Development of a Knowledge-Based System Approach for Decision Making in Construction Projects
1992-05-01
a generic model for an administrative facility and medical facility with predefined fixed building systems based on Air Force criteria and past...MAINTENANCE HANGAR (MEDIUM BAY) CORROSION CONTROL HANGAR (HIGH BAY) FUEL SYSTEM MAINTENANCE HANGAR (MEDIUM BAY) MEDICAL MODEL 82 Table 5-1--continued...BUILDING SUPPORT MEDICAL LOGISTICS MEDICAL TOTAL 85 Table 5-2--continued MISSILE ASSEMBLY AND MAINTENANCE BUILDING TOTAL MISSILE LOADING AND UNLOADING
Impulsive control of a continuous-culture and flocculation harvest chemostat model
NASA Astrophysics Data System (ADS)
Zhang, Tongqian; Ma, Wanbiao; Meng, Xinzhu
2017-12-01
In this paper, a new mathematical model describing the process of continuous culture and harvest of microalgaes is proposed. By inputting medium and flocculant at two different fixed moments periodically, continuous culture and harvest of microalgaes is implemented. The mathematical analysis is conducted and the whole dynamics of model is investigated by using theory of impulsive differential equations. We find that the model has a microalgaes-extinction periodic solution and it is globally asymptotically stable when some certain threshold value is less than the unit. And the model is permanent when some certain threshold value is larger than the unit. Then, according to the threshold, the control strategies of continuous culture and harvest of microalgaes are discussed. The results show that continuous culture and harvest of microalgaes can be archived by adjusting suitable input time, input amount of medium or flocculant. Finally, some numerical simulations are carried out to verify the control strategy.
Magnetic-saturation zone model for two semipermeable cracks in magneto-electro-elastic medium
NASA Astrophysics Data System (ADS)
Jangid, Kamlesh
2018-03-01
Extension of the PS model (Gao et al. [1]) in piezoelectric materials and the SEMPS model (Fan and Zhao [2]) in MEE materials, is proposed for two semi-permeable cracks in a MEE medium. It is assumed that the magnetic yielding occurs at the continuation of the cracks due to the prescribed loads. We have model these crack continuations as the zones with cohesive saturation limit magnetic induction. Stroh's formalism and complex variable techniques are used to formulate the problem. Closed form analytical expressions are derived for various fracture parameters. A numerical case study is presented for BaTiO3 - CoFe2O4 ceramic cracked plate.
Correspondence between discrete and continuous models of excitable media: trigger waves
NASA Technical Reports Server (NTRS)
Chernyak, Y. B.; Feldman, A. B.; Cohen, R. J.
1997-01-01
We present a theoretical framework for relating continuous partial differential equation (PDE) models of excitable media to discrete cellular automata (CA) models on a randomized lattice. These relations establish a quantitative link between the CA model and the specific physical system under study. We derive expressions for the CA model's plane wave speed, critical curvature, and effective diffusion constant in terms of the model's internal parameters (the interaction radius, excitation threshold, and time step). We then equate these expressions to the corresponding quantities obtained from solution of the PDEs (for a fixed excitability). This yields a set of coupled equations with a unique solution for the required CA parameter values. Here we restrict our analysis to "trigger" wave solutions obtained in the limiting case of a two-dimensional excitable medium with no recovery processes. We tested the correspondence between our CA model and two PDE models (the FitzHugh-Nagumo medium and a medium with a "sawtooth" nonlinear reaction source) and found good agreement with the numerical solutions of the PDEs. Our results suggest that the behavior of trigger waves is actually controlled by a small number of parameters.
NASA Astrophysics Data System (ADS)
Boyer, Frederic; Porez, Mathieu; Renda, Federico
This talk presents recent geometric tools developed to model the locomotion dynamics of bio-inspired robots. Starting from the model of discrete rigid multibody systems we will rapidly shift to the case of continuous systems inspired from snakes and fish. To that end, we will build on the model of Cosserat media. This extended picture of geometric locomotion dynamics (inspired from fields' theory) will allow us to introduce models of swimming recently used in biorobotics. We will show how modeling a fish as a one-dimensional Cosserat medium allows to recover and extend the Large Amplitude Elongated Body theory of J. Lighthill and to apply it to an eel-like robot. In the same vein, modeling the mantle of cephalopods as a two dimensional Cosserat medium will build a basis for studying the jet propelling of a soft octopus like robot.
A Model for Integrating Technology and Learning in Public Health Education
ERIC Educational Resources Information Center
Bardzell, Shaowen; Bardzell, Jeffrey; So, Hyo-Jeong; Lee, Junghun
2004-01-01
As computer interfaces emerge as an instructional medium, instructors transitioning from the classroom continue to bear the burden of designing effective instruction. The medium of the computer interface, and the kinds of learning and interactive possibilities it affords, presumably changes the delivery of learner-centered instruction.…
A CTRW-based model of time-resolved fluorescence lifetime imaging in a turbid medium
NASA Astrophysics Data System (ADS)
Chernomordik, Victor; Gandjbakhche, Amir H.; Hassan, Moinuddin; Pajevic, Sinisa; Weiss, George H.
2010-12-01
We develop an analytic model of time-resolved fluorescent imaging of photons migrating through a semi-infinite turbid medium bounded by an infinite plane in the presence of a single stationary point fluorophore embedded in the medium. In contrast to earlier models of fluorescent imaging in which photon motion is assumed to be some form of continuous diffusion process, the present analysis is based on a continuous-time random walk (CTRW) on a simple cubic lattice, the objective being to estimate the position and lifetime of the fluorophore. This can provide information related to local variations in pH and temperature with potential medical significance. Aspects of the theory were tested using time-resolved measurements of the fluorescence from small inclusions inside tissue-like phantoms. The experimental results were found to be in good agreement with theoretical predictions provided that the fluorophore was not located too close to the planar boundary, a common problem in many diffusive systems.
Particle Diffusion in an Inhomogeneous Medium
ERIC Educational Resources Information Center
Bringuier, E.
2011-01-01
This paper is an elementary introduction to particle diffusion in a medium where the coefficient of diffusion varies with position. The introduction is aimed at third-year university courses. We start from a simple model of particles hopping on a discrete lattice, in one or more dimensions, and then take the continuous-space limit so as to obtain…
Natural Length Scales Shape Liquid Phase Continuity in Unsaturated Flows
NASA Astrophysics Data System (ADS)
Assouline, S.; Lehmann, P. G.; Or, D.
2015-12-01
Unsaturated flows supporting soil evaporation and internal drainage play an important role in various hydrologic and climatic processes manifested at a wide range of scales. We study inherent natural length scales that govern these flow processes and constrain the spatial range of their representation by continuum models. These inherent length scales reflect interactions between intrinsic porous medium properties that affect liquid phase continuity, and the interplay among forces that drive and resist unsaturated flow. We have defined an intrinsic length scale for hydraulic continuity based on pore size distribution that controls soil evaporation dynamics (i.e., stage 1 to stage 2 transition). This simple metric may be used to delineate upper bounds for regional evaporative losses or the depth of soil-atmosphere interactions (in the absence of plants). A similar length scale governs the dynamics of internal redistribution towards attainment of field capacity, again through its effect on hydraulic continuity in the draining porous medium. The study provides a framework for guiding numerical and mathematical models for capillary flows across different scales considering the necessary conditions for coexistence of stationarity (REV), hydraulic continuity and intrinsic capillary gradients.
40 CFR 86.701-94 - General applicability.
Code of Federal Regulations, 2010 CFR
2010-07-01
... medium duty passenger vehicles. (b) References in this subpart to engine families and emission control... (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) General Provisions for In-Use Emission Regulations for 1994 and Later Model Year Light-Duty Vehicles and Light-Duty...
46 CFR 160.060-2 - Type and model.
Code of Federal Regulations, 2010 CFR
2010-10-01
... COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) EQUIPMENT, CONSTRUCTION, AND MATERIALS..., Adult and Child § 160.060-2 Type and model. Each buoyant vest specified in this subpart is a: (a) Standard: (1) Model AY, adult (for persons weighing over 90 pounds); or (2) Model CYM, child, medium (for...
Code of Federal Regulations, 2010 CFR
2010-10-01
..., DEPARTMENT OF HOMELAND SECURITY (CONTINUED) EQUIPMENT, CONSTRUCTION, AND MATERIALS: SPECIFICATIONS AND APPROVAL LIFESAVING EQUIPMENT Specification for a Buoyant Vest, Kapok or Fibrous Glass, Adult and Child... than 90 pounds); (c) Model CKM-1, child medium, kapok (for children weighing from 50 to 90 pounds); (d...
Autonomous Sensors for Measuring Continuously the Moisture and Salinity of a Porous Medium
Chavanne, Xavier; Frangi, Jean-Pierre
2017-01-01
The article describes a new field sensor to monitor continuously in situ moisture and salinity of a porous medium via measurements of its dielectric permittivity, conductivity and temperature. It intends to overcome difficulties and biases encountered with sensors based on the same sensitivity principle. Permittivity and conductivity are determined simultaneously by a self-balanced bridge, which measures directly the admittance of sensor electrodes in medium. All electric biases are reduced and their residuals taken into account by a physical model of the instrument, calibrated against reference fluids. Geometry electrode is optimized to obtain a well representative sample of the medium. The sensor also permits acquiring a large amount of data at high frequency (six points every hour, and even more) and to access it rapidly, even in real time, owing to autonomy capabilities and wireless communication. Ongoing developments intend to simplify and standardize present sensors. Results of field trials of prototypes in different environments are presented. PMID:28492471
Autonomous Sensors for Measuring Continuously the Moisture and Salinity of a Porous Medium.
Chavanne, Xavier; Frangi, Jean-Pierre
2017-05-11
The article describes a new field sensor to monitor continuously in situ moisture and salinity of a porous medium via measurements of its dielectric permittivity, conductivity and temperature. It intends to overcome difficulties and biases encountered with sensors based on the same sensitivity principle. Permittivity and conductivity are determined simultaneously by a self-balanced bridge, which measures directly the admittance of sensor electrodes in medium. All electric biases are reduced and their residuals taken into account by a physical model of the instrument, calibrated against reference fluids. Geometry electrode is optimized to obtain a well representative sample of the medium. The sensor also permits acquiring a large amount of data at high frequency (six points every hour, and even more) and to access it rapidly, even in real time, owing to autonomy capabilities and wireless communication. Ongoing developments intend to simplify and standardize present sensors. Results of field trials of prototypes in different environments are presented.
Smoothed Particle Hydrodynamics Modeling of Gravity Currents on a Dry Porous Medium
NASA Astrophysics Data System (ADS)
Daly, E.; Grimaldi, S.; Bui, H.
2014-12-01
Gravity currents flowing over porous media occur in many environmental processes and industrial applications, such as irrigation, benthic boundary layers, and oil spills. The coupling of the flow over the porous surface and the infiltration of the fluid in the porous media is complex and difficult to model. Of particular interest is the prediction of the position of the runoff front and the depth of the infiltration front. We present here a model for the flow of a finite volume of a highly viscous Newtonian fluid over a dry, homogenous porous medium. The Navier-Stokes equations describing the runoff flow are coupled to the Volume Averaged Navier-Stokes equations for the infiltration flow. The numerical solution of these equations is challenging because of the presence of two free surfaces (runoff and infiltration waves), the lack of fixed boundary conditions at the runoff front, and the difficulties in defining appropriate conditions at the surface of the porous medium. The first two challenges were addressed by using Smoothed Particle Hydrodynamics, which is a Lagrangian, mesh-free particle method particularly suitable for modelling free surface flows. Two different approaches were used to model the flow conditions at the surface of the porous medium. The Two Domain Approach (TDA) assumes that runoff and infiltration flows occur in two separate homogenous domains; here, we assume the continuity of velocity and stresses at the interface of the two domains. The One Domain Approach (ODA) models runoff and infiltration flows as occurring through a medium whose hydraulic properties vary continuously in space. The transition from the hydraulic properties of the atmosphere and the porous medium occur in a layer near the surface of the porous medium. Expressions listed in literature were used to compute the thickness of this transition layer and the spatial variation of porosity and permeability within it. Our results showed that ODA led to slower velocities of the runoff front and enhanced infiltration when compared to the implemented formulation of TDA. In the ODA, depending on the description of the transition layer, the maximum distances travelled by the runoff front and the maximum depth of infiltration varied over a range of ±15% and ±50% when compared to their respective averaged values.
Dissolved oxygen concentration in the medium during cell culture: Defects and improvements.
Zhang, Kuan; Zhao, Tong; Huang, Xin; He, Yunlin; Zhou, Yanzhao; Wu, Liying; Wu, Kuiwu; Fan, Ming; Zhu, Lingling
2016-03-01
In vitro cell culture has provided a useful model to study the effects of oxygen on cellular behavior. However, it remains unknown whether the in vitro operations themselves affect the medium oxygen levels and the living states of cells. In addition, a prevailing controversy is whether reactive oxygen species (ROS) production is induced by continuous hypoxia or reoxygenation. In this study, we have measured the effects of different types of cell culture containers and the oxygen environment where medium replacement takes place on the actual oxygen tension in the medium. We found that the deviations of oxygen concentrations in the medium are much greater in 25-cm(2) flasks than in 24-well plates and 35-mm dishes. The dissolved oxygen concentrations in the medium were increased after medium replacement in normoxia, but remained unchanged in glove boxes in which the oxygen tension remained at a low level (11.4, 5.7, and 0.5% O2 ). We also found that medium replacement in normoxia increased the number of ROS-positive cells and reduced the cell viability; meanwhile, medium replacement in a glove box did not produce the above effects. Therefore, we conclude that the use of 25-cm(2) flasks should be avoided and demonstrate that continuous hypoxia does not produce ROS, whereas the reoxygenation that occurs during the harvesting of cells leads to ROS and induces cell death. © 2015 International Federation for Cell Biology.
A phase screen model for simulating numerically the propagation of a laser beam in rain
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lukin, I P; Rychkov, D S; Falits, A V
2009-09-30
The method based on the generalisation of the phase screen method for a continuous random medium is proposed for simulating numerically the propagation of laser radiation in a turbulent atmosphere with precipitation. In the phase screen model for a discrete component of a heterogeneous 'air-rain droplet' medium, the amplitude screen describing the scattering of an optical field by discrete particles of the medium is replaced by an equivalent phase screen with a spectrum of the correlation function of the effective dielectric constant fluctuations that is similar to the spectrum of a discrete scattering component - water droplets in air. Themore » 'turbulent' phase screen is constructed on the basis of the Kolmogorov model, while the 'rain' screen model utiises the exponential distribution of the number of rain drops with respect to their radii as a function of the rain intensity. Theresults of the numerical simulation are compared with the known theoretical estimates for a large-scale discrete scattering medium. (propagation of laser radiation in matter)« less
Kokeny, Paul; Cheng, Yu-Chung N; Xie, He
2018-05-01
Modeling MRI signal behaviors in the presence of discrete magnetic particles is important, as magnetic particles appear in nanoparticle labeled cells, contrast agents, and other biological forms of iron. Currently, many models that take into account the discrete particle nature in a system have been used to predict magnitude signal decays in the form of R2* or R2' from one single voxel. Little work has been done for predicting phase signals. In addition, most calculations of phase signals rely on the assumption that a system containing discrete particles behaves as a continuous medium. In this work, numerical simulations are used to investigate MRI magnitude and phase signals from discrete particles, without diffusion effects. Factors such as particle size, number density, susceptibility, volume fraction, particle arrangements for their randomness, and field of view have been considered in simulations. The results are compared to either a ground truth model, theoretical work based on continuous mediums, or previous literature. Suitable parameters used to model particles in several voxels that lead to acceptable magnetic field distributions around particle surfaces and accurate MR signals are identified. The phase values as a function of echo time from a central voxel filled by particles can be significantly different from those of a continuous cubic medium. However, a completely random distribution of particles can lead to an R2' value which agrees with the prediction from the static dephasing theory. A sphere with a radius of at least 4 grid points used in simulations is found to be acceptable to generate MR signals equivalent from a larger sphere. Increasing number of particles with a fixed volume fraction in simulations reduces the resulting variance in the phase behavior, and converges to almost the same phase value for different particle numbers at each echo time. The variance of phase values is also reduced when increasing the number of particles in a fixed voxel. These results indicate that MRI signals from voxels containing discrete particles, even with a sufficient number of particles per voxel, cannot be properly modeled by a continuous medium with an equivalent susceptibility value in the voxel. Copyright © 2017 Elsevier Inc. All rights reserved.
Computational model for fuel component supply into a combustion chamber of LRE
NASA Astrophysics Data System (ADS)
Teterev, A. V.; Mandrik, P. A.; Rudak, L. V.; Misyuchenko, N. I.
2017-12-01
A 2D-3D computational model for calculating a flow inside jet injectors that feed fuel components to a combustion chamber of a liquid rocket engine is described. The model is based on the gasdynamic calculation of compressible medium. Model software provides calculation of both one- and two-component injectors. Flow simulation in two-component injectors is realized using the scheme of separate supply of “gas-gas” or “gas-liquid” fuel components. An algorithm for converting a continuous liquid medium into a “cloud” of drops is described. Application areas of the developed model and the results of 2D simulation of injectors to obtain correction factors in the calculation formulas for fuel supply are discussed.
Trabelsi, H; Gantri, M; Sediki, E
2010-01-01
We present a numerical model for the study of a general, two-dimensional, time-dependent, laser radiation transfer problem in a biological tissue. The model is suitable for many situations, especially when the external laser source is pulsed or continuous. We used a control volume discrete-ordinate method associated with an implicit, three-level, second-order, time-differencing scheme. In medical imaging by laser techniques, this could be an optical tomography forward model. We considered a very thin rectangular biological tissue-like medium submitted to a visible or a near-infrared laser source. Different cases were treated numerically. The source was assumed to be monochromatic and collimated. We used either a continuous source or a short-pulsed source. The transmitted radiance was computed in detector points on the boundaries. Also, the distribution of the internal radiation intensity for different instants is presented. According to the source type, we examined either the steady-state response or the transient response of the medium. First, our model was validated by experimental results from the literature for a homogeneous biological tissue. The space and angular grid independency of our results is shown. Next, the proposed model was used to study changes in transmitted radiation for a homogeneous background medium in which were imbedded two heterogeneous objects. As a last investigation, we studied a multilayered biological tissue. We simulated near-infrared radiation in human skin, fat and muscle. Some results concerning the effects of fat thickness and positions of the detector source on the reflected radiation are presented.
Resurgence flows in porous media
NASA Astrophysics Data System (ADS)
Adler, P. M.; Mityushev, V.
2009-12-01
Porous media are generally described by the Darcy equation when the length scales are sufficiently large with respect to the pore scale. This approach is also applicable when the media are heterogeneous, i.e., when permeability varies with space which is the most common case. In addition, real media are very often fractured; for a long time, this complex physical problem has been schematized by the double porosity model devised by Barenblatt. More recently, these fractured media have been addressed with a detailed description of the fractures and of their hydrodynamic interaction with the surrounding porous medium. There is another situation which occurs frequently in underground studies. One well is connected to a distant well while it is not connected to closer wells. Such a situation can only be understood if there is a direct link between the two connected wells and if this link has little if any hydrodynamic interaction with the porous medium that it crosses. This link can be a fracture or more likely a set of fractures. This phenomenon is called resurgence because of the obvious analogy with rivers which suddenly disappear underground and go out at the ground surface again. Similar ideas have already been developed in other fields. In Physics, random networks limited to nearest neighbors have been recently extended to small world models where distant vertices can be related directly by a link. The electrical testing of porous media by electrical probes located at the walls (electrical tomography) has been used frequently in Geophysics since it is a non-invasive technique; this classical technique corresponds exactly to the situation addressed here from a different perspective. Media with resurgences consist of a double structure. The first one which is continuous is described by Darcy law as usual. The second one models the resurgences by capillaries with impermeable walls which relate distant points of the continuous medium. These two structures have already been studied separately in previous works (see (1) and the literature therein). Networks were addressed by graph theory and an extensive literature has been devoted to studies of porous media on the Darcy scale. For sake of simplicity, a simple physical presentation and elementary solutions are first given for one dimensional structures which display unexpected features such as an apparent back flow which goes against the main pressure gradient. Then, a general formulation is proposed which involves some non local aspects. When the sizes of the connection zones between the network and the continuous medium are assumed to be small with respect to any linear size in the continuous medium, analytical solutions are obtained in two or three dimensions for spatially periodic structures which are adequate to model spatially homogenous media. The equivalent permeability of the medium is determined. Some elementary examples are worked out in two and three dimensions. Paradoxical flow patterns are obtained with back flow even with local resurgences. Unsteady problems are presently studied. (1) Adler, P.M. Porous media. Geometry and transport. Butterworth-Heinemann, Stoneham, Ma, 1992.
Spiral waves are stable in discrete element models of two-dimensional homogeneous excitable media
NASA Technical Reports Server (NTRS)
Feldman, A. B.; Chernyak, Y. B.; Cohen, R. J.
1998-01-01
The spontaneous breakup of a single spiral wave of excitation into a turbulent wave pattern has been observed in both discrete element models and continuous reaction-diffusion models of spatially homogeneous 2D excitable media. These results have attracted considerable interest, since spiral breakup is thought to be an important mechanism of transition from the heart rhythm disturbance ventricular tachycardia to the fatal arrhythmia ventricular fibrillation. It is not known whether this process can occur in the absence of disease-induced spatial heterogeneity of the electrical properties of the ventricular tissue. Candidate mechanisms for spiral breakup in uniform 2D media have emerged, but the physical validity of the mechanisms and their applicability to myocardium require further scrutiny. In this letter, we examine the computer simulation results obtained in two discrete element models and show that the instability of each spiral is an artifact resulting from an unphysical dependence of wave speed on wave front curvature in the medium. We conclude that spiral breakup does not occur in these two models at the specified parameter values and that great care must be exercised in the representation of a continuous excitable medium via discrete elements.
Modeling spatial competition for light in plant populations with the porous medium equation.
Beyer, Robert; Etard, Octave; Cournède, Paul-Henry; Laurent-Gengoux, Pascal
2015-02-01
We consider a plant's local leaf area index as a spatially continuous variable, subject to particular reaction-diffusion dynamics of allocation, senescence and spatial propagation. The latter notably incorporates the plant's tendency to form new leaves in bright rather than shaded locations. Applying a generalized Beer-Lambert law allows to link existing foliage to production dynamics. The approach allows for inter-individual variability and competition for light while maintaining robustness-a key weakness of comparable existing models. The analysis of the single plant case leads to a significant simplification of the system's key equation when transforming it into the well studied porous medium equation. Confronting the theoretical model to experimental data of sugar beet populations, differing in configuration density, demonstrates its accuracy.
2008-03-01
it to strike targets with minimal collateral damage from a range of 15 kilometers. This stand -off type attack, made capable by the ATL, enables...levels they release a photon or quantum of light. This process continues until the light waves ’ strength builds and passes through the medium...mission level model. Lastly these models are classified by durability as standing models, or legacy models. Standing models are legacy models which have
Solvable continuous-time random walk model of the motion of tracer particles through porous media.
Fouxon, Itzhak; Holzner, Markus
2016-08-01
We consider the continuous-time random walk (CTRW) model of tracer motion in porous medium flows based on the experimentally determined distributions of pore velocity and pore size reported by Holzner et al. [M. Holzner et al., Phys. Rev. E 92, 013015 (2015)PLEEE81539-375510.1103/PhysRevE.92.013015]. The particle's passing through one channel is modeled as one step of the walk. The step (channel) length is random and the walker's velocity at consecutive steps of the walk is conserved with finite probability, mimicking that at the turning point there could be no abrupt change of velocity. We provide the Laplace transform of the characteristic function of the walker's position and reductions for different cases of independence of the CTRW's step duration τ, length l, and velocity v. We solve our model with independent l and v. The model incorporates different forms of the tail of the probability density of small velocities that vary with the model parameter α. Depending on that parameter, all types of anomalous diffusion can hold, from super- to subdiffusion. In a finite interval of α, ballistic behavior with logarithmic corrections holds, which was observed in a previously introduced CTRW model with independent l and τ. Universality of tracer diffusion in the porous medium is considered.
NASA Astrophysics Data System (ADS)
Pinfield, Valerie J.; Challis, Richard E.
2011-01-01
Industrial applications are increasingly turning to modern composite layered materials to satisfy strength requirements whilst reducing component weight. An important group of such materials are fibre/resin composites in which long fibres are laid down in layers in a resin matrix. Whilst delamination flaws, where layers separate from each other, are detectable using traditional ultrasonic techniques, the presence of porosity in any particular layer is harder to detect. The reflected signal from a layered material can already be modelled successfully by using the acoustic impedance of the layers and summing reflections from layer boundaries. However, it is not yet known how to incorporate porosity into such a model. The aim of the work reported here was to model the backscatter from randomly distributed spherical cavities within one layer, and to establish whether an effective medium, with a derived acoustic impedance, could reproduce the characteristics of that scattering. Since effective medium models are much more readily implemented in simulations of multi-layer structures than scattering per se, it was felt desirable to simplify the scattering response into an effective medium representation. A model was constructed in which spherical cavities were placed randomly in a solid continuous matrix and the system backscattering response was calculated. The scattering from the cavities was determined by using the Rayleigh partial-wave method, and taking the received signal at the transducer to be equivalent to the far field limit. It was concluded that even at relatively low porosity levels, the received signal was still "layer-like" and an effective medium model was a good approximation for the scattering behaviour.
Contini, D; Martelli, F; Zaccanti, G
1997-07-01
The diffusion approximation of the radiative transfer equation is a model used widely to describe photon migration in highly diffusing media and is an important matter in biological tissue optics. An analysis of the time-dependent diffusion equation together with its solutions for the slab geometry and for a semi-infinite diffusing medium are reported. These solutions, presented for both the time-dependent and the continuous wave source, account for the refractive index mismatch between the turbid medium and the surrounding medium. The results have been compared with those obtained when different boundary conditions were assumed. The comparison has shown that the effect of the refractive index mismatch cannot be disregarded. This effect is particularly important for the transmittance. The discussion of results also provides an analysis of the role of the absorption coefficient in the expression of the diffusion coefficient.
Unsteady resurgence flows in karstic media
NASA Astrophysics Data System (ADS)
Adler, Pierre; Drygas, Piotr; Mityushev, Vladimir
2017-04-01
Geological porous media are heterogeneous materials which in addition contain discontinuities such as fractures and conduits which facilitate fluid transport. Fractures are relatively plane objects which strongly interact with the surrounding porous medium because of their large contact surface. A different situation occurs in karsts where distant regions of the medium can be connected by relatively thin conduits which have little if any hydrodynamic interaction with the porous medium that they cross, except at their ends. This phenomenon is called resurgence because of the obvious analogy with rivers which suddenly disappear underground and go out at the ground surface again. Similar ideas have already been developed in other fields, such as Physics with random networks and Geophysics with electrical tomography. Media with resurgences are addressed in the following way. They consist of a double structure. The first one is the continuous porous medium described by the classical Darcy law. The second one is composed by the resurgences modeled by conduits with impermeable walls which relate distant points of the continuous medium. When non steady regimes are considered, it appears necessary to confer a capacity to these conduits in addition to their hydrodynamic resistance. Therefore, the conduits are able to store some quantity of fluid. In addition, two kinds of resurgence are addressed, namely punctual and extended; in the second case, the dimensions of the ends of the conduit are not negligible compared to the characteristic length scales of the embedding porous medium. Capacities and extended resurgences are new features which were not taken into account in our previous studies. The punctual resurgence is described by a spatial network with a finite number of conduits embedded in a continuous porous medium. The flow in the network is described by the classical Kirchhoff law (including capacities). The equations for flow in the network and in the continuous medium are related by the unknown flow rates jn(t) (n = 1,2, …, N) depending on time at the nth vertices of the network. Application of the conservation law at the vertices yields a system of integral equations for jn(t). The structure of this system depends on the structure of the network. The Laplace transformation yields a linear algebraic system. When this system is solved, the flow rates jn(t) can be constructed by the inverse Laplace transform. Extended resurgences are modeled as extensions of punctual resurgences when instead of two vertices at each edge two domains are connected point by point by an uncountable number of edges. Another type of extended resurgence is described by a non local integral operator. A numerical finite difference method is also applied to solve the equations. Examples of network with two and more vertices are detailed. The mathematical aspects will be kept to a minimum during the presentation and emphasis will be put on the physics and on several illustrative examples.
Continuous Modeling of Calcium Transport Through Biological Membranes
NASA Astrophysics Data System (ADS)
Jasielec, J. J.; Filipek, R.; Szyszkiewicz, K.; Sokalski, T.; Lewenstam, A.
2016-08-01
In this work an approach to the modeling of the biological membranes where a membrane is treated as a continuous medium is presented. The Nernst-Planck-Poisson model including Poisson equation for electric potential is used to describe transport of ions in the mitochondrial membrane—the interface which joins mitochondrial matrix with cellular cytosis. The transport of calcium ions is considered. Concentration of calcium inside the mitochondrion is not known accurately because different analytical methods give dramatically different results. We explain mathematically these differences assuming the complexing reaction inside mitochondrion and the existence of the calcium set-point (concentration of calcium in cytosis below which calcium stops entering the mitochondrion).
0-6766 : a generic mode choice model applicable for small and medium-sized MPOs : [project summary].
DOT National Transportation Integrated Search
2013-12-01
Due to the projected population growth increase : in Texas and the continued increase in total : motorized vehicle miles traveled in Texas, the : Texas Department of Transportation (TxDOT) is : interested in examining multimodal solutions to : aid in...
Gantri, M.
2014-01-01
The present paper gives a new computational framework within which radiative transfer in a varying refractive index biological tissue can be studied. In our previous works, Legendre transform was used as an innovative view to handle the angular derivative terms in the case of uniform refractive index spherical medium. In biomedical optics, our analysis can be considered as a forward problem solution in a diffuse optical tomography imaging scheme. We consider a rectangular biological tissue-like domain with spatially varying refractive index submitted to a near infrared continuous light source. Interaction of radiation with the biological material into the medium is handled by a radiative transfer model. In the studied situation, the model displays two angular redistribution terms that are treated with Legendre integral transform. The model is used to study a possible detection of abnormalities in a general biological tissue. The effect of the embedded nonhomogeneous objects on the transmitted signal is studied. Particularly, detection of targets of localized heterogeneous inclusions within the tissue is discussed. Results show that models accounting for variation of refractive index can yield useful predictions about the target and the location of abnormal inclusions within the tissue. PMID:25013454
A double medium model for diffusion in fluid-bearing rock
NASA Astrophysics Data System (ADS)
Wang, H. F.
1993-09-01
The concept of a double porosity medium to model fluid flow in fractured rock has been applied to model diffusion in rock containing a small amount of a continuous fluid phase that surrounds small volume elements of the solid matrix. The model quantifies the relative role of diffusion in the fluid and solid phases of the rock. The fluid is the fast diffusion path, but the solid contains the volumetrically significant amount of the diffusing species. The double medium model consists of two coupled differential equations. One equation is the diffusion equation for the fluid concentration; it contains a source term for change in the average concentration of the diffusing species in the solid matrix. The second equation represents the assumption that the change in average concentration in a solid element is proportional to the difference between the average concentration in the solid and the concentration in the fluid times the solid-fluid partition coefficient. The double medium model is shown to apply to laboratory data on iron diffusion in fluid-bearing dunite and to measured oxygen isotope ratios at marble-metagranite contacts. In both examples, concentration profiles are calculated for diffusion taking place at constant temperature, where a boundary value changes suddenly and is subsequently held constant. Knowledge of solid diffusivities can set a lower bound to the length of time over which diffusion occurs, but only the product of effective fluid diffusivity and time is constrained for times longer than the characteristic solid diffusion time. The double medium results approach a local, grain-scale equilibrium model for times that are large relative to the time constant for solid diffusion.
Coupled granular/continuous medium for thermally stable perpendicular magnetic recording
NASA Astrophysics Data System (ADS)
Sonobe, Y.; Weller, D.; Ikeda, Y.; Takano, K.; Schabes, M. E.; Zeltzer, G.; Do, H.; Yen, B. K.; Best, M. E.
2001-10-01
We studied coupled granular/continuous (CGC) perpendicular media consisting of a continuous multilayer structure and a granular layer. The addition of Co/Pt multilayers decreased the nucleation field from 200 to -1800 Oe and increased the squareness from 0.9 to 1.0. The moment decay at room temperature was significantly reduced from -4.8% to -0.05% per decade. At elevated temperatures, strong exchange coupling between a granular layer and a continuous layer is needed for thermal stability. The exchange-coupled continuous layer reduces thermal demagnetization as it effectively increases the grain size, tightens the grain distribution, and prevents the reversal of individual grains. Magnetic Force Microscope image showed a larger magnetic cluster size for the CGC structure. Compared to the CoCr 18Pt 12 medium, the CGC medium had 2.3 dB higher output. However, the noise for the CGC medium increased with the recording density, while the noise for the CoCr 18Pt 12 medium remained constant from 4 to 15 kfc/mm. Further optimization and noise reduction are still required for future high density recording.
Continuous-time random-walk model for anomalous diffusion in expanding media
NASA Astrophysics Data System (ADS)
Le Vot, F.; Abad, E.; Yuste, S. B.
2017-09-01
Expanding media are typical in many different fields, e.g., in biology and cosmology. In general, a medium expansion (contraction) brings about dramatic changes in the behavior of diffusive transport properties such as the set of positional moments and the Green's function. Here, we focus on the characterization of such effects when the diffusion process is described by the continuous-time random-walk (CTRW) model. As is well known, when the medium is static this model yields anomalous diffusion for a proper choice of the probability density function (pdf) for the jump length and the waiting time, but the behavior may change drastically if a medium expansion is superimposed on the intrinsic random motion of the diffusing particle. For the case where the jump length and the waiting time pdfs are long-tailed, we derive a general bifractional diffusion equation which reduces to a normal diffusion equation in the appropriate limit. We then study some particular cases of interest, including Lévy flights and subdiffusive CTRWs. In the former case, we find an analytical exact solution for the Green's function (propagator). When the expansion is sufficiently fast, the contribution of the diffusive transport becomes irrelevant at long times and the propagator tends to a stationary profile in the comoving reference frame. In contrast, for a contracting medium a competition between the spreading effect of diffusion and the concentrating effect of contraction arises. In the specific case of a subdiffusive CTRW in an exponentially contracting medium, the latter effect prevails for sufficiently long times, and all the particles are eventually localized at a single point in physical space. This "big crunch" effect, totally absent in the case of normal diffusion, stems from inefficient particle spreading due to subdiffusion. We also derive a hierarchy of differential equations for the moments of the transport process described by the subdiffusive CTRW model in an expanding medium. From this hierarchy, the full time evolution of the second-order moment is obtained for some specific types of expansion. In the case of an exponential expansion, exact recurrence relations for the Laplace-transformed moments are obtained, whence the long-time behavior of moments of arbitrary order is subsequently inferred. Our analytical and numerical results for both Lévy flights and subdiffusive CTRWs confirm the intuitive expectation that the medium expansion hinders the mixing of diffusive particles occupying separate regions. In the case of Lévy flights, we quantify this effect by means of the so-called "Lévy horizon."
Continuous-time random-walk model for anomalous diffusion in expanding media.
Le Vot, F; Abad, E; Yuste, S B
2017-09-01
Expanding media are typical in many different fields, e.g., in biology and cosmology. In general, a medium expansion (contraction) brings about dramatic changes in the behavior of diffusive transport properties such as the set of positional moments and the Green's function. Here, we focus on the characterization of such effects when the diffusion process is described by the continuous-time random-walk (CTRW) model. As is well known, when the medium is static this model yields anomalous diffusion for a proper choice of the probability density function (pdf) for the jump length and the waiting time, but the behavior may change drastically if a medium expansion is superimposed on the intrinsic random motion of the diffusing particle. For the case where the jump length and the waiting time pdfs are long-tailed, we derive a general bifractional diffusion equation which reduces to a normal diffusion equation in the appropriate limit. We then study some particular cases of interest, including Lévy flights and subdiffusive CTRWs. In the former case, we find an analytical exact solution for the Green's function (propagator). When the expansion is sufficiently fast, the contribution of the diffusive transport becomes irrelevant at long times and the propagator tends to a stationary profile in the comoving reference frame. In contrast, for a contracting medium a competition between the spreading effect of diffusion and the concentrating effect of contraction arises. In the specific case of a subdiffusive CTRW in an exponentially contracting medium, the latter effect prevails for sufficiently long times, and all the particles are eventually localized at a single point in physical space. This "big crunch" effect, totally absent in the case of normal diffusion, stems from inefficient particle spreading due to subdiffusion. We also derive a hierarchy of differential equations for the moments of the transport process described by the subdiffusive CTRW model in an expanding medium. From this hierarchy, the full time evolution of the second-order moment is obtained for some specific types of expansion. In the case of an exponential expansion, exact recurrence relations for the Laplace-transformed moments are obtained, whence the long-time behavior of moments of arbitrary order is subsequently inferred. Our analytical and numerical results for both Lévy flights and subdiffusive CTRWs confirm the intuitive expectation that the medium expansion hinders the mixing of diffusive particles occupying separate regions. In the case of Lévy flights, we quantify this effect by means of the so-called "Lévy horizon."
40 CFR 86.246-94 - Intermediate temperature testing.
Code of Federal Regulations, 2010 CFR
2010-07-01
... PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Emission Regulations for 1994 and Later Model Year Gasoline-Fueled New Light-Duty Vehicles, New Light-Duty Trucks and New Medium-Duty Passenger Vehicles; Cold Temperature Test Procedures § 86.246-94 Intermediate...
40 CFR 86.213-04 - Fuel specifications.
Code of Federal Regulations, 2010 CFR
2010-07-01
... (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Emission Regulations for 1994 and Later Model Year Gasoline-Fueled New Light-Duty Vehicles, New Light-Duty Trucks and New Medium-Duty Passenger Vehicles; Cold Temperature Test Procedures § 86.213-04 Fuel specifications. Gasoline...
40 CFR 86.213-94 - Fuel specifications.
Code of Federal Regulations, 2010 CFR
2010-07-01
... (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Emission Regulations for 1994 and Later Model Year Gasoline-Fueled New Light-Duty Vehicles, New Light-Duty Trucks and New Medium-Duty Passenger Vehicles; Cold Temperature Test Procedures § 86.213-94 Fuel specifications. Gasoline...
40 CFR 86.218-94 - Dynamometer calibration.
Code of Federal Regulations, 2010 CFR
2010-07-01
... (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Emission Regulations for 1994 and Later Model Year Gasoline-Fueled New Light-Duty Vehicles, New Light-Duty Trucks and New Medium-Duty Passenger Vehicles; Cold Temperature Test Procedures § 86.218-94 Dynamometer calibration. The...
Numerical simulation of failure behavior of granular debris flows based on flume model tests.
Zhou, Jian; Li, Ye-xun; Jia, Min-cai; Li, Cui-na
2013-01-01
In this study, the failure behaviors of debris flows were studied by flume model tests with artificial rainfall and numerical simulations (PFC(3D)). Model tests revealed that grain sizes distribution had profound effects on failure mode, and the failure in slope of medium sand started with cracks at crest and took the form of retrogressive toe sliding failure. With the increase of fine particles in soil, the failure mode of the slopes changed to fluidized flow. The discrete element method PFC(3D) can overcome the hypothesis of the traditional continuous medium mechanic and consider the simple characteristics of particle. Thus, a numerical simulations model considering liquid-solid coupled method has been developed to simulate the debris flow. Comparing the experimental results, the numerical simulation result indicated that the failure mode of the failure of medium sand slope was retrogressive toe sliding, and the failure of fine sand slope was fluidized sliding. The simulation result is consistent with the model test and theoretical analysis, and grain sizes distribution caused different failure behavior of granular debris flows. This research should be a guide to explore the theory of debris flow and to improve the prevention and reduction of debris flow.
Internal shocks in microquasar jets with a continuous Lorentz factor modulation
NASA Astrophysics Data System (ADS)
Pjanka, Patryk; Stone, James M.
2018-06-01
We perform relativistic hydrodynamic simulations of internal shocks formed in microquasar jets by continuous variation of the bulk Lorentz factor, in order to investigate the internal shock model. We consider one-, two-, and flicker noise 20-mode variability. We observe emergence of a forward-reverse shock structure for each peak of the Lorentz factor modulation. The high pressure in the shocked layer launches powerful outflows perpendicular to the jet beam into the ambient medium. These outflows dominate the details of the jet's kinetic energy thermalization. They are responsible for mixing between the jet and the surrounding medium and generate powerful shocks in the latter. These results do not concur with the popular picture of well-defined internal shells depositing energy as they collide within the confines of the jet, in fact collisions between internal shells themselves are quite rare in our continuous formulation of the problem. For each of our simulations, we calculate the internal energy deposited in the system, the `efficiency' of this deposition (defined as the ratio of internal to total flow energy), and the maximum temperature reached in order to make connections to emission mechanisms. We probe the dependence of these diagnostics on the Lorentz factor variation amplitudes, modulation frequencies, as well as the initial density ratio between the jet and the ambient medium.
Code of Federal Regulations, 2012 CFR
2012-07-01
... AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) Pt. 86, App. XIII Appendix XIII to Part 86—State...-Line Test Procedures for 1983 Through 1997 Model-Year Passenger Cars, Light-Duty Trucks and Medium-Duty...: California Assembly-Line Test Procedures for 1998 and Subsequent Model-Year Passenger Cars, Light-Duty Trucks...
Code of Federal Regulations, 2013 CFR
2013-07-01
... AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) Pt. 86, App. XIII Appendix XIII to Part 86—State...-Line Test Procedures for 1983 Through 1997 Model-Year Passenger Cars, Light-Duty Trucks and Medium-Duty...: California Assembly-Line Test Procedures for 1998 and Subsequent Model-Year Passenger Cars, Light-Duty Trucks...
Code of Federal Regulations, 2011 CFR
2011-07-01
... AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) Pt. 86, App. XIII Appendix XIII to Part 86—State...-Line Test Procedures for 1983 Through 1997 Model-Year Passenger Cars, Light-Duty Trucks and Medium-Duty...: California Assembly-Line Test Procedures for 1998 and Subsequent Model-Year Passenger Cars, Light-Duty Trucks...
Quesnell, Rebecca R; Erickson, Jamie; Schultz, Bruce D
2007-01-01
In vitro mammary epithelial cell models typically fail to form a consistently tight barrier that can effectively separate blood from milk. Our hypothesis was that mammary epithelial barrier function would be affected by changes in luminal ion concentration and inflammatory cytokines. Bovine mammary epithelial (BME-UV cell line) cells were grown to confluence on permeable supports with a standard basolateral medium and either high-electrolyte (H-elec) or low-electrolyte (L-elec) apical medium for 14 days. Apical media were changed to/from H-elec medium at predetermined times prior to assay. Transepithelial electrical resistance (R(te)) was highest in monolayers continuously exposed to apical L-elec. A time-dependent decline in R(te) began within 24 h of H-elec medium exposure. Change from H-elec medium to L-elec medium time-dependently increased R(te). Permeation by FITC-conjugated dextran was elevated across monolayers exposed to H-elec, suggesting compromise of a paracellular pathway. Significant alteration in occludin distribution was evident, concomitant with the changes in R(te), although total occludin was unchanged. Neither substitution of Na(+) with N-methyl-d-glucosamine (NMDG(+)) nor pharmacological inhibition of transcellular Na(+) transport pathways abrogated the effects of apical H-elec medium on R(te). Tumor necrosis factor alpha, but not interleukin-1beta nor interleukin-6, in the apical compartment caused a significant decrease in R(te) within 8 h. These results indicate that mammary epithelium is a dynamic barrier whose cell-cell contacts are acutely modulated by cytokines and luminal electrolyte environment. Results not only demonstrate that BME-UV cells are a model system representative of mammary epithelium but also provide critical information that can be applied to other mammary model systems to improve their physiological relevance.
40 CFR 86.231-94 - Vehicle preparation.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 19 2012-07-01 2012-07-01 false Vehicle preparation. 86.231-94 Section... (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Emission Regulations for 1994 and Later Model Year Gasoline-Fueled New Light-Duty Vehicles, New Light-Duty Trucks and New Medium...
40 CFR 86.231-94 - Vehicle preparation.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 19 2013-07-01 2013-07-01 false Vehicle preparation. 86.231-94 Section... (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Emission Regulations for 1994 and Later Model Year Gasoline-Fueled New Light-Duty Vehicles, New Light-Duty Trucks and New Medium...
40 CFR 86.231-94 - Vehicle preparation.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 18 2011-07-01 2011-07-01 false Vehicle preparation. 86.231-94 Section... (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Emission Regulations for 1994 and Later Model Year Gasoline-Fueled New Light-Duty Vehicles, New Light-Duty Trucks and New Medium...
40 CFR 86.206-11 - Equipment required; overview.
Code of Federal Regulations, 2010 CFR
2010-07-01
... PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Emission Regulations for 1994 and Later Model Year Gasoline-Fueled New Light-Duty Vehicles, New Light-Duty Trucks and New Medium-Duty Passenger Vehicles; Cold Temperature Test Procedures § 86.206-11 Equipment required...
40 CFR 86.223-94 - Oxides of nitrogen analyzer calibration.
Code of Federal Regulations, 2010 CFR
2010-07-01
...) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Emission Regulations for 1994 and Later Model Year Gasoline-Fueled New Light-Duty Vehicles, New Light-Duty Trucks and New Medium-Duty Passenger Vehicles; Cold Temperature Test Procedures § 86.223-94 Oxides of...
40 CFR 86.204-94 - Section numbering; construction.
Code of Federal Regulations, 2010 CFR
2010-07-01
... PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Emission Regulations for 1994 and Later Model Year Gasoline-Fueled New Light-Duty Vehicles, New Light-Duty Trucks and New Medium-Duty Passenger Vehicles; Cold Temperature Test Procedures § 86.204-94 Section numbering...
40 CFR 86.222-94 - Carbon monoxide analyzer calibration.
Code of Federal Regulations, 2010 CFR
2010-07-01
... PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Emission Regulations for 1994 and Later Model Year Gasoline-Fueled New Light-Duty Vehicles, New Light-Duty Trucks and New Medium-Duty Passenger Vehicles; Cold Temperature Test Procedures § 86.222-94 Carbon monoxide...
40 CFR 86.224-94 - Carbon dioxide analyzer calibration.
Code of Federal Regulations, 2010 CFR
2010-07-01
... PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Emission Regulations for 1994 and Later Model Year Gasoline-Fueled New Light-Duty Vehicles, New Light-Duty Trucks and New Medium-Duty Passenger Vehicles; Cold Temperature Test Procedures § 86.224-94 Carbon dioxide...
40 CFR 86.215-94 - EPA urban dynamometer driving schedule.
Code of Federal Regulations, 2010 CFR
2010-07-01
... PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Emission Regulations for 1994 and Later Model Year Gasoline-Fueled New Light-Duty Vehicles, New Light-Duty Trucks and New Medium-Duty Passenger Vehicles; Cold Temperature Test Procedures § 86.215-94 EPA urban dynamometer...
40 CFR 86.205-11 - Introduction; structure of this subpart.
Code of Federal Regulations, 2010 CFR
2010-07-01
...) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Emission Regulations for 1994 and Later Model Year Gasoline-Fueled New Light-Duty Vehicles, New Light-Duty Trucks and New Medium-Duty Passenger Vehicles; Cold Temperature Test Procedures § 86.205-11 Introduction...
40 CFR 86.211-94 - Exhaust gas analytical system.
Code of Federal Regulations, 2010 CFR
2010-07-01
... PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Emission Regulations for 1994 and Later Model Year Gasoline-Fueled New Light-Duty Vehicles, New Light-Duty Trucks and New Medium-Duty Passenger Vehicles; Cold Temperature Test Procedures § 86.211-94 Exhaust gas...
40 CFR 86.237-94 - Dynamometer test run, gaseous emissions.
Code of Federal Regulations, 2010 CFR
2010-07-01
...) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Emission Regulations for 1994 and Later Model Year Gasoline-Fueled New Light-Duty Vehicles, New Light-Duty Trucks and New Medium-Duty Passenger Vehicles; Cold Temperature Test Procedures § 86.237-94 Dynamometer...
40 CFR 86.226-94 - Calibration of other equipment.
Code of Federal Regulations, 2010 CFR
2010-07-01
... PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Emission Regulations for 1994 and Later Model Year Gasoline-Fueled New Light-Duty Vehicles, New Light-Duty Trucks and New Medium-Duty Passenger Vehicles; Cold Temperature Test Procedures § 86.226-94 Calibration of other...
40 CFR 86.227-94 - Test procedures; overview.
Code of Federal Regulations, 2010 CFR
2010-07-01
... (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Emission Regulations for 1994 and Later Model Year Gasoline-Fueled New Light-Duty Vehicles, New Light-Duty Trucks and New Medium-Duty Passenger Vehicles; Cold Temperature Test Procedures § 86.227-94 Test procedures; overview. The...
40 CFR 86.216-94 - Calibrations, frequency and overview.
Code of Federal Regulations, 2010 CFR
2010-07-01
... PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Emission Regulations for 1994 and Later Model Year Gasoline-Fueled New Light-Duty Vehicles, New Light-Duty Trucks and New Medium-Duty Passenger Vehicles; Cold Temperature Test Procedures § 86.216-94 Calibrations...
40 CFR 86.231-94 - Vehicle preparation.
Code of Federal Regulations, 2010 CFR
2010-07-01
... (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Emission Regulations for 1994 and Later Model Year Gasoline-Fueled New Light-Duty Vehicles, New Light-Duty Trucks and New Medium... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Vehicle preparation. 86.231-94 Section...
40 CFR 86.244-94 - Calculations; exhaust emissions.
Code of Federal Regulations, 2010 CFR
2010-07-01
... PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Emission Regulations for 1994 and Later Model Year Gasoline-Fueled New Light-Duty Vehicles, New Light-Duty Trucks and New Medium-Duty Passenger Vehicles; Cold Temperature Test Procedures § 86.244-94 Calculations; exhaust...
40 CFR 86.240-94 - Exhaust sample analysis.
Code of Federal Regulations, 2010 CFR
2010-07-01
... (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Emission Regulations for 1994 and Later Model Year Gasoline-Fueled New Light-Duty Vehicles, New Light-Duty Trucks and New Medium-Duty Passenger Vehicles; Cold Temperature Test Procedures § 86.240-94 Exhaust sample analysis. The...
40 CFR 86.205-94 - Introduction; structure of this subpart.
Code of Federal Regulations, 2010 CFR
2010-07-01
...) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Emission Regulations for 1994 and Later Model Year Gasoline-Fueled New Light-Duty Vehicles, New Light-Duty Trucks and New Medium-Duty Passenger Vehicles; Cold Temperature Test Procedures § 86.205-94 Introduction...
40 CFR 86.201-94 - General applicability.
Code of Federal Regulations, 2010 CFR
2010-07-01
... (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Emission Regulations for 1994 and Later Model Year Gasoline-Fueled New Light-Duty Vehicles, New Light-Duty Trucks and New Medium-Duty Passenger Vehicles; Cold Temperature Test Procedures § 86.201-94 General applicability. (a) This...
40 CFR 86.201-11 - General applicability.
Code of Federal Regulations, 2010 CFR
2010-07-01
... new gasoline-fueled and diesel-fueled light-duty vehicles and light-duty trucks. (b) All of the... (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Emission Regulations for 1994 and Later Model Year Gasoline-Fueled New Light-Duty Vehicles, New Light-Duty Trucks and New Medium...
NASA Astrophysics Data System (ADS)
Tseng, Snow H.; Chang, Shih-Hui
2018-04-01
Here we present a numerical simulation to analyze the effect of scattering on focusing light into closely-spaced twin peaks. The pseudospectral time-domain (PSTD) is implemented to model continuous-wave (CW) light propagation through a scattering medium. Simulations show that CW light can propagate through a scattering medium and focus into closely-spaced twin peaks. CW light of various wavelengths focusing into twin peaks with sub-diffraction spacing is simulated. In advance, light propagation through scattering media of various number densities is simulated to decipher the dependence of CW light focusing phenomenon on the scattering medium. The reported simulations demonstrate the feasibility of focusing CW light into twin peaks with sub-diffraction dimensions. More importantly, based upon numerical solutions of Maxwell’s equations, research findings show that the sub-diffraction focusing phenomenon can be achieved with scarce or densely-packed scattering media.
Xu, Min
2017-01-01
Biological tissue has a complex structure and exhibits rich spectroscopic behavior. There has been no tissue model until now that has been able to account for the observed spectroscopy of tissue light scattering and its anisotropy. Here we present, for the first time, a plum pudding random medium (PPRM) model for biological tissue which succinctly describes tissue as a superposition of distinctive scattering structures (plum) embedded inside a fractal continuous medium of background refractive index fluctuation (pudding). PPRM faithfully reproduces the wavelength dependence of tissue light scattering and attributes the “anomalous” trend in the anisotropy to the plum and the powerlaw dependence of the reduced scattering coefficient to the fractal scattering pudding. Most importantly, PPRM opens up a novel venue of quantifying the tissue architecture and microscopic structures on average from macroscopic probing of the bulk with scattered light alone without tissue excision. We demonstrate this potential by visualizing the fine microscopic structural alterations in breast tissue (adipose, glandular, fibrocystic, fibroadenoma, and ductal carcinoma) deduced from noncontact spectroscopic measurement. PMID:28663913
Possible limitations of the classical model of orientational optical nonlinearity in nematics
NASA Astrophysics Data System (ADS)
Sierakowski, Marek; Teterycz, Małgorzata
2008-09-01
Orientational nonlinearity is the major mechanism of nonlinear optical phenomena observed in liquidcrystalline phase while it does not appear to such extent in any other materials. It is caused by distortion of initial molecular arrangement of an anisotropic medium induced by optical field. Deformation of the anisotropic structure means spatial changes of refractive index of the medium. This effect has been studied in earnest since the 1980s as its application became more apparent. In this paper, some results of experimental examination of molecular reorientation in nematics by optical field are presented, which are not explained in frame of existing Oseen-Frank model and Erickson-Leslie continuous theory. Possible reasons of this discordance are considered and a way of explanation is suggested.
Simulated dynamic response of a multi-stage compressor with variable molecular weight flow medium
NASA Technical Reports Server (NTRS)
Babcock, Dale A.
1995-01-01
A mathematical model of a multi-stage compressor with variable molecular weight flow medium is derived. The modeled system consists of a five stage, six cylinder, double acting, piston type compressor. Each stage is followed by a water cooled heat exchanger which serves to transfer the heat of compression from the gas. A high molecular weight gas (CFC-12) mixed with air in varying proportions is introduced to the suction of the compressor. Condensation of the heavy gas may occur in the upper stage heat exchangers. The state equations for the system are integrated using the Advanced Continuous Simulation Language (ACSL) for determining the system's dynamic and steady state characteristics under varying operating conditions.
Esfahanian, Mehri; Shokuhi Rad, Ali; Khoshhal, Saeed; Najafpour, Ghasem; Asghari, Behnam
2016-07-01
In this paper, genetic algorithm was used to investigate mathematical modeling of ethanol fermentation in a continuous conventional bioreactor (CCBR) and a continuous membrane bioreactor (CMBR) by ethanol permselective polydimethylsiloxane (PDMS) membrane. A lab scale CMBR with medium glucose concentration of 100gL(-1) and Saccharomyces cerevisiae microorganism was designed and fabricated. At dilution rate of 0.14h(-1), maximum specific cell growth rate and productivity of 0.27h(-1) and 6.49gL(-1)h(-1) were respectively found in CMBR. However, at very high dilution rate, the performance of CMBR was quite similar to conventional fermentation on account of insufficient incubation time. In both systems, genetic algorithm modeling of cell growth, ethanol production and glucose concentration were conducted based on Monod and Moser kinetic models during each retention time at unsteady condition. The results showed that Moser kinetic model was more satisfactory and desirable than Monod model. Copyright © 2016 Elsevier Ltd. All rights reserved.
Shock probes in a one-dimensional Katz-Lebowitz-Spohn model
NASA Astrophysics Data System (ADS)
Chatterjee, Sakuntala; Barma, Mustansir
2008-06-01
We consider shock probes in a one-dimensional driven diffusive medium with nearest-neighbor Ising interaction (KLS model). Earlier studies based on an approximate mapping of the present system to an effective zero-range process concluded that the exponents characterizing the decays of several static and dynamical correlation functions of the probes depend continuously on the strength of the Ising interaction. On the contrary, our numerical simulations indicate that over a substantial range of the interaction strength, these exponents remain constant and their values are the same as in the case of no interaction (when the medium executes an ASEP). We demonstrate this by numerical studies of several dynamical correlation functions for two probes and also for a macroscopic number of probes. Our results are consistent with the expectation that the short-ranged correlations induced by the Ising interaction should not affect the large time and large distance properties of the system, implying that scaling forms remain the same as in the medium with no interactions present.
