 60-80 and 80-100 cm after 13 and 20 years of wheat-maize rotation, and SOC and its stable (13)C composition were determined. Our data showed that the δ(13)C value of SOC varied, on average, from -22.1‰ in the 0-20 cm to -21.5‰ in the 80-100 cm. Carbon input through maize residues ranged from 35% to 68% whereas the contribution of maize residues to SOC (0-40 cm) ranged from 28% to 40%. Our analyses suggested that the retention coefficient was in the range of 8.0-13.6% for maize residues and 16.5-28.5% for wheat residues. The two-fold higher retention coefficient of wheat versus maize residues was due to the differences in the quality of residues and probably also in the temperature during the growing season. Our study highlighted the importance of crop management on carbon sequestration in agricultural lands.
Dynamics of shoot vs. root C assessed by natural 13C abundance of their biomarkers
NASA Astrophysics Data System (ADS)
Mendez-Millan, Mercedes; Dignac, Marie-France; Rumpel, Cornelia; Rasse, Daniel P.; Derenne, Sylvie
2010-05-01
Cutins and suberins are biopolyesters that have been suggested to significantly contribute to the stable pool of soil organic matter (SOM). They might be used as tracers for the above- or belowground origin of plant material. The aim of this study was to evaluate the dynamics of shoot and root-derived biomarkers in soils using a wheat/maize (C3/C4) chronosequence. Our results suggest that α,?-alkanedioic acids can be considered as root specific markers and mid-chain hydroxy acids as shoot specific markers of wheat and maize in this agricultural soil. The changes of the 13C isotopic signatures of these markers with years of maize cropping after wheat evidenced their contrasted behaviour in soil. After 12 years of maize cropping, shoot markers present in soils probably originated from old C3 vegetation suggesting that new maize cutin added to soils was mostly degraded within a year. The reasons for long-term stabilisation of shoot biomarkers remain unclear. By contrast, maize root markers were highly incorporated into SOM during the first six years of maize crop, which suggested a selective preservation of root biomass when compared to shoots, possibly due to physical protection. The contrasting distribution of the plant-specific monomers in plants and soils might be explained by different chemical mechanisms leading to selective degradation or stabilization of some biomarkers.
Shah, Ghulam Abbas; Shah, Ghulam Mustafa; Rashid, Muhammad Imtiaz; Groot, Jeroen C J; Traore, Bouba; Lantinga, Egbert A
2018-03-01
This study examined the influences of three potential additives, i.e., lava meal, sandy soil top-layer and zeolite (used in animal bedding) amended solid cattle manures on (i) ammonia (NH 3 ), dinitrous oxide (N 2 O), carbon dioxide (CO 2 ) and methane (CH 4 ) emissions and (ii) maize crop or grassland apparent N recovery (ANR). Diffusion samplers were installed at 20 cm height on grassland surface to measure the concentrations of NH 3 from the manures. A photoacoustic gas monitor was used to quantitate the fluxes of N 2 O, CH 4 and CO 2 after manures' incorporation into the maize-field. Herbage ANR was calculated from dry matter yield and N uptake of three successive harvests, while maize crop ANR was determined at cusp of juvenile stage, outset of grain filling as well as physiological maturity stages. Use of additives decreased the NH 3 emission rates by about two-third from the manures applied on grassland surface than control untreated-manure. Total herbage ANR was more than doubled in treated manures and was 25% from manure amended with farm soil, 26% and 28% from zeolite and lava meal, respectively compared to 11% from control manure. In maize experiment, mean N 2 O and CO 2 emission rates were the highest from the latter treatment but these rates were not differed from zero control in case of manures amended with farm soil or zeolite. However, mean CH 4 emissions was not differed among all treatments during the whole measuring period. The highest maize crop ANR was obtained at the beginning of grain filling stage (11-40%), however ample lower crop recoveries (8-14%) were achieved at the final physiological maturity stage. This phenomenon was occurred due to leaf senescence N losses from maize crop during the period of grains filling. The lowest losses were observed from control manure at this stage. Hence, all additives decreased the N losses from animal manure and enhanced crop N uptake thus improved the agro-environmental worth of animal manure. Copyright © 2017 Elsevier Ltd. All rights reserved.
Using thermal units for estimating critical period of weed competition in off-season maize crop.
López-Ovejero, Ramiro Fernando; y Garcia, Axel Garcia; de Carvalho, Saul Jorge P; Christoffoleti, Pedro J; Neto, Durval Dourado; Martins, Fernando; Nicolai, Marcelo
2005-01-01
Brazilian off-season maize production is characterized by low yield due to several factors, such as climate variability and inadequate management practices, specifically weed management. Thus, the goal of this study was to determinate the critical period of weed competition in off-season maize (Zea mays L.) crop using thermal units or growing degree days (GDD) approach to characterize crop growth and development. The study was carried out in experimental area of the University of São Paulo, Brazil, with weed control (C), as well as seven coexistence periods, 2, 4, 6, 8, and 12 leaves, flowering, and all crop cycle; fourteen treatments were done. Climate data were obtained from a weather station located close to the experimental area. To determine the critical period for weed control (CPWC) logistic models were fitted to yield data obtained in both W and C, as a function of GDD. For an arbitrary maximum yield loss fixed in 2.5%, the CPWC was found between 301 and 484 GDD (7-8 leaves). Also, when the arbitrary loss yield was fixed in 5 and 10%, the period before interference (PBI) was higher than the critical weed-free period (CWFP), suggesting that the weeds control can be done with only one application, between 144 and 410 GDD and 131 and 444 GDD (3-8 leaves), respectively. The GDD approach to characterize crop growth and development was successfully used to determine the critical period of weeds control in maize sown off-season. Further works will be necessary to better characterize the interaction and complexity of maize sown off-season with weeds. However, these results are encouraging because the possibility of the results to be extrapolated and because the potential of the method on providing important results to researchers, specifically crop modelers.
Insights into maize genome editing via CRISPR/Cas9.
Agarwal, Astha; Yadava, Pranjal; Kumar, Krishan; Singh, Ishwar; Kaul, Tanushri; Pattanayak, Arunava; Agrawal, Pawan Kumar
2018-03-01
Maize is an important crop for billions of people as food, feed, and industrial raw material. It is a prime driver of the global agricultural economy as well as the livelihoods of millions of farmers. Genetic interventions, such as breeding, hybridization and transgenesis have led to increased productivity of this crop in the last 100 years. The technique of genome editing is the latest advancement in genetics. Genome editing can be used for targeted deletions, additions, and corrections in the genome, all aimed at genetic enhancement of crops. The Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/CRISPR associated protein 9 (CRISPR/Cas9) system is a recent genome editing technique that is considered simple, precise, robust and the most revolutionary. This review summarizes the current state of the art and predicts future directions in the use of the CRISPR/Cas9 tool in maize crop improvement.
Madugundu, Rangaswamy; Al-Gaadi, Khalid A; Tola, ElKamil; Hassaballa, Abdalhaleem A; Kayad, Ahmed G
2018-01-01
The crop Water Footprint (WF) can provide a comprehensive knowledge of the use of water through the demarcation of the amount of the water consumed by different crops. The WF has three components: green (WFg), blue (WFb) and grey (WFgr) water footprints. The WFg refers to the rainwater stored in the root zone soil layer and is mainly utilized for agricultural, horticultural and forestry production. The WFb, however, is the consumptive use of water from surface or groundwater resources and mainly deals with irrigated agriculture, industry, domestic water use, etc. While the WFgr is the amount of fresh water required to assimilate pollutants resulting from the use of fertilizers/agrochemicals. This study was conducted on six agricultural fields in the Eastern region of Saudi Arabia, during the period from December 2015 to December 2016, to investigate the spatiotemporal variation of the WF of silage maize and carrot crops. The WF of each crop was estimated in two ways, namely agro-meteorological (WFAgro) and remote sensing (WFRS) methods. The blue, green and grey components of WFAgro were computed with the use of weather station/Eddy covariance measurements and field recorded crop yield datasets. The WFRS estimated by applying surface energy balance principles on Landsat-8 imageries. However, due to non-availability of Landsat-8 data on the event of rainy days, this study was limited to blue component (WFRS-b). The WFAgro of silage maize was found to range from 3545 m3 t-1 to 4960 m3 t-1; on an average, the WFAgro-g, WFAgro-b, and WFAgro-gr are composed of < 1%, 77%, and 22%, respectively. In the case of carrot, the WFAgro ranged between 297 m3 t-1 and 502 m3 t-1. The WFAgro-g of carrot crop was estimated at <1%, while WFAgro-b and WFAgro-gr was 67% and 32%, respectively. The WFAgro-b is occupied as a major portion in WF of silage maize (77%) and carrot (68%) crops. This is due to the high crop water demand combined with a very erratic rainfall, the irrigation is totally provided using groundwater delivered by center pivot irrigation systems. On the other hand, the WFRS-b estimated using Landsat-8 data was varied from 276 (±73) m3 t-1 (carrot) and 2885 (±441) m3 t-1 (silage maize). The variation (RMSE) between WFRS-b and WFAgro-b was about 17% and 14% for silage maize and carrot crops, respectively.
Gałązka, Anna; Grządziel, Jarosław
2018-01-01
Fungal diversity in the soil may be limited under natural conditions by inappropriate environmental factors such as: nutrient resources, biotic and abiotic factors, tillage system and microbial interactions that prevent the occurrence or survival of the species in the environment. The aim of this paper was to determine fungal genetic diversity and community level physiological profiling of microbial communities in the soil under long-term maize monoculture. The experimental scheme involved four cultivation techniques: direct sowing (DS), reduced tillage (RT), full tillage (FT), and crop rotation (CR). Soil samples were taken in two stages: before sowing of maize (DSBS-direct sowing, RTBS-reduced tillage, FTBS-full tillage, CRBS-crop rotation) and the flowering stage of maize growth (DSF-direct sowing, RTF-reduced tillage, FTF-full tillage, CRF-crop rotation). The following plants were used in the crop rotation: spring barley, winter wheat and maize. The study included fungal genetic diversity assessment by ITS-1 next generation sequencing (NGS) analyses as well as the characterization of the catabolic potential of microbial communities (Biolog EcoPlates) in the soil under long-term monoculture of maize using different cultivation techniques. The results obtained from the ITS-1 NGS technique enabled to classify and correlate the fungi species or genus to the soil metabolome. The research methods used in this paper have contributed to a better understanding of genetic diversity and composition of the population of fungi in the soil under the influence of the changes that have occurred in the soil under long-term maize cultivation. In all cultivation techniques, the season had a great influence on the fungal genetic structure in the soil. Significant differences were found on the family level (P = 0.032, F = 3.895), genus level (P = 0.026, F = 3.313) and on the species level (P = 0.033, F = 2.718). This study has shown that: (1) fungal diversity was changed under the influence different cultivation techniques; (2) techniques of maize cultivation and season were an important factors that can influence the biochemical activity of soil. Maize cultivated in direct sowing did not cause negative changes in the fungal structure, even making it more stable during seasonal changes; (3) full tillage and crop rotation may change fungal community and soil function. PMID:29441054
NASA Astrophysics Data System (ADS)
Bøhn, Thomas; Aheto, Denis W.; Mwangala, Felix S.; Fischer, Klara; Bones, Inger Louise; Simoloka, Christopher; Mbeule, Ireen; Schmidt, Gunther; Breckling, Broder
2016-10-01
Gene flow in agricultural crops is important for risk assessment of genetically modified (GM) crops, particularly in countries with a large informal agricultural sector of subsistence cultivation. We present a pollen flow model for maize (Zea mays), a major staple crop in Africa. We use spatial properties of fields (size, position) in three small-scale maize farming communities in Zambia and estimate rates of cross-fertilisation between fields sown with different maize varieties (e.g. conventional and transgene). As an additional factor contributing to gene flow, we present data on seed saving and sharing among farmers that live in the same communities. Our results show that: i) maize fields were small and located in immediate vicinity of neighboring fields; ii) a majority of farmers saved and shared seed; iii) modeled rates of pollen-mediated gene flow showed extensive mixing of germplasm between fields and farms and iv) as a result, segregation of GM and non-GM varieties is not likely to be an option in these systems. We conclude that the overall genetic composition of maize, in this and similar agricultural contexts, will be strongly influenced both by self-organised ecological factors (pollen flow), and by socially mediated intervention (seed recycling and sharing).
Bøhn, Thomas; Aheto, Denis W.; Mwangala, Felix S.; Fischer, Klara; Bones, Inger Louise; Simoloka, Christopher; Mbeule, Ireen; Schmidt, Gunther; Breckling, Broder
2016-01-01
Gene flow in agricultural crops is important for risk assessment of genetically modified (GM) crops, particularly in countries with a large informal agricultural sector of subsistence cultivation. We present a pollen flow model for maize (Zea mays), a major staple crop in Africa. We use spatial properties of fields (size, position) in three small-scale maize farming communities in Zambia and estimate rates of cross-fertilisation between fields sown with different maize varieties (e.g. conventional and transgene). As an additional factor contributing to gene flow, we present data on seed saving and sharing among farmers that live in the same communities. Our results show that: i) maize fields were small and located in immediate vicinity of neighboring fields; ii) a majority of farmers saved and shared seed; iii) modeled rates of pollen-mediated gene flow showed extensive mixing of germplasm between fields and farms and iv) as a result, segregation of GM and non-GM varieties is not likely to be an option in these systems. We conclude that the overall genetic composition of maize, in this and similar agricultural contexts, will be strongly influenced both by self-organised ecological factors (pollen flow), and by socially mediated intervention (seed recycling and sharing). PMID:27694819
NASA Astrophysics Data System (ADS)
Tan, Wenbing; Zhang, Yuan; He, Xiaosong; Xi, Beidou; Gao, Rutai; Mao, Xuhui; Huang, Caihong; Zhang, Hui; Li, Dan; Liang, Qiong; Cui, Dongyu; Alshawabkeh, Akram N.
2016-08-01
The use of wastewater irrigation for food crops can lead to presence of bioavailable phthalic acid esters (PAEs) in soils, which increase the potential for human exposure and adverse carcinogenic and non-cancer health effects. This study presents the first investigation of the occurrence and distribution of PAEs in a maize-wheat double-cropping system in a wastewater-irrigated area in the North China Plain. PAE levels in maize and wheat were found to be mainly attributed to PAE stores in soil coarse (250-2000 μm) and fine sand (53-250 μm) fractions. Soil particle-size fractions with higher bioavailability (i.e., coarse and fine sands) showed greater influence on PAE congener bioconcentration factors compared to PAE molecular structures for both maize and wheat tissues. More PAEs were allocated to maize and wheat grains with increased soil PAE storages from wastewater irrigation. Additional findings showed that levels of both non-cancer and carcinogenic risk for PAE congeners in wheat were higher than those in maize, suggesting that wheat food security should be prioritized. In conclusion, increased soil PAE concentrations specifically in maize and wheat grains indicate that wastewater irrigation can pose a contamination threat to food resources.
Tan, Wenbing; Zhang, Yuan; He, Xiaosong; Xi, Beidou; Gao, Rutai; Mao, Xuhui; Huang, Caihong; Zhang, Hui; Li, Dan; Liang, Qiong; Cui, Dongyu; Alshawabkeh, Akram N.
2016-01-01
The use of wastewater irrigation for food crops can lead to presence of bioavailable phthalic acid esters (PAEs) in soils, which increase the potential for human exposure and adverse carcinogenic and non-cancer health effects. This study presents the first investigation of the occurrence and distribution of PAEs in a maize-wheat double-cropping system in a wastewater-irrigated area in the North China Plain. PAE levels in maize and wheat were found to be mainly attributed to PAE stores in soil coarse (250–2000 μm) and fine sand (53–250 μm) fractions. Soil particle-size fractions with higher bioavailability (i.e., coarse and fine sands) showed greater influence on PAE congener bioconcentration factors compared to PAE molecular structures for both maize and wheat tissues. More PAEs were allocated to maize and wheat grains with increased soil PAE storages from wastewater irrigation. Additional findings showed that levels of both non-cancer and carcinogenic risk for PAE congeners in wheat were higher than those in maize, suggesting that wheat food security should be prioritized. In conclusion, increased soil PAE concentrations specifically in maize and wheat grains indicate that wastewater irrigation can pose a contamination threat to food resources. PMID:27555553
Bøhn, Thomas; Aheto, Denis W; Mwangala, Felix S; Fischer, Klara; Bones, Inger Louise; Simoloka, Christopher; Mbeule, Ireen; Schmidt, Gunther; Breckling, Broder
2016-10-03
Gene flow in agricultural crops is important for risk assessment of genetically modified (GM) crops, particularly in countries with a large informal agricultural sector of subsistence cultivation. We present a pollen flow model for maize (Zea mays), a major staple crop in Africa. We use spatial properties of fields (size, position) in three small-scale maize farming communities in Zambia and estimate rates of cross-fertilisation between fields sown with different maize varieties (e.g. conventional and transgene). As an additional factor contributing to gene flow, we present data on seed saving and sharing among farmers that live in the same communities. Our results show that: i) maize fields were small and located in immediate vicinity of neighboring fields; ii) a majority of farmers saved and shared seed; iii) modeled rates of pollen-mediated gene flow showed extensive mixing of germplasm between fields and farms and iv) as a result, segregation of GM and non-GM varieties is not likely to be an option in these systems. We conclude that the overall genetic composition of maize, in this and similar agricultural contexts, will be strongly influenced both by self-organised ecological factors (pollen flow), and by socially mediated intervention (seed recycling and sharing).
Can Bangladesh produce enough cereals to meet future demand?
Timsina, J; Wolf, J; Guilpart, N; van Bussel, L G J; Grassini, P; van Wart, J; Hossain, A; Rashid, H; Islam, S; van Ittersum, M K
2018-06-01
Bangladesh faces huge challenges in achieving food security due to its high population, diet changes, and limited room for expanding cropland and cropping intensity. The objective of this study is to assess the degree to which Bangladesh can be self-sufficient in terms of domestic maize, rice and wheat production by the years 2030 and 2050 by closing the existing gap (Yg) between yield potential (Yp) and actual farm yield (Ya), accounting for possible changes in cropland area. Yield potential and yield gaps were calculated for the three crops using well-validated crop models and site-specific weather, management and soil data, and upscaled to the whole country. We assessed potential grain production in the years 2030 and 2050 for six land use change scenarios (general decrease in arable land; declining ground water tables in the north; cropping of fallow areas in the south; effect of sea level rise; increased cropping intensity; and larger share of cash crops) and three levels of Yg closure (1: no yield increase; 2: Yg closure at a level equivalent to 50% (50% Yg closure); 3: Yg closure to a level of 85% of Yp (irrigated crops) and 80% of water-limited yield potential or Yw (rainfed crops) (full Yg closure)). In addition, changes in demand with low and high population growth rates, and substitution of rice by maize in future diets were also examined. Total aggregated demand of the three cereals (in milled rice equivalents) in 2030 and 2050, based on the UN median population variant, is projected to be 21 and 24% higher than in 2010. Current Yg represent 50% (irrigated rice), 48-63% (rainfed rice), 49% (irrigated wheat), 40% (rainfed wheat), 46% (irrigated maize), and 44% (rainfed maize) of their Yp or Yw. With 50% Yg closure and for various land use changes, self-sufficiency ratio will be > 1 for rice in 2030 and about one in 2050 but well below one for maize and wheat in both 2030 and 2050. With full Yg closure, self-sufficiency ratios will be well above one for rice and all three cereals jointly but below one for maize and wheat for all scenarios, except for the scenario with drastic decrease in boro rice area to allow for area expansion for cash crops. Full Yg closure of all cereals is needed to compensate for area decreases and demand increases, and then even some maize and large amounts of wheat imports will be required to satisfy demand in future. The results of this analysis have important implications for Bangladesh and other countries with high population growth rate, shrinking arable land due to rapid urbanization, and highly vulnerable to climate change.
Leibman, Mark; Shryock, Jereme J; Clements, Michael J; Hall, Michael A; Loida, Paul J; McClerren, Amanda L; McKiness, Zoe P; Phillips, Jonathan R; Rice, Elena A; Stark, Steven B
2014-09-01
Grain yield from maize hybrids continues to improve through advances in breeding and biotechnology. Despite genetic improvements to hybrid maize, grain yield from distinct maize hybrids is expected to vary across growing locations due to numerous environmental factors. In this study, we examine across-location variation in grain yield among maize hybrids in three case studies. The three case studies examine hybrid improvement through breeding, introduction of an insect protection trait or introduction of a transcription factor trait associated with increased yield. In all cases, grain yield from each hybrid population had a Gaussian distribution. Across-location distributions of grain yield from each hybrid partially overlapped. The hybrid with a higher mean grain yield typically outperformed its comparator at most, but not all, of the growing locations (a 'win rate'). These results suggest that a broad set of environmental factors similarly impacts grain yields from both conventional- and biotechnology-derived maize hybrids and that grain yields among two or more hybrids should be compared with consideration given to both mean yield performance and the frequency of locations at which each hybrid 'wins' against its comparators. From an economic standpoint, growers recognize the value of genetically improved maize hybrids that outperform comparators in the majority of locations. Grower adoption of improved maize hybrids drives increases in average U.S. maize grain yields and contributes significant value to the economy. © 2014 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.
Mapping croplands, cropping patterns, and crop types using MODIS time-series data
NASA Astrophysics Data System (ADS)
Chen, Yaoliang; Lu, Dengsheng; Moran, Emilio; Batistella, Mateus; Dutra, Luciano Vieira; Sanches, Ieda Del'Arco; da Silva, Ramon Felipe Bicudo; Huang, Jingfeng; Luiz, Alfredo José Barreto; de Oliveira, Maria Antonia Falcão
2018-07-01
The importance of mapping regional and global cropland distribution in timely ways has been recognized, but separation of crop types and multiple cropping patterns is challenging due to their spectral similarity. This study developed a new approach to identify crop types (including soy, cotton and maize) and cropping patterns (Soy-Maize, Soy-Cotton, Soy-Pasture, Soy-Fallow, Fallow-Cotton and Single crop) in the state of Mato Grosso, Brazil. The Moderate Resolution Imaging Spectroradiometer (MODIS) normalized difference vegetation index (NDVI) time series data for 2015 and 2016 and field survey data were used in this research. The major steps of this proposed approach include: (1) reconstructing NDVI time series data by removing the cloud-contaminated pixels using the temporal interpolation algorithm, (2) identifying the best periods and developing temporal indices and phenological parameters to distinguish croplands from other land cover types, and (3) developing crop temporal indices to extract cropping patterns using NDVI time-series data and group cropping patterns into crop types. Decision tree classifier was used to map cropping patterns based on these temporal indices. Croplands from Landsat imagery in 2016, cropping pattern samples from field survey in 2016, and the planted area of crop types in 2015 were used for accuracy assessment. Overall accuracies of approximately 90%, 73% and 86%, respectively were obtained for croplands, cropping patterns, and crop types. The adjusted coefficients of determination of total crop, soy, maize, and cotton areas with corresponding statistical areas were 0.94, 0.94, 0.88 and 0.88, respectively. This research indicates that the proposed approach is promising for mapping large-scale croplands, their cropping patterns and crop types.
Impact of different bioenergy crops on N-cycling bacterial and archaeal communities in soil.
Mao, Yuejian; Yannarell, Anthony C; Davis, Sarah C; Mackie, Roderick I
2013-03-01
Biomass production for bioenergy may change soil microbes and influence ecosystem properties. To explore the impact of different bioenergy cropping systems on soil microorganisms, the compositions and quantities of soil microbial communities (16S rRNA gene) and N-cycling functional groups (nifH, bacterial amoA, archaeal amoA and nosZ genes) were assessed under maize, switchgrass and Miscanthus x giganteus at seven sites representing a climate gradient (precipitation and temperature) in Illinois, USA. Overall, the site-to-site variation in community composition surpassed the variation due to plant type, and microbial communities under each crop did not converge on a 'typical' species assemblage. Fewer than 5% of archaeal amoA, bacterial amoA, nifH and nosZ OTUs were significantly different among these crops, but the largest differences observed at each site were found between maize and the two perennial grasses. Quantitative PCR revealed that the abundance of the nifH gene was significantly higher in the perennial grasses than in maize, and we also found significantly higher total N in the perennial grass soils than in maize. Thus, we conclude that cultivation of these perennial grasses, instead of maize, as bioenergy feedstocks can improve soil ecosystem nitrogen sustainability by increasing the population size of N-fixing bacteria. © 2012 Society for Applied Microbiology and Blackwell Publishing Ltd.
MaizeGDB update: New tools, data, and interface for the maize model organism database
USDA-ARS?s Scientific Manuscript database
MaizeGDB is a highly curated, community-oriented database and informatics service to researchers focused on the crop plant and model organism Zea mays ssp. mays. Although some form of the maize community database has existed over the last 25 years, there have only been two major releases. In 1991, ...
The water footprint of sweeteners and bio-ethanol.
Gerbens-Leenes, Winnie; Hoekstra, Arjen Y
2012-04-01
An increasing demand for food together with a growing demand for energy crops result in an increasing demand for and competition over water. Sugar cane, sugar beet and maize are not only essential food crops, but also important feedstock for bio-ethanol. Crop growth requires water, a scarce resource. This study aims to assess the green, blue and grey water footprint (WF) of sweeteners and bio-ethanol from sugar cane, sugar beet and maize in the main producing countries. The WFs of sweeteners and bio-ethanol are mainly determined by the crop type that is used as a source and by agricultural practise and agro-climatic conditions; process water footprints are relatively small. The weighted global average WF of sugar cane is 209 m(3)/tonne; for sugar beet this is 133 m(3)/tonne and for maize 1222 m(3)/tonne. Large regional differences in WFs indicate that WFs of crops for sweeteners and bio-ethanol can be improved. It is more favourable to use maize as a feedstock for sweeteners or bio-ethanol than sugar beet or sugar cane. The WF of sugar cane contributes to water stress in the Indus and Ganges basins. In the Ukraine, the large grey WF of sugar beet contributes to water pollution. In some western European countries, blue WFs of sugar beet and maize need a large amount of available blue water for agriculture. The allocation of the limited global water resources to bio-energy on a large scale will be at the cost of water allocation to food and nature. Copyright © 2011 Elsevier Ltd. All rights reserved.
Inter- and intraspecific variation in leaf economic traits in wheat and maize
Hale, Christine E; Cerabolini, Bruno E L; Cornelissen, Johannes H C; Craine, Joseph; Gough, William A; Kattge, Jens; Tirona, Cairan K F
2018-01-01
Abstract Leaf Economics Spectrum (LES) trait variation underpins multiple agroecological processes and many prominent crop yield models. While there are numerous independent studies assessing trait variation in crops, to date there have been no comprehensive assessments of intraspecific trait variation (ITV) in LES traits for wheat and maize: the world’s most widespread crops. Using trait databases and peer-reviewed literature, we compiled over 700 records of specific leaf area (SLA), maximum photosynthetic rates (Amax) and leaf nitrogen (N) concentrations, for wheat and maize. We evaluated intraspecific LES trait variation, and intraspecific trait–environment relationships. While wheat and maize occupy the upper 90th percentile of LES trait values observed across a global species pool, ITV ranged widely across the LES in wheat and maize. Fertilization treatments had strong impacts on leaf N, while plant developmental stage (here standardized as the number of days since planting) had strong impacts on Amax; days since planting, N fertilization and irrigation all influenced SLA. When controlling for these factors, intraspecific responses to temperature and precipitation explained 39.4 and 43.7 % of the variation in Amax and SLA, respectively, but only 5.4 % of the variation in leaf N. Despite a long history of domestication in these species, ITV in wheat and maize among and within cultivars remains large. Intraspecific trait variation is a critical consideration to refine regional to global models of agroecosystem structure, function and food security. Considerable opportunities and benefits exist for consolidating a crop trait database for a wider range of domesticated plant species. PMID:29484152
Inter- and intraspecific variation in leaf economic traits in wheat and maize.
Martin, Adam R; Hale, Christine E; Cerabolini, Bruno E L; Cornelissen, Johannes H C; Craine, Joseph; Gough, William A; Kattge, Jens; Tirona, Cairan K F
2018-02-01
Leaf Economics Spectrum (LES) trait variation underpins multiple agroecological processes and many prominent crop yield models. While there are numerous independent studies assessing trait variation in crops, to date there have been no comprehensive assessments of intraspecific trait variation (ITV) in LES traits for wheat and maize: the world's most widespread crops. Using trait databases and peer-reviewed literature, we compiled over 700 records of specific leaf area (SLA), maximum photosynthetic rates ( A max ) and leaf nitrogen (N) concentrations, for wheat and maize. We evaluated intraspecific LES trait variation, and intraspecific trait-environment relationships. While wheat and maize occupy the upper 90th percentile of LES trait values observed across a global species pool, ITV ranged widely across the LES in wheat and maize. Fertilization treatments had strong impacts on leaf N, while plant developmental stage (here standardized as the number of days since planting) had strong impacts on A max ; days since planting, N fertilization and irrigation all influenced SLA. When controlling for these factors, intraspecific responses to temperature and precipitation explained 39.4 and 43.7 % of the variation in A max and SLA, respectively, but only 5.4 % of the variation in leaf N. Despite a long history of domestication in these species, ITV in wheat and maize among and within cultivars remains large. Intraspecific trait variation is a critical consideration to refine regional to global models of agroecosystem structure, function and food security. Considerable opportunities and benefits exist for consolidating a crop trait database for a wider range of domesticated plant species.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jin, Zhenong; Zhuang, Qianlai; Wang, Jiali
Heat and drought stresses are two emerging climatic threats to the US maize and soybean production, yet their impacts on yields are collectively determined by the magnitude of climate change and rising atmospheric CO2 concentration. Here we present a study that quantified the current and future yield responses of US rainfed maize and soybean to climate extremes, and for the first time characterized spatial shifts in the relative importance of temperature, heat and drought stress. Crop yields are simulated using the Agricultural Production Systems sIMulator (APSIM), driven by the high-resolution (12 km) Weather Research and Forecasting (WRF) Model downscaled futuremore » climate scenarios at two time slices (1995-2005 and 2085-2094). Our results show that climatic yield gaps and interannual variability are greater in the core production area than in the remaining US by the late 21st century under both Representative Concentration Pathway (RCP) 4.5 and RCP8.5 scenarios, and the magnitude of change is highly dependent on the current climate sensitivity and vulnerability. Elevated CO2 partially offsets the climatic yield gaps and reduces interannual yield variability, and effect is more prominent in soybean than in maize. We demonstrate that drought will continue to be the largest threat to US rainfed maize and soybean production, although its dominant role gradually gives way to other impacts of heat extremes. We also reveal that shifts in the geographic distributions of dominant stressors are characterized by increases in the concurrent stress, especially for the US Midwest. These findings imply the importance of considering drought and extreme heat simultaneously for future agronomic adaptation and mitigation strategies, particularly for breeding programs and crop management.« less
Evolutionary response of landraces to climate change in centers of crop diversity
Mercer, Kristin L; Perales, Hugo R
2010-01-01
Landraces cultivated in centers of crop diversity result from past and contemporary patterns of natural and farmer-mediated evolutionary forces. Successful in situ conservation of crop genetic resources depends on continuity of these evolutionary processes. Climate change is projected to affect agricultural production, yet analyses of impacts on in situ conservation of crop genetic diversity and farmers who conserve it have been absent. How will crop landraces respond to alterations in climate? We review the roles that phenotypic plasticity, evolution, and gene flow might play in sustaining production, although we might expect erosion of genetic diversity if landrace populations or entire races lose productivity. For example, highland maize landraces in southern Mexico do not express the plasticity necessary to sustain productivity under climate change, but may evolve in response to altered conditions. The outcome for any given crop in a given region will depend on the distribution of genetic variation that affects fitness and patterns of climate change. Understanding patterns of neutral and adaptive diversity from the population to the landscape scale is essential to clarify how landraces conserved in situ will continue to evolve and how to minimize genetic erosion of this essential natural resource. PMID:25567941
Evolutionary response of landraces to climate change in centers of crop diversity.
Mercer, Kristin L; Perales, Hugo R
2010-09-01
Landraces cultivated in centers of crop diversity result from past and contemporary patterns of natural and farmer-mediated evolutionary forces. Successful in situ conservation of crop genetic resources depends on continuity of these evolutionary processes. Climate change is projected to affect agricultural production, yet analyses of impacts on in situ conservation of crop genetic diversity and farmers who conserve it have been absent. How will crop landraces respond to alterations in climate? We review the roles that phenotypic plasticity, evolution, and gene flow might play in sustaining production, although we might expect erosion of genetic diversity if landrace populations or entire races lose productivity. For example, highland maize landraces in southern Mexico do not express the plasticity necessary to sustain productivity under climate change, but may evolve in response to altered conditions. The outcome for any given crop in a given region will depend on the distribution of genetic variation that affects fitness and patterns of climate change. Understanding patterns of neutral and adaptive diversity from the population to the landscape scale is essential to clarify how landraces conserved in situ will continue to evolve and how to minimize genetic erosion of this essential natural resource.
USDA-ARS?s Scientific Manuscript database
Exposure to elevated tropospheric ozone concentration ([O3]) accelerates leaf senescence in many C3 crops. However, the effects of elevated [O3] on C4 crops including maize (Zea mays L.) are poorly understood in terms of physiological mechanism and genetic variation in sensitivity. Using Free Air ga...
Carstens, Keri; Anderson, Jennifer; Bachman, Pamela; De Schrijver, Adinda; Dively, Galen; Federici, Brian; Hamer, Mick; Gielkens, Marco; Jensen, Peter; Lamp, William; Rauschen, Stefan; Ridley, Geoff; Romeis, Jörg; Waggoner, Annabel
2012-08-01
Environmental risk assessments (ERA) support regulatory decisions for the commercial cultivation of genetically modified (GM) crops. The ERA for terrestrial agroecosystems is well-developed, whereas guidance for ERA of GM crops in aquatic ecosystems is not as well-defined. The purpose of this document is to demonstrate how comprehensive problem formulation can be used to develop a conceptual model and to identify potential exposure pathways, using Bacillus thuringiensis (Bt) maize as a case study. Within problem formulation, the insecticidal trait, the crop, the receiving environment, and protection goals were characterized, and a conceptual model was developed to identify routes through which aquatic organisms may be exposed to insecticidal proteins in maize tissue. Following a tiered approach for exposure assessment, worst-case exposures were estimated using standardized models, and factors mitigating exposure were described. Based on exposure estimates, shredders were identified as the functional group most likely to be exposed to insecticidal proteins. However, even using worst-case assumptions, the exposure of shredders to Bt maize was low and studies supporting the current risk assessments were deemed adequate. Determining if early tier toxicity studies are necessary to inform the risk assessment for a specific GM crop should be done on a case by case basis, and should be guided by thorough problem formulation and exposure assessment. The processes used to develop the Bt maize case study are intended to serve as a model for performing risk assessments on future traits and crops.
Pla, Maria; La Paz, José-Luis; Peñas, Gisela; García, Nora; Palaudelmàs, Montserrat; Esteve, Teresa; Messeguer, Joaquima; Melé, Enric
2006-04-01
Maize is one of the main crops worldwide and an increasing number of genetically modified (GM) maize varieties are cultivated and commercialized in many countries in parallel to conventional crops. Given the labeling rules established e.g. in the European Union and the necessary coexistence between GM and non-GM crops, it is important to determine the extent of pollen dissemination from transgenic maize to other cultivars under field conditions. The most widely used methods for quantitative detection of GMO are based on real-time PCR, which implies the results are expressed in genome percentages (in contrast to seed or grain percentages). Our objective was to assess the accuracy of real-time PCR based assays to accurately quantify the contents of transgenic grains in non-GM fields in comparison with the real cross-fertilization rate as determined by phenotypical analysis. We performed this study in a region where both GM and conventional maize are normally cultivated and used the predominant transgenic maize Mon810 in combination with a conventional maize variety which displays the characteristic of white grains (therefore allowing cross-pollination quantification as percentage of yellow grains). Our results indicated an excellent correlation between real-time PCR results and number of cross-fertilized grains at Mon810 levels of 0.1-10%. In contrast, Mon810 percentage estimated by weight of grains produced less accurate results. Finally, we present and discuss the pattern of pollen-mediated gene flow from GM to conventional maize in an example case under field conditions.
The art and design of genetic screens: maize
USDA-ARS?s Scientific Manuscript database
Maize (Zea mays) is an excellent model for basic research. Genetic screens have informed our understanding of developmental processes, meiosis, epigenetics and biochemical pathways--not only in maize but also in other cereal crops. We discuss the forward and reverse genetic screens that are possible...
Wisniewski, Jean-Pierre; Frangne, Nathalie; Massonneau, Agnès; Dumas, Christian
2002-11-01
Maize is a major crop plant with essential agronomical interests and a model plant for genetic studies. With the development of plant genetic engineering technology, many transgenic strains of this monocotyledonous plant have been produced over the past decade. In particular, field-cultivated insect-resistant Bt-maize hybrids are at the centre of an intense debate between scientists and organizations recalcitrant to genetically modified organisms (GMOs). This debate, which addresses both safety and ethical aspects, has raised questions about the impact of genetically modified (GM) crops on the biodiversity of traditional landraces and on the environment. Here, we review some of the key points of maize genetic history as well as the methods used to stably transform this cereal. We describe the genetically engineered Bt-maizes available for field cultivation and we investigate the controversial reports on their impacts on non-target insects such as the monarch butterfly and on the flow of transgenes into Mexican maize landraces.
Estimating plant distance in maize using Unmanned Aerial Vehicle (UAV).
Zhang, Jinshui; Basso, Bruno; Price, Richard F; Putman, Gregory; Shuai, Guanyuan
2018-01-01
Distance between rows and plants are essential parameters that affect the final grain yield in row crops. This paper presents the results of research intended to develop a novel method to quantify the distance between maize plants at field scale using an Unmanned Aerial Vehicle (UAV). Using this method, we can recognize maize plants as objects and calculate the distance between plants. We initially developed our method by training an algorithm in an indoor facility with plastic corn plants. Then, the method was scaled up and tested in a farmer's field with maize plant spacing that exhibited natural variation. The results of this study demonstrate that it is possible to precisely quantify the distance between maize plants. We found that accuracy of the measurement of the distance between maize plants depended on the height above ground level at which UAV imagery was taken. This study provides an innovative approach to quantify plant-to-plant variability and, thereby final crop yield estimates.
Ustilago maydis populations tracked maize through domestication and cultivation in the Americas
Munkacsi, Andrew B; Stoxen, Sam; May, Georgiana
2008-01-01
The domestication of crops and the development of agricultural societies not only brought about major changes in human interactions with the environment but also in plants' interactions with the diseases that challenge them. We evaluated the impact of the domestication of maize from teosinte and the widespread cultivation of maize on the historical demography of Ustilago maydis, a fungal pathogen of maize. To determine the evolutionary response of the pathogen's populations, we obtained multilocus genotypes for 1088 U. maydis diploid individuals from two teosinte subspecies in Mexico and from maize in Mexico and throughout the Americas. Results identified five major U. maydis populations: two in Mexico; two in South America; and one in the United States. The two populations in Mexico diverged from the other populations at times comparable to those for the domestication of maize at 6000–10 000 years before present. Maize domestication and agriculture enforced sweeping changes in U. maydis populations such that the standing variation in extant pathogen populations reflects evolution only since the time of the crop's domestication. PMID:18252671
NASA Astrophysics Data System (ADS)
Mera, Roberto J.; Niyogi, Dev; Buol, Gregory S.; Wilkerson, Gail G.; Semazzi, Fredrick H. M.
2006-11-01
Landuse/landcover change induced effects on regional weather and climate patterns and the associated plant response or agricultural productivity are coupled processes. Some of the basic responses to climate change can be detected via changes in radiation ( R), precipitation ( P), and temperature ( T). Past studies indicate that each of these three variables can affect LCLUC response and the agricultural productivity. This study seeks to address the following question: What is the effect of individual versus simultaneous changes in R, P, and T on plant response such as crop yields in a C 3 and a C 4 plant? This question is addressed by conducting model experiments for soybean (C 3) and maize (C 4) crops using the DSSAT: Decision Support System for Agrotechnology Transfer, CROPGRO (soybean), and CERES-Maize (maize) models. These models were configured over an agricultural experiment station in Clayton, NC [35.65°N, 78.5°W]. Observed weather and field conditions corresponding to 1998 were used as the control. In the first set of experiments, the CROPGRO (soybean) and CERES-Maize (maize) responses to individual changes in R and P (25%, 50%, 75%, 150%) and T (± 1, ± 2 °C) with respect to control were studied. In the second set, R, P, and T were simultaneously changed by 50%, 150%, and ± 2 °C, and the interactions and direct effects of individual versus simultaneous variable changes were analyzed. For the model setting and the prescribed environmental changes, results from the first set of experiments indicate: (i) precipitation changes were most sensitive and directly affected yield and water loss due to evapotranspiration; (ii) radiation changes had a non-linear effect and were not as prominent as precipitation changes; (iii) temperature had a limited impact and the response was non-linear; (iv) soybeans and maize responded differently for R, P, and T, with maize being more sensitive. The results from the second set of experiments indicate that simultaneous change analyses do not necessarily agree with those from individual changes, particularly for temperature changes. Our analysis indicates that for the changing climate, precipitation (hydrological), temperature, and radiative feedbacks show a non-linear effect on yield. Study results also indicate that for studying the feedback between the land surface and the atmospheric changes, (i) there is a need for performing simultaneous parameter changes in the response assessment of cropping patterns and crop yield based on ensembles of projected climate change, and (ii) C 3 crops are generally considered more sensitive than C 4; however, the temperature-radiation related changes shown in this study also effected significant changes in C 4 crops. Future studies assessing LCLUC impacts, including those from agricultural cropping patterns and other LCULC-climate couplings, should advance beyond the sensitivity mode and consider multivariable, ensemble approaches to identify the vulnerability and feedbacks in estimating climate-related impacts.
NASA Astrophysics Data System (ADS)
Parkes, Ben; Defrance, Dimitri; Sultan, Benjamin; Ciais, Philippe; Wang, Xuhui
2018-02-01
The ability of a region to feed itself in the upcoming decades is an important issue. The West African population is expected to increase significantly in the next 30 years. The responses of crops to short-term climate change is critical to the population and the decision makers tasked with food security. This leads to three questions: how will crop yields change in the near future? What influence will climate change have on crop failures? Which adaptation methods should be employed to ameliorate undesirable changes? An ensemble of near-term climate projections are used to simulate maize, millet and sorghum in West Africa in the recent historic period (1986-2005) and a near-term future when global temperatures are 1.5 K above pre-industrial levels to assess the change in yield, yield variability and crop failure rate. Four crop models were used to simulate maize, millet and sorghum in West Africa in the historic and future climates. Across the majority of West Africa the maize, millet and sorghum yields are shown to fall. In the regions where yields increase, the variability also increases. This increase in variability increases the likelihood of crop failures, which are defined as yield negative anomalies beyond 1 standard deviation during the historic period. The increasing variability increases the frequency of crop failures across West Africa. The return time of crop failures falls from 8.8, 9.7 and 10.1 years to 5.2, 6.3 and 5.8 years for maize, millet and sorghum respectively. The adoption of heat-resistant cultivars and the use of captured rainwater have been investigated using one crop model as an idealized sensitivity test. The generalized doption of a cultivar resistant to high-temperature stress during flowering is shown to be more beneficial than using rainwater harvesting.
Wang, Jinzhou; Wang, Xiujun; Xu, Minggang; Feng, Gu; Zhang, Wenju; Yang, Xueyun; Huang, Shaomin
2015-01-01
Soil organic carbon (SOC) dynamics in agro-ecosystem is largely influenced by cropping. However, quantifying the contributions of various crops has been lacking. Here we employed a stable isotopic approach to evaluate the contributions of wheat and maize residues to SOC at three long-term experimental sites in north China. Soil samples were collected from 0–20, 20–40, 40–60, 60–80 and 80–100 cm after 13 and 20 years of wheat-maize rotation, and SOC and its stable 13C composition were determined. Our data showed that the δ13C value of SOC varied, on average, from −22.1‰ in the 0–20 cm to −21.5‰ in the 80–100 cm. Carbon input through maize residues ranged from 35% to 68% whereas the contribution of maize residues to SOC (0–40 cm) ranged from 28% to 40%. Our analyses suggested that the retention coefficient was in the range of 8.0–13.6% for maize residues and 16.5–28.5% for wheat residues. The two-fold higher retention coefficient of wheat versus maize residues was due to the differences in the quality of residues and probably also in the temperature during the growing season. Our study highlighted the importance of crop management on carbon sequestration in agricultural lands. PMID:26100739
Metabolic changes in transgenic maize mature seeds over-expressing the Aspergillus niger phyA2.
Rao, Jun; Yang, Litao; Guo, Jinchao; Quan, Sheng; Chen, Guihua; Zhao, Xiangxiang; Zhang, Dabing; Shi, Jianxin
2016-02-01
Non-targeted metabolomics analysis revealed only intended metabolic changes in transgenic maize over-expressing the Aspergillus niger phyA2. Genetically modified (GM) crops account for a large proportion of modern agriculture worldwide, raising increasingly the public concerns of safety. Generally, according to substantial equivalence principle, if a GM crop is demonstrated to be equivalently safe to its conventional species, it is supposed to be safe. In this study, taking the advantage of an established non-target metabolomic profiling platform based on the combination of UPLC-MS/MS with GC-MS, we compared the mature seed metabolic changes in transgenic maize over-expressing the Aspergillus niger phyA2 with its non-transgenic counterpart and other 14 conventional maize lines. In total, levels of nine out of identified 210 metabolites were significantly changed in transgenic maize as compared with its non-transgenic counterpart, and the number of significantly altered metabolites was reduced to only four when the natural variations were taken into consideration. Notably, those four metabolites were all associated with targeted engineering pathway. Our results indicated that although both intended and non-intended metabolic changes occurred in the mature seeds of this GM maize event, only intended metabolic pathway was found to be out of the range of the natural metabolic variation in the metabolome of the transgenic maize. Therefore, only when natural metabolic variation was taken into account, could non-targeted metabolomics provide reliable objective compositional substantial equivalence analysis on GM crops.
Global Gridded Crop Model Evaluation: Benchmarking, Skills, Deficiencies and Implications.
NASA Technical Reports Server (NTRS)
Muller, Christoph; Elliott, Joshua; Chryssanthacopoulos, James; Arneth, Almut; Balkovic, Juraj; Ciais, Philippe; Deryng, Delphine; Folberth, Christian; Glotter, Michael; Hoek, Steven;
2017-01-01
Crop models are increasingly used to simulate crop yields at the global scale, but so far there is no general framework on how to assess model performance. Here we evaluate the simulation results of 14 global gridded crop modeling groups that have contributed historic crop yield simulations for maize, wheat, rice and soybean to the Global Gridded Crop Model Intercomparison (GGCMI) of the Agricultural Model Intercomparison and Improvement Project (AgMIP). Simulation results are compared to reference data at global, national and grid cell scales and we evaluate model performance with respect to time series correlation, spatial correlation and mean bias. We find that global gridded crop models (GGCMs) show mixed skill in reproducing time series correlations or spatial patterns at the different spatial scales. Generally, maize, wheat and soybean simulations of many GGCMs are capable of reproducing larger parts of observed temporal variability (time series correlation coefficients (r) of up to 0.888 for maize, 0.673 for wheat and 0.643 for soybean at the global scale) but rice yield variability cannot be well reproduced by most models. Yield variability can be well reproduced for most major producing countries by many GGCMs and for all countries by at least some. A comparison with gridded yield data and a statistical analysis of the effects of weather variability on yield variability shows that the ensemble of GGCMs can explain more of the yield variability than an ensemble of regression models for maize and soybean, but not for wheat and rice. We identify future research needs in global gridded crop modeling and for all individual crop modeling groups. In the absence of a purely observation-based benchmark for model evaluation, we propose that the best performing crop model per crop and region establishes the benchmark for all others, and modelers are encouraged to investigate how crop model performance can be increased. We make our evaluation system accessible to all crop modelers so that other modeling groups can also test their model performance against the reference data and the GGCMI benchmark.
NASA Astrophysics Data System (ADS)
Zaki, M. K.; Komariah; Pujiasmanto, B.; Noda, K.
2018-03-01
Water deficit is a problem on rainfed maize production but can be solved by proper land management. The objective of the study to determine the soil physical properties and maize yield affected by land management to adapt to drought. The experimental design was a randomized complete block using 5 treatments with 4 repetitions, including: (i) Control (KO), (ii) Rice Straw Mulched (MC), (iii) Compost Fertilizer (CF), (iv) In-Organic Fertilizer (AF), (v) Legume Cover crop (CC). Soil physical and maize growth properties namely soil moisture, soil texture, soil bulk density, plant height, biomass, and yield were investigated. The results showed that composting land increased soil water availability and provided nutrient to crops and thus increase soil physical properties, maize growth and yield. Although inorganic fertilizer also increased plant growth and yield, but it did not improve soil physical properties.
Growing sensitivity of maize to water scarcity under climate change.
Meng, Qingfeng; Chen, Xinping; Lobell, David B; Cui, Zhenling; Zhang, Yi; Yang, Haishun; Zhang, Fusuo
2016-01-25
Climate change can reduce crop yields and thereby threaten food security. The current measures used to adapt to climate change involve avoiding crops yield decrease, however, the limitations of such measures due to water and other resources scarcity have not been well understood. Here, we quantify how the sensitivity of maize to water availability has increased because of the shift toward longer-maturing varieties during last three decades in the Chinese Maize Belt (CMB). We report that modern, longer-maturing varieties have extended the growing period by an average of 8 days and have significantly offset the negative impacts of climate change on yield. However, the sensitivity of maize production to water has increased: maize yield across the CMB was 5% lower with rainfed than with irrigated maize in the 1980s and was 10% lower (and even >20% lower in some areas) in the 2000s because of both warming and the increased requirement for water by the longer-maturing varieties. Of the maize area in China, 40% now fails to receive the precipitation required to attain the full yield potential. Opportunities for water saving in maize systems exist, but water scarcity in China remains a serious problem.
Ibrahim, Muhammad; Ahmed, Naseer; Ullah, Faizan; Shinwari, Zabta Khan; Bano, Asghari
2016-04-01
This research work documents the comparative impact of genetically modified (GM) (insect resistance) and non modified maize (Zea mays L.) on growth and germination of succeeding crop wheat (Triticum aestivum L.) and associated weed (Avena fatua L.). The aqueous extracts of both the GM and non-GM maize exhibited higher phenolic content than that of methanolic extracts. Germination percentage and germination index of wheat was significantly decreased by GM methanolic extract (10%) as well as that of non-GM maize at 3% aqueous extract. Similarly germination percentage of weed (Avena fatua L.) was significantly reduced by application of 3% and 5% methanolic GM extracts. All extracts of GM maize showed non-significant effect on the number of roots, root length and shoot length per plant but 5% and 10% methanolic extracts of non-GM maize significantly increased the number of roots per plant of wheat seedling. Similarly, 10% methanolic extract of GM maize significantly increased the number of roots per plant of weed seedling. Methanolic extracts of GM and non-GM maize (3% and 5%) significantly decreased the protease activity in wheat as compared to untreated control. © The Author(s) 2013.
NASA Astrophysics Data System (ADS)
Roby, M.; Salas Fernandez, M.; VanLoocke, A. D.
2014-12-01
There is growing consensus among model projections that climate change may increase the frequency and intensity of drought in the rain-fed, maize-dominated, Midwestern US. Uncertainty in the availability of water, combined with an increased demand for non-grain ethanol feedstock, may necessitate expanding the production of more water-use-efficient and less drought sensitive crops for biomass applications. Research suggests that biomass sorghum [Sorghum bicolor (L.) Moench] is more drought tolerant and can produce more biomass than maize in water-limiting environments; however, sorghum water use data are limited for the rain-fed Midwestern US. To address this gap, a replicated (n=3) side-by-side trial was established in Ames, Iowa to determine cumulative water use and water-use-efficiency of maize and biomass sorghum. Data were collected by micrometeorological stations located in the center of each plot and used to calculate cumulative evapotranspiration throughout the 2014 growing season using the residual energy balance method. Continuous micrometeorological measurements were supplemented by periodic measurements of leaf area index (LAI) and above-ground biomass. At mid-point of the growing season, preliminary data analysis revealed similar water use for sorghum and maize. Data collection will continue for the remainder of the growing season, at which point a stronger conclusion can be drawn. This research will provide important insight on the potential hydrologic effects of expanding biomass sorghum production in the Midwestern, US.
Temperatures and the growth and development of maize and rice: a review.
Sánchez, Berta; Rasmussen, Anton; Porter, John R
2014-02-01
Because of global land surface warming, extreme temperature events are expected to occur more often and more intensely, affecting the growth and development of the major cereal crops in several ways, thus affecting the production component of food security. In this study, we have identified rice and maize crop responses to temperature in different, but consistent, phenological phases and development stages. A literature review and data compilation of around 140 scientific articles have determined the key temperature thresholds and response to extreme temperature effects for rice and maize, complementing an earlier study on wheat. Lethal temperatures and cardinal temperatures, together with error estimates, have been identified for phenological phases and development stages. Following the methodology of previous work, we have collected and statistically analysed temperature thresholds of the three crops for the key physiological processes such as leaf initiation, shoot growth and root growth and for the most susceptible phenological phases such as sowing to emergence, anthesis and grain filling. Our summary shows that cardinal temperatures are conservative between studies and are seemingly well defined in all three crops. Anthesis and ripening are the most sensitive temperature stages in rice as well as in wheat and maize. We call for further experimental studies of the effects of transgressing threshold temperatures so such responses can be included into crop impact and adaptation models. © 2013 John Wiley & Sons Ltd.
Bayesian Inference of Baseline Fertility and Treatment Effects via a Crop Yield-Fertility Model
Chen, Hungyen; Yamagishi, Junko; Kishino, Hirohisa
2014-01-01
To effectively manage soil fertility, knowledge is needed of how a crop uses nutrients from fertilizer applied to the soil. Soil quality is a combination of biological, chemical and physical properties and is hard to assess directly because of collective and multiple functional effects. In this paper, we focus on the application of these concepts to agriculture. We define the baseline fertility of soil as the level of fertility that a crop can acquire for growth from the soil. With this strict definition, we propose a new crop yield-fertility model that enables quantification of the process of improving baseline fertility and the effects of treatments solely from the time series of crop yields. The model was modified from Michaelis-Menten kinetics and measured the additional effects of the treatments given the baseline fertility. Using more than 30 years of experimental data, we used the Bayesian framework to estimate the improvements in baseline fertility and the effects of fertilizer and farmyard manure (FYM) on maize (Zea mays), barley (Hordeum vulgare), and soybean (Glycine max) yields. Fertilizer contributed the most to the barley yield and FYM contributed the most to the soybean yield among the three crops. The baseline fertility of the subsurface soil was very low for maize and barley prior to fertilization. In contrast, the baseline fertility in this soil approximated half-saturated fertility for the soybean crop. The long-term soil fertility was increased by adding FYM, but the effect of FYM addition was reduced by the addition of fertilizer. Our results provide evidence that long-term soil fertility under continuous farming was maintained, or increased, by the application of natural nutrients compared with the application of synthetic fertilizer. PMID:25405353
Schaafsma, Arthur; Limay-Rios, Victor; Xue, Yingen; Smith, Jocelyn; Baute, Tracey
2016-02-01
Neonicotinoid insecticides, especially as seed treatments, have raised concerns about environmental loading and impacts on pollinators, biodiversity, and ecosystems. The authors measured concentrations of neonicotinoid residues in the top 5 cm of soil before planting of maize (corn) in 18 commercial fields with a history of neonicotinoid seed treatment use in southwestern Ontario in 2013 and 2014 using liquid chromatography-tandem mass spectrometry with electrospray ionization. A simple calculator based on first-order kinetics, incorporating crop rotation, planting date, and seed treatment history from the subject fields, was used to estimate dissipation rate from the seed zone. The estimated half-life (the time taken for 50% of the insecticide to have dissipated by all mechanisms) based on 8 yr of crop history was 0.64 (range, 0.25-1.59) yr and 0.57 (range, 0.24-2.12) yr for 2013 and 2014, respectively. In fields where neonicotinoid residues were measured in both years, the estimated mean half-life between 2013 and 2014 was 0.4 (range, 0.27-0.6) yr. If clothianidin and thiamethoxam were used annually as a seed treatment in a typical crop rotation of maize, soybean, and winter wheat over several years, residues would plateau rather than continue to accumulate. Residues of neonicotinoid insecticides after 3 yr to 4 yr of repeated annual use tend to plateau to a mean concentration of less than 6 ng/g in agricultural soils in southwestern Ontario. © 2015 SETAC.
