Sample records for continuous melting process

  1. Continuous manufacturing of solid lipid nanoparticles by hot melt extrusion.

    PubMed

    Patil, Hemlata; Kulkarni, Vijay; Majumdar, Soumyajit; Repka, Michael A

    2014-08-25

    Solid lipid nanoparticles (SLN) can either be produced by hot homogenization of melted lipids at higher temperatures or by a cold homogenization process. This paper proposes and demonstrates the formulation of SLN for pharmaceutical applications by combining two processes: hot melt extrusion (HME) technology for melt-emulsification and high-pressure homogenization (HPH) for size reduction. This work aimed at developing continuous and scalable processes for SLN by mixing a lipid and aqueous phase containing an emulsifier in the extruder barrel at temperatures above the melting point of the lipid and further reducing the particle size of emulsion by HPH linked to HME in a sequence. The developed novel platform demonstrated better process control and size reduction compared to the conventional process of hot homogenization (batch process). Varying the process parameters enabled the production of SLN below 200 nm (for 60 mg/ml lipid solution at a flow rate of 100ml/min). Among the several process parameters investigated, the lipid concentration, residence time and screw design played major roles in influencing the size of the SLN. This new process demonstrates the potential use of hot melt extrusion technology for continuous and large-scale production of SLN. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. 40 CFR 98.142 - GHGs to report.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... GREENHOUSE GAS REPORTING Glass Production § 98.142 GHGs to report. You must report: (a) CO2 process emissions from each continuous glass melting furnace. (b) CO2 combustion emissions from each continuous glass melting furnace. (c) CH4 and N2O combustion emissions from each continuous glass melting furnace. You must...

  3. 40 CFR 98.142 - GHGs to report.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... GREENHOUSE GAS REPORTING Glass Production § 98.142 GHGs to report. You must report: (a) CO2 process emissions from each continuous glass melting furnace. (b) CO2 combustion emissions from each continuous glass melting furnace. (c) CH4 and N2O combustion emissions from each continuous glass melting furnace. You must...

  4. Downstream processing from melt granulation towards tablets: In-depth analysis of a continuous twin-screw melt granulation process using polymeric binders.

    PubMed

    Grymonpré, W; Verstraete, G; Vanhoorne, V; Remon, J P; De Beer, T; Vervaet, C

    2018-03-01

    The concept of twin-screw melt granulation (TSMG) has steadily (re)-gained interest in pharmaceutical formulation development as an intermediate step during tablet manufacturing. However, to be considered as a viable processing option for solid oral dosage forms there is a need to understand all critical sources of variability which could affect this granulation technique. The purpose of this study was to provide an in-depth analysis of the continuous TSMG process in order to expose the critical process parameters (CPP) and elucidate the impact of process and formulation parameters on the critical quality attributes (CQA) of granules and tablets during continuous TSMG. A first part of the study dealt with the screening of various amorphous polymers as binder for producing high-dosed melt granules of two model drug (i.e. acetaminophen and hydrochlorothiazide). The second part of this study described a quality-by-design (QbD) approach for melt granulation of hydrochlorothiazide in order to thoroughly evaluate TSMG, milling and tableting stage of the continuous TSMG line. Using amorphous polymeric binders resulted in melt granules with high milling efficiency due to their brittle behaviour without producing excessive amounts of fines, providing high granule yields with low friability. Therefore, it makes them extremely suitable for further downstream processing. One of the most important CPP during TSMG with polymeric binders was the granulation-torque, which - in case of polymers with high T g - increased during longer granulation runs to critical levels endangering the continuous process flow. However, by optimizing both screw speed and throughput or changing to polymeric binders with lower T g it was possible to significantly reduce this risk. This research paper highlighted that TSMG must be considered as a viable option during formulation development of solid oral dosage forms based on the robustness of the CQA of both melt granules and tablets. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Process monitoring and visualization solutions for hot-melt extrusion: a review.

    PubMed

    Saerens, Lien; Vervaet, Chris; Remon, Jean Paul; De Beer, Thomas

    2014-02-01

    Hot-melt extrusion (HME) is applied as a continuous pharmaceutical manufacturing process for the production of a variety of dosage forms and formulations. To ensure the continuity of this process, the quality of the extrudates must be assessed continuously during manufacturing. The objective of this review is to provide an overview and evaluation of the available process analytical techniques which can be applied in hot-melt extrusion. Pharmaceutical extruders are equipped with traditional (univariate) process monitoring tools, observing barrel and die temperatures, throughput, screw speed, torque, drive amperage, melt pressure and melt temperature. The relevance of several spectroscopic process analytical techniques for monitoring and control of pharmaceutical HME has been explored recently. Nevertheless, many other sensors visualizing HME and measuring diverse critical product and process parameters with potential use in pharmaceutical extrusion are available, and were thoroughly studied in polymer extrusion. The implementation of process analytical tools in HME serves two purposes: (1) improving process understanding by monitoring and visualizing the material behaviour and (2) monitoring and analysing critical product and process parameters for process control, allowing to maintain a desired process state and guaranteeing the quality of the end product. This review is the first to provide an evaluation of the process analytical tools applied for pharmaceutical HME monitoring and control, and discusses techniques that have been used in polymer extrusion having potential for monitoring and control of pharmaceutical HME. © 2013 Royal Pharmaceutical Society.

  6. 40 CFR 98.143 - Calculating GHG emissions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Glass Production § 98.143 Calculating GHG emissions. You must calculate and report the annual process CO2 emissions from each continuous glass melting furnace using the procedure in paragraphs (a) and (b) of this section. (a) For each continuous glass melting furnace that...

  7. 40 CFR 98.143 - Calculating GHG emissions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Glass Production § 98.143 Calculating GHG emissions. You must calculate and report the annual process CO2 emissions from each continuous glass melting furnace using the procedure in paragraphs (a) and (b) of this section. (a) For each continuous glass melting furnace that...

  8. Thermographic In-Situ Process Monitoring of the Electron Beam Melting Technology used in Additive Manufacturing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dinwiddie, Ralph Barton; Dehoff, Ryan R; Lloyd, Peter D

    2013-01-01

    Oak Ridge National Laboratory (ORNL) has been utilizing the ARCAM electron beam melting technology to additively manufacture complex geometric structures directly from powder. Although the technology has demonstrated the ability to decrease costs, decrease manufacturing lead-time and fabricate complex structures that are impossible to fabricate through conventional processing techniques, certification of the component quality can be challenging. Because the process involves the continuous deposition of successive layers of material, each layer can be examined without destructively testing the component. However, in-situ process monitoring is difficult due to metallization on inside surfaces caused by evaporation and condensation of metal from themore » melt pool. This work describes a solution to one of the challenges to continuously imaging inside of the chamber during the EBM process. Here, the utilization of a continuously moving Mylar film canister is described. Results will be presented related to in-situ process monitoring and how this technique results in improved mechanical properties and reliability of the process.« less

  9. Process and apparatus for obtaining silicon from fluosilicic acid

    DOEpatents

    Sanjurjo, Angel

    1988-06-28

    Process and apparatus for producing low cost, high purity solar grade silicon ingots in single crystal or quasi single crystal ingot form in a substantially continuous operation in a two stage reactor starting with sodium fluosilicate and a metal more electropositive than silicon (preferably sodium) in separate compartments having easy vapor transport therebetween and thermally decomposing the sodium fluosilicate to cause formation of substantially pure silicon and a metal fluoride which may be continuously separated in the melt and silicon may be directly and continuously cast from the melt.

  10. Simulation of the Continuous Casting and Cooling Behavior of Metallic Glasses

    PubMed Central

    Pei, Zhipu; Ju, Dongying

    2017-01-01

    The development of melt spinning technique for preparation of metallic glasses was summarized. The limitations as well as restrictions of the melt spinning embodiments were also analyzed. As an improvement and variation of the melt spinning method, the vertical-type twin-roll casting (VTRC) process was discussed. As the thermal history experienced by the casting metals to a great extent determines the qualities of final products, cooling rate in the quenching process is believed to have a significant effect on glass formation. In order to estimate the ability to produce metallic glasses by VTRC method, temperature and flow phenomena of the melt in molten pool were computed, and cooling rates under different casting conditions were calculated with the simulation results. Considering the fluid character during casting process, the material derivative method based on continuum theory was adopted in the cooling rate calculation. Results show that the VTRC process has a good ability in continuous casting metallic glassy ribbons. PMID:28772779

  11. Simulation of the Continuous Casting and Cooling Behavior of Metallic Glasses.

    PubMed

    Pei, Zhipu; Ju, Dongying

    2017-04-17

    The development of melt spinning technique for preparation of metallic glasses was summarized. The limitations as well as restrictions of the melt spinning embodiments were also analyzed. As an improvement and variation of the melt spinning method, the vertical-type twin-roll casting (VTRC) process was discussed. As the thermal history experienced by the casting metals to a great extent determines the qualities of final products, cooling rate in the quenching process is believed to have a significant effect on glass formation. In order to estimate the ability to produce metallic glasses by VTRC method, temperature and flow phenomena of the melt in molten pool were computed, and cooling rates under different casting conditions were calculated with the simulation results. Considering the fluid character during casting process, the material derivative method based on continuum theory was adopted in the cooling rate calculation. Results show that the VTRC process has a good ability in continuous casting metallic glassy ribbons.

  12. A Modeling Approach to Fiber Fracture in Melt Impregnation

    NASA Astrophysics Data System (ADS)

    Ren, Feng; Zhang, Cong; Yu, Yang; Xin, Chunling; Tang, Ke; He, Yadong

    2017-02-01

    The effect of process variables such as roving pulling speed, melt temperature and number of pins on the fiber fracture during the processing of thermoplastic based composites was investigated in this study. The melt impregnation was used in this process of continuous glass fiber reinforced thermoplastic composites. Previous investigators have suggested a variety of models for melt impregnation, while comparatively little effort has been spent on modeling the fiber fracture caused by the viscous resin. Herein, a mathematical model was developed for impregnation process to predict the fiber fracture rate and describe the experimental results with the Weibull intensity distribution function. The optimal parameters of this process were obtained by orthogonal experiment. The results suggest that the fiber fracture is caused by viscous shear stress on fiber bundle in melt impregnation mold when pulling the fiber bundle.

  13. 40 CFR 60.293 - Standards for particulate matter from glass melting furnace with modified-processes.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... container glass, flat glass, and pressed and blown glass with a soda-lime recipe melting furnaces. (2..., maintain, and operate a continuous monitoring system for the measurement of the opacity of emissions... conducted by § 60.8, conduct continuous opacity monitoring during each test run. (3) Calculate 6-minute...

  14. 40 CFR 60.293 - Standards for particulate matter from glass melting furnace with modified-processes.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... container glass, flat glass, and pressed and blown glass with a soda-lime recipe melting furnaces. (2..., maintain, and operate a continuous monitoring system for the measurement of the opacity of emissions... conducted by § 60.8, conduct continuous opacity monitoring during each test run. (3) Calculate 6-minute...

  15. 40 CFR 60.293 - Standards for particulate matter from glass melting furnace with modified-processes.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... container glass, flat glass, and pressed and blown glass with a soda-lime recipe melting furnaces. (2..., maintain, and operate a continuous monitoring system for the measurement of the opacity of emissions... conducted by § 60.8, conduct continuous opacity monitoring during each test run. (3) Calculate 6-minute...

  16. 40 CFR 60.293 - Standards for particulate matter from glass melting furnace with modified-processes.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... container glass, flat glass, and pressed and blown glass with a soda-lime recipe melting furnaces. (2..., maintain, and operate a continuous monitoring system for the measurement of the opacity of emissions... conducted by § 60.8, conduct continuous opacity monitoring during each test run. (3) Calculate 6-minute...

  17. 40 CFR 60.293 - Standards for particulate matter from glass melting furnace with modified-processes.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... container glass, flat glass, and pressed and blown glass with a soda-lime recipe melting furnaces. (2..., maintain, and operate a continuous monitoring system for the measurement of the opacity of emissions... conducted by § 60.8, conduct continuous opacity monitoring during each test run. (3) Calculate 6-minute...

  18. Continuous steel production and apparatus

    DOEpatents

    Peaslee, Kent D [Rolla, MO; Peter, Jorg J [McMinnville, OR; Robertson, David G. C. [Rolla, MO; Thomas, Brian G [Champaign, IL; Zhang, Lifeng [Trondheim, NO

    2009-11-17

    A process for continuous refining of steel via multiple distinct reaction vessels for melting, oxidation, reduction, and refining for delivery of steel continuously to, for example, a tundish of a continuous caster system, and associated apparatus.

  19. Development of Maltodextrin-Based Immediate-Release Tablets Using an Integrated Twin-Screw Hot-Melt Extrusion and Injection-Molding Continuous Manufacturing Process.

    PubMed

    Puri, Vibha; Brancazio, Dave; Desai, Parind M; Jensen, Keith D; Chun, Jung-Hoon; Myerson, Allan S; Trout, Bernhardt L

    2017-11-01

    The combination of hot-melt extrusion and injection molding (HME-IM) is a promising process technology for continuous manufacturing of tablets. However, there has been limited research on its application to formulate crystalline drug-containing immediate-release tablets. Furthermore, studies that have applied the HME-IM process to molded tablets have used a noncontinuous 2-step approach. The present study develops maltodextrin (MDX)-based extrusion-molded immediate-release tablets for a crystalline drug (griseofulvin) using an integrated twin-screw HME-IM continuous process. At 10% w/w drug loading, MDX was selected as the tablet matrix former based on a preliminary screen. Furthermore, liquid and solid polyols were evaluated for melt processing of MDX and for impact on tablet performance. Smooth-surfaced tablets, comprising crystalline griseofulvin solid suspension in the amorphous MDX-xylitol matrix, were produced by a continuous process on a twin-screw extruder coupled to a horizontally opening IM machine. Real-time HME process profiles were used to develop automated HME-IM cycles. Formulation adjustments overcame process challenges and improved tablet strength. The developed MDX tablets exhibited adequate strength and a fast-dissolving matrix (85% drug release in 20 min), and maintained performance on accelerated stability conditions. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  20. Continuous production of fenofibrate solid lipid nanoparticles by hot-melt extrusion technology: a systematic study based on a quality by design approach.

    PubMed

    Patil, Hemlata; Feng, Xin; Ye, Xingyou; Majumdar, Soumyajit; Repka, Michael A

    2015-01-01

    This contribution describes a continuous process for the production of solid lipid nanoparticles (SLN) as drug-carrier systems via hot-melt extrusion (HME). Presently, HME technology has not been used for the manufacturing of SLN. Generally, SLN are prepared as a batch process, which is time consuming and may result in variability of end-product quality attributes. In this study, using Quality by Design (QbD) principles, we were able to achieve continuous production of SLN by combining two processes: HME technology for melt-emulsification and high-pressure homogenization (HPH) for size reduction. Fenofibrate (FBT), a poorly water-soluble model drug, was incorporated into SLN using HME-HPH methods. The developed novel platform demonstrated better process control and size reduction compared to the conventional process of hot homogenization (batch process). Varying the process parameters enabled the production of SLN below 200 nm. The dissolution profile of the FBT SLN prepared by the novel HME-HPH method was faster than that of the crude FBT and a micronized marketed FBT formulation. At the end of a 5-h in vitro dissolution study, a SLN formulation released 92-93% of drug, whereas drug release was approximately 65 and 45% for the marketed micronized formulation and crude drug, respectively. Also, pharmacokinetic study results demonstrated a statistical increase in Cmax, Tmax, and AUC0-24 h in the rate of drug absorption from SLN formulations as compared to the crude drug and marketed micronized formulation. In summary, the present study demonstrated the potential use of hot-melt extrusion technology for continuous and large-scale production of SLN.

  1. Timing and regional patterns of snowmelt on Antarctic sea ice from passive microwave satellite observations

    NASA Astrophysics Data System (ADS)

    Arndt, Stefanie; Willmes, Sascha; Dierking, Wolfgang; Nicolaus, Marcel

    2016-08-01

    An improved understanding of the temporal variability and the spatial distribution of snowmelt on Antarctic sea ice is crucial to better quantify atmosphere-ice-ocean interactions, in particular sea-ice mass and energy budgets. It is therefore important to understand the mechanisms that drive snowmelt, both at different times of the year and in different regions around Antarctica. In this study, we combine diurnal brightness temperature differences (dTB(37 GHz)) and ratios (TB(19 GHz)/TB(37 GHz)) to detect and classify snowmelt processes. We distinguish temporary snowmelt from continuous snowmelt to characterize dominant melt patterns for different Antarctic sea-ice regions from 1988/1989 to 2014/2015. Our results indicate four characteristic melt types. On average, 38.9 ± 6.0% of all detected melt events are diurnal freeze-thaw cycles in the surface snow layer, characteristic of temporary melt (Type A). Less than 2% reveal immediate continuous snowmelt throughout the snowpack, i.e., strong melt over a period of several days (Type B). In 11.7 ± 4.0%, Type A and B take place consecutively (Type C), and for 47.8 ± 6.8% no surface melt is observed at all (Type D). Continuous snowmelt is primarily observed in the outflow of the Weddell Gyre and in the northern Ross Sea, usually 17 days after the onset of temporary melt. Comparisons with Snow Buoy data suggest that also the onset of continuous snowmelt does not translate into changes in snow depth for a longer period but might rather affect the internal stratigraphy and density structure of the snowpack. Considering the entire data set, the timing of snowmelt processes does not show significant temporal trends.

  2. Timing and regional patterns of snowmelt on Antarctic sea ice from passive microwave satellite observations

    NASA Astrophysics Data System (ADS)

    Arndt, Stefanie; Willmes, Sascha; Dierking, Wolfgang; Nicolaus, Marcel

    2016-04-01

    The better understanding of temporal variability and regional distribution of surface melt on Antarctic sea ice is crucial for the understanding of atmosphere-ocean interactions and the determination of mass and energy budgets of sea ice. Since large regions of Antarctic sea ice are covered with snow during most of the year, observed inter-annual and regional variations of surface melt mainly represents melt processes in the snow. It is therefore important to understand the mechanisms that drive snowmelt, both at different times of the year and in different regions around Antarctica. In this study we combine two approaches for observing both surface and volume snowmelt by means of passive microwave satellite data. The former is achieved by measuring diurnal differences of the brightness temperature TB at 37 GHz, the latter by analyzing the ratio TB(19GHz)/TB(37GHz). Moreover, we use both melt onset proxies to divide the Antarctic sea ice cover into characteristic surface melt patterns from 1988/89 to 2014/15. Our results indicate four characteristic melt types. On average, 43% of the ice-covered ocean shows diurnal freeze-thaw cycles in the surface snow layer, resulting in temporary melt (Type A), less than 1% shows continuous snowmelt throughout the snowpack, resulting in strong melt over a period of several days (Type B), 19% shows Type A and B taking place consecutively (Type C), and for 37% no melt is observed at all (Type D). Continuous melt is primarily observed in the outflow of the Weddell Gyre and in the northern Ross Sea, usually 20 days after the onset of temporary melt. Considering the entire data set, snowmelt processes and onset do not show significant temporal trends. Instead, areas of increasing (decreasing) sea-ice extent have longer (shorter) periods of continuous snowmelt.

  3. Control of heat transfer in continuous-feeding Czochralski-silicon crystal growth with a water-cooled jacket

    NASA Astrophysics Data System (ADS)

    Zhao, Wenhan; Liu, Lijun

    2017-01-01

    The continuous-feeding Czochralski method is an effective method to reduce the cost of single crystal silicon. By promoting the crystal growth rate, the cost can be reduced further. However, more latent heat will be released at the melt-crystal interface under a high crystal growth rate. In this study, a water-cooled jacket was applied to enhance the heat transfer at the melt-crystal interface. Quasi-steady-state numerical calculation was employed to investigate the impact of the water-cooled jacket on the heat transfer at the melt-crystal interface. Latent heat released during the crystal growth process at the melt-crystal interface and absorbed during feedstock melting at the feeding zone was modeled in the simulations. The results show that, by using the water-cooled jacket, heat transfer in the growing crystal is enhanced significantly. Melt-crystal interface deflection and thermal stress increase simultaneously due to the increase of radial temperature at the melt-crystal interface. With a modified heat shield design, heat transfer at the melt-crystal interface is well controlled. The crystal growth rate can be increased by 20%.

  4. LSA Large Area Silicon Sheet Task Continuous Czochralski Process Development

    NASA Technical Reports Server (NTRS)

    Rea, S. N.

    1979-01-01

    A commercial Czochralski crystal growing furnace was converted to a continuous growth facility by installation of a small, in-situ premelter with attendant silicon storage and transport mechanisms. Using a vertical, cylindrical graphite heater containing a small fused quartz test tube linear from which the molten silicon flowed out the bottom, approximately 83 cm of nominal 5 cm diamter crystal was grown with continuous melt addition furnished by the test tube premelter. High perfection crystal was not obtained, however, due primarily to particulate contamination of the melt. A major contributor to the particulate problem was severe silicon oxide buildup on the premelter which would ultimately drop into the primary melt. Elimination of this oxide buildup will require extensive study and experimentation and the ultimate success of continuous Czochralski depends on a successful solution to this problem. Economically, the continuous Czochralski meets near-term cost goals for silicon sheet material.

  5. Magma transport and metasomatism in the mantle: a critical review of current geochemical models

    USGS Publications Warehouse

    Nielson, J.E.; Wilshire, H.G.

    1993-01-01

    Conflicting geochemical models of metasomatic interactions between mantle peridotite and melt all assume that mantle reactions reflect chromatographic processes. Examination of field, petrological, and compositional data suggests that the hypothesis of chromatographic fractionation based on the supposition of large-scale percolative processes needs review and revision. Well-constrained rock and mineral data from xenoliths indicate that many elements that behave incompatibly in equilibrium crystallization processes are absorbed immediately when melts emerge from conduits into depleted peridotite. After reacting to equilibrium with the peridotite, melt that percolates away from the conduit is largely depleted of incompatible elements. Continued addition of melts extends the zone of equilibrium farther from the conduit. Such a process resembles ion-exchange chromatography for H2O purification, rather than the model of chromatographic species separation. -from Authors

  6. Production, pathways and budgets of melts in mid-ocean ridges: An enthalpy based thermo-mechanical model

    NASA Astrophysics Data System (ADS)

    Mandal, Nibir; Sarkar, Shamik; Baruah, Amiya; Dutta, Urmi

    2018-04-01

    Using an enthalpy based thermo-mechanical model we provide a theoretical evaluation of melt production beneath mid-ocean ridges (MORs), and demonstrate how the melts subsequently develop their pathways to sustain the major ridge processes. Our model employs a Darcy idealization of the two-phase (solid-melt) system, accounting enthalpy (ΔH) as a function of temperature dependent liquid fraction (ϕ). Random thermal perturbations imposed in this model set in local convection that drive melts to flow through porosity controlled pathways with a typical mushroom-like 3D structure. We present across- and along-MOR axis model profiles to show the mode of occurrence of melt-rich zones within mushy regions, connected to deeper sources by single or multiple feeders. The upwelling of melts experiences two synchronous processes: 1) solidification-accretion, and 2) eruption, retaining a large melt fraction in the framework of mantle dynamics. Using a bifurcation analysis we determine the threshold condition for melt eruption, and estimate the potential volumes of eruptible melts (∼3.7 × 106 m3/yr) and sub-crustal solidified masses (∼1-8.8 × 106 m3/yr) on an axis length of 500 km. The solidification process far dominates over the eruption process in the initial phase, but declines rapidly on a time scale (t) of 1 Myr. Consequently, the eruption rate takes over the solidification rate, but attains nearly a steady value as t > 1.5 Myr. We finally present a melt budget, where a maximum of ∼5% of the total upwelling melt volume is available for eruption, whereas ∼19% for deeper level solidification; the rest continue to participate in the sub-crustal processes.

  7. Modeling of Melt Growth During Carbothermal Processing of Lunar Regolith

    NASA Technical Reports Server (NTRS)

    Balasubramaniam, R.; Gokoglu S.; Hegde, U.

    2012-01-01

    The carbothermal processing of lunar regolith has been proposed as a means to produce carbon monoxide and ultimately oxygen to support human exploration of the moon. In this process, gaseous methane is pyrolyzed as it flows over the hot surface of a molten zone of lunar regolith and is converted to carbon and hydrogen. Carbon gets deposited on the surface of the melt, and mixes and reacts with the metal oxides in it to produce carbon monoxide that bubbles out of the melt. Carbon monoxide is further processed in other reactors downstream to ultimately produce oxygen. The amount of oxygen produced crucially depends on the amount of regolith that is molten. In this paper we develop a model of the heat transfer in carbothermal processing. Regolith in a suitable container is heated by a heat flux at its surface such as by continuously shining a beam of solar energy or a laser on it. The regolith on the surface absorbs the energy and its temperature rises until it attains the melting point. The energy from the heat flux is then used for the latent heat necessary to change phase from solid to liquid, after which the temperature continues to rise. Thus a small melt pool appears under the heated zone shortly after the heat flux is turned on. As time progresses, the pool absorbs more heat and supplies the energy required to melt more of the regolith, and the size of the molten zone increases. Ultimately, a steady-state is achieved when the heat flux absorbed by the melt is balanced by radiative losses from the surface. In this paper, we model the melting and the growth of the melt zone with time in a bed of regolith when a portion of its surface is subjected to a constant heat flux. The heat flux is assumed to impinge on a circular area. Our model is based on an axisymmetric three-dimensional variation of the temperature field in the domain. Heat transfer occurs only by conduction, and effects of convective heat transport are assumed negligible. Radiative heat loss from the surface of the melt and the regolith to the surroundings is permitted. We perform numerical computations to determine the shape and the mass of the melt at steady state and its time evolution. We first neglect the volume change upon melting, and subsequently perform calculations including it. Predictions from our model are compared to test data to determine the effective thermal conductivities of the regolith and the melt that are compatible with the data

  8. Development of advanced Czochralski growth process to produce low cost 150 kg silicon ingots from a single crucible for technology readiness

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The design and development of an advanced Czochralski crystal grower are described. Several exhaust gas analysis system equipment specifications studied are discussed. Process control requirements were defined and design work began on the melt temperature, melt level, and continuous diameter control. Sensor development included assembly and testing of a bench prototype of a diameter scanner system.

  9. Fluid outflows from Venus impact craters - Analysis from Magellan data

    NASA Technical Reports Server (NTRS)

    Asimow, Paul D.; Wood, John A.

    1992-01-01

    Many impact craters on Venus have unusual outflow features originating in or under the continuous ejecta blankets and continuing downhill into the surrounding terrain. These features clearly resulted from flow of low-viscosity fluids, but the identity of those fluids is not clear. In particular, it should not be assumed a priori that the fluid is an impact melt. A number of candidate processes by which impact events might generate the observed features are considered, and predictions are made concerning the rheological character of flows produce by each mechanism. A sample of outflows was analyzed using Magellan images and a model of unconstrained Bingham plastic flow on inclined planes, leading to estimates of viscosity and yield strength for the flow materials. It is argued that at least two different mechanisms have produced outflows on Venus: an erosive, channel-forming process and a depositional process. The erosive fluid is probably an impact melt, but the depositional fluid may consist of fluidized solid debris, vaporized material, and/or melt.

  10. Flat-plate solar-array project. Experimental process system development unit for producing semiconductor-grade silicon using the silane-to-silicon process

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The engineering design, fabrication, assembly, operation, economic analysis, and process support R and D for an Experimental Process System Development Unit (EPSDU) are reported. About 95% of purchased equipment is received and will be reshipped to the West Coast location. The Data Collection System is completed. In the area of melting/consolidation, to the system using silicon powder transfer, melting and shotting on a pseudocontinuous basis is demonstrated. It is proposed to continue the very promising fluid bed work.

  11. Mantle Flow and Melting Processes Beneath Back-Arc Basins

    NASA Astrophysics Data System (ADS)

    Hall, P. S.

    2007-12-01

    The chemical systematics of back-arc basin basalts suggest that multiple mechanisms of melt generation and transport operate simultaneously beneath the back-arc, resulting in a continuum of melts ranging from a relatively dry, MORB-like end-member to a wet, slab-influenced end-member [e.g., Kelley et al., 2006; Langmuir et al., 2006]. Potential melting processes at work include adiabatic decompression melting akin to that at mid-ocean ridges, diapiric upwelling of hydrous and/or partially molten mantle from above the subducting lithospheric slab [e.g., Marsh, 1979; Hall and Kincaid, 2001; Gerya and Yuen, 2003], and melting of back-arc mantle due to a continuous flux of slab-derived hydrous fluid [Kelley et al., 2006]. In this study, we examine the potential for each of these melting mechanisms to contribute to the observed distribution of melts in back-arc basins within the context of upper mantle flow (driven by plate motions) beneath back-arcs, which ultimately controls temperatures within the melting region. Mantle velocities and temperatures are derived from numerical geodynamic models of subduction with back-arc spreading that explicitly include adiabatic decompression melting through a Lagrangian particle scheme and a parameterization of hydrous melting. Dynamical feedback from the melting process occurs through latent heating and viscosity increases related to dehydration. A range of parameters, including subduction rate and trench-back-arc separation distances, is explored. The thermal evolution of individual diapirs is modeled numerically as they traverse the mantle, from nucleation above the subducting slab to melting beneath the back-arc spreading center, and a range of diapir sizes and densities and considered.

  12. Demonstration of pharmaceutical tablet coating process by injection molding technology.

    PubMed

    Puri, Vibha; Brancazio, David; Harinath, Eranda; Martinez, Alexander R; Desai, Parind M; Jensen, Keith D; Chun, Jung-Hoon; Braatz, Richard D; Myerson, Allan S; Trout, Bernhardt L

    2018-01-15

    We demonstrate the coating of tablets using an injection molding (IM) process that has advantage of being solvent free and can provide precision coat features. The selected core tablets comprising 10% w/w griseofulvin were prepared by an integrated hot melt extrusion-injection molding (HME-IM) process. Coating trials were conducted on a vertical injection mold machine. Polyethylene glycol and polyethylene oxide based hot melt extruded coat compositions were used. Tablet coating process feasibility was successfully demonstrated using different coating mold designs (with both overlapping and non-overlapping coatings at the weld) and coat thicknesses of 150 and 300 μm. The resultant coated tablets had acceptable appearance, seal at the weld, and immediate drug release profile (with an acceptable lag time). Since IM is a continuous process, this study opens opportunities to develop HME-IM continuous processes for transforming powder to coated tablets. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Chicxulub Impact Melts: Geochemical Signatures of Target Lithology Mixing and Post-Impact Hydrothermal Fluid Processes

    NASA Technical Reports Server (NTRS)

    Kring, David A.; Zurcher, Lukas; Horz, Freidrich; Mertzmann, Stanley A.

    2004-01-01

    Impact melts within complex impact craters are generally homogeneous, unless they differentiated, contain immiscible melt components, or were hydrothermally altered while cooling. The details of these processes, however, and their chemical consequences, are poorly understood. The best opportunity to unravel them may lie with the Chicxulub impact structure, because it is the world s most pristine (albeit buried) large impact crater. The Chicxulub Scientific Drilling Project recovered approx. 100 meters of impactites in a continuous core from the Yaxcopoil-1 (YAX-1) borehole. This dramatically increased the amount of melt available for analyses, which was previously limited to two small samples N17 and N19) recovered from the Yucatan-6 (Y-6) borehole and one sample (N10) recovered from the Chicxulub-1 (C-1) borehole. In this study, we describe the chemical compositions of six melt samples over an approx. 40 m section of the core and compare them to previous melt samples from the Y-6 and C-1 boreholes.

  14. A Mathematical Model for Continuous Fiber Reinforced Thermoplastic Composite in Melt Impregnation

    NASA Astrophysics Data System (ADS)

    Ren, Feng; Yu, Yang; Yang, Jianjun; Xin, Chunling; He, Yadong

    2017-06-01

    Through the combination of Reynolds equation and Darcy's law, a mathematical model was established to calculate the pressure distribution in wedge area, which contributed to the forecast effect of processing parameters on impregnation degree of the fiber bundle. The experiments were conducted to verify the capacity of the proposed model with satisfactory results, which means that the model is effective in predicting the influence of processing parameters on impregnation. From the mathematical model, it was known that the impregnation degree of the fiber bundle would be improved by increasing the processing temperature, number and radius of pins, or decreasing the pulling speed and the center distance of pins, which provided a possible solution to the difficulty of melt with high viscosity in melt impregnation and optimization of impregnation processing.

  15. The role of volatiles and lithology in the impact cratering process

    NASA Technical Reports Server (NTRS)

    Kieffer, S. W.; Simonds, C. H.

    1980-01-01

    A survey of published descriptions of 32 of the largest, least eroded terrestrial impact structures shows that the amount of melt at craters in crystalline rocks is approximately two orders of magnitude greater than that at craters in sedimentary rocks. A model is proposed for the impact process, and it is examined whether the difference in melt abundance is due to differences in the amount of melt generated in various target materials or due to differences in the fate of the melt during late stages of the impact. The model accounts semiquantitatively for the effects of porosity and water and volatile content on the cratering process. Important features of the model are noted. Even if the recondensation of released volatiles is very efficient, the cumulative effect of repeated impacts on accreting planets would be to continually transfer volatiles toward the outer surface. By this process, volatiles might be enriched toward the outer layer of a growing planet.

  16. Modeling and Experiment of Melt Impregnation of Continuous Fiber-reinforced Thermoplastic with Pins

    NASA Astrophysics Data System (ADS)

    Yang, Jian-Jun; Xin, Chun-Ling; Tang, Ke; Zhang, Zhi-Cheng; Yan, Bao-Rui; Ren, Feng; He, Ya-Dong

    2016-05-01

    Melt impregnation is a crucial method for continuous fiber-reinforced thermoplastic. It was developed several years ago for thermosetting plastic, but it is very popular now in the thermoplastic matrices, with a much higher viscosity. In this paper, we propose a mathematic model based on Darcy's law, which combined with processing parameters and material physical parameters. Then we use this model to predict the influence of processing parameters on the degree of impregnation of the prepreg, and the trend of prediction is consistent with the experimental results. Therefore, the exhaustive numerical study enables to define the optimal processing conditions for a perfect impregnation. The results are shown to be effective tools for finding optimal pulling speed, pin number and pressure for a given fluid/fibers pair.

  17. Melting Processes at the Base of the Mantle Wedge: Melt Compositions and Melting Reactions for the First Melts of Vapor-Saturated Lherzolite

    NASA Astrophysics Data System (ADS)

    Grove, T. L.; Till, C. B.

    2014-12-01

    Vapor-saturated melting experiments have been performed at pressures near the base of the mantle wedge (3.2 GPa). The starting composition is a metasomatized lherzolite containing 3 wt. % H2O. Near-solidus melts and coexisting mineral phases have been characterized in experiments that span 925 to 1100 oC with melt % varying from 6 to 9 wt. %. Olivine, orthopyroxene, clinopyroxene and garnet coexist with melt over the entire interval and rutile is also present at < 1000 oC. Melt is andesitic in composition and varies from 60 wt. % SiO2 at 950 oC to 52 wt. % at 1075 oC. The Al2O3 contents of the melt are 13 to 14 wt. %, and CaO contents range from 1 and 4 wt. %. Melting is peritectic with orthopyroxene + liquid produced by melting of garnet + olivine + high-Ca pyroxene. In addition to quenched melt, we observe a quenched silicate component that is rhyolitic (>72 % SiO2) that we interpret as a precipitate from the coexisting supercritical H2O-rich vapor. Extrapolation of the measured compositional variation toward the solidus suggests that the first melt may be very SiO2 rich (i.e., granitic). We suggest that these granitic melts are the first melts of the mantle near the slab-wedge interface. As these SiO2-rich melts ascend into shallower, hotter overlying mantle, they continue to interact with the surrounding mantle and evolve in composition. These first melts may elucidate the geochemical and physical processes that accompany the beginnings of H2O flux melting.

  18. History dependent crystallization of Zr41Ti14Cu12Ni10Be23 melts

    NASA Astrophysics Data System (ADS)

    Schroers, Jan; Johnson, William L.

    2000-07-01

    The crystallization of Zr41Ti14Cu12Ni10Be23 (Vit 1) melts during constant heating is investigated. (Vit 1) melts are cooled with different rates into the amorphous state and the crystallization temperature upon subsequent heating is studied. In addition, Vit 1 melts are cooled using a constant rate to different temperatures and subsequently heated from this temperature with a constant rate. We investigate the influence of the temperature to which the melt was cooled on the crystallization temperature measured upon heating. In both cases the onset temperature of crystallization shows strong history dependence. This can be explained by an accumulating process during cooling and heating. An attempt is made to consider this process in a simple model by steady state nucleation and subsequent growth of the nuclei which results in different crystallization kinetics during cooling or heating. Calculations show qualitative agreement with the experimental results. However, calculated and experimental results differ quantitatively. This difference can be explained by a decomposition process leading to a nonsteady nucleation rate which continuously increases with decreasing temperature.

  19. Challenges in Melt Furnace Tests

    NASA Astrophysics Data System (ADS)

    Belt, Cynthia

    2014-09-01

    Measurement is a critical part of running a cast house. Key performance indicators such as energy intensity, production (or melt rate), downtime (or OEE), and melt loss must all be understood and monitored on a weekly or monthly basis. Continuous process variables such as bath temperature, flue temperature, and furnace pressure should be used to control the furnace systems along with storing the values in databases for later analysis. While using measurement to track furnace performance over time is important, there is also a time and place for short-term tests.

  20. Numerical simulation and experimental investigation of Ti-6Al-4V melted by CW fiber laser at different pressures

    NASA Astrophysics Data System (ADS)

    Tabassum, Aasma; Zhou, Jie; Han, Bing; Ni, Xiao-wu; Sardar, Maryam

    2017-07-01

    The interaction of continuous wave (CW) fiber laser with Ti-6Al-4V alloy is investigated numerically and experimentally at different laser fluence values and ambient pressures of N2 atmosphere to determine the melting time threshold of Ti-6Al-4V alloy. A 2D-axisymmetric numerical model considering heat transfer and laminar flow is established to describe the melting process. The simulation results indicate that material melts earlier at lower pressure (8.0 Pa) than at higher pressure (8.8×104 Pa) in several milliseconds with the same laser fluence. The experimental results demonstrate that the melting time threshold at high laser fluence (above 1.89×108 W/m2) is shorter for lower pressure (vacuum), which is consistent with the simulation. While the melting time threshold at low laser fluence (below 1.89×108 W/m2) is shorter for higher pressure. The possible aspects which can affect the melting process include the increased heat loss induced by the heat conduction between the metal surface and the ambient gas with the increased pressure, and the absorption variation of the coarse surface resulted from the chemical reaction.

  1. Coupled petrological-geodynamical modeling of a compositionally heterogeneous mantle plume

    NASA Astrophysics Data System (ADS)

    Rummel, Lisa; Kaus, Boris J. P.; White, Richard W.; Mertz, Dieter F.; Yang, Jianfeng; Baumann, Tobias S.

    2018-01-01

    Self-consistent geodynamic modeling that includes melting is challenging as the chemistry of the source rocks continuously changes as a result of melt extraction. Here, we describe a new method to study the interaction between physical and chemical processes in an uprising heterogeneous mantle plume by combining a geodynamic code with a thermodynamic modeling approach for magma generation and evolution. We pre-computed hundreds of phase diagrams, each of them for a different chemical system. After melt is extracted, the phase diagram with the closest bulk rock chemistry to the depleted source rock is updated locally. The petrological evolution of rocks is tracked via evolving chemical compositions of source rocks and extracted melts using twelve oxide compositional parameters. As a result, a wide variety of newly generated magmatic rocks can in principle be produced from mantle rocks with different degrees of depletion. The results show that a variable geothermal gradient, the amount of extracted melt and plume excess temperature affect the magma production and chemistry by influencing decompression melting and the depletion of rocks. Decompression melting is facilitated by a shallower lithosphere-asthenosphere boundary and an increase in the amount of extracted magma is induced by a lower critical melt fraction for melt extraction and/or higher plume temperatures. Increasing critical melt fractions activates the extraction of melts triggered by decompression at a later stage and slows down the depletion process from the metasomatized mantle. Melt compositional trends are used to determine melting related processes by focusing on K2O/Na2O ratio as indicator for the rock type that has been molten. Thus, a step-like-profile in K2O/Na2O might be explained by a transition between melting metasomatized and pyrolitic mantle components reproducible through numerical modeling of a heterogeneous asthenospheric mantle source. A potential application of the developed method is shown for the West Eifel volcanic field.

  2. Comparison of lead removal behaviors and generation of water-soluble sodium compounds in molten lead glass under a reductive atmosphere

    NASA Astrophysics Data System (ADS)

    Okada, Takashi; Nishimura, Fumihiro; Xu, Zhanglian; Yonezawa, Susumu

    2018-06-01

    We propose a method of reduction-melting at 1000 °C, using a sodium-based flux, to recover lead from cathode-ray tube funnel glass. To recover the added sodium from the treated glass, we combined a reduction-melting process with a subsequent annealing step at 700 °C, generating water-soluble sodium compounds in the molten glass. Using this combined process, this study compares lead removal behavior and the generation of water-soluble sodium compounds (sodium silicates and carbonates) in order to gain fundamental information to enhance the recovery of both lead and sodium. We find that lead removal increases with increasing melting time, whereas the generation efficiency of water-soluble sodium increases and decreases periodically. In particular, near 90% lead removal, the generation of water-soluble sodium compounds decreased sharply, increasing again with the prolongation of melting time. This is due to the different crystallization and phase separation efficiencies of water-soluble sodium in molten glass, whose structure continuously changes with lead removal. Previous studies used a melting time of 60 min in the processes. However, in this study, we observe that a melting time of 180 min enhances the water-soluble sodium generation efficiency.

  3. Unlocking the Secrets of the Mantle Wedge: New Insights Into Melt Generation Processes in Subduction Zones

    NASA Astrophysics Data System (ADS)

    Grove, T. L.

    2007-05-01

    Recent laboratory studies of the melting and crystallization behavior of mantle peridotite and subduction zone lavas have led to new insights into melting processes in island arc settings. Melting of the mantle wedge in the presence of H2O begins at much lower temperatures than previously thought. The solidus of mantle peridotite at 3 GPa is ~ 800 °C, which is 200 °C below previous estimates. At pressures greater than 2.4 GPa chlorite becomes a stable phase on the solidus and it remains stable until ~ 3.5 GPa. Therefore, melting over this pressure range occurs in the presence of chlorite, which contains ~ 12 wt. % H2O. Chlorite stabilized on the peridotite solidus by slab-derived H2O may be the ultimate source of H2O for subduction zone magmatism. Thus, chlorite could transport large amounts of H2O into the descending mantle wedge to depths where it can participate in melting to generate hydrous arc magmas. Our ability to identify primitive mantle melts at subduction zones has led to the following observations. 1) Primitive mantle melts show evidence of final equilibration at shallow depths near the mantle - crust boundary. 2) They contain variable amounts of dissolved H2O (up to 6 wt. %). 3) They record variable extents of melting (up to > 25 wt. %). To produce melts with such variable characteristics requires more than one melting process and requires consideration of a new type of melting called hydrous flux melting. Flux melting occurs when the H2O - rich melt initially produced on the solidus near the base of the mantle wedge ascends and continuously reacts with overlying hotter, shallower mantle. The mantle melts and magmatic H2O content is constantly diluted as the melt ascends and reacts with shallower, hotter mantle. Anhydrous mantle melts are also found in close temporal and spatial proximity to hydrous flux melts. These melts are extracted at similar depths near the top of the mantle wedge when mantle is advected up and into the wedge corner and melted by adiabatic decompression. In light of these new insights into the chemical processes that lead to melt generation in subduction zones, further study of the influence of mantle dynamics and physical processes on melting is crucial. Variations in mantle permeability near the base of the wedge may exercise important controls on the access of fluids and/or melts to the overlying wedge. The presence of chlorite in the wedge may also influence rheological properties and seismicity in the vicinity of the slab - wedge interface. Improved knowledge of rheology and permeability will help us to develop more robust models of mantle flow and temperature distribution in the mantle wedge. These are crucial for refining melting models. By combining evidence from petrology, geochemistry and geophysics the mysteries that attend the generation of melt in the mantle wedge can be resolved.

  4. Transient experiments with thermite melts for a core catcher concept based on water addition from below

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tromm, W.; Alsmeyer, H.

    1995-09-01

    A core catcher concept is proposed to be integrated into a new pressurized water reactor. The core catcher achieves coolability by spreading and fragmentation of the ex-vessel core melt based on a process of water inlet from the bottom through the melt. By highly effective heat removal that uses evaporating water in direct contact with the fragmented melt, the corium melt would solidify in a short time period, and long-term cooling could be maintained by continuous water evaporation from the flooded porous or fragmented corium bed. The key process for obtaining coolability is the coupling of the three effects: (a)more » water ingression from below and its evaporation, (b) break up and fragmentation of the corium layer, and (c) heat transfer and solidification of the let. These mechanisms are investigated in transient medium-scale experiments with thermite melts. The experimental setup represents a section of the proposed core catcher design. A thermite melt is located on the core catcher plate with a passive water supply from the bottom. After generation of the melt, the upper sacrificial layer is eroded until water penetrates into the melt for the bottom through plugs in the supporting plate. Fragmentation and fast solidification of the melt are observed, and long-term heat removal is guaranteed by the coolant water flooding the porous melt. Water inflow is sufficient to safely remove the decay heat in a comparable corium layer. The open porosity is created by the vapor streaming through the melt during the solidification process. Fracture of the solid by thermomechanical stresses is not observed. The experiments in their current stage show the principal feasibility of the proposed cooling concept and are used to prepare large-scale experiments to be performed in the modified BETA facility with sustained heating of the melt.« less

  5. History dependent crystallization of Zr{sub 41}Ti{sub 14}Cu{sub 12}Ni{sub 10}Be{sub 23} melts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schroers, Jan; Johnson, William L.