Tahlawi, Asma; Li, Kang
2018-01-01
Tissue vasculature efficiently distributes nutrients, removes metabolites, and possesses selective cellular permeability for tissue growth and function. Engineered tissue models have been limited by small volumes, low cell densities, and invasive cell extraction due to ineffective nutrient diffusion and cell-biomaterial attachment. Herein, we describe the fabrication and testing of ceramic hollow fibre membranes (HFs) able to separate red blood cells (RBCs) and mononuclear cells (MNCs) and be incorporated into 3D tissue models to improve nutrient and metabolite exchange. These HFs filtered RBCs from human umbilical cord blood (CB) suspensions of 20% RBCs to produce 90% RBC filtrate suspensions. When incorporated within 5 mL of 3D collagen-coated polyurethane porous scaffold, medium-perfused HFs maintained nontoxic glucose, lactate, pH levels, and higher cell densities over 21 days of culture in comparison to nonperfused 0.125 mL scaffolds. This hollow fibre bioreactor (HFBR) required a smaller per-cell medium requirement and operated at cell densities > 10-fold higher than current 2D methods whilst allowing for continuous cell harvest through HFs. Herein, we propose HFs to improve 3D cell culture nutrient and metabolite diffusion, increase culture volume and cell density, and continuously harvest products for translational cell therapy biomanufacturing protocols. PMID:29760729
40 CFR 86.238-94-86.239-94 - [Reserved
Code of Federal Regulations, 2010 CFR
2010-07-01
... PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Emission Regulations for 1994 and Later Model Year Gasoline-Fueled New Light-Duty Vehicles, New Light-Duty Trucks and New Medium-Duty Passenger Vehicles; Cold Temperature Test Procedures §§ 86.238-94—86.239-94 [Reserved] ...
40 CFR 86.233-94-86.234-94 - [Reserved
Code of Federal Regulations, 2010 CFR
2010-07-01
... PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Emission Regulations for 1994 and Later Model Year Gasoline-Fueled New Light-Duty Vehicles, New Light-Duty Trucks and New Medium-Duty Passenger Vehicles; Cold Temperature Test Procedures §§ 86.233-94—86.234-94 [Reserved] ...
Heterogeneous continuous-time random walks
NASA Astrophysics Data System (ADS)
Grebenkov, Denis S.; Tupikina, Liubov
2018-01-01
We introduce a heterogeneous continuous-time random walk (HCTRW) model as a versatile analytical formalism for studying and modeling diffusion processes in heterogeneous structures, such as porous or disordered media, multiscale or crowded environments, weighted graphs or networks. We derive the exact form of the propagator and investigate the effects of spatiotemporal heterogeneities onto the diffusive dynamics via the spectral properties of the generalized transition matrix. In particular, we show how the distribution of first-passage times changes due to local and global heterogeneities of the medium. The HCTRW formalism offers a unified mathematical language to address various diffusion-reaction problems, with numerous applications in material sciences, physics, chemistry, biology, and social sciences.
Resurgence flows in porous media
NASA Astrophysics Data System (ADS)
Adler, Pierre; Mityushev, Vladimir
2010-05-01
Porous media are generally described by the Darcy equation when the length scales are sufficiently large with respect to the pore scale. This approach is also applicable when the media are heterogeneous, i.e., when permeability varies with space which is the most common case. In addition, real media are very often fractured; for a long time, this complex physical problem has been schematized by the double porosity model devised by Barenblatt. More recently, these fractured media have been addressed with a detailed description of the fractures and of their hydrodynamic interaction with the surrounding porous medium. This approach will be briefly summarized and the main recent progress surveyed (2). There is another situation which occurs frequently in underground studies. One well is connected to a distant well while it is not connected to closer wells. Such a situation can only be understood if there is a direct link between the two connected wells and if this link has little if any hydrodynamic interaction with the porous medium that it crosses. This link can be a fracture or more likely a set of fractures. This phenomenon is called resurgence because of the obvious analogy with rivers which suddenly disappear underground and go out at the ground surface again. Similar ideas have already been developed in other fields. In Physics, random networks limited to nearest neighbors have been recently extended to small world models where distant vertices can be related directly by a link. The electrical testing of porous media by electrical probes located at the walls (electrical tomography) has been used frequently in Geophysics since it is a non-invasive technique; this classical technique corresponds exactly to the situation addressed here from a different perspective. Media with resurgences consist of a double structure (3). The first one which is continuous is described by Darcy law as usual. The second one models the resurgences by capillaries with impermeable walls which relate distant points of the continuous medium. These two structures have already been studied separately in previous works (see (1) and the literature therein). Networks were addressed by graph theory and an extensive literature has been devoted to studies of porous media on the Darcy scale. For sake of simplicity, a simple physical presentation and elementary solutions are first given for one dimensional structures which display unexpected features such as an apparent back flow which goes against the main pressure gradient. Then, a general formulation is proposed which involves some non local aspects. When the sizes of the connection zones between the network and the continuous medium are assumed to be small with respect to any linear size in the continuous medium, analytical solutions are obtained in two or three dimensions for spatially periodic structures which are adequate to model spatially homogenous media. The equivalent permeability of the medium is determined. Some elementary examples are worked out in two and three dimensions. Paradoxical flow patterns are obtained with back flow even with local resurgences (3). Unsteady problems are presently studied. (1) P.M. Adler, Fractures and fracture networks, Kluwer, 1999. (2) P.M. Adler, Porous media. Geometry and transport. Butterworth-Heinemann, Stoneham, Ma, 1992. (3) P. M. Adler, V. Mityushev, Resurgence flows in porous media, Phys. Rev. E 79, 026310, 2009.
NASA Astrophysics Data System (ADS)
Morocho-Jácome, Ana Lucía; Mascioli, Guilherme Favaro; Sato, Sunao; Carvalho, João Carlos Monteiro de
2015-03-01
Reusing culture medium of Arthrospira platensis is quite important in large scale production because its inappropriate disposal could exacerbate problems of environmental pollution. This study evaluates the suitability of using different quantities of exhausted Schlösser medium after continuous treatment using granular activated carbon (GAC) with a residence time (T) of 2 h for A. platensis growth in continuous cultivation. A tubular photobioreactor (PBR) and urea as cheap nitrogen source were used, taking as response variables kinetic parameters and biomass composition. The removal of both organic matter and pigment (OMR and PgR, respectively) was measured to evaluate the efficiency of the treatment process. This treatment process yielded high values of OMR (73.7 ± 0.1%) and PgR (52.4 ± 0.4%) using 75% treated medium, thereby A. platensis biomass with high protein content (42.0 ± 0.6%), 1568 ± 15 mg/L cell concentration under steady-state conditions and 941 mg/L d cell productivity. This alternative to simultaneous treatment with GAC for reuse of Schlösser medium in continuous cultivation could ensure no diminution in either cell productivity or protein content in A. platensis cultivation using tubular PBR with 65% reduction in medium culture costs.
Weegman, Bradley P.; Nash, Peter; Carlson, Alexandra L.; Voltzke, Kristin J.; Geng, Zhaohui; Jahani, Marjan; Becker, Benjamin B.; Papas, Klearchos K.; Firpo, Meri T.
2013-01-01
Cellular therapies are emerging as a standard approach for the treatment of several diseases. However, realizing the promise of cellular therapies across the full range of treatable disorders will require large-scale, controlled, reproducible culture methods. Bioreactor systems offer the scale-up and monitoring needed, but standard stirred bioreactor cultures do not allow for the real-time regulation of key nutrients in the medium. In this study, β-TC6 insulinoma cells were aggregated and cultured for 3 weeks as a model of manufacturing a mammalian cell product. Cell expansion rates and medium nutrient levels were compared in static, stirred suspension bioreactors (SSB), and continuously fed (CF) SSB. While SSB cultures facilitated increased culture volumes, no increase in cell yields were observed, partly due to limitations in key nutrients, which were consumed by the cultures between feedings, such as glucose. Even when glucose levels were increased to prevent depletion between feedings, dramatic fluctuations in glucose levels were observed. Continuous feeding eliminated fluctuations and improved cell expansion when compared with both static and SSB culture methods. Further improvements in growth rates were observed after adjusting the feed rate based on calculated nutrient depletion, which maintained physiological glucose levels for the duration of the expansion. Adjusting the feed rate in a continuous medium replacement system can maintain the consistent nutrient levels required for the large-scale application of many cell products. Continuously fed bioreactor systems combined with nutrient regulation can be used to improve the yield and reproducibility of mammalian cells for biological products and cellular therapies and will facilitate the translation of cell culture from the research lab to clinical applications. PMID:24204645
Fiber Composite Sandwich Thermostructural Behavior: Computational Simulation
NASA Technical Reports Server (NTRS)
Chamis, C. C.; Aiello, R. A.; Murthy, P. L. N.
1986-01-01
Several computational levels of progressive sophistication/simplification are described to computationally simulate composite sandwich hygral, thermal, and structural behavior. The computational levels of sophistication include: (1) three-dimensional detailed finite element modeling of the honeycomb, the adhesive and the composite faces; (2) three-dimensional finite element modeling of the honeycomb assumed to be an equivalent continuous, homogeneous medium, the adhesive and the composite faces; (3) laminate theory simulation where the honeycomb (metal or composite) is assumed to consist of plies with equivalent properties; and (4) derivations of approximate, simplified equations for thermal and mechanical properties by simulating the honeycomb as an equivalent homogeneous medium. The approximate equations are combined with composite hygrothermomechanical and laminate theories to provide a simple and effective computational procedure for simulating the thermomechanical/thermostructural behavior of fiber composite sandwich structures.
Relaxation model of the heat production
NASA Astrophysics Data System (ADS)
Zimin, B. A.; Zorin, I. S.; Sventitskaya, V. E.
2018-05-01
The work is devoted to the study of the heat generation process in the problem of the dynamics of oscillations of a one-dimensional chain simulating heat formation in an elastic continuous medium under mechanical influences. Formulas for estimating the effect of thermoelasticity are obtained and an analogy is made with the energy of damped oscillations of an anharmonic oscillator.
Coherent Transient Systems Evaluation
1993-06-17
europium doped yttrium silicate in collaboration with IBM Almaden Research Center. Research into divalent ion doped crystals as photon gated materials...noise limited model and ignore the non-ideal properties of the medium, nonlinear effects, spatial crosstalk, gating efficiencies, local heating, the...demonstration of the coherent transient continuous optical processor was performed in europium doped yttrium silicate. Though hyperfine split ground
NASA Astrophysics Data System (ADS)
Günay, E.
2017-02-01
This study defined as micromechanical finite element (FE) approach examining the stress transfer mechanism in single-walled carbon nanotube (SWCN) reinforced composites. In the modeling, 3D unit-cell method was evaluated. Carbon nanotube reinforced composites were modeled as three layers which comprises CNT, interface and matrix material. Firstly; matrix, fiber and interfacial materials all together considered as three layered cylindrical nanocomposite. Secondly, the cylindrical matrix material was assumed to be isotropic and also considered as a continuous medium. Then, fiber material was represented with zigzag type SWCNs. Finally, SWCN was combined with the elastic medium by using springs with different constants. In the FE modeling of SWCN reinforced composite model springs were modeled by using ANSYS spring damper element COMBIN14. The developed interfacial van der Waals interaction effects between the continuous matrix layer and the carbon nanotube fiber layer were simulated by applying these various spring stiffness values. In this study, the layered composite cylindrical FE model was presented as the equivalent mechanical properties of SWCN structures in terms of Young's modulus. The obtained results and literature values were presented and discussed. Figures, 16, 17, and 18 of the original article PDF file, as supplied to AIP Publishing, were affected by a PDF-processing error. Consequently, a solid diamond symbol appeared instead of a Greek tau on the y axis labels for these three figures. This article was updated on 17 March 2017 to correct the PDF-processing error, with the scientific content remaining unchanged.
Heat transfer in porous medium embedded with vertical plate: Non-equilibrium approach - Part B
DOE Office of Scientific and Technical Information (OSTI.GOV)
Quadir, G. A., E-mail: Irfan-magami@Rediffmail.com, E-mail: gaquadir@gmail.com; Badruddin, Irfan Anjum
2016-06-08
This work is continuation of the paper Part A. Due to large number of results, the paper is divided into two section with section-A (Part A) discussing the effect of various parameters such as heat transfer coefficient parameter, thermal conductivity ratio etc. on streamlines and isothermal lines. Section-B highlights the heat transfer characteristics in terms of Nusselt number The Darcy model is employed to simulate the flow inside the medium. It is assumed that the heat transfer takes place by convection and radiation. The governing partial differential equations are converted into non-dimensional form and solved numerically using finite element method.
Sfontouris, Ioannis A; Kolibianakis, Efstratios M; Lainas, George T; Venetis, Christos A; Petsas, George K; Tarlatzis, Basil C; Lainas, Tryfon G
2017-10-01
The aim of this study is to determine whether blastocyst utilization rates are different after continuous culture in two different commercial single-step media. This is a paired randomized controlled trial with sibling oocytes conducted in infertility patients, aged ≤40 years with ≥10 oocytes retrieved assigned to blastocyst culture and transfer. Retrieved oocytes were randomly allocated to continuous culture in either Sage one-step medium (Origio) or Continuous Single Culture (CSC) medium (Irvine Scientific) without medium renewal up to day 5 post oocyte retrieval. Main outcome measure was the proportion of embryos suitable for clinical use (utilization rate). A total of 502 oocytes from 33 women were randomly allocated to continuous culture in either Sage one-step medium (n = 250) or CSC medium (n = 252). Fertilization was performed by either in vitro fertilization or intracytoplasmic sperm injection, and embryo transfers were performed on day 5. Two patients had all blastocysts frozen due to the occurrence of severe ovarian hyperstimulation syndrome. Fertilization and cleavage rates, as well as embryo quality on day 3, were similar in the two media. Blastocyst utilization rates (%, 95% CI) [55.4% (46.4-64.1) vs 54.7% (44.9-64.6), p = 0.717], blastocyst formation rates [53.6% (44.6-62.5) vs 51.9 (42.2-61.6), p = 0.755], and proportion of good quality blastocysts [36.8% (28.1-45.4) vs 36.1% (27.2-45.0), p = 0.850] were similar in Sage one-step and CSC media, respectively. Continuous culture of embryos in Sage one-step and CSC media is associated with similar blastocyst development and utilization rates. Both single-step media appear to provide adequate support during in vitro preimplantation embryo development. Whether these observations are also valid for other continuous single medium protocols remains to be determined. NCT02302638.
Somatic embryogenesis of carrot in hormone-free medium: external pH control over morphogenesis
NASA Technical Reports Server (NTRS)
Smith, D. L.; Krikorian, A. D.
1990-01-01
Cultures of preglobular stage proembryos (PGSPs) were initiated from mechanically wounded mature zygotic embryos of carrot, Daucus carota, on a hormone-free, semisolid medium. These PGSPs have been maintained and multiplied for extended periods without their progression into later embryo stages on the same hormone-free medium containing 1 mM NH4+ as the sole nitrogen source. Sustained maintenance of cultures comprised exclusively of PGSPs was dependent on medium pH throughout the culture period. Best growth and multiplication of PGSP cultures occurred when the pH of unbuffered, hormone-free medium fell from 4.5 to 4 over a 2-week period or when buffered medium was titrated to pH 4. If the hormone-free medium was buffered to sustain a pH at or above 4.5, PGSPs developed into later embryo stages. Maintenance with continuous multiplication of PGSPs occurred equally well on medium containing NH4+ or NH4+ and NO3-, but growth was poor with NO3- alone. Additional observations on the effects of medium components such as various nitrogen sources and levels, sucrose concentration, semisolid supports, type of buffer, borate concentration, activated charcoal, and initial pH that permit optimum maintenance of the PGSPs or foster their continued developmental progression into mature embryos and plantlets are reported. The influence of the pH of the hormone-free medium as a determinant in maintaining cultures as PGSPs or allowing their continued embryonic development are unequivocally demonstrated by gross morphology, scanning electron microscopy, and histological preparations.
49 CFR 236.811 - Speed, medium.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 49 Transportation 4 2012-10-01 2012-10-01 false Speed, medium. 236.811 Section 236.811 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... Speed, medium. A speed not exceeding 40 miles per hour. ...
49 CFR 236.811 - Speed, medium.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 4 2013-10-01 2013-10-01 false Speed, medium. 236.811 Section 236.811 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... Speed, medium. A speed not exceeding 40 miles per hour. ...
49 CFR 236.811 - Speed, medium.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 49 Transportation 4 2014-10-01 2014-10-01 false Speed, medium. 236.811 Section 236.811 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... Speed, medium. A speed not exceeding 40 miles per hour. ...
49 CFR 236.811 - Speed, medium.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 4 2010-10-01 2010-10-01 false Speed, medium. 236.811 Section 236.811 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... Speed, medium. A speed not exceeding 40 miles per hour. ...
49 CFR 236.811 - Speed, medium.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 4 2011-10-01 2011-10-01 false Speed, medium. 236.811 Section 236.811 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... Speed, medium. A speed not exceeding 40 miles per hour. ...
21 CFR 864.8500 - Lymphocyte separation medium.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Lymphocyte separation medium. 864.8500 Section 864.8500 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... medium. (a) Identification. A lymphocyte separation medium is a device used to isolate lymphocytes from...
21 CFR 864.8500 - Lymphocyte separation medium.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Lymphocyte separation medium. 864.8500 Section 864.8500 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... medium. (a) Identification. A lymphocyte separation medium is a device used to isolate lymphocytes from...
21 CFR 864.8500 - Lymphocyte separation medium.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Lymphocyte separation medium. 864.8500 Section 864.8500 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... medium. (a) Identification. A lymphocyte separation medium is a device used to isolate lymphocytes from...
Code of Federal Regulations, 2014 CFR
2014-07-01
... medium-sized general molded, extruded, and fabricated rubber plants subcategory. 428.60 Section 428.60... (CONTINUED) RUBBER MANUFACTURING POINT SOURCE CATEGORY Medium-Sized General Molded, Extruded, and Fabricated Rubber Plants Subcategory § 428.60 Applicability; description of the medium-sized general molded...
Code of Federal Regulations, 2013 CFR
2013-07-01
... medium-sized general molded, extruded, and fabricated rubber plants subcategory. 428.60 Section 428.60... (CONTINUED) RUBBER MANUFACTURING POINT SOURCE CATEGORY Medium-Sized General Molded, Extruded, and Fabricated Rubber Plants Subcategory § 428.60 Applicability; description of the medium-sized general molded...
21 CFR 864.8500 - Lymphocyte separation medium.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Lymphocyte separation medium. 864.8500 Section 864.8500 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... medium. (a) Identification. A lymphocyte separation medium is a device used to isolate lymphocytes from...
21 CFR 133.103 - Asiago medium cheese.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 2 2014-04-01 2014-04-01 false Asiago medium cheese. 133.103 Section 133.103 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Related Products § 133.103 Asiago medium cheese. Asiago medium cheese conforms to the definition and...
21 CFR 133.103 - Asiago medium cheese.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 2 2012-04-01 2012-04-01 false Asiago medium cheese. 133.103 Section 133.103 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Related Products § 133.103 Asiago medium cheese. Asiago medium cheese conforms to the definition and...
21 CFR 864.8500 - Lymphocyte separation medium.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Lymphocyte separation medium. 864.8500 Section 864.8500 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... medium. (a) Identification. A lymphocyte separation medium is a device used to isolate lymphocytes from...
21 CFR 133.103 - Asiago medium cheese.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 2 2013-04-01 2013-04-01 false Asiago medium cheese. 133.103 Section 133.103 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Related Products § 133.103 Asiago medium cheese. Asiago medium cheese conforms to the definition and...
ERIC Educational Resources Information Center
O'Hanlon, Fiona
2015-01-01
Results are presented of a comparative study of the reasons for parental choice of Scottish Gaelic-medium and Welsh-medium primary education in the year 2000 and of the reasons for pupils' decisions to continue with Gaelic or Welsh-medium education at secondary school in 2007. Parents in both contexts cited the quality of Celtic-medium education…
Continuing Education for Managers from Small and Medium Sized German Companies.
ERIC Educational Resources Information Center
Fub, Jorg
1995-01-01
An international trade school in southern Germany, which is a highly export-oriented environment, has established a vocational and professional continuing education program for personnel of small- and medium-size companies. Offerings include a graduate course in international marketing, seminars for export companies, distance education in…
A watershed model to integrate EO data
NASA Astrophysics Data System (ADS)
Jauch, Eduardo; Chambel-Leitao, Pedro; Carina, Almeida; Brito, David; Cherif, Ines; Alexandridis, Thomas; Neves, Ramiro
2013-04-01
MOHID LAND is a open source watershed model developed by MARETEC and is part of the MOHID Framework. It integrates four mediums (or compartments): porous media, surface, rivers and atmosphere. The movement of water between these mediums are based on mass and momentum balance equations. The atmosphere medium is not explicity simulated. Instead, it's used as boundary condition to the model through meteorological properties: precipitation, solar radiation, wind speed/direction, relative humidity and air temperature. The surface medium includes the overland runoff and vegetation growth processes and is simulated using a 2D grid. The porous media includes both the unsaturated (soil) and saturated zones (aquifer) and is simulated using a 3D grid. The river flow is simulated through a 1D drainage network. All these mediums are linked through evapotranspiration and flow exchanges (infiltration, river-soil growndwater flow, surface-river overland flow). Besides the water movement, it is also possible to simulate water quality processes and solute/sediment transport. Model setup include the definition of the geometry and the properties of each one of its compartments. After the setup of the model, the only continuous input data that MOHID LAND requires are the atmosphere properties (boundary conditions) that can be provided as timeseries or spacial data. MOHID LAND has been adapted the last 4 years under FP7 and ESA projects to integrate Earth Observation (EO) data, both variable in time and in space. EO data can be used to calibrate/validate or as input/assimilation data to the model. The currently EO data used include LULC (Land Use Land Cover) maps, LAI (Leaf Area Index) maps, EVTP (Evapotranspiration) maps and SWC (Soil Water Content) maps. Model results are improved by the EO data, but the advantage of this integration is that the model can still run without the EO data. This means that model do not stop due to unavailability of EO data and can run on a forecast mode. The LCLU maps are coupled with a database that transforms land use into model properties through lookup tables. The LAI maps, usually based on NDVI satellite images, can be used directly as input to the model. When the vegetation growth is being simulated, the use of a LAI distributed in space improve the model results, by improving, for example, the estimated evapotranspiration, the estimated values of biomass, the nutrient uptake, etc. MOHID LAND calculates a Reference Evapotranspiration (rEVTP), based on the meteorological properties. The Actual Evapotranspiration (aEVTP) is then computed based on vegetation transpiration, soil evaporation and the available water in soil. Alternatively, EO derived maps of EVTP can be used as input to the model, in the place of the rEVTP, or even in the place of the aEVTP, both being provided as boundary condition. The same can be done with SWC maps, that can be used to initialize the model soil water content. The integration of EO data with MOHID LAND was tested and is being continuously developed and applied for support farmers and to help water managers to improve the water management.
Kvasnikov, E I; Gavrilenko, M N; Sumnevich, V G; Stepaniuk, V V; Eluseeva, G S; Stognii, I P
1977-01-01
A large number of bacterial strains assimilating chemical ethanol has been isolated using an original technique. Active growth of strains belonging to the genera Pseudomonas and, particularly, Acinetobacter was registered on mineral media containing ethanol. A mathematical model was constructed select a strain of Acinetobacter calcoaceticus K-9 during its continuous cultivation on media containing ethanol. The model makes it possible to determine conditions for producing a present amount of the biomass, the percentage of its yield, and the produc;iveness as a function of the dilution rate, temperature, and the concentration of ethanol and phosphoric acid in the medium. The main characteristics of the growth process in the studied factor space were established. The optimum conditions were calculated for growth of the strain with respect to each of the criteria. Under various conditions of bacterial growth, changes in the morphology and ultra-fine structure of the cells correlated with their physiological activity. The volume of the cells increased with the rate of dilution of the medium: the process can be described by a saturation curve. The presence of mesosomal structures is typical of the cells growing at low flow rates.
Origin of X-Ray and Gamma-Ray Emission from the Galactic Central Region
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chernyshov, D. O.; Dogiel, V. A.; Cheng, K.-S.
We study a possible connection between different non-thermal emissions from the inner few parsecs of the Galaxy. We analyze the origin of the gamma-ray source 2FGL J1745.6−2858 (or 3FGL J1745.6−2859c) in the Galactic Center (GC) and the diffuse hard X-ray component recently found by the Nuclear Spectroscopic Telescope Array , as well as the radio emission and processes of hydrogen ionization from this area. We assume that a source in the GC injected energetic particles with power-law spectrum into the surrounding medium in the past or continues to inject until now. The energetic particles may be protons, electrons, or amore » combination of both. These particles diffuse to the surrounding medium and interact with gas, magnetic field, and background photons to produce non-thermal emissions. We study the spectral and spatial features of the hard X-ray emission and gamma-ray emission by the particles from the central source. Our goal is to examine whether the hard X-ray and gamma-ray emissions have a common origin. Our estimations show that, in the case of pure hadronic models, the expected flux of hard X-ray emission is too low. Despite the fact that protons can produce a non-zero contribution in gamma-ray emission, it is unlikely that they and their secondary electrons can make a significant contribution in hard X-ray flux. In the case of pure leptonic models, it is possible to reproduce both X-ray and gamma-ray emissions for both transient and continuous supply models. However, in the case of the continuous supply model, the ionization rate of molecular hydrogen may significantly exceed the observed value.« less
Method for in situ characterization of a medium of dispersed matter in a continuous phase
Kaufman, Eric N.
1995-01-01
A method for in situ characterization of a medium of a dispersed phase in a continuous phase, including the steps of adding a fluorescent dye to one phase capable of producing fluorescence therein when the fluorescent dye is optically excited, optically exciting the fluorescent dye at a wavelength to produce fluorescence in the one phase, and monitoring the fluorescence to distinguish the continuous phase from the dispersed phase.
FDTD-based computed terahertz wave propagation in multilayer medium structures
NASA Astrophysics Data System (ADS)
Tu, Wan-li; Zhong, Shun-cong; Yao, Hai-zi; Shen, Yao-chun
2013-08-01
The terahertz region of the electromagnetic spectrum spans the frequency range of 0.1THz~10THz, which means it sandwiches between the mid-infrared (IR) and the millimeter/ microwave. With the development and commercialization of terahertz pulsed spectroscopy (TPS) and terahertz pulsed imaging (TPI) systems, terahertz technologies have been widely used in the sensing and imaging fields. It allows high quality cross-sectional images from within scattering media to be obtained nondestructively. Characterizing the interaction of terahertz radiation with multilayer medium structures is critical for the development of nondestructive testing technology. Currently, there was much experimental investigation of using TPI for the characterization of terahertz radiation in materials (e.g., pharmaceutical tablet coatings), but there were few theoretical researches on propagation of terahertz radiation in multilayer medium structures. Finite Difference Time Domain (FDTD) algorithm is a proven method for electromagnetic scattering theory, which analyzes continuous electromagnetic problems by employing finite difference and obtains electromagnetic field value at the sampling point to approach the actual continuous solutions. In the present work, we investigated the propagation of terahertz radiation in multilayer medium structures based on FDTD method. The model of multilayer medium structures under the THz frequency plane wave incidence was established, and the reflected radiation properties were recorded and analyzed. The terahertz radiation used was broad-band in the frequency up to 2 THz. A batch of single layer coated pharmaceutical tablets, whose coating thickness in the range of 40~100μm, was computed by FDTD method. We found that the simulation results on pharmaceutical tablet coatings were in good agreement with the experimental results obtained using a commercial system (TPI imaga 2000, TeraView, Cambridge, UK) , demonstrating its usefulness in simulating and analyzing terahertz responses from a multilayered sample.
Optical resonators and neural networks
NASA Astrophysics Data System (ADS)
Anderson, Dana Z.
1986-08-01
It may be possible to implement neural network models using continuous field optical architectures. These devices offer the inherent parallelism of propagating waves and an information density in principle dictated by the wavelength of light and the quality of the bulk optical elements. Few components are needed to construct a relatively large equivalent network. Various associative memories based on optical resonators have been demonstrated in the literature, a ring resonator design is discussed in detail here. Information is stored in a holographic medium and recalled through a competitive processes in the gain medium supplying energy to the ring rsonator. The resonator memory is the first realized example of a neural network function implemented with this kind of architecture.
The removal of bacteria by modified natural zeolites.
Milán, Z; de Las Pozas, C; Cruz, M; Borja, R; Sánchez, E; Ilangovan, K; Espinosa, Y; Luna, B
2001-01-01
The removal effect of natural and modified zeolites containing different heavy metals (Ni2+, Zn2+, Fe3+ and Cu2+) on pure cultures of Escherichia coli and Staphylococcus aureus in a solid medium was evaluated in this work. These experiments were carried out in a continuous mode treating municipal wastewater. Faecal coliform species and Pseudomonas aeruginosa were identified. The rate constants of heavy metal lixiviation were determined using a first order kinetic model. The removal effect of modified natural zeolites in both a solid medium and in continuous mode showed an increased elimination of the bacterial population. The results established a decreasing order of the removal effect as follows: Cu2+ > Fe3+ > Zn2+ > Ni2+. The best performance of columns was obtained for inlet bacterial concentrations below 10(6) cells/100 ml. Most of the identified bacterial species were affected by copper modified zeolites, although Serratia marcescens presented the highest sensitivity and Klebsiella pneumoniae the greatest resistance.
Navigating the flow: individual and continuum models for homing in flowing environments
Painter, Kevin J.; Hillen, Thomas
2015-01-01
Navigation for aquatic and airborne species often takes place in the face of complicated flows, from persistent currents to highly unpredictable storms. Hydrodynamic models are capable of simulating flow dynamics and provide the impetus for much individual-based modelling, in which particle-sized individuals are immersed into a flowing medium. These models yield insights on the impact of currents on population distributions from fish eggs to large organisms, yet their computational demands and intractability reduce their capacity to generate the broader, less parameter-specific, insights allowed by traditional continuous approaches. In this paper, we formulate an individual-based model for navigation within a flowing field and apply scaling to derive its corresponding macroscopic and continuous model. We apply it to various movement classes, from drifters that simply go with the flow to navigators that respond to environmental orienteering cues. The utility of the model is demonstrated via its application to ‘homing’ problems and, in particular, the navigation of the marine green turtle Chelonia mydas to Ascension Island. PMID:26538557
The role of boundary variability in polycrystalline grain-boundary diffusion
NASA Astrophysics Data System (ADS)
Moghadam, M. M.; Rickman, J. M.; Harmer, M. P.; Chan, H. M.
2015-01-01
We investigate the impact of grain-boundary variability on mass transport in a polycrystal. More specifically, we perform both numerical and analytical studies of steady-state diffusion in prototypical microstructures in which there is either a discrete spectrum of grain-boundary activation energies or else a complex distribution of grain-boundary character, and hence a continuous spectrum of boundary activation energies. An effective diffusivity is calculated for these structures using simplified multi-state models and, for the case of a continuous spectrum, employing experimentally obtained grain-boundary energy data. We identify different diffusive regimes for these cases and quantify deviations from Arrhenius behavior using effective medium theory. Finally, we examine the diffusion kinetics of a simplified model of an interfacial layering (i.e., complexion) transition.
Continuous-wave organic dye lasers and methods
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shapira, Ofer; Chua, Song-Liang; Zhen, Bo
2014-09-16
An organic dye laser produces a continuous-wave (cw) output without any moving parts (e.g., without using flowing dye streams or spinning discs of solid-state dye media to prevent photobleaching) and with a pump beam that is stationary with respect to the organic dye medium. The laser's resonant cavity, organic dye medium, and pump beam are configured to excite a lasing transition over a time scale longer than the associated decay lifetimes in the organic dye medium without photobleaching the organic dye medium. Because the organic dye medium does not photobleach when operating in this manner, it may be pumped continuouslymore » so as to emit a cw output beam. In some examples, operation in this manner lowers the lasing threshold (e.g., to only a few Watts per square centimeter), thereby facilitating electrical pumping for cw operation.« less
Acceleration and propagation of cosmic rays
NASA Astrophysics Data System (ADS)
Fransson, C.; Epstein, R. I.
1980-11-01
Two general categories of cosmic ray models are discussed, concomitant acceleration and propagation (CAP) models and sequential acceleration and propagation (SAP) models. These normally correspond to the cosmic rays being continuously accelerated in the interstellar medium or being rapidly produced by discrete sources or strong shock waves, respectively. For the CAP models it is found that the ratio of the predominantly secondary nuclei (Li + Be + B + N) to the predominantly primary nuclei (C + O) varies by less than a factor of 1.5 between 1 and 100 GeV per nucleon. This is at variance with current measurements. It thus appears that the evolution of cosmic rays is best described by SAP models.
Querques, Giuseppe; Kamami-Levy, Cynthia; Blanco-Garavito, Rocio; Georges, Anouk; Pedinielli, Alexandre; Capuano, Vittorio; Poulon, Fanny; Souied, Eric H
2014-11-01
To investigate the appearance of medium-large drusen and reticular pseudodrusen on adaptive optics (AO). In 14 consecutive patients, AO infrared (IR) images were overlaid with confocal scanning-laser-ophthalmoscope IR reflectance images and IR-referenced spectral-domain optical coherence tomography. In eight eyes of six patients, a total of 19 images of medium-large drusen were investigated by AO imaging. En face AO revealed medium-large drusen as highly hyper-reflective round/oval lesions, always centred and/or surrounded by a continuous/discontinuous hyporeflectivity. Cone photoreceptors were detected overlying drusen, appearing either as continuous 'bright' hyper-reflective dots over a 'dark' hyporeflective background, or as continuous 'dark' hyporeflective dots over a 'bright' hyper-reflective background. In eight eyes from eight patients, a total of 14 images of pseudodrusen were investigated by AO imaging. En face AO revealed reticular pseudodrusen as isoreflective lesions, always surrounded by a continuous/discontinuous hyporeflectivity. Cone photoreceptors were detected overlying pseudodrusen as 'bright' hyper-reflective dots over either a hyporeflective or isoreflective background. No 'dark' hyporeflective dots were detected in eyes with reticular pseudodrusen only. Cone photoreceptors were counted on the border of the drusen and pseudodrusen, respectively, and in a visibly healthy zone in its absolute vicinity. A similar decrease in cone appearance was observed for drusen and pseudodrusen (15.7% vs 16.2%). AO allows differences in reflectivity between medium-large drusen and reticular pseudodrusen to be appreciated. The cone mosaics may be detected as continuous 'bright' hyper-reflective dots overlying/on the border of drusen and pseudodrusen deposits, and possibly as continuous 'dark' hyporeflective dots overlying drusen only. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
NASA Technical Reports Server (NTRS)
Cole, Stanley R.; Johnson, R. Keith; Piatak, David J.; Florance, Jennifer P.; Rivera, Jose A., Jr.
2003-01-01
The Langley Transonic Dynamics Tunnel (TDT) has provided a unique capability for aeroelastic testing for over forty years. The facility has a rich history of significant contributions to the design of many United States commercial transports, military aircraft, launch vehicles, and spacecraft. The facility has many features that contribute to its uniqueness for aeroelasticity testing, perhaps the most important feature being the use of a heavy gas test medium to achieve higher test densities compared to testing in air. Higher test medium densities substantially improve model-building requirements and therefore simplify the fabrication process for building aeroelastically scaled wind tunnel models. This paper describes TDT capabilities that make it particularly suited for aeroelasticity testing. The paper also discusses the nature of recent test activities in the TDT, including summaries of several specific tests. Finally, the paper documents recent facility improvement projects and the continuous statistical quality assessment effort for the TDT.
Quantum electromagnetic stress tensor in an inhomogeneous medium
NASA Astrophysics Data System (ADS)
Parashar, Prachi; Milton, Kimball A.; Li, Yang; Day, Hannah; Guo, Xin; Fulling, Stephen A.; Cavero-Peláez, Inés
2018-06-01
Continuing a program of examining the behavior of the vacuum expectation value of the stress tensor in a background which varies only in a single direction, we here study the electromagnetic stress tensor in a medium with permittivity depending on a single spatial coordinate, specifically, a planar dielectric half-space facing a vacuum region. There are divergences occurring that are regulated by temporal and spatial point splitting, which have a universal character for both transverse electric and transverse magnetic modes. The nature of the divergences depends on the model of dispersion adopted. And there are singularities occurring at the edge between the dielectric and vacuum regions, which also have a universal character, depending on the structure of the discontinuities in the material properties there. Remarks are offered concerning renormalization of such models, and the significance of the stress tensor. The ambiguity in separating "bulk" and "scattering" parts of the stress tensor is discussed.
Method for in situ characterization of a medium of dispersed matter in a continuous phase
Kaufman, E.N.
1995-03-07
A method is described for the in situ characterization of a medium of a dispersed phase in a continuous phase, including the steps of adding a fluorescent dye to one phase capable of producing fluorescence therein when the fluorescent dye is optically excited, optically exciting the fluorescent dye at a wavelength to produce fluorescence in the one phase, and monitoring the fluorescence to distinguish the continuous phase from the dispersed phase. 2 figs.
Local stresses in metal matrix composites subjected to thermal and mechanical loading
NASA Technical Reports Server (NTRS)
Highsmith, Alton L.; Shin, Donghee; Naik, Rajiv A.
1990-01-01
An elasticity solution has been used to analyze matrix stresses near the fiber/matrix interface in continuous fiber-reinforced metal-matrix composites, modeling the micromechanics in question in terms of a cylindrical fiber and cylindrical matrix sheath which is embedded in an orthotropic medium representing the composite. The model's predictions for lamina thermal and mechanical properties are applied to a laminate analysis determining ply-level stresses due to thermomechanical loading. A comparison is made between these results, which assume cylindrical symmetry, and the predictions yielded by a FEM model in which the fibers are arranged in a square array.
ERIC Educational Resources Information Center
Mingming, Ji
2012-01-01
The cause of continuing education has gained significant strides in China after the advent of Reform and Opening Up, but it is still the weakest link in the current system of education. The "National Medium- and Long-Term Educational Reform and Development Guideline (2010-20)" (hereafter abbreviated as the "Guideline") has…
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 23 2014-07-01 2014-07-01 false Applicability of corrosion control treatment steps to small, medium-size and large water systems. 141.81 Section 141.81 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Control of Lead and Copper...
Generalized fractional diffusion equations for subdiffusion in arbitrarily growing domains
NASA Astrophysics Data System (ADS)
Angstmann, C. N.; Henry, B. I.; McGann, A. V.
2017-10-01
The ubiquity of subdiffusive transport in physical and biological systems has led to intensive efforts to provide robust theoretical models for this phenomena. These models often involve fractional derivatives. The important physical extension of this work to processes occurring in growing materials has proven highly nontrivial. Here we derive evolution equations for modeling subdiffusive transport in a growing medium. The derivation is based on a continuous-time random walk. The concise formulation of these evolution equations requires the introduction of a new, comoving, fractional derivative. The implementation of the evolution equation is illustrated with a simple model of subdiffusing proteins in a growing membrane.
Binder, Harald; Sauerbrei, Willi; Royston, Patrick
2013-06-15
In observational studies, many continuous or categorical covariates may be related to an outcome. Various spline-based procedures or the multivariable fractional polynomial (MFP) procedure can be used to identify important variables and functional forms for continuous covariates. This is the main aim of an explanatory model, as opposed to a model only for prediction. The type of analysis often guides the complexity of the final model. Spline-based procedures and MFP have tuning parameters for choosing the required complexity. To compare model selection approaches, we perform a simulation study in the linear regression context based on a data structure intended to reflect realistic biomedical data. We vary the sample size, variance explained and complexity parameters for model selection. We consider 15 variables. A sample size of 200 (1000) and R(2) = 0.2 (0.8) is the scenario with the smallest (largest) amount of information. For assessing performance, we consider prediction error, correct and incorrect inclusion of covariates, qualitative measures for judging selected functional forms and further novel criteria. From limited information, a suitable explanatory model cannot be obtained. Prediction performance from all types of models is similar. With a medium amount of information, MFP performs better than splines on several criteria. MFP better recovers simpler functions, whereas splines better recover more complex functions. For a large amount of information and no local structure, MFP and the spline procedures often select similar explanatory models. Copyright © 2012 John Wiley & Sons, Ltd.
Education-Medium and African Linguistic Rights in the Context of Globalisation
ERIC Educational Resources Information Center
Gandolfo, Andrew J.
2009-01-01
In the context of globalisation, European languages, especially English, continue to be the favoured medium of official communication and are valued and promoted as the dominant languages of commerce, international communication, education and scientific knowledge. In this paper, I argue that European educational language medium policies…
NASA Technical Reports Server (NTRS)
Smith, D. L.; Krikorian, A. D.
1990-01-01
A mixed culture comprised of both embryonic globules and nonembryogenic callus was derived from seedling hypocotyls of Daucus carota cv. Scarlet Nantes on 2,4-D- containing medium using well-established methods. Then the mixed cultures were transferred to, and serially subcultured on, a hormone-free medium near pH 4. The medium contained 1 mM NH4+ as the sole nitrogen source. When cultured in this way, embryonic globules were able to multiply without development into later embryo stages. Nonembryogenic callus did not survive. Continuous culture of embryonic globules on this low pH hormone-free medium yielded cultures consisting entirely of preglobular stage proembryos (PGSPs). PGSP cultures have been maintained as such with continuous multiplication for nearly 2 years without loss of embryogenic potential. These hormone-free-maintained PGSPs continue their development to later embryo stages when cultured on the same hormone-free medium buffered at pH 5.8. We show that hormone-free medium near pH 4 can replace 2,4-D in its ability to sustain multiplication of 2,4-D-initiated embryogenic cells of carrot at an acceptable growth rate without their development into later embryo stages. This procedure provides selective conditions that do not permit the growth of non-embryogenic cells while providing an adequate environment for embryogenic cell proliferation and should prove invaluable in studying habituation.
2006-08-01
Maneuver Ammunition Systems is acknowledged for continued support of this effort. This research was performed while the first author held a National...the ignition system (i.e., the primer in small-caliber guns, the primer and flashtube in medium-caliber guns, and the primer and igniter-tube in large...primer model that is compatible with the ARL- NGEN3 IB code is the subject of this report. The conventional ignition system for a large-caliber (120 mm
3D simulation of LISM oxygen flux with PUIs inside of heliosphere
Kawamura, Akito D.; Heerikhuisen, Jacob; Pogorelov, Nikolai V.; ...
2012-11-20
The structure of the heliospheric interface has attracted increasing attention with continual improvements in modelling and observations, during the last half decade. The Interstellar Boundary Explore (IBEX) spacecraft is returning important data that require a theoretical model of Heliosphere to ensure proper interpretation. Furthermore, we develop a framework for understanding the measurements of heavier-than-hydrogen atoms by IBEX in terms of a 3D MHD-neutral numerical solution of the sun's interaction with the interstellar medium, combined with a test particle approach for heavy atoms and ions.
Jackman, Robert W; Floro, Jess; Yoshimine, Rei; Zitin, Brian; Eiampikul, Maythita; El-Jack, Kahlid; Seto, Danielle N; Kandarian, Susan C
2017-01-01
Cachexia is strongly associated with a poor prognosis in cancer patients but the biological trigger is unknown and therefore no therapeutics exist. The loss of skeletal muscle is the most deleterious aspect of cachexia and it appears to depend on secretions from tumor cells. Models for studying wasting in cell culture consist of experiments where skeletal muscle cells are incubated with medium conditioned by tumor cells. This has led to candidates for cachectic factors but some of the features of cachexia in vivo are not yet well-modeled in cell culture experiments. Mouse myotube atrophy measured by myotube diameter in response to medium conditioned by mouse colon carcinoma cells (C26) is consistently less than what is seen in muscles of mice bearing C26 tumors with moderate to severe cachexia. One possible reason for this discrepancy is that in vivo the C26 tumor and skeletal muscle share a circulatory system exposing the muscle to tumor factors in a constant and increasing way. We have applied Transwell®-adapted cell culture conditions to more closely simulate conditions found in vivo where muscle is exposed to the ongoing kinetics of constant tumor secretion of active factors. C26 cells were incubated on a microporous membrane (a Transwell® insert) that constitutes the upper compartment of wells containing plated myotubes. In this model, myotubes are exposed to a constant supply of cancer cell secretions in the medium but without direct contact with the cancer cells, analogous to a shared circulation of muscle and cancer cells in tumor-bearing animals. The results for myotube diameter support the idea that the use of Transwell® inserts serves as a more physiological model of the muscle wasting associated with cancer cachexia than the bolus addition of cancer cell conditioned medium. The Transwell® model supports the notion that the dose and kinetics of cachectic factor delivery to muscle play a significant role in the extent of pathology.
Modelling microbial metabolic rewiring during growth in a complex medium.
Fondi, Marco; Bosi, Emanuele; Presta, Luana; Natoli, Diletta; Fani, Renato
2016-11-24
In their natural environment, bacteria face a wide range of environmental conditions that change over time and that impose continuous rearrangements at all the cellular levels (e.g. gene expression, metabolism). When facing a nutritionally rich environment, for example, microbes first use the preferred compound(s) and only later start metabolizing the other one(s). A systemic re-organization of the overall microbial metabolic network in response to a variation in the composition/concentration of the surrounding nutrients has been suggested, although the range and the entity of such modifications in organisms other than a few model microbes has been scarcely described up to now. We used multi-step constraint-based metabolic modelling to simulate the growth in a complex medium over several time steps of the Antarctic model organism Pseudoalteromonas haloplanktis TAC125. As each of these phases is characterized by a specific set of amino acids to be used as carbon and energy source our modelling framework describes the major consequences of nutrients switching at the system level. The model predicts that a deep metabolic reprogramming might be required to achieve optimal biomass production in different stages of growth (different medium composition), with at least half of the cellular metabolic network involved (more than 50% of the metabolic genes). Additionally, we show that our modelling framework is able to capture metabolic functional association and/or common regulatory features of the genes embedded in our reconstruction (e.g. the presence of common regulatory motifs). Finally, to explore the possibility of a sub-optimal biomass objective function (i.e. that cells use resources in alternative metabolic processes at the expense of optimal growth) we have implemented a MOMA-based approach (called nutritional-MOMA) and compared the outcomes with those obtained with Flux Balance Analysis (FBA). Growth simulations under this scenario revealed the deep impact of choosing among alternative objective functions on the resulting predictions of fluxes distribution. Here we provide a time-resolved, systems-level scheme of PhTAC125 metabolic re-wiring as a consequence of carbon source switching in a nutritionally complex medium. Our analyses suggest the presence of a potential efficient metabolic reprogramming machinery to continuously and promptly adapt to this nutritionally changing environment, consistent with adaptation to fast growth in a fairly, but probably inconstant and highly competitive, environment. Also, we show i) how functional partnership and co-regulation features can be predicted by integrating multi-step constraint-based metabolic modelling with fed-batch growth data and ii) that performing simulations under a sub-optimal objective function may lead to different flux distributions in respect to canonical FBA.
Precursor soot synthesis of fullerenes and nanotubes without formation of carbonaceous soot
Reilly, Peter T. A.
2007-03-20
The present invention is a method for the synthesis of fullerenes and/or nanotubes from precursor soot without the formation of carbonaceous soot. The method comprises the pyrolysis of a hydrocarbon fuel source by heating the fuel source at a sufficient temperature to transform the fuel source to a condensed hydrocarbon. The condensed hydrocarbon is a reaction medium comprising precursor soot wherein hydrogen exchange occurs within the reaction medium to form reactive radicals which cause continuous rearrangement of the carbon skeletal structure of the condensed hydrocarbon. Then, inducing dehydrogenation of the precursor soot to form fullerenes and/or nanotubes free from the formation of carbonaceous soot by continued heating at the sufficient temperature and by regulating the carbon to hydrogen ratio within the reaction medium. The dehydrogenation process produces hydrogen gas as a by-product. The method of the present invention in another embodiment is also a continuous synthesis process having a continuous supply of the fuel source. The method of the present invention can also be a continuous cyclic synthesis process wherein the reaction medium is fed back into the system as a fuel source after extraction of the fullerenes and/or nanotube products. The method of the present invention is also a method for producing precursor soot in bulk quantity, then forming fullerenes and/or nanotubes from the precursor bulk.
ERIC Educational Resources Information Center
Pukkinen, Tommi; Romijn, Clemens; Elson-Rogers, Sarah
There are three main parts to this report of a study that used case studies to showcase the different approaches used to encourage more continuing training within small and medium-sized enterprises (SMEs) across the European Union (EU). Section 1 discusses the importance of funding training in SMEs and highlights the various types of funding…
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 20 2012-07-01 2012-07-01 false Emission standards for light-duty vehicles, light-duty trucks and medium-duty passenger vehicles. 86.1811-10 Section 86.1811-10 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND...
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 19 2014-07-01 2014-07-01 false Emission standards for light-duty vehicles, light-duty trucks and medium-duty passenger vehicles. 86.1811-10 Section 86.1811-10 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND...
Multi-category micro-milling tool wear monitoring with continuous hidden Markov models
NASA Astrophysics Data System (ADS)
Zhu, Kunpeng; Wong, Yoke San; Hong, Geok Soon
2009-02-01
In-process monitoring of tool conditions is important in micro-machining due to the high precision requirement and high tool wear rate. Tool condition monitoring in micro-machining poses new challenges compared to conventional machining. In this paper, a multi-category classification approach is proposed for tool flank wear state identification in micro-milling. Continuous Hidden Markov models (HMMs) are adapted for modeling of the tool wear process in micro-milling, and estimation of the tool wear state given the cutting force features. For a noise-robust approach, the HMM outputs are connected via a medium filter to minimize the tool state before entry into the next state due to high noise level. A detailed study on the selection of HMM structures for tool condition monitoring (TCM) is presented. Case studies on the tool state estimation in the micro-milling of pure copper and steel demonstrate the effectiveness and potential of these methods.
Thomas, Joan; Roggiero, Jean Paul; Silva, Brian
2010-11-01
Small to medium-sized organisations enhance their business mission as well as their communities by continuing to offer services in extreme circumstances. Developing emergency preparedness and business continuity plans that are cost-effective, comprehensive and operational for small to medium-sized organisations with limited resources requires a consistent, supportive, hands-on approach over time with professionals to create appropriate and sustainable strategies. Using a unique, multi-layered and applied approach to emergency preparedness training, organisations have successfully created plans that are effective and sustainable.
Polyamines in embryogenic cultures of Norway spruce (Picea abies) and red spruce (Picea rubens)
Rakesh Minocha; Haarald Kvaalen; Subhash C. Minocha; Stephanie Long
1993-01-01
Embryogenic cultures of red spruce (Picea rubens Sarg.) and Norway spruce (Picea abies (L.) Karst.) were initiated from dissected mature zygotic embryos. The tissues were grown on either proliferation medium or maturation medium. On proliferation medium, the embryogenic tissue continued to produce early stage somatic embryos (...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doughty, C.; Pruess, K.
1991-06-01
Over the past few years the authors have developed a semianalytical solution for transient two-phase water, air, and heat flow in a porous medium surrounding a constant-strength linear heat source, using a similarity variable {eta} = r/{radical}t. Although the similarity transformation approach requires a simplified geometry, all the complex physical mechanisms involved in coupled two-phase fluid and heat flow can be taken into account in a rigorous way, so that the solution may be applied to a variety of problems of current interest. The work was motivated by adverse to predict the thermohydrological response to the proposed geologic repository formore » heat-generating high-level nuclear wastes at Yucca Mountain, Nevada, in a partially saturated, highly fractured volcanic formation. The paper describes thermal and hydrologic conditions near the heat source; new features of the model; vapor pressure lowering; and the effective-continuum representation of a fractured/porous medium.« less
NASA Astrophysics Data System (ADS)
Cottle, John M.; Larson, Kyle P.; Yakymchuk, Chris
2018-07-01
Medium-grained leucogranite in the Tama Kosi region of the Nepalese Himalayan Metamorphic Core yields a relatively narrow range of monazite 208Pb/232Th dates with a dominant population at 21.0 Ma inferred to represent crystallization of an early plutonic phase. In contrast, the pegmatitic portion of the same intrusive complex, that cross-cuts the medium-grained leucogranite, contains zircon, monazite and xenotime that each display near-identical age spectra, recording semi-continuous (re-)crystallization from 27.5 Ma to 21.0 Ma, followed by a 2 m.y. hiatus then further (re-)crystallization between 19.4 and 18.6 Ma. The "gap" in pegmatite dates corresponds well to the crystallization age of the older leucogranite, whereas the end of accessory phase growth in the pegmatite coincides with the onset of regional-scale cooling. Detailed textural, trace element and thermochronologic data indicate that the range of zircon, monazite and xenotime dates recorded in the pegmatite reflect inherited components that underwent semi-continuous (re-)crystallization during metamorphism and/or anatexis in the source region(s), whereas dates younger than the hiatus indicate accessory phase recrystallization, related to both fluid influx and a concomitant increase in temperature. In contrast, the lack of an inherited component(s) in the medium-grained leucogranite phase is inferred to be a result of complete dissolution during partial melting. A model is proposed in which influx of heat and H2O-rich fluids associated with early leucogranite emplacement temporarily delayed zircon and monazite and xenotime crystallization, respectively. These data highlight the importance of measuring spatially resolved dates, trace elements and textural patterns from multiple accessory minerals combined with model constraints to better understand the often-complex crystallization history of anatectic melts in collisional orogens.
Method for culturing mammalian cells in a horizontally rotated bioreactor
NASA Technical Reports Server (NTRS)
Schwarz, Ray P. (Inventor); Wolf, David A. (Inventor); Trinh, Tinh T. (Inventor)
1992-01-01
A bio-reactor system where cell growth microcarrier beads are suspended in a zero head space fluid medium by rotation about a horizontal axis and where the fluid is continuously oxygenated from a tubular membrane which rotates on a shaft together with rotation of the culture vessel. The oxygen is continuously throughput through the membrane and disbursed into the fluid medium along the length of the membrane.
Navigating the flow: individual and continuum models for homing in flowing environments.
Painter, Kevin J; Hillen, Thomas
2015-11-06
Navigation for aquatic and airborne species often takes place in the face of complicated flows, from persistent currents to highly unpredictable storms. Hydrodynamic models are capable of simulating flow dynamics and provide the impetus for much individual-based modelling, in which particle-sized individuals are immersed into a flowing medium. These models yield insights on the impact of currents on population distributions from fish eggs to large organisms, yet their computational demands and intractability reduce their capacity to generate the broader, less parameter-specific, insights allowed by traditional continuous approaches. In this paper, we formulate an individual-based model for navigation within a flowing field and apply scaling to derive its corresponding macroscopic and continuous model. We apply it to various movement classes, from drifters that simply go with the flow to navigators that respond to environmental orienteering cues. The utility of the model is demonstrated via its application to 'homing' problems and, in particular, the navigation of the marine green turtle Chelonia mydas to Ascension Island. © 2015 The Author(s).
Development and validation of a minimal growth medium for recycling Chlorella vulgaris culture.
Hadj-Romdhane, F; Jaouen, P; Pruvost, J; Grizeau, D; Van Vooren, G; Bourseau, P
2012-11-01
When microalgae culture medium is recycled, ions (e.g. Na(+), K(+), Ca(2+)) that were not assimilated by the microalgae accumulate in the medium. Therefore, a growth medium (HAMGM) was developed that included ions that were more easily assimilated by Chlorella vulgaris, such as ammonium one (NH(4)(+)). Recycling performance was studied by carrying out 8-week continuous cultivation of C. vulgaris with recycled HAMGM medium. No loss of biomass productivity was observed compared to culture in a conventional medium, and accumulation of ions over time was negligible. Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Abdi, Mohamad; Hajihasani, Mojtaba; Gharibzadeh, Shahriar; Tavakkoli, Jahan
2012-12-01
Ultrasound waves have been widely used in diagnostic and therapeutic medical applications. Accurate and effective simulation of ultrasound beam propagation and its interaction with tissue has been proved to be important. The nonlinear nature of the ultrasound beam propagation, especially in the therapeutic regime, plays an important role in the mechanisms of interaction with tissue. There are three main approaches in current computational fluid dynamics (CFD) methods to model and simulate nonlinear ultrasound beams: macroscopic, mesoscopic and microscopic approaches. In this work, a mesoscopic CFD method based on the Lattice-Boltzmann model (LBM) was investigated. In the developed method, the Boltzmann equation is evolved to simulate the flow of a Newtonian fluid with the collision model instead of solving the Navier-Stokes, continuity and state equations which are used in conventional CFD methods. The LBM has some prominent advantages over conventional CFD methods, including: (1) its parallel computational nature; (2) taking microscopic boundaries into account; and (3) capability of simulating in porous and inhomogeneous media. In our proposed method, the propagating medium is discretized with a square grid in 2 dimensions with 9 velocity vectors for each node. Using the developed model, the nonlinear distortion and shock front development of a finiteamplitude diffractive ultrasonic beam in a dissipative fluid medium was computed and validated against the published data. The results confirm that the LBM is an accurate and effective approach to model and simulate nonlinearity in finite-amplitude ultrasound beams with Mach numbers of up to 0.01 which, among others, falls within the range of therapeutic ultrasound regime such as high intensity focused ultrasound (HIFU) beams. A comparison between the HIFU nonlinear beam simulations using the proposed model and pseudospectral methods in a 2D geometry is presented.