NASA Astrophysics Data System (ADS)
Roby, M.; VanLoocke, A. D.; Heaton, E.; Miguez, F.; Salas Fernandez, M.
2015-12-01
Uncertainty in the quantity and timing of precipitation in a changing climate, combined with an increased demand for non-grain ethanol feedstock, may necessitate expanding the production of more water-use-efficient and less drought sensitive crops for biofuel applications. Research suggests that biomass sorghum [Sorghum bicolor (L.) Moench] is more drought tolerant and can produce more biomass than maize in water-limiting environments; however, sorghum water use data are scarce for the rain-fed Midwestern US. To address this gap, a replicated (n=3) side-by-side trial was established in Ames, Iowa to determine cumulative water use and water-use-efficiency of maize and biomass sorghum throughout the 2014 and 2015 growing seasons. Latent heat flux was estimated using the residual in the energy balance technique. Continuous micrometeorological measurements were supplemented by periodic measurements of leaf area index (LAI) and above-ground biomass. Water use (WU), aboveground biomass, and water-use-efficiency (WUE) were found to be similar for both crop types in 2014; data from the 2015 growing season are currently being processed. In 2015, leaf gas exchange measurements were made with a portable photosynthesis instrument. Photosynthetic parameters from gas exchange measurements will be implemented in a semi-mechanistic crop model (BioCro) as a method for scaling WUE estimates across the rain-fed Midwestern US driven with future climate projections. This research highlights the importance of understanding the potential effects of expanding biomass sorghum production on the hydrologic cycle of the Midwestern, US.
NASA Astrophysics Data System (ADS)
Augustin, Juergen; Fiedler, Sebastian; Heintze, Gawan; Rohwer, Marcus; Prescher, Anne-Katrin; Pohl, Madlen; Jurisch, Nicole; Hagemann, Ulrike
2017-04-01
In Germany, agricultural production accounts for approx. 15% of total anthropogenic greenhouse gas emissions. The cultivation of energy crops is thus considered an important option to reduce the climate impact and maintain or increase soil organic carbon (SOC) stocks. In particular, this applies to the continuously expanding cultivation of energy crops for biogas production and the associated use of residues from anaerobic digestion (digestates) as organic fertilizer. To date, there is only limited and contradicting evidence on the impacts of this management practice on the CO2 exchange as well as the change of SOC stocks. We will present results from a 4-year field study at 5 sites in Germany using identical methods to investigate the interacting effects of i) 3 N-fertilizer treatments including calcium ammonium nitrate and digestates and ii) a crop rotation of 7 energy crops like maize, sorghum, triticale, and wheat on net ecosystem CO2 exchange (NEE) and the change of SOC stocks. We used the manual chamber approach for measuring NEE as the difference between gross primary production and ecosystem respiration. The determination of SOC stock changes was based on a C budget approach, which includes the cumulated annual NEE, the C export by harvest, and the C import by application of anaerobic digestates. The CO2 exchange and the change of SOC stocks were influenced by multiple factors like crop, site, fertilization, and climate, as well as their complex interactions. A large proportion of the variability of the CO2 exchange can be attributed to interannual climatic variability. Productive crops like maize and sorghum generally feature the most intensive CO2 exchange, while less productive crops can compensate for this by means of longer cultivation times. Regardless of the extreme variability, pronounced and partly significant differences of NEE and C budgets between sites were observed. On average, SOC stocks declined over a full crop rotation, but with highly variable positive and negative C budgets. This indicates that, in most cases, neither the selected crops nor the application of anaerobic digestates were sufficient to compensate for SOC losses. Apparently, the potential of anaerobic digestates to maintain or increase SOC stocks is considerably smaller than expected. If continuous decreases of SOC stocks due to energy crop cultivation are to be avoided, additional studies on the optimization of crop rotations (selection of plants with high C input), and digestate fertilization (type of digestate, amount and application technique) are required. A continuously improved version of the methodology used in this study promises faster and more precise results than classic long-term field trials.
Use of tropical maize for bioethanol production
USDA-ARS?s Scientific Manuscript database
Tropical maize is an alternative energy crop being considered as a feedstock for bioethanol production in the North Central and Midwest United States. Tropical maize is advantageous because it produces large amounts of soluble sugars in its stalks, creates a large amount of biomass, and requires lo...
NASA Astrophysics Data System (ADS)
Ilani, Talli; Ephrath, Jhonathan; Silberbush, Moshe; Berliner, Pedro
2014-05-01
The primary production in arid zones is limited due to shortage of water and nutrients. Conveying flood water and storing it in plots surrounded by embankments allows their cropping. The efficient exploitation of the stored water can be achieved through an agroforestry system, in which two crops are grown simultaneously: annual crops with a shallow root system and trees with a deeper root system. We posit that the long-term productivity of this system can be maintained by intercropping symbiotic N fixing shrubs with annual crops, and applying the pruned and composted shrub leaves to the soil, thus ensuring an adequate nitrogen level (a limiting factor in drylands) in the soil. To test our hypothesis we carried a two year trial in which fast-growing acacia (A. saligna) trees were the woody component and maize (Zea mays L.) the intercrop. Ten treatments were applied over two maize growth seasons to examine the below- and above-ground effects of tree pruning, compost application and interactions. The addition of compost in the first growth season led to an increase of the soil organic matter reservoir, which was the main N source for the maize during the following growth season. In the second growth season the maize yield was significantly higher in the plots to which compost was applied. Pruning the tree's canopies changed the trees spatial and temporal root development, allowing the annual crop to develop between the trees. The roots of pruned trees intercropped with maize penetrated deeper in the soil. The intercropping of maize within pruned trees and implementing compost resulted in a higher water use efficiency of the water stored in the soil when compared to the not composted and monoculture treatments. The results presented suggest that the approach used in this study can be the basis for achieving sustainable agricultural production under arid conditions.
Maize Cropping Systems Mapping Using RapidEye Observations in Agro-Ecological Landscapes in Kenya.
Richard, Kyalo; Abdel-Rahman, Elfatih M; Subramanian, Sevgan; Nyasani, Johnson O; Thiel, Michael; Jozani, Hosein; Borgemeister, Christian; Landmann, Tobias
2017-11-03
Cropping systems information on explicit scales is an important but rarely available variable in many crops modeling routines and of utmost importance for understanding pests and disease propagation mechanisms in agro-ecological landscapes. In this study, high spatial and temporal resolution RapidEye bio-temporal data were utilized within a novel 2-step hierarchical random forest (RF) classification approach to map areas of mono- and mixed maize cropping systems. A small-scale maize farming site in Machakos County, Kenya was used as a study site. Within the study site, field data was collected during the satellite acquisition period on general land use/land cover (LULC) and the two cropping systems. Firstly, non-cropland areas were masked out from other land use/land cover using the LULC mapping result. Subsequently an optimized RF model was applied to the cropland layer to map the two cropping systems (2nd classification step). An overall accuracy of 93% was attained for the LULC classification, while the class accuracies (PA: producer's accuracy and UA: user's accuracy) for the two cropping systems were consistently above 85%. We concluded that explicit mapping of different cropping systems is feasible in complex and highly fragmented agro-ecological landscapes if high resolution and multi-temporal satellite data such as 5 m RapidEye data is employed. Further research is needed on the feasibility of using freely available 10-20 m Sentinel-2 data for wide-area assessment of cropping systems as an important variable in numerous crop productivity models.
Genomic-based-breeding tools for tropical maize improvement.
Chakradhar, Thammineni; Hindu, Vemuri; Reddy, Palakolanu Sudhakar
2017-12-01
Maize has traditionally been the main staple diet in the Southern Asia and Sub-Saharan Africa and widely grown by millions of resource poor small scale farmers. Approximately, 35.4 million hectares are sown to tropical maize, constituting around 59% of the developing worlds. Tropical maize encounters tremendous challenges besides poor agro-climatic situations with average yields recorded <3 tones/hectare that is far less than the average of developed countries. On the contrary to poor yields, the demand for maize as food, feed, and fuel is continuously increasing in these regions. Heterosis breeding introduced in early 90 s improved maize yields significantly, but genetic gains is still a mirage, particularly for crop growing under marginal environments. Application of molecular markers has accelerated the pace of maize breeding to some extent. The availability of array of sequencing and genotyping technologies offers unrivalled service to improve precision in maize-breeding programs through modern approaches such as genomic selection, genome-wide association studies, bulk segregant analysis-based sequencing approaches, etc. Superior alleles underlying complex traits can easily be identified and introgressed efficiently using these sequence-based approaches. Integration of genomic tools and techniques with advanced genetic resources such as nested association mapping and backcross nested association mapping could certainly address the genetic issues in maize improvement programs in developing countries. Huge diversity in tropical maize and its inherent capacity for doubled haploid technology offers advantage to apply the next generation genomic tools for accelerating production in marginal environments of tropical and subtropical world. Precision in phenotyping is the key for success of any molecular-breeding approach. This article reviews genomic technologies and their application to improve agronomic traits in tropical maize breeding has been reviewed in detail.
Maize transformation technology development for commercial event generation.
Que, Qiudeng; Elumalai, Sivamani; Li, Xianggan; Zhong, Heng; Nalapalli, Samson; Schweiner, Michael; Fei, Xiaoyin; Nuccio, Michael; Kelliher, Timothy; Gu, Weining; Chen, Zhongying; Chilton, Mary-Dell M
2014-01-01
Maize is an important food and feed crop in many countries. It is also one of the most important target crops for the application of biotechnology. Currently, there are more biotech traits available on the market in maize than in any other crop. Generation of transgenic events is a crucial step in the development of biotech traits. For commercial applications, a high throughput transformation system producing a large number of high quality events in an elite genetic background is highly desirable. There has been tremendous progress in Agrobacterium-mediated maize transformation since the publication of the Ishida et al. (1996) paper and the technology has been widely adopted for transgenic event production by many labs around the world. We will review general efforts in establishing efficient maize transformation technologies useful for transgenic event production in trait research and development. The review will also discuss transformation systems used for generating commercial maize trait events currently on the market. As the number of traits is increasing steadily and two or more modes of action are used to control key pests, new tools are needed to efficiently transform vectors containing multiple trait genes. We will review general guidelines for assembling binary vectors for commercial transformation. Approaches to increase transformation efficiency and gene expression of large gene stack vectors will be discussed. Finally, recent studies of targeted genome modification and transgene insertion using different site-directed nuclease technologies will be reviewed.
Perry, J N; Devos, Y; Arpaia, S; Bartsch, D; Gathmann, A; Hails, R S; Kiss, J; Lheureux, K; Manachini, B; Mestdagh, S; Neemann, G; Ortego, F; Schiemann, J; Sweet, J B
2010-05-07
Genetically modified (GM) maize MON810 expresses a Cry1Ab insecticidal protein, derived from Bacillus thuringiensis (Bt), toxic to lepidopteran target pests such as Ostrinia nubilalis. An environmental risk to non-target Lepidoptera from this GM crop is exposure to harmful amounts of Bt-containing pollen deposited on host plants in or near MON810 fields. An 11-parameter mathematical model analysed exposure of larvae of three non-target species: the butterflies Inachis io (L.), Vanessa atalanta (L.) and moth Plutella xylostella (L.), in 11 representative maize cultivation regions in four European countries. A mortality-dose relationship was integrated with a dose-distance relationship to estimate mortality both within the maize MON810 crop and within the field margin at varying distances from the crop edge. Mortality estimates were adjusted to allow for physical effects; the lack of temporal coincidence between the susceptible larval stage concerned and the period over which maize MON810 pollen is shed; and seven further parameters concerned with maize agronomy and host-plant ecology. Sublethal effects were estimated and allowance made for aggregated pollen deposition. Estimated environmental impact was low: in all regions, the calculated mortality rate for worst-case scenarios was less than one individual in every 1572 for the butterflies and one in 392 for the moth.
Maize transformation technology development for commercial event generation
Que, Qiudeng; Elumalai, Sivamani; Li, Xianggan; Zhong, Heng; Nalapalli, Samson; Schweiner, Michael; Fei, Xiaoyin; Nuccio, Michael; Kelliher, Timothy; Gu, Weining; Chen, Zhongying; Chilton, Mary-Dell M.
2014-01-01
Maize is an important food and feed crop in many countries. It is also one of the most important target crops for the application of biotechnology. Currently, there are more biotech traits available on the market in maize than in any other crop. Generation of transgenic events is a crucial step in the development of biotech traits. For commercial applications, a high throughput transformation system producing a large number of high quality events in an elite genetic background is highly desirable. There has been tremendous progress in Agrobacterium-mediated maize transformation since the publication of the Ishida et al. (1996) paper and the technology has been widely adopted for transgenic event production by many labs around the world. We will review general efforts in establishing efficient maize transformation technologies useful for transgenic event production in trait research and development. The review will also discuss transformation systems used for generating commercial maize trait events currently on the market. As the number of traits is increasing steadily and two or more modes of action are used to control key pests, new tools are needed to efficiently transform vectors containing multiple trait genes. We will review general guidelines for assembling binary vectors for commercial transformation. Approaches to increase transformation efficiency and gene expression of large gene stack vectors will be discussed. Finally, recent studies of targeted genome modification and transgene insertion using different site-directed nuclease technologies will be reviewed. PMID:25140170
Perry, J. N.; Devos, Y.; Arpaia, S.; Bartsch, D.; Gathmann, A.; Hails, R. S.; Kiss, J.; Lheureux, K.; Manachini, B.; Mestdagh, S.; Neemann, G.; Ortego, F.; Schiemann, J.; Sweet, J. B.
2010-01-01
Genetically modified (GM) maize MON810 expresses a Cry1Ab insecticidal protein, derived from Bacillus thuringiensis (Bt), toxic to lepidopteran target pests such as Ostrinia nubilalis. An environmental risk to non-target Lepidoptera from this GM crop is exposure to harmful amounts of Bt-containing pollen deposited on host plants in or near MON810 fields. An 11-parameter mathematical model analysed exposure of larvae of three non-target species: the butterflies Inachis io (L.), Vanessa atalanta (L.) and moth Plutella xylostella (L.), in 11 representative maize cultivation regions in four European countries. A mortality–dose relationship was integrated with a dose–distance relationship to estimate mortality both within the maize MON810 crop and within the field margin at varying distances from the crop edge. Mortality estimates were adjusted to allow for physical effects; the lack of temporal coincidence between the susceptible larval stage concerned and the period over which maize MON810 pollen is shed; and seven further parameters concerned with maize agronomy and host-plant ecology. Sublethal effects were estimated and allowance made for aggregated pollen deposition. Estimated environmental impact was low: in all regions, the calculated mortality rate for worst-case scenarios was less than one individual in every 1572 for the butterflies and one in 392 for the moth. PMID:20053648
Genetic erosion in maize's center of origin.
Dyer, George A; López-Feldman, Alejandro; Yúnez-Naude, Antonio; Taylor, J Edward
2014-09-30
Crop genetic diversity is an indispensable resource for farmers and professional breeders responding to changing climate, pests, and diseases. Anecdotal appraisals in centers of crop origin have suggested serious threats to this diversity for over half a century. However, a nationwide inventory recently found all maize races previously described for Mexico, including some formerly considered nearly extinct. A flurry of social studies seems to confirm that farmers maintain considerable diversity. Here, we compare estimates of maize diversity from case studies over the past 15 y with nationally and regionally representative matched longitudinal data from farmers across rural Mexico. Our findings reveal an increasing bias in inferences based on case study results and widespread loss of diversity. Cross-sectional, case study data suggest that farm-level richness has increased by 0.04 y(-1) nationwide; however, direct estimates using matched longitudinal data reveal that richness dropped -0.04 y(-1) between 2002 and 2007, from 1.43 to 1.22 varieties per farm. Varietal losses occurred across regions and altitudinal zones, and regardless of farm turnover within the sector. Extinction of local maize populations may not have resulted in an immediate loss of alleles, but low varietal richness and changes in maize's metapopulation dynamics may prevent farmers from accessing germplasm suitable to a rapidly changing climate. Declining yields could then lead farmers to leave the sector and result in a further loss of diversity. Similarities in research approaches across crops suggest that methodological biases could conceal a loss of diversity at other centers of crop origin.
Solar-Induced Fluorescence of Maize Across A Water Stress Gradient in the Midwestern USA
NASA Astrophysics Data System (ADS)
Miao, G.; Guan, K.; Suyker, A.; Yang, X.; Benarcchi, C. J.; Gamon, J. A.; Berry, J. A.; DeLucia, E.; Franz, T.; Arkebauer, T. J.; Zygielbaum, A. I.; Walter-Shea, E. A.; Moore, C.; Zhang, Y.; Kim, H.; Hmimina, G.
2017-12-01
In the coming decades, agricultural ecosystems will be challenged by rising temperatures, changing rainfall patterns, and increasing extreme weather. Understanding how crops respond to weather variability and how humans manage agriculture to mitigate and adapt to climate change is critical for improving agricultural sustainability and supporting increasing global food demands. Accurately estimating gross primary productivity (GPP) of crops is of importance to evaluate their sustainability and capability but remains a challenge. The recent development of solar-induced fluorescence (SIF) technology is stimulating studies to use SIF to approximate GPP. It has been observed that agricultural lands have remarkably high SIF and the SIF signal could be used as an indicator of vegetation stress, which is particularly valuable for improved monitoring of crop productivity and stress. To investigate the applicability of SIF for detecting maize stress and estimating GPP, we deployed three FluoSpec2 systems in 2017 at three long-term eddy covariance flux sites across the US Corn Belt, a rain-fed maize field (AmeriFlux sites US-NE3) and an irrigated maize field (US-NE2) at Mead, Nebraska and a rain-fed maize field at Urbana, Illinois. Together these form a water stress gradient. Variations in GPP, SIF, photosynthetic efficiency (LUE), SIF yield (SIFy), and relationships between GPP and SIF, LUE and SIFy will be compared as indications of the difference in maize growth across the water stress gradient. More importantly, differences in GPP and SIF signals will be examined over multiple growth stages to assess the potential of SIF in identifying the growth stages that are mostly affected by water stress and the ones that play the most important roles on the crop yield.
Assessments of Maize Yield Potential in the Korean Peninsula Using Multiple Crop Models
NASA Astrophysics Data System (ADS)
Kim, S. H.; Myoung, B.; Lim, C. H.; Lee, S. G.; Lee, W. K.; Kafatos, M.
2015-12-01
The Korean Peninsular has unique agricultural environments due to the differences in the political and socio-economical systems between the Republic of Korea (SK, hereafter) and the Democratic Peoples' Republic of Korea (NK, hereafter). NK has been suffering from the lack of food supplies caused by natural disasters, land degradation and failed political system. The neighboring developed country SK has a better agricultural system but very low food self-sufficiency rate (around 1% of maize). Maize is an important crop in both countries since it is staple food for NK and SK is No. 2 maize importing country in the world after Japan. Therefore evaluating maize yield potential (Yp) in the two distinct regions is essential to assess food security under climate change and variability. In this study, we have utilized multiple process-based crop models capable of regional-scale assessments to evaluate maize Yp over the Korean Peninsula - the GIS version of EPIC model (GEPIC) and APSIM model that can be expanded to regional scales (APSIM regions). First we evaluated model performance and skill for 20 years from 1991 to 2010 using reanalysis data (Local Data Assimilation and Prediction System (LDAPS); 1.5km resolution) and observed data. Each model's performances were compared over different regions within the Korean Peninsula of different regional climate characteristics. To quantify the major influence of individual climate variables, we also conducted a sensitivity test using 20 years of climatology. Lastly, a multi-model ensemble analysis was performed to reduce crop model uncertainties. The results will provide valuable information for estimating the climate change or variability impacts on Yp over the Korean Peninsula.
Effects of elevated [CO2] on maize defense against mycotoxigenic Fusarium verticillioides
USDA-ARS?s Scientific Manuscript database
Maize is by quantity the most important C4 cereal crop; however, future climate changes are expected to increase maize susceptibility to mycotoxigenic fungal pathogens and reduce productivity. While rising atmospheric [CO2] is a driving force behind the warmer temperatures and drought, which aggrava...
USDA-ARS?s Scientific Manuscript database
Two important mycotoxins, aflatoxin and fumonisin, are among the most potent naturally occurring carcinogens, contaminating maize (Zea mays L.) and affecting the crop yield and quality. Resistance of maize to pre-harvest mycotoxin contamination, specifically aflatoxin produced by Aspergillus flavus ...
USDA-ARS?s Scientific Manuscript database
Aflatoxins are carcinogenic toxic compounds produced by Aspergillus flavus during infection of crops including maize (Zea mays L.). Contamination of maize with aflatoxin is exacerbated by late season drought stress. Previous studies have implicated numerous resistance-associated proteins (RAPs) that...
USDA-ARS?s Scientific Manuscript database
Stenocarpella maydis causes a fungal dry-rot of maize ears and is associated with diplodiosis, a neuromycotoxicosis in cattle grazing harvested maize fields in southern Africa and Argentina. There have been no reports of Stenocarpella metabolites in maize crop residues. Chemical investigations of S....
Changes in N-Transforming Archaea and Bacteria in Soil during the Establishment of Bioenergy Crops
Mao, Yuejian; Yannarell, Anthony C.; Mackie, Roderick I.
2011-01-01
Widespread adaptation of biomass production for bioenergy may influence important biogeochemical functions in the landscape, which are mainly carried out by soil microbes. Here we explore the impact of four potential bioenergy feedstock crops (maize, switchgrass, Miscanthus X giganteus, and mixed tallgrass prairie) on nitrogen cycling microorganisms in the soil by monitoring the changes in the quantity (real-time PCR) and diversity (barcoded pyrosequencing) of key functional genes (nifH, bacterial/archaeal amoA and nosZ) and 16S rRNA genes over two years after bioenergy crop establishment. The quantities of these N-cycling genes were relatively stable in all four crops, except maize (the only fertilized crop), in which the population size of AOB doubled in less than 3 months. The nitrification rate was significantly correlated with the quantity of ammonia-oxidizing archaea (AOA) not bacteria (AOB), indicating that archaea were the major ammonia oxidizers. Deep sequencing revealed high diversity of nifH, archaeal amoA, bacterial amoA, nosZ and 16S rRNA genes, with 229, 309, 330, 331 and 8989 OTUs observed, respectively. Rarefaction analysis revealed the diversity of archaeal amoA in maize markedly decreased in the second year. Ordination analysis of T-RFLP and pyrosequencing results showed that the N-transforming microbial community structures in the soil under these crops gradually differentiated. Thus far, our two-year study has shown that specific N-transforming microbial communities develop in the soil in response to planting different bioenergy crops, and each functional group responded in a different way. Our results also suggest that cultivation of maize with N-fertilization increases the abundance of AOB and denitrifiers, reduces the diversity of AOA, and results in significant changes in the structure of denitrification community. PMID:21935454
NASA Astrophysics Data System (ADS)
Ruf, Thorsten; Emmerling, Christoph
2017-04-01
Cultivation of bioenergy crops is of increasing interest to produce valuable feedstocks e.g. for anaerobic digestion. In the past decade, the focus was primarily set to cultivation of the most economic viable crop, namely maize. In Germany for example, the cultivation area of maize was expanded from approx. 200,000 ha in 2006 to 800,000 ha in 2015. However, this process initiated a scientific and public discussion about the sustainability of intense maize cultivation. Concerns addressed in this context are depletion of soil organic matter, soil erosion and compaction as well as losses of (agro-)biodiversity. However, from a soil science perspective, several problems arise from not site-adapted cultivation of maize. In contrast, the cultivation of perennial bioenergy crops may provide a valuable opportunity to preserve or even enhance soil fertility and agrobiodiversity without limiting economic efficiency. Several perennial energy crops, with various requirements regarding stand conditions, allow a beneficial selection of the most suitable species for a respective location. The study aimed to provide a first step towards a more strategic planning of bioenergy crop cultivation with respect to spatial arrangement, distribution and connectivity of sites on a regional scale. The identification of pedological site characteristics is a crucial step in this process. With the study presented, we tried to derive site information that allow for an assessment of the suitability for specific energy crops. Our idea is to design a multifunctional landscape with a coexistence of sites with reduced management for soil protection and highly productive site. By a site adapted cultivation of perennial energy plants in sensitive areas, a complex, heterogeneous landscape could be reached.
Assessing the impact of climate variability on cropping patterns in Kenya
NASA Astrophysics Data System (ADS)
Wahome, A.; Ndungu, L. W.; Ndubi, A. O.; Ellenburg, W. L.; Flores Cordova, A. I.
2017-12-01
Climate variability coupled with over-reliance on rain-fed agricultural production on already strained land that is facing degradation and declining soil fertility; highly impacts food security in Africa. In Kenya, dependence on the approximately 20% of land viable for agricultural production under climate stressors such as variations in amount and frequency of rainfall within the main growing season in March-April-May(MAM) and changing temperatures influence production. With time, cropping zones have changed with the changing climatic conditions. In response, the needs of decision makers to effectively assess the current cropped areas and the changes in cropping patterns, SERVIR East and Southern Africa developed updated crop maps and change maps. Specifically, the change maps depict the change in cropping patterns between 2000 and 2015 with a further assessment done on important food crops such as maize. Between 2001 and 2015 a total of 5394km2 of land was converted to cropland with 3370km2 being conversion to maize production. However, 318 sq km were converted from maize to other crops or conversion to other land use types. To assess the changes in climatic conditions, climate parameters such as precipitation trends, variation and averages over time were derived from CHIRPs (Climate Hazards Infra-red Precipitation with stations) which is a quasi-global blended precipitation dataset available at a resolution of approximately 5km. Water Requirements Satisfaction Index (WRSI) water balance model was used to assess long term trends in crop performance as a proxy for maize yields. From the results, areas experiencing declining and varying precipitation with a declining WRSI index during the long rains displayed agricultural expansion with new areas being converted to cropland. In response to climate variability, farmers have converted more land to cropland instead of adopting better farming methods such as adopting drought resistant cultivars and using better farm inputs.
Huang, Xiao Min; Chen, Chang Qing; Chen, Ming Zhou; Song, Zhen Wei; Deng, Ai Xing; Zhang, Jun; Zheng, Cheng Yan; Zhang, Wei Jian
2016-10-01
Northeast China is one of the most important farming regions in China, due to its great contribution to national food security. Crop production is a main source of carbon emission. To assess the differences in carbon footprints of major grain crop production will benefit the achievement of low carbon agriculture. Therefore, this study calculated the regional carbon foot prints of rice (Oryza sativa), maize (Zea mays) and soybean (Glycine max) production in Northeast China du-ring 2004-2013 using the provincial statistical data, including crop yield, sown area and production inputs. The results showed that the highest area-scale carbon footprint was found in rice production, with the average value of (2463±56) kg CE·hm -2 , while the second was found in maize production during 2004-2013. The sharpest rise occurred in maize production, from 1164 kg CE·hm -2 in 2004 to 1768 kg CE·hm -2 in 2013, with the average rate of 67 kg CE·hm -2 ·a -1 . The application of chemical fertilizer contributed to the carbon footprint largely, accounting for 45%, 90% and 83% for rice, maize and soybean, respectively. Moreover, the contribution of electricity for irrigation in rice production ranged from 29% to 42%, which was larger than that in maize and soybean production. The carbon footprints were significantly different among the three provinces of Northeast China. The highest yield-scaled carbon footprints for three crops were found in Jilin Province, while the lowest area-scaled carbon footprints found in Heilongjiang Province. Given to the large transfer of rural labor from agricultural to non-agricultural sections and the development of mechanization, diesel and other mechanical inputs would increase rapidly in the future. Therefore, improving ferti-lizer utilization, mechanical and irrigation efficiencies in crop production would be the main approaches to promoting low-carbon agriculture in Northeast China.
Tank, Jennifer L.; Rosi-Marshall, Emma J.; Royer, Todd V.; Whiles, Matt R.; Griffiths, Natalie A.; Frauendorf, Therese C.; Treering, David J.
2010-01-01
Widespread planting of maize throughout the agricultural Midwest may result in detritus entering adjacent stream ecosystems, and 63% of the 2009 US maize crop was genetically modified to express insecticidal Cry proteins derived from Bacillus thuringiensis. Six months after harvest, we conducted a synoptic survey of 217 stream sites in Indiana to determine the extent of maize detritus and presence of Cry1Ab protein in the stream network. We found that 86% of stream sites contained maize leaves, cobs, husks, and/or stalks in the active stream channel. We also detected Cry1Ab protein in stream-channel maize at 13% of sites and in the water column at 23% of sites. We found that 82% of stream sites were adjacent to maize fields, and Geographical Information Systems analyses indicated that 100% of sites containing Cry1Ab-positive detritus in the active stream channel had maize planted within 500 m during the previous crop year. Maize detritus likely enters streams throughout the Corn Belt; using US Department of Agriculture land cover data, we estimate that 91% of the 256,446 km of streams/rivers in Iowa, Illinois, and Indiana are located within 500 m of a maize field. Maize detritus is common in low-gradient stream channels in northwestern Indiana, and Cry1Ab proteins persist in maize leaves and can be measured in the water column even 6 mo after harvest. Hence, maize detritus, and associated Cry1Ab proteins, are widely distributed and persistent in the headwater streams of a Corn Belt landscape. PMID:20876106
Tank, Jennifer L; Rosi-Marshall, Emma J; Royer, Todd V; Whiles, Matt R; Griffiths, Natalie A; Frauendorf, Therese C; Treering, David J
2010-10-12
Widespread planting of maize throughout the agricultural Midwest may result in detritus entering adjacent stream ecosystems, and 63% of the 2009 US maize crop was genetically modified to express insecticidal Cry proteins derived from Bacillus thuringiensis. Six months after harvest, we conducted a synoptic survey of 217 stream sites in Indiana to determine the extent of maize detritus and presence of Cry1Ab protein in the stream network. We found that 86% of stream sites contained maize leaves, cobs, husks, and/or stalks in the active stream channel. We also detected Cry1Ab protein in stream-channel maize at 13% of sites and in the water column at 23% of sites. We found that 82% of stream sites were adjacent to maize fields, and Geographical Information Systems analyses indicated that 100% of sites containing Cry1Ab-positive detritus in the active stream channel had maize planted within 500 m during the previous crop year. Maize detritus likely enters streams throughout the Corn Belt; using US Department of Agriculture land cover data, we estimate that 91% of the 256,446 km of streams/rivers in Iowa, Illinois, and Indiana are located within 500 m of a maize field. Maize detritus is common in low-gradient stream channels in northwestern Indiana, and Cry1Ab proteins persist in maize leaves and can be measured in the water column even 6 mo after harvest. Hence, maize detritus, and associated Cry1Ab proteins, are widely distributed and persistent in the headwater streams of a Corn Belt landscape.
USDA-ARS?s Scientific Manuscript database
This study assesses the ability of 21 crop models to capture the impact of elevated CO2 concentration ([CO218 ]) on maize yield and water use as measured in a 2-year Free Air Carbon dioxide Enrichment experiment conducted at the Thünen Institute in Braunschweig, Germany (Manderscheid et al. 2014). D...
USDA-ARS?s Scientific Manuscript database
Crops producing insecticidal crystal (Cry) proteins from the bacterium, Bacillus thuringiensis (Bt), are an important tool for managing lepidopteran pests on cotton and maize. However, the effects of these Bt crops on non-target organisms, especially natural enemies that provide biological control s...
NASA Astrophysics Data System (ADS)
Jamil, M. H.; Musa, Y.; Tenriawaru, A. N.; Rahayu, N. E.
2018-05-01
The research aimed to analyze the effects of the farmer’s characteristic, innovation characteristics, and the obstruction faced in the technology adoption for the management of integrated plants corn in Gowa Regency. The method used was explanative in character. Respondents comprised 80 corn farmers chosen randomly. Data were collected using the interviews method which were then quantified using likers scale. The data was analyzed by logistic binary regression. The research results indicated that the farmer’s characteristics which consisted of the age, education, experience, and the land area had no significant effect on the technology adoption of maize integrated crops management (PTT). The obstruction of the adoption, which consisted of the limited capital, availability of inputs, and intensity of counseling had a significant effect on the adoption of maize integrated crops management. While the farmer’s knowledge had no significant effect on the adoption of maize integrated crops management. The variable of the limited capital had a positive coefficient, the more available the farmer’s capital the higher was the chance of farmers to adopt technology integrated crops management. The higher of the extension intensity, the higher of farmer’s chance to adopt the technology of the maize integrated corps management.
The Genomic Signature of Crop-Wild Introgression in Maize
Hufford, Matthew B.; Lubinksy, Pesach; Pyhäjärvi, Tanja; Devengenzo, Michael T.; Ellstrand, Norman C.; Ross-Ibarra, Jeffrey
2013-01-01
The evolutionary significance of hybridization and subsequent introgression has long been appreciated, but evaluation of the genome-wide effects of these phenomena has only recently become possible. Crop-wild study systems represent ideal opportunities to examine evolution through hybridization. For example, maize and the conspecific wild teosinte Zea mays ssp. mexicana (hereafter, mexicana) are known to hybridize in the fields of highland Mexico. Despite widespread evidence of gene flow, maize and mexicana maintain distinct morphologies and have done so in sympatry for thousands of years. Neither the genomic extent nor the evolutionary importance of introgression between these taxa is understood. In this study we assessed patterns of genome-wide introgression based on 39,029 single nucleotide polymorphisms genotyped in 189 individuals from nine sympatric maize-mexicana populations and reference allopatric populations. While portions of the maize and mexicana genomes appeared resistant to introgression (notably near known cross-incompatibility and domestication loci), we detected widespread evidence for introgression in both directions of gene flow. Through further characterization of these genomic regions and preliminary growth chamber experiments, we found evidence suggestive of the incorporation of adaptive mexicana alleles into maize during its expansion to the highlands of central Mexico. In contrast, very little evidence was found for adaptive introgression from maize to mexicana. The methods we have applied here can be replicated widely, and such analyses have the potential to greatly inform our understanding of evolution through introgressive hybridization. Crop species, due to their exceptional genomic resources and frequent histories of spread into sympatry with relatives, should be particularly influential in these studies. PMID:23671421
Zhang, Yi; Zhao, Yanxia
2017-01-01
The use of modern crop varieties is a dominant method of obtaining high yields in crop production. Efforts to identify suitable varieties, with characteristics that would increase crop yield under future climate conditions, remain essential to developing sustainable agriculture and food security. This work aims to evaluate potential genotypic adaptations (i.e., using varieties with increased ability to produce desirable grain numbers under high temperatures and with enhanced thermal time requirements during the grain-filling period) to cope with the negative impacts of climate change on maize yield. The contributions of different options were investigated at six sites in the North China Plain using the APSIM model and the outputs of 8 GCMs under RCP4.5 scenarios. It was found that without considering adaptation options, mean maize yield would decrease by 7~18% during 2010-2039 relative to 1976-2005. A large decrease in grain number relative to stabilized grain weight decreased maize yield under future climate scenarios. Using heat-tolerant varieties, maize yield could increase on average by 6% to 10%. Using later maturing varieties, e.g., enhanced thermal time requirements during the grain-filling period, maize yield could increase by 7% to 10%. The optimal adaptation options were site specific.
Zhang, Yi
2017-01-01
The use of modern crop varieties is a dominant method of obtaining high yields in crop production. Efforts to identify suitable varieties, with characteristics that would increase crop yield under future climate conditions, remain essential to developing sustainable agriculture and food security. This work aims to evaluate potential genotypic adaptations (i.e., using varieties with increased ability to produce desirable grain numbers under high temperatures and with enhanced thermal time requirements during the grain-filling period) to cope with the negative impacts of climate change on maize yield. The contributions of different options were investigated at six sites in the North China Plain using the APSIM model and the outputs of 8 GCMs under RCP4.5 scenarios. It was found that without considering adaptation options, mean maize yield would decrease by 7~18% during 2010–2039 relative to 1976–2005. A large decrease in grain number relative to stabilized grain weight decreased maize yield under future climate scenarios. Using heat-tolerant varieties, maize yield could increase on average by 6% to 10%. Using later maturing varieties, e.g., enhanced thermal time requirements during the grain-filling period, maize yield could increase by 7% to 10%. The optimal adaptation options were site specific. PMID:28459880
Estimating leaf nitrogen accumulation in maize based on canopy hyperspectrum data
NASA Astrophysics Data System (ADS)
Gu, Xiaohe; Wang, Lizhi; Song, Xiaoyu; Xu, Xingang
2016-10-01
Leaf nitrogen accumulation (LNA) has important influence on the formation of crop yield and grain protein. Monitoring leaf nitrogen accumulation of crop canopy quantitively and real-timely is helpful for mastering crop nutrition status, diagnosing group growth and managing fertilization precisely. The study aimed to develop a universal method to monitor LNA of maize by hyperspectrum data, which could provide mechanism support for mapping LNA of maize at county scale. The correlations between LNA and hyperspectrum reflectivity and its mathematical transformations were analyzed. Then the feature bands and its transformations were screened to develop the optimal model of estimating LNA based on multiple linear regression method. The in-situ samples were used to evaluate the accuracy of the estimating model. Results showed that the estimating model with one differential logarithmic transformation (lgP') of reflectivity could reach highest correlation coefficient (0.889) with lowest RMSE (0.646 g·m-2), which was considered as the optimal model for estimating LNA in maize. The determination coefficient (R2) of testing samples was 0.831, while the RMSE was 1.901 g·m-2. It indicated that the one differential logarithmic transformation of hyperspectrum had good response with LNA of maize. Based on this transformation, the optimal estimating model of LNA could reach good accuracy with high stability.
Leitão, Sara; Moreira-Santos, Matilde; Van den Brink, Paul J; Ribeiro, Rui; José Cerejeira, M; Sousa, José Paulo
2014-05-01
The present study aimed to assess the environmental fate of the insecticide and nematicide ethoprophos in the soil-water interface following the pesticide application in simulated maize and potato crops under Mediterranean agricultural conditions, particularly of irrigation. Focus was given to the soil-water transfer pathways (leaching and runoff), to the pesticide transport in soil between pesticide application (crop row) and non-application areas (between crop rows), as well as to toxic effects of the various matrices on terrestrial and aquatic biota. A semi-field methodology mimicking a "worst-case" ethoprophos application (twice the recommended dosage for maize and potato crops: 100% concentration v/v) in agricultural field situations was used, in order to mimic a possible misuse by the farmer under realistic conditions. A rainfall was simulated under a slope of 20° for both crop-based scenarios. Soil and water samples were collected for the analysis of pesticide residues. Ecotoxicity of soil and aquatic samples was assessed by performing lethal and sublethal bioassays with organisms from different trophic levels: the collembolan Folsomia candida, the earthworm Eisenia andrei and the cladoceran Daphnia magna. Although the majority of ethoprophos sorbed to the soil application area, pesticide concentrations were detected in all water matrices illustrating pesticide transfer pathways of water contamination between environmental compartments. Leaching to groundwater proved to be an important transfer pathway of ethoprophos under both crop-based scenarios, as it resulted in high pesticide concentration in leachates from Maize (130µgL(-1)) and Potato (630µgL(-1)) crop scenarios, respectively. Ethoprophos application at the Potato crop scenario caused more toxic effects on terrestrial and aquatic biota than at the Maize scenario at the recommended dosage and lower concentrations. In both crop-based scenarios, ethoprophos moved with the irrigation water flow to the soil between the crop rows where no pesticide was applied, causing toxic effects on terrestrial organisms. The two simulated agricultural crop-based scenarios had the merit to illustrate the importance of transfer pathways of pesticides from soil to groundwater through leaching and from crop rows to the surrounding soil areas in a soil-water interface environment, which is representative for irrigated agricultural crops under Mediterranean conditions. Copyright © 2014 Elsevier Inc. All rights reserved.
Wang, Xiao-yu; Yang, Xiao-guang; Sun, Shuang; Xie, Wen-juan
2015-10-01
Based on the daily data of 65 meteorological stations from 1961 to 2010 and the crop phenology data in the potential cultivation zones of thermophilic and chimonophilous crops in Northeast China, the crop potential yields were calculated through step-by-step correction method. The spatio-temporal distribution of the crop potential yields at different levels was analyzed. And then we quantified the limitations of temperature and precipitation on the crop potential yields and compared the differences in the climatic resource utilization efficiency. The results showed that the thermal potential yields of six crops (including maize, rice, spring wheat, sorghum, millet and soybean) during the period 1961-2010 deceased from west to east. The climatic potential yields of the five crops (spring wheat not included) were higher in the south than in the north. The potential yield loss rate due to temperature limitations of the six crops presented a spatial distribution pattern and was higher in the east than in the west. Among the six main crops, the yield potential loss rate due to temperature limitation of the soybean was the highest (51%), and those of the other crops fluctuated within the range of 33%-41%. The potential yield loss rate due to water limitation had an obvious regional difference, and was high in Songnen Plain and Changbai Mountains. The potential yield loss rate of spring wheat was the highest (50%), and those of the other four rainfed crops fluctuated within the range of 8%-10%. The solar energy utilization efficiency of the six main crops ranged from 0.9% to 2.7%, in the order of maize> sorghum>rice>millet>spring wheat>soybean. The precipitation utilization efficiency of the maize, sorghum, spring wheat, millet and soybean under rainfed conditions ranged from 8 to 35 kg . hm-2 . mm-1, in the order of maize>sorghum>spring wheat>millet>soybean. In those areas with lower efficiency of solar energy utilization and precipitation utilization, such as Changbai Mountains and the south of Lesser Khingan Mountains, measures could be taken to increase the efficiency of resource utilization such as rational close-planting, selection of droughtresistant varieties, proper and timely fertilization, farming for soil water storage, optimization of crop layout and so on.
Furlan, Lorenzo; Kreutzweiser, David
2015-01-01
Neonicotinoid insecticides are widely used for control of insect pests around the world and are especially pervasive in agricultural pest management. There is a growing body of evidence indicating that the broad-scale and prophylactic uses of neonicotinoids pose serious risks of harm to beneficial organisms and their ecological function. This provides the impetus for exploring alternatives to neonicotinoid insecticides for controlling insect pests. We draw from examples of alternative pest control options in Italian maize production and Canadian forestry to illustrate the principles of applying alternatives to neonicotinoids under an integrated pest management (IPM) strategy. An IPM approach considers all relevant and available information to make informed management decisions, providing pest control options based on actual need. We explore the benefits and challenges of several options for management of three insect pests in maize crops and an invasive insect pest in forests, including diversifying crop rotations, altering the timing of planting, tillage and irrigation, using less sensitive crops in infested areas, applying biological control agents, and turning to alternative reduced risk insecticides. Continued research into alternatives is warranted, but equally pressing is the need for information transfer and training for farmers and pest managers and the need for policies and regulations to encourage the adoption of IPM strategies and their alternative pest control options.
NASA Astrophysics Data System (ADS)
Tarnavsky, E.
2016-12-01
The water resources satisfaction index (WRSI) model is widely used in drought early warning and food security analyses, as well as in agro-meteorological risk management through weather index-based insurance. Key driving data for the model is provided from satellite-based rainfall estimates such as ARC2 and TAMSAT over Africa and CHIRPS globally. We evaluate the performance of these rainfall datasets for detecting onset and cessation of rainfall and estimating crop production conditions for the WRSI model. We also examine the sensitivity of the WRSI model to different satellite-based rainfall products over maize growing regions in Tanzania. Our study considers planting scenarios for short-, medium-, and long-growing cycle maize, and we apply these for 'regular' and drought-resistant maize, as well as with two different methods for defining the start of season (SOS). Simulated maize production estimates are compared against available reported production figures at the national and sub-national (province) levels. Strengths and weaknesses of the driving rainfall data, insights into the role of the SOS definition method, and phenology-based crop yield coefficient and crop yield reduction functions are discussed in the context of space-time drought characteristics. We propose a way forward for selecting skilled rainfall datasets and discuss their implication for crop production monitoring and the design and structure of weather index-based insurance products as risk transfer mechanisms implemented across scales for smallholder farmers to national programmes.
Characterization of yield reduction in Ethiopia using a GIS-based crop water balance model
Senay, G.B.; Verdin, J.
2003-01-01
In many parts of sub-Saharan Africa, subsistence agriculture is characterized by significant fluctuations in yield and production due to variations in moisture availability to staple crops. Widespread drought can lead to crop failures, with associated deterioration in food security. Ground data collection networks are sparse, so methods using geospatial rainfall estimates derived from satellite and gauge observations, where available, have been developed to calculate seasonal crop water balances. Using conventional crop production data for 4 years in Ethiopia (1996-1999), it was found that water-limited and water-unlimited growing regions can be distinguished. Furthermore, maize growing conditions are also indicative of conditions for sorghum. However, another major staple, teff, was found to behave sufficiently differently from maize to warrant studies of its own.
Charles W. Stuber: Maize geneticist and pioneer of marker-assisted selection
USDA-ARS?s Scientific Manuscript database
Charles W. Stuber is considered a pioneer of quantitative genetic mapping and marker-assisted selection in maize. The achievements of his four decade career in research include the development of genetic marker systems used in maize and adapted in many other crops, the first methods and studies to i...
USDA-ARS?s Scientific Manuscript database
Aflatoxins are carcinogenic toxic compounds produced by Aspergillus flavus during infection of crops including maize (Zea mays L.). Contamination of maize with aflatoxin is exacerbated by late season drought stress. Previous studies have implicated numerous resistance-associated proteins (RAPs) that...
USDA-ARS?s Scientific Manuscript database
Detailed knowledge of the composition and toxigenic potential of the Fusarium graminearum species complex affecting maize crops in Brazil is lacking. A multilocus genotype approach was used to identify 539 isolates from three sub-collections: 1) maize kernels (n= 110) from five states spanning sout...
USDA-ARS?s Scientific Manuscript database
Maize (Zea mays L.) is a major crop susceptible to Aspergillus flavus infection and subsequent contamination with aflatoxins, the potent carcinogenic secondary metabolites of the fungus. Protein profiles of maize genotypes resistant and susceptible to A. flavus infection and/or aflatoxin contaminati...
Thewys, T; Witters, N; Van Slycken, S; Ruttens, A; Meers, E; Tack, F M G; Vangronsveld, J
2010-09-01
This paper deals with the economic viability of using energy maize as a phytoremediation crop in a vast agricultural area moderately contaminated with metals. The acceptance of phytoremediation as a remediation technology is, besides the extraction rate, determined by its profitability, being the effects it has on the income of the farmer whose land is contaminated. This income can be supported by producing renewable energy through anaerobic digestion of energy maize, a crop that takes up only relatively low amounts of metals, but that can be valorised as a feedstock for energy production. The effect on the income per hectare of growing energy maize instead of fodder maize seems positive, given the most likely values of variables and while keeping the basic income stable, originating from dairy cattle farming activities. We propose growing energy maize aiming at risk-reduction, and generating an alternative income for farmers, yet in the long run also generating a gradual reduction of the pollution levels. In this way, remediation is demoted to a secondary objective with sustainable risk-based land use as primary objective.
Genetically engineered crops and pesticide use in U.S. maize and soybeans
Perry, Edward D.; Ciliberto, Federico; Hennessy, David A.; Moschini, GianCarlo
2016-01-01
The widespread adoption of genetically engineered (GE) crops has clearly led to changes in pesticide use, but the nature and extent of these impacts remain open questions. We study this issue with a unique, large, and representative sample of plot-level choices made by U.S. maize and soybean farmers from 1998 to 2011. On average, adopters of GE glyphosate-tolerant (GT) soybeans used 28% (0.30 kg/ha) more herbicide than nonadopters, adopters of GT maize used 1.2% (0.03 kg/ha) less herbicide than nonadopters, and adopters of GE insect-resistant (IR) maize used 11.2% (0.013 kg/ha) less insecticide than nonadopters. When pesticides are weighted by the environmental impact quotient, however, we find that (relative to nonadopters) GE adopters used about the same amount of soybean herbicides, 9.8% less of maize herbicides, and 10.4% less of maize insecticides. In addition, the results indicate that the difference in pesticide use between GE and non-GE adopters has changed significantly over time. For both soybean and maize, GT adopters used increasingly more herbicides relative to nonadopters, whereas adopters of IR maize used increasingly less insecticides. The estimated pattern of change in herbicide use over time is consistent with the emergence of glyphosate weed resistance. PMID:27652335
Climate change impacts on crop yield: evidence from China.
Wei, Taoyuan; Cherry, Todd L; Glomrød, Solveig; Zhang, Tianyi
2014-11-15
When estimating climate change impact on crop yield, a typical assumption is constant elasticity of yield with respect to a climate variable even though the elasticity may be inconstant. After estimating both constant and inconstant elasticities with respect to temperature and precipitation based on provincial panel data in China 1980-2008, our results show that during that period, the temperature change contributes positively to total yield growth by 1.3% and 0.4% for wheat and rice, respectively, but negatively by 12% for maize. The impacts of precipitation change are marginal. We also compare our estimates with other studies and highlight the implications of the inconstant elasticities for crop yield, harvest and food security. We conclude that climate change impact on crop yield would not be an issue in China if positive impacts of other socio-economic factors continue in the future. Copyright © 2014 Elsevier B.V. All rights reserved.
Random Forests for Global and Regional Crop Yield Predictions.
Jeong, Jig Han; Resop, Jonathan P; Mueller, Nathaniel D; Fleisher, David H; Yun, Kyungdahm; Butler, Ethan E; Timlin, Dennis J; Shim, Kyo-Moon; Gerber, James S; Reddy, Vangimalla R; Kim, Soo-Hyung
2016-01-01
Accurate predictions of crop yield are critical for developing effective agricultural and food policies at the regional and global scales. We evaluated a machine-learning method, Random Forests (RF), for its ability to predict crop yield responses to climate and biophysical variables at global and regional scales in wheat, maize, and potato in comparison with multiple linear regressions (MLR) serving as a benchmark. We used crop yield data from various sources and regions for model training and testing: 1) gridded global wheat grain yield, 2) maize grain yield from US counties over thirty years, and 3) potato tuber and maize silage yield from the northeastern seaboard region. RF was found highly capable of predicting crop yields and outperformed MLR benchmarks in all performance statistics that were compared. For example, the root mean square errors (RMSE) ranged between 6 and 14% of the average observed yield with RF models in all test cases whereas these values ranged from 14% to 49% for MLR models. Our results show that RF is an effective and versatile machine-learning method for crop yield predictions at regional and global scales for its high accuracy and precision, ease of use, and utility in data analysis. RF may result in a loss of accuracy when predicting the extreme ends or responses beyond the boundaries of the training data.
NASA Astrophysics Data System (ADS)
Zhang, Yi; Zhao, Yanxia; Wang, Chunyi; Chen, Sining
2017-11-01
Assessment of the impact of climate change on crop productions with considering uncertainties is essential for properly identifying and decision-making agricultural practices that are sustainable. In this study, we employed 24 climate projections consisting of the combinations of eight GCMs and three emission scenarios representing the climate projections uncertainty, and two crop statistical models with 100 sets of parameters in each model representing parameter uncertainty within the crop models. The goal of this study was to evaluate the impact of climate change on maize ( Zea mays L.) yield at three locations (Benxi, Changling, and Hailun) across Northeast China (NEC) in periods 2010-2039 and 2040-2069, taking 1976-2005 as the baseline period. The multi-models ensembles method is an effective way to deal with the uncertainties. The results of ensemble simulations showed that maize yield reductions were less than 5 % in both future periods relative to the baseline. To further understand the contributions of individual sources of uncertainty, such as climate projections and crop model parameters, in ensemble yield simulations, variance decomposition was performed. The results indicated that the uncertainty from climate projections was much larger than that contributed by crop model parameters. Increased ensemble yield variance revealed the increasing uncertainty in the yield simulation in the future periods.
Early competition shapes maize whole-plant development in mixed stands
Evers, Jochem B.
2014-01-01
Mixed cropping is practised widely in developing countries and is gaining increasing interest for sustainable agriculture in developed countries. Plants in intercrops grow differently from plants in single crops, due to interspecific plant interactions, but adaptive plant morphological responses to competition in mixed stands have not been studied in detail. Here the maize (Zea mays) response to mixed cultivation with wheat (Triticum aestivum) is described. Evidence is provided that early responses of maize to the modified light environment in mixed stands propagate throughout maize development, resulting in different phenotypes compared with pure stands. Photosynthetically active radiation (PAR), red:far-red ratio (R:FR), leaf development, and final organ sizes of maize grown in three cultivation systems were compared: pure maize, an intercrop with a small distance (25cm) between maize and wheat plants, and an intercop with a large distance (44cm) between the maize and the wheat. Compared with maize in pure stands, maize in the mixed stands had lower leaf and collar appearance rates, increased blade and sheath lengths at low ranks and smaller sizes at high ranks, increased blade elongation duration, and decreased R:FR and PAR at the plant base during early development. Effects were strongest in the treatment with a short distance between wheat and maize strips. The data suggest a feedback between leaf initiation and leaf emergence at the plant level and coordination between blade and sheath growth at the phytomer level. A conceptual model, based on coordination rules, is proposed to explain the development of the maize plant in pure and mixed stands. PMID:24307719
NASA Astrophysics Data System (ADS)
Felten, D.; Emmerling, C.