    The crystallization of Zr{sub 41}Ti{sub 14}Cu{sub 12}Ni{sub 10}Be{sub 23} (Vit 1) melts during constant heating is investigated. (Vit 1) melts are cooled with different rates into the amorphous state and the crystallization temperature upon subsequent heating is studied. In addition, Vit 1 melts are cooled using a constant rate to different temperatures and subsequently heated from this temperature with a constant rate. We investigate the influence of the temperature to which the melt was cooled on the crystallization temperature measured upon heating. In both cases the onset temperature of crystallization shows strong history dependence. This can be explained by anmore » accumulating process during cooling and heating. An attempt is made to consider this process in a simple model by steady state nucleation and subsequent growth of the nuclei which results in different crystallization kinetics during cooling or heating. Calculations show qualitative agreement with the experimental results. However, calculated and experimental results differ quantitatively. This difference can be explained by a decomposition process leading to a nonsteady nucleation rate which continuously increases with decreasing temperature. (c) 2000 American Institute of Physics.« less

  6. Melt Heterogeneity and Degassing at MT Etna from Melt Inclusions

    NASA Astrophysics Data System (ADS)

    Salem, L. C.; Edmonds, M.; Maclennan, J.; Corsaro, R. A.

    2014-12-01

    The melts feeding Mt Etna, Italy, are rich in volatiles and drive long-lasting powerful eruptions of basaltic magma in both effusive and explosive styles of activity. The volatile systematics of the volcanic system are well understood through melt inclusion and volcanic gas studies. Etna's melts are generated from a complex mantle setting, with subduction-related chemical modifications as well as OIB-type features, and then the melts must travel through thick carbonate-rich crust. The continual influx of mantle-derived volatile-rich magma controls the major compositional and eruptive features of Mount Etna and magma mixing has been recognized as an important process driving large eruptions [Kamenetsky, 2007]. Our study focusses on the 1669 eruption, the largest in historical times. Olivine-hosted melt inclusions were analyzed for volatile, trace and major elements using electron microprobe and ion probe (SIMS). We use volatile systematics and geochemical data to deconvolve mantle-derived heterogeneity from melt mixing and crystal fractionation. Our data are well described by a mixing trend between two distinct melts: a CO2-rich (CO2~1000ppm), incompatible trace element depleted melt (La/Yb~16), and a CO2-poor, enriched melt. The mixing also generates a strong correlation between Sr and CO2 in the melt inclusions dataset, reflecting the presence of a strong Sr anomaly in one of the end-member melts. We investigate the origin of this Sr anomaly by considering plagioclase dissolution and crustal assimilation. We also investigate degassing processes in the crust and plumbing system of the volcano. We compare our results with similar studies of OIB and arc-related basalts elsewhere and assess the implications for linking eruption size and style with the nature of the mantle-derived melts. Kamenetsky et al. (2007) Geology 35, 255-258.

  7. Solid State Research.

    DTIC Science & Technology

    1982-11-22

    48 Fabricated in Zone-Melting-Recrystallized Si Films on Si0 2-Coated Si Substrates V 4. MICROELECTRONICS 55 4.1 Charge-Coupled Devices: Time...OMCVD to the CLEFT (cleavage of lateral epitaxial films for transfer) process, a continuous epitaxial GaAs layer 3 Ym thick has been grown over a...complete-island-etch or local-oxidation-of-Si isolation, that were fabricated in zone-melting-recrystallized Si films on Si02-coated Si substrates. As

  8. 40 CFR 98.147 - Records that must be retained.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Glass Production § 98.147 Records that must be retained. In... paragraphs (a)(1) and (a)(2) of this section: (1) Monthly glass production rate for each continuous glass... glass melting furnace (tons). (b) If process CO2 emissions are calculated according to the procedures...

  9. 40 CFR 98.147 - Records that must be retained.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Glass Production § 98.147 Records that must be retained. In... paragraphs (a)(1) and (a)(2) of this section: (1) Monthly glass production rate for each continuous glass... glass melting furnace (tons). (b) If process CO2 emissions are calculated according to the procedures...

  10. 40 CFR 98.142 - GHGs to report.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... GREENHOUSE GAS REPORTING Glass Production § 98.142 GHGs to report. You must report: (a) CO2 process emissions from each continuous glass melting furnace. (b) CO2 combustion emissions from each continuous glass... calculate and report these emissions under subpart C of this part (General Stationary Fuel Combustion...

  11. 40 CFR 98.142 - GHGs to report.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... GREENHOUSE GAS REPORTING Glass Production § 98.142 GHGs to report. You must report: (a) CO2 process emissions from each continuous glass melting furnace. (b) CO2 combustion emissions from each continuous glass... calculate and report these emissions under subpart C of this part (General Stationary Fuel Combustion...

  12. 40 CFR 98.142 - GHGs to report.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... GREENHOUSE GAS REPORTING Glass Production § 98.142 GHGs to report. You must report: (a) CO2 process emissions from each continuous glass melting furnace. (b) CO2 combustion emissions from each continuous glass... calculate and report these emissions under subpart C of this part (General Stationary Fuel Combustion...

  13. Igneous rocks formed by hypervelocity impact

    NASA Astrophysics Data System (ADS)

    Osinski, Gordon R.; Grieve, Richard A. F.; Bleacher, Jacob E.; Neish, Catherine D.; Pilles, Eric A.; Tornabene, Livio L.

    2018-03-01

    Igneous rocks are the primary building blocks of planetary crusts. Most igneous rocks originate via decompression melting and/or wet melting of protolith lithologies within planetary interiors and their classification and compositional, petrographic, and textural characteristics, are well-studied. As our exploration of the Solar System continues, so too does the inventory of intrusive and extrusive igneous rocks, settings, and processes. The results of planetary exploration have also clearly demonstrated that impact cratering is a ubiquitous geological process that has affected, and will continue to affect, all planetary objects with a solid surface, whether that be rock or ice. It is now recognized that the production of igneous rocks is a fundamental outcome of hypervelocity impact. The goal of this review is to provide an up-to-date synthesis of our knowledge and understanding of igneous rocks formed by hypervelocity impact. Following a brief overview of the basics of the impact process, we describe how and why melts are generated during impact events and how impact melting differs from endogenic igneous processes. While the process may differ, we show that the products of hypervelocity impact can share close similarities with volcanic and shallow intrusive igneous rocks of endogenic origin. Such impact melt rocks, as they are termed, can display lobate margins and cooling cracks, columnar joints and at the hand specimen and microscopic scale, such rocks can display mineral textures that are typical of volcanic rocks, such as quench crystallites, ophitic, porphyritic, as well as features such as vesicles, flow textures, and so on. Historically, these similarities led to the misidentification of some igneous rocks now known to be impact melt rocks as being of endogenic origin. This raises the question as to how to distinguish between an impact versus an endogenic origin for igneous-like rocks on other planetary bodies where fieldwork and sample analysis may not be possible and all that may be available is remote sensing data. While the interpretation of some impact melt rocks may be relatively straightforward (e.g., for clast-rich varieties and those with clear projectile contamination) we conclude that distinguishing between impact and endogenic igneous rocks is a non-trivial task that ultimately may require sample investigation and analysis to be conducted. Caution is, therefore, urged in the interpretation of igneous rocks on planetary surfaces.

  14. Numerical analysis of the heating phase and densification mechanism in polymers selective laser melting process

    NASA Astrophysics Data System (ADS)

    Mokrane, Aoulaiche; Boutaous, M'hamed; Xin, Shihe

    2018-05-01

    The aim of this work is to address a modeling of the SLS process at the scale of the part in PA12 polymer powder bed. The powder bed is considered as a continuous medium with homogenized properties, meanwhile understanding multiple physical phenomena occurring during the process and studying the influence of process parameters on the quality of final product. A thermal model, based on enthalpy approach, will be presented with details on the multiphysical couplings that allow the thermal history: laser absorption, melting, coalescence, densification, volume shrinkage and on numerical implementation using FV method. The simulations were carried out in 3D with an in-house developed FORTRAN code. After validation of the model with comparison to results from literature, a parametric analysis will be proposed. Some original results as densification process and the thermal history with the evolution of the material, from the granular solid state to homogeneous melted state will be discussed with regards to the involved physical phenomena.

  15. Turbine blade processing

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Space processing of directionally solidified eutectic-alloy type turbine blades is envisioned as a simple remelt operations in which precast blades are remelted in a preformed mold. Process systems based on induction melting, continuous resistance furnaces, and batch resistance furnaces were evaluated. The batch resistance furnace type process using a multiblade mold is considered to offer the best possibility for turbine blade processing.

  16. Magma mixing and high fountaining during the 1959 Kīlauea Iki eruption, Hawai‘i

    USGS Publications Warehouse

    Sides, I.; Edmonds, M.; Maclennan, J.; Houghton, Bruce F.; Swanson, Don; Steele-MacInnis, M.J.

    2014-01-01

    The 1959 Kīlauea Iki eruption provides a unique opportunity to investigate the process of shallow magma mixing, its impact on the magmatic volatile budget and its role in triggering and driving episodes of Hawaiian fountaining. Melt inclusions hosted by olivine record a continuous decrease in H2O concentration through the 17 episodes of the eruption, while CO2 concentrations correlate with the degree of post-entrapment crystallization of olivine on the inclusion walls. Geochemical data, when combined with the magma budget and with contemporaneous eruption observations, show complex mixing between episodes involving hot, geochemically heterogeneous melts from depth, likely carrying exsolved vapor, and melts which had erupted at the surface, degassed and drained-back into the vent. The drained-back melts acted as a coolant, inducing rapid cooling of the more primitive melts and their olivines at shallow depths and inducing crystallization and vesiculation and triggering renewed fountaining. A consequence of the mixing is that the melts became vapor-undersaturated, so equilibration pressures cannot be inferred from them using saturation models. After the melt inclusions were trapped, continued growth of vapor bubbles, caused by enhanced post-entrapment crystallization, sequestered a large fraction of CO2 from the melt within the inclusions. This study, while cautioning against accepting melt inclusion CO2 concentrations “as measured” in mixed magmas, also illustrates that careful analysis and interpretation of post-entrapment modifications can turn this apparent challenge into a way to yield novel useful insights into the geochemical controls on eruption intensity.

  17. Silicon web process development

    NASA Technical Reports Server (NTRS)

    Duncan, C. S.; Seidensticker, R. G.; Mchugh, J. P.; Hill, F. E.; Skutch, M. E.; Driggers, J. M.; Hopkins, R. H.

    1980-01-01

    A barrier crucible design which consistently maintains melt stability over long periods of time was successfully tested and used in long growth runs. The pellet feeder for melt replenishment was operated continuously for growth runs of up to 17 hours. The liquid level sensor comprising a laser/sensor system was operated, performed well, and meets the requirements for maintaining liquid level height during growth and melt replenishment. An automated feedback loop connecting the feed mechanism and the liquid level sensing system was designed and constructed and operated successfully for 3.5 hours demonstrating the feasibility of semi-automated dendritic web growth. The sensitivity of the cost of sheet, to variations in capital equipment cost and recycling dendrites was calculated and it was shown that these factors have relatively little impact on sheet cost. Dendrites from web which had gone all the way through the solar cell fabrication process, when melted and grown into web, produce crystals which show no degradation in cell efficiency. Material quality remains high and cells made from web grown at the start, during, and the end of a run from a replenished melt show comparable efficiencies.

  18. Experimental Constraints on the Chemical Differentiation of Mercurys Mantle

    NASA Technical Reports Server (NTRS)

    Boujibar, A.; Righter, K.; Pando, K.; Danielson, L.

    2015-01-01

    Mercury is known as being the most reduced terrestrial planet with the highest core/mantle ratio. Results from MESSENGER spacecraft have shown that its surface is FeO-poor (2-4 wt%) and S-rich (up to 6-7 wt%), which confirms the reducing nature of its silicate mantle. In addition several features suggest important melting stages of the Mercurian mantle: widespread volcanic deposits on its surface, a high crustal thickness (approximately 10% of the planet's volume) and chemical compositions of its surface suggesting several stages of differentiation and remelting processes. Therefore it is likely that igneous processes like magma ocean crystallization and continuous melting have induced chemical and mineralogical heterogeneities in the Mercurian mantle. The extent and nature of compositional variations produced by partial melting remains poorly constrained for the particular compositions of Mercury (very reducing conditions, low FeO-contents and high sulfur-contents). Melting experiments with bulk Mercury-analogue compositions are scarce and with poorly con-trolled starting compositions. Therefore additional experimental data are needed to better understand the differentiation processes that lead to the observed chemical compositions of Mercury's surface.

  19. 40 CFR 98.143 - Calculating GHG emissions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Fuel Combustion Sources). (2) Calculate and report the process and combustion CO2 emissions separately... Fuel Combustion Sources) the combustion CO2 emissions in the glass furnace according to the applicable... calculate and report the annual process CO2 emissions from each continuous glass melting furnace using the...

  20. 40 CFR 98.143 - Calculating GHG emissions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Fuel Combustion Sources). (2) Calculate and report the process and combustion CO2 emissions separately... Fuel Combustion Sources) the combustion CO2 emissions in the glass furnace according to the applicable... calculate and report the annual process CO2 emissions from each continuous glass melting furnace using the...

  1. Challenges and Strategies in Thermal Processing of Amorphous Solid Dispersions: A Review.

    PubMed

    LaFountaine, Justin S; McGinity, James W; Williams, Robert O

    2016-02-01

    Thermal processing of amorphous solid dispersions continues to gain interest in the pharmaceutical industry, as evident by several recently approved commercial products. Still, a number of pharmaceutical polymer carriers exhibit thermal or viscoelastic limitations in thermal processing, especially at smaller scales. Additionally, active pharmaceutical ingredients with high melting points and/or that are thermally labile present their own specific challenges. This review will outline a number of formulation and process-driven strategies to enable thermal processing of challenging compositions. These include the use of traditional plasticizers and surfactants, temporary plasticizers utilizing sub- or supercritical carbon dioxide, designer polymers tailored for hot-melt extrusion processing, and KinetiSol® Dispersing technology. Recent case studies of each strategy will be described along with potential benefits and limitations.

  2. Effect of process parameters on formability of laser melting deposited 12CrNi2 alloy steel

    NASA Astrophysics Data System (ADS)

    Peng, Qian; Dong, Shiyun; Kang, Xueliang; Yan, Shixing; Men, Ping

    2018-03-01

    As a new rapid prototyping technology, the laser melting deposition technology not only has the advantages of fast forming, high efficiency, but also free control in the design and production chain. Therefore, it has drawn extensive attention from community.With the continuous improvement of steel performance requirements, high performance low-carbon alloy steel is gradually integrated into high-tech fields such as aerospace, high-speed train and armored equipment.However, it is necessary to further explore and optimize the difficult process of laser melting deposited alloy steel parts to achieve the performance and shape control.This article took the orthogonal experiment on alloy steel powder by laser melting deposition ,and revealed the influence rule of the laser power, scanning speed, powder gas flow on the quality of the sample than the dilution rate, surface morphology and microstructure analysis were carried out.Finally, under the optimum technological parameters, the Excellent surface quality of the alloy steel forming part with high density, no pore and cracks was obtained.

  3. Selective laser melting of Inconel super alloy-a review

    NASA Astrophysics Data System (ADS)

    Karia, M. C.; Popat, M. A.; Sangani, K. B.

    2017-07-01

    Additive manufacturing is a relatively young technology that uses the principle of layer by layer addition of material in solid, liquid or powder form to develop a component or product. The quality of additive manufactured part is one of the challenges to be addressed. Researchers are continuously working at various levels of additive manufacturing technologies. One of the significant powder bed processes for met als is Selective Laser Melting (SLM). Laser based processes are finding more attention of researchers and industrial world. The potential of this technique is yet to be fully explored. Due to very high strength and creep resistance Inconel is extensively used nickel based super alloy for manufacturing components for aerospace, automobile and nuclear industries. Due to law content of Aluminum and Titanium, it exhibits good fabricability too. Therefore the alloy is ideally suitable for selective laser melting to manufacture intricate components with high strength requirements. The selection of suitable process for manufacturing for a specific component depends on geometrical complexity, production quantity, and cost and required strength. There are numerous researchers working on various aspects like metallurgical and micro structural investigations and mechanical properties, geometrical accuracy, effects of process parameters and its optimization and mathematical modeling etc. The present paper represents a comprehensive overview of selective laser melting process for Inconel group of alloys.

  4. Silicate melts density, buoyancy relations and the dynamics of magmatic processes in the upper mantle

    NASA Astrophysics Data System (ADS)

    Sanchez-Valle, Carmen; Malfait, Wim J.

    2016-04-01

    Although silicate melts comprise only a minor volume fraction of the present day Earth, they play a critical role on the Earth's geochemical and geodynamical evolution. Their physical properties, namely the density, are a key control on many magmatic processes, including magma chamber dynamics and volcanic eruptions, melt extraction from residual rocks during partial melting, as well as crystal settling and melt migration. However, the quantitative modeling of these processes has been long limited by the scarcity of data on the density and compressibility of volatile-bearing silicate melts at relevant pressure and temperature conditions. In the last decade, new experimental designs namely combining large volume presses and synchrotron-based techniques have opened the possibility for determining in situ the density of a wide range of dry and volatile-bearing (H2O and CO2) silicate melt compositions at high pressure-high temperature conditions. In this contribution we will illustrate some of these progresses with focus on recent results on the density of dry and hydrous felsic and intermediate melt compositions (rhyolite, phonolite and andesite melts) at crustal and upper mantle conditions (up to 4 GPa and 2000 K). The new data on felsic-intermediate melts has been combined with in situ data on (ultra)mafic systems and ambient pressure dilatometry and sound velocity data to calibrate a continuous, predictive density model for hydrous and CO2-bearing silicate melts with applications to magmatic processes down to the conditions of the mantle transition zone (up to 2773 K and 22 GPa). The calibration dataset consist of more than 370 density measurements on high-pressure and/or water-and CO2-bearing melts and it is formulated in terms of the partial molar properties of the oxide components. The model predicts the density of volatile-bearing liquids to within 42 kg/m3 in the calibration interval and the model extrapolations up to 3000 K and 100 GPa are in good agreement with results from ab initio calculations. The density model has been applied to examine the mineral-melt buoyancy relations at depth and the implications of these results for the dynamics of magma chambers, crystal settling and the stability and mobility of magmas in the upper mantle will be discussed.

  5. 40 CFR 98.143 - Calculating GHG emissions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Stationary Fuel Combustion Sources) the combustion CO2 emissions in the glass furnace according to the... calculate and report the annual process CO2 emissions from each continuous glass melting furnace using the... subpart the combined process and combustion CO2 emissions by operating and maintaining a CEMS to measure...

  6. Dissolution Mechanism for High Melting Point Transition Elements in Aluminum Melt

    NASA Astrophysics Data System (ADS)

    Lee, Young E.; Houser, Stephen L.

    When added cold in aluminum melt, the alloying process for compacts of transition metal elements such as Mn, Fe, Cr, Ni, Ti, Cu, and Zn takes a sequence of incubation, exothermic reactions to form intermetallic compounds, and dispersion of the alloying elements into aluminum melt. The experiments with Cr compacts show that the incubation period is affected by the content of ingredient Al and size of compacts and by size of Cr particles. Incubation period becomes longer as the content of ingredient aluminum in compact decreases, and this prolonged incubation period negatively impacts the dissolution of the alloying elements in aluminum. Once liquid aluminum forms at reaction sites, the exothermic reaction takes place quickly and significantly raises the temperature of the compacts. As the result of it, the compacts swell in volume with a sponge like structure. Such porous structure encourages the penetration of liquid aluminum from the melt. The compacts become weak mechanically, and the alloying elements are dispersed and entrained in aluminum melt as discrete and small sized units. When Cr compacts are deficient in aluminum, the unreacted Cr particles are encased by the intermetallic compounds in the dispersed particles. They are carried in the melt flow and continue the dissolution reaction in aluminum. The entire dissolution process of Cr compacts completes within 10 to 15 minutes with a full recovery when the aluminum content is 10 to 20% in compacts.

  7. Superheating of monolayer ice in graphene nanocapillaries

    NASA Astrophysics Data System (ADS)

    Zhu, YinBo; Wang, FengChao; Wu, HengAn

    2017-04-01

    The freezing and melting of low-dimensional materials, either via a first-order phase transition or without any discontinuity in thermodynamic, still remain a matter of debate. Melting (superheating) in two-dimensional (2D) ice is fundamentally different from that in bulk counterpart. Here, we perform comprehensive molecular dynamics simulations of the superheating of monolayer ice in graphene nanocapillaries to understand the nature of melting transition in 2D water/ice. We find four different superheating (melting) scenarios can happen in the superheating of monolayer square-like ice, which are closely related to the lateral pressure and the channel width. The anomalous two-stage melting transition with arisen coexistence phase is found, which reveals the unknown extraordinary characteristics of melting in 2D water/ice. Under ultrahigh lateral pressure, the intermediate monolayer triangular amorphous ice will be formed during the superheating of monolayer square-like ice with both continuous-like and first-order phase transitions. Whereas, under low lateral pressure, the melting in monolayer square-like ice manifests typical discontinuity with notable hysteresis-loop in potential energy during the heating/cooling process. Moreover, we also find that highly puckered monolayer square-like ice can transform into bilayer AB-stacked amorphous ice with square pattern in the superheating process. The superheating behavior under high lateral pressure can be partly regarded as the compression limit of superheated monolayer water. The intrinsic phenomena in our simulated superheating of monolayer ice may be significant for understanding the melting behavior in 2D water/ice.

  8. Superheating of monolayer ice in graphene nanocapillaries.

    PubMed

    Zhu, YinBo; Wang, FengChao; Wu, HengAn

    2017-04-07

    The freezing and melting of low-dimensional materials, either via a first-order phase transition or without any discontinuity in thermodynamic, still remain a matter of debate. Melting (superheating) in two-dimensional (2D) ice is fundamentally different from that in bulk counterpart. Here, we perform comprehensive molecular dynamics simulations of the superheating of monolayer ice in graphene nanocapillaries to understand the nature of melting transition in 2D water/ice. We find four different superheating (melting) scenarios can happen in the superheating of monolayer square-like ice, which are closely related to the lateral pressure and the channel width. The anomalous two-stage melting transition with arisen coexistence phase is found, which reveals the unknown extraordinary characteristics of melting in 2D water/ice. Under ultrahigh lateral pressure, the intermediate monolayer triangular amorphous ice will be formed during the superheating of monolayer square-like ice with both continuous-like and first-order phase transitions. Whereas, under low lateral pressure, the melting in monolayer square-like ice manifests typical discontinuity with notable hysteresis-loop in potential energy during the heating/cooling process. Moreover, we also find that highly puckered monolayer square-like ice can transform into bilayer AB-stacked amorphous ice with square pattern in the superheating process. The superheating behavior under high lateral pressure can be partly regarded as the compression limit of superheated monolayer water. The intrinsic phenomena in our simulated superheating of monolayer ice may be significant for understanding the melting behavior in 2D water/ice.

  9. Mutual interaction between high and low stereo-regularity components for crystallization and melting behaviors of polypropylene blend fibers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kawai, Kouya; Takarada, Wataru; Kikutani, Takeshi, E-mail: kikutani.t.aa@m.titech.ac.jp

    Crystallization and melting behaviors of blend fibers of two types of polypropylene (PP), i.e. high stereo-regularity/high molecular weight PP (HPP) and low stereo-regularity/low molecular weight PP (LPP), was investigated. Blend fibers consisting of various HPP/LPP compositions were prepared through the melt spinning process. Differential scanning calorimetry (DSC), temperature modulated DSC (TMDSC) and wide-angle X-ray diffraction (WAXD) analysis were applied for clarifying the crystallization and melting behaviors of individual components. In the DSC measurement of blend fibers with high LPP composition, continuous endothermic heat was detected between the melting peaks of LPP at around 40 °C and that of HPP atmore » around 160 °C. Such endothermic heat was more distinct for the blend fibers with higher LPP composition indicating that the melting of LPP in the heating process was hindered because of the presence of HPP crystals. On the other hand, heat of crystallization was detected at around 90 °C in the case of blend fibers with LPP content of 30 to 70 wt%, indicating that the crystallization of HPP component was taking place during the heating of as-spun blend fibers in the DSC measurement. Through the TMDSC analysis, re-organization of the crystalline structure through the simultaneous melting and re-crystallization was detected in the cases of HPP and blend fibers, whereas re-crystallization was not detected during the melting of LPP fibers. In the WAXD analysis during the heating of fibers, amount of a-form crystal was almost constant up to the melting in the case of single component HPP fibers, whereas there was a distinct increase of the intensity of crystalline reflections from around 100 °C, right after the melting of LPP in the case of blend fibers. These results suggested that the crystallization of HPP in the spinning process as well as during the conditioning process after spinning was hindered by the presence of LPP.« less

  10. Use of Gelidium amansii as a promising resource for bioethanol: a practical approach for continuous dilute-acid hydrolysis and fermentation.

    PubMed

    Park, Jeong-Hoon; Hong, Ji-Yeon; Jang, Hyun Chul; Oh, Seung Geun; Kim, Sang-Hyoun; Yoon, Jeong-Jun; Kim, Yong Jin

    2012-03-01

    A facile continuous method for dilute-acid hydrolysis of the representative red seaweed species, Gelidium amansii was developed and its hydrolysate was subsequently evaluated for fermentability. In the hydrolysis step, the hydrolysates obtained from a batch reactor and a continuous reactor were systematically compared based on fermentable sugar yield and inhibitor formation. There are many advantages to the continuous hydrolysis process. For example, the low melting point of the agar component in G. amansii facilitates improved raw material fluidity in the continuous reactor. In addition, the hydrolysate obtained from the continuous process delivered a high sugar and low inhibitor concentration, thereby leading to both high yield and high final ethanol titer in the fermentation process. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Method and apparatus for improved melt flow during continuous strip casting

    DOEpatents

    Follstaedt, Donald W.; King, Edward L.; Schneider, Ken C.

    1991-11-12

    The continuous casting of metal strip using the melt overflow process is improved by controlling the weir conditions in the nozzle to provide a more uniform flow of molten metal across the width of the nozzle and reducing the tendency for freezing of metal along the interface with refractory surfaces. A weir design having a sloped rear wall and tapered sidewalls and critical gap controls beneath the weir has resulted in the drastic reduction in edge tearing and a significant improvement in strip uniformity. The floor of the container vessel is preferably sloped and the gap between the nozzle and the rotating substrate is critically controlled. The resulting flow patterns observed with the improved casting process have reduced thermal gradients in the bath, contained surface slag and eliminated undesirable solidification near the discharge area by increasing the flow rates at those points.

  12. Method and apparatus for improved melt flow during continuous strip casting

    DOEpatents

    Follstaedt, D.W.; King, E.L.; Schneider, K.C.

    1991-11-12

    The continuous casting of metal strip using the melt overflow process is improved by controlling the weir conditions in the nozzle to provide a more uniform flow of molten metal across the width of the nozzle and reducing the tendency for freezing of metal along the interface with refractory surfaces. A weir design having a sloped rear wall and tapered sidewalls and critical gap controls beneath the weir has resulted in the drastic reduction in edge tearing and a significant improvement in strip uniformity. The floor of the container vessel is preferably sloped and the gap between the nozzle and the rotating substrate is critically controlled. The resulting flow patterns observed with the improved casting process have reduced thermal gradients in the bath, contained surface slag and eliminated undesirable solidification near the discharge area by increasing the flow rates at those points. 8 figures.

  13. Models and Experiments of Melt-Rock Interaction in the Lower Oceanic Crust

    NASA Astrophysics Data System (ADS)

    Orton, W. H., II; Liang, Y.; Sanfilippo, A.

    2017-12-01

    Understanding the processes of melt-rock interaction in the lower oceanic crust isimportant to the interpretation of mid-ocean ridge basalt (MORB) and the petrogenesis of lowercrustal cumulates. Petrologic and geochemical studies of cumulates from the lower crustalregions of oceanic lithosphere have identified a number of textural and chemical features that arepertinent to melt-rock reaction (e.g., high-Mg# clinopyroxene oikocrysts within local gabbroicregions in troctolite bodies). The purpose of the present study is to provide some referenceexamples of MORB melt and cumulate mush interaction under controlled conditions. Suchsimple experiments are useful in sorting out crystallization, dissolution, re-precipitation, anddiffusion processes in the cumulate mush and in developing better models for melt transport andmelt-rock interaction in the lower oceanic crust.We performed piston cylinder experiments at 0.5-0.7 GPa and 1000-1250°C reacting anolivine or olivine + plagioclase cumulate mush and an intruding MORB melt in a graphite-linedmolybdenum capsule. Our experiments consist of two steps: (1) reaction at 1250°C for 10 to 24hours; and (2) reactive crystallization to a lower temperature through controlled cooling overseveral days. Cooling promotes in situ crystallization of interstitial melts, allowing us to bettercharacterize the mineral compositional trends produced and observed by melt-rock reaction andcrystallization. Reaction at 1250°C produced an olivine + melt mush with small rounded crystalscharacteristic of dissolution. Significant crystal settling was also observed at large melt-to- rockratio. Cooling with continued reaction resulted in the formation of a plagioclase matrix withpoikilitic clinopyroxene oikocrysts containing plagioclase and relict olivine as chadacrysts.Clinopyroxenes were in a reaction relationship with both plagioclase and olivine. In somesamples, multiple phases of clinopyroxene and plagioclase were present, each with differentcompositions, similar to those observed in the field-based studies. With these insights, a modelfor melt transport and melt-rock interaction in the lower oceanic crust has been developed andwill be used to study major and trace element fractionation during reactive melt migration in thecumulate mush.

  14. Physical phenomena in containerless glass processing

    NASA Technical Reports Server (NTRS)

    Subramanian, R. S.; Cole, R.; Annamalai, P.; Jayaraj, K.; Kondos, P.; Mcneil, T. J.; Shankar, N.

    1982-01-01

    Experiments were conducted on bubble migration in rotating liquid bodies contained in a sphere. Experiments were initiated on the migration of a drop in a slightly less dense continuous phase contained in a rotating sphere. A refined apparatus for the study of thermocapillar flow in a glass melt was built, and data were acquired on surface velocities in the melt. Similar data also were obtained from an ambient temperature fluid model. The data were analyzed and correlated with the aid of theory. Data were obtained on flow velocities in a pendant drop heated from above. The motion in this system was driven principally by thermocapillarity. An apparatus was designed for the study of volatilization from a glass melt.

  15. Continuous Steelmaking Directly from Ore

    NASA Astrophysics Data System (ADS)

    Warner, Noel A.

    2014-12-01

    In-line continuous processing of high-grade hematite ore (crushed ore or fines) with a pure hydrogen reductant is assessed. An appraisal is made of the rate controlling mechanisms involved in the reduction of a pure layer of molten wustite being transported by floating on a molten carrier iron carbon-free medium at temperatures just in excess of the iron melting point. Published research clearly indicates that under these conditions the kinetics are principally controlled by molecular gaseous diffusion. Thus, the rate is essentially not influenced by total gas pressure above 1 atmosphere. Accordingly, on safety grounds it is recommended that high pressure should not be used for hydrogen steelmaking in the future, but the operation should be conducted close to atmospheric pressure with low pressure steam encapsulation of the plant items involved. Using hydrogen as the reductant means that sub-surface nucleation of CO bubbles cannot disrupt continuous processing. The operation is then no different to processing a normal liquid phase. The off-gases from the reduction zone of a melt circulation loop are super-clean and only contaminated with iron vapor. Accordingly, the best available technology becomes available for energy conservation without risk of non-fusible solids deposition. The net result is that the energy requirements are expected to be superior to other potential processes.

  16. Liquid-liquid phase transformations and the shape of the melting curve.

    PubMed

    Makov, G; Yahel, E

    2011-05-28

    The phase diagram of elemental liquids has been found to be surprisingly rich, including variations in the melting curve and transitions in the liquid phase. The effect of these transitions in the liquid state on the shape of the melting curve is analyzed. First-order phase transitions intersecting the melting curve imply piecewise continuous melting curves, with solid-solid transitions generating upward kinks or minima and liquid-liquid transitions generating downward kinks or maxima. For liquid-liquid phase transitions proposed for carbon, phosphorous selenium, and possibly nitrogen, we find that the melting curve exhibits a kink. Continuous transitions imply smooth extrema in the melting curve, the curvature of which is described by an exact thermodynamic relation. This expression indicates that a minimum in the melting curve requires the solid compressibility to be greater than that of the liquid, a very unusual situation. This relation is employed to predict the loci of smooth maxima at negative pressures for liquids with anomalous melting curves. The relation between the location of the melting curve maximum and the two-state model of continuous liquid-liquid transitions is discussed and illustrated by the case of tellurium. © 2011 American Institute of Physics

  17. High resolution laser micro sintering / melting using q-switched and high brilliant laser radiation

    NASA Astrophysics Data System (ADS)

    Exner, H.; Streek, A.

    2015-03-01

    Since the discovery of selective laser sintering/melting, numerous modifications have been made to upgrade or customize this technology for industrial purposes. Laser micro sintering (LMS) is one of those modifications: Powders with particles in the range of a few micrometers are used to obtain products with highly resolved structures. Pulses of a q-switched laser had been considered necessary in order to generate sinter layers from the micrometer scaled metal powders. LMS has been applied with powders from metals as well as from ceramic and cermet feedstock's to generate micro parts. Recent technological progress and the application of high brilliant continuous laser radiation have now allowed an efficient laser sintering/melting of micrometer scaled metal powders. Thereby it is remarkable that thin sinter layers are generated using high continuous laser power. The principles of the process, the state of the art in LMS concerning its advantages and limitations and furthermore the latest results of the recent development of this technology will be presented. Laser Micro Sintering / Laser Micro Melting (LMM) offer a vision for a new dimension of additive fabrication of miniature and precise parts also with application potential in all engineering fields.

  18. Evaluation of quartz melt rate furnace with the nitric-glycolic flowsheet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, M. S.; Miller, D. H.

    The Savannah River National Laboratory (SRNL) was tasked to support validation of the Defense Waste Processing Facility (DWPF) melter offgas flammability model for the Nitric-Glycolic (NG) flowsheet. The work is supplemental to the Cold Cap Evaluation Furnace (CEF) testing conducted in 20141 and the Slurry-fed Melt Rate Furnace (SMRF) testing conducted in 20162 that supported Deliverable 4 of the DWPF & Saltstone Facility Engineering Technical Task Request (TTR).3 The Quartz Melt Rate Furnace (QMRF) was evaluated as a bench-scale scoping tool to potentially be used in lieu of or simply prior to the use of the larger-scale SMRF or CEF.more » The QMRF platform has been used previously to evaluate melt rate behavior and offgas compositions of DWPF glasses prepared from the Nitric-Formic (NF) flowsheet but not for the NG flowsheet and not with continuous feeding.4 The overall objective of the 2016-2017 testing was to evaluate the efficacy of the QMRF as a lab-scale platform for steady state, continuously fed melter testing with the NG flowsheet as an alternative to more expensive and complex testing with the SMRF or CEF platforms.« less

  19. Melt structure and self-nucleation of ethylene copolymers

    NASA Astrophysics Data System (ADS)

    Alamo, Rufina G.

    A strong memory effect of crystallization has been observed in melts of random ethylene copolymers well above the equilibrium melting temperature. These studies have been carried out by DSC, x-ray, TEM and optical microscopy on a large number of model, narrow, and broad copolymers with different comonomer types and contents. Melt memory is correlated with self-seeds that increase the crystallization rate of ethylene copolymers. The seeds are associated with molten ethylene sequences from the initial crystals that remain in close proximity and lower the nucleation barrier. Diffusion of all sequences to a randomized melt state is a slow process, restricted by topological chain constraints (loops, knots, and other entanglements) that build in the intercrystalline region during crystallization. Self-seeds dissolve above a critical melt temperature that demarcates homogeneity of the copolymer melt. There is a critical threshold level of crystallinity to observe the effect of melt memory on crystallization rate, thus supporting the correlation between melt memory and the change in melt structure during copolymer crystallization. Unlike binary blends, commercial ethylene-1-alkene copolymers with a range in inter-chain comonomer composition between 1 and about 15 mol % display an inversion of the crystallization rate in a range of melt temperatures where narrow copolymers show a continuous acceleration of the rate. With decreasing the initial melt temperature, broadly distributed copolymers show enhanced crystallization followed by a decrease of crystallization rate. The inversion demarcates the onset of liquid-liquid phase separation (LLPS) and a reduction of self-nuclei due to the strong thermodynamic drive for molecular segregation inside the binodal. The strong effect of melt memory on crystallization rate can be used to identify liquid-liquid phase separation in broadly distributed copolymers, and offers strategies to control the state of copolymer melts in ways of technological relevance for melt processing of LLDPE and other random olefin copolymers. References: B. O. Reid, et al., Macromolecules 46, 6485-6497, 2013 H. Gao, et al., Macromolecules 46, 6498-6506, 2013 A. Mamun et al., Macromolecules 47, 7958-7970, 2014 X. Chen et al., Macromol. Chem. Phys. 216, 1220 -1226, 2015 M. Ren et al., Macromol. Symp. 356, 131-141, 2015 Work supported by the NSF (DMR1105129).

  20. Quantifying present and future glacier melt-water contribution to runoff in a Central Himalayan river basin

    NASA Astrophysics Data System (ADS)

    Prasch, M.; Mauser, W.; Weber, M.

    2012-10-01

    Water supply of most lowland cultures heavily depends on rain and melt-water from the upstream mountains. Especially melt-water release of alpine mountain ranges is usually attributed a pivotal role for the water supply of large downstream regions. Water scarcity is assumed as consequence of glacier shrinkage and possible disappearance due to Global Climate Change, particular for large parts of Central and South East Asia. In this paper, the application and validation of a coupled modeling approach with Regional Climate Model outputs and a process-oriented glacier and hydrological model is presented for a Central Himalayan river basin despite scarce data availability. Current and possible future contributions of ice-melt to runoff along the river network are spatially explicitly shown. Its role among the other water balance components is presented. Although glaciers have retreated and will continue to retreat according to the chosen climate scenarios, water availability is and will be primarily determined by monsoon precipitation and snow-melt. Ice-melt from glaciers is and will be a minor runoff component in summer monsoon-dominated Himalayan river basins.

  1. In situ X-ray imaging of defect and molten pool dynamics in laser additive manufacturing.

    PubMed

    Leung, Chu Lun Alex; Marussi, Sebastian; Atwood, Robert C; Towrie, Michael; Withers, Philip J; Lee, Peter D

    2018-04-10

    The laser-matter interaction and solidification phenomena associated with laser additive manufacturing (LAM) remain unclear, slowing its process development and optimisation. Here, through in situ and operando high-speed synchrotron X-ray imaging, we reveal the underlying physical phenomena during the deposition of the first and second layer melt tracks. We show that the laser-induced gas/vapour jet promotes the formation of melt tracks and denuded zones via spattering (at a velocity of 1 m s -1 ). We also uncover mechanisms of pore migration by Marangoni-driven flow (recirculating at a velocity of 0.4 m s -1 ), pore dissolution and dispersion by laser re-melting. We develop a mechanism map for predicting the evolution of melt features, changes in melt track morphology from a continuous hemi-cylindrical track to disconnected beads with decreasing linear energy density and improved molten pool wetting with increasing laser power. Our results clarify aspects of the physics behind LAM, which are critical for its development.

  2. Degassing of H2O in a phonolitic melt: A closer look at decompression experiments

    NASA Astrophysics Data System (ADS)

    Marxer, Holger; Bellucci, Philipp; Nowak, Marcus

    2015-05-01

    Melt degassing during magma ascent is controlled by the decompression rate and can be simulated in decompression experiments. H2O-bearing phonolitic melts were decompressed at a super-liquidus T of 1323 K in an internally heated argon pressure vessel, applying continuous decompression (CD) as well as to date commonly used step-wise decompression (SD) techniques to investigate the effect of decompression method on melt degassing. The hydrous melts were decompressed from 200 MPa at nominal decompression rates of 0.0028-1.7 MPa·s- 1. At final pressure (Pfinal), the samples were quenched rapidly at isobaric conditions with ~ 150 K·s- 1. The bubbles in the quenched samples are often deformed and dented. Flow textures in the glass indicate melt transport at high viscosity. We suggest that this observation is due to bubble shrinkage during quench. This general problem was mostly overlooked in the interpretation of experimentally degassed samples to date. Bubble shrinkage due to decreasing molar volume (Vm) of the exsolved H2O in the bubbles occurs during isobaric rapid quench until the melt is too viscous too relax. The decrease of Vm(H2O) during cooling at Pfinal of the experiments results in a decrease of the bubble volume by a shrinking factor Bs: At nominal decompression rates > 0.17 MPa·s- 1 and a Pfinal of 75 MPa, the decompression method has only minor influence on melt degassing. SD and CD result in high bubble number densities of 104-105 mm- 3. Fast P drop leads to immediate supersaturation with H2O in the melt. At such high nominal decompression rates, the diffusional transport of H2O is limited and therefore bubble nucleation is the predominant degassing process. The residual H2O contents in the melts decompressed to 75 MPa increase with nominal decompression rate. After homogeneous nucleation is triggered, CD rates ≤ 0.024 MPa·s- 1 facilitate continuous reduction of the supersaturation by H2O diffusion into previously nucleated bubbles. Bubble number densities of CD samples with low nominal decompression rates are several orders of magnitude lower than for SD experiments and the bubble diameters are larger. The reproducibility of MSD experiments with low nominal decompression rates is worse than for CD runs. Commonly used SD techniques are therefore not suitable to simulate melt degassing during continuous magma ascent with low ascent rates.

  3. Continuous method for manufacturing grain-oriented magnetostrictive bodies

    DOEpatents

    Gibson, Edwin D.; Verhoeven, John D.; Schmidt, Frederick A.; McMasters, O. Dale

    1988-01-01

    The invention comprises a continuous casting and crystallization method for manufacturing grain-oriented magnetostrictive bodies. A magnetostrictive alloy is melted in a crucible having a bottom outlet. The melt is discharged through the bottom of the crucible and deposited in an elongated mold. Heat is removed from the deposited melt through the lower end portion of the mold to progressively solidify the melt. The solid-liquid interface of the melt moves directionally upwardly from the bottom to the top of the mold, to produce the axial grain orientation.

  4. The Reduction of Lunar Regolith by Carbothermal Processing Using Methane

    NASA Technical Reports Server (NTRS)

    Balasubramaniam, R.; Hegde, U.; Gokoglu, S.

    2010-01-01

    The processing of lunar regolith for the production of oxygen is a key component of the In-Situ Resource Utilization plans Currently being developed by NASA. In the carbothermal process, a portion of the surface of the regolith in a container is heated by exposure to a heat source so that a small zone of molten regolith is established. A continuous flow of methane is maintained over the molten regolith zone. In this paper, we discuss the development of a chemical conversion model of the carbothermal process to predict the rate of production of carbon monoxide. Our model is based on a mechanism where methane pyrolyzes when it comes in contact with the surface of the hot molten regolith to form solid carbon and hydrogen gas. Carbon is deposited on the surface of the melt, and hydrogen is released into the gas stream above the melt surface. We assume that the deposited carbon mixes in the molten regolith and reacts with metal oxides in a reduction reaction by which gaseous carbon monoxide is liberated. Carbon monoxide bubbles through the melt and is released into the gas stream. It is further processed downstream to ultimately produce oxygen.

  5. The Reduction of Lunar Regolith by Carbothermal Processing Using Methane

    NASA Technical Reports Server (NTRS)

    Balasubramaniam, R.; Gokoglu, S. A.; Hegde, U.

    2010-01-01

    The processing of lunar regolith for the production of oxygen is a key component of the In-Situ Resource Utilization plans currently being developed by NASA. In the carbothermal process, a portion of the surface of the regolith in a container is heated by exposure to a heat source so that a small zone of molten regolith is established. A continuous flow of methane is maintained over the molten regolith zone. In this paper, we discuss the development of a chemical conversion model of the carbothermal process to predict the rate of production of carbon monoxide. Our model is based on a mechanism where methane pyrolyzes when it comes in contact with the surface of the hot molten regolith to form solid carbon and hydrogen gas. Carbon is deposited on the surface of the melt, and hydrogen is released into the gas stream above the melt surface. We assume that the deposited carbon mixes in the molten regolith and reacts with metal oxides in a reduction reaction by which gaseous carbon monoxide is liberated. Carbon monoxide bubbles through the melt and is released into the gas stream. It is further processed downstream to ultimately produce oxygen.

  6. Solidification and Re-melting Phenomena During Slurry Preparation Using the RheoMetal™ Process

    NASA Astrophysics Data System (ADS)

    Payandeh, M.; Sabzevar, Mohsen Haddad; Jarfors, A. E. W.; Wessén, M.

    2017-12-01

    The melting sequence of the enthalpy exchange material (EEM) and formation of a slurry in the RheoMetal™ process was investigated. The EEM was extracted and quenched, together with a portion of the slurry at different processing times before complete melting. The EEM initially increased in size/diameter due to melt freezing onto its surface, forming a freeze- on layer. The initial growth of this layer was followed by a period of a constant diameter of the EEM with subsequent melting and decrease of diameter. Microstructural characterization of the size and morphology of different phases in the EEM and in the freeze-on layer was made. Dendritic equiaxed grains and eutectic regions containing Si particles and Cu-bearing particles and Fe-rich particles were observed in the as-cast EEM. The freeze-on layer consisted of dendritic aluminum tilted by about 30 deg in the upstream direction, caused by the rotation of the EEM. Energy dispersion spectroscopy analysis showed that the freeze-on layer had a composition corresponding to an alloy with higher melting point than the EEM and thus shielding the EEM from the surrounding melt. Microstructural changes in the EEM showed that temperature rapidly increased to 768 K (495 °C), indicated by incipient melting of the lowest temperature melting eutectic in triple junction grain boundary regions with Al2Cu and Al5Mg8Si6Cu2 phases present. As the EEM temperature increased further the binary Al-Si eutectic started to melt to form a region of a fully developed coherent mushy state. Experimental results and a thermal model indicated that as the dendrites spheroidized near to the interface at the EEM/freeze-on layer reached a mushy state with 25 pct solid fraction, coherency was lost and disintegration of the freeze-on layer took place. Subsequently, in the absence of the shielding effect from the freeze-on Layer, the EEM continued to disintegrate with a coherency limit of a solid fraction estimated to be 50 pct.