ERIC Educational Resources Information Center
Riordain, Maire Ni; O'Donoghue, John
2011-01-01
The explosion of Gaeilge (Irish)-medium primary and secondary schools has played a crucial role in the rebirth of our native language in Ireland. The popularity of attending Gaeilge-medium education is significant, and continues to increase annually ("Gaeilscoileanna Teo" 2008). However, the majority of Gaeilgeoiri (students who learn…
Possible repetitive pulse operation of diode-pumped alkali laser (DPAL)
NASA Astrophysics Data System (ADS)
Endo, Masamori
2017-01-01
A theoretical study has been conducted for investigating the possibility of a diode-pumped alkali laser (DPAL) operating in repetitive pulsed mode. A one-dimensional, time-dependent rate-equation simulation of a Cs DPAL was developed to calculate the dynamic behavior of the active medium when Q-switching or cavity dumping was applied. The simulation modeled our small-scale experimental apparatus. In the continuous-wave (CW) mode, the calculated output power was in good agreement with the experimental value. Q-switching was shown to be ineffective because of the short spontaneous lifetime of the active medium, on the order of 10 ns. On the other hand, cavity dumping was proven to be effective. In typical operational conditions, a 54 times increase in peak power with respect to the CW power was predicted.
Intermittent Lagrangian velocities and accelerations in three-dimensional porous medium flow.
Holzner, M; Morales, V L; Willmann, M; Dentz, M
2015-07-01
Intermittency of Lagrangian velocity and acceleration is a key to understanding transport in complex systems ranging from fluid turbulence to flow in porous media. High-resolution optical particle tracking in a three-dimensional (3D) porous medium provides detailed 3D information on Lagrangian velocities and accelerations. We find sharp transitions close to pore throats, and low flow variability in the pore bodies, which gives rise to stretched exponential Lagrangian velocity and acceleration distributions characterized by a sharp peak at low velocity, superlinear evolution of particle dispersion, and double-peak behavior in the propagators. The velocity distribution is quantified in terms of pore geometry and flow connectivity, which forms the basis for a continuous-time random-walk model that sheds light on the observed Lagrangian flow and transport behaviors.
Complexity analysis on public transport networks of 97 large- and medium-sized cities in China
NASA Astrophysics Data System (ADS)
Tian, Zhanwei; Zhang, Zhuo; Wang, Hongfei; Ma, Li
2018-04-01
The traffic situation in Chinese urban areas is continuing to deteriorate. To make a better planning and designing of the public transport system, it is necessary to make profound research on the structure of urban public transport networks (PTNs). We investigate 97 large- and medium-sized cities’ PTNs in China, construct three types of network models — bus stop network, bus transit network and bus line network, then analyze the structural characteristics of them. It is revealed that bus stop network is small-world and scale-free, bus transit network and bus line network are both small-world. Betweenness centrality of each city’s PTN shows similar distribution pattern, although these networks’ size is various. When classifying cities according to the characteristics of PTNs or economic development level, the results are similar. It means that the development of cities’ economy and transport network has a strong correlation, PTN expands in a certain model with the development of economy.
NASA Astrophysics Data System (ADS)
Poveshchenko, Yu A.; Podryga, V. O.; Rahimly, P. I.; Sharova, Yu S.
2018-01-01
The thermodynamically equilibrium model for splitting by the physical processes of a two-component three-phase filtration fluid dynamics with gas hydrate inclusions is considered in the paper, for which a family of two-layer completely conservative difference schemes of the support operators method with time weights profiled in space is constructed. On the irregular grids of the theory of the support-operators method applied to the specifics of the processes of transfer of saturations and internal energies of water and gas in a medium with gas hydrate inclusions, methods of directwind approximation of these processes are considered. These approximations preserve the continual properties of divergence-gradient operations in their difference form and are related to the velocity field providing saturations transfer and internal energies of fluids. Fluid dynamics with gas hydrate inclusions are also calculated on the basis of the proposed approach, in particular, in areas of severe pressure depression in the collector space.
Burton, Deron C; Confield, Evan; Gasner, Mary Rose; Weisfuse, Isaac
2011-10-01
Small businesses need to engage in continuity planning to assure delivery of goods and services and to sustain the economy during an influenza pandemic. This is especially true in New York City, where 98 per cent of businesses have fewer than 100 employees. It was an objective therefore, to determine pandemic influenza business continuity practices and strategies suitable for small and medium-sized NYC businesses. The study design used focus groups, and the participants were owners and managers of businesses with fewer than 500 employees in New York City. The main outcome measures looked for were the degree of pandemic preparedness, and the feasibility of currently proposed business continuity strategies. Most participants reported that their businesses had no pandemic influenza plan. Agreement with feasibility of specific business continuity strategies was influenced by the type of business represented, cost of the strategy, and business size. It was concluded that recommendations for pandemic-related business continuity plans for small and medium-sized businesses should be tailored to the type and size of business and should highlight the broad utility of the proposed strategies to address a range of business stressors.
Effective and Accurate Morphology Models for Asian and Saharan Mineral Dust Scattering Properties
NASA Astrophysics Data System (ADS)
Stegmann, P.; Yang, P.
2017-12-01
It is well known that mineral dust particles from desert sources can have a significant influence on the planetary radiation balance. In order to determine the sign and magnitude of the dust radiative forcing effect, complex models have been and continue to be developed. Key factors which influence the single-scattering properties of mineral dust are dust source regions and thus mineralogical composition, and its mixture with water, sea salt, and products of human activity, such as soot. The ensemble of mineral dust scattering particles may then be modeled either as a simple placeholder shape, often ellipsoidal, through the utilization of an appropriate effective medium refractive index scheme. On the other hand, the scattering particles may be represented in a more rigorous manner, such as Voronoi-tessellated aggregates including fractal soot chains. The consequences and differences of either choice are investigated in the project at hand. It will be shown that the effective medium model indicates a drastic dependence of the mineral dust particle composition on the particle size. Thus the refractive index of a dust particle is in fact a function of its size, amongst other factors. Regional differences between African and Asian mineral dust are also of significance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Redfield, Seth; Linsky, Jeffrey L., E-mail: sredfield@wesleyan.edu, E-mail: jlinsky@jila.colorado.edu
Ultraviolet and optical spectra of interstellar gas along the lines of sight to nearby stars have been interpreted by Redfield and Linsky and previous studies as a set of discrete warm, partially ionized clouds each with a different flow vector, temperature, and metal depletion. Recently, Gry and Jenkins proposed a fundamentally different model consisting of a single cloud with nonrigid flows filling space out to 9 pc from the Sun that they propose better describes the local ISM. Here we test these fundamentally different morphological models against the spatially unbiased Malamut et al. spectroscopic data set, and find that themore » multiple cloud morphology model provides a better fit to both the new and old data sets. The detection of three or more velocity components along the lines of sight to many nearby stars, the presence of nearby scattering screens, the observed thin elongated structures of warm interstellar gas, and the likely presence of strong interstellar magnetic fields also support the multiple cloud model. The detection and identification of intercloud gas and the measurement of neutral hydrogen density in clouds beyond the Local Interstellar Cloud could provide future morphological tests.« less
Growth kinetics of Bacillus stearothermophilus BR219
DOE Office of Scientific and Technical Information (OSTI.GOV)
Worden, R.M.; Subramanian, R.; Bly, M.J.
1991-12-31
Bacillus stearothermophilus BR219, a phenol-resistant thermophile, can convert phenol to the specialty chemical catechol. The growth kinetics of this organism were studied in batch, continuous, and immobilized-cell culture. Batch growth was insensitive to pH between 6.0 and 8.0, but little growth occurred at 5.5. In continuous culture on a dilute medium supplemented with 10 mM phenol, several steady states were achieved between dilution rates of 0.25 and 1.3 h{sup -1}. Phenol degradation was found to be uncoupled from growth. Immobilized cells grew rapidly in a rich medium, but cell viability plummeted following a switch to a dilute medium supplemented withmore » 5 mM phenol.« less
Computational study for optimization of a plasmon FET as a molecular biosensor
NASA Astrophysics Data System (ADS)
Ciappesoni, Mark; Cho, Seongman; Tian, Jieyuan; Kim, Sung Jin
2018-02-01
Surface Plasmon Resonance (SPR) is currently being widely studied as it exhibits sensitive optical properties to changes in in the refractive index of the surrounding medium. As novel devices using SPR have been developing rapidly there is a necessity to develop models and simulation environments that will allow for continued development and optimization of these devices. A biological sensing device of interest is the Plasmon FET which has been proven experimentally to have a limit of detection (LOD) of 20pg/ml while being immune to the absorption of the medium. The Plasmon FET is a metal-semiconductor-metal detector which employ functionalized gold nanostructures on a semi-conducting layer. This direct approach has the advantages of not requiring readout optics reducing size and allowing for point-of -care measurements. Using Lumerical FDTD and Device numerical solvers, we can report an advanced simulation environment illustrating several key sensor specifications including LOD, resolution, sensitivity, and dynamic range, for a variety of biological markers providing a comprehensive analysis of a Direct Plasmon-to-Electric conversion device designed to function with colored mediums (eg.whole blood). This model allows for the simulation and optimization of a plasmonic sensor that already o ers advantages in size, operability, and multiplexing-capability, with real time monitoring.
An Amorphous Network Model for Capillary Flow and Dispersion in a Partially Saturated Porous Medium
NASA Astrophysics Data System (ADS)
Simmons, C. S.; Rockhold, M. L.
2013-12-01
Network models of capillary flow are commonly used to represent conduction of fluids at pore scales. Typically, a flow system is described by a regular geometric lattice of interconnected tubes. Tubes constitute the pore throats, while connection junctions (nodes) are pore bodies. Such conceptualization of the geometry, however, is questionable for the pore scale, where irregularity clearly prevails, although prior published models using a regular lattice have demonstrated successful descriptions of the flow in the bulk medium. Here a network is allowed to be amorphous, and is not subject to any particular lattice structure. Few network flow models have treated partially saturated or even multiphase conditions. The research trend is toward using capillary tubes with triangular or square cross sections that have corners and always retain some fluid by capillarity when drained. In contrast, this model uses only circular capillaries, whose filled state is controlled by a capillary pressure rule for the junctions. The rule determines which capillary participate in the flow under an imposed matric potential gradient during steady flow conditions. Poiseuille's Law and Laplace equation are used to describe flow and water retention in the capillary units of the model. A modified conjugate gradient solution for steady flow that tracks which capillary in an amorphous network contribute to fluid conduction was devised for partially saturated conditions. The model thus retains the features of classical capillary models for determining hydraulic flow properties under unsaturated conditions based on distribution of non-interacting tubes, but now accounts for flow exchange at junctions. Continuity of the flow balance at every junction is solved simultaneously. The effective water retention relationship and unsaturated permeability are evaluated for an extensive enough network to represent a small bulk sample of porous medium. The model is applied for both a hypothetically randomly generate network and for a directly measured porous medium structure, by means of xray-CT scan. A randomly generated network has the benefit of providing ensemble averages for sample replicates of a medium's properties, whereas network structure measurements are expected to be more predictive. Dispersion of solute in a network flow is calculate by using particle tracking to determine the travel time breakthrough between inflow and outflow boundaries. The travel time distribution can exhibit substantial skewness that reflects both network velocity variability and mixing dilution at junctions. When local diffusion is not included, and transport is strictly advective, then the skew breakthrough is not due to mobile-immobile flow region behavior. The approach of dispersivity to its asymptotic value with sample size is examined, and may be only an indicator of particular stochastic flow variation. It is not proven that a simplified network flow model can accurately predict the hydraulic properties of a sufficiently large-size medium sample, but such a model can at least demonstrate macroscopic flow resulting from the interaction of physical processes at pore scales.
Photonic band gap effect and structural color from silver nanoparticle gelatin emulsion
NASA Astrophysics Data System (ADS)
Kok, Mang Hin; Ma, Rui; Lee, Jeffrey Chi Wai; Tam, Wing Yim; Chan, C. T.; Sheng, Ping; Cheah, Kok Wai
2005-10-01
We have fabricated planar structures of silver nanoparticles in monochromatic gelatin emulsion with a continuous spacing ranging from 0.15-0.40 micron using a two-beam interference of a single laser source. Our planar holograms display a colorful “rainbow” pattern and photonic bandgaps covering the visible and IR ranges. We model the planar silver nanoparticle-gelatin composite system using an effective medium approach and good agreement is obtained between theory and experiment.
Van Reet, N; Pyana, P P; Deborggraeve, S; Büscher, P; Claes, F
2011-07-01
Trypanosoma brucei (T.b.) gambiense causes the chronic form of human African trypanosomiasis or sleeping sickness. One of the major problems with studying T.b. gambiense is the difficulty to isolate it from its original host and the difficult adaptation to in vivo and in vitro mass propagation. The objective of this study was to evaluate if an established method for axenic culture of pleomorphic bloodstream form T.b. brucei strains, based on methylcellulose containing HMI-9 medium, also facilitated the continuous in vitro propagation of other bloodstream form Trypanozoon strains, in particular of T.b. gambiense. Bloodstream form trypanosomes from one T.b. brucei, two T.b. rhodesiense, one T. evansi and seven T.b. gambiense strains were isolated from mouse blood and each was concurrently cultivated in liquid and methylcellulose-containing HMI-9 based medium, either with or without additional human serum supplementation, for over 10 consecutive sub passages. Although HMI-9 based medium supplemented with 1.1% (w/v) methylcellulose supported the continuous cultivation of all non-gambiense strains better than liquid media could, the in vitro cultivation of all gambiense strains was only achieved in HMI-9 based medium containing 1.1% (w/v) methylcellulose, 15% (v/v) fetal calf serum and 5% (v/v) heat-inactivated human serum. Copyright © 2011 Elsevier Inc. All rights reserved.
40 CFR 205.57-8 - Continued testing.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Continued testing. 205.57-8 Section 205.57-8 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) NOISE ABATEMENT PROGRAMS TRANSPORTATION EQUIPMENT NOISE EMISSION CONTROLS Medium and Heavy Trucks § 205.57-8 Continued...
Nakano, Yusuke; Mizuno, Tomofumi; Niwa, Toru; Mukai, Kentaro; Wakabayashi, Hirokazu; Watanabe, Atsushi; Ando, Hirohiko; Takashima, Hiroaki; Murotani, Kenta; Waseda, Katsuhisa; Amano, Tetsuya
2018-01-27
Tolvaptan (TLV) has an inhibiting effect for worsening renal function (WRF) in acute decompensated heart failure (HF) patients. However, there are limited data regarding the effect of continuous TLV administration on medium-term WRF.This was a retrospective observational study in hospitalized HF patients with chronic kidney disease (CKD). TLV was administered to those patients with fluid retention despite standard HF therapy. We compared 34 patients treated with TLV (TLV group) to 33 patients treated with conventional HF therapy with high-dose loop diuretics (furosemide ≥ 40 mg) (Loop group). Clinical outcomes, including the incidence of medium-term WRF, defined as increase of serum creatinine > 0.3 mg/dL, at 6 months after discharge and adverse events rate, were evaluated.Baseline patient characteristics were not different between the TLV and Loop group. The TLV group consisted of less frequent use of loop diuretics and carperitide compared with the Loop group. The incidence of medium-term WRF was significantly lower in the TLV group than in the Loop group (3.2% versus 31.0%, P = 0.002). Multivariate logistic analysis showed that the TLV non-user was an independent predictor of medium-term WRF. Kaplan-Meier analysis revealed that the long-term event-free survival was significantly higher in the TLV group (log-rank P = 0.01).Continuous administration of TLV may reduce the risk of medium-term WRF, resulting possibility in improvement of long-term adverse outcomes in HF patients with CKD.
Effects of small variations of speed of sound in optoacoustic tomographic imaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deán-Ben, X. Luís; Ntziachristos, Vasilis; Razansky, Daniel, E-mail: dr@tum.de
2014-07-15
Purpose: Speed of sound difference in the imaged object and surrounding coupling medium may reduce the resolution and overall quality of optoacoustic tomographic reconstructions obtained by assuming a uniform acoustic medium. In this work, the authors investigate the effects of acoustic heterogeneities and discuss potential benefits of accounting for those during the reconstruction procedure. Methods: The time shift of optoacoustic signals in an acoustically heterogeneous medium is studied theoretically by comparing different continuous and discrete wave propagation models. A modification of filtered back-projection reconstruction is subsequently implemented by considering a straight acoustic rays model for ultrasound propagation. The results obtainedmore » with this reconstruction procedure are compared numerically and experimentally to those obtained assuming a heuristically fitted uniform speed of sound in both full-view and limited-view optoacoustic tomography scenarios. Results: The theoretical analysis showcases that the errors in the time-of-flight of the signals predicted by considering the straight acoustic rays model tend to be generally small. When using this model for reconstructing simulated data, the resulting images accurately represent the theoretical ones. On the other hand, significant deviations in the location of the absorbing structures are found when using a uniform speed of sound assumption. The experimental results obtained with tissue-mimicking phantoms and a mouse postmortem are found to be consistent with the numerical simulations. Conclusions: Accurate analysis of effects of small speed of sound variations demonstrates that accounting for differences in the speed of sound allows improving optoacoustic reconstruction results in realistic imaging scenarios involving acoustic heterogeneities in tissues and surrounding media.« less
A microscopic lane changing process model for multilane traffic
NASA Astrophysics Data System (ADS)
Lv, Wei; Song, Wei-guo; Liu, Xiao-dong; Ma, Jian
2013-03-01
In previous simulations lane-changing behavior is usually assumed as an instantaneous action. However, in real traffic, lane changing is a continuing process which can seriously affect the following cars. In this paper, a microscopic lane-changing process (LCP) model is clearly described. A new idea of simplifying the lane-changing process to the car-following framework is presented by controlling fictitious cars. To verify the model, the results of flow, lane-changing frequency, and single-car velocity are extracted from experimental observations and are compared with corresponding simulation. It is found that the LCP model agrees well with actual traffic flow and lane-changing behaviors may induce a 12%-18% reduction of traffic flow. The results also reflect that most of the drivers on the two roads in a city are conservative but not aggressive to change lanes. Investigation of lane-changing frequency shows that the largest lane-changing frequency occurs at a medium density range from 15 vehs km lane to 35 vehs km lane. It also implies that the lane-changing process might strengthen velocity variation at medium density and weaken velocity variation at high density. It is hoped that the idea of this study may be helpful to promote the modeling and simulation study of traffic flow.
Uniform, stable supply of medium for in vitro cell culture using a robust chamber
NASA Astrophysics Data System (ADS)
Wei, Juan; Liu, Chong; Jiang, Yang; Liu, Tao; Chen, Li; Liu, Bo; Li, Jingmin
2018-06-01
A uniform, stable supply of medium is important for in vitro cell culture. In this paper, a microfluidic device is presented for culturing cells inside a robust chamber with continuous perfusion of medium. The device consists of a main channel, two bifurcated channels and a culture chamber. The culture chamber connects to the bifurcated channels via multiple paths, and distributes symmetrically on the main channel, to improve the efficiency of medium exchange. Furthermore, regular polygonal chambers with various numbers of edges have been designed, to study the effects of chamber shape on flow fields. The finite element method has been employed to predict the effects of multiple paths on the uniformity and stability of flow fields in the culture chamber. Particle tracking technology has been used to evaluate the flow fields in the chambers, and PC-12 cells have been cultured using the microfluidic device, to test its validity. The results of simulation and experiment indicate that the microfluidic design could provide a continuous interstitial-like flow microenvironment, with a relatively stable and uniform supply of medium.
ERIC Educational Resources Information Center
Xu, Hongjiang; Rondeau, Patrick J.; Mahenthiran, Sakthi
2011-01-01
Enterprise Resource Planning (ERP) system implementation projects are notoriously risky. While large-scale ERP cases continue to be developed, relatively few new ERP cases have been published that further ERP implementation education in small to medium size firms. This case details the implementation of a new ERP system in a medium sized…
A fluid-mechanic-based model for the sedimentation of flocculated suspensions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chhabra, R.P.; Prasad, D.
1991-02-01
Due to the wide occurrence of the suspensions of fine particles in mineral and chemical processing industries, considerable interest has been shown in modeling the hydrodynamic behavior of such systems. A fluid-mechanic-based analysis is presented for the settling behavior of flocculated4d suspensions. Flocs have been modeled as composite spheres consisting of a solid core embedded in a shell of homogeneous and isotropic porous medium. Theoretical estimates of the rates of sedimentation for flocculated suspensions are obtained by solving the equations of continuity and of motion. The interparticle interactions are incorporated into the analysis by employing the Happel free surface cellmore » model. The results reported embrace wide ranges of conditions of floc size and concentration.« less
NASA Astrophysics Data System (ADS)
Klimova, E. V.; Semeykin, A. Yu
2018-01-01
The urgent task of modern production is to reduce the risks of man-made disasters and, as a consequence, preserve the life and health of workers, material properties and natural environment. In the mining industry, one of the reasons for the high level of injuries and accidents is the collapse of the soil. Macro system modelling of slopes stability of the quarries is based on the compliance with the conditions of physical and mathematical correctness of the application of the model of a continuous medium. This type of modelling allows to choose the safe parameters of the slopes of the quarries and to reduce the risk of collapse of the soil.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sarker, M. R. I., E-mail: islamrabiul@yahoo.com; Saha, Manabendra, E-mail: manabendra.saha@adelaide.edu.au, E-mail: manab04me@gmail.com; Beg, R. A.
A recirculating flow solar particle cavity absorber (receiver) is modeled to investigate the flow behavior and heat transfer characteristics of a novel developing concept. It features a continuous recirculating flow of non-reacting metallic particles (black silicon carbide) with air which are used as a thermal enhancement medium. The aim of the present study is to numerically investigate the thermal behavior and flow characteristics of the proposed concept. The proposed solar particle receiver is modeled using two phase discrete particle model (DPM), RNG k-flow model and discrete ordinate (DO) radiation model. Numerical analysis is carried out considering a solar receiver withmore » only air and the mixture of non-reacting particles and air as a heat transfer as well as heat carrying medium. The parametric investigation is conducted considering the incident solar flux on the receiver aperture and changing air flow rate and recirculation rate inside the receiver. A stand-alone feature of the recirculating flow solar particle receiver concept is that the particles are directly exposed to concentrated solar radiation monotonously through recirculating flow inside the receiver and results in efficient irradiation absorption and convective heat transfer to air that help to achieve high temperature air and consequently increase in thermal efficiency. This paper presents, results from the developed concept and highlights its flow behavior and potential to enhance the heat transfer from metallic particles to air by maximizing heat carrying capacity of the heat transfer medium. The imposed milestones for the present system will be helpful to understand the radiation absorption mechanism of the particles in a recirculating flow based receiver, the thermal transport between the particles, the air and the cavity, and the fluid dynamics of the air and particle in the cavity.« less
Nishikido, Noriko; Matsuda, Kazumi; Fukuda, Eiko; Motoki, Chiharu; Tsutaki, Miho; Kawakami, Yuko; Yuasa, Akiko; Iijima, Miyoko; Tanaka, Mika; Hirata, Mamoru; Hojoh, Minoru; Ikeda, Tomoko; Maeda, Kazutoshi; Miyoshi, Yukari; Arai, Sumiko; Mitsuhashi, Hiroyuki
2007-01-01
The objective of this study is to develop an available empowerment model for workplace health promotion (WHP) in small and medium-sized enterprises (SMEs) and to evaluate its applicability and feasibility. Semi-structured interviews with employers and workers in SMEs were conducted to assess their actual requirements for support. The structure of our new empowerment model was discussed and established through several rounds of focus group meetings with occupational safety and health researchers and practitioners on the basis of results of our interviews. We developed a new participatory and action-oriented empowerment model based on needs for support of employers and workers in SMEs. This new model consists of three originally developed tools: an action checklist, an information guidebook, and a book of good practices. As the facilitators, occupational health nurses (OHNs) from health insurance associations were trained to empower employers and workers using these tools. Approximately 80 SMEs (with less than 300 employees) were invited to participate in the model project. With these tools and continued empowerment by OHNs, employers and workers were able to smoothly work on WHP. This newly developed participatory and action-oriented empowerment model that was facilitated by trained OHNs appears to be both applicable and feasible for WHP in SMEs in Japan.
A full-wave Helmholtz model for continuous-wave ultrasound transmission.
Huttunen, Tomi; Malinen, Matti; Kaipio, Jari P; White, Phillip Jason; Hynynen, Kullervo
2005-03-01
A full-wave Helmholtz model of continuous-wave (CW) ultrasound fields may offer several attractive features over widely used partial-wave approximations. For example, many full-wave techniques can be easily adjusted for complex geometries, and multiple reflections of sound are automatically taken into account in the model. To date, however, the full-wave modeling of CW fields in general 3D geometries has been avoided due to the large computational cost associated with the numerical approximation of the Helmholtz equation. Recent developments in computing capacity together with improvements in finite element type modeling techniques are making possible wave simulations in 3D geometries which reach over tens of wavelengths. The aim of this study is to investigate the feasibility of a full-wave solution of the 3D Helmholtz equation for modeling of continuous-wave ultrasound fields in an inhomogeneous medium. The numerical approximation of the Helmholtz equation is computed using the ultraweak variational formulation (UWVF) method. In addition, an inverse problem technique is utilized to reconstruct the velocity distribution on the transducer which is used to model the sound source in the UWVF scheme. The modeling method is verified by comparing simulated and measured fields in the case of transmission of 531 kHz CW fields through layered plastic plates. The comparison shows a reasonable agreement between simulations and measurements at low angles of incidence but, due to mode conversion, the Helmholtz model becomes insufficient for simulating ultrasound fields in plates at large angles of incidence.
In-Medium Similarity Renormalization Group Approach to the Nuclear Many-Body Problem
NASA Astrophysics Data System (ADS)
Hergert, Heiko; Bogner, Scott K.; Lietz, Justin G.; Morris, Titus D.; Novario, Samuel J.; Parzuchowski, Nathan M.; Yuan, Fei
We present a pedagogical discussion of Similarity Renormalization Group (SRG) methods, in particular the In-Medium SRG (IMSRG) approach for solving the nuclear many-body problem. These methods use continuous unitary transformations to evolve the nuclear Hamiltonian to a desired shape. The IMSRG, in particular, is used to decouple the ground state from all excitations and solve the many-body Schrödinger equation. We discuss the IMSRG formalism as well as its numerical implementation, and use the method to study the pairing model and infinite neutron matter. We compare our results with those of Coupled cluster theory (Chap. 8), Configuration-Interaction Monte Carlo (Chap. 9), and the Self-Consistent Green's Function approach discussed in Chap. 11 The chapter concludes with an expanded overview of current research directions, and a look ahead at upcoming developments.
The road to NHDPlus — Advancements in digital stream networks and associated catchments
Moore, Richard B.; Dewald, Thomas A.
2016-01-01
A progression of advancements in Geographic Information Systems techniques for hydrologic network and associated catchment delineation has led to the production of the National Hydrography Dataset Plus (NHDPlus). NHDPlus is a digital stream network for hydrologic modeling with catchments and a suite of related geospatial data. Digital stream networks with associated catchments provide a geospatial framework for linking and integrating water-related data. Advancements in the development of NHDPlus are expected to continue to improve the capabilities of this national geospatial hydrologic framework. NHDPlus is built upon the medium-resolution NHD and, like NHD, was developed by the U.S. Environmental Protection Agency and U.S. Geological Survey to support the estimation of streamflow and stream velocity used in fate-and-transport modeling. Catchments included with NHDPlus were created by integrating vector information from the NHD and from the Watershed Boundary Dataset with the gridded land surface elevation as represented by the National Elevation Dataset. NHDPlus is an actively used and continually improved dataset. Users recognize the importance of a reliable stream network and associated catchments. The NHDPlus spatial features and associated data tables will continue to be improved to support regional water quality and streamflow models and other user-defined applications.
Majee, Partha Sarathi; Bhattacharyya, Somnath; Gopmandal, Partha Pratim; Ohshima, Hiroyuki
2018-03-01
A theoretical study on the gel electrophoresis of a charged particle incorporating the effects of dielectric polarization and surface hydrophobicity at the particle-liquid interface is made. A simplified model based on the weak applied field and low charge density assumption is also presented and compared with the full numerical model for a nonpolarizable particle to elucidate the nonlinear effects such as double layer polarization and relaxation as well as surface conduction. The main motivation of this study is to analyze the electrophoresis of the surface functionalized nanoparticle with tunable hydrophobicity or charged fluid drop in gel medium by considering the electrokinetic effects and hydrodynamic interactions between the particle and the gel medium. An effective medium approach, in which the transport in the electrolyte-saturated hydrogel medium is governed by the Brinkman equation, is adopted in the present analysis. The governing electrokinetic equations based on the conservation principles are solved numerically. The Navier-slip boundary condition along with the continuity condition of dielectric displacement are imposed on the surface of the hydrophobic polarizable particle. The impact of the slip length on the electrophoresis is profound for a thinner Debye layer, however, surface conduction effect also becomes significant for a hydrophobic particle. Impact of hydrophobicity and relaxation effects are higher for a larger particle. Dielectric polarization creates a reduction in its electrophoretic propulsion and has negligible impact at the thinner Debye length as well as lower gel screening length. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Peculiarities of convection and oil maturation in 3D porous medium structure.
NASA Astrophysics Data System (ADS)
Yurie Khachay, Professor; Mindubaev, Mansur
2017-04-01
An important estimation of oil source thickness productivity is to study the thermal influences of magmatic intrusions on the maturation of the organic matter. The heterogeneity of permeability distribution of the reservoir rock and respectively the convection structure provide temperature heterogeneity and different degree of maturity for the oil source material. A numerical algorithm for solving the problem of developed convection in two-dimensional and three-dimensional models of the porous medium, which consists of a system of Darcy equations, heat conduction with convection term and the continuity equation, is developed. Because of the effective values of the coefficients of thermal conductivity, heat capacity, viscosity and permeability of the medium depend from the temperature; the system of equations is nonlinear. For solution we used the dimensionless system of coordinates. For numerical solution we used the longitudinal cross-implicit scheme. The coordinates step for the 3D model had been used constant and equal to H/20, where H=1- dimensionless thickness of porous medium layer. As it is shown from the variants of numerical solution, by the stationary regime of developed convection because of the temperature heterogeneous distribution in the sedimentary reservoir the formation of oil source matter different degree of maturity is possible. That result is very significant for estimation of reservoirs oil-bearing The work was fulfilled by supporting of the Fund of UB RAS, project 1518532. Reference 1. Yurie Khachay and Mansur Mindubaev, 2016, Effect of convective transport in porous media on the conductions of organic matter maturation and generation of hydrocarbons in trap rocks complexes, Energy Procedia. 74 pp.79-83.
Taylor, Adam B; Kim, Jooho; Chon, James W M
2012-02-27
In a multilayered structure of absorptive optical recording media, continuous-wave laser operation is highly disadvantageous due to heavy beam extinction. For a gold nanorod based recording medium, the narrow surface plasmon resonance (SPR) profile of gold nanorods enables the variation of extinction through mulilayers by a simple detuning of the readout wavelength from the SPR peak. The level of signal extinction through the layers can then be greatly reduced, resulting more efficient readout at deeper layers. The scattering signal strength may be decreased at the detuned wavelength, but balancing these two factors results an optimal scattering peak wavelength that is specific to each layer. In this paper, we propose to use detuned SPR scattering from gold nanorods as a new mechanism for continuous-wave readout scheme on gold nanorod based multilayered optical storage. Using this detuned scattering method, readout using continuous-wave laser is demonstrated on a 16 layer optical recording medium doped with heavily distributed, randomly oriented gold nanorods. Compared to SPR on-resonant readout, this method reduced the required readout power more than one order of magnitude, with only 60 nm detuning from SPR peak. The proposed method will be highly beneficial to multilayered optical storage applications as well as applications using a continuous medium doped heavily with plasmonic nanoparticles.
A First Look at PCMH Implementation for Minority Veterans: Room for Improvement.
Hernandez, Susan E; Taylor, Leslie; Grembowski, David; Reid, Robert J; Wong, Edwin; Nelson, Karin M; Liu, Chuan-Fen; Fihn, Stephan D; Hebert, Paul L
2016-03-01
Implementation of Patient Aligned Care Teams (PACT), a patient-centered medical home model, has been inconsistent among the >900 primary care facilities in the Veterans Health Administration. Estimate if the degree of PACT implementation at a facility varied with the percentage of minority veteran patients at the facility. Cross-sectional, facility-level analysis of PACT implementation measures in 2012. Veterans Health Administration hospital-based and community-based primary care facilities. We used a previously validated PACT Implementation Progress Index (Pi) and its 8 domains: access, continuity of care, care coordination, comprehensiveness, self-management support, and patient-centered care and communication, shared decision-making domains, and team functioning. Facilities were categorized as low (<5.2%, n=208), medium (5.2%-25.8%, n=413), and high (>25.8%, n=206) percent minority based on the percent of their own veteran population. Most minority veterans received care in high minority (69%) and medium minority facilities (29%). In adjusted analyses, medium and high minority facilities scored 0.773 (P=0.009) and 0.930 (P=0.008) points lower on the Pi score relative to low minority facilities. Relative to low minority facilities, both medium and high minority facilities were less likely of having high Pi scores (≥2) and more likely of having low Pi scores (≤-2). Both medium and high minority facilities had the same 3 domain scores lower than low minority facilities (care coordination, comprehensiveness, and self-management). Overall PACT implementation varied with respect to the racial/ethnic composition of a facility, with medium and high minority facilities having a lower implementation scores.
Random medium model for cusping of plane waves.
Li, Jia; Korotkova, Olga
2017-09-01
We introduce a model for a three-dimensional (3D) Schell-type stationary medium whose degree of potential's correlation satisfies the Fractional Multi-Gaussian (FMG) function. Compared with the scattered profile produced by the Gaussian Schell-model (GSM) medium, the Fractional Multi-Gaussian Schell-model (FMGSM) medium gives rise to a sharp concave intensity apex in the scattered field. This implies that the FMGSM medium also accounts for a larger than Gaussian's power in the bucket (PIB) in the forward scattering direction, hence being a better candidate than the GSM medium for generating highly-focused (cusp-like) scattered profiles in the far zone. Compared to other mathematical models for the medium's correlation function which can produce similar cusped scattered profiles the FMG function offers unprecedented tractability being the weighted superposition of Gaussian functions. Our results provide useful applications to energy counter problems and particle manipulation by weakly scattered fields.
Effective-Medium Models for Marine Gas Hydrates, Mallik Revisited
NASA Astrophysics Data System (ADS)
Terry, D. A.; Knapp, C. C.; Knapp, J. H.
2011-12-01
Hertz-Mindlin type effective-medium dry-rock elastic models have been commonly used for more than three decades in rock physics analysis, and recently have been applied to assessment of marine gas hydrate resources. Comparisons of several effective-medium models with derivative well-log data from the Mackenzie River Valley, Northwest Territories, Canada (i.e. Mallik 2L-38 and 5L-38) were made several years ago as part of a marine gas hydrate joint industry project in the Gulf of Mexico. The matrix/grain supporting model (one of the five models compared) was clearly a better representation of the Mallik data than the other four models (2 cemented sand models; a pore-filling model; and an inclusion model). Even though the matrix/grain supporting model was clearly better, reservations were noted that the compressional velocity of the model was higher than the compressional velocity measured via the sonic logs, and that the shear velocities showed an even greater discrepancy. Over more than thirty years, variations of Hertz-Mindlin type effective medium models have evolved for unconsolidated sediments and here, we briefly review their development. In the past few years, the perfectly smooth grain version of the Hertz-Mindlin type effective-medium model has been favored over the infinitely rough grain version compared in the Gulf of Mexico study. We revisit the data from the Mallik wells to review assertions that effective-medium models with perfectly smooth grains are a better predictor than models with infinitely rough grains. We briefly review three Hertz-Mindlin type effective-medium models, and standardize nomenclature and notation. To calibrate the extended effective-medium model in gas hydrates, we use a well accepted framework for unconsolidated sediments through Hashin-Shtrikman bounds. We implement the previously discussed effective-medium models for saturated sediments with gas hydrates and compute theoretical curves of seismic velocities versus gas hydrate saturation to compare with well log data available from the Canadian gas hydrates research site. By directly comparing the infinitely rough and perfectly smooth grain versions of the Hertz-Mindlin type effective-medium model, we provide additional insight to the discrepancies noted in the Gulf of Mexico study.
NASA Technical Reports Server (NTRS)
Smith, D. L.; Krikorian, A. D.
1990-01-01
Wounded zygotic embryos of cultivated carrot produce somatic proembryos on hormone-free nutrient medium containing 1 mM NH4+ as the sole nitrogen source. Continued maintenance of proembryos on this medium leads to a "pure" culture of preglobular stage proembryos (PGSPs). Ethylene had no effect on this process. Also, somatic embryo production was not affected by growing cultures on activated charcoal-impregnated filter papers. However, somatic proembyros initiated on activated charcoal papers were not maintainable as PGSPs and developed into later embryo stages. Normally, medium pH dropped from 5.7 to 4 during each subculture period, but when using activated charcoal papers the pH endpoint was around 6 - 7 due to a leachable substance(s) within the filter papers. When powdered, activated charcoal was used in the medium as an adsorbent of products potentially released after wounding, pH dropped at the normal rate and to the expected levels; proembryos did not mature into later embryo stages and were maintainable exclusively as PGSPs. Low pH (approximately 4) is detrimental to proembyro production, but is essential to maintaining PGSPs on hormone-free nutrient medium, whereas a sustained pH > or = 5.7 allows continued development of PGSPs into later embryo stages.
O'Farrell, Timothy J.; Murphy, Marie; Alter, Jane; Fals-Stewart, William
2008-01-01
Alcoholic patients in inpatient detoxification were randomized to treatment as usual (TAU) or to a brief family treatment (BFT) intervention to promote continuing care post-detox. BFT consisted of meeting with the patient and an adult family member (in person or over the phone) with whom the patient lived, to review and recommend potential continuing care plans for the patient. Results showed that BFT patients (N=24), were significantly more likely than TAU patients (N=21), to enter a continuing care program after detoxification. This was a medium to large effect size. In the 3 months after detoxification, days using alcohol or drugs (a) trended lower for treatment-exposed BFT patients who had an in-person family meeting than TAU counterparts (medium effect), and (b) were significantly lower for patients who entered continuing care regardless of treatment condition (large effect). PMID:17614242
O'Farrell, Timothy J; Murphy, Marie; Alter, Jane; Fals-Stewart, William
2008-04-01
Alcohol-dependent patients in inpatient detoxification were randomized to treatment-as-usual (TAU) intervention or brief family treatment (BFT) intervention to promote continuing care postdetoxification. BFT consisted of meeting with the patient and an adult family member (in person or over the phone) with whom the patient lived to review and recommend potential continuing care plans for the patient. Results showed that BFT patients (n = 24) were significantly more likely than TAU patients (n = 21) to enter a continuing care program after detoxification. This was a medium to large effect size. In the 3 months after detoxification, days using alcohol or drugs (a) trended lower for treatment-exposed BFT patients who had an in-person family meeting than for TAU counterparts (medium effect), and (b) were significantly lower for patients who entered continuing care regardless of treatment condition (large effect).
Agha, Nezha Ahmad; Feyerabend, Frank; Mihailova, Boriana; Heidrich, Stefanie; Bismayer, Ulrich; Willumeit-Römer, Regine
2016-01-01
Magnesium and its alloys have considerable potential for orthopedic applications. During the degradation process the interface between material and tissue is continuously changing. Moreover, too fast or uncontrolled degradation is detrimental for the outcome in vivo. Therefore in vitro setups utilizing physiological conditions are promising for the material/degradation analysis prior to animal experiments. The aim of this study is to elucidate the influence of inorganic salts contributing to the blood buffering capacity on degradation. Extruded pure magnesium samples were immersed under cell culture conditions for 3 and 10 days. Hank's balanced salt solution without calcium and magnesium (HBSS) plus 10% of fetal bovine serum (FBS) was used as the basic immersion medium. Additionally, different inorganic salts were added with respect to concentration in Dulbecco's modified Eagle's medium (DMEM, in vitro model) and human plasma (in vivo model) to form 12 different immersion media. Influences on the surrounding environment were observed by measuring pH and osmolality. The degradation interface was analyzed by electron-induced X-ray emission (EIXE) spectroscopy, including chemical-element mappings and electron microprobe analysis, as well as Fourier transform infrared reflection micro-spectroscopy (FTIR). Copyright © 2015 Elsevier B.V. All rights reserved.
UNDERSTANDING THE STRUCTURE OF THE HOT INTERSTELLAR MEDIUM IN NORMAL EARLY-TYPE GALAXIES.
NASA Astrophysics Data System (ADS)
Traynor, Liam; Kim, Dong-Woo; Chandra Galaxy Atlas
2018-01-01
The hot interstellar medium (ISM) of early-type galaxies (ETG's) provides crucial insight into the understanding of their formation and evolution. Mechanisms such as type Ia supernovae heating, AGN feedback, deepening potential depth through dark matter assembly and ramp-pressure stripping are known to affect the structure of the ISM. By using temperature maps and radial temperature profiles of the hot ISM from ~70 ETG's with archival Chandra data, it is possible to classify the galaxy's ISM into common structural types. This is extended by using 3D fitting of the radial temperature profile in order to provide models that further constrain the structural types. Five structural types are present, negative (temperature decreases with radii), positive (temperature increases with radii), hybrid-dip (temperature decreases at small radii and increases at large radii), hybrid-bump (inverse of hybrid-dip) and quasi-isothermal (temperature is constant at all radii). This work will be continued by 1) determining which mechanisms are present in which galaxies and 2) analysing the model parameters between galaxies within each structural type to determine whether each type can be described by a single set of model parameters, indicating that the same physical processes are responsible for creating that structural type.
NASA Astrophysics Data System (ADS)
Taisne, B.; Pansino, S.; Manta, F.; Tay Wen Jing, C.
2017-12-01
Have you ever dreamed about continuous, high resolution InSAR data? Have you ever dreamed about a transparent earth allowing you to see what is actually going on under a volcano? Well, you likely dreamed about an analogue facility that allows you to scale down the natural system to fit into a room, with a controlled environment and complex visualisation system. Analogue modeling has been widely used to understand magmatic processes and thanks to a transparent analogue for the elastic Earth's crust, we can see, as it evolves with time, the migration of a dyke, the volume change of a chamber or the rise of a bubble in a conduit. All those phenomena are modeled theoretically or numerically, with their own simplifications. Therefore, how well are we really constraining the physical parameters describing the evolution of a dyke or a chamber? Getting access to those parameters, in real time and with high level of confidence is of paramount importance while dealing with unrest at volcanoes. The aim of this research is to estimate the uncertainties of the widely used Okada and Mogi models. To do so, we design a set of analogue experiments allowing us to explore different elastic properties of the medium, the characteristic of the fluid injected into the medium as well as the depth, size and volume change of a reservoir. The associated surface deformation is extracted using an array of synchronised cameras and using digital image correlation and structure from motion for horizontal and vertical deformation respectively. The surface deformation are then inverted to retrieve the controlling parameters (e.g. location and volume change of a chamber, or orientation, position, length, breadth and opening of a dyke). By comparing those results with the known parameters, that we can see and measure independently, we estimate the uncertainties of the models themself, and the associated level of confidence for each of the inverted parameters.
Theory of a ring laser. [electromagnetic field and wave equations
NASA Technical Reports Server (NTRS)
Menegozzi, L. N.; Lamb, W. E., Jr.
1973-01-01
Development of a systematic formulation of the theory of a ring laser which is based on first principles and uses a well-known model for laser operation. A simple physical derivation of the electromagnetic field equations for a noninertial reference frame in uniform rotation is presented, and an attempt is made to clarify the nature of the Fox-Li modes for an open polygonal resonator. The polarization of the active medium is obtained by using a Fourier-series method which permits the formulation of a strong-signal theory, and solutions are given in terms of continued fractions. It is shown that when such a continued fraction is expanded to third order in the fields, the familiar small-signal ring-laser theory is obtained.
NASA Astrophysics Data System (ADS)
Sharma, M. D.
2018-07-01
Phenomenon of reflection and refraction is considered at the plane interface between a thermoelastic medium and thermo-poroelastic medium. Both the media are isotropic and behave dissipative to wave propagation. Incident wave in thermo-poroelastic medium is considered inhomogeneous with deviation allowed between the directions of propagation and maximum attenuation. For this incidence, four attenuated waves reflect back in thermo-poroelastic medium and three waves refract to the continuing thermoelastic medium. Each of these reflected/refracted waves is inhomogeneous and propagates with a phase shift. The propagation characteristics (velocity, attenuation, inhomogeneity, phase shift, amplitude, energy) of reflected and refracted waves are calculated as functions of propagation direction and inhomogeneity of the incident wave. Variations in these propagation characteristics with the incident direction are illustrated through a numerical example.
40 CFR 1027.105 - How much are the fees?
Code of Federal Regulations, 2012 CFR
2012-07-01
... Section 1027.105 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION... (ii) Light-duty vehicles and trucks California-only 16,944 (iii) Medium-duty passenger vehicles Federal 33,883 (iv) Medium-duty passenger vehicles California-only 16,944 (v) Highway motorcycle All 2,414...
40 CFR 1027.105 - How much are the fees?
Code of Federal Regulations, 2011 CFR
2011-07-01
... Section 1027.105 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION... (ii) Light-duty vehicles and trucks California-only 16,944 (iii) Medium-duty passenger vehicles Federal 33,883 (iv) Medium-duty passenger vehicles California-only 16,944 (v) Highway motorcycle All 2,414...
40 CFR 1027.105 - How much are the fees?
Code of Federal Regulations, 2014 CFR
2014-07-01
... Section 1027.105 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION... (ii) Light-duty vehicles and trucks California-only 16,944 (iii) Medium-duty passenger vehicles Federal 33,883 (iv) Medium-duty passenger vehicles California-only 16,944 (v) Highway motorcycle All 2,414...
40 CFR 1027.105 - How much are the fees?
Code of Federal Regulations, 2013 CFR
2013-07-01
... Section 1027.105 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION... (ii) Light-duty vehicles and trucks California-only 16,944 (iii) Medium-duty passenger vehicles Federal 33,883 (iv) Medium-duty passenger vehicles California-only 16,944 (v) Highway motorcycle All 2,414...
21 CFR 866.2350 - Microbiological assay culture medium.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Microbiological assay culture medium. 866.2350 Section 866.2350 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Microbiology Devices § 866.2350...
21 CFR 866.2320 - Differential culture medium.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Differential culture medium. 866.2320 Section 866.2320 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Microbiology Devices § 866.2320 Differential culture...
21 CFR 866.2360 - Selective culture medium.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Selective culture medium. 866.2360 Section 866.2360 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Microbiology Devices § 866.2360 Selective culture...
21 CFR 866.2330 - Enriched culture medium.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Enriched culture medium. 866.2330 Section 866.2330 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Microbiology Devices § 866.2330 Enriched culture...
21 CFR 866.2360 - Selective culture medium.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Selective culture medium. 866.2360 Section 866.2360 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Microbiology Devices § 866.2360 Selective culture...
21 CFR 866.2390 - Transport culture medium.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Transport culture medium. 866.2390 Section 866.2390 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Microbiology Devices § 866.2390 Transport culture...
21 CFR 866.2350 - Microbiological assay culture medium.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Microbiological assay culture medium. 866.2350 Section 866.2350 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Microbiology Devices § 866.2350...
21 CFR 866.2390 - Transport culture medium.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Transport culture medium. 866.2390 Section 866.2390 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Microbiology Devices § 866.2390 Transport culture...
21 CFR 866.2300 - Multipurpose culture medium.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Multipurpose culture medium. 866.2300 Section 866.2300 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Microbiology Devices § 866.2300 Multipurpose culture...
21 CFR 866.2320 - Differential culture medium.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Differential culture medium. 866.2320 Section 866.2320 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Microbiology Devices § 866.2320 Differential culture...
21 CFR 866.2360 - Selective culture medium.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Selective culture medium. 866.2360 Section 866.2360 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Microbiology Devices § 866.2360 Selective culture...
21 CFR 866.2350 - Microbiological assay culture medium.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Microbiological assay culture medium. 866.2350 Section 866.2350 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Microbiology Devices § 866.2350...
21 CFR 866.2360 - Selective culture medium.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Selective culture medium. 866.2360 Section 866.2360 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Microbiology Devices § 866.2360 Selective culture...
21 CFR 866.2320 - Differential culture medium.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Differential culture medium. 866.2320 Section 866.2320 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Microbiology Devices § 866.2320 Differential culture...
21 CFR 866.2330 - Enriched culture medium.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Enriched culture medium. 866.2330 Section 866.2330 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Microbiology Devices § 866.2330 Enriched culture...
21 CFR 866.2390 - Transport culture medium.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Transport culture medium. 866.2390 Section 866.2390 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Microbiology Devices § 866.2390 Transport culture...
21 CFR 866.2360 - Selective culture medium.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Selective culture medium. 866.2360 Section 866.2360 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Microbiology Devices § 866.2360 Selective culture...
21 CFR 866.2390 - Transport culture medium.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Transport culture medium. 866.2390 Section 866.2390 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Microbiology Devices § 866.2390 Transport culture...
21 CFR 866.2300 - Multipurpose culture medium.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Multipurpose culture medium. 866.2300 Section 866.2300 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Microbiology Devices § 866.2300 Multipurpose culture...
21 CFR 866.2390 - Transport culture medium.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Transport culture medium. 866.2390 Section 866.2390 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Microbiology Devices § 866.2390 Transport culture...
21 CFR 866.2320 - Differential culture medium.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Differential culture medium. 866.2320 Section 866.2320 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Microbiology Devices § 866.2320 Differential culture...
21 CFR 866.2330 - Enriched culture medium.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Enriched culture medium. 866.2330 Section 866.2330 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Microbiology Devices § 866.2330 Enriched culture...
21 CFR 866.2350 - Microbiological assay culture medium.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Microbiological assay culture medium. 866.2350 Section 866.2350 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Microbiology Devices § 866.2350...
21 CFR 866.2300 - Multipurpose culture medium.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Multipurpose culture medium. 866.2300 Section 866.2300 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Microbiology Devices § 866.2300 Multipurpose culture...
21 CFR 866.2350 - Microbiological assay culture medium.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Microbiological assay culture medium. 866.2350 Section 866.2350 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Microbiology Devices § 866.2350...
21 CFR 866.2330 - Enriched culture medium.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Enriched culture medium. 866.2330 Section 866.2330 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Microbiology Devices § 866.2330 Enriched culture...
21 CFR 866.2330 - Enriched culture medium.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Enriched culture medium. 866.2330 Section 866.2330 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Microbiology Devices § 866.2330 Enriched culture...
21 CFR 866.2320 - Differential culture medium.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Differential culture medium. 866.2320 Section 866.2320 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Microbiology Devices § 866.2320 Differential culture...
21 CFR 866.2300 - Multipurpose culture medium.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Multipurpose culture medium. 866.2300 Section 866.2300 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Microbiology Devices § 866.2300 Multipurpose culture...
21 CFR 866.2300 - Multipurpose culture medium.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Multipurpose culture medium. 866.2300 Section 866.2300 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Microbiology Devices § 866.2300 Multipurpose culture...
NASA Astrophysics Data System (ADS)
Shimelevich, M. I.; Obornev, E. A.; Obornev, I. E.; Rodionov, E. A.
2017-07-01
The iterative approximation neural network method for solving conditionally well-posed nonlinear inverse problems of geophysics is presented. The method is based on the neural network approximation of the inverse operator. The inverse problem is solved in the class of grid (block) models of the medium on a regularized parameterization grid. The construction principle of this grid relies on using the calculated values of the continuity modulus of the inverse operator and its modifications determining the degree of ambiguity of the solutions. The method provides approximate solutions of inverse problems with the maximal degree of detail given the specified degree of ambiguity with the total number of the sought parameters n × 103 of the medium. The a priori and a posteriori estimates of the degree of ambiguity of the approximated solutions are calculated. The work of the method is illustrated by the example of the three-dimensional (3D) inversion of the synthesized 2D areal geoelectrical (audio magnetotelluric sounding, AMTS) data corresponding to the schematic model of a kimberlite pipe.
Modeling the VARTM Composite Manufacturing Process
NASA Technical Reports Server (NTRS)
Song, Xiao-Lan; Loos, Alfred C.; Grimsley, Brian W.; Cano, Roberto J.; Hubert, Pascal
2004-01-01
A comprehensive simulation model of the Vacuum Assisted Resin Transfer Modeling (VARTM) composite manufacturing process has been developed. For isothermal resin infiltration, the model incorporates submodels which describe cure of the resin and changes in resin viscosity due to cure, resin flow through the reinforcement preform and distribution medium and compaction of the preform during the infiltration. The accuracy of the model was validated by measuring the flow patterns during resin infiltration of flat preforms. The modeling software was used to evaluate the effects of the distribution medium on resin infiltration of a flat preform. Different distribution medium configurations were examined using the model and the results were compared with data collected during resin infiltration of a carbon fabric preform. The results of the simulations show that the approach used to model the distribution medium can significantly effect the predicted resin infiltration times. Resin infiltration into the preform can be accurately predicted only when the distribution medium is modeled correctly.
Inamdar, Shrirang Appasaheb; Surwase, Shripad Nagnath; Jadhav, Shekhar Bhagwan; Bapat, Vishwas Anant; Jadhav, Jyoti Prafull
2013-01-01
L-DOPA (3,4-dihydroxyphenyl-L-alanine), a modified amino acid, is an expansively used drug for the Parkinson's disease treatment. In the present study, optimization of nutritional parameters influencing L-DOPA production was attempted using the response surface methodology (RSM) from Mucuna monosperma callus. Optimization of the four factors was carried out using the Box-Behnken design. The optimized levels of factors predicted by the model include tyrosine 0.894 g l(-1), pH 4.99, ascorbic acid 31.62 mg l(-1)and copper sulphate 23.92 mg l(-1), which resulted in highest L-DOPA yield of 0.309 g l(-1). The optimization of medium using RSM resulted in a 3.45-fold increase in the yield of L-DOPA. The ANOVA analysis showed a significant R (2) value (0.9912), model F-value (112.465) and probability (0.0001), with insignificant lack of fit. Optimized medium was used in the laboratory scale column reactor for continuous production of L-DOPA. Uninterrupted flow column exhibited maximum L-DOPA production rate of 200 mg L(-1) h(-1) which is one of the highest values ever reported using plant as a biotransformation source. L-DOPA production was confirmed by HPTLC and HPLC analysis. This study demonstrates the synthesis of L- DOPA using Mucuna monosperma callus using a laboratory scale column reactor.
CFD analysis on gas distribution for different scrubber redirection configurations in sump cut.
Zheng, Y; Organiscak, J A; Zhou, L; Beck, T W; Rider, J P
2015-01-01
The National Institute for Occupational Safety and Health's Office of Mine Safety and Health Research recently developed a series of models using computational fluid dynamics (CFD) to study the gas distribution around a continuous mining machine with various fan-powered flooded bed scrubber discharge configurations. CFD models using Species Transport Model without reactions in FLUENT were constructed to evaluate the redirection of scrubber discharge toward the mining face rather than behind the return curtain. The following scenarios are considered in this study: 100 percent of the discharge redirected back toward the face on the off-curtain side of the continuous miner; 100 percent of the discharge redirected back toward the face, but divided equally to both sides of the machine; and 15 percent of the discharge redirected toward the face on the off-curtain side of the machine, with 85 percent directed into the return. These models were compared against a model with a conventional scrubber discharge, where air is directed away from the face into the return. The CFD models were calibrated and validated based on experimental data and accurately predicted sulfur hexafluoride (SF 6 ) gas levels at four gas monitoring locations. One additional prediction model was simulated to consider a different scrubber discharge angle for the 100 percent redirected, equally divided case. These models identified relatively high gassy areas around the continuous miner, which may not warrant their use in coal mines with medium to high methane liberation rates. This paper describes the methodology used to develop the CFD models, and the validation of the models based on experimental data.
NASA Astrophysics Data System (ADS)
Di Nucci, Carmine
2018-05-01
This note examines the two-dimensional unsteady isothermal free surface flow of an incompressible fluid in a non-deformable, homogeneous, isotropic, and saturated porous medium (with zero recharge and neglecting capillary effects). Coupling a Boussinesq-type model for nonlinear water waves with Darcy's law, the two-dimensional flow problem is solved using one-dimensional model equations including vertical effects and seepage face. In order to take into account the seepage face development, the system equations (given by the continuity and momentum equations) are completed by an integral relation (deduced from the Cauchy theorem). After testing the model against data sets available in the literature, some numerical simulations, concerning the unsteady flow through a rectangular dam (with an impermeable horizontal bottom), are presented and discussed.