2012-04-01
Increasing cultivation of energy crops in agriculture reveals the progressive substitution of fossil fuels, such as crude oil or brown coal. For the future development of renewable resources, the efficiency of different cropping systems will be crucial, as energy crops differ in terms of the energy needed for crop cultivation and refinement and the respective energy yield, e.g. per area. Here, balancing is certainly the most suitable method for the assessment of cropping system efficiency, contrasting energy inputs with energy outputs and the related CO2 emissions with potential CO2 credits due to substitution of fossil fuels, respectively. The aim of the present study was to calculate both energy and CO2 balances for rapeseed and maize, representing the recently most often cultivated energy crops in Germany, on a regional farm scale. Furthermore, special emphasis was made on perennial Miscanthus x giganteus, which is commonly used as a solid fuel for combustion. This C4-grass is of increasing interest due to its high yield potential accompanied by low requirements for soil tillage, weed control, and fertilization as well as long cultivation periods up to 25 years. In contrast to more general approaches, balances were calculated with local data from commercial farms. The site-specific consumption of diesel fuel was calculated using an online-based calculator, developed by the German Association for Technology and Structures in Agriculture (KTBL). By balancing each of the aforementioned cropping systems, our research focused on (i) the quantification of energy gains and CO2 savings due to fossil fuel substitution and (ii) the assessment of energy efficiency, expressed as the ratio of energy output to input. The energy input was highest for maize sites (33.8 GJ ha-1 yr-1), followed by rapeseed (18.2 GJ ha-1 yr-1), and Miscanthus (1.1 GJ ha-1 yr-1); corresponding energy yields were 129.5 GJ ha-1 yr-1 (maize), 83.6 GJ ha-1 yr-1 (rapeseed), and 259.7 GJ ha-1 yr-1 (Miscanthus), respectively. The energy output:input ratios were 3.83 (maize), 4.59 (rapeseed), and 236 (Miscanthus). The cultivation of rapeseed for biodiesel led to reduced CO2 emissions of 3.552 Mg ha-1 yr-1 due to substitution of diesel fuel. An amount of 9.312 Mg CO2 ha-1 yr-1 was saved by maize as co-ferment for biogas. Thereby, biogas was a substitute for electrical power from German energy mix (esp. nuclear power, utilization of coal), whereas the simultaneously used thermal energy was assumed to replace heating oil. Miscanthus cropping saved up to 18.540 Mg CO2 ha-1 yr-1 as a substitute for heating oil, including approx. 4 Mg CO2 ha-1 from organic carbon, which got sequestered within the soil organic matter due to site-remaining crop residues. In sum, each cropping system gained energy and reduced greenhouse gas emissions, although energy inputs and outputs differed significantly. High energy inputs for maize and rapeseed were mainly related to mineral N-fertilization. Also the need of methanol for biodiesel refining and the energy consumed by the biogas plant increased the total energy consumption markedly. Due to its low-input character, Miscanthus seems promising to fulfill several demands in the context of sustainability.
Rahman, Tanzeelur; Liu, Xin; Hussain, Sajad; Ahmed, Shoaib; Chen, Guopeng; Yang, Feng; Chen, Lilian; Du, Junbo; Liu, Weiguo; Yang, Wenyu
2017-01-01
Optimum planting geometries have been shown to increase crop yields in maize-soybean intercrop systems. However, little is known about whether changes in planting geometry improve the seasonal water use of maize and soybean intercrops. We conducted two different field experiments in 2013 and 2014 to investigate the effects of changes in planting geometry on water use efficiency (WUE) and evapotranspiration (ETc) of maize (Zea mays L.) and soybean [Glycine max (L.) Merr.] relay strip intercrop systems. Our results showed that the leaf area index of maize for both years where intercropping occurred was notably greater compared to sole maize, thus the soil water content (SWC), soil evaporation (E), and throughfall followed a decreasing trend in the following order: central row of maize strip (CRM) < adjacent row between maize and soybean strip (AR) < central row of soybean strip (CRS). When intercropped, the highest grain yield for maize and total yields were recorded for the 40:120 cm and 40:160 cm planting geometries using 160 cm and 200 cm bandwidth, respectively. By contrast, the highest grain yield of intercropped soybean was appeared for the 20:140 cm and 20:180 cm planting geometries. The largest land equivalent ratios were 1.62 for the 40:120 cm planting geometry and 1.79 for the 40:160 cm planting geometry, indicating that both intercropping strategies were advantageous. Changes in planting geometries did not show any significant effect on the ETc of the maize and soybean intercrops. WUEs in the different planting geometries of intercrop systems were lower compared to sole cropping. However, the highest group WUEs of 23.06 and 26.21 kg ha-1 mm-1 for the 40:120 cm and 40:160 cm planting geometries, respectively, were 39% and 23% higher than those for sole cropping. Moreover, the highest water equivalent ratio values of 1.66 and 1.76 also appeared for the 40:120 cm and 40:160 cm planting geometries. We therefore suggest that an optimum planting geometry of 40:160 cm and bandwidth of 200 cm could be a viable planting pattern management method for attaining high group WUE in maize-soybean intercrop systems.
Zhang, Peng Peng; Pu, Xiao Zhen; Zhang, Wang Feng
2018-03-01
To reveal the regulatory mechanism of agricultural management practices on soil quality, an experiment was carried out to study the different cropping system and straw management on soil organic carbon and fractions and soil enzyme activity in farmland of arid oasis region, which would provide a scientific basic for enhancing agricultural resources utilization and sustainable development. In crop planting planning area, we took the mainly crop (cotton, wheat, maize) as research objects and designed long-term continues cropping and crop rotation experiments. The results showed that the soil organic carbon (SOC), soil microbial biomass C, labile C, water-soluble organic C, and hot-water-soluble organic C content were increased by 3.6%-9.9%, 41.8%-98.9%, 3.3%-17.0%, 11.1%-32.4%, 4.6%-27.5% by crop rotation compared to continues cropping, and 12%-35.9%, 22.4%-49.7%, 30.7%-51.0%, 10.6%-31.9%, 41.0%-96.4% by straw incorporated compared to straw removed, respectively. The soil catalase, dehydrogenase, β-glucosidase, invertase glucose, cellulase glucose activity were increased by 6.4%-10.9%, 6.6%-18.8%, 5.9%-15.3%, 10.0%-27.4%, 28.1%-37.5% by crop rotation compared to continues cropping, and 31.4%-47.5%, 19.9%-46.6%, 13.8%-20.7%, 19.8%-55.6%, 54.1%-70.9% by straw incorporated compared to straw removed, respectively. There were significant positive linear correlations among SOC, labile SOC fractions and soil enzyme. Therefore, we concluded that labile SOC fractions and soil enzyme were effective index for evaluating the change of SOC and soil quality. Based on factor analysis, in arid region, developing agricultural production using cropland management measures, such as straw-incorporated and combined short-term continues cotton and crop rotation, could enhance SOC and labile SOC fractions contents and soil enzyme activity, which could improve soil quality and be conducive to agricultural sustainable development.
NASA Astrophysics Data System (ADS)
Wahome, A.; Ndungu, L. W.; Ndubi, A. O.; Ellenburg, W. L.; Flores Cordova, A. I.
2016-12-01
Climate variability coupled with over-reliance on rain-fed agricultural production on already strained land that is facing degradation and declining soil fertility; highly impacts food security in Africa. In Kenya, dependence on the approximately 20% of land viable for agricultural production under climate stressors such as variations in amount and frequency of rainfall within the main growing season in March-April-May(MAM) and changing temperatures influence production. With time, cropping zones have changed with the changing climatic conditions. In response, the needs of decision makers to effectively assess the current cropped areas and the changes in cropping patterns, SERVIR East and Southern Africa developed updated crop maps and change maps. Specifically, the change maps depict the change in cropping patterns between 2000 and 2015 with a further assessment done on important food crops such as maize. Between 2001 and 2015 a total of 5394km2 of land was converted to cropland with 3370km2 being conversion to maize production. However, 318 sq km were converted from maize to other crops or conversion to other land use types. To assess the changes in climatic conditions, climate parameters such as precipitation trends, variation and averages over time were derived from CHIRPs (Climate Hazards Infra-red Precipitation with stations) which is a quasi-global blended precipitation dataset available at a resolution of approximately 5km. Water Requirements Satisfaction Index (WRSI) water balance model was used to assess long term trends in crop performance as a proxy for maize yields. From the results, areas experiencing declining and varying precipitation with a declining WRSI index during the long rains displayed agricultural expansion with new areas being converted to cropland. In response to climate variability, farmers have converted more land to cropland instead of adopting better farming methods such as adopting drought resistant cultivars and using better farm inputs.
Sid'ko, A F; Botvich, I Yu; Pisman, T I; Shevyrnogov, A P
2015-01-01
The paper presents analysis of a study of the polarized component of the reflectance factor (Rq) and the degree of polarization (P) of wheat and maize crops depending on the wavelength. Registration of polarization characteristics was carried out in the field from the elevated work platform at heights of 10 to 18 m in June and July. Measurements were performed using a double-beam spectrophotometer with a polarized light filter attachment, within the spectral range from 400 to 820-nm. The viewing angle was no greater than 20 degree with respect to the nadir. The reflection spectra of wheat and maize crops obtained using a polarizer adjusted to transmit the maximum and minimum amounts of light (R(max) and R(min)) were studied. Based on these reflection spectra polarization characteristics, which. differ in the visible and infrared spectral region, were determined and analyzed.
Farias, Juliano R; Andow, David A; Horikoshi, Renato J; Sorgatto, Rodrigo J; dos Santos, Antonio C; Omoto, Celso
2016-05-01
Dominance of resistance has been one of the major parameters affecting the rate of evolution of resistance to Bt crops. High dose is the capacity of Bt crops to kill heterozygous insects and has been an essential component of the most successful strategy to manage resistance to these crops. Experiments were conducted to evaluate directly and indirectly whether the TC1507 event is high dose to Spodoptera frugiperda (JE Smith). About 8% of heterozygote neonate larvae were able to survive, complete larval development and emerge as normal adults on TC1507 leaves, while susceptible larvae could not survive for 5 days. The estimated dominance of resistance was 0.15 ± 0.09 and significantly higher than zero; therefore, the resistance to Cry1F expressed in TC1507 was not completely recessive. A 25-fold dilution of TC1507 maize leaf tissue in an artificial diet was able to cause a maximum mortality of only 37%, with growth inhibition of 82% at 7 days after larval infestation. Resistance to Cry1F in TC1507 maize is incompletely recessive in S. frugiperda. TC1507 maize is not high dose for S. frugiperda. Additional or alternative resistance management strategies, such as the replacement of single-trait Bt maize with pyramided Bt maize, which produces multiple proteins targeting the same insect pests, should be implemented wherever this technology is in use and S. frugiperda is the major pest. © 2015 Society of Chemical Industry.
Nges, Ivo Achu; Björn, Annika; Björnsson, Lovisa
2012-08-01
Biogas production from maize/sugar beet silage was studied under mesophilic conditions in a continuous stirred tank reactor pilot-scale process. While energy crop mono-digestion is often performed with very long hydraulic retention times (HRTs), the present study demonstrated an efficient process operating with a 50-day HRT and a corrected total solids (TS(corr)) based organic loading rate of 3.4 kg/m(3)d. The good performance was attributed to supplementation with both macro- and micronutrients and was evidenced by good methane yields (318 m(3)/ton TS(corr)), which were comparable to laboratory maximum expected yields, plus low total volatile fatty acid concentrations (<0.8 g/L). A viscoplastic and thixotropic digester fluid behaviour was observed, and the viscosity problems common in crop mono-digestion were not seen in this study. The effluent also complied with Swedish certification standards for bio-fertilizer for farmland application. Nutrient addition thus rendered a stable biogas process, while the effluent was a good quality bio-fertilizer. Copyright © 2012 Elsevier Ltd. All rights reserved.
Evaluation of the nutritive value of maize for honey bees.
Höcherl, Nicole; Siede, Reinhold; Illies, Ingrid; Gätschenberger, Heike; Tautz, Jürgen
2012-02-01
In modern managed agro-ecosystems, the supply of adequate food from blooming crops is limited to brief periods. During periods of pollen deficiencies, bees are forced to forage on alternative crops, such as maize. However, pollen of maize is believed to be a minor food source for bees as it is thought to be lacking in proteins and essential amino acids. This study was conducted to verify this assumption. In maize, a strikingly low concentration of histidine was found, but the amount of all other essential amino acids was greater than that of mixed pollen. The performance and the immunocompetence of bees consuming a pure maize pollen diet (A) was compared to bees feeding on a polyfloral pollen diet (B) and to bees feeding on an artificial substitute of pollen (C). Consumption of diets A and C were linked to a reduction in brood rearing and lifespan. However, no immunological effects were observed based on two parameters of the humoral immunity. Copyright © 2011 Elsevier Ltd. All rights reserved.
Could Crop Height Affect the Wind Resource at Agriculturally Productive Wind Farm Sites?
NASA Astrophysics Data System (ADS)
Vanderwende, Brian; Lundquist, Julie K.
2016-03-01
The collocation of cropland and wind turbines in the US Midwest region introduces complex meteorological interactions that could influence both agriculture and wind-power production. Crop management practices may affect the wind resource through alterations of land-surface properties. We use the weather research and forecasting (WRF) model to estimate the impact of crop height variations on the wind resource in the presence of a large turbine array. A hypothetical wind farm consisting of 121 1.8-MW turbines is represented using the WRF model wind-farm parametrization. We represent the impact of selecting soybeans rather than maize by altering the aerodynamic roughness length in a region approximately 65 times larger than that occupied by the turbine array. Roughness lengths of 0.1 and 0.25 m represent the mature soy crop and a mature maize crop, respectively. In all but the most stable atmospheric conditions, statistically significant hub-height wind-speed increases and rotor-layer wind-shear reductions result from switching from maize to soybeans. Based on simulations for the entire month of August 2013, wind-farm energy output increases by 14 %, which would yield a significant monetary gain. Further investigation is required to determine the optimal size, shape, and crop height of the roughness modification to maximize the economic benefit and minimize the cost of such crop-management practices. These considerations must be balanced by other influences on crop choice such as soil requirements and commodity prices.
Could crop height affect the wind resource at agriculturally productive wind farm sites?
Vanderwende, Brian; Lundquist, Julie K.
2015-11-07
The collocation of cropland and wind turbines in the US Midwest region introduces complex meteorological interactions that could influence both agriculture and wind-power production. Crop management practices may affect the wind resource through alterations of land-surface properties. We use the weather research and forecasting (WRF) model to estimate the impact of crop height variations on the wind resource in the presence of a large turbine array. A hypothetical wind farm consisting of 121 1.8-MW turbines is represented using the WRF model wind-farm parametrization. We represent the impact of selecting soybeans rather than maize by altering the aerodynamic roughness length inmore » a region approximately 65 times larger than that occupied by the turbine array. Roughness lengths of 0.1 and 0.25 m represent the mature soy crop and a mature maize crop, respectively. In all but the most stable atmospheric conditions, statistically significant hub-height wind-speed increases and rotor-layer wind-shear reductions result from switching from maize to soybeans. Based on simulations for the entire month of August 2013, wind-farm energy output increases by 14 %, which would yield a significant monetary gain. Further investigation is required to determine the optimal size, shape, and crop height of the roughness modification to maximize the economic benefit and minimize the cost of such crop-management practices. As a result, these considerations must be balanced by other influences on crop choice such as soil requirements and commodity prices.« less
Mapping Cropland and Crop-type Distribution Using Time Series MODIS Data
NASA Astrophysics Data System (ADS)
Lu, D.; Chen, Y.; Moran, E. F.; Batistella, M.; Luo, L.; Pokhrel, Y.; Deb, K.
2016-12-01
Mapping regional and global cropland distribution has attracted great attention in the past decade, but the separation of crop types is challenging due to the spectral confusion and cloud cover problems during the growing season in Brazil. The objective of this study is to develop a new approach to identify crop types (including soybean, cotton, maize) and planting patterns (soybean-maize, soybean-cotton, and single crop) in Mato Grosso, Goias and Tocantins States, Brazil. The time series moderate resolution imaging spectroradiometer (MODIS) normalized difference vegetation index (NDVI) (MOD13Q1) in 2015/2016 were used in this research and field survey data were collected in May 2016. The major steps include: (1) reconstruct time series NDVI data contaminated by noise and clouds using the temporal interpolation algorithm; (2) identify the best periods and develop temporal indices and phenology parameters to distinguish cropland from other land cover types based on time series NDVI data; (3) develop a crop temporal difference index (CTDI) to extract crop types and patterns using time series NDVI data. This research shows that (1) the cropland occupied approximately 16.85% of total land in these three states; (2) soybean-maize and soybean-cotton were two major crop patterns which occupied 54.80% and 19.30% of total cropland area. This research indicates that the proposed approach is promising for accurately and rapidly mapping cropland and crop-type distribution in these three states of Brazil.
Singh, Akanksha; Weisser, Wolfgang W; Hanna, Rachid; Houmgny, Raissa; Zytynska, Sharon E
2017-10-01
Intercropping can help reduce insect pest populations. However, the results of intercropping can be pest- and crop-species specific, with varying effects on crop yield, and pest suppression success. In Cameroon, okra vegetable is often grown in intercropped fields and sown with large distances between planting rows (∼ 2 m). Dominant okra pests include cotton aphids, leaf beetles and whiteflies. In a field experiment, we intercropped okra with maize and bean in different combinations (okra monoculture, okra-bean, okra-maize and okra-bean-maize) and altered plant densities (high and low) to test for the effects of diversity, crop identity and planting distances on okra pests, their predators and yield. We found crop identity and plant density, but not crop diversity to influence okra pests, their predators and okra yield. Only leaf beetles decreased okra yield and their abundance reduced at high plant density. Overall, okra grown with bean at high density was the most economically profitable combination. We suggest that when okra is grown at higher densities, legumes (e.g. beans) should be included as an additional crop. Intercropping with a leguminous crop can enhance nitrogen in the soil, benefiting other crops, while also being harvested and sold at market for additional profit. Manipulating planting distances and selecting plants based on their beneficial traits may thus help to eliminate yield gaps in sustainable agriculture. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
Could crop height affect the wind resource at agriculturally productive wind farm sites?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vanderwende, Brian; Lundquist, Julie K.
The collocation of cropland and wind turbines in the US Midwest region introduces complex meteorological interactions that could influence both agriculture and wind-power production. Crop management practices may affect the wind resource through alterations of land-surface properties. We use the weather research and forecasting (WRF) model to estimate the impact of crop height variations on the wind resource in the presence of a large turbine array. A hypothetical wind farm consisting of 121 1.8-MW turbines is represented using the WRF model wind-farm parametrization. We represent the impact of selecting soybeans rather than maize by altering the aerodynamic roughness length inmore » a region approximately 65 times larger than that occupied by the turbine array. Roughness lengths of 0.1 and 0.25 m represent the mature soy crop and a mature maize crop, respectively. In all but the most stable atmospheric conditions, statistically significant hub-height wind-speed increases and rotor-layer wind-shear reductions result from switching from maize to soybeans. Based on simulations for the entire month of August 2013, wind-farm energy output increases by 14 %, which would yield a significant monetary gain. Further investigation is required to determine the optimal size, shape, and crop height of the roughness modification to maximize the economic benefit and minimize the cost of such crop-management practices. As a result, these considerations must be balanced by other influences on crop choice such as soil requirements and commodity prices.« less
Sucher, Justine; Boni, Rainer; Yang, Ping; Rogowsky, Peter; Büchner, Heike; Kastner, Christine; Kumlehn, Jochen; Krattinger, Simon G; Keller, Beat
2017-04-01
Maize (corn) is one of the most widely grown cereal crops globally. Fungal diseases of maize cause significant economic damage by reducing maize yields and by increasing input costs for disease management. The most sustainable control of maize diseases is through the release and planting of maize cultivars with durable disease resistance. The wheat gene Lr34 provides durable and partial field resistance against multiple fungal diseases of wheat, including three wheat rust pathogens and wheat powdery mildew. Because of its unique qualities, Lr34 became a cornerstone in many wheat disease resistance programmes. The Lr34 resistance is encoded by a rare variant of an ATP-binding cassette (ABC) transporter that evolved after wheat domestication. An Lr34-like disease resistance phenotype has not been reported in other cereal species, including maize. Here, we transformed the Lr34 resistance gene into the maize hybrid Hi-II. Lr34-expressing maize plants showed increased resistance against the biotrophic fungal disease common rust and the hemi-biotrophic disease northern corn leaf blight. Furthermore, the Lr34-expressing maize plants developed a late leaf tip necrosis phenotype, without negative impact on plant growth. With this and previous reports, it could be shown that Lr34 is effective against various biotrophic and hemi-biotrophic diseases that collectively parasitize all major cereal crop species. © 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.
Long-term trends in the intensity and relative toxicity of herbicide use
NASA Astrophysics Data System (ADS)
Kniss, Andrew R.
2017-04-01
Herbicide use is among the most criticized aspects of modern farming, especially as it relates to genetically engineered (GE) crops. Many previous analyses have used flawed metrics to evaluate herbicide intensity and toxicity trends. Here, I show that herbicide use intensity increased over the last 25 years in maize, cotton, rice and wheat. Although GE crops have been previously implicated in increasing herbicide use, herbicide increases were more rapid in non-GE crops. Even as herbicide use increased, chronic toxicity associated with herbicide use decreased in two out of six crops, while acute toxicity decreased in four out of six crops. In the final year for which data were available (2014 or 2015), glyphosate accounted for 26% of maize, 43% of soybean and 45% of cotton herbicide applications. However, due to relatively low chronic toxicity, glyphosate contributed only 0.1, 0.3 and 3.5% of the chronic toxicity hazard in those crops, respectively.
Oguntunde, Philip G; van de Giesen, Nick
2004-11-01
The albedo (alpha) of vegetated land surfaces is a key regulatory factor in atmospheric circulation and plays an important role in mechanistic accounting of many ecological processes. This paper examines the influence of the phenological stages of maize (Zea mays) and cowpea (Vigna unguiculata) fields on observed albedo at a tropical site in Ghana. The crops were studied for the first and second planting dates in the year 2002. Crop management was similar for both seasons and measurements were taken from 10 mx10-m plots within crop fields. Four phenological stages were distinguished: (1) emergence, (2) vegetative, (3) flowering, and (4) maturity. alpha measured from two reference surfaces, short grass and bare soil, were used to study the change over the growing seasons. Surface alpha was measured and simulated at sun angles of 15, 30, 45, 60, and 75 degrees . Leaf area index (LAI) and crop height (CH) were also monitored. Generally, alpha increases from emergence to maturity for both planting dates in the maize field but slightly decreases after flowering in the cowpea field. For maize, the correlation coefficient ( R) between alpha and LAI equals 0.970, and the R between alpha and CH equals 0.969. Similarly, for cowpea these Rs are 0.988 and 0.943, respectively. A modified albedo model adequately predicted the observed alphas with an overall R>0.860. The relative difference in surface alpha with respect to the alpha values measured from the two reference surfaces is discussed. Data presented are expected to be a valuable input in agricultural water management, crop production models, eco-hydrological models and in the study of climate effects of agricultural production, and for the parameterization of land-surface schemes in regional weather and climate models.
USDA-ARS?s Scientific Manuscript database
Aspergillus flavus (A. flavus) is an opportunistic, saprophytic fungus that infects maize and other fatty acid-rich food and feed crops and produces toxic and carcinogenic secondary metabolites known as aflatoxins. Contamination of maize with aflatoxin poses a serious threat to human health in addit...
Iron bioavailability of maize hemoglobin in a Caco-2 cell culture model
USDA-ARS?s Scientific Manuscript database
Maize is an important staple crop in many parts of the world but has low iron bioavailability, in part due to its high phytate content. Hemoglobin is a form of iron that is highly bioavailable and its bioavailability is not inhibited by phytate. We hypothesize that maize hemoglobin is a highly bioav...
Kachapulula, Paul W; Akello, Juliet; Bandyopadhyay, Ranajit; Cotty, Peter J
2017-11-16
Aflatoxins are cancer-causing, immuno-suppressive mycotoxins that frequently contaminate important staples in Zambia including maize and groundnut. Several species within Aspergillus section Flavi have been implicated as causal agents of aflatoxin contamination in Africa. However, Aspergillus populations associated with aflatoxin contamination in Zambia have not been adequately detailed. Most of Zambia's arable land is non-cultivated and Aspergillus communities in crops may originate in non-cultivated soil. However, relationships between Aspergillus populations on crops and those resident in non-cultivated soils have not been explored. Because characterization of similar fungal populations outside of Zambia have resulted in strategies to prevent aflatoxins, the current study sought to improve understanding of fungal communities in cultivated and non-cultivated soils and in crops. Crops (n=412) and soils from cultivated (n=160) and non-cultivated land (n=60) were assayed for Aspergillus section Flavi from 2012 to 2016. The L-strain morphotype of Aspergillus flavus and A. parasiticus were dominant on maize and groundnut (60% and 42% of Aspergillus section Flavi, respectively). Incidences of A. flavus L-morphotype were negatively correlated with aflatoxin in groundnut (log y=2.4990935-0.09966x, R 2 =0.79, P=0.001) but not in maize. Incidences of A. parasiticus partially explained groundnut aflatoxin concentrations in all agroecologies and maize aflatoxin in agroecology III (log y=0.1956034+0.510379x, R 2 =0.57, P<0.001) supporting A. parasiticus as the dominant etiologic agent of aflatoxin contamination in Zambia. Communities in both non-cultivated and cultivated soils were dominated by A. parasiticus (69% and 58%, respectively). Aspergillus parasiticus from cultivated and non-cultivated land produced statistically similar concentrations of aflatoxins. Aflatoxin-producers causing contamination of crops in Zambia may be native and, originate from non-cultivated areas, and not be introduced with non-native crops such as maize and groundnut. Non-cultivated land may be an important reservoir from which aflatoxin-producers are repeatedly introduced to cultivated areas. The potential of atoxigenic members of the A. flavus-L morphotype for management of aflatoxin in Zambia is also suggested. Characterization of the causal agents of aflatoxin contamination in agroecologies across Zambia gives support for modifying fungal community structure to reduce the aflatoxin-producing potential. Published by Elsevier B.V.
McIsaac, Gregory F; David, Mark B; Mitchell, Corey A
2010-01-01
Biomass crops are being promoted as environmentally favorable alternatives to fossil fuels or ethanol production from maize (Zea mays L.), particularly across the Corn Belt of the United States. However, there are few if any empirical studies on inorganic N leaching losses from perennial grasses that are harvested on an annual basis, nor has there been empirical evaluation of the hydrologic consequences of perennial cropping systems. Here we report on the results of 4 yr of field measurements of soil moisture and inorganic N leaching from a conventional maize-soybean [Glycine max (L.) Merr.] system and two unfertilized perennial grasses harvested in winter for biomass: Miscanthus x giganteus and switchgrass (Panicum virgatum cv. Cave-in-Rock). All crops were grown on fertile Mollisols in east-central Illinois. Inorganic N leaching was measured with ion exchange resin lysimeters placed 50 cm below the soil surface. Maize--soybean nitrate leaching averaged 40.4 kg N ha(-1) yr(-1), whereas switchgrass and Miscanthus had values of 1.4 and 3.0 kg N ha(-1) yr(-1), respectively. Soil moisture monitoring (to a depth of 90 cm) indicated that both perennial grasses dried the soil out earlier in the growing season compared with maize-soybean. Later in the growing season, soil moisture under switchgrass tended to be greater than maize-soybean or Miscanthus, whereas the soil under Miscanthus was consistently drier than under maize--soybean. Water budget calculations indicated that evapotranspiration from Miscanthus was about 104 mm yr(-1) greater than under maize-soybean, which could reduce annual drainage water flows by 32% in central Illinois. Drainage water is a primary source of surface water flows in the region, and the impact ofextensive Miscanthus production on surface water supplies and aquatic ecosystems deserves further investigation.
Phytoextraction of Pb and Cd from a superfund soil: effects of amendments and croppings.
Bricker, T J; Pichtel, J; Brown, H J; Simmons, M
2001-01-01
In a growth chamber, maize (Zea mays) and Indian mustard (Brassica juncea) were grown over two croppings in soil from a Superfund site (PbTotal = 65,200 mg/kg and CdTotal = 52mg/kg). Soil treatments consisted of ethylenediaminetetraacetic acid, sodium citrate and composted sewage sludge, each at two rates (EDTA .05%, EDTA .2%, citrate .05%, citrate .2%, CSS 5% and CSS 10%, respectively). In most cases, the EDTA and citrate treatments were superior in terms of solubilizing soil Pb for root uptake and translocation into above-ground biomass. In the first maize crop, the EDTA .2% treatment resulted in 2,435 and 9,389mg/kg Pb in shoot and root tissues, respectively. The CSS treatments typically resulted in lowest Pb and Cd removal efficiencies. Lead remaining in the soil after two croppings was mainly associated with the carbonate, organic, and residual fractions, which represent the less bioavailable forms. Soil Cd was generally more mobile for plant uptake than soil Pb. The EDTA .2% and citrate treatments were most successful in promoting Cd uptake by both maize and mustard. Although Pb concentrations (mg/kg tissue) were lower for maize than mustard, the former removed more total Pb (0.2 mg per pot, mean over all treatments), compared to mustard (0.03 mg), by virtue of its higher biomass production.
Ladha, J K; Tirol-Padre, A; Reddy, C K; Cassman, K G; Verma, Sudhir; Powlson, D S; van Kessel, C; de B Richter, Daniel; Chakraborty, Debashis; Pathak, Himanshu
2016-01-18
Industrially produced N-fertilizer is essential to the production of cereals that supports current and projected human populations. We constructed a top-down global N budget for maize, rice, and wheat for a 50-year period (1961 to 2010). Cereals harvested a total of 1551 Tg of N, of which 48% was supplied through fertilizer-N and 4% came from net soil depletion. An estimated 48% (737 Tg) of crop N, equal to 29, 38, and 25 kg ha(-1) yr(-1) for maize, rice, and wheat, respectively, is contributed by sources other than fertilizer- or soil-N. Non-symbiotic N2 fixation appears to be the major source of this N, which is 370 Tg or 24% of total N in the crop, corresponding to 13, 22, and 13 kg ha(-1) yr(-1) for maize, rice, and wheat, respectively. Manure (217 Tg or 14%) and atmospheric deposition (96 Tg or 6%) are the other sources of N. Crop residues and seed contribute marginally. Our scaling-down approach to estimate the contribution of non-symbiotic N2 fixation is robust because it focuses on global quantities of N in sources and sinks that are easier to estimate, in contrast to estimating N losses per se, because losses are highly soil-, climate-, and crop-specific.
Gilbert, Matthew K; Majumdar, Rajtilak; Rajasekaran, Kanniah; Chen, Zhi-Yuan; Wei, Qijian; Sickler, Christine M; Lebar, Matthew D; Cary, Jeffrey W; Frame, Bronwyn R; Wang, Kan
2018-06-01
Expressing an RNAi construct in maize kernels that targets the gene for alpha-amylase in Aspergillus flavus resulted in suppression of alpha-amylase (amy1) gene expression and decreased fungal growth during in situ infection resulting in decreased aflatoxin production. Aspergillus flavus is a saprophytic fungus and pathogen to several important food and feed crops, including maize. Once the fungus colonizes lipid-rich seed tissues, it has the potential to produce toxic secondary metabolites, the most dangerous of which is aflatoxin. The pre-harvest control of A. flavus contamination and aflatoxin production is an area of intense research, which includes breeding strategies, biological control, and the use of genetically-modified crops. Host-induced gene silencing, whereby the host crop produces siRNA molecules targeting crucial genes in the invading fungus and targeting the gene for degradation, has shown to be promising in its ability to inhibit fungal growth and decrease aflatoxin contamination. Here, we demonstrate that maize inbred B104 expressing an RNAi construct targeting the A. flavus alpha-amylase gene amy1 effectively reduces amy1 gene expression resulting in decreased fungal colonization and aflatoxin accumulation in kernels. This work contributes to the development of a promising technology for reducing the negative economic and health impacts of A. flavus growth and aflatoxin contamination in food and feed crops.
MaizeGDB: The Maize Genetics and Genomics Database.
Harper, Lisa; Gardiner, Jack; Andorf, Carson; Lawrence, Carolyn J
2016-01-01
MaizeGDB is the community database for biological information about the crop plant Zea mays. Genomic, genetic, sequence, gene product, functional characterization, literature reference, and person/organization contact information are among the datatypes stored at MaizeGDB. At the project's website ( http://www.maizegdb.org ) are custom interfaces enabling researchers to browse data and to seek out specific information matching explicit search criteria. In addition, pre-compiled reports are made available for particular types of data and bulletin boards are provided to facilitate communication and coordination among members of the community of maize geneticists.
Unterseer, Sandra; Bauer, Eva; Haberer, Georg; Seidel, Michael; Knaak, Carsten; Ouzunova, Milena; Meitinger, Thomas; Strom, Tim M; Fries, Ruedi; Pausch, Hubert; Bertani, Christofer; Davassi, Alessandro; Mayer, Klaus Fx; Schön, Chris-Carolin
2014-09-29
High density genotyping data are indispensable for genomic analyses of complex traits in animal and crop species. Maize is one of the most important crop plants worldwide, however a high density SNP genotyping array for analysis of its large and highly dynamic genome was not available so far. We developed a high density maize SNP array composed of 616,201 variants (SNPs and small indels). Initially, 57 M variants were discovered by sequencing 30 representative temperate maize lines and then stringently filtered for sequence quality scores and predicted conversion performance on the array resulting in the selection of 1.2 M polymorphic variants assayed on two screening arrays. To identify high-confidence variants, 285 DNA samples from a broad genetic diversity panel of worldwide maize lines including the samples used for sequencing, important founder lines for European maize breeding, hybrids, and proprietary samples with European, US, semi-tropical, and tropical origin were used for experimental validation. We selected 616 k variants according to their performance during validation, support of genotype calls through sequencing data, and physical distribution for further analysis and for the design of the commercially available Affymetrix® Axiom® Maize Genotyping Array. This array is composed of 609,442 SNPs and 6,759 indels. Among these are 116,224 variants in coding regions and 45,655 SNPs of the Illumina® MaizeSNP50 BeadChip for study comparison. In a subset of 45,974 variants, apart from the target SNP additional off-target variants are detected, which show only a minor bias towards intermediate allele frequencies. We performed principal coordinate and admixture analyses to determine the ability of the array to detect and resolve population structure and investigated the extent of LD within a worldwide validation panel. The high density Affymetrix® Axiom® Maize Genotyping Array is optimized for European and American temperate maize and was developed based on a diverse sample panel by applying stringent quality filter criteria to ensure its suitability for a broad range of applications. With 600 k variants it is the largest currently publically available genotyping array in crop species.
NASA Astrophysics Data System (ADS)
Chen, Yi; Zhang, Zhao; Tao, Fulu
2018-05-01
A new temperature goal of holding the increase in global average temperature well below 2 °C above pre-industrial levels and pursuing efforts to limit the temperature increase to 1.5 °C above pre-industrial levels
has been established in the Paris Agreement, which calls for an understanding of climate risk under 1.5 and 2.0 °C warming scenarios. Here, we evaluated the effects of climate change on growth and productivity of three major crops (i.e. maize, wheat, rice) in China during 2106-2115 in warming scenarios of 1.5 and 2.0 °C using a method of ensemble simulation with well-validated Model to capture the Crop-Weather relationship over a Large Area (MCWLA) family crop models, their 10 sets of optimal crop model parameters and 70 climate projections from four global climate models. We presented the spatial patterns of changes in crop growth duration, crop yield, impacts of heat and drought stress, as well as crop yield variability and the probability of crop yield decrease. Results showed that climate change would have major negative impacts on crop production, particularly for wheat in north China, rice in south China and maize across the major cultivation areas, due to a decrease in crop growth duration and an increase in extreme events. By contrast, with moderate increases in temperature, solar radiation, precipitation and atmospheric CO2 concentration, agricultural climate resources such as light and thermal resources could be ameliorated, which would enhance canopy photosynthesis and consequently biomass accumulations and yields. The moderate climate change would slightly worsen the maize growth environment but would result in a much more appropriate growth environment for wheat and rice. As a result, wheat, rice and maize yields would change by +3.9 (+8.6), +4.1 (+9.4) and +0.2 % (-1.7 %), respectively, in a warming scenario of 1.5 °C (2.0 °C). In general, the warming scenarios would bring more opportunities than risks for crop development and food security in China. Moreover, although the variability of crop yield would increase from 1.5 °C warming to 2.0 °C warming, the probability of a crop yield decrease would decrease. Our findings highlight that the 2.0 °C warming scenario would be more suitable for crop production in China, but more attention should be paid to the expected increase in extreme event impacts.
Land ownership and technology adoption revisited: Improved maize varieties in Ethiopia.
Zeng, Di; Alwang, Jeffrey; Norton, George; Jaleta, Moti; Shiferaw, Bekele; Yirga, Chilot
2018-03-01
The lack of land ownership can discourage agricultural technology adoption, yet there is scarce evidence of the impact of land rental contracts on the adoption of improved crop varieties in developing countries. The current study investigates such impact using a nationally representative survey of Ethiopian maize farmers. In contrast to many previous studies, we show in a simple model that cash-renters are as likely to adopt improved maize varieties as owner-operators, while sharecroppers are more likely to adopt given that such varieties are profitable. Empirical analysis reveals a significant impact of sharecropping on improved maize variety adoption, and no significant impact from cash-rental, lending support to the above hypotheses. These results imply that improvements in land rental markets can potentially enhance household welfare through crop variety adoption in agrarian economies where land sales markets are incomplete or missing.
NASA Astrophysics Data System (ADS)
Thomson, M. J.; MacDonald, G. M.
2016-12-01
We present the results of a computational crop modeling experiment for ancient Fremont Native American Zea mays farming in the Uinta Basin, Utah, at the Medieval Climate Anomaly to Little Ice Age (MCA-LIA) transition, ca. 850-1450 CE. This period coincides with the rapid disappearance of complex Native American cultures from the American Southwest. The crop model (the Environment Policy Impact Calculator, EPIC) was driven by statistically downscaled precipitation, temperature and shortwave radiative flux from the Community Earth System Model Last Millennium Ensemble (CESM LME). We found that maize yield responded to changes in the model-reconstructed temperature and precipitation; and periods of reduced maize yields corresponded to the abandonment of higher elevation Fremont 14C-dated archaeological sites. EPIC produces good agreement between modeled and historically reported maize yields for the 19th century.
Dickau, Ruth; Ranere, Anthony J; Cooke, Richard G
2007-02-27
The Central American isthmus was a major dispersal route for plant taxa originally brought under cultivation in the domestication centers of southern Mexico and northern South America. Recently developed methodologies in the archaeological and biological sciences are providing increasing amounts of data regarding the timing and nature of these dispersals and the associated transition to food production in various regions. One of these methodologies, starch grain analysis, recovers identifiable microfossils of economic plants directly off the stone tools used to process them. We report on new starch grain evidence from Panama demonstrating the early spread of three important New World cultigens: maize (Zea mays), manioc (Manihot esculenta), and arrowroot (Maranta arundinacea). Maize starch recovered from stone tools at a site located in the Pacific lowlands of central Panama confirms previous archaeobotanical evidence for the use of maize there by 7800-7000 cal BP. Starch evidence from preceramic sites in the less seasonal, humid premontane forests of Chiriquí province, western Panama, shows that maize and root crops were present by 7400-5600 cal BP, several millennia earlier than previously documented. Several local starchy resources, including Zamia and Dioscorea spp., were also used. The data from both regions suggest that crop dispersals took place via diffusion or exchange of plant germplasm rather than movement of human populations practicing agriculture.
Lashari, Muhammad Siddique; Ye, Yingxin; Ji, Haishi; Li, Lianqing; Kibue, Grace Wanjiru; Lu, Haifei; Zheng, Jufeng; Pan, Genxing
2015-04-01
Salinity is a major stress threatening crop production in dry lands. A 2-year field experiment was conducted to assess the potential of a biochar product to alleviate salt-stress to a maize crop in a saline soil. The soil was amended with a compost at 12 t ha(-1) of wheat straw biochar and poultry manure compost (BPC), and a diluted pyroligneous solution (PS) at 0.15 t ha(-1) (BPC-PS). Changes in soil salinity and plant performance, leaf bioactivity were examined in the first (BPC-PS1) and second (BPC-PS2) year following a single amendment. While soil salinity significantly decreased, there were large increases in leaf area index, plant performance, and maize grain yield, with a considerable decrease in leaf electrolyte leakage when grown in amendments. Maize leaf sap nitrogen, phosphorus and potassium increased while sodium and chloride decreased, leaf bioactivity related to osmotic stress was significantly improved following the treatments. These effects were generally greater in the second than in the first year. A combined amendment of crop straw biochar with manure compost plus pyroligneous solution could help combat salinity stress to maize and improve productivity in saline croplands in arid/semi-arid regions threatened increasingly by global climate change. © 2014 Society of Chemical Industry.
Dickau, Ruth; Ranere, Anthony J.; Cooke, Richard G.
2007-01-01
The Central American isthmus was a major dispersal route for plant taxa originally brought under cultivation in the domestication centers of southern Mexico and northern South America. Recently developed methodologies in the archaeological and biological sciences are providing increasing amounts of data regarding the timing and nature of these dispersals and the associated transition to food production in various regions. One of these methodologies, starch grain analysis, recovers identifiable microfossils of economic plants directly off the stone tools used to process them. We report on new starch grain evidence from Panama demonstrating the early spread of three important New World cultigens: maize (Zea mays), manioc (Manihot esculenta), and arrowroot (Maranta arundinacea). Maize starch recovered from stone tools at a site located in the Pacific lowlands of central Panama confirms previous archaeobotanical evidence for the use of maize there by 7800–7000 cal BP. Starch evidence from preceramic sites in the less seasonal, humid premontane forests of Chiriquí province, western Panama, shows that maize and root crops were present by 7400–5600 cal BP, several millennia earlier than previously documented. Several local starchy resources, including Zamia and Dioscorea spp., were also used. The data from both regions suggest that crop dispersals took place via diffusion or exchange of plant germplasm rather than movement of human populations practicing agriculture. PMID:17360697
Yendrek, Craig R; Erice, Gorka; Montes, Christopher M; Tomaz, Tiago; Sorgini, Crystal A; Brown, Patrick J; McIntyre, Lauren M; Leakey, Andrew D B; Ainsworth, Elizabeth A
2017-12-01
Exposure to elevated tropospheric ozone concentration ([O 3 ]) accelerates leaf senescence in many C 3 crops. However, the effects of elevated [O 3 ] on C 4 crops including maize (Zea mays L.) are poorly understood in terms of physiological mechanism and genetic variation in sensitivity. Using free air gas concentration enrichment, we investigated the photosynthetic response of 18 diverse maize inbred and hybrid lines to season-long exposure to elevated [O 3 ] (~100 nl L -1 ) in the field. Gas exchange was measured on the leaf subtending the ear throughout the grain filling period. On average over the lifetime of the leaf, elevated [O 3 ] led to reductions in photosynthetic CO 2 assimilation of both inbred (-22%) and hybrid (-33%) genotypes. There was significant variation among both inbred and hybrid lines in the sensitivity of photosynthesis to elevated [O 3 ], with some lines showing no change in photosynthesis at elevated [O 3 ]. Based on analysis of inbred line B73, the reduced CO 2 assimilation at elevated [O 3 ] was associated with accelerated senescence decreasing photosynthetic capacity and not altered stomatal limitation. These findings across diverse maize genotypes could advance the development of more O 3 tolerant maize and provide experimental data for parameterization and validation of studies modeling how O 3 impacts crop performance. © 2017 John Wiley & Sons Ltd.
Occurrence of Fusarium Mycotoxins in Cereal Crops and Processed Products (Ogi) from Nigeria
Chilaka, Cynthia Adaku; De Boevre, Marthe; Atanda, Olusegun Oladimeji; De Saeger, Sarah
2016-01-01
In Nigeria, maize, sorghum, and millet are very important cash crops. They are consumed on a daily basis in different processed forms in diverse cultural backgrounds. These crops are prone to fungi infestation, and subsequently may be contaminated with mycotoxins. A total of 363 samples comprising of maize (136), sorghum (110), millet (87), and ogi (30) were collected from randomly selected markets in four agro-ecological zones in Nigeria. Samples were assessed for Fusarium mycotoxins contamination using a multi-mycotoxin liquid chromatography-tandem mass spectrometry (LC-MS/MS) method. Subsequently, some selected samples were analysed for the occurrence of hidden fumonisins. Overall, 64% of the samples were contaminated with at least one toxin, at the rate of 77%, 44%, 59%, and 97% for maize, sorghum, millet, and ogi, respectively. Fumonisins were the most dominant, especially in maize and ogi, occurring at the rate of 65% and 93% with mean values of 935 and 1128 μg/kg, respectively. The prevalence of diacetoxyscirpenol was observed in maize (13%), sorghum (18%), and millet (29%), irrespective of the agro-ecological zone. Other mycotoxins detected were deoxynivalenol, zearalenone, and their metabolites, nivalenol, fusarenon-X, HT-2 toxin, and hidden fumonisins. About 43% of the samples were contaminated with more than one toxin. This study suggests that consumption of cereals and cereal-based products, ogi particularly by infants may be a source of exposure to Fusarium mycotoxins. PMID:27869703
Farahat, Emad A; Galal, Tarek M; Elawa, Omar E; Hassan, Loutfy M
2017-10-02
The present study evaluated the effect of untreated wastewater irrigation and its health risks in Triticum aestivum (wheat) and Zea mays (maize) cultivated at south Cairo, Egypt. Morphological measurements (stem and root lengths, number of leaves per plant, and dry weights of main organs) as well as soil, irrigation water, and plant analyses for nutrients and heavy metals were conducted in polluted and unpolluted sites. Wastewater irrigations leads to reduction in the morphological traits of the plants and reduced its vegetative biomass and yield production, with more negative impacts on maize than wheat. The concentrations of Pb, Cd, Cr, and Fe in roots and leaves of wheat were above the phytotoxic limits. Conversely, Pb, Cd, and Fe were significantly high and at phytotoxic concentrations in the leaves of maize at polluted site. The present study indicated that wheat plants tend to phytostabilize heavy metals in their roots, while maize accumulates it more in their leaves. Maize and wheat had toxic concentrations of Pb and Cd in their grains under wastewater irrigation. The health risk index showed values > 1 for Pb and Cd in polluted site for both crops, in addition to maize in unpolluted site. Consequently, this will have greatest potential to pose health risk to the consumers.
NASA Astrophysics Data System (ADS)
Chilur, Rudragouda; Kumar, Sushilendra
2018-06-01
The Maize ( Zea mays L.) crop is one of the most important cereal in agricultural production systems of Northern Transition Zone (Hyderabad-Karnataka region) in India. These Hyderabad Karnataka farmers (small-medium) are lack of economic technologies with maize dehusking and shelling, which fulfils the two major needs as crops and as livestock in farming. The portable medium size (600 kg/h capacity) electric motor (2.23 kW) operated Maize Dehusker cum Sheller (MDS) was designed to resolve the issue by considering engineering properties of maize. The developed trapezium shaped MDS machine having overall dimensions (length × (top and bottom) × height) of 1200 × (500 and 610) × 810 mm. The selected operational parameters viz, cylinder peripheral speed (7.1 m/s), concave clearance (25 mm) and feed rate (600 kg/h) were studied for machine-performance and seed-quality parameters. The performance of machine under these parameters showed the dehusking efficiency of 99.56%, shelling efficiency of 98.01%, cleaning efficiency of 99.11%, total loss of 3.63% machine capacity of 527.11 kg/kW-h and germination percentage of 98.93%. Overall machine performance was found satisfactory for maize dehusking cum shelling operation as well as to produce the maize grains for seeding purpose.
NASA Astrophysics Data System (ADS)
Chilur, Rudragouda; Kumar, Sushilendra
2018-02-01
The Maize (Zea mays L.) crop is one of the most important cereal in agricultural production systems of Northern Transition Zone (Hyderabad-Karnataka region) in India. These Hyderabad Karnataka farmers (small-medium) are lack of economic technologies with maize dehusking and shelling, which fulfils the two major needs as crops and as livestock in farming. The portable medium size (600 kg/h capacity) electric motor (2.23 kW) operated Maize Dehusker cum Sheller (MDS) was designed to resolve the issue by considering engineering properties of maize. The developed trapezium shaped MDS machine having overall dimensions (length × (top and bottom) × height) of 1200 × (500 and 610) × 810 mm. The selected operational parameters viz, cylinder peripheral speed (7.1 m/s), concave clearance (25 mm) and feed rate (600 kg/h) were studied for machine-performance and seed-quality parameters. The performance of machine under these parameters showed the dehusking efficiency of 99.56%, shelling efficiency of 98.01%, cleaning efficiency of 99.11%, total loss of 3.63% machine capacity of 527.11 kg/kW-h and germination percentage of 98.93%. Overall machine performance was found satisfactory for maize dehusking cum shelling operation as well as to produce the maize grains for seeding purpose.
Rosas-Castor, J M; Guzmán-Mar, J L; Alfaro-Barbosa, J M; Hernández-Ramírez, A; Pérez-Maldonado, I N; Caballero-Quintero, A; Hinojosa-Reyes, L
2014-11-01
The presence of arsenic (As) in agricultural food products is a matter of concern because it can cause adverse health effects at low concentrations. Agricultural-product intake constitutes a principal source for As exposure in humans. In this study, the contribution of the chemical-soil parameters in As accumulation and translocation in the maize crop from a mining area of San Luis Potosi was evaluated. The total arsenic concentration and arsenic speciation were determined by HG-AFS and IC-HG-AFS, respectively. The data analysis was conducted by cluster analysis (CA) and principal component analysis (PCA). The soil pH presented a negative correlation with the accumulated As in each maize plant part, and parameters such as iron (Fe) and manganese (Mn) presented a higher correlation with the As translocation in maize. Thus, the metabolic stress in maize may induce organic acid exudation leading a higher As bioavailability. A high As inorganic/organic ratio in edible maize plant tissues suggests a substantial risk of poisoning by this metalloid. Careful attention to the chemical changes in the rhizosphere of the agricultural zones that can affect As transfer through the food chain could reduce the As-intoxication risk of maize consumers. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Gabriel, José Luis; Vanclooster, Marnik; Garrido, Alberto; Quemada, Miguel
2013-04-01
Introducing cover crops interspersed with intensively fertilized crops in rotation has the potential to reduce nitrate leaching. However, despite the evident environmental services provided and the range of agronomic benefits documented in the literature, farmers' adoption of the technique is still limited because growing CC could lead to extra costs for the farm in three different forms: direct, indirect, and opportunity costs. Environmental studies are complex, and evaluating the indicators that are representative of the environmental impact of an agricultural system is a complicated task that is conducted by specialized groups and methodologies. Multidisciplinary studies may help to develop reliable approaches that would contribute to choosing the best agricultural strategies based on linking economic and environmental benefits. This study evaluates barley (Hordeum vulgare L., cv. Vanessa), vetch (Vicia villosa L., cv. Vereda) and rapeseed (Brassica napus L., cv. Licapo) as cover crops between maize, leaving the residue in the ground or selling it for animal feeding, and compares the economic and environmental results with respect to a typical maize-fallow rotation. Nitrate leaching for different weather conditions was calculated using the mechanistic-deterministic WAVE model, using the Richards equation parameterised with a conceptual model for the soil hydraulic properties for describing the water flow in the vadose zone, combined with field observed data. The economic impact was evaluated through stochastic (Monte-Carlo) simulation models of farms' profits using probability distribution functions of maize yield and cover crop biomass developed fitted with data collected from various field trials (during more than 5 years) and probability distribution functions of maize and different cover crop forage prices fitted from statistical sources. Stochastic dominance relationships are obtained to rank the most profitable strategies from a farm financial perspective. A two-criterion comparison scheme is proposed to rank alternative strategies based on farm profit and nitrate leaching levels, taking the baseline scenario as the maize-fallow rotation. The results show that cover crops reduced nitrate leaching respect to fallow almost every year and, when cover crop biomass is sold as forage instead of keeping it in the soil, greater profit were achieved than in the baseline scenario. While the fertilizer could be lower if cover crop is sold than if it is kept in the soil, the revenue obtained from the sale of the cover crops can compensate improvement of the soil properties. The results show that cover crops would perhaps provide a double dividend of greater profit and reduced nitrate leaching in intensive irrigated cropping systems in Mediterranean regions. But, if agro-environmental services provided by leaving the barley residue in the field were to be promoted, farmer subsidies would be required to promote cover cropping. Acknowledgements: Financial support by Spain CICYT (ref. AGL 2011-24732), Comunidad de Madrid (project AGRISOST, S2009/AGR-1630), Belgium FSR 2012 (ref. SPER/DST/340-1120525) and Marie Curie actions.
Impact of Climate Change Effects on Contamination of Cereal Grains with Deoxynivalenol
Van der Fels-Klerx, H. J.; van Asselt, Esther D.; Madsen, Marianne S.; Olesen, Jørgen E.
2013-01-01
Climate change is expected to aggravate feed and food safety problems of crops; however, quantitative estimates are scarce. This study aimed to estimate impacts of climate change effects on deoxynivalenol contamination of wheat and maize grown in the Netherlands by 2040. Quantitative modelling was applied, considering both direct effects of changing climate on toxin contamination and indirect effects via shifts in crop phenology. Climate change projections for the IPCC A1B emission scenario were used for the scenario period 2031-2050 relative to the baseline period of 1975-1994. Climatic data from two different global and regional climate model combinations were used. A weather generator was applied for downscaling climate data to local conditions. Crop phenology models and prediction models for DON contamination used, each for winter wheat and grain maize. Results showed that flowering and full maturity of both wheat and maize will advance with future climate. Flowering advanced on average 5 and 11 days for wheat, and 7 and 14 days for maize (two climate model combinations). Full maturity was on average 10 and 17 days earlier for wheat, and 19 and 36 days earlier for maize. On the country level, contamination of wheat with deoxynivalenol decreased slightly, but not significantly. Variability between regions was large, and individual regions showed a significant increase in deoxynivalenol concentrations. For maize, an overall decrease in deoxynivalenol contamination was projected, which was significant for one climate model combination, but not significant for the other one. In general, results disagree with previous reported expectations of increased feed and food safety hazards under climate change. This study illustrated the relevance of using quantitative models to estimate the impacts of climate change effects on food safety, and of considering both direct and indirect effects when assessing climate change impacts on crops and related food safety hazards. PMID:24066059
Nzioki, Henry S; Oyosi, Florence; Morris, Cindy E; Kaya, Eylul; Pilgeram, Alice L; Baker, Claire S; Sands, David C
2016-01-01
Striga hermonthica (witchweed) is a parasitic weed that attacks and significantly reduces the yields of maize, sorghum, millet, and sugarcane throughout sub-Saharan Africa. Low cost management methods such as hand weeding, short crop rotations, trap cropping, or conventional biocontrol have not been effective. Likewise, Striga-tolerant or herbicide-resistant maize cultivars are higher yielding, but are often beyond the economic means of sustenance farmers. The fungal pathogen, Fusarium oxysporum f.sp. strigae, has been the object of numerous studies to develop Striga biocontrol. Under experimental conditions this pathogen can reduce the incidence of Striga infestation but field use is not extensive, perhaps because it has not been sufficiently effective in restoring crop yield and reducing the soil Striga seed bank. Here we brought together Kenyan and US crop scientists with smallholder farmers to develop and validate an effective biocontrol strategy for management of Striga on smallholder farms. Key components of this research project were the following: (1) Development of a two-step method of fungal delivery, including laboratory coating of primary inoculum on toothpicks, followed by on-farm production of secondary field inoculum in boiled rice enabling delivery of vigorous, fresh inoculum directly to the seedbed; (2) Training of smallholder farmers (85% women), to produce the biocontrol agent and incorporate it into their maize plantings in Striga-infested soils and collect agronomic data. The field tests expanded from 30 smallholder farmers to a two-season, 500-farmer plot trial including paired plus and minus biocontrol plots with fertilizer and hybrid seed in both plots and; (3) Concerted selection of variants of the pathogen identified for enhanced virulence, as has been demonstrated in other host parasite systems were employed here on Striga via pathogen excretion of the amino acids L-leucine and L-tyrosine that are toxic to Striga but innocuous to maize. This overall strategy resulted in an average of >50% increased maize yield in the March to June rains season and >40% in the September to December rains season. Integration of this enhanced plant pathogen to Striga management in maize can significantly increase the maize yield of smallholder farmers in Kenya.