  7. A Numerical Simulation of Transport Phenomena During the Horizontal Single Belt Casting Process Using an Inclined Feeding System

    NASA Astrophysics Data System (ADS)

    Xu, Mianguang; Isac, Mihaiela; Guthrie, Roderick I. L.

    2018-03-01

    Horizontal single belt casting (HSBC) has great potential to replace current conventional continuous casting (CCC) processes for sheet metal production, by directly casting 3 to 1 mm sheet for the automobile industry. In the present paper, two-dimensional mathematical models were developed to study transport phenomena, for the case of an inclined wall feeding system for a liquid aluminum wrought alloy (AA6111). Based on the commercial software ANSYS FLUENT 14.5 and user-defined functions, a two-layer turbulence model was used to examine the fluid flow emanating from a slot nozzle set above a water-cooled, high-speed, steel belt. The Volume of Fluid (VOF) method was used to predict the shape of the melt-air interface. A transformed coordinate system (x', y') was established in order to analyze the fluid flow on the inclined wall of the feeding system. The total pressure gauge gradient (∂p total/∂x) was used to describe the behavior of the melt film inside the slot nozzle of the head box. The modeling results show that during the melt film falling process, the total gauge pressure varies within the slot nozzle, which can decrease the stability of the falling film. The first impingement between the falling film and the inclined refractory wall of the feeding system gives rise to a local oscillation, and this influences the stability of the melt film moving downwards. At the rear meniscus position between the inclined wall and the moving belt, there is a clear vibration of the air-melt interface, together with a recirculation zone. The weak vibration of the air-melt interface could be induced by the periodic variation of the melt-air interface. Moreover, the formation of tiny air pockets is predicted. Finally, on the inclined wall of the feeding system, a suitable length of the transition area is needed to avoid over-acceleration of the melt film due to the force of gravity.

  8. A Numerical Simulation of Transport Phenomena During the Horizontal Single Belt Casting Process Using an Inclined Feeding System

    NASA Astrophysics Data System (ADS)

    Xu, Mianguang; Isac, Mihaiela; Guthrie, Roderick I. L.

    2018-06-01

    Horizontal single belt casting (HSBC) has great potential to replace current conventional continuous casting (CCC) processes for sheet metal production, by directly casting 3 to 1 mm sheet for the automobile industry. In the present paper, two-dimensional mathematical models were developed to study transport phenomena, for the case of an inclined wall feeding system for a liquid aluminum wrought alloy (AA6111). Based on the commercial software ANSYS FLUENT 14.5 and user-defined functions, a two-layer turbulence model was used to examine the fluid flow emanating from a slot nozzle set above a water-cooled, high-speed, steel belt. The Volume of Fluid (VOF) method was used to predict the shape of the melt-air interface. A transformed coordinate system ( x', y') was established in order to analyze the fluid flow on the inclined wall of the feeding system. The total pressure gauge gradient ( ∂p total/ ∂x) was used to describe the behavior of the melt film inside the slot nozzle of the head box. The modeling results show that during the melt film falling process, the total gauge pressure varies within the slot nozzle, which can decrease the stability of the falling film. The first impingement between the falling film and the inclined refractory wall of the feeding system gives rise to a local oscillation, and this influences the stability of the melt film moving downwards. At the rear meniscus position between the inclined wall and the moving belt, there is a clear vibration of the air-melt interface, together with a recirculation zone. The weak vibration of the air-melt interface could be induced by the periodic variation of the melt-air interface. Moreover, the formation of tiny air pockets is predicted. Finally, on the inclined wall of the feeding system, a suitable length of the transition area is needed to avoid over-acceleration of the melt film due to the force of gravity.

  9. Water-Assisted Production of Thermoplastic Nanocomposites: A Review.

    PubMed

    Karger-Kocsis, József; Kmetty, Ákos; Lendvai, László; Drakopoulos, Stavros X; Bárány, Tamás

    2014-12-29

    Water-assisted, or more generally liquid-mediated, melt compounding of nanocomposites is basically a combination of solution-assisted and traditional melt mixing methods. It is an emerging technique to overcome several disadvantages of the above two. Water or aqueous liquids with additives, do not work merely as temporary carrier materials of suitable nanofillers. During batchwise and continuous compounding, these liquids are fully or partly evaporated. In the latter case, the residual liquid is working as a plasticizer. This processing technique contributes to a better dispersion of the nanofillers and affects markedly the morphology and properties of the resulting nanocomposites. A survey is given below on the present praxis and possible future developments of water-assisted melt mixing techniques for the production of thermoplastic nanocomposites.

  10. Water-Assisted Production of Thermoplastic Nanocomposites: A Review

    PubMed Central

    Karger-Kocsis, József; Kmetty, Ákos; Lendvai, László; Drakopoulos, Stavros X.; Bárány, Tamás

    2014-01-01

    Water-assisted, or more generally liquid-mediated, melt compounding of nanocomposites is basically a combination of solution-assisted and traditional melt mixing methods. It is an emerging technique to overcome several disadvantages of the above two. Water or aqueous liquids with additives, do not work merely as temporary carrier materials of suitable nanofillers. During batchwise and continuous compounding, these liquids are fully or partly evaporated. In the latter case, the residual liquid is working as a plasticizer. This processing technique contributes to a better dispersion of the nanofillers and affects markedly the morphology and properties of the resulting nanocomposites. A survey is given below on the present praxis and possible future developments of water-assisted melt mixing techniques for the production of thermoplastic nanocomposites. PMID:28787925

  11. Advances in solid dosage form manufacturing technology.

    PubMed

    Andrews, Gavin P

    2007-12-15

    Currently, the pharmaceutical and healthcare industries are moving through a period of unparalleled change. Major multinational pharmaceutical companies are restructuring, consolidating, merging and more importantly critically assessing their competitiveness to ensure constant growth in an ever-more demanding market where the cost of developing novel products is continuously increasing. The pharmaceutical manufacturing processes currently in existence for the production of solid oral dosage forms are associated with significant disadvantages and in many instances provide many processing problems. Therefore, it is well accepted that there is an increasing need for alternative processes to dramatically improve powder processing, and more importantly to ensure that acceptable, reproducible solid dosage forms can be manufactured. Consequently, pharmaceutical companies are beginning to invest in innovative processes capable of producing solid dosage forms that better meet the needs of the patient while providing efficient manufacturing operations. This article discusses two emerging solid dosage form manufacturing technologies, namely hot-melt extrusion and fluidized hot-melt granulation.

  12. Continuous replenishment of molten semiconductor in a Czochralski-process, single-crystal-growing furnace

    NASA Technical Reports Server (NTRS)

    Fiegl, George (Inventor); Torbet, Walter (Inventor)

    1981-01-01

    A replenishment crucible is mounted adjacent the usual drawing crucible, from which a monocrystalline boule is drawn according to the Czochralski method. A siphon tube for molten semiconductor transfer extends from the replenishment crucible to the drawing crucible. Each crucible is enclosed within its own hermetic shell and is provided with its own heater. The siphon tube is initially filled with molten semiconductor by raising the inert atmospheric pressure in the shell surrounding the replenishment crucible above that surrounding the drawing crucible. Thereafter, adjustment of the level of molten semiconductor in the drawing crucible may be achieved by adjusting the level in either crucible, since the siphon tube will establish the same level in both crucibles. For continuous processing, solid semiconductor may be added to and melted in the replenishment crucible during the process of drawing crystals from the drawing crucible. A constant liquid level of melted semiconductor is maintained in the system by an optical monitoring device and any of several electromechanical controls of the rate of replenishment or crucible height.

  13. Determination of Chemical Kinetic Rate Constants of a Model for Carbothermal Processing of Lunar Regolith Simulant Using Methane

    NASA Technical Reports Server (NTRS)

    Balasubramaniam, R; Gokoglu, S.; Hegde, U.

    2009-01-01

    We have previously developed a chemical conversion model of the carbothermal processing of lunar regolith using methane to predict the rate of production of carbon monoxide. In this carbothermal process, gaseous methane is pyrolyzed as it flows over the hot surface of a molten zone of lunar regolith and is converted to carbon and hydrogen. Hydrogen is carried away by the exiting stream of gases and carbon is deposited on the melt surface. The deposited carbon mixes with the melt and reacts with the metal oxides in it to produce carbon monoxide that bubbles out of the melt. In our model, we assume that the flux of carbon deposited is equal to the product of the surface reaction rate constant gamma and the concentration of methane adjacent to the melt surface. Similarly, the rate of consumption of carbon per unit volume in the melt is equal to the product of the melt reaction rate constant k and the concentrations of carbon and metal oxide in the melt. In this paper, we describe our effort to determine gamma and k by comparison of the predictions from our model with test data obtained by ORBITEC (Orbital Technologies Corporation). The concentration of methane adjacent to the melt surface is a necessary input to the model. It is inferred from the test data by a mass balance of methane, adopting the usual assumptions of the continuously-stirred-tank-reactor model, whereby the average concentration of a given gaseous species equals its exit concentration. The reaction rates gamma and k have been determined by a non-linear least-squares fit to the test data for the production of carbon monoxide and the fraction of the incoming methane that is converted. The comparison of test data with our model predictions using the determined chemical kinetic rate constants provides a consistent interpretation of the process over the full range of temperatures, pressures, and methane flow rates used in the tests, thereby increasing our confidence to use the model for scale-up purposes.

  14. Vitrification of waste with conitnuous filling and sequential melting

    DOEpatents

    Powell, James R.; Reich, Morris

    2001-09-04

    A method of filling a canister with vitrified waste starting with a waste, such as high-level radioactive waste, that is cooler than its melting point. Waste is added incrementally to a canister forming a column of waste capable of being separated into an upper zone and a lower zone. The minimum height of the column is defined such that the waste in the lower zone can be dried and melted while maintaining the waste in the upper zone below its melting point. The maximum height of the column is such that the upper zone remains porous enough to permit evolved gases from the lower zone to flow through the upper zone and out of the canister. Heat is applied to the waste in the lower zone to first dry then to raise and maintain its temperature to a target temperature above the melting point of the waste. Then the heat is applied to a new lower zone above the melted waste and the process of adding, drying and melting the waste continues upward in the canister until the entire canister is filled and the entire contents are melted and maintained at the target temperature for the desired period. Cooling of the melted waste takes place incrementally from the bottom of the canister to the top, or across the entire canister surface area, forming a vitrified product.

  15. Hot-melt co-extrusion: requirements, challenges and opportunities for pharmaceutical applications.

    PubMed

    Vynckier, An-Katrien; Dierickx, Lien; Voorspoels, Jody; Gonnissen, Yves; Remon, Jean Paul; Vervaet, Chris

    2014-02-01

    Co-extrusion implies the simultaneous hot-melt extrusion of two or more materials through the same die, creating a multi-layered extrudate. It is an innovative continuous production technology that offers numerous advantages over traditional pharmaceutical processing techniques. This review provides an overview of the co-extrusion equipment, material requirements and medical and pharmaceutical applications. The co-extrusion equipment needed for pharmaceutical production has been summarized. Because the geometrical design of the die dictates the shape of the final product, different die types have been discussed. As one of the major challenges at the moment is shaping the final product in a continuous way, an overview of downstream solutions for processing co-extrudates into drug products is provided. Layer adhesion, extrusion temperature and viscosity matching are pointed out as most important requirements for material selection. Examples of medical and pharmaceutical applications are presented and some recent findings considering the production of oral drug delivery systems have been summarized. Co-extrusion provides great potential for the continuous production of fixed-dose combination products which are gaining importance in pharmaceutical industry. There are still some barriers to the implementation of co-extrusion in the pharmaceutical industry. The optimization of downstream processing remains a point of attention. © 2013 Royal Pharmaceutical Society.

  16. Episodic kinematics in continental rifts modulated by changes in mantle melt fraction.

    PubMed

    Lamb, Simon; Moore, James D P; Smith, Euan; Stern, Tim

    2017-07-05

    Oceanic crust is created by the extraction of molten rock from underlying mantle at the seafloor 'spreading centres' found between diverging tectonic plates. Modelling studies have suggested that mantle melting can occur through decompression as the mantle flows upwards beneath spreading centres, but direct observation of this process is difficult beneath the oceans. Continental rifts, however-which are also associated with mantle melt production-are amenable to detailed measurements of their short-term kinematics using geodetic techniques. Here we show that such data can provide evidence for an upwelling mantle flow, as well as information on the dimensions and timescale of mantle melting. For North Island, New Zealand, around ten years of campaign and continuous GPS measurements in the continental rift system known as the Taupo volcanic zone reveal that it is extending at a rate of 6-15 millimetres per year. However, a roughly 70-kilometre-long segment of the rift axis is associated with strong horizontal contraction and rapid subsidence, and is flanked by regions of extension and uplift. These features fit a simple model that involves flexure of an elastic upper crust, which is pulled downwards or pushed upwards along the rift axis by a driving force located at a depth greater than 15 kilometres. We propose that flexure is caused by melt-induced episodic changes in the vertical flow forces that are generated by upwelling mantle beneath the rift axis, triggering a transient lower-crustal flow. A drop in the melt fraction owing to melt extraction raises the mantle flow viscosity and drives subsidence, whereas melt accumulation reduces viscosity and allows uplift-processes that are also likely to occur in oceanic spreading centres.

  17. Fibrous dosage forms by wet 3D-micro-patterning: process design, manufacture, and drug release rate.

    PubMed

    Blaesi, Aron H; Saka, Nannaji

    2018-06-19

    Recently, we have introduced fibrous dosage forms prepared by 3D-micro-patterning of drug-laden viscous melts. Such dosage forms enable predictable microstructures and increased drug release rates, and they can be manufactured continuously. However, melt processing is not applicable if the melting temperature of the formulation is greater than the degradation temperature of the drug or of the excipient. In this work, therefore, a continuous wet micro-patterning process that operates at ambient temperature is presented. The excipient is plasticized by a solvent and the patterned dosage form is solidified by air drying. Process models show that the micro-patterning time is the ratio of the fiber length in the dosage form and the velocity of the fiber stream. It was 1.3 minutes in the experiments, but can be reduced further. The drying time is limited by the diffusive flux of solvent through the fibers: it was about 3 minutes for the experimental conditions. Furthermore, models are developed to illustrate the effects of fiber radius, inter-fiber spacing, viscosity of the drug-excipient-solvent mixture, and drying conditions on the microstructure of the dosage form. Models and experimental results show that for a viscosity of the wet fibers of the order 10 3 Pa·s, both the patterned microstructure is well preserved and the crossed fibers are well bonded. Finally, the drug release rate by the dosage forms is experimentally determined and theoretically modeled. The results of the experiments validate the models fairly. Copyright © 2018. Published by Elsevier B.V.

  18. Flexible continuous manufacturing platforms for solid dispersion formulations

    NASA Astrophysics Data System (ADS)

    Karry-Rivera, Krizia Marie

    In 2013 16,000 people died in the US due to overdose from prescription drugs and synthetic narcotics. As of that same year, 90% of new molecular entities in the pharmaceutical drug pipeline are classified as poor water-soluble. The work in this dissertation aims to design, develop and validate platforms that solubilize weak acids and can potentially deter drug abuse. These platforms are based on processing solid dispersions via solvent-casting and hot-melt extrusion methods to produce oral transmucosal films and melt tablets. To develop these platforms, nanocrystalline suspensions and glassy solutions were solvent-casted in the form of films after physicochemical characterizations of drug-excipient interactions and design of experiment approaches. A second order model was fitted to the emulsion diffusion process to predict average nanoparticle size and for process optimization. To further validate the manufacturing flexibility of the formulations, glassy solutions were also extruded and molded into tablets. This process included a systematic quality-by-design (QbD) approach that served to identify the factors affecting the critical quality attributes (CQAs) of the melt tablets. These products, due to their novelty, lack discriminatory performance tests that serve as predictors to their compliance and stability. Consequently, Process Analytical Technology (PAT) tools were integrated into the continuous manufacturing platform for films. Near-infrared (NIR) spectroscopy, including chemical imaging, combined with deconvolution algorithms were utilized for a holistic assessment of the effect of formulation and process variables on the product's CQAs. Biorelevant dissolution protocols were then established to improve the in-vivo in-vitro correlation of the oral transmucosal films. In conclusion, the work in this dissertation supports the delivery of poor-water soluble drugs in products that may deter abuse. Drug nanocrystals ensured high bioavailability, while glassy solutions enabled drug solubilization in polymer matrices. PAT tools helped in characterizing the micro and macro structure of the product while also used as a control strategy for manufacturing. The systematic QbD assessment enabled identification of the variables that significantly affected melt tablet performance and their potential as an abuse deterrent product. Being that these glassy products are novel systems, biorelevant protocols for testing dissolution performance of films were also developed.

  19. Study on the Microstructure and Liquid Phase Formation in a Semisolid Gray Cast Iron

    NASA Astrophysics Data System (ADS)

    Benati, Davi Munhoz; Ito, Kazuhiro; Kohama, Kazuyuki; Yamamoto, Hajime; Zoqui, Eugenio José

    2017-10-01

    The development of high-quality semisolid raw materials requires an understanding of the phase transformations that occur as the material is heated up to the semisolid state, i.e., its melting behavior. The microstructure of the material plays a very important role during semisolid processing as it determines the flow behavior of the material when it is formed, making a thorough understanding of the microstructural evolution essential. In this study, the phase transformations and microstructural evolution in Fe2.5C1.5Si gray cast iron specially designed for thixoforming processes as it was heated to the semisolid state were observed using in situ high-temperature confocal laser scanning microscopy. At room temperature, the alloy has a matrix of pearlite and ferrite with fine interdendritic type D flake graphite. During heating, the main transformations observed were graphite precipitation inside the grains and at the austenite grain boundaries; graphite flakes and graphite precipitates growing and becoming coarser with the increasing temperature; and the beginning of melting at around 1413 K to 1423 K (1140 °C to 1150 °C). Melting begins with the eutectic phase ( i.e., the carbon-rich phase) and continues with the primary phase (primary austenite), which is consumed as the temperature increases. Melting of the eutectic phase composed by coarsened interdendritic graphite flakes produced a semi-continuous liquid network homogeneously surrounding and wetting the dendrites of the solid phase, causing grains to detach from each other and producing the intended solid globules immersed in liquid.

  20. Frictional melt and seismic slip

    NASA Astrophysics Data System (ADS)

    Nielsen, S.; di Toro, G.; Hirose, T.; Shimamoto, T.

    2008-01-01

    Frictional melt is implied in a variety of processes such as seismic slip, ice skating, and meteorite combustion. A steady state can be reached when melt is continuously produced and extruded from the sliding interface, as shown recently in a number of laboratory rock friction experiments. A thin, low-viscosity, high-temperature melt layer is formed resulting in low shear resistance. A theoretical solution describing the coupling of shear heating, thermal diffusion, and extrusion is obtained, without imposing a priori the melt thickness. The steady state shear traction can be approximated at high slip rates by the theoretical form τss = σn1/4 (A/?) ? under a normal stress σn, slip rate V, radius of contact area R (A is a dimensional normalizing factor and W is a characteristic rate). Although the model offers a rather simplified view of a complex process, the predictions are compatible with experimental observations. In particular, we consider laboratory simulations of seismic slip on earthquake faults. A series of high-velocity rotary shear experiments on rocks, performed for σn in the range 1-20 MPa and slip rates in the range 0.5-2 m s-1, is confronted to the theoretical model. The behavior is reasonably well reproduced, though the effect of radiation loss taking place in the experiment somewhat alters the data. The scaling of friction with σn, R, and V in the presence of melt suggests that extrapolation of laboratory measures to real Earth is a highly nonlinear, nontrivial exercise.

  1. Observational Evidence for Enhanced Greenhouse Effect Reinforcing Wintertime Arctic Amplification and Sea Ice Melting Onset

    NASA Astrophysics Data System (ADS)

    Cao, Y.; Liang, S.

    2017-12-01

    Despite an apparent hiatus in global warming, the Arctic climate continues to experience unprecedented changes. Summer sea ice is retreating at an accelerated rate, and surface temperatures in this region are rising at a rate double that of the global average, a phenomenon known as Arctic amplification. Although a lot of efforts have been made, the causes this unprecedented phenomenon remain unclear and are subjects of considerable debate. In this study, we report strong observational evidence, for the first time from long-term (1984-2014) spatially complete satellite records, that increased cloudiness and atmospheric water vapor in winter and spring have caused an extraordinary downward longwave radiative flux to the ice surface, which may then amplify the Arctic wintertime ice-surface warming. In addition, we also provide observed evidence that it is quite likely the enhancement of the wintertime greenhouse effect caused by water vapor and cloudiness has advanced the time of onset of ice melting in mid-May through inhibiting sea-ice refreezing in the winter and accelerating the pre-melting process in the spring, and in turn triggered the positive sea-ice albedo feedback process and accelerated the sea ice melting in the summer.

  2. Petrologically-based Electrical Profiles vs. Geophysical Observations through the Upper Mantle (Invited)

    NASA Astrophysics Data System (ADS)

    Gaillard, F.; Massuyeau, M.; Sifre, D.; Tarits, P.

    2013-12-01

    Mineralogical transformations in the up-welling mantle play a critical role on the dynamics of mass and heat transfers at mid-ocean-ridgeS. The melting event producing ridge basalts occur at 60 km depth below the ridge axis, but because of small amounts of H2O and CO2 in the source region of MOR-basalts, incipient melting can initiate at much greater depth. Such incipient melts concentrate incompatible elements, and are particularly rich in volatile species. These juices evolve from carbonatites, carbonated basalts, to CO2-H2O-rich basalts as recently exposed by petrological surveys; the passage from carbonate to silicate melts is a complex pathway that is strongly non-linear. This picture has recently been complicated further by studies showing that oxygen increasingly partitions into garnet as pressure increases; this implies that incipient melting may be prevented at depth exceeding 200 km because not enough oxygen is available in the system to stabilize carbonate melts. The aim of this work is twofold: - We modelled the complex pathway of mantle melting in presence of C-O-H volatiles by adjusting the thermodynamic properties of mixing in the multi-component C-O-H-melt system. This allows us to calculate the change in melt composition vs. depth following any sortS of adiabat. - We modelled the continuous change in electrical properties from carbonatites, carbonated basalts, to CO2-H2O-rich basalts. We then successfully converted this petrological evolution along a ridge adiabat into electrical conductivity vs. depth signal. The discussion that follows is about comparison of this petrologically-based conductivity profile with the recent profiles obtained by inversion of the long-period electromagnetic signals from the East-Pacific-Rise. These geophysically-based profiles reveal the electrical conductivity structure down to 400 km depth and they show some intriguing highly conductive sections. We will discuss heterogeneity in electrical conductivity of the upper mantle underneath the ridge in terms of melting processes. Our prime conclusion is that the redox melting process, universally predicted by petrological models, might not be universal and that incipient melting can extend down to the transition zone.

  3. Process design and control of a twin screw hot melt extrusion for continuous pharmaceutical tamper-resistant tablet production.

    PubMed

    Baronsky-Probst, J; Möltgen, C-V; Kessler, W; Kessler, R W

    2016-05-25

    Hot melt extrusion (HME) is a well-known process within the plastic and food industries that has been utilized for the past several decades and is increasingly accepted by the pharmaceutical industry for continuous manufacturing. For tamper-resistant formulations of e.g. opioids, HME is the most efficient production technique. The focus of this study is thus to evaluate the manufacturability of the HME process for tamper-resistant formulations. Parameters such as the specific mechanical energy (SME), as well as the melt pressure and its standard deviation, are important and will be discussed in this study. In the first step, the existing process data are analyzed by means of multivariate data analysis. Key critical process parameters such as feed rate, screw speed, and the concentration of the API in the polymers are identified, and critical quality parameters of the tablet are defined. In the second step, a relationship between the critical material, product and process quality attributes are established by means of Design of Experiments (DoEs). The resulting SME and the temperature at the die are essential data points needed to indirectly qualify the degradation of the API, which should be minimal. NIR-spectroscopy is used to monitor the material during the extrusion process. In contrast to most applications in which the probe is directly integrated into the die, the optical sensor is integrated into the cooling line of the strands. This saves costs in the probe design and maintenance and increases the robustness of the chemometric models. Finally, a process measurement system is installed to monitor and control all of the critical attributes in real-time by means of first principles, DoE models, soft sensor models, and spectroscopic information. Overall, the process is very robust as long as the screw speed is kept low. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Development of Advanced Czochralski Growth Process to produce low cost 150 KG silicon ingots from a single crucible for technology readiness

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The modified CG2000 crystal grower construction, installation, and machine check-out was completed. The process development check-out proceeded with several dry runs and one growth run. Several machine calibrations and functional problems were discovered and corrected. Several exhaust gas analysis system alternatives were evaluated and an integrated system approved and ordered. A contract presentation was made at the Project Integration Meeting at JPL, including cost-projections using contract projected throughput and machine parameters. Several growth runs on a development CG200 RC grower show that complete neck, crown, and body automated growth can be achieved with only one operator input. Work continued for melt level, melt temperature, and diameter sensor development.

  5. Slab melting beneath the Cascade Arc driven by dehydration of altered oceanic peridotite

    NASA Astrophysics Data System (ADS)

    Walowski, K. J.; Wallace, P. J.; Hauri, E. H.; Wada, I.; Clynne, M. A.

    2015-05-01

    Water is returned to Earth’s interior at subduction zones. However, the processes and pathways by which water leaves the subducting plate and causes melting beneath volcanic arcs are complex; the source of the water--subducting sediment, altered oceanic crust, or hydrated mantle in the downgoing plate--is debated; and the role of slab temperature is unclear. Here we analyse the hydrogen-isotope and trace-element signature of melt inclusions in ash samples from the Cascade Arc, where young, hot lithosphere subducts. Comparing these data with published analyses, we find that fluids in the Cascade magmas are sourced from deeper parts of the subducting slab--hydrated mantle peridotite in the slab interior--compared with fluids in magmas from the Marianas Arc, where older, colder lithosphere subducts. We use geodynamic modelling to show that, in the hotter subduction zone, the upper crust of the subducting slab rapidly dehydrates at shallow depths. With continued subduction, fluids released from the deeper plate interior migrate into the dehydrated parts, causing those to melt. These melts in turn migrate into the overlying mantle wedge, where they trigger further melting. Our results provide a physical model to explain melting of the subducted plate and mass transfer from the slab to the mantle beneath arcs where relatively young oceanic lithosphere is subducted.

  6. Slab melting beneath the Cascades Arc driven by dehydration of altered oceanic peridotite

    USGS Publications Warehouse

    Walowski, Kristina J; Wallace, Paul J.; Hauri, E.H.; Wada, I.; Clynne, Michael A.

    2015-01-01

    Water is returned to Earth’s interior at subduction zones. However, the processes and pathways by which water leaves the subducting plate and causes melting beneath volcanic arcs are complex; the source of the water—subducting sediment, altered oceanic crust, or hydrated mantle in the downgoing plate—is debated; and the role of slab temperature is unclear. Here we analyse the hydrogen-isotope and trace-element signature of melt inclusions in ash samples from the Cascade Arc, where young, hot lithosphere subducts. Comparing these data with published analyses, we find that fluids in the Cascade magmas are sourced from deeper parts of the subducting slab—hydrated mantle peridotite in the slab interior—compared with fluids in magmas from the Marianas Arc, where older, colder lithosphere subducts. We use geodynamic modelling to show that, in the hotter subduction zone, the upper crust of the subducting slab rapidly dehydrates at shallow depths. With continued subduction, fluids released from the deeper plate interior migrate into the dehydrated parts, causing those to melt. These melts in turn migrate into the overlying mantle wedge, where they trigger further melting. Our results provide a physical model to explain melting of the subducted plate and mass transfer from the slab to the mantle beneath arcs where relatively young oceanic lithosphere is subducted.

  7. Seismological evidence for an along-axis hydrothermal flow at the Lucky Strike hydrothermal vents site

    NASA Astrophysics Data System (ADS)

    Rai, A.; Wang, H.; Singh, S. C.; Crawford, W. C.; Escartin, J.; Cannat, M.

    2010-12-01

    Hydrothermal circulation at ocean spreading centres plays fundamental role in crustal accretion process, heat extraction from the earth and helps to maintain very rich ecosystem in deep Ocean. Recently, it has been suggested that hydrothermal circulation is mainly along the ridge axis at fast spreading centres above along axis melt lens (AMC). Using a combination of micro-earthquake and seismic reflection data, we show that the hydrothermal circulation at the Lucky Strike segment of slow spreading Mid-Atlantic Ridge is also along axis in a narrow (~1 km) zone above a wide (2-3 km) AMC. We find that the seismicity mainly lies above the seismically imaged 3 km wide 7 km long melt lens at 3.2 km depth. We observe a vertical plume of seismicity above a weak AMC reflection just north of the hydrothermal vent fields that initiates just above the AMC and continues to the seafloor. This zone is collocated with active rifting of the seafloor in the neo-volcanic zone. Beneath the hydrothermal vents sites, where a strong melt lens is imaged, the seismicity initiates at 500 m above the AMC and continues to the seafloor. Just south of the hydrothermal field, where the AMC is widest and strongest, the seismicity band lies 500 m above the melt lens in a 800 m thick zone, which does not continue to the seafloor. The presence the weak melt lens reflection could be due to a cooled and crystallised AMC (mush) that permits the penetration of hydrothermal fluids down to the top of the AMC indicated by seismicity plume and might be the in-flow zone for hydrothermal circulation. The strong AMC reflection could be due to fresh supply of melt in the AMC (pure melt), which has pushed the cracking front 500 m above the AMC. Beneath the hydrothermal fields, the strong AMC reflection and seismicity 500 above the AMC to the seafloor could represent cracking along the up-flow zone. The 800 m thick zone of seismicity above the pure melt zone could be the zone of hydrothermal cracking zone. We do not observe any seismicity along the main bounding faults. These results suggest that the hydrothermal flow is mainly along the ridge axis in a narrow zone above the AMC, even when the AMC only 7 km long.

  8. Autonomous magnetic float zone microgravity crystal growth application to TiC and GaAs

    NASA Astrophysics Data System (ADS)

    Chan, Tony Y.-T.; Choi, Sang-Keun

    1992-10-01

    The floating zone process is ideal for high temperature (greater than 3000 K) growth of titanium carbide because it is containerless. However, float zoning requires small melt volumes in order to maintain a stable melt configuration. The short melt columns make it difficult to achieve a controlled thermal profile, a necessity for producing crystals of high quality. Thus, an automated control strategy based upon continuous monitoring of the growth process with processing parameters adjusted to values based upon the physical transport processes of the growth process is very desirable for maintaining stability and reproducibility of the process. The present work developed a Float-zone Acquisition and Control Technology (FACT) system which uses relations derived by combining empirical relations with a knowledge data base deduced from detailed numerical analysis of fluid mechanics and thermal transport of the growth process. The FACT system was assembled, tested and employed to grow two TiC ingots. One of the ingots was characterized by x-ray diffraction at different axial locations. The x-ray rocking curves showed consistent characteristics of a manually grown ingot. It was also found that with the FACT system, the process conditions can be operated closer to the stability limits, due to fast response time and repetitive amounts of adjustment from the FACT system. The FACT system shows a major potential in growing quality TiC crystals in a cost-effective manner.

  9. Effects of Burning Conditions to the Formation of Gold Layer Photograph and Gold Layer Hologram

    NASA Astrophysics Data System (ADS)

    Kuge, Ken'ichi; Takahashi, Ataru; Harada, Takahito; Doi, Keiji; Sakai, Tomoko

    Burning stage from gold nanoparticles to gold layer in the formation process of gold-layer photograph using gold deposition development was investigated. The gelatin layer holding gold nanoparticles is carbonized at about 400°C and burned out until about 500°C. Because gold nanoparticles would be compressed only to vertical direction and then melt to form the gold layer, the gold-layer photograph still holds the high resolution. Gold nanoparaticles do not melt completely even at 900°C, and form continuous clusters of several hundred nm.

  10. Density Affects the Nature of the Hexatic-Liquid Transition in Two-Dimensional Melting of Soft-Core Systems

    NASA Astrophysics Data System (ADS)

    Zu, Mengjie; Liu, Jun; Tong, Hua; Xu, Ning

    2016-08-01

    We find that both continuous and discontinuous hexatic-liquid transitions can happen in the melting of two-dimensional solids of soft-core disks. For three typical model systems, Hertzian, harmonic, and Gaussian-core models, we observe the same scenarios. These systems exhibit reentrant crystallization (melting) with a maximum melting temperature Tm happening at a crossover density ρm. The hexatic-liquid transition at a density smaller than ρm is discontinuous. Liquid and hexatic phases coexist in a density interval, which becomes narrower with increasing temperature and tends to vanish approximately at Tm. Above ρm, the transition is continuous, in agreement with the Kosterlitz-Thouless-Halperin-Nelson-Young theory. For these soft-core systems, the nature of the hexatic-liquid transition depends on density (pressure), with the melting at ρm being a plausible transition point from discontinuous to continuous hexatic-liquid transition.

  11. Changes in flow of Crosson and Dotson ice shelves, West Antarctica, in response to elevated melt

    NASA Astrophysics Data System (ADS)

    Lilien, David A.; Joughin, Ian; Smith, Benjamin; Shean, David E.

    2018-04-01

    Crosson and Dotson ice shelves are two of the most rapidly changing outlets in West Antarctica, displaying both significant thinning and grounding-line retreat in recent decades. We used remotely sensed measurements of velocity and ice geometry to investigate the processes controlling their changes in speed and grounding-line position over the past 20 years. We combined these observations with inverse modeling of the viscosity of the ice shelves to understand how weakening of the shelves affected this speedup. These ice shelves have lost mass continuously since the 1990s, and we find that this loss results from increasing melt beneath both shelves and the increasing speed of Crosson. High melt rates persisted over the period covered by our observations (1996-2014), with the highest rates beneath areas that ungrounded during this time. Grounding-line flux exceeded basin-wide accumulation by about a factor of 2 throughout the study period, consistent with earlier studies, resulting in significant loss of grounded as well as floating ice. The near doubling of Crosson's speed in some areas during this time is likely the result of weakening of its margins and retreat of its grounding line. This speedup contrasts with Dotson, which has maintained its speed despite increasingly high melt rates near its grounding line, likely a result of the sustained competency of the shelf. Our results indicate that changes to melt rates began before 1996 and suggest that observed increases in melt in the 2000s compounded an ongoing retreat of this system. Advection of a channel along Dotson, as well as the grounding-line position of Kohler Glacier, suggests that Dotson experienced a change in flow around the 1970s, which may be the initial cause of its continuing retreat.

  12. Computational prediction of the refinement of oxide agglomerates in a physical conditioning process for molten aluminium alloy

    NASA Astrophysics Data System (ADS)

    Tong, M.; Jagarlapudi, S. C.; Patel, J. B.; Stone, I. C.; Fan, Z.; Browne, D. J.

    2015-06-01

    Physically conditioning molten scrap aluminium alloys using high shear processing (HSP) was recently found to be a promising technology for purification of contaminated alloys. HSP refines the solid oxide agglomerates in molten alloys, so that they can act as sites for the nucleation of Fe-rich intermetallic phases which can subsequently be removed by the downstream de-drossing process. In this paper, a computational modelling for predicting the evolution of size of oxide clusters during HSP is presented. We used CFD to predict the macroscopic flow features of the melt, and the resultant field predictions of temperature and melt shear rate were transferred to a population balance model (PBM) as its key inputs. The PBM is a macroscopic model that formulates the microscopic agglomeration and breakage of a population of a dispersed phase. Although it has been widely used to study conventional deoxidation of liquid metal, this is the first time that PBM has been used to simulate the melt conditioning process within a rotor/stator HSP device. We employed a method which discretizes the continuous profile of size of the dispersed phase into a collection of discrete bins of size, to solve the governing population balance equation for the size of agglomerates. A finite volume method was used to solve the continuity equation, the energy equation and the momentum equation. The overall computation was implemented mainly using the FLUENT module of ANSYS. The simulations showed that there is a relatively high melt shear rate between the stator and sweeping tips of the rotor blades. This high shear rate leads directly to significant fragmentation of the initially large oxide aggregates. Because the process of agglomeration is significantly slower than the breakage processes at the beginning of HSP, the mean size of oxide clusters decreases very rapidly. As the process of agglomeration gradually balances the process of breakage, the mean size of oxide clusters converges to a steady value. The model enables formulation of the quantitative relationship between the macroscopic flow features of liquid metal and the change of size of dispersed oxide clusters, during HSP. It predicted the variation in size of the dispersed phased with operational parameters (including the geometry and, particularly, the speed of the rotor), which is of direct use to experimentalists optimising the design of the HSP device and its implementation.

  13. A slow atomic diffusion process in high-entropy glass-forming metallic melts

    NASA Astrophysics Data System (ADS)

    Chen, Changjiu; Wong, Kaikin; Krishnan, Rithin P.; Embs, Jan P.; Chathoth, Suresh M.

    2018-04-01

    Quasi-elastic neutron scattering has been used to study atomic relaxation processes in high-entropy glass-forming metallic melts with different glass-forming ability (GFA). The momentum transfer dependence of mean relaxation time shows a highly collective atomic transport process in the alloy melts with the highest and lowest GFA. However, a jump diffusion process is the long-range atomic transport process in the intermediate GFA alloy melt. Nevertheless, atomic mobility close to the melting temperature of these alloy melts is quite similar, and the temperature dependence of the diffusion coefficient exhibits a non-Arrhenius behavior. The atomic mobility in these high-entropy melts is much slower than that of the best glass-forming melts at their respective melting temperatures.

  14. Development of advanced Czochralski growth process to produce low cost 150 kg silicon ingots from a single crucible for technology readiness. [crystal growth

    NASA Technical Reports Server (NTRS)

    Lane, R. L.

    1981-01-01

    Six growth runs used the Kayex-Hameo Automatic Games Logic (AGILE) computer based system for growth from larger melts in the Mod CG2000. The implementation of the melt pyrometer sensor allowed for dip temperature monitoring and usage by the operator/AGILE system. Use of AGILE during recharge operations was successfully evaluated. The tendency of crystals to lose cylindrical shape (spiraling) continued to be a problem. The hygrometer was added to the Furnace Gas Analysis System and used on several growth runs. The gas chromatograph, including the integrator, was also used for more accurate carbon monoxide concentration measurements. Efforts continued for completing the automation of the total Gas Analysis System. An economic analysis, based on revised achievable straight growth rate, is presented.

  15. U-TH-PA-RA study of the Kamchatka arc: new constraints on the genesis of arc lavas

    NASA Astrophysics Data System (ADS)

    Dosseto, Anthony; Bourdon, Bernard; Joron, Jean-Louis; Dupré, Bernard

    2003-08-01

    The 238U- 230Th- 226Ra and 235U- 231Pa disequilibria have been measured by mass spectrometry in historic lavas from the Kamchatka arc. The samples come from three closely located volcanoes in the Central Kamchatka Depression (CKD), the most active region of subducted-related volcanism in the world. The large excesses of 226Ra over 230Th found in the CKD lavas are believed to be linked to slab dehydration. Moreover, the samples show the uncommon feature of ( 230Th/ 238U) activity ratios both lower and higher than 1. The U-series disequilibria are characterized by binary trends between activity ratios, with ( 231Pa/ 235U) ratios all >1. It is shown that these correlations cannot be explained by a simple process involving a combination of slab dehydration and melting. We suggest that they are more likely to reflect mixing between two end-members: a high-magnesia basalt (HMB) end-member with a clear slab fluid signature and a high-alumina andesite (HAA) end-member reflecting the contribution of a slab-derived melt. The U-Th-Ra characteristics of the HMB end-member can be explained either by a two-step fluid addition with a time lag of 150 ka between each event or by continuous dehydration. The inferred composition for the dehydrating slab is a phengite-bearing eclogite. Equilibrium transport or dynamic melting can both account for 231Pa excess over 235U in HMB end-member. Nevertheless, dynamic melting is preferred as equilibrium transport melting requires unrealistically high upwelling velocities to preserve fluid-derived 226Ra/ 230Th. A continuous flux melting model is also tested. In this model, 231Pa- 235U is quickly dominated by fluid addition and, for realistic extents of melting, this process cannot account for ( 231Pa/ 235U) ratios as high as 1.6, as observed in the HMB end-member. The involvement of a melt derived from the subducted oceanic crust is more likely for explaining the HAA end-member compositions than crustal assimilation. Melting of the oceanic crust is believed to occur in presence of residual phengite and rutile, resulting in no 226Ra- 230Th disequilibrium and low 231Pa excess over 235U in the high-alumina andesites. Consequently, it appears that high-alumina andesites and high-magnesia basalts have distinct origins: the former being derived from melting of the subducted oceanic crust and the latter from hydrated mantle. It seems that there is no genetic link between these two magma types, in contrast with what was previously believed.

  16. Surface Melt and Firn Density Evolution in the Western Greenland Percolation Zone Over the Past 50 Years

    NASA Astrophysics Data System (ADS)

    Graeter, K.; Osterberg, E. C.; Hawley, R. L.; Thundercloud, Z. R.; Marshall, H. P.; Ferris, D. G.; Lewis, G.

    2016-12-01

    Predictions of the Greenland Ice Sheet's (GIS) contribution to sea-level rise in a warming climate depend on our ability to model the surface mass balance (SMB) processes occurring across the ice sheet. These processes are poorly constrained in the percolation zone, the region of the ice sheet where surface melt refreezes in the firn, thus preventing that melt from directly contributing to GIS mass loss. In this way, the percolation zone serves as a buffer to higher temperatures increasing mass loss. However, it is unknown how the percolation zone is evolving in a changing climate and to what extent the region will continue to serve as a buffer to future runoff. We collected seven shallow ( 22-30 m) firn cores from the Western Greenland percolation zone in May-June 2016 as part of the Greenland Traverse for Accumulation and Climate Studies (GreenTrACS) project. Here we present data on melt layer stratigraphy, density, and annual accumulation for each core to determine: (1) the temporal and spatial accumulation and melt refreeze patterns in the percolation zone of W. Greenland over the past 40 - 55 years, and (2) the impacts of changing melt and refreeze patterns on the near-surface density profile of the percolation zone. Three of the GreenTrACS firn cores re-occupy firn core sites collected in the 1970's-1990's, allowing us to more accurately quantify the evolution of the percolation zone surface melt and firn density during the most recent decades of summertime warming. This work is the basis for broader investigations into how changes in W. Greenland summertime climate are impacting the SMB of the Greenland Ice Sheet.

  17. Recovering Paleo-Records from Antarctic Ice-Cores by Coupling a Continuous Melting Device and Fast Ion Chromatography.

    PubMed

    Severi, Mirko; Becagli, Silvia; Traversi, Rita; Udisti, Roberto

    2015-11-17

    Recently, the increasing interest in the understanding of global climatic changes and on natural processes related to climate yielded the development and improvement of new analytical methods for the analysis of environmental samples. The determination of trace chemical species is a useful tool in paleoclimatology, and the techniques for the analysis of ice cores have evolved during the past few years from laborious measurements on discrete samples to continuous techniques allowing higher temporal resolution, higher sensitivity and, above all, higher throughput. Two fast ion chromatographic (FIC) methods are presented. The first method was able to measure Cl(-), NO3(-) and SO4(2-) in a melter-based continuous flow system separating the three analytes in just 1 min. The second method (called Ultra-FIC) was able to perform a single chromatographic analysis in just 30 s and the resulting sampling resolution was 1.0 cm with a typical melting rate of 4.0 cm min(-1). Both methods combine the accuracy, precision, and low detection limits of ion chromatography with the enhanced speed and high depth resolution of continuous melting systems. Both methods have been tested and validated with the analysis of several hundred meters of different ice cores. In particular, the Ultra-FIC method was used to reconstruct the high-resolution SO4(2-) profile of the last 10,000 years for the EDML ice core, allowing the counting of the annual layers, which represents a key point in dating these kind of natural archives.

  18. A comparative study between hot-melt extrusion and spray-drying for the manufacture of anti-hypertension compatible monolithic fixed-dose combination products.

    PubMed

    Kelleher, J F; Gilvary, G C; Madi, A M; Jones, D S; Li, S; Tian, Y; Almajaan, A; Senta-Loys, Z; Andrews, G P; Healy, A M

    2018-07-10

    The purpose of this work was to investigate the application of different advanced continuous processing techniques (hot melt extrusion and spray drying) to the production of fixed-dose combination (FDC) monolithic systems comprising of hydrochlorothiazide and ramipril for the treatment of hypertension. Identical FDC formulations were manufactured by the two different methods and were characterised using powder X-ray diffraction (PXRD) and modulated differential scanning calorimetry (mDSC). Drug dissolution rates were investigated using a Wood's apparatus, while physical stability was assessed on storage under controlled temperature and humidity conditions. Interestingly both drugs were transformed into their amorphous forms when spray dried, however, hydrochlorothiazide was determined, by PXRD, to be partially crystalline when hot melt extruded with either polymer carrier (Kollidon® VA 64 or Soluplus®). Hot melt extrusion was found to result in significant degradation of ramipril, however, this could be mitigated by the inclusion of the plasticizer, polyethylene glycol 3350, in the formulation and appropriate adjustment of processing temperature. The results of intrinsic dissolution rate studies showed that hot-melt extruded samples were found to release both drugs faster than identical formulations produced via spray drying. However, the differences were attributable to the surface roughness of the compressed discs in the Wood's apparatus, rather than solid state differences between samples. After a 60-day stability study spray dried samples exhibited a greater physical stability than the equivalent hot melt extruded samples. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Automatic Control of Silicon Melt Level

    NASA Technical Reports Server (NTRS)

    Duncan, C. S.; Stickel, W. B.