47 CFR 73.5008 - Definitions applicable for designated entity provisions.
Code of Federal Regulations, 2010 CFR
2010-10-01
... otherwise specified in that section. (b) A medium of mass communications means a daily newspaper; a cable... bidder or in a medium of mass communications shall be determined in accordance with § 73.3555 and Note 2... provisions. 73.5008 Section 73.5008 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST...
Effect of soil heating by 239Pu on field fauna
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krivolutskii, D. A.; Fedorova, M. N.
1973-12-01
This paper presents continued studies on the effect of radioactive heating of the medium on soil fauna. Plutonium-239 was selected for study because of its high radiotoxicity and because the effects of heating of a medium by alpha radiation on the animal population had not been previously observed.
Guidelines for Effective Teleconference Presentations in Continuing Medical Education.
ERIC Educational Resources Information Center
Raszkowski, Robert R.; Chute, Alan G.
Designing teleconference programs for the physician learner puts unique demands on the teleconferencing medium. Typically, physicians expect a 1-hour lecture presentation with high information density. To effectively present the medical content material in an audio medium, strategies which structure and organize the content material are necessary.…
21 CFR 866.2410 - Culture medium for pathogenic Neisseria spp.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Culture medium for pathogenic Neisseria spp. 866.2410 Section 866.2410 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Microbiology Devices § 866.2410...
21 CFR 866.1700 - Culture medium for antimicrobial susceptibility tests.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Culture medium for antimicrobial susceptibility tests. 866.1700 Section 866.1700 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Diagnostic Devices § 866...
21 CFR 866.1700 - Culture medium for antimicrobial susceptibility tests.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Culture medium for antimicrobial susceptibility tests. 866.1700 Section 866.1700 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Diagnostic Devices § 866...
21 CFR 866.2440 - Automated medium dispensing and stacking device.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Automated medium dispensing and stacking device. 866.2440 Section 866.2440 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Microbiology Devices § 866.2440...
21 CFR 866.2410 - Culture medium for pathogenic Neisseria spp.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Culture medium for pathogenic Neisseria spp. 866.2410 Section 866.2410 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Microbiology Devices § 866.2410...
21 CFR 866.1700 - Culture medium for antimicrobial susceptibility tests.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Culture medium for antimicrobial susceptibility tests. 866.1700 Section 866.1700 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Diagnostic Devices § 866...
21 CFR 866.2440 - Automated medium dispensing and stacking device.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Automated medium dispensing and stacking device. 866.2440 Section 866.2440 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Microbiology Devices § 866.2440...
21 CFR 866.2410 - Culture medium for pathogenic Neisseria spp.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Culture medium for pathogenic Neisseria spp. 866.2410 Section 866.2410 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Microbiology Devices § 866.2410...
21 CFR 866.1700 - Culture medium for antimicrobial susceptibility tests.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Culture medium for antimicrobial susceptibility tests. 866.1700 Section 866.1700 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Diagnostic Devices § 866...
21 CFR 866.2440 - Automated medium dispensing and stacking device.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Automated medium dispensing and stacking device. 866.2440 Section 866.2440 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Microbiology Devices § 866.2440...
21 CFR 866.2410 - Culture medium for pathogenic Neisseria spp.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Culture medium for pathogenic Neisseria spp. 866.2410 Section 866.2410 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Microbiology Devices § 866.2410...
21 CFR 866.2440 - Automated medium dispensing and stacking device.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Automated medium dispensing and stacking device. 866.2440 Section 866.2440 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Microbiology Devices § 866.2440...
21 CFR 866.2440 - Automated medium dispensing and stacking device.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Automated medium dispensing and stacking device. 866.2440 Section 866.2440 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Microbiology Devices § 866.2440...
21 CFR 866.1700 - Culture medium for antimicrobial susceptibility tests.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Culture medium for antimicrobial susceptibility tests. 866.1700 Section 866.1700 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Diagnostic Devices § 866...
21 CFR 866.2410 - Culture medium for pathogenic Neisseria spp.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Culture medium for pathogenic Neisseria spp. 866.2410 Section 866.2410 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Microbiology Devices § 866.2410...
Constraining the physics of jet quenching
NASA Astrophysics Data System (ADS)
Renk, Thorsten
2012-04-01
Hard probes in the context of ultrarelativistic heavy-ion collisions represent a key class of observables studied to gain information about the QCD medium created in such collisions. However, in practice, the so-called jet tomography has turned out to be more difficult than expected initially. One of the major obstacles in extracting reliable tomographic information from the data is that neither the parton-medium interaction nor the medium geometry are known with great precision, and thus a difference in model assumptions in the hard perturbative Quantum Choromdynamics (pQCD) modeling can usually be compensated by a corresponding change of assumptions in the soft bulk medium sector and vice versa. The only way to overcome this problem is to study the full systematics of combinations of parton-medium interaction and bulk medium evolution models. This work presents a meta-analysis summarizing results from a number of such systematical studies and discusses in detail how certain data sets provide specific constraints for models. Combining all available information, only a small group of models exhibiting certain characteristic features consistent with a pQCD picture of parton-medium interaction is found to be viable given the data. In this picture, the dominant mechanism is medium-induced radiation combined with a surprisingly small component of elastic energy transfer into the medium.
Contrast induced nephropathy: updated ESUR Contrast Media Safety Committee guidelines.
Stacul, Fulvio; van der Molen, Aart J; Reimer, Peter; Webb, Judith A W; Thomsen, Henrik S; Morcos, Sameh K; Almén, Torsten; Aspelin, Peter; Bellin, Marie-France; Clement, Olivier; Heinz-Peer, Gertraud
2011-12-01
The Contrast Media Safety Committee (CMSC) of the European Society of Urogenital Radiology (ESUR) has updated its 1999 guidelines on contrast medium-induced nephropathy (CIN). Topics reviewed include the definition of CIN, the choice of contrast medium, the prophylactic measures used to reduce the incidence of CIN, and the management of patients receiving metformin. Key Points • Definition, risk factors and prevention of contrast medium induced nephropathy are reviewed. • CIN risk is lower with intravenous than intra-arterial iodinated contrast medium. • eGFR of 45 ml/min/1.73 m (2) is CIN risk threshold for intravenous contrast medium. • Hydration with either saline or sodium bicarbonate reduces CIN incidence. • Patients with eGFR ≥ 60 ml/min/1.73 m (2) receiving contrast medium can continue metformin normally.
Cultivation of E. coli in single- and ten-stage tower-loop reactors.
Adler, I; Schügerl, K
1983-02-01
E. Coli was cultivated in batch and continuous operations in the presence of an antifoam agent in stirred-tank and in single- and ten-stage airlift tower reactors with an outer loop. The maximum specific growth rate, mu(m), the substrate yield coefficient, Y(x/s), the respiratory quotient, RQ, substrate conversion, U(s), the volumetric mass transfer coefficient, K(L)a, the specific interfacial area, a, and the specific power input, P/V(L), were measured and compared. If a medium is used with a concentration of complex substrates (extracts) 2.5 times higher than that of glucose, a spectrum of C sources is available and cell regulation influences reactor performance. Both mu(m) and Y(X/S), which were evaluated in batch reactors, cannot be used for continuous reactors or, when measured in stirred-tank reactors, cannot be employed for tower-loop reactors: mu(m) is higher in the stirred-tank batch than in the tower-loop batch reactor, mu(m) and Y(x/s) are higher in the continuous reactor than in the batch single-stage tower-loop reactor. The performance of the single-stage is better than that of the ten-stage reactor due to the inefficient trays employed. A reduction of the medium recirculation rate reduces OTR, U(s), Pr, and Y(X/S) and causes cell sedimentation and flocculation. The volumetric mass transfer coefficient is reduced with increasing cultivation time; the Sauter bubble diameter, d(s), remains constant and does not depend on operational conditions. An increase in the medium recirculation rate reduces k(L)a. The specific power input, P/V(L), for the single-stage tower loop is much lower with the same k(L)a value than for a stirred tank. The relationship k(L)a vs. P/V(L) evaluated for model media in stirred tanks, can also be used for cultivations in these reactors.
Framework for risk analysis in Multimedia Environmental Systems (FRAMES)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whelan, G.; Buck, J.W.; Castleton, K.J.
The objectives of this workshop are to (1) provide the NRC staff and the public with an overview of currently available Federally-Sponsored dose models appropriate for decommissioning assessments and (2) discuss NRC staff-developed questions related to model selection criteria with the final rule on ``Radiological Criteria for License Termination`` (62 FR 39058). For over 40 years, medium specific models have been and will continue to be developed in an effort to understand and predict environmental phenomena, including fluid-flow patterns, contaminant migration and fate, human or wildlife exposures, impacts from specific toxicants to specific species and their organs, cost-benefit analyses, impactsmore » from remediation alternatives, etc. For nearly 40 years, medium-specific models have been combined for either sequential or concurrent assessments. The evolution of multiple-media assessment tools has followed a logic progression. To allow a suite of users the flexibility and versatility to construct, combine, and couple attributes that meet their specific needs without unnecessarily burdening the user with extraneous capabilities, the development of a computer-based methodology to implement a Risk Analysis in Multimedia Environmental Systems (FRAMES) was begun in 1994. FRAMES represents a platform which links elements together and yet does not represent the models that are linked to or within it; therefore, changes to elements that are linked to or within FRAMES do not change the framework.« less
Missel, P J
2000-01-01
Four methods are proposed for modeling diffusion in heterogeneous media where diffusion and partition coefficients take on differing values in each subregion. The exercise was conducted to validate finite element modeling (FEM) procedures in anticipation of modeling drug diffusion with regional partitioning into ocular tissue, though the approach can be useful for other organs, or for modeling diffusion in laminate devices. Partitioning creates a discontinuous value in the dependent variable (concentration) at an intertissue boundary that is not easily handled by available general-purpose FEM codes, which allow for only one value at each node. The discontinuity is handled using a transformation on the dependent variable based upon the region-specific partition coefficient. Methods were evaluated by their ability to reproduce a known exact result, for the problem of the infinite composite medium (Crank, J. The Mathematics of Diffusion, 2nd ed. New York: Oxford University Press, 1975, pp. 38-39.). The most physically intuitive method is based upon the concept of chemical potential, which is continuous across an interphase boundary (method III). This method makes the equation of the dependent variable highly nonlinear. This can be linearized easily by a change of variables (method IV). Results are also given for a one-dimensional problem simulating bolus injection into the vitreous, predicting time disposition of drug in vitreous and retina.
Hampel, Ulrike; Garreis, Fabian; Burgemeister, Fabian; Eßel, Nicole; Paulsen, Friedrich
2018-04-27
The aim of this study was to establish and to evaluate an in vitro model for culturing human telomerase-immortalized corneal epithelial (hTCEpi) cells under adjustable medium flow mimicking the movements of the tear film on the ocular surface. Using an IBIDI pump system, cells were cultured under unidirectional, continuous or oscillating, discontinuous medium flow. Cell surface and cytoskeletal architecture were investigated by scanning electron microscopy and immunofluorescence. Gene expression of e-cadherin, occludin, tight junction protein (TJP), desmoplakin, desmocollin and mucins was investigated by real-time PCR. Protein expression of desmoplakin, TJP, occludin and e-cadherin was analyzed by western blot and localization was detected by immunofluorescence. Rose bengal staining was used to assess mucin (MUC) barrier integrity. MUC1, -4 and -16 proteins were localized by immunofluorescence. Medium flow-induced shear stress dramatically changed cellular morphology of hTCEpi. Cells subjected to discontinuous shear stress displayed the typical flattened, polygonal cell shape of the superficial layer of stratified squamous epithelia. Cell surfaces showed less bulging under shear stress and less extracellular gaps. The mRNA expression of E-cadherin, occludin and TJP were increased under oscillatory medium flow. Desmoplakin and occludin protein were upregulated under oscillatory shear stress. Stress fiber formation was not aligned to flow direction. MUC1, -4, and -16 protein were localized under all culture conditions, a regulation on mRNA expression was not detectable. Rose Bengal uptake was diminished under unidirectional conditions. Our findings suggest that shear stress as it occurs at the ocular surface during blinking exerts marked effects on corneal epithelial cells, such as changes in cellular morphology and expression of cell junctions. The described model may be useful for in vitro investigations of ocular surface epithelia as it represents a much more physiologic reproduction of the in vivo situation than the commonly applied static culture conditions. Copyright © 2018. Published by Elsevier Inc.
Establishment and characterization of feeder cell-dependent bovine fetal liver cell lines.
Talbot, Neil C; Wang, Ling; Garrett, Wesley M; Caperna, Thomas J; Tang, Young
2016-03-01
The establishment and initial characterization of bovine fetal liver cell lines are described. Bovine fetal hepatocytes were cultured from the liver of a 34-d bovine fetus by physical disruption of the liver tissue. Released liver cells and clumps of cells were plated on STO (SIMS mouse strain, thioguanine- and ouabain-resistant) feeder layers and were cultured in a medium supplemented with 10% fetal bovine serum. After 2-3 wk, primary colonies of hepatocytes were observed by phase-contrast microscopic observation. Individual hepatocyte colonies were colony-cloned into independent bovine fetal liver (BFL) cell lines. Two cell lines, BFL-6 and BFL-9, grew the best of several isolates, and they were further characterized for growth potential and for hepatocyte morphology and function. The two cell lines were found to grow markedly better in the presence of the transforming growth factor (TGF)-beta inhibitor, SB431542 (1 μM). Their continuous culture also depended on a particular medium height-for T12.5 flasks, 3 ml total medium produced optimum growth. Higher or lower amounts of medium caused less cell growth or cessation of growth. The cell lines were propagated for over a year at split ratios of 1:2 or 1:3 at each passage until reaching senescence at approximately 30 passages. The cells were laterally polarized with well-developed canalicular spaces occurring between adjacent BFL cells. Treatment of the cultures with cyclic adenosine monophosphate (cAMP)-stimulating chemicals or peptides (e.g., forskolin or glucagon) caused physical expansion of the canaliculi between the cells within 15 min. The cells secreted a spectrum of serum proteins, were positive for the expression of several hepatocyte-specific genes, and converted ammonia to urea, although at a relatively low rate. The culture system provides an in vitro model of fetal bovine hepatocytes and is the first demonstration of the continuous culture of normal bovine hepatocytes as cell lines.
Lagrangian methods in the analysis of nonlinear wave interactions in plasma
NASA Technical Reports Server (NTRS)
Galloway, J. J.
1972-01-01
An averaged-Lagrangian method is developed for obtaining the equations which describe the nonlinear interactions of the wave (oscillatory) and background (nonoscillatory) components which comprise a continuous medium. The method applies to monochromatic waves in any continuous medium that can be described by a Lagrangian density, but is demonstrated in the context of plasma physics. The theory is presented in a more general and unified form by way of a new averaged-Lagrangian formalism which simplifies the perturbation ordering procedure. Earlier theory is extended to deal with a medium distributed in velocity space and to account for the interaction of the background with the waves. The analytic steps are systematized, so as to maximize calculational efficiency. An assessment of the applicability and limitations of the method shows that it has some definite advantages over other approaches in efficiency and versatility.
NASA Technical Reports Server (NTRS)
1974-01-01
The survey of negative pion absorption reactions on light and medium nuclei was continued. Muon spin precession was studied using an iron target. An impulse approximation model of the pion absorption process implied that the ion will absorb almost exclusively on nucleon pairs, single nucleon absorption being suppressed by energy and momentum conservation requirements. For measurements on both paramagnetic and ferromagnetic iron, the external magnetic field was supplied by a large C-type electromagnet carrying a current of about 100 amperes.
Haga, Ken; Sakai, Tatsuya
2013-01-01
In a recent study, we demonstrated that although the auxin efflux carrier PIN-FORMED (PIN) proteins, such as PIN3 and PIN7, are required for the pulse-induced first positive phototropism in etiolated Arabidopsis hypocotyls, they are not necessary for the continuous-light-induced second positive phototropism when the seedlings are grown on the surface of agar medium, which causes the hypocotyls to separate from the agar surface. Previous reports have shown that hypocotyl phototropism is slightly impaired in pin3 single mutants when they are grown along the surface of agar medium, where the hypocotyls always contact the agar, producing some friction. To clarify the possible involvement of PIN3 and PIN7 in continuous-light-induced phototropism, we investigated hypocotyl phototropism in the pin3 pin7 double mutant grown along the surface of agar medium. Intriguingly, the phototropic curvature was slightly impaired in the double mutant when the phototropic stimulus was presented on the adaxial side of the hook, but was not impaired when the phototropic stimulus was presented on the abaxial side of the hook. These results indicate that PIN proteins are required for continuous-light-induced second positive phototropism, depending on the direction of the light stimulus, when the seedlings are in contact with agar medium.
Haga, Ken; Sakai, Tatsuya
2013-01-01
In a recent study, we demonstrated that although the auxin efflux carrier PIN-FORMED (PIN) proteins, such as PIN3 and PIN7, are required for the pulse-induced first positive phototropism in etiolated Arabidopsis hypocotyls, they are not necessary for the continuous-light-induced second positive phototropism when the seedlings are grown on the surface of agar medium, which causes the hypocotyls to separate from the agar surface. Previous reports have shown that hypocotyl phototropism is slightly impaired in pin3 single mutants when they are grown along the surface of agar medium, where the hypocotyls always contact the agar, producing some friction. To clarify the possible involvement of PIN3 and PIN7 in continuous-light-induced phototropism, we investigated hypocotyl phototropism in the pin3 pin7 double mutant grown along the surface of agar medium. Intriguingly, the phototropic curvature was slightly impaired in the double mutant when the phototropic stimulus was presented on the adaxial side of the hook, but was not impaired when the phototropic stimulus was presented on the abaxial side of the hook. These results indicate that PIN proteins are required for continuous-light-induced second positive phototropism, depending on the direction of the light stimulus, when the seedlings are in contact with agar medium. PMID:23104115
The end-stage renal disease industry and exit strategies for nephrologists.
Sullivan, John D
2006-01-01
The purpose of this presentation is to identify exit strategies for nephrologists under changing conditions in the dialysis market. The end-stage renal disease service provider market continues to be highly receptive to consolidation. Taking advantage of large economies of scale, large for-profit dialysis chains have surpassed independent operators in both number of clinics and total patients. With relatively low barriers to entry, new smaller clinics continue to open, serving a niche outside the larger chains. Additional competition comes in the form of medium players funded by venture capitalists with the added pressure of rapid growth and financial return. To ensure market power in both dialysis products and managed care negotiation leverage, medium and large service providers will continue to seek out attractive acquisition targets. For nephrologists to capitalize on investment, clinic and business preparation will continue to be the driving force for these divestitures.
Toward continuous-wave operation of organic semiconductor lasers
Sandanayaka, Atula S. D.; Matsushima, Toshinori; Bencheikh, Fatima; Yoshida, Kou; Inoue, Munetomo; Fujihara, Takashi; Goushi, Kenichi; Ribierre, Jean-Charles; Adachi, Chihaya
2017-01-01
The demonstration of continuous-wave lasing from organic semiconductor films is highly desirable for practical applications in the areas of spectroscopy, data communication, and sensing, but it still remains a challenging objective. We report low-threshold surface-emitting organic distributed feedback lasers operating in the quasi–continuous-wave regime at 80 MHz as well as under long-pulse photoexcitation of 30 ms. This outstanding performance was achieved using an organic semiconductor thin film with high optical gain, high photoluminescence quantum yield, and no triplet absorption losses at the lasing wavelength combined with a mixed-order distributed feedback grating to achieve a low lasing threshold. A simple encapsulation technique greatly reduced the laser-induced thermal degradation and suppressed the ablation of the gain medium otherwise taking place under intense continuous-wave photoexcitation. Overall, this study provides evidence that the development of a continuous-wave organic semiconductor laser technology is possible via the engineering of the gain medium and the device architecture. PMID:28508042
Toward continuous-wave operation of organic semiconductor lasers.
Sandanayaka, Atula S D; Matsushima, Toshinori; Bencheikh, Fatima; Yoshida, Kou; Inoue, Munetomo; Fujihara, Takashi; Goushi, Kenichi; Ribierre, Jean-Charles; Adachi, Chihaya
2017-04-01
The demonstration of continuous-wave lasing from organic semiconductor films is highly desirable for practical applications in the areas of spectroscopy, data communication, and sensing, but it still remains a challenging objective. We report low-threshold surface-emitting organic distributed feedback lasers operating in the quasi-continuous-wave regime at 80 MHz as well as under long-pulse photoexcitation of 30 ms. This outstanding performance was achieved using an organic semiconductor thin film with high optical gain, high photoluminescence quantum yield, and no triplet absorption losses at the lasing wavelength combined with a mixed-order distributed feedback grating to achieve a low lasing threshold. A simple encapsulation technique greatly reduced the laser-induced thermal degradation and suppressed the ablation of the gain medium otherwise taking place under intense continuous-wave photoexcitation. Overall, this study provides evidence that the development of a continuous-wave organic semiconductor laser technology is possible via the engineering of the gain medium and the device architecture.
A discrete model to study reaction-diffusion-mechanics systems.
Weise, Louis D; Nash, Martyn P; Panfilov, Alexander V
2011-01-01
This article introduces a discrete reaction-diffusion-mechanics (dRDM) model to study the effects of deformation on reaction-diffusion (RD) processes. The dRDM framework employs a FitzHugh-Nagumo type RD model coupled to a mass-lattice model, that undergoes finite deformations. The dRDM model describes a material whose elastic properties are described by a generalized Hooke's law for finite deformations (Seth material). Numerically, the dRDM approach combines a finite difference approach for the RD equations with a Verlet integration scheme for the equations of the mass-lattice system. Using this framework results were reproduced on self-organized pacemaking activity that have been previously found with a continuous RD mechanics model. Mechanisms that determine the period of pacemakers and its dependency on the medium size are identified. Finally it is shown how the drift direction of pacemakers in RDM systems is related to the spatial distribution of deformation and curvature effects.
A Discrete Model to Study Reaction-Diffusion-Mechanics Systems
Weise, Louis D.; Nash, Martyn P.; Panfilov, Alexander V.
2011-01-01
This article introduces a discrete reaction-diffusion-mechanics (dRDM) model to study the effects of deformation on reaction-diffusion (RD) processes. The dRDM framework employs a FitzHugh-Nagumo type RD model coupled to a mass-lattice model, that undergoes finite deformations. The dRDM model describes a material whose elastic properties are described by a generalized Hooke's law for finite deformations (Seth material). Numerically, the dRDM approach combines a finite difference approach for the RD equations with a Verlet integration scheme for the equations of the mass-lattice system. Using this framework results were reproduced on self-organized pacemaking activity that have been previously found with a continuous RD mechanics model. Mechanisms that determine the period of pacemakers and its dependency on the medium size are identified. Finally it is shown how the drift direction of pacemakers in RDM systems is related to the spatial distribution of deformation and curvature effects. PMID:21804911
Analysis of continuous GPS measurements from southern Victoria Land, Antarctica
Willis, Michael J.
2007-01-01
Several years of continuous data have been collected at remote bedrock Global Positioning System (GPS) sites in southern Victoria Land, Antarctica. Annual to sub-annual variations are observed in the position time-series. An atmospheric pressure loading (APL) effect is calculated from pressure field anomalies supplied by the European Centre for Medium-Range Weather Forecasts (ECMWF) model loading an elastic Earth model. The predicted APL signal has a moderate correlation with the vertical position time-series at McMurdo, Ross Island (International Global Navigation Satellite System Service (IGS) station MCM4), produced using a global solution. In contrast, a local solution in which MCM4 is the fiducial site generates a vertical time series for a remote site in Victoria Land (Cape Roberts, ROB4) which exhibits a low, inverse correlation with the predicted atmospheric pressure loading signal. If, in the future, known and well modeled geophysical loads can be separated from the time-series, then local hydrological loading, of interest for glaciological and climate applications, can potentially be extracted from the GPS time-series.
Sleuthing the Isolated Compact Stars
NASA Astrophysics Data System (ADS)
Drake, J. J.
2004-08-01
In the early 1990's, isolated thermally-emitting neutron stars accreting from the interstellar medium were predicted to show up in their thousands in the ROSAT soft X-ray all-sky survey. The glut of sources would provide unprecedented opportunities for probing the equation of state of ultra-dense matter. Only seven objects have been firmly identified to date. The reasons for this discrepency are discussed and recent high resolution X-ray spectroscopic observations of these objects are described. Spectra of the brightest of the isolated neutron star candidates, RX J1856.5-3754, continue to present interpretational difficulties for current neutron star model atmospheres and alternative models are briefly discussed. RX J1856.5-3754 remains a valid quark star candidate.
A model for including thermal conduction in molecular dynamics simulations
NASA Technical Reports Server (NTRS)
Wu, Yue; Friauf, Robert J.
1989-01-01
A technique is introduced for including thermal conduction in molecular dynamics simulations for solids. A model is developed to allow energy flow between the computational cell and the bulk of the solid when periodic boundary conditions cannot be used. Thermal conduction is achieved by scaling the velocities of atoms in a transitional boundary layer. The scaling factor is obtained from the thermal diffusivity, and the results show good agreement with the solution for a continuous medium at long times. The effects of different temperature and size of the system, and of variations in strength parameter, atomic mass, and thermal diffusivity were investigated. In all cases, no significant change in simulation results has been found.
Pinning time statistics for vortex lines in disordered environments.
Dobramysl, Ulrich; Pleimling, Michel; Täuber, Uwe C
2014-12-01
We study the pinning dynamics of magnetic flux (vortex) lines in a disordered type-II superconductor. Using numerical simulations of a directed elastic line model, we extract the pinning time distributions of vortex line segments. We compare different model implementations for the disorder in the surrounding medium: discrete, localized pinning potential wells that are either attractive and repulsive or purely attractive, and whose strengths are drawn from a Gaussian distribution; as well as continuous Gaussian random potential landscapes. We find that both schemes yield power-law distributions in the pinned phase as predicted by extreme-event statistics, yet they differ significantly in their effective scaling exponents and their short-time behavior.
Motta Dos Santos, Luiz Fernando; Coutte, François; Ravallec, Rozenn; Dhulster, Pascal; Tournier-Couturier, Lucie; Jacques, Philippe
2016-10-01
Culture medium elements were analysed by a screening DoE to identify their influence in surfactin specific production by a surfactin constitutive overproducing Bacillus subtilis strain. Statistics pointed the major enhancement caused by high glutamic acid concentrations, as well as a minor positive influence of tryptophan and glucose. Successively, a central composite design was performed in microplate bioreactors using a BioLector®, in which variations of these impressive parameters, glucose, glutamic acid and tryptophan concentrations were selected for optimization of product-biomass yield (YP/X). Results were exploited in combination with a RSM. In absolute terms, experiments attained an YP/X 3.28-fold higher than those obtained in Landy medium, a usual culture medium used for lipopeptide production by B. subtilis. Therefore, two medium compositions for enhancing biomass and surfactin specific production were proposed and tested in continuous regime in a bubbleless membrane bioreactor. An YP/X increase of 2.26-fold was observed in bioreactor scale. Copyright © 2016 Elsevier Ltd. All rights reserved.
The fractalline properties of experimentally simulated PWR fuel crud
NASA Astrophysics Data System (ADS)
Dumnernchanvanit, I.; Mishra, V. K.; Zhang, N. Q.; Robertson, S.; Delmore, A.; Mota, G.; Hussey, D.; Wang, G.; Byers, W. A.; Short, M. P.
2018-02-01
The buildup of fouling deposits on nuclear fuel rods, known as crud, continues to challenge the worldwide fleet of light water reactors (LWRs). Crud may cause serious operational problems for LWRs, including axial power shifts, accelerated fuel clad corrosion, increased primary circuit radiation dose rates, and in some instances has led directly to fuel failure. Numerous studies continue to attempt to model and predict the effects of crud, but each makes critical assumptions regarding how to treat the complex, porous microstructure of crud and its resultant effects on temperature, pressure, and crud chemistry. In this study, we demonstrate that crud is indeed a fractalline porous medium using flowing loop experiments, validating the most recent models of its effects on LWR fuel cladding. This crud is shown to match that in other LWR-prototypical facilities through a porosity-fractal dimension scaling law. Implications of this result range from post-mortem analysis of the effects of crud on reactor fuel performance, to utilizing crud's fractalline dimensions to quantify the effectiveness of anti-fouling measures.
Modeling of Radiative Heat Transfer in an Electric Arc Furnace
NASA Astrophysics Data System (ADS)
Opitz, Florian; Treffinger, Peter; Wöllenstein, Jürgen
2017-12-01
Radiation is an important means of heat transfer inside an electric arc furnace (EAF). To gain insight into the complex processes of heat transfer inside the EAF vessel, not only radiation from the surfaces but also emission and absorption of the gas phase and the dust cloud need to be considered. Furthermore, the radiative heat exchange depends on the geometrical configuration which is continuously changing throughout the process. The present paper introduces a system model of the EAF which takes into account the radiative heat transfer between the surfaces and the participating medium. This is attained by the development of a simplified geometrical model, the use of a weighted-sum-of-gray-gases model, and a simplified consideration of dust radiation. The simulation results were compared with the data of real EAF plants available in literature.
A computational continuum model of poroelastic beds
Zampogna, G. A.
2017-01-01
Despite the ubiquity of fluid flows interacting with porous and elastic materials, we lack a validated non-empirical macroscale method for characterizing the flow over and through a poroelastic medium. We propose a computational tool to describe such configurations by deriving and validating a continuum model for the poroelastic bed and its interface with the above free fluid. We show that, using stress continuity condition and slip velocity condition at the interface, the effective model captures the effects of small changes in the microstructure anisotropy correctly and predicts the overall behaviour in a physically consistent and controllable manner. Moreover, we show that the performance of the effective model is accurate by validating with fully microscopic resolved simulations. The proposed computational tool can be used in investigations in a wide range of fields, including mechanical engineering, bio-engineering and geophysics. PMID:28413355
Hasenauer, J; Wolf, V; Kazeroonian, A; Theis, F J
2014-09-01
The time-evolution of continuous-time discrete-state biochemical processes is governed by the Chemical Master Equation (CME), which describes the probability of the molecular counts of each chemical species. As the corresponding number of discrete states is, for most processes, large, a direct numerical simulation of the CME is in general infeasible. In this paper we introduce the method of conditional moments (MCM), a novel approximation method for the solution of the CME. The MCM employs a discrete stochastic description for low-copy number species and a moment-based description for medium/high-copy number species. The moments of the medium/high-copy number species are conditioned on the state of the low abundance species, which allows us to capture complex correlation structures arising, e.g., for multi-attractor and oscillatory systems. We prove that the MCM provides a generalization of previous approximations of the CME based on hybrid modeling and moment-based methods. Furthermore, it improves upon these existing methods, as we illustrate using a model for the dynamics of stochastic single-gene expression. This application example shows that due to the more general structure, the MCM allows for the approximation of multi-modal distributions.
A design study for a medium-scale field demonstration of the viscous barrier technology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moridis, G.; Yen, P.; Persoff, P.
1996-09-01
This report is the design study for a medium-scale field demonstration of Lawrence Berkeley National Laboratory`s new subsurface containment technology for waste isolation using a new generation of barrier liquids. The test site is located in central California in a quarry owned by the Los Banos Gravel Company in Los Banos, California, in heterogeneous unsaturated deposits of sand, silt, and -ravel typical of many of the and DOE cleanup sites and particularly analogous to the Hanford site. The coals of the field demonstration are (a) to demonstrate the ability to create a continuous subsurface barrier isolating a medium-scale volume (30more » ft long by 30 ft wide by 20 ft deep, i.e. 1/10th to 1/8th the size of a buried tank at the Hanford Reservation) in the subsurface, and (b) to demonstrate the continuity, performance, and integrity of the barrier.« less
Dutkowski, A B; Oberlander, H; Leach, C E
1977-06-01
Wing discs of the Indian meal moth may be cultured for extended periods in vitro. The discs produced a tanned cuticle after continuous incubation with β-ecdysone in medium conditioned with fat body or after a 24-h pulse incubation with β-ecdysone in plain medium. We investigated the ultrastructure of the cuticle deposited by such discs. We found that the treatment that produced the most complete cuticle in vitro was the 24-h pulse of hormone. We observed that cuticle formation in vitro was not "all-or-none." Depending on culture conditions, discs produced cuticulin only, complete epicuticle, epicuticle plus diffuse endocuticle, epicuticle plus lamellate endocuticle, or even multiple layers of cuticle. The ultrastructural evidence suggests that continuous incubation with β-ecdysone in plain medium does not always inhibit cuticle formationper se, but does prevent tanning of the partially formed cuticle.
Numerical investigation of tip clearance cavitation in Kaplan runners
NASA Astrophysics Data System (ADS)
Nikiforova, K.; Semenov, G.; Kuznetsov, I.; Spiridonov, E.
2016-11-01
There is a gap between the Kaplan runner blade and the shroud that makes for a special kind of cavitation: cavitation in the tip leakage flow. Two types of cavitation caused by the presence of clearance gap are known: tip vortex cavitation that appears at the core of the rolled up vortex on the blade suction side and tip clearance cavitation that appears precisely in the gap between the blade tip edge and the shroud. In the context of this work numerical investigation of the model Kaplan runner has been performed taking into account variable tip clearance for several cavitation regimes. The focus is put on investigation of structure and origination of mechanism of cavitation in the tip leakage flow. Calculations have been performed with the help of 3-D unsteady numerical model for two-phase medium. Modeling of turbulent flow in this work has been carried out using full equations of Navier-Stokes averaged by Reynolds with correction for streamline curvature and system rotation. For description of this medium (liquid-vapor) simplification of Euler approach is used; it is based on the model of interpenetrating continuums, within the bounds of this two- phase medium considered as a quasi-homogeneous mixture with the common velocity field and continuous distribution of density for both phases. As a result, engineering techniques for calculation of cavitation conditioned by existence of tip clearance in model turbine runner have been developed. The detailed visualization of the flow was carried out and vortex structure on the suction side of the blade was reproduced. The range of frequency with maximum value of pulsation was assigned and maximum energy frequency was defined; it is based on spectral analysis of the obtained data. Comparison between numerical computation results and experimental data has been also performed. The location of cavitation zone has a good agreement with experiment for all analyzed regimes.
Code of Federal Regulations, 2010 CFR
2010-07-01
..., except as noted. Additionally, this section applies to hybrid electric vehicles (HEVs) and zero emission... vehicles, light-duty trucks and medium-duty passenger vehicles. 86.1811-09 Section 86.1811-09 Protection of... AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) General Compliance Provisions for Control of Air...
ERIC Educational Resources Information Center
Allesch, Jurgen; Preiss-Allesch, Dagmar
This report describes a study that identified major databases in operation in the 12 European Community countries that provide small- and medium-sized enterprises with information on opportunities for obtaining training and continuing education. Thirty-five databases were identified through information obtained from telephone interviews or…
Geologic and tectonic characteristics of rockbursts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adushkin, V.V.; Charlamov, V.A.; Kondratyev, S.V.
1995-06-01
The modern mining enterprises have attained such scales of engineering activity that their direct influence to a rock massif and in series of cases to the region seismic regime doesn`t provoke any doubts. Excavation and removal of large volumes of rock mass, industrial explosions and other technological factors during long time can lead to the accumulation of man-made changes in rock massifs capable to cause catastrophic consequences. The stress state changes in considerable domains of massif create dangerous concentration of stresses at large geological heterogeneities - faults localized in the mining works zone. External influence can lead in that casemore » to such phenomena as tectonic rockbursts and man-made earthquakes. The rockbursts problem in world mining practice exists for more than two hundred years. So that its actuality not only doesn`t decrease but steadily mounts up as due to the mining works depth increase, enlargement of the useful minerals excavations volumes as due to the possibility of safe use of the rock massif potential energy for facilitating the mastering of the bowels of the Earth and for making that more cheap. The purpose of present work is to study the engineering activity influence to processes occurring in the upper part of Earth crust and in particular in a rock massif. The rock massif is treated in those studies as a geophysical medium - such approach takes into account the presence of block structure of medium and the continuous exchange of energy between parts of that structure. The idea ``geophysical medium`` is applied in geophysics sufficiently wide and stresses the difference of actual Earth crust and rock massifs from the continuous media models discussed in mechanics.« less
de Andrade, Diego Fontana; Zuglianello, Carine; Pohlmann, Adriana Raffin; Guterres, Silvia Stanisçuaski; Beck, Ruy Carlos Ruver
2015-12-01
The in vitro assessment of drug release from polymeric nanocapsules suspensions is one of the most studied parameters in the development of drug-loaded nanoparticles. Nevertheless, official methods for the evaluation of drug release from submicrometric carriers are not available. In this work, a new approach to assess the in vitro drug release profile from drug-loaded lipid-core nanocapsules (LNC) was proposed. A continuous-flow system (open system) was designed to evaluate the in vitro drug release profiles from different LNC formulations containing prednisolone or clobetasol propionate (LNC-CP) as drug model (LNC-PD) using a homemade apparatus. The release medium was constantly renewed throughout the experiment. A dialysis bag containing 5 mL of formulation (0.5 mg mL(-1)) was maintained inside the apparatus, under magnetic stirring and controlled temperature (37°C). In parallel, studies based on the conventional dialysis sac technique (closed system) were performed. It was possible to discriminate the in vitro drug release profile of different formulations using the open system. The proposed strategy improved the sink condition, by constantly renewing the release medium, thus maintaining the drug concentration farther from the saturated concentration in the release medium. Moreover, problems due to sampling errors can be easily overcome using this semi-automated system, since the collection is done automatically without interference from the analyst. The system proposed in this paper brings important methodological and analytical advantages, becoming a promising prototype semi-automated apparatus for performing in vitro drug release studies from drug-loaded lipid-core nanocapsules and other related nanoparticle drug delivery systems.
Effective medium model for a granular monolayer on an elastic substrate
NASA Astrophysics Data System (ADS)
Maznev, Alexei
Effective medium models have been shown to work well in describing experimental observations of the interaction of surface Rayleigh waves with contact vibrations of a monolayer of microspheres . However, these models contain intrinsic conceptual problems: for example, the local displacement of the substrate at the contact point is equated to the effective medium average value of the surface displacement. I will present a rigorous derivation of the effective medium model for a random arrangement of mass-spring oscillators on an elastic half-space using elastodynamic surface Green's function formalism. We will see that the model equating the local surface displacement to the effective medium displacement is indeed valid if the spring constant of the oscillators is modified to include the stiffness of the contact calculated in the quasistatic approximation. In the case of contact vibrations of microspheres, this means using the spring constant calculated using the Hertzian contact model. Thus the results obtained in the prior work were correct despite the apparent inconsistencies in the model. The presented analysis will provide a solid foundation for effective medium models used to describe dynamics of microparticle arrays adhered to a solid substrate. This work was supported by the U. S. Army Research Office through the Institute for Soldier Nanotechnologies under Grant W911NF-13-D-0001.
Simon, Scott; Grey, Casey Paul; Massenzo, Trisha; Simpson, David G; Longest, P Worth
2014-11-01
Current technology for endovascular thrombectomy in ischemic stroke utilizes static loading and is successful in approximately 85% of cases. Existing technology uses either static suction (applied via a continuous pump or syringe) or flow arrest with a proximal balloon. In this paper we evaluate the potential of cyclic loading in aspiration thrombectomy. In order to evaluate the efficacy of cyclic aspiration, a model was created using a Penumbra aspiration system, three-way valve and Penumbra 5Max catheter. Synthetic clots were aspirated at different frequencies and using different aspiration mediums. Success or failure of clot removal and time were recorded. All statistical analyses were based on either a one-way or two-way analysis of variance, Holm-Sidak pairwise multiple comparison procedure (α=0.05). Cyclic aspiration outperformed static aspiration in overall clot removal and removal speed (p<0.001). Within cyclic aspiration, Max Hz frequencies (∼6.3 Hz) cleared clots faster than 1 Hz (p<0.001) and 2 Hz (p=0.024). Loading cycle dynamics (specific pressure waveforms) affected speed and overall clearance (p<0.001). Water as the aspiration medium was more effective at clearing clots than air (p=0.019). Cyclic aspiration significantly outperformed static aspiration in speed and overall clearance of synthetic clots in our experimental model. Within cyclic aspiration, efficacy is improved by increasing cycle frequency, utilizing specific pressure cycle waveforms and using water rather than air as the aspiration medium. These findings provide a starting point for altering existing thrombectomy technology or perhaps the development of new technologies with higher recanalization rates. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Family Predictors of Continuity and Change in Social and Physical Aggression from Ages 9 – 18
Ehrenreich, Samuel E.; Beron, Kurt J.; Brinkley, Dawn Y.; Underwood, Marion K.
2014-01-01
This research examined developmental trajectories for social and physical aggression for a sample followed from age 9–18, and investigated possible family predictors of following different trajectory groups. Participants were 158 girls and 138 boys, their teachers, and their parents (21% African American, 5.3% Asian, 51.6% Caucasian, and 21% Hispanic). Teachers rated children’s social and physical aggression yearly in grades 3–12. Participants’ parent (83% mothers) reported on family income, conflict strategies, and maternal authoritarian and permissive parenting styles. The results suggested that both social and physical aggression decline slightly from middle childhood through late adolescence. Using a dual trajectory model, group based mixture modeling revealed three trajectory groups for both social and physical aggression: low-, medium-, and high-desisting for social aggression, and stably-low, stably-medium, and high-desisting for physical aggression. Membership in higher trajectory groups was predicted by being from a single-parent family, and having a parent high on permissiveness. Being male was related to both elevated physical aggression trajectories and the medium-desisting social aggression trajectory. Negative interparental conflict strategies did not predict social or physical aggression trajectories when permissive parenting was included in the model. Permissive parenting in middle childhood predicted following higher social aggression trajectories across many years, which suggests that parents setting fewer limits on children’s behaviors may have lasting consequences for their peer relations. Future research should examine transactional relations between parenting styles and practices and aggression to understand the mechanisms that may contribute to changes in involvement in social and physical aggression across childhood and adolescence. PMID:24888340
Family predictors of continuity and change in social and physical aggression from ages 9 to 18.
Ehrenreich, Samuel E; Beron, Kurt J; Brinkley, Dawn Y; Underwood, Marion K
2014-01-01
This research examined developmental trajectories for social and physical aggression for a sample followed from age 9 to 18, and investigated possible family predictors of following different trajectory groups. Participants were 158 girls and 138 boys, their teachers, and their parents (21% African American, 5.3% Asian, 51.6% Caucasian, and 21% Hispanic). Teachers rated children's social and physical aggression yearly in grades 3-12. Participants' parent (83% mothers) reported on family income, conflict strategies, and maternal authoritarian and permissive parenting styles. The results suggested that both social and physical aggression decline slightly from middle childhood through late adolescence. Using a dual trajectory model, group-based mixture modeling revealed three trajectory groups for both social and physical aggression: low-, medium-, and high-desisting for social aggression, and stably-low, stably-medium, and high-desisting for physical aggression. Membership in higher trajectory groups was predicted by being from a single-parent family, and having a parent high on permissiveness. Being male was related to both elevated physical aggression trajectories and the medium-desisting social aggression trajectory. Negative interparental conflict strategies did not predict social or physical aggression trajectories when permissive parenting was included in the model. Permissive parenting in middle childhood predicted following higher social aggression trajectories across many years, which suggests that parents setting fewer limits on children's behaviors may have lasting consequences for their peer relations. Future research should examine transactional relations between parenting styles and practices and aggression to understand the mechanisms that may contribute to changes in involvement in social and physical aggression across childhood and adolescence. © 2014 Wiley Periodicals, Inc.
Carrel, M.; Dentz, M.; Derlon, N.; Morgenroth, E.
2018-01-01
Abstract Biofilms are ubiquitous bacterial communities that grow in various porous media including soils, trickling, and sand filters. In these environments, they play a central role in services ranging from degradation of pollutants to water purification. Biofilms dynamically change the pore structure of the medium through selective clogging of pores, a process known as bioclogging. This affects how solutes are transported and spread through the porous matrix, but the temporal changes to transport behavior during bioclogging are not well understood. To address this uncertainty, we experimentally study the hydrodynamic changes of a transparent 3‐D porous medium as it experiences progressive bioclogging. Statistical analyses of the system's hydrodynamics at four time points of bioclogging (0, 24, 36, and 48 h in the exponential growth phase) reveal exponential increases in both average and variance of the flow velocity, as well as its correlation length. Measurements for spreading, as mean‐squared displacements, are found to be non‐Fickian and more intensely superdiffusive with progressive bioclogging, indicating the formation of preferential flow pathways and stagnation zones. A gamma distribution describes well the Lagrangian velocity distributions and provides parameters that quantify changes to the flow, which evolves from a parallel pore arrangement under unclogged conditions, toward a more serial arrangement with increasing clogging. Exponentially evolving hydrodynamic metrics agree with an exponential bacterial growth phase and are used to parameterize a correlated continuous time random walk model with a stochastic velocity relaxation. The model accurately reproduces transport observations and can be used to resolve transport behavior at intermediate time points within the exponential growth phase considered. PMID:29780184
NASA Astrophysics Data System (ADS)
Carrel, M.; Morales, V. L.; Dentz, M.; Derlon, N.; Morgenroth, E.; Holzner, M.
2018-03-01
Biofilms are ubiquitous bacterial communities that grow in various porous media including soils, trickling, and sand filters. In these environments, they play a central role in services ranging from degradation of pollutants to water purification. Biofilms dynamically change the pore structure of the medium through selective clogging of pores, a process known as bioclogging. This affects how solutes are transported and spread through the porous matrix, but the temporal changes to transport behavior during bioclogging are not well understood. To address this uncertainty, we experimentally study the hydrodynamic changes of a transparent 3-D porous medium as it experiences progressive bioclogging. Statistical analyses of the system's hydrodynamics at four time points of bioclogging (0, 24, 36, and 48 h in the exponential growth phase) reveal exponential increases in both average and variance of the flow velocity, as well as its correlation length. Measurements for spreading, as mean-squared displacements, are found to be non-Fickian and more intensely superdiffusive with progressive bioclogging, indicating the formation of preferential flow pathways and stagnation zones. A gamma distribution describes well the Lagrangian velocity distributions and provides parameters that quantify changes to the flow, which evolves from a parallel pore arrangement under unclogged conditions, toward a more serial arrangement with increasing clogging. Exponentially evolving hydrodynamic metrics agree with an exponential bacterial growth phase and are used to parameterize a correlated continuous time random walk model with a stochastic velocity relaxation. The model accurately reproduces transport observations and can be used to resolve transport behavior at intermediate time points within the exponential growth phase considered.
A constitutive model and numerical simulation of sintering processes at macroscopic level
NASA Astrophysics Data System (ADS)
Wawrzyk, Krzysztof; Kowalczyk, Piotr; Nosewicz, Szymon; Rojek, Jerzy
2018-01-01
This paper presents modelling of both single and double-phase powder sintering processes at the macroscopic level. In particular, its constitutive formulation, numerical implementation and numerical tests are described. The macroscopic constitutive model is based on the assumption that the sintered material is a continuous medium. The parameters of the constitutive model for material under sintering are determined by simulation of sintering at the microscopic level using a micro-scale model. Numerical tests were carried out for a cylindrical specimen under hydrostatic and uniaxial pressure. Results of macroscopic analysis are compared against the microscopic model results. Moreover, numerical simulations are validated by comparison with experimental results. The simulations and preparation of the model are carried out by Abaqus FEA - a software for finite element analysis and computer-aided engineering. A mechanical model is defined by the user procedure "Vumat" which is developed by the first author in Fortran programming language. Modelling presented in the paper can be used to optimize and to better understand the process.
Effective electromagnetic properties of microheterogeneous materials with surface phenomena
NASA Astrophysics Data System (ADS)
Levin, Valery; Markov, Mikhail; Mousatov, Aleksandr; Kazatchenko, Elena; Pervago, Evgeny
2017-10-01
In this paper, we present an approach to calculate the complex dielectric permittivity of a micro-heterogeneous medium composed of non-conductive solid inclusions embedded into the conductive liquid continuous host. To take into account the surface effects, we approximate the inclusion by a layered ellipsoid consisting of a dielectric core and an infinitesimally thin outer shell corresponding to an electrical double layer (EDL). To predict the effective complex dielectric permittivity of materials with a high concentration of inclusions, we have modified the Effective Field Method (EFM) for the layered ellipsoidal particles with complex electrical properties. We present the results of complex permittivity calculations for the composites with randomly and parallel oriented ellipsoidal inclusions. To analyze the influence of surface polarization, we have accomplished modeling in a wide frequency range for different existing physic-chemical models of double electrical layer. The results obtained show that the tensor of effective complex permittivity of a micro-heterogeneous medium with surface effects has complicate dependences on the component electrical properties, spatial material texture, and the inclusion shape (ellipsoid aspect ratio) and size. The dispersion of dielectric permittivity corresponds to the frequency dependence for individual inclusion of given size, and does not depend on the inclusion concentration.
NASA Astrophysics Data System (ADS)
Babu, C. Rajesh; Kumar, P.; Rajamohan, G.
2017-07-01
Computation of fluid flow and heat transfer in an economizer is simulated by a porous medium approach, with plain tubes having a horizontal in-line arrangement and cross flow arrangement in a coal-fired thermal power plant. The economizer is a thermal mechanical device that captures waste heat from the thermal exhaust flue gasses through heat transfer surfaces to preheat boiler feed water. In order to evaluate the fluid flow and heat transfer on tubes, a numerical analysis on heat transfer performance is carried out on an 110 t/h MCR (Maximum continuous rating) boiler unit. In this study, thermal performance is investigated using the computational fluid dynamics (CFD) simulation using ANSYS FLUENT. The fouling factor ε and the overall heat transfer coefficient ψ are employed to evaluate the fluid flow and heat transfer. The model demands significant computational details for geometric modeling, grid generation, and numerical calculations to evaluate the thermal performance of an economizer. The simulation results show that the overall heat transfer coefficient 37.76 W/(m2K) and economizer coil side pressure drop of 0.2 (kg/cm2) are found to be conformity within the tolerable limits when compared with existing industrial economizer data.
NASA Astrophysics Data System (ADS)
Ge, J.; Everett, M. E.; Weiss, C. J.
2012-12-01
A 2.5D finite difference (FD) frequency-domain modeling algorithm based on the theory of fractional diffusion of electromagnetic (EM) fields generated by a loop source lying above a fractured geological medium is addressed in this paper. The presence of fractures in the subsurface, usually containing highly conductive pore fluids, gives rise to spatially hierarchical flow paths of induced EM eddy currents. The diffusion of EM eddy currents in such formations is anomalous, generalizing the classical Gaussian process described by the conventional Maxwell equations. Based on the continuous time random walk (CTRW) theory, the diffusion of EM eddy currents in a rough medium is governed by the fractional Maxwell equations. Here, we model the EM response of a 2D subsurface containing fractured zones, with a 3D loop source, which results the so-called 2.5D model geometry. The governing equation in the frequency domain is converted using Fourier transform into k domain along the strike direction (along which the model conductivity doesn't vary). The resulting equation system is solved by the multifrontal massively parallel solver (MUMPS). The data obtained is then converted back to spatial domain and the time domain. We find excellent agreement between the FD and analytic solutions for a rough halfspace model. Then FD solutions are calculated for a 2D fault zone model with variable conductivity and roughness. We compare the results with responses from several classical models and explore the relationship between the roughness and the spatial density of the fracture distribution.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wezeman, F.H.; Dungan, D.D.
1986-08-01
Newborn mouse calvaria prelabeled with /sup 45/Ca and cryopreserved at -196 degrees C in serum-free medium containing dimethylsulfoxide were compared to unpreserved explants for response to parathyroid hormone during subsequent culture. After short-term cryopreservation followed by rapid thawing, the viable explants continued to release /sup 45/Ca to the culture medium but additions of parathyroid hormone to the medium did not cause increased bone resorption. The data suggest that cryopreservation and thawing impairs mechanisms responsible for parathyroid hormone action on bone cells.
Impulsive and Varying Injection in Gamma-Ray Burst Afterglows.
Sari; Mészáros
2000-05-20
The standard model of gamma-ray burst afterglows is based on synchrotron radiation from a blast wave produced when the relativistic ejecta encounters the surrounding medium. We reanalyze the refreshed shock scenario, in which slower material catches up with the decelerating ejecta and reenergizes it. This energization can be done either continuously or in discrete episodes. We show that such a scenario has two important implications. First, there is an additional component coming from the reverse shock that goes into the energizing ejecta. This persists for as long as the reenergization itself, which could extend for up to days or longer. We find that during this time the overall spectral peak is found at the characteristic frequency of the reverse shock. Second, if the injection is continuous, the dynamics will be different from that in constant energy evolution and will cause a slower decline of the observed fluxes. A simple test of the continuously refreshed scenario is that it predicts a spectral maximum in the far-infrared or millimeter range after a few days.
Kristensen, Bjarne W; Blaabjerg, Morten; Noraberg, Jens; Zimmer, Jens
2007-05-01
Most in vitro models are only used to assess short-term effects of test compounds. However, as demonstrated here, hippocampal slice cultures can be used for long-term studies. The test compound used was the metabotropic glutamate receptor antagonist, L(+)-2-amino-3-phosphonopropionic acid (L-AP3), which is known to be toxic in vivo after subchronic, but not acute, administration. Degenerative effects were monitored by measuring the cellular uptake of propidium iodide (PI; continuously present in the medium) and lactate dehydrogenase (LDH) leakage, and by using a panel of histological stains. Hippocampal slices, derived from 2-3 day old rats and grown for 3 weeks, were subsequently exposed for the next 3 weeks to 0, 10 or 100microM L-AP3, with PI (2microM) in the culture medium. Exposure to 100microM L-AP3 induced severe toxicity after 4-6 days, shown by massive PI uptake, LDH leakage, changes in MAP2 and GFAP immunostaining, and in Nissl and Timm staining. In contrast, 10microM L-AP3 did not induce detectable neuronal degeneration. Treatment with the NMDA receptor antagonist, MK-801, or the AMPA/KA receptor antagonist NBQX, together with 100microM L-AP3, reduced neurodegeneration down to close to control values. It is concluded that continuous incubation of hippocampal slice cultures with PI is technically feasible for use in studies of inducible neuronal degeneration over time.
Pseudoscalar D and B mesons in the hot dense and nonstrange symmetric medium
NASA Astrophysics Data System (ADS)
Chhabra, Rahul; Kumar, Arvind
2017-01-01
We investigate the effect of temperature and density on the shift in the masses and decay constants of the pseudoscalar D and B mesons in the nonstrange symmetric medium. We use chiral SU(3) model to calculate the medium modified scalar and isoscalar fields σ, ζ, δ and χ. We use these modified fields to calculate the in-medium quark and gluon condensates by solving the coupled equations of motions in the chiral SU(3) model. We obtain the medium modified mass and decay constant through these medium modified condensates using the QCD sum rules. Further we use the 3P0 model by taking the internal structure of the mesons to calculate the in-medium decay width of the higher charmonium states χ(3556) , ψ(3686) and ψ(3770) to the D D pairs, through the in-medium mass of D meson and neglecting the mass modification of higher charmonium states. We also compare the present data with the previous results. These results of present investigation may be important to explain the possible outcomes of the experiments like CBM, Panda at GSI.
Nonequilibrium forces between atoms and dielectrics mediated by a quantum field
NASA Astrophysics Data System (ADS)
Behunin, Ryan O.; Hu, Bei-Lok
2011-07-01
In this paper we give a first principles microphysics derivation of the nonequilibrium forces between an atom, treated as a three-dimensional harmonic oscillator, and a bulk dielectric medium modeled as a continuous lattice of oscillators coupled to a reservoir. We assume no direct interaction between the atom and the medium but there exist mutual influences transmitted via a common electromagnetic field. By employing concepts and techniques of open quantum systems we introduce coarse-graining to the physical variables—the medium, the quantum field, and the atom’s internal degrees of freedom, in that order—to extract their averaged effects from the lowest tier progressively to the top tier. The first tier of coarse-graining provides the averaged effect of the medium upon the field, quantified by a complex permittivity (in the frequency domain) describing the response of the dielectric to the field in addition to its back action on the field through a stochastic forcing term. The last tier of coarse-graining over the atom’s internal degrees of freedom results in an equation of motion for the atom’s center of mass from which we can derive the force on the atom. Our nonequilibrium formulation provides a fully dynamical description of the atom’s motion including back-action effects from all other relevant variables concerned. In the long-time limit we recover the known results for the atom-dielectric force when the combined system is in equilibrium or in a nonequilibrium stationary state.