Nzioki, Henry S.; Oyosi, Florence; Morris, Cindy E.; Kaya, Eylul; Pilgeram, Alice L.; Baker, Claire S.; Sands, David C.
2016-01-01
Striga hermonthica (witchweed) is a parasitic weed that attacks and significantly reduces the yields of maize, sorghum, millet, and sugarcane throughout sub-Saharan Africa. Low cost management methods such as hand weeding, short crop rotations, trap cropping, or conventional biocontrol have not been effective. Likewise, Striga-tolerant or herbicide-resistant maize cultivars are higher yielding, but are often beyond the economic means of sustenance farmers. The fungal pathogen, Fusarium oxysporum f.sp. strigae, has been the object of numerous studies to develop Striga biocontrol. Under experimental conditions this pathogen can reduce the incidence of Striga infestation but field use is not extensive, perhaps because it has not been sufficiently effective in restoring crop yield and reducing the soil Striga seed bank. Here we brought together Kenyan and US crop scientists with smallholder farmers to develop and validate an effective biocontrol strategy for management of Striga on smallholder farms. Key components of this research project were the following: (1) Development of a two-step method of fungal delivery, including laboratory coating of primary inoculum on toothpicks, followed by on-farm production of secondary field inoculum in boiled rice enabling delivery of vigorous, fresh inoculum directly to the seedbed; (2) Training of smallholder farmers (85% women), to produce the biocontrol agent and incorporate it into their maize plantings in Striga-infested soils and collect agronomic data. The field tests expanded from 30 smallholder farmers to a two-season, 500-farmer plot trial including paired plus and minus biocontrol plots with fertilizer and hybrid seed in both plots and; (3) Concerted selection of variants of the pathogen identified for enhanced virulence, as has been demonstrated in other host parasite systems were employed here on Striga via pathogen excretion of the amino acids L-leucine and L-tyrosine that are toxic to Striga but innocuous to maize. This overall strategy resulted in an average of >50% increased maize yield in the March to June rains season and >40% in the September to December rains season. Integration of this enhanced plant pathogen to Striga management in maize can significantly increase the maize yield of smallholder farmers in Kenya. PMID:27551284
Modeling climate change impacts on maize growth with the focus on plant internal water transport
NASA Astrophysics Data System (ADS)
Heinlein, Florian; Biernath, Christian; Klein, Christian; Thieme, Christoph; Priesack, Eckart
2015-04-01
Based on climate change experiments in chambers and on field measurements, the scientific community expects regional and global changes of crop biomass production and yields. In central Europe one major aspect of climate change is the shift of precipitation towards winter months and the increase of extreme events, e.g. heat stress and heavy precipitation, during the main growing season in summer. To understand water uptake, water use, and transpiration rates by plants numerous crop models were developed. We tested the ability of two existing canopy models (CERES-Maize and SPASS) embedded in the model environment Expert-N5.0 to simulate the water balance, water use efficiency and crop growth. Additionally, sap flow was measured using heat-ratio measurement devices at the stem base of individual plants. The models were tested against data on soil water contents, as well as on evaporation and transpiration rates of Maize plants, which were grown on lysimeters at Helmholtz Zentrum München and in the field at the research station Scheyern, Germany, in summer 2013 and 2014. We present the simulation results and discuss observed shortcomings of the models. CERES-Maize and SPASS could simulate the measured dynamics of xylem sap flow. However, these models oversimplify plant water transport, and thus, cannot explain the underlying mechanisms. Therefore, to overcome these shortcomings, we additionally propose a new model, which is based on two coupled 1-D Richards equations, describing explicitly the plant and soil water transport. This model, which has previously successfully been applied to simulate water flux of 94 individual beech trees of an old-grown forest, will lead to a more mechanistic representation of the soil-plant-water-flow-continuum. This xylem water flux model was now implemented into the crop model SPASS and adjusted to simulate water flux of single maize plants. The modified version is presented and explained. Basic model input requirements are the plant above- and below-ground architectures. Shoot architectures were derived from terrestrial laser scanning. Root architectures of Maize plants were generated using a simple L-system. Preliminary results will be presented together with simulation results by CERES-Maize and SPASS.
NASA Astrophysics Data System (ADS)
Li, Y.; Kinzelbach, W.; Zhou, J.; Cheng, G. D.; Li, X.
2012-05-01
The hydrologic model HYDRUS-1-D and the crop growth model WOFOST are coupled to efficiently manage water resources in agriculture and improve the prediction of crop production. The results of the coupled model are validated by experimental studies of irrigated-maize done in the middle reaches of northwest China's Heihe River, a semi-arid to arid region. Good agreement is achieved between the simulated evapotranspiration, soil moisture and crop production and their respective field measurements made under current maize irrigation and fertilization. Based on the calibrated model, the scenario analysis reveals that the most optimal amount of irrigation is 500-600 mm in this region. However, for regions without detailed observation, the results of the numerical simulation can be unreliable for irrigation decision making owing to the shortage of calibrated model boundary conditions and parameters. So, we develop a method of combining model ensemble simulations and uncertainty/sensitivity analysis to speculate the probability of crop production. In our studies, the uncertainty analysis is used to reveal the risk of facing a loss of crop production as irrigation decreases. The global sensitivity analysis is used to test the coupled model and further quantitatively analyse the impact of the uncertainty of coupled model parameters and environmental scenarios on crop production. This method can be used for estimation in regions with no or reduced data availability.
Xiao, Dengpan; Tao, Fulu
2016-07-01
The impact of climate change on crop yield is compounded by cultivar shifts and agronomic management practices. To determine the relative contributions of climate change, cultivar shift, and management practice to changes in maize (Zea mays L.) yield in the past three decades, detailed field data for 1981-2009 from four representative experimental stations in North China Plain (NCP) were analyzed via model simulation. The four representative experimental stations are geographically and climatologically different, represent the typical cropping system in the study area, and have more complete weather/crop records for the period of 1981-2009. The results showed that while the shift from traditional to modern cultivar increased yield by 23.9-40.3 %, new fertilizer management increased yield by 3.3-8.6 %. However, the trends in climate variables for 1981-2009 reduced maize yield by 15-30 % in the study area. Among the main climate variables, solar radiation had the largest effect on maize yield, followed by temperature and then precipitation. While a significant decline in solar radiation in 1981-2009 (maybe due to air pollution) reduced yield by 12-24 %, a significant increase in temperature reduced yield by 3-9 %. In contrast, a non-significant increase in precipitation during the maize growth period increased yield by 0.9-3 % at three of the four investigated stations. However, a decline in precipitation reduced yield by 3 % in the remaining station. The study revealed that although the shift from traditional to modern cultivars and agronomic management practices contributed most to the increase in maize yield, the negative impact of climate change was large enough to offset 46-67 % of the trend in the observed yields in the past three decades in NCP. The reduction in solar radiation, especially in the most critical period of maize growth, limited the process of photosynthesis and thereby further reduced maize yield.
NASA Astrophysics Data System (ADS)
Xiao, Dengpan; Tao, Fulu
2016-07-01
The impact of climate change on crop yield is compounded by cultivar shifts and agronomic management practices. To determine the relative contributions of climate change, cultivar shift, and management practice to changes in maize ( Zea mays L.) yield in the past three decades, detailed field data for 1981-2009 from four representative experimental stations in North China Plain (NCP) were analyzed via model simulation. The four representative experimental stations are geographically and climatologically different, represent the typical cropping system in the study area, and have more complete weather/crop records for the period of 1981-2009. The results showed that while the shift from traditional to modern cultivar increased yield by 23.9-40.3 %, new fertilizer management increased yield by 3.3-8.6 %. However, the trends in climate variables for 1981-2009 reduced maize yield by 15-30 % in the study area. Among the main climate variables, solar radiation had the largest effect on maize yield, followed by temperature and then precipitation. While a significant decline in solar radiation in 1981-2009 (maybe due to air pollution) reduced yield by 12-24 %, a significant increase in temperature reduced yield by 3-9 %. In contrast, a non-significant increase in precipitation during the maize growth period increased yield by 0.9-3 % at three of the four investigated stations. However, a decline in precipitation reduced yield by 3 % in the remaining station. The study revealed that although the shift from traditional to modern cultivars and agronomic management practices contributed most to the increase in maize yield, the negative impact of climate change was large enough to offset 46-67 % of the trend in the observed yields in the past three decades in NCP. The reduction in solar radiation, especially in the most critical period of maize growth, limited the process of photosynthesis and thereby further reduced maize yield.
Potential of Multitemporal Tandem-X Derived Crop Surface Models for Maize Growth Monitoring
NASA Astrophysics Data System (ADS)
Hütt, C.; Tilly, N.; Schiedung, H.; Bareth, G.
2016-06-01
In this study, first results of retrieving plant heights of maize fields from multitemporal TanDEM-X images are shown. Three TanDEM-X dual polarization spotlight acquisitions were taken over a rural area in Germany in the growing season 2014. By interferometric processing, digital terrain models (DTM) were derived for each date with 5m resolution. From the data of the first acquisition (June 1st) taken before planting, a DTM of the bare ground is generated. The data of the following acquisition dates (July 15th, July 26th) are used to establish crop surface models (CSM). A CSM represents the crop surface of a whole field in a high resolution. By subtracting the DTM of the ground from each CSM, the actual plant height is calculated. Within these data sets 30 maize fields in the area of interest could be detected and verified by external land use data. Besides the spaceborne measurements, one of the maize fields was intensively investigated using terrestrial laser scanning (TLS), which was carried out at the same dates as the predicted TanDEM-X acquisitions. Visual inspection of the derived plant heights, and accordance of the individually processed polarisations over the maize fields, demonstrate the feasibility of the proposed method. Unfortunately, the infield variability of the intensively monitored field could not be successfully captured in the TanDEM-X derived plant heights and merely the general trend is visible. Nevertheless, the study shows the potential of the TanDEM-X constellation for maize height monitoring on field level.
Rauschen, Stefan; Schaarschmidt, Frank; Gathmann, Achim
2010-10-01
Beetles (Coleoptera) are a diverse and ecologically important group of insects in agricultural systems. The Environmental Risk Assessment (ERA) of genetically modified Bt-crop varieties with insect resistances thus needs to consider and assess the potential negative impacts on non-target organisms belonging to this group. We analysed data gathered during 6 years of field-release experiments on the impact of two genetically modified Bt-maize varieties (Ostrinia-resistant MON810 and Diabrotica-resistant MON88017) on the occurrence and field densities of Coleoptera, especially the two families Coccinellidae and Chrysomelidae. Based on a statistical analysis aimed at establishing whether Bt-maize varieties are equivalent to their near-isogenic counterparts, we discuss the limitations of using field experiments to assess the effects of Bt-maize on these two beetle families. The densities of most of the beetle families recorded in the herb layer were very low in all growing seasons. Coccinellidae and Chrysomelidae were comparatively abundant and diverse, but still low in numbers. Based on their role as biological control agents, Coccinellidae should be a focus in the ERA of Bt-plants, but given the large natural variability in ladybird densities in the field, most questions need to be addressed in low-tier laboratory tests. Chrysomelidae should play a negligible role in the ERA of Bt-plants, since they occur on-crop as secondary pests only. Species occurring off-crop, however, can be addressed in a similar fashion as non-target Lepidoptera in Cry1Ab expressing Bt-maize.
NASA Astrophysics Data System (ADS)
Sun, Mei; Zhang, Xiaolin; Huo, Zailin; Feng, Shaoyuan; Huang, Guanhua; Mao, Xiaomin
2016-03-01
Quantitatively ascertaining and analyzing the effects of model uncertainty on model reliability is a focal point for agricultural-hydrological models due to more uncertainties of inputs and processes. In this study, the generalized likelihood uncertainty estimation (GLUE) method with Latin hypercube sampling (LHS) was used to evaluate the uncertainty of the RZWQM-DSSAT (RZWQM2) model outputs responses and the sensitivity of 25 parameters related to soil properties, nutrient transport and crop genetics. To avoid the one-sided risk of model prediction caused by using a single calibration criterion, the combined likelihood (CL) function integrated information concerning water, nitrogen, and crop production was introduced in GLUE analysis for the predictions of the following four model output responses: the total amount of water content (T-SWC) and the nitrate nitrogen (T-NIT) within the 1-m soil profile, the seed yields of waxy maize (Y-Maize) and winter wheat (Y-Wheat). In the process of evaluating RZWQM2, measurements and meteorological data were obtained from a field experiment that involved a winter wheat and waxy maize crop rotation system conducted from 2003 to 2004 in southern Beijing. The calibration and validation results indicated that RZWQM2 model can be used to simulate the crop growth and water-nitrogen migration and transformation in wheat-maize crop rotation planting system. The results of uncertainty analysis using of GLUE method showed T-NIT was sensitive to parameters relative to nitrification coefficient, maize growth characteristics on seedling period, wheat vernalization period, and wheat photoperiod. Parameters on soil saturated hydraulic conductivity, nitrogen nitrification and denitrification, and urea hydrolysis played an important role in crop yield component. The prediction errors for RZWQM2 outputs with CL function were relatively lower and uniform compared with other likelihood functions composed of individual calibration criterion. This new and successful application of the GLUE method for determining the uncertainty and sensitivity of the RZWQM2 could provide a reference for the optimization of model parameters with different emphases according to research interests.
Impacts of crop rotations on soil organic carbon sequestration
NASA Astrophysics Data System (ADS)
Gobin, Anne; Vos, Johan; Joris, Ingeborg; Van De Vreken, Philippe
2013-04-01
Agricultural land use and crop rotations can greatly affect the amount of carbon sequestered in the soil. We developed a framework for modelling the impacts of crop rotations on soil carbon sequestration at the field scale with test case Flanders. A crop rotation geo-database was constructed covering 10 years of crop rotation in Flanders using the IACS parcel registration (Integrated Administration and Control System) to elicit the most common crop rotation on major soil types in Flanders. In order to simulate the impact of crop cover on carbon sequestration, the Roth-C model was adapted to Flanders' environment and coupled to common crop rotations extracted from the IACS geodatabases and statistical databases on crop yield. Crop allometric models were used to calculate crop residues from common crops in Flanders and subsequently derive stable organic matter fluxes to the soil (REGSOM). The REGSOM model was coupled to Roth-C model was run for 30 years and for all combinations of seven main arable crops, two common catch crops and two common dosages of organic manure. The common crops are winter wheat, winter barley, sugar beet, potato, grain maize, silage maize and winter rapeseed; the catch crops are yellow mustard and Italian ryegrass; the manure dosages are 35 ton/ha cattle slurry and 22 ton/ha pig slurry. Four common soils were simulated: sand, loam, sandy loam and clay. In total more than 2.4 million simulations were made with monthly output of carbon content for 30 years. Results demonstrate that crop cover dynamics influence carbon sequestration for a very large percentage. For the same rotations carbon sequestration is highest on clay soils and lowest on sandy soils. Crop residues of grain maize and winter wheat followed by catch crops contribute largely to the total carbon sequestered. This implies that agricultural policies that impact on agricultural land management influence soil carbon sequestration for a large percentage. The framework is therefore suited for further scenario analysis and impact assessment in order to support agri-environmental policy decisions.
Detection of meteorological extreme effect on historical crop yield anomaly
NASA Astrophysics Data System (ADS)
Kim, W.; Iizumi, T.; Nishimori, M.
2017-12-01
Meteorological extremes of temperature and precipitation are a critical issue in the global climate change, and some studies investigating how the extreme changes in accordance with the climate change are continuously reported. However, it is rarely understandable that the extremes affect crop yield worldwide as heatwave, coolwave, drought, and flood, albeit some local or national reports are available. Therefore, we globally investigated the extremes effects on the variability of historical yield of maize, rice, soy, and wheat with a standardized index and a historical yield anomaly. For the regression analysis, the standardized index is annually aggregated in the consideration of a crop calendar, and the historical yield is detrended with 5-year moving average. Throughout this investigation, we found that the relationship between the aggregated standardized index and the historical yield anomaly shows not merely positive correlation but also negative correlation in all crops in the globe. Namely, the extremes cause decrease of crop yield as a matter of course, but increase in some regions contrastingly. These results help us to quantify the extremes effect on historical crop yield anomaly.
Towards Better Simulation of US Maize Yield Responses to Climate in the Community Earth System Model
NASA Astrophysics Data System (ADS)
Peng, B.; Guan, K.; Chen, M.; Lawrence, D. M.; Jin, Z.; Bernacchi, C.; Ainsworth, E. A.; DeLucia, E. H.; Lombardozzi, D. L.; Lu, Y.
2017-12-01
Global food security is undergoing continuing pressure from increased population and climate change despites the potential advancement in breeding and management technologies. Earth system models (ESMs) are essential tools to study the impacts of historical and future climate on regional and global food production, as well as to assess the effectiveness of possible adaptations and their potential feedback to climate. Here we developed an improved maize representation within the Community Earth System Model (CESM) by combining the strengths of both the Community Land Model version 4.5 (CLM4.5) and the Agricultural Production Systems sIMulator (APSIM) models. Specifically, we modified the maize planting scheme, incorporated the phenology scheme adopted from the APSIM model, added a new carbon allocation scheme into CLM4.5, and improved the estimation of canopy structure parameters including leaf area index (LAI) and canopy height. Unique features of the new model (CLM-APSIM) include more detailed phenology stages, an explicit implementation of the impacts of various abiotic environmental stresses (including nitrogen, water, temperature and heat stresses) on maize phenology and carbon allocation, as well as an explicit simulation of grain number and grain size. We conducted a regional simulation of this new model over the US Corn Belt during 1990 to 2010. The simulated maize yield as well as its responses to climate (growing season mean temperature and precipitation) are benchmarked with data from UADA NASS statistics. Our results show that the CLM-APSIM model outperforms the CLM4.5 in simulating county-level maize yield production and reproduces more realistic yield responses to climate variations than CLM4.5. However, some critical processes (such as crop failure due to frost and inundation and suboptimal growth condition due to biotic stresses) are still missing in both CLM-APSIM and CLM4.5, making the simulated yield responses to climate slightly deviate from the reality. Our results demonstrate that with improved paramterization of crop growth, the ESMs can be powerful tools for realistically simulating agricultural production, which is gaining increasing interests and critical to study of global food security and food-energy-water nexus.
How Do Various Maize Crop Models Vary in Their Responses to Climate Change Factors?
NASA Technical Reports Server (NTRS)
Bassu, Simona; Brisson, Nadine; Grassini, Patricio; Durand, Jean-Louis; Boote, Kenneth; Lizaso, Jon; Jones, James W.; Rosenzweig, Cynthia; Ruane, Alex C.; Adam, Myriam;
2014-01-01
Potential consequences of climate change on crop production can be studied using mechanistic crop simulation models. While a broad variety of maize simulation models exist, it is not known whether different models diverge on grain yield responses to changes in climatic factors, or whether they agree in their general trends related to phenology, growth, and yield. With the goal of analyzing the sensitivity of simulated yields to changes in temperature and atmospheric carbon dioxide concentrations [CO2], we present the largest maize crop model intercomparison to date, including 23 different models. These models were evaluated for four locations representing a wide range of maize production conditions in the world: Lusignan (France), Ames (USA), Rio Verde (Brazil) and Morogoro (Tanzania). While individual models differed considerably in absolute yield simulation at the four sites, an ensemble of a minimum number of models was able to simulate absolute yields accurately at the four sites even with low data for calibration, thus suggesting that using an ensemble of models has merit. Temperature increase had strong negative influence on modeled yield response of roughly -0.5 Mg ha(sup 1) per degC. Doubling [CO2] from 360 to 720 lmol mol 1 increased grain yield by 7.5% on average across models and the sites. That would therefore make temperature the main factor altering maize yields at the end of this century. Furthermore, there was a large uncertainty in the yield response to [CO2] among models. Model responses to temperature and [CO2] did not differ whether models were simulated with low calibration information or, simulated with high level of calibration information.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Woodbury, Peter B.; Kemanian, Armen R.; Jacobson, Michael
Replacing row crops with perennial bioenergy crops may reduce nitrogen (N) loading to surface waters. We estimated the benefits, costs, and potential for replacing maize with switchgrass to meet required N loading reduction targets for the Chesapeake Bay (CB) of 26.9 Gg -1. After subtracting the potential reduction in N loading due to improved N fertilizer practices for maize, a further 22.8 Gg reduction is required. Replacing maize with fertilized switchgrass could reduce N loading to the CB by 18 kg ha -1 y -1, meeting 31% of the N reduction target. The break-even price of fertilized switchgrass to providemore » the same profit as maize in the CB is 111 $Mg -1 (oven-dry basis throughout). Growers replacing maize with switchgrass could receive an ecosystem service payment of 148 ha -1 based on the price paid in Maryland for planting a rye cover crop. For our estimated average switchgrass yield of 9.9 Mg ha -1, and the greater N loading reduction of switchgrass compared to a cover crop, this equates to 24 dollars Mg -1. The annual cost of this ecosystem service payment to induce switchgrass planting is 13.29 dollars kg -1 of N. Using the POLYSYS model to account for competition among food, feed, and biomass markets, we found that with the ecosystem service payment for switchgrass of 25 $ Mg -1 added to a farm-gate price of 111 dollars Mg -1, 11% of the N loading reduction target could be met while also producing 1.3 Tg of switchgrass, potentially yielding 420 dam 3 y -1 of ethanol.« less
Woodbury, Peter B.; Kemanian, Armen R.; Jacobson, Michael; ...
2017-02-03
Replacing row crops with perennial bioenergy crops may reduce nitrogen (N) loading to surface waters. We estimated the benefits, costs, and potential for replacing maize with switchgrass to meet required N loading reduction targets for the Chesapeake Bay (CB) of 26.9 Gg -1. After subtracting the potential reduction in N loading due to improved N fertilizer practices for maize, a further 22.8 Gg reduction is required. Replacing maize with fertilized switchgrass could reduce N loading to the CB by 18 kg ha -1 y -1, meeting 31% of the N reduction target. The break-even price of fertilized switchgrass to providemore » the same profit as maize in the CB is 111 $Mg -1 (oven-dry basis throughout). Growers replacing maize with switchgrass could receive an ecosystem service payment of 148 ha -1 based on the price paid in Maryland for planting a rye cover crop. For our estimated average switchgrass yield of 9.9 Mg ha -1, and the greater N loading reduction of switchgrass compared to a cover crop, this equates to 24 dollars Mg -1. The annual cost of this ecosystem service payment to induce switchgrass planting is 13.29 dollars kg -1 of N. Using the POLYSYS model to account for competition among food, feed, and biomass markets, we found that with the ecosystem service payment for switchgrass of 25 $ Mg -1 added to a farm-gate price of 111 dollars Mg -1, 11% of the N loading reduction target could be met while also producing 1.3 Tg of switchgrass, potentially yielding 420 dam 3 y -1 of ethanol.« less
How do various maize crop models vary in their responses to climate change factors?
Bassu, Simona; Brisson, Nadine; Durand, Jean-Louis; Boote, Kenneth; Lizaso, Jon; Jones, James W; Rosenzweig, Cynthia; Ruane, Alex C; Adam, Myriam; Baron, Christian; Basso, Bruno; Biernath, Christian; Boogaard, Hendrik; Conijn, Sjaak; Corbeels, Marc; Deryng, Delphine; De Sanctis, Giacomo; Gayler, Sebastian; Grassini, Patricio; Hatfield, Jerry; Hoek, Steven; Izaurralde, Cesar; Jongschaap, Raymond; Kemanian, Armen R; Kersebaum, K Christian; Kim, Soo-Hyung; Kumar, Naresh S; Makowski, David; Müller, Christoph; Nendel, Claas; Priesack, Eckart; Pravia, Maria Virginia; Sau, Federico; Shcherbak, Iurii; Tao, Fulu; Teixeira, Edmar; Timlin, Dennis; Waha, Katharina
2014-07-01
Potential consequences of climate change on crop production can be studied using mechanistic crop simulation models. While a broad variety of maize simulation models exist, it is not known whether different models diverge on grain yield responses to changes in climatic factors, or whether they agree in their general trends related to phenology, growth, and yield. With the goal of analyzing the sensitivity of simulated yields to changes in temperature and atmospheric carbon dioxide concentrations [CO2 ], we present the largest maize crop model intercomparison to date, including 23 different models. These models were evaluated for four locations representing a wide range of maize production conditions in the world: Lusignan (France), Ames (USA), Rio Verde (Brazil) and Morogoro (Tanzania). While individual models differed considerably in absolute yield simulation at the four sites, an ensemble of a minimum number of models was able to simulate absolute yields accurately at the four sites even with low data for calibration, thus suggesting that using an ensemble of models has merit. Temperature increase had strong negative influence on modeled yield response of roughly -0.5 Mg ha(-1) per °C. Doubling [CO2 ] from 360 to 720 μmol mol(-1) increased grain yield by 7.5% on average across models and the sites. That would therefore make temperature the main factor altering maize yields at the end of this century. Furthermore, there was a large uncertainty in the yield response to [CO2 ] among models. Model responses to temperature and [CO2 ] did not differ whether models were simulated with low calibration information or, simulated with high level of calibration information. © 2014 John Wiley & Sons Ltd.
Aflatoxin contamination of groundnut and maize in Zambia: observed and potential concentrations.
Kachapulula, P W; Akello, J; Bandyopadhyay, R; Cotty, P J
2017-06-01
The aims of the study were to quantify aflatoxins, the potent carcinogens associated with stunting and immune suppression, in maize and groundnut across Zambia's three agroecologies and to determine the vulnerability to aflatoxin increases after purchase. Aflatoxin concentrations were determined for 334 maize and groundnut samples from 27 districts using lateral-flow immunochromatography. Seventeen per cent of crops from markets contained aflatoxin concentrations above allowable levels in Zambia (10 μg kg -1 ). Proportions of crops unsafe for human consumption differed significantly (P < 0·001) among agroecologies with more contamination (38%) in the warmest (Agroecology I) and the least (8%) in cool, wet Agroecology III. Aflatoxin in groundnut (39 μg kg -1 ) and maize (16 μg kg -1 ) differed (P = 0·032). Poor storage (31°C, 100% RH, 1 week) increased aflatoxin in safe crops by over 1000-fold in both maize and groundnut. The L morphotype of Aspergillus flavus was negatively correlated with postharvest increases in groundnut. Aflatoxins are common in Zambia's food staples with proportions of unsafe crops dependent on agroecology. Fungal community structure influences contamination suggesting Zambia would benefit from biocontrol with atoxigenic A. flavus. Aflatoxin contamination across the three agroecologies of Zambia is detailed and the case for aflatoxin management with atoxigenic biocontrol agents provided. The first method for evaluating the potential for aflatoxin increase after purchase is presented. Published 2017. This article is a U.S. Government work and is in the public domain in the USA. Journal of Applied Microbiology published by John Wiley & Sons Ltd on behalf of The Society for Applied Microbiology.
Ceres model application for increasing preparedness to climate variability in agricultural planning
NASA Astrophysics Data System (ADS)
Popova, Z.; Kercheva, M.
2003-04-01
The paper should demonstrate how knowledge of climate variability and simulation analyses over 30 years could be used to study the vulnerability of maize and wheat ecosystems in the region of Sofia. The procedure of stepwise calibration and validation of agricultural simulation CERES-maize and CERES-wheat models was used at two fields of contrastive soil conditions (Chromic Luvisol and Vertisol). Lysimeters observations under "Chromic Luvisol-maize" combination enabled to test integrally the prediction capacity of CERES-maize, including water and nitrogen fluxes at the boundaries of this vulnerable system over "1.05.1997-1.10.1999" period. The role of soil, crop, climate and irrigation scheduling (under maize only) on drought consequences and groundwater pollution was quantified for four "soil-crop" combinations by CERES models. Four water supply treatments of maize were considered on both soils: one under rainfed conditions and three with varied irrigation application. Water application in initial, development, and mid season growth stages was scheduled by CROPWAT model at any day that soil matrix suction fell to 3.0-3.2 pF with one irrigation scenario and 2.4-2.6 pF with another one. The third drainage-controlling scenario was developed on the basis of 50-75% of the required irrigation depth by satisfying most sensible phases of maize. It was established that "Chromic Luvisol -maize - dry land" combination was associated with the greatest coefficient of variability of yields (Cv=42%) and drought frequency (75% of the years with yield losses more than 20%). Average yield losses in dry vegetation seasons were 60% of the productivity potential under sufficient soil moisture. As a consequence maize cultivation under these conditions was inefficient in 20% of the years when production expenses were greater than losses. Any irrigation practice, even the drainage controlling scenario, mitigated drought consequences on risky soils as Chromic Luvisol by reducing year-to-year variability of yield (CV=5.6-6%). Long-term wheat yields were much more stable (CV=17-23% on Chromic Luvisol) than those of maize. In this case droughts covered 40% of the years when yield losses were 25-30% on the average. Soils of high water holding capacity (as Vertisol) provided additionally 50-150mm-water storage for evapotranspiration and thus reduced frequency of drought under both crops to 20-25% of the years. Agriculture on this soil should be more sustainable (CV=8-8.5% for yield under wheat and CV=14.6% respectively under maize). Reduction of yield during dry vegetation periods was 10-15% under wheat and 22% under maize if compared with productivity under sufficient soil water. Risk assessment of groundwater pollution showed that N-leaching hazards were associated mostly with moderately permeable Chromic Luvisol and high precipitation during the periods of low transpiration rate of both crops. Frequency analyses of seasonal N- losses, proved that half of the wheat and 3% of maize vegetation seasons were susceptible to significant N-leaching (10-45 kg N/ha for "N200" fertilization level) on Chromic Luvisol. Simulated irrigation scenarios did not influence vegetation drainage. Another risky situations occurred in 3% of the years of wet fallow after dry rainfed maize vegetation when up to 30% of fertilization dose might be leached on Chromic Luvisol. Earlier wheat sowing (on the 1st of October) and adjusted fertilization rates and timing to maximum N-uptake under both crops mitigated environmental hazards. Drainage-controlling irrigation scheduling decreased maize fallow state drainage by 30-40 % in half of the years and proved to be economically optimal. Such measure though may tend to increase vulnerability of ecosystem to climate variability by increasing residual soil nitrogen at the end of vegetation.
Screening DNA chip and event-specific multiplex PCR detection methods for biotech crops.
Lee, Seong-Hun
2014-11-01
There are about 80 biotech crop events that have been approved by safety assessment in Korea. They have been controlled by genetically modified organism (GMO) and living modified organism (LMO) labeling systems. The DNA-based detection method has been used as an efficient scientific management tool. Recently, the multiplex polymerase chain reaction (PCR) and DNA chip have been developed as simultaneous detection methods for several biotech crops' events. The event-specific multiplex PCR method was developed to detect five biotech maize events: MIR604, Event 3272, LY 038, MON 88017 and DAS-59122-7. The specificity was confirmed and the sensitivity was 0.5%. The screening DNA chip was developed from four endogenous genes of soybean, maize, cotton and canola respectively along with two regulatory elements and seven genes: P35S, tNOS, pat, bar, epsps1, epsps2, pmi, cry1Ac and cry3B. The specificity was confirmed and the sensitivity was 0.5% for four crops' 12 events: one soybean, six maize, three cotton and two canola events. The multiplex PCR and DNA chip can be available for screening, gene-specific and event-specific analysis of biotech crops as efficient detection methods by saving on workload and time. © 2014 Society of Chemical Industry. © 2014 Society of Chemical Industry.
Global income and production impacts of using GM crop technology 1996–2013
Brookes, Graham; Barfoot, Peter
2015-01-01
abstract This paper provides an economic assessment of the value of using genetically modified (GM) crop technology in agriculture at the farm level. It follows and updates earlier annual studies which examined economic impacts on yields, key costs of production, direct farm income and effects, and impacts on the production base of the 4 main crops of soybeans, corn, cotton and canola. The commercialisation of GM crops has continued to occur at a rapid rate since the mid 1990s, with important changes in both the overall level of adoption and impact occurring in 2013. This annual updated analysis shows that there continues to be very significant net economic benefits at the farm level amounting to $20.5 billion in 2013 and $133.4 billion for the 18 years period (in nominal terms). These economic gains have been divided roughly 50% each to farmers in developed and developing countries. About 70% of the gains have derived from yield and production gains with the remaining 30% coming from cost savings. The technology have also made important contributions to increasing global production levels of the 4 main crops, having added 138 million tonnes and 273 million tonnes respectively, to the global production of soybeans and maize since the introduction of the technology in the mid 1990s. PMID:25738324
Global income and production impacts of using GM crop technology 1996-2013.
Brookes, Graham; Barfoot, Peter
2015-01-01
This paper provides an economic assessment of the value of using genetically modified (GM) crop technology in agriculture at the farm level. It follows and updates earlier annual studies which examined economic impacts on yields, key costs of production, direct farm income and effects, and impacts on the production base of the 4 main crops of soybeans, corn, cotton and canola. The commercialisation of GM crops has continued to occur at a rapid rate since the mid 1990s, with important changes in both the overall level of adoption and impact occurring in 2013. This annual updated analysis shows that there continues to be very significant net economic benefits at the farm level amounting to $20.5 billion in 2013 and $133.4 billion for the 18 years period (in nominal terms). These economic gains have been divided roughly 50% each to farmers in developed and developing countries. About 70% of the gains have derived from yield and production gains with the remaining 30% coming from cost savings. The technology have also made important contributions to increasing global production levels of the 4 main crops, having added 138 million tonnes and 273 million tonnes respectively, to the global production of soybeans and maize since the introduction of the technology in the mid 1990s.
NASA Astrophysics Data System (ADS)
Jomaa, Seifeddine; Thraen, Daniela; Rode, Michael
2015-04-01
Understanding how nitrogen fluxes respond to changes in land use and agriculture practices is crucial for improving instream water quality prediction. In central Germany, expansion of bioenergy crops such as maize and rape for ethanol production during the last decade led to increasing of fertilizer application rates. To examine the effect of these changes, surface water quality of a drinking water reservoir catchment was investigated for more than 30 years. The Weida catchment (99.5 km2) is part of the Elbe river basin and has a share of 67% agricultural land use with significant changes in agricultural practices within the investigation period. For the period 2004-2012, the share of maize and rape has been increased by 52% and 20%, respectively, for enhancing bioenergy production. To achieve our gaols, the semi-distributed hydrological water quality HYPE (Hydrological Predictions for the Environment) model was calibrated for discharge and inorganic nitrogen concentrations (IN) during the period 1997-2000.The model was validated successfully (with lowest performance of NSE = 0.78 and PBIAS = 3.74% for discharge) for three different periods 1983-1987, 1989-1996 and 2000-2003, which are charaterized by different fertilizer application rates. Results showed that the HYPE model reproduced reasonably well discharge and IN daily loads (with lowest NSE = 0.64 for IN-load). In addition, the HYPE model was evaluated successfully to predict the discharge and IN concentrations for the period 2004-2012, where detailed input data in terms of crops management (field-specific survey) have been considered. Land use and crop rotations scenarios, with high hypothetical percentage of acceptance by the farmers, revealed that continuous conversion of agricultural land into bioenergy crops, will most likely, lead to an enrichment of in-stream nitrogen, especially after spring storms.
Genetic Architecture of Flowering Phenology in Cereals and Opportunities for Crop Improvement
Hill, Camilla B.; Li, Chengdao
2016-01-01
Cereal crop species including bread wheat (Triticum aestivum L.), barley (Hordeum vulgare L.), rice (Oryza sativa L.), and maize (Zea mays L.) provide the bulk of human nutrition and agricultural products for industrial use. These four cereals are central to meet future demands of food supply for an increasing world population under a changing climate. A prerequisite for cereal crop production is the transition from vegetative to reproductive and grain-filling phases starting with flower initiation, a key developmental switch tightly regulated in all flowering plants. Although studies in the dicotyledonous model plant Arabidopsis thaliana build the foundations of our current understanding of plant phenology genes and regulation, the availability of genome assemblies with high-confidence sequences for rice, maize, and more recently bread wheat and barley, now allow the identification of phenology-associated gene orthologs in monocots. Together with recent advances in next-generation sequencing technologies, QTL analysis, mutagenesis, complementation analysis, and RNA interference, many phenology genes have been functionally characterized in cereal crops and conserved as well as functionally divergent genes involved in flowering were found. Epigenetic and other molecular regulatory mechanisms that respond to environmental and endogenous triggers create an enormous plasticity in flowering behavior among cereal crops to ensure flowering is only induced under optimal conditions. In this review, we provide a summary of recent discoveries of flowering time regulators with an emphasis on four cereal crop species (bread wheat, barley, rice, and maize), in particular, crop-specific regulatory mechanisms and genes. In addition, pleiotropic effects on agronomically important traits such as grain yield, impact on adaptation to new growing environments and conditions, genetic sequence-based selection and targeted manipulation of phenology genes, as well as crop growth simulation models for predictive crop breeding, are discussed. PMID:28066466
Colbach, Nathalie; Darmency, Henri; Fernier, Alice; Granger, Sylvie; Le Corre, Valérie; Messéan, Antoine
2017-05-01
Overreliance on the same herbicide mode of action leads to the spread of resistant weeds, which cancels the advantages of herbicide-tolerant (HT) crops. Here, the objective was to quantify, with simulations, the impact of glyphosate-resistant (GR) weeds on crop production and weed-related wild biodiversity in HT maize-based cropping systems differing in terms of management practices. We (1) simulated current conventional and probable HT cropping systems in two European regions, Aquitaine and Catalonia, with the weed dynamics model FLORSYS; (2) quantified how much the presence of GR weeds contributed to weed impacts on crop production and biodiversity; (3) determined the effect of cultural practices on the impact of GR weeds and (4) identified which species traits most influence weed-impact indicators. The simulation study showed that during the analysed 28 years, the advent of glyphosate resistance had little effect on plant biodiversity. Glyphosate-susceptible populations and species were replaced by GR ones. Including GR weeds only affected functional biodiversity (food offer for birds, bees and carabids) and weed harmfulness when weed effect was initially low; when weed effect was initially high, including GR weeds had little effect. The GR effect also depended on cultural practices, e.g. GR weeds were most detrimental for species equitability when maize was sown late. Species traits most harmful for crop production and most beneficial for biodiversity were identified, using RLQ analyses. None of the species presenting these traits belonged to a family for which glyphosate resistance was reported. An advice table was built; the effects of cultural practices on crop production and biodiversity were synthesized, explained, quantified and ranked, and the optimal choices for each management technique were identified.
Quantifying the impacts of climatic trend and fluctuation on crop yields in northern China.
Qiao, Jianmin; Yu, Deyong; Liu, Yupeng
2017-10-01
Climate change plays a critical role in crop yield variations, which has attracted a great deal of concern worldwide. However, the mechanisms of how climatic trend and fluctuations affect crop yields are not well understood and need to be further investigated. Thus, using the GIS-based Environmental Policy Integrated Climate (EPIC) model, we simulated the yields of major crops (i.e., wheat, maize, and rice) and evaluated the impacts of climatic factors on crop yields in the Agro-Pastoral Transitional Zone (APTZ) of northern China between 1980 and 2010. The partial least squares regression model was used to assess the contribution rates of climatic factors (i.e., precipitation, photosynthetically active radiation (PAR), minimum temperature (T min ), maximum temperature (T max )) to the variation of crop yields. The Breaks for Additive Season and Trend (BFAST) model was adopted to decompose the climate factors into trend and fluctuation components, and the relative contributions of climate trend and fluctuation were then evaluated. The results indicated that the contributions of climatic factors to yield variations of wheat, maize, and rice were 31.7, 37.7, and 23.1%, respectively. That is, climate change had larger impacts on maize than wheat and rice. More cultivated areas were significantly and positively correlated with precipitation than with other climatic factors due to the limited precipitation in the APTZ. Also, climatic trend component had positive impacts on crop yields in the whole region, whereas the climate fluctuation was associated mainly with the areas where the crop yields decreased. This study helps improve our understanding of the mechanisms of climate change impacts on crop yields, and provides useful scientific information for designing regional-scale strategies of adaptation to climate change.
Baca, F; Videnovic, Z; Erski, P; Stankovic, R; Dobrikovic, Danica
2003-01-01
Effects of the length of growing season of maize hybrids (FAO maturity groups 400, 500, 600 and 700) and planting dates on the maize crop, as an attractive supplemental feeding for western corn rootworm (WCR) beetles and larval survival, were observed in two locations of South Banat, during a three-year (1997-1999) and a two-year period (2001 and 2002). The feeding attraction of the maize crop for WCR beetles and survival of larvae were evaluated in dependency of the variable "plant lodging". The following results were obtained: First location: A. Plant lodging over time of planting and applied insecticides. 1. Early planting: 44.2%, 77.6%, and 76.7% for FAO 400, 500 and 600, respectively. 2. Late planting: 4.7%, 14.9%, and 7.9% for FAO 400, 500 and 600, respectively. B. Plant lodging over time of planting and cropping practices: 1. Early planting without insecticide application 72.2%, and with insecticide application 7.3%. The efficacy of application of insecticide carbofurane (Furadan 350 FS, dosage 4.0 liter/ha) in larval control was 89.9%. 2. Late planting without insecticide application, plant lodging was 47.7%, and with insecticide application 8.1%. The efficacy of application of insecticide carbofurane (Furadan 350 FS, dosage 4.0 l/ha-1) in larval control was 83.0%. Early planting resulted in greater survival of larvae; hence plant lodging was 10 times greater in early than in late planting. The percentage of lodged plants indicates that the maize crop in late planting was more attractive to imagoes. Therefore, more lodged plants were observed in the treatment where late planting preceded. Second location: Plant lodging as dependent on "treatments" 1. Regular plantings: 90.7% in untreated control and 76.2% in insecticide treated variant. The efficacy of insecticide application in control of high larval population was 16.0%. 2. Replanting date: 12.2% in untreated and 4.4% in treated variant. The efficacy of insecticide in control of low larval population increased from 16.0 to 63.9%. To successfully decrease the size and intensity of attacks of the Diabrotica v. virgifera population under conditions of applying insecticides or not, it is necessary to use maize hybrids of the earliest possible maturity group and to plant the seed on the earliest date possible in the first year of growing maize, if maize is to be followed by maize in the next year.
New insights into phosphorus management in agriculture--A crop rotation approach.
Łukowiak, Remigiusz; Grzebisz, Witold; Sassenrath, Gretchen F
2016-01-15
This manuscript presents research results examining phosphorus (P) management in a soil–plant system for three variables: i) internal resources of soil available phosphorus, ii) cropping sequence, and iii) external input of phosphorus (manure, fertilizers). The research was conducted in long-term cropping sequences with oilseed rape (10 rotations) and maize (six rotations) over three consecutive growing seasons (2004/2005, 2005/2006, and 2006/2007) in a production farm on soils originated from Albic Luvisols in Poland. The soil available phosphorus pool, measured as calcium chloride extractable P (CCE-P), constituted 28% to 67% of the total phosphorus input (PTI) to the soil–plant system in the spring. Oilseed rape and maize dominant cropping sequences showed a significant potential to utilize the CCE-P pool within the soil profile. Cropping sequences containing oilseed rape significantly affected the CCE-P pool, and in turn contributed to the P(TI). The P(TI) uptake use efficiency was 50% on average. Therefore, the CCE-P pool should be taken into account as an important component of a sound and reliable phosphorus balance. The instability of the yield prediction, based on the P(TI), was mainly due to an imbalanced management of both farmyard manure and phosphorus fertilizer. Oilseed rape plants provide a significant positive impact on the CCE-P pool after harvest, improving the productive stability of the entire cropping sequence. This phenomenon was documented by the P(TI) increase during wheat cultivation following oilseed rape. The Unit Phosphorus Uptake index also showed a higher stability in oilseed rape cropping systems compared to rotations based on maize. Cropping sequences are a primary factor impacting phosphorus management. Judicious implementation of crop rotations can improve soil P resources, efficiency of crop P use, and crop yield and yield stability. Use of cropping sequences can reduce the need for external P sources such as farmyard manure and chemical fertilizers.
USDA-ARS?s Scientific Manuscript database
In this study, we assessed the adaptive effects of irrigation on climatic risks for three crops (maize, soybean, and wheat) at the regional scale from 1981 to 2012 in the Central US. Based on yields of 183 counties for maize, 121 for soybean and 101 for wheat, statistical models were developed for i...
Crop stress and aflatoxin contamination: perspectives and prevention strategies.
USDA-ARS?s Scientific Manuscript database
The fungal metabolites called aflatoxins are potent naturally occurring carcinogens, produced primarily by Aspergillus flavus and A. parasiticus. A. flavus affects many agricultural crops such as maize, cotton, peanuts, and tree nuts. It can contaminate these crops with aflatoxins in the field befor...
Row-crop planter requirements to support variable-rate seeding of maize
USDA-ARS?s Scientific Manuscript database
Current planting technology possesses the ability to increase crop productivity and improve field efficiency by precisely metering and placing crop seeds. Planter performance depends on using the correct planter and technology setup which consists of determining optimal settings for different planti...
Ma, Dedi; Chen, Lei; Qu, Hongchao; Wang, Yilin; Misselbrook, Tom; Jiang, Rui
2018-04-01
In order to increase crop yield in semi-arid and arid areas, plastic film mulching (PFM) is widely used in Northwestern China. To date, many studies have addressed the effects of PFM on soil physical and biochemical properties in rain-fed agriculture in Northwestern China, but the findings of different studies are often contradictory. Therefore, a comprehensive review of the impacts of PFM on soil water content, soil nutrients and food production is needed. We compiled the results of 1278 observations to evaluate the overall effects of PFM on soil water content, the distribution of nitrate and soil organic carbon, and crop yield in rain-fed agriculture in Northwestern China. Our results showed that PFM increased soil moisture and nitrate concentration in topsoils (0-20 cm) by 12.9% and 28.2%, respectively, but slightly decreased (1.8%) soil organic carbon (SOC) content in the 0-10 cm soil layer. PFM significantly increased grain yields by 43.1%, with greatest effect in spring maize (79.4%). When related to cumulative precipitation during the crop growing season, yield increase from PFM was greatest (72.8%) at 200-300 mm, which was attributed to the large increase for spring maize and potato, implying that crop zoning would be beneficial for PFM in this region. When related to N application rate, crop yields benefited most from PFM (80.2%) at 200-300 kg/ha. A cost-benefit analysis indicated that PFM increased economic return by an average of 29.5%, with the best improvement for spring maize (71.1%) and no increase for spring wheat. In conclusion, PFM can significantly increase crop yield and economic return (especially for spring maize) in rain-fed agriculture areas of Northwestern China. Crop zoning is recommended for PFM to achieve the largest economic benefit. However, full account needs to be taken of the environmental impacts relating to N loss, SOC depletion and film pollution to evaluate the sustainability of PFM systems and further research is required to quantify and mitigate these impacts.
NASA Astrophysics Data System (ADS)
Battude, Marjorie; Bitar, Ahmad Al; Brut, Aurore; Cros, Jérôme; Dejoux, Jean-François; Huc, Mireille; Marais Sicre, Claire; Tallec, Tiphaine; Demarez, Valérie
2016-04-01
Water resources are under increasing pressure as a result of global change and of a raising competition among the different users (agriculture, industry, urban). It is therefore important to develop tools able to estimate accurately crop water requirements in order to optimize irrigation while maintaining acceptable production. In this context, remote sensing is a valuable tool to monitor vegetation development and water demand. This work aims at developing a robust and generic methodology mainly based on high resolution remote sensing data to provide accurate estimates of maize yield and water needs at the watershed scale. Evapotranspiration (ETR) and dry aboveground biomass (DAM) of maize crops were modeled using time series of GAI images used to drive a simple agro-meteorological crop model (SAFYE, Duchemin et al., 2005). This model is based on a leaf partitioning function (Maas, 1993) for the simulation of crop biomass and on the FAO-56 methodology for the ETR simulation. The model also contains a module to simulate irrigation. This study takes advantage of the SPOT4 and SPOT5 Take5 experiments initiated by CNES (http://www.cesbio.ups-tlse.fr/multitemp/). They provide optical images over the watershed from February to May 2013 and from April to August 2015 respectively, with a temporal and spatial resolution similar to future images from the Sentinel-2 and VENμS missions. This dataset was completed with LandSat8 and Deimos1 images in order to cover the whole growing season while reducing the gaps in remote sensing time series. Radiometric, geometric and atmospheric corrections were achieved by the THEIA land data center, and the KALIDEOS processing chain. The temporal dynamics of the green area index (GAI) plays a key role in soil-plant-atmosphere interactions and in biomass accumulation process. Consistent seasonal dynamics of the remotely sensed GAI was estimated by applying a radiative transfer model based on artificial neural networks (BVNET, Baret,Weiss et al.). This tool allows using multiple sensors at different view angles while removing sensor and acquisition artifacts. Simultaneously, in situ data such as GAI, DAM, final grain yield, soil humidity and irrigation rates were collected over a set of plots allowing to sample the heterogeneity of the entire watershed. ETR fluxes were also measured continuously over maize crops in the Lamasquère (CESBIO) experimental site (http://fluxnet.ornl.gov/site/477). Preliminary results show that the model reproduced correctly the final yield at both local and regional scale and for different years. It was also tested in a predictive mode with quite good results. The model is also able to provide good estimates of ETR. The results highlighted the capacity to take into account the effect of water stress and irrigation on DAM. This approach combined with Sentinel-2 mission can offer a great opportunity for operational applications such as optimization of crop water management over large areas.
NASA Astrophysics Data System (ADS)
McCombs, A. G.; Hiscox, A.; Wang, C.; Desai, A. R.
2016-12-01
A challenge in satellite land surface remote-sensing models of ecosystem carbon dynamics in agricultural systems is the lack of differentiation by crop type and management. This generalization can lead to large discrepancies between model predictions and eddy covariance flux tower observations of net ecosystem exchange of CO2 (NEE). Literature confirms that NEE varies remarkably among different crop types making the generalization of agriculture in remote sensing based models inaccurate. Here, we address this inaccuracy by identifying and mapping net ecosystem exchange (NEE) in agricultural fields by comparing bulk modeling and modeling by crop type, and using this information to develop empirical models for future use. We focus on mapping NEE in maize and soybean fields in the US Great Plains at higher spatial resolution using the fusion of MODIS and LandSAT surface reflectance. MODIS observed reflectance was downscaled using the ESTARFM downscaling methodology to match spatial scales to those found in LandSAT and that are more appropriate for carbon dynamics in agriculture fields. A multiple regression model was developed from surface reflectance of the downscaled MODIS and LandSAT remote sensing values calibrated against five FLUXNET/AMERIFLUX flux towers located on soybean and/or maize agricultural fields in the US Great Plains with multi-year NEE observations. Our new methodology improves upon bulk approximates to map and model carbon dynamics in maize and soybean fields, which have significantly different photosynthetic capacities.
NASA Technical Reports Server (NTRS)
Estes, Lyndon D.; Beukes, Hein; Bradley, Bethany A.; Debats, Stephanie R.; Oppenheimer, Michael; Ruane, Alex C.; Schulze, Roland; Tadross, Mark
2013-01-01
Crop model-specific biases are a key uncertainty affecting our understanding of climate change impacts to agriculture. There is increasing research focus on intermodel variation, but comparisons between mechanistic (MMs) and empirical models (EMs) are rare despite both being used widely in this field. We combined MMs and EMs to project future (2055) changes in the potential distribution (suitability) and productivity of maize and spring wheat in South Africa under 18 downscaled climate scenarios (9 models run under 2 emissions scenarios). EMs projected larger yield losses or smaller gains than MMs. The EMs' median-projected maize and wheat yield changes were 3.6% and 6.2%, respectively, compared to 6.5% and 15.2% for the MM. The EM projected a 10% reduction in the potential maize growing area, where the MM projected a 9% gain. Both models showed increases in the potential spring wheat production region (EM = 48%, MM = 20%), but these results were more equivocal because both models (particularly the EM) substantially overestimated the extent of current suitability. The substantial water-use efficiency gains simulated by the MMs under elevated CO2 accounted for much of the EMMM difference, but EMs may have more accurately represented crop temperature sensitivities. Our results align with earlier studies showing that EMs may show larger climate change losses than MMs. Crop forecasting efforts should expand to include EMMM comparisons to provide a fuller picture of crop-climate response uncertainties.
Climatic variability effects on summer cropping systems of the Iberian Peninsula
NASA Astrophysics Data System (ADS)
Capa-Morocho, M.; Rodríguez-Fonseca, B.; Ruiz-Ramos, M.
2012-04-01
Climate variability and changes in the frequency of extremes events have a direct impact on crop yield and damages. Climate anomalies projections at monthly and yearly timescale allows us for adapting a cropping system (crops, varieties and management) to take advantage of favorable conditions or reduce the effect of adverse conditions. The objective of this work is to develop indices to evaluate the effect of climatic variability in summer cropping systems of Iberian Peninsula, in an attempt of relating yield variability to climate variability, extending the work of Rodríguez-Puebla (2004). This paper analyses the evolution of the yield anomalies of irrigated maize in several representative agricultural locations in Spain with contrasting temperature and precipitation regimes and compare it to the evolution of different patterns of climate variability, extending the methodology of Porter and Semenov (2005). To simulate maize yields observed daily data of radiation, maximum and minimum temperature and precipitation were used. These data were obtained from the State Meteorological Agency of Spain (AEMET). Time series of simulated maize yields were computed with CERES-maize model for periods ranging from 22 to 49 years, depending on the observed climate data available for each location. The computed standardized anomalies yields were projected on different oceanic and atmospheric anomalous fields and the resulting patterns were compared with a set of documented patterns from the National Oceanic and Atmospheric Administration (NOAA). The results can be useful also for climate change impact assessment, providing a scientific basis for selection of climate change scenarios where combined natural and forced variability represent a hazard for agricultural production. Interpretation of impact projections would also be enhanced.
Raybould, Alan; Vlachos, Demetra
2011-06-01
Transgenic crops producing insecticidal proteins from Bacillus thuringiensis (Bt) provide economic, environmental and health benefits by maintaining or increasing crop yields with fewer applications of insecticide. To sustain these benefits, it is important to delay the evolution of insect resistance to the proteins, and to ensure that the proteins do not harm non-target organisms, particularly those that may control secondary pests that would otherwise flourish because of reduced insecticide applications. Vip3A is a Bt vegetative insecticidal protein that is active against lepidopterous pests. It has a different mode of action from other proteins for control of Lepidoptera in current Bt crops, and when combined with these proteins, it should help to delay the evolution of pest resistance to Bt crops. This paper presents data on the effects of Vip3A on non-target organisms, and an ecological risk assessment of MIR162 maize, which expresses Vip3Aa20. Laboratory studies indicate few adverse effects of Vip3A to non-target organisms: 11 of 12 species tested showed no adverse effects when exposed to high concentrations of Vip3A relative to estimated exposures resulting from cultivation of MIR162 maize. Daphnia magna exposed to Vip3Aa20 were unaffected in terms of survival or fecundity, but grew slightly more slowly than unexposed controls. The data indicate that cultivation of MIR162 maize poses negligible risk to non-target organisms, and that crops producing Vip3A are unlikely to adversely affect biological control organisms such that benefits from reduced insecticide applications are lost.