    1982-01-01

    A new circuit, when combined with melt-replenishment system and melt level sensor, offers continuous closed-loop automatic control of melt-level during web growth. Installed on silicon-web furnace, circuit controls melt-level to within 0.1 mm for as long as 8 hours. Circuit affords greater area growth rate and higher web quality, automatic melt-level control also allows semiautomatic growth of web over long periods which can greatly reduce costs.

  20. Magma Electrolysis: An update

    NASA Technical Reports Server (NTRS)

    Colson, Russell O.; Haskin, Larry A.

    1991-01-01

    Electrolytic extraction of O2 from molten lunar soil is conceptually simple and thus a candidate process for producing O2 on the Moon. Possible container and electrode materials are being tested for durability in corrosive high-temperature silicate melts and looking for complications that might increase energy requirements. Gaseous oxygen is being produced by electrolysis of 1-2 gram quantities of silicate melts in spinel (MgAl2O4) crucibles; in these melts, spinel is a stable phase. The concentration of FeO was kept low because FeO decrease O2 production efficiency. Platinum electrodes were placed about 0.5 cm apart in the melt. The spinel crucible was still intact after 40 minutes of electrolysis, when the experiment was halted for examination. The Pt anode was also intact; its Pt was maintained in a dynamci state in which the anode was continuously oxidized but quickly reduced again by the silicate melt, inhibiting migration of Pt away from the anode. In melts with low concentrations of Al2O3 + SiO2 (2 wt percent), the energy of resistance heating was only approximately equal to 10 to 20 percent of the theoretical amount required to produce O2. In melts substantially more concentrated in Al2O3 + SiO2, higher melt viscosity resulted in frothing that, in the worst case, caused high enough melt resistivities to raise the energy requirements to nearly 10 times theoretical. Both Fe and Si are produced at the cathode; in iron-rich melts, a- and c-iron and molten ferrosilicon were observed. Production was also observed at the cathode of a previously unrecognized gas; which is not yet identified. The solubility of metallic species was measured in silicate melts. They are too low to reduce significantly the efficiency of O2 production.

  1. Supplementary Microstructural Features Induced During Laser Surface Melting of Thermally Sprayed Inconel 625 Coatings

    NASA Astrophysics Data System (ADS)

    Ahmed, Nauman; Voisey, K. T.; McCartney, D. G.

    2014-02-01

    Laser surface melting of thermally sprayed coatings has the potential to enhance their corrosion properties by incorporating favorable microstructural changes. Besides homogenizing the as-sprayed structure, laser melting may induce certain microstructural modifications (i.e., supplementary features) in addition to those that directly improve the corrosion performance. Such features, being a direct result of the laser treatment process, are described in this paper which is part of a broader study in which high velocity oxy-fuel sprayed Inconel 625 coatings on mild-steel substrates were treated with a diode laser and the modified microstructure characterized using optical and scanning electron microscopy and x-ray diffraction. The laser treated coating features several different zones, including a region with a microstructure in which there is a continuous columnar dendritic structure through a network of retained oxide stringers.

  2. Surface Hydrological Processes of Rock Glaciated Basins in the San Juan Mountains, Colorado

    NASA Astrophysics Data System (ADS)

    Mateo, E. I.

    2017-12-01

    Glaciers in the western United States have been examined in terms of their summer meltwater contributions to regional hydrological systems. In the San Juan Mountains of Colorado where glaciers do not and cannot exist due to a rising zero-degree isotherm, rock glaciers take the place of valley glaciers during the summer runoff period. Most of the rock glaciers in Colorado are located on a northerly slope aspect, however, there are multiple in the southwest region of the state that occur on different aspects. This study asked how slope aspect and rising air temperatures influenced the hydrological processes of streams below rock glaciers in the San Juan Mountains during the 2016 summer season. This project focused on three basins, Yankee Boy basin, Blue Lakes basin, and Mill Creek basin, which are adjacent to each other and share a common peak, Gilpin Peak. Findings of this one-season study showed that air temperature significantly influenced stream discharge below each rock glacier. Discharge and air temperature patterns indicate a possible air temperature threshold during late summer when rock glacier melt increased at a greater rate. The results also suggest that slope aspect of rock glacier basins influences stream discharge, but temperature and precipitation are likely larger components of the melt regimes. The continuation of data collection during the 2017 summer season has allowed for more detailed analysis of the relationship between air temperature and rock glacier melt. This continual expansion of the original dataset is crucial for understanding the hydrological processes of surface runoff below rock glaciers.

  3. Optical-cell evidence for superheated ice under gas-hydrate-forming conditions

    USGS Publications Warehouse

    Stern, L.A.; Hogenboom, D.L.; Durham, W.B.; Kirby, S.H.; Chou, I.-Ming

    1998-01-01

    We previously reported indirect but compelling evidence that fine-grained H2O ice under elevated CH4 gas pressure can persist to temperatures well above its ordinary melting point while slowly reacting to form methane clathrate hydrate. This phenomenon has now been visually verified by duplicating these experiments in an optical cell while observing the very slow hydrate-forming process as the reactants were warmed from 250 to 290 K at methane pressures of 23 to 30 MPa. Limited hydrate growth occurred rapidly after initial exposure of the methane gas to the ice grains at temperatures well within the ice subsolidus region. No evidence for continued growth of the hydrate phase was observed until samples were warmed above the equilibrium H2O melting curve. With continued heating, no bulk melting of the ice grains or free liquid water was detected anywhere within the optical cell until hydrate dissociation conditions were reached (292 K at 30 MPa), even though full conversion of the ice grains to hydrate requires 6-8 h at temperatures approaching 290 K. In a separate experimental sequence, unreacted portions of H2O ice grains that had persisted to temperatures above their ordinary melting point were successfully induced to melt, without dissociating the coexisting hydrate in the sample tube, by reducing the pressure overstep of the equilibrium phase boundary and thereby reducing the rate of hydrate growth at the ice-hydrate interface. Results from similar tests using CO2 as the hydrate-forming species demonstrated that this superheating effect is not unique to the CH4-H2O system.

  4. Scaleable Clean Aluminum Melting Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, Q.; Das, S.K.

    2008-02-15

    The project entitled 'Scaleable Clean Aluminum Melting Systems' was a Cooperative Research and Development Agreements (CRADAs) between Oak Ridge National Laboratory (ORNL) and Secat Inc. The three-year project was initially funded for the first year and was then canceled due to funding cuts at the DOE headquarters. The limited funds allowed the research team to visit industrial sites and investigate the status of using immersion heaters for aluminum melting applications. Primary concepts were proposed on the design of furnaces using immersion heaters for melting. The proposed project can continue if the funding agency resumes the funds to this research. Themore » objective of this project was to develop and demonstrate integrated, retrofitable technologies for clean melting systems for aluminum in both the Metal Casting and integrated aluminum processing industries. The scope focused on immersion heating coupled with metal circulation systems that provide significant opportunity for energy savings as well as reduction of melt loss in the form of dross. The project aimed at the development and integration of technologies that would enable significant reduction in the energy consumption and environmental impacts of melting aluminum through substitution of immersion heating for the conventional radiant burner methods used in reverberatory furnaces. Specifically, the program would couple heater improvements with furnace modeling that would enable cost-effective retrofits to a range of existing furnace sizes, reducing the economic barrier to application.« less

  5. ABSORPTION OF CO2 IN HIGH ACRYLONITRILE CONTENT COPOLYMERS: DEPENDENCE ON ACRYLONITRILE CONTENT. (R829555)

    EPA Science Inventory

    In continuation of our goal to determine the ability of CO2 to plasticize acrylonitrile (AN) copolymers and facilitate melt processing at temperatures below the onset of thermal degradation, a systematic study has been performed to determine the influence of AN cont...

  6. Channelized melting drives thinning under Dotson ice shelf, Western Antarctic Ice Sheet

    NASA Astrophysics Data System (ADS)

    Gourmelen, N.; Goldberg, D.; Snow, K.; Henley, S. F.; Bingham, R. G.; Kimura, S.; Hogg, A.; Shepherd, A.; Mouginot, J.; Lenaerts, J.; Ligtenberg, S.; Van De Berg, W. J.

    2017-12-01

    The majority of meteoric ice that forms in West Antarctica leaves the ice sheet through floating ice shelves, many of which have been thinning substantially over the last 25 years. A significant proportion of ice-shelf thinning has been driven by submarine melting facilitated by increased access of relatively warm (>0.6oC) modified Circumpolar Deep Water to sub-shelf cavities. Ice shelves play a significant role in stabilising the ice sheet from runaway retreat and regulating its contribution to sea level change. Ice-shelf melting has also been implicated in sustaining high primary productivity in Antarctica's coastal seas. However, these processes vary regionally and are not fully understood. Under some ice shelves, concentrated melting leads to the formation of inverted channels. These channels guide buoyant melt-laden outflow, which can lead to localised melting of the sea ice cover. The channels may also potentially lead to heightened crevassing, which in turn affects ice-shelf stability. Meanwhile, numerical studies suggest that buttressing loss is sensitive to the location of ice removal within an ice-shelf. Thus it is important that we observe spatial patterns, as well as magnitudes, of ice-shelf thinning, in order to improve understanding of the ocean drivers of thinning and of their impacts on ice-shelf stability. Here we show from high-resolution altimetry measurements acquired between 2010 to 2016 that Dotson Ice Shelf, West Antarctica, thins in response to basal melting focussed along a single 5 km-wide and 60 km-long channel extending from the ice shelf's grounding zone to its calving front. The coupled effect of geostrophic circulation and ice-shelf topography leads to the observed concentration of basal melting. Analysis of previous datasets suggests that this process has been ongoing for at least the last 25 years. If focused thinning continues at present rates, the channel would melt through within 40-50 years, almost two centuries before it is projected from the average thinning rate. Our findings provide evidence of basal melt-driven sub-ice shelf channel formation and its potential for accelerating the weakening of ice shelves.

  7. Resonant absorption induced fast melting studied with mid-IR QCLs.

    PubMed

    Lu, Jie; Lv, Yankun; Ji, Youxin; Tang, Xiaoliang; Qi, Zeming; Li, Liangbin

    2017-02-01

    We demonstrate the use of a pump-probe setup based on two mid-infrared quantum cascade lasers (QCLs) to investigate the melting and crystallization of materials through resonant absorption. A combination of pump and probe beams fulfills the two-color synchronous detection. Furthermore, narrow linewidth advances the accuracy of measurements and the character of broad tuning range of QCLs enables wide applications in various sample and multiple structures. 1-Eicosene was selected as a simple model system to verify the feasibility of this method. A pulsed QCL was tuned to the absorption peak of CH 2 bending vibration at 1467 cm -1 to resonantly heat the sample. The other QCL in continuous mode was tuned to 1643 cm -1 corresponding the C=C stretching vibration to follow the fast melting dynamics. By monitoring the transmission intensity variation of pump and probe beams during pump-probe experiments, the resonant absorption induced fast melting and re-crystallization of 1-Eicosene can be studied. Results show that the thermal effect and melting behaviors strongly depend on the pump wavelength (resonant or non-resonant) and energy, as well as the pump time. The realization and detection of melting and recrystallization can be performed in tens of milliseconds, which improves the time resolution of melting process study based on general mid-infrared spectrum by orders of magnitude. The availability of resonant heating and detections based on mid-infrared QCLs is expected to enable new applications in melting study.

  8. Flat-plate solar array project: Experimental process system development unit for producing semiconductor-grade silicon using the silane-to-silicon process

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The engineering design, fabrication, assembly, operation, economic analysis, and process support research and development for an Experimental Process System Development Unit for producing semiconductor-grade silicon using the slane-to-silicon process are reported. The design activity was completed. About 95% of purchased equipment was received. The draft of the operations manual was about 50% complete and the design of the free-space system continued. The system using silicon power transfer, melting, and shotting on a psuedocontinuous basis was demonstrated.

  9. The use of Rheology Combined with Differential Scanning Calorimetry to Elucidate the Granulation Mechanism of an Immiscible Formulation During Continuous Twin-Screw Melt Granulation.

    PubMed

    Monteyne, Tinne; Heeze, Liza; Mortier, Severine Therese F C; Oldörp, Klaus; Cardinaels, Ruth; Nopens, Ingmar; Vervaet, Chris; Remon, Jean-Paul; De Beer, Thomas

    2016-10-01

    Twin screw hot melt granulation (TS HMG) is a valuable, but still unexplored alternative to continuous granulation of moisture sensitive drugs. However, knowledge of the material behavior during TS HMG is crucial to optimize the formulation, process and resulting granule properties. The aim of this study was to evaluate the agglomeration mechanism during TS HMG using a rheometer in combination with differential scanning calorimetry (DSC). An immiscible drug-binder formulation (caffeine-Soluplus(®)) was granulated via TS HMG in combination with thermal and rheological analysis (conventional and Rheoscope), granule characterization and Near Infrared chemical imaging (NIR-CI). A thin binder layer with restricted mobility was formed on the surface of the drug particles during granulation and is covered by a second layer with improved mobility when the Soluplus(®) concentration exceeded 15% (w/w). The formation of this second layer was facilitated at elevated granulation temperatures and resulted in smaller and more spherical granules. The combination of thermal and rheological analysis and NIR-CI images was advantageous to develop in-depth understanding of the agglomeration mechanism during continuous TS HMG and provided insight in the granule properties as function of process temperature and binder concentration.

  10. Design and Evaluation of Topical Diclofenac Sodium Gel Using Hot Melt Extrusion Technology as a Continuous Manufacturing Process with Kolliphor® P407.

    PubMed

    Pawar, Jaywant; Narkhede, Rajkiran; Amin, Purnima; Tawde, Vaishali

    2017-08-01

    The aim of the present context was to develop and evaluate a Kolliphor® P407-based transdermal gel formulation of diclofenac sodium by hot melt extrusion (HME) technology; central composite design was used to optimize the formulation process. In this study, we have explored first time ever HME as an industrially feasible and continuous manufacturing technology for the manufacturing of gel formulation using Kolliphor® P407 and Kollisolv® PEG400 as a gel base. Diclofenac sodium was used as a model drug. The HME parameters such as feeding rate, screw speed, and barrel temperature were crucial for the semisolid product development, and were optimized after preliminary trials. For the processing of the gel formulation by HME, a modified screw design was used to obtain a uniform product. The obtained product was evaluated for physicochemical characterization such as differential scanning calorimetry (DSC), X-ray diffraction (XRD), pH measurement, rheology, surface tension, and texture profile analysis. Moreover, it was analyzed for general appearance, spreadibility, surface morphology, and drug content. The optimized gel formulation showed homogeneity and transparent film when applied on a glass slide under microscope, pH was 7.02 and uniform drug content of 100.04 ± 2.74 (SD = 3). The DSC and XRD analysis of the HME gel formulation showed complete melting of crystalline API into an amorphous form. The Kolliphor® P407 and Kollisolv® PEG400 formed excellent gel formulation using HME with consistent viscoelastic properties of the product. An improved drug release was found for the HME gel, which showed a 100% drug release than that of a marketed product which showed only 88% of drug release at the end of 12 h. The Flux value of the HME gel was 106 than that of a marketed formulation, which showed only about 60 value, inferring a significant difference (P < 0.05) at the end of 1 h. This study demonstrates a novel application of the hot melt extrusion process for manufacturing of topical semisolid products.

  11. Thermal preconditioning of mountain permafrost towards instability

    NASA Astrophysics Data System (ADS)

    Hauck, Christian; Etzelmüller, Bernd; Hilbich, Christin; Isaksen, Ketil; Mollaret, Coline; Pellet, Cécile; Westermann, Sebastian

    2017-04-01

    Warming permafrost has been detected worldwide in recent years and is projected to continue during the next century as shown in many modelling studies from the polar and mountain regions. In mountain regions, this can lead to potentially hazardous impacts on short time-scales by an increased tendency for slope instabilities. However, the time scale of permafrost thaw and the role of the ice content for determining the strength and rate of permafrost warming and degradation (= development of talik) are still unclear, especially in highly heterogeneous terrain. Observations of permafrost temperatures near the freezing point show complex inter-annual responses to climate forcing due to latent heat effects during thawing and the influence of the snow-cover, which is formed and modulated by highly non-linear processes itself. These effects are complicated by 3-dimensional hydrological processes and interactions between snow melt, infiltration and drainage which may also play an important role in the triggering of mass movements in steep permafrost slopes. In this contribution we demonstrate for the first time a preconditioning effect within near-surface layers in mountain permafrost that causes non-linear degradation and accelerates permafrost thaw. We hypothesise that an extreme regional or global temperature anomaly, such as the Central European summers 2003 and 2015 or the Northern European summers 2006 and 2014, will enhance permafrost degradation if the active layer and the top of the permafrost layer are already preconditioned, i.e. have reduced latent heat content. This preconditioning can already be effectuated by a singular warm year, leading to exceptionally strong melting of the ground ice in the near-surface layers. On sloping terrain and in a context of quasi-continuous atmospheric warming, this ice-loss can be considered as irreversible, as a large part of the melted water will drain/evaporate during the process, and the build-up of an equivalent amount of ice in following cold years does not happen on similar time-scales as the melting. Joint thermal and geophysical observations from permafrost sites in the Swiss Alps and Scandinavia suggest that the above process applies mostly to sites with low to intermediate ice contents, where singular anomalies can lead to sustained ice loss even at larger depths.

  12. Ridge Outgassing and Melt Production from 4Ga to Present

    NASA Astrophysics Data System (ADS)

    Fuentes, J.; Crowley, J.; Dasgupta, R.; Mitrovica, J. X.

    2017-12-01

    The majority of Earth's volcanism occurs at ocean ridges via decompression melting. This process exerts a strong control on the mantle and surface volatile contents throughout Earth history. In this study, we investigate mantle temperature, ridge melt production, and ridge CO2 outgassing from 4 Ga to present by coupling an analytical mantle convection model (Crowley and O'Connell 2012) with a recent petrologic model of peridotite melting in the presence of CO2 (Dasgupta et al. 2013). By taking advantage of the computational efficiency of the convection model, we simulate time-dependent convection with a large suite of realistic mantle and lithospheric parameters to produce a full range of possible thermal histories. We only accept models which evolve from stagnant-lid convection to mobile-lid convection in order to be consistent with previous geodynamic modeling and geochemical studies (i.e. Condie et al. 2016, Debaille et al. 2013). The presence of volatiles in the mantle leads to deeper, low degree melting. This effect, combined with higher temperatures sustained during the phase of stagnant-lid convection, has a significant effect on the total mass of CO2 outgassed (as well as other volatiles), with major implications for early Earth climate and its continued evolution.

  13. Hot Melt Extruded and Injection Moulded Dosage Forms: Recent Research and Patents.

    PubMed

    Major, Ian; McConville, Christopher

    2015-01-01

    Hot Melt Extrusion (HME) and Injection Moulding (IM) are becoming more prevalent in the drug delivery field due to their continuous nature and advantages over current pharmaceutical manufacturing techniques. Hot melt extrusion (HME) is a process that involves the use of at least one reciprocating screw to force a thermoplastic resin along a heated barrel and through a die, while injection moulding is a forming process were molten polymer is forced at high pressure to enter a mould. HME offers a number of advantages over conventional pharmaceutical manufacturing techniques such as increased solubility and bioavailability of poorly water soluble drugs, a solvent free and continuous process, improved content uniformity and flexibility in manufacture. Injection moulding (IM) has been recognised as a rapid and versatile manufacturing technique, which has the advantages of being a continuous process, which is easily scaled up by the use of larger equipment and moulds. However, despite their advantages and the significant number of publications and patents on HME and IM drug delivery devices there are very few marketed formulations. These marketed products range from oral dosage forms which improve bioavailability and reduce pill burden to vaginal rings which provide long-term controlled release thus improving patient compliance. The patenting strategy for IM and HME seems to be focused towards patenting the finished product, more so than patenting the manufacturing process. This is probably due to the fact that the IM and HME processes have already been patented. HME is a process where raw materials (i.e. polymer, plasticizer, drug etc.) are mixed and pumped along by a rotating screw(s) at elevated temperatures through a die to produce a product of uniform shape. IM is similar to HME except that the raw materials are pushed into a mould which is set at lower temperatures. Interest in the use of HME and IM within the pharmaceutical industry is growing with as steady increase in the number of HME patents being issued and with more than 10 products, ranging from oral dosage forms to implantable devices, currently on the market. Therefore, this review of HME and IM is important to the scientific community to further understand and advance these novel and exciting manufacturing techniques.

  14. Development of sustained-release lipophilic calcium stearate pellets via hot melt extrusion.

    PubMed

    Roblegg, Eva; Jäger, Evelyn; Hodzic, Aden; Koscher, Gerold; Mohr, Stefan; Zimmer, Andreas; Khinast, Johannes

    2011-11-01

    The objective of this study was the development of retarded release pellets using vegetable calcium stearate (CaSt) as a thermoplastic excipient. The matrix carrier was hot melt extruded and pelletized with a hot-strand cutter in a one step continuous process. Vegetable CaSt was extruded at temperatures between 100 and 130°C, since at these temperatures cutable extrudates with a suitable melt viscosity may be obtained. Pellets with a drug loading of 20% paracetamol released 11.54% of the drug after 8h due to the great densification of the pellets. As expected, the drug release was influenced by the pellet size and the drug loading. To increase the release rate, functional additives were necessary. Therefore, two plasticizers including glyceryl monostearate (GMS) and tributyl citrate (TBC) were investigated for plasticization efficiency and impact on the in vitro drug release. GMS increased the release rate due to the formation of pores at the surface (after dissolution) and showed no influence on the process parameters. The addition of TBC increased the drug release to a higher extent. After dissolving, the pellets exhibited pores at the surface and in the inner layer. Small- and Wide-Angle X-ray Scattering (SWAXS) revealed no major change in crystalline peaks. The results demonstrated that (nearly) spherical CaSt pellets could be successfully prepared by hot melt extrusion using a hot-strand cutter as downstreaming system. Paracetamol did not melt during the process indicating a solid suspension. Due to the addition of plasticizers, the in vitro release rate could be tailored as desired. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. Simulation results of influence of constricted arc column on anode deformation and melting pool swirl in vacuum arcs with AMF contacts

    NASA Astrophysics Data System (ADS)

    Wang, Lijun; Zhang, Xiao; Huang, Xiaolong; Jia, Shenli

    2017-11-01

    In the process of vacuum arc breaking, the energy injected into the anode will cause anode melting, evaporation, and deformation, resulting in the formation of the anode melting pool. The anode activities have great influence on the arc behavior. When the arc current is large enough, even the influence of axial magnetic field is considered, the arc column still is in contraction state, which means the arc burns only on a part of the electrode. In this paper, the model of anode melting pool deformation and rotation is used, and the model includes anode melting and solidification module, magneto-hydro-dynamic module of the anode melting pool, the volume of fraction method, and the current continuity equation. In this paper, the diffuse arc area is selected as 100%, 75%, and 50%, respectively. The anode temperature and deformation, the anode melting layer thickness, and the rotational velocity of the anode melting pool are obtained. The results show that when the current is at 17.5 kA (rms) and the diffuse arc area is 100%, the anode's maximum temperature is 1477 K and the crater depth is 0.83 mm. But when the diffuse arc areas are 75% and 50%, the anode's maximum temperatures reach 1500 K and 1761 K, and the crater depths reach 1.2 mm and 3 mm, respectively. Arc contraction will lead to more serious anode deformation. A similar result is obtained when the simulation current is 12.5 kA. Under the similar situation, the simulation results in the crater depth, the residual melt layer thickness, the rotational speed of the melting pool, and the maximum temperature of the anode at current zero are in good agreement with the experimental results.

  16. Modeling Mantle Shear Zones, Melt Focusing and Stagnation - Are Non Volcanic Margins Really Magma Poor?

    NASA Astrophysics Data System (ADS)

    Lavier, L. L.; Muntener, O.

    2011-12-01

    Mantle peridotites from ocean-continent transition zones (OCT's) and ultraslow spreading ridges question the commonly held assumption of a simple link between mantle melting and MORB. 'Ancient' and partly refertilized mantle in rifts and ridges illustrates the distribution of the scale of upper mantle heterogeneity even on a local scale. Upwelling of partial melts that enter the conductive lithospheric mantle inevitably leads to freezing of the melt and metasomatized lithosphere. Field data and petrology demonstrates that ancient, thermally undisturbed, pyroxenite-veined subcontinental mantle blobs formed parts of the ocean floor next to thinned continental crust. Similar heterogeneity might be created in the oceanic lithosphere where the thermal boundary layer (TBM) is thick and veined with metasomatic assemblages. This cold, ancient, 'subcontinental domain' is separated by ductile shear zones (or some other form of permeability barriers) from an infiltrated ('hot') domain dominated by refertilized spinel and/or plagioclase peridotite. The footwall of these mantle shear zones display complex refertilization processes and high-temperature deformation. We present numerical models that illustrate the complex interplay of km-scale refertilization with active deformation and melt focusing on top of the mantle. Melt lubricated shear zones focus melt flow in shear fractures (melt bands) occurring along grain boundaries. Continuous uplift and cooling leads to crystallization, and crystal plastic deformation prevails in the subsolidus state. Below 800oC if water is present deformation by shearing of phyllosilicates may become prevalent. We develop physical boundary conditions for which stagnant melt beneath a permeability barrier remains trapped rather than being extracted to the surface via melt-filled fractures. We explore the parameter space for fracturing and drainage and development of anastomozing impermeable shear zones. Our models might be useful to constrain the conditions and enigmatic development of magma-poor and magma rich margins.

  17. Carbothermal Processing of Lunar Regolith Using Methane

    NASA Technical Reports Server (NTRS)

    Balasubramaniam, R.; Hegde, U.; Gokoglu, S.

    2009-01-01

    The processing of lunar regolith for the production of oxygen is a key component of the In-Situ Resource Utilization plans currently being developed by NASA. Among various candidate processes, the modeling of oxygen production by hydrogen reduction, molten salt electrolysis, and carbothermal processing are presently being pursued. In the carbothermal process, a portion of the surface of the regolith in a container is heated by exposure to a heat source such as a laser beam or a concentrated solar heat flux, so that a small zone of molten regolith is established. The molten zone is surrounded by solid regolith particles that are poor conductors of heat. A continuous flow of methane is maintained over the molten regolith zone. Our model is based on a mechanism where methane pyrolyzes when it comes in contact with the surface of the hot molten regolith to form solid carbon and hydrogen gas. Carbon is deposited on the surface of the melt, and hydrogen is released into the gas stream above the melt surface. We assume that the deposited carbon mixes in the molten regolith and reacts with metal oxides in a reduction reaction by which gaseous carbon monoxide is liberated. Carbon monoxide bubbles through the melt and is released into the gas stream. Oxygen is produced subsequently by (catalytically) processing the carbon monoxide downstream. In this paper, we discuss the development of a chemical conversion model of the carbothermal process to predict the rate of production of carbon monoxide.

  18. Carbothermal Processing of Lunar Regolith Using Methane

    NASA Technical Reports Server (NTRS)

    Balasubramaniam, R.; Hegde, U.; Gokoglu, S.

    2008-01-01

    The processing of lunar regolith for the production of oxygen is a key component of the In-Situ Resource Utilization plans currently being developed by NASA. Among various candidate processes, the modeling of oxygen production by hydrogen reduction, molten salt electrolysis, and carbothermal processing are presently being pursued. In the carbothermal process, a portion of the surface of the regolith in a container is heated by exposure to a heat source such as a laser beam or a concentrated solar heat flux, so that a small zone of molten regolith is established. The molten zone is surrounded by solid regolith particles that are poor conductors of heat. A continuous flow of methane is maintained over the molten regolith zone. Our model is based on a mechanism where methane pyrolyzes when it comes in contact with the surface of the hot molten regolith to form solid carbon and hydrogen gas. Carbon is deposited on the surface of the melt, and hydrogen is released into the gas stream above the melt surface. We assume that the deposited carbon mixes in the molten regolith and reacts with metal oxides in a reduction reaction by which gaseous carbon monoxide is liberated. Carbon monoxide bubbles through the melt and is released into the gas stream. Oxygen is produced subsequently by (catalytically) processing the carbon monoxide downstream. In this paper, we discuss the development of a chemical conversion model of the carbothermal process to predict the rate of production of carbon monoxide.

  19. Hot-melt extrusion--basic principles and pharmaceutical applications.

    PubMed

    Lang, Bo; McGinity, James W; Williams, Robert O

    2014-09-01

    Originally adapted from the plastics industry, the use of hot-melt extrusion has gained favor in drug delivery applications both in academia and the pharmaceutical industry. Several commercial products made by hot-melt extrusion have been approved by the FDA, demonstrating its commercial feasibility for pharmaceutical processing. A significant number of research articles have reported on advances made regarding the pharmaceutical applications of the hot-melt extrusion processing; however, only limited articles have been focused on general principles regarding formulation and process development. This review provides an in-depth analysis and discussion of the formulation and processing aspects of hot-melt extrusion. The impact of physicochemical properties of drug substances and excipients on formulation development using a hot-melt extrusion process is discussed from a material science point of view. Hot-melt extrusion process development, scale-up, and the interplay of formulation and process attributes are also discussed. Finally, recent applications of hot-melt extrusion to a variety of dosage forms and drug substances have also been addressed.

  20. Al/sub 2/S/sub 3/ preparation and use in electrolysis process for aluminum production

    DOEpatents

    Hsu, C.C.; Loutfy, R.O.; Yao, N.P.

    A continuous process for producing aluminum sulfide and for electrolyzing the aluminum sulfide to form metallic aluminum in which the aluminum sulfide is produced from aluminum oxide and COS or CS/sub 2/ in the presence of a chloride melt which also serves as the electrolysis bath. Circulation between the reactor and electrolysis cell is carried out to maintain the desired concentration of aluminum sulfide in the bath.

  1. Production of continuous mullite fiber via sol-gel processing

    NASA Technical Reports Server (NTRS)

    Tucker, Dennis S.; Sparks, J. Scott; Esker, David C.

    1990-01-01

    The development of a continuous ceramic fiber which could be used in rocket engine and rocket boosters applications was investigated at the Marshall Space Flight Center. Methods of ceramic fiber production such as melt spinning, chemical vapor deposition, and precursor polymeric fiber decomposition are discussed and compared with sol-gel processing. The production of ceramics via the sol-gel method consists of two steps, hydrolysis and polycondensation, to form the preceramic, followed by consolidation into the glass or ceramic structure. The advantages of the sol-gel method include better homogeneity and purity, lower preparation temperature, and the ability to form unique compositions. The disadvantages are the high cost of raw materials, large shrinkage during drying and firing which can lead to cracks, and long processing times. Preparation procedures for aluminosilicate sol-gel and for continuous mullite fibers are described.

  2. Formulation and development of pH-independent/dependent sustained release matrix tablets of ondansetron HCl by a continuous twin-screw melt granulation process.

    PubMed

    Patil, Hemlata; Tiwari, Roshan V; Upadhye, Sampada B; Vladyka, Ronald S; Repka, Michael A

    2015-12-30

    The objective of the present study was to develop pH-independent/dependent sustained release (SR) tablets of ondansetron HCl dihydrate (OND), a selective 5-HT3 receptor antagonist that is used for prevention of nausea and vomiting caused by chemotherapy, radiotherapy and postoperative treatment. The challenge with the OND API is its pH-dependent solubility and relatively short elimination half-life. Therefore, investigations were made to solve these problems in the current study. Formulations were prepared using stearic acid as a binding agent via a melt granulation process in a twin-screw extruder. The micro-environmental pH of the tablet was manipulated by the addition of fumaric acid to enhance the solubility and release of OND from the tablet. The in vitro release study demonstrated sustained release for 24h with 90% of drug release in formulations using stearic acid in combination with ethyl cellulose, whereas 100% drug release in 8h for stearic acid-hydroxypropylcellulose matrices. The formulation release kinetics was correlated to the Higuchi diffusion model and a non-Fickian drug release mechanism. The results of the present study demonstrated for the first time the pH dependent release from hydrophilic-lipid matrices as well as pH independent release from hydrophobic-lipid matrices for OND SR tablets manufactured by means of a continuous melt granulation technique utilizing a twin-screw extruder. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Slip and frictional heating of extruded polyethylene melts

    NASA Astrophysics Data System (ADS)

    Pérez-González, José; Marín-Santibáñez, Benjamín M.; Zamora-López, Héctor S.; Rodríguez-González, Francisco

    2017-05-01

    Extrusion of polymer melts with slip at the die generates frictional heating. The relationship between slip flow and frictional heating during the continuous extrusion of a non-slipping linear low-density (LLDPE) and a slipping high-density polyethylene (HDPE), respectively, both pure as well as blended with a fluoropolymer processing aid (PA), was investigated in this work by Rheo-particle image velocimetry and thermal imaging. Significant rises in temperature were measured under slip and no slip conditions, being these much higher than the values predicted by the adiabatic flow assumption. Clear difference was made between viscous and frictional heating before the stick-slip regime for the LLDPE, even though they could not be distinguished from one another at higher stresses. Such a difference, however, could not be made for the slipping HDPE, since overall in the presence of slip, frictional and viscous heating act synergistically to increase the melt temperature.

  4. Using Residence Time Distributions (RTDs) to Address the Traceability of Raw Materials in Continuous Pharmaceutical Manufacturing.

    PubMed

    Engisch, William; Muzzio, Fernando

    Continuous processing in pharmaceutical manufacturing is a relatively new approach that has generated significant attention. While it has been used for decades in other industries, showing significant advantages, the pharmaceutical industry has been slow in its adoption of continuous processing, primarily due to regulatory uncertainty. This paper aims to help address these concerns by introducing methods for batch definition, raw material traceability, and sensor frequency determination. All of the methods are based on established engineering and mathematical principles, especially the residence time distribution (RTD). This paper introduces a risk-based approach to address content uniformity challenges of continuous manufacturing. All of the detailed methods are discussed using a direct compaction manufacturing line as the main example, but the techniques can easily be applied to other continuous manufacturing methods such as wet and dry granulation, hot melt extrusion, capsule filling, etc.

  5. Advanced dendritic web growth development and development of single-crystal silicon dendritic ribbon and high-efficiency solar cell program

    NASA Technical Reports Server (NTRS)

    Duncan, C. S.; Seidensticker, R. G.; Mchugh, J. P.; Hopkins, R. H.

    1986-01-01

    Efforts to demonstrate that the dendritic web technology is ready for commercial use by the end of 1986 continues. A commercial readiness goal involves improvements to crystal growth furnace throughput to demonstrate an area growth rate of greater than 15 sq cm/min while simultaneously growing 10 meters or more of ribbon under conditions of continuous melt replenishment. Continuous means that the silicon melt is being replenished at the same rate that it is being consumed by ribbon growth so that the melt level remains constant. Efforts continue on computer thermal modeling required to define high speed, low stress, continuous growth configurations; the study of convective effects in the molten silicon and growth furnace cover gas; on furnace component modifications; on web quality assessments; and on experimental growth activities.

  6. 40 CFR 98.146 - Data reporting requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Glass Production § 98.146 Data reporting requirements. In... glass melting furnace and for all furnaces combined (tons). (2) Annual quantity of glass produced (tons). (b) If a CEMS is not used to determine CO2 emissions from continuous glass melting furnaces, and...

  7. Formulation and Characterization of Solid Dispersion Prepared by Hot Melt Mixing: A Fast Screening Approach for Polymer Selection

    PubMed Central

    Enose, Arno A.; Dasan, Priya K.; Sivaramakrishnan, H.; Shah, Sanket M.

    2014-01-01

    Solid dispersion is molecular dispersion of drug in a polymer matrix which leads to improved solubility and hence better bioavailability. Solvent evaporation technique was employed to prepare films of different combinations of polymers, plasticizer, and a modal drug sulindac to narrow down on a few polymer-plasticizer-sulindac combinations. The sulindac-polymer-plasticizer combination that was stable with good film forming properties was processed by hot melt mixing, a technique close to hot melt extrusion, to predict its behavior in a hot melt extrusion process. Hot melt mixing is not a substitute to hot melt extrusion but is an aid in predicting the formation of molecularly dispersed form of a given set of drug-polymer-plasticizer combination in a hot melt extrusion process. The formulations were characterized by advanced techniques like optical microscopy, differential scanning calorimetry, hot stage microscopy, dynamic vapor sorption, and X-ray diffraction. Subsequently, the best drug-polymer-plasticizer combination obtained by hot melt mixing was subjected to hot melt extrusion process to validate the usefulness of hot melt mixing as a predictive tool in hot melt extrusion process. PMID:26556187

  8. Chlorite Stability in the Mantle Wedge and its Role in Subduction Zone Melting Processes

    NASA Astrophysics Data System (ADS)

    Grove, T. L.; Chatterjee, N.; Medard, E.; Parman, S. W.

    2006-12-01

    New experimental constraints on the H2O-saturated melting behavior of mantle peridotite (Grove et al., 2006, EPSL 249: 74 - 89) show that chlorite is a stable phase on the vapor-saturated solidus of peridotite at a pressure of 2 GPa and higher. Hydrous melting in the presence of chlorite begins at 860 °C at 2 GPa and the solidus temperature decreases continuously to 800 °C at 3.2 GPa. The solidus phases include olivine, orthopyroxene, high-Ca clinopyroxene and spinel + chlorite over the pressure range of 2 to 2.4 GPa. Garnet + chlorite + ilmenite are present above 2.4 GPa. At 2.8 to 3.2 GPa, chlorite is stable on the vapor- saturated solidus, but it reacts out 20 to 40 °C above the solidus. The temperature-pressure range for chlorite stability and vapor-saturated melting behavior involving chlorite are similar to those inferred for the mantle wedge above the subducted slab by geodynamic thermal models. Thus, chlorite may be a stable phase within the mantle wedge and may play a role in the onset of hydrous mantle melting. The factors that lead to the initiation of melting in subduction zones have remained enigmatic. The occurrence of volcanic fronts above the mantle wedge-subducted slab interface near a depth of 100 km in most arcs has not been conclusively explained. Melting must somehow be linked to processes that involve the release of water from the slab into the overlying mantle wedge, but why does melting always begin at or below 100 km? A potential melt triggering mechanism is that H2O released from dehydration reactions in the subducted oceanic lithosphere at pressures > 2 GPa rises into the overlying mantle and reacts with peridotite to form chlorite. This chloritized peridotite is pulled down by mantle flow to pressures of 3 to 3.5 GPa. Increases in temperature in the mantle wedge above the subducted slab lead to chlorite breakdown and/or vapor-saturated melting initiation. When mantle peridotite is hydrated ~ 13 wt. % chlorite is produced for a bulk H2O content of 2 wt. %. This is a large amount of H2O sufficient to produce melts with elevated H2O contents observed in primitive arc magmas (6 wt. % H2O) by flux melting. Thus, the uniform depth of 100 km from slab/wedge interface to overlying volcanic arc may be related to melting of chloritized mantle.

  9. Assimilation of granite by basaltic magma at Burnt Lava flow, Medicine Lake volcano, northern California: Decoupling of heat and mass transfer

    USGS Publications Warehouse

    Grove, T.L.; Kinzler, R.J.; Baker, M.B.; Donnelly-Nolan, J. M.; Lesher, C.E.

    1988-01-01

    At Medicine Lake volcano, California, andesite of the Holocene Burnt Lava flow has been produced by fractional crystallization of parental high alumina basalt (HAB) accompanied by assimilation of granitic crustal material. Burnt Lava contains inclusions of quenched HAB liquid, a potential parent magma of the andesite, highly melted granitic crustal xenoliths, and xenocryst assemblages which provide a record of the fractional crystallization and crustal assimilation process. Samples of granitic crustal material occur as xenoliths in other Holocene and Pleistocene lavas, and these xenoliths are used to constrain geochemical models of the assimilation process. A large amount of assimilation accompanied fractional crystallization to produce the contaminated Burnt lava andesites. Models which assume that assimilation and fractionation occurred simultaneously estimate the ratio of assimilation to fractional crystallization (R) to be >1 and best fits to all geochemical data are at an R value of 1.35 at F=0.68. Petrologic evidence, however, indicates that the assimilation process did not involve continuous addition of granitic crust as fractionation occurred. Instead, heat and mass transfer were separated in space and time. During the assimilation process, HAB magma underwent large amounts of fractional crystallization which was not accompanied by significant amounts of assimilation. This fractionation process supplied heat to melt granitic crust. The models proposed to explain the contamination process involve fractionation, replenishment by parental HAB, and mixing of evolved and parental magmas with melted granitic crust. ?? 1988 Springer-Verlag.

  10. Widespread melt/rock interaction and seismic properties of the lithosphere above mantle plumes: A petrological and microstructural study of mantle xenoliths from French Polynesia

    NASA Astrophysics Data System (ADS)

    Tommasi, A.; Godard, M.

    2002-12-01

    In addition to thermal erosion, plume/lithosphere interaction may induce significant changes in the lithosphere chemical composition. To constrain the extent of this process in an oceanic environment and its consequences on the lithosphere seismic properties, we studied the relationship between petrological processes and microstructure in mantle xenoliths from the Austral-Cook, Society and Marquesas islands. Olivine forsterite contents in our sp-peridotites vary continuously from Fo91 to Fo83, the lowest Fo being observed in dunites and wehrlites. Yet, their high Ni content (up to 2500 ppm) precludes a cumulate origin. These rocks are rather interpreted as resulting from melt/rock reactions involving olivine precipitation and pyroxene dissolution, the dunites indicating high melt-rock ratios. Moreover, wehrlites display poikiloblastic diopside enclosing corroded olivines. Late crystallization of clinopyroxene, also observed in lherzolites, may result from a near-solidus melt-freezing reaction occurring at the boundary of a partial melting domain developed at the expenses of lithospheric mantle. These data suggest that the lithosphere above a mantle plume undergoes a complex sequence of magmatic processes that significantly change its composition. Yet, crystal preferred orientations and thus seismic anisotropy are little affected by these processes. Lherzolites and harzburgites, independent from composition, show high-temperature porphyroclastic microstructures and strong olivine CPO. Although dunites and wehrlites display annealing microstructures to which is associated a progressive dispersion of the olivine CPO, very weak CPO are limited to a few dunites and wehrlites, suggesting that CPO destruction is restricted to domains of intense magma-rock interaction due to localized flow or accumulation of magmas. Conversely, the compositional changes result in lower seismic velocities for P- and S-waves. Relative to normal mantle, seismic anomalies may attain -2.5 percent and be equivalent to those observed below the Deccan, Parana, or Ontong Java mesozoic LIPs.

  11. Widespread melt/rock interaction and seismic properties of the lithosphere above mantle plumes: Evidence from mantle xenoliths from French Polynesia

    NASA Astrophysics Data System (ADS)

    Tommasi, A.; Godard, M.; Coromina, G.; Dautria, J. M.; Barczus, H.

    2003-04-01

    In addition to thermal erosion, plume/lithosphere interaction may induce significant changes in the lithosphere chemical composition. To constrain the extent of this process in an oceanic environment and its consequences on the lithosphere seismic properties, we studied the relationship between petrological processes and microstructure in mantle xenoliths from the Austral-Cook, Society and Marquesas islands. Olivine forsterite contents in our sp-peridotites vary continuously from Fo91 to Fo83, the lowest Fo being observed in dunites and wehrlites. Yet, their high Ni content (up to 2500 ppm) precludes a cumulate origin. These rocks are rather interpreted as resulting from melt/rock reactions involving olivine precipitation and pyroxene dissolution, the dunites indicating high melt-rock ratios. Moreover, wehrlites display poikiloblastic diopside enclosing corroded olivines. Late crystallization of clinopyroxene, also observed in lherzolites, may result from a near-solidus melt-freezing reaction occurring at the boundary of a partial melting domain developed at the expenses of lithospheric mantle. These data suggest that the lithosphere above a mantle plume undergoes a complex sequence of magmatic processes that significantly change its composition. Yet, crystal preferred orientations and thus seismic anisotropy are little affected by these processes. Lherzolites and harzburgites, independent from composition, show high-temperature porphyroclastic microstructures and strong olivine CPO. Although dunites and wehrlites display annealing microstructures to which is associated a progressive dispersion of the olivine CPO, very weak CPO are limited to a few dunites and wehrlites, suggesting that CPO destruction is restricted to domains of intense magma-rock interaction due to localized flow or accumulation of magmas. Conversely, the compositional changes result in lower seismic velocities for P- and S-waves. Relative to normal mantle, seismic anomalies may attain -2.5 (2.2) percent for P (S) waves and be equivalent to those observed below the Deccan, Parana, or Ontong Java mesozoic LIPs.

  12. Continuous production of itraconazole-based solid dispersions by hot melt extrusion: Preformulation, optimization and design space determination.

    PubMed

    Thiry, Justine; Lebrun, Pierre; Vinassa, Chloe; Adam, Marine; Netchacovitch, Lauranne; Ziemons, Eric; Hubert, Philippe; Krier, Fabrice; Evrard, Brigitte

    2016-12-30

    The purpose of this work was to increase the solubility and the dissolution rate of itraconazole, which was chosen as the model drug, by obtaining an amorphous solid dispersion by hot melt extrusion. Therefore, an initial preformulation study was conducted using differential scanning calorimetry, thermogravimetric analysis and Hansen's solubility parameters in order to find polymers which would have the ability to form amorphous solid dispersions with itraconazole. Afterwards, the four polymers namely Kollidon ® VA64, Kollidon ® 12PF, Affinisol ® HPMC and Soluplus ® , that met the set criteria were used in hot melt extrusion along with 25wt.% of itraconazole. Differential scanning confirmed that all four polymers were able to amorphize itraconazole. A stability study was then conducted in order to see which polymer would keep itraconazole amorphous as long as possible. Soluplus ® was chosen and, the formulation was fine-tuned by adding some excipients (AcDiSol ® , sodium bicarbonate and poloxamer) during the hot melt extrusion process in order to increase the release rate of itraconazole. In parallel, the range limits of the hot melt extrusion process parameters were determined. A design of experiment was performed within the previously defined ranges in order to optimize simultaneously the formulation and the process parameters. The optimal formulation was the one containing 2.5wt.% of AcDiSol ® produced at 155°C and 100rpm. When tested with a biphasic dissolution test, more than 80% of itraconazole was released in the organic phase after 8h. Moreover, this formulation showed the desired thermoformability value. From these results, the design space around the optimum was determined. It corresponds to the limits within which the process would give the optimized product. It was observed that a temperature between 155 and 170°C allowed a high flexibility on the screw speed, from about 75 to 130rpm. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Complementary rare earth element patterns in unique achondrites, such as ALHA 77005 and shergottites, and in the earth

    NASA Technical Reports Server (NTRS)

    Ma, M.-S.; Schmitt, R. A.; Laul, J. C.