Archibald, F S; DeVoe, I W
1978-01-01
A simple defined medium (neisseria defined medium) was devised that does not require iron extraction to produce iron-limited growth of Neisseria meningitidis (SDIC). Comparison of this medium to Mueller-Hinton broth and agar showed nearly identical growth rates and yields. The defined medium was used in batch cultures to determine the disappearance of iron from the medium and its uptake by cells. To avoid a number of problems inherent in batch culture, continuous culture, in which iron and dissolved oxygen were varied independently, was used. Most of the cellular iron was found to be nonheme and associated with the particulate fraction in sonically disrupted cells. Nonheme and catalase-heme iron were reduced by iron starvation far more than cytochromes b and c and N,N,N',N'-tetramethylphenylenediamine-oxidase. The respiration rate and efficiency also decreased under iron limitation, whereas generation times increased. The iron-starved meningococcus took up iron by an energy-independent system operating in the first minute after an iron pulse and a slower energy-dependent system inhibited by respiratory poisons and an uncoupler. The energy-dependent system showed saturation kinetics and was stimulated nearly fourfold by iron privation. In addition, to determine the availability to the meningococcus of the iron in selected compounds, a sensitive assay was devised in which an iron-limited continuous culture was pulsed with the iron-containing compound. PMID:101516
ERIC Educational Resources Information Center
Sooraksa, Nanta
2012-01-01
This paper describes a career development program for staff involved in providing training for small- and medium-sized enterprises (SMEs) in Thailand. Most of these staff were professional vocational teachers in schools. The program uses information communication technology (ICT), and its main objective is to teach Moodle software as a tool for…
Radio jet refraction in galactic atmospheres with static pressure gradients
NASA Technical Reports Server (NTRS)
Henriksen, R. N.; Vallee, J. P.; Bridle, A. H.
1981-01-01
A theory based on the refraction of radio jets in the extended atmosphere of an elliptical galaxy, is proposed for double radio sources with a Z or S morphology. The model describes a collimated jet of supersonic material that bends self-consistently under the influence of external static pressure gradients, and may alternatively be seen as a continuous-jet version of the buoyancy model proposed by Gull (1973). Emphasis is placed on (1) S-shaped radio sources identified with isolated galaxies, such as 3C 293, whose radio structures should be free of distortions resulting from motion relative to a cluster medium, and (2) small-scale, galaxy-dominated rather than environment-dominated S-shaped sources such as the inner jet structure of Fornax A.
Clearing out a maze: A model of chemotactic motion in porous media
NASA Astrophysics Data System (ADS)
Schilling, Tanja; Voigtmann, Thomas
2017-12-01
We study the anomalous dynamics of a biased "hungry" (or "greedy") random walk on a percolating cluster. The model mimics chemotaxis in a porous medium: In close resemblance to the 1980s arcade game PAC-MA N ®, the hungry random walker consumes food, which is initially distributed in the maze, and biases its movement towards food-filled sites. We observe that the mean-squared displacement of the process follows a power law with an exponent that is different from previously known exponents describing passive or active microswimmer dynamics. The change in dynamics is well described by a dynamical exponent that depends continuously on the propensity to move towards food. It results in slower differential growth when compared to the unbiased random walk.
NASA Technical Reports Server (NTRS)
Rietmeijer, F. J. M.
1986-01-01
The nature of hydrocarbons and properties of elemental carbon in circumstellar, interstellar, and interplanetary dust is a long standing problem in astronomy and meteorite research. The textures and crystallographical properties of poorly graphitized carbon (PGC) from carbonaceous chondrites and Chondritic Porous Aggregates (CPAs) are comparable with PGCs formed by dehydrogenation and carbonization of hydrocarbon precursors under natural terrestrial and experimental conditions. A multistage model of hydrocarbon diagenesis in CPA and carbonaceous chondrite (proto-) planetary parent bodies was proposed in which hydrocarbons are subjected to low temperature hydrous pyrolysis. Continued efforts to recognize hydrocarbons and elemental phases in CPAs may allow understanding of the multistage hydrocarbon/elemental carbon model.
NASA Technical Reports Server (NTRS)
Crozier, G. F.; Schroeder, W. W.
1978-01-01
The termination of studies carried on for almost three years in the Mobile Bay area and adjacent continental shelf are reported. The initial results concentrating on the shelf and lower bay were presented in the interim report. The continued scope of work was designed to attempt a refinement of the mathematical model, assess the effectiveness of optical measurement of suspended particulate material and disseminate the acquired information. The optical characteristics of particulate solutions are affected by density gradients within the medium, density of the suspended particles, particle size, particle shape, particle quality, albedo, and the angle of refracted light. Several of these are discussed in detail.
NASA Astrophysics Data System (ADS)
Kwon, J.; Yang, H.
2006-12-01
Although GPS provides continuous and accurate position information, there are still some rooms for improvement of its positional accuracy, especially in the medium and long range baseline determination. In general, in case of more than 50 km baseline length, the effect of ionospheric delay is the one causing the largest degradation in positional accuracy. For example, the ionospheric delay in terms of double differenced mode easily reaches 10 cm with baseline length of 101 km. Therefore, many researchers have been tried to mitigate/reduce the effect using various modeling methods. In this paper, the optimal stochastic modeling of the ionospheric delay in terms of baseline length is presented. The data processing has been performed by constructing a Kalman filter with states of positions, ambiguities, and the ionospheric delays in the double differenced mode. Considering the long baseline length, both double differenced GPS phase and code observations are used as observables and LAMBDA has been applied to fix the ambiguities. Here, the ionospheric delay is stochastically modeled by well-known Gaussian, 1st and 3rd order Gauss-Markov process. The parameters required in those models such as correlation distance and time is determined by the least-square adjustment using ionosphere-only observables. Mainly the results and analysis from this study show the effect of stochastic models of the ionospheric delay in terms of the baseline length, models, and parameters used. In the above example with 101 km baseline length, it was found that the positional accuracy with appropriate ionospheric modeling (Gaussian) was about ±2 cm whereas it reaches about ±15 cm with no stochastic modeling. It is expected that the approach in this study contributes to improve positional accuracy, especially in medium and long range baseline determination.
The mode 3 crack problem in bonded materials with a nonhomogeneous interfacial zone
NASA Technical Reports Server (NTRS)
Erdogan, Fazil; Kaya, A. C.; Joseph, P. F.
1988-01-01
The mode 3 crack problem for two bonded homogeneous half planes was considered. The interfacial zone was modelled by a nonhomogeneous strip in such a way that the shear modulus is a continuous function throughout the composite medium and has discontinuous derivatives along the boundaries of the interfacial zone. The problem was formulated for cracks perpendicular to the nominal interface and was solved for various crack locations in and around the interfacial region. The asymptotic stress field near the tip of a crack terminating at an interface was examined and it was shown that, unlike the corresponding stress field in piecewise homogeneous materials, in this case the stresses have the standard square root singularity and their angular variation was identical to that of a crack in a homogeneous medium. With application to the subcritical crack growth process in mind, the results given include mostly the stress intensity factors for some typical crack geometries and various material combinations.
The mode III crack problem in bonded materials with a nonhomogeneous interfacial zone
NASA Technical Reports Server (NTRS)
Erdogan, F.; Joseph, P. F.; Kaya, A. C.
1991-01-01
The mode 3 crack problem for two bonded homogeneous half planes was considered. The interfacial zone was modelled by a nonhomogeneous strip in such a way that the shear modulus is a continuous function throughout the composite medium and has discontinuous derivatives along the boundaries of the interfacial zone. The problem was formulated for cracks perpendicular to the nominal interface and was solved for various crack locations in and around the interfacial region. The asymptotic stress field near the tip of a crack terminating at an interface was examined and it was shown that, unlike the corresponding stress field in piecewise homogeneous materials, in this case the stresses have the standard square root singularity and their angular variation was identical to that of a crack in a homogeneous medium. With application to the subcritical crack growth process in mind, the results given include mostly the stress intensity factors for some typical crack geometries and various material combinations.
NASA Astrophysics Data System (ADS)
Barnett, Alex H.; Nelson, Bradley J.; Mahoney, J. Matthew
2015-09-01
We apply boundary integral equations for the first time to the two-dimensional scattering of time-harmonic waves from a smooth obstacle embedded in a continuously-graded unbounded medium. In the case we solve, the square of the wavenumber (refractive index) varies linearly in one coordinate, i.e. (Δ + E +x2) u (x1 ,x2) = 0 where E is a constant; this models quantum particles of fixed energy in a uniform gravitational field, and has broader applications to stratified media in acoustics, optics and seismology. We evaluate the fundamental solution efficiently with exponential accuracy via numerical saddle-point integration, using the truncated trapezoid rule with typically 102 nodes, with an effort that is independent of the frequency parameter E. By combining with a high-order Nyström quadrature, we are able to solve the scattering from obstacles 50 wavelengths across to 11 digits of accuracy in under a minute on a desktop or laptop.
Influence of oxygen on the chemical stage of radiobiological mechanism
NASA Astrophysics Data System (ADS)
Barilla, Jiří; Lokajíček, Miloš V.; Pisaková, Hana; Simr, Pavel
2016-07-01
The simulation of the chemical stage of radiobiological mechanism may be very helpful in studying the radiobiological effect of ionizing radiation when the water radical clusters formed by the densely ionizing ends of primary or secondary charged particle may form DSBs damaging DNA molecules in living cells. It is possible to study not only the efficiency of individual radicals but also the influence of other species or radiomodifiers (mainly oxygen) being present in water medium during irradiation. The mathematical model based on Continuous Petri nets (proposed by us recently) will be described. It makes it possible to analyze two main processes running at the same time: chemical radical reactions and the diffusion of radical clusters formed during energy transfer. One may study the time change of radical concentrations due to the chemical reactions running during diffusion process. Some orientation results concerning the efficiency of individual radicals in DSB formation (in the case of Co60 radiation) will be presented; the influence of oxygen present in water medium during irradiation will be shown, too.
Scattering of plane transverse waves by spherical inclusions in a poroelastic medium
NASA Astrophysics Data System (ADS)
Liu, Xu; Greenhalgh, Stewart; Zhou, Bing
2009-03-01
The scattering of plane transverse waves by a spherical inclusion embedded in an infinite poroelastic medium is treated for the first time in this paper. The vector displacement wave equations of Biot's theory are solved as an infinite series of vector spherical harmonics for the case of a plane S-wave impinging from a porous medium onto a spherical inclusion which itself is assumed to be another porous medium. Based on the single spherical scattering theory and dynamic composite elastic medium theory, the non-self-consistent shear wavenumber is derived for a porous rock having numerous spherical inclusions of another medium. The frequency dependences of the shear wave velocity and the shear wave attenuation have been calculated for both the patchy saturation model (inclusions having the same solid frame as the host but with a different pore fluid from the host medium) and the double porosity model (inclusions having a different solid frame than the host but the same pore fluid as the host medium) with dilute concentrations of identical inclusions. Unlike the case of incident P-wave scattering, we show that although the fluid and the heterogeneity of the rock determine the shear wave velocity of the composite, the attenuation of the shear wave caused by scattering is actually contributed by the heterogeneity of the rock for spherical inclusions. The scattering of incident shear waves in the patchy saturation model is quite different from that of the double porosity model. For the patchy saturation model, the gas inclusions do not significantly affect the shear wave dispersion characteristic of the water-filled host medium. However, the softer inclusion with higher porosity in the double porosity model can cause significant shear wave scattering attenuation which occurs at a frequency at which the wavelength of the shear wave is approximately equal to the characteristic size of the inclusion and depends on the volume fraction. Compared with analytic formulae for the low frequency limit of the shear velocity, our scattering model yields discrepancies within 4.0 per cent. All calculated shear velocities of the composite medium with dilute inclusion concentrations approach the high frequency limit of the host material.
Di Legge, A; Testa, A C; Ameye, L; Van Calster, B; Lissoni, A A; Leone, F P G; Savelli, L; Franchi, D; Czekierdowski, A; Trio, D; Van Holsbeke, C; Ferrazzi, E; Scambia, G; Timmerman, D; Valentin, L
2012-09-01
To estimate the ability to discriminate between benign and malignant adnexal masses of different size using: subjective assessment, two International Ovarian Tumor Analysis (IOTA) logistic regression models (LR1 and LR2), the IOTA simple rules and the risk of malignancy index (RMI). We used a multicenter IOTA database of 2445 patients with at least one adnexal mass, i.e. the database previously used to prospectively validate the diagnostic performance of LR1 and LR2. The masses were categorized into three subgroups according to their largest diameter: small tumors (diameter < 4 cm; n = 396), medium-sized tumors (diameter, 4-9.9 cm; n = 1457) and large tumors (diameter ≥ 10 cm, n = 592). Subjective assessment, LR1 and LR2, IOTA simple rules and the RMI were applied to each of the three groups. Sensitivity, specificity, positive and negative likelihood ratio (LR+, LR-), diagnostic odds ratio (DOR) and area under the receiver-operating characteristics curve (AUC) were used to describe diagnostic performance. A moving window technique was applied to estimate the effect of tumor size as a continuous variable on the AUC. The reference standard was the histological diagnosis of the surgically removed adnexal mass. The frequency of invasive malignancy was 10% in small tumors, 19% in medium-sized tumors and 40% in large tumors; 11% of the large tumors were borderline tumors vs 3% and 4%, respectively, of the small and medium-sized tumors. The type of benign histology also differed among the three subgroups. For all methods, sensitivity with regard to malignancy was lowest in small tumors (56-84% vs 67-93% in medium-sized tumors and 74-95% in large tumors) while specificity was lowest in large tumors (60-87%vs 83-95% in medium-sized tumors and 83-96% in small tumors ). The DOR and the AUC value were highest in medium-sized tumors and the AUC was largest in tumors with a largest diameter of 7-11 cm. Tumor size affects the performance of subjective assessment, LR1 and LR2, the IOTA simple rules and the RMI in discriminating correctly between benign and malignant adnexal masses. The likely explanation, at least in part, is the difference in histology among tumors of different size. Copyright © 2012 ISUOG. Published by John Wiley & Sons, Ltd.
Microcomputers and Continuing Motivation.
ERIC Educational Resources Information Center
Seymour, Sherrie L.; And Others
1987-01-01
Describes study that investigated the effects of medium of instructional practice, task difficulty, and gender on continuing motivation. Microcomputers and paper and pencil format were compared on tasks at a hard or easy difficulty level with fifth and sixth grade students, and questionnaires were used to determine student attitudes. (Author/LRW)
The Evolution of the Interstellar Medium in the Mildly Disturbed Spiral Galaxy NGC 4647
NASA Astrophysics Data System (ADS)
Young, L. M.; Rosolowsky, E.; van Gorkom, J. H.; Lamb, S. A.
2006-10-01
We present matched-resolution maps of H I and CO emission in the Virgo Cluster spiral NGC 4647. The galaxy shows a mild kinematic disturbance in which one side of the rotation curve flattens but the other side continues to rise. This kinematic asymmetry is coupled with a dramatic asymmetry in the molecular gas distribution but not in the atomic gas. An analysis of the gas column densities and the interstellar pressure suggests that the H2/H I surface density ratio on the east side of the galaxy is 3 times higher than expected from the hydrostatic pressure contributed by the mass of the stellar disk. We discuss the probable effects of ram pressure, gravitational interactions, and asymmetric potentials on the interstellar medium and suggest it is likely that a m=1 perturbation in the gravitational potential could be responsible for all of the galaxy's features. Kinematic disturbances of the type seen here are common, but the curious thing about NGC 4647 is that the molecular distribution appears more disturbed than the H I distribution. Thus, it is the combination of the two gas phases that provides such interesting insight into the galaxy's history and into models of the interstellar medium.
Gao, Wang; Gao, Chengfa; Pan, Shuguo; Wang, Denghui; Deng, Jiadong
2015-10-30
The regional constellation of the BeiDou navigation satellite system (BDS) has been providing continuous positioning, navigation and timing services since 27 December 2012, covering China and the surrounding area. Real-time kinematic (RTK) positioning with combined BDS and GPS observations is feasible. Besides, all satellites of BDS can transmit triple-frequency signals. Using the advantages of multi-pseudorange and carrier observations from multi-systems and multi-frequencies is expected to be of much benefit for ambiguity resolution (AR). We propose an integrated AR strategy for medium baselines by using the combined GPS and BDS dual/triple-frequency observations. In the method, firstly the extra-wide-lane (EWL) ambiguities of triple-frequency system, i.e., BDS, are determined first. Then the dual-frequency WL ambiguities of BDS and GPS were resolved with the geometry-based model by using the BDS ambiguity-fixed EWL observations. After that, basic (i.e., L1/L2 or B1/B2) ambiguities of BDS and GPS are estimated together with the so-called ionosphere-constrained model, where the ambiguity-fixed WL observations are added to enhance the model strength. During both of the WL and basic AR, a partial ambiguity fixing (PAF) strategy is adopted to weaken the negative influence of new-rising or low-elevation satellites. Experiments were conducted and presented, in which the GPS/BDS dual/triple-frequency data were collected in Nanjing and Zhengzhou of China, with the baseline distance varying from about 28.6 to 51.9 km. The results indicate that, compared to the single triple-frequency BDS system, the combined system can significantly enhance the AR model strength, and thus improve AR performance for medium baselines with a 75.7% reduction of initialization time on average. Besides, more accurate and stable positioning results can also be derived by using the combined GPS/BDS system.
Gao, Wang; Gao, Chengfa; Pan, Shuguo; Wang, Denghui; Deng, Jiadong
2015-01-01
The regional constellation of the BeiDou navigation satellite system (BDS) has been providing continuous positioning, navigation and timing services since 27 December 2012, covering China and the surrounding area. Real-time kinematic (RTK) positioning with combined BDS and GPS observations is feasible. Besides, all satellites of BDS can transmit triple-frequency signals. Using the advantages of multi-pseudorange and carrier observations from multi-systems and multi-frequencies is expected to be of much benefit for ambiguity resolution (AR). We propose an integrated AR strategy for medium baselines by using the combined GPS and BDS dual/triple-frequency observations. In the method, firstly the extra-wide-lane (EWL) ambiguities of triple-frequency system, i.e., BDS, are determined first. Then the dual-frequency WL ambiguities of BDS and GPS were resolved with the geometry-based model by using the BDS ambiguity-fixed EWL observations. After that, basic (i.e., L1/L2 or B1/B2) ambiguities of BDS and GPS are estimated together with the so-called ionosphere-constrained model, where the ambiguity-fixed WL observations are added to enhance the model strength. During both of the WL and basic AR, a partial ambiguity fixing (PAF) strategy is adopted to weaken the negative influence of new-rising or low-elevation satellites. Experiments were conducted and presented, in which the GPS/BDS dual/triple-frequency data were collected in Nanjing and Zhengzhou of China, with the baseline distance varying from about 28.6 to 51.9 km. The results indicate that, compared to the single triple-frequency BDS system, the combined system can significantly enhance the AR model strength, and thus improve AR performance for medium baselines with a 75.7% reduction of initialization time on average. Besides, more accurate and stable positioning results can also be derived by using the combined GPS/BDS system. PMID:26528977
A Model of Cancer Stem Cells Derived from Mouse Induced Pluripotent Stem Cells
Chen, Ling; Kasai, Tomonari; Li, Yueguang; Sugii, Yuh; Jin, Guoliang; Okada, Masashi; Vaidyanath, Arun; Mizutani, Akifumi; Satoh, Ayano; Kudoh, Takayuki; Hendrix, Mary J. C.; Salomon, David S.; Fu, Li; Seno, Masaharu
2012-01-01
Cancer stem cells (CSCs) are capable of continuous proliferation and self-renewal and are proposed to play significant roles in oncogenesis, tumor growth, metastasis and cancer recurrence. CSCs are considered derived from normal stem cells affected by the tumor microenvironment although the mechanism of development is not clear yet. In 2007, Yamanaka's group succeeded in generating Nanog mouse induced pluripotent stem (miPS) cells, in which green fluorescent protein (GFP) has been inserted into the 5′-untranslated region of the Nanog gene. Usually, iPS cells, just like embryonic stem cells, are considered to be induced into progenitor cells, which differentiate into various normal phenotypes depending on the normal niche. We hypothesized that CSCs could be derived from Nanog miPS cells in the conditioned culture medium of cancer cell lines, which is a mimic of carcinoma microenvironment. As a result, the Nanog miPS cells treated with the conditioned medium of mouse Lewis lung carcinoma acquired characteristics of CSCs, in that they formed spheroids expressing GFP in suspension culture, and had a high tumorigenicity in Balb/c nude mice exhibiting angiogenesis in vivo. In addition, these iPS-derived CSCs had a capacity of self-renewal and expressed the marker genes, Nanog, Rex1, Eras, Esg1 and Cripto, associated with stem cell properties and an undifferentiated state. Thus we concluded that a model of CSCs was originally developed from miPS cells and proposed the conditioned culture medium of cancer cell lines might perform as niche for producing CSCs. The model of CSCs and the procedure of their establishment will help study the genetic alterations and the secreted factors in the tumor microenvironment which convert miPS cells to CSCs. Furthermore, the identification of potentially bona fide markers of CSCs, which will help the development of novel anti-cancer therapies, might be possible though the CSC model. PMID:22511923
Medium- and Long-term Prediction of LOD Change with the Leap-step Autoregressive Model
NASA Astrophysics Data System (ADS)
Liu, Q. B.; Wang, Q. J.; Lei, M. F.
2015-09-01
It is known that the accuracies of medium- and long-term prediction of changes of length of day (LOD) based on the combined least-square and autoregressive (LS+AR) decrease gradually. The leap-step autoregressive (LSAR) model is more accurate and stable in medium- and long-term prediction, therefore it is used to forecast the LOD changes in this work. Then the LOD series from EOP 08 C04 provided by IERS (International Earth Rotation and Reference Systems Service) is used to compare the effectiveness of the LSAR and traditional AR methods. The predicted series resulted from the two models show that the prediction accuracy with the LSAR model is better than that from AR model in medium- and long-term prediction.
Training the next generation of scientists in Weather Forecasting: new approaches with real models
NASA Astrophysics Data System (ADS)
Carver, Glenn; Váňa, Filip; Siemen, Stephan; Kertesz, Sandor; Keeley, Sarah
2014-05-01
The European Centre for Medium Range Weather Forecasts operationally produce medium range forecasts using what is internationally acknowledged as the world leading global weather forecast model. Future development of this scientifically advanced model relies on a continued availability of experts in the field of meteorological science and with high-level software skills. ECMWF therefore has a vested interest in young scientists and University graduates developing the necessary skills in numerical weather prediction including both scientific and technical aspects. The OpenIFS project at ECMWF maintains a portable version of the ECMWF forecast model (known as IFS) for use in education and research at Universities, National Meteorological Services and other research and education organisations. OpenIFS models can be run on desktop or high performance computers to produce weather forecasts in a similar way to the operational forecasts at ECMWF. ECMWF also provide the Metview desktop application, a modern, graphical, and easy to use tool for analysing and visualising forecasts that is routinely used by scientists and forecasters at ECMWF and other institutions. The combination of Metview with the OpenIFS models has the potential to deliver classroom-friendly tools allowing students to apply their theoretical knowledge to real-world examples using a world-leading weather forecasting model. In this paper we will describe how the OpenIFS model has been used for teaching. We describe the use of Linux based 'virtual machines' pre-packaged on USB sticks that support a technically easy and safe way of providing 'classroom-on-a-stick' learning environments for advanced training in numerical weather prediction. We welcome discussions with interested parties.
Efficient field testing for load rating railroad bridges
NASA Astrophysics Data System (ADS)
Schulz, Jeffrey L.; Brett C., Commander
1995-06-01
As the condition of our infrastructure continues to deteriorate, and the loads carried by our bridges continue to increase, an ever growing number of railroad and highway bridges require load limits. With safety and transportation costs at both ends of the spectrum. the need for accurate load rating is paramount. This paper describes a method that has been developed for efficient load testing and evaluation of short- and medium-span bridges. Through the use of a specially-designed structural testing system and efficient load test procedures, a typical bridge can be instrumented and tested at 64 points in less than one working day and with minimum impact on rail traffic. Various techniques are available to evaluate structural properties and obtain a realistic model. With field data, a simple finite element model is 'calibrated' and its accuracy is verified. Appropriate design and rating loads are applied to the resulting model and stress predictions are made. This technique has been performed on numerous structures to address specific problems and to provide accurate load ratings. The merits and limitations of this approach are discussed in the context of actual examples of both rail and highway bridges that were tested and evaluated.
Allegra, J C; Korat, O; Do, H M; Lippman, M
1981-01-01
The regulation of progesterone receptor by 17 beta estradiol and tamoxifen in the ZR-75-1 human breast cancer cell line in defined medium is described. ZR-75-1 cells maintained in serum free hormone supplemented medium minus estradiol lack progesterone receptor activity. Readdition of estradiol to these cells leads to a marked stimulation of progesterone receptor activity (0 to greater than 100 fmols of specifically bound progesterone per million cells). Tamoxifen (10(-6)M-10(-8)M) does not stimulate progesterone receptor activity in this cell line. The presence of progesterone receptor activity is not directly related to growth. Withdrawal of insulin in the continued presence of estradiol has no effect on progesterone receptor concentration although net cell growth ceases. Conversely, withdrawal of estradiol in the continued presence of insulin induces a cessation of net cell growth accompanied by a loss of all progesterone receptor activity within 3-5 days.
Han, Xiahui; Li, Jianlang
2014-11-01
The transient temperature evolution in the gain medium of a continuous wave (CW) end-pumped passively Q-switched microchip (PQSM) laser is analyzed. By approximating the time-dependent population inversion density as a sawtooth function of time and treating the time-dependent pump absorption of a CW end-pumped PQSM laser as the superposition of an infinite series of short pumping pulses, the analytical expressions of transient temperature evolution and distribution in the gain medium for four- and three-level laser systems, respectively, are given. These analytical solutions are applied to evaluate the transient temperature evolution and distribution in the gain medium of CW end-pumped PQSM Nd:YAG and Yb:YAG lasers.
Continuous Culture of Ruminal Microorganisms in Chemically Defined Medium1
Quinn, Loyd Y.; Burroughs, Wise; Christiansen, William C.
1962-01-01
Ruminal ciliates have been grown in continuous culture in chemically defined media and in the absence of viable bacteria. Oligotrichic ruminal ciliates seem to require insoluble carbohydrates for growth; the holotrichic ciliates require soluble carbohydrates, but at low concentrations. Both groups of ciliates utilize amino acids as their principal nitrogen source when these are supplied in micromolar concentrations; at millimolar concentrations, amino acids are toxic, possibly from excessive ammonia formation arising from ciliate deaminase activity. Holotrichic ruminal ciliates are destroyed by overdeposition of amylopectin when glucose is present above 0.1% concentration in the medium. Ecological requirements of ruminal ciliates are also described. Images FIG. 1 FIG. 2 PMID:13972780
Code of Federal Regulations, 2011 CFR
2011-07-01
... accordance with movement requirements of high-voltage power centers and portable transformers (§ 75.812) and... transformer. A step-up transformer is a transformer that steps up the low or medium voltage to high voltage... supplying low or medium voltage to the step-up transformer must meet the applicable requirements of 30 CFR...
Code of Federal Regulations, 2013 CFR
2013-07-01
... accordance with movement requirements of high-voltage power centers and portable transformers (§ 75.812) and... transformer. A step-up transformer is a transformer that steps up the low or medium voltage to high voltage... supplying low or medium voltage to the step-up transformer must meet the applicable requirements of 30 CFR...
Code of Federal Regulations, 2012 CFR
2012-07-01
... accordance with movement requirements of high-voltage power centers and portable transformers (§ 75.812) and... transformer. A step-up transformer is a transformer that steps up the low or medium voltage to high voltage... supplying low or medium voltage to the step-up transformer must meet the applicable requirements of 30 CFR...
Code of Federal Regulations, 2010 CFR
2010-07-01
... accordance with movement requirements of high-voltage power centers and portable transformers (§ 75.812) and... transformer. A step-up transformer is a transformer that steps up the low or medium voltage to high voltage... supplying low or medium voltage to the step-up transformer must meet the applicable requirements of 30 CFR...
Code of Federal Regulations, 2014 CFR
2014-07-01
... accordance with movement requirements of high-voltage power centers and portable transformers (§ 75.812) and... transformer. A step-up transformer is a transformer that steps up the low or medium voltage to high voltage... supplying low or medium voltage to the step-up transformer must meet the applicable requirements of 30 CFR...
Hahlbrock, K; Ebel, J; Oaks, A; Auden, J; Liersch, M
1974-03-01
Conductivity changes in the medium of cultured soybean (Glycine max L.) cells were shown to be strictly correlated with nitrate uptake and growth of the cultures. A continuous record of the conductivity was used as a simple and reliable method of determining specific growth stages and concomitant peaks in the activities of nitrate reductase and phenylalanine ammonia-lyase.
NASA Astrophysics Data System (ADS)
Mahmud, Mohammad Hazzaz
There is a developing enthusiasm for electric vehicle (EV) innovations as a result of their lessened fuel utilization and greenhouse emission especially through wireless power transfer (WPT) due to the convenience and continuous charging. Numerous research initiatives target on wireless power transfer (WPT) system in the attempt to improve the transportation for last few decades. But several problems like less efficiency, high frequency, long distance energy transfer etc. were always been occupied by the wireless power transfer system. Two ideas have been developed in this research to resolve the two main problems of WPT for electric vehicles which are low efficiency due to large distance between the two coils and slow charging time. As the first phase of study, a proper model, including the coils and cores were required. The selected model was a finite element (FE) modeling. Another part of this study was to create a modified cement that will act as a semi-conductive material for covering the transmitting antenna area. A high frequency wide band gap switch will be used for transferring high amount of power in a very short time. More over this research also proves that, if cores could be added with the transmitter coil and receiver coil then the output efficiency dramatically increased comparing with without core model of transmitter and receiver. The wireless charging is not restricted to parking lot, since it's planned to be embedded into parking space concrete or roadway concrete or asphalt. Therefore, it can also be installed at junctions (behind red lights), stop signs or any spot that the vehicle might stop for several moments. This technology will become more feasible, if the charging time decreases. Therefore, a new model of for wireless power transfer has been proposed in this study which has shown significant improvement. Another motive of this study was to improve the conductivity and permeability in such a way that the medium that is on the top of the transmitting antenna can transfer the power efficiently to the receiving antenna. The best efficiency of 83% was achieved by using this model and the medium.
About the discrete-continuous nature of a hematopoiesis model for Chronic Myeloid Leukemia.
Gaudiano, Marcos E; Lenaerts, Tom; Pacheco, Jorge M
2016-12-01
Blood of mammals is composed of a variety of cells suspended in a fluid medium known as plasma. Hematopoiesis is the biological process of birth, replication and differentiation of blood cells. Despite of being essentially a stochastic phenomenon followed by a huge number of discrete entities, blood formation has naturally an associated continuous dynamics, because the cellular populations can - on average - easily be described by (e.g.) differential equations. This deterministic dynamics by no means contemplates some important stochastic aspects related to abnormal hematopoiesis, that are especially significant for studying certain blood cancer deceases. For instance, by mere stochastic competition against the normal cells, leukemic cells sometimes do not reach the population thereshold needed to kill the organism. Of course, a pure discrete model able to follow the stochastic paths of billons of cells is computationally impossible. In order to avoid this difficulty, we seek a trade-off between the computationally feasible and the biologically realistic, deriving an equation able to size conveniently both the discrete and continuous parts of a model for hematopoiesis in terrestrial mammals, in the context of Chronic Myeloid Leukemia. Assuming the cancer is originated from a single stem cell inside of the bone marrow, we also deduce a theoretical formula for the probability of non-diagnosis as a function of the mammal average adult mass. In addition, this work cellular dynamics analysis may shed light on understanding Peto's paradox, which is shown here as an emergent property of the discrete-continuous nature of the system. Copyright © 2016 Elsevier Inc. All rights reserved.
Coconut as a Medium for the Experimental Production of Aflatoxin
Arseculeratne, S. N.; De Silva, L. M.; Wijesundera, S.; Bandunatha, C. H. S. R.
1969-01-01
Fresh, grated coconut has been found to be an excellent medium for aflatoxin production by Aspergillus flavus. Under optimal conditions, yields of 8 mg of total aflatoxin per g of substrate were obtained. Continuous agitation of the growth medium under moist conditions at 24 C produced highest yields. Aflatoxin was assayed both biologically and chromatographically. The aflatoxin content of cultures varied biphasically with the duration of incubation. It is suggested that this pattern could result from the sequential operation of factors promoting aflatoxin formation on the one hand and a detoxifying mechanism on the other. Images PMID:5803632
Ellouze, M; Pichaud, M; Bonaiti, C; Coroller, L; Couvert, O; Thuault, D; Vaillant, R
2008-11-30
Time temperature integrators or indicators (TTIs) are effective tools making the continuous monitoring of the time temperature history of chilled products possible throughout the cold chain. Their correct setting is of critical importance to ensure food quality. The objective of this study was to develop a model to facilitate accurate settings of the CRYOLOG biological TTI, TRACEO. Experimental designs were used to investigate and model the effects of the temperature, the TTI inoculum size, pH, and water activity on its response time. The modelling process went through several steps addressing growth, acidification and inhibition phenomena in dynamic conditions. The model showed satisfactory results and validations in industrial conditions gave clear evidence that such a model is a valuable tool, not only to predict accurate response times of TRACEO, but also to propose precise settings to manufacture the appropriate TTI to trace a particular food according to a given time temperature scenario.
In-medium similarity renormalization group for closed and open-shell nuclei
NASA Astrophysics Data System (ADS)
Hergert, H.
2017-02-01
We present a pedagogical introduction to the in-medium similarity renormalization group (IMSRG) framework for ab initio calculations of nuclei. The IMSRG performs continuous unitary transformations of the nuclear many-body Hamiltonian in second-quantized form, which can be implemented with polynomial computational effort. Through suitably chosen generators, it is possible to extract eigenvalues of the Hamiltonian in a given nucleus, or drive the Hamiltonian matrix in configuration space to specific structures, e.g., band- or block-diagonal form. Exploiting this flexibility, we describe two complementary approaches for the description of closed- and open-shell nuclei: the first is the multireference IMSRG (MR-IMSRG), which is designed for the efficient calculation of nuclear ground-state properties. The second is the derivation of non-empirical valence-space interactions that can be used as input for nuclear shell model (i.e., configuration interaction (CI)) calculations. This IMSRG+shell model approach provides immediate access to excitation spectra, transitions, etc, but is limited in applicability by the factorial cost of the CI calculations. We review applications of the MR-IMSRG and IMSRG+shell model approaches to the calculation of ground-state properties for the oxygen, calcium, and nickel isotopic chains or the spectroscopy of nuclei in the lower sd shell, respectively, and present selected new results, e.g., for the ground- and excited state properties of neon isotopes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boardman, D.R. II; Yancey, T.E.; Mapes, R.H.
1983-03-01
A new model for the succession of Pennsylvanian fossil communities, preserved in cyclothems, is proposed on the basis of more than 200 fossil localities in the Mid-Continent, Appalachians, and north Texas. Early models for Mid-Continent cyclothems placed the black shales in shallow water, with maximum transgression at the fusulinid-bearing zone in the overlying limestone. The most recent model proposed that the black phosphatic shales, which commonly occur between two subtidal carbonates, are widespread and laterally continuous over great distances and represent maximum transgression. The black phosphatic shales contain: ammonoids; inarticulate brachiopods; radiolarians; conularids; shark material and abundant and diverse conodonts.more » The black shales grade vertically and laterally into dark gray-black shales which contain many of the same pelagic and epipelagic forms found in the phosphatic black shales. This facies contains the deepest water benthic community. Most of these forms are immature, pyritized, and generally are preserved as molds. The dark gray-black facies grades into a medium gray shale facies which contains a mature molluscan fauna. The medium gray shale grades into a lighter gray facies, which is dominated by brachiopods, crinoids, and corals, with occasional bivalves and gastropods. (These facies are interpreted as being a moderate to shallow depth shelf community). The brachiopid-crinoid community is succeeded by shallow water communities which may have occupied shoreline, lagoonal, bay, interdeltaic, or shallow prodeltaic environments.« less
Darabi Sahneh, Faryad; Scoglio, Caterina; Riviere, Jim
2013-01-01
Nanoparticle-protein corona complex formation involves absorption of protein molecules onto nanoparticle surfaces in a physiological environment. Understanding the corona formation process is crucial in predicting nanoparticle behavior in biological systems, including applications of nanotoxicology and development of nano drug delivery platforms. This paper extends the modeling work in to derive a mathematical model describing the dynamics of nanoparticle corona complex formation from population balance equations. We apply nonlinear dynamics techniques to derive analytical results for the composition of nanoparticle-protein corona complex, and validate our results through numerical simulations. The model presented in this paper exhibits two phases of corona complex dynamics. In the first phase, proteins rapidly bind to the free surface of nanoparticles, leading to a metastable composition. During the second phase, continuous association and dissociation of protein molecules with nanoparticles slowly changes the composition of the corona complex. Given sufficient time, composition of the corona complex reaches an equilibrium state of stable composition. We find analytical approximate formulae for metastable and stable compositions of corona complex. Our formulae are very well-structured to clearly identify important parameters determining corona composition. The dynamics of biocorona formation constitute vital aspect of interactions between nanoparticles and living organisms. Our results further understanding of these dynamics through quantitation of experimental conditions, modeling results for in vitro systems to better predict behavior for in vivo systems. One potential application would involve a single cell culture medium related to a complex protein medium, such as blood or tissue fluid.
NASA Astrophysics Data System (ADS)
Redfield, Seth; Linsky, Jeffrey L.
2015-10-01
Ultraviolet and optical spectra of interstellar gas along the lines of sight to nearby stars have been interpreted by Redfield & Linsky and previous studies as a set of discrete warm, partially ionized clouds each with a different flow vector, temperature, and metal depletion. Recently, Gry & Jenkins proposed a fundamentally different model consisting of a single cloud with nonrigid flows filling space out to 9 pc from the Sun that they propose better describes the local ISM. Here we test these fundamentally different morphological models against the spatially unbiased Malamut et al. spectroscopic data set, and find that the multiple cloud morphology model provides a better fit to both the new and old data sets. The detection of three or more velocity components along the lines of sight to many nearby stars, the presence of nearby scattering screens, the observed thin elongated structures of warm interstellar gas, and the likely presence of strong interstellar magnetic fields also support the multiple cloud model. The detection and identification of intercloud gas and the measurement of neutral hydrogen density in clouds beyond the Local Interstellar Cloud could provide future morphological tests. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained from the Data Archive at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS AR-09525.01A. These observations are associated with programs #11568.
40 CFR 62.14410 - Are there different emission limits for different locations and sizes of HMIWI?
Code of Federal Regulations, 2010 CFR
2010-07-01
... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) APPROVAL AND PROMULGATION OF STATE PLANS FOR DESIGNATED FACILITIES AND POLLUTANTS Federal Plan Requirements for Hospital/Medical/Infectious Waste... rural, small, medium, and large HMIWI. To determine the size category of your HMIWI, consult the...
Long-Term Study of Safe Internet Use of Young Children
ERIC Educational Resources Information Center
Valcke, M.; De Wever, B.; Van Keer, H.; Schellens, T.
2011-01-01
The Internet is an evolving medium that continuously presents new functionalities. Accordingly, also children's Internet usage changes continuously. This requires being vigilant about related Internet risk behavior and safe Internet use. The present article presents a structured overview of Internet risks and summarizes approaches to foster safe…
30 CFR 77.901-1 - Grounding resistor; continuous current rating.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Grounding resistor; continuous current rating. 77.901-1 Section 77.901-1 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF... OF UNDERGROUND COAL MINES Low- and Medium-Voltage Alternating Current Circuits § 77.901-1 Grounding...
30 CFR 77.901-1 - Grounding resistor; continuous current rating.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Grounding resistor; continuous current rating. 77.901-1 Section 77.901-1 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF... OF UNDERGROUND COAL MINES Low- and Medium-Voltage Alternating Current Circuits § 77.901-1 Grounding...
30 CFR 77.901-1 - Grounding resistor; continuous current rating.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Grounding resistor; continuous current rating. 77.901-1 Section 77.901-1 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF... OF UNDERGROUND COAL MINES Low- and Medium-Voltage Alternating Current Circuits § 77.901-1 Grounding...
30 CFR 77.901-1 - Grounding resistor; continuous current rating.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Grounding resistor; continuous current rating. 77.901-1 Section 77.901-1 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF... OF UNDERGROUND COAL MINES Low- and Medium-Voltage Alternating Current Circuits § 77.901-1 Grounding...
30 CFR 77.901-1 - Grounding resistor; continuous current rating.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Grounding resistor; continuous current rating. 77.901-1 Section 77.901-1 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF... OF UNDERGROUND COAL MINES Low- and Medium-Voltage Alternating Current Circuits § 77.901-1 Grounding...
A deployable mechanism concept for the collection of small-to-medium-size space debris
NASA Astrophysics Data System (ADS)
St-Onge, David; Sharf, Inna; Sagnières, Luc; Gosselin, Clément
2018-03-01
Current efforts in active debris removal strategies and mission planning focus on removing the largest, most massive debris. It can be argued, however, that small untrackable debris, specifically those smaller than 5 cm in size, also pose a serious threat. In this work, we propose and analyze a mission to sweep the most crowded Low Earth Orbit with a large cupola device to remove small-to-medium-size debris. The cupola consists of a deployable mechanism expanding more than 25 times its storage size to extend a membrane covering its surface. The membrane is sufficiently stiff to capture most small debris and to slow down the medium-size objects, thus accelerating their fall. An overview of the design of a belt-driven rigid-link mechanism proposed to support the collecting cupola surface is presented, based on our previous work. Because of its large size, the cupola will be subject to significant aerodynamic drag; thus, orbit maintenance analysis is carried out using the DTM-2013 atmospheric density model and it predicts feasible requirements. While in operation, the device will also be subject to numerous hyper-velocity impacts which may significantly perturb its orientation from the desired attitude for debris collection. Thus, another important feature of the proposed debris removal device is a distributed array of flywheels mounted on the cupola for reorienting and stabilizing its attitude during the mission. Analysis using a stochastic modeling framework for hyper-velocity impacts demonstrates that three-axes attitude stabilization is achievable with the flywheels array. MASTER-2009 software is employed to provide relevant data for all debris related estimates, including the debris fluxes for the baseline mission design and for assessment of its expected performance. Space debris removal is a high priority for ensuring sustainability of space and continual launch and operation of man-made space assets. This manuscript presents the first analysis of a small-to-medium size debris removal mission, albeit finding it to not be economically viable at the present time.
Immobilization of infant fecal microbiota and utilization in an in vitro colonic fermentation model.
Cinquin, C; Le Blay, G; Fliss, I; Lacroix, C
2004-07-01
Bacteria isolated from infant feces were immobilized in polysaccharide gel beads (2.5% gellan gum, 0.25% xanthan gum) using a two-phase dispersion process. A 52-day continuous culture was carried out in a single-stage chemostat containing precolonized beads and fed with a medium formulated to approximate the composition of infant chyme. Different dilution rates and pH conditions were tested to simulate the proximal (PCS), transverse (TCS), and distal (DCS) colons. Immobilization preserved all nine bacterial groups tested with survival rates between 3 and 56%. After 1 week fermentation, beads were highly colonized with all populations tested (excepted Staphylococcus spp. present in low numbers), which remained stable throughout the 7.5 weeks of fermentation, with variations below 1 log unit. However, free-cell populations in the circulating liquid medium, produced by immobilized cell growth, cell-release activity from gel beads, and free-cell growth, were altered considerably by culture conditions. Compared to the stabilization period, PCS was characterized by a considerable and rapid increase in Bifidobacterium spp. concentrations (7.4 to 9.6 log CFU/mL), whereas Bifidobacterium spp., Lactobacillus spp., and Clostridium spp. concentrations decreased and Staphylococcus spp. and coliforms increased during TCS and DCS. Under pseudo-steady-state conditions, the community structure developed in the chemostat reflected the relative proportions of viable bacterial numbers and metabolites generally encountered in infant feces. This work showed that a complex microbiota such as infant fecal bacteria can be immobilized and used in a continuous in vitro intestinal fermentation model to reproduce the high bacterial concentration and bacterial diversity of the feces inoculum, at least at the genera level, with a high stability during long-term experiment.
Theory for source-responsive and free-surface film modeling of unsaturated flow
Nimmo, J.R.
2010-01-01
A new model explicitly incorporates the possibility of rapid response, across significant distance, to substantial water input. It is useful for unsaturated flow processes that are not inherently diffusive, or that do not progress through a series of equilibrium states. The term source-responsive is used to mean that flow responds sensitively to changing conditions at the source of water input (e.g., rainfall, irrigation, or ponded infiltration). The domain of preferential flow can be conceptualized as laminar flow in free-surface films along the walls of pores. These films may be considered to have uniform thickness, as suggested by field evidence that preferential flow moves at an approximately uniform rate when generated by a continuous and ample water supply. An effective facial area per unit volume quantitatively characterizes the medium with respect to source-responsive flow. A flow-intensity factor dependent on conditions within the medium represents the amount of source-responsive flow at a given time and position. Laminar flow theory provides relations for the velocity and thickness of flowing source-responsive films. Combination with the Darcy-Buckingham law and the continuity equation leads to expressions for both fluxes and dynamic water contents. Where preferential flow is sometimes or always significant, the interactive combination of source-responsive and diffuse flow has the potential to improve prediction of unsaturated-zone fluxes in response to hydraulic inputs and the evolving distribution of soil moisture. Examples for which this approach is efficient and physically plausible include (i) rainstorm-generated rapid fluctuations of a deep water table and (ii) space- and time-dependent soil water content response to infiltration in a macroporous soil. ?? Soil Science Society of America.
Prabhudesai, V; Bhaskaran, S
1993-03-01
An efficient culture system has been developed for repeated cycles of somatic embryogenesis in microspore-derived embryos of Brassica juncea without a callus phase. Haploid embryos produced through anther culture showed a high propensity for direct production of somatic embryos in response to 2 mgL(-1) BA and 0.1 mgL(-1) NAA. The embryogenic cultures which comprised the elongated embryonal axis of microspore-derived embryos when explanted and grown on the medium of same composition produced a large number of secondary embryos. These somatic embryos in turn underwent axis elongation and produced more somatic embryos when explanted and cultured. This cycle of repetitive somatic embryogenesis continued with undiminished vigour passage after passage and was monitored for more than a year. Somatic embryos from any passage when isolated at cotyledonary stage and grown on auxin-free medium for 5 days and then on a medium containing NAA (0.1 mgL(-1)), developed into complete plants with a profuse root system and were easily established in the soil. The cytology of the root tips of these plants confirmed their haploid nature. The total absence of callus phase makes the system ideal for continuous cloning of androgenic lines, Agrobacterium-mediated transformation and mutation induction studies.
A new discrete dipole kernel for quantitative susceptibility mapping.
Milovic, Carlos; Acosta-Cabronero, Julio; Pinto, José Miguel; Mattern, Hendrik; Andia, Marcelo; Uribe, Sergio; Tejos, Cristian
2018-09-01
Most approaches for quantitative susceptibility mapping (QSM) are based on a forward model approximation that employs a continuous Fourier transform operator to solve a differential equation system. Such formulation, however, is prone to high-frequency aliasing. The aim of this study was to reduce such errors using an alternative dipole kernel formulation based on the discrete Fourier transform and discrete operators. The impact of such an approach on forward model calculation and susceptibility inversion was evaluated in contrast to the continuous formulation both with synthetic phantoms and in vivo MRI data. The discrete kernel demonstrated systematically better fits to analytic field solutions, and showed less over-oscillations and aliasing artifacts while preserving low- and medium-frequency responses relative to those obtained with the continuous kernel. In the context of QSM estimation, the use of the proposed discrete kernel resulted in error reduction and increased sharpness. This proof-of-concept study demonstrated that discretizing the dipole kernel is advantageous for QSM. The impact on small or narrow structures such as the venous vasculature might by particularly relevant to high-resolution QSM applications with ultra-high field MRI - a topic for future investigations. The proposed dipole kernel has a straightforward implementation to existing QSM routines. Copyright © 2018 Elsevier Inc. All rights reserved.
Space-based laser-driven MHD generator: Feasibility study
NASA Technical Reports Server (NTRS)
Choi, S. H.
1986-01-01
The feasibility of a laser-driven MHD generator, as a candidate receiver for a space-based laser power transmission system, was investigated. On the basis of reasonable parameters obtained in the literature, a model of the laser-driven MHD generator was developed with the assumptions of a steady, turbulent, two-dimensional flow. These assumptions were based on the continuous and steady generation of plasmas by the exposure of the continuous wave laser beam thus inducing a steady back pressure that enables the medium to flow steadily. The model considered here took the turbulent nature of plasmas into account in the two-dimensional geometry of the generator. For these conditions with the plasma parameters defining the thermal conductivity, viscosity, electrical conductivity for the plasma flow, a generator efficiency of 53.3% was calculated. If turbulent effects and nonequilibrium ionization are taken into account, the efficiency is 43.2%. The study shows that the laser-driven MHD system has potential as a laser power receiver for space applications because of its high energy conversion efficiency, high energy density and relatively simple mechanism as compared to other energy conversion cycles.
NASA Astrophysics Data System (ADS)
Marseguerra, M.; Zoia, A.
2007-04-01
Anomalous diffusion has recently turned out to be almost ubiquitous in transport problems. When the physical properties of the medium where the transport process takes place are stationary and constant at each spatial location, anomalous transport has been successfully analysed within the Continuous Time Random Walk (CTRW) model. In this paper, within a Monte Carlo approach to CTRW, we focus on the particle transport through two regions characterized by different physical properties, in presence of an external driving action constituted by an additional advective field, modelled within both the Galilei invariant and Galilei variant schemes. Particular attention is paid to the interplay between the distributions of space and time across the discontinuity. The resident concentration and the flux of the particles are finally evaluated and it is shown that at the interface between the two regions the flux is continuous as required by mass conservation, while the concentration may reveal a neat discontinuity. This result could open the route to the Monte Carlo investigation of the effectiveness of a physical discontinuity acting as a filter on particle concentration.
Numerical method to determine mechanical parameters of engineering design in rock masses.
Xue, Ting-He; Xiang, Yi-Qiang; Guo, Fa-Zhong
2004-07-01
This paper proposes a new continuity model for engineering in rock masses and a new schematic method for reporting the engineering of rock continuity. This method can be used to evaluate the mechanics of every kind of medium; and is a new way to determine the mechanical parameters used in engineering design in rock masses. In the numerical simulation, the experimental parameters of intact rock were combined with the structural properties of field rock. The experimental results for orthogonally-jointed rock are given. The results included the curves of the stress-strain relationship of some rock masses, the curve of the relationship between the dimension Delta and the uniaxial pressure-resistant strength sc of these rock masses, and pictures of the destructive procedure of some rock masses in uniaxial or triaxial tests, etc. Application of the method to engineering design in rock masses showed the potential of its application to engineering practice.
On the morphology of the scattering medium as seen by MST/ST radars
NASA Technical Reports Server (NTRS)
Gage, K. S.
1983-01-01
Much is learned about the morphology of the small scale structures of the atmosphere from analysis of echoes observed by MST radars. The use of physical models enables a synthesis of diverse observations. Each model contains an implicit assumption about the nature of the irregularity structure of the medium. A comparison is made between the irregularity structure implicit in several models and what is known about the structure of the medium.
Nucleon properties in the Polyakov quark-meson model
NASA Astrophysics Data System (ADS)
Li, Yingying; Hu, Jinniu; Mao, Hong
2018-05-01
We study the nucleon as a nontopological soliton in a quark medium as well as in a nucleon medium in terms of the Polyakov quark-meson (PQM) model with two flavors at finite temperature and density. The constituent quark masses evolving with the temperature at various baryon chemical potentials are calculated and the equations of motion are solved according to the proper boundary conditions. The PQM model predicts an increasing size of the nucleon and a reduction of the nucleon mass in both hot environment. However, the phase structure is different from each other in quark and nucleon mediums. There is a crossover in the low-density region and a first-order phase transition in the high-density region in quark medium, whereas there exists a crossover characterized by the overlap of the nucleons in nucleon medium.
Yuan, Zhihui; Ruan, Jujun; Li, Yaying; Qiu, Rongliang
2018-04-10
Bioleaching is a green recycling technology for recovering precious metals from waste printed circuit boards (WPCBs). However, this technology requires increasing cyanide production to obtain desirable recovery efficiency. Luria-Bertani medium (LB medium, containing tryptone 10 g/L, yeast extract 5 g/L, NaCl 10 g/L) was commonly used in bioleaching of precious metal. In this study, results showed that LB medium did not produce highest yield of cyanide. Under optimal culture conditions (25 °C, pH 7.5), the maximum cyanide yield of the optimized medium (containing tryptone 6 g/L and yeast extract 5 g/L) was 1.5 times as high as that of LB medium. In addition, kinetics and relationship of cell growth and cyanide production was studied. Data of cell growth fitted logistics model well. Allometric model was demonstrated effective in describing relationship between cell growth and cyanide production. By inserting logistics equation into allometric equation, we got a novel hybrid equation containing five parameters. Kinetic data for cyanide production were well fitted to the new model. Model parameters reflected both cell growth and cyanide production process. Copyright © 2018 Elsevier B.V. All rights reserved.
Uniqueness of solutions for Keller-Segel system of porous medium type coupled to fluid equations
NASA Astrophysics Data System (ADS)
Bae, Hantaek; Kang, Kyungkeun; Kim, Seick
2018-04-01
We prove the uniqueness of Hölder continuous weak solutions via duality argument and vanishing viscosity method for the Keller-Segel system of porous medium type equations coupled to the Stokes system in dimensions three. An important step is the estimate of the Green function of parabolic equations with lower order terms of variable coefficients, which seems to be of independent interest.
Mende, Susann; Krzyzanowski, Leona; Weber, Jost; Jaros, Doris; Rohm, Harald
2012-02-01
Some Lactobacillus delbrueckii ssp. bulgaricus strains are able to synthesize exopolysaccharides (EPS) and are therefore highly important for the dairy industry as starter cultures. The aim of this study was to investigate the nutritional requirements for growth and EPS production of Lactobacillus delbrueckii ssp. bulgaricus DSM 20081. A medium was developed from a semi-defined medium (SDM) in which glucose was replaced by lactose and different combinations of supplements (nucleobases, vitamins, salts, sodium formate and orotic acid) were added. Constant pH batch fermentation with the modified medium resulted in an EPS yield of approximately 210 mg glucose equivalents per liter medium. This was a 10-fold increase over flask cultivation of this strain in SDM. Although not affecting cell growth, the mixture of salts enhanced the EPS synthesis. Whereas EPS production was approximately 12 mg/g dry biomass without salt supplementation, a significantly higher yield (approximately 20 mg/g dry biomass) was observed after adding the salt mixture. In continuous fermentation, a maximal EPS concentration was obtained at a dilution rate of 0.31/h (80 mg EPS/L), which corresponded to a specific EPS production of 49 mg/g dry biomass. Copyright © 2011 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Fifth NASA Goddard Conference on Mass Storage Systems and Technologies.. Volume 1
NASA Technical Reports Server (NTRS)
Kobler, Benjamin (Editor); Hariharan, P. C. (Editor)
1996-01-01
This document contains copies of those technical papers received in time for publication prior to the Fifth Goddard Conference on Mass Storage Systems and Technologies. As one of an ongoing series, this conference continues to serve as a unique medium for the exchange of information on topics relating to the ingestion and management of substantial amounts of data and the attendant problems involved. This year's discussion topics include storage architecture, database management, data distribution, file system performance and modeling, and optical recording technology. There will also be a paper on Application Programming Interfaces (API) for a Physical Volume Repository (PVR) defined in Version 5 of the Institute of Electrical and Electronics Engineers (IEEE) Reference Model (RM). In addition, there are papers on specific archives and storage products.
NASA Technical Reports Server (NTRS)
Bleck, Rainer; Bao, Jian-Wen; Benjamin, Stanley G.; Brown, John M.; Fiorino, Michael; Henderson, Thomas B.; Lee, Jin-Luen; MacDonald, Alexander E.; Madden, Paul; Middlecoff, Jacques;
2015-01-01
A hydrostatic global weather prediction model based on an icosahedral horizontal grid and a hybrid terrain following/ isentropic vertical coordinate is described. The model is an extension to three spatial dimensions of a previously developed, icosahedral, shallow-water model featuring user-selectable horizontal resolution and employing indirect addressing techniques. The vertical grid is adaptive to maximize the portion of the atmosphere mapped into the isentropic coordinate subdomain. The model, best described as a stacked shallow-water model, is being tested extensively on real-time medium-range forecasts to ready it for possible inclusion in operational multimodel ensembles for medium-range to seasonal prediction.
NASA Astrophysics Data System (ADS)
Nasedkin, A. V.
2017-01-01
This research presents the new size-dependent models of piezoelectric materials oriented to finite element applications. The proposed models include the facilities of taking into account different mechanisms of damping for mechanical and electric fields. The coupled models also incorporate the equations of the theory of acoustics for viscous fluids. In particular cases, these models permit to use the mode superposition method with full separation of the finite element systems into independent equations for the independent modes for transient and harmonic problems. The main boundary conditions were supplemented with the facilities of taking into account the coupled surface effects, allowing to explore the nanoscale piezoelectric materials in the framework of theories of continuous media with surface stresses and their generalizations. For the considered problems we have implemented the finite element technologies and various numerical algorithms to maintain a symmetrical structure of the finite element quasi-definite matrices (matrix structure for the problems with a saddle point).
Hybrid regulatory models: a statistically tractable approach to model regulatory network dynamics.