Peng, Zhengping; Liu, Yanan; Li, Yingchun; Abawi, Yahya; Wang, Yanqun; Men, Mingxin; An-Vo, Duc-Anh
2017-01-01
Nitrogen (N) is an essential macronutrient for plant growth and excessive application rates can decrease crop yield and increase N loss into the environment. Field experiments were carried out to understand the effects of N fertilizers on N utilization, crop yield and net income in wheat and maize rotation system of the North China Plain (NCP). Compared to farmers’ N rate (FN), the yield of wheat and maize in reduction N rate by 21–24% based on FN (RN) was improved by 451 kg ha-1, N uptakes improved by 17 kg ha-1 and net income increased by 1671 CNY ha-1, while apparent N loss was reduced by 156 kg ha-1. The controlled-release fertilizer with a 20% reduction of RN (CRF80%), a 20% reduction of RN together with dicyandiamide (RN80%+DCD) and a 20% reduction of RN added with nano-carbon (RN80%+NC) all resulted in an improvement in crop yield and decreased the apparent N losses compared to RN. Contrasted with RN80%+NC, the total crop yield in RN80%+DCD improved by 1185 kg ha-1, N uptake enhanced by 9 kg ha-1 and net income increased by 3929 CNY ha-1, while apparent N loss was similar. Therefore, a 37–39% overall decrease in N rate compared to farmers plus the nitrification inhibitor, DCD, was effective N control measure that increased crop yields, enhanced N efficiencies, and improved economic benefits, while mitigating apparent N loss. There is considerable scope for improved N use effieincy in the intensive wheat -maize rotation of the NCP. PMID:28228772
Increasing influence of heat stress on French maize yields from the 1960s to the 2030s
Hawkins, Ed; Fricker, Thomas E; Challinor, Andrew J; Ferro, Christopher A T; Kit Ho, Chun; Osborne, Tom M
2013-01-01
Improved crop yield forecasts could enable more effective adaptation to climate variability and change. Here, we explore how to combine historical observations of crop yields and weather with climate model simulations to produce crop yield projections for decision relevant timescales. Firstly, the effects on historical crop yields of improved technology, precipitation and daily maximum temperatures are modelled empirically, accounting for a nonlinear technology trend and interactions between temperature and precipitation, and applied specifically for a case study of maize in France. The relative importance of precipitation variability for maize yields in France has decreased significantly since the 1960s, likely due to increased irrigation. In addition, heat stress is found to be as important for yield as precipitation since around 2000. A significant reduction in maize yield is found for each day with a maximum temperature above 32 °C, in broad agreement with previous estimates. The recent increase in such hot days has likely contributed to the observed yield stagnation. Furthermore, a general method for producing near-term crop yield projections, based on climate model simulations, is developed and utilized. We use projections of future daily maximum temperatures to assess the likely change in yields due to variations in climate. Importantly, we calibrate the climate model projections using observed data to ensure both reliable temperature mean and daily variability characteristics, and demonstrate that these methods work using retrospective predictions. We conclude that, to offset the projected increased daily maximum temperatures over France, improved technology will need to increase base level yields by 12% to be confident about maintaining current levels of yield for the period 2016–2035; the current rate of yield technology increase is not sufficient to meet this target. PMID:23504849
NASA Astrophysics Data System (ADS)
Cai, Qian; Zhang, Yulong; Sun, Zhanxiang; Zheng, Jiaming; Bai, Wei; Zhang, Yue; Liu, Yang; Feng, Liangshan; Feng, Chen; Zhang, Zhe; Yang, Ning; Evers, Jochem B.; Zhang, Lizhen
2017-08-01
A large yield gap exists in rain-fed maize (Zea mays L.) production in semi-arid regions, mainly caused by frequent droughts halfway through the crop-growing period due to uneven distribution of rainfall. It is questionable whether irrigation systems are economically required in such a region since the total amount of rainfall does generally meet crop requirements. This study aimed to quantitatively determine the effects of water stress from jointing to grain filling on root and shoot growth and the consequences for maize grain yield, above- and below-ground dry matter, water uptake (WU) and water use efficiency (WUE). Pot experiments were conducted in 2014 and 2015 with a mobile rain shelter to achieve conditions of no, mild or severe water stress. Maize yield was not affected by mild water stress over 2 years, while severe stress reduced yield by 56 %. Both water stress levels decreased root biomass slightly but shoot biomass substantially. Mild water stress decreased root length but increased root diameter, resulting in no effect on root surface area. Due to the morphological plasticity in root growth and the increase in root / shoot ratio, WU under water stress was decreased, and overall WUE for both above-ground dry matter and grain yield increased. Our results demonstrate that an irrigation system might be not economically and ecologically necessary because the frequently occurring mild water stress did not reduce crop yield much. The study helps us to understand crop responses to water stress during a critical water-sensitive period (middle of the crop-growing season) and to mitigate drought risk in dry-land agriculture.
Mapping of a major QTL for salt tolerance of mature field-grown maize plants based on SNP markers.
Luo, Meijie; Zhao, Yanxin; Zhang, Ruyang; Xing, Jinfeng; Duan, Minxiao; Li, Jingna; Wang, Naishun; Wang, Wenguang; Zhang, Shasha; Chen, Zhihui; Zhang, Huasheng; Shi, Zi; Song, Wei; Zhao, Jiuran
2017-08-15
Salt stress significantly restricts plant growth and production. Maize is an important food and economic crop but is also a salt sensitive crop. Identification of the genetic architecture controlling salt tolerance facilitates breeders to select salt tolerant lines. However, the critical quantitative trait loci (QTLs) responsible for the salt tolerance of field-grown maize plants are still unknown. To map the main genetic factors contributing to salt tolerance in mature maize, a double haploid population (240 individuals) and 1317 single nucleotide polymorphism (SNP) markers were employed to produce a genetic linkage map covering 1462.05 cM. Plant height of mature maize cultivated in the saline field (SPH) and plant height-based salt tolerance index (ratio of plant height between saline and control fields, PHI) were used to evaluate salt tolerance of mature maize plants. A major QTL for SPH was detected on Chromosome 1 with the LOD score of 22.4, which explained 31.2% of the phenotypic variation. In addition, the major QTL conditioning PHI was also mapped at the same position on Chromosome 1, and two candidate genes involving in ion homeostasis were identified within the confidence interval of this QTL. The detection of the major QTL in adult maize plant establishes the basis for the map-based cloning of genes associated with salt tolerance and provides a potential target for marker assisted selection in developing maize varieties with salt tolerance.
Benson, L.V.
2011-01-01
Maize is the New World's preeminent grain crop and it provided the economic basis for human culture in many regions within the Americas. To flourish, maize needs water, sunlight (heat), and nutrients (e. g., nitrogen). In this paper, climate and soil chemistry data are used to evaluate the potential for dryland (rainon-field) agriculture in the semiarid southeastern Colorado Plateau and Rio Grande regions. Processes that impact maize agriculture such as nitrogen mineralization, infiltration of precipitation, bare soil evaporation, and transpiration are discussed and evaluated. Most of the study area, excepting high-elevation regions, receives sufficient solar radiation to grow maize. The salinities of subsurface soils in the central San Juan Basin are very high and their nitrogen concentrations are very low. In addition, soils of the central San Juan Basin are characterized by pH values that exceed 8.0, which limit the availability of both nitrogen and phosphorous. In general, the San Juan Basin, including Chaco Canyon, is the least promising part of the study area in terms of dryland farming. Calculations of field life, using values of organic nitrogen for the upper 50 cm of soil in the study area, indicate that most of the study area could not support a 10-bushel/acre crop of maize. The concepts, methods, and calculations used to quantify maize productivity in this study are applicable to maize cultivation in other environmental settings across the Americas. ?? 2010 US Government.
USDA-ARS?s Scientific Manuscript database
Adaptation of crops to climate change has motivated an increasing interest in the potential value of novel traits from wild species; maize wild relatives, the teosintes, harbor traits that may be useful to maize breeding. To study the ecogeographic distribution of teosinte we constructed a robust da...
Regulatory modules controlling maize inflorescence architecture
USDA-ARS?s Scientific Manuscript database
Genetic control of branching is a primary determinant of yield, regulating seed number and harvesting ability, yet little is known about the molecular networks that shape grain-bearing inflorescences of cereal crops. Here, we used the maize (Zea mays) inflorescence to investigate gene networks that...
Patterson, Sara E.; Bolivar-Medina, Jenny L.; Falbel, Tanya G.; Hedtcke, Janet L.; Nevarez-McBride, Danielle; Maule, Andrew F.; Zalapa, Juan E.
2016-01-01
As the world population grows and resources and climate conditions change, crop improvement continues to be one of the most important challenges for agriculturalists. The yield and quality of many crops is affected by abscission or shattering, and environmental stresses often hasten or alter the abscission process. Understanding this process can not only lead to genetic improvement, but also changes in cultural practices and management that will contribute to higher yields, improved quality and greater sustainability. As plant scientists, we have learned significant amounts about this process through the study of model plants such as Arabidopsis, tomato, rice, and maize. While these model systems have provided significant valuable information, we are sometimes challenged to use this knowledge effectively as variables including the economic value of the crop, the uniformity of the crop, ploidy levels, flowering and crossing mechanisms, ethylene responses, cultural requirements, responses to changes in environment, and cellular and tissue specific morphological differences can significantly influence outcomes. The value of genomic resources for lesser-studied crops such as cranberries and grapes and the orphan crop fonio will also be considered. PMID:26858730
Patterson, Sara E; Bolivar-Medina, Jenny L; Falbel, Tanya G; Hedtcke, Janet L; Nevarez-McBride, Danielle; Maule, Andrew F; Zalapa, Juan E
2015-01-01
As the world population grows and resources and climate conditions change, crop improvement continues to be one of the most important challenges for agriculturalists. The yield and quality of many crops is affected by abscission or shattering, and environmental stresses often hasten or alter the abscission process. Understanding this process can not only lead to genetic improvement, but also changes in cultural practices and management that will contribute to higher yields, improved quality and greater sustainability. As plant scientists, we have learned significant amounts about this process through the study of model plants such as Arabidopsis, tomato, rice, and maize. While these model systems have provided significant valuable information, we are sometimes challenged to use this knowledge effectively as variables including the economic value of the crop, the uniformity of the crop, ploidy levels, flowering and crossing mechanisms, ethylene responses, cultural requirements, responses to changes in environment, and cellular and tissue specific morphological differences can significantly influence outcomes. The value of genomic resources for lesser-studied crops such as cranberries and grapes and the orphan crop fonio will also be considered.
NASA Astrophysics Data System (ADS)
Estes, L.; Bradley, B.; Oppenheimer, M.; Beukes, H.; Schulze, R. E.; Tadross, M.
2010-12-01
Rising temperatures and altered precipitation patterns associated with climate change pose a significant threat to crop production, particularly in developing countries. In South Africa, a semi-arid country with a diverse agricultural sector, anthropogenic climate change is likely to affect staple crops and decrease food security. Here, we focus on maize production, South Africa’s most widely grown crop and one with high socio-economic value. We build on previous coarser-scaled studies by working at a finer spatial resolution and by employing two different modeling approaches: the process-based DSSAT Cropping System Model (CSM, version 4.5), and an empirical distribution model (Maxent). For climate projections, we use an ensemble of 10 general circulation models (GCMs) run under both high and low CO2 emissions scenarios (SRES A2 and B1). The models were down-scaled to historical climate records for 5838 quinary-scale catchments covering South Africa (mean area = 164.8 km2), using a technique based on self-organizing maps (SOMs) that generates precipitation patterns more consistent with observed gradients than those produced by the parent GCMs. Soil hydrological and mechanical properties were derived from textural and compositional data linked to a map of 26422 land forms (mean area = 46 km2), while organic carbon from 3377 soil profiles was mapped using regression kriging with 8 spatial predictors. CSM was run using typical management parameters for the several major dryland maize production regions, and with projected CO2 values. The Maxent distribution model was trained using maize locations identified using annual phenology derived from satellite images coupled with airborne crop sampling observations. Temperature and precipitation projections were based on GCM output, with an additional 10% increase in precipitation to simulate higher water-use efficiency under future CO2 concentrations. The two modeling approaches provide spatially explicit projections of gains and losses in maize productivity. We identify several areas-particularly along the southern and eastern boundaries of current production-with potential for increased productivity. However, larger areas, primarily in the more arid western and northern production regions, are likely to experience diminished productivity. The combination of process-based and distribution models for agricultural impacts assessments provides a useful comparison of two different crop modeling frameworks, as well as the finest scale investigation using a spatially-explicit implementation of a process-based model for South Africa. The large GCM ensemble and multiple emissions scenarios provide a broad climate risk assessment for current maize production. SOM downscaling can help improve climate impacts assessments by increasing their resolution, and by circumventing GCM precipitation schemes whose outcomes are highly divergent.
NASA Astrophysics Data System (ADS)
Sinha, B.; Singh Sangwan, K.; Maurya, Y.; Kumar, V.; Sarkar, C.; Chandra, B. P.; Sinha, V.
2015-08-01
In this study we use a high-quality data set of in situ ozone measurements at a suburban site called Mohali in the state of Punjab to estimate ozone-related crop yield losses for wheat, rice, cotton and maize for Punjab and the neighbouring state Haryana for the years 2011-2013. We intercompare crop yield loss estimates according to different exposure metrics, such as AOT40 (accumulated ozone exposure over a threshold of 40) and M7 (mean 7-hour ozone mixing ratio from 09:00 to 15:59), for the two major crop growing seasons of kharif (June-October) and rabi (November-April) and establish a new crop-yield-exposure relationship for southern Asian wheat, maize and rice cultivars. These are a factor of 2 more sensitive to ozone-induced crop yield losses compared to their European and American counterparts. Relative yield losses based on the AOT40 metrics ranged from 27 to 41 % for wheat, 21 to 26 % for rice, 3 to 5 % for maize and 47 to 58 % for cotton. Crop production losses for wheat amounted to 20.8 ± 10.4 million t in the fiscal year of 2012-2013 and 10.3 ± 4.7 million t in the fiscal year of 2013-2014 for Punjab and Haryana taken together. Crop production losses for rice totalled 5.4 ± 1.2 million t in the fiscal year of 2012-2013 and 3.2 ± 0.8 million t in the year 2013-2014 for Punjab and Haryana taken together. The Indian National Food Security Ordinance entitles ~ 820 million of India's poor to purchase about 60 kg of rice or wheat per person annually at subsidized rates. The scheme requires 27.6 Mt of wheat and 33.6 Mt of rice per year. The mitigation of ozone-related crop production losses in Punjab and Haryana alone could provide > 50 % of the wheat and ~ 10 % of the rice required for the scheme. The total economic cost losses in Punjab and Haryana amounted to USD 6.5 ± 2.2 billion in the fiscal year of 2012-2013 and USD 3.7 ± 1.2 billion in the fiscal year of 2013-2014. This economic loss estimate represents a very conservative lower limit based on the minimum support price of the crop, which is lower than the actual production costs. The upper limit for ozone-related crop yield losses in all of India currently amounts to 3.5-20 % of India's GDP. The mitigation of high surface ozone would require relatively little investment in comparison to the economic losses incurred presently. Therefore, ozone mitigation can yield massive benefits in terms of ensuring food security and boosting the economy. The co-benefits of ozone mitigation also include a decrease in the ozone-related mortality and morbidity and a reduction of the ozone-induced warming in the lower troposphere.
Biodiversity can support a greener revolution in Africa
Snapp, Sieglinde S.; Blackie, Malcolm J.; Gilbert, Robert A.; Bezner-Kerr, Rachel; Kanyama-Phiri, George Y.
2010-01-01
The Asian green revolution trebled grain yields through agrochemical intensification of monocultures. Associated environmental costs have subsequently emerged. A rapidly changing world necessitates sustainability principles be developed to reinvent these technologies and test them at scale. The need is particularly urgent in Africa, where ecosystems are degrading and crop yields have stagnated. An unprecedented opportunity to reverse this trend is unfolding in Malawi, where a 90% subsidy has ensured access to fertilization and improved maize seed, with substantive gains in productivity for millions of farmers. To test if economic and ecological sustainability could be improved, we preformed manipulative experimentation with crop diversity in a countrywide trial (n = 991) and at adaptive, local scales through a decade of participatory research (n = 146). Spatial and temporal treatments compared monoculture maize with legume-diversified maize that included annual and semiperennial (SP) growth habits in temporal and spatial combinations, including rotation, SP rotation, intercrop, and SP intercrop systems. Modest fertilizer intensification doubled grain yield compared with monoculture maize. Biodiversity improved ecosystem function further: SP rotation systems at half-fertilizer rates produced equivalent quantities of grain, on a more stable basis (yield variability reduced from 22% to 13%) compared with monoculture. Across sites, profitability and farmer preference matched: SP rotations provided twofold superior returns, whereas diversification of maize with annual legumes provided more modest returns. In this study, we provide evidence that in Africa, crop diversification can be effective at a countrywide scale, and that shrubby, grain legumes can enhance environmental and food security. PMID:21098285
Storage of Maize in Purdue Improved Crop Storage (PICS) Bags
2017-01-01
Interest in using hermetic technologies as a pest management solution for stored grain has risen in recent years. One hermetic approach, Purdue Improved Crop Storage (PICS) bags, has proven successful in controlling the postharvest pests of cowpea. This success encouraged farmers to use of PICS bags for storing other crops including maize. To assess whether maize can be safely stored in PICS bags without loss of quality, we carried out laboratory studies of maize grain infested with Sitophilus zeamais (Motshulsky) and stored in PICS triple bags or in woven polypropylene bags. Over an eight month observation period, temperatures in the bags correlated with ambient temperature for all treatments. Relative humidity inside PICS bags remained constant over this period despite the large changes that occurred in the surrounding environment. Relative humidity in the woven bags followed ambient humidity closely. PICS bags containing S. zeamais-infested grain saw a significant decline in oxygen compared to the other treatments. Grain moisture content declined in woven bags, but remained high in PICS bags. Seed germination was not significantly affected over the first six months in all treatments, but declined after eight months of storage when infested grain was held in woven bags. Relative damage was low across treatments and not significantly different between treatments. Overall, maize showed no signs of deterioration in PICS bags versus the woven bags and PICS bags were superior to woven bags in terms of specific metrics of grain quality. PMID:28072835
Yang, Liming; Fountain, Jake C.; Wang, Hui; Ni, Xinzhi; Ji, Pingsheng; Lee, Robert D.; Kemerait, Robert C.; Scully, Brian T.; Guo, Baozhu
2015-01-01
Drought stress decreases crop growth, yield, and can further exacerbate pre-harvest aflatoxin contamination. Tolerance and adaptation to drought stress is an important trait of agricultural crops like maize. However, maize genotypes with contrasting drought tolerances have been shown to possess both common and genotype-specific adaptations to cope with drought stress. In this research, the physiological and metabolic response patterns in the leaves of maize seedlings subjected to drought stress were investigated using six maize genotypes including: A638, B73, Grace-E5, Lo964, Lo1016, and Va35. During drought treatments, drought-sensitive maize seedlings displayed more severe symptoms such as chlorosis and wilting, exhibited significant decreases in photosynthetic parameters, and accumulated significantly more reactive oxygen species (ROS) and reactive nitrogen species (RNS) than tolerant genotypes. Sensitive genotypes also showed rapid increases in enzyme activities involved in ROS and RNS metabolism. However, the measured antioxidant enzyme activities were higher in the tolerant genotypes than in the sensitive genotypes in which increased rapidly following drought stress. The results suggest that drought stress causes differential responses to oxidative and nitrosative stress in maize genotypes with tolerant genotypes with slower reaction and less ROS and RNS production than sensitive ones. These differential patterns may be utilized as potential biological markers for use in marker assisted breeding. PMID:26492235
Biotech/GM crops in horticulture: plum cv. HoneySweet resistant to plum pox virus
USDA-ARS?s Scientific Manuscript database
Commercialization of Biotech crops started in 1995. By 2011, genetically modified (GM) crops were grown world-wide on 160 million ha. Only 114.507 ha of GM crops were grown in Europe, of that, 114.490 ha were Bt maize and 17 ha were potato for industrial starch production. Currently, developing c...
Wang, Guihua; Sheng, Lichao; Zhao, Dan; Sheng, Jiandong; Wang, Xiurong; Liao, Hong
2016-01-01
Soybean/maize intercropping has remarkable advantages in increasing crop yield and nitrogen (N) efficiency. However, little is known about the contributions of rhizobia or arbuscular mycorrhizal fungi (AMF) to yield increases and N acquisition in the intercropping system. Plus, the mechanisms controlling carbon (C) and N allocation in intercropping systems remain unsettled. In the present study, a greenhouse experiment combined with 15N and 13C labeling was conducted using various inoculation and nutrient treatments. The results showed that co-inoculation with AMF and rhizobia dramatically increased biomass and N content of soybean and maize, and moderate application of N and phosphorus largely amplified the effect of co-inoculation. Maize had a competitive advantage over soybean only under co-inoculation and moderate nutrient availability conditions, indicating that the effects of AMF and rhizobia in intercropping systems are closely related to nutrient status. Results from 15N labeling showed that the amount of N transferred from soybean to maize in co-inoculations was 54% higher than that with AMF inoculation alone, with this increased N transfer partly resulting from symbiotic N fixation. The results from 13C labeling showed that 13C content increased in maize shoots and decreased in soybean roots with AMF inoculation compared to uninoculated controls. Yet, with co-inoculation, 13C content increased in soybean. These results indicate that photosynthate assimilation is stimulated by AM symbiosis in maize and rhizobial symbiosis in soybean, but AMF inoculation leads to soybean investing more carbon than maize into common mycorrhizal networks (CMNs). Overall, the results herein demonstrate that the growth advantage of maize when intercropped with soybean is due to acquisition of N by maize via CMNs while this crop contributes less C into CMNs than soybean under co-inoculation conditions. PMID:28018420
Wang, Guihua; Sheng, Lichao; Zhao, Dan; Sheng, Jiandong; Wang, Xiurong; Liao, Hong
2016-01-01
Soybean/maize intercropping has remarkable advantages in increasing crop yield and nitrogen (N) efficiency. However, little is known about the contributions of rhizobia or arbuscular mycorrhizal fungi (AMF) to yield increases and N acquisition in the intercropping system. Plus, the mechanisms controlling carbon (C) and N allocation in intercropping systems remain unsettled. In the present study, a greenhouse experiment combined with 15 N and 13 C labeling was conducted using various inoculation and nutrient treatments. The results showed that co-inoculation with AMF and rhizobia dramatically increased biomass and N content of soybean and maize, and moderate application of N and phosphorus largely amplified the effect of co-inoculation. Maize had a competitive advantage over soybean only under co-inoculation and moderate nutrient availability conditions, indicating that the effects of AMF and rhizobia in intercropping systems are closely related to nutrient status. Results from 15 N labeling showed that the amount of N transferred from soybean to maize in co-inoculations was 54% higher than that with AMF inoculation alone, with this increased N transfer partly resulting from symbiotic N fixation. The results from 13 C labeling showed that 13 C content increased in maize shoots and decreased in soybean roots with AMF inoculation compared to uninoculated controls. Yet, with co-inoculation, 13 C content increased in soybean. These results indicate that photosynthate assimilation is stimulated by AM symbiosis in maize and rhizobial symbiosis in soybean, but AMF inoculation leads to soybean investing more carbon than maize into common mycorrhizal networks (CMNs). Overall, the results herein demonstrate that the growth advantage of maize when intercropped with soybean is due to acquisition of N by maize via CMNs while this crop contributes less C into CMNs than soybean under co-inoculation conditions.
Field-Evolved Resistance to Bt Maize by Western Corn Rootworm
Gassmann, Aaron J.; Petzold-Maxwell, Jennifer L.; Keweshan, Ryan S.; Dunbar, Mike W.
2011-01-01
Background Crops engineered to produce insecticidal toxins derived from the bacterium Bacillus thuringiensis (Bt) are planted on millions of hectares annually, reducing the use of conventional insecticides and suppressing pests. However, the evolution of resistance could cut short these benefits. A primary pest targeted by Bt maize in the United States is the western corn rootworm Diabrotica virgifera virgifera (Coleoptera: Chrysomelidae). Methodology/Principal Findings We report that fields identified by farmers as having severe rootworm feeding injury to Bt maize contained populations of western corn rootworm that displayed significantly higher survival on Cry3Bb1 maize in laboratory bioassays than did western corn rootworm from fields not associated with such feeding injury. In all cases, fields experiencing severe rootworm feeding contained Cry3Bb1 maize. Interviews with farmers indicated that Cry3Bb1 maize had been grown in those fields for at least three consecutive years. There was a significant positive correlation between the number of years Cry3Bb1 maize had been grown in a field and the survival of rootworm populations on Cry3Bb1 maize in bioassays. However, there was no significant correlation among populations for survival on Cry34/35Ab1 maize and Cry3Bb1 maize, suggesting a lack of cross resistance between these Bt toxins. Conclusions/Significance This is the first report of field-evolved resistance to a Bt toxin by the western corn rootworm and by any species of Coleoptera. Insufficient planting of refuges and non-recessive inheritance of resistance may have contributed to resistance. These results suggest that improvements in resistance management and a more integrated approach to the use of Bt crops may be necessary. PMID:21829470
Benefits of seasonal forecasts of crop yields
NASA Astrophysics Data System (ADS)
Sakurai, G.; Okada, M.; Nishimori, M.; Yokozawa, M.
2017-12-01
Major factors behind recent fluctuations in food prices include increased biofuel production and oil price fluctuations. In addition, several extreme climate events that reduced worldwide food production coincided with upward spikes in food prices. The stabilization of crop yields is one of the most important tasks to stabilize food prices and thereby enhance food security. Recent development of technologies related to crop modeling and seasonal weather forecasting has made it possible to forecast future crop yields for maize and soybean. However, the effective use of these technologies remains limited. Here we present the potential benefits of seasonal crop-yield forecasts on a global scale for choice of planting day. For this purpose, we used a model (PRYSBI-2) that can well replicate past crop yields both for maize and soybean. This model system uses a Bayesian statistical approach to estimate the parameters of a basic process-based model of crop growth. The spatial variability of model parameters was considered by estimating the posterior distribution of the parameters from historical yield data by using the Markov-chain Monte Carlo (MCMC) method with a resolution of 1.125° × 1.125°. The posterior distributions of model parameters were estimated for each spatial grid with 30 000 MCMC steps of 10 chains each. By using this model and the estimated parameter distributions, we were able to estimate not only crop yield but also levels of associated uncertainty. We found that the global average crop yield increased about 30% as the result of the optimal selection of planting day and that the seasonal forecast of crop yield had a large benefit in and near the eastern part of Brazil and India for maize and the northern area of China for soybean. In these countries, the effects of El Niño and Indian Ocean dipole are large. The results highlight the importance of developing a system to forecast global crop yields.
Adapting crop rotations to climate change in regional impact modelling assessments.
Teixeira, Edmar I; de Ruiter, John; Ausseil, Anne-Gaelle; Daigneault, Adam; Johnstone, Paul; Holmes, Allister; Tait, Andrew; Ewert, Frank
2018-03-01
The environmental and economic sustainability of future cropping systems depends on adaptation to climate change. Adaptation studies commonly rely on agricultural systems models to integrate multiple components of production systems such as crops, weather, soil and farmers' management decisions. Previous adaptation studies have mostly focused on isolated monocultures. However, in many agricultural regions worldwide, multi-crop rotations better represent local production systems. It is unclear how adaptation interventions influence crops grown in sequences. We develop a catchment-scale assessment to investigate the effects of tactical adaptations (choice of genotype and sowing date) on yield and underlying crop-soil factors of rotations. Based on locally surveyed data, a silage-maize followed by catch-crop-wheat rotation was simulated with the APSIM model for the RCP 8.5 emission scenario, two time periods (1985-2004 and 2080-2100) and six climate models across the Kaituna catchment in New Zealand. Results showed that direction and magnitude of climate change impacts, and the response to adaptation, varied spatially and were affected by rotation carryover effects due to agronomical (e.g. timing of sowing and harvesting) and soil (e.g. residual nitrogen, N) aspects. For example, by adapting maize to early-sowing dates under a warmer climate, there was an advance in catch crop establishment which enhanced residual soil N uptake. This dynamics, however, differed with local environment and choice of short- or long-cycle maize genotypes. Adaptation was insufficient to neutralize rotation yield losses in lowlands but consistently enhanced yield gains in highlands, where other constraints limited arable cropping. The positive responses to adaptation were mainly due to increases in solar radiation interception across the entire growth season. These results provide deeper insights on the dynamics of climate change impacts for crop rotation systems. Such knowledge can be used to develop improved regional impact assessments for situations where multi-crop rotations better represent predominant agricultural systems. Copyright © 2017 Elsevier B.V. All rights reserved.
Meta-analysis of climate impacts and uncertainty on crop yields in Europe
NASA Astrophysics Data System (ADS)
Knox, Jerry; Daccache, Andre; Hess, Tim; Haro, David
2016-11-01
Future changes in temperature, rainfall and soil moisture could threaten agricultural land use and crop productivity in Europe, with major consequences for food security. We assessed the projected impacts of climate change on the yield of seven major crop types (viz wheat, barley, maize, potato, sugar beet, rice and rye) grown in Europe using a systematic review (SR) and meta-analysis of data reported in 41 original publications from an initial screening of 1748 studies. Our approach adopted an established SR procedure developed by the Centre for Evidence Based Conservation constrained by inclusion criteria and defined methods for literature searches, data extraction, meta-analysis and synthesis. Whilst similar studies exist to assess climate impacts on crop yield in Africa and South Asia, surprisingly, no comparable synthesis has been undertaken for Europe. Based on the reported results (n = 729) we show that the projected change in average yield in Europe for the seven crops by the 2050s is +8%. For wheat and sugar beet, average yield changes of +14% and +15% are projected, respectively. There were strong regional differences with crop impacts in northern Europe being higher (+14%) and more variable compared to central (+6%) and southern (+5) Europe. Maize is projected to suffer the largest negative mean change in southern Europe (-11%). Evidence of climate impacts on yield was extensive for wheat, maize, sugar beet and potato, but very limited for barley, rice and rye. The implications for supporting climate adaptation policy and informing climate impacts crop science research in Europe are discussed.
Increasing Cropping System Diversity Balances Productivity, Profitability and Environmental Health
Davis, Adam S.; Hill, Jason D.; Chase, Craig A.; Johanns, Ann M.; Liebman, Matt
2012-01-01
Balancing productivity, profitability, and environmental health is a key challenge for agricultural sustainability. Most crop production systems in the United States are characterized by low species and management diversity, high use of fossil energy and agrichemicals, and large negative impacts on the environment. We hypothesized that cropping system diversification would promote ecosystem services that would supplement, and eventually displace, synthetic external inputs used to maintain crop productivity. To test this, we conducted a field study from 2003–2011 in Iowa that included three contrasting systems varying in length of crop sequence and inputs. We compared a conventionally managed 2-yr rotation (maize-soybean) that received fertilizers and herbicides at rates comparable to those used on nearby farms with two more diverse cropping systems: a 3-yr rotation (maize-soybean-small grain + red clover) and a 4-yr rotation (maize-soybean-small grain + alfalfa-alfalfa) managed with lower synthetic N fertilizer and herbicide inputs and periodic applications of cattle manure. Grain yields, mass of harvested products, and profit in the more diverse systems were similar to, or greater than, those in the conventional system, despite reductions of agrichemical inputs. Weeds were suppressed effectively in all systems, but freshwater toxicity of the more diverse systems was two orders of magnitude lower than in the conventional system. Results of our study indicate that more diverse cropping systems can use small amounts of synthetic agrichemical inputs as powerful tools with which to tune, rather than drive, agroecosystem performance, while meeting or exceeding the performance of less diverse systems. PMID:23071739
Spatial variability of leaf wetness duration in different crop canopies
NASA Astrophysics Data System (ADS)
Sentelhas, Paulo C.; Gillespie, Terry J.; Batzer, Jean C.; Gleason, Mark L.; Monteiro, José Eduardo B. A.; Pezzopane, José Ricardo M.; Pedro, Mário J.
2005-07-01
The spatial variability of leaf wetness duration (LWD) was evaluated in four different height-structure crop canopies: apple, coffee, maize, and grape. LWD measurements were made using painted flat plate, printed-circuit wetness sensors deployed in different positions above and inside the crops, with inclination angles ranging from 30 to 45°. For apple trees, the sensors were installed in 12 east-west positions: 4 at each of the top (3.3 m), middle (2.1 m), and bottom (1.1 m) levels. For young coffee plants (80 cm tall), four sensors were installed close to the leaves at heights of 20, 40, 60, and 80 cm. For the maize and grape crops, LWD sensors were installed in two positions, one just below the canopy top and another inside the canopy. Adjacent to each experiment, LWD was measured above nearby mowed turfgrass with the same kind of flat plate sensor, deployed at 30 cm and between 30 and 45°. We found average LWD varied by canopy position for apple and maize (P<0.05). In these cases, LWD was longer at the top, particularly when dew was the source of wetness. For grapes, cultivated in a hedgerow system and for young coffee plants, average LWD did not differ between the top and inside the canopy. The comparison by geometric mean regression analysis between crop and turfgrass LWD measurements showed that sensors at 30 cm over turfgrass provided quite accurate estimates of LWD at the top of the crops, despite large differences in crop height and structure, but poorer estimates for wetness within leaf canopies.
Spatial variability of leaf wetness duration in different crop canopies.
Sentelhas, Paulo C; Gillespie, Terry J; Batzer, Jean C; Gleason, Mark L; Monteiro, José Eduardo B A; Pezzopane, José Ricardo M; Pedro, Mário J
2005-07-01
The spatial variability of leaf wetness duration (LWD) was evaluated in four different height-structure crop canopies: apple, coffee, maize, and grape. LWD measurements were made using painted flat plate, printed-circuit wetness sensors deployed in different positions above and inside the crops, with inclination angles ranging from 30 to 45 degrees. For apple trees, the sensors were installed in 12 east-west positions: 4 at each of the top (3.3 m), middle (2.1 m), and bottom (1.1 m) levels. For young coffee plants (80 cm tall), four sensors were installed close to the leaves at heights of 20, 40, 60, and 80 cm. For the maize and grape crops, LWD sensors were installed in two positions, one just below the canopy top and another inside the canopy. Adjacent to each experiment, LWD was measured above nearby mowed turfgrass with the same kind of flat plate sensor, deployed at 30 cm and between 30 and 45 degrees. We found average LWD varied by canopy position for apple and maize (P<0.05). In these cases, LWD was longer at the top, particularly when dew was the source of wetness. For grapes, cultivated in a hedgerow system and for young coffee plants, average LWD did not differ between the top and inside the canopy. The comparison by geometric mean regression analysis between crop and turfgrass LWD measurements showed that sensors at 30 cm over turfgrass provided quite accurate estimates of LWD at the top of the crops, despite large differences in crop height and structure, but poorer estimates for wetness within leaf canopies.
Increasing cropping system diversity balances productivity, profitability and environmental health.
Davis, Adam S; Hill, Jason D; Chase, Craig A; Johanns, Ann M; Liebman, Matt
2012-01-01
Balancing productivity, profitability, and environmental health is a key challenge for agricultural sustainability. Most crop production systems in the United States are characterized by low species and management diversity, high use of fossil energy and agrichemicals, and large negative impacts on the environment. We hypothesized that cropping system diversification would promote ecosystem services that would supplement, and eventually displace, synthetic external inputs used to maintain crop productivity. To test this, we conducted a field study from 2003-2011 in Iowa that included three contrasting systems varying in length of crop sequence and inputs. We compared a conventionally managed 2-yr rotation (maize-soybean) that received fertilizers and herbicides at rates comparable to those used on nearby farms with two more diverse cropping systems: a 3-yr rotation (maize-soybean-small grain + red clover) and a 4-yr rotation (maize-soybean-small grain + alfalfa-alfalfa) managed with lower synthetic N fertilizer and herbicide inputs and periodic applications of cattle manure. Grain yields, mass of harvested products, and profit in the more diverse systems were similar to, or greater than, those in the conventional system, despite reductions of agrichemical inputs. Weeds were suppressed effectively in all systems, but freshwater toxicity of the more diverse systems was two orders of magnitude lower than in the conventional system. Results of our study indicate that more diverse cropping systems can use small amounts of synthetic agrichemical inputs as powerful tools with which to tune, rather than drive, agroecosystem performance, while meeting or exceeding the performance of less diverse systems.
Improved Satellite-based Crop Yield Mapping by Spatially Explicit Parameterization of Crop Phenology
NASA Astrophysics Data System (ADS)
Jin, Z.; Azzari, G.; Lobell, D. B.
2016-12-01
Field-scale mapping of crop yields with satellite data often relies on the use of crop simulation models. However, these approaches can be hampered by inaccuracies in the simulation of crop phenology. Here we present and test an approach to use dense time series of Landsat 7 and 8 acquisitions data to calibrate various parameters related to crop phenology simulation, such as leaf number and leaf appearance rates. These parameters are then mapped across the Midwestern United States for maize and soybean, and for two different simulation models. We then implement our recently developed Scalable satellite-based Crop Yield Mapper (SCYM) with simulations reflecting the improved phenology parameterizations, and compare to prior estimates based on default phenology routines. Our preliminary results show that the proposed method can effectively alleviate the underestimation of early-season LAI by the default Agricultural Production Systems sIMulator (APSIM), and that spatially explicit parameterization for the phenology model substantially improves the SCYM performance in capturing the spatiotemporal variation in maize and soybean yield. The scheme presented in our study thus preserves the scalability of SCYM, while significantly reducing its uncertainty.
Gramene 2013: comparative plant genomics resources.
Monaco, Marcela K; Stein, Joshua; Naithani, Sushma; Wei, Sharon; Dharmawardhana, Palitha; Kumari, Sunita; Amarasinghe, Vindhya; Youens-Clark, Ken; Thomason, James; Preece, Justin; Pasternak, Shiran; Olson, Andrew; Jiao, Yinping; Lu, Zhenyuan; Bolser, Dan; Kerhornou, Arnaud; Staines, Dan; Walts, Brandon; Wu, Guanming; D'Eustachio, Peter; Haw, Robin; Croft, David; Kersey, Paul J; Stein, Lincoln; Jaiswal, Pankaj; Ware, Doreen
2014-01-01
Gramene (http://www.gramene.org) is a curated online resource for comparative functional genomics in crops and model plant species, currently hosting 27 fully and 10 partially sequenced reference genomes in its build number 38. Its strength derives from the application of a phylogenetic framework for genome comparison and the use of ontologies to integrate structural and functional annotation data. Whole-genome alignments complemented by phylogenetic gene family trees help infer syntenic and orthologous relationships. Genetic variation data, sequences and genome mappings available for 10 species, including Arabidopsis, rice and maize, help infer putative variant effects on genes and transcripts. The pathways section also hosts 10 species-specific metabolic pathways databases developed in-house or by our collaborators using Pathway Tools software, which facilitates searches for pathway, reaction and metabolite annotations, and allows analyses of user-defined expression datasets. Recently, we released a Plant Reactome portal featuring 133 curated rice pathways. This portal will be expanded for Arabidopsis, maize and other plant species. We continue to provide genetic and QTL maps and marker datasets developed by crop researchers. The project provides a unique community platform to support scientific research in plant genomics including studies in evolution, genetics, plant breeding, molecular biology, biochemistry and systems biology.
Decadal reduction of Chinese agriculture after a regional nuclear war
NASA Astrophysics Data System (ADS)
Xia, Lili; Robock, Alan; Mills, Michael; Stenke, Andrea; Helfand, Ira
2015-02-01
A regional nuclear war between India and Pakistan could decrease global surface temperature by 1°C-2°C for 5-10 years and have major impacts on precipitation and solar radiation reaching Earth's surface. Using a crop simulation model forced by three global climate model simulations, we investigate the impacts on agricultural production in China, the largest grain producer in the world. In the first year after the regional nuclear war, a cooler, drier, and darker environment would reduce annual rice production by 30 megaton (Mt) (29%), maize production by 36 Mt (20%), and wheat production by 23 Mt (53%). With different agriculture management—no irrigation, auto irrigation, 200 kg/ha nitrogen fertilizer, and 10 days delayed planting date—simulated national crop production reduces 16%-26% for rice, 9%-20% for maize, and 32%-43% for wheat during 5 years after the nuclear war event. This reduction of food availability would continue, with gradually decreasing amplitude, for more than a decade. Assuming these impacts are indicative of those in other major grain producers, a nuclear war using much less than 1% of the current global arsenal could produce a global food crisis and put a billion people at risk of famine.
Bulk canopy resistance: Modeling for the estimation of actual evapotranspiration of maize
NASA Astrophysics Data System (ADS)
Gharsallah, O.; Corbari, C.; Mancini, M.; Rana, G.
2009-04-01
Due to the scarcity of water resources, the correct evaluation of water losses by the crops as evapotranspiration (ET) is very important in irrigation management. This work presents a model for estimating actual evapotranspiration on hourly and daily scales of maize crop grown in well water condition in the Lombardia Region (North Italy). The maize is a difficult crop to model from the soil-canopy-atmosphere point of view, due to its very complex architecture and big height. The present ET model is based on the Penman-Monteith equation using Katerji and Perrier approach for modelling the variable canopy resistance value (rc). In fact rc is a primary factor in the evapotranspiration process and needs to be accurately estimated. Furthermore, ET also has an aerodynamic component, hence it depends on multiple factors such as meteorological variables and crop water condition. The proposed approach appears through a linear model in which rc depends on climate variables and aerodynamic resistance [rc/ra = f(r*/ra)] where ra is the aerodynamic resistance, function of wind speed and crop height, and r* is called "critical" or "climatic" resistance. Here, under humid climate, the model has been applied with good results at both hourly and daily scales. In this study, the reached good accuracy shows that the model worked well and are clearly more accurate than those obtained by using the more diffuse and known standard FAO 56 method for well watered and stressed crops.
Carbon dynamics under a maize-Faidherbia albida agroforestry system in Zambia
NASA Astrophysics Data System (ADS)
Yengwe, Jones; Chipatela, Floyd; Amalia, Okky; Lungu, Obed; De Neve, Stefaan
2017-04-01
Continued crop residue removal for other competing uses such as livestock or household has exacerbated the decline of soil organic matter. Foliar litter from indigenous agroforestry trees such as Faidherbia albida (F. albida) can be a source of organic matter input in resource constrained farmers' fields to mitigate the declining fertility status of many Zambian soils. A controlled incubation study was conducted to evaluate the short term degradability of F. albida litter and maize plant residue. Further, we assessed the effect of F. albida litter and maize residue amendments on microbial biomass carbon (MBC) and enzyme activity. Soils were collected from outside and under the canopies of F. albida trees from six sites with 8, 9, 11, 15, and two sites with > 35-year old trees. Soils from under the canopies were amended with F. albida+maize residue (FMU), F. albida litter (FU), maize residue (MU) and controls were not amended (CTRU). The soils from outside the canopy were amended with maize residue (MO) and controls were not amended (CTRO). These were adjusted to 50% WFPS and incubated for twelve weeks at 27°C to assess C mineralization, microbial biomass carbon (MBC) and enzyme activity (Dehydrogenase, β-glucosidase and β-glucosaminidase activity). The material used as amendment in the incubation experiment had two pools of carbon: a labile and a recalcitrant pool. The mixed amendment FMU had a significantly (p<0.05) higher C mineralization compared to the other amendments for all incubated soils. The treatment MU had a higher net C mineralized than FU. However, C mineralization from FU treatment was generally higher in the first 20 days of the incubation period but declined thereafter for all the soils. The net C mineralized from MU did not significantly differ with MO in all except soil from 11-year old trees. Enzyme activity and MBC consistently increased due to amendments for all soils. Enzyme activity was significantly (p<0.05) positively correlated with MBC in amended soils. Net C mineralized and microbial activity were high in FMU because of large C substrate added. Indicating a high C mineralization potential, MBC and enzyme activity for soils under the canopy compared with soils outside the canopy. F. albida trees therefore could be a source of labile C in F. albida-Maize systems nevertheless, in the long term, input from other crop residue such as maize and savanna grasses which have a large recalcitrant pool of C are important in sustaining SOC on these fields.
Glenn, Kevin C
2007-01-01
During the last decade, the area of biotech crops modified for agronomic input traits (e.g., herbicide tolerance and insect protection) has increased to 90 million halyear, grown by over 8 million farmers in a total of 17 countries. As adoption of these improved agronomic trait biotech crops has grown, so has interest in biotech crops that have improved nutritional characteristics for use as feed and food. A previous publication by the International Life Sciences Institute (ILSI) reported on the principles and concepts proposed for the nutritional and safety assessments of foods and feeds nutritionally improved through biotechnology. In this paper, the guidelines and principles recommended in the earlier publication are discussed relative to a specific case study, Lysine maize. Lysine maize is a feed ingredient with enhanced nutritional characteristics for poultry and swine and provides an alternative to the need for addition of supplemental lysine to some diets for these animals. The 2004 Task Force of the ILSI has also applied the concepts from that report to 4 other case studies: sweet potato enriched in provitamin A (2 examples, one using biotechnology and one using conventional breeding); Golden Rice 2; double-embryo maize; and ASP-1 enhanced protein sweet potato.
Qin, Wei; Hu, Chunsheng; Oenema, Oene
2015-01-01
Global crop yields are limited by water and nutrient availability. Soil mulching (with plastic or straw) reduces evaporation, modifies soil temperature and thereby affects crop yields. Reported effects of mulching are sometimes contradictory, likely due to differences in climatic conditions, soil characteristics, crop species, and also water and nitrogen (N) input levels. Here we report on a meta-analysis of the effects of mulching on wheat and maize, using 1310 yield observations from 74 studies conducted in 19 countries. Our results indicate that mulching significantly increased yields, WUE (yield per unit water) and NUE (yield per unit N) by up to 60%, compared with no-mulching. Effects were larger for maize than wheat, and larger for plastic mulching than straw mulching. Interestingly, plastic mulching performed better at relatively low temperature while straw mulching showed the opposite trend. Effects of mulching also tended to decrease with increasing water input. Mulching effects were not related to soil organic matter content. In conclusion, soil mulching can significantly increase maize and wheat yields, WUE and NUE, and thereby may contribute to closing the yield gap between attainable and actual yields, especially in dryland and low nutrient input agriculture. The management of soil mulching requires site-specific knowledge. PMID:26586114
NASA Astrophysics Data System (ADS)
Baranoski, Gladimir V. G.; Van Leeuwen, Spencer R.
2017-07-01
The reliable detection and monitoring of changes in the water status of crops composed of plants like maize, a highly adaptable C4 species in large demand for both food and biofuel production, are longstanding remote sensing goals. Existing procedures employed to achieve these goals rely predominantly on the spectral signatures of plant leaves in the infrared domain where the light absorption within the foliar tissues is dominated by water. It has been suggested that such procedures could be implemented using subsurface reflectance to transmittance ratios obtained in the visible (photosynthetic) domain with the assistance of polarization devices. However, the experiments leading to this proposition were performed on detached maize leaves, which were not influenced by the whole (living) plant's adaptation mechanisms to water stress. In this work, we employ predictive simulations of light-leaf interactions in the photosynthetic domain to demonstrate that the living specimens' physiological responses to dehydration stress should be taken into account in this context. Our findings also indicate that a reflectance to transmittance ratio obtained in the photosynthetic domain at a lower angle of incidence without the use of polarization devices may represent a cost-effective alternative for the assessment of water stress states in maize crops.
Qin, Wei; Hu, Chunsheng; Oenema, Oene
2015-11-20
Global crop yields are limited by water and nutrient availability. Soil mulching (with plastic or straw) reduces evaporation, modifies soil temperature and thereby affects crop yields. Reported effects of mulching are sometimes contradictory, likely due to differences in climatic conditions, soil characteristics, crop species, and also water and nitrogen (N) input levels. Here we report on a meta-analysis of the effects of mulching on wheat and maize, using 1310 yield observations from 74 studies conducted in 19 countries. Our results indicate that mulching significantly increased yields, WUE (yield per unit water) and NUE (yield per unit N) by up to 60%, compared with no-mulching. Effects were larger for maize than wheat, and larger for plastic mulching than straw mulching. Interestingly, plastic mulching performed better at relatively low temperature while straw mulching showed the opposite trend. Effects of mulching also tended to decrease with increasing water input. Mulching effects were not related to soil organic matter content. In conclusion, soil mulching can significantly increase maize and wheat yields, WUE and NUE, and thereby may contribute to closing the yield gap between attainable and actual yields, especially in dryland and low nutrient input agriculture. The management of soil mulching requires site-specific knowledge.
NASA Astrophysics Data System (ADS)
Qin, Wei; Hu, Chunsheng; Oenema, Oene
2015-11-01
Global crop yields are limited by water and nutrient availability. Soil mulching (with plastic or straw) reduces evaporation, modifies soil temperature and thereby affects crop yields. Reported effects of mulching are sometimes contradictory, likely due to differences in climatic conditions, soil characteristics, crop species, and also water and nitrogen (N) input levels. Here we report on a meta-analysis of the effects of mulching on wheat and maize, using 1310 yield observations from 74 studies conducted in 19 countries. Our results indicate that mulching significantly increased yields, WUE (yield per unit water) and NUE (yield per unit N) by up to 60%, compared with no-mulching. Effects were larger for maize than wheat, and larger for plastic mulching than straw mulching. Interestingly, plastic mulching performed better at relatively low temperature while straw mulching showed the opposite trend. Effects of mulching also tended to decrease with increasing water input. Mulching effects were not related to soil organic matter content. In conclusion, soil mulching can significantly increase maize and wheat yields, WUE and NUE, and thereby may contribute to closing the yield gap between attainable and actual yields, especially in dryland and low nutrient input agriculture. The management of soil mulching requires site-specific knowledge.
Adaptation options to future climate of maize crop in Southern Italy examined using thermal sums
NASA Astrophysics Data System (ADS)
Di Tommasi, P.; Alfieri, S. M.; Bonfante, A.; Basile, A.; De Lorenzi, F.; Menenti, M.
2012-04-01
Future climate scenarios predict substantial changes in air temperature within a few decades and agriculture needs to increase the capacity of adaptation both by changing spatial distribution of crops and shifting timing of management. In this context the prediction of future behaviour of crops with respect to present climate could be useful for farm and landscape management. In this work, thermal sums were used to simulate a maize crop in a future scenario, in terms of length of the growing season and of intervals between the main phenological stages. The area under study is the Sele plain (Campania Region), a pedo-climatic homogeneous area, one of the most agriculturally advanced and relevant flatland in Southern Italy. Maize was selected for the present study since it is extensively grown in the Sele Plain for water buffalofeeding,. Daily time-series of climatic data of the area under study were generated within the Italian project AGROSCENARI, and include maximum and minimum temperature and precipitation. The 1961-1990 and the 1998-2008 periods were compared to a future climate scenario (2021-2050). Future time series were generated using a statistical downscaling technique (Tomozeiu et al., 2007) from general circulation models (AOGCM). Differences in crop development length were calculated for different maize varieties under 3 management options for sowing time: custom date (typical for the area), before and after custom date. The interactions between future thermal regime and the length of growing season under the different management options were analyzed. Moreover, frequency of spells of high temperatures during the anthesis was examined. The feasibility of the early sowing option was discussed in relation with field trafficability at the beginning of the crop cycle. The work was carried out within the Italian national project AGROSCENARI funded by the Ministry for Agricultural, Food and Forest Policies (MIPAAF, D.M. 8608/7303/2008)
Wei, Shanshan; Wang, Xiangyu; Shi, Deyang; Li, Yanhong; Zhang, Jiwang; Liu, Peng; Zhao, Bin; Dong, Shuting
2016-08-01
Soil nitrogen (N) shortage is a problem which affects many developing nations. Crops grown with low soil N levels show a marked decrease in the rate of photosynthesis and this deficiency reduces crop yield significantly. Therefore, developing a better understanding of the mechanisms by which low N levels cause decreased photosynthesis is crucial for maize agriculture. To better understand this process, we assessed the responses of photosynthesis traits and enzymatic activities in the summer maize cultivar Denghai 618 under field conditions with and without the use of N fertilisers. We measured photosynthesis parameters, and compared proteome compositions to identify the mechanisms of physiological and biochemical adaptations to N deficiency in maize. We observed that parameters that indicated the rate of photosynthesis decreased significantly under N deficiency, and this response was associated with leaf senescence. Moreover, we identified 37 proteins involved in leaf photosynthesis, and found that N deficiency significantly affected light-dependent and light-independent reactions in maize leaf photosynthesis. Although further analysis is required to fully elucidate the roles of these proteins in the response to N deficiency, our study identified candidate proteins which may be involved in the regulatory mechanisms involved in reduced photosynthesis under low N conditions in maize. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Bernardi, Daniel; Salmeron, Eloisa; Horikoshi, Renato Jun; Bernardi, Oderlei; Dourado, Patrick Marques; Carvalho, Renato Assis; Martinelli, Samuel; Head, Graham P.; Omoto, Celso
2015-01-01
Genetically modified plants expressing insecticidal proteins from Bacillus thuringiensis (Bt) offer valuable options for managing insect pests with considerable environmental and economic benefits. Despite the benefits provided by Bt crops, the continuous expression of these insecticidal proteins imposes strong selection for resistance in target pest populations. Bt maize (Zea mays) hybrids have been successful in controlling fall armyworm (Spodoptera frugiperda), the main maize pest in Brazil since 2008; however, field-evolved resistance to the protein Cry1F has recently been reported. Therefore it is important to assess the possibility of cross-resistance between Cry1F and other Cry proteins expressed in Bt maize hybrids. In this study, an F2 screen followed by subsequent selection on MON 89034 maize was used to select an S. frugiperda strain (RR) able to survive on the Bt maize event MON 89034, which expresses the Cry1A.105 and Cry2Ab2 proteins. Field-collected insects from maize expressing the Cry1F protein (event TC1507) represented most of the positive (resistance allele-containing) (iso)families found. The RR strain showed high levels of resistance to Cry1F, which apparently also conferred high levels of cross resistance to Cry1A.105 and Cry1Ab, but had only low-level (10-fold) resistance to Cry2Ab2. Life history studies to investigate fitness costs associated with the resistance in RR strain revealed only small reductions in reproductive rate when compared to susceptible and heterozygous strains, but the RR strain produced 32.2% and 28.4% fewer females from each female relative to the SS and RS (pooled) strains, respectively. Consistent with the lack of significant resistance to Cry2Ab2, MON 89034 maize in combination with appropriate management practices continues to provide effective control of S. frugiperda in Brazil. Nevertheless, the occurrence of Cry1F resistance in S. frugiperda across Brazil, and the cross-resistance to Cry1Ab and Cry1A.105, indicates that current Cry1-based maize hybrids face a challenge in managing S. frugiperda in Brazil and highlights the importance of effective insect resistance management for these technologies. PMID:26473961
Bernardi, Daniel; Salmeron, Eloisa; Horikoshi, Renato Jun; Bernardi, Oderlei; Dourado, Patrick Marques; Carvalho, Renato Assis; Martinelli, Samuel; Head, Graham P; Omoto, Celso
2015-01-01
Genetically modified plants expressing insecticidal proteins from Bacillus thuringiensis (Bt) offer valuable options for managing insect pests with considerable environmental and economic benefits. Despite the benefits provided by Bt crops, the continuous expression of these insecticidal proteins imposes strong selection for resistance in target pest populations. Bt maize (Zea mays) hybrids have been successful in controlling fall armyworm (Spodoptera frugiperda), the main maize pest in Brazil since 2008; however, field-evolved resistance to the protein Cry1F has recently been reported. Therefore it is important to assess the possibility of cross-resistance between Cry1F and other Cry proteins expressed in Bt maize hybrids. In this study, an F2 screen followed by subsequent selection on MON 89034 maize was used to select an S. frugiperda strain (RR) able to survive on the Bt maize event MON 89034, which expresses the Cry1A.105 and Cry2Ab2 proteins. Field-collected insects from maize expressing the Cry1F protein (event TC1507) represented most of the positive (resistance allele-containing) (iso)families found. The RR strain showed high levels of resistance to Cry1F, which apparently also conferred high levels of cross resistance to Cry1A.105 and Cry1Ab, but had only low-level (10-fold) resistance to Cry2Ab2. Life history studies to investigate fitness costs associated with the resistance in RR strain revealed only small reductions in reproductive rate when compared to susceptible and heterozygous strains, but the RR strain produced 32.2% and 28.4% fewer females from each female relative to the SS and RS (pooled) strains, respectively. Consistent with the lack of significant resistance to Cry2Ab2, MON 89034 maize in combination with appropriate management practices continues to provide effective control of S. frugiperda in Brazil. Nevertheless, the occurrence of Cry1F resistance in S. frugiperda across Brazil, and the cross-resistance to Cry1Ab and Cry1A.105, indicates that current Cry1-based maize hybrids face a challenge in managing S. frugiperda in Brazil and highlights the importance of effective insect resistance management for these technologies.