    1982-01-01

    Abundances of major, minor, and trace elements are determined in the Antarctic achondrite Allan Hills (ALHA) 77005 via sequential instrumental and radiochemical neutron activation analysis. The rare earth element (REE) abundances of ALHA 77005 reveal a unique chondritic normalized pattern; that is, the REEs are nearly unfractionated from La to Pr at approximately 1.0X chondrites, monotonically increased from Pr to Gd at approximately 3.4X with no Eu anomaly, nearly unfractionated from Gd and Ho and monotonically decreased from Ho to Lu at approximately 2.2X. It is noted that this unique REE pattern of ALHA 77005 can be modeled by a melting process involving a continuous melting and progressive partial removal of melt from a light REE enriched source material. In a model of this type, ALHA 77005 could represent either a crystallized cumulate from such a melt or the residual source material. Calculations show that the parent liquids for the shergottites could also be derived from a light REE enriched source material similar to that for ALHA 77005.

  14. 21 CFR 175.230 - Hot-melt strippable food coatings.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Hot-melt strippable food coatings. 175.230 Section 175.230 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD ADDITIVES: ADHESIVES AND COMPONENTS OF...

  15. 21 CFR 175.230 - Hot-melt strippable food coatings.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Hot-melt strippable food coatings. 175.230 Section 175.230 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD ADDITIVES: ADHESIVES AND COMPONENTS OF...

  16. 21 CFR 175.230 - Hot-melt strippable food coatings.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Hot-melt strippable food coatings. 175.230 Section 175.230 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD ADDITIVES: ADHESIVES AND COMPONENTS OF...

  17. Continuous microcellular foaming of polylactic acid/natural fiber composites

    NASA Astrophysics Data System (ADS)

    Diaz-Acosta, Carlos A.

    Poly(lactic acid) (PLA), a biodegradable thermoplastic derived from renewable resources, stands out as a substitute to petroleum-based plastics. In spite of its excellent properties, commercial applications are limited because PLA is more expensive and more brittle than traditional petroleum-based resins. PLA can be blended with cellulosic fibers to reduce material cost. However, the lowered cost comes at the expense of flexibility and impact strength, which can be enhanced through the production of microcellular structures in the composite. Microcellular foaming uses inert gases (e.g., carbon dioxide) as physical blowing agents to make cellular structures with bubble sizes of less than 10 microm and cell-population densities (number of bubbles per unit volume) greater than 109 cells/cm³. These unique characteristics result in a significant increase in toughness and elongation at break (ductility) compared with unfoamed parts because the presence of small bubbles can blunt the crack-tips increasing the energy needed to propagate the crack. Microcellular foams have been produced through a two step batch process. First, large amounts of gas are dissolved in the solid plastic under high pressure (sorption process) to form a single-phase solution. Second, a thermodynamic instability (sudden drop in solubility) triggers cell nucleation and growth as the gas diffuses out of the plastic. Batch production of microcellular PLA has addressed some of the drawbacks of PLA. Unfortunately, the batch foaming process is not likely to be implemented in the industrial production of foams because it is not cost-effective. This study investigated the continuous microcellular foaming process of PLA and PLA/wood-fiber composites. The effects of the processing temperature and material compositions on the melt viscosity, pressure drop rate, and cell-population density were examined in order to understand the nucleation mechanisms in neat and filled PLA foams. The results indicated that the processing temperature had a strong effect of the rheology of the melt and cell morphology. Processing at a lower temperature significantly increased the cell nucleation rate of neat PLA (amorphous and semi-crystalline) because of the fact that a high melt viscosity induced a high pressure drop rate in the polymer/gas solution. The presence of nanoclay did not affect the homogeneous nucleation but increased the heterogeneous nucleation, allowing both nucleation mechanisms to occur during the foaming process. The effect of wood-flour (0-30 wt.%) and rheology modifier contents on the melt viscosity and cell morphology of microcellular foamed composites was investigated. The viscosity of the melt increased with wood-flour content and decreased with rheology modifier content, affecting the processing conditions (i.e., pressure drop and pressure drop rate) and foamability of the composites. Matching the viscosity of the composites with that of neat PLA resulted in the best cell morphologies. Physico-mechanical characterization of microcellular foamed PLA as a function of cell morphology was performed to establish process-morphology-property relationships. The processing variables, i.e., amount of gas injected, flow rate, and processing temperature affected the development of the cellular structure and mechanical properties of the foams.

  18. Cloud screening and melt water detection over melting sea ice using AATSR/SLSTR

    NASA Astrophysics Data System (ADS)

    Istomina, Larysa; Heygster, Georg

    2014-05-01

    With the onset of melt in the Arctic Ocean, the fraction of melt water on sea ice, the melt pond fraction, increases. The consequences are: the reduced albedo of sea ice, increased transmittance of sea ice and affected heat balance of the system with more heat passing through the ice into the ocean, which facilitates further melting. The onset of melt, duration of melt season and melt pond fraction are good indicators of the climate state of the Arctic and its change. In the absence of reliable sea ice thickness retrievals in summer, melt pond fraction retrieval from satellite is in demand as input for GCM as an indicator of melt state of the sea ice. The retrieval of melt pond fraction with a moderate resolution radiometer as AATSR is, however, a non-trivial task due to a variety of subpixel surface types with very different optical properties, which give non-unique combinations if mixed. In this work this has been solved by employing additional information on the surface and air temperature of the pixel. In the current work, a concept of melt pond detection on sea ice is presented. The basis of the retrieval is the sensitivity of AATSR reflectance channels 550nm and 860nm to the amount of melt water on sea ice. The retrieval features extensive usage of a database of in situ surface albedo spectra. A tree of decisions is employed to select the feasible family of in situ spectra for the retrieval, depending on the melt stage of the surface. Reanalysis air temperature at the surface and brightness temperature measured by the satellite sensor are analyzed in order to evaluate the melting status of the surface. Case studies for FYI and MYI show plausible retrieved melt pond fractions, characteristic for both of the ice types. The developed retrieval can be used to process the historical AATSR (2002-2012) dataset, as well as for the SLSTR sensor onboard the future Sentinel-3 mission (scheduled for launch in 2015), to keep the continuity and obtain longer time sequence of the product. Cloud detection over melting sea ice is a non-trivial problem as well. The sensitivity of AATSR 3.7 micron band to atmospheric reflectance is used to screen out clouds over melting sea ice.

  19. Multi-Decadal Averages of Basal Melt for Ross Ice Shelf, Antarctica Using Airborne Observations

    NASA Astrophysics Data System (ADS)

    Das, I.; Bell, R. E.; Tinto, K. J.; Frearson, N.; Kingslake, J.; Padman, L.; Siddoway, C. S.; Fricker, H. A.

    2017-12-01

    Changes in ice shelf mass balance are key to the long term stability of the Antarctic Ice Sheet. Although the most extensive ice shelf mass loss currently is occurring in the Amundsen Sea sector of West Antarctica, many other ice shelves experience changes in thickness on time scales from annual to ice age cycles. Here, we focus on the Ross Ice Shelf. An 18-year record (1994-2012) of satellite radar altimetry shows substantial variability in Ross Ice Shelf height on interannual time scales, complicating detection of potential long-term climate-change signals in the mass budget of this ice shelf. Variability of radar signal penetration into the ice-shelf surface snow and firn layers further complicates assessment of mass changes. We investigate Ross Ice Shelf mass balance using aerogeophysical data from the ROSETTA-Ice surveys using IcePod. We use two ice-penetrating radars; a 2 GHz unit that images fine-structure in the upper 400 m of the ice surface and a 360 MHz radar to identify the ice shelf base. We have identified internal layers that are continuous along flow from the grounding line to the ice shelf front. Based on layer continuity, we conclude that these layers must be the horizons between the continental ice of the outlet glaciers and snow accumulation once the ice is afloat. We use the Lagrangian change in thickness of these layers, after correcting for strain rates derived using modern day InSAR velocities, to estimate multidecadal averaged basal melt rates. This method provides a novel way to quantify basal melt, avoiding the confounding impacts of spatial and short-timescale variability in surface accumulation and firn densification processes. Our estimates show elevated basal melt rates (> -1m/yr) around Byrd and Mullock glaciers within 100 km from the ice shelf front. We also compare modern InSAR velocity derived strain rates with estimates from the comprehensive ground-based RIGGS observations during 1973-1978 to estimate the potential magnitude of strain-driven thickness changes over four decades. Combining maps of basal melt rate with radar derived basal reflectivity, we identify regions that are undergoing melting and freezing and provide a comprehensive understanding of how ocean processes may be changing the base of Ross Ice Shelf in recent decades.

  20. Hot melt extrusion of ion-exchange resin for taste masking.

    PubMed

    Tan, David Cheng Thiam; Ong, Jeremy Jianming; Gokhale, Rajeev; Heng, Paul Wan Sia

    2018-05-30

    Taste masking is important for some unpleasant tasting bioactives in oral dosage forms. Among many methods available for taste-masking, use of ion-exchange resin (IER) holds promise. IER combined with hot melt extrusion (HME) may offer additional advantages over solvent methods. IER provides taste masking by complexing with the drug ions and preventing drug dissolution in the mouth. Drug-IER complexation approaches described in literatures are mainly based either on batch processing or column eluting. These methods of drug-IER complexation have obvious limitations such as high solvent volume requirements, multiprocessing steps and extended processing time. Thus, the objective of this study was to develop a single-step, solvent-free, continuous HME process for complexation of drug-IER. The screening study evaluated drug to IER ratio, types of IER and drug complexation methods. In the screening study, a potassium salt of a weakly acidic carboxylate-based cationic IER was found suitable for the HME method. Thereafter, optimization study was conducted by varying HME process parameters such as screw speed, extrusion temperature and drug to IER ratio. It was observed that extrusion temperature and drug to IER ratio are imperative in drug-IER complexation through HME. In summary, this study has established the feasibility of a continuous complexation method for drug to IER using HME for taste masking. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. 40 CFR 63.7743 - How do I demonstrate continuous compliance with the emissions limitations that apply to me?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... arc metal melting furnace, electric induction metal melting furnace, or scrap preheater at an existing... induction metal melting furnace or scrap preheater at a new iron and steel foundry, (i) Maintaining the... at or below 0.0004 gr/dscf. (2) For each cupola metal melting furnace at an existing iron and steel...

  2. 40 CFR 63.7743 - How do I demonstrate continuous compliance with the emissions limitations that apply to me?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... arc metal melting furnace, electric induction metal melting furnace, or scrap preheater at an existing... induction metal melting furnace or scrap preheater at a new iron and steel foundry, (i) Maintaining the... at or below 0.0004 gr/dscf. (2) For each cupola metal melting furnace at an existing iron and steel...

  3. 40 CFR 63.7743 - How do I demonstrate continuous compliance with the emissions limitations that apply to me?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... arc metal melting furnace, electric induction metal melting furnace, or scrap preheater at an existing... induction metal melting furnace or scrap preheater at a new iron and steel foundry, (i) Maintaining the... at or below 0.0004 gr/dscf. (2) For each cupola metal melting furnace at an existing iron and steel...

  4. 40 CFR 63.7743 - How do I demonstrate continuous compliance with the emissions limitations that apply to me?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... arc metal melting furnace, electric induction metal melting furnace, or scrap preheater at an existing... induction metal melting furnace or scrap preheater at a new iron and steel foundry, (i) Maintaining the... at or below 0.0004 gr/dscf. (2) For each cupola metal melting furnace at an existing iron and steel...

  5. Degassing of basaltic magma: decompression experiments and implications for interpreting the textures of volcanic rocks

    NASA Astrophysics Data System (ADS)

    Le Gall, Nolwenn; Pichavant, Michel; Cai, Biao; Lee, Peter; Burton, Mike

    2017-04-01

    Decompression experiments were performed to simulate the ascent of basaltic magma, with the idea of approaching the textural features of volcanic rocks to provide insights into degassing processes. The experiments were conducted in an internally heated pressure vessel between NNO-1.4 and +0.9. H2O-only (4.9 wt%) and H2O-CO2-bearing (0.71-2.45 wt% H2O, 818-1094 ppm CO2) melts, prepared from Stromboli pumice, were synthesized at 1200°C and 200 MPa, continuously decompressed between 200 and 25 MPa at a rate of either 39 or 78 kPa/s (or 1.5 and 3 m/s, respectively), and rapidly quenched. Run products were characterized both texturally (by X-ray computed tomography and scanning electron microscopy) and chemically (by IR spectroscopy and electron microprobe analysis), and then compared with products from basaltic Plinian eruptions and Stromboli paroxysms (bubble textures, glass inclusions). The obtained results demonstrate that textures are controlled by the kinetics of nucleation, growth, coalescence and outgassing of the bubbles, as well as by fragmentation, which largely depend on the presence of CO2 in the melt and the achievement in chemical equilibrium. Textures of the H2O-only melts result from two nucleation events, the first at high pressure (200 < P < 150 MPa) and the second at low pressure (50 < P < 25 MPa), preceding fragmentation. Both events, restricted to narrow P intervals, are driven by melt H2O supersaturation. In contrast, textures of the H2O-CO2-bearing basaltic melts result from continuous bubble nucleation, which is driven by the generation of melts supersaturated in CO2. This persistent non-equilibrium degassing causes the bubbles to evolve through power law distributions, as small bubbles continue to form and grow. This is what is observed in Plinian products. From our results, the evolution to mixed power law-exponential distributions, as found in Stromboli products, is indicative of the prevalence of bubble coalescence and an evolution toward chemical equilibrium. In line with this, a strong correlation was found between experimental and natural bubble textures (bubble number densities, shapes, sizes and distributions), having implications for interpreting bubbles in volcanic rocks and quantifying magma ascent rates. Next step will be to perform in situ decompression experiments to simulate both degassing and crystallization of basaltic magma during ascent in the shallow volcanic conduit (P < 50 MPa), using synchrotron X-ray imaging. The obtained 4D (3D + time) data will help us refine our understanding of magma ascent processes. This experimental programme requires first technology adaptation and development, which is in progress.

  6. Ice matrix in reconfigurable microfluidic systems

    NASA Astrophysics Data System (ADS)

    Bossi, A. M.; Vareijka, M.; Piletska, E. V.; Turner, A. P. F.; Meglinski, I.; Piletsky, S. A.

    2013-07-01

    Microfluidic devices find many applications in biotechnologies. Here, we introduce a flexible and biocompatible microfluidic ice-based platform with tunable parameters and configuration of microfluidic patterns that can be changed multiple times during experiments. Freezing and melting of cavities, channels and complex relief structures created and maintained in the bulk of ice by continuous scanning of an infrared laser beam are used as a valve action in microfluidic systems. We demonstrate that pre-concentration of samples and transport of ions and dyes through the open channels created can be achieved in ice microfluidic patterns by IR laser-assisted zone melting. The proposed approach can be useful for performing separation and sensing processes in flexible reconfigurable microfluidic devices.

  7. Vapor-Saturated Melting of Fertile Peridotite Revisited: A new Experimental Approach and Re-evaluation of the Hydrous Peridotite Solidus

    NASA Astrophysics Data System (ADS)

    Grove, T. L.

    2001-12-01

    The vapor-saturated melting relations of peridotite have been determined for a fertile mantle composition of Hart and Zindler (1986, Chem Geol 57: 247) over the pressure range of 1.2 to 2.4 GPa. For example, at 1.2 GPa melt is present at a temperature of 980° C and at 2.4 GPa melt is present at 920° C. These temperatures should be viewed as maximum values for the vapor-saturated solidus (although see below) because the initial melting temperature of multi-phase, multicomponent systems can often be difficult to detect. At 2.4 GPa the melt composition is highly silica-undersaturated and very aluminous ( ~ 21 wt. % Al2O3). Wet mantle melts are thought to be high in silica, but this is not the case for these hydrous melts. At 1.2 GPa, melt fractions are too small to allow reliable analysis. The experiments have been carried out in a piston cylinder apparatus using Au capsules. The starting material is an oxide mixture containing 14.5 wt. % H2O added as brucite. Free water present in the experiment after quenching indicates subsolidus conditions. The absence of fluid in experiments above the vapor-saturated solidus shows that all of the free H2O is dissolved in the melt. The high H2O content of the starting material moves the bulk composition close to the vapor-saturated melt composition, therefore increasing the amount of melt produced close to the solidus and making detection of low melt fraction possible. Studies of the hydrous peridotite solidus carried out between 1970 and 1975 by Mysen and Boettcher, Kushiro and others, Green and Millhollen and others at 2.0 GPa ranged from < 800 to ~ 1000° C, a variation of over 200 degrees. In a subduction zone environment a fluid-rich component released from the slab ascends into hotter overlying mantle and melting initiates at the vapor-saturated solidus. Melting would begin at a depth of ~ 75 km in the mantle wedge, for a realistic thermal structure. Melting would continue as these initial H2O-rich buoyant melts ascend into hotter, shallower mantle and re-equilibrate with their surroundings. The initiation of melting deep in the mantle wedge has implications for both chemical and mechanical processes in the subduction zone environment.

  8. Hot Melt Extrusion and Spray Drying of Co-amorphous Indomethacin-Arginine With Polymers.

    PubMed

    Lenz, Elisabeth; Löbmann, Korbinian; Rades, Thomas; Knop, Klaus; Kleinebudde, Peter

    2017-01-01

    Co-amorphous drug-amino acid systems have gained growing interest as an alternative to common amorphous formulations which contain polymers as stabilizers. Several preparation methods have recently been investigated, including vibrational ball milling on a laboratory scale or spray drying in a larger scale. In this study, the feasibility of hot melt extrusion for continuous manufacturing of co-amorphous drug-amino acid formulations was examined, challenging the fact that amino acids melt with degradation at high temperatures. Furthermore, the need for an addition of a polymer in this process was evaluated. After a polymer screening via the solvent evaporation method, co-amorphous indomethacin-arginine was prepared by a melting-solvent extrusion process without and with copovidone. The obtained products were characterized with respect to their solid-state properties, non-sink dissolution behavior, and stability. Results were compared to those of spray-dried formulations with the same compositions and to spray-dried indomethacin-copovidone. Overall, stable co-amorphous systems could be prepared by extrusion without or with copovidone, which exhibited comparable molecular interaction properties to the respective spray-dried products, while phase separation was detected by differential scanning calorimetry in several cases. The formulations containing indomethacin in combination with arginine and copovidone showed enhanced dissolution behavior over the formulations with only copovidone or arginine. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  9. Multipurpose Vacuum Induction Processing System

    NASA Astrophysics Data System (ADS)

    Govindaraju, M.; Kulkarni, Deepak; Balasubramanian, K.

    2012-11-01

    Multipurpose vacuum processing systems are cost effective; occupy less space, multiple functional under one roof and user friendly. A multipurpose vacuum induction system was designed, fabricated and installed in a record time of 6 months time at NFTDC Hyderabad. It was designed to function as a) vacuum induction melting/refining of oxygen free electronic copper/pure metals, b) vacuum induction melting furnace for ferrous materials c) vacuum induction melting for non ferrous materials d) large vacuum heat treatment chamber by resistance heating (by detachable coil and hot zone) e) bottom discharge vacuum induction melting system for non ferrous materials f) Induction heat treatment system and g) directional solidification /investment casting. It contains provision for future capacity addition. The attachments require to manufacture multiple shaped castings and continuous rod casting can be added whenever need arises. Present capacity is decided on the requirement for 10years of development path; presently it has 1.2 ton liquid copper handling capacity. It is equipped with provision for capacity addition up to 2 ton liquid copper handling capacity in future. Provision is made to carry out the capacity addition in easy steps quickly. For easy operational maintenance and troubleshooting, design was made in easily detachable sections. High vacuum system is also is detachable, independent and easily movable which is first of its kind in the country. Detailed design parameters, advantages and development history are presented in this paper.

  10. Influence of crustal cumulates on 210Pb disequilibria in basalts

    NASA Astrophysics Data System (ADS)

    Van Orman, James A.; Saal, Alberto E.

    2009-07-01

    In historical basalts from a wide range of tectonic settings, 210Pb is often found to have an activity deficit relative to its predecessor 226Ra. Several processes have been hypothesized as causes of 210Pb deficits in basalts. In subduction zone and ocean island environments, 210Pb deficits have often been attributed to shallow magmatic degassing. At mid-ocean ridges, 210Pb deficits have been inferred to result from mantle melting, limiting the time between melt production and eruption to 100 years or less. Here we present an alternative mechanism for producing 210Pb deficits in magmas, by diffusive exchange between a melt and cumulate minerals (plagioclase and/or clinopyroxene) in the crust. The deficit in 210Pb develops in response to its decay toward secular equilibrium with 226Ra within the mineral grains; decay provides an internal sink for 210Pb that drives continuous diffusive exchange with the melt. Deficits in 210Pb develop under a broad range of conditions, in enriched and depleted melts and during interaction with young or old cumulate minerals. The magnitude of the deficit depends mainly on the equilibrium mineral/melt partition coefficients for Pb and Ra and on the melt/rock ratio during diffusive interaction, and is only weakly dependent on the relative diffusivities of Ra and Pb in the minerals or the trace element disequilibrium between the melt and cumulate minerals. Plagioclase in the crust has greater leverage on the 210Pb- 226Ra system than any silicate mineral present during mantle melting, and is capable of inducing significant 210Pb deficits in the melt even at melt fractions above 50%. Its influence on the melt is also rapid, with a substantial 210Pb deficit developing in less than a year and approaching a steady state value after several decades or less. The strong control crustal cumulates are capable of exerting on 210Pb- 226Ra fractionation in melts indicates that they may have a significant role in a wide range of tectonic environments, and suggests caution in interpreting 210Pb deficits as a signature of mantle melting, or as a product of 222Rn degassing.

  11. MEA/A-1 experiment 81F01 conducted on STS-7 flight, June 1983. Containerless processing of glass forming melts

    NASA Technical Reports Server (NTRS)

    Day, D. E.; Ray, C. S.

    1983-01-01

    The space processing of containerless, glassforming melts on board the space shuttle flight STS-7 is investigated. Objectives include; (1) obtain quantitative evidence for the supression of heterogeneous nucleation/crystallization, (2) study melt homogenization without gravity driven convection, (3) procedural development for bubble free, high purity homogeneous melts inmicro-g, (4) comparative analysis of melts on Earth and in micro g, and (5) assess the apparatus for processing multicomponent, glass forming melts in a low gravity environment.

  12. Continuous Preparation of 1:1 Haloperidol-Maleic Acid Salt by a Novel Solvent-Free Method Using a Twin Screw Melt Extruder.

    PubMed

    Lee, Hung Lin; Vasoya, Jaydip M; Cirqueira, Marilia de Lima; Yeh, Kuan Lin; Lee, Tu; Serajuddin, Abu T M

    2017-04-03

    Salts are generally prepared by acid-base reaction in relatively large volumes of organic solvents, followed by crystallization. In this study, the potential for preparing a pharmaceutical salt between haloperidol and maleic acid by a novel solvent-free method using a twin-screw melt extruder was investigated. The pH-solubility relationship between haloperidol and maleic acid in aqueous medium was first determined, which demonstrated that 1:1 salt formation between them was feasible (pH max 4.8; salt solubility 4.7 mg/mL). Extrusion of a 1:1 mixture of haloperidol and maleic acid at the extruder barrel temperature of 60 °C resulted in the formation of a highly crystalline salt. The effects of operating temperature and screw configuration on salt formation were also investigated, and those two were identified as key processing parameters. Salts were also prepared by solution crystallization from ethyl acetate, liquid-assisted grinding, and heat-assisted grinding and compared with those obtained by melt extrusion by using DSC, PXRD, TGA, and optical microscopy. While similar salts were obtained by all methods, both melt extrusion and solution crystallization yielded highly crystalline materials with identical enthalpies of melting. During the pH-solubility study, a salt hydrate form was also identified, which, upon heating, converted to anhydrate similar to that obtained by other methods. There were previous reports of the formation of cocrystals, but not salts, by melt extrusion. 1 H NMR and single-crystal X-ray diffraction confirmed that a salt was indeed formed in the present study. The haloperidol-maleic acid salt obtained was nonhygroscopic in the moisture sorption study and converted to the hydrate form only upon mixing with water. Thus, we are reporting for the first time a relatively simple and solvent-free twin-screw melt extrusion method for the preparation of a pharmaceutical salt that provides material comparable to that obtained by solution crystallization and is amenable to continuous manufacturing and easy scale up.

  13. Electrolytic process for preparing uranium metal

    DOEpatents

    Haas, Paul A.

    1990-01-01

    An electrolytic process for making uranium from uranium oxide using Cl.sub.2 anode product from an electrolytic cell to react with UO.sub.2 to form uranium chlorides. The chlorides are used in low concentrations in a melt comprising fluorides and chlorides of potassium, sodium and barium in the electrolytic cell. The electrolysis produces Cl.sub.2 at the anode that reacts with UO.sub.2 in the feed reactor to form soluble UCl.sub.4, available for a continuous process in the electrolytic cell, rather than having insoluble UO.sub.2 fouling the cell.

  14. Energy Saving Melting and Revert Reduction Technology: Innovative Semi-Solid Metal (SSM) Processing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Diran Apelian

    2012-08-15

    Semi-solid metal (SSM) processing has emerged as an attractive method for near-net-shape manufacturing due to the distinct advantages it holds over conventional near-net-shape forming technologies. These advantages include lower cycle time, increased die life, reduced porosity, reduced solidification shrinkage, improved mechanical properties, etc. SSM processing techniques can not only produce the complex dimensional details (e.g. thin-walled sections) associated with conventional high-pressure die castings, but also can produce high integrity castings currently attainable only with squeeze and low-pressure permanent mold casting processes. There are two primary semi-solid processing routes, (a) thixocasting and (b) rheocasting. In the thixocasting route, one starts frommore » a non-dendritic solid precursor material that is specially prepared by a primary aluminum manufacturer, using continuous casting methods. Upon reheating this material into the mushy (a.k.a. "two-phase") zone, a thixotropic slurry is formed, which becomes the feed for the casting operation. In the rheocasting route (a.k.a. "slurry-on-demand" or "SoD"), one starts from the liquid state, and the thixotropic slurry is formed directly from the melt via careful thermal management of the system; the slurry is subsequently fed into the die cavity. Of these two routes, rheocasting is favored in that there is no premium added to the billet cost, and the scrap recycling issues are alleviated. The CRP (Trade Marked) is a process where the molten metal flows through a reactor prior to casting. The role of the reactor is to ensure that copious nucleation takes place and that the nuclei are well distributed throughout the system prior to entering the casting cavity. The CRP (Trade Marked) has been successfully applied in hyper-eutectic Al-Si alloys (i.e., 390 alloy) where two liquids of equal or different compositions and temperatures are mixed in the reactor and creating a SSM slurry. The process has been mostly used for hypo-eutectic Al-Si alloys (i.e., 356, 357, etc.) where a single melt passes through the reactor. In addition, the CRP (Trade Marked) was designed to be flexible for thixocasting or rheocasting applications as well as batch or continuous casting. Variable heat extraction rates can be obtained by controlling either the superheat of the melt, the temperature of the channel system, or the temperature of the reactor. This program had four main objectives all of which were focused on a mechanistic understanding of the process in order to be able to scale it up, to develop it into a robust process,and for SSM processing to be commercially used.« less

  15. Thermal dynamic behavior during selective laser melting of K418 superalloy: numerical simulation and experimental verification

    NASA Astrophysics Data System (ADS)

    Chen, Zhen; Xiang, Yu; Wei, Zhengying; Wei, Pei; Lu, Bingheng; Zhang, Lijuan; Du, Jun

    2018-04-01

    During selective laser melting (SLM) of K418 powder, the influence of the process parameters, such as laser power P and scanning speed v, on the dynamic thermal behavior and morphology of the melted tracks was investigated numerically. A 3D finite difference method was established to predict the dynamic thermal behavior and flow mechanism of K418 powder irradiated by a Gaussian laser beam. A three-dimensional randomly packed powder bed composed of spherical particles was established by discrete element method. The powder particle information including particle size distribution and packing density were taken into account. The volume shrinkage and temperature-dependent thermophysical parameters such as thermal conductivity, specific heat, and other physical properties were also considered. The volume of fluid method was applied to reconstruct the free surface of the molten pool during SLM. The geometrical features, continuity boundaries, and irregularities of the molten pool were proved to be largely determined by the laser energy density. The numerical results are in good agreement with the experiments, which prove to be reasonable and effective. The results provide us some in-depth insight into the complex physical behavior during SLM and guide the optimization of process parameters.

  16. Melt Inclusions Record Extreme Compositional Variability in Primitive Magmas at Mauna Loa Volcano, Hawaii

    NASA Astrophysics Data System (ADS)

    Kamenetsky, V. S.; Norman, M. D.; Garcia, M. O.

    2002-12-01

    Melt inclusions carry potentially unique information about magmatic processes and the compositional evolution of erupted lavas. Major element compositions of olivine-hosted melt inclusions in submarine tholeiitic picrites from the southwest rift zone of Mauna Loa volcano have been studied to examine the compositional variability of primitive magmas feeding the world's largest volcano. Approximately 600 naturally quenched inclusions were examined from 8 samples with 3-25 vol% olivine phenocrysts and 9-22 wt% MgO. Olivine compositions ranged from Fo91-Fo82. The inclusions show a continuous variation in FeO contents from near-magmatic values (9 to 11 wt%) in the most evolved olivines to extremely low values (3.5 to 7.0 wt%) in the most primitive olivines. This appears to reflect a complex magmatic history for these crystals involving extensive re-equlibration of melts trapped by early formed phenocrysts with their host olivine. Extreme compositional variability also characterizes incompatible elements that would not be affected by equilibration with the host olivine. Inclusions trapped in relatively primitive olivines (Fo88-91) show a large range of K2O contents (0.1 to 2.1 wt%), whereas inclusions in more evolved olivines converge on whole rock compositions with 0.3 to 0.4 wt% K2O. Similarly, TiO2/K2O, Na2O/K2O, and K2O/P2O5 ratios of inclusions in primitive olivines span a much larger range than do inclusions hosted by more evolved olivines, with TiO2/K2O ratios extending from enriched to depleted compositions (1.2 to 24.7) in primitive olivines, and converging on whole rock compositions (TiO2/K2O = 6-9) in more evolved host olivine. This points toward extreme compositional variability in melts feeding Mauna Loa, and effective mixing of these melt parcels in the shallower summit reservoir to produce the restricted range of whole rock compositions sampled by erupted lavas. Whole rock compositions, therefore provide an integrated view of melting and high-level mixing processes, whereas melt inclusions provide more detailed information about source characteristics.

  17. Destruction of PCB Contaminated Fuel Oil in an Aluminum Melting Furnace

    NASA Astrophysics Data System (ADS)

    Sonksen, M. K.; Busch, Stephen P.

    1985-02-01

    Since the 1979 discovery that Alcoa Davenport Works' auxiliary fuel oil supply was contaminated with PCB's, facilities have been provided, and proven, to permit continued use of the oil in a production facility in an environmentally safe manner. This process has several significant benefits. These include energy conservation, with an overall savings of 2.3 × 1011 BTUs and the environmental benefit of destruction of the PCB. The process also eliminates the hazards of transport over long distances.

  18. Melt onset over Arctic sea ice controlled by atmospheric moisture transport

    NASA Astrophysics Data System (ADS)

    Mortin, Jonas; Svensson, Gunilla; Graversen, Rune G.; Kapsch, Marie-Luise; Stroeve, Julienne C.; Boisvert, Linette N.

    2016-06-01

    The timing of melt onset affects the surface energy uptake throughout the melt season. Yet the processes triggering melt and causing its large interannual variability are not well understood. Here we show that melt onset over Arctic sea ice is initiated by positive anomalies of water vapor, clouds, and air temperatures that increase the downwelling longwave radiation (LWD) to the surface. The earlier melt onset occurs; the stronger are these anomalies. Downwelling shortwave radiation (SWD) is smaller than usual at melt onset, indicating that melt is not triggered by SWD. When melt occurs early, an anomalously opaque atmosphere with positive LWD anomalies preconditions the surface for weeks preceding melt. In contrast, when melt begins late, clearer than usual conditions are evident prior to melt. Hence, atmospheric processes are imperative for melt onset. It is also found that spring LWD increased during recent decades, consistent with trends toward an earlier melt onset.

  19. Liquid structure and temperature invariance of sound velocity in supercooled Bi melt

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Emuna, M.; Mayo, M.; Makov, G.

    2014-03-07

    Structural rearrangement of liquid Bi in the vicinity of the melting point has been proposed due to the unique temperature invariant sound velocity observed above the melting temperature, the low symmetry of Bi in the solid phase and the necessity of overheating to achieve supercooling. The existence of this structural rearrangement is examined by measurements on supercooled Bi. The sound velocity of liquid Bi was measured into the supercooled region to high accuracy and it was found to be invariant over a temperature range of ∼60°, from 35° above the melting point to ∼25° into the supercooled region. The structuralmore » origin of this phenomenon was explored by neutron diffraction structural measurements in the supercooled temperature range. These measurements indicate a continuous modification of the short range order in the melt. The structure of the liquid is analyzed within a quasi-crystalline model and is found to evolve continuously, similar to other known liquid pnictide systems. The results are discussed in the context of two competing hypotheses proposed to explain properties of liquid Bi near the melting: (i) liquid bismuth undergoes a structural rearrangement slightly above melting and (ii) liquid Bi exhibits a broad maximum in the sound velocity located incidentally at the melting temperature.« less

  20. On the formation of continental silicic melts in thermochemical mantle convection models: implications for early Earth

    NASA Astrophysics Data System (ADS)

    van Thienen, P.; van den Berg, A. P.; Vlaar, N. J.

    2004-12-01

    Important constituents of Archean cratons, formed in the early and hot history of the Earth, are Tonalite-Trondhjemite-Granodiorite (TTG) plutons and greenstone belts. The formation of these granite-greenstone terrains is often ascribed to plate-tectonic processes. Buoyancy considerations, however, do not allow plate tectonics to take place in a significantly hotter Earth. We therefore propose an alternative mechanism for the coeval and proximate production of TTG plutons and greenstone-like crustal successions. That is, when a locally anomalously thick basaltic crust has been produced by continued addition of extrusive or intrusive basalts due to partial melting of the underlying convecting mantle, the transition of a sufficient amount of basalt in the lower crust to eclogite may trigger a resurfacing event, in which a complete crustal section of over 1000 km long sinks into the mantle in less than 2 million years. Pressure release partial melting in the complementary upwelling mantle produces large volumes of basaltic material replacing the original crust. Partial melting at the base of this newly produced crust may generate felsic melts which are added as intrusives and/or extrusives to the generally mafic crustal succession, adding to what resembles a greenstone belt. Partial melting of metabasalt in the sinking crustal section produces a significant volume of TTG melt which is added to the crust directly above the location of 'subduction', presumably in the form of a pluton. This scenario is self-consistently produced by numerical thermochemical mantle convection models, presented in this paper, including partial melting of mantle peridotite and crustal (meta)basalt. The metamorphic p, T conditions under which partial melting of metabasalt takes place in this scenario are consistent with geochemical trace element data for TTGs, which indicate melting under amphibolite rather than eclogite facies. Other geodynamical settings which we have also investigated, including partial melting in small scale delaminations of the lower crust, at the base of a anomalously thick crust and due to the influx of a lower mantle diapir fail to reproduce this behavior unequivocally and mostly show melting of metabasalt in the eclogite stability field instead.

  1. Aluminum integral foams with tailored density profile by adapted blowing agents

    NASA Astrophysics Data System (ADS)

    Hartmann, Johannes; Fiegl, Tobias; Körner, Carolin

    2014-05-01

    The goal of the present work is the variation of the structure of aluminum integral foams regarding the thickness of the integral solid skin as well as the density profile. A modified die casting process, namely integral foam molding, is used in which an aluminum melt and blowing agent particles (magnesium hydride MgH2) are injected in a permanent steel mold. The high solidification rates at the cooled walls of the mold lead to the formation of a solid skin. In the inner region, hydrogen is released by thermal decomposition of MgH2 particles. Thus, the pore formation takes place parallel to the continuing solidification of the melt. The thickness of the solid skin and the density profile of the core strongly depend on the interplay between solidification velocity and kinetics of hydrogen release. By varying the melt and blowing agent properties, the structure of integral foams can be systematically changed to meet the requirements of the desired field of application of the produced component.

  2. The Enhancement of Mg Corrosion Resistance by Alloying Mn and Laser-Melting

    PubMed Central

    Yang, Youwen; Wu, Ping; Wang, Qiyuan; Wu, Hong; Liu, Yong; Deng, Youwen; Zhou, Yuanzhuo; Shuai, Cijun

    2016-01-01

    Mg has been considered a promising biomaterial for bone implants. However, the poor corrosion resistance has become its main undesirable property. In this study, both alloying Mn and laser-melting were applied to enhance the Mg corrosion resistance. The corrosion resistance, mechanical properties, and microstructure of rapid laser-melted Mg-xMn (x = 0–3 wt %) alloys were investigated. The alloys were composed of dendrite grains, and the grains size decreased with increasing Mn. Moreover, Mn could dissolve and induce the crystal lattice distortion of the Mg matrix during the solidification process. Mn ranging from 0–2 wt % dissolved completely due to rapid laser solidification. As Mn contents further increased up to 3 wt %, a small amount of Mn was left undissolved. The compressive strength of Mg-Mn alloys increased first (up to 2 wt %) and then decreased with increasing Mn, while the hardness increased continuously. The refinement of grains and the increase in corrosion potential both made contributions to the enhancement of Mg corrosion resistance. PMID:28773342

  3. New Fiber Reinforced Waterless Concrete for Extraterrestrial Structural Applications

    NASA Technical Reports Server (NTRS)

    Toutanji, H.; Tucker, D.; Ethridge, E.

    2005-01-01

    Commercial use of sulfur concrete on Earth is well established, particularly in corrosive, e.g., acid and salt, environments. Having found troilite (FeS) on the Moon raises the question of using extracted sulfur as a lunar construction mate: iii an attractive alternative to conventional concrete as it does not require water For the purpose of this paper it is assumed that lunar ore is mined, refined, and the raw sulfur processed with appropriate lunar regolith to form, for example, brick and beam elements. Glass fibers produced from regolith were used as a reinforcement to improve the mechanical properties of the sulfur concrete. Glass fibers and glass rebar were produced by melting the lunar regolith simulant. Lunar regolith stimulant was melted in a 25 cc Pt-Rh crucible in a Sybron Thermoline 46100 high temperature MoSi2 furnace at melting temperatures of 1450 to 1600G. The glass melt wets the ceramic rod and long continuous glass fibers were easily hand drawn. The glass fibers were immediately coated with a protective polymer to maintain the mechanical strength. The viability of sulfur concrete as a construction material for extraterrestrial application is presented. The mechanical properties of the glass fiber reinforced sulfur concrete were investigated.

  4. Fundamentals of twin-screw extrusion polymer melting: Common pitfalls and how to avoid them

    NASA Astrophysics Data System (ADS)

    Andersen, Paul

    2015-05-01

    The process for compounding engineered polymer formulations is comprised of several unit operations. These typically include, but are not limited to: feedstock introduction, polymer melt-mixing, distributive/dispersive mixing of minerals/fibers, removal of volatiles, and pressurization for discharge. While each unit operation has an impact on process productivity and the quality of the finished product, polymer melt-mixing has a significantly greater impact than the others. First, it consumes 50, 60 or higher percent of the total system energy. Second, it generates the highest radial as well as particle-particle interactive pressure of any unit operation. Third, the negative impact on the process of any design flaws in the melt-mixing configuration is transmitted downstream to all subsequent unit operations. For example, a melt-mixing design that is too intense may degrade the polymer while one that is too weak may result in excessive breakage of glass fiber being fed downstream due to the polymer solidifying on the glass fiber and subsequently being re-melted. Another example of the impact of an incorrect melt-mixing configuration would be excessive abrasive wear. Adhesive wear is also possible as well as deformation on both barrel wall and screw elements due to high radial forces. Additionally, non-melting material present during the melt-mixing process could be compacted into "briquettes" by the high radial pressure and would have to be dispersed by subsequent downstream unit operations. Other potential issues associated with a non-optimal melting section are pre-mature and incomplete melting. The former is more of a concern with melting of powder feed stock while the latter is more probable with feed stock comprised of a broad range of particle sizes. However, the consequence of both is to convey unmolten polymer beyond the melting section. While this may not be perceived as a significant issue for most processes, it is an issue if the sole purpose of the process is to uniformly melt the feedstock. This is case for powder to pellet conversion of polyolefins and melt spinning of mono-filament.

  5. Integrated hot-melt extrusion - injection molding continuous tablet manufacturing platform: Effects of critical process parameters and formulation attributes on product robustness and dimensional stability.

    PubMed

    Desai, Parind M; Hogan, Rachael C; Brancazio, David; Puri, Vibha; Jensen, Keith D; Chun, Jung-Hoon; Myerson, Allan S; Trout, Bernhardt L

    2017-10-05

    This study provides a framework for robust tablet development using an integrated hot-melt extrusion-injection molding (IM) continuous manufacturing platform. Griseofulvin, maltodextrin, xylitol and lactose were employed as drug, carrier, plasticizer and reinforcing agent respectively. A pre-blended drug-excipient mixture was fed from a loss-in-weight feeder to a twin-screw extruder. The extrudate was subsequently injected directly into the integrated IM unit and molded into tablets. Tablets were stored in different storage conditions up to 20 weeks to monitor physical stability and were evaluated by polarized light microscopy, DSC, SEM, XRD and dissolution analysis. Optimized injection pressure provided robust tablet formulations. Tablets manufactured at low and high injection pressures exhibited the flaws of sink marks and flashing respectively. Higher solidification temperature during IM process reduced the thermal induced residual stress and prevented chipping and cracking issues. Polarized light microscopy revealed a homogeneous dispersion of crystalline griseofulvin in an amorphous matrix. DSC underpinned the effect of high tablet residual moisture on maltodextrin-xylitol phase separation that resulted in dimensional instability. Tablets with low residual moisture demonstrated long term dimensional stability. This study serves as a model for IM tablet formulations for mechanistic understanding of critical process parameters and formulation attributes required for optimal product performance. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Control of Low Melting Point Mno-Sio2-Al2o3 Inclusions in Low Carbon Thin-Strip Continuous Casting Steel

    NASA Astrophysics Data System (ADS)

    Chen, Jing; Zhu, Qing; Huang, Di; Zheng, Shaobo; Zhang, Jieyu; Li, Huigai

    2017-09-01

    There is a significant difference in the demand for molten steel quality between thin-strip continuous casting and traditional continuous casting. In order to make sure the better surface quality of the thin strips, to generate an oxidation film on the surface of cooling roller is required. This will require that the higher oxygen potential in molten steel and inclusions with low melting point. In this article, the possibility of producing low-melting inclusions which is mainly consisted of SiO2 and MnO is studied by controlling the initial oxygen potential and addition order of deoxidizing alloys. The interaction activity between each component in the ternary system of Al2O3-SiO2-MnO is obtained by Action Concentration model. The equal [Mn], [Si], [O], [Al] curve under the temperature of 1823K and equilibrium condition in ternary system of Al2O3-SiO2-MnO is obtained by relative thermodynamic calculation as well. The control method for getting the low-melting point inclusion is as below. While the weight percentage of Si is 0.35% and the one of Mn is 0.90%, in order to maintain the melting point of inclusion around 1200°C, the free oxygen potential in melted steel F[O] should be maintained between 0.002% ∼ 0.004%. On the contrary, the requirement for acid dissolved [Al] content in melted steel is as low as 0.0001% ∼ 0.0005%.

  7. Experimental magma degassing: The revenge of the deformed bubbles

    NASA Astrophysics Data System (ADS)

    Marxer, H.; Bellucci, P.; Ulmer, S.; Nowak, M.

    2013-12-01

    We performed decompression experiments with a hydrated phonolitic melt at a T of 1323 K in an internally heated pressure vessel to investigate the effect of decompression method and rate on melt degassing. Samples were decompressed from 200 to 75 MPa with step-wise and continuous decompression (SD/CD) at nominal decompression rates (DRs) of 0.0028-1.7 MPa/s. At target P the samples were quenched rapidly under isobaric conditions with 150 K/s. The vesiculated glass products were compared in terms of bubble number density (BND), bubble size distribution (BSD) and residual H2O content. Almost all capsules were deformed after decompression: the initially crimped headspaces were expanded and the walls were inflexed in the capsule center. We postulate that the deformation is primarily due to the change in molar volume V(m) of exsolved H2O during rapid quench. Bubble growth in the melt contributes to the deformation by capsule expansion, but the main problem is the shrinkage and collapse of bubbles during cooling. In first approximation, the texture of the vesiculated melt is not frozen until the glass transition T (~773 K for this composition, [1]) is reached. From 1323 K to T(g) the melt will display viscous behavior. For a final P of 75 MPa, V(m) of the exsolved H2O at T(g) is only ~25% of V(m) at 1323 K [2]. The fluid P in the bubbles is therefore continuously decreasing during quench. In combination with constant external P, the bubbles can either contract isometrically, get deformed (flattened) or even become dented by sucking melt inwards, which can be observed in some glass products. The shrinkage of bigger bubbles in the capsules is sometimes affecting the whole vesicle texture in a sample. FPA-FTIR measurements did not reveal H2O diffusion profiles towards bubbles [3]. H2O concentration gradients around bubbles are expected to be disturbed or annihilated due to melt transport. All derived BSDs of our samples were corrected to resemble the bubble sizes prior to rapid quench. For a volumetric loss of 75% at a final P of 75 MPa, the initial diameter of a bubble in the melt has to be ~1.5x the diameter of a bubble in the glass. At DRs of >0.17 MPa/s the decompression method has only minor influence on melt degassing. SD and CD result in BNDs of 10^4-10^5 mm^-3. Fast P drop leads to immediate super-saturation with H2O in the melt. At high DRs, the diffusional transport of H2O is very limited and therefore bubble nucleation is the predominant degassing process. CD rates of ≤0.17 MPa/s provide sufficient time for H2O diffusion into existing bubbles. BNDs of CD samples with low DRs are several orders of magnitude lower than for SD experiments. In contrast to SD, bubble growth is the favored degassing mechanism. CD samples quenched at different target P at 0.024 MPa/s trace an equilibrium degassing path in terms of residual H2O content in the glass. SD techniques, as used in many studies before, are therefore not suitable to simulate melt degassing at continuous magma ascent. [1] Giordano, D; Russell, JK; Dingwell, DB; 2008. EPSL, 271: 123-134. [2] Duan, ZH; Zhang, ZG; 2006. GCA, 70: 2311-2324. [3] Marxer, H; Nowak, M; 2013. EJM, in press.