Ocone, Andrea; Millar, Andrew J; Sanguinetti, Guido
2013-04-01
Computational modelling of the dynamics of gene regulatory networks is a central task of systems biology. For networks of small/medium scale, the dominant paradigm is represented by systems of coupled non-linear ordinary differential equations (ODEs). ODEs afford great mechanistic detail and flexibility, but calibrating these models to data is often an extremely difficult statistical problem. Here, we develop a general statistical inference framework for stochastic transcription-translation networks. We use a coarse-grained approach, which represents the system as a network of stochastic (binary) promoter and (continuous) protein variables. We derive an exact inference algorithm and an efficient variational approximation that allows scalable inference and learning of the model parameters. We demonstrate the power of the approach on two biological case studies, showing that the method allows a high degree of flexibility and is capable of testable novel biological predictions. http://homepages.inf.ed.ac.uk/gsanguin/software.html. Supplementary data are available at Bioinformatics online.
The Continuing Education of Physicians in the Community General Hospital.
ERIC Educational Resources Information Center
Wenrich, John William
A pilot study was made of the continuing education of physicians on the staff of a private, medium-sized, nonteaching, short-stay general hospital in the Midwest. Among the steps involved were analysis of hospital records, observation of meetings and educational programs, a questionnaire survey, and interviews with physicians as well as selected…
Discrete Events as Units of Perceived Time
ERIC Educational Resources Information Center
Liverence, Brandon M.; Scholl, Brian J.
2012-01-01
In visual images, we perceive both space (as a continuous visual medium) and objects (that inhabit space). Similarly, in dynamic visual experience, we perceive both continuous time and discrete events. What is the relationship between these units of experience? The most intuitive answer may be similar to the spatial case: time is perceived as an…
In-Medium K^+ Electromagnetic Form Factor with a Symmetric Vertex in a Light Front Approach
NASA Astrophysics Data System (ADS)
Yabusaki, George H. S.; de Melo, J. P. B. C.; de Paula, Wayne; Tsushima, K.; Frederico, T.
2018-05-01
Using the light-front K^ +-Meson wave function based on a Bethe-Salpeter amplitude model for the Quark-Antiquark bound state, we study the Electromagnetic Form Factor (EMFF) of the K^ +-Meson in nuclear medium within the framework of light-front field theory. The K^ +-Meson model we adopt is well constrained by previous and recent studies to explain its properties in vacuum. The in-medium K^ +-Meson EMFF is evaluated for the plus-component of the electromagnetic current, J^+, in the Breit frame. In order to consistently incorporate the constituent up and antistrange Quarks of the K^ +-Meson immersed in symmetric nuclear matter, we use the Quark-Meson coupling model, which has been widely applied to various hadronic and nuclear phenomena in a nuclear medium with success. We predict the in-medium modification of the K^ +-Meson EMFF in symmetric nuclear matter. It is found that, after a fine tuning of the regulator mass, i.e. m_R = 0.600 GeV, the model is suitable to fit the available experimental data in vacuum within the theoretical uncertainties, and based on this we predict the in-medium modification of the K^ +-Meson EMFF.
Effects of Metal Micro and Nano-Particles on hASCs: An In Vitro Model.
Palombella, Silvia; Pirrone, Cristina; Rossi, Federica; Armenia, Ilaria; Cherubino, Mario; Valdatta, Luigi; Raspanti, Mario; Bernardini, Giovanni; Gornati, Rosalba
2017-08-03
As the knowledge about the interferences of nanomaterials on human staminal cells are scarce and contradictory, we undertook a comparative multidisciplinary study based on the size effect of zero-valent iron, cobalt, and nickel microparticles (MPs) and nanoparticles (NPs) using human adipose stem cells (hASCs) as a model, and evaluating cytotoxicity, morphology, cellular uptake, and gene expression. Our results suggested that the medium did not influence the cell sensitivity but, surprisingly, the iron microparticles (FeMPs) resulted in being toxic. These data were supported by modifications in mRNA expression of some genes implicated in the inflammatory response. Microscopic analysis confirmed that NPs, mainly internalized by endocytosis, persist in the vesicles without any apparent cell damage. Conversely, MPs are not internalized, and the effects on hASCs have to be ascribed to the release of ions in the culture medium, or to the reduced oxygen and nutrient exchange efficiency due to the presence of MP agglomerating around the cells. Notwithstanding the results depicting a heterogeneous scene that does not allow drawing a general conclusion, this work reiterates the importance of comparative investigations on MPs, NPs, and corresponding ions, and the need to continue the thorough verification of NP and MP innocuousness to ensure unaffected stem cell physiology and differentiation.
NASA Astrophysics Data System (ADS)
Jones, R. M.; Riley, J. P.; Georges, T. M.
1986-08-01
The modular FORTRAN 77 computer program traces the three-dimensional paths of acoustic rays through continuous model atmospheres by numerically integrating Hamilton's equations (a differential expression of Fermat's principle). The user specifies an atmospheric model by writing closed-form formulas for its three-dimensional wind and temperature (or sound speed) distribution, and by defining the height of the reflecting terrain vs. geographic latitude and longitude. Some general-purpose models are provided, or users can readily design their own. In addition to computing the geometry of each raypath, HARPA can calculate pulse travel time, phase time, Doppler shift (if the medium varies in time), absorption, and geometrical path length. The program prints a step-by-step account of a ray's progress. The 410-page documentation describes the ray-tracing equations and the structure of the program, and provides complete instructions, illustrated by a sample case.
Numerical study of the medium thickness in the Z-scan technique
NASA Astrophysics Data System (ADS)
Severiano Carrillo, I.; Méndez Otero, M. M.; Arroyo Carrasco, M. L.; Iturbe Castillo, M. D.
2011-09-01
The optical characterization of nonlinear media through the Z-scan technique considers initially a thin medium (with a thickness much less than the beam depth of focus). It has been observed that increasing the thickness of the medium the transmittance increases, this means that n2 increases, for this reason we will present a numerical model to determinate the minimum thin and the maximum thick medium limit. A thin medium is considered as a thin lens with focal length F1 and a thick medium can be regarded as a set of such thin lenses set with focal lengths F2, these lenses are contained in a medium whit a refraction index different than air. This analysis is made through Matlab using the theory of Gaussian beams, ABCD matrices and the q parameter, elementary theory in the development of this work, where the main feature of this model is that the nonlinearity type of the medium is considered as an integer constant in its focal length3. We present the graphs obtained from Z-scan for thick medium with both thermal and Kerr nonlinearities.
21 CFR 184.1065 - Linoleic acid.
Code of Federal Regulations, 2010 CFR
2010-04-01
... various methods including hydrolysis and saponification, the Twitchell method, low pressure splitting with catalyst, continuous high pressure counter current splitting, and medium pressure autoclave splitting with...
Biological production of ethanol from coal. Task 4 report, Continuous reactor studies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The production of ethanol from synthesis gas by the anaerobic bacterium C. ljungdahlii has been demonstrated in continuous stirred tank reactors (CSTRs), CSTRs with cell recycle and trickle bed reactors. Various liquid media were utilized in these studies including basal medium, basal media with 1/2 B-vitamins and no yeast extract and a medium specifically designed for the growth of C. ljungdahlii in the CSTR. Ethanol production was successful in each of the three reactor types, although trickle bed operation with C. ljungdahlii was not as good as with the stirred tank reactors. Operation in the CSTR with cell recycle wasmore » particularly promising, producing 47 g/L ethanol with only minor concentrations of the by-product acetate.« less
Familiar, Itziar; Murray, Laura; Gross, Alden; Skavenski, Stephanie; Jere, Elizabeth; Bass, Judith
2014-11-01
Scant information exists on PTSD symptoms and structure in youth from developing countries. We describe the symptom profile and exposure to trauma experiences among 343 orphan and vulnerable children and adolescents from Zambia. We distinguished profiles of post-traumatic stress symptoms using latent class analysis. Average number of trauma-related symptoms (21.6; range 0-38) was similar across sex and age. Latent class model suggested 3 classes varying by level of severity: low (31% of the sample), medium (45% of the sample), and high (24% of the sample) symptomatology. Results suggest that PTSD is a continuously distributed latent trait.
Tanner, Sabine A.; Zihler Berner, Annina; Rigozzi, Eugenia; Grattepanche, Franck; Chassard, Christophe; Lacroix, Christophe
2014-01-01
In vitro gut modeling provides a useful platform for a fast and reproducible assessment of treatment-related changes. Currently, pig intestinal fermentation models are mainly batch models with important inherent limitations. In this study we developed a novel in vitro continuous fermentation model, mimicking the porcine proximal colon, which we validated during 54 days of fermentation. This model, based on our recent PolyFermS design, allows comparing different treatment effects on the same microbiota. It is composed of a first-stage inoculum reactor seeded with immobilized fecal swine microbiota and used to constantly inoculate (10% v/v) five second-stage reactors, with all reactors fed with fresh nutritive chyme medium and set to mimic the swine proximal colon. Reactor effluents were analyzed for metabolite concentrations and bacterial composition by HPLC and quantitative PCR, and microbial diversity was assessed by 454 pyrosequencing. The novel PolyFermS featured stable microbial composition, diversity and metabolite production, consistent with bacterial activity reported for swine proximal colon in vivo. The constant inoculation provided by the inoculum reactor generated reproducible microbial ecosystems in all second-stage reactors, allowing the simultaneous investigation and direct comparison of different treatments on the same porcine gut microbiota. Our data demonstrate the unique features of this novel PolyFermS design for the swine proximal colon. The model provides a tool for efficient, reproducible and cost-effective screening of environmental factors, such as dietary additives, on pig colonic fermentation. PMID:24709947
Tanner, Sabine A; Zihler Berner, Annina; Rigozzi, Eugenia; Grattepanche, Franck; Chassard, Christophe; Lacroix, Christophe
2014-01-01
In vitro gut modeling provides a useful platform for a fast and reproducible assessment of treatment-related changes. Currently, pig intestinal fermentation models are mainly batch models with important inherent limitations. In this study we developed a novel in vitro continuous fermentation model, mimicking the porcine proximal colon, which we validated during 54 days of fermentation. This model, based on our recent PolyFermS design, allows comparing different treatment effects on the same microbiota. It is composed of a first-stage inoculum reactor seeded with immobilized fecal swine microbiota and used to constantly inoculate (10% v/v) five second-stage reactors, with all reactors fed with fresh nutritive chyme medium and set to mimic the swine proximal colon. Reactor effluents were analyzed for metabolite concentrations and bacterial composition by HPLC and quantitative PCR, and microbial diversity was assessed by 454 pyrosequencing. The novel PolyFermS featured stable microbial composition, diversity and metabolite production, consistent with bacterial activity reported for swine proximal colon in vivo. The constant inoculation provided by the inoculum reactor generated reproducible microbial ecosystems in all second-stage reactors, allowing the simultaneous investigation and direct comparison of different treatments on the same porcine gut microbiota. Our data demonstrate the unique features of this novel PolyFermS design for the swine proximal colon. The model provides a tool for efficient, reproducible and cost-effective screening of environmental factors, such as dietary additives, on pig colonic fermentation.
In-medium pseudoscalar D/B mesons and charmonium decay width
NASA Astrophysics Data System (ADS)
Chhabra, Rahul; Kumar, Arvind
2017-05-01
Using QCD sum rules and the chiral SU(3) model, we investigate the effect of temperature, density, strangeness fraction and isospin asymmetric parameter on the shift in masses and decay constants of the pseudoscalar D and B meson in the hadronic medium, which consist of nucleons and hyperons. The in-medium properties of D and B mesons within the QCD sum rule approach depend upon the quark and gluon condensates. In the chiral SU(3) model, quark and gluon condensates are introduced through the explicit symmetry breaking term and the trace anomaly property of the QCD, respectively and are written in terms of the scalar fields σ, ζ, δ and χ. Hence, through medium modification of σ, ζ, δ and χ fields, we obtain the medium-modified masses and decay constants of D and B mesons. As an application, using {}3P0 model, we calculate the in-medium decay width of the higher charmonium states ψ(3686), ψ(3770) and χ(3556) to the D\\bar{D} pairs, considering the in-medium mass of D mesons. These results may be important to understand the possible outcomes of the high-energy physics experiments, e.g., CBM and PANDA at GSI, Germany.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Usmanov, Arcadi V.; Matthaeus, William H.; Goldstein, Melvyn L., E-mail: arcadi.usmanov@nasa.gov
2016-03-20
We have developed a four-fluid, three-dimensional magnetohydrodynamic model of the solar wind interaction with the local interstellar medium. The unique features of the model are: (a) a three-fluid description for the charged components of the solar wind and interstellar plasmas (thermal protons, electrons, and pickup protons), (b) the built-in turbulence transport equations based on Reynolds decomposition and coupled with the mean-flow Reynolds-averaged equations, and (c) a solar corona/solar wind model that supplies inner boundary conditions at 40 au by computing solar wind and magnetic field parameters outward from the coronal base. The three charged species are described by separate energy equationsmore » and are assumed to move with the same velocity. The fourth fluid in the model is the interstellar hydrogen which is treated by separate continuity, momentum, and energy equations and is coupled with the charged components through photoionization and charge exchange. We evaluate the effects of turbulence transport and pickup protons on the global heliospheric structure and compute the distribution of plasma, magnetic field, and turbulence parameters throughout the heliosphere for representative solar minimum and maximum conditions. We compare our results with Voyager 1 observations in the outer heliosheath and show that the relative amplitude of magnetic fluctuations just outside the heliopause is in close agreement with the value inferred from Voyager 1 measurements by Burlaga et al. The simulated profiles of magnetic field parameters in the outer heliosheath are in qualitative agreement with the Voyager 1 observations and with the analytical model of magnetic field draping around the heliopause of Isenberg et al.« less
ERIC Educational Resources Information Center
Ivy, Sarah E.; Hooper, Jonathan D.
2015-01-01
Introduction: Many students with adventitious vision loss or progressive vision loss need to transition from print to braille as a primary literacy medium. It is important that this transition is handled efficiently so that the student can have continued access to a literacy medium and make progress in the core curriculum. For this study, we used…
HD Hydrological modelling at catchment scale using rainfall radar observations
NASA Astrophysics Data System (ADS)
Ciampalini
2017-04-01
Hydrological simulations at catchment scale repose on the quality and data availability both for soil and rainfall data. Soil data are quite easy to be collected, although their quality depends on the resources devoted to this task, rainfall data observations, instead, need further effort because of their spatiotemporal variability. Rainfalls are normally recorded with rain gauges located in the catchment, they can provide detailed temporal data, but, the representativeness is limited to the point where the data are collected. Combining different gauges in space can provide a better representation of the rainfall event but the spatialization is often the main obstacle to obtain data close to the reality. Since several years, radar observations overcome this gap providing continuous data registration, that, when properly calibrated, can offer an adequate, continuous, cover in space and time for medium-wide catchments. Here, we use radar records for the south of the France on the La Peyne catchment with the protocol there adopted by the national meteo agency, with resolution of 1 km space and 5' time scale observations. We present here the realisation of a model able to perform from rainfall radar observations, continuous hydrological and soil erosion simulations. The model is semi-theoretically based, once it simulates water fluxes (infiltration-excess overland flow, saturation overland flow, infiltration and channel routing) with a cinematic wave using the St. Venant equation on a simplified "bucket" conceptual model for ground water, and, an empirical representation of sediment load as adopted in models such as STREAM-LANDSOIL (Cerdan et al., 2002, Ciampalini et al., 2012). The advantage of this approach is to furnish a dynamic representation - simulation of the rainfall-runoff events more easily than using spatialized rainfalls from meteo stations and to offer a new look on the spatial component of the events.
Gas-Phase Ion Chemistry in Interstellar, Circumstellar, and Planetary Environments
NASA Astrophysics Data System (ADS)
Demarais, Nicholas J.
In the last century, astronomers, physicists, and chemists have shown that the environments of space are complex. Although we have learned a great amount about the interstellar medium, circumstellar medium, and atmospheres of other planets and moons, many mysteries still remain unsolved. The cooperation of astronomers, modelers, and chemists has lead to the detection of over 180 molecules in the interstellar and circumstellar medium, and the evolution of the new scientific field of astrochemistry. Gas-phase ion chemistry can determine the stability of ions in these complex environments, provide chemical networks, and guide searches for new interstellar molecules. Using the flowing afterglow-selected ion flow tube (FA-SIFT), we have characterized the reactions of positive and negative ions that are important in a variety of astrochemical environments. The detection of CF+ in photodissociation regions highlights the importance of fluorinated species in the interstellar medium. The viability of CF+ as a possible diffuse interstellar band (DIB) carrier is discussed as related to reactions with neutral molecules in various interstellar conditions; the reactions of CF+ with twenty-two molecules of interstellar relevance were investigated. The chemical reactions of HCNH+ with H2, CH 4, C2H2, and C2H4 were reexamined to provide insight into the overprediction of HCNH+ in Titan's ionosphere by current astrochemical models. In addition, this work suggests other chemical reactions that should be included in the current models to fully describe the destruction rates of HCNH+ in Titan's ionosphere. The reactions of polycyclic aromatic hydrocarbon (PAH) ions with H atoms and other small molecules were carried out to determine the stability of these species. In diffuse regions, where the photon flux is high, PAH cations are the dominant ionization state. This work continues our previous research to include PAHs of differing geometries as well as nitrogen-containing PAHs. Extension to larger PAH cations was made possible by the integration of the laser induced acoustic desorption (LIAD) source with the FA-SIFT. In addition, in dense environments, where the photon flux is low, anionic PAHs may exist. The detection of negative ions in the past 10 years has highlighted the importance of their inclusion in astrochemical models. We have investigated the chemistry of deprotonated PAHs with molecules of interstellar relevance to determine their chemical stability in dense regions of the interstellar and circumstellar medium. In addition to PAH anions, H- is an important species in dense interstellar environments. While the reaction of hydride anion has been recognized as a critical mechanism in the initial cooling immediately after the Big Bang, H- + H → H2 + e-, chemistry with neutral molecules was largely unknown. The chemistry of H- with various classes of organic molecules was investigated and conclusions are drawn based on reaction mechanisms.
Takatsu, Yasuo; Ueyama, Tsuyoshi; Miyati, Tosiaki; Yamamura, Kenichirou
2016-12-01
The image characteristics in dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) depend on the partial Fourier fraction and contrast medium concentration. These characteristics were assessed and the modulation transfer function (MTF) was calculated by computer simulation. A digital phantom was created from signal intensity data acquired at different contrast medium concentrations on a breast model. The frequency images [created by fast Fourier transform (FFT)] were divided into 512 parts and rearranged to form a new image. The inverse FFT of this image yielded the MTF. From the reference data, three linear models (low, medium, and high) and three exponential models (slow, medium, and rapid) of the signal intensity were created. Smaller partial Fourier fractions, and higher gradients in the linear models, corresponded to faster MTF decline. The MTF more gradually decreased in the exponential models than in the linear models. The MTF, which reflects the image characteristics in DCE-MRI, was more degraded as the partial Fourier fraction decreased.
Medium term hurricane catastrophe models: a validation experiment
NASA Astrophysics Data System (ADS)
Bonazzi, Alessandro; Turner, Jessica; Dobbin, Alison; Wilson, Paul; Mitas, Christos; Bellone, Enrica
2013-04-01
Climate variability is a major source of uncertainty for the insurance industry underwriting hurricane risk. Catastrophe models provide their users with a stochastic set of events that expands the scope of the historical catalogue by including synthetic events that are likely to happen in a defined time-frame. The use of these catastrophe models is widespread in the insurance industry but it is only in recent years that climate variability has been explicitly accounted for. In the insurance parlance "medium term catastrophe model" refers to products that provide an adjusted view of risk that is meant to represent hurricane activity on a 1 to 5 year horizon, as opposed to long term models that integrate across the climate variability of the longest available time series of observations. In this presentation we discuss how a simple reinsurance program can be used to assess the value of medium term catastrophe models. We elaborate on similar concepts as discussed in "Potential Economic Value of Seasonal Hurricane Forecasts" by Emanuel et al. (2012, WCAS) and provide an example based on 24 years of historical data of the Chicago Mercantile Hurricane Index (CHI), an insured loss proxy. Profit and loss volatility of a hypothetical primary insurer are used to score medium term models versus their long term counterpart. Results show that medium term catastrophe models could help a hypothetical primary insurer to improve their financial resiliency to varying climate conditions.
NASA Astrophysics Data System (ADS)
Zhao, Jun; Quan, Guo-Zheng; Pan, Jia; Wang, Xuan; Wu, Dong-Sen; Xia, Yu-Feng
2018-01-01
Constitutive model of materials is one of the most requisite mathematical model in the finite element analysis, which describes the relationships of flow behaviors with strain, strain rate and temperature. In order to construct such constitutive relationships of ultra-high-strength BR1500HS steel at medium and low temperature regions, the true stress-strain data over a wide temperature range of 293-873 K and strain rate range of 0.01-10 s-1 were collected from a series of isothermal uniaxial tensile tests. The experimental results show that stress-strain relationships are highly non-linear and susceptible to three parameters involving temperature, strain and strain rate. By considering the impacts of strain rate and temperature on strain hardening, a modified constitutive model based on Johnson-Cook model was proposed to characterize flow behaviors in medium and low temperature ranges. The predictability of the improved model was also evaluated by the relative error (W(%)), correlation coefficient (R) and average absolute relative error (AARE). The R-value and AARE-value for modified constitutive model at medium and low temperature regions are 0.9915 & 1.56 % and 0.9570 & 5.39 %, respectively, which indicates that the modified constitutive model can precisely estimate the flow behaviors for BR1500HS steel in the medium and low temperature regions.
Backus, S.; Kapteyn, H.C.; Murnane, M.M.
1997-07-01
Laser amplifiers and methods for amplifying a laser beam are disclosed. A representative embodiment of the amplifier comprises first and second curved mirrors, a gain medium, a third mirror, and a mask. The gain medium is situated between the first and second curved mirrors at the focal point of each curved mirror. The first curved mirror directs and focuses a laser beam to pass through the gain medium to the second curved mirror which reflects and recollimates the laser beam. The gain medium amplifies and shapes the laser beam as the laser beam passes therethrough. The third mirror reflects the laser beam, reflected from the second curved mirror, so that the laser beam bypasses the gain medium and return to the first curved mirror, thereby completing a cycle of a ring traversed by the laser beam. The mask defines at least one beam-clipping aperture through which the laser beam passes during a cycle. The gain medium is pumped, preferably using a suitable pumping laser. The laser amplifier can be used to increase the energy of continuous-wave or, especially, pulsed laser beams including pulses of femtosecond duration and relatively high pulse rate. 7 figs.
Backus, Sterling; Kapteyn, Henry C.; Murnane, Margaret M.
1997-01-01
Laser amplifiers and methods for amplifying a laser beam are disclosed. A representative embodiment of the amplifier comprises first and second curved mirrors, a gain medium, a third mirror, and a mask. The gain medium is situated between the first and second curved mirrors at the focal point of each curved mirror. The first curved mirror directs and focuses a laser beam to pass through the gain medium to the second curved mirror which reflects and recollimates the laser beam. The gain medium amplifies and shapes the laser beam as the laser beam passes therethough. The third mirror reflects the laser beam, reflected from the second curved mirror, so that the laser beam bypasses the gain medium and return to the first curved mirror, thereby completing a cycle of a ring traversed by the laser beam. The mask defines at least one beam-clipping aperture through which the laser beam passes during a cycle. The gain medium is pumped, preferably using a suitable pumping laser. The laser amplifier can be used to increase the energy of continuous-wave or, especially, pulsed laser beams including pulses of femtosecond duration and relatively high pulse rate.
Osmotic regulation of myo-inositol uptake in primary astrocyte cultures.
Isaacks, R E; Bender, A S; Kim, C Y; Prieto, N M; Norenberg, M D
1994-03-01
Uptake of myo-inositol by astrocytes in hypertonic medium (440 mosm/kg H2O) was increased near 3-fold after incubation for 24 hours, which continued for 72 hours, as compared with the uptake by cells cultured in isotonic medium (38 nmoles/mg protein). myo-Inositol uptake by astrocytes cultured in hypotonic medium (180 mosm/kg H2O) for periods up to 72 hours was reduced by 74% to 8 to 10 nmoles/mg protein. Astrocytes incubated in either hypotonic or hypertonic medium for 24 hours and then placed in isotonic medium reversed the initial down- or up-regulation of uptake. Activation of chronic RVD and RVI correlates with regulation of myo-inositol uptake. A 30 to 40 mosm/kg H2O deviation from physiological osmolality can influence myo-inositol homeostasis. The intracellular content of myo-inositol in astrocytes in isotonic medium was 25.6 +/- 1.3 micrograms/mg protein (28 mM). This level of myo-inositol is sufficient for this compound to function as an osmoregulator in primary astrocytes and it is likely to contribute to the maintenance of brain volume.
CHROMagar Orientation Medium Reduces Urine Culture Workload
Manickam, Kanchana; Karlowsky, James A.; Adam, Heather; Lagacé-Wiens, Philippe R. S.; Rendina, Assunta; Pang, Paulette; Murray, Brenda-Lee
2013-01-01
Microbiology laboratories continually strive to streamline and improve their urine culture algorithms because of the high volumes of urine specimens they receive and the modest numbers of those specimens that are ultimately considered clinically significant. In the current study, we quantitatively measured the impact of the introduction of CHROMagar Orientation (CO) medium into routine use in two hospital laboratories and compared it to conventional culture on blood and MacConkey agars. Based on data extracted from our Laboratory Information System from 2006 to 2011, the use of CO medium resulted in a 28% reduction in workload for additional procedures such as Gram stains, subcultures, identification panels, agglutination tests, and biochemical tests. The average number of workload units (one workload unit equals 1 min of hands-on labor) per urine specimen was significantly reduced (P < 0.0001; 95% confidence interval [CI], 0.5326 to 1.047) from 2.67 in 2006 (preimplementation of CO medium) to 1.88 in 2011 (postimplementation of CO medium). We conclude that the use of CO medium streamlined the urine culture process and increased bench throughput by reducing both workload and turnaround time in our laboratories. PMID:23363839
Multiple stationary solutions of an irradiated slab
NASA Astrophysics Data System (ADS)
Taylor, P. D.; Feltham, D. L.
2005-04-01
A mathematical model describing the heat budget of an irradiated medium is introduced. The one-dimensional form of the equations and boundary conditions are presented and analysed. Heat transport at one face of the slab occurs by absorption (and reflection) of an incoming beam of short-wave radiation with a fraction of this radiation penetrating into the body of the slab, a diffusive heat flux in the slab and a prescribed incoming heat flux term. The other face of the slab is immersed in its own melt and is considered to be a free surface. Here, temperature continuity is prescribed and evolution of the surface is determined by a Stefan condition. These boundary conditions are flexible enough to describe a range of situations such as a laser shining on an opaque medium, or the natural environment of polar sea ice or lake ice. A two-stream radiation model is used which replaces the simple Beer's law of radiation attenuation frequently used for semi-infinite domains. The stationary solutions of the governing equations are sought and it is found that there exists two possible stationary solutions for a given set of boundary conditions and a range of parameter choices. It is found that the existence of two stationary solutions is a direct result of the model of radiation absorption, due to its effect on the albedo of the medium. A linear stability analysis and numerical calculations indicate that where two stationary solutions exist, the solution corresponding to a larger thickness is always stable and the solution corresponding to a smaller thickness is unstable. Numerical simulations reveal that when there are two solutions, if the slab is thinner than the smaller stationary thickness it will melt completely, whereas if the slab is thicker than the smaller stationary thickness it will evolve toward the larger stationary thickness. These results indicate that other mechanisms (e.g. wave-induced agglomeration of crystals) are necessary to grow a slab from zero initial thickness in the parameter regime that yields two stationary solutions.
Modeling of inter-neuronal coupling medium and its impact on neuronal synchronization
Iqbal, Muhammad; Hong, Keum-Shik
2017-01-01
In this paper, modeling of the coupling medium between two neurons, the effects of the model parameters on the synchronization of those neurons, and compensation of coupling strength deficiency in synchronization are studied. Our study exploits the inter-neuronal coupling medium and investigates its intrinsic properties in order to get insight into neuronal-information transmittance and, there from, brain-information processing. A novel electrical model of the coupling medium that represents a well-known RLC circuit attributable to the coupling medium’s intrinsic resistive, inductive, and capacitive properties is derived. Surprisingly, the integration of such properties reveals the existence of a natural three-term control strategy, referred to in the literature as the proportional integral derivative (PID) controller, which can be responsible for synchronization between two neurons. Consequently, brain-information processing can rely on a large number of PID controllers based on the coupling medium properties responsible for the coherent behavior of neurons in a neural network. Herein, the effects of the coupling model (or natural PID controller) parameters are studied and, further, a supervisory mechanism is proposed that follows a learning and adaptation policy based on the particle swarm optimization algorithm for compensation of the coupling strength deficiency. PMID:28486505
NASA Astrophysics Data System (ADS)
Xu, Xiaohui; Fan, Tingjun; Jiang, Guojian; Yang, Xiuxia
2015-12-01
A novel continuous ovary cell line from barfin flounder ( Verasper moseri) (BFO cell line) was established with its primitive application in transgenic expression demonstrated in this study. Primarily cultured cells grew well at 22°C in Dulbecco's modified Eagle medium/F12 medium (DMEM/F12, 1:1; pH 7.2) supplemented with 20% fetal bovine serum (FBS), carboxymethyl chitooligosaccharide, basic fibroblast growth factor (bFGF) and insulin-like growth factor-I (IGF-I). The primary BFO cells in fibroblastic morphology proliferated into a confluent monolayer about 2 weeks later, and were able to be subcultured. Impacts of medium and temperature on the growth of the cells were examined. The optimum growth was found in DMEM/F12 with 20% FBS and at 22°C. The BFO cells can be continuously subcultured to Passage 120 steadily with a population doubling time of 32.7 h at Passage 60. Chromosome analysis revealed that 72% of BFO cells at Passage 60 maintained the normal diploid chromosome number (46) with a normal karyotype of 2st+44t. The results of gene transformation indicated that green fluorescence protein (GFP) positively expressed in these cells after being transformed with pcDNA3.1-GFP. Therefore, a continuous and transformable BFO cell line was successfully established, which may serve as a useful tool for cytotechnological manipulation and transgenic modification of this fish.
Is the Internet the Right Medium for a "Don't Quit Campaign?"
ERIC Educational Resources Information Center
Wynne, Liam G.; Mai, Li-Wei
2002-01-01
A survey of 98 British adolescents intending to continue postcompulsory education and 30 not continuing revealed similar levels of television, newspaper, and radio use. Internet users included 87% of group one, 42% of group two; the latter are less likely to have access. Among Internet users, only 40.8% use it for information on…
USDA-ARS?s Scientific Manuscript database
A new stackable modular system was developed for continuous in-vivo production of phytoseiid mites. The system consists of cage units that are filled with lima bean, Phaseolus lunatus, or red beans, P. vulgaris, leaves infested with high levels of the two-spotted spider mites, Tetranychus urticae. T...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cammarata, P.R.; Tse, D.; Yorio, T.
1991-06-01
Attenuation of both the active transport of myo-inositol and Na(+)-K(+)-ATPase pumping activity has been implicated in the onset of sugar cataract and other diabetic complications in cell culture and animal models of the disease. Cultured bovine lens epithelial cells (BLECs) maintained in galactose-free Eagle's minimal essential medium (MEM) or 40 mM galactose with and without sorbinil for up to 5 days were examined to determine the temporal effects of hypergalactosemia on Na(+)-K(+)-ATPase and myo-inositol uptake. The Na(+)-K(+)-ATPase pumping activity after 5 days of continuous exposure to galactose did not change, as demonstrated by 86Rb uptake. The uptake of myo-(3H)inositol wasmore » lowered after 20 h of incubation in galactose and remained below that of the control throughout the 5-day exposure period. The coadministration of sorbinil to the galactose medium normalized the myo-(3H)inositol uptake. No significant difference in the rates of passive efflux of myo-(3H)inositol or 86Rb from preloaded galactose-treated and control cultures was observed. Culture-media reversal studies were also carried out to determine whether the galactose-induced dysfunction in myo-inositol uptake could be corrected. BLECs were incubated in galactose for 5 days, then changed to galactose-free physiological medium with and without sorbinil for a 1-day recovery period. myo-Inositol uptake was reduced to 34% of control after 6 days of continuous exposure to galactose. Within 24 h of media reversal, myo-inositol uptake returned to or exceeded control values in BLECs switched to either MEM or MEM with sorbinil.2+ reversible and occurred independently of changes in Na(+)-K(+)-ATPase pumping activity in cultured lens epithelium, indicating that the two parameters are not strictly associated and that the deficit in myo-inositol uptake occurs rapidly during hypergalactosemia.« less
NASA Technical Reports Server (NTRS)
Smith, D. L.; Krikorian, A. D.
1991-01-01
Callus cultures of the diploid daylily (Hemerocallis) clone Autumn Blaze' were initiated and maintained in hormone-containing nutrient medium. At various times (from 6 weeks to 1 year) after being initiated, hormone-derived cultures were evaluated for their ability to be maintained and to multiply on hormone-free medium at low pH (between pH 4 and 4.5). Cultures had to be exposed to hormone-containing medium for at least 12 weeks before they could be maintained on hormone-free medium at low pH. The transition to maintainability on low pH hormone-free medium included the production of many aberrant embryonal forms ( neomorphs'). However, all hormone-derived cultures tested consisted entirely of preglobular stage proembryos (PGSPs) after 12-24 weeks on low pH hormone-free medium. PGSP cultures have been maintained and multiplied as such for over 1 year on low pH hormone-free medium. PGSPs continue their development into various somatic embryo stages when cultured on hormone-free medium buffered at pH 5.8. The production of well-formed somatic embryos was greatly enhanced when PGSPs were plated on activated charcoal impregnated filter papers that were placed on top of the agar surface. The gross morphology and histology of the PGSPs and stages of somatic embryo development are presented. The work shows that the ability of hormone-free medium at low pH to permit PGSP multiplication without development into later stages of embryo development is not restricted to carrot.
NASA Astrophysics Data System (ADS)
Petrović, Sanja; Zvezdanović, Jelena; Marković, Dejan
2017-12-01
Irreversible chlorophyll degradation induced by continuous white light illumination and UV-B irradiation in the aqueous mediums (with 10%, 30% and 50% of methanol) was investigated using the ultrahigh liquid chromatography coupled with diode array and electrospray ionization mass spectrometry detectors (UHPLC-DAD-ESIMS). The degradation was governed by energy input of photons: higher energy of UV-B irradiation induced faster chlorophyll degradation and accordingly faster products formation in comparison to the white light treatment. Main light- or/and UV-B-induced products of chlorophyll in the aqueous mediums were hydroxy-pheophytin a, pheophytin a and hydroxy-lactone-pheophytin a, accompanied with the corresponding epimers. Chlorophylls aggregation dominant in the aqueous medium with the highest methanol content (50%) play a protective role against the UV-B radiation and white light illumination.
Jia, Mengyu; Chen, Xueying; Zhao, Huijuan; Cui, Shanshan; Liu, Ming; Liu, Lingling; Gao, Feng
2015-01-26
Most analytical methods for describing light propagation in turbid medium exhibit low effectiveness in the near-field of a collimated source. Motivated by the Charge Simulation Method in electromagnetic theory as well as the established discrete source based modeling, we herein report on an improved explicit model for a semi-infinite geometry, referred to as "Virtual Source" (VS) diffuse approximation (DA), to fit for low-albedo medium and short source-detector separation. In this model, the collimated light in the standard DA is analogously approximated as multiple isotropic point sources (VS) distributed along the incident direction. For performance enhancement, a fitting procedure between the calculated and realistic reflectances is adopted in the near-field to optimize the VS parameters (intensities and locations). To be practically applicable, an explicit 2VS-DA model is established based on close-form derivations of the VS parameters for the typical ranges of the optical parameters. This parameterized scheme is proved to inherit the mathematical simplicity of the DA approximation while considerably extending its validity in modeling the near-field photon migration in low-albedo medium. The superiority of the proposed VS-DA method to the established ones is demonstrated in comparison with Monte-Carlo simulations over wide ranges of the source-detector separation and the medium optical properties.
A Novel Approach for Controlling the Band Formation in Medium Mn Steels
NASA Astrophysics Data System (ADS)
Farahani, H.; Xu, W.; van der Zwaag, S.
2018-06-01
Formation of the microstructural ferrite/pearlite bands in medium Mn steels is an undesirable phenomenon commonly addressed through fast cooling treatments. In this study, a novel approach using the cyclic partial phase transformation concept is applied successfully to prevent microstructural band formation in a micro-chemically banded Fe-C-Mn-Si steel. The effectiveness of the new approach is assessed using the ASTM E1268-01 standard. The cyclic intercritical treatments lead to formation of isotropic microstructures even for cooling rates far below the critical one determined in conventional continuous cooling. In contrast, isothermal intercritical experiments have no effect on the critical cooling rate to suppress microstructural band formation. The origin of the suppression of band formation either by means of fast cooling or a cyclic partial phase transformation is investigated in detail. Theoretical modeling and microstructural observations confirm that band formation is suppressed only if the intercritical annealing treatment leads to partial reversion of the austenite-ferrite interfaces. The resulting interfacial Mn enrichment is responsible for suppression of the band formation upon final cooling at low cooling rates.
Zhang, Zijiao; Sheng, Hongwei; Wang, Zhangjie; ...
2017-02-20
Combinations of high strength and ductility are hard to attain in metals. Exceptions include materials exhibiting twinning-induced plasticity. To understand how the strength-ductility trade-off can be defeated, we apply in situ, and aberration-corrected scanning, transmission electron microscopy to examine deformation mechanisms in the medium-entropy alloy CrCoNi that exhibits one of the highest combinations of strength, ductility and toughness on record. Ab initio modelling suggests that it has negative stacking-fault energy at 0K and high propensity for twinning. With deformation we find that a three-dimensional (3D) hierarchical twin network forms from the activation of three twinning systems. This serves a dualmore » function: conventional twin-boundary (TB) strengthening from blockage of dislocations impinging on TBs, coupled with the 3D twin network which offers pathways for dislocation glide along, and cross-slip between, intersecting TB-matrix interfaces. The stable twin architecture is not disrupted by interfacial dislocation glide, serving as a continuous source of strength, ductility and toughness.« less
Zhang, Zijiao; Sheng, Hongwei; Wang, Zhangjie; Gludovatz, Bernd; Zhang, Ze; George, Easo P.; Yu, Qian; Mao, Scott X.; Ritchie, Robert O.
2017-01-01
Combinations of high strength and ductility are hard to attain in metals. Exceptions include materials exhibiting twinning-induced plasticity. To understand how the strength-ductility trade-off can be defeated, we apply in situ, and aberration-corrected scanning, transmission electron microscopy to examine deformation mechanisms in the medium-entropy alloy CrCoNi that exhibits one of the highest combinations of strength, ductility and toughness on record. Ab initio modelling suggests that it has negative stacking-fault energy at 0K and high propensity for twinning. With deformation we find that a three-dimensional (3D) hierarchical twin network forms from the activation of three twinning systems. This serves a dual function: conventional twin-boundary (TB) strengthening from blockage of dislocations impinging on TBs, coupled with the 3D twin network which offers pathways for dislocation glide along, and cross-slip between, intersecting TB-matrix interfaces. The stable twin architecture is not disrupted by interfacial dislocation glide, serving as a continuous source of strength, ductility and toughness. PMID:28218267
Zhang, Zijiao; Sheng, Hongwei; Wang, Zhangjie; Gludovatz, Bernd; Zhang, Ze; George, Easo P; Yu, Qian; Mao, Scott X; Ritchie, Robert O
2017-02-20
Combinations of high strength and ductility are hard to attain in metals. Exceptions include materials exhibiting twinning-induced plasticity. To understand how the strength-ductility trade-off can be defeated, we apply in situ, and aberration-corrected scanning, transmission electron microscopy to examine deformation mechanisms in the medium-entropy alloy CrCoNi that exhibits one of the highest combinations of strength, ductility and toughness on record. Ab initio modelling suggests that it has negative stacking-fault energy at 0K and high propensity for twinning. With deformation we find that a three-dimensional (3D) hierarchical twin network forms from the activation of three twinning systems. This serves a dual function: conventional twin-boundary (TB) strengthening from blockage of dislocations impinging on TBs, coupled with the 3D twin network which offers pathways for dislocation glide along, and cross-slip between, intersecting TB-matrix interfaces. The stable twin architecture is not disrupted by interfacial dislocation glide, serving as a continuous source of strength, ductility and toughness.
A Novel Approach for Controlling the Band Formation in Medium Mn Steels
NASA Astrophysics Data System (ADS)
Farahani, H.; Xu, W.; van der Zwaag, S.
2018-03-01
Formation of the microstructural ferrite/pearlite bands in medium Mn steels is an undesirable phenomenon commonly addressed through fast cooling treatments. In this study, a novel approach using the cyclic partial phase transformation concept is applied successfully to prevent microstructural band formation in a micro-chemically banded Fe-C-Mn-Si steel. The effectiveness of the new approach is assessed using the ASTM E1268-01 standard. The cyclic intercritical treatments lead to formation of isotropic microstructures even for cooling rates far below the critical one determined in conventional continuous cooling. In contrast, isothermal intercritical experiments have no effect on the critical cooling rate to suppress microstructural band formation. The origin of the suppression of band formation either by means of fast cooling or a cyclic partial phase transformation is investigated in detail. Theoretical modeling and microstructural observations confirm that band formation is suppressed only if the intercritical annealing treatment leads to partial reversion of the austenite-ferrite interfaces. The resulting interfacial Mn enrichment is responsible for suppression of the band formation upon final cooling at low cooling rates.
Formation of glycosidases in batch and continuous culture of Bacteroides fragilis.
Berg, J O; Nord, C E; Wadström, T
1978-01-01
Nine strains of bacteroides fragilis were cultivated in stirred fermentors and tested for their ability to produce glycosidases. B. fragilis subsp. vulgatus B70 was used for optimizing the production of glycosidases. The highest bacterial yield was obtained in proteose peptone-yeast extract medium. The optimum pH for maximal bacterial yield was 7.0, and the optimum temperature for growth was 37 degrees C. The formation of glycosidases was optimal between pH 6.5 and 7.5, and the optimum temperature for synthesis of glycosidases was between 33 and 37 degrees C. Culture under controlled conditions in fermentors gave more reproducible production of glycosidases than static cultures in bottles. The strain was also grown in continuous culture at a dilution rate of 0.1 liter/h at pH 7.0 and 37 degrees C with a yield of 2.0 mg of dry weight per ml in the complex medium. The formation of glycosidases remained constant during the entire continuous process. PMID:25044
The Stormy Life of Galaxy Clusters
NASA Astrophysics Data System (ADS)
Rudnick, Lawrence
2018-01-01
Galaxy clusters, the largest gravitationally bound structures, hold the full history of their baryonic evolution, serve as important cosmological tools and allow us to probe unique physical regimes in their diffuse plasmas. With characteristic dynamical timescales of 107-109 years, these diffuse thermal and relativistic media continue to evolve, as dark matter drives major mergers and more gentle continuing accretion. The history of this assembly is encoded in the plasmas, and a wide range of observational and theoretical investigations are aimed at decoding their signatures. X-ray temperature and density variations, low Mach number shocks, and "cold front" discontinuities all illuminate clusters' continued evolution. Radio structures and spectra are passive indicators of merger shocks, while radio galaxy distortions reveal the complex motions in the intracluster medium. Deep in cluster cores, AGNs associated with brightest cluster galaxies provide ongoing energy, and perhaps even stabilize the intracluster medium. In this talk, we will recount this evolving picture of the stormy ICM, and suggest areas of likely advance in the coming years.
NASA Technical Reports Server (NTRS)
Chuman, L. M.; FINE; COHEN; Saier, M. H.
1985-01-01
The kidney forms urine and reabsorbs electrolytes and water. Kidney cell lines and hormone supplemented serum free medium were used for growth. The hormones were insulin, transferrin, vasopressin, cholesterol, prostaglandins, hydrocortisone, and triidothyronine. Epithelial cell lines are polar and form hemicysts. The Madin-Darby canine kidney(MDCK) cell line used is distal tubulelike. LLC-PK sub 1 cells are derived from pig kidneys and have the properties of different kidney segments. The LLC-PK sub 1 cells with proximal tubule properties were maintained in hormone-supplemented serum free medium. Seven factors (the aforementioned homrones and selenium) were needed for growth. Hormone-defined medium supported LLC-PK sub 1 cell growth, allowed transport (as seen by hemicyst formation), and influenced cell morphology. Vasopressin (used for growth and morphology) could be partially replaced by isobutylmethylxanthine or dibutyryl cAMP. The defined medium was used to isolate rabbit proximal tubule kidney epithelial cells free of fibroblasts.
Biogas production coupled to repeat microalgae cultivation using a closed nutrient loop.
González-González, Lina María; Zhou, Lihong; Astals, Sergi; Thomas-Hall, Skye R; Eltanahy, Eladl; Pratt, Steven; Jensen, Paul D; Schenk, Peer M
2018-05-22
Anaerobic digestion is an established technology to produce renewable energy as methane-rich biogas for which microalgae are a suitable substrate. Besides biogas production, anaerobic digestion of microalgae generates an effluent rich in nutrients, so-called digestate, that can be used as a growth medium for microalgal cultures, with the potential for a closed nutrient loop and sustainable bioenergy facility. In this study, the methane potential and nutrient mobilization of the microalga Scenedemus dimorphus was evaluated under continuous conditions. The suitability of using the digestate as culture medium was also evaluated. The results show that S. dimorphus is a suitable substrate for anaerobic digestion with an average methane yield of 199 mL g -1 VS. The low level of phosphorus in digestate did not limit algae growth when used as culture medium. The potential of liquid digestate as a superior culture medium rather than inorganic medium was demonstrated. Copyright © 2018. Published by Elsevier Ltd.
Darabi Sahneh, Faryad; Scoglio, Caterina; Riviere, Jim
2013-01-01
Background Nanoparticle-protein corona complex formation involves absorption of protein molecules onto nanoparticle surfaces in a physiological environment. Understanding the corona formation process is crucial in predicting nanoparticle behavior in biological systems, including applications of nanotoxicology and development of nano drug delivery platforms. Method This paper extends the modeling work in to derive a mathematical model describing the dynamics of nanoparticle corona complex formation from population balance equations. We apply nonlinear dynamics techniques to derive analytical results for the composition of nanoparticle-protein corona complex, and validate our results through numerical simulations. Results The model presented in this paper exhibits two phases of corona complex dynamics. In the first phase, proteins rapidly bind to the free surface of nanoparticles, leading to a metastable composition. During the second phase, continuous association and dissociation of protein molecules with nanoparticles slowly changes the composition of the corona complex. Given sufficient time, composition of the corona complex reaches an equilibrium state of stable composition. We find analytical approximate formulae for metastable and stable compositions of corona complex. Our formulae are very well-structured to clearly identify important parameters determining corona composition. Conclusion The dynamics of biocorona formation constitute vital aspect of interactions between nanoparticles and living organisms. Our results further understanding of these dynamics through quantitation of experimental conditions, modeling results for in vitro systems to better predict behavior for in vivo systems. One potential application would involve a single cell culture medium related to a complex protein medium, such as blood or tissue fluid. PMID:23741371
Modeling of layered anisotropic composite material based on effective medium theory
NASA Astrophysics Data System (ADS)
Bao, Yang; Song, Jiming
2018-04-01
In this paper, we present an efficient method to simulate multilayered anisotropic composite material with effective medium theory. Effective permittivity, permeability and orientation angle for a layered anisotropic composite medium are extracted with this equivalent model. We also derive analytical expressions for effective parameters and orientation angle with low frequency (LF) limit, which will be shown in detail. Numerical results are shown in comparing extracted effective parameters and orientation angle with analytical results from low frequency limit. Good agreements are achieved to demonstrate the accuracy of our efficient model.
Surface deformation analysis over Vrancea seismogenic area through radar and GPS geospatial data
NASA Astrophysics Data System (ADS)
Zoran, Maria A.; Savastru, Roxana S.; Savastru, Dan M.; Serban, Florin S.; Teleaga, Delia M.; Mateciuc, Doru N.
2017-10-01
Time series analysis of GPS (Global Positioning Systems) and InSAR (Interferometric Synthetic Aperture Radar) data are important tools for Earth's surface deformation assessment, which can result from a wide range of geological phenomena like as earthquakes, landslides or ground water level changes. The aim of this paper was to identify several types of earthquake precursors that might be observed from geospatial data in Vrancea seismogenic region in Romania. Continuous GPS Romanian network stations and few field campaigns data recorded between 2005-2012 years revealed a displacement of about 5 or 6 millimeters per year in horizontal direction relative motion, and a few millimeters per year in vertical direction. In order to assess possible deformations due to earthquakes and respectively for possible slow deformations, have been used also time series Sentinel 1 satellite data available for Vrancea zone during October 2014 till October 2016 to generate two types of interferograms (short-term and medium- term). During investigated period were not recorded medium or strong earthquakes, so interferograms over test area revealed small displacements on vertical direction (subsidence or uplifts) of 5-10 millimeters per year. Based on GPS continuous network data and satellite Sentinel 1 results, different possible tectonic scenarios were developed. The localization of horizontal and vertical motions, fault slip, and surface deformation of the continental blocks provides new information, in support of different geodynamic models for Vrancea tectonic active region in Romania and Europe.
A User-centered Model for Web Site Design
Kinzie, Mable B.; Cohn, Wendy F.; Julian, Marti F.; Knaus, William A.
2002-01-01
As the Internet continues to grow as a delivery medium for health information, the design of effective Web sites becomes increasingly important. In this paper, the authors provide an overview of one effective model for Web site design, a user-centered process that includes techniques for needs assessment, goal/task analysis, user interface design, and rapid prototyping. They detail how this approach was employed to design a family health history Web site, Health Heritage
Mechanical signaling coordinates the embryonic heart
NASA Astrophysics Data System (ADS)
Chiou, Kevin; Rocks, Jason; Prosser, Benjamin; Discher, Dennis; Liu, Andrea
The heart is an active material which relies on robust signaling mechanisms between cells in order to produce well-timed, coordinated beats. Heart tissue is composed primarily of active heart muscle cells (cardiomyocytes) embedded in a passive extracellular matrix. During a heartbeat, cardiomyocyte contractions are coordinated across the heart to form a wavefront that propagates through the tissue to pump blood. In the adult heart, this contractile wave is coordinated via intercellular electrical signaling.Here we present theoretical and experimental evidence for mechanical coordination of embryonic heartbeats. We model cardiomyocytes as mechanically excitable Eshelby inclusions embedded in an overdamped elastic-fluid biphasic medium. For physiological parameters, this model replicates recent experimental measurements of the contractile wavefront which are not captured by electrical signaling models. We additionally challenge our model by pharmacologically blocking gap junctions, inhibiting electrical signaling between myocytes. We find that while adult hearts stop beating almost immediately after gap junctions are blocked, embryonic hearts continue beating even at significantly higher concentrations, providing strong support for a mechanical signaling mechanism.
Yang, Yao Bin; Swithenbank, Jim
2008-01-01
Packed bed combustion is still the most common way to burn municipal solid wastes. In this paper, a dispersion model for particle mixing, mainly caused by the movement of the grate in a moving-burning bed, has been proposed and transport equations for the continuity, momentum, species, and energy conservation are described. Particle-mixing coefficients obtained from model tests range from 2.0x10(-6) to 3.0x10(-5)m2/s. A numerical solution is sought to simulate the combustion behaviour of a full-scale 12-tonne-per-h waste incineration furnace at different levels of bed mixing. It is found that an increase in mixing causes a slight delay in the bed ignition but greatly enhances the combustion processes during the main combustion period in the bed. A medium-level mixing produces a combustion profile that is positioned more at the central part of the combustion chamber, and any leftover combustible gases (mainly CO) enter directly into the most intensive turbulence area created by the opposing secondary-air jets and thus are consumed quickly. Generally, the specific arrangement of the impinging secondary-air jets dumps most of the non-uniformity in temperature and CO into the gas flow coming from the bed-top, while medium-level mixing results in the lowest CO emission at the furnace exit and the highest combustion efficiency in the bed.
Xian, George Z.; Homer, Collin G.; Rigge, Matthew B.; Shi, Hua; Meyer, Debbie
2015-01-01
Accurate and consistent estimates of shrubland ecosystem components are crucial to a better understanding of ecosystem conditions in arid and semiarid lands. An innovative approach was developed by integrating multiple sources of information to quantify shrubland components as continuous field products within the National Land Cover Database (NLCD). The approach consists of several procedures including field sample collections, high-resolution mapping of shrubland components using WorldView-2 imagery and regression tree models, Landsat 8 radiometric balancing and phenological mosaicking, medium resolution estimates of shrubland components following different climate zones using Landsat 8 phenological mosaics and regression tree models, and product validation. Fractional covers of nine shrubland components were estimated: annual herbaceous, bare ground, big sagebrush, herbaceous, litter, sagebrush, shrub, sagebrush height, and shrub height. Our study area included the footprint of six Landsat 8 scenes in the northwestern United States. Results show that most components have relatively significant correlations with validation data, have small normalized root mean square errors, and correspond well with expected ecological gradients. While some uncertainties remain with height estimates, the model formulated in this study provides a cross-validated, unbiased, and cost effective approach to quantify shrubland components at a regional scale and advances knowledge of horizontal and vertical variability of these components.
Separation of Flame and Nonflame-retardant Plastics Utilizing Magneto-Archimedes Method
NASA Astrophysics Data System (ADS)
Misawa, Kohei; Kobayashi, Takayuki; Mori, Tatsuya; Mishima, Fumihito; Akiyama, Yoko; Nishijima, Shigehiro
2017-07-01
In physical recycling process, the quality of recycled plastics becomes usually poor in case various kinds of plastic materials are mixed. In order to solve the problem, we tried to separate flame and nonflame-retardant plastics used for toner cartridges as one example of mixed plastics by using magneto-Archimedes method. By using this method, we can control levitation and settlement of the particles in the medium by controlling the density and magnetic susceptibility of the medium and the magnetic field. In this study, we introduced the separation system of plastics by the combination of wet type specific gravity separation and magneto-Archimedes separation. In addition, we examined continuous and massive separation by introducing the system which can separate the plastics continuously in the flowing fluid.
Metabolic studies of mammalian cells by 31P-NMR using a continuous perfusion technique.
Knop, R H; Chen, C W; Mitchell, J B; Russo, A; McPherson, S; Cohen, J S
1984-07-20
Levels of ATP and Pi in metabolically active Chinese hamster lung fibroblasts were monitored noninvasively by 31P-NMR over many hours and under a variety of conditions. The cells were embedded in a matrix of agarose gel in the form of fine threads which were continuously perfused in a standard NMR tube. The small diameter of the thread allows rapid diffusion of metabolites and drugs into the cells. The changes in ATP and Pi levels were followed as a function of time in response to perfusion with a glucose-containing medium, with isotonic saline and with a medium containing 2,4-dinitrophenol, an uncoupler of oxidative phosphorylation. This gel-thread perfusion method should enable routine NMR studies of cellular metabolism, and may have other potential biological applications.
Didier, Caroline; Forno, Guillermina; Etcheverrigaray, Marina; Kratje, Ricardo; Goicoechea, Héctor
2009-09-21
The optimal blends of six compounds that should be present in culture media used in recombinant protein production were determined by means of artificial neural networks (ANN) coupled with crossed mixture experimental design. This combination constitutes a novel approach to develop a medium for cultivating genetically engineered mammalian cells. The compounds were collected in two mixtures of three elements each, and the experimental space was determined by a crossed mixture design. Empirical data from 51 experimental units were used in a multiresponse analysis to train artificial neural networks which satisfy different requirements, in order to define two new culture media (Medium 1 and Medium 2) to be used in a continuous biopharmaceutical production process. These media were tested in a bioreactor to produce a recombinant protein in CHO cells. Remarkably, for both predicted media all responses satisfied the predefined goals pursued during the analysis, except in the case of the specific growth rate (mu) observed for Medium 1. ANN analysis proved to be a suitable methodology to be used when dealing with complex experimental designs, as frequently occurs in the optimization of production processes in the biotechnology area. The present work is a new example of the use of ANN for the resolution of a complex, real life system, successfully employed in the context of a biopharmaceutical production process.
Integration of Basic Knowledge Models for the Simulation of Cereal Foods Processing and Properties.
Kristiawan, Magdalena; Kansou, Kamal; Valle, Guy Della
Cereal processing (breadmaking, extrusion, pasting, etc.) covers a range of mechanisms that, despite their diversity, can be often reduced to a succession of two core phenomena: (1) the transition from a divided solid medium (the flour) to a continuous one through hydration, mechanical, biochemical, and thermal actions and (2) the expansion of a continuous matrix toward a porous structure as a result of the growth of bubble nuclei either by yeast fermentation or by water vaporization after a sudden pressure drop. Modeling them is critical for the domain, but can be quite challenging to address with mechanistic approaches relying on partial differential equations. In this chapter we present alternative approaches through basic knowledge models (BKM) that integrate scientific and expert knowledge, and possess operational interest for domain specialists. Using these BKMs, simulations of two cereal foods processes, extrusion and breadmaking, are provided by focusing on the two core phenomena. To support the use by non-specialists, these BKMs are implemented as computer tools, a Knowledge-Based System developed for the modeling of the flour mixing operation or Ludovic ® , a simulation software for twin screw extrusion. They can be applied to a wide domain of compositions, provided that the data on product rheological properties are available. Finally, it is stated that the use of such systems can help food engineers to design cereal food products and predict their texture properties.