Maize diversity associated with social origin and environmental variation in Southern Mexico.
Orozco-Ramírez, Q; Ross-Ibarra, J; Santacruz-Varela, A; Brush, S
2016-05-01
While prevailing theories of crop evolution suggest that crop diversity and cultural diversity should be linked, empirical evidence for such a link remains inconclusive. In particular, few studies have investigated such patterns on a local scale. Here, we address this issue by examining the determinants of maize diversity in a local region of high cultural and biological richness in Southern Mexico. We collected maize samples from villages at low and middle elevations in two adjacent municipalities of differing ethnicity: Mixtec or Chatino. Although morphological traits show few patterns of population structure, we see clear genetic differentiation among villages, with municipality explaining a larger proportion of the differentiation than altitude. Consistent with an important role of social origin in patterning seed exchange, metapopulation model-based estimates of differentiation match the genetic data within village and ethnically distinct municipalities, but underestimate differentiation when all four villages are taken together. Our research provides insights about the importance of social origin in structuring maize diversity at the local scale.
Maize diversity associated with social origin and environmental variation in Southern Mexico
Orozco-Ramírez, Q; Ross-Ibarra, J; Santacruz-Varela, A; Brush, S
2016-01-01
While prevailing theories of crop evolution suggest that crop diversity and cultural diversity should be linked, empirical evidence for such a link remains inconclusive. In particular, few studies have investigated such patterns on a local scale. Here, we address this issue by examining the determinants of maize diversity in a local region of high cultural and biological richness in Southern Mexico. We collected maize samples from villages at low and middle elevations in two adjacent municipalities of differing ethnicity: Mixtec or Chatino. Although morphological traits show few patterns of population structure, we see clear genetic differentiation among villages, with municipality explaining a larger proportion of the differentiation than altitude. Consistent with an important role of social origin in patterning seed exchange, metapopulation model-based estimates of differentiation match the genetic data within village and ethnically distinct municipalities, but underestimate differentiation when all four villages are taken together. Our research provides insights about the importance of social origin in structuring maize diversity at the local scale. PMID:26905463
Maize-Pathogen Interactions: An Ongoing Combat from a Proteomics Perspective.
Pechanova, Olga; Pechan, Tibor
2015-11-30
Maize (Zea mays L.) is a host to numerous pathogenic species that impose serious diseases to its ear and foliage, negatively affecting the yield and the quality of the maize crop. A considerable amount of research has been carried out to elucidate mechanisms of maize-pathogen interactions with a major goal to identify defense-associated proteins. In this review, we summarize interactions of maize with its agriculturally important pathogens that were assessed at the proteome level. Employing differential analyses, such as the comparison of pathogen-resistant and susceptible maize varieties, as well as changes in maize proteomes after pathogen challenge, numerous proteins were identified as possible candidates in maize resistance. We describe findings of various research groups that used mainly mass spectrometry-based, high through-put proteomic tools to investigate maize interactions with fungal pathogens Aspergillus flavus, Fusarium spp., and Curvularia lunata, and viral agents Rice Black-streaked Dwarf Virus and Sugarcane Mosaic Virus.
Maize-Pathogen Interactions: An Ongoing Combat from a Proteomics Perspective
Pechanova, Olga; Pechan, Tibor
2015-01-01
Maize (Zea mays L.) is a host to numerous pathogenic species that impose serious diseases to its ear and foliage, negatively affecting the yield and the quality of the maize crop. A considerable amount of research has been carried out to elucidate mechanisms of maize-pathogen interactions with a major goal to identify defense-associated proteins. In this review, we summarize interactions of maize with its agriculturally important pathogens that were assessed at the proteome level. Employing differential analyses, such as the comparison of pathogen-resistant and susceptible maize varieties, as well as changes in maize proteomes after pathogen challenge, numerous proteins were identified as possible candidates in maize resistance. We describe findings of various research groups that used mainly mass spectrometry-based, high through-put proteomic tools to investigate maize interactions with fungal pathogens Aspergillus flavus, Fusarium spp., and Curvularia lunata, and viral agents Rice Black-streaked Dwarf Virus and Sugarcane Mosaic Virus. PMID:26633370
USDA-ARS?s Scientific Manuscript database
Increased temperatures in the Southwestern United States will impact future crop production via multiple pathways. We used four methods to provide an illustrative analysis of midcentury temperature impacts to eight field crops. By midcentury, cropland area thermally suitable for maize cultivation is...
Dynamic precision phenotyping reveals mechanism of crop tolerance to root herbivory
USDA-ARS?s Scientific Manuscript database
The western corn rootworm, Diabrotica virgifera virgifera (LeConte) is a major pest of maize, Zea mays L. Over the years, this pest has repeatedly shown its resilience and adaptability not only to traditional crop management strategies including chemical pesticides and crop rotation, but also to de...
Choosing a genome browser for a Model Organism Database: surveying the Maize community
Sen, Taner Z.; Harper, Lisa C.; Schaeffer, Mary L.; Andorf, Carson M.; Seigfried, Trent E.; Campbell, Darwin A.; Lawrence, Carolyn J.
2010-01-01
As the B73 maize genome sequencing project neared completion, MaizeGDB began to integrate a graphical genome browser with its existing web interface and database. To ensure that maize researchers would optimally benefit from the potential addition of a genome browser to the existing MaizeGDB resource, personnel at MaizeGDB surveyed researchers’ needs. Collected data indicate that existing genome browsers for maize were inadequate and suggest implementation of a browser with quick interface and intuitive tools would meet most researchers’ needs. Here, we document the survey’s outcomes, review functionalities of available genome browser software platforms and offer our rationale for choosing the GBrowse software suite for MaizeGDB. Because the genome as represented within the MaizeGDB Genome Browser is tied to detailed phenotypic data, molecular marker information, available stocks, etc., the MaizeGDB Genome Browser represents a novel mechanism by which the researchers can leverage maize sequence information toward crop improvement directly. Database URL: http://gbrowse.maizegdb.org/ PMID:20627860
Simulated Near-term Climate Change Impacts on Major Crops across Latin America and the Caribbean
NASA Astrophysics Data System (ADS)
Gourdji, S.; Mesa-Diez, J.; Obando-Bonilla, D.; Navarro-Racines, C.; Moreno, P.; Fisher, M.; Prager, S.; Ramirez-Villegas, J.
2016-12-01
Robust estimates of climate change impacts on agricultural production can help to direct investments in adaptation in the coming decades. In this study commissioned by the Inter-American Development Bank, near-term climate change impacts (2020-2049) are simulated relative to a historical baseline period (1971-2000) for five major crops (maize, rice, wheat, soybean and dry bean) across Latin America and the Caribbean (LAC) using the DSSAT crop model. No adaptation or technological change is assumed, thereby providing an analysis of existing climatic stresses on yields in the region and a worst-case scenario in the coming decades. DSSAT is run across irrigated and rain-fed growing areas in the region at a 0.5° spatial resolution for each crop. Crop model inputs for soils, planting dates, crop varieties and fertilizer applications are taken from previously-published datasets, and also optimized for this study. Results show that maize and dry bean are the crops most affected by climate change, followed by wheat, with only minimal changes for rice and soybean. Generally, rain-fed production sees more severe yield declines than irrigated production, although large increases in irrigation water are needed to maintain yields, reducing the yield-irrigation productivity in most areas and potentially exacerbating existing supply limitations in watersheds. This is especially true for rice and soybean, the two crops showing the most neutral yield changes. Rain-fed yields for maize and bean are projected to decline most severely in the sub-tropical Caribbean, Central America and northern South America, where climate models show a consistent drying trend. Crop failures are also projected to increase in these areas, necessitating switches to other crops or investment in adaptation measures. Generally, investment in agricultural adaptation to climate change (such as improved seed and irrigation infrastructure) will be needed throughout the LAC region in the 21st century.
Amon, Thomas; Amon, Barbara; Kryvoruchko, Vitaliy; Machmüller, Andrea; Hopfner-Sixt, Katharina; Bodiroza, Vitomir; Hrbek, Regina; Friedel, Jürgen; Pötsch, Erich; Wagentristl, Helmut; Schreiner, Matthias; Zollitsch, Werner
2007-12-01
Biogas production is of major importance for the sustainable use of agrarian biomass as renewable energy source. Economic biogas production depends on high biogas yields. The project aimed at optimising anaerobic digestion of energy crops. The following aspects were investigated: suitability of different crop species and varieties, optimum time of harvesting, specific methane yield and methane yield per hectare. The experiments covered 7 maize, 2 winter wheat, 2 triticale varieties, 1 winter rye, and 2 sunflower varieties and 6 variants with permanent grassland. In the course of the vegetation period, biomass yield and biomass composition were measured. Anaerobic digestion was carried out in eudiometer batch digesters. The highest methane yields of 7500-10200 m(N)(3)ha(-1) were achieved from maize varieties with FAO numbers (value for the maturity of the maize) of 300 to 600 harvested at "wax ripeness". Methane yields of cereals ranged from 3200 to 4500 m(N)(3)ha(-1). Cereals should be harvested at "grain in the milk stage" to "grain in the dough stage". With sunflowers, methane yields between 2600 and 4550 m(N)(3)ha(-1) were achieved. There were distinct differences between the investigated sunflower varieties. Alpine grassland can yield 2700-3500 m(N)(3)CH(4)ha(-1). The methane energy value model (MEVM) was developed for the different energy crops. It estimates the specific methane yield from the nutrient composition of the energy crops. Energy crops for biogas production need to be grown in sustainable crop rotations. The paper outlines possibilities for optimising methane yield from versatile crop rotations that integrate the production of food, feed, raw materials and energy. These integrated crop rotations are highly efficient and can provide up to 320 million t COE which is 96% of the total energy demand of the road traffic of the EU-25 (the 25 Member States of the European Union).
The effects of climate change associated abiotic stresses on maize phytochemical defenses
USDA-ARS?s Scientific Manuscript database
Reliable large-scale maize production is an essential component of global food security; however, sustained efforts are needed to ensure optimized resilience under diverse crop stress conditions. Climate changes are expected to increase the frequency and intensity of both abiotic and biotic stress. ...
Genome-wide association studies in maize: praise and stargaze
USDA-ARS?s Scientific Manuscript database
Genome-wide association study (GWAS) has appeared as a widespread strategy in decoding genotype-phenotype associations in many species thanks to technical advances in next-generation sequencing (NGS) applications. Maize is an ideal crop for GWAS and significant progress has been made in the last dec...
Deciphering drought-induced metabolic responses and regulation in developing maize kernels
USDA-ARS?s Scientific Manuscript database
Aspergillus flavus is a facultative pathogen of crops such as maize and peanut which produces carcinogenic aflatoxins during infection, particularly in drought stressed host plants. Reactive oxygen species (ROS) have been shown to both accumulate in host plant tissues during drought and to stimulate...
USDA-ARS?s Scientific Manuscript database
Despite long-term efforts to characterize inducible antimicrobial defenses in crops, the presence of acidic phytoalexins in maize was only recently established with the discovery of kauralexins and zealexins. Given the predicted existence of additional phytoalexins, we profiled terpenoids in maize t...
NASA Astrophysics Data System (ADS)
Fung, K. M.; Tai, A. P. K.; Yong, T.; Liu, X.
2016-12-01
Agriculture provides the majority of human food sources, but is also an important contributor to an array of environmental problems including air pollution. In China, 96% of ammonia emissions come from agricultural activities, and emitted ammonia contributes more than 20% of fine particulate matter (PM2.5) mass concentrations, with substantial ramification for human health and visibility. Sustainable farming practices that reduce ammonia emissions may therefore have the potential to secure both food production and environmental quality. Intercropping, as such a practice, allows different crops to grow on the same field simultaneously side-by-side. Studies show that it enhances crop yield due to mutualistic crop-crop interactions especially when one of the crops is a legume such as soybean. Below-ground nutrient competition promotes greater nitrogen fixation by soybean, which then induces a greater supply of soil nitrogen not only for soybean itself but also for the other non-nitrogen-fixing crop. To capture this co-benefit, the DNDC biogeochemical model is modified to include the interactive effects between intercropped soybean and maize. We conduct model experiments to compare the performance of a maize-soybean intercropping system and their respective monoculture system in different regions of China. We find that, with intercropping, maize yield can be maintained with only 64% of default fertilizer input, an extra batch of soybean production, and a 52% reduction in ammonia emission, which we calculate to be equivalent to a US$0.94 billion saving per year in terms of pollution-induced health costs. We further estimate the downstream effects on air quality in China using the GEOS-Chem chemical transport model. By reducing ammonia emissions according to the DNDC-simulated results, we find that if maize-soybean intercropping is practiced nationwide, concentrations of ammonium and nitrate in eastern China can be reduced by approximately 4.9% (0.63 μg m-3) and 6.8% (2.1 μg m-3), respectively, and total inorganic PM2.5 decreases by about 3.5% (2.8 μg m-3). This study shows that implementing sustainable farming practices such as maize-soybean intercropping as a national standard in China can possibly relieve air pollution problems while securing a steady food supply with enhanced land-use efficiency.
NASA Astrophysics Data System (ADS)
Kim, S. H.; Lim, C. H.; Kim, J.; Lee, W. K.; Kafatos, M.
2016-12-01
The Korean Peninsula has unique agricultural environment due to the differences of political and socio-economical system between Republic of Korea (SK, hereafter) and Democratic Peoples' Republic of Korea (NK, hereafter). NK has been suffering lack of food supplies caused by natural disasters, land degradation and political failure. The neighboring developed country SK has better agricultural system but very low food self-sufficiency rate. Maize is an important crop in both countries since it is staple food for NK and SK is No. 2 maize importing country in the world after Japan. Therefore, evaluating maize yield potential (Yp) in the two distinct regions is essential to assess food security under climate change and variability. In this study, we utilized multiple process-based crop models, having ability of regional scale assessment, to evaluate maize Yp and assess the model uncertainties -EPIC, GEPIC, DSSAT, and APSIM model that has capability of regional scale expansion (apsimRegions). First we evaluated each crop model for 3 years from 2012 to 2014 using reanalysis data (RDAPS; Regional Data Assimilation and Prediction System produced by Korea Meteorological Agency) and observed yield data. Each model performances were compared over the different regions in the Korean Peninsula having different local climate characteristics. To quantify of the major influence of at each climate variables, we also conducted sensitivity test using 20 years of climatology in historical period from 1981 to 2000. Lastly, the multi-crop model ensemble analysis was performed for future period from 2031 to 2050. The required weather variables projected for mid-century were employed from COordinated Regional climate Downscaling EXperiment (CORDEX) East Asia. The high-resolution climate data were obtained from multiple regional climate models (RCM) driven by multiple climate scenarios projected from multiple global climate models (GCMs) in conjunction with multiple greenhouse gas concentration pathways. The results indicate that the projected Yp in the Korean peninsula is significantly changed comparing to the historical period and proper adaptation strategies such as optimized planting dates can considerably alleviate Yp decrease.
NASA Astrophysics Data System (ADS)
Mozaffar, A.; Schoon, N.; Bachy, A.; Digrado, A.; Heinesch, B.; Aubinet, M.; Fauconnier, M.-L.; Delaplace, P.; du Jardin, P.; Amelynck, C.
2018-03-01
Plants are the major source of Biogenic Volatile Organic Compounds (BVOCs) which have a large influence on atmospheric chemistry and the climate system. Therefore, understanding of BVOC emissions from all abundant plant species at all developmental stages is very important. Nevertheless, investigations on BVOC emissions from even the most widespread agricultural crop species are rare and mainly confined to the healthy green leaves. Senescent leaves of grain crop species could be an important source of BVOCs as almost all the leaves senesce on the field before being harvested. For these reasons, BVOC emission measurements have been performed on maize (Zea mays L.), one of the most cultivated crop species in the world, at all the leaf developmental stages. The measurements were performed in controlled environmental conditions using dynamic enclosures and proton transfer reaction mass spectrometry (PTR-MS). The main compounds emitted by senescent maize leaves were methanol (31% of the total cumulative BVOC emission on a mass of compound basis) and acetic acid (30%), followed by acetaldehyde (11%), hexenals (9%) and m/z 59 compounds (acetone/propanal) (7%). Important differences were observed in the temporal emission profiles of the compounds, and both yellow leaves during chlorosis and dry brown leaves after chlorosis were identified as important senescence-related BVOC sources. Total cumulative BVOC emissions from senescent maize leaves were found to be among the highest for senescent Poaceae plant species. BVOC emission rates varied strongly among the different leaf developmental stages, and senescent leaves showed a larger diversity of emitted compounds than leaves at earlier stages. Methanol was the compound with the highest emissions for all the leaf developmental stages and the contribution from the young-growing, mature, and senescent stages to the total methanol emission by a typical maize leaf was 61, 13, and 26%, respectively. This study shows that BVOC emissions from senescent maize leaves cannot be neglected and further investigations in field conditions are recommended to further constrain the BVOC emissions from this important C4 crop species.
Zhang, Yitao; Wang, Hongyuan; Lei, Qiuliang; Luo, Jiafa; Lindsey, Stuart; Zhang, Jizong; Zhai, Limei; Wu, Shuxia; Zhang, Jingsuo; Liu, Xiaoxia; Ren, Tianzhi; Liu, Hongbin
2018-03-15
Optimizing the nitrogen (N) application rate can increase crop yield while reducing the environmental risks. However, the optimal N rates vary substantially when different targets such as maximum yield or maximum economic benefit are considered. Taking the wheat-maize rotation cropping system on the North China Plain as a case study, we quantified the variation of N application rates when targeting constraints on yield, economic performance, N uptake and N utilization, by conducting field experiments between 2011 and 2013. Results showed that the optimal N application rate was highest when targeting N uptake (240kgha -1 for maize, and 326kgha -1 for wheat), followed by crop yield (208kgha -1 for maize, and 277kgha -1 for wheat) and economic income (191kgha -1 for maize, and 253kgha -1 for wheat). If environmental costs were considered, the optimal N application rates were further reduced by 20-30% compared to those when targeting maximum economic income. However, the optimal N rate, with environmental cost included, may result in soil nutrient mining under maize, and an extra input of 43kgNha -1 was needed to make the soil N balanced and maintain soil fertility in the long term. To obtain a win-win situation for both yield and environment, the optimal N rate should be controlled at 179kgha -1 for maize, which could achieve above 99.5% of maximum yield and have a favorable N balance, and at 202kgha -1 for wheat to achieve 97.4% of maximum yield, which was about 20kgNha -1 higher than that when N surplus was nil. Although these optimal N rates vary on spatial and temporal scales, they are still effective for the North China Plain where 32% of China's total maize and 45% of China's total wheat are produced. More experiments are still needed to determine the optimal N application rates in other regions. Use of these different optimal N rates would contribute to improving the sustainability of agricultural development in China. Copyright © 2017 Elsevier B.V. All rights reserved.
Humic fractions of forest, pasture and maize crop soils resulting from microbial activity
Tavares, Rose Luiza Moraes; Nahas, Ely
2014-01-01
Humic substances result from the degradation of biopolymers of organic residues in the soil due to microbial activity. The objective of this study was to evaluate the influence of three different ecosystems: forest, pasture and maize crop on the formation of soil humic substances relating to their biological and chemical attributes. Microbial biomass carbon (MBC), microbial respiratory activity, nitrification potential, total organic carbon, soluble carbon, humic and fulvic acid fractions and the rate and degree of humification were determined. Organic carbon and soluble carbon contents decreased in the order: forest > pasture > maize; humic and fulvic acids decreased in the order forest > pasture=maize. The MBC and respiratory activity were not influenced by the ecosystems; however, the nitrification potential was higher in the forest than in other soils. The rate and degree of humification were higher in maize soil indicating greater humification of organic matter in this system. All attributes studied decreased significantly with increasing soil depth, with the exception of the rate and degree of humification. Significant and positive correlations were found between humic and fulvic acids contents with MBC, microbial respiration and nitrification potential, suggesting the microbial influence on the differential formation of humic substances of the different ecosystems. PMID:25477932
Spatio-Temporal Dynamics of Maize Yield Water Constraints under Climate Change in Spain
Ferrero, Rosana; Lima, Mauricio; Gonzalez-Andujar, Jose Luis
2014-01-01
Many studies have analyzed the impact of climate change on crop productivity, but comparing the performance of water management systems has rarely been explored. Because water supply and crop demand in agro-systems may be affected by global climate change in shaping the spatial patterns of agricultural production, we should evaluate how and where irrigation practices are effective in mitigating climate change effects. Here we have constructed simple, general models, based on biological mechanisms and a theoretical framework, which could be useful in explaining and predicting crop productivity dynamics. We have studied maize in irrigated and rain-fed systems at a provincial scale, from 1996 to 2009 in Spain, one of the most prominent “hot-spots” in future climate change projections. Our new approach allowed us to: (1) evaluate new structural properties such as the stability of crop yield dynamics, (2) detect nonlinear responses to climate change (thresholds and discontinuities), challenging the usual linear way of thinking, and (3) examine spatial patterns of yield losses due to water constraints and identify clusters of provinces that have been negatively affected by warming. We have reduced the uncertainty associated with climate change impacts on maize productivity by improving the understanding of the relative contributions of individual factors and providing a better spatial comprehension of the key processes. We have identified water stress and water management systems as being key causes of the yield gap, and detected vulnerable regions where efforts in research and policy should be prioritized in order to increase maize productivity. PMID:24878747
The effect of soil moisture anomalies on maize yield in Germany
NASA Astrophysics Data System (ADS)
Peichl, Michael; Thober, Stephan; Meyer, Volker; Samaniego, Luis
2018-03-01
Crop models routinely use meteorological variations to estimate crop yield. Soil moisture, however, is the primary source of water for plant growth. The aim of this study is to investigate the intraseasonal predictability of soil moisture to estimate silage maize yield in Germany. We also evaluate how approaches considering soil moisture perform compare to those using only meteorological variables. Silage maize is one of the most widely cultivated crops in Germany because it is used as a main biomass supplier for energy production in the course of the German Energiewende (energy transition). Reduced form fixed effect panel models are employed to investigate the relationships in this study. These models are estimated for each month of the growing season to gain insights into the time-varying effects of soil moisture and meteorological variables. Temperature, precipitation, and potential evapotranspiration are used as meteorological variables. Soil moisture is transformed into anomalies which provide a measure for the interannual variation within each month. The main result of this study is that soil moisture anomalies have predictive skills which vary in magnitude and direction depending on the month. For instance, dry soil moisture anomalies in August and September reduce silage maize yield more than 10 %, other factors being equal. In contrast, dry anomalies in May increase crop yield up to 7 % because absolute soil water content is higher in May compared to August due to its seasonality. With respect to the meteorological terms, models using both temperature and precipitation have higher predictability than models using only one meteorological variable. Also, models employing only temperature exhibit elevated effects.
Spatio-temporal dynamics of maize yield water constraints under climate change in Spain.
Ferrero, Rosana; Lima, Mauricio; Gonzalez-Andujar, Jose Luis
2014-01-01
Many studies have analyzed the impact of climate change on crop productivity, but comparing the performance of water management systems has rarely been explored. Because water supply and crop demand in agro-systems may be affected by global climate change in shaping the spatial patterns of agricultural production, we should evaluate how and where irrigation practices are effective in mitigating climate change effects. Here we have constructed simple, general models, based on biological mechanisms and a theoretical framework, which could be useful in explaining and predicting crop productivity dynamics. We have studied maize in irrigated and rain-fed systems at a provincial scale, from 1996 to 2009 in Spain, one of the most prominent "hot-spots" in future climate change projections. Our new approach allowed us to: (1) evaluate new structural properties such as the stability of crop yield dynamics, (2) detect nonlinear responses to climate change (thresholds and discontinuities), challenging the usual linear way of thinking, and (3) examine spatial patterns of yield losses due to water constraints and identify clusters of provinces that have been negatively affected by warming. We have reduced the uncertainty associated with climate change impacts on maize productivity by improving the understanding of the relative contributions of individual factors and providing a better spatial comprehension of the key processes. We have identified water stress and water management systems as being key causes of the yield gap, and detected vulnerable regions where efforts in research and policy should be prioritized in order to increase maize productivity.
Drought effects on US maize and soybean production: spatiotemporal patterns and historical changes
NASA Astrophysics Data System (ADS)
Zipper, Samuel C.; Qiu, Jiangxiao; Kucharik, Christopher J.
2016-09-01
Maximizing agricultural production on existing cropland is one pillar of meeting future global food security needs. To close crop yield gaps, it is critical to understand how climate extremes such as drought impact yield. Here, we use gridded, daily meteorological data and county-level annual yield data to quantify meteorological drought sensitivity of US maize and soybean production from 1958 to 2007. Meteorological drought negatively affects crop yield over most US crop-producing areas, and yield is most sensitive to short-term (1-3 month) droughts during critical development periods from July to August. While meteorological drought is associated with 13% of overall yield variability, substantial spatial variability in drought effects and sensitivity exists, with central and southeastern US becoming increasingly sensitive to drought over time. Our study illustrates fine-scale spatiotemporal patterns of drought effects, highlighting where variability in crop production is most strongly associated with drought, and suggests that management strategies that buffer against short-term water stress may be most effective at sustaining long-term crop productivity.
The impact of extreme drought on the biofuel feedstock production
NASA Astrophysics Data System (ADS)
hussain, M.; Zeri, M.; Bernacchi, C.
2013-12-01
Miscanthus (Miscanthus x giganteus) and Switchgrass (Panicum virgatum) have been identified as the primary targets for second-generation cellulosic biofuel crops. Prairie managed for biomass is also considered as one of the alternative to conventional biofuel and promised to provide ecosystem services, including carbon sequestration. These perennial grasses possess a number of traits that make them desirable biofuel crops and can be cultivated on marginal lands or interspersed with maize and soybean in the Corn Belt region. The U.S. Corn Belt region is the world's most productive and expansive maize-growing region, approximately 20% of the world's harvested corn hectares are found in 12 Corn Belt states. The introduction of a second generation cellulosic biofuels for biomass production in a landscape dominated by a grain crop (maize) has potential implications on the carbon and water cycles of the region. This issue is further intensified by the uncertainty in the response of the vegetation to the climate change induced drought periods, as was seen during the extreme droughts of 2011 and 2012 in the Midwest. The 2011 and 2012 growing seasons were considered driest since the 1932 dust bowl period; temperatures exceeded 3.0 °C above the 50- year mean and precipitation deficit reached 50 %. The major objective of this study was to evaluate the drought responses (2011 and 2012) of corn and perennial species at large scale, and to determine the seasonability of carbon and water fluxes in the response of controlling factors. We measured net CO2 ecosystem exchange (NEE) and water fluxes of maize-maize-soybean, and perennial species such as miscanthus, switchgrass and mixture of prairie grasses, using eddy covariance in the University of Illinois energy farm at Urbana, IL. The data presented here were for 5 years (2008- 2012). In the first two years, higher NEE in maize led to large CO2 sequestration. NEE however, decreased in dry years, particularly in 2012. On the other hand, miscanthus, switchgrass, and to a lesser extent, prairie showed higher NEE and gross primary production (GPP) - a partitioned NEE component - than maize during 2012. Although miscanthus uses more water relative to maize (consumed 30 % more water), Net Ecosystem Carbon Balance (NECB) results show that it provides the greatest net benefits of sequestering atmospheric CO2 during drought. Our findings highlight the important role of perennial species in sustaining productivity and sequestering CO2 during drought, as compared to maize. We conclude that changing land use from row crops to perennial species will result in more sequestered carbon, even with drought stress, and will be more resilient to prolonged dry periods.
Masanga, Joel Okoyo; Matheka, Jonathan Mutie; Omer, Rasha Adam; Ommeh, Sheila Cecily; Monda, Ethel Oranga; Alakonya, Amos Emitati
2015-08-01
We report success of host-induced gene silencing in downregulation of aflatoxin biosynthesis in Aspergillus flavus infecting maize transformed with a hairpin construct targeting transcription factor aflR. Infestation of crops by aflatoxin-producing fungi results in economic losses as well as negative human and animal health effects. Currently, the control strategies against aflatoxin accumulation are not effective to the small holder farming systems in Africa and this has led to widespread aflatoxin exposure especially in rural populations of sub-Saharan Africa that rely on maize as a staple food crop. A recent strategy called host-induced gene silencing holds great potential for developing aflatoxin-resistant plant germplasm for the African context where farmers are unable to make further investments other than access to the germplasm. We transformed maize with a hairpin construct targeting the aflatoxin biosynthesis transcription factor aflR. The developed transgenic maize were challenged with an aflatoxigenic Aspergillus flavus strain from Eastern Kenya, a region endemic to aflatoxin outbreaks. Our results indicated that aflR was downregulated in A. flavus colonizing transgenic maize. Further, maize kernels from transgenic plants accumulated significantly lower levels of aflatoxins (14-fold) than those from wild type plants. Interestingly, we observed that our silencing cassette caused stunting and reduced kernel placement in the transgenic maize. This could have been due to "off-target" silencing of unintended genes in transformed plants by aflR siRNAs. Overall, this work indicates that host-induced gene silencing has potential in developing aflatoxin-resistant germplasm.
Vitale, Luca; Di Tommasi, Paul; D'Urso, Guido; Magliulo, Vincenzo
2016-03-01
The eddy correlation technique was used to investigate the influence of biophysical variables and crop phenological phases on the behaviour of ecosystem carbon fluxes of a maize crop, in two contrasting growing seasons. In 2009, the reduced water supply during the early growing stage limited leaf area expansion, thus negatively affecting canopy photosynthesis. The variability of gross primary production (GPP) and ecosystem respiration (R eco) was mainly explained by seasonal variation of leaf area index (LAI). The seasonal variation of R eco was positively influenced by soil temperatures (T soil) in 2008 but not in 2009. In 2008, a contribution of both autotrophic and heterotrophic components to total R eco could be hypothesized, while during 2009, autotrophic respiration is supposed to be the most important component. Crop phenological phases affected the response of ecosystem fluxes to biophysical drivers.
Wilson, Robert G; Young, Bryan G; Matthews, Joseph L; Weller, Stephen C; Johnson, William G; Jordan, David L; Owen, Micheal D K; Dixon, Philip M; Shaw, David R
2011-07-01
Weed management in glyphosate-resistant (GR) maize, cotton and soybean in the United States relies almost exclusively on glyphosate, which raises criticism for facilitating shifts in weed populations. In 2006, the benchmark study, a field-scale investigation, was initiated in three different GR cropping systems to characterize academic recommendations for weed management and to determine the level to which these recommendations would reduce weed population shifts. A majority of growers used glyphosate as the only herbicide for weed management, as opposed to 98% of the academic recommendations implementing at least two herbicide active ingredients and modes of action. The additional herbicides were applied with glyphosate and as soil residual treatments. The greater herbicide diversity with academic recommendations reduced weed population densities before and after post-emergence herbicide applications in 2006 and 2007, particularly in continuous GR crops. Diversifying herbicides reduces weed population densities and lowers the risk of weed population shifts and the associated potential for the evolution of glyphosate-resistant weeds in continuous GR crops. Altered weed management practices (e.g. herbicides or tillage) enabled by rotating crops, whether GR or non-GR, improves weed management and thus minimizes the effectiveness of only using chemical tactics to mitigate weed population shifts. Copyright © 2011 Society of Chemical Industry.
Global income and production impacts of using GM crop technology 1996–2014
Brookes, Graham; Barfoot, Peter
2016-01-01
ABSTRACT This paper provides an economic assessment of the value of using genetically modified (GM) crop technology in agriculture at the farm level. It follows and updates earlier annual studies which examined economic impacts on yields, key costs of production, direct farm income and effects, and impacts on the production base of the 4 main crops of soybeans, corn, cotton and canola. The commercialisation of GM crops has continued to occur at a rapid rate since the mid 1990s, with important changes in both the overall level of adoption and impact occurring in 2014. This annual updated analysis shows that there continues to be very significant net economic benefits at the farm level amounting to $17.7 billion in 2014 and $150.3 billion for the 19-year period 1996–2014 (in nominal terms). These economic gains have been divided roughly 50% each to farmers in developed and developing countries. About 65% of the gains have derived from yield and production gains with the remaining 35% coming from cost savings. The technology has also made important contributions to increasing global production levels of the 4 main crops, having, for example, added 158 million tonnes and 322 million tonnes respectively, to the global production of soybeans and maize since the introduction of the technology in the mid 1990s. PMID:27116697
Global income and production impacts of using GM crop technology 1996-2014.
Brookes, Graham; Barfoot, Peter
2016-01-02
This paper provides an economic assessment of the value of using genetically modified (GM) crop technology in agriculture at the farm level. It follows and updates earlier annual studies which examined economic impacts on yields, key costs of production, direct farm income and effects, and impacts on the production base of the 4 main crops of soybeans, corn, cotton and canola. The commercialisation of GM crops has continued to occur at a rapid rate since the mid 1990s, with important changes in both the overall level of adoption and impact occurring in 2014. This annual updated analysis shows that there continues to be very significant net economic benefits at the farm level amounting to $17.7 billion in 2014 and $150.3 billion for the 19-year period 1996-2014 (in nominal terms). These economic gains have been divided roughly 50% each to farmers in developed and developing countries. About 65% of the gains have derived from yield and production gains with the remaining 35% coming from cost savings. The technology has also made important contributions to increasing global production levels of the 4 main crops, having, for example, added 158 million tonnes and 322 million tonnes respectively, to the global production of soybeans and maize since the introduction of the technology in the mid 1990s.
Wild Chimpanzees on the Edge: Nocturnal Activities in Croplands
Krief, Sabrina; Cibot, Marie; Bortolamiol, Sarah; Seguya, Andrew; Krief, Jean-Michel; Masi, Shelly
2014-01-01
In a rapidly changing landscape highly impacted by anthropogenic activities, the great apes are facing new challenges to coexist with humans. For chimpanzee communities inhabiting encroached territories, not bordered by rival conspecifics but by human agricultural fields, such boundaries are risky areas. To investigate the hypothesis that they use specific strategies for incursions out of the forest into maize fields to prevent the risk of detection by humans guarding their field, we carried out video recordings of chimpanzees at the edge of the forest bordered by a maize plantation in Kibale National Park, Uganda. Contrary to our expectations, large parties are engaged in crop-raids, including vulnerable individuals such as females with clinging infants. More surprisingly chimpanzees were crop-raiding during the night. They also stayed longer in the maize field and presented few signs of vigilance and anxiety during these nocturnal crop-raids. While nocturnal activities of chimpanzees have been reported during full moon periods, this is the first record of frequent and repeated nocturnal activities after twilight, in darkness. Habitat destruction may have promoted behavioural adjustments such as nocturnal exploitation of open croplands. PMID:25338066
Impacts of Stratospheric Black Carbon on Agriculture
NASA Astrophysics Data System (ADS)
Xia, L.; Robock, A.; Elliott, J. W.
2017-12-01
A regional nuclear war between India and Pakistan could inject 5 Tg of soot into the stratosphere, which would absorb sunlight, decrease global surface temperature by about 1°C for 5-10 years and have major impacts on precipitation and the amount of solar radiation reaching Earth's surface. Using two global gridded crop models forced by one global climate model simulation, we investigate the impacts on agricultural productivity in various nations. The crop model in the Community Land Model 4.5 (CLM-crop4.5) and the parallel Decision Support System for Agricultural Technology (pDSSAT) in the parallel System for Integrating Impact Models and Sectors are participating in the Global Gridded Crop Model Intercomparison. We force these two crop models with output from the Whole Atmospheric Community Climate Model to characterize the global agricultural impact from climate changes due to a regional nuclear war. Crops in CLM-crop4.5 include maize, rice, soybean, cotton and sugarcane, and crops in pDSSAT include maize, rice, soybean and wheat. Although the two crop models require a different time frequency of weather input, we downscale the climate model output to provide consistent temperature, precipitation and solar radiation inputs. In general, CLM-crop4.5 simulates a larger global average reduction of maize and soybean production relative to pDSSAT. Global rice production shows negligible change with climate anomalies from a regional nuclear war. Cotton and sugarcane benefit from a regional nuclear war from CLM-crop4.5 simulation, and global wheat production would decrease significantly in the pDSSAT simulation. The regional crop yield responses to a regional nuclear conflict are different for each crop, and we present the changes in production on a national basis. These models do not include the crop responses to changes in ozone, ultraviolet radiation, or diffuse radiation, and we would like to encourage more modelers to improve crop models to account for those impacts. We present these results as a demonstration of using different crop models to study this problem, and we invite more global crop modeling groups to use the same climate forcing, which we would be happy to provide, to gain a better understanding of global agricultural responses under different future climate scenarios with stratospheric aerosols.
Differences in soil quality between organic and conventional farming over a maize crop season
NASA Astrophysics Data System (ADS)
Ferreira, Carla; Veiga, Adelcia; Puga, João; Kikuchi, Ryunosuke; Ferreira, António
2017-04-01
Land degradation in agricultural areas is a major concern. The large number of mechanical interventions and the amount of inputs used to assure high crop productivity, such as fertilizers and pesticides, have negative impacts on soil quality and threaten crop productivity and environmental sustainability. Organic farming is an alternative agriculture system, based on organic fertilizers, biological pest control and crop rotation, in order to mitigate soil degradation. Maize is the third most important cereal worldwide, with 2008 million tons produced in 2013 (IGN, 2016). In Portugal, 120000 ha of arable land is devoted to maize production, leading to annual yields of about 930000 ton (INE, 2015). This study investigates soil quality differences in maize farms under organic and conventional systems. The study was carried out in Coimbra Agrarian Technical School (ESAC), in central region of Portugal. ESAC campus comprises maize fields managed under conventional farming - Vagem Grande (32 ha), and organic fields - Caldeirão (12 ha), distancing 2.8 km. Vagem Grande has been intensively used for grain maize production for more than 20 years, whereas Caldeirão was converted to organic farming in 2008, and is being used to select regional maize varieties. The region has a Mediterranean climate. The maize fields have Eutric Fluvisols, with gentle slopes (<3%). In order to assess soil quality, three plots per farm were installed in May 2006, immediately after sowing, and monitored until October 2016, before harvesting, in order to cover all the crop season. Each plot comprises 5 plant lines (˜4 m width) with 20 m length. In order to assure the comparison between both farms, the same maize variety was used (Pigarro) in both fields, with the same compass. Soil samples were collected immediately after sowing. In Vagem Grande distinct soil samples were taken: (i) within plant lines, and (ii) between plant lines, since mineral fertilizers were spread over the field before sowing, and addition fertilizer was applied together with seeds, in plant lines. In Caldeirão, since fertilization was not performed due to weather constrains, soil samples were collected randomly within the plots. Additional soil samples were collected before harvest, in plant lines and between plant lines, in both farms. Surface (0-15 cm) and subsurface (15-30 cm) soil samples were taken. Soil samples were used for texture, pH, organic carbon, Kjeldhal nitrogen, nitrates, ammonia nitrogen, plant available phosphorus and potassium, and exchangeable cations (Ca2+, Mg2+, K+, Na+) analyses. Additional soil samples were also collected with soil ring samplers (137 cm3) for bulk density analyses after sowing. Surface water infiltration was also measured with tension infiltrometer (membrane of 20cm), using different tensions (0 cm, -3cm, -6 cm e -15cm). Decomposition rate and litter stabilisation was assessed over a 3-month period through the Tea Bag Index (Keuskamp et al., 2013). The number and diversity of earthworms were also measured at the surface (0-20cm), through extraction, and at the subsurface (>20cm), using mustard solution.
NASA Astrophysics Data System (ADS)
Richetti, J.; Ahmad, I.; Aristizabal, F.; Judge, J.
2017-12-01
Determining maize agricultural production under climate variability is valuable to policy makers in Pakistan since maize is the third most produced crop by area after wheat and rice. This study aims to predict the maize production under climate variability. Two-hundred ground truth points of both maize and non-maize land covers were collected from the Faisalabad district during the growing seasons of 2015 and 2016. Landsat-8 images taken in second week of May which correspond spatially and temporally to the local, peak growing season for maize were gathered. For classifying the region training data was constructed for a variety of machine learning algorithms by sampling the second, third, and fourth bands of the Landsat-8 imagery at these reference locations. Cross validation was used for parameter tuning as well as estimating the generalized performances. All the classifiers resulted in overall accuracies of greater than 90% for both years and a support vector machine with a radial basis kernel recorded the maximum accuracy of 97%. The tuned models were used to determine the spatial distribution of maize fields for both growing seasons in the Faisalabad district using parallel processing to improve computation time. The overall classified maize growing area represented 12% difference than that reported by the Crop Reporting Service (CRS) of Punjab Pakistan for both 2015 and 2016. For the agricultural production normalized difference vegetation index from Landsat-8 and climate indicators from ground stations will be used as inputs in a variety of machine learning regression algorithms. The expected results will be compared to actual yield from 64 commercial farms. To verify the impact of climate variability in the maize agricultural production historical climate data from previous 30 years will be used in the developed model to asses the impact of climate variability on the maize production.
Maize (Zea mays L) cultivars nutrients concentration in leaves and stalks
USDA-ARS?s Scientific Manuscript database
There is pressure for crop residue removal for use as biofuel, animal feed, animal bedding and many other functions which may increase nutrient export. However, there is little information about nutritional composition of maize stover considering the wide variability of cultivars used. The aim of th...
Oluwaseun F. Ogunola; Leigh K. Hawkins; Erik Mylroie; Michael V. Kolomiets; Eli Borrego; Juliet D. Tang; Paul W. Williams; Marilyn L. Warburton
2017-01-01
Maize (Zea mays L.) is a globally important staple food crop prone to contamination by aflatoxin, a carcinogenic secondary metabolite produced by the fungus Aspergillus flavus. An efficient approach to reduce accumulation of aflatoxin is the development of germplasm resistant to colonization and toxin...
Integrated database for identifying candate genes for Aspergillus flavus resistance in maize
USDA-ARS?s Scientific Manuscript database
Aspergillus flavus Link:Fr, an opportunistic fungus that produces aflatoxin, is pathogenic to maize and other oilseed crops. Aflatoxin is a potent carcinogen, and its presence markedly reduces the value of grain. Understanding and enhancing host resistance to A. flavus infection and/or subsequent af...
A maize caffeoyl-CoA O-methyltransferase gene confers quantitative resistance to multiple pathogens
USDA-ARS?s Scientific Manuscript database
Alleles that confer multiple disease resistance (MDR) are valuable in crop improvement though molecular mechanisms underlying their functions remain largely unknown. A QTL, qMdr9.02, associated with resistance to three important foliar maize diseases, southern leaf blight (SLB), gray leaf spot (GLS)...
Sites of ozone sensitivity in diverse maize inbred lines
USDA-ARS?s Scientific Manuscript database
Tropospheric ozone (O3) is an air pollutant that costs ~$14-26 billion in global crop losses and is projected to worsen in the future. Potential sites of O3 sensitivity in maize were tested by growing 200 inbred lines, including the nested association mapping population founder lines, under ambient...
Registration of maize inbred line GT603
USDA-ARS?s Scientific Manuscript database
GT603 (Reg. No. xxxx, PI xxxxxx) is a yellow dent maize (Zea mays L.) inbred line developed and released by the USDA-ARS Crop Protection and Management Research Unit in cooperation with the University of Georgia Coastal Plain Experiment Station in 2010. GT603 was developed through seven generations ...
Photosynthesis, growth and maize yields in the context of global change
USDA-ARS?s Scientific Manuscript database
Maize is the third most important grain crop behind wheat and rice. Global mean temperatures are rising primarily due to anthropogenic carbon dioxide emissions into the earth’s atmosphere. Warmer temperatures over major landmasses are predicted to alter precipitation patterns and to increase the f...
USDA-ARS?s Scientific Manuscript database
Maize (Zea mays L.) is a globally important staple food crop. It is prone to contamination by aflatoxin, a secondary carcinogenic metabolite produced by the fungus Aspergillus flavus. An efficient approach to combat the accumulation of aflatoxin is the development of germplasm resistant to infection...
USDA-ARS?s Scientific Manuscript database
Fungal communities in soils of Nigerian maize fields were examined to determine distributions of aflatoxin-producing fungi and to identify endemic atoxigenic strains of potential value as biological control agents for limiting aflatoxin contamination in West African crops. Over 1,000 isolates belon...
Li, Qisong; Chen, Jun; Wu, Linkun; Luo, Xiaomian; Li, Na; Arafat, Yasir; Lin, Sheng; Lin, Wenxiong
2018-01-01
Intercropping has been widely used to control disease and improve yield in agriculture. In this study, maize and peanut were used for non-separation intercropping (NS), semi-separation intercropping (SS) using a nylon net, and complete separation intercropping (CS) using a plastic sheet. In field experiments, two-year land equivalent ratios (LERs) showed yield advantages due to belowground interactions when using NS and SS patterns as compared to monoculture. In contrast, intercropping without belowground interactions (CS) showed a yield disadvantage. Meanwhile, in pot experiments, belowground interactions (found in NS and SS) improved levels of soil-available nutrients (nitrogen (N) and phosphorus (P)) and enzymes (urease and acid phosphomonoesterase) as compared to intercropping without belowground interactions (CS). Soil bacterial community assay showed that soil bacterial communities in the NS and SS crops clustered together and were considerably different from the CS crops. The diversity of bacterial communities was significantly improved in soils with NS and SS. The abundance of beneficial bacteria, which have the functions of P-solubilization, pathogen suppression, and N-cycling, was improved in maize and peanut soils due to belowground interactions through intercropping. Among these bacteria, numbers of Bacillus, Brevibacillus brevis, and Paenibacillus were mainly increased in the maize rhizosphere. Burkholderia, Pseudomonas, and Rhizobium were mainly increased in the peanut rhizosphere. In conclusion, using maize and peanut intercropping, belowground interactions increased the numbers of beneficial bacteria in the soil and improved the diversity of the bacterial community, which was conducive to improving soil nutrient (N and P) supply capacity and soil microecosystem stability. PMID:29470429
Ma, Jie; Lei, En; Lei, Mei; Liu, Yanhong; Chen, Tongbin
2018-03-01
Intercropping of arsenic (As) hyperaccumulator and cash crops during remediation of contaminated soil has been applied in farmland remediation project. However, little is known about the fate of As fractions in the soil profile and As uptake within the intercropping plants under field condition. In this study, As removal, uptake, and translocation were investigated within an intercropping system of Pteris vittata L. (P. vittata) and maize (Zea mays). Results indicated that the concentration of As associated with amorphous Fe (hydr)oxides in the 10-20 cm soil layer was significantly lower under malposed intercropping of P. vittata and maize, and As accumulation in P. vittata and biomass of P. vittata were simultaneously higher under malposed intercropping than under coordinate intercropping, leading to a 2.4 times higher rate of As removal. Although maize roots absorbed over 13.4 mg kg -1 As and maize leaves and flowers accumulated over 21.5 mg kg -1 As (translocation factor higher than 1), grains produced in all intercropping modes accumulated lower levels of As, satisfying the standard for human consumption. Our results suggested that malposed intercropping of a hyperaccumulator and a low-accumulation cash crop was an ideal planting pattern for As remediation in soil. Furthermore, timely harvest of P. vittata, agronomic strategies during remediation, and appropriate management of the above ground parts of P. vittata and high-As tissues of cash crops may further improve remediation efficiency. Copyright © 2017. Published by Elsevier Ltd.
Memory of irrigation effects on hydroclimate and its modeling challenge
NASA Astrophysics Data System (ADS)
Chen, Fei; Xu, Xiaoyu; Barlage, Michael; Rasmussen, Roy; Shen, Shuanghe; Miao, Shiguang; Zhou, Guangsheng
2018-06-01
Irrigation modifies land-surface water and energy budgets, and also influences weather and climate. However, current earth-system models, used for weather prediction and climate projection, are still in their infancy stage to consider irrigation effects. This study used long-term data collected from two contrasting (irrigated and rainfed) nearby maize-soybean rotation fields, to study the effects of irrigation memory on local hydroclimate. For a 12 year average, irrigation decreases summer surface-air temperature by less than 1 °C and increases surface humidity by 0.52 g kg‑1. The irrigation cooling effect is more pronounced and longer lasting for maize than for soybean. Irrigation reduces maximum, minimum, and averaged temperature over maize by more than 0.5 °C for the first six days after irrigation, but its temperature effect over soybean is mixed and negligible two or three days after irrigation. Irrigation increases near-surface humidity over maize by about 1 g kg‑1 up to ten days and increases surface humidity over soybean (~ 0.8 g kg‑1) with a similar memory. These differing effects of irrigation memory on temperature and humidity are associated with respective changes in the surface sensible and latent heat fluxes for maize and soybean. These findings highlight great need and challenges for earth-system models to realistically simulate how irrigation effects vary with crop species and with crop growth stages, and to capture complex interactions between agricultural management and water-system components (crop transpiration, precipitation, river, reservoirs, lakes, groundwater, etc.) at various spatial and temporal scales.
Lower Limits of Water Use By Cotton, Maize, and Grain Sorghum in Three Great Plains Soils
USDA-ARS?s Scientific Manuscript database
Accurate knowledge of the amount of soil water available for crop use helps agricultural producers select cropping and irrigation management strategies that maximize crop yields. Using neutron attenuation, we measured the lower limits of soil water content (LL, in m**3 m**-3) at harvest (three seas...
Climate change and maize yield in Iowa
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Hong; Twine, Tracy E.; Girvetz, Evan
Climate is changing across the world, including the major maize-growing state of Iowa in the USA. To maintain crop yields, farmers will need a suite of adaptation strategies, and choice of strategy will depend on how the local to regional climate is expected to change. Here we predict how maize yield might change through the 21 st century as compared with late 20 th century yields across Iowa, USA, a region representing ideal climate and soils for maize production that contributes substantially to the global maize economy. To account for climate model uncertainty, we drive a dynamic ecosystem model withmore » output from six climate models and two future climate forcing scenarios. Despite a wide range in the predicted amount of warming and change to summer precipitation, all simulations predict a decrease in maize yields from late 20 th century to middle and late 21 st century ranging from 15% to 50%. Linear regression of all models predicts a 6% state-averaged yield decrease for every 1°C increase in warm season average air temperature. When the influence of moisture stress on crop growth is removed from the model, yield decreases either remain the same or are reduced, depending on predicted changes in warm season precipitation. Lastly, our results suggest that even if maize were to receive all the water it needed, under the strongest climate forcing scenario yields will decline by 10-20% by the end of the 21 st century.« less
The Effect of Farmers' Decisions on Pest Control with Bt Crops: A Billion Dollar Game of Strategy.
Milne, Alice E; Bell, James R; Hutchison, William D; van den Bosch, Frank; Mitchell, Paul D; Crowder, David; Parnell, Stephen; Whitmore, Andrew P
2015-12-01
A farmer's decision on whether to control a pest is usually based on the perceived threat of the pest locally and the guidance of commercial advisors. Therefore, farmers in a region are often influenced by similar circumstances, and this can create a coordinated response for pest control that is effective at a landscape scale. This coordinated response is not intentional, but is an emergent property of the system. We propose a framework for understanding the intrinsic feedback mechanisms between the actions of humans and the dynamics of pest populations and demonstrate this framework using the European corn borer, a serious pest in maize crops. We link a model of the European corn borer and a parasite in a landscape with a model that simulates the decisions of individual farmers on what type of maize to grow. Farmers chose whether to grow Bt-maize, which is toxic to the corn borer, or conventional maize for which the seed is cheaper. The problem is akin to the snow-drift problem in game theory; that is to say, if enough farmers choose to grow Bt maize then because the pest is suppressed an individual may benefit from growing conventional maize. We show that the communication network between farmers' and their perceptions of profit and loss affects landscape scale patterns in pest dynamics. We found that although adoption of Bt maize often brings increased financial returns, these rewards oscillate in response to the prevalence of pests.
Liu, Jiangang; Wang, Guangyao; Chu, Qingquan; Chen, Fu
2017-07-01
Nitrogen (N) application significantly increases maize yield; however, the unreasonable use of N fertilizer is common in China. The analysis of crop yield gaps can reveal the limiting factors for yield improvement, but there is a lack of practical strategies for narrowing yield gaps of household farms. The objectives of this study were to assess the yield gap of summer maize using an integrative method and to develop strategies for narrowing the maize yield gap through precise N fertilization. The results indicated that there was a significant difference in maize yield among fields, with a low level of variation. Additionally, significant differences in N application rate were observed among fields, with high variability. Based on long-term simulation results, the optimal N application rate was 193 kg ha -1 , with a corresponding maximum attainable yield (AY max ) of 10 318 kg ha -1 . A considerable difference between farmers' yields and AY max was observed. Low agronomic efficiency of applied N fertilizer (AE N ) in farmers' fields was exhibited. The integrative method lays a foundation for exploring the specific factors constraining crop yield gaps at the field scale and for developing strategies for rapid site-specific N management. Optimization strategies to narrow the maize yield gap include increasing N application rates and adjusting the N application schedule. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
Climate change and maize yield in Iowa
Xu, Hong; Twine, Tracy E.; Girvetz, Evan
2016-05-24
Climate is changing across the world, including the major maize-growing state of Iowa in the USA. To maintain crop yields, farmers will need a suite of adaptation strategies, and choice of strategy will depend on how the local to regional climate is expected to change. Here we predict how maize yield might change through the 21 st century as compared with late 20 th century yields across Iowa, USA, a region representing ideal climate and soils for maize production that contributes substantially to the global maize economy. To account for climate model uncertainty, we drive a dynamic ecosystem model withmore » output from six climate models and two future climate forcing scenarios. Despite a wide range in the predicted amount of warming and change to summer precipitation, all simulations predict a decrease in maize yields from late 20 th century to middle and late 21 st century ranging from 15% to 50%. Linear regression of all models predicts a 6% state-averaged yield decrease for every 1°C increase in warm season average air temperature. When the influence of moisture stress on crop growth is removed from the model, yield decreases either remain the same or are reduced, depending on predicted changes in warm season precipitation. Lastly, our results suggest that even if maize were to receive all the water it needed, under the strongest climate forcing scenario yields will decline by 10-20% by the end of the 21 st century.« less
The Effect of Farmers’ Decisions on Pest Control with Bt Crops: A Billion Dollar Game of Strategy
Hutchison, William D.; van den Bosch, Frank; Mitchell, Paul D.; Crowder, David; Parnell, Stephen; Whitmore, Andrew P.