  8. Continuous analysis of phosphate in a Greenland shallow ice core

    NASA Astrophysics Data System (ADS)

    Kjær, Helle Astrid; Svensson, Anders; Bigler, Matthias; Vallelonga, Paul; Kettner, Ernesto; Dahl-Jensen, Dorthe

    2010-05-01

    Phosphate is an important and sometimes limiting nutrient for primary production in the oceans. Because of deforestation and the use of phosphate as a fertilizer changes in the phosphate cycle have occurred over the last centuries. On longer time scales, sea level changes are thought to have also caused changes in the phosphate cycle. Analyzing phosphate concentrations in ice cores may help to gain important knowledge about those processes. In the present study, we attach a phosphate detection line to an existing continuous flow analysis (CFA) setup for ice core analysis at the University of Copenhagen. The CFA system is optimized for high-resolution measurements of insoluble dust particles, electrolytic melt water conductivity, and the concentrations of ammonium and sodium. For the phosphate analysis we apply a continuous and highly sensitive absorption method that has been successfully applied to determine phosphate concentrations of sea water (Zhang and Chi, 2002). A line of melt water from the CFA melt head (1.01 ml per minute) is combined with a molybdate blue reagent and an ascorbic acid buffer. An uncompleted reaction takes place in five meters of heated mixing coils before the absorption measurement at a wavelength of 710 nanometer takes place in a 2 m long liquid waveguide cell (LWCC) with an inner volume of 0.5 ml. The method has a detection limit of around 0.1 ppb and we are currently investigating a possible interference from molybdate reacting with silicates that are present in low amounts in the ice. Preliminary analysis of early Holocene samples from the NGRIP ice core show phosphate concentration values of a few ppb. In this study, we will attempt to determine past levels of phosphate in a shallow Northern Greenland firn core with an annual layer thickness of about 20 cm ice equivalent. With a melt speed of 2.5 cm ice per minute our method should allow the resolution of any seasonal variability in phosphate concentrations.

  9. Control of three different continuous pharmaceutical manufacturing processes: Use of soft sensors.

    PubMed

    Rehrl, Jakob; Karttunen, Anssi-Pekka; Nicolaï, Niels; Hörmann, Theresa; Horn, Martin; Korhonen, Ossi; Nopens, Ingmar; De Beer, Thomas; Khinast, Johannes G

    2018-05-30

    One major advantage of continuous pharmaceutical manufacturing over traditional batch manufacturing is the possibility of enhanced in-process control, reducing out-of-specification and waste material by appropriate discharge strategies. The decision on material discharge can be based on the measurement of active pharmaceutical ingredient (API) concentration at specific locations in the production line via process analytic technology (PAT), e.g. near-infrared (NIR) spectrometers. The implementation of the PAT instruments is associated with monetary investment and the long term operation requires techniques avoiding sensor drifts. Therefore, our paper proposes a soft sensor approach for predicting the API concentration from the feeder data. In addition, this information can be used to detect sensor drift, or serve as a replacement/supplement of specific PAT equipment. The paper presents the experimental determination of the residence time distribution of selected unit operations in three different continuous processing lines (hot melt extrusion, direct compaction, wet granulation). The mathematical models describing the soft sensor are developed and parameterized. Finally, the suggested soft sensor approach is validated on the three mentioned, different continuous processing lines, demonstrating its versatility. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Modelling the response of a Himalayan watershed to climate change: new insights from linking high resolution in-situ data and remote sensing with an advanced simulation model

    NASA Astrophysics Data System (ADS)

    Ragettli, S.; Pellicciotti, F.; Immerzeel, W.

    2014-12-01

    In high-elevation watersheds of the Himalayan region the correct representation of the internal states and process dynamics in glacio-hydrological models can often not be verified due to missing in-situ measurements. The aim of this study is to provide a fundamental understanding of the hydrology of a Himalayan watershed through the systematic integration of in-situ data in a glacio-hydrological model. We use ground data from the upper Langtang valley in Nepal combined with high resolution satellite data to understand specific processes and test the application of new model components specifically developed. We apply a new model for ablation under debris that takes into account the varying effect of debris thickness on melt rates. A novel approach is tested to reconstruct spatial fields of debris thickness through combination of energy balance modelling, UAV-derived geodetic mass balance and statistical techniques. The systematic integration of in-situ data for model calibration enables the application of a state-of-the art model with many parameters to model glacier evolution and catchment runoff in spite of the lack of continuous long-term historical records. It allows drawing conclusions on the importance of processes that have been suggested as being relevant but never quantified before. The simulations show that 8.7% of total water inputs originate from sub-debris ice melt. 4.5% originate from melted avalanched snow. These components can be locally much more important, since the spatial variability of processes within the valley is high. The model is then used to simulate the response of the catchment to climate change. We show that climate warming leads to an increase in future icemelt and a peak in glacier runoff by mid-century. The increase in total icemelt is due to higher melt rates and large areas that are currently located above the equilibrium line altitude additionally that will contribute to melt. Catchment runoff will not reach below current levels throughout the 21st century due to precipitation increases. Debris covered glacier area will disappear at a slower pace than non-debris covered area. Still, due to the relative climate insensitivity of melt rates below thick debris, the contribution of sub-debris icemelt to runoff will not exceed 10% at all times.

  11. Tablet coating by injection molding technology - Optimization of coating formulation attributes and coating process parameters.

    PubMed

    Desai, Parind M; Puri, Vibha; Brancazio, David; Halkude, Bhakti S; Hartman, Jeremy E; Wahane, Aniket V; Martinez, Alexander R; Jensen, Keith D; Harinath, Eranda; Braatz, Richard D; Chun, Jung-Hoon; Trout, Bernhardt L

    2018-01-01

    We developed and evaluated a solvent-free injection molding (IM) coating technology that could be suitable for continuous manufacturing via incorporation with IM tableting. Coating formulations (coating polymers and plasticizers) were prepared using hot-melt extrusion and screened via stress-strain analysis employing a universal testing machine. Selected coating formulations were studied for their melt flow characteristics. Tablets were coated using a vertical injection molding unit. Process parameters like softening temperature, injection pressure, and cooling temperature played a very important role in IM coating processing. IM coating employing polyethylene oxide (PEO) based formulations required sufficient room humidity (>30% RH) to avoid immediate cracks, whereas other formulations were insensitive to the room humidity. Tested formulations based on Eudrajit E PO and Kollicoat IR had unsuitable mechanical properties. Three coating formulations based on hydroxypropyl pea starch, PEO 1,000,000 and Opadry had favorable mechanical (<700MPa Young's modulus, >35% elongation, >95×10 4 J/m 3 toughness) and melt flow (>0.4g/min) characteristics, that rendered acceptable IM coats. These three formulations increased the dissolution time by 10, 15 and 35min, respectively (75% drug release), compared to the uncoated tablets (15min). Coated tablets stored in several environmental conditions remained stable to cracking for the evaluated 8-week time period. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Apparatus for obtaining silicon from fluosilicic acid

    DOEpatents

    Sanjurjo, Angel

    1986-05-20

    Apparatus for producing low cost, high purity solar grade silicon ingots in single crystal or quasi single crystal ingot form in a substantially continuous operation in a two stage reactor starting with sodium fluosilicate and a metal more electropositive than silicon (preferably sodium) in separate compartments having easy vapor transport therebetween and thermally decomposing the sodium fluosilicate to cause formation of substantially pure silicon and a metal fluoride which may be continuously separated in the melt and silicon may be directly and continuously cast from the melt.

  13. Kinetics of Cold-Cap Reactions for Vitrification of Nuclear Waste Glass Based on Simultaneous Differential Scanning Calorimetry - Thermogravimetry (DSC-TGA) and Evolved Gas Analysis (EGA)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodriguez, Carmen P.; Pierce, David A.; Schweiger, Michael J.

    2013-12-03

    For vitrifying nuclear waste glass, the feed, a mixture of waste with glass-forming and modifying additives, is charged onto the cold cap that covers 90-100% of the melt surface. The cold cap consists of a layer of reacting molten glass floating on the surface of the melt in an all-electric, continuous glass melter. As the feed moves through the cold cap, it undergoes chemical reactions and phase transitions through which it is converted to molten glass that moves from the cold cap into the melt pool. The process involves a series of reactions that generate multiple gases and subsequent massmore » loss and foaming significantly influence the mass and heat transfers. The rate of glass melting, which is greatly influenced by mass and heat transfers, affects the vitrification process and the efficiency of the immobilization of nuclear waste. We studied the cold-cap reactions of a representative waste glass feed using both the simultaneous differential scanning calorimetry thermogravimetry (DSC-TGA) and the thermogravimetry coupled with gas chromatography-mass spectrometer (TGA-GC-MS) as complementary tools to perform evolved gas analysis (EGA). Analyses from DSC-TGA and EGA on the cold-cap reactions provide a key element for the development of an advanced cold-cap model. It also helps to formulate melter feeds for higher production rate.« less

  14. Closed-Loop Process Control for Electron Beam Freeform Fabrication and Deposition Processes

    NASA Technical Reports Server (NTRS)

    Taminger, Karen M. (Inventor); Hofmeister, William H. (Inventor); Martin, Richard E. (Inventor); Hafley, Robert A. (Inventor)

    2013-01-01

    A closed-loop control method for an electron beam freeform fabrication (EBF(sup 3)) process includes detecting a feature of interest during the process using a sensor(s), continuously evaluating the feature of interest to determine, in real time, a change occurring therein, and automatically modifying control parameters to control the EBF(sup 3) process. An apparatus provides closed-loop control method of the process, and includes an electron gun for generating an electron beam, a wire feeder for feeding a wire toward a substrate, wherein the wire is melted and progressively deposited in layers onto the substrate, a sensor(s), and a host machine. The sensor(s) measure the feature of interest during the process, and the host machine continuously evaluates the feature of interest to determine, in real time, a change occurring therein. The host machine automatically modifies control parameters to the EBF(sup 3) apparatus to control the EBF(sup 3) process in a closed-loop manner.

  15. High-density Bi-Pb-Sr-Ca-Cu-O superconductor prepared by rapid thermal melt processing

    NASA Astrophysics Data System (ADS)

    Moon, B. M.; Lalevic, B.; Kear, B. H.; McCandlish, L. E.; Safari, A.; Meskoob, M.

    1989-10-01

    A high quality, dense Bi-Pb-Sr-Ca-Cu-O superconductor has been successfully synthesized by rapid thermal melt processing. Conventionally sintered pellets were melted at 1200 °C, cooled rapidly, and then annealed. As-melted samples exhibited semiconductor behavior, which upon annealing became superconducting at 115 K [Tc(zero)=105 K]. A detailed study of various processing techniques has been carried out.

  16. Influence of starting material on the degassing behavior of trachytic and phonolitic melts

    NASA Astrophysics Data System (ADS)

    Preuss, Oliver; Marxer, Holger; Nowak, Marcus

    2015-04-01

    The dynamic magmatic processes beneath volcanic systems, occurring during magma ascent, cannot be observed directly in nature. Simulation of magma ascent in the lab realized by continuous decompression (CD) of a volatile containing melt is essential to understand these processes that may lead to potentially catastrophic eruptions threatening millions of people in highly populated areas like Naples located between the Campi Flegrei Volcanic Field and the Monte Somma-Vesuvio strato-volcano. In this project, experimental simulations of Campanian Ignimbrite (CI) magma ascent will give insight to the mechanisms of the CI super eruption, thus providing tools for volcanic hazard assessment at the high risk Campanian Volcanic District and other comparable volcanic systems. Additionally, comparable experiments with the same conditions using the 'white pumice' composition of the catastrophic Vesuvius AD 79 (VAD79) eruption, have been conducted. So far, the experiments were performed in an internally heated argon pressure vessel coupled with a high-pressure low-flow metering valve and a piezoelectric nano-positioning system using a starting pressure of 200 MPa, H2O content of about 5 wt% and two different decompression rates (0.024 and 0.17 MPa/s) at a superliquidus temperature of 1050 ° C to ensure a crystal free melt and a homogeneous bubble nucleation. Experiments were conducted with both, glass powder and cylinders, subsequently decompressed to 75 and 100 MPa and rapidly quenched. Beside the results that e.g. decompression rate, volatile content, fluid solubility and target pressure affect the degassing behavior of the melt, the influence of the starting material on the degassing processes is significant. Analyses of BSE- and transmitted light microscopy images revealed a different degassing behavior of glass cylinder experiments compared to powders. Nitrogen has a very low solubility in hydrous silicate melts, supporting our suggestion that preexisting nitrogen rich bubbles (from trapped air between the single glass grains) in the melt lead to growth of these preexisting bubbles resulting in near equilibrium degassing where no further nucleation is needed. This results in much higher porosities of the degassed samples compared to those where pure dissolved H2O is present. The same effect was observed by repeating these experiments with a phonolitic VAD79 composition. In ongoing experiments using glass cylinders as starting material, approximately 0.4 wt% chlorine (average Campanian Ignimbrite melt inclusion data [1]) will be added as a volatile component to study the influence on the degassing behavior of hydrous CI melt. [1] Marianelli et al. (2006) Geology 34(11), 937

  17. Shape and Symmetry Determine Two-Dimensional Melting Transitions of Hard Regular Polygons

    NASA Astrophysics Data System (ADS)

    Anderson, Joshua A.; Antonaglia, James; Millan, Jaime A.; Engel, Michael; Glotzer, Sharon C.

    2017-04-01

    The melting transition of two-dimensional systems is a fundamental problem in condensed matter and statistical physics that has advanced significantly through the application of computational resources and algorithms. Two-dimensional systems present the opportunity for novel phases and phase transition scenarios not observed in 3D systems, but these phases depend sensitively on the system and, thus, predicting how any given 2D system will behave remains a challenge. Here, we report a comprehensive simulation study of the phase behavior near the melting transition of all hard regular polygons with 3 ≤n ≤14 vertices using massively parallel Monte Carlo simulations of up to 1 ×106 particles. By investigating this family of shapes, we show that the melting transition depends upon both particle shape and symmetry considerations, which together can predict which of three different melting scenarios will occur for a given n . We show that systems of polygons with as few as seven edges behave like hard disks; they melt continuously from a solid to a hexatic fluid and then undergo a first-order transition from the hexatic phase to the isotropic fluid phase. We show that this behavior, which holds for all 7 ≤n ≤14 , arises from weak entropic forces among the particles. Strong directional entropic forces align polygons with fewer than seven edges and impose local order in the fluid. These forces can enhance or suppress the discontinuous character of the transition depending on whether the local order in the fluid is compatible with the local order in the solid. As a result, systems of triangles, squares, and hexagons exhibit a Kosterlitz-Thouless-Halperin-Nelson-Young (KTHNY) predicted continuous transition between isotropic fluid and triatic, tetratic, and hexatic phases, respectively, and a continuous transition from the appropriate x -atic to the solid. In particular, we find that systems of hexagons display continuous two-step KTHNY melting. In contrast, due to symmetry incompatibility between the ordered fluid and solid, systems of pentagons and plane-filling fourfold pentilles display a one-step first-order melting of the solid to the isotropic fluid with no intermediate phase.

  18. Melting processes of oligomeric α and β isotactic polypropylene crystals at ultrafast heating rates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ji, Xiaojing; He, Xuehao, E-mail: xhhe@tju.edu.cn, E-mail: scjiang@tju.edu.cn; Jiang, Shichun, E-mail: xhhe@tju.edu.cn, E-mail: scjiang@tju.edu.cn

    The melting behaviors of α (stable) and β (metastable) isotactic polypropylene (iPP) crystals at ultrafast heating rates are simulated with atomistic molecular dynamics method. Quantitative information about the melting processes of α- and β-iPP crystals at atomistic level is achieved. The result shows that the melting process starts from the interfaces of lamellar crystal through random dislocation of iPP chains along the perpendicular direction of lamellar crystal structure. In the melting process, the lamellar crystal gradually expands but the corresponding thickness decreases. The analysis shows that the system expansion lags behind the crystallinity decreasing and the lagging extents for α-more » and β-iPP are significantly different. The apparent melting points of α- and β-iPP crystals rise with the increase of the heating rate and lamellar crystal thickness. The apparent melting point of α-iPP crystal is always higher than that of β-iPP at differently heating rates. Applying the Gibbs-Thomson rule and the scaling property of the melting kinetics, the equilibrium melting points of perfect α- and β-iPP crystals are finally predicted and it shows a good agreement with experimental result.« less

  19. Crustal-scale degassing and igneous mush re-organisation: a generic concept applied to episodic volcanism at the Soufrière Hills Volcano Montserrat

    NASA Astrophysics Data System (ADS)

    R Stephen J, S.; Cashman, K. V.

    2015-12-01

    A complete theory of episodic volcanism is lacking. Melt generation related to large scale tectonic processes is likely continuous but surface volcanic activity is typically episodic; for most volcanoes short-lived eruptions alternate with long periods of dormancy. Many models of volcanic activity and geophysical unrest are framed by a conceptual model of shallow magma chamber recharge, in which various phenomena are attributed to magma transport from deeper levels. While many aspects of volcanism are explained by this concept it has little explanatory power for key aspects of volcanism, including time scales of dormancy, eruption duration and eruption magnitude. Extensive trans-crustal igneous systems develop beneath active volcanoes in which much of the system is in a mushy state in which buoyancy-driven segregation of melt and magmatic fluid occurs to form layers, which are inherently unstable. We postulate that such systems are prone to destabilisation in which segregating layers amalgamate to form ephemeral magma chambers and in which melts and magmatic fluids decouple. Periods of dormancy relate to slow processes of segregation while short periods of volcanic unrest and eruption relate to episodic and rapid processes of destabilisation of the mush system. In this conceptual framework volatiles rather than magma recharge plays the key role in the dynamics of the shallow parts of the magmatic systems. Magma ascent during episodes of destabilisation does not itself cause pressurisation because melts and crystals are near incompressible, while volatile exsolution and decompression results in major pressure changes that can lead to unrest and eruption. These concepts are applied to the interpretation of stratigraphic, geochronological, geophysical, geochemical, petrological and volcanological data of volcanic activity at the Soufrière Hills Volcano (SHV), Montserrat.

  20. Investigating ice shelf mass loss processes from continuous satellite altimetry

    NASA Astrophysics Data System (ADS)

    Fricker, H. A.

    2017-12-01

    The Antarctic Ice Sheet continually gains mass through snowfall over its large area and, to remain approximately in equilibrium, it sheds most of this excess mass through two processes, basal melting and iceberg calving, that both occur in the floating ice shelves surrounding the continent. Small amounts of mass are also lost by surface melting, which occurs on many ice shelves every summer to varying degrees, and has been linked to ice-shelf collapse via hydrofracture on ice shelves that have been pre-weakened. Ice shelves provide mechanical support to `buttress' seaward flow of grounded ice, so that ice-shelf thinning and retreat result in enhanced ice discharge to the ocean. Ice shelves are susceptible to changes in forcing from both the atmosphere and the ocean, which both change on a broad range of timescales to modify mass gains and losses at the surface and base, and from internal instabilities of the ice sheet itself. Mass loss from iceberg calving is episodic, with typical intervals between calving events on the order of decades. Since ice shelves are so vast, the only viable way to monitor them is with satellites. Here, we discuss results from satellite radar and laser altimeter data from one NASA satellite (ICESat), and four ESA satellites (ERS-1, ERS-2, Envisat, CryoSat-2) to obtain estimates of ice-shelf surface height since the early 1990s. The continuous time series show accelerated losses in total Antarctic ice-shelf volume from 1994 to 2017, and allow us to investigate the processes causing ice-shelf mass change. For Larsen C, much of the variability comes from changing atmospheric conditions affecting firn state. In the Amundsen Sea, the rapid thinning is a combination of accelerated ocean-driven thinning and ice dynamics. This long-term thinning signal is, however, is strongly modulated by ENSO-driven interannual variability. However, observations of ocean variability around Antarctica are sparse, since these regions are often covered in sea ice and difficult to access. Some innovative methods are being used to acquire these data, including airborne deployment of ALAMO profiling floats which we tested in the Ross Sea as part of the ROSETTA-Ice project. Combining these altimeter datasets and in situ ocean datasets will allow us to examine processes causing basal melting in the sub-ice-shelf cavities.

  1. Borehole sealing method and apparatus

    DOEpatents

    Hartley, James N.; Jansen, Jr., George

    1977-01-01

    A method and apparatus is described for sealing boreholes in the earth. The borehole is blocked at the sealing level, and a sealing apparatus capable of melting rock and earth is positioned in the borehole just above seal level. The apparatus is heated to rock-melting temperature and powdered rock or other sealing material is transported down the borehole to the apparatus where it is melted, pooling on the mechanical block and allowed to cool and solidify, sealing the hole. Any length of the borehole can be sealed by slowly raising the apparatus in the borehole while continuously supplying powdered rock to the apparatus to be melted and added to the top of the column of molten and cooling rock, forming a continuous borehole seal. The sealing apparatus consists of a heater capable of melting rock, including means for supplying power to the heater, means for transporting powdered rock down the borehole to the heater, means for cooling the apparatus and means for positioning the apparatus in the borehole.

  2. The response of surface mass and energy balance of a continental glacier to climate variability, western Qilian Mountains, China

    NASA Astrophysics Data System (ADS)

    Sun, Weijun; Qin, Xiang; Wang, Yetang; Chen, Jizu; Du, Wentao; Zhang, Tong; Huai, Baojuan

    2017-08-01

    To understand how a continental glacier responds to climate change, it is imperative to quantify the surface energy fluxes and identify factors controlling glacier mass balance using surface energy balance (SEB) model. Light absorbing impurities (LAIs) at the glacial surface can greatly decrease surface albedo and increase glacial melt. An automatic weather station was set up and generated a unique 6-year meteorological dataset for the ablation zone of Laohugou Glacier No. 12. Based on these data, the surface energy budget was calculated and an experiment on the glacial melt process was carried out. The effect of reduced albedo on glacial melting was analyzed. Owing to continuous accumulation of LAIs, the ablation zone had been darkening since 2010. The mean value of surface albedo in melt period (June through September) dropped from 0.52 to 0.43, and the minimum of daily mean value was as small as 0.1. From the records of 2010-2015, keeping the clean ice albedo fixed in the range of 0.3-0.4, LAIs caused an increase of +7.1 to +16 W m-2 of net shortwave radiation and an removal of 1101-2663 mm water equivalent. Calculation with the SEB model showed equivalent increases in glacial melt were obtained by increasing air temperature by 1.3 and 3.2 K, respectively.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, M. S.; Miller, D. H.; Fowley, M. D.

    The Savannah River National Laboratory (SRNL) was tasked to support validation of the Defense Waste Processing Facility (DWPF) melter offgas flammability model for the nitric-glycolic (NG) flowsheet. The work supports Deliverable 4 of the DWPF & Saltstone Facility Engineering Technical Task Request (TTR)1 and is supplemental to the Cold Cap Evaluation Furnace (CEF) testing conducted in 2014.2 The Slurry-fed Melt Rate Furnace (SMRF) was selected for the supplemental testing as it requires significantly less resources than the CEF and could provide a tool for more rapid analysis of melter feeds in the future. The SMRF platform has been used previouslymore » to evaluate melt rate behavior of DWPF glasses, but was modified to accommodate analysis of the offgas stream. Additionally, the Melt Rate Furnace (MRF) and Quartz Melt Rate Furnace (QMRF) were utilized for evaluations. MRF data was used exclusively for melt behavior observations and REDuction/OXidation (REDOX) prediction comparisons and will be briefly discussed in conjunction with its support of the SMRF testing. The QMRF was operated similarly to the SMRF for the same TTR task, but will be discussed in a separate future report. The overall objectives of the SMRF testing were to; 1) Evaluate the efficacy of the SMRF as a platform for steady state melter testing with continuous feeding and offgas analysis; and 2) Generate supplemental melter offgas flammability data to support the melter offgas flammability modelling effort for DWPF implementation of the NG flowsheet.« less

  4. Influence of plasticizer type and level on the properties of Eudragit S100 matrix pellets prepared by hot-melt extrusion.

    PubMed

    Schilling, Sandra U; Lirola, Hélène L; Shah, Navnit H; Waseem Malick, A; McGinity, James W

    2010-01-01

    Matrix-type pellets with controlled-release properties may be prepared by hot-melt extrusion applying a single-step, continuous process. However, the manufacture of gastric-resistant pellets is challenging due to the high glass transition temperature of most enteric polymers and an unacceptably high, diffusion-controlled drug release from the matrix during the acidic phase. The objective was to investigate the influence of three plasticizers (triethyl citrate, methylparaben and polyethylene glycol 8000) at two levels (10% or 20%) on the properties of hot-melt extruded Eudragit S100 matrix pellets. Extrusion experiments showed that all plasticizers produced similar reductions in polymer melt viscosity. Differential scanning calorimetry and powder X-ray diffraction demonstrated that the solid state plasticizers were present in the amorphous state. The drug release in acidic medium was influenced by the aqueous solubility of the plasticizer. Less than 10% drug was released after 2 h at pH 1.2 when triethyl citrate or methylparaben was used, independent of the plasticizer level. Drug release at pH 7.4 resulted from polymer dissolution and was not influenced by low levels of plasticizer, but increased significantly at the 20% level. Mechanical testing by diametral compression demonstrated the high tensile strength of the hot-melt extruded pellets that decreased when plasticizers were present.

  5. Meteorological Drivers of West Antarctic Ice Sheet and Ice Shelf Surface Melt

    NASA Astrophysics Data System (ADS)

    Scott, R. C.; Nicolas, J. P.; Bromwich, D. H.; Norris, J. R.; Lubin, D.

    2017-12-01

    We identify synoptic patterns and surface energy balance components driving warming and surface melting on the West Antarctic Ice Sheet (WAIS) and ice shelves using reanalysis and satellite remote sensing data from 1973-present. We have developed a synoptic climatology of atmospheric circulation patterns during the summer melt season using k-means cluster and composite analysis of daily 700-mb geopotential height and near-surface air temperature and wind fields from the ECMWF ERA-Interim reanalysis. Surface melt occurrence is detected in satellite passive microwave brightness temperature observations (K-band, horizontal polarization) beginning with the NASA Nimbus-5 Electrically Scanning Microwave Radiometer (ESMR) and continuing with its more familiar descendants SMMR, SSM/I and SSMIS. To diagnose synoptic precursors and physical processes driving surface melt we combine the circulation climatology and multi-decadal records of cloud cover with surface radiative fluxes from the Extended AVHRR Polar Pathfinder (APP-x) project. We identify three distinct modes of regional summer West Antarctic warming since 1979 involving anomalous ridging over West Antarctica (WA) and the Amundsen Sea (AS). During the 1970s, ESMR data reveal four extensive melt events on the Ross Sea sector of the WAIS also linked to AS blocking. We therefore define an Amundsen Sea Blocking Index (ASBI). The ASBI and synoptic circulation pattern occurrence frequencies are correlated with the tropical Pacific (ENSO) and high latitude Southern Annular Mode (SAM) indices and the West Antarctic melt index. Surface melt in WA is favored by enhanced downwelling infrared and turbulent sensible heat fluxes associated with intrusions of warm, moist marine air. Consistent with recent findings from the Atmospheric Radiation Measurement (ARM) West Antarctic Radiation Experiment (AWARE), marine advection to the Ross sector is favored by El Niño conditions in the tropical Pacific and a negative SAM. We also find that El Niño-related blocking favors warming and melting on the marine-based ice streams draining from Wilkes Basin, East Antarctica.

  6. Lobate impact melt flows within the extended ejecta blanket of Pierazzo crater

    NASA Astrophysics Data System (ADS)

    Bray, Veronica J.; Atwood-Stone, Corwin; Neish, Catherine D.; Artemieva, Natalia A.; McEwen, Alfred S.; McElwaine, Jim N.

    2018-02-01

    Impact melt flows are observed within the continuous and discontinuous ejecta blanket of the 9 km lunar crater Pierazzo, from the crater rim to more than 40 km away from the center of the crater. Our mapping, fractal analysis, and thermal modeling suggest that melt can be emplaced ballistically and, upon landing, can become separated from solid ejecta to form the observed flow features. Our analysis is based on the identification of established melt morphology for these in-ejecta flows and supported by fractal analysis and thermal modeling. We computed the fractal dimension for the flow boundaries and found values of D = 1.05-1.17. These are consistent with terrestrial basaltic lava flows (D = 1.06-1.2) and established lunar impact melt flows (D = 1.06-1.18), but inconsistent with lunar dry granular flows (D = 1.31-1.34). Melt flows within discontinuous ejecta deposits are noted within just 1.5% of the mapping area, suggesting that the surface expression of impact melt in the extended ejecta around craters of this size is rare, most likely due to the efficient mixing of melts with solid ejecta and local target rocks. However, if the ejected fragments (both, molten and solid) are large enough, segregation of melt and its consequent flow is possible. As most of the flows mapped in this work occur on crater-facing slopes, the development of defined melt flows within ejecta deposits might be facilitated by high crater-facing topography restricting the flow of ejecta soon after it makes ground contact, limiting the quenching of molten ejecta through turbulent mixing with solid debris. Our study confirms the idea that impact melt can travel far beyond the continuous ejecta blanket, adding to the lunar regolith over an extensive area.

  7. Molecular dynamics simulations investigating consecutive nucleation, solidification and grain growth in a twelve-million-atom Fe-system

    NASA Astrophysics Data System (ADS)

    Okita, Shin; Verestek, Wolfgang; Sakane, Shinji; Takaki, Tomohiro; Ohno, Munekazu; Shibuta, Yasushi

    2017-09-01

    Continuous processes of homogeneous nucleation, solidification and grain growth are spontaneously achieved from an undercooled iron melt without any phenomenological parameter in the molecular dynamics (MD) simulation with 12 million atoms. The nucleation rate at the critical temperature is directly estimated from the atomistic configuration by cluster analysis to be of the order of 1034 m-3 s-1. Moreover, time evolution of grain size distribution during grain growth is obtained by the combination of Voronoi and cluster analyses. The grain growth exponent is estimated to be around 0.3 from the geometric average of the grain size distribution. Comprehensive understanding of kinetic properties during continuous processes is achieved in the large-scale MD simulation by utilizing the high parallel efficiency of a graphics processing unit (GPU), which is shedding light on the fundamental aspects of production processes of materials from the atomistic viewpoint.

  8. Laboratory plant study on the melting process of asbestos waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sakai, Shinichi; Terazono, Atsushi; Takatsuki, Hiroshi

    The melting process was studied as a method of changing asbestos into non-hazardous waste and recovering it as a reusable resource. In an initial effort, the thermal behaviors of asbestos waste in terms of physical and chemical structure have been studied. Then, 10 kg/h-scale laboratory plant experiments were carried out. By X-ray diffraction analysis, the thermal behaviors of sprayed-on asbestos waste revealed that chrysotile asbestos waste change in crystal structure at around 800 C, and becomes melted slag, mainly composed of magnesium silicate, at around 1,500 C. Laboratory plant experiments on the melting process of sprayed-on asbestos have shown thatmore » melted slag can be obtained. X-ray diffraction analysis of the melted slag revealed crystal structure change, and SEM analysis showed the slag to have a non-fibrous form. And more, TEM analysis proved the very high treatment efficiency of the process, that is, reduction of the asbestos content to 1/10{sup 6} as a weight basis. These analytical results indicate the effectiveness of the melting process for asbestos waste treatment.« less

  9. Additive Manufacturing Processes: Selective Laser Melting, Electron Beam Melting and Binder Jetting—Selection Guidelines

    PubMed Central

    Konda Gokuldoss, Prashanth; Kolla, Sri; Eckert, Jürgen

    2017-01-01

    Additive manufacturing (AM), also known as 3D printing or rapid prototyping, is gaining increasing attention due to its ability to produce parts with added functionality and increased complexities in geometrical design, on top of the fact that it is theoretically possible to produce any shape without limitations. However, most of the research on additive manufacturing techniques are focused on the development of materials/process parameters/products design with different additive manufacturing processes such as selective laser melting, electron beam melting, or binder jetting. However, we do not have any guidelines that discuss the selection of the most suitable additive manufacturing process, depending on the material to be processed, the complexity of the parts to be produced, or the design considerations. Considering the very fact that no reports deal with this process selection, the present manuscript aims to discuss the different selection criteria that are to be considered, in order to select the best AM process (binder jetting/selective laser melting/electron beam melting) for fabricating a specific component with a defined set of material properties. PMID:28773031

  10. Additive Manufacturing Processes: Selective Laser Melting, Electron Beam Melting and Binder Jetting-Selection Guidelines.

    PubMed

    Gokuldoss, Prashanth Konda; Kolla, Sri; Eckert, Jürgen

    2017-06-19

    Additive manufacturing (AM), also known as 3D printing or rapid prototyping, is gaining increasing attention due to its ability to produce parts with added functionality and increased complexities in geometrical design, on top of the fact that it is theoretically possible to produce any shape without limitations. However, most of the research on additive manufacturing techniques are focused on the development of materials/process parameters/products design with different additive manufacturing processes such as selective laser melting, electron beam melting, or binder jetting. However, we do not have any guidelines that discuss the selection of the most suitable additive manufacturing process, depending on the material to be processed, the complexity of the parts to be produced, or the design considerations. Considering the very fact that no reports deal with this process selection, the present manuscript aims to discuss the different selection criteria that are to be considered, in order to select the best AM process (binder jetting/selective laser melting/electron beam melting) for fabricating a specific component with a defined set of material properties.

  11. Postglacial eruptive history of the Western Volcanic Zone, Iceland

    NASA Astrophysics Data System (ADS)

    Sinton, John; GröNvold, Karl; SæMundsson, KristjáN.

    2005-12-01

    New field observations, age constraints, and extensive chemical analyses define the complete postglacial eruptive history of the 170-km-long Western Volcanic Zone (WVZ) of Iceland, the ultraslow-spreading western boundary of the south Iceland microplate. We have identified 44 separate eruptive units, 10 of which are small-volume eruptions associated with the flanking Grímsnes system. Overall chemical variations are consistent with very simplified models of melting of a source approximating primitive mantle composition. The 17 eruptions in the first 3000 years of postglacial time account for about 64% of the total postglacial production and are incompatible-element depleted compared to younger units, consistent with enhanced melting as a consequence of rebound immediately following deglaciation. Steadily declining eruption rates for the last 9000 years also correlate with changes in average incompatible element ratios that appear to reflect continued decline in melting extents to the present day. This result is not restricted to the WVZ, however, and may herald a decline in melting throughout all of western Iceland during later postglacial time. Lavas from the northern part of the WVZ are depleted in incompatible elements relative to those farther south at all times, indicating either a long-wavelength gradient in mantle source composition or variations in the melting process along axis. We find no evidence in the postglacial volcanic record for current failure of the WVZ, despite evidence for continued propagation of the eastern margin of the microplate. The dominance of lava shields in the eruptive history of the WVZ contrasts with the higher number of fissure eruptions in other Icelandic volcanic zones. WVZ shields represent long-duration, low-effusion rate eruptions fed by recharge magma arising out of the mantle. Average effusion rate is the key variable distinguishing shield and fissure eruptions, both within the WVZ and between different volcanic zones. High effusion rate, large-volume eruptions require the presence of large crustal magma reservoirs, which have been rare or absent in the WVZ throughout postglacial time.

  12. Formulation development and process analysis of drug-loaded filaments manufactured via hot-melt extrusion for 3D-printing of medicines.

    PubMed

    Korte, Carolin; Quodbach, Julian

    2018-02-09

    Three dimensional(3D)-printing via fused deposition modeling (FDM) allows the production of individualized solid dosage forms. However, for bringing this benefit to the patient, active pharmaceutical ingredient (API)-loaded filaments of pharmaceutical grade excipients are necessary as feedstock and have to be produced industrially. As large-scale production of API-loaded filaments has not been described in literature, this study presents a development of 3D-printable filaments, which can continuously be produced via hot-melt extrusion. Further, a combination of testing methods for mechanical resilience of filaments was applied to improve the prediction of their printability. Eudragit RL was chosen as a sustained release polymer and theophylline (30%) as thermally stable model drug. Stearic acid (7%) and polyethylene glycol 4000 (10%), were evaluated as suitable plasticizers for producing 3D-printable filaments. The two formulations were printed into solid dosage forms and analyzed regarding their dissolution profiles. This revealed that stearic acid maintained sustained release properties of the matrix whereas polyethylene glycol 4000 did not. Analysis of the continuous extrusion process was done using a design of experiments. It showed that powder feed rate and speed of the stretching device used after extrusion predominantly determine the diameter of the filament and thereby the mechanical resilience of a filament.

  13. [Discussion on diagenesis of Xilingang pluton-constrained by X-ray Fluorescence spectroscopy, plasma mass spectrometry and Raman spectroscopy].

    PubMed

    Tang, Yu-Kun; Chen, Guo-Neng; Zhang, Ke; Huang, Hai-Hua

    2013-05-01

    The results on Xilingang pluton, mainly consisting of red beds, granites containing numerous debris of red beds and granites, obtained by X-ray fluorescence spectroscopy, plasma mass spectrometry and Raman spectroscopy show: (1) Xilingang pluton from red beds, granites containing numerous debris of red beds to granites has obvious characteristics of decreasing silicon and alkali content, and rising ignition loss, dark mineral content and oxidation index; (2) Chondrite-normalized REE distribution curves and primitive mantle-normalized spider diagram for trace elements of redbed, granites containing numerous debris of red beds and granites have a good consistency, the distribution characteristics of elements are similar to Nanling transformation-type granite; (3) The value of Raman spectrogram characteristic peak of quartz crystal in Xilingang granite decreased from the center of quartz crystal, and FWHM is steady. According to the above, the authors believe that Xilingang granite formed was related to in-situ melting of red beds and underlying strata and magma consolidation. Volatile components were discharged continuously, and oxidation index decreased gradually in the melting process. In the process of diagenesis, the top of pluton tend to be an ongoing silicon and alkali increase, while TFeO and MgO continue to migrate to bottom, and crystallization environment is a relatively closed and steady system.

  14. Melting behavior of nanometer sized gold isomers

    NASA Astrophysics Data System (ADS)

    Liu, H. B.; Ascencio, J. A.; Perez-Alvarez, M.; Yacaman, M. J.

    2001-09-01

    In the present work, the melting behavior of nanometer sized gold isomers was studied using a tight-binding potential with a second momentum approximation. The cases of cuboctahedra, icosahedra, Bagley decahedra, Marks decahedra and star-like decahedra were considered. We calculated the temperature dependence of the total energy and volume during melting and the melting point for different types and sizes of clusters. In addition, the structural evolutions of the nanosized clusters during the melting transition were monitored and revealed. It is found that the melting process has three characteristic time periods for the intermediate nanosized clusters. The whole process includes surface disordering and reordering, followed by surface melting and a final rapid overall melting. This is a new observation, which it is in contrast with previous reports where surface melting is the dominant step.

  15. Melt Conditioning of Light Metals by Application of High Shear for Improved Microstructure and Defect Control

    NASA Astrophysics Data System (ADS)

    Patel, Jayesh B.; Yang, Xinliang; Mendis, Chamini L.; Fan, Zhongyun

    2017-04-01

    Casting is the first step toward the production of majority of metal products whether the final processing step is casting or other thermomechanical processes such as extrusion or forging. The high shear melt conditioning provides an easily adopted pathway to producing castings with a more uniform fine-grained microstructure along with a more uniform distribution of the chemical composition leading to fewer defects as a result of reduced shrinkage porosities and the presence of large oxide films through the microstructure. The effectiveness of high shear melt conditioning in improving the microstructure of processes used in industry illustrates the versatility of the high shear melt conditioning technology. The application of high shear process to direct chill and twin roll casting process is demonstrated with examples from magnesium melts.

  16. Modeling and Simulation of a Laser Deposition Process

    DTIC Science & Technology

    2007-09-04

    LAMP system, the diode laser is used. Material of both powder and substrates is Ti - 6Al - 4V , which is widely used in the aerospace industry. Melt Pool...The laser emits at 808 nm and operates in the continuous wave (CW) mode. The substrates have dimensions of 2.5×2.5×0.4 in. The Ti - 6Al - 4V samples were...irradiated using a laser beam with a beam spot diameter of 2.5 mm. Table 1. Material properties for Ti - 6Al - 4V and main process parameters

  17. In-lake carbon dioxide concentration patterns in four distinct phases in relation to ice cover dynamics

    NASA Astrophysics Data System (ADS)

    Denfeld, B. A.; Wallin, M.; Sahlee, E.; Sobek, S.; Kokic, J.; Chmiel, H.; Weyhenmeyer, G. A.

    2014-12-01

    Global carbon dioxide (CO2) emission estimates from inland waters include emissions at ice melt that are based on simple assumptions rather than evidence. To account for CO2 accumulation below ice and potential emissions into the atmosphere at ice melt we combined continuous CO2 concentrations with spatial CO2 sampling in an ice-covered small boreal lake. From early ice cover to ice melt, our continuous surface water CO2 concentration measurements at 2 m depth showed a temporal development in four distinct phases: In early winter, CO2 accumulated continuously below ice, most likely due to biological in-lake and catchment inputs. Thereafter, in late winter, CO2 concentrations remained rather constant below ice, as catchment inputs were minimized and vertical mixing of hypolimnetic water was cut off. As ice melt began, surface water CO2 concentrations were rapidly changing, showing two distinct peaks, the first one reflecting horizontal mixing of CO2 from surface and catchment waters, the second one reflecting deep water mixing. We detected that 83% of the CO2 accumulated in the water during ice cover left the lake at ice melt which corresponded to one third of the total CO2 storage. Our results imply that CO2 emissions at ice melt must be accurately integrated into annual CO2 emission estimates from inland waters. If up-scaling approaches assume that CO2 accumulates linearly under ice and at ice melt all CO2 accumulated during ice cover period leaves the lake again, present estimates may overestimate CO2 emissions from small ice covered lakes. Likewise, neglecting CO2 spring outbursts will result in an underestimation of CO2 emissions from small ice covered lakes.

  18. Simulation of possible regolith optical alteration effects on carbonaceous chondrite meteorites

    NASA Technical Reports Server (NTRS)

    Clark, Beth E.; Fanale, Fraser P.; Robinson, Mark S.

    1993-01-01

    As the spectral reflectance search continues for links between meteorites and their parent body asteroids, the effects of optical surface alteration processes need to be considered. We present the results of an experimental simulation of the melting and recrystallization that occurs to a carbonaceous chondrite meteorite regolith powder upon heating. As done for the ordinary chondrite meteorites, we show the effects of possible parent-body regolith alteration processes on reflectance spectra of carbonaceous chondrites (CC's). For this study, six CC's of different mineralogical classes were obtained from the Antarctic Meteorite Collection: two CM meteorites, two CO meteorites, one CK, and one CV. Each sample was ground with a ceramic mortar and pestle to powders with maximum grain sizes of 180 and 90 microns. The reflectance spectra of these powders were measured at RELAB (Brown University) from 0.3 to 2.5 microns. Following comminution, the 90 micron grain size was melted in a nitrogen controlled-atmosphere fusion furnace at an approximate temperature of 1700 C. The fused sample was immediately held above a flow of nitrogen at 0 C for quenching. Following melting and recrystallization, the samples were reground to powders, and the reflectance spectra were remeasured. The effects on spectral reflectance for a sample of the CM carbonaceous chondrite called Murchison are shown.

  19. Equation of state of silicate liquids

    NASA Astrophysics Data System (ADS)

    Jing, Zhicheng

    Equation of state of silicate liquids is crucial to our understanding of melting processes such as the generation and differentiation of silicate melts in Earth and hence to explore the geophysical and geochemical consequences of melting. A comparison of compressional properties reveals fundamental differences in compressional mechanisms between silicate liquids and solids. Due to a liquid's ability to change structures, the compression of liquids is largely controlled by the entropic contribution to the free energy in addition to the internal energy contribution that is available to solids. In order to account for the entropic contribution, a new equation of state of silicate liquids is proposed based on the theory of hard-sphere mixtures. The equation of state is calibrated for SiO2-Al 2O3-FeO-MgO-CaO liquids and other systems. The new equation of state provides a unified explanation for the experimental observations on compressional properties of liquids including the bulk moduli of silicate liquids as well as the pressure dependence of Gruneisen parameter. The effect of chemical composition on melt density can be studied by the equation of state. Results show that FeO and H2O are the most important components in melts that control the melt density at high pressure due to their very different mean atomic masses from other melt components. Adding SiO2 can make a melt more compressible at high pressure due to its continuous change of coordination from 4-fold to 6-fold. The effect of 1-120 on melt density is further investigated by high-pressure experiments at the conditions of 9 to 15 GPa (corresponding to the depths of 300-500 km in the Earth) and 1900 °C to 2200 °C. The density of three dry melts and four hydrous melts with 2-7 wt% H2O was determined. Density data are analyzed by both the Birch-Mumaghan equation of state and the hard sphere equation of state. The partial molar volume of H2O is determined to be 8.8 cm3/mol at 14 GPa and 2173 K. The hypothesis that silicate melts can be gravitationally stable atop the 410 km discontinuity is tested. Results show that the conditions for density crossovers between melts and the upper mantle materials at the bottom of the upper mantle are marginally satisfied.