Two-component scattering model and the electron density spectrum
NASA Astrophysics Data System (ADS)
Zhou, A. Z.; Tan, J. Y.; Esamdin, A.; Wu, X. J.
2010-02-01
In this paper, we discuss a rigorous treatment of the refractive scintillation caused by a two-component interstellar scattering medium and a Kolmogorov form of density spectrum. It is assumed that the interstellar scattering medium is composed of a thin-screen interstellar medium (ISM) and an extended interstellar medium. We consider the case that the scattering of the thin screen concentrates in a thin layer represented by a δ function distribution and that the scattering density of the extended irregular medium satisfies the Gaussian distribution. We investigate and develop equations for the flux density structure function corresponding to this two-component ISM geometry in the scattering density distribution and compare our result with the observations. We conclude that the refractive scintillation caused by this two-component ISM scattering gives a more satisfactory explanation for the observed flux density variation than does the single extended medium model. The level of refractive scintillation is strongly sensitive to the distribution of scattering material along the line of sight (LOS). The theoretical modulation indices are comparatively less sensitive to the scattering strength of the thin-screen medium, but they critically depend on the distance from the observer to the thin screen. The logarithmic slope of the structure function is sensitive to the scattering strength of the thin-screen medium, but is relatively insensitive to the thin-screen location. Therefore, the proposed model can be applied to interpret the structure functions of flux density observed in pulsar PSR B2111 + 46 and PSR B0136 + 57. The result suggests that the medium consists of a discontinuous distribution of plasma turbulence embedded in the interstellar medium. Thus our work provides some insight into the distribution of the scattering along the LOS to the pulsar PSR B2111 + 46 and PSR B0136 + 57.
The effect of the interaction of cracks in orthotropic layered materials under compressive loading.
Winiarski, B; Guz, I A
2008-05-28
The non-classical problem of fracture mechanics of composites compressed along the layers with interfacial cracks is analysed. The statement of the problem is based on the model of piecewise homogeneous medium, the most accurate within the framework of the mechanics of deformable bodies as applied to composites. The condition of plane strain state is examined. The layers are modelled by a transversally isotropic material (a matrix reinforced by continuous parallel fibres). The frictionless Hertzian contact of the crack faces is considered. The complex fracture mechanics problem is solved using the finite-element analysis. The shear mode of stability loss is studied. The results are obtained for the typical dispositions of cracks. It was found that the interacting crack faces, the crack length and the mutual position of cracks influence the critical strain in the composite.
Cooling rate dependence of structural order in Al90Sm10 metallic glass
NASA Astrophysics Data System (ADS)
Sun, Yang; Zhang, Yue; Zhang, Feng; Ye, Zhuo; Ding, Zejun; Wang, Cai-Zhuang; Ho, Kai-Ming
2016-07-01
The atomic structure of Al90Sm10 metallic glass is studied using molecular dynamics simulations. By performing a long sub-Tg annealing, we developed a glass model closer to the experiments than the models prepared by continuous cooling. Using the cluster alignment method, we found that "3661" cluster is the dominating short-range order in the glass samples. The connection and arrangement of "3661" clusters, which define the medium-range order in the system, are enhanced significantly in the sub-Tg annealed sample as compared with the fast cooled glass samples. Unlike some strong binary glass formers such as Cu64.5Zr35.5, the clusters representing the short-range order do not form an interconnected interpenetrating network in Al90Sm10, which has only marginal glass formability.
Papagianni, Maria
2007-01-01
Citric acid is regarded as a metabolite of energy metabolism, of which the concentration will rise to appreciable amounts only under conditions of substantive metabolic imbalances. Citric acid fermentation conditions were established during the 1930s and 1940s, when the effects of various medium components were evaluated. The biochemical mechanism by which Aspergillus niger accumulates citric acid has continued to attract interest even though its commercial production by fermentation has been established for decades. Although extensive basic biochemical research has been carried out with A. niger, the understanding of the events relevant for citric acid accumulation is not completely understood. This review is focused on citric acid fermentation by A. niger. Emphasis is given to aspects of fermentation biochemistry, membrane transport in A. niger and modeling of the production process.
Digital model simulation of the glacial-outwash aquifer at Dayton, Ohio
Fidler, Richard E.
1975-01-01
Dayton, Ohio and its environs obtain most of their water from wells which penetrate highly productive glacial-outwash deposits underlying the Great Miami River and its tributaries and receive recharge by induced streambed leakage. Combined municipal and industrial use of ground water in the 90-square-mile area has increased from about 180 cubic feet per second in 1960 to nearly 250 cubic feet per second in 1972. The increased pumpage has resulted in continuing water-level declines in some parts of the area. A digital model which uses a finite-difference approximation technique to solve partial differential equations of flow through a porous medium was used to evaluate the effects of pumping stresses on water levels. The simulated head values presented in map form generally are in good agreement with potentiometric-surface maps prepared from field measurements.
NASA Astrophysics Data System (ADS)
Wu, Wei; Biber, Patrick D.; Peterson, Mark S.; Gong, Chongfeng
2012-12-01
To study the impact of the Deepwater Horizon oil spill on photosynthesis of coastal salt marsh plants in Mississippi, we developed a hierarchical Bayesian (HB) model based on field measurements collected from July 2010 to November 2011. We sampled three locations in Davis Bayou, Mississippi (30.375°N, 88.790°W) representative of a range of oil spill impacts. Measured photosynthesis was negative (respiration only) at the heavily oiled location in July 2010 only, and rates started to increase by August 2010. Photosynthesis at the medium oiling location was lower than at the control location in July 2010 and it continued to decrease in September 2010. During winter 2010-2011, the contrast between the control and the two impacted locations was not as obvious as in the growing season of 2010. Photosynthesis increased through spring 2011 at the three locations and decreased starting with October at the control location and a month earlier (September) at the impacted locations. Using the field data, we developed an HB model. The model simulations agreed well with the measured photosynthesis, capturing most of the variability of the measured data. On the basis of the posteriors of the parameters, we found that air temperature and photosynthetic active radiation positively influenced photosynthesis whereas the leaf stress level negatively affected photosynthesis. The photosynthesis rates at the heavily impacted location had recovered to the status of the control location about 140 days after the initial impact, while the impact at the medium impact location was never severe enough to make photosynthesis significantly lower than that at the control location over the study period. The uncertainty in modeling photosynthesis rates mainly came from the individual and micro-site scales, and to a lesser extent from the leaf scale.
Mazaheri, Davood; Shojaosadati, Seyed Abbas; Zamir, Seyed Morteza; Mousavi, Seyyed Mohammad
2018-04-21
In this work, mathematical modeling of ethanol production in solid-state fermentation (SSF) has been done based on the variation in the dry weight of solid medium. This method was previously used for mathematical modeling of enzyme production; however, the model should be modified to predict the production of a volatile compound like ethanol. The experimental results of bioethanol production from the mixture of carob pods and wheat bran by Zymomonas mobilis in SSF were used for the model validation. Exponential and logistic kinetic models were used for modeling the growth of microorganism. In both cases, the model predictions matched well with the experimental results during the exponential growth phase, indicating the good ability of solid medium weight variation method for modeling a volatile product formation in solid-state fermentation. In addition, using logistic model, better predictions were obtained.
Razzaq, Misbah; Ahmad, Jamil
2015-01-01
Internet worms are analogous to biological viruses since they can infect a host and have the ability to propagate through a chosen medium. To prevent the spread of a worm or to grasp how to regulate a prevailing worm, compartmental models are commonly used as a means to examine and understand the patterns and mechanisms of a worm spread. However, one of the greatest challenge is to produce methods to verify and validate the behavioural properties of a compartmental model. This is why in this study we suggest a framework based on Petri Nets and Model Checking through which we can meticulously examine and validate these models. We investigate Susceptible-Exposed-Infectious-Recovered (SEIR) model and propose a new model Susceptible-Exposed-Infectious-Recovered-Delayed-Quarantined (Susceptible/Recovered) (SEIDQR(S/I)) along with hybrid quarantine strategy, which is then constructed and analysed using Stochastic Petri Nets and Continuous Time Markov Chain. The analysis shows that the hybrid quarantine strategy is extremely effective in reducing the risk of propagating the worm. Through Model Checking, we gained insight into the functionality of compartmental models. Model Checking results validate simulation ones well, which fully support the proposed framework. PMID:26713449
Razzaq, Misbah; Ahmad, Jamil
2015-01-01
Internet worms are analogous to biological viruses since they can infect a host and have the ability to propagate through a chosen medium. To prevent the spread of a worm or to grasp how to regulate a prevailing worm, compartmental models are commonly used as a means to examine and understand the patterns and mechanisms of a worm spread. However, one of the greatest challenge is to produce methods to verify and validate the behavioural properties of a compartmental model. This is why in this study we suggest a framework based on Petri Nets and Model Checking through which we can meticulously examine and validate these models. We investigate Susceptible-Exposed-Infectious-Recovered (SEIR) model and propose a new model Susceptible-Exposed-Infectious-Recovered-Delayed-Quarantined (Susceptible/Recovered) (SEIDQR(S/I)) along with hybrid quarantine strategy, which is then constructed and analysed using Stochastic Petri Nets and Continuous Time Markov Chain. The analysis shows that the hybrid quarantine strategy is extremely effective in reducing the risk of propagating the worm. Through Model Checking, we gained insight into the functionality of compartmental models. Model Checking results validate simulation ones well, which fully support the proposed framework.
NASA Astrophysics Data System (ADS)
Yang, X.; Zhu, P.; Gu, Y.; Xu, Z.
2015-12-01
Small scale heterogeneities of subsurface medium can be characterized conveniently and effectively using a few simple random medium parameters (RMP), such as autocorrelation length, angle and roughness factor, etc. The estimation of these parameters is significant in both oil reservoir prediction and metallic mine exploration. Poor accuracy and low stability existed in current estimation approaches limit the application of random medium theory in seismic exploration. This study focuses on improving the accuracy and stability of RMP estimation from post-stacked seismic data and its application in the seismic inversion. Experiment and theory analysis indicate that, although the autocorrelation of random medium is related to those of corresponding post-stacked seismic data, the relationship is obviously affected by the seismic dominant frequency, the autocorrelation length, roughness factor and so on. Also the error of calculation of autocorrelation in the case of finite and discrete model decreases the accuracy. In order to improve the precision of estimation of RMP, we design two improved approaches. Firstly, we apply region growing algorithm, which often used in image processing, to reduce the influence of noise in the autocorrelation calculated by the power spectrum method. Secondly, the orientation of autocorrelation is used as a new constraint in the estimation algorithm. The numerical experiments proved that it is feasible. In addition, in post-stack seismic inversion of random medium, the estimated RMP may be used to constrain inverse procedure and to construct the initial model. The experiment results indicate that taking inversed model as random medium and using relatively accurate estimated RMP to construct initial model can get better inversion result, which contained more details conformed to the actual underground medium.
The rheology of three-phase suspensions at low bubble capillary number
Truby, J. M.; Mueller, S. P.; Llewellin, E. W.; Mader, H. M.
2015-01-01
We develop a model for the rheology of a three-phase suspension of bubbles and particles in a Newtonian liquid undergoing steady flow. We adopt an ‘effective-medium’ approach in which the bubbly liquid is treated as a continuous medium which suspends the particles. The resulting three-phase model combines separate two-phase models for bubble suspension rheology and particle suspension rheology, which are taken from the literature. The model is validated against new experimental data for three-phase suspensions of bubbles and spherical particles, collected in the low bubble capillary number regime. Good agreement is found across the experimental range of particle volume fraction (0≤ϕp≲0.5) and bubble volume fraction (0≤ϕb≲0.3). Consistent with model predictions, experimental results demonstrate that adding bubbles to a dilute particle suspension at low capillarity increases its viscosity, while adding bubbles to a concentrated particle suspension decreases its viscosity. The model accounts for particle anisometry and is easily extended to account for variable capillarity, but has not been experimentally validated for these cases. PMID:25568617
Single-molecule FRET-Rosetta reveals RNA structural rearrangements during human telomerase catalysis
Parks, Joseph W.; Kappel, Kalli; Das, Rhiju; Stone, Michael D.
2017-01-01
Maintenance of telomeres by telomerase permits continuous proliferation of rapidly dividing cells, including the majority of human cancers. Despite its direct biomedical significance, the architecture of the human telomerase complex remains unknown. Generating homogeneous telomerase samples has presented a significant barrier to developing improved structural models. Here we pair single-molecule Förster resonance energy transfer (smFRET) measurements with Rosetta modeling to map the conformations of the essential telomerase RNA core domain within the active ribonucleoprotein. FRET-guided modeling places the essential pseudoknot fold distal to the active site on a protein surface comprising the C-terminal element, a domain that shares structural homology with canonical polymerase thumb domains. An independently solved medium-resolution structure of Tetrahymena telomerase provides a blind test of our modeling methodology and sheds light on the structural homology of this domain across diverse organisms. Our smFRET-Rosetta models reveal nanometer-scale rearrangements within the RNA core domain during catalysis. Taken together, our FRET data and pseudoatomic molecular models permit us to propose a possible mechanism for how RNA core domain rearrangement is coupled to template hybrid elongation. PMID:28096444
Method for modeling post-mortem biometric 3D fingerprints
NASA Astrophysics Data System (ADS)
Rajeev, Srijith; Shreyas, Kamath K. M.; Agaian, Sos S.
2016-05-01
Despite the advancements of fingerprint recognition in 2-D and 3-D domain, authenticating deformed/post-mortem fingerprints continue to be an important challenge. Prior cleansing and reconditioning of the deceased finger is required before acquisition of the fingerprint. The victim's finger needs to be precisely and carefully operated by a medium to record the fingerprint impression. This process may damage the structure of the finger, which subsequently leads to higher false rejection rates. This paper proposes a non-invasive method to perform 3-D deformed/post-mortem finger modeling, which produces a 2-D rolled equivalent fingerprint for automated verification. The presented novel modeling method involves masking, filtering, and unrolling. Computer simulations were conducted on finger models with different depth variations obtained from Flashscan3D LLC. Results illustrate that the modeling scheme provides a viable 2-D fingerprint of deformed models for automated verification. The quality and adaptability of the obtained unrolled 2-D fingerprints were analyzed using NIST fingerprint software. Eventually, the presented method could be extended to other biometric traits such as palm, foot, tongue etc. for security and administrative applications.
Rovedo, Philipp; Knecht, Stephan; Bäumlisberger, Tim; Cremer, Anna Lena; Duckett, Simon B; Mewis, Ryan E; Green, Gary G R; Burns, Michael; Rayner, Peter J; Leibfritz, Dieter; Korvink, Jan G; Hennig, Jürgen; Pütz, Gerhard; von Elverfeldt, Dominik; Hövener, Jan-Bernd
2016-06-30
In this work, we illustrate a method to continuously hyperpolarize a biomolecule, nicotinamide, in water using parahydrogen and signal amplification by reversible exchange (SABRE). Building on the preparation procedure described recently by Truong et al. [ J. Phys. Chem. B , 2014 , 118 , 13882 - 13889 ], aqueous solutions of nicotinamide and an Ir-IMes catalyst were prepared for low-field NMR and MRI. The (1)H-polarization was continuously renewed and monitored by NMR experiments at 5.9 mT for more than 1000 s. The polarization achieved corresponds to that induced by a 46 T magnet (P = 1.6 × 10(-4)) or an enhancement of 10(4). The polarization persisted, although reduced, if cell culture medium (DPBS with Ca(2+) and Mg(2+)) or human cells (HL-60) were added, but was no longer observable after the addition of human blood. Using a portable MRI unit, fast (1)H-MRI was enabled by cycling the magnetic field between 5 mT and the Earth's field for hyperpolarization and imaging, respectively. A model describing the underlying spin physics was developed that revealed a polarization pattern depending on both contact time and magnetic field. Furthermore, the model predicts an opposite phase of the dihydrogen and substrate signal after one exchange, which is likely to result in the cancelation of some signal at low field.
Jet measurements in heavy ion physics
NASA Astrophysics Data System (ADS)
Connors, Megan; Nattrass, Christine; Reed, Rosi; Salur, Sevil
2018-04-01
A hot, dense medium called a quark gluon plasma (QGP) is created in ultrarelativistic heavy ion collisions. Early in the collision, hard parton scatterings generate high momentum partons that traverse the medium, which then fragment into sprays of particles called jets. Understanding how these partons interact with the QGP and fragment into final state particles provides critical insight into quantum chromodynamics. Experimental measurements from high momentum hadrons, two particle correlations, and full jet reconstruction at the Relativistic Heavy Ion Collider (RHIC) and the Large Hadron Collider (LHC) continue to improve our understanding of energy loss in the QGP. Run 2 at the LHC recently began and there is a jet detector at RHIC under development. Now is the perfect time to reflect on what the experimental measurements have taught us so far, the limitations of the techniques used for studying jets, how the techniques can be improved, and how to move forward with the wealth of experimental data such that a complete description of energy loss in the QGP can be achieved. Measurements of jets to date clearly indicate that hard partons lose energy. Detailed comparisons of the nuclear modification factor between data and model calculations led to quantitative constraints on the opacity of the medium to hard probes. However, while there is substantial evidence for softening and broadening jets through medium interactions, the difficulties comparing measurements to theoretical calculations limit further quantitative constraints on energy loss mechanisms. Since jets are algorithmic descriptions of the initial parton, the same jet definitions must be used, including the treatment of the underlying heavy ion background, when making data and theory comparisons. An agreement is called for between theorists and experimentalists on the appropriate treatment of the background, Monte Carlo generators that enable experimental algorithms to be applied to theoretical calculations, and a clear understanding of which observables are most sensitive to the properties of the medium, even in the presence of background. This will enable us to determine the best strategy for the field to improve quantitative constraints on properties of the medium in the face of these challenges.
2009-11-04
simulated result generated from the partial wave series model described in Chapter 2. Finally, the acoustic properties of the sediment phantom...the appropriate acoustic properties and propagation models for the sediment medium, that is, whether to assume the sediment is a fluid, an elastic...viscoelastic medium, or a poroelastic medium. 141 In this study, the sediment phantom employed is treated as a fluid. Its acoustic properties are
10 CFR 429.35 - Bare or covered (no reflector) medium base compact fluorescent lamps.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 3 2012-01-01 2012-01-01 false Bare or covered (no reflector) medium base compact....35 Bare or covered (no reflector) medium base compact fluorescent lamps. (a) Sampling plan for... reflector) medium base compact fluorescent lamps; and (2) For each basic model of bare or covered (no...
10 CFR 429.35 - Bare or covered (no reflector) medium base compact fluorescent lamps.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 3 2014-01-01 2014-01-01 false Bare or covered (no reflector) medium base compact....35 Bare or covered (no reflector) medium base compact fluorescent lamps. (a) Sampling plan for... reflector) medium base compact fluorescent lamps; and (2) For each basic model of bare or covered (no...
10 CFR 429.35 - Bare or covered (no reflector) medium base compact fluorescent lamps.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 3 2013-01-01 2013-01-01 false Bare or covered (no reflector) medium base compact....35 Bare or covered (no reflector) medium base compact fluorescent lamps. (a) Sampling plan for... reflector) medium base compact fluorescent lamps; and (2) For each basic model of bare or covered (no...
Quenching of a highly superheated porous medium by injection of water
NASA Astrophysics Data System (ADS)
Fichot, F.; Bachrata, A.; Repetto, G.; Fleurot, J.; Quintard, M.
2012-11-01
Understanding of two-phase flow through porous medium with intense phase change is of interest in many situations, including nuclear, chemical or geophysical applications. Intense boiling occurs when the liquid is injected into a highly superheated medium. Under such conditions, the heat flux extracted by the fluid from the porous medium is mainly governed by the nucleation of bubbles and by the evaporation of thin liquid films. Both configurations are possible, depending on local flow conditions and on the ratio of bubble size to pore size. The present study is motivated by the safety evaluation of light water nuclear reactors in case of a severe accident scenario, such as the one that happened in Fukushima Dai-ichi plant in March, 2011. If water sources are not available for a long period of time, the reactor core heats up due to the residual power and eventually becomes significantly damaged due to intense oxidation of metals and fragmentation of fuel rods resulting in the formation of a porous medium where the particles have a characteristic length-scale of 1 to 5 mm. The coolability of the porous medium will depend on the water flow rate which can enter the medium under the available driving head and on the geometrical features of the porous matrix (average pore size, porosity). Therefore, it is of high interest to evaluate the conditions for which the injection of water in such porous medium is likely to stop the progression of the accident. The present paper addresses the issue of modelling two-phase flow and heat transfers in a porous medium initially dry, where water is injected. The medium is initially at a temperature well above the saturation temperature of water. In a first part, a summary of existing knowledge is provided, showing the scarcity of models and experimental data. In a second part, new experimental results obtained in an IRSN facility are analysed. The experiment consists in a bed of steel particles that are heated up to 700°Cbefore injecting water. The facility is briefly described. The velocity of the "quench front" (location where particles are quickly cooled down) and the total pressure drop across the medium are estimated. The dependencies of those quantities with respect to the inlet water flow rate, the initial temperature of the medium and the diameter of particles are obtained. In a third part, a model is proposed, based on a previously developed model which is improved in order to take into account intense boiling regimes (in particular nucleate boiling). The model includes a function that takes into account the contact area between water and the particles which depends on the temperature of particles and on the void fraction. That function affects the local intensity of phase change. The model involves a few parameters which cannot be evaluated analytically. Those parameters are bounded, following the analysis of experimental data. Finally, the model is assessed by comparison of calculations with those new experimental data. The satisfactory agreement shows that the model is almost predictive in the range of parameters studied. The experimental results also show that the quench front becomes unstable under certain conditions. This is also analysed and compared with the predictions of the model.
Remote sensing of Earth terrain
NASA Technical Reports Server (NTRS)
Kong, Jin AU; Yueh, Herng-Aung
1990-01-01
The layered random medium model is used to investigate the fully polarimetric scattering of electromagnetic waves from vegetation. The vegetation canopy is modeled as an anisotropic random medium containing nonspherical scatterers with preferred alignment. The underlying medium is considered as a homogeneous half space. The scattering effect of the vegetation canopy are characterized by 3-D correlation functions with variances and correlation lengths respectively corresponding to the fluctuation strengths and the physical geometries of the scatterers. The strong fluctuation theory is used to calculate the anisotropic effective permittivity tensor of the random medium and the distorted Born approximation is then applied to obtain the covariance matrix which describes the fully polarimetric scattering properties of the vegetation field. This model accounts for all the interaction processes between the boundaries and the scatterers and includes all the coherent effects due to wave propagation in different directions such as the constructive and destructive interferences. For a vegetation canopy with low attenuation, the boundary between the vegetation and the underlying medium can give rise to significant coherent effects.
1997-09-30
modeled as either an effective fluid, effective viscoelastic solid, or a saturated poroelastic medium. The analysis included only the breathing mode...separated for each model . Finally, if a sediment is modeled by Biot theory, which describes wave propagation in a saturated poroelastic medium, then two...theory to sediment acoustics . The predicted resonance behavior under each model is distinct, so an optical extinction measurement may provide an
Bulera, S J; Sattler, C A; Pitot, H C
1996-06-01
A transgenic rat line carrying the alb-SV40A transgene has been described by this laboratory. Several cell lines have been established from the livers of two of these rats. One of these cell lines, L37, exhibits a large nuclear/cytoplasmic ratio and a well-differentiated cytoplasm containing numerous organelles. When L37 cells are placed into culture medium lacking necessary growth factors, cellular proliferation continues for 48 hours after medium change. Subsequent to the initial 48 hours, cells begin to shrink and lose contact with adjacent cells, eventually sloughing off the culture plate surface, with most cell deaths occurring between 48 and 96 hours after medium change. Microscopic examination of sloughing cells indicates they possess highly convoluted and blebbed plasma membranes, a morphological characteristic of apoptosis. Ultrastructural studies demonstrate the ubiquitous presence of apoptotic bodies. When DNA isolated from growth factor-depleted cells is resolved on agarose gels, DNA fragmentation ladders are observed at times of maximum apoptotic change. Quantitative analysis of L37 cells between 48 and 96 hours after the removal of the culture medium shows that 59% +/- 2% of the cells undergo apoptosis. When cycloheximide, puromycin, or actinomycin D is added to the L37 cultures, only cycloheximide is able to repress apoptosis, indicating that the mechanism of apoptosis in the L37 liver-derived cell line requires a cycloheximide-sensitive translational event. The extremely high rate of apoptosis, together with the maintenance of hepatocellular characteristics, indicates the usefulness of this cell line as a model in which to study the mechanisms of hepatocellular apoptosis.
Jia, Zhen Yu; Zhang, Jun Hua; Ding, Sheng Yan; Feng, Shu; Xiong, Xiao Bo; Liang, Guo Fu
2016-04-22
Soil phosphorus is an important indicator to measure the soil fertility, because the content of soil phosphorus has an important effect on physical and chemical properties of soil, plant growth, and microbial activity in soil. In this study, the soil samples collecting and indoor analysis were conducted in Zhoukou City located in the flooded area of the Yellow River. By using GIS combined with geo-statistics, we tried to analyze the spatial variability and content distribution of soil total phosphorus (TP) and soil available phosphorus (AP) in the study area. Results showed that TP and AP of both soil layers (0-20 cm and 20-40 cm) were rich, and the contents of TP and AP in surface layer (0-20 cm) were higher than in the second layer (20-40 cm). TP and AP of both soil layers exhibited variation at medium level, and AP had varied much higher than TP. TP of both layers showed medium degree of anisotropy which could be well modeled by the Gaussian model. TP in the surface layer showed strong spatial correlation, but that of the second layer had medium spatial correlation. AP of both layers had a weaker scope in anisotropy which could be simulated by linear model, and both soil layers showed weaker spatial correlations. TP of both soil layers showed a slowly rising change from southwest to northeast of the study area, while it gradually declined from northwest to southeast. AP in soil surface layer exhibited an increase tendency firstly and then decrease from southwest to the northeast, while it decreased firstly and then increased from southeast to the northwest. AP in the second soil layer had an opposite change in the southwest to the northeast, while it showed continuously increasing tendency from northwest to the southeast. The contents of TP and AP in the surface layer presented high grades and the second layer of TP belonged to medium grade, but the second layer of AP was in a lower grade. The artificial factors such as land use type, cropping system, irrigation and fertilization were the main factors influencing the distribution and spatial variation of soil phosphorus in this area.
COMPARISON OF MEDIUM CONCENTRATION VS. ACTUAL TISSUE DOSE IN IN VITRO NEUROTOXICANT MODELS.
In vitro methods have long been used to model the effects of toxicants on the nervous system. Generally, it is assumed that concentrations of toxicant present in the medium surrounding cells in in vitro models are an adequate biomarker of cell or tissue levels. However, this assu...
Interplanetary density models as inferred from solar Type III bursts
NASA Astrophysics Data System (ADS)
Oppeneiger, Lucas; Boudjada, Mohammed Y.; Lammer, Helmut; Lichtenegger, Herbert
2016-04-01
We report on the density models derived from spectral features of solar Type III bursts. They are generated by beams of electrons travelling outward from the Sun along open magnetic field lines. Electrons generate Langmuir waves at the plasma frequency along their ray paths through the corona and the interplanetary medium. A large frequency band is covered by the Type III bursts from several MHz down to few kHz. In this analysis, we consider the previous empirical density models proposed to describe the electron density in the interplanetary medium. We show that those models are mainly based on the analysis of Type III bursts generated in the interplanetary medium and observed by satellites (e.g. RAE, HELIOS, VOYAGER, ULYSSES,WIND). Those models are confronted to stereoscopic observations of Type III bursts recorded by WIND, ULYSSES and CASSINI spacecraft. We discuss the spatial evolution of the electron beam along the interplanetary medium where the trajectory is an Archimedean spiral. We show that the electron beams and the source locations are depending on the choose of the empirical density models.
Continuous production of butanol from starch-based packing peanuts.
Ezeji, Thaddeus C; Groberg, Marisa; Qureshi, Nasib; Blaschek, Hans P
2003-01-01
Acetone, butanol, ethanol (ABE, or solvents) were produced from starch-based packing peanuts in batch and continuous reactors. In a batch reactor, 18.9 g/L of total ABE was produced from 80 g/L packing peanuts in 110 h of fermentation. The initial and final starch concentrations were 69.6 and 11.1 g/L, respectively. In this fermentation, ABE yield and productivity of 0.32 and 0.17 g/(L h) were obtained, respectively. Compared to the batch fermentation, continuous fermentation of 40 g/L of starchbased packing peanuts in P2 medium resulted in a maximum solvent production of 8.4 g/L at a dilution rate of 0.033 h-1. This resulted in a productivity of 0.27 g/(L h). However, the reactor was not stable and fermentation deteriorated with time. Continuous fermentation of 35 g/L of starch solution resulted in a similar performance. These studies were performed in a vertical column reactor using Clostridium beijerinckii BA101 and P2 medium. It is anticipated that prolonged exposure of culture to acrylamide, which is formed during boiling/autoclaving of starch, affects the fermentation negatively.
Evolution of Structure in the Intergalactic Medium and the Nature of the LY-Alpha Forest
NASA Technical Reports Server (NTRS)
Bi, Hongguang; Davidsen, Arthur F.
1997-01-01
We have performed a detailed statistical study of the evolution of structure in a photoionized intergalactic medium (IGM) using analytical simulations to extend the calculation into the mildly nonlinear density regime found to prevail at z = 3. Our work is based on a simple fundamental conjecture: that the probability distribution function of the density of baryonic diffuse matter in the universe is described by a lognormal (LN) random field. The LN distribution has several attractive features and follows plausibly from the assumption of initial linear Gaussian density and velocity fluctuations at arbitrarily early times. Starting with a suitably normalized power spectrum of primordial fluctuations in a universe dominated by cold dark matter (CDM), we compute the behavior of the baryonic matter, which moves slowly toward minima in the dark matter potential on scales larger than the Jeans length. We have computed two models that succeed in matching observations. One is a nonstandard CDM model with OMEGA = 1, h = 0.5, and GAMMA = 0.3, and the other is a low-density flat model with a cosmological constant (LCDM), with OMEGA = 0.4, OMEGA(sub LAMBDA) = 0.6, and h = 0.65. In both models, the variance of the density distribution function grows with time, reaching unity at about z = 4, where the simulation yields spectra that closely resemble the Ly-alpha forest absorption seen in the spectra of high-z quasars. The calculations also successfully predict the observed properties of the Ly-alpha forest clouds and their evolution from z = 4 down to at least z = 2, assuming a constant intensity for the metagalactic UV background over this redshift range. However, in our model the forest is not due to discrete clouds, but rather to fluctuations in a continuous intergalactic medium. At z = 3; typical clouds with measured neutral hydrogen column densities N(sub H I) = 10(exp 13.3), 10(exp 13.5), and 10(exp 11.5) /sq cm correspond to fluctuations with mean total densities approximately 10, 1, and 0.1 times the universal mean baryon density. Perhaps surprisingly, fluctuations whose amplitudes are less than or equal to the mean density still appear as "clouds" because in our model more than 70% of the volume of the IGM at z = 3 is filled with gas at densities below the mean value.
Optoelectronic Instrument Monitors pH in a Culture Medium
NASA Technical Reports Server (NTRS)
Anderson, Melody M.; Pellis, Neal; Jeevarajan, Anthony S.; Taylor, Thomas D.
2004-01-01
An optoelectronic instrument monitors the pH of an aqueous cell-culture medium in a perfused rotating-wall-vessel bioreactor. The instrument is designed to satisfy the following requirements: It should be able to measure the pH of the medium continuously with an accuracy of 0.1 in the range from 6.5 to 7.5. It should be noninvasive. Any material in contact with the culture medium should be sterilizable as well as nontoxic to the cells to be grown in the medium. The biofilm that inevitably grows on any surface in contact with the medium should not affect the accuracy of the pH measurement. It should be possible to obtain accurate measurements after only one calibration performed prior to a bioreactor cell run. The instrument should be small and lightweight. The instrument includes a quartz cuvette through which the culture medium flows as it is circulated through the bioreactor. The cuvette is sandwiched between light source on one side and a photodetector on the other side. The light source comprises a red and a green light-emitting diode (LED) that are repeatedly flashed in alternation with a cycle time of 5 s. The responses of the photodiode to the green and red LEDs are processed electronically to obtain a quantity proportional to the ratio between the amounts of green and red light transmitted through the medium.
NASA Astrophysics Data System (ADS)
Dianursanti, Taurina, Zarahmaida; Indraputri, Claudia Maya
2018-02-01
Spirulina platensis has the potential to be developed because of essential chemical compounds in the form of phycocyanin that can be used as an antioxidant. The growth of microalgae and phycocyanin depends on the availability of nutrition contained in culture medium. The cultivation will be carried out at 1 L reactor with continuous aeration, light intensity is 3000-4000 lux, and temperature is 27-30°C. Phycocyanin is obtained by liquid-liquid extraction method using phosphate buffer pH 7. Phycocyanin test performed by using UV-Vis spectrophotometry. The result show that the highest dry biomass is obtained on bean sprouts extract medium 8% (v/v) with the addition of urea fertilizer 120 ppm. The highest content of phycocyanin is obtained on bean sprouts extract medium 8% (v/v) with the addition of urea fertilizer 100 ppm with phycocyanin concentration of 257.12 mg/L.
Improvement of exopolysaccharide production by Porphyridium marinum.
Soanen, Nastasia; Da Silva, Elise; Gardarin, Christine; Michaud, Philippe; Laroche, Céline
2016-08-01
With the aim to optimize the production of exopolysaccharide (EPS) by Porphyridium marinum, cultures in photobioreactors were conducted on a modified Provasoli medium (P) and compared to a new medium (Pm) with an elemental composition of N0.0205S0.0597P0.005. Cultivation on this medium allowed the increase of EPS concentration up to 2.5gL(-1), without modification of the EPS productivity (0.096gL(-1)) and EPS structure. In a second time, photosynthetic activity of the strain was monitored as a function of irradiance and temperature, allowing improvement of kinetic parameters of growth and EPS production. A semi-continuous culture, carried out with the Pm medium, an optimal irradiance and temperature of respectively 360μmolphotonsm(-2)s(-1) and 28°C led to an EPS process productivity of 0.031gh(-1) instead of 0.020gh(-1) in batch culture. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Liu, Hu; Liu, Hua; Yang, Jialing
2017-09-01
In the present paper, the coupling effect of transverse magnetic field and elastic medium on the longitudinal wave propagation along a carbon nanotube (CNT) is studied. Based on the nonlocal elasticity theory and Hamilton's principle, a unified nonlocal rod theory which takes into account the effects of small size scale, lateral inertia and radial deformation is proposed. The existing rod theories including the classic rod theory, the Rayleigh-Love theory and Rayleigh-Bishop theory for macro solids can be treated as the special cases of the present model. A two-parameter foundation model (Pasternak-type model) is used to represent the elastic medium. The influence of transverse magnetic field, Pasternak-type elastic medium and small size scale on the longitudinal wave propagation behavior of the CNT is investigated in detail. It is shown that the influences of lateral inertia and radial deformation cannot be neglected in analyzing the longitudinal wave propagation characteristics of the CNT. The results also show that the elastic medium and the transverse magnetic field will also affect the longitudinal wave dispersion behavior of the CNT significantly. The results obtained in this paper are helpful for understanding the mechanical behaviors of nanostructures embedded in an elastic medium.
NASA Astrophysics Data System (ADS)
Zozulya, A. A.
1988-12-01
A theoretical model is constructed for four-wave mixing in a photorefractive crystal where a transmission grating is formed by the drift-diffusion nonlinearity mechanism in the absence of an external electrostatic field and the response of the medium is nonlinear in respect of the modulation parameter. A comparison is made with a model in which the response of the medium is linear in respect of the modulation parameter. Theoretical models of four-wave and two-wave mixing are also compared with experiments.
Familiar, Itziar; Murray, Laura; Gross, Alden; Skavenski, Stephanie; Jere, Elizabeth; Bass, Judith
2014-01-01
Background Scant information exists on PTSD symptoms and structure in youth from developing countries. Methods We describe the symptom profile and exposure to trauma experiences among 343 orphan and vulnerable children and adolescents from Zambia. We distinguished profiles of post-traumatic stress symptoms using latent class analysis. Results Average number of trauma-related symptoms (21.6; range 0-38) was similar across sex and age. Latent class model suggested 3 classes varying by level of severity: low (31% of the sample), medium (45% of the sample), and high (24% of the sample) symptomatology. Conclusions Results suggest that PTSD is a continuously distributed latent trait. PMID:25382359
Simulations of nonlinear continuous wave pressure fields in FOCUS
NASA Astrophysics Data System (ADS)
Zhao, Xiaofeng; Hamilton, Mark F.; McGough, Robert J.
2017-03-01
The Khokhlov - Zabolotskaya - Kuznetsov (KZK) equation is a parabolic approximation to the Westervelt equation that models the effects of diffraction, attenuation, and nonlinearity. Although the KZK equation is only valid in the far field of the paraxial region for mildly focused or unfocused transducers, the KZK equation is widely applied in medical ultrasound simulations. For a continuous wave input, the KZK equation is effectively modeled by the Bergen Code [J. Berntsen, Numerical Calculations of Finite Amplitude Sound Beams, in M. F. Hamilton and D. T. Blackstock, editors, Frontiers of Nonlinear Acoustics: Proceedings of 12th ISNA, Elsevier, 1990], which is a finite difference model that utilizes operator splitting. Similar C++ routines have been developed for FOCUS, the `Fast Object-Oriented C++ Ultrasound Simulator' (http://www.egr.msu.edu/˜fultras-web) to calculate nonlinear pressure fields generated by axisymmetric flat circular and spherically focused ultrasound transducers. This new routine complements an existing FOCUS program that models nonlinear ultrasound propagation with the angular spectrum approach [P. T. Christopher and K. J. Parker, J. Acoust. Soc. Am. 90, 488-499 (1991)]. Results obtained from these two nonlinear ultrasound simulation approaches are evaluated and compared for continuous wave linear simulations. The simulation results match closely in the farfield of the paraxial region, but the results differ in the nearfield. The nonlinear pressure field generated by a spherically focused transducer with a peak surface pressure of 0.2MPa radiating in a lossy medium with β = 3.5 is simulated, and the computation times are also evaluated. The nonlinear simulation results demonstrate acceptable agreement in the focal zone. These two related nonlinear simulation approaches are now included with FOCUS to enable convenient simulations of nonlinear pressure fields on desktop and laptop computers.
NASA Astrophysics Data System (ADS)
Chaouat, Bruno
2012-04-01
The partially integrated transport modeling (PITM) method [B. Chaouat and R. Schiestel, "A new partially integrated transport model for subgrid-scale stresses and dissipation rate for turbulent developing flows," Phys. Fluids 17, 065106 (2005), 10.1063/1.1928607; R. Schiestel and A. Dejoan, "Towards a new partially integrated transport model for coarse grid and unsteady turbulent flow simulations," Theor. Comput. Fluid Dyn. 18, 443 (2005), 10.1007/s00162-004-0155-z; B. Chaouat and R. Schiestel, "From single-scale turbulence models to multiple-scale and subgridscale models by Fourier transform," Theor. Comput. Fluid Dyn. 21, 201 (2007), 10.1007/s00162-007-0044-3; B. Chaouat and R. Schiestel, "Progress in subgrid-scale transport modelling for continuous hybrid non-zonal RANS/LES simulations," Int. J. Heat Fluid Flow 30, 602 (2009), 10.1016/j.ijheatfluidflow.2009.02.021] viewed as a continuous approach for hybrid RANS/LES (Reynolds averaged Navier-Stoke equations/large eddy simulations) simulations with seamless coupling between RANS and LES regions is used to derive a subfilter scale stress model in the framework of second-moment closure applicable in a rotating frame of reference. This present subfilter scale model is based on the transport equations for the subfilter stresses and the dissipation rate and appears well appropriate for simulating unsteady flows on relatively coarse grids or flows with strong departure from spectral equilibrium because the cutoff wave number can be located almost anywhere inside the spectrum energy. According to the spectral theory developed in the wave number space [B. Chaouat and R. Schiestel, "From single-scale turbulence models to multiple-scale and subgrid-scale models by Fourier transform," Theor. Comput. Fluid Dyn. 21, 201 (2007), 10.1007/s00162-007-0044-3], the coefficients used in this model are no longer constants but they are some analytical functions of a dimensionless parameter controlling the spectral distribution of turbulence. The pressure-strain correlation term encompassed in this model is inspired from the nonlinear SSG model [C. G. Speziale, S. Sarkar, and T. B. Gatski, "Modelling the pressure-strain correlation of turbulence: an invariant dynamical systems approach," J. Fluid Mech. 227, 245 (1991), 10.1017/S0022112091000101] developed initially for homogeneous rotating flows in RANS methodology. It is modeled in system rotation using the principle of objectivity. Its modeling is especially extended in a low Reynolds number version for handling non-homogeneous wall flows. The present subfilter scale stress model is then used for simulating large scales of rotating turbulent flows on coarse and medium grids at moderate, medium, and high rotation rates. It is also applied to perform a simulation on a refined grid at the highest rotation rate. As a result, it is found that the PITM simulations reproduce fairly well the mean features of rotating channel flows allowing a drastic reduction of the computational cost in comparison with the one required for performing highly resolved LES. Overall, the mean velocities and turbulent stresses are found to be in good agreement with the data of highly resolved LES [E. Lamballais, O. Metais, and M. Lesieur, "Spectral-dynamic model for large-eddy simulations of turbulent rotating flow," Theor. Comput. Fluid Dyn. 12, 149 (1998)]. The anisotropy character of the flow resulting from the rotation effects is also well reproduced in accordance with the reference data. Moreover, the PITM2 simulations performed on the medium grid predict qualitatively well the three-dimensional flow structures as well as the longitudinal roll cells which appear in the anticyclonic wall-region of the rotating flows. As expected, the PITM3 simulation performed on the refined grid reverts to highly resolved LES. The present model based on a rational formulation appears to be an interesting candidate for tackling a large variety of engineering flows subjected to rotation.
Medium energy proton radiation damage to (AlGa)As-GaAs solar cells
NASA Technical Reports Server (NTRS)
Loo, R. Y.; Kamath, G. S.; Knechtli, R. C.
1982-01-01
The performance of (AlGa)As-GaAs solar cells irradiated by medium energy 2, 5, and 10 MeV protons was evaluated. The Si cells without coverglass and a number of GaAs solar cells with 12 mil coverglass were irradiated simultaneously with bare GaAs cells. The cell degradation is directly related to the penetration of depth of protons with GaAs. The influence of periodic and continuous thermal annealing on the GaAs solar cells was investigated.
Bridge Busters: The 397th Bombardment Group (Medium) and the B-26 Marauder in World War II
2015-06-01
up largely of new pilots from the training pipeline, these established groups transitioned from flying other aircraft. Unfortunately, four fatal...The 322 BG became the first of four initial B-26 groups to join the Eighth AF’s Third Bombardment Wing. With its first aircraft arriving in England...AF refused the suggestion. Marauders continued in the medium bombing role.101 In October 1943, the AAF transferred all four B-26 groups in
Shen, Yu; Guo, Jin-Song; Chen, You-Peng; Zhang, Hai-Dong; Zheng, Xu-Xu; Zhang, Xian-Ming; Bai, Feng-Wu
2012-08-31
Protein-rich bloom algae biomass was employed as nitrogen source in fuel ethanol fermentation using high gravity sweet potato medium containing 210.0 g l(-1) glucose. In batch mode, the fermentation could not accomplish even in 120 h without any feeding of nitrogen source. While, the feeding of acid-hydrolyzed bloom algae powder (AHBAP) notably promoted fermentation process but untreated bloom algae powder (UBAP) was less effective than AHBAP. The fermentation times were reduced to 96, 72, and 72 h if 5.0, 10.0, and 20.0 g l(-1) AHBAP were added into medium, respectively, and the ethanol yields and productivities increased with increasing amount of feeding AHBAP. The continuous fermentations were performed in a three-stage reactor system. Final concentrations of ethanol up to 103.2 and 104.3 g l(-1) with 4.4 and 5.3 g l(-1) residual glucose were obtained using the previously mentioned medium feeding with 20.0 and 30.0 g l(-1) AHBAP, at dilution rate of 0.02 h(-1). Notably, only 78.5 g l(-1) ethanol and 41.6 g l(-1) residual glucose were obtained in the comparative test without any nitrogen source feeding. Amino acids analysis showed that approximately 67% of the protein in the algal biomass was hydrolyzed and released into the medium, serving as the available nitrogen nutrition for yeast growth and metabolism. Both batch and continuous fermentations showed similar fermentation parameters when 20.0 and 30.0 g l(-1) AHBAP were fed, indicating that the level of available nitrogen in the medium should be limited, and an algal nitrogen source feeding amount higher than 20.0 g l(-1) did not further improve the fermentation performance. Copyright © 2012 Elsevier B.V. All rights reserved.
The violent interstellar medium
NASA Technical Reports Server (NTRS)
Mccray, R.; Snow, T. P., Jr.
1979-01-01
Observational evidence for high-velocity and high-temperature interstellar gas is reviewed. The physical processes that characterize this gas are described, including the ionization and emissivity of coronal gas, the behavior and appearance of high-velocity shocks, and interfaces between coronal gas and cooler interstellar gas. Hydrodynamical models for the action of supernova explosions and stellar winds on the interstellar medium are examined, and recent attempts to synthesize all the processes considered into a global model for the interstellar medium are discussed.
[Experimental study on co-culture of salivary adenoid cystic carcinoma cells and ganglia].
Gu, Ling; Bu, Rong-fa; Wang, Dong-sheng; E, Ling-ling; Zhu, Guo-xiong
2012-01-01
To construct the co-culture models of salivarya denoid cystic carcinoma (SACC) cells and dorsal root ganglia (DRG) of chickens and investigate the promotive effects of SACC on neural tissue. Glass-base culture dish was adopted to construct co-culture model of SACC-83 cells and DRG. SACC-83 cells were seeded in the medium pore with DRG around them. Outgrowth of neuronal processes was observed. Then DRG was cultured in the conditioned medium of SACC-83, with the groups of conditioned medium of MC3T3-E1 and HGF, the group of cell lysis buffer, the groups of serum-free medium and serum-plus medium as the controls. Outgrowth of neuronal processes was also recorded and compared with control groups. In the co-culture model of tumor and neuronal tissue, SACC-83 cells produced a suitable microenvironment in which neuronal processes remarkably grow. Neuronal processes of most DRG displayed growth tendency toward SACC. The group of conditioned medium from SACC-83 manifested obvious promotive effects on DRG. Co-culture model of tumor and neuronal tissue was successfully constructed, with which the promotive effects of tumor on outgrowth of neuronal processes could be observed. So hypothesized that SACC could secrete some neurotrophic factors to guide peripheral nerves gemmating and to trigger the cascade of the neural invasion in succession.
2013-01-01
Background VHG fermentation is a promising process engineering strategy aiming at improving ethanol titer, and thus saving energy consumption for ethanol distillation and distillage treatment. However, sustained process oscillation was observed during continuous VHG ethanol fermentation, which significantly affected ethanol fermentation performance of the system. Results Sustained process oscillation was investigated in continuous VHG ethanol fermentation, and stresses exerted on yeast cells by osmotic pressure from unfermented sugars and ethanol inhibition developed within the fermentation system were postulated to be major factors triggering this phenomenon. In this article, steady state was established for continuous ethanol fermentation with LG medium containing 120 g/L glucose, and then 160 g/L non-fermentable xylose was supplemented into the LG medium to simulate the osmotic stress on yeast cells under the VHG fermentation condition, but the fermentation process was still at steady state, indicating that the impact of osmotic stress on yeast cells was not the main reason for the process oscillation. However, when 30 g/L ethanol was supplemented into the LG medium to simulate the ethanol inhibition in yeast cells under the VHG fermentation condition, process oscillation was triggered, which was augmented with extended oscillation period and exaggerated oscillation amplitude as ethanol supplementation was increased to 50 g/L, but the process oscillation was gradually attenuated when the ethanol supplementations were stopped, and the steady state was restored. Furthermore, gas stripping was incorporated into the continuous VHG fermentation system to in situ remove ethanol produced by Saccharomyces cerevisiae, and the process oscillation was also attenuated, but restored after the gas stripping was interrupted. Conclusions Experimental results indicated that ethanol inhibition rather than osmotic stress on yeast cells is one of the main factors triggering the process oscillation under the VHG fermentation condition, and in the meantime gas stripping was validated to be an effective strategy for attenuating the process oscillation. PMID:24041271
Acetone-butanol-ethanol (ABE) fermentation in an immobilized cell trickle bed reactor.
Park, C H; Okos, M R; Wankat, P C
1989-06-05
Acetone-butanol-ethanol (ABE) fermentation was successfully carried out in an immobilized cell trickle bed reactor. The reactor was composed of two serial columns packed with Clostridium acetobutylicum ATCC 824 entrapped on the surface of natural sponge segments at a cell loading in the range of 2.03-5.56 g dry cells/g sponge. The average cell loading was 3.58 g dry cells/g sponge. Batch experiments indicated that a critical pH above 4.2 is necessary for the initiation of cell growth. One of the media used during continuous experiments consisted of a salt mixture alone and the other a nutrient medium containing a salt mixture with yeast extract and peptone. Effluent pH was controlled by supplying various fractions of the two different types of media. A nutrient medium fraction above 0.6 was crucial for successful fermentation in a trickle bed reactor. The nutrient medium fraction is the ratio of the volume of the nutrient medium to the total volume of nutrient plus salt medium. Supplying nutrient medium to both columns continuously was an effective way to meet both pH and nutrient requirement. A 257-mL reactor could ferment 45 g/L glucose from an initial concentration of 60 g/L glucose at a rate of 70 mL/h. Butanol, acetone, and ethanol concentrations were 8.82, 5.22, and 1.45 g/L, respectively, with a butanol and total solvent yield of 19.4 and 34.1 wt %. Solvent productivity in an immobilized cell trickle bed reactor was 4.2 g/L h, which was 10 times higher than that obtained in a batch fermentation using free cells and 2.76 times higher than that of an immobilized CSTR. If the nutrient medium fraction was below 0.6 and the pH was below 4.2, the system degenerated. Oxygen also contributed to the system degeneration. Upon degeneration, glucose consumption and solvent yield decreased to 30.9 g/L and 23.0 wt %, respectively. The yield of total liquid product (40.0 wt %) and butanol selectivity (60.0 wt %) remained almost constant. Once the cells were degenerated, they could not be recovered.
Fon Sing, S; Isdepsky, A; Borowitzka, M A; Lewis, D M
2014-06-01
The opportunity to recycle microalgal culture medium for further cultivation is often hampered by salinity increases from evaporation and fouling by dissolved and particulate matter. In this study, the impact of culture re-use after electro-flocculation of seawater-based medium on growth and biomass productivity of the halotolerant green algal strain Tetraselmis sp., MUR 233, was investigated in pilot-scale open raceway ponds over 5months. Despite a salinity increase from 5.5% to 12% (w/v) NaCl, Tetraselmis MUR 233 grown on naturally DOC-enriched recycled medium produced 48-160% more ash free dry weight (AFDW) biomass daily per unit pond area than when grown on non-recycled medium. A peak productivity of 37.5±3.1gAFDWm(-2)d(-1) was reached in the recycled medium upon transition from ∼14% to ∼7% NaCl. The combination of high biomass-yielding mixotrophic growth under high salinity has been proven to be a successful sustainable cultivation strategy. Copyright © 2014 Elsevier Ltd. All rights reserved.
Costa-Borges, Nuno; Bellés, Marta; Meseguer, Marcos; Galliano, Daniela; Ballesteros, Agustin; Calderón, Gloria
2016-03-01
To evaluate the efficiency of using a continuous (one-step) protocol with a single medium for the culture of human embryos in a time-lapse incubator (TLI). Prospective cohort study on sibling donor oocytes. University-affiliated in vitro fertilization (IVF) center. Embryos from 59 patients. Culture in a TLI in a single medium with or without renewal of the medium on day-3. Embryo morphology and morphokinetic parameters, clinical pregnancy, take-home baby rate, and perinatal outcomes. The blastocyst rates (68.3 vs. 66.8%) and the proportion of good-quality blastocysts (transferred plus frozen) obtained with the two-step (80.0%) protocol were statistically significantly similar to those obtained in the one-step protocol (72.2%). Similarly, morphokinetic events from early cleavage until late blastocyst stages were statistically significantly equivalent between both groups. No differences were found either in clinical pregnancy rates when comparing pure transfers performed with embryos selected from the two-step (75.0%), one-step (70.0%, respectively), and mixed (57.1%) groups. A total of 55 out of 91 embryos transferred implanted successfully (60.4%), resulting in a total of 37 newborns with a comparable birth weight mean among groups. Our findings support the idea that in a TLI with a controlled air purification system, human embryos can be successfully cultured continuously from day 0 onward in single medium with no need to renew it on day-3. This strategy does not affect embryo morphokinetics or development to term and offers more stable culture conditions for embryos as well as practical advantages and reduced costs for the IVF laboratory. Copyright © 2016 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.
Cavity theory applications for kilovoltage cellular dosimetry.
Oliver, P A K; Thomson, Rowan M
2017-06-07
Relationships between macroscopic (bulk tissue) and microscopic (cellular) dose descriptors are investigated using cavity theory and Monte Carlo (MC) simulations. Small, large, and multiple intermediate cavity theory (SCT, LCT, and ICT, respectively) approaches are considered for 20 to 370 keV incident photons; ICT is a sum of SCT and LCT contributions weighted by parameter d. Considering μm-sized cavities of water in bulk tissue phantoms, different cavity theory approaches are evaluated via comparison of [Formula: see text] (where D w,m is dose-to-water-in-medium and D m,m is dose-to-medium-in-medium) with MC results. The best overall agreement is achieved with an ICT approach in which [Formula: see text], where L is the mean chord length of the cavity and β is given by [Formula: see text] (R CSDA is the continuous slowing down approximation range of an electron of energy equal to that of incident photons). Cell nucleus doses, D nuc , computed with this ICT approach are compared with those from MC simulations involving multicellular soft tissue models considering a representative range of cell/nucleus sizes and elemental compositions. In [Formula: see text] of cases, ICT and MC predictions agree within [Formula: see text]; disagreement is at most 8.8%. These results suggest that cavity theory may be useful for linking doses from model-based dose calculation algorithms (MBDCAs) with energy deposition in cellular targets. Finally, based on the suggestion that clusters of water molecules associated with DNA are important radiobiological targets, two approaches for estimating dose-to-water by application of SCT to MC results for D m,m or D nuc are compared. Results for these two estimates differ by up to [Formula: see text], demonstrating the sensitivity of energy deposition within a small volume of water in nucleus to the geometry and composition of its surroundings. In terms of the debate over the dose specification medium for MBDCAs, these results do not support conversion of D m,m to D w,m using SCT.
Cavity theory applications for kilovoltage cellular dosimetry
NASA Astrophysics Data System (ADS)
Oliver, P. A. K.; Thomson, Rowan M.
2017-06-01
Relationships between macroscopic (bulk tissue) and microscopic (cellular) dose descriptors are investigated using cavity theory and Monte Carlo (MC) simulations. Small, large, and multiple intermediate cavity theory (SCT, LCT, and ICT, respectively) approaches are considered for 20 to 370 keV incident photons; ICT is a sum of SCT and LCT contributions weighted by parameter d. Considering μm-sized cavities of water in bulk tissue phantoms, different cavity theory approaches are evaluated via comparison of Dw, m/Dm, m (where D w,m is dose-to-water-in-medium and D m,m is dose-to-medium-in-medium) with MC results. The best overall agreement is achieved with an ICT approach in which d=(1-e-β L)/(β L) , where L is the mean chord length of the cavity and β is given by e-β R_CSDA=0.04 (R CSDA is the continuous slowing down approximation range of an electron of energy equal to that of incident photons). Cell nucleus doses, D nuc, computed with this ICT approach are compared with those from MC simulations involving multicellular soft tissue models considering a representative range of cell/nucleus sizes and elemental compositions. In 91% of cases, ICT and MC predictions agree within 3% ; disagreement is at most 8.8%. These results suggest that cavity theory may be useful for linking doses from model-based dose calculation algorithms (MBDCAs) with energy deposition in cellular targets. Finally, based on the suggestion that clusters of water molecules associated with DNA are important radiobiological targets, two approaches for estimating dose-to-water by application of SCT to MC results for D m,m or D nuc are compared. Results for these two estimates differ by up to 35% , demonstrating the sensitivity of energy deposition within a small volume of water in nucleus to the geometry and composition of its surroundings. In terms of the debate over the dose specification medium for MBDCAs, these results do not support conversion of D m,m to D w,m using SCT.