2015-01-01
A farmer’s decision on whether to control a pest is usually based on the perceived threat of the pest locally and the guidance of commercial advisors. Therefore, farmers in a region are often influenced by similar circumstances, and this can create a coordinated response for pest control that is effective at a landscape scale. This coordinated response is not intentional, but is an emergent property of the system. We propose a framework for understanding the intrinsic feedback mechanisms between the actions of humans and the dynamics of pest populations and demonstrate this framework using the European corn borer, a serious pest in maize crops. We link a model of the European corn borer and a parasite in a landscape with a model that simulates the decisions of individual farmers on what type of maize to grow. Farmers chose whether to grow Bt-maize, which is toxic to the corn borer, or conventional maize for which the seed is cheaper. The problem is akin to the snow-drift problem in game theory; that is to say, if enough farmers choose to grow Bt maize then because the pest is suppressed an individual may benefit from growing conventional maize. We show that the communication network between farmers’ and their perceptions of profit and loss affects landscape scale patterns in pest dynamics. We found that although adoption of Bt maize often brings increased financial returns, these rewards oscillate in response to the prevalence of pests. PMID:26720851
Crop Row Detection in Maize Fields Inspired on the Human Visual Perception
Romeo, J.; Pajares, G.; Montalvo, M.; Guerrero, J. M.; Guijarro, M.; Ribeiro, A.
2012-01-01
This paper proposes a new method, oriented to image real-time processing, for identifying crop rows in maize fields in the images. The vision system is designed to be installed onboard a mobile agricultural vehicle, that is, submitted to gyros, vibrations, and undesired movements. The images are captured under image perspective, being affected by the above undesired effects. The image processing consists of two main processes: image segmentation and crop row detection. The first one applies a threshold to separate green plants or pixels (crops and weeds) from the rest (soil, stones, and others). It is based on a fuzzy clustering process, which allows obtaining the threshold to be applied during the normal operation process. The crop row detection applies a method based on image perspective projection that searches for maximum accumulation of segmented green pixels along straight alignments. They determine the expected crop lines in the images. The method is robust enough to work under the above-mentioned undesired effects. It is favorably compared against the well-tested Hough transformation for line detection. PMID:22623899
Shen, Yan; McLaughlin, Neil; Zhang, Xiaoping; Xu, Minggang; Liang, Aizhen
2018-03-14
Crop residue return is imperative to maintain soil health and productivity but some farmers resist adopting conservation tillage systems with residue return fearing reduced soil temperature following planting and crop yield. Soil temperatures were measured at 10 cm depth for one month following planting from 2004 to 2007 in a field experiment in Northeast China. Tillage treatments included mouldboard plough (MP), no till (NT), and ridge till (RT) with maize (Zea mays L.) and soybean (Glycine max Merr.) crops. Tillage had significant effects on soil temperature in 10 of 15 weekly periods. Weekly average NT soil temperature was 0-1.5 °C lower than MP, but the difference was significant (P < 0.05) only in 2007 when residue was not returned in MP the previous autumn. RT showed no clear advantage over NT in increasing soil temperature. Higher residue coverage caused lower soil temperature; the effect was greater for maize than soybean residue. Residue type had significant effect on soil temperature in 9 of 15 weekly periods with 0-1.9 °C lower soil temperature under maize than soybean residue. Both tillage and residue had small but inconsistent effect on soil temperature following planting in Northeast China representative of a cool to temperate zone.
Assessing the Impact of Climatic Variability and Change on Maize Production in the Midwestern USA
NASA Astrophysics Data System (ADS)
Andresen, J.; Jain, A. K.; Niyogi, D. S.; Alagarswamy, G.; Biehl, L.; Delamater, P.; Doering, O.; Elias, A.; Elmore, R.; Gramig, B.; Hart, C.; Kellner, O.; Liu, X.; Mohankumar, E.; Prokopy, L. S.; Song, C.; Todey, D.; Widhalm, M.
2013-12-01
Weather and climate remain among the most important uncontrollable factors in agricultural production systems. In this study, three process-based crop simulation models were used to identify the impacts of climate on the production of maize in the Midwestern U.S.A. during the past century. The 12-state region is a key global production area, responsible for more than 80% of U.S. domestic and 25% of total global production. The study is a part of the Useful to Useable (U2U) Project, a USDA NIFA-sponsored project seeking to improve the resilience and profitability of farming operations in the region amid climate variability and change. Three process-based crop simulation models were used in the study: CERES-Maize (DSSAT, Hoogenboom et al., 2012), the Hybrid-Maize model (Yang et al., 2004), and the Integrated Science Assessment Model (ISAM, Song et al., 2013). Model validation was carried out with individual plot and county observations. The models were run with 4 to 50 km spatial resolution gridded weather data for representative soils and cultivars, 1981-2012, to examine spatial and temporal yield variability within the region. We also examined the influence of different crop models and spatial scales on regional scale yield estimation, as well as a yield gap analysis between observed and attainable yields. An additional study was carried out with the CERES-Maize model at 18 individual site locations 1901-2012 to examine longer term historical trends. For all simulations, all input variables were held constant in order to isolate the impacts of climate. In general, the model estimates were in good agreement with observed yields, especially in central sections of the region. Regionally, low precipitation and soil moisture stress were chief limitations to simulated crop yields. The study suggests that at least part of the observed yield increases in the region during recent decades have occurred as the result of wetter, less stressful growing season weather conditions.
Chen, Zhaojin; Zheng, Yuan; Ding, Chuanyu; Ren, Xuemin; Yuan, Jian; Sun, Feng; Li, Yuying
2017-11-01
Two energy crops (maize and soybean) were used in the remediation of cadmium-contaminated soils. These crops were used because they are fast growing, have a large biomass and are good sources for bioenergy production. The total accumulation of cadmium in maize and soybean plants was 393.01 and 263.24μg pot -1 , respectively. The rhizosphere bacterial community composition was studied by MiSeq sequencing. Phylogenetic analysis was performed using 16S rRNA gene sequences. The rhizosphere bacteria were divided into 33 major phylogenetic groups according to phyla. The dominant phylogenetic groups included Proteobacteria, Acidobacteria, Actinobacteria, Gemmatimonadetes, and Bacteroidetes. Based on principal component analysis (PCA) and unweighted pair group with arithmetic mean (UPGMA) analysis, we found that the bacterial community was influenced by cadmium addition and bioenergy cropping. Three molecular ecological networks were constructed for the unplanted, soybean- and maize-planted bacterial communities grown in 50mgkg -1 cadmium-contaminated soils. The results indicated that bioenergy cropping increased the complexity of the bacterial community network as evidenced by a higher total number of nodes, the average geodesic distance (GD), the modularity and a shorter geodesic distance. Proteobacteria and Acidobacteria were the keystone bacteria connecting different co-expressed operational taxonomic units (OTUs). The results showed that bioenergy cropping altered the topological roles of individual OTUs and keystone populations. This is the first study to reveal the effects of bioenergy cropping on microbial interactions in the phytoremediation of cadmium-contaminated soils by network reconstruction. This method can greatly enhance our understanding of the mechanisms of plant-microbe-metal interactions in metal-polluted ecosystems. Copyright © 2017 Elsevier Inc. All rights reserved.
How model and input uncertainty impact maize yield simulations in West Africa
NASA Astrophysics Data System (ADS)
Waha, Katharina; Huth, Neil; Carberry, Peter; Wang, Enli
2015-02-01
Crop models are common tools for simulating crop yields and crop production in studies on food security and global change. Various uncertainties however exist, not only in the model design and model parameters, but also and maybe even more important in soil, climate and management input data. We analyze the performance of the point-scale crop model APSIM and the global scale crop model LPJmL with different climate and soil conditions under different agricultural management in the low-input maize-growing areas of Burkina Faso, West Africa. We test the models’ response to different levels of input information from little to detailed information on soil, climate (1961-2000) and agricultural management and compare the models’ ability to represent the observed spatial (between locations) and temporal variability (between years) in crop yields. We found that the resolution of different soil, climate and management information influences the simulated crop yields in both models. However, the difference between models is larger than between input data and larger between simulations with different climate and management information than between simulations with different soil information. The observed spatial variability can be represented well from both models even with little information on soils and management but APSIM simulates a higher variation between single locations than LPJmL. The agreement of simulated and observed temporal variability is lower due to non-climatic factors e.g. investment in agricultural research and development between 1987 and 1991 in Burkina Faso which resulted in a doubling of maize yields. The findings of our study highlight the importance of scale and model choice and show that the most detailed input data does not necessarily improve model performance.
Liu, Li-hua; Jiang, Jing-yan; Zong, Liang-gang
2011-05-01
Burning of agricultural crop residues was a major source greenhouse gases. In this study, the proportion of crop straws (rice, wheat, maize, oil rape, cotton and soja) in Jiangsu used as household fuel and direct open burning in different periods (1990-1995, 1996-2000, 2001-2005 and 2006-2008) was estimated through questionnaire. The emission factors of CO2, CO, CH4 and NO20 from the above six types of crop straws were calculated by the simulated burning experiment. Thus the emission inventory of greenhouse gases from crop straws burning was established according to above the burning percentages and emission factors, ratios of dry residues to production and crop productions of different periods in Jiangsu province. Results indicated that emission factors of CO2, CO, CH4 and N2O depended on crop straw type. The emission factors of CO2 and CH4 were higher for oil rape straw than the other straws, while the maize and the rice straw had the higher N2O and CO emission factor. Emission inventory of greenhouse gases from agricultural residues burning in Jiangsu province showed, the annual average global warming potential (GWP) of six tested crop straws were estimated to be 9.18 (rice straw), 4.35 (wheat straw), 2.55 (maize straw), 1.63 (oil rape straw), 0.55 (cotton straw) and 0. 39 (soja straw) Tg CO2 equivalent, respectively. Among the four study periods, the annual average GWP had no obvious difference between the 1990-1995 and 2006-2008 periods, while the maximal annual average GWP (23.83 Tg CO2 equivalent) happened in the 1996-2000 period, and the minimum (20.30 Tg CO2 equivalent) in 1996-2000 period.
NASA Astrophysics Data System (ADS)
Gabaldon, Clara; Lorite, Ignacio J.; Ines Minguez, M.; Lizaso, Jon; Dosio, Alessandro; Sanchez, Enrique; Ruiz-Ramos, Margarita
2015-04-01
Extreme events of Tmax can threaten maize production on Andalusia (Ruiz-Ramos et al., 2011). The objective of this work is to attempt a quantification of the effects of Tmax extreme events on the previously identified (Gabaldón et al., 2013) local adaptation strategies to climate change of irrigated maize crop in Andalusia for the first half of the 21st century. This study is focused on five Andalusia locations. Local adaptation strategies identified consisted on combinations of changes on sowing dates and choice of cultivar (Gabaldón et al., 2013). Modified cultivar features were the duration of phenological phases and the grain filling rate. The phenological and yield simulations with the adaptative changes were obtained from a modelling chain: current simulated climate and future climate scenarios (2013-2050) were taken from a group of regional climate models at high resolution (25 km) from the European Project ENSEMBLES (http://www.ensembles-eu.org/). After bias correcting these data for temperature and precipitation (Dosio and Paruolo, 2011; Dosio et al., 2012) crop simulations were generated by the CERES-maize model (Jones and Kiniry, 1986) under DSSAT platform, previously calibrated and validated. Quantification of the effects of extreme Tmax on maize yield was computed for different phenological stages following Teixeira et al. (2013). A heat stress index was computed; this index assumes that yield-damage intensity due to heat stress increases linearly from 0.0 at a critical temperature to a maximum of 1.0 at a limit temperature. The decrease of crop yield is then computed by a normalized production damage index which combines attainable yield and heat stress index for each location. Selection of the most suitable adaptation strategy will be reviewed and discussed in light of the quantified effect on crop yield of the projected change of Tmax extreme events. This study will contribute to MACSUR knowledge Hub within the Joint Programming Initiative on Agriculture, Food Security and Climate Change (FACCE - JPI) of EU and is financed by MULCLIVAR project (CGL2012-38923-C02-02) and IFAPA project AGR6126 from Junta de Andalucía, Spain. References Dosio A. and Paruolo P., 2011. Bias correction of the ENSEMBLES high-resolution climate change projections for use by impact models: Evaluation on the present climate. Journal of Geophysical Research, VOL. 116, D16106, doi:10.1029/2011JD015934 Dosio A., Paruolo P. and Rojas R., 2012. Bias correction of the ENSEMBLES high resolution climate change projections for use by impact models: Analysis of the climate change signal. Journal of Geophysical Research, Volume 117, D17, doi: 0.1029/2012JD017968 Gabaldón C, Lorite IJ, Mínguez MI, Dosio A, Sánchez-Sánchez E and Ruiz-Ramos M, 2013. Evaluation of local adaptation strategies to climate change of maize crop in Andalusia for the first half of 21st century. Geophysical Research Abstracts. Vol. 15, EGU2013-13625, 2013. EGU General Assembly 2013, April 2013, Vienna, Austria. Jones C.A. and J.R. Kiniry. 1986. CERES-Maize: A simulation model of maize growth and development. Texas A&M Univ. Press, College Station. Ruiz-Ramos M., E. Sanchez, C. Galllardo, and M.I. Minguez. 2011. Impacts of projected maximum temperature extremes for C21 by an ensemble of regional climate models on cereal cropping systems in the Iberian Peninsula. Natural Hazards and Earth System Science 11: 3275-3291. Teixeira EI, Fischer G, van Velthuizen H, Walter C, Ewert F. Global hotspots of heat stress on agricultural crops due to climate change. Agric For Meteorol. 2013;170(15):206-215.
Huang, Ping; Zhang, Jiabao; Zhu, Anning; Li, Xiaopeng; Ma, Donghao; Xin, Xiuli; Zhang, Congzhi; Wu, Shengjun; Garland, Gina; Pereira, Engil Isadora Pujol
2018-01-01
Irrigation and nitrogen (N) fertilization in excess of crop requirements are responsible for substantial nitrate accumulation in the soil profile and contamination of groundwater by nitrate leaching during intensive agricultural production. In this on-farm field trial, we compared 16 different water and N treatments on nitrate accumulation and its distribution in the soil profile (0-180cm), nitrate leaching potential, and groundwater nitrate concentration within a summer-maize (Zea mays L.) and winter-wheat (Triticum aestivum L.) rotation system in the Huang-Huai-Hai Plain over five cropping cycles (2006-2010). The results indicated that nitrate remaining in the soil profile after crop harvest and nitrate concentration of soil solutions at two depths (80cm and 180cm) declined with increasing irrigation amounts and increased greatly with increasing N application rates, especially for seasonal N application rates higher than 190kgNha -1 . During the experimental period, continuous torrential rainfall was the main cause for nitrate leaching beyond the root zone (180cm), which could pose potential risks for contamination of groundwater. Nitrate concentration of groundwater varied from 0.2 to 2.9mgL -1 , which was lower than the limit of 10mgL -1 as the maximum safe level for drinking water. In view of the balance between grain production and environmental consequences, seasonal N application rates of 190kgNha -1 and 150kgNha -1 were recommended for winter wheat and summer maize, respectively. Irrigation to the field capacity of 0-40cm and 0-60cm soil depth could be appropriate for maize and wheat, respectively. Therefore, taking grain yields, mineral N accumulation in the soil profile, nitrate leaching potential, and groundwater quality into account, coupled water and N management could provide an opportunity to promote grain production while reducing negative environmental impacts in this region. Copyright © 2017 Elsevier B.V. All rights reserved.
Logrieco, A; Moretti, A; Perrone, G; Mulè, G
2007-10-20
Fusarium ear rot of maize and Aspergillus rot of grape are two examples of important plant diseases caused by complexes of species of mycotoxigenic fungi. These complexes of species tend to be closely related, produce different classes of mycotoxins, and can induce disease under different environmental conditions. The infection of maize and grape with multiple fungal species and the resulting production of large classes of mycotoxins is an example of mutual aggressiveness of microorganisms toward host species as well as to humans and animals that eat feed or food derived from the infected and contaminated plants. Infection of crop plant with a complex of microbial species certainly represents a greater threat to a crop plant and to human and animal health than infection of the plant with a single fungal species.
NASA Astrophysics Data System (ADS)
Yuan, Wenping; Liu, Shuguang; Liu, Wei; Zhao, Shuqing; Dong, Wenjie; Tao, Fulu; Chen, Min; Lin, Hui
2018-04-01
China is facing the challenge of feeding a growing population with the declining cropland and increasing shortage of water resources under the changing climate. This study identified that the opportunistic profit-driven shifts of planting areas and crop species composition have strongly reduced the food production capacity of China. First, the regional cultivation patterns of major crops in China have substantially shifted during the past five decades. Southeast and South China, the regions with abundant water resources and fewer natural disasters, have lost large planting areas of cropland in order to pursue industry and commerce. Meanwhile, Northeast and Northwest China, the regions with low water resources and frequent natural disasters, have witnessed increases in planting areas. These macroshifts have reduced the national food production by 1.02% per year. The lost grain production would have been enough to feed 13 million people. Second, the spatial shifts have been accompanied by major changes in crop species composition, with substantial increases in planting area and production of maize, due to its low water consumption and high economic returns. Consequently, the stockpile of maize in China has accounted for more than half of global stockpile, and the stock to use ratio of maize in China has exceeded the reliable level. Market-driven regional shifts of cropping practices have resulted in larger irrigation requirements and aggravated environmental stresses. Our results highlighted the need for Chinese food policies to consider the spatial shifts in cultivation, and the planting crop compositions limited by regional water resources and climate change.
Pesticide runoff from energy crops: A threat to aquatic invertebrates?
Bunzel, Katja; Schäfer, Ralf B; Thrän, Daniela; Kattwinkel, Mira
2015-12-15
The European Union aims to reach a 10% share of biofuels in the transport sector by 2020. The major burden is most likely to fall on already established annual energy crops such as rapeseed and cereals for the production of biodiesel and bioethanol, respectively. Annual energy crops are typically cultivated in intensive agricultural production systems, which require the application of pesticides. Agricultural pesticides can have adverse effects on aquatic invertebrates in adjacent streams. We assessed the relative ecological risk to aquatic invertebrates associated with the chemical pest management from six energy crops (maize, potato, sugar beet, winter barley, winter rapeseed, and winter wheat) as well as from mixed cultivation scenarios. The pesticide exposure related to energy crops and cultivation scenarios was estimated as surface runoff for 253 small stream sites in Central Germany using a GIS-based runoff potential model. The ecological risk for aquatic invertebrates, an important organism group for the functioning of stream ecosystems, was assessed using acute toxicity data (48-h LC50 values) of the crustacean Daphnia magna. We calculated the Ecological Risk from potential Pesticide Runoff (ERPR) for all three main groups of pesticides (herbicides, fungicides, and insecticides). Our findings suggest that the crops potato, sugar beet, and rapeseed pose a higher ecological risk to aquatic invertebrates than maize, barley, and wheat. As maize had by far the lowest ERPR values, from the perspective of pesticide pollution, its cultivation as substrate for the production of the gaseous biofuel biomethane may be preferable compared to the production of, for example, biodiesel from rapeseed. Copyright © 2015 Elsevier B.V. All rights reserved.
L. D. Emberson; W. J. Massman; P. Buker; G. Soja; I. Van De Sand; G. Mills; C. Jacobs
2006-01-01
Currently, stomatal O3 flux and flux-response models only exist for wheat and potato (LRTAP Convention, 2004), as such there is a need to extend these models to include additional crop types. The possibility of establishing robust stomatal flux models for five agricultural crops (tomato, grapevine, sugar beet, maize and sunflower) was investigated. These crops were...
Harrison, Matthew T; Tardieu, François; Dong, Zhanshan; Messina, Carlos D; Hammer, Graeme L
2014-03-01
Global climate change is predicted to increase temperatures, alter geographical patterns of rainfall and increase the frequency of extreme climatic events. Such changes are likely to alter the timing and magnitude of drought stresses experienced by crops. This study used new developments in the classification of crop water stress to first characterize the typology and frequency of drought-stress patterns experienced by European maize crops and their associated distributions of grain yield, and second determine the influence of the breeding traits anthesis-silking synchrony, maturity and kernel number on yield in different drought-stress scenarios, under current and future climates. Under historical conditions, a low-stress scenario occurred most frequently (ca. 40%), and three other stress types exposing crops to late-season stresses each occurred in ca. 20% of cases. A key revelation shown was that the four patterns will also be the most dominant stress patterns under 2050 conditions. Future frequencies of low drought stress were reduced by ca. 15%, and those of severe water deficit during grain filling increased from 18% to 25%. Despite this, effects of elevated CO2 on crop growth moderated detrimental effects of climate change on yield. Increasing anthesis-silking synchrony had the greatest effect on yield in low drought-stress seasonal patterns, whereas earlier maturity had the greatest effect in crops exposed to severe early-terminal drought stress. Segregating drought-stress patterns into key groups allowed greater insight into the effects of trait perturbation on crop yield under different weather conditions. We demonstrate that for crops exposed to the same drought-stress pattern, trait perturbation under current climates will have a similar impact on yield as that expected in future, even though the frequencies of severe drought stress will increase in future. These results have important ramifications for breeding of maize and have implications for studies examining genetic and physiological crop responses to environmental stresses. © 2013 John Wiley & Sons Ltd.
The important but weakening maize yield benefit of grain filling prolongation in the US Midwest.
Zhu, Peng; Jin, Zhenong; Zhuang, Qianlai; Ciais, Philippe; Bernacchi, Carl; Wang, Xuhui; Makowski, David; Lobell, David
2018-06-14
A better understanding of recent crop yield trends is necessary for improving the yield and maintaining food security. Several possible mechanisms have been investigated recently in order to explain the steady growth in maize yield over the US Corn-Belt, but a substantial fraction of the increasing trend remains elusive. In this study, trends in grain filling period (GFP) were identified and their relations with maize yield increase were further analyzed. By using satellite data from 2000 to 2015, an average lengthening of GFP of 0.37 days per year was found over the region, which probably results from variety renewal. Statistical analysis suggests that longer GFP accounted for roughly one-quarter (23%) of the yield increase trend by promoting kernel dry matter accumulation, yet had less yield benefit in hotter counties. Both official survey data and crop model simulations estimated a similar contribution of GFP trend to yield. If growing degree days that determines the GFP continues to prolong at the current rate for the next 50 years, yield reduction will be lessened with 25% and 18% longer GFP under Representative Concentration Pathway 2.6 (RCP 2.6) and RCP 6.0, respectively. However, this level of progress is insufficient to offset yield losses in future climates, because drought and heat stress during the GFP will become more prevalent and severe. This study highlights the need to devise multiple effective adaptation strategies to withstand the upcoming challenges in food security. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
NASA Astrophysics Data System (ADS)
von Haden, A.; Marin-Spiotta, E.; Jackson, R. D.; Kucharik, C. J.
2016-12-01
A high proportion of carbon lost from terrestrial ecosystems occurs via soil CO2 respiration. Soil respiration is comprised of two contrasting sources: heterotrophic respiration (RH) from the decomposition of organic matter and autotrophic respiration (RA) from plant root metabolism. Since the two sources of soil respiration vary widely in their origin, the controls of each source are also likely to differ. However, the challenge of partitioning soil respiration sources in situ has limited our mechanistic understanding of RH and RA. Our objective was to evaluate the in situ diurnal controls of RH and RA in maize (Zea mays L.) and switchgrass (Panicum virgatum L.) bioenergy cropping systems. We hypothesized that both RH and RA would follow diurnal soil temperature trends, but that RA would also respond to diel patterns of photosynthetically active radiation (PAR). We also expected that diurnal soil respiration patterns would vary significantly within the growing season. We evaluated our hypothesis with six diurnal soil respiration campaigns during the 2015 and 2016 growing seasons at Arlington, WI, USA. RH showed clear oscillating diel trends, typically peaking in the mid-afternoon when near-surface soil temperatures were highest. Diurnal RA patterns were more nuanced than RH, but were generally highest in the late afternoon and showed the most pronounced diel trends during peak growing season in July. RA also tended to spike in concert with PAR, but this effect was much more prominent in maize than switchgrass. Continuing efforts will attempt to quantitatively separate the effects of soil temperature and PAR on RA.
Xu, Cong; Han, Xiao; Bol, Roland; Smith, Pete; Wu, Wenliang; Meng, Fanqiao
2017-09-01
Requirements for mitigation of the continued increase in greenhouse gas (GHG) emissions are much needed for the North China Plain (NCP). We conducted a meta-analysis of 76 published studies of 24 sites in the NCP to examine the effects of natural conditions and farming practices on GHG emissions in that region. We found that N 2 O was the main component of the area-scaled total GHG balance, and the CH 4 contribution was <5%. Precipitation, temperature, soil pH, and texture had no significant impacts on annual GHG emissions, because of limited variation of these factors in the NCP. The N 2 O emissions increased exponentially with mineral fertilizer N application rate, with y = 0.2389e 0.0058 x for wheat season and y = 0.365e 0.0071 x for maize season. Emission factors were estimated at 0.37% for wheat and 0.90% for maize at conventional fertilizer N application rates. The agronomic optimal N rates (241 and 185 kg N ha -1 for wheat and maize, respectively) exhibited great potential for reducing N 2 O emissions, by 0.39 (29%) and 1.71 (56%) kg N 2 O-N ha -1 season -1 for the wheat and maize seasons, respectively. Mixed application of organic manure with reduced mineral fertilizer N could reduce annual N 2 O emissions by 16% relative to mineral N application alone while maintaining a high crop yield. Compared with conventional tillage, no-tillage significantly reduced N 2 O emissions by ~30% in the wheat season, whereas it increased those emissions by ~10% in the maize season. This may have resulted from the lower soil temperature in winter and increased soil moisture in summer under no-tillage practice. Straw incorporation significantly increased annual N 2 O emissions, by 26% relative to straw removal. Our analysis indicates that these farming practices could be further tested to mitigate GHG emission and maintain high crop yields in the NCP.
Cagnola, Juan Ignacio; Dumont de Chassart, Gonzalo Javier; Ibarra, Silvia Elizabeth; Chimenti, Claudio; Ricardi, Martiniano María; Delzer, Brent; Ghiglione, Hernán; Zhu, Tong; Otegui, María Elena; Estevez, José Manuel; Casal, Jorge José
2018-03-01
Abortion of fertilized ovaries at the tip of the ear can generate significant yield losses in maize crops. To investigate the mechanisms involved in this process, 2 maize hybrids were grown in field crops at 2 sowing densities and under 3 irrigation regimes (well-watered control, drought before pollination, and drought during pollination), in all possible combinations. Samples of ear tips were taken 2-6 days after synchronous hand pollination and used for the analysis of gene expression and sugars. Glucose and fructose levels increased in kernels with high abortion risk. Several FASCICLIN-LIKE ARABINOGALACTAN PROTEIN (FLA) genes showed negative correlation with abortion. The expression of ZmFLA7 responded to drought only at the tip of the ear. The abundance of arabinogalactan protein (AGP) glycan epitopes decreased with drought and pharmacological treatments that reduce AGP activity enhanced the abortion of fertilized ovaries. Drought also reduced the expression of AthFLA9 in the siliques of Arabidopsis thaliana. Gain- and loss-of-function mutants of Arabidopsis showed a negative correlation between AthFLA9 and seed abortion. On the basis of gene expression patterns, pharmacological, and genetic evidence, we propose that stress-induced reductions in the expression of selected FLA genes enhance abortion of fertilized ovaries in maize and Arabidopsis. © 2018 John Wiley & Sons Ltd.
Temperature Increase Reduces Global Yields of Major Crops in Four Independent Estimates
NASA Technical Reports Server (NTRS)
Zhao, Chuang; Liu, Bing; Piao, Shilong; Wang, Xuhui; Lobell, David B.; Huang, Yao; Huang, Mengtian; Yao, Yitong; Bassu, Simona; Ciais, Philippe;
2017-01-01
Wheat, rice, maize, and soybean provide two-thirds of human caloric intake. Assessing the impact of global temperature increase on production of these crops is therefore critical to maintaining global food supply, but different studies have yielded different results. Here, we investigated the impacts of temperature on yields of the four crops by compiling extensive published results from four analytical methods: global grid-based and local point-based models, statistical regressions, and field-warming experiments. Results from the different methods consistently showed negative temperature impacts on crop yield at the global scale, generally underpinned by similar impacts at country and site scales. Without CO2 fertilization, effective adaptation, and genetic improvement, each degree-Celsius increase in global mean temperature would, on average, reduce global yields of wheat by 6.0%, rice by 3.2%, maize by 7.4%, and soybean by 3.1%. Results are highly heterogeneous across crops and geographical areas, with some positive impact estimates. Multi-method analyses improved the confidence in assessments of future climate impacts on global major crops and suggest crop- and region-specific adaptation strategies to ensure food security for an increasing world population.
Temperature increase reduces global yields of major crops in four independent estimates
Zhao, Chuang; Piao, Shilong; Wang, Xuhui; Lobell, David B.; Huang, Yao; Huang, Mengtian; Yao, Yitong; Bassu, Simona; Ciais, Philippe; Durand, Jean-Louis; Elliott, Joshua; Ewert, Frank; Janssens, Ivan A.; Li, Tao; Lin, Erda; Liu, Qiang; Martre, Pierre; Peng, Shushi; Wallach, Daniel; Wang, Tao; Wu, Donghai; Liu, Zhuo; Zhu, Yan; Zhu, Zaichun; Asseng, Senthold
2017-01-01
Wheat, rice, maize, and soybean provide two-thirds of human caloric intake. Assessing the impact of global temperature increase on production of these crops is therefore critical to maintaining global food supply, but different studies have yielded different results. Here, we investigated the impacts of temperature on yields of the four crops by compiling extensive published results from four analytical methods: global grid-based and local point-based models, statistical regressions, and field-warming experiments. Results from the different methods consistently showed negative temperature impacts on crop yield at the global scale, generally underpinned by similar impacts at country and site scales. Without CO2 fertilization, effective adaptation, and genetic improvement, each degree-Celsius increase in global mean temperature would, on average, reduce global yields of wheat by 6.0%, rice by 3.2%, maize by 7.4%, and soybean by 3.1%. Results are highly heterogeneous across crops and geographical areas, with some positive impact estimates. Multimethod analyses improved the confidence in assessments of future climate impacts on global major crops and suggest crop- and region-specific adaptation strategies to ensure food security for an increasing world population. PMID:28811375
Temperature increase reduces global yields of major crops in four independent estimates.
Zhao, Chuang; Liu, Bing; Piao, Shilong; Wang, Xuhui; Lobell, David B; Huang, Yao; Huang, Mengtian; Yao, Yitong; Bassu, Simona; Ciais, Philippe; Durand, Jean-Louis; Elliott, Joshua; Ewert, Frank; Janssens, Ivan A; Li, Tao; Lin, Erda; Liu, Qiang; Martre, Pierre; Müller, Christoph; Peng, Shushi; Peñuelas, Josep; Ruane, Alex C; Wallach, Daniel; Wang, Tao; Wu, Donghai; Liu, Zhuo; Zhu, Yan; Zhu, Zaichun; Asseng, Senthold
2017-08-29
Wheat, rice, maize, and soybean provide two-thirds of human caloric intake. Assessing the impact of global temperature increase on production of these crops is therefore critical to maintaining global food supply, but different studies have yielded different results. Here, we investigated the impacts of temperature on yields of the four crops by compiling extensive published results from four analytical methods: global grid-based and local point-based models, statistical regressions, and field-warming experiments. Results from the different methods consistently showed negative temperature impacts on crop yield at the global scale, generally underpinned by similar impacts at country and site scales. Without CO 2 fertilization, effective adaptation, and genetic improvement, each degree-Celsius increase in global mean temperature would, on average, reduce global yields of wheat by 6.0%, rice by 3.2%, maize by 7.4%, and soybean by 3.1%. Results are highly heterogeneous across crops and geographical areas, with some positive impact estimates. Multimethod analyses improved the confidence in assessments of future climate impacts on global major crops and suggest crop- and region-specific adaptation strategies to ensure food security for an increasing world population.
Strip-tillage: A conservation alternative to full-width tillage systems
NASA Astrophysics Data System (ADS)
Wolkowski, Richard
2015-04-01
Historically no-till management has been a challenge for maize production in the Midwestern USA because crop residue slows the warming of the soil in the spring and can physically impair planting by plugging the planter. After trying no-till, producers often return to more aggressive tillage operations to address residue concerns; however these systems can cause soil erosion and can increase the cost of production. An alternative system known as strip-tillage has been suggested as a compromise between no-till and full-width tillage. This practice utilizes implements that loosen the soil and allow warming in the row area, yet maintain nearly as much residue as no-till. Strip-tillage is generally understood to be a single pass with a separate implement in the fall, although spring strip-tillage is possible if soil moisture and conditions permit. Strip-tillage can be accomplished in a shorter time, with lower energy and equipment inputs compared to full-width tillage. The first of two studies that examined the merits of strip-tillage was conducted the University of Wisconsin Lancaster Agricultural Research Station (42.84, -90.80). Natural runoff collectors were installed in a field having a silt loam soil with an 8% slope in fall chisel and fall strip-tillage system. The measured soil loss in a year that experienced substantial rainfall prior to canopy closure was 10.6 Mg ha-1 in chisel vs. 0.64 Mg ha-1 in strip-tillage. Soil loss was much less for both systems in the second year when early season rainfall was minimal. A second, ten year study was conducted at the University of Wisconsin Arlington Agricultural Research Station (43.30, -89.36) that compared fall strip-tillage with fall chisel/spring field cultivator and no-till systems in both a continuous maize and soybean-maize rotation. This work showed equal maize grain yield in maize after soybean when comparing chisel and strip-tillage. No-till yield was about 5 % lower. Yield in continuous maize was highest in the chisel system, being about 4 % greater than strip-tillage and 8 % greater than no-till. An economic analysis of this data showed that the benefit to strip-tillage is greatest in maize following soybean. Strip-tillage is a system that can optimize both economic and environmental return for maize production and should be implemented more widely, especially on erosive soils.
Alves, Victor Michelon; Hernández, Malva Isabel Medina
2017-01-01
The effects of transgenic compounds on non-target organisms remain poorly understood, especially in native insect species. Morphological changes (e.g., changes in body size and shape) may reflect possible responses to environmental stressors, like transgenic toxins. The dung beetle Canthon quinquemaculatus (Coleoptera: Scarabaeinae) is a non-target species found in transgenic crops. We evaluated whether C. quinquemaculatus individuals inhabiting corn fields cultivated with different seed types (conventional, creole and transgenic) present modifications in body shape compared to individuals inhabiting adjacent native forest fragments. We collected C. quinquemaculatus specimens across an agricultural landscape in southern Brazil, during the summer of 2015. Six populations were sampled: three maize crop populations each under a different seed type, and three populations of adjacent forests. After sampling, specimens were subjected to morphometric analyses to discover differences in body shape. We chose fifteen landmarks to describe body shape, and morphometric data were tested with Procrustes ANOVA and Discriminant Analysis. We found that body shape did not differ between individuals collected in conventional and creole crops with their respective adjacent forests (p > 0.05); however, transgenic crop populations differed significantly from those collected in adjacent forests (p < 0.05). Insects in transgenic maize are more oval and have a retraction in the abdominal region, compared with the respective adjacent forest, this result shows the possible effect of transgenic crops on non-target species. This may have implications for the ecosystem service of organic matter removal, carried out by these organisms. PMID:29065452
NASA Astrophysics Data System (ADS)
Angelova, Violina; Ivanova, Radka; Ivanov, Krasimir
2010-05-01
The uptake of heavy metals (Cd, Pb and Zn) by maize, oat and sorghum plants cultivated, under field conditions, in industrially polluted soils was studied. The experimental plots were situated at different distances (0.1, 2.0 and 15.0 km) from the source of pollution - the Non-Ferrous Metal Works near Plovdiv, Bulgaria. On reaching commercial ripeness the crops were gathered and the contents of heavy metals in their different parts - roots, stems, leaves and grains, were determined after dry ashing. The quantitative measurements were carried out with ICP. A clearly distinguished species peculiarity existed in the accumulation of heavy metals in the vegetative and reproductive organs of the studied crops. Sorghum plants accumulated larger heavy metal quantities compared to maize and oat plants, as the major part of heavy metals was retained by roots and a very small part was translocated to epigeous parts. The studied crops may be considered as metal-tolerant crops and may be cultivated on soils which are low, medium or highly contaminated with lead, zinc and cadmium, as they do not show a tendency of accumulating these elements in epigeous parts and grains above the maximum permissible concentrations. The possible use of aboveground mass and grains for animal food guarantees the economic expedience upon the selection of these crops. Acknowledgment: This work is supported by the Bulgarian Ministry of Education, Project DO-02-87/08.
Evaluation of carbon saturation across gradients of cropping systems diversity and soil depth
NASA Astrophysics Data System (ADS)
Castellano, Michael; Poffenbarger, Hanna; Cambardella, Cindy; Liebman, Matt; Mallarino, Antonio; Olk, Dan; Russell, Ann; Six, Johan
2017-04-01
Growing evidence indicates arable soils in the US Maize Belt are effectively carbon-saturated. We hypothesized that: 1) surface soil mineral-associated soil organic carbon (SOC) stocks in these systems are effectively carbon-saturated and 2) diverse cropping systems with greater belowground C inputs would increase subsoil SOC stocks because subsoils have large C saturation deficit. Using three long-term field trials in Iowa (study durations of 60, 35, and 12 years), we examined the effects of cropping system diversity (maize-soybean-oat/alfalfa-alfalfa or corn-corn-oat/alfalfa-alfalfa vs. maize-soybean rotation) on SOC content at different depths (0-100 cm) throughout the soil profile. Average annual C inputs were similar for both cropping systems, but the proportion of C delivered belowground was approximately twice as great in the extended rotations. Within and across cropping systems and the three field trial locations, there was a positive linear relationship between total SOC and the concentration of SOC in the mineral-associated fraction, indicating mineral-associated SOC stocks are not saturated. Organic C accumulation was observed at depth (15-100 cm) but not at the surface (0-15 cm) across all sites and rotations. These data suggest surface SOC stocks may have reached equilibrium rather than effective C saturation. In the absence of experiments that manipulate C inputs, the relationship between total SOC and the concentration of SOC in the mineral-associated fraction is frequently used as a proxy for C-saturation, and this relationship should be further explored.
Impacts on Global Agriculture of Stratospheric Sulfate Injection
NASA Astrophysics Data System (ADS)
Robock, A.; Xia, L.
2014-12-01
Impacts on global food supply are one of the most important concerns in the discussion of stratospheric sulfate geoengineering. Stratospheric sulfate injection could reduce surface temperature, precipitation, and insolation, which could affect agricultural production. We use output from climate model simulations using the two most "realistic" scenarios from the Geoengineering Model Intercomparison Project, G3 and G4. G3 posits balancing the increasing radiative forcing from the RCP4.5 business-as-usual scenario with stratospheric sulfate aerosols from 2020 through 2070. The G4 scenario also uses RCP4.5, but models simulate the stratospheric injection of 5 Tg SO2 per year from 2020 to 2070. In total, there are three modeling groups which have completed G3 and four for G4. We use two crop models, the global gridded Decision Support System for Agrotechnology Transfer (gDSSAT) crop model and the crop model in the NCAR Community Land Model (CLM-crop), to predict global maize yield changes. Without changing agricultural technology, we find that compared to the reference run forced by the RCP4.5 scenario, maize yields could increase in both G3 and G4 due to both the cooling effect of stratospheric sulfate injection and the CO2 fertilization effect, with the cooling effect contributing more to the increased productivity. However, the maize yield changes are not much larger than natural variability under G3, since the temperature reduction is smaller in G3 than in G4. Both crop models show similar results.
NASA Astrophysics Data System (ADS)
Lin, Wen; Liu, Wenzhao
2016-04-01
Plastic film mulch(PM) is an agronomic measure widely used in the dryland spring maize production system on the Loess Plateau of China. The measure can greatly increase yield of dryland maize due to its significant effects on soil water conservation. Few researches have been done to investigate how the yield potential is impacted by PM. The yield-water use (ET) boundary equation raised by French and Schultz provides a simple approach to calculate crop water limited yield potential and gives a benchmark for farmers in managing their crops. However, method used in building the equation is somewhat arbitrary and has no strict principle, which leads to the uncertainty of equation when it is applied. Though using PM can increase crop yield, it increases soil temperature, promotes crop growth and increases the water transpired by crop, which further leads to high water consumption as compared with crops without PM. This means that PM may lead to the overuse of soil water and hence is unsustainable in a long run. This research is mainly focused on the yield potential and sustainability of PMing for spring maize on the Loess Plateau. A principle that may be utilized by any other researchers was proposed based on French & Schultz's boundary equation and on part of quantile regression theory. We used a data set built by collecting the experimental data from published papers and analyzed the water-limited yield potential of spring maize on the Loess Plateau. Moreover, maize yield and soil water dynamics under PM were investigated by a long-term site field experiment. Results show that on the Loess Plateau, the water limited yield potential can be calculated using the boundary equation y = 60.5×(x - 50), with a platform yield of 15954 kghm-2 after the water use exceeds 314 mm. Without PMing, the water limited yield potential can be estimated by the boundary equation y = 47.5×(x - 62.3) , with a platform yield of 12840 kghm-2 when the water use exceeds 325 mm, which means PM can increase the yield potential of spring maize in water limited condition. From the result the field experiment, the grain yield under PM ranged from 6556 to 12615 kg/ha, being 803 to 3616 kg/hm-2 higher than no mulching (CK); and the WUE under plastic mulch ranged from 18.3 to 33.5 kghm-2mm-1, significantly higher than the CK in most of the experiment years (17.5-23.6 kghm-2mm-1). The ET for PM was higher than that of the CK (significance in 2009 and 2011), while it also increased the root biomass in soil, over consumed soil water and improved soil structure increased rainfall infiltration in fallow period. The result shows that the stored water by PM was 12 to 56 mm higher than the CK in the seven experiment years. So after seven years of cultivation, no significant difference was observed between treatments for the soil water storage in 0-6 m soil profile, which means that plastic film mulch can not only increase maize yield, but also is sustainable in the respect of soil water.
USDA-ARS?s Scientific Manuscript database
Maize (Zea mays L.) and soybean (Gylcine max (L.) Merr.) are the dominant grain crops across the Midwest and are grown on 75% of the arable land with wheat (Triticum aestivum L.) and oats (Avena sativa L.) small but economically important crops. Historically there have been variations in annual yiel...
USDA-ARS?s Scientific Manuscript database
Rising atmospheric CO2 concentration ([CO2]) and attendant increases in growing season temperature are expected be the most important global change factors impacting production agriculture. Although maize is the most highly produced crop worldwide, few studies have evaluated the interactive effects ...
USDA-ARS?s Scientific Manuscript database
Row spacing effects on light interception and extinction coefficient have been inconsistent for maize (Zea mays L.) when calculated with field measurements. To avoid inconsistencies due to variable light conditions and variable leaf canopies, we used a model to describe three-dimensional (3D) shoot ...
USDA-ARS?s Scientific Manuscript database
The composition and function of microbial communities present in the rhizosphere of crops has been linked to edaphic factors and root exudate composition. In this paper, we examined the effect of N fertilizer rate on maize root exudation, the associated rhizosphere community, and nitrogen-use-effici...
USDA-ARS?s Scientific Manuscript database
As climate change becomes inevitable, the agricultural community is concerned about its possible effects on crop production and developing strategies to adapt to this change. In this study, the Root Zone Water Quality Model (RZWQM2) was calibrated with four years of maize data from central Colorado ...
Cry1F resistance in fall armyworm Spodoptera frugiperda: single gene versus pyramided Bt maize
USDA-ARS?s Scientific Manuscript database
Evolution of insect resistance to transgenic crops containing Bacillus thuringiensis (Bt) genes is a serious threat to the sustainability of this technology. However, field resistance related to the reduced efficacy of Bt maize has not been documented in any lepidopteran pest in the mainland U.S. af...
USDA-ARS?s Scientific Manuscript database
Knowledge of germplasm diversity and relationships among elite breeding materials is fundamentally important in crop improvement. We genotyped 450 maize lines developed and/or widely used by CIMMYT breeding programs both in Kenya and Zimbabwe using 1065 SNP markers to (i) investigate population stru...
Ensuring the genetic diversity of maize and its wild relatives
USDA-ARS?s Scientific Manuscript database
Maize is the number one crop in terms of production and farm gate value. It is a food staple for hundreds of millions of people in the developing world, feed for billions of livestock, and raw material for industrial and biofuels use. As such, it is fundamental to global food and economic security, ...
Molecular marker-assisted breeding for maize improvement in Asia
USDA-ARS?s Scientific Manuscript database
Maize is one of the most important food and feed crops in Asia, and is a source of income for several million farmers. Despite impressive progress made in the last few decades through conventional breeding in the “Asia-7” (China, India, Indonesia, Nepal, Philippines, Thailand and Vietnam), average m...
USDA-ARS?s Scientific Manuscript database
Aspergillus flavus is a saprophytic fungus that may colonize several important crops, including cotton, maize, peanuts and tree nuts. Concomitant with A. flavus colonization is its potential to secrete mycotoxins, of which the most prominent is aflatoxin. Temperature, water activity (aw) and carbon ...
Constraints on water use efficiency of drought tolerant maize grown in a semi-arid environment
USDA-ARS?s Scientific Manuscript database
Identifying the constraints on crop water use efficiency (WUE) will help develop strategies to mitigate these limitations. The objectives of this research were to 1) develop a boundary function for maize using data (n=260) from research projects conducted at Bushland, TX, and 2) compare the yields o...
Early maize agriculture and interzonal interaction in southern Peru.
Perry, Linda; Sandweiss, Daniel H; Piperno, Dolores R; Rademaker, Kurt; Malpass, Michael A; Umire, Adán; de la Vera, Pablo
2006-03-02
Over the past decade, increasing attention to the recovery and identification of plant microfossil remains from archaeological sites located in lowland South America has significantly increased knowledge of pre-Columbian plant domestication and crop plant dispersals in tropical forests and other regions. Along the Andean mountain chain, however, the chronology and trajectory of plant domestication are still poorly understood for both important indigenous staple crops such as the potato (Solanum sp.) and others exogenous to the region, for example, maize (Zea mays). Here we report the analyses of plant microremains from a late preceramic house (3,431 +/- 45 to 3,745 +/- 65 14C bp or approximately 3,600 to 4,000 calibrated years bp) in the highland southern Peruvian site of Waynuna. Our results extend the record of maize by at least a millennium in the southern Andes, show on-site processing of maize into flour, provide direct evidence for the deliberate movement of plant foods by humans from the tropical forest to the highlands, and confirm the potential of plant microfossil analysis in understanding ancient plant use and migration in this region.
Assessment of climate change impact on yield of major crops in the Banas River Basin, India.
Dubey, Swatantra Kumar; Sharma, Devesh
2018-09-01
Crop growth models like AquaCrop are useful in understanding the impact of climate change on crop production considering the various projections from global circulation models and regional climate models. The present study aims to assess the climate change impact on yield of major crops in the Banas River Basin i.e., wheat, barley and maize. Banas basin is part of the semi-arid region of Rajasthan state in India. AquaCrop model is used to calculate the yield of all the three crops for a historical period of 30years (1981-2010) and then compared with observed yield data. Root Mean Square Error (RMSE) values are calculated to assess the model accuracy in prediction of yield. Further, the calibrated model is used to predict the possible impacts of climate change and CO 2 concentration on crop yield using CORDEX-SA climate projections of three driving climate models (CNRM-CM5, CCSM4 and MPI-ESM-LR) for two different scenarios (RCP4.5 and RCP8.5) for the future period 2021-2050. RMSE values of simulated yield with respect to observed yield of wheat, barley and maize are 11.99, 16.15 and 19.13, respectively. It is predicted that crop yield of all three crops will increase under the climate change conditions for future period (2021-2050). Copyright © 2018 Elsevier B.V. All rights reserved.
Yang, Xiaolin; Chen, Yuanquan; Pacenka, Steven; Gao, Wangsheng; Zhang, Min; Sui, Peng; Steenhuis, Tammo S.
2015-01-01
Water tables are dropping by approximately one meter annually throughout the North China Plain mainly due to water withdrawals for irrigating winter wheat year after year. In order to examine whether the drawdown can be reduced we calculate the net water use for an 11 year field experiment from 2003 to 2013 where six irrigated crops (winter wheat, summer maize, cotton, peanuts, sweet potato, ryegrass) were grown in different crop rotations in the North China Plain. As part of this experiment moisture contents were measured each at 20 cm intervals in the top 1.8 m. Recharge and net water use were calculated based on these moisture measurement. Results showed that winter wheat and ryegrass had the least recharge with an average of 27 mm/year and 39 mm/year, respectively; cotton had the most recharge with an average of 211 mm/year) followed by peanuts with 118 mm/year, sweet potato with 76 mm/year, and summer maize with 44 mm/year. Recharge depended on the amount of irrigation water pumped from the aquifer and was therefore a poor indicator of future groundwater decline. Instead net water use (recharge minus irrigation) was found to be a good indicator for the decline of the water table. The smallest amount of net (ground water) used was cotton with an average of 14 mm/year, followed by peanut with 32 mm/year, summer maize with 71 mm/year, sweet potato with 74 mm/year. Winter wheat and ryegrass had the greatest net water use with the average of 198 mm/year and 111 mm/year, respectively. Our calculations showed that any single crop would use less water than the prevalent winter wheat summer maize rotation. This growing one crop instead of two will reduce the decline of groundwater and in some rain rich years increase the ground water level, but will result in less income for the farmers. PMID:25625765
NASA Astrophysics Data System (ADS)
Guardia, Guillermo; Abalos, Diego; García-Marco, Sonia; Quemada, Miguel; Alonso-Ayuso, María; Cárdenas, Laura M.; Dixon, Elizabeth R.; Vallejo, Antonio
2016-09-01
Agronomical and environmental benefits are associated with replacing winter fallow by cover crops (CCs). Yet, the effect of this practice on nitrous oxide (N2O) emissions remains poorly understood. In this context, a field experiment was carried out under Mediterranean conditions to evaluate the effect of replacing the traditional winter fallow (F) by vetch (Vicia sativa L.; V) or barley (Hordeum vulgare L.; B) on greenhouse gas (GHG) emissions during the intercrop and the maize (Zea mays L.) cropping period. The maize was fertilized following integrated soil fertility management (ISFM) criteria. Maize nitrogen (N) uptake, soil mineral N concentrations, soil temperature and moisture, dissolved organic carbon (DOC) and GHG fluxes were measured during the experiment. Our management (adjusted N synthetic rates due to ISFM) and pedo-climatic conditions resulted in low cumulative N2O emissions (0.57 to 0.75 kg N2O-N ha-1 yr-1), yield-scaled N2O emissions (3-6 g N2O-N kg aboveground N uptake-1) and N surplus (31 to 56 kg N ha-1) for all treatments. Although CCs increased N2O emissions during the intercrop period compared to F (1.6 and 2.6 times in B and V, respectively), the ISFM resulted in similar cumulative emissions for the CCs and F at the end of the maize cropping period. The higher C : N ratio of the B residue led to a greater proportion of N2O losses from the synthetic fertilizer in these plots when compared to V. No significant differences were observed in CH4 and CO2 fluxes at the end of the experiment. This study shows that the use of both legume and nonlegume CCs combined with ISFM could provide, in addition to the advantages reported in previous studies, an opportunity to maximize agronomic efficiency (lowering synthetic N requirements for the subsequent cash crop) without increasing cumulative or yield-scaled N2O losses.
Deriving Temporal Height Information for Maize Breeding
NASA Astrophysics Data System (ADS)
Malambo, L.; Popescu, S. C.; Murray, S.; Sheridan, R.; Richardson, G.; Putman, E.
2016-12-01
Phenotypic data such as height provide useful information to crop breeders to better understand their field experiments and associated field variability. However, the measurement of crop height in many breeding programs is done manually which demands significant effort and time and does not scale well when large field experiments are involved. Through structure from motion (SfM) techniques, small unmanned aerial vehicles (sUAV) or drones offer tremendous potential for generating crop height data and other morphological data such as canopy area and biomass in cost-effective and efficient way. We present results of an on-going UAV application project aimed at generating temporal height metrics for maize breeding at the Texas A&M AgriLife Research farm in Burleson County, Texas. We outline the activities involved from the drone aerial surveys, image processing and generation of crop height metrics. The experimental period ran from April (planting) through August (harvest) 2016 and involved 36 maize hybrids replicated over 288 plots ( 1.7 Ha). During the time, crop heights were manually measured per plot at weekly intervals. Corresponding aerial flights were carried out using a DJI Phantom 3 Professional UAV at each interval and images captured processed into point clouds and image mosaics using Pix4D (Pix4D SA; Lausanne, Switzerland) software. LiDAR data was also captured at two intervals (05/06 and 07/29) to provide another source of height information. To obtain height data per plot from SfM point clouds and LiDAR data, percentile height metrics were then generated using FUSION software. Results of the comparison between SfM and field measurement height show high correlation (R2 > 0.7), showing that use of sUAV can replace laborious manual height measurement and enhance plant breeding programs. Similar results were also obtained from the comparison of SfM and LiDAR heights. Outputs of this project are helping plant breeders at Texas A&M automate routine height measurements in maize and quickly make actionable decisions and discover new hybrids.
Assessment of impact of climate change and adaptation strategies on maize production in Uganda
NASA Astrophysics Data System (ADS)
Kikoyo, Duncan A.; Nobert, Joel
2016-06-01
Globally, various climatic studies have estimated a reduction of crop yields due to changes in surface temperature and precipitation especially for the developing countries which is heavily dependent on agriculture and lacks resources to counter the negative effects of climate change. Uganda's economy and the wellbeing of its populace depend on rain-fed agriculture which is susceptible to climate change. This study quantified the impacts of climate change and variability in Uganda and how coping strategies can enhance crop production against climate change and/or variability. The study used statistical methods to establish various climate change and variability indicators across the country, and uses the FAO AquaCrop model to simulate yields under possible future climate scenarios with and without adaptation strategies. Maize, the most widely grown crop was used for the study. Meteorological, soil and crop data were collected for various districts representing the maize growing ecological zones in the country. Based on this study, it was found that temperatures have increased by up to 1 °C across much of Uganda since the 1970s, with rates of warming around 0.3 °C per decade across the country. High altitude, low rainfall regions experience the highest level of warming, with over 0.5 °C/decade recorded in Kasese. Rainfall is variable and does not follow a specific significant increasing or decreasing trend. For both future climate scenarios, Maize yields will reduce in excess of 4.7% for the fast warming-low rainfall climates but increase on average by 3.5% for slow warming-high rainfall regions, by 2050. Improved soil fertility can improve yields by over 50% while mulching and use of surface water management practices improve yields by single digit percentages. The use of fertilizer application needs to go hand in hand with other water management strategies since more yields as a result of the improved soil fertility leads to increased water stress, especially for the dry climates.