  20. A More Reduced Mantle Source for Enriched Shergottites; Insights from the Olivine-Phyric Shergottite Lar 06319

    NASA Technical Reports Server (NTRS)

    Peslier, A. H.; Hnatyshin, D.; Herd, C. D. K.; Walton, E. L.; Brandon, A. D.; Lapen, T. J.; Shafer, J.

    2010-01-01

    A detailed petrographic study of melt inclusions and Cr-Fe-Ti oxides of LAR 06319 leads to two main conclusions: 1) this enriched oxidized olivine- phyric shergottite represents nearly continuous crystallization of a basaltic shergottite melt, 2) the melt became more oxidized during differentiation. The first crystallized mineral assemblages record the oxygen fugacity which is closest to that of the melt s mantle source, and which is lower than generally attributed to the enriched shergottite group.

  1. Polymer powder processing of cryomilled polycaprolactone for solvent-free generation of homogeneous bioactive tissue engineering scaffolds.

    PubMed

    Lim, Jing; Chong, Mark Seow Khoon; Chan, Jerry Kok Yen; Teoh, Swee-Hin

    2014-06-25

    Synthetic polymers used in tissue engineering require functionalization with bioactive molecules to elicit specific physiological reactions. These additives must be homogeneously dispersed in order to achieve enhanced composite mechanical performance and uniform cellular response. This work demonstrates the use of a solvent-free powder processing technique to form osteoinductive scaffolds from cryomilled polycaprolactone (PCL) and tricalcium phosphate (TCP). Cryomilling is performed to achieve micrometer-sized distribution of PCL and reduce melt viscosity, thus improving TCP distribution and improving structural integrity. A breakthrough is achieved in the successful fabrication of 70 weight percentage of TCP into a continuous film structure. Following compaction and melting, PCL/TCP composite scaffolds are found to display uniform distribution of TCP throughout the PCL matrix regardless of composition. Homogeneous spatial distribution is also achieved in fabricated 3D scaffolds. When seeded onto powder-processed PCL/TCP films, mesenchymal stem cells are found to undergo robust and uniform osteogenic differentiation, indicating the potential application of this approach to biofunctionalize scaffolds for tissue engineering applications. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Noncontact temperature measurement: Requirements and applications for metals and alloys research

    NASA Technical Reports Server (NTRS)

    Perepezko, J. H.

    1988-01-01

    Temperature measurement is an essential capability for almost all areas of metals and alloys research. In the microgravity environment many of the science priorities that have been identified for metals and alloys also require noncontact temperature measurement capability. For example, in order to exploit the full potential of containerless processing, it is critical to have available a suitable noncontact temperature measurement system. This system is needed to track continuously the thermal history, including melt undercooling and rapid recalescence, of relatively small metal spheres during free-fall motion in drop tube systems. During containerless processing with levitation-based equipment, accurate noncontact temperature measurement is required to monitor one or more quasi-static samples with sufficient spatial and thermal resolution to follow the progress of solidification fronts originating in undercooled melts. In crystal growth, thermal migration, coarsening and other experiments high resolution thermal maps would be a valuable asset in the understanding and modeling of solidification processes, fluid flows and microstructure development. The science and applications requirements place several constraints on the spatial resolution, response time and accuracy of suitable instrumentation.

  3. LSSA large area silicon sheet task continuous Czochralski process development

    NASA Technical Reports Server (NTRS)

    Rea, S. N.

    1978-01-01

    A Czochralski crystal growing furnace was converted to a continuous growth facility by installation of a premelter to provide molten silicon flow into the primary crucible. The basic furnace is operational and several trial crystals were grown in the batch mode. Numerous premelter configurations were tested both in laboratory-scale equipment as well as in the actual furnace. The best arrangement tested to date is a vertical, cylindrical graphite heater containing small fused silicon test tube liner in which the incoming silicon is melted and flows into the primary crucible. Economic modeling of the continuous Czochralski process indicates that for 10 cm diameter crystal, 100 kg furnace runs of four or five crystals each are near-optimal. Costs tend to asymptote at the 100 kg level so little additional cost improvement occurs at larger runs. For these conditions, crystal cost in equivalent wafer area of around $20/sq m exclusive of polysilicon and slicing was obtained.

  4. Thermodynamic evidence of first-order melting of Xe on graphite

    NASA Astrophysics Data System (ADS)

    Jin, A. J.; Bjurstrom, M. R.; Chan, M. H. W.

    1989-03-01

    Precision heat-capacity and vapor-pressure isotherm measurements indicate that the melting of monolayer Xe on graphite is always first order. This conclusion is consistent with the results of simulation studies but in sharp contrast with the claim advanced in a series of x-ray studies of a crossover from first-order to continuous Kosterlitz-Thouless-Halperin-Nelson-Young melting.

  5. Melt dumping in string stabilized ribbon growth

    DOEpatents

    Sachs, Emanuel M.

    1986-12-09

    A method and apparatus for stabilizing the edge positions of a ribbon drawn from a melt includes the use of wettable strings drawn in parallel up through the melt surface, the ribbon being grown between the strings. A furnace and various features of the crucible used therein permit continuous automatic growth of flat ribbons without close temperature control or the need for visual inspection.

  6. Lava heating and loading of ice sheets on early Mars: Predictions for meltwater generation, groundwater recharge, and resulting landforms

    NASA Astrophysics Data System (ADS)

    Cassanelli, James P.; Head, James W.

    2016-06-01

    Recent modeling studies of the early Mars climate predict a predominantly cold climate, characterized by the formation of regional ice sheets across the highland areas of Mars. Formation of the predicted "icy highlands" ice sheets is coincident with a peak in the volcanic flux of Mars involving the emplacement of the Late Noachian - Early Hesperian ridged plains unit. We explore the relationship between the predicted early Mars "icy highlands" ice sheets, and the extensive early flood volcanism to gain insight into the surface conditions prevalent during the Late Noachian to Early Hesperian transition period. Using Hesperia Planum as a type area, we develop an ice sheet lava heating and loading model. We quantitatively assess the thermal and melting processes involved in the lava heating and loading process following the chronological sequence of lava emplacement. We test a broad range of parameters to thoroughly constrain the lava heating and loading process and outline predictions for the formation of resulting geological features. We apply the theoretical model to a study area within the Hesperia Planum region and assess the observed geology against predictions derived from the ice sheet lava heating and loading model. Due to the highly cratered nature of the Noachian highlands terrain onto which the volcanic plains were emplaced, we predict highly asymmetrical lava loading conditions. Crater interiors are predicted to accumulate greater thicknesses of lava over more rapid timescales, while in the intercrater plains, lava accumulation occurs over longer timescales and does not reach great thicknesses. We find that top-down melting due to conductive heat transfer from supraglacial lava flows is generally limited when the emplaced lava flows are less than ∼10 m thick, but is very significant at lava flow thicknesses of ∼100 m or greater. We find that bottom-up cryosphere and ice sheet melting is most likely to occur within crater interiors where lavas accumulate to a sufficient thickness to raise the ice-melting isotherm to the base of the superposed lavas. In these locations, if lava accumulation occurs rapidly, bottom-up melting of the ice sheet can continue, or begin, after lava accumulation has completed in a process we term "deferred melting". Subsurface mass loss through melting of the buried ice sheets is predicted to cause substantial subsidence in the superposed lavas, leading to the formation of associated collapse features including fracture systems, depressions, surface faulting and folding, wrinkle-ridge formation, and chaos terrain. In addition, if meltwater generated from the lava heating and loading process becomes trapped at the lava flow margins due to the presence of impermeable confining units, large highly pressurized episodic flooding events could occur. Examination of the study area reveals geological features which are generally consistent with those predicted to form as a result of the ice sheet lava heating and loading process, suggesting the presence of surface snow and ice during the Late Noachian to Early Hesperian period.

  7. EFFECTS OF QUARTZ PARTICLE SIZE AND SUCROSE ADDITION ON MELTING BEHAVIOR OF A MELTER FEED FOR HIGH-LEVEL GLASS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MARCIAL J; KRUGER AA; HRMA PR

    2010-07-28

    The behavior of melter feed (a mixture of nuclear waste and glass-forming additives) during waste-glass processing has a significant impact on the rate of the vitrification process. We studied the effects of silica particle size and sucrose addition on the volumetric expansion (foaming) of a high-alumina feed and the rate of dissolution of silica particles in feed samples heated at 5 C/min up to 1200 C. The initial size of quartz particles in feed ranged from 5 to 195 {micro}m. The fraction of the sucrose added ranged from 0 to 0.20 g per g glass. Extensive foaming occurred only inmore » feeds with 5-{micro}m quartz particles; particles {ge}150 {micro}m formed clusters. Particles of 5 {micro}m completely dissolved by 900 C whereas particles {ge}150 {micro}m did not fully dissolve even when the temperature reached 1200 C. Sucrose addition had virtually zero impact on both foaming and the dissolution of silica particles. Over 100 sites in the United States are currently tasked with the storage of nuclear waste. The largest is the Hanford Site located in southeastern Washington State with 177 subterranean tanks containing over fifty-million gallons of nuclear waste from plutonium production from 1944 through 1987. This waste will be vitrified at the Hanford Tank Waste Treatment and Immobilization Plant. In the vitrification process, feed is charged into a melter and converted into glass to be ultimately stored in a permanent repository. The duration of waste-site cleanups by the vitrification process depends on the rate of melting, i.e., on the rate of the feed-to-glass conversion. Foaming associated with the melting process and the rate of dissolution of quartz particles (silica being the major glass-forming additive) are assumed to be important factors that influence the rate of melting. Previous studies on foaming of high-alumina feed demonstrated that varying the makeup of a melter feed has a significant impact on foaming. The volume of feeds that contained 5-{micro}m quartz particles substantially increased because of foaming. The extent of foaming decreased as the particle size of quartz increased. Moreover, samples containing quartz particles 195 {micro}m formed agglomerates at temperatures above 900 C that only slowly dissolved in the melt. This study continues previous work on the feed-melting process, specifically on the effects of the size of silica particles on the formation of nuclear-waste glasses to determine a suitable range of silica particle sizes that causes neither excessive foaming nor undesirable agglomeration. Apart from varying the silica-particle size, carbon was added in the form of sucrose. Sucrose has been used to accelerate the rate of melting. In this study, we have observed its impact on feed foaming and quartz dissolution.« less

  8. Random pinning elucidates the nature of melting transition in two-dimensional core-softened potential system

    NASA Astrophysics Data System (ADS)

    Tsiok, E. N.; Fomin, Y. D.; Ryzhov, V. N.

    2018-01-01

    Despite about forty years of investigations, the nature of the melting transition in two dimensions is not completely clear. In the framework of the most popular Berezinskii-Kosterlitz-Thouless-Halperin-Nelson-Young (BKTHNY) theory, 2D systems melt through two continuous Berezinskii-Kosterlitz-Thouless (BKT) transitions with intermediate hexatic phase. The conventional first-order transition is also possible. On the other hand, recently on the basis of computer simulations the new melting scenario was proposed with continuous BKT type solid-hexatic transition and first order hexatic-liquid transition. However, in the simulations the hexatic phase is extremely narrow that makes its study difficult. In the present paper, we propose to apply the random pinning to investigate the hexatic phase in more detail. The results of molecular dynamics simulations of two dimensional system having core-softened potentials with narrow repulsive step which is similar to the soft disk system are outlined. The system has a small fraction of pinned particles giving quenched disorder. Random pinning widens the hexatic phase without changing the melting scenario and gives the possibility to study the behavior of the diffusivity and order parameters in the vicinity of the melting transition and inside the hexatic phase.

  9. Blown film extrusion of poly(lactic acid) without melt strength enhancers

    Treesearch

    Sonal S. Karkhanis; Nicole M. Stark; Ronald C. Sabo; Laurent M. Matuana

    2017-01-01

    Processing strategies were developed to manufacture poly(lactic acid) (PLA) blown films without melt strength enhancers (MSEs). The effects of processing temperature on PLA’s melt properties (shear and elongational viscosities), PLA grades, and other processing conditions [ratio of take-up roller to extruder’s rotational screw speeds or processing speed ratio (PSR) and...

  10. Selective Precipitation and Concentrating of Perovskite Crystals from Titanium-Bearing Slag Melt in Supergravity Field

    NASA Astrophysics Data System (ADS)

    Gao, Jintao; Zhong, Yiwei; Guo, Zhancheng

    2016-08-01

    Selective precipitation and concentrating of perovskite crystals from titanium-bearing slag melt in the supergravity field was investigated in this study. Since perovskite was the first precipitated phase from the slag melt during the cooling process, and a greater precipitation quantity and larger crystal sizes of perovskite were obtained at 1593 K to 1563 K (1320 °C to 1290 °C), concentrating of perovskite crystals from the slag melt was carried out at this temperature range in the supergravity field, at which the perovskite transforms into solid particles while the other minerals remain in the liquid melt. The layered structures appeared significantly in the sample obtained by supergravity treatment, and all the perovskite crystals moved along the supergravity direction and concentrated as the perovskite-rich phase in the bottom area, whereas the molten slag concentrated in the upper area along the opposite direction, in which it was impossible to find any perovskite crystals. With the gravity coefficient of G = 750, the mass fraction of TiO2 in the perovskite-rich phase was up to 34.65 wt pct, whereas that of the slag phase was decreased to 12.23 wt pct, and the recovery ratio of Ti in the perovskite-rich phase was up to 75.28 pct. On this basis, an amplification experimental centrifugal apparatus was exploited and the continuous experiment with larger scale was further carried out, the results confirming that selective precipitation and concentrating of perovskite crystals from the titanium-bearing slag melt by supergravity was a feasible method.

  11. Correlations of Melt Pool Geometry and Process Parameters During Laser Metal Deposition by Coaxial Process Monitoring

    NASA Astrophysics Data System (ADS)

    Ocylok, Sörn; Alexeev, Eugen; Mann, Stefan; Weisheit, Andreas; Wissenbach, Konrad; Kelbassa, Ingomar

    One major demand of today's laser metal deposition (LMD) processes is to achieve a fail-save build-up regarding changing conditions like heat accumulations. Especially for the repair of thin parts like turbine blades is the knowledge about the correlations between melt pool behavior and process parameters like laser power, feed rate and powder mass stream indispensable. The paper will show the process layout with the camera based coaxial monitoring system and the quantitative influence of the process parameters on the melt pool geometry. Therefore the diameter, length and area of the melt pool are measured by a video analytic system at various parameters and compared with the track wide in cross-sections and the laser spot diameter. The influence of changing process conditions on the melt pool is also investigated. On the base of these results an enhanced process of the build-up of a multilayer one track fillet geometry will be presented.

  12. Effect of process parameters on the density and porosity of laser melted AlSi10Mg/SiC metal matrix composite

    NASA Astrophysics Data System (ADS)

    Famodimu, Omotoyosi H.; Stanford, Mark; Oduoza, Chike F.; Zhang, Lijuan

    2018-06-01

    Laser melting of aluminium alloy—AlSi10Mg has increasingly been used to create specialised products in various industrial applications, however, research on utilising laser melting of aluminium matrix composites in replacing specialised parts have been slow on the uptake. This has been attributed to the complexity of the laser melting process, metal/ceramic feedstock for the process and the reaction of the feedstock material to the laser. Thus, an understanding of the process, material microstructure and mechanical properties is important for its adoption as a manufacturing route of aluminium metal matrix composites. The effects of several parameters of the laser melting process on the mechanical blended composite were thus investigated in this research. This included single track formations of the matrix alloy and the composite alloyed with 5% and 10% respectively for their reaction to laser melting and the fabrication of density blocks to investigate the relative density and porosity over different scan speeds. The results from these experiments were utilised in determining a process window in fabricating near-fully dense parts.

  13. Mediterranean Magmatism: Bimodal Melting Patterns Inferred By Numerical Models

    NASA Astrophysics Data System (ADS)

    Gogus, O.; Ueda, K.; Gerya, T.

    2017-12-01

    Melt production by the decompression melting of the asthenospheric mantle occurs in the course of the lithospheric foundering process. The magmatic imprints of such foundering process are often described as anorogenic magmatism and this is usually followed by the orogenic magmatism, related to the subduction events in the Mediterranean region. Here, by using numerical geodynamic experiments we explore various styles of magmatism, their interaction with each other and the amount of magma production in the ocean subduction to slab peel away/delamination configuration. Model results show that the early stage of the ocean subduction under the continental lithosphere is associated with the short pulse of wet melting-orogenic magmatism and then the melting process is mostly dominated by dry melting-anorogenic magmatism, until the slab break-off occurs. While the melt types mixes/alternates during the evolution of the model, the wet melting facilitates the production of dry melting because of its uprising and emplacement under the crust where dry melting is present. The melt production pattern and the amount does not change significantly with different depths of the slab break-off (160-200 km). Model results can explain the transition from the calc-alkaline to alkaline volcanism in the western Mediterranean (Alboran domain) where ocean subduction to delamination has been interpreted.

  14. APPLICATIONS OF HOT-MELT EXTRUSION FOR DRUG DELIVERY

    PubMed Central

    Repka, Michael A.; Majumdar, Soumyajit; Battu, Sunil Kumar; Srirangam, Ramesh; Upadhye, Sampada B.

    2018-01-01

    In today’s pharmaceutical arena, it is estimated that more than 40% of new chemical entities produced during drug discovery efforts exhibit poor solubility characteristics. However, over the last decade hot-melt extrusion (HME) has emerged as a powerful processing technology for drug delivery and has opened the door to a host of such molecules previously considered unviable as drugs. HME is considered to be an efficient technique in developing solid molecular dispersions and has been demonstrated to provide sustained, modified and targeted drug delivery resulting in improved bioavailability. This article reviews the myriad of HME applications for pharmaceutical dosage forms such as tablets, capsules, films and implants for drug delivery through oral, transdermal, transmucosal, transungual, as well as other routes of administration. Interest in HME as a pharmaceutical process continues to grow and the potential of automation and reduction of capital investment and labor costs have made this technique worthy of consideration as a drug delivery solution. PMID:19040397

  15. Carbonate-silicate liquid immiscibility in the mantle propels kimberlite magma ascent

    NASA Astrophysics Data System (ADS)

    Kamenetsky, Vadim S.; Yaxley, Gregory M.

    2015-06-01

    Kimberlite is a rare volcanic rock renowned as the major host of diamonds and originated at the base of the subcontinental lithospheric mantle. Although kimberlite magmas are dense in crystals and deeply-derived rock fragments, they ascend to the surface extremely rapidly, enabling diamonds to survive. The unique physical properties of kimberlite magmas depend on the specific compositions of their parental melts that, in absence of historical eruptions and due to pervasive alteration of kimberlite rocks, remain highly debatable. We explain exceptionally rapid ascent of kimberlite magma from mantle depths by combining empirical data on the essentially carbonatite composition of the kimberlite primary melts and experimental evidence on interaction of the carbonate liquids with mantle minerals. Our experimental study shows that orthopyroxene is completely dissolved in a Na2CO3 melt at 2.0-5.0 GPa and 1000-1200 °C. The dissolution of orthopyroxene results in homogeneous silicate-carbonate melt at 5.0 GPa and 1200 °C, and is followed by unmixing of carbonate and carbonated silicate melts and formation of stable magmatic emulsion at lower pressures and temperatures. The dispersed silicate melt has a significant capacity for storing a carbonate component in the deep mantle (13 wt% CO2 at 2.0 GPa). We envisage that this component reaches saturation and is gradually released as CO2 bubbles, as the silicate melt globules are transported upwards through the lithosphere by the carbonatite magma. The globules of unmixed, CO2-rich silicate melt are continuously produced upon further reaction between the natrocarbonatite melt and mantle peridotite. On decompression the dispersed silicate melt phase ensures a continuous supply of CO2 bubbles that decrease density and increase buoyancy and promote rapid ascent of the magmatic emulsion.

  16. The Surface Layer of a Crystal and Its Specific Role in the Process of Melt Formation

    NASA Astrophysics Data System (ADS)

    Sobolev, R. N.

    2018-04-01

    A crystal becomes melted in a few stages. The structure of the crystal surface differs from that of its interior. Therefore, as its interior is gradually involved in the melting process, the phase transition temperature becomes higher. The melting point becomes constant when all atoms have the same number of unsaturated bonds.

  17. Processes controlling surface, bottom and lateral melt of Arctic sea ice in a state of the art sea ice model.

    PubMed

    Tsamados, Michel; Feltham, Daniel; Petty, Alek; Schroeder, David; Flocco, Daniela

    2015-10-13

    We present a modelling study of processes controlling the summer melt of the Arctic sea ice cover. We perform a sensitivity study and focus our interest on the thermodynamics at the ice-atmosphere and ice-ocean interfaces. We use the Los Alamos community sea ice model CICE, and additionally implement and test three new parametrization schemes: (i) a prognostic mixed layer; (ii) a three equation boundary condition for the salt and heat flux at the ice-ocean interface; and (iii) a new lateral melt parametrization. Recent additions to the CICE model are also tested, including explicit melt ponds, a form drag parametrization and a halodynamic brine drainage scheme. The various sea ice parametrizations tested in this sensitivity study introduce a wide spread in the simulated sea ice characteristics. For each simulation, the total melt is decomposed into its surface, bottom and lateral melt components to assess the processes driving melt and how this varies regionally and temporally. Because this study quantifies the relative importance of several processes in driving the summer melt of sea ice, this work can serve as a guide for future research priorities. © 2015 The Author(s).

  18. Partial Melting of the Indarch (EH4) Meteorite : A Textural, Chemical and Phase Relations View of Melting and Melt Migration

    NASA Technical Reports Server (NTRS)

    McCoy, Timothy J.; Dickinson, Tamara L.; Lofgren, Gary E.

    2000-01-01

    To Test whether Aubrites can be formed by melting of enstatite Chondrites and to understand igneous processes at very low oxygen fugacities, we have conducted partial melting experiments on the Indarch (EH4) chondrite at 1000-1500 C. Silicate melting begins at 1000 C. Substantial melt migration occurs at 1300-1400 C and metal migrates out of the silicate change at 1450 C and approx. 50% silicate partial melting. As a group, our experiments contain three immiscible metallic melts 9Si-, and C-rich), two immiscible sulfide melts(Fe-and FeMgMnCa-rich) and Silicate melt. Our partial melting experiments on the Indarch (EH4) enstatite Chondrite suggest that igneous processes at low fO2 exhibit serveral unique features. The complete melting of sulfides at 1000 C suggest that aubritic sulfides are not relicts. Aubritic oldhamite may have crystallized from Ca and S complexed in the silicate melt. Significant metal-sulfide melt migration might occur at relatively low degrees of silicate partial melting. Substantial elemental exchange occurred between different melts (e.g., between sulfide and silicate, Si between silicate and metal), a feature not observed during experiments at higher fO2. This exchange may help explain the formation of aubrites from known enstatite chondrites.

  19. Additive Manufacturing of Al-12Si Alloy Via Pulsed Selective Laser Melting

    NASA Astrophysics Data System (ADS)

    Chou, R.; Milligan, J.; Paliwal, M.; Brochu, M.

    2015-03-01

    Additive manufacturing (AM) of metallic materials is experiencing a research and commercialization craze in almost all industrial sectors. However, to date, AM has been limited to a small numbers of alloys. With respect to aluminum, two alloys received some attention: Al-12Si and Al-10Si-1Mg. In both cases, fully dense components have been achieved using a continuous-wave selective laser melting system. In this article, a new approach of selective laser melting using a pulsed-laser source as opposed to a continuous-wave laser is proposed. Pulse selective laser melting (P-SLM) would allow for greater control over the heat input and thus further optimization possibilities of the microstructure. P-SLM was demonstrated using the Al-12Si system. Si refinement below 200 nm was achieved throughout the component. Density up to 95% and high hardness of above 135 HV were obtained. The solidification mechanism is also explained.

  20. Short-term variations of Icelandic ice cap mass inferred from cGPS coordinate time series

    NASA Astrophysics Data System (ADS)

    Compton, Kathleen; Bennett, Richard A.; Hreinsdóttir, Sigrún; van Dam, Tonie; Bordoni, Andrea; Barletta, Valentina; Spada, Giorgio

    2017-06-01

    As the global climate changes, understanding short-term variations in water storage is increasingly important. Continuously operating Global Positioning System (cGPS) stations in Iceland record annual periodic motion—the elastic response to winter accumulation and spring melt seasons—with peak-to-peak vertical amplitudes over 20 mm for those sites in the Central Highlands. Here for the first time for Iceland, we demonstrate the utility of these cGPS-measured displacements for estimating seasonal and shorter-term ice cap mass changes. We calculate unit responses to each of the five largest ice caps in central Iceland at each of the 62 cGPS locations using an elastic half-space model and estimate ice mass variations from the cGPS time series using a simple least squares inversion scheme. We utilize all three components of motion, taking advantage of the seasonal motion recorded in the horizontal. We remove secular velocities and accelerations and explore the impact that seasonal motions due to atmospheric, hydrologic, and nontidal ocean loading have on our inversion results. Our results match available summer and winter mass balance measurements well, and we reproduce the seasonal stake-based observations of loading and melting within the 1σ confidence bounds of the inversion. We identify nonperiodic ice mass changes associated with interannual variability in precipitation and other processes such as increased melting due to reduced ice surface albedo or decreased melting due to ice cap insulation in response to tephra deposition following volcanic eruptions, processes that are not resolved with once or twice-yearly stake measurements.

  1. Oceanic Low Blows Hitting Ice Sheets Where It Hurts

    NASA Technical Reports Server (NTRS)

    Bindschadler, Robert

    2006-01-01

    The recent acceleration, thinning and retreat of large outlet glaciers in both Antarctica and Greenland is altering the mass balance of these two large ice sheets and increasing their contribution to rising sea level. In this short Perspective solicited by Science for a special March 24th issue on sea level change, I argue that the cause of these bihemispheric changes is that warmer water has gained access to the undersides of these glaciers where they come afloat from the continent. This process is particularly effective at accelerating glaciers because the beds of the large outlet glaciers are well below sea level (1000 meters or more) but "guarded" downstream by a shallow moraine formed when the glacier was more advanced. Once warmer water can breach this moraine, it sinks in the colder, fresh water behind the moraine and reaches the submarine front of the glacier. The pressure melting effect lowers the melting point of this deep ice allowing the warmer water to melt ice at rates of many tens of meters per year. This melting reduces . the frictional hold of the bed on the ice, allowing the ice to accelerate in agreement with the observations, Hansen has discussed the likelihood that approximately half of the Earth's radiation imbalance is manifesting in warmer ocean waters and Levitus et al. have seen warming in ocean temperature measurements at mid and low latitudes. The behavior of these outlet glaciers indicates this ocean warmth is reaching polar waters. The prognosis is for a continuation of this process, more negative ice sheet mass balances and increased rates of sea level rise.

  2. Effects of Melt Processing on Evolution of Structure in PEEK

    NASA Technical Reports Server (NTRS)

    Georgiev, Georgi; Dai, Patrick Shuanghua; Oyebode, Elizabeth; Cebe, Peggy; Capel, Malcolm

    1999-01-01

    We report on the effects of melt processing temperature on structure formation in Poly(ether-ether-ketone), PEEK. Real time Small Angle X-ray Scattering, SAXS, and thermal analysis are used to follow the melting behavior after various stages of processing. Assignment of peaks to structural entities within the material, the relative perfection of the crystals, and the possibility of their reorganization, are all influenced by the melt processing history. With the advent of high intensity synchrotron sources of X-radiation, polymer scientists gain a research tool which, when used along with thermal analysis, provides additional structural information about the crystals during growth and subsequent melting. PEEK is an engineering thermoplastic polymer with a very high glass transition temperature (145 C) and crystal melting point (337 C). PEEK has been the subject of recent studies by X-ray scattering in which melt and cold crystallization were followed in real-time. X-ray scattering and thermal studies have been used to address the formation of dual endothermic response which has been variously ascribed to lamellar insertion, dual crystal populations, or melting followed by re-crystallization. Another important issue is whether all of the amorphous phase is located in interlamellar regions, or alternatively whether some is located in "pockets" away from the crystalline lamellar stacks. The interpretation of scattering from lamellar stacks varies depending upon whether such amorphous pockets are formed. Some groups believe all of the amorphous phase is interlamellar. This leads to selection of a smaller thickness for the crystals. Other groups suggest that most amorphous phase is not interlamellar, and this leads to the suggestion that the crystal thickness is larger than the amorphous layer within the stacks. To investigate these ideas, we used SAXS and Differential Scanning Calorimetry to compare results of single and dual stage melt crystallization of PEEK using a treatment scheme involving annealing/crystallization at T(sub a1) followed by annealing at T(sub a2) where either T(sub a1) < T(sub a2) or T(sub a1) > T(sub a2). We proposed a model to explain multiple melting endotherms in PPS, treated according to one or two-stage melt or cold crystallization. Key features of this model are that multiple endotherms: (1) are due to reorganization/recrystallization after cold crystallization; and, (2) are dominated by crystal morphology after melt crystallization at high T. In other words, multiple distinct crystal populations are formed by the latter treatment, leading to observation of multiple melting. PEEK 45OG pellets (ICI Americas) were the starting material for this study. Films were compression molded at 400 C, then quenched to ice water. Samples were heated to 375 C in a Mettler FP80 hot stage and held for three min. to erase crystal seeds before cooling them to T(sub a1) = 280 C . Samples were held at T(sub a2) for a period of time, then immediately heated to 360 C. In the second treatment samples were held at T(sub a1) = 31 C for different crystallization times t(sub c) then cooled to 295 C and held 15 min. In situ (SAXS) experiments were performed at the Brookhaven National Synchrotron Light Source with the sample located inside the Mettler hot stage. The system was equipped with a two-dimensional position sensitive detector. The sample to detector distance was 172.7 cm and the X-ray wavelength was 1.54 Angstroms. SAXS data were taken continuously during the isothermal periods and during the heating to 360 C at 5 C/min. Each SAXS scan was collected for 30 sec. Since the samples were isotropic, circular integration was used to increase the signal to noise ratio. After dual stage melt crystallization with T(sub a1) < T(sub a2) the lower melting endotherm arises from holding at T(sub a1). During cooling a broad distribution of crystals forms, and the low-melting tail is perfected during T(sub al). Heating to T(sub a2) melts these imperfect crystals and allows others with greater average long spacing to form in their place. After dual stage crystallization with T(sub a1) > T(sub a2), the amount of space remaining for additional growth at T(sub a2) depends upon the holding time at T(sub a1). The long period of crystals formed at T(sub a2) is smaller than that formed at T(sub a1) due to growth in a now-restricted geometry. Perfection of crystals is seen as an increase of the intensity of the population scattering at higher s, while the intensity of the population scattering at lower s stays constant. During heating from below to above the minor endotherm, we see rapid decrease of the intensity of the X-ray scattering corresponding to the population of crystals scattering in the shoulder. Another important observation is that after the sample is annealed at 295 C, the shoulder intensity is restored once again. The population scattering at higher s remains longer before it disappears in the sample treated to the second stage of melt crystallization, compared to the sample crystallized with a single stage. This could be interpreted as an effect of continued perfection of the less perfect population, which is also reflected in the increased melting temperature of the smaller endotherm as the holding time at 295 C increases. In the corresponding DSC scans we see a shift in the area and the peak temperature of the lower melting endotherm with an increase of the annealing time.

  3. Petrography of impact glasses and melt breccias from the El'gygytgyn impact structure, Russia

    NASA Astrophysics Data System (ADS)

    Pittarello, Lidia; Koeberl, Christian

    2013-07-01

    The El'gygytgyn impact structure, 18 km in diameter and 3.6 Ma old, in Arctic Siberia, Russia, is the only impact structure on Earth mostly excavated in acidic volcanic rocks. The Late Cretaceous volcanic target includes lavas, tuffs, and ignimbrites of rhyolitic, dacitic, and andesitic composition, and local occurrence of basalt. Although the ejecta blanket around the crater is nearly completely eroded, bomb-shaped impact glasses, redeposited after the impact event, occur in lacustrine terraces within the crater. Here we present detailed petrographic descriptions of newly collected impact glass-bearing samples. The observed features contribute to constrain the formation of the melt and its cooling history within the framework of the impact process. The collected samples can be grouped into two types, characterized by specific features: (1) "pure" glasses, containing very few clasts or new crystals and which were likely formed during the early stages of cratering and (2) a second type, which represents composite samples with impact melt breccia lenses embedded in silicate glass. These mixed samples probably resulted from inclusion of unmelted impact debris during ejection and deposition. After deposition the glassy portions continued to deform, whereas the impact melt breccia inclusions that probably had already cooled down behaved as rigid bodies in the flow.

  4. Performance analysis of phase-change material storage unit for both heating and cooling of buildings

    NASA Astrophysics Data System (ADS)

    Waqas, Adeel; Ali, Majid; Ud Din, Zia

    2017-04-01

    Utilisation of solar energy and the night ambient (cool) temperatures are the passive ways of heating and cooling of buildings. Intermittent and time-dependent nature of these sources makes thermal energy storage vital for efficient and continuous operation of these heating and cooling techniques. Latent heat thermal energy storage by phase-change materials (PCMs) is preferred over other storage techniques due to its high-energy storage density and isothermal storage process. The current study was aimed to evaluate the performance of the air-based PCM storage unit utilising solar energy and cool ambient night temperatures for comfort heating and cooling of a building in dry-cold and dry-hot climates. The performance of the studied PCM storage unit was maximised when the melting point of the PCM was ∼29°C in summer and 21°C during winter season. The appropriate melting point was ∼27.5°C for all-the-year-round performance. At lower melting points than 27.5°C, declination in the cooling capacity of the storage unit was more profound as compared to the improvement in the heating capacity. Also, it was concluded that the melting point of the PCM that provided maximum cooling during summer season could be used for winter heating also but not vice versa.

  5. Identification of Gravity-Related Effects on Crystal Growth From Melts With an Immiscibility Gap

    NASA Technical Reports Server (NTRS)

    Kassemi, M.; Sayir, A.; Farmer, S.

    1999-01-01

    This work involves an experimental-numerical approach to study the effects of natural and Marangoni convections on solidification of single crystals from a silicate melt with a liquid-liquid immiscibility gap. Industrial use of crystals grown from silicate melts is becoming increasingly important in electronic, optical, and high temperature structural applications. Even the simplest silicate systems like Al203-SiO2 have had, and will continue to have, a significant role in the development of traditional and advanced ceramics. A unique feature of crystals grown from the silicate systems is their outstanding linear electro-optic properties. They also exhibit exceptionally high optical rotativity. As a result, these crystals are attractive materials for dielectric, optical, and microwave applications. Experimental work in our laboratory has indicated that directional solidification of a single crystal mullite appears to be preceded by liquid-liquid phase separation in the melt. Disruption of the immiscible state results in crystallization of a two phase structure. There is also evidence that mixing in the melt caused by density-driven convection can significantly affect the stability of the immiscible liquid layers and result in poly-crystalline growth. On earth, the immiscible state has only been observed for small diameter crystals grown in float zone systems where natural convection is almost negligible. Therefore, it is anticipated that growth of large single crystals from silicate melts would benefit from microgravity conditions because of the reduction of the natural convective mixing. The main objective of this research is to determine the effects of transport processes on the phase separation in the melt during growth of a single crystal while addressing the following issues: (1) When do the immiscible layers form and are they real?; (2) What are the main physical characteristics of the immiscible liquids?; and (3) How mixing by natural or Marangoni convection affects the stability of the phase separated melt.

  6. Compatibility of melt-processed zein blends with methylenediphenyl 4,4'-diisocyanate-thermal, mechanical and physical properties

    USDA-ARS?s Scientific Manuscript database

    Corn zein was melt-processed with methylenediphenyl 4,4'-diisocyanate (MDI) using triethylamine (TEA) as catalyst. The objective is to construct a melt-processed, compatible blend of zein with MDI that can be used as a building block for generating bio-based thermoplastics. The impact of cross-linki...

  7. The self-secondary crater population of the Hokusai crater on Mercury

    NASA Astrophysics Data System (ADS)

    Xiao, Zhiyong; Prieur, Nils C.; Werner, Stephanie C.

    2016-07-01

    Whether or not self-secondaries dominate small crater populations on continuous ejecta deposits and floors of fresh impact craters has long been a controversy. This issue potentially affects the age determination technique using crater statistics. Here the self-secondary crater population on the continuous ejecta deposits of the Hokusai crater on Mercury is unambiguously recognized. Superposition relationships show that this population was emplaced after both the ballistic sedimentation of excavation flows and the subsequent veneering of impact melt, but it predated the settlement and solidification of melt pools on the crater floor. Fragments that formed self-secondaries were launched via impact spallation with large angles. Complex craters on the Moon, Mercury, and Mars probably all have formed self-secondaries populations. Dating young craters using crater statistics on their continuous ejecta deposits can be misleading. Impact melt pools are less affected by self-secondaries. Overprint by subsequent crater populations with time reduces the predominance of self-secondaries.

  8. Product differentiation during continuous-flow thermal gradient PCR.

    PubMed

    Crews, Niel; Wittwer, Carl; Palais, Robert; Gale, Bruce

    2008-06-01

    A continuous-flow PCR microfluidic device was developed in which the target DNA product can be detected and identified during its amplification. This in situ characterization potentially eliminates the requirement for further post-PCR analysis. Multiple small targets have been amplified from human genomic DNA, having sizes of 108, 122, and 134 bp. With a DNA dye in the PCR mixture, the amplification and unique melting behavior of each sample is observed from a single fluorescent image. The melting behavior of the amplifying DNA, which depends on its molecular composition, occurs spatially in the thermal gradient PCR device, and can be observed with an optical resolution of 0.1 degrees C pixel(-1). Since many PCR cycles are within the field of view of the CCD camera, melting analysis can be performed at any cycle that contains a significant quantity of amplicon, thereby eliminating the cycle-selection challenges typically associated with continuous-flow PCR microfluidics.

  9. Ohno continuous casting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soda, H.; McLean, A.; Motoyasu, G.

    1995-04-01

    Production of net-shape products directly from the liquid is an attractive manufacturing route for alloys that are difficult to process or that cannot be rolled, drawn, or extruded. Developed at the Chiba Institute of Technology in Japan, the Ohno Continuous Casting (OCC) approach not only provides significant cost savings, but also has the potential to create new products. OCC process equipment includes a melting furnace, crucible, mold level-control block, cooling device, and pinch rolls. OCC is currently used to produce copper rods and wires for audio and video cables, and aluminum alloy welding rods for hard-surfacing applications. For example, Mitsuimore » Engineering and Ship Building Co. has used OCC to produce copper tubing products with internal fins and partitions for applications such as heat exchanger tubes and induction coils.« less

  10. Subduction and melting processes inferred from U-Series, Sr Nd Pb isotope, and trace element data, Bicol and Bataan arcs, Philippines

    NASA Astrophysics Data System (ADS)

    DuFrane, S. Andrew; Asmerom, Yemane; Mukasa, Samuel B.; Morris, Julie D.; Dreyer, Brian M.

    2006-07-01

    We present U-series, Sr-Nd-Pb isotope, and trace element data from the two principal volcanic chains on Luzon Island, developed over oppositely dipping subduction zones, to explore melting and mass transfer processes beneath arcs. The Bataan (western) and Bicol (eastern) arcs are currently subducting terrigenous and pelagic sediments, respectively, which have different trace element and isotopic compositions. The range of ( 230Th/ 238U) disequilibria for both arcs is 0.85-1.15; only lavas from Mt. Mayon (Bicol arc) have 230Th activity excesses. Bataan lavas have higher 87Sr/ 86Sr and lower 143Nd/ 144Nd than Bicol lavas ( 87Sr/ 86Sr = 0.7042-0.7046, 143Nd/ 144Nd = 0.51281-0.51290 vs. 87Sr/ 86Sr = 0.70371-0.70391, 143Nd/ 144Nd = 0.51295-0.51301) and both arcs show steep linear arrays towards sediment values on 207Pb/ 204Pb vs. 206Pb/ 204Pb diagrams. Analysis of incompatible element and isotopic data allows identification of a sediment component that, at least in part, was transferred as a partial melt to the mantle wedge peridotite. Between 1% and 5% sediment melt addition can explain the isotopic and trace element variability in the rocks from both arcs despite the differences in sediment supply. We therefore propose that sediment transfer to the mantle wedge is likely mechanically or thermally limited. It follows that most sediments are either accreted, reside in the sub-arc lithosphere, or are recycled into the convecting mantle. However, whole-sale sediment recycling into the upper mantle is unlikely in light of the global mid-ocean ridge basalt data. Fluid involvement is more difficult to characterize, but overall the Bicol arc appears to have more fluid influence than the Bataan arc. Rock suites from each arc can be related by a dynamic melting process that allows for 230Th ingrowth, either by dynamic or continuous flux melting, provided the initial ( 230Th/ 232Th) of the source is ˜0.6-0.7. The implication of either model is that inclined arrays on the U-Th equiline diagram may not have chronologic significance. Modeling also suggests that U-series disequilibria are influenced by the tectonic convergence rate, which dictates mantle matrix flow. Thus with slower matrix flow there is a greater degree of 230Th ingrowth. While other factors such as prior mantle depletion and addition of a subducted component may explain some aspects of U-series data, an overall global correlation between tectonic convergence rate and the extent of U-Th disequilibria may originate from melting processes.

  11. Primitive Melt Inclusions from Multiple Samples from the FAMOUS Zone: Insights into the Mantle Melting Column and the Fractionation Processes

    NASA Astrophysics Data System (ADS)

    Laubier, M.; Langmuir, C. H.

    2008-12-01

    On mid-ocean ridges, the influential work by Sobolev and Shimizu (Nature, 1993) and Sobolev (Petrology, 1996) has inferred fractional melting during polybaric upwelling by showing that olivine-hosted inclusions were formed over a range of pressures. However melt inclusion studies have often concerned single MORB samples and may be seen as anecdotal in the sense that they are neither repeated nor globally verified. Recent modeling and experimental results also suggest the importance of post-entrapment processes for major and trace elements. This study presents major and trace element data in 300 olivine-hosted melt inclusions from 11 samples from the FAMOUS segment on the Mid-Atlantic Ridge. Published data from Shimizu (Phys. Earth Planet. Int., 1998) and Kamenetsky (EPSL, 1996; spinel-hosted inclusions) are also reported. In parallel, major and trace element measurements were performed in 150 glasses of the segment in order to have consistent datasets. Melt inclusions, trapped in olivine phenocrysts Mg#85-92, display complex trends in major element plots and can be divided into three groups. Group 1, the largest, is characterized by high MgO (9.4-13.4 wt.%), intermediate SiO2 and Al2O3 contents. Group 2 displays distinctively high Al2O3 (up to 18.4 wt.%), low SiO2 (as low as 46.5 wt.%) and high MgO (10.5-12.8 wt.%) contents, along with low CaO and variable TiO2, K2O and incompatible element concentrations. Group 3 consists of the melt inclusions trapped in less primitive olivines (Mg#<88.5) and displays higher SiO2, CaO and trace element contents. In the lava population, two groups can be distinguished. A small subset, that shares many features with the group 2 melt inclusions, displays high MgO and Al2O3 and low SiO2 and incompatible element contents. This type of lava - high-Al, low-Si and high-Mg - has been previously reported for various mid-ocean ridges (e.g., le Roux et al., Contrib. Min. Petrol., 2002; Eason and Sinton, EPSL, 2008). The second group plots along liquid lines of descent at low pressure starting from the compositions of the group 1 melt inclusions. Modeling of continuous polybaric melting and crystallization shows that the different inclusion groups are derived from melts formed at various pressures in the melting column (~12-6 kbar). After segregation from the mantle, the three batches of melts are fractionated at distinct pressures. The group 2 melt inclusions are consistent with the highest pressure of melt formation and a major role of cpx+olivine fractionation at high pressure (8 kbar), whereas group 3 results indicate the lowest pressure of extraction and entrapment (1kbar). An important observation is that high-Al, low-Si lavas contain melt inclusions from both the low-Si, high-Al group 2 and normal compositions (groups 1 and 3). These lavas can be reproduced by mixing between these two populations of inclusions, followed by some extent of differentiation. Therefore, this study shows that lavas represent averages of melts differentiated from the melt inclusions, and that the major element variability among inclusions can be explained by the combined effects of polybaric melting and crystallization at variable pressure. Trace element compositions of group 1 and 2 melt inclusions show large variations; incompatible element ratios (Ba/La, Rb/Nb, etc) suggest local source heterogeneity. Further modeling will be carried out in order to distinguish between the effects of partial melting and source composition.

  12. Major and trace element modeling of mid-ocean ridge mantle melting from the garnet to the plagioclase stability fields: Generating local and global compositional variability

    NASA Astrophysics Data System (ADS)

    Brown, S. M.; Behn, M. D.; Grove, T. L.

    2017-12-01

    We present results of a combined petrologic - geochemical (major and trace element) - geodynamical forward model for mantle melting and subsequent melt modification. The model advances Behn & Grove (2015), and is calibrated using experimental petrology. Our model allows for melting in the plagioclase, spinel, and garnet fields with a flexible retained melt fraction (from pure batch to pure fractional), tracks residual mantle composition, and includes melting with water, variable melt productivity, and mantle mode calculations. This approach is valuable for understanding oceanic crustal accretion, which involves mantle melting and melt modification by migration and aggregation. These igneous processes result in mid-ocean ridge basalts that vary in composition at the local (segment) and global scale. The important variables are geophysical and geochemical and include mantle composition, potential temperature, mantle flow, and spreading rate. Accordingly, our model allows us to systematically quantify the importance of each of these external variables. In addition to discriminating melt generation effects, we are able to discriminate the effects of different melt modification processes (inefficient pooling, melt-rock reaction, and fractional crystallization) in generating both local, segment-scale and global-scale compositional variability. We quantify the influence of a specific igneous process on the generation of oceanic crust as a function of variations in the external variables. We also find that it is unlikely that garnet lherzolite melting produces a signature in either major or trace element compositions formed from aggregated melts, because when melting does occur in the garnet field at high mantle temperature, it contributes a relatively small, uniform fraction (< 10%) of the pooled melt compositions at all spreading rates. Additionally, while increasing water content and/or temperature promote garnet melting, they also increase melt extent, pushing the pooled composition to lower Sm/Yb and higher Lu/Hf.