Viscoelasticity imaging using ultrasound: parameters and error analysis
Sridhar, M; Liu, J
2009-01-01
Techniques are being developed to image viscoelastic features of soft tissues from time-varying strain. A compress-hold-release stress stimulus commonly used in creep-recovery measurements is applied to samples to form images of elastic strain and strain retardance times. While the intended application is diagnostic breast imaging, results in gelatin hydrogels are presented to demonstrate the techniques. The spatiotemporal behaviour of gelatin is described by linear viscoelastic theory formulated for polymeric solids. Measured creep responses of polymers are frequently modelled as sums of exponentials whose time constants describe the delay or retardation of the full strain response. We found the spectrum of retardation times τ to be continuous and bimodal, where the amplitude at each τ represents the relative number of molecular bonds with a given strength and conformation. Such spectra indicate that the molecular weight of the polymer fibres between bonding points is large. Imaging parameters are found by summarizing these complex spectral distributions at each location in the medium with a second-order Voigt rheological model. This simplification reduces the dimensionality of the data for selecting imaging parameters while preserving essential information on how the creeping deformation describes fluid flow and collagen matrix restructuring in the medium. The focus of this paper is on imaging parameter estimation from ultrasonic echo data, and how jitter from hand-held force applicators used for clinical applications propagate through the imaging chain to generate image noise. PMID:17440244
Vibration analysis of partially cracked plate submerged in fluid
NASA Astrophysics Data System (ADS)
Soni, Shashank; Jain, N. K.; Joshi, P. V.
2018-01-01
The present work proposes an analytical model for vibration analysis of partially cracked rectangular plates coupled with fluid medium. The governing equation of motion for the isotropic plate based on the classical plate theory is modified to accommodate a part through continuous line crack according to simplified line spring model. The influence of surrounding fluid medium is incorporated in the governing equation in the form of inertia effects based on velocity potential function and Bernoulli's equations. Both partially and totally submerged plate configurations are considered. The governing equation also considers the in-plane stretching due to lateral deflection in the form of in-plane forces which introduces geometric non-linearity into the system. The fundamental frequencies are evaluated by expressing the lateral deflection in terms of modal functions. The assessment of the present results is carried out for intact submerged plate as to the best of the author's knowledge the literature lacks in analytical results for submerged cracked plates. New results for fundamental frequencies are presented as affected by crack length, fluid level, fluid density and immersed depth of plate. By employing the method of multiple scales, the frequency response and peak amplitude of the cracked structure is analyzed. The non-linear frequency response curves show the phenomenon of bending hardening or softening and the effect of fluid dynamic pressure on the response of the cracked plate.
Quantum refrigerators and the third law of thermodynamics.
Levy, Amikam; Alicki, Robert; Kosloff, Ronnie
2012-06-01
The rate of temperature decrease of a cooled quantum bath is studied as its temperature is reduced to absolute zero. The third law of thermodynamics is then quantified dynamically by evaluating the characteristic exponent ζ of the cooling process dT(t)/dt∼-T^{ζ} when approaching absolute zero, T→0. A continuous model of a quantum refrigerator is employed consisting of a working medium composed either by two coupled harmonic oscillators or two coupled two-level systems. The refrigerator is a nonlinear device merging three currents from three heat baths: a cold bath to be cooled, a hot bath as an entropy sink, and a driving bath which is the source of cooling power. A heat-driven refrigerator (absorption refrigerator) is compared to a power-driven refrigerator. When optimized, both cases lead to the same exponent ζ, showing a lack of dependence on the form of the working medium and the characteristics of the drivers. The characteristic exponent is therefore determined by the properties of the cold reservoir and its interaction with the system. Two generic heat bath models are considered: a bath composed of harmonic oscillators and a bath composed of ideal Bose/Fermi gas. The restrictions on the interaction Hamiltonian imposed by the third law are discussed. In the Appendices, the theory of periodically driven open systems and its implication for thermodynamics are outlined.
ERIC Educational Resources Information Center
Goodwyn, Lauren; Salm, Sarah
2007-01-01
Teaching the anatomy of the muscle system to high school students can be challenging. Students often learn about muscle anatomy by memorizing information from textbooks or by observing plastic, inflexible models. Although these mediums help students learn about muscle placement, the mediums do not facilitate understanding regarding integration of…
Castelli, Francesco; Micieli, Dorotea; Ottimo, Sara; Minniti, Zelica; Sarpietro, Maria Grazia; Librando, Vito
2008-10-01
To demonstrate the relationship between the structure of nitro-polycyclic aromatic hydrocarbons and their effect on biomembranes, we have investigated the influence of three structurally different nitro-polycyclic aromatic hydrocarbons, 2-nitrofluorene, 2,7-dinitrofluorene and 3-nitrofluoranthene, on the thermotropic behavior of dimyristoylphosphatidylcholine multilamellar vesicles, used as biomembrane models, by means of differential scanning calorimetry. The obtained results indicate that the studied nitro-polycyclic aromatic hydrocarbons affected the thermotropic behavior of multilamellar vesicles to various extents, modifying the pretransition and the main phase transition peaks and shifting them to lower temperatures. The effect of the aqueous and lipophilic medium on the absorption process of these compounds by the biomembrane models has been also investigated revealing that the process is hindered by the aqueous medium but strongly allowed by the lipophilic medium.
Interface crack in a nonhomogeneous elastic medium
NASA Technical Reports Server (NTRS)
Delale, F.; Erdogan, F.
1988-01-01
The linear elasticity problem for an interface crack between two bonded half planes is reconsidered. It is assumed that one of the half planes is homogeneous and the second is nonhomogeneous in such a way that the elastic properties are continuous throughout the plane and have discontinuous derivatives along the interface. The problem is formulated in terms of a system of integral equations and the asymptotic behavior of the stress state near the crack tip is determined. The results lead to the conclusion that the singular behavior of stresses in the nonhomogeneous medium is identical to that in a homogeneous material provided the spacial distribution of material properties is continuous near and at the crack tip. The problem is solved for various values of the nonhomogeneity parameter and for four different sets of crack surface tractions, and the corresponding stress intensity factors are tabulated.
Mass-polariton theory of light in dispersive media
NASA Astrophysics Data System (ADS)
Partanen, Mikko; Tulkki, Jukka
2017-12-01
We have recently shown that the electromagnetic pulse in a medium is made of mass-polariton (MP) quasiparticles, which are quantized coupled states of the field and an atomic mass density wave (MDW) [M. Partanen et al., Phys. Rev. A 95, 063850 (2017), 10.1103/PhysRevA.95.063850]. In this work, we generalize the MP theory of light for dispersive media assuming that absorption and scattering losses are very small. Following our previous work, we present two different approaches to the coupled state of light: (1) the MP quasiparticle theory, which is derived by only using the fundamental conservation laws and the Lorentz transformation; (2) the classical optoelastic continuum dynamics (OCD), which is a generalization of the electrodynamics of continuous media to include the dynamics of the medium under the influence of optical forces. We show that the total momentum and the transferred mass of the light pulse can be determined in a straightforward way if we know the field energy of the pulse and the dispersion relation of the medium. In analogy to the nondispersive case, we also find unambiguous correspondence between the MP and OCD theories. For the coupled MP state of a single photon and the medium, we obtain the total MP momentum pMP=npℏ ω /c , where np is the phase refractive index. The field's share of the MP momentum is equal to pfield=ℏ ω /(ngc ) , where ng is the group refractive index and the share of the MDW is equal to pMDW=pMP-pfield . Thus, as in a nondispersive medium, the total momentum of the MP is equal to the Minkowski momentum and the field's share of the momentum is equal to the Abraham momentum. We also show that the correspondence between the MP and OCD models and the conservation of momentum at interfaces gives an unambiguous formula for the optical force. The dynamics of the light pulse and the related MDW lead to nonequilibrium of the medium and to relaxation of the atomic density by sound waves in the same way as for nondispersive media. We also carry out simulations for optimal measurements of atomic displacements related to the MDW in silicon. In the simulations, we consider different waveguide cross sections and optical pulse widths and account for the breakdown threshold irradiance of materials. We also compare the MP theory to previous theories of the momentum of light in a dispersive medium. We show that our generalized MP theory resolves all the problems related to the Abraham-Minkowski dilemma in a dispersive medium.
Sensitivity Analysis of Hydraulic Head to Locations of Model Boundaries
Lu, Zhiming
2018-01-30
Sensitivity analysis is an important component of many model activities in hydrology. Numerous studies have been conducted in calculating various sensitivities. Most of these sensitivity analysis focus on the sensitivity of state variables (e.g. hydraulic head) to parameters representing medium properties such as hydraulic conductivity or prescribed values such as constant head or flux at boundaries, while few studies address the sensitivity of the state variables to some shape parameters or design parameters that control the model domain. Instead, these shape parameters are typically assumed to be known in the model. In this study, based on the flow equation, wemore » derive the equation (and its associated initial and boundary conditions) for sensitivity of hydraulic head to shape parameters using continuous sensitivity equation (CSE) approach. These sensitivity equations can be solved numerically in general or analytically in some simplified cases. Finally, the approach has been demonstrated through two examples and the results are compared favorably to those from analytical solutions or numerical finite difference methods with perturbed model domains, while numerical shortcomings of the finite difference method are avoided.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jellison, G. E.; Aytug, T.; Lupini, A. R.
Nanostructured glass films, which are fabricated using spinodally phase-separated low-alkali glasses, have several interesting and useful characteristics, including being robust, non-wetting and antireflective. Spectroscopic ellipsometry measurements have been performed on one such film and its optical properties were analyzed using a 5-layer structural model of the near-surface region. Since the glass and the film are transparent over the spectral region of the measurement, the Sellmeier model is used to parameterize the dispersion in the refractive index. To simulate the variation of the optical properties of the film over the spot size of the ellipsometer (~ 3 × 5 mm), themore » Sellmeier amplitude is convoluted using a Gaussian distribution. The transition layers between the ambient and the film and between the film and the substrate are modeled as graded layers, where the refractive index varies as a function of depth. These layers are modeled using a two-component Bruggeman effective medium approximation where the two components are the layer above and the layer below. Lastly, the fraction is continuous through the transition layer and is modelled using the incomplete beta function.« less
Sensitivity Analysis of Hydraulic Head to Locations of Model Boundaries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Zhiming
Sensitivity analysis is an important component of many model activities in hydrology. Numerous studies have been conducted in calculating various sensitivities. Most of these sensitivity analysis focus on the sensitivity of state variables (e.g. hydraulic head) to parameters representing medium properties such as hydraulic conductivity or prescribed values such as constant head or flux at boundaries, while few studies address the sensitivity of the state variables to some shape parameters or design parameters that control the model domain. Instead, these shape parameters are typically assumed to be known in the model. In this study, based on the flow equation, wemore » derive the equation (and its associated initial and boundary conditions) for sensitivity of hydraulic head to shape parameters using continuous sensitivity equation (CSE) approach. These sensitivity equations can be solved numerically in general or analytically in some simplified cases. Finally, the approach has been demonstrated through two examples and the results are compared favorably to those from analytical solutions or numerical finite difference methods with perturbed model domains, while numerical shortcomings of the finite difference method are avoided.« less
NASA Astrophysics Data System (ADS)
Patra, Rusha; Dutta, Pranab K.
2015-07-01
Reconstruction of the absorption coefficient of tissue with good contrast is of key importance in functional diffuse optical imaging. A hybrid approach using model-based iterative image reconstruction and a genetic algorithm is proposed to enhance the contrast of the reconstructed image. The proposed method yields an observed contrast of 98.4%, mean square error of 0.638×10-3, and object centroid error of (0.001 to 0.22) mm. Experimental validation of the proposed method has also been provided with tissue-like phantoms which shows a significant improvement in image quality and thus establishes the potential of the method for functional diffuse optical tomography reconstruction with continuous wave setup. A case study of finger joint imaging is illustrated as well to show the prospect of the proposed method in clinical diagnosis. The method can also be applied to the concentration measurement of a region of interest in a turbid medium.
Quasi two-dimensional astigmatic solitons in soft chiral metastructures
NASA Astrophysics Data System (ADS)
Laudyn, Urszula A.; Jung, Paweł S.; Karpierz, Mirosław A.; Assanto, Gaetano
2016-03-01
We investigate a non-homogeneous layered structure encompassing dual spatial dispersion: continuous diffraction in one transverse dimension and discrete diffraction in the orthogonal one. Such dual diffraction can be balanced out by one and the same nonlinear response, giving rise to light self-confinement into astigmatic spatial solitons: self-focusing can compensate for the spreading of a bell-shaped beam, leading to quasi-2D solitary wavepackets which result from 1D transverse self-localization combined with a discrete soliton. We demonstrate such intensity-dependent beam trapping in chiral soft matter, exhibiting one-dimensional discrete diffraction along the helical axis and one-dimensional continuous diffraction in the orthogonal plane. In nematic liquid crystals with suitable birefringence and chiral arrangement, the reorientational nonlinearity is shown to support bell-shaped solitary waves with simple astigmatism dependent on the medium birefringence as well as on the dual diffraction of the input wavepacket. The observations are in agreement with a nonlinear nonlocal model for the all-optical response.
Volunteers in Circles of Support and Accountability Job Demands, Job Resources, and Outcome.
Höing, Mechtild; Bogaerts, Stefan; Vogelvang, Bas
2017-09-01
In Circles of Support and Accountability (CoSA), volunteers support a medium- to high-risk sex offender in his process toward desistance by developing a long-term empathic relationship. More knowledge is needed about the impact of this work on volunteers themselves. In a sample of 40 Dutch CoSA volunteers-at the time constituting 37% of the national population of 108 then active CoSA volunteers-we measured outcome in terms of volunteer satisfaction, determination to continue, compassion satisfaction, burnout and secondary stress, vicarious growth, civic capacities, and professional skills. We explored theoretically derived predictors of positive and negative outcome, and conceptualized them within the Job Demands-Resources model (JD-R). Volunteers reported mainly positive effects, especially high levels of volunteer satisfaction, compassion satisfaction, and determination to continue. Results indicated that job demands and most of the internal job resources were of minor importance. External job resources, especially social support and connectedness, were associated with positive outcome. Connectedness mediated the effect of social support on compassion satisfaction.
Producing Newborn Synchronous Mammalian Cells
NASA Technical Reports Server (NTRS)
Gonda, Steve R.; Helmstetter, Charles E.; Thornton, Maureen
2008-01-01
A method and bioreactor for the continuous production of synchronous (same age) population of mammalian cells have been invented. The invention involves the attachment and growth of cells on an adhesive-coated porous membrane immersed in a perfused liquid culture medium in a microgravity analog bioreactor. When cells attach to the surface divide, newborn cells are released into the flowing culture medium. The released cells, consisting of a uniform population of synchronous cells are then collected from the effluent culture medium. This invention could be of interest to researchers investigating the effects of the geneotoxic effects of the space environment (microgravity, radiation, chemicals, gases) and to pharmaceutical and biotechnology companies involved in research on aging and cancer, and in new drug development and testing.
Pappas, Daniel S.
1989-01-01
Apparatus is provided for generating energy in the form of laser radiation. A tokamak fusion reactor is provided for generating a long, or continuous, pulse of high-energy neutrons. The tokamak design provides a temperature and a magnetic field which is effective to generate a neutron flux of at least 10.sup.15 neutrons/cm.sup.2.s. A conversion medium receives neutrons from the tokamak and converts the high-energy neutrons to an energy source with an intensity and an energy effective to excite a preselected lasing medium. The energy source typically comprises fission fragments, alpha particles, and radiation from a fission event. A lasing medium is provided which is responsive to the energy source to generate a population inversion which is effective to support laser oscillations for generating output radiation.
Rakotonarivo, S T; Walker, S C; Kuperman, W A; Roux, P
2011-12-01
A method to actively localize a small perturbation in a multiple scattering medium using a collection of remote acoustic sensors is presented. The approach requires only minimal modeling and no knowledge of the scatterer distribution and properties of the scattering medium and the perturbation. The medium is ensonified before and after a perturbation is introduced. The coherent difference between the measured signals then reveals all field components that have interacted with the perturbation. A simple single scatter filter (that ignores the presence of the medium scatterers) is matched to the earliest change of the coherent difference to localize the perturbation. Using a multi-source/receiver laboratory setup in air, the technique has been successfully tested with experimental data at frequencies varying from 30 to 60 kHz (wavelength ranging from 0.5 to 1 cm) for cm-scale scatterers in a scattering medium with a size two to five times bigger than its transport mean free path. © 2011 Acoustical Society of America
NASA Technical Reports Server (NTRS)
Tedescol, Marco; Kim, Edward J.; Cline, Don; Graf, Tobias; Koike, Toshio; Armstrong, Richard; Brodzik, Mary J.; Hardy, Janet
2004-01-01
Microwave remote sensing offers distinct advantages for observing the cryosphere. Solar illumination is not required, and spatial and temporal coverage are excellent from polar-orbiting satellites. Passive microwave measurements are sensitive to the two most useful physical quantities for many hydrological applications: physical temperature and water content/state. Sensitivity to the latter is a direct result of the microwave sensitivity to the dielectric properties of natural media, including snow, ice, soil (frozen or thawed), and vegetation. These considerations are factors motivating the development of future cryospheric satellite remote sensing missions, continuing and improving on a 26-year microwave measurement legacy. Perhaps the biggest issues regarding the use of such satellite measurements involve how to relate parameter values at spatial scales as small as a hectare to observations with sensor footprints that may be up to 25 x 25 km. The NASA Cold-land Processes Field Experiment (CLPX) generated a dataset designed to enhance understanding of such scaling issues. CLPX observations were made in February (dry snow) and March (wet snow), 2003 in Colorado, USA, at scales ranging from plot scale to 25 x 25 km satellite footprints. Of interest here are passive microwave observations from ground-based, airborne, and satellite sensors, as well as meteorological and snowpack measurements that will enable studies of the effects of spatial heterogeneity of surface conditions on the observations. Prior to performing such scaling studies, an evaluation of snowpack forward modelling at the plot scale (least heterogeneous scale) is in order. This is the focus of this paper. Many forward models of snow signatures (brightness temperatures) have been developed over the years. It is now recognized that a dense medium radiative transfer (DMRT) treatment represents a high degree of physical fidelity for snow modeling, yet dense medium models are particularly sensitive to snowpack structural parameters such as grain size, density, and depth---parameters that may vary substantially within a snowpack. Microwave radiometric data and snow pit measurements collected at the Local-Scale Observation Site (LSOS) during the third Intensive Observation Period (IOP3) of the CLPX have been used to test the capabilities of a DMRT model using the Quasi Crystalline Approximation with Coherent Potential (QCA-CP). The radiometric measurements were made by the University of Tokyo s Ground Based Microwave Radiometer-7 (GBMR-7) system. We evaluate the degree to which a DMRT-based model can accurately reproduce the GBMR-7 brightness temperatures at different frequencies and incidence angles.
Numerical modeling of the solar wind flow with observational boundary conditions
Pogorelov, N. V.; Borovikov, S. N.; Burlaga, L. F.; ...
2012-11-20
In this paper we describe our group efforts to develop a self-consistent, data-driven model of the solar wind (SW) interaction with the local interstellar medium. The motion of plasma in this model is described with the MHD approach, while the transport of neutral atoms is addressed by either kinetic or multi-fluid equations. The model and its implementation in the Multi-Scale Fluid-Kinetic Simulation Suite (MS-FLUKSS) are continuously tested and validated by comparing our results with other models and spacecraft measurements. In particular, it was successfully applied to explain an unusual SW behavior discovered by the Voyager 1 spacecraft, i.e., the developmentmore » of a substantial negative radial velocity component, flow turning in the transverse direction, while the latitudinal velocity component goes to very small values. We explain recent SW velocity measurements at Voyager 1 in the context of our 3-D, MHD modeling. We also present a comparison of different turbulence models in their ability to reproduce the SW temperature profile from Voyager 2 measurements. Lastly, the boundary conditions obtained at 50 solar radii from data-driven numerical simulations are used to model a CME event throughout the heliosphere.« less
NASA Astrophysics Data System (ADS)
Palakurthi, Nikhil Kumar; Ghia, Urmila; Comer, Ken
2013-11-01
Capillary penetration of liquid through fibrous porous media is important in many applications such as printing, drug delivery patches, sanitary wipes, and performance fabrics. Historically, capillary transport (with a distinct liquid propagating front) in porous media is modeled using capillary-bundle theory. However, it is not clear if the capillary model (Washburn equation) describes the fluid transport in porous media accurately, as it assumes uniformity of pore sizes in the porous medium. The present work investigates the limitations of the applicability of the capillary model by studying liquid penetration through virtual fibrous media with uniform and non-uniform pore-sizes. For the non-uniform-pore fibrous medium, the effective capillary radius of the fibrous medium was estimated from the pore-size distribution curve. Liquid penetration into the 3D virtual fibrous medium at micro-scale was simulated using OpenFOAM, and the numerical results were compared with the Washburn-equation capillary-model predictions. Preliminary results show that the Washburn equation over-predicts the height rise in the early stages (purely inertial and visco-inertial stages) of capillary transport.
Passive microwave remote sensing of an anisotropic random-medium layer
NASA Technical Reports Server (NTRS)
Lee, J. K.; Kong, J. A.
1985-01-01
The principle of reciprocity is invoked to calculate the brightness temperatures for passive microwave remote sensing of a two-layer anisotropic random medium. The bistatic scattering coefficients are first computed with the Born approximation and then integrated over the upper hemisphere to be subtracted from unity, in order to obtain the emissivity for the random-medium layer. The theoretical results are illustrated by plotting the emissivities as functions of viewing angles and polarizations. They are used to interpret remote sgnsing data obtained from vegetation canopy where the anisotropic random-medium model applies. Field measurements with corn stalks arranged in various configurations with preferred azimuthal directions are successfully interpreted with this model.
Transverse Vibration of Tapered Single-Walled Carbon Nanotubes Embedded in Viscoelastic Medium
NASA Astrophysics Data System (ADS)
Lei, Y. J.; Zhang, D. P.; Shen, Z. B.
2017-12-01
Based on the nonlocal theory, Euler-Bernoulli beam theory and Kelvin viscoelastic foundation model, free transverse vibration is studied for a tapered viscoelastic single-walled carbon nanotube (visco-SWCNT) embedded in a viscoelastic medium. Firstly, the governing equations for vibration analysis are established. And then, we derive the natural frequencies in closed form for SWCNTs with arbitrary boundary conditions by applying transfer function method and perturbation method. Numerical results are also presented to discuss the effects of nonlocal parameter, relaxation time and taper parameter of SWCNTs, and material property parameters of the medium. This study demonstrates that the proposed model is available for vibration analysis of the tapered SWCNTs-viscoelastic medium coupling system.
NASA Astrophysics Data System (ADS)
Noureldin, K.; González-Escalada, L. M.; Hirsch, T.; Nouri, B.; Pitz-Paal, R.
2016-05-01
A large number of commercial and research line focusing solar power plants are in operation and under development. Such plants include parabolic trough collectors (PTC) or linear Fresnel using thermal oil or molten salt as the heat transfer medium (HTM). However, the continuously varying and dynamic solar condition represent a big challenge for the plant control in order to optimize its power production and to keep the operation safe. A better understanding of the behaviour of such power plants under transient conditions will help reduce defocusing instances, improve field control, and hence, increase the energy yield and confidence in this new technology. Computational methods are very powerful and cost-effective tools to gain such understanding. However, most simulation models described in literature assume equal mass flow distributions among the parallel loops in the field or totally decouple the flow and thermal conditions. In this paper, a new numerical model to simulate a whole solar field with single-phase HTM is described. The proposed model consists of a hydraulic part and a thermal part that are coupled to account for the effect of the thermal condition of the field on the flow distribution among the parallel loops. The model is specifically designed for large line-focusing solar fields offering a high degree of flexibility in terms of layout, condition of the mirrors, and spatially resolved DNI data. Moreover, the model results have been compared to other simulation tools, as well as experimental and plant data, and the results show very good agreement. The model can provide more precise data to the control algorithms to improve the plant control. In addition, short-term and accurate spatially discretized DNI forecasts can be used as input to predict the field behaviour in-advance. In this paper, the hydraulic and thermal parts, as well as the coupling procedure, are described and some validation results and results of simulating an example field are shown.
Synchrotron radiation and diffusive shock acceleration - A short review and GRB perspective
NASA Astrophysics Data System (ADS)
Karlica, Mile
2015-12-01
In this talk we present the sponge" model and its possible implications on the GRB afterglow light curves. "Sponge" model describes source of GRB afterglow radiation as fragmented GRB ejecta where bubbles move through the rarefied medium. In the first part of the talk a short introduction to synchrotron radiation and Fermi acceleration was presented. In the assumption that X-ray luminosity of GRB afterglow phase comes from the kinetic energy losses of clouds in ejecta medium radiated as synchrotron radiation we solved currently very simple equation of motion to find which combination of cloud and medium regime describes the afterglow light curve the best. We proposed for the first step to watch simple combinations of expansion regimes for both bubbles and surrounding medium. The closest case to the numerical fit of GRB 150403A with time power law index k = 1.38 is the combination of constant bubbles and Sedov like expanding medium with time power law index k = 1.25. Of course the question of possible mixture of variuos regime combinations is still open within this model.
Fractal continuum model for tracer transport in a porous medium.
Herrera-Hernández, E C; Coronado, M; Hernández-Coronado, H
2013-12-01
A model based on the fractal continuum approach is proposed to describe tracer transport in fractal porous media. The original approach has been extended to treat tracer transport and to include systems with radial and uniform flow, which are cases of interest in geoscience. The models involve advection due to the fluid motion in the fractal continuum and dispersion whose mathematical expression is taken from percolation theory. The resulting advective-dispersive equations are numerically solved for continuous and for pulse tracer injection. The tracer profile and the tracer breakthrough curve are evaluated and analyzed in terms of the fractal parameters. It has been found in this work that anomalous transport frequently appears, and a condition on the fractal parameter values to predict when sub- or superdiffusion might be expected has been obtained. The fingerprints of fractality on the tracer breakthrough curve in the explored parameter window consist of an early tracer breakthrough and long tail curves for the spherical and uniform flow cases, and symmetric short tailed curves for the radial flow case.
NASA Astrophysics Data System (ADS)
Mokrane, Aoulaiche; Boutaous, M'hamed; Xin, Shihe
2018-05-01
The aim of this work is to address a modeling of the SLS process at the scale of the part in PA12 polymer powder bed. The powder bed is considered as a continuous medium with homogenized properties, meanwhile understanding multiple physical phenomena occurring during the process and studying the influence of process parameters on the quality of final product. A thermal model, based on enthalpy approach, will be presented with details on the multiphysical couplings that allow the thermal history: laser absorption, melting, coalescence, densification, volume shrinkage and on numerical implementation using FV method. The simulations were carried out in 3D with an in-house developed FORTRAN code. After validation of the model with comparison to results from literature, a parametric analysis will be proposed. Some original results as densification process and the thermal history with the evolution of the material, from the granular solid state to homogeneous melted state will be discussed with regards to the involved physical phenomena.
Linear functional minimization for inverse modeling
Barajas-Solano, David A.; Wohlberg, Brendt Egon; Vesselinov, Velimir Valentinov; ...
2015-06-01
In this paper, we present a novel inverse modeling strategy to estimate spatially distributed parameters of nonlinear models. The maximum a posteriori (MAP) estimators of these parameters are based on a likelihood functional, which contains spatially discrete measurements of the system parameters and spatiotemporally discrete measurements of the transient system states. The piecewise continuity prior for the parameters is expressed via Total Variation (TV) regularization. The MAP estimator is computed by minimizing a nonquadratic objective equipped with the TV operator. We apply this inversion algorithm to estimate hydraulic conductivity of a synthetic confined aquifer from measurements of conductivity and hydraulicmore » head. The synthetic conductivity field is composed of a low-conductivity heterogeneous intrusion into a high-conductivity heterogeneous medium. Our algorithm accurately reconstructs the location, orientation, and extent of the intrusion from the steady-state data only. Finally, addition of transient measurements of hydraulic head improves the parameter estimation, accurately reconstructing the conductivity field in the vicinity of observation locations.« less
Comparison of UWCC MOX fuel measurements to MCNP-REN calculations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abhold, M.; Baker, M.; Jie, R.
1998-12-31
The development of neutron coincidence counting has greatly improved the accuracy and versatility of neutron-based techniques to assay fissile materials. Today, the shift register analyzer connected to either a passive or active neutron detector is widely used by both domestic and international safeguards organizations. The continued development of these techniques and detectors makes extensive use of the predictions of detector response through the use of Monte Carlo techniques in conjunction with the point reactor model. Unfortunately, the point reactor model, as it is currently used, fails to accurately predict detector response in highly multiplying mediums such as mixed-oxide (MOX) lightmore » water reactor fuel assemblies. For this reason, efforts have been made to modify the currently used Monte Carlo codes and to develop new analytical methods so that this model is not required to predict detector response. The authors describe their efforts to modify a widely used Monte Carlo code for this purpose and also compare calculational results with experimental measurements.« less
In-to-Out Body Antenna-Independent Path Loss Model for Multilayered Tissues and Heterogeneous Medium
Kurup, Divya; Vermeeren, Günter; Tanghe, Emmeric; Joseph, Wout; Martens, Luc
2015-01-01
In this paper, we investigate multilayered lossy and heterogeneous media for wireless body area networks (WBAN) to develop a simple, fast and efficient analytical in-to-out body path loss (PL) model at 2.45 GHz and, thus, avoid time-consuming simulations. The PL model is an antenna-independent model and is validated with simulations in layered medium, as well as in a 3D human model using electromagnetic solvers. PMID:25551483
Continuous time anomalous diffusion in a composite medium.
Stickler, B A; Schachinger, E
2011-08-01
The one-dimensional continuous time anomalous diffusion in composite media consisting of a finite number of layers in immediate contact is investigated. The diffusion process itself is described with the help of two probability density functions (PDFs), one of which is an arbitrary jump-length PDF, and the other is a long-tailed waiting-time PDF characterized by the waiting-time index β∈(0,1). The former is assumed to be a function of the space coordinate x and the time coordinate t while the latter is a function of x and the time interval. For such an environment a very general form of the diffusion equation is derived which describes the continuous time anomalous diffusion in a composite medium. This result is then specialized to two particular forms of the jump-length PDF, namely the continuous time Lévy flight PDF and the continuous time truncated Lévy flight PDF. In both cases the PDFs are characterized by the Lévy index α∈(0,2) which is regarded to be a function of x and t. It is possible to demonstrate that for particular choices of the indices α and β other equations for anomalous diffusion, well known from the literature, follow immediately. This demonstrates the very general applicability of the derivation and of the resulting fractional differential equation discussed here.
Water movement in glass bead porous media: 1. Experiments of capillary rise and hysteresis
NASA Astrophysics Data System (ADS)
Lu, T. X.; Biggar, J. W.; Nielsen, D. R.
1994-12-01
Experimental observations of capillary rise and hysteresis of water or ethanol in glass beads are presented to improve our understanding of those physical processes in porous media. The results provide evidence that capillary rise into porous media cannot be fully explained by a model of cylinders. They further demonstrate that the "Ink bottle" model does not provide an adequate explanation of hysteresis. Glass beads serving as a model for ideal soil are enclosed in a rectangular glass chamber model. A TV camera associated with a microscope was used to record the processes of capillary rise and drainage. It is clearly shown during capillary rise that the fluid exhibits a "jump" behavior at the neck of the pores in an initially dry profile or at the bottom of the water film in an initially wet profile. Under an initially dry condition, the jump initiates at the particle with smallest diameter. The jump process continues to higher elevations until at equilibrium the surface tensile force is balanced by the hydrostatic force. The wetting front at that time is readily observed as flat and saturated. Under an initially wet condition, capillary rise occurs as a water film thickening process associated with the jump process. Trapped air behind the wetting front renders the wetting front irregular and unsaturated. The capillary rise into an initially wet porous medium can be higher than that into an initially dry profile. During the drying process, large surface areas associated with the gas-liquid interface develop, allowing the porous medium to retain more water than during the wetting process at the same pressure. That mechanism explains better the hysteresis phenomenon in porous media in contrast to other mechanisms that now prevail.
LF/MF Propagation Modeling for D-Region Ionospheric Remote Sensing
NASA Astrophysics Data System (ADS)
Higginson-Rollins, M. A.; Cohen, M.
2017-12-01
The D-region of the ionosphere is highly inaccessible because it is too high for continuous in-situ measurement techniques and too low for satellite measurements. Very-Low Frequency (VLF) signals have been developed and used as a diagnostic tool for this region of the ionosphere and are favorable because of the low ionospheric attenuation rates, allowing global propagation - but this also creates an ill-posed multi-mode propagation problem. As an alternative, Low-Frequency (LF) and Medium-Frequency (MF) signals could be used as a diagnostic tool of the D-region. These higher frequencies have a higher attenuation rate, and thus only a few modes propagate in the Earth-ionosphere waveguide, creating a much simpler problem to analyze. The United States Coast Guard (USCG) operates a national network of radio transmitters that serve as an enhancement to the Global Positioning System (GPS). This network is termed Differential Global Positioning System (DGPS) and uses fixed reference stations as a method of determining the error in received GPS satellite signals and transmits the correction value using low frequency and medium frequency radio signals between 285 kHz and 385 kHz. Using sensitive receivers, we can detect this signal many hundreds of km away. We present modeling of the propagation of these transmitters' signals for use as a diagnostic tool for characterizing the D-region. The Finite-Difference Time-Domain (FDTD) method is implemented to model the groundwave radiated by the DGPS beacons and account for environmental effects, such as changing soil conductivities and terrain. A full wave numerical solver is used to model the skywave component of the propagating signal and specifically to ascertain the reflection coefficients for various ionospheric conditions. Preliminary results are shown and discussed, and comparisons with collected data are presented.
A scalable moment-closure approximation for large-scale biochemical reaction networks
Kazeroonian, Atefeh; Theis, Fabian J.; Hasenauer, Jan
2017-01-01
Abstract Motivation: Stochastic molecular processes are a leading cause of cell-to-cell variability. Their dynamics are often described by continuous-time discrete-state Markov chains and simulated using stochastic simulation algorithms. As these stochastic simulations are computationally demanding, ordinary differential equation models for the dynamics of the statistical moments have been developed. The number of state variables of these approximating models, however, grows at least quadratically with the number of biochemical species. This limits their application to small- and medium-sized processes. Results: In this article, we present a scalable moment-closure approximation (sMA) for the simulation of statistical moments of large-scale stochastic processes. The sMA exploits the structure of the biochemical reaction network to reduce the covariance matrix. We prove that sMA yields approximating models whose number of state variables depends predominantly on local properties, i.e. the average node degree of the reaction network, instead of the overall network size. The resulting complexity reduction is assessed by studying a range of medium- and large-scale biochemical reaction networks. To evaluate the approximation accuracy and the improvement in computational efficiency, we study models for JAK2/STAT5 signalling and NFκB signalling. Our method is applicable to generic biochemical reaction networks and we provide an implementation, including an SBML interface, which renders the sMA easily accessible. Availability and implementation: The sMA is implemented in the open-source MATLAB toolbox CERENA and is available from https://github.com/CERENADevelopers/CERENA. Contact: jan.hasenauer@helmholtz-muenchen.de or atefeh.kazeroonian@tum.de Supplementary information: Supplementary data are available at Bioinformatics online. PMID:28881983
Code of Federal Regulations, 2014 CFR
2014-07-01
... standards that apply for model year 2017 and later light-duty vehicles, light-duty trucks, and medium-duty... standards. This section may apply to vehicles from model years earlier than 2017 as specified in paragraph... model year. (3) The FTP standards specified in this section apply for testing at low-altitude conditions...
Cooling rate dependence of structural order in Al 90Sm 10 metallic glass
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Yang; Zhang, Yue; Zhang, Feng
2016-07-07
Here, the atomic structure of Al 90Sm 10 metallic glass is studied using molecular dynamics simulations. By performing a long sub-T g annealing, we developed a glass model closer to the experiments than the models prepared by continuous cooling. Using the cluster alignment method, we found that “3661” cluster is the dominating short-range order in the glass samples. The connection and arrangement of “3661” clusters, which define the medium-range order in the system, are enhanced significantly in the sub-T g annealed sample as compared with the fast cooled glass samples. Unlike some strong binary glass formers such as Cu 64.5Zrmore » 35.5, the clusters representing the short-range order do not form an interconnected interpenetrating network in Al 90Sm 10, which has only marginal glass formability.« less
Cooling rate dependence of structural order in Al{sub 90}Sm{sub 10} metallic glass
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Yang; Ames Laboratory, US Department of Energy, Ames, Iowa 50011; Zhang, Yue
2016-07-07
The atomic structure of Al{sub 90}Sm{sub 10} metallic glass is studied using molecular dynamics simulations. By performing a long sub-T{sub g} annealing, we developed a glass model closer to the experiments than the models prepared by continuous cooling. Using the cluster alignment method, we found that “3661” cluster is the dominating short-range order in the glass samples. The connection and arrangement of “3661” clusters, which define the medium-range order in the system, are enhanced significantly in the sub-T{sub g} annealed sample as compared with the fast cooled glass samples. Unlike some strong binary glass formers such as Cu{sub 64.5}Zr{sub 35.5},more » the clusters representing the short-range order do not form an interconnected interpenetrating network in Al{sub 90}Sm{sub 10,} which has only marginal glass formability.« less
Mathematical Model and Artificial Intelligent Techniques Applied to a Milk Industry through DSM
NASA Astrophysics Data System (ADS)
Babu, P. Ravi; Divya, V. P. Sree
2011-08-01
The resources for electrical energy are depleting and hence the gap between the supply and the demand is continuously increasing. Under such circumstances, the option left is optimal utilization of available energy resources. The main objective of this chapter is to discuss about the Peak load management and overcome the problems associated with it in processing industries such as Milk industry with the help of DSM techniques. The chapter presents a generalized mathematical model for minimizing the total operating cost of the industry subject to the constraints. The work presented in this chapter also deals with the results of application of Neural Network, Fuzzy Logic and Demand Side Management (DSM) techniques applied to a medium scale milk industrial consumer in India to achieve the improvement in load factor, reduction in Maximum Demand (MD) and also the consumer gets saving in the energy bill.
Digital Documentation and Archiving Low Cost: la Habana Vieja in Cuba
NASA Astrophysics Data System (ADS)
Morganti, C.; Bartolomei, C.
2017-11-01
This article deepens the subject of photo-modelling applied to architecture, on a medium and large scale and it shows all the possibilities to apply the last technologies of augmented reality and virtual reality to the historical and architectural contest of Havana City in Cuba. The context was quite unsuitable to our project because of different and complex reasons. The need to minimize the size of the tools, their weight and cost. Minimize the time of survey and photographic shot on site. To face the difficulties given by the continuing presence of a chaotic influx of people disturbing the work. Not least the difficulty of having a limited number of daily hours available to carry out photographic shots that requires special lighting conditions. This article describes the necessary steps to obtain a 3D dimensional textured model from reality through a photographic set.
Advancing epilepsy treatment through personalized genetic zebrafish models.
Griffin, A; Krasniak, C; Baraban, S C
2016-01-01
With an increase in the number of disease causing genetic mutations identified from epilepsy cohorts, zebrafish are proving to be an attractive vertebrate model for functional analysis of these allele variants. Not only do zebrafish have conserved gene functions, but larvae harboring mutations in identified human epileptic genes show spontaneous seizure activity and mimic the convulsive behavioral movements observed in humans. With zebrafish being compatible with medium to high-throughput screening, they are also proving to be a unique and powerful system for early preclinical drug screening, including novel target identification, pharmacology, and toxicology. Additionally, with recent advances in genomic engineering technologies, it is now possible to study the precise pathophysiology of patient-specific gene mutations in zebrafish. The following sections highlight how the unique attributes of zebrafish, in combination with genetic modifications, are continuing to transform our understanding of epilepsy and help identify personalized therapeutics for specific patient cohorts. © 2016 Elsevier B.V. All rights reserved.
Fifth NASA Goddard Conference on Mass Storage Systems and Technologies. Volume 2
NASA Technical Reports Server (NTRS)
Kobler, Benjamin (Editor); Hariharan, P. C. (Editor)
1996-01-01
This document contains copies of those technical papers received in time for publication prior to the Fifth Goddard Conference on Mass Storage Systems and Technologies held September 17 - 19, 1996, at the University of Maryland, University Conference Center in College Park, Maryland. As one of an ongoing series, this conference continues to serve as a unique medium for the exchange of information on topics relating to the ingestion and management of substantial amounts of data and the attendant problems involved. This year's discussion topics include storage architecture, database management, data distribution, file system performance and modeling, and optical recording technology. There will also be a paper on Application Programming Interfaces (API) for a Physical Volume Repository (PVR) defined in Version 5 of the Institute of Electrical and Electronics Engineers (IEEE) Reference Model (RM). In addition, there are papers on specific archives and storage products.
NASA Astrophysics Data System (ADS)
Xiong, Chuan; Shi, Jiancheng
2014-01-01
To date, the light scattering models of snow consider very little about the real snow microstructures. The ideal spherical or other single shaped particle assumptions in previous snow light scattering models can cause error in light scattering modeling of snow and further cause errors in remote sensing inversion algorithms. This paper tries to build up a snow polarized reflectance model based on bicontinuous medium, with which the real snow microstructure is considered. The accurate specific surface area of bicontinuous medium can be analytically derived. The polarized Monte Carlo ray tracing technique is applied to the computer generated bicontinuous medium. With proper algorithms, the snow surface albedo, bidirectional reflectance distribution function (BRDF) and polarized BRDF can be simulated. The validation of model predicted spectral albedo and bidirectional reflectance factor (BRF) using experiment data shows good results. The relationship between snow surface albedo and snow specific surface area (SSA) were predicted, and this relationship can be used for future improvement of snow specific surface area (SSA) inversion algorithms. The model predicted polarized reflectance is validated and proved accurate, which can be further applied in polarized remote sensing.
NASA Astrophysics Data System (ADS)
Zimnyakov, D. A.; Sinichkin, Yu P.; Ushakova, O. V.
2007-08-01
The results of theoretical analysis of the optical anisotropy of multiply scattering fibrillar biological tissues based on the model of an effective anisotropic medium are compared with the experimental in vivo birefringence data for the rat derma obtained earlier in spectral polarisation measurements of rat skin samples in the visible region. The disordered system of parallel dielectric cylinders embedded into an isotropic dielectric medium was considered as a model medium. Simulations were performed taking into account the influence of a partial mutual disordering of the bundles of collagen and elastin fibres in derma on birefringence in samples. The theoretical optical anisotropy averaged over the spectral interval 550-650 nm for the model medium with parameters corresponding to the structural parameters of derma is in good agreement with the results of spectral polarisation measurements of skin samples in the corresponding wavelength range.
NASA Astrophysics Data System (ADS)
Gotsev, D. V.; Perunov, N. S.; Sviridova, E. N.
2018-03-01
The mathematical model describing the stress-strain state of a cylindrical body under the uniform radial compression effect is constructed. The model of the material is the porous medium model. The compressed skeleton of the porous medium possesses hardening elastic-plastic properties. Deforming of the porous medium under the specified compressive loads is divided into two stages: elastic deforming of the porous medium and further elastic-plastic deforming of the material with completely compressed matrix. The analytical relations that define the fields of stress and displacement at each stage of the deforming are obtained. The influence of the porosity and other physical, mechanical and geometric parameters of the construction on the size of the plastic zone is evaluated. The question of the ground state equilibrium instability is investigated within the framework of the three-dimensional linearized relationships of the stability theory of deformed bodies.
NASA Astrophysics Data System (ADS)
Lazri, H.; Ogam, E.; Amar, B.; Fellah, Z. E. A.; Sayoud, N.; Boumaiza, Y.
2018-05-01
Flexible, supple thermoplastic thin films (PVB and PET) placed on elastic substrates were probed using ultrasonic waves to identify their mechanical moduli and density. The composite medium immersed in a fluid host medium (water) was excited using a 50 Mhz transducer operating at normal incidence in reflection mode. Elastic wave propagation data from the stratified medium was captured in the host medium as scattered field. These data were used along with theoretical fluid-solid interaction forward models for stratified-media developed using elasticity theory, to solve an inverse problem for the recovery of the model parameters of the thin films. Two configurations were modeled, one considering the substrate as a semi-infinite elastic medium and the second the substrate having a finite thickness and flanked by a semi-infinite host medium. Transverse slip for the sliding interface between the films and substrate was chosen. This was found to agree with the experiments whereby the thin films were just placed on the substrate without bonding. The inverse problems for the recovery of the mechanical parameters were successful in retrieving the thin films’ parameters under the slip boundary condition. The possible improvements to the new method for the characterization of thin films are discussed.
Correlation effects during liquid infiltration into hydrophobic nanoporous media
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borman, V. D., E-mail: vdborman@mephi.ru; Belogorlov, A. A.; Byrkin, V. A.
To explain the thermal effects observed during the infiltration of a nonwetting liquid into a disordered nanoporous medium, we have constructed a model that includes correlation effects in a disordered medium. It is based on analytical methods of the percolation theory. The infiltration of a porous medium is considered as the infiltration of pores in an infinite cluster of interconnected pores. Using the model of randomly situated spheres (RSS), we have been able to take into account the correlation effect of the spatial arrangement and connectivity of pores in the medium. The other correlation effect of the mutual arrangement ofmore » filled and empty pores on the shell of an infinite percolation cluster of filled pores determines the infiltration fluctuation probability. This probability has been calculated analytically. Allowance for these correlation effects during infiltration and defiltration makes it possible to suggest a physical mechanism of the contact angle hysteresis and to calculate the dependences of the contact angles on the degree of infiltration, porosity of the medium, and temperature. Based on the suggested model, we have managed to describe the temperature dependences of the infiltration and defiltration pressures and the thermal effects that accompany the absorption of energy by disordered porous medium-nonwetting liquid systems with various porosities in a unified way.« less
NASA Astrophysics Data System (ADS)
Wu, W.; Biber, P. D.; Peterson, M. S.; Gong, C.
2012-12-01
We studied the impact of the Deepwater Horizon oil spill on photosynthesis of coastal saltmarsh plants in Mississippi from July 2010 to November 2011 using field measurements and a hierarchical Bayesian (HB) model. We sampled three locations in Davis Bayou, Mississippi (30.375°N, 88.790°W) representative of a range of oil spill impacts. Measured photosynthesis was negative (respiration only) at the heavily oiled location in July 2010 only, and rates started to increase by August 2010. Photosynthesis at the medium oiled location was lower than at the control location in July 2010 and it continued to decrease in September 2010. During the winter months in 2010-2011, the contrast between the control and the two impacted locations was not as obvious as in the growing season of 2010. Photosynthesis increased through spring 2011 at the three locations and decreased starting with October at the control location and a month earlier (September) at the impacted locations. Using the field data, we developed an HB model. The model simulations agreed well with the measured photosynthesis, and they captured most of the variability of the measured data. Based on the posteriors of the parameters, air temperature and photosynthetic active radiation (PAR) positively influenced photosynthesis whereas the leaf stress level negatively affected photosynthesis. The photosynthesis rates at the heavily impacted location had recovered to the status of the control location about 140 days after the initial impact, while the impact at the medium location was never severe enough to make photosynthesis significantly lower than that at the control location over the study period. The uncertainty in modeling photosynthesis rates mainly came from the individual and micro-site scales, less from the leaf scale. Medians with 95% confidence intervals for the measured photosynthesis rate (μmol C m-2 s-1 - y axis) at the locations of A) Control, B) Medium impact, and C) Heavy impact in each month from July 2010 to November 2011. At the x-axis representing the photosynthetic active radiation intensity, 1 = around 400 μmol C m-2 s-1, 2 = around 800 μmol C m-2 s-1, 3 = around 1200 μmol C m-2 s-1, 4 = around 1600 μmol C m-2 s-1, and 5 = around 2000 μmol C m-2 s-1.
A hierarchy of models for simulating experimental results from a 3D heterogeneous porous medium
NASA Astrophysics Data System (ADS)
Vogler, Daniel; Ostvar, Sassan; Paustian, Rebecca; Wood, Brian D.
2018-04-01
In this work we examine the dispersion of conservative tracers (bromide and fluorescein) in an experimentally-constructed three-dimensional dual-porosity porous medium. The medium is highly heterogeneous (σY2 = 5.7), and consists of spherical, low-hydraulic-conductivity inclusions embedded in a high-hydraulic-conductivity matrix. The bimodal medium was saturated with tracers, and then flushed with tracer-free fluid while the effluent breakthrough curves were measured. The focus for this work is to examine a hierarchy of four models (in the absence of adjustable parameters) with decreasing complexity to assess their ability to accurately represent the measured breakthrough curves. The most information-rich model was (1) a direct numerical simulation of the system in which the geometry, boundary and initial conditions, and medium properties were fully independently characterized experimentally with high fidelity. The reduced-information models included; (2) a simplified numerical model identical to the fully-resolved direct numerical simulation (DNS) model, but using a domain that was one-tenth the size; (3) an upscaled mobile-immobile model that allowed for a time-dependent mass-transfer coefficient; and, (4) an upscaled mobile-immobile model that assumed a space-time constant mass-transfer coefficient. The results illustrated that all four models provided accurate representations of the experimental breakthrough curves as measured by global RMS error. The primary component of error induced in the upscaled models appeared to arise from the neglect of convection within the inclusions. We discuss the necessity to assign value (via a utility function or other similar method) to outcomes if one is to further select from among model options. Interestingly, these results suggested that the conventional convection-dispersion equation, when applied in a way that resolves the heterogeneities, yields models with high fidelity without requiring the imposition of a more complex non-Fickian model.
Control of rRNA transcription in Escherichia coli.
Condon, C; Squires, C; Squires, C L
1995-01-01
The control of rRNA synthesis in response to both extra- and intracellular signals has been a subject of interest to microbial physiologists for nearly four decades, beginning with the observations that Salmonella typhimurium cells grown on rich medium are larger and contain more RNA than those grown on poor medium. This was followed shortly by the discovery of the stringent response in Escherichia coli, which has continued to be the organism of choice for the study of rRNA synthesis. In this review, we summarize four general areas of E. coli rRNA transcription control: stringent control, growth rate regulation, upstream activation, and anti-termination. We also cite similar mechanisms in other bacteria and eukaryotes. The separation of growth rate-dependent control of rRNA synthesis from stringent control continues to be a subject of controversy. One model holds that the nucleotide ppGpp is the key effector for both mechanisms, while another school holds that it is unlikely that ppGpp or any other single effector is solely responsible for growth rate-dependent control. Recent studies on activation of rRNA synthesis by cis-acting upstream sequences has led to the discovery of a new class of promoters that make contact with RNA polymerase at a third position, called the UP element, in addition to the well-known -10 and -35 regions. Lastly, clues as to the role of antitermination in rRNA operons have begun to appear. Transcription complexes modified at the antiterminator site appear to elongate faster and are resistant to the inhibitory effects of ppGpp during the stringent response. PMID:8531889
NASA Astrophysics Data System (ADS)
Sandali, Messaoud; Boubekri, Abdelghani; Mennouche, Djamel
2018-05-01
Numerical simulation method has been employed to improve the thermal performance of cabinet direct solar dryer. The present study focused on the numerical simulation of a direct solar dryer with integration of a flat layer of fractured porous medium above the absorber plate in the aim to store thermal energy by sensible heat. Several calculations were conducted, using the finite volume method with a two-dimensional unsteady model implemented in the Fluent CFD software. The porous medium has been integrated with different thickness to show the influence of the medium thickness on the thermal performance of solar dryer. Different kinds of materials have been tested and studied. The effect of porosity of porous medium has been studied. The obtained results showed that the temperature of drying air is increased by 4°C with integration of porous medium. The increasing in the thickness of the porous medium by 1cm leads to increase the temperature of drying air by 2°C. The increasing of the medium porosity by 10% leads to decrease the temperature of drying air by 1°C. The best material is the one that has a highest specific heat and thermal conductivity.
Treatment of ferrous-NTA-based NO x scrubber solution by an up-flow anaerobic packed bed bioreactor.
Chandrashekhar, B; Sahu, Nidhi; Tabassum, Heena; Pai, Padmaraj; Morone, Amruta; Pandey, R A
2015-06-01
A bench scale system consisting of an up-flow packed bed bioreactor (UAPBR) made of polyurethane foam was used for the treatment and regeneration of aqueous solution of ferrous-NTA scrubbed with nitric oxide (NO). The biomass in the UAPBR was sequentially acclimatized under denitrifying and iron reducing conditions using ethanol as electron donor, after which nitric oxide (NO) gas was loaded continuously to the system by absorption. The system was investigated for different parameters viz. pH, removal efficiency of nitric oxide, biological reduction efficiency of Fe(II)NTA-NO and COD utilization. The Fe(II)NTA-NO reduction efficiency reached 87.8 % at a loading rate of 0.24 mmol L(-1) h(-1), while the scrubber efficiency reached more than 75 % with 250 ppm NO. Stover-Kincannon and a Plug-flow kinetic model based on Michaelis-Menten equation were used to describe the UAPBR performance with respect to Fe(II)NTA-NO and COD removal. The Stover-Kincannon model was found capable of describing the Fe(II)NTA-NO reduction (R m = 8.92 mM h(-1) and K NO = 11.46 mM h(-1)) while plug-flow model provided better fit to the COD utilization (U m = 66.62 mg L(-1) h(-1), K COD = 7.28 mg L(-1)). Analyses for pH, Fe(III)NTA, ammonium, nitrite concentration, and FTIR analysis of the medium samples indicated degradation of NTA, which leads to ammonium and nitrite accumulation in the medium, and affect the regeneration process.
Medium-range Performance of the Global NWP Model
NASA Astrophysics Data System (ADS)
Kim, J.; Jang, T.; Kim, J.; Kim, Y.
2017-12-01
The medium-range performance of the global numerical weather prediction (NWP) model in the Korea Meteorological Administration (KMA) is investigated. The performance is based on the prediction of the extratropical circulation. The mean square error is expressed by sum of spatial variance of discrepancy between forecasts and observations and the square of the mean error (ME). Thus, it is important to investigate the ME effect in order to understand the model performance. The ME is expressed by the subtraction of an anomaly from forecast difference against the real climatology. It is found that the global model suffers from a severe systematic ME in medium-range forecasts. The systematic ME is dominant in the entire troposphere in all months. Such ME can explain at most 25% of root mean square error. We also compare the extratropical ME distribution with that from other NWP centers. NWP models exhibit similar spatial ME structure each other. It is found that the spatial ME pattern is highly correlated to that of an anomaly, implying that the ME varies with seasons. For example, the correlation coefficient between ME and anomaly ranges from -0.51 to -0.85 by months. The pattern of the extratropical circulation also has a high correlation to an anomaly. The global model has trouble in faithfully simulating extratropical cyclones and blockings in the medium-range forecast. In particular, the model has a hard to simulate an anomalous event in medium-range forecasts. If we choose an anomalous period for a test-bed experiment, we will suffer from a large error due to an anomaly.
40 CFR 600.101-08 - General applicability.
Code of Federal Regulations, 2010 CFR
2010-07-01
... provisions of this subpart are applicable to 2008 and later model year automobiles, except medium duty passenger vehicles, manufactured on or after January 26, 2007, and to 2011 and later model year medium-duty... FUEL ECONOMY AND CARBON-RELATED EXHAUST EMISSIONS OF MOTOR VEHICLES Fuel Economy Regulations for 1978...
40 CFR 600.001-08 - General applicability.
Code of Federal Regulations, 2010 CFR
2010-07-01
... provisions of this subpart are applicable to 2008 and later model year automobiles, except medium duty passenger vehicles, manufactured on or after January 26, 2007, and to 2011 and later model year medium-duty... FUEL ECONOMY AND CARBON-RELATED EXHAUST EMISSIONS OF MOTOR VEHICLES Fuel Economy Regulations for 1977...
Unusual spiral wave dynamics in the Kessler-Levine model of an excitable medium.
Oikawa, N; Bodenschatz, E; Zykov, V S
2015-05-01
The Kessler-Levine model is a two-component reaction-diffusion system that describes spatiotemporal dynamics of the messenger molecules in a cell-to-cell signaling process during the aggregation of social amoeba cells. An excitation wave arising in the model has a phase wave at the wave back, which simply follows the wave front after a fixed time interval with the same propagation velocity. Generally speaking, the medium excitability and the refractoriness are two important factors which determine the spiral wave dynamics in any excitable media. The model allows us to separate these two factors relatively easily since the medium refractoriness can be changed independently of the medium excitability. For rigidly rotating waves, the universal relationship has been established by using a modified free-boundary approach, which assumes that the front and the back of a propagating wave are thin in comparison to the wave plateau. By taking a finite thickness of the domain boundary into consideration, the validity of the proposed excitability measure has been essentially improved. A novel method of numerical simulation to suppress the spiral wave instabilities is introduced. The trajectories of the spiral tip observed for a long refractory period have been investigated under a systematic variation of the medium refractoriness.