Global crop yield response to extreme heat stress under multiple climate change futures
NASA Astrophysics Data System (ADS)
Deryng, D.; Conway, D.; Ramankutty, N.; Price, J.; Warren, R.
2014-12-01
Extreme heat stress during the crop reproductive period can be critical for crop productivity. Projected changes in the frequency and severity of extreme climatic events are expected to negatively impact crop yields and global food production. This study applies the global crop model PEGASUS to quantify, for the first time at the global scale, impacts of extreme heat stress on maize, spring wheat and soybean yields resulting from 72 climate change scenarios for the 21st century. Our results project maize to face progressively worse impacts under a range of RCPs but spring wheat and soybean to improve globally through to the 2080s due to CO2 fertilization effects, even though parts of the tropic and sub-tropic regions could face substantial yield declines. We find extreme heat stress at anthesis (HSA) by the 2080s (relative to the 1980s) under RCP 8.5, taking into account CO2 fertilization effects, could double global losses of maize yield (dY = -12.8 ± 6.7% versus -7.0 ± 5.3% without HSA), reduce projected gains in spring wheat yield by half (dY = 34.3 ± 13.5% versus 72.0 ± 10.9% without HSA) and in soybean yield by a quarter (dY = 15.3 ± 26.5% versus 20.4 ± 22.1% without HSA). The range reflects uncertainty due to differences between climate model scenarios; soybean exhibits both positive and negative impacts, maize is generally negative and spring wheat generally positive. Furthermore, when assuming CO2 fertilization effects to be negligible, we observe drastic climate mitigation policy as in RCP 2.6 could avoid more than 80% of the global average yield losses otherwise expected by the 2080s under RCP 8.5. We show large disparities in climate impacts across regions and find extreme heat stress adversely affects major producing regions and lower income countries.
Global crop yield response to extreme heat stress under multiple climate change futures
NASA Astrophysics Data System (ADS)
Deryng, Delphine; Conway, Declan; Ramankutty, Navin; Price, Jeff; Warren, Rachel
2014-03-01
Extreme heat stress during the crop reproductive period can be critical for crop productivity. Projected changes in the frequency and severity of extreme climatic events are expected to negatively impact crop yields and global food production. This study applies the global crop model PEGASUS to quantify, for the first time at the global scale, impacts of extreme heat stress on maize, spring wheat and soybean yields resulting from 72 climate change scenarios for the 21st century. Our results project maize to face progressively worse impacts under a range of RCPs but spring wheat and soybean to improve globally through to the 2080s due to CO2 fertilization effects, even though parts of the tropic and sub-tropic regions could face substantial yield declines. We find extreme heat stress at anthesis (HSA) by the 2080s (relative to the 1980s) under RCP 8.5, taking into account CO2 fertilization effects, could double global losses of maize yield (ΔY = -12.8 ± 6.7% versus - 7.0 ± 5.3% without HSA), reduce projected gains in spring wheat yield by half (ΔY = 34.3 ± 13.5% versus 72.0 ± 10.9% without HSA) and in soybean yield by a quarter (ΔY = 15.3 ± 26.5% versus 20.4 ± 22.1% without HSA). The range reflects uncertainty due to differences between climate model scenarios; soybean exhibits both positive and negative impacts, maize is generally negative and spring wheat generally positive. Furthermore, when assuming CO2 fertilization effects to be negligible, we observe drastic climate mitigation policy as in RCP 2.6 could avoid more than 80% of the global average yield losses otherwise expected by the 2080s under RCP 8.5. We show large disparities in climate impacts across regions and find extreme heat stress adversely affects major producing regions and lower income countries.
Williams, Alwyn; Jordan, Nicholas R; Smith, Richard G; Hunter, Mitchell C; Kammerer, Melanie; Kane, Daniel A; Koide, Roger T; Davis, Adam S
2018-05-31
Climate models predict increasing weather variability, with negative consequences for crop production. Conservation agriculture (CA) may enhance climate resilience by generating certain soil improvements. However, the rate at which these improvements accrue is unclear, and some evidence suggests CA can lower yields relative to conventional systems unless all three CA elements are implemented: reduced tillage, sustained soil cover, and crop rotational diversity. These cost-benefit issues are important considerations for potential adopters of CA. Given that CA can be implemented across a wide variety of regions and cropping systems, more detailed and mechanistic understanding is required on whether and how regionally-adapted CA can improve soil properties while minimizing potential negative crop yield impacts. Across four US states, we assessed short-term impacts of regionally-adapted CA systems on soil properties and explored linkages with maize and soybean yield stability. Structural equation modeling revealed increases in soil organic matter generated by cover cropping increased soil cation exchange capacity, which improved soybean yield stability. Cover cropping also enhanced maize minimum yield potential. Our results demonstrate individual CA elements can deliver rapid improvements in soil properties associated with crop yield stability, suggesting that regionally-adapted CA may play an important role in developing high-yielding, climate-resilient agricultural systems.
Analysis of climate signals in the crop yield record of sub-Saharan Africa.
Hoffman, Alexis L; Kemanian, Armen R; Forest, Chris E
2018-01-01
Food security and agriculture productivity assessments in sub-Saharan Africa (SSA) require a better understanding of how climate and other drivers influence regional crop yields. In this paper, our objective was to identify the climate signal in the realized yields of maize, sorghum, and groundnut in SSA. We explored the relation between crop yields and scale-compatible climate data for the 1962-2014 period using Random Forest, a diagnostic machine learning technique. We found that improved agricultural technology and country fixed effects are three times more important than climate variables for explaining changes in crop yields in SSA. We also found that increasing temperatures reduced yields for all three crops in the temperature range observed in SSA, while precipitation increased yields up to a level roughly matching crop evapotranspiration. Crop yields exhibited both linear and nonlinear responses to temperature and precipitation, respectively. For maize, technology steadily increased yields by about 1% (13 kg/ha) per year while increasing temperatures decreased yields by 0.8% (10 kg/ha) per °C. This study demonstrates that although we should expect increases in future crop yields due to improving technology, the potential yields could be progressively reduced due to warmer and drier climates. © 2017 John Wiley & Sons Ltd.
Sekhon, Rajandeep S.; Breitzman, Matthew W.; Silva, Renato R.; ...
2016-06-08
Carbohydrates stored in vegetative organs, particularly stems, of grasses are a very important source of energy. We examined carbohydrate accumulation in adult sorghum and maize hybrids with distinct phenology and different end uses (grain, silage, sucrose or sweetness in stalk juice, and biomass). Remarkable variation was observed for nonstructural carbohydrates and structural polysaccharides during three key developmental stages both between and within hybrids developed for distinct end use in both species. At the onset of the reproductive phase (average 65 days after planting, DAP), a wide range for accumulation of non-structural carbohydrates (free glucose and sucrose combined), was observed inmore » internodes of maize (11-24%) and sorghum (7-36%) indicating substantial variation for transient storage of excess photosynthate during periods of low grain or vegetative sink strength. Remobilization of these reserves for supporting grain fill or vegetative growth was evident from lower amounts in maize (8-19%) and sorghum (9-27%) near the end of the reproductive period (average 95 DAP). At physiological maturity of grain hybrids (average 120 DAP), amounts of these carbohydrates were generally unchanged in maize (9-21%) and sorghum (16-27%) suggesting a loss of photosynthetic assimilation due to weakening sink demand. Nonetheless, high amounts of non-structural carbohydrates at maturity even in grain maize and sorghum (15-18%) highlight the potential for developing dual-purpose (grain/stover) crops. For both species, the amounts of structural polysaccharides in the cell wall, measured as monomeric components (glucose and pentose), decreased during grain fill but remained unchanged thereafter with maize biomass possessing slightly higher amounts than sorghum. In conclusion, availability of carbohydrates in maize and sorghum highlights the potential for developing energy-rich dedicated biofuel or dual-purpose (grain/stover) crops.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sekhon, Rajandeep S.; Breitzman, Matthew W.; Silva, Renato R.
Carbohydrates stored in vegetative organs, particularly stems, of grasses are a very important source of energy. We examined carbohydrate accumulation in adult sorghum and maize hybrids with distinct phenology and different end uses (grain, silage, sucrose or sweetness in stalk juice, and biomass). Remarkable variation was observed for nonstructural carbohydrates and structural polysaccharides during three key developmental stages both between and within hybrids developed for distinct end use in both species. At the onset of the reproductive phase (average 65 days after planting, DAP), a wide range for accumulation of non-structural carbohydrates (free glucose and sucrose combined), was observed inmore » internodes of maize (11-24%) and sorghum (7-36%) indicating substantial variation for transient storage of excess photosynthate during periods of low grain or vegetative sink strength. Remobilization of these reserves for supporting grain fill or vegetative growth was evident from lower amounts in maize (8-19%) and sorghum (9-27%) near the end of the reproductive period (average 95 DAP). At physiological maturity of grain hybrids (average 120 DAP), amounts of these carbohydrates were generally unchanged in maize (9-21%) and sorghum (16-27%) suggesting a loss of photosynthetic assimilation due to weakening sink demand. Nonetheless, high amounts of non-structural carbohydrates at maturity even in grain maize and sorghum (15-18%) highlight the potential for developing dual-purpose (grain/stover) crops. For both species, the amounts of structural polysaccharides in the cell wall, measured as monomeric components (glucose and pentose), decreased during grain fill but remained unchanged thereafter with maize biomass possessing slightly higher amounts than sorghum. In conclusion, availability of carbohydrates in maize and sorghum highlights the potential for developing energy-rich dedicated biofuel or dual-purpose (grain/stover) crops.« less
Food price seasonality in Africa: Measurement and extent.
Gilbert, Christopher L; Christiaensen, Luc; Kaminski, Jonathan
2017-02-01
Everyone knows about seasonality. But what exactly do we know? This study systematically measures seasonal price gaps at 193 markets for 13 food commodities in seven African countries. It shows that the commonly used dummy variable or moving average deviation methods to estimate the seasonal gap can yield substantial upward bias. This can be partially circumvented using trigonometric and sawtooth models, which are more parsimonious. Among staple crops, seasonality is highest for maize (33 percent on average) and lowest for rice (16½ percent). This is two and a half to three times larger than in the international reference markets. Seasonality varies substantially across market places but maize is the only crop in which there are important systematic country effects. Malawi, where maize is the main staple, emerges as exhibiting the most acute seasonal differences. Reaching the Sustainable Development Goal of Zero Hunger requires renewed policy attention to seasonality in food prices and consumption.
NASA Astrophysics Data System (ADS)
Jauker, Frank; Wassmann, Reiner; Amelung, Wulf; Breuer, Lutz; Butterbach-Bahl, Klaus; Conrad, Ralf; Ekschmitt, Klemens; Goldbach, Heiner; He, Yao; John, Katharina; Kiese, Ralf; Kraus, David; Reinhold-Hurek, Barbara; Siemens, Jan; Weller, Sebastian; Wolters, Volkmar
2013-04-01
Rice production consumes about 30% of all freshwater used worldwide and 45% in Asia. Turning away from permanently flooded rice cropping systems for mitigating future water scarcity and reducing methane emissions, however, will alter a variety of ecosystem services with potential adverse effects to both the environment and agricultural production. Moreover, implementing systems that alternate between flooded and non-flooded crops increases the risk of disruptive effects. The multi-disciplinary DFG research unit ICON aims at exploring and quantifying the ecological consequences of altered water regimes (flooded vs. non-flooded), crop diversification (irrigated rice vs. aerobic rice vs. maize), and different fertilization strategies (conventional, site-specific, and zero N fertilization). ICON particularly focuses on the biogeochemical cycling of carbon and nitrogen, green-house gas (GHG) emissions, water balance, soil biotic processes and other important ecosystem services. The overarching goal is to provide the basic process understanding that is necessary for balancing the revenues and environmental impacts of high-yield rice cropping systems while maintaining their vital ecosystem services. To this aim, a large-scale field experiment has been established at the experimental farm of the International Rice Research Institute (IRRI, Philippines). Ultimately, the experimental results are analyzed in the context of management scenarios by an integrated modeling of crop development (ORYZA), carbon and nitrogen cycling (MoBiLE-DNDC), and water fluxes (CMF), providing the basis for developing pathways to a conversion of rice-based systems towards higher yield potentials under minimized environmental impacts. In our presentation, we demonstrate the set-up of the controlled large-scale field experiment for simultaneous assessment of carbon and nitrogen fluxes and water budgets. We show and discuss first results for: - Quantification and assessment of the net-fluxes of CH4, N2O and CO2 from rice-rice and rice-maize rotations. The conversion of flooded to non-flooded cropping systems resulted in pollution swapping of greenhouse gas emissions, shifting from CH4 under wet conditions to N2O under dry conditions. - Quantification and assessment of water budgets and nutrient loss in rice-rice and rice-maize rotations. Switching from rice-rice dominated growing systems to upland rice or maize-rice cropping systems resulted in reduced water use efficiency and increased nitrogen loss. - Quantification and assessment of soil functions affected by soil fauna community structure in flooded and non-flooded cropping rotations. In contrast to temperate soils, earthworms reduced the peaks of microbial C and N decomposition depending on soil water content.
Overestimation of Crop Root Biomass in Field Experiments Due to Extraneous Organic Matter.
Hirte, Juliane; Leifeld, Jens; Abiven, Samuel; Oberholzer, Hans-Rudolf; Hammelehle, Andreas; Mayer, Jochen
2017-01-01
Root biomass is one of the most relevant root parameters for studies of plant response to environmental change, soil carbon modeling or estimations of soil carbon sequestration. A major source of error in root biomass quantification of agricultural crops in the field is the presence of extraneous organic matter in soil: dead roots from previous crops, weed roots, incorporated above ground plant residues and organic soil amendments, or remnants of soil fauna. Using the isotopic difference between recent maize root biomass and predominantly C3-derived extraneous organic matter, we determined the proportions of maize root biomass carbon of total carbon in root samples from the Swiss long-term field trial "DOK." We additionally evaluated the effects of agricultural management (bio-organic and conventional), sampling depth (0-0.25, 0.25-0.5, 0.5-0.75 m) and position (within and between maize rows), and root size class (coarse and fine roots) as defined by sieve mesh size (2 and 0.5 mm) on those proportions, and quantified the success rate of manual exclusion of extraneous organic matter from root samples. Only 60% of the root mass that we retrieved from field soil cores was actual maize root biomass from the current season. While the proportions of maize root biomass carbon were not affected by agricultural management, they increased consistently with soil depth, were higher within than between maize rows, and were higher in coarse (>2 mm) than in fine (≤2 and >0.5) root samples. The success rate of manual exclusion of extraneous organic matter from root samples was related to agricultural management and, at best, about 60%. We assume that the composition of extraneous organic matter is strongly influenced by agricultural management and soil depth and governs the effect size of the investigated factors. Extraneous organic matter may result in severe overestimation of recovered root biomass and has, therefore, large implications for soil carbon modeling and estimations of the climate change mitigation potential of soils.
Forages and Pastures Symposium: development of and field experience with drought-tolerant maize.
Soderlund, S; Owens, F N; Fagan, C
2014-07-01
Drought-tolerant maize hybrids currently are being marketed by several seed suppliers. Such hybrids were developed by phenotypic and marker-assisted selection or through genetic modification and tested by exposing these hybrids to various degrees of water restriction. As drought intensifies, crop yields and survival progressively decline. Water need differs among plants due to differences in root structure, evaporative loss, capacity to store water or enter temporary dormancy, and plant genetics. Availability of water differs widely not only with rainfall and irrigation but also with numerous soil and agronomic factors (e.g., soil type, slope, seeding rates, tillage practices). Reduced weed competition, enhanced pollen shed and silk production, and deep, robust root growth help to reduce the negative impacts of drought. Selected drought-tolerant maize hybrids have consistently yielded more grain even when drought conditions are not apparent either due to reduced use of soil water reserves before water restriction or due to greater tolerance of intermittent water shortages. In DuPont Pioneer trials, whole plant NDF digestibility of maize increased with water restriction, perhaps due to an increased leaf to stem ratio. Efficiency of water use, measured as dry matter or potential milk yield from silage per unit of available water, responded quadratically to water restriction, first increasing slightly but then decreasing as water restriction increased. For grain production, water restriction has its greatest negative impact during or after silking through reducing the number of kernels and reducing kernel filling. For silage production, water restriction during the vegetative growth stage negatively impacts plant height and biomass yield. Earlier planting and shorter season maize hybrids help to avoid midsummer heat stress during pollination and can reduce the number of irrigation events needed. Although drought tolerance of maize hybrids has been improved due to genetic selection or biotech approaches, selecting locally adapted hybrids or crops, adjusting seeding rates, and modifying tillage and irrigation practices are important factors that can improve efficiency of use of available water by grain and forage crops.
NASA Astrophysics Data System (ADS)
Paz-Ferreiro, J.; Bertol, I.; Vidal Vázquez, E.
2008-07-01
Changes in soil surface microrelief with cumulative rainfall under different tillage systems and crop cover conditions were investigated in southern Brazil. Surface cover was none (fallow) or the crop succession maize followed by oats. Tillage treatments were: 1) conventional tillage on bare soil (BS), 2) conventional tillage (CT), 3) minimum tillage (MT) and 4) no tillage (NT) under maize and oats. Measurements were taken with a manual relief meter on small rectangular grids of 0.234 and 0.156 m2, throughout growing season of maize and oats, respectively. Each data set consisted of 200 point height readings, the size of the smallest cells being 3×5 cm during maize and 2×5 cm during oats growth periods. Random Roughness (RR), Limiting Difference (LD), Limiting Slope (LS) and two fractal parameters, fractal dimension (D) and crossover length (l) were estimated from the measured microtopographic data sets. Indices describing the vertical component of soil roughness such as RR, LD and l generally decreased with cumulative rain in the BS treatment, left fallow, and in the CT and MT treatments under maize and oats canopy. However, these indices were not substantially affected by cumulative rain in the NT treatment, whose surface was protected with previous crop residues. Roughness decay from initial values was larger in the BS treatment than in CT and MT treatments. Moreover, roughness decay generally tended to be faster under maize than under oats. The RR and LD indices decreased quadratically, while the l index decreased exponentially in the tilled, BS, CT and MT treatments. Crossover length was sensitive to differences in soil roughness conditions allowing a description of microrelief decay due to rainfall in the tilled treatments, although better correlations between cumulative rainfall and the most commonly used indices RR and LD were obtained. At the studied scale, parameters l and D have been found to be useful in interpreting the configuration properties of the soil surface microrelief.
Elhady, Ahmed; Adss, Shimaa; Hallmann, Johannes; Heuer, Holger
2018-01-01
Plant-parasitic nematodes cause considerable damage to crop plants. The rhizosphere microbiome can affect invasion and reproductive success of plant-parasitic nematodes, thus affecting plant damage. In this study, we investigated how the transplanted rhizosphere microbiome from different crops affect plant-parasitic nematodes on soybean or tomato, and whether the plant’s own microbiome from the rhizosphere protects it better than the microbiome from fallow soil. Soybean plants growing in sterilized substrate were inoculated with the microbiome extracted from the rhizosphere of soybean, maize, or tomato. Controls were inoculated with extracts from bulk soil, or not inoculated. After the microbiome was established, the root lesion nematode Pratylenchus penetrans was added. Root invasion of P. penetrans was significantly reduced on soybean plants inoculated with the microbiome from maize or soybean compared to tomato or bulk soil, or the uninoculated control. In the analogous experiment with tomato plants inoculated with either P. penetrans or the root knot nematode Meloidogyne incognita, the rhizosphere microbiomes of maize and tomato reduced root invasion by P. penetrans and M. incognita compared to microbiomes from soybean or bulk soil. Reproduction of M. incognita on tomato followed the same trend, and it was best suppressed by the tomato rhizosphere microbiome. In split-root experiments with soybean and tomato plants, a systemic effect of the inoculated rhizosphere microbiomes on root invasion of P. penetrans was shown. Furthermore, some transplanted microbiomes slightly enhanced plant growth compared to uninoculated plants. The microbiomes from maize rhizosphere and bulk soil increased the fresh weights of roots and shoots of soybean plants, and microbiomes from soybean rhizosphere and bulk soil increased the fresh weights of roots and shoots of tomato plants. Nematode invasion did not affect plant growth in these short-term experiments. In conclusion, this study highlights the importance of the rhizosphere microbiome in protecting crops against plant-parasitic nematodes. An effect of pre-crops on the rhizosphere microbiome might be harnessed to enhance the resistance of crops towards plant-parasitic nematodes. However, nematode-suppressive effects of a particular microbiome may not necessarily coincide with improvement of plant growth in the absence of plant-parasitic nematodes. PMID:29915566
Impact of Climate Change on Food Security in Kenya
NASA Astrophysics Data System (ADS)
Yator, J. J.
2016-12-01
This study sought to address the existing gap on the impact of climate change on food security in support of policy measures to avert famine catastrophes. Fixed and random effects regressions for crop food security were estimated. The study simulated the expected impact of future climate change on food insecurity based on the Representative Concentration Pathways scenario (RCPs). The study makes use of county-level yields estimates (beans, maize, millet and sorghum) and daily climate data (1971 to 2010). Climate variability affects food security irrespective of how food security is defined. Rainfall during October-November-December (OND), as well as during March-April-May (MAM) exhibit an inverted U-shaped relationship with most food crops; the effects are most pronounced for maize and sorghum. Beans and Millet are found to be largely unresponsive to climate variability and also to time-invariant factors. OND rains and fall and summer temperature exhibit a U-shaped relationship with yields for most crops, while MAM rains temperature exhibits an inverted U-shaped relationship. However, winter temperatures exhibit a hill-shaped relationship with most crops. Project future climate change scenarios on crop productivity show that climate change will adversely affect food security, with up to 69% decline in yields by the year 2100. Climate variables have a non-linear relationship with food insecurity. Temperature exhibits an inverted U-shaped relationship with food insecurity, suggesting that increased temperatures will increase crop food insecurity. However, maize and millet, benefit from increased summer and winter temperatures. The simulated effects of different climate change scenarios on food insecurity suggest that adverse climate change will increase food insecurity in Kenya. The largest increases in food insecurity are predicted for the RCP 8.5Wm2, compared to RCP 4.5Wm2. Climate change is likely to have the greatest effects on maize insecurity, which is likely to increase by between 8.56% and 21% by the year 2100. There exists a need for policies that safeguard agriculture against the adverse effects of climate change to alleviate food insecurity in Kenya. Therefore, it is important that climate change mitigation is given much more priority in policy planning and also implementation.
Amanullah; Iqbal, Asif; Irfanullah; Hidayat, Zeeshan
2016-01-01
Potassium (K) fertilizer management is beneficial for improving growth, yield and yield components of field crops under moisture stress condition in semiarid climates. Field experiments were conducted to study the response of maize (Zea mays L., cv. Azam) to foliar and soil applied K during summer 2013 and 2014. The experiments were carried out at the Agronomy Research Farm of The University of Agriculture Peshawar, Northwest Pakistan under limited irrigation (moisture stress) condition. It was concluded from the results that application of foliar K at the rate of 1–3% and foliar Zn at the rate of 0.1–0.2% was more beneficial in terms of better growth, higher yield and yield components of maize under moisture stress condition. Early spray (vegetative stage) resulted in better growth and higher yield than late spray (reproductive stage). Soil K treated plots (rest) plots performed better than control (K not applied) in terms of improved growth, higher yield and yield components of maize crop. The results further demonstrated that increasing the rate of soil applied K up to 90 kg P ha−1 in two equal splits (50% each at sowing and knee height) improve growth and maize productivity under semiarid climates. PMID:27694964
Amanullah; Iqbal, Asif; Irfanullah; Hidayat, Zeeshan
2016-10-03
Potassium (K) fertilizer management is beneficial for improving growth, yield and yield components of field crops under moisture stress condition in semiarid climates. Field experiments were conducted to study the response of maize (Zea mays L., cv. Azam) to foliar and soil applied K during summer 2013 and 2014. The experiments were carried out at the Agronomy Research Farm of The University of Agriculture Peshawar, Northwest Pakistan under limited irrigation (moisture stress) condition. It was concluded from the results that application of foliar K at the rate of 1-3% and foliar Zn at the rate of 0.1-0.2% was more beneficial in terms of better growth, higher yield and yield components of maize under moisture stress condition. Early spray (vegetative stage) resulted in better growth and higher yield than late spray (reproductive stage). Soil K treated plots (rest) plots performed better than control (K not applied) in terms of improved growth, higher yield and yield components of maize crop. The results further demonstrated that increasing the rate of soil applied K up to 90 kg P ha -1 in two equal splits (50% each at sowing and knee height) improve growth and maize productivity under semiarid climates.
African crop yield reductions due to increasingly unbalanced Nitrogen and Phosphorus consumption
NASA Astrophysics Data System (ADS)
van der Velde, Marijn; Folberth, Christian; Balkovič, Juraj; Ciais, Philippe; Fritz, Steffen; Janssens, Ivan A.; Obersteiner, Michael; See, Linda; Skalský, Rastislav; Xiong, Wei; Peñuealas, Josep
2014-05-01
The impact of soil nutrient depletion on crop production has been known for decades, but robust assessments of the impact of increasingly unbalanced nitrogen (N) and phosphorus (P) application rates on crop production are lacking. Here, we use crop response functions based on 741 FAO maize crop trials and EPIC crop modeling across Africa to examine maize yield deficits resulting from unbalanced N:P applications under low, medium, and high input scenarios, for past (1975), current, and future N:P mass ratios of respectively, 1:0.29, 1:0.15, and 1:0.05. At low N inputs (10 kg/ha), current yield deficits amount to 10% but will increase up to 27% under the assumed future N:P ratio, while at medium N inputs (50 kg N/ha), future yield losses could amount to over 40%. The EPIC crop model was then used to simulate maize yields across Africa. The model results showed relative median future yield reductions at low N inputs of 40%, and 50% at medium and high inputs, albeit with large spatial variability. Dominant low-quality soils such as Ferralsols, which are strongly adsorbing P, and Arenosols with a low nutrient retention capacity, are associated with a strong yield decline, although Arenosols show very variable crop yield losses at low inputs. Optimal N:P ratios, i.e. those where the lowest amount of applied P produces the highest yield (given N input) where calculated with EPIC to be as low as 1:0.5. Finally, we estimated the additional P required given current N inputs, and given N inputs that would allow Africa to close yield gaps (ca. 70%). At current N inputs, P consumption would have to increase 2.3-fold to be optimal, and to increase 11.7-fold to close yield gaps. The P demand to overcome these yield deficits would provide a significant additional pressure on current global extraction of P resources.
Krishnakumar, Vivek; Choi, Yongwook; Beck, Erin; Wu, Qingyu; Luo, Anding; Sylvester, Anne; Jackson, David; Chan, Agnes P
2015-01-01
Maize is a global crop and a powerful system among grain crops for genetic and genomic studies. However, the development of novel biological tools and resources to aid in the functional identification of gene sequences is greatly needed. Towards this goal, we have developed a collection of maize marker lines for studying native gene expression in specific cell types and subcellular compartments using fluorescent proteins (FPs). To catalog FP expression, we have developed a public repository, the Maize Cell Genomics (MCG) Database, (http://maize.jcvi.org/cellgenomics), to organize a large data set of confocal images generated from the maize marker lines. To date, the collection represents major subcellular structures and also developmentally important progenitor cell populations. The resource is available to the research community, for example to study protein localization or interactions under various experimental conditions or mutant backgrounds. A subset of the marker lines can also be used to induce misexpression of target genes through a transactivation system. For future directions, the image repository can be expanded to accept new image submissions from the research community, and to perform customized large-scale computational image analysis. This community resource will provide a suite of new tools for gaining biological insights by following the dynamics of protein expression at the subcellular, cellular and tissue levels. © The Author 2014. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Verstraete, M. M.; Knox, N. M.; Hunt, L. A.; Kleyn, L.
2014-12-01
The MISR instrument on NASA's Terra platform has been operating for almost 15 years. Standard products are generated at a spatial resolution of 1.1 km or coarser, but a recently developed method to re-analyze the Level-1B2 data allows the retrieval of biogeophysical products at the native spatial resolution of the instrument (275 m). This development opens new opportunities to better address issues such as the management of agricultural production and food security. South African maize production is of great economic and social importance, not only nationally, but on the global market too, being one of the top ten maize producing countries. Seasonal maize production statistics are currently based on a combination of field measurements and estimates derived from manually digitizing high resolution imagery from the SPOT satellite. The field measurements are collected using the Producer Independent Crop Estimate System (PICES) developed by Crop Estimates Committee of the Department of Agriculture, Forestry and Fisheries. There is a strong desire to improve the quality of these statistics, to generate those earlier, and to automate the process to encompass larger areas. This paper will explore the feasibility of using the MISR-HR spectral and directional products, combined with the finer spatial resolution and the relatively frequent coverage afforded by that instrument, to address these needs. The study area is based in the Free State, South Africa, one of the primary maize growing areas in the country, and took place during the 2012-2013 summer growing season. The significance of the outcomes will be evaluated in the context of the 14+ years of available MISR data.
Furlan, L; Contiero, B; Chiarini, F; Colauzzi, M; Sartori, E; Benvegnù, I; Fracasso, F; Giandon, P
2017-01-01
A survey of maize fields was conducted in northeast Italy from 1986 to 2014, resulting in a dataset of 1296 records including information on wireworm damage to maize, plant-attacking species, agronomic characteristics, landscape and climate. Three wireworm species, Agriotes brevis Candeze, A. sordidus Illiger and A. ustulatus Schäller, were identified as the dominant pest species in maize fields. Over the 29-year period surveyed, no yield reduction was observed when wireworm plant damage was below 15 % of the stand. A preliminary univariate analysis of risk assessment was applied to identify the main factors influencing the occurrence of damage. A multifactorial model was then applied by using the significant factors identified. This model allowed the research to highlight the strongest factors and to analyse how the main factors together influenced damage risk. The strongest factors were: A. brevis as prevalent damaging species, soil organic matter content >5 %, rotation including meadows and/or double crops, A. sordidus as prevalent damaging species, and surrounding landscape mainly meadows, uncultivated grass and double crops. The multifactorial model also showed how the simultaneous occurrence of two or more of the aforementioned risk factors can conspicuously increase the risk of wireworm damage to maize crops, while the probability of damage to a field with no-risk factors is always low (<1 %). These results make it possible to draw risk maps to identify low-risk and high-risk areas, a first step in implementing bespoke IPM procedures in an attempt to reduce the impact of soil insecticides significantly.
Perry, Joe N; Devos, Yann; Arpaia, Salvatore; Bartsch, Detlef; Ehlert, Christina; Gathmann, Achim; Hails, Rosemary S; Hendriksen, Niels B; Kiss, Jozsef; Messéan, Antoine; Mestdagh, Sylvie; Neemann, Gerd; Nuti, Marco; Sweet, Jeremy B; Tebbe, Christoph C
2012-01-01
In farmland biodiversity, a potential risk to the larvae of non-target Lepidoptera from genetically modified (GM) Bt-maize expressing insecticidal Cry1 proteins is the ingestion of harmful amounts of pollen deposited on their host plants. A previous mathematical model of exposure quantified this risk for Cry1Ab protein. We extend this model to quantify the risk for sensitive species exposed to pollen containing Cry1F protein from maize event 1507 and to provide recommendations for management to mitigate this risk. A 14-parameter mathematical model integrating small- and large-scale exposure was used to estimate the larval mortality of hypothetical species with a range of sensitivities, and under a range of simulated mitigation measures consisting of non-Bt maize strips of different widths placed around the field edge. The greatest source of variability in estimated mortality was species sensitivity. Before allowance for effects of large-scale exposure, with moderate within-crop host-plant density and with no mitigation, estimated mortality locally was <10% for species of average sensitivity. For the worst-case extreme sensitivity considered, estimated mortality locally was 99·6% with no mitigation, although this estimate was reduced to below 40% with mitigation of 24-m-wide strips of non-Bt maize. For highly sensitive species, a 12-m-wide strip reduced estimated local mortality under 1·5%, when within-crop host-plant density was zero. Allowance for large-scale exposure effects would reduce these estimates of local mortality by a highly variable amount, but typically of the order of 50-fold. Mitigation efficacy depended critically on assumed within-crop host-plant density; if this could be assumed negligible, then the estimated effect of mitigation would reduce local mortality below 1% even for very highly sensitive species. Synthesis and applications. Mitigation measures of risks of Bt-maize to sensitive larvae of non-target lepidopteran species can be effective, but depend on host-plant densities which are in turn affected by weed-management regimes. We discuss the relevance for management of maize events where cry1F is combined (stacked) with a herbicide-tolerance trait. This exemplifies how interactions between biota may occur when different traits are stacked irrespective of interactions between the proteins themselves and highlights the importance of accounting for crop management in the assessment of the ecological impact of GM plants. PMID:22496596
"Omics" of maize stress response for sustainable food production: opportunities and challenges.
Gong, Fangping; Yang, Le; Tai, Fuju; Hu, Xiuli; Wang, Wei
2014-12-01
Maize originated in the highlands of Mexico approximately 8700 years ago and is one of the most commonly grown cereal crops worldwide, followed by wheat and rice. Abiotic stresses (primarily drought, salinity, and high and low temperatures), together with biotic stresses (primarily fungi, viruses, and pests), negatively affect maize growth, development, and eventually production. To understand the response of maize to abiotic and biotic stresses and its mechanism of stress tolerance, high-throughput omics approaches have been used in maize stress studies. Integrated omics approaches are crucial for dissecting the temporal and spatial system-level changes that occur in maize under various stresses. In this comprehensive analysis, we review the primary types of stresses that threaten sustainable maize production; underscore the recent advances in maize stress omics, especially proteomics; and discuss the opportunities, challenges, and future directions of maize stress omics, with a view to sustainable food production. The knowledge gained from studying maize stress omics is instrumental for improving maize to cope with various stresses and to meet the food demands of the exponentially growing global population. Omics systems science offers actionable potential solutions for sustainable food production, and we present maize as a notable case study.
“Omics” of Maize Stress Response for Sustainable Food Production: Opportunities and Challenges
Gong, Fangping; Yang, Le; Tai, Fuju; Hu, Xiuli
2014-01-01
Abstract Maize originated in the highlands of Mexico approximately 8700 years ago and is one of the most commonly grown cereal crops worldwide, followed by wheat and rice. Abiotic stresses (primarily drought, salinity, and high and low temperatures), together with biotic stresses (primarily fungi, viruses, and pests), negatively affect maize growth, development, and eventually production. To understand the response of maize to abiotic and biotic stresses and its mechanism of stress tolerance, high-throughput omics approaches have been used in maize stress studies. Integrated omics approaches are crucial for dissecting the temporal and spatial system-level changes that occur in maize under various stresses. In this comprehensive analysis, we review the primary types of stresses that threaten sustainable maize production; underscore the recent advances in maize stress omics, especially proteomics; and discuss the opportunities, challenges, and future directions of maize stress omics, with a view to sustainable food production. The knowledge gained from studying maize stress omics is instrumental for improving maize to cope with various stresses and to meet the food demands of the exponentially growing global population. Omics systems science offers actionable potential solutions for sustainable food production, and we present maize as a notable case study. PMID:25401749
Brookes, Graham; Barfoot, Peter
2014-01-01
A key part of any assessment of the global value of crop biotechnology in agriculture is an examination of its economic impact at the farm level. This paper follows earlier annual studies which examined economic impacts on yields, key costs of production, direct farm income and effects, and impacts on the production base of the four main crops of soybeans, corn, cotton and canola. The commercialization of genetically modified (GM) crops has continued to occur at a rapid rate, with important changes in both the overall level of adoption and impact occurring in 2012. This annual updated analysis shows that there have been very significant net economic benefits at the farm level amounting to $18.8 billion in 2012 and $116.6 billion for the 17-year period (in nominal terms). These economic gains have been divided roughly 50% each to farmers in developed and developing countries. GM technology have also made important contributions to increasing global production levels of the four main crops, having added 122 million tonnes and 230 million tonnes respectively, to the global production of soybeans and maize since the introduction of the technology in the mid-1990s. PMID:24637520
Economic impact of GM crops: the global income and production effects 1996-2012.
Brookes, Graham; Barfoot, Peter
2014-01-01
A key part of any assessment of the global value of crop biotechnology in agriculture is an examination of its economic impact at the farm level. This paper follows earlier annual studies which examined economic impacts on yields, key costs of production, direct farm income and effects, and impacts on the production base of the four main crops of soybeans, corn, cotton and canola. The commercialization of genetically modified (GM) crops has continued to occur at a rapid rate, with important changes in both the overall level of adoption and impact occurring in 2012. This annual updated analysis shows that there have been very significant net economic benefits at the farm level amounting to $18.8 billion in 2012 and $116.6 billion for the 17-year period (in nominal terms). These economic gains have been divided roughly 50% each to farmers in developed and developing countries. GM technology have also made important contributions to increasing global production levels of the four main crops, having added 122 million tonnes and 230 million tonnes respectively, to the global production of soybeans and maize since the introduction of the technology in the mid-1990s.
Peng, Yi; Nguy-Robertson, Anthony; Arkebauer, Timothy; ...
2017-03-02
Here, canopy chlorophyll content (Chl) closely relates to plant photosynthetic capacity, nitrogen status and productivity. The goal of this study is to develop remote sensing techniques for accurate estimation of canopy Chl during the entire growing season without re-parameterization of algorithms for two contrasting crop species, maize and soybean. These two crops represent different biochemical mechanisms of photosynthesis, leaf structure and canopy architecture. The relationships between canopy Chl and reflectance, collected at close range and resampled to bands of the Multi Spectral Instrument (MSI) aboard Sentinel-2, were analyzed in samples taken across the entirety of the growing seasons in threemore » irrigated and rainfed sites located in eastern Nebraska between 2001 and 2005. Crop phenology was a factor strongly influencing the reflectance of both maize and soybean. Substantial hysteresis of the reflectance vs. canopy Chl relationship existed between the vegetative and reproductive stages. The effect of the hysteresis on vegetation indices (VI), applied for canopy Chl estimation, depended on the bands used and their formulation. The hysteresis greatly affected the accuracy of canopy Chl estimation by widely-used VIs with near infrared (NIR) and red reflectance (e.g., normalized difference vegetation index (NDVI), enhanced vegetation index (EVI) and simple ratio (SR)). VIs that use red edge and NIR bands (e.g., red edge chlorophyll index (CIred edge), red edge NDVI and the MERIS terrestrial chlorophyll index (MTCI)) were minimally affected by crop phenology (i.e., they exhibited little hysteresis) and were able to accurately estimate canopy Chl in two crops without algorithm re-parameterization and, thus, were found to be the best candidates for generic algorithms to estimate crop Chl using the surface reflectance products of MSI Sentinel-2.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peng, Yi; Nguy-Robertson, Anthony; Arkebauer, Timothy
Here, canopy chlorophyll content (Chl) closely relates to plant photosynthetic capacity, nitrogen status and productivity. The goal of this study is to develop remote sensing techniques for accurate estimation of canopy Chl during the entire growing season without re-parameterization of algorithms for two contrasting crop species, maize and soybean. These two crops represent different biochemical mechanisms of photosynthesis, leaf structure and canopy architecture. The relationships between canopy Chl and reflectance, collected at close range and resampled to bands of the Multi Spectral Instrument (MSI) aboard Sentinel-2, were analyzed in samples taken across the entirety of the growing seasons in threemore » irrigated and rainfed sites located in eastern Nebraska between 2001 and 2005. Crop phenology was a factor strongly influencing the reflectance of both maize and soybean. Substantial hysteresis of the reflectance vs. canopy Chl relationship existed between the vegetative and reproductive stages. The effect of the hysteresis on vegetation indices (VI), applied for canopy Chl estimation, depended on the bands used and their formulation. The hysteresis greatly affected the accuracy of canopy Chl estimation by widely-used VIs with near infrared (NIR) and red reflectance (e.g., normalized difference vegetation index (NDVI), enhanced vegetation index (EVI) and simple ratio (SR)). VIs that use red edge and NIR bands (e.g., red edge chlorophyll index (CIred edge), red edge NDVI and the MERIS terrestrial chlorophyll index (MTCI)) were minimally affected by crop phenology (i.e., they exhibited little hysteresis) and were able to accurately estimate canopy Chl in two crops without algorithm re-parameterization and, thus, were found to be the best candidates for generic algorithms to estimate crop Chl using the surface reflectance products of MSI Sentinel-2.« less
Le, Phong V V; Kumar, Praveen; Drewry, Darren T
2011-09-13
To meet emerging bioenergy demands, significant areas of the large-scale agricultural landscape of the Midwestern United States could be converted to second generation bioenergy crops such as miscanthus and switchgrass. The high biomass productivity of bioenergy crops in a longer growing season linked tightly to water use highlight the potential for significant impact on the hydrologic cycle in the region. This issue is further exacerbated by the uncertainty in the response of the vegetation under elevated CO(2) and temperature. We use a mechanistic multilayer canopy-root-soil model to (i) capture the eco-physiological acclimations of bioenergy crops under climate change, and (ii) predict how hydrologic fluxes are likely to be altered from their current magnitudes. Observed data and Monte Carlo simulations of weather for recent past and future scenarios are used to characterize the variability range of the predictions. Under present weather conditions, miscanthus and switchgrass utilized more water than maize for total seasonal evapotranspiration by approximately 58% and 36%, respectively. Projected higher concentrations of atmospheric CO(2) (550 ppm) is likely to decrease water used for evapotranspiration of miscanthus, switchgrass, and maize by 12%, 10%, and 11%, respectively. However, when climate change with projected increases in air temperature and reduced summer rainfall are also considered, there is a net increase in evapotranspiration for all crops, leading to significant reduction in soil-moisture storage and specific surface runoff. These results highlight the critical role of the warming climate in potentially altering the water cycle in the region under extensive conversion of existing maize cropping to support bioenergy demand.
Zhao, Wei; Song, Chun; Zhou, Pan; Wang, Jia Yu; Xui, Feng; Ye, Fang; Wang, Xiao Chun; Yang, Wen Yu
2018-04-01
In order to explore the advantage of intercropping on phosphorus (P) efficient utilization and the reduction of soil P loss, a field experiment in a maize-soybean intercropping system, which included three P application (P 2 O 5 ) rates (CP: 168 kg·hm -2 ; RP 1 : 135 kg·hm -2 ; RP 2 : 101 kg·hm -2 ) and three P application depths (D 1 : applied in 5 cm depth; D 2 : applied in 15 cm depth; D 3 : 1/2 of P fertilizer applied in 5 cm depth and another 1/2 in 15 cm depth) was carried out to analyze the effects of P application rates and depth on crop aboveground biomass, grain yield, crop P uptake, soil total and available P contents, and soil P adsorption-desorption characteristics. Compared with control treatment, the aboveground biomass, grain yield, crop P uptake, soil total P, and available P content were increased significantly by P application, regardless of P rate and application depth. Under the same application depth, RP 1 had similar grain yield but higher crop P uptake compared with CP, and thus higher P apparent utilization efficiency. Under the same P application rate, the application depth of D 2 had the highest crop aboveground biomass, grain yield, P uptake, soil total P, and available P. According to the characteristic of soil P adsorption-desorption, the treatment with the rate of RP 1 and the depth of D 2 had the strongest soil P retention capacity, which had advantage in alleviating P loss. These results suggested that reducing application rate but increasing application depth of P fertilizer could improve P use efficiency and reduce soil P loss without sacrifice in crop production in maize-soybean relay intercropping system.
NASA Astrophysics Data System (ADS)
Guo, Jianping; Zhao, Junfang; Wu, Dingrong; Mu, Jia; Xu, Yanhong
2014-12-01
Crop yields are affected by climate change and technological advancement. Objectively and quantitatively evaluating the attribution of crop yield change to climate change and technological advancement will ensure sustainable development of agriculture under climate change. In this study, daily climate variables obtained from 553 meteorological stations in China for the period 1961-2010, detailed observations of maize from 653 agricultural meteorological stations for the period 1981-2010, and results using an Agro-Ecological Zones (AEZ) model, are used to explore the attribution of maize (Zea mays L.) yield change to climate change and technological advancement. In the AEZ model, the climatic potential productivity is examined through three step-by-step levels: photosynthetic potential productivity, photosynthetic thermal potential productivity, and climatic potential productivity. The relative impacts of different climate variables on climatic potential productivity of maize from 1961 to 2010 in China are then evaluated. Combined with the observations of maize, the contributions of climate change and technological advancement to maize yield from 1981 to 2010 in China are separated. The results show that, from 1961 to 2010, climate change had a significant adverse impact on the climatic potential productivity of maize in China. Decreased radiation and increased temperature were the main factors leading to the decrease of climatic potential productivity. However, changes in precipitation had only a small effect. The maize yields of the 14 main planting provinces in China increased obviously over the past 30 years, which was opposite to the decreasing trends of climatic potential productivity. This suggests that technological advancement has offset the negative effects of climate change on maize yield. Technological advancement contributed to maize yield increases by 99.6%-141.6%, while climate change contribution was from -41.4% to 0.4%. In particular, the actual maize yields in Shandong, Henan, Jilin, and Inner Mongolia increased by 98.4, 90.4, 98.7, and 121.5 kg hm-2 yr-1 over the past 30 years, respectively. Correspondingly, the maize yields affected by technological advancement increased by 113.7, 97.9, 111.5, and 124.8 kg hm-2 yr-1, respectively. On the contrary, maize yields reduced markedly under climate change, with an average reduction of -9.0 kg hm-2 yr-1. Our findings highlight that agronomic technological advancement has contributed dominantly to maize yield increases in China in the past three decades.
Sharma, Sakshi; Nagpal, Avinash Kaur; Kaur, Inderpreet
2018-07-30
In the present study, an assessment of heavy metal content in soil and food crops (wheat, rice, maize grains and mustard seeds) and associated health risks was carried out for residents of Ropar wetland and its environs. All the soil samples had high cadmium and cobalt contents, whereas, all crop samples had high contents of cobalt and lead. Bioconcentration factor (BCF) analysis indicated that rice grains act as hyper-accumulators of chromium (BCF = 17.98) and copper (BCF = 10.91), whereas, maize grains act as hyper-accumulators of copper (BCF = 30.43). One-way ANOVA suggested that heavy metal content in food crops varied significantly at p ≤ 0.05 for different sites, indicating anthropogenic contribution of heavy metals in agricultural fields. Dietary intake of cobalt via all food crops posed higher non-cancer health risk to residents in comparison to other heavy metals. Chromium posed highest cancer risk through consumption of wheat grains, being staple diet in study area. Copyright © 2018 Elsevier Ltd. All rights reserved.
Soil Erodibility Parameters Under Various Cropping Systems of Maize
NASA Astrophysics Data System (ADS)
van Dijk, P. M.; van der Zijp, M.; Kwaad, F. J. P. M.
1996-08-01
For four years, runoff and soil loss from seven cropping systems of fodder maize have been measured on experimental plots under natural and simulated rainfall. Besides runoff and soil loss, several variables have also been measured, including rainfall kinetic energy, degree of slaking, surface roughness, aggregate stability, soil moisture content, crop cover, shear strength and topsoil porosity. These variables explain a large part of the variance in measured runoff, soil loss and splash erosion under the various cropping systems. The following conclusions were drawn from the erosion measurements on the experimental plots (these conclusions apply to the spatial level at which the measurements were carried out). (1) Soil tillage after maize harvest strongly reduced surface runoff and soil loss during the winter; sowing of winter rye further reduced winter erosion, though the difference with a merely tilled soil is small. (2) During spring and the growing season, soil loss is reduced strongly if the soil surface is partly covered by plant residues; the presence of plant residue on the surface appeared to be essential in achieving erosion reduction in summer. (3) Soil loss reductions were much higher than runoff reductions; significant runoff reduction is only achieved by the straw system having flat-lying, non-fixed plant residue on the soil surface; the other systems, though effective in reducing soil loss, were not effective in reducing runoff.
Genetically modified myths and realities.
Parrott, Wayne
2010-11-30
Myths abound when it comes to GE crops. At their worst, myths play an active role in discouraging the use of GE to solve problems that afflict humankind, such as malnutrition and birth defects. Of all the various myths, two have been particularly important in preventing the use of GE maize in its areas of origin. The first is that transgenic maize will contaminate and destroy land races, thus destroying biodiversity and its associated cultural traditions. This myth totally ignores the fact that the gene flow that has taken place between maize and its progenitor, between the land races, and between land races and modern hybrids, has not led to any dire consequences. The second myth is that crops are natural and have not been modified by humans, or if they have, that plant breeding does not alter DNA. This myth ignores the fact that for the most part, it is impossible to alter the appearance of crops without changing the DNA. In fact, DNA movement within the crop genome is normal and its movement leads to double-strand DNA repair, with results like those found around transgene insertion sites. In addition, plants have ways to create novel genes. These changes help plants adapt to evolution and to human selection. The net result is that changes similar to what happens during the production of engineered plants takes place anyway in plant genomes. Copyright © 2010 Elsevier B.V. All rights reserved.
Developing a global crop model for maize, wheat, and soybean production
NASA Astrophysics Data System (ADS)
Deryng, D.; Ramankutty, N.; Sacks, W. J.
2008-12-01
Recently, the world food supply has faced a crisis due to increasing food prices driven by rising food demand, increasing fuel prices, poor harvests due to climate factors, and the use of crops such as maize and soybean to produce biofuel. In order to assess the future of global food availability, there is a need for understanding the factors underlying food production. Farmer management practices along with climatic conditions are the main elements directly influencing crop yield. As a consequence, estimations of future world food production require the use of a global crop model that simulates reasonably the effect of both climate and management practices on yield. Only a few global crop models have been developed to date, and currently none of them represent management factors adequately, principally due to the lack of spatially explicit datasets at the global scale. In this study, we present a global crop model designed for maize, wheat, and soybean production that incorporates planting and harvest decisions, along with irrigation options based on newly available data. The crop model is built on a simple water-balance algorithm based on the Penman- Monteith equation combined with a light use efficiency approach that calculates biomass production under non-nutrient-limiting conditions. We used a world crop calendar dataset to develop statistical relationships between climate variables and planting dates for different regions of the world. Development stages are defined based on total growing degree days required to reach the beginning of each phase. Irrigation options are considered in regions where water stress occurs and irrigation infrastructures exist. We use a global dataset on irrigated areas for each crop type. The quantity of water applied is then calculated in order to avoid water stress but with an upper threshold derived from total irrigation withdrawal quantity estimated by the global water use model WaterGAP 2. Our analysis will present the model sensitivity to different scenarios of management practices, e.g. planting date and water supply, under non-nutrient limited conditions. With this study, we hope to clarify the importance of planting date and irrigation versus climate for crop yield.
Response of Main Maize Varieties to Water Stress and Comprehensive Evaluation in Hebei Province
NASA Astrophysics Data System (ADS)
Yue, Haiwang; Chen, Shuping; Bu, Junzhou; Wei, Jianwei; Peng, Haicheng; Li, Yuan; Li, Chunjie; Xie, Junliang
2018-01-01
Drought is a serious threat to maize production in Hebei province. Planting drought resistant maize varieties is an effective measure to solve drought in arid and less rain areas. Drought resistance in maize is controlled by many genes, and multiple indexes should be used for comprehensive evaluation (Campos H et al.2004). In the arid rain shed, using 34 maize varieties to promote crop production compared to the drought resistance test. The experiment was conducted with two treatments of drought stress (irrigation only at seedling stage) and normal irrigation, and 12 agronomic traits related to drought resistance of maize were determined. The results showed that drought had significant effects on maize yield and main agronomic characters. Under drought stress, plant height, ear length, bare tip, ear row number, row grains, 1000-kernel weight, ASI index can be used as identification index of drought resistance of maize in different period. The results indicated that the variety with strong drought resistance is Zhongdi175, the worst drought resistance is Woyu964.
Heredia Díaz, Oscar; Aldaba Meza, José Luis; Baltazar, Baltazar M; Bojórquez Bojórquez, Germán; Castro Espinoza, Luciano; Corrales Madrid, José Luis; de la Fuente Martínez, Juan Manuel; Durán Pompa, Héctor Abel; Alonso Escobedo, José; Espinoza Banda, Armando; Garzón Tiznado, José Antonio; González García, Juvencio; Guzmán Rodríguez, José Luis; Madueño Martínez, Jesús Ignacio; Martínez Carrillo, José Luis; Meng, Chen; Quiñones Pando, Francisco Javier; Rosales Robles, Enrique; Ruiz Hernández, Ignacio; Treviño Ramírez, José Elías; Uribe Montes, Hugo Raúl; Zavala García, Francisco
2017-02-01
Environmental risk assessment (ERA) of genetically modified (GM) crops is a process to evaluate whether the biotechnology trait(s) in a GM crop may result in increased pest potential or harm to the environment. In this analysis, two GM insect-resistant (IR) herbicide-tolerant maize hybrids (MON-89Ø34-3 × MON-88Ø17-3 and MON-89Ø34-3 × MON-ØØ6Ø3-6) and one herbicide-tolerant GM hybrid (MON-ØØ6Ø3-6) were compared with conventional maize hybrids of similar genetic backgrounds. Two sets of studies, Experimental Phase and Pilot Phase, were conducted across five ecological regions (ecoregions) in Mexico during 2009-2013, and data were subject to meta-analysis. Results from the Experimental Phase studies, which were used for ERA, indicated that the three GM hybrids were not different from conventional maize for early stand count, days-to-silking, days-to-anthesis, root lodging, stalk lodging, or final stand count. Statistically significant differences were observed for seedling vigor, ear height, plant height, grain moisture, and grain yield, particularly in the IR hybrids; however, none of these phenotypic differences are expected to contribute to a biological or ecological change that would result in an increased pest potential or ecological risk when cultivating these GM hybrids. Overall, results from the Experimental Phase studies are consistent with those from other world regions, confirming that there are no additional risks compared to conventional maize. Results from Pilot Phase studies indicated that, compared to conventional maize hybrids, no differences were detected for the agronomic and phenotypic characteristics measured on the three GM maize hybrids, with the exception of grain moisture and grain yield in the IR hybrids. Since MON-89Ø34-3 × MON-88Ø17-3 and MON-89Ø34-3 × MON-ØØ6Ø3-6 confer resistance to target insect pests, they are an alternative for farmers in Mexico to protect the crop from insect damage. Additionally, the herbicide tolerance conferred by all three GM hybrids enables more cost-effective weed management.
USDA-ARS?s Scientific Manuscript database
Few studies have assessed the common, yet unproven, hypothesis that an increase of plant nitrogen (N) uptake and/or recovery efficiency (NRE) will reduce nitrous oxide (N2O) emission during crop production. Understanding the relationships between N2O emissions and crop N uptake and use efficiency p...
Transgenic Crops in Argentina: The Ecological and Social Debt
ERIC Educational Resources Information Center
Pengue, Walter A.
2005-01-01
There is no doubt that soybean is the most important crop for Argentina, with a planted surface that rose 11,000,000 hectares and a production of around 35,000,000 metric tons. During the 1990s, there was a significant agriculture transformation in the country, motorize by the adoption of transgenic crops (soy-bean, maize, and cotton) under the…
USDA-ARS?s Scientific Manuscript database
Oilseed crops such as maize and peanut are staple food crops which are vital for global food security. The contamination of these crops with carcinogenic aflatoxins during infection by Aspergillus flavus under drought stress conditions is a serious threat to the safety of these commodities. In order...