  13. Texturing of high T(sub c) superconducting polycrystalline fibers/wires by laser-driven directional solidification in an thermal gradient

    NASA Technical Reports Server (NTRS)

    Varshney, Usha; Eichelberger, B. Davis, III

    1995-01-01

    This paper summarizes the technique of laser-driven directional solidification in a controlled thermal gradient of yttria stabilized zirconia core coated Y-Ba-Cu-O materials to produce textured high T(sub c) superconducting polycrystalline fibers/wires with improved critical current densities in the extended range of magnetic fields at temperatures greater than 77 K. The approach involves laser heating to minimize phase segregation by heating very rapidly through the two-phase incongruent melt region to the single phase melt region and directionally solidifying in a controlled thermal gradient to achieve highly textured grains in the fiber axis direction. The technique offers a higher grain growth rate and a lower thermal budget compared with a conventional thermal gradient and is amenable as a continuous process for improving the J(sub c) of high T(sub c) superconducting polycrystalline fibers/wires. The technique has the advantage of suppressing weak-link behavior by orientation of crystals, formation of dense structures with enhanced connectivity, formation of fewer and cleaner grain boundaries, and minimization of phase segregation in the incongruent melt region.

  14. One-step continuous extrusion process for the manufacturing of solid dispersions.

    PubMed

    Maniruzzaman, M; Nair, A; Scoutaris, N; Bradley, Michael S A; Snowden, M J; Douroumis, D

    2015-12-30

    The purpose of this study was to evaluate the performance of synthetic magnesium aluminometasilicate (MAS) as a novel inorganic carrier in hot melt extrusion (HME) processing of indomethacin (IND) for the development of solid dispersions. A continuous extrusion process at various IND/excipient blend ratios (20%, 30% and 40%) was performed using a twin-screw extruder. Physicochemical characterization carried out by SEM, DSC, and XRPD demonstrated the presence of IND in amorphous nature within the porous network of the inorganic material for all extruded formulations. Further, AFM and FTIR studies revealed a single-phase amorphous system and intermolecular H-bonding formation. The IND/MAS extrudates showed enhanced INM dissolution rates within 100% been released within 1h. Stability studies under accelerated conditions (40°C, RH 75%) showed that MAS retained the physical stability of the amorphous solid dispersions even at high drug loadings for 12 months. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Global Snow-Cover Evolution from Twenty Years of Satellite Passive Microwave Data

    USGS Publications Warehouse

    Mognard, N.M.; Kouraev, A.V.; Josberger, E.G.

    2003-01-01

    Starting in 1979 with the SMMR (Scanning Multichannel Microwave Radiometer) instrument onboard the satellite NIMBUS-7 and continuing since 1987 with the SSMI (Special Sensor Microwave Imager) instrument on board the DMSP (Defence Meteorological Satellite Program) series, more then twenty years of satellite passive microwave data are now available. This dataset has been processed to analyse the evolution of the global snow cover. This work is part of the AICSEX project from the 5th Framework Programme of the European Community. The spatio-temporal evolution of the satellite-derived yearly snow maximum extent and the timing of the spring snow melt were estimated and analysed over the Northern Hemisphere. Significant differences between the evolution of the yearly maximum snow extent in Eurasia and in North America were found. A positive correlation between the maximum yearly snow cover extent and the ENSO index was obtained. High interannual spatio-temporal variability characterises the timing of snow melt in the spring. Twenty-year trends in the timing of spring snow melt have been computed and compared with spring air temperature trends for the same period and the same area. In most parts of Eurasia and in the central and western parts of North America the tendency has been for earlier snow melt. In northeastern Canada, a large area of positive trends, where snow melt timing starts later than in the early 1980s, corresponds to a region of positive trends of spring air temperature observed over the same period.

  16. Development of Axial Continuous Metal Expeller for melt conditioning of alloys

    NASA Astrophysics Data System (ADS)

    Cassinath, Z.; Prasada Rao, A. K.

    2016-02-01

    ACME (Axial, centrifugal metal expeller) is a novel processing technology developed independently for conditioning liquid metal prior to solidification processing. The ACME process is based on an axial compressor and uses a rotor stator mechanism to impose a high shear rate and a high intensity of turbulence to the liquid metal, so that the conditioned liquid metal has uniform temperature and uniform chemical composition as it is expelled. The microstructural refinement is achieved through the process of dendrite fragmentation while taking advantage of the thixotropic property of semisolid metal slurry so that it can be conveyed for further downstream operations. This paper introduces the concept and its advantages over current technologies.

  17. Device and method for skull-melting depth measurement

    DOEpatents

    Lauf, R.J.; Heestand, R.L.

    1993-02-09

    A method of skull-melting comprises the steps of: (a) providing a vessel adapted for a skull-melting process, the vessel having an interior, an underside, and an orifice connecting the interior and the underside; (b) disposing a waveguide in the orifice so that the waveguide protrudes sufficiently into the interior to interact with the skull-melting process; (c) providing a signal energy transducer in signal communication with the waveguide; (d) introducing into the vessel a molten working material; (e) carrying out the skull-melting process so that a solidified skull of the working material is formed, the skull and the vessel having an interface therebetween, the skull becoming fused to the waveguide so the signal energy can be transmitted through the waveguide and the skull without interference from the interface; (f) activating the signal energy transducer so that a signal is propagated through the waveguide; and, (g) controlling at least one variable of the skull-melting process utilizing feedback information derived from the propagated signal energy.

  18. Device and method for skull-melting depth measurement

    DOEpatents

    Lauf, Robert J.; Heestand, Richard L.

    1993-01-01

    A method of skull-melting comprises the steps of: a. providing a vessel adapted for a skull-melting process, the vessel having an interior, an underside, and an orifice in connecting the interior and the underside; b. disposing a waveguide in the orifice so that the waveguide protrudes sufficiently into the interior to interact with the skull-melting process; c. providing a signal energy transducer in signal communication with the waveguide; d. introducing into the vessel a molten working material; e. carrying out the skull-melting process so that a solidified skull of the working material is formed, the skull and the vessel having an interface therebetween, the skull becoming fused to the waveguide so the signal energy can be transmitted through the waveguide and the skull without interference from the interface; f. activating the signal energy transducer so that a signal is propagated through the waveguide; and, g. controlling at least one variable of the skull-melting process utilizing feedback information derived from the propagated signal energy.

  19. Magmatism in Lithosphere Delamination process inferred from numerical models

    NASA Astrophysics Data System (ADS)

    Göǧüş, Oǧuz H.; Ueda, Kosuke; Gerya, Taras

    2017-04-01

    The peel away of the oceanic/continental slab from the overlying orogenic crust has been suggested as a ubiquitous process in the Alpine-Mediterranean orogenic region (e.g. Carpathians, Apennines, Betics and Anatolia). The process is defined as lithospheric delamination where a slab removal/peel back may allow for the gradual uprising of sub-lithospheric mantle, resulting in high heat flow, transient surface uplift/subsidence and varying types of magma production. Geodynamical modeling studies have adressed the surface response to the delamination in the context of regional tectonic processes and explored wide range of controlling parameters in pre-syn and post collisional stages. However, the amount and styles of melt production in the mantle (e.g. decompression melting, wet melting in the wedge) and the resulting magmatism due to the lithosphere delamination remains uncertain. In this work, by using thermomechanical numerical experiments, designed in the configuration of subduction to collision, we investigated how melting in the mantle develops in the course of delamination. Furthermore, model results are used to decipher the distribution of volumetric melt production, melt extraction and the source of melt and the style of magmatism (e.g. igneous vs. volcanic). The model results suggest that a broad region of decompression melting occurs under the crust, mixing with the melting of the hydrated mantle derived by the delaminating/subducting slab. Depending on the age of the ocean slab, plate convergence velocity and the mantle temperature, the melt production and crust magmatism may concentrate under the mantle wedge or in the far side of the delamination front (where the subduction begins). The slab break-off usually occurs in the terminal stages of the delamination process and it may effectively control the location of the magmatism in the crust. The model results are reconciled with the temporal and spatial distribution of orogenic vs. anorogenic magmatism in the Mediterranean region in which the latter may have developed due to the delamination process.

  20. 40 CFR 63.1383 - Monitoring requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... manufacturing facility must prepare for each glass-melting furnace, rotary spin manufacturing line, and flame... glass-melting furnace, the owner or operator shall install, calibrate, maintain, and continuously... monitors. (v) A triboelectric bag leak detection system shall be installed, operated, adjusted, and...

  1. Contribution of hot-melt extrusion technology to advance drug delivery in the 21st century.

    PubMed

    Tiwari, Roshan V; Patil, Hemlata; Repka, Michael A

    2016-01-01

    Hot-melt extrusion (HME) technology is applied successfully in the plastic, rubber and food industry. HME has also emerged as an important technology for drug delivery applications in pharmaceutical research and manufacturing because of its process automation and low-cost scale-up properties, which reduce labor costs and capital investment. There are a number of commercial FDA-approved HME-derived products, signifying the commercial feasibility of this novel technique in drug delivery applications. HME is a highly efficient, solvent-free continuous processing technique for the development of solid dispersions; thus, research efforts to develop sustained, modified and targeted drug delivery systems to improve the solubility and bioavailability of poorly water-soluble active pharmaceutical ingredients (APIs) are of interest. This review focuses on both the innovations and applications of HME in the production of pharmaceutical formulations, and on the significant findings of the general principles regarding formulation and process development via HME as described in published articles. Challenges faced by pharmaceutical companies to produce efficient drug formulations may be partly overcome by HME's advantages - high drug-loading capacity, good content uniformity, cost-effectiveness, and ease of processing scale-up. Nevertheless, HME's high processing temperatures may be an obstacle if adequate knowledge about the product's formulation is lacking.

  2. Melt-processing of small molecule organic photovoltaics via bulk heterojunction compatibilization.

    PubMed

    Rahmanudin, Aiman; Yao, Liang; Jeanbourquin, Xavier A; Liu, Yongpeng; Sekar, Arvindh; Ripaud, Emilie; Sivula, Kevin

    2018-05-21

    Melt-processing of organic semiconductors (OSCs) is a promising environmentally-friendly technique that can alleviate dependence on toxic chlorinated solvents. While melt-processed single-component OSC devices ( e.g. field-effect-transistors) have been demonstrated, multi-component bulk heterojunctions (BHJs) for organic photovoltaics (OPVs) remain a challenge. Herein, we demonstrate a strategy that affords tunable BHJ phase segregation and domain sizes from a single-phase homogeneous melt by employing strongly-crystalline small-molecule OSCs together with a customized molecular compatibilizing (MCP) additive. An optimized photoactive BHJ with 50 wt% MCP achieved a device power conversion efficiency of ca. 1% after melting the active layer at 240 °C (15 min, followed by slow cooling) before deposition of the top electrode. BHJ morphology characterization using atomic force and Kelvin probe microscopy, X-ray diffraction, and photo-luminescence measurements further demonstrate the trade-off between free charge generation and transport with respect to MCP loading in the BHJ. In addition, a functional OPV was also obtained from the melt-processing of dispersed micron-sized solid BHJ particles into a smooth and homogeneous thin-film by using the MCP approach. These results demonstrate that molecular compatibilization is a key prerequisite for further developments towards true solvent-free melt-processed BHJ OPV systems.

  3. A new method for the continuous production of single dosed controlled release matrix systems based on hot-melt extruded starch: analysis of relevant process parameters and implementation of an in-process control.

    PubMed

    Kipping, Thomas; Rein, Hubert

    2013-05-01

    In the present study, we evaluated a novel processing technique for the continuous production of hot-melt extruded controlled release matrix systems. A cutting technique derived from plastics industry, where it is widely used for cutting of cables and wires was adapted into the production line. Extruded strands were shaped by a rotary fly cutter. Special focus is laid on the development of a process analytical technology by evaluating signals obtained from the servo control of the rotary fly cutter. The intention is to provide a better insight into the production process and to offer the ability to detect small variations in process-variables. A co-rotating twin-screw extruder ZSE 27 HP-PH from Leistritz (Nürnberg, Germany) was used to plasticize the starch; critical extrusion parameters were recorded. Still elastic strands were shaped by a rotary fly-cutter type Dynamat 20 from Metzner (Neu-Ulm, Germany). Properties of the final products were analyzed via digital image analysis to point out critical parameters influencing the quality. Important aspects were uniformity of diameter, height, roundness, weight, and variations in the cutting angle. Stability of the products was measured by friability tests and by determining the crushing strength of the final products. Drug loading studies up to 70% were performed to evaluate the capacity of the matrix and to prove the technological feasibility. Changes in viscosities during API addition were analyzed by a Haake Minilab capillary rheometer. X-ray studies were performed to investigate molecular structures of the matrices. External shapes of the products were highly affected by die-swelling of the melt. Reliable reproducibility concerning uniformity of mass could be achieved even for high production rates (>2500cuts/min). Both mechanical strength and die-swelling of the products could be linked to the ratio of amylose to amylopectin. Formulations containing up to 70% of API could still be processed. Viscosity measurements revealed the plasticizing effect caused by API addition. Dissolution data proved the suitability of extruded starch matrices as a sustained release dosage form. Monitoring of consumed energies during the cutting process could be linked to changes in viscosity. The established PAT system enables the detection of small variations in material properties and can be an important tool to further improve process stability. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Stress-Driven Melt Segregation and Organization in Partially Molten Rocks III: Annealing Experiments and Surface Tension-Driven Redistribution of Melt

    NASA Astrophysics Data System (ADS)

    Parsons, R.; Hustoft, J. W.; Holtzman, B. K.; Kohlstedt, D. L.; Phipps Morgan, J.

    2004-12-01

    As discussed in the two previous abstracts in this series, simple shear experiments on synthetic upper mantle-type rock samples reveal the segregation of melt into melt-rich bands separated by melt-depleted lenses. Here, we present new results from experiments designed to understand the driving forces working for and against melt segregation. To better understand the kinetics of surface tension-driven melt redistribution, we first deform samples at similar conditions (starting material, sample size, stress and strain) to produce melt-rich band networks that are statistically similar. Then the load is removed and the samples are statically annealed to allow surface tension to redistribute the melt-rich networks. Three samples of olivine + 20 vol% chromite + 4 vol% MORB were deformed at a confining pressure of 300 MPa and a temperature of 1523 K in simple shear at shear stresses of 20 - 55 MPa to shear strains of 3.5 and then statically annealed for 0, 10, or 100 h at the same P-T conditions. Melt-rich bands are fewer in number and appear more diffuse when compared to the deformed but not annealed samples. Bands with less melt tend to disappear more rapidly than more melt-rich ones. The melt fraction in the melt-rich bands decreased from 0.2 in the quenched sample to 0.1 in the sample annealed for 100 h. After deformation, the melt fraction in the melt-depleted regions are ~0.006; after static annealing for 100 h, this value increases to 0.02. These experiments provide new quantitative constraints on the kinetics of melt migration driven by surface tension. By quantifying this driving force in the same samples in which stress-driven distribution occurred, we learn about the relative kinetics of stress-driven melt segregation. The kinetics of both of these processes must be scaled together to mantle conditions to understand the importance of stress-driven melt segregation in the Earth, and to understand the interaction of this process with melt-rock reaction-driven processes.

  5. Production of fiberglass/metal composite material suitable for building habitat and manufacturing facilities

    NASA Technical Reports Server (NTRS)

    1987-01-01

    The production of a fiberglass/metal composite material suitable for building habitats and manufacturing facilities was the project for Clemson. The concept and development of the knowledge necessary to produce glass fibers originated in the spring semester. During the summer, while at Johnson Space Center, fiberglass from a rock composition similar to ones found at the Apollo 16 site on the moon was successfully produced. The project this year was a continuation of last year's studies. We addressed the following problems which emerged as the work progressed: (1) Methods for coating the fibers with a metal were explored. We manufactured composites in two stages: Glass fibers without any coating on them; and fibers coated with metals as they were made. This proved to be a difficult process. Future activities include using a chemical vapor deposition process on fibers which have been made. (2) A glass furnace was developed which relies primarily on solar energy for melting the glass. The temperature of the melted glass is maintained by electrical means. The design is for 250 kg of glass per day. An electrical engineering student developed a scheme for controlling the melting and manufacturing process from the earth. This was done to minimize the human risk. Graphite refractories are relied on to contain the melt. (3) The glass composition chosen for the project is a relatively pure anorthite which is available in the highland regions of the lunar surface. A major problems with this material is that it melts at a comparatively high temperature. This problem will be solved by using graphite refractory materials for the furnace. The advantage of this glass composition is that it is very stable and does not tend to crystallize. (4) We have also refined the experimental furnace and fiber making machinery which we will be using at Johnson Space Center this summer. We believe that we will be able to draw and coat glass fibers in a vacuum for use in composites. We intend to make and test the mechanical properties of these composites.

  6. Research on Melt Degassing Processes of High Conductivity Hard Drawn Aluminum Wire

    NASA Astrophysics Data System (ADS)

    Xu, Xuexia; Feng, Yanting; Wang, Qing; Li, Wenbin; Fan, Hui; Wang, Yong; Li, Guowei; Zhang, Daoqian

    2018-03-01

    Degassing effects of ultrasonic and vacuum processes on high conductivity hard drawn aluminum melt were studied. Results showed that the degassing efficiency improved with the increase of ultrasonic power within certain range, stabilizing at 70% with 240W. For vacuum degassing process, hydrogen content of aluminum melt decreased with the loading time and was linear with logarithm of vacuum degree. Comparison of degassing effects of ultrasonic, vacuum, vacuum-ultrasonic degassing process showed that vacuum-ultrasonic process presented optimal effect.

  7. Viscosity Meaurement Technique for Metal Fuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ban, Heng; Kennedy, Rory

    2015-02-09

    Metallic fuels have exceptional transient behavior, excellent thermal conductivity, and a more straightforward reprocessing path, which does not separate out pure plutonium from the process stream. Fabrication of fuel containing minor actinides and rare earth (RE) elements for irradiation tests, for instance, U-20Pu-3Am-2Np-1.0RE-15Zr samples at the Idaho National Laboratory, is generally done by melt casting in an inert atmosphere. For the design of a casting system and further scale up development, computational modeling of the casting process is needed to provide information on melt flow and solidification for process optimization. Therefore, there is a need for melt viscosity data, themore » most important melt property that controls the melt flow. The goal of the project was to develop a measurement technique that uses fully sealed melt sample with no Americium vapor loss to determine the viscosity of metallic melts and at temperatures relevant to the casting process. The specific objectives of the project were to: develop mathematical models to establish the principle of the measurement method, design and build a viscosity measurement prototype system based on the established principle, and calibrate the system and quantify the uncertainty range. The result of the project indicates that the oscillation cup technique is applicable for melt viscosity measurement. Detailed mathematical models of innovative sample ampoule designs were developed to not only determine melt viscosity, but also melt density under certain designs. Measurement uncertainties were analyzed and quantified. The result of this project can be used as the initial step toward the eventual goal of establishing a viscosity measurement system for radioactive melts.« less

  8. Conversion of Nuclear Waste to Molten Glass: Cold-Cap Reactions in Crucible Tests

    DOE PAGES

    Xu, Kai; Hrma, Pavel; Rice, Jarrett A.; ...

    2016-05-23

    The feed-to-glass conversion, which comprises complex chemical reactions and phase transitions, occurs in the cold cap during nuclear waste vitrification. Here, to investigate the conversion process, we analyzed heat-treated samples of a simulated high-level waste feed using X-ray diffraction, electron probe microanalysis, leaching tests, and residual anion analysis. Feed dehydration, gas evolution, and borate phase formation occurred at temperatures below 700°C before the emerging glass-forming melt was completely connected. Above 700°C, intermediate aluminosilicate phases and quartz particles gradually dissolved in the continuous borosilicate melt, which expanded with transient foam. Finally, knowledge of the chemistry and physics of feed-to-glass conversion willmore » help us control the conversion path by changing the melter feed makeup to maximize the glass production rate.« less

  9. North Atlantic warming and the retreat of Greenland's outlet glaciers.

    PubMed

    Straneo, Fiammetta; Heimbach, Patrick

    2013-12-05

    Mass loss from the Greenland ice sheet quadrupled over the past two decades, contributing a quarter of the observed global sea-level rise. Increased submarine melting is thought to have triggered the retreat of Greenland's outlet glaciers, which is partly responsible for the ice loss. However, the chain of events and physical processes remain elusive. Recent evidence suggests that an anomalous inflow of subtropical waters driven by atmospheric changes, multidecadal natural ocean variability and a long-term increase in the North Atlantic's upper ocean heat content since the 1950s all contributed to a warming of the subpolar North Atlantic. This led, in conjunction with increased runoff, to enhanced submarine glacier melting. Future climate projections raise the potential for continued increases in warming and ice-mass loss, with implications for sea level and climate.

  10. CNF Re-Inforced Polymer Composites

    NASA Astrophysics Data System (ADS)

    Lake, Max L.; Tibbetts, Gary G.; Glasgow, D. Gerald

    2004-09-01

    In properties of physical size, performance improvement, and production cost, carbon nanofiber (CNF) lies in a spectrum of materials bounded by carbon black, fullerenes, and single wall to multi-wall carbon nanotubes on one end and continuous carbon fiber on the other. Results show promise for use of CNF for modified electrical conductivity of polymer composites. Current compounding efforts focus on techniques for nanofiber dispersion designed to retain nanofiber length, including de-bulking methods and low shear melt processing. Heat treatment of CNF as a postproduction process has also been evaluated for its influence on electrical properties of CNF-reinforced polymer composites.

  11. Flexible thermoset towpregs by electrostatic powder fusion coating

    NASA Technical Reports Server (NTRS)

    Yang, Pei-Hua; Varughese, Babu; Muzzy, John D.

    1991-01-01

    Thermoset prepregs of expoxy and polyimide have been produced by electrostatic deposition of charged fluidized polymer powders on spread continuous fiber tows. The powders are melted onto the fibers by radiant heating to adhere the polymer to the fiber. This process produces towpreg uniformly and rapidly without imposing severe stresses on the fibers. The towpregs produced by this novel process were consolidated to make unidirectional laminates for mechanical testing. Low void content samples have been made and demonstrated by C-scan and scanning electron microscopy. The mechanical properties of unidirectional laminates are equivalent to composites fabricated by conventional techniques.

  12. Method of producing particulate-reinforced composites and composites produced thereby

    DOEpatents

    Han, Qingyou; Liu, Zhiwei

    2013-12-24

    A process for producing particle-reinforced composite materials through utilization of an in situ reaction to produce a uniform dispersion of a fine particulate reinforcement phase. The process includes forming a melt of a first material, and then introducing particles of a second material into the melt and subjecting the melt to high-intensity acoustic vibration. A chemical reaction initiates between the first and second materials to produce reaction products in the melt. The reaction products comprise a solid particulate phase, and the high-intensity acoustic vibration fragments and/or separates the reaction products into solid particles that are dispersed in the melt and are smaller than the particles of the second material. Also encompassed are particle-reinforced composite materials produced by such a process.

  13. Method of producing particulate-reinforced composites and composites produced thereby

    DOEpatents

    Han, Qingyou; Liu, Zhiwei

    2015-12-29

    A process for producing particle-reinforced composite materials through utilization of an in situ reaction to produce a uniform dispersion of a fine particulate reinforcement phase. The process includes forming a melt of a first material, and then introducing particles of a second material into the melt and subjecting the melt to high-intensity acoustic vibration. A chemical reaction initiates between the first and second materials to produce reaction products in the melt. The reaction products comprise a solid particulate phase, and the high-intensity acoustic vibration fragments and/or separates the reaction products into solid particles that are dispersed in the melt and are smaller than the particles of the second material. Also encompassed are particle-reinforced composite materials produced by such a process.

  14. Method of producing particulate-reinforced composites and composties produced thereby

    DOEpatents

    Han, Qingyou; Liu, Zhiwei

    2013-12-24

    A process for producing particle-reinforced composite materials through utilization of an in situ reaction to produce a uniform dispersion of a fine particulate reinforcement phase. The process includes forming a melt of a first material, and then introducing particles of a second material into the melt and subjecting the melt to high-intenisty acoustic vibration. A chemical reaction initiates between the first and second materials to produce reaction products in the melt. The reaciton products comprise a solide particulate phase, and the high-intensity acoustic vibration fragments and/or separates the reaction products into solid particles that are dispersed in the melt and are smaller than the particles of the second material. Also encompassed are particles-reinforced composite materials produced by such a process.

  15. Study of process technology for GaAlAs/GaAs heteroface solar cells

    NASA Technical Reports Server (NTRS)

    Conway, E. J.; Walker, G. H.; Byvik, C. E.; Almgren, D. W.

    1980-01-01

    Two processes were considered: the infinite melt process and the finite melt process. The only technique that is developed to the point that 10,000 cells could be produced in one year is the infinite melt liquid phase epitaxy process. The lowest cost per cell was achieved with the advanced metal organic chemical vapor deposition process. Molecular beam epitaxy was limited by the slow growth rate. The lowest cost, an 18 percent efficient cell at air mass zero, was approximately $70 per watt.

  16. Synthesis and characterization of a melt processable polyimide

    NASA Technical Reports Server (NTRS)

    Burks, H. D.; St.clair, T. L.

    1982-01-01

    A melt processable polyimide which contains sulfur and oxygen bridges between the aromatic rings (BDSDA/APB) was synthesized and characterized. Its physical, mechanical, thermal and flow properties were determined as was its resistance to some of the more commonly used solvents. The melt flow properties were measured for the temperature range 250 C - 350 C and under the conditions (stress/strain) encountered in commercial processes.

  17. A Dual-Porosity, In Situ Crystallisation Model For Fast-Spreading Mid-Ocean Ridge Magma Chambers Based Upon Direct Observation From Hess Deep

    NASA Astrophysics Data System (ADS)

    MacLeod, C. J.; Lissenberg, C. J.

    2014-12-01

    We propose a revised magma chamber model for fast-spreading mid-ocean ridges based upon a synthesis of new data from a complete section of lower crust from the East Pacific Rise, reconstructed from samples collected from the Hess Deep rift valley during cruise JC21. Our investigation includes detailed sampling across critical transitions in the upper part of the plutonic section, including the inferred axial melt lens (AML) within the dyke-gabbro transition. We find that an overall petrological progression, from troctolite and primitive gabbro at the base up into evolved (oxide) gabbro and gabbronorite at the top of the lower crustal section, is mirrored by a progressive upward chemical fractionation as recorded in bulk rock and mineral compositions. Crystallographic preferred orientations measured using EBSD show that the downward increase in deformation of mush required in crystal subsidence models is not observed. Together these observations are consistent only with a model in which crystallisation of upward migrating evolving melts occurs in situ in the lower crust. Over-enrichment in incompatible trace element concentrations and ratios above that possible by fractional crystallisation is ubiquitous. This implies redistribution of incompatible trace elements in the lower crust by low porosity, near-pervasive reactive porous flow of interstitial melt moving continuously upward through the mush pile. Mass balance calculations reveal a significant proportion of this trace element enriched melt is trapped at mid-crustal levels. Mineral compositions in the upper third to half of the plutonic section are too evolved to represent the crystal residues of MORB. Erupted MORB therefore must be fed from melts sourced in the deeper part of the crystal mush pile, and which must ascend rapidly without significant modification in the upper plutonics or AML. From physical models of mush processes we posit that primitive melts are transported through transient, high porosity channels generated by gravitational instabilities that periodically overturn and drain crystallising melt bodies (sills) from deeper levels of the lower crustal mush. We conclude that magma chambers are characterised by melt delivery to the deep crust, followed by in situ crystallisation of melts transported upwards via a dual-porosity system.

  18. Nanoparticle-induced unusual melting and solidification behaviours of metals

    PubMed Central

    Ma, Chao; Chen, Lianyi; Cao, Chezheng; Li, Xiaochun

    2017-01-01

    Effective control of melting and solidification behaviours of materials is significant for numerous applications. It has been a long-standing challenge to increase the melted zone (MZ) depth while shrinking the heat-affected zone (HAZ) size during local melting and solidification of materials. In this paper, nanoparticle-induced unusual melting and solidification behaviours of metals are reported that effectively solve this long-time dilemma. By introduction of Al2O3 nanoparticles, the MZ depth of Ni is increased by 68%, while the corresponding HAZ size is decreased by 67% in laser melting at a pulse energy of 0.18 mJ. The addition of SiC nanoparticles shows similar results. The discovery of the unusual melting and solidification of materials that contain nanoparticles will not only have impacts on existing melting and solidification manufacturing processes, such as laser welding and additive manufacturing, but also on other applications such as pharmaceutical processing and energy storage. PMID:28098147

  19. Temperature Dependence of Density, Viscosity and Electrical Conductivity for Hg-Based II-VI Semiconductor Melts

    NASA Technical Reports Server (NTRS)

    Li, C.; Ban, H.; Lin, B.; Scripa, R. N.; Su, C.-H.; Lehoczky, S. L.

    2004-01-01

    The relaxation phenomenon of semiconductor melts, or the change of melt structure with time, impacts the crystal growth process and the eventual quality of the crystal. The thermophysical properties of the melt are good indicators of such changes in melt structure. Also, thermophysical properties are essential to the accurate predication of the crystal growth process by computational modeling. Currently, the temperature dependent thermophysical property data for the Hg-based II-VI semiconductor melts are scarce. This paper reports the results on the temperature dependence of melt density, viscosity and electrical conductivity of Hg-based II-VI compounds. The melt density was measured using a pycnometric method, and the viscosity and electrical conductivity were measured by a transient torque method. Results were compared with available published data and showed good agreement. The implication of the structural changes at different temperature ranges was also studied and discussed.

  20. Petrological Geodynamics of Mantle Melting II. AlphaMELTS + Multiphase Flow: Dynamic Fractional Melting

    NASA Astrophysics Data System (ADS)

    Tirone, Massimiliano

    2018-03-01

    In this second installment of a series that aims to investigate the dynamic interaction between the composition and abundance of the solid mantle and its melt products, the classic interpretation of fractional melting is extended to account for the dynamic nature of the process. A multiphase numerical flow model is coupled with the program AlphaMELTS, which provides at the moment possibly the most accurate petrological description of melting based on thermodynamic principles. The conceptual idea of this study is based on a description of the melting process taking place along a 1-D vertical ideal column where chemical equilibrium is assumed to apply in two local sub-systems separately on some spatial and temporal scale. The solid mantle belongs to a local sub-system (ss1) that does not interact chemically with the melt reservoir which forms a second sub-system (ss2). The local melt products are transferred in the melt sub-system ss2 where the melt phase eventually can also crystallize into a different solid assemblage and will evolve dynamically. The main difference with the usual interpretation of fractional melting is that melt is not arbitrarily and instantaneously extracted from the mantle, but instead remains a dynamic component of the model, hence the process is named dynamic fractional melting (DFM). Some of the conditions that may affect the DFM model are investigated in this study, in particular the effect of temperature, mantle velocity at the boundary of the mantle column. A comparison is made with the dynamic equilibrium melting (DEM) model discussed in the first installment. The implications of assuming passive flow or active flow are also considered to some extent. Complete data files of most of the DFM simulations, four animations and two new DEM simulations (passive/active flow) are available following the instructions in the supplementary material.

  1. Evaluation of hot-melt extrusion and injection molding for continuous manufacturing of immediate-release tablets.

    PubMed

    Melocchi, Alice; Loreti, Giulia; Del Curto, Maria Dorly; Maroni, Alessandra; Gazzaniga, Andrea; Zema, Lucia

    2015-06-01

    The exploitation of hot-melt extrusion and injection molding for the manufacturing of immediate-release (IR) tablets was preliminarily investigated in view of their special suitability for continuous manufacturing, which represents a current goal of pharmaceutical production because of its possible advantages in terms of improved sustainability. Tablet-forming agents were initially screened based on processability by single-screw extruder and micromolding machine as well as disintegration/dissolution behavior of extruded/molded prototypes. Various polymers, such as low-viscosity hydroxypropylcellulose, polyvinyl alcohol, polyvinyl alcohol-polyethylene glycol graft copolymer, various sodium starch glycolate grades (e.g., Explotab(®) CLV) that could be processed with no need for technological aids, except for a plasticizer, were identified. Furthermore, the feasibility of both extruded and molded IR tablets from low-viscosity hydroxypropylcellulose or Explotab(®) CLV was assessed. Explotab(®) CLV, in particular, showed thermoplastic properties and a very good aptitude as a tablet-forming agent, starting from which disintegrating tablets were successfully obtained by either techniques. Prototypes containing a poorly soluble model drug (furosemide), based on both a simple formulation (Explotab(®) CLV and water/glycerol as plasticizers) and formulations including dissolution/disintegration adjuvants (soluble and effervescent excipients) were shown to fulfill the USP 37 dissolution requirements for furosemide tablets. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  2. Industrial Application of Different Heat Treatments and Cream Fat Contents for Improving the Spreadability of Butter.

    PubMed

    Tondhoosh, Arash; Nayebzadeh, Kooshan; Mohamadifar, Mohamad A; Homayouni-Rad, Aziz; Hosseinoghli, Hamid

    2016-01-01

    Individual factors, which interfere in the continuous churning, were manipulated to enhance the rheological properties and chemical composition of butter. This process leads to achieve softer; more spreadable, and ultimately healthier product for consumers. In addition it could prevent hardening of texture especially in winter. Firstly, Pasteurized cream with different fat contents (40 & 45% fat) was passed through heat treatments, and then it was injected to a continuous churn. Textural and melting behavior and fatty acid composition of butter were analyzed. Increasing the fat content of cream (from 40 to 45 %) and holding time (from 3h to 5h) in mid-temperature (18 ºC) and reducing the churning temperature (from 12 ºC to 10 ºC), resulted in soft butter texture and improved butter spreadability. Loss Tangent (tan δ) was increased from 0.11 to 0.74 (T=15 ºC;f=1Hz). The melting temperature of butter was decreased from 36ºC to 32ºC and total trans fatty acid content was decreased from 3.2 % to 1.87 %. It was concluded that such heating process (which has been studied and reported in patents) absorbs the low- SFC fats of the cream, integrates them into the butter texture a softer and more spreadable product. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  3. Inline UV/Vis spectroscopy as PAT tool for hot-melt extrusion.

    PubMed

    Wesholowski, Jens; Prill, Sebastian; Berghaus, Andreas; Thommes, Markus

    2018-01-11

    Hot-melt extrusion on co-rotating twin screw extruders is a focused technology for the production of pharmaceuticals in the context of Quality by Design. Since it is a continuous process, the potential for minimizing product quality fluctuation is enhanced. A typical application of hot-melt extrusion is the production of solid dispersions, where an active pharmaceutical ingredient (API) is distributed within a polymer matrix carrier. For this dosage form, the product quality is related amongst others to the drug content. This can be monitored on- or inline as critical quality attribute by a process analytical technology (PAT) in order to meet the specific requirements of Quality by Design. In this study, an inline UV/Vis spectrometer from ColVisTec was implemented in an early development twin screw extruder and the performance tested in accordance to the ICH Q2 guideline. Therefore, two API (carbamazepine and theophylline) and one polymer matrix (copovidone) were considered with the main focus on the quantification of the drug load. The obtained results revealed the suitability of the implemented PAT tool to quantify the drug load in a typical range for pharmaceutical applications. The effort for data evaluation was minimal due to univariate data analysis, and in combination with a measurement frequency of 1 Hz, the system is sufficient for real-time data acquisition.

  4. The role of subgrain boundaries in partial melting

    NASA Astrophysics Data System (ADS)

    Levine, Jamie S. F.; Mosher, Sharon; Rahl, Jeffrey M.

    2016-08-01

    Evidence for partial melting along subgrain boundaries in quartz and plagioclase is documented for rocks from the Lost Creek Gneiss of the Llano Uplift, central Texas, the Wet Mountains of central Colorado, and the Albany-Fraser Orogen, southwestern Australia. Domains of quartz or plagioclase crystals along subgrain boundaries are preferentially involved in partial melting over unstrained domains of these minerals. Material along subgrain boundaries in quartz and plagioclase has the same morphology as melt pseudomorphs present along grain boundaries and is commonly laterally continuous with this former grain boundary melt, indicating the material along subgrain boundaries can also be categorized as a melt pseudomorph. Subgrain boundaries consist of arrays of dislocations within a crystal lattice, and unlike fractures would not act as conduits for melt migration. Instead, the presence of former melt along subgrain boundaries requires that partial melting occurred in these locations because it is kinetically more favorable for melting reactions to occur there. Preferential melting in high strain locations may be attributed to strain energy, which provides a minor energetic contribution to the reaction and leads to preferential melting in locations with weakened bonds, and/or the presence of small quantities of water associated with dislocations, which may enhance diffusion rates or locally lower the temperature needed for partial melting.

  5. First experimental observations on melting and chemical modification of volcanic ash during lightning interaction.

    PubMed

    Mueller, S P; Helo, C; Keller, F; Taddeucci, J; Castro, J M

    2018-01-23

    Electrification in volcanic ash plumes often leads to syn-eruptive lightning discharges. High temperatures in and around lightning plasma channels have the potential to chemically alter, re-melt, and possibly volatilize ash fragments in the eruption cloud. In this study, we experimentally simulate temperature conditions of volcanic lightning in the laboratory, and systematically investigate the effects of rapid melting on the morphology and chemical composition of ash. Samples of different size and composition are ejected towards an artificially generated electrical arc. Post-experiment ash morphologies include fully melted spheres, partially melted particles, agglomerates, and vesiculated particles. High-speed imaging reveals various processes occurring during the short lightning-ash interactions, such as particle melting and rounding, foaming, and explosive particle fragmentation. Chemical analyses of the flash-melted particles reveal considerable bulk loss of Cl, S, P and Na through thermal vaporization. Element distribution patterns suggest convection as a key process of element transport from the interior of the melt droplet to rim where volatiles are lost. Modeling the degree of sodium loss delivers maximum melt temperatures between 3290 and 3490 K. Our results imply that natural lighting strikes may be an important agent of syn-eruptive morphological and chemical processing of volcanic ash.

  6. Friction Stir Welding of Steel Alloys

    NASA Technical Reports Server (NTRS)

    Ding, R. Jeffrey; Munafo, Paul M. (Technical Monitor)

    2001-01-01

    The friction stir welding process has been developed primarily for the welding of aluminum alloys. Other higher melting allows such, as steels are much more difficult to join. Special attention must be given to pin tool material selection and welding techniques. This paper addresses the joining of steels and other high melting point materials using the friction stir welding process. Pin tool material and welding parameters will be presented. Mechanical properties of weldments will also be presented. Significance: There are many applications for the friction stir welding process other than low melting aluminum alloys. The FSW process can be expanded for use with high melting alloys in the pressure vessel, railroad and ship building industries.

  7. Sodium Inverse Relationships During Melting in Ultraslow Spreading Regions: Insights from SWIR-Smoothseafloor Peridotites

    NASA Astrophysics Data System (ADS)

    Cannat, M.; Brunelli, D.; Paquet, M.; Sforna, M. C.; Seyler, M.

    2015-12-01

    Ultraslow spreading ridges are key regions to unravel mantle processes. Low potential temperatures and reduced melting allow decrypting early melting processes and shad lights on the source short-scale heterogeneities and their interactions with transient melts. Mantle-derived peridotites from the Smoothseafloor region of the eastern Southwest Indian Ridge reveal countertrending Na-Ti relationships. Na apparently behaves as a compatible element during partial melting similarly to light REEs. Heavy REEs, however, follow a normal relationship with the other melting indicators (e.g. Cr#), a behaviour that results in pattern rotation around a pivot element when looking to REE systematic. These relationships can be explained by percolation of relatively enriched, grt-field derived, melts in the spinel-field melting mantle 1. A feature that also explains the inverse Na-Cr# correlation, frequently observed in abyssal mantle rocks. Experimental relationships constraint the grt-field derived melts to be produced by low-melting paragenesis that experience a garnet to spinel phase transition shallower than mantle peridotites for a given temperature. Based on potential mantle temperatures estimated by Cannat et al., 19992, the grt-sp transition can be set at ca. 2.0 and 1.5 GPa for mantle peridotites and Mg pyroxenites respectively with the onset of mantle melting at 1.2 GPa. Mass balance calculations based on the amount of produced melt constrains the pyroxenitic fraction < 10% by mass of the mantle source. The contemporaneous presence of lithologies too depleted with respect to the described process suggests that some portions of the mantle source are inherited from more sustained ancient depletion events not related to present-day processes beneath this ridge portion. PNRA funding : PdR 2013/B1.02 1. Brunelli, D., et al., 2104. Percolation of enriched melts during incremental open-system melting in the spinel field : A REE approach to abyssal peridotites from the Southwest Indian Ridge. Geochim. Cosmochim. Acta 127,190-203. 2. Cannat, M., et al., 1999. Formation of the axial relief at the very slow spreading Southwest Indian Ridge (49° to 69°E). J. Geophys. Res. 104, 22825-22843.

  8. 5 MV 30 mA industrial electron processing system

    NASA Astrophysics Data System (ADS)

    Hoshi, Y.; Mizusawa, K.

    1991-05-01

    Industrial electron beam processing systems have been in use in various application fields such as: improving heat resistivity of wire insulation; controlling quality of automobile rubber tires and melt index characteristics of PE foams; and curing paintings or printing inks. Recently, there has come up a need for electron beam with an energy higher than 3 MV in order to disinfect salmonella in chicken meat, to kill bugs in fruits, and to sterilize medical disposables. To meet this need we developed a 5 MV 30 mA electron processing system with an X-ray conversion target. The machine was tested in NHV's plant in Kyoto at continuous operation of full voltage and full current. It proved to be very steady in operation with a high efficiency (as much as 72%). Also, the X-ray target was tested in a continuous run of 5 MV 30 mA (150 kW). It proved to be viable in industrial utilization. This paper introduces the process and the results of the development.

  9. Location specific solidification microstructure control in electron beam melting of Ti-6Al-4V

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Narra, Sneha P.; Cunningham, Ross; Beuth, Jack

    Relationships between prior beta grain size in solidified Ti-6Al-4V and melting process parameters in the Electron Beam Melting (EBM) process are investigated. Samples are built by varying a machine-dependent proprietary speed function to cover the process space. Optical microscopy is used to measure prior beta grain widths and assess the number of prior beta grains present in a melt pool in the raster region of the build. Despite the complicated evolution of beta grain sizes, the beta grain width scales with melt pool width. The resulting understanding of the relationship between primary machine variables and prior beta grain widths ismore » a key step toward enabling the location specific control of as-built microstructure in the EBM process. Control of grain width in separate specimens and within a single specimen is demonstrated.« less

  10. Substrats poreux biodegradables prepares a partir de phases co-continues dans les melanges de polymeres immiscibles

    NASA Astrophysics Data System (ADS)

    Sarazin, Pierre

    2003-06-01

    In this thesis a novel approach to preparing biodegradable materials with highly structured and interconnected porosity is proposed. The method involves the controlled preparation of immiscible co-continuous polymer blends using melt-processing technology followed by a bulk solvent extraction step of one of the phases (the porogen phase). A co-continuous structure is defined as the state when each phase of the blend is fully interconnected through a continuous pathway. This method allows for the preparation of porous materials with highly controlled pore size, pore volume and pore shape which can then be transformed and shaped in various forms useful for biomedical applications. Various properties of the skin of the polymeric articles (closed-cell, open-cell, modification of the pore size) can be controlled. Initially, the study on the immiscible binary and compatibilized poly(L-lactide)/polystyrene blends (PLLA/PS) after extraction of the PS phase demonstrated that highly percolated blends exist from 40--75%PS and 40--60%PS for the binary and compatibilized blends, respectively. It is demonstrated that both the pore size and extent of co-continuity can be controlled through composition and interfacial modification. The subsequent part of our work treats of the preparation of porous PLLA from a blend of two biodegradable polymers and the performance of such porous materials. This portion of the work uses only polymer materials which have been medically approved for internal use. In this case, small amounts of the porogen phase can be tolerated in the final porous substrate. Co-continuous blends comprised of poly(L-lactide)/Poly(epsilon-caprolactone) PLLA/PCL, were prepared via melt processing. A wide range of phase sizes for the co-continuous blend is generated through a combination of concentration control and quiescent annealing. As the PLLA phase can not be dissolved selectively in PLLA/PS blends, the co-continuity range was evaluated indirectly. To precisely assess the formation of the co-continuous morphology, the polylactide was replaced by a poly(epsilon-caprolactone) (PCL) in the following work. PCL possesses a similar biocompatibility, although it exhibits a much slower degradation rate. These results practically allow for a separation of the effects of deformation/disintegration processes and coalescence on continuous and co-continuous morphology development. Coalescence phenomena for systems such as the PS in PCL case is clearly the dominant parameter controlling phase size at higher compositions. These results underline the requirement of co-continuity models to include parameters related to coalescence effects. The data indicate the significant potential of mixing temperature as a tool for the morphology control of co-continuous polymer blends. (Abstract shortened by UMI.)

  11. Integrated decontamination process for metals

    DOEpatents

    Snyder, Thomas S.; Whitlow, Graham A.

    1991-01-01

    An integrated process for decontamination of metals, particularly metals that are used in the nuclear energy industry contaminated with radioactive material. The process combines the processes of electrorefining and melt refining to purify metals that can be decontaminated using either electrorefining or melt refining processes.

  12. Continuous melting through a hexatic phase in confined bilayer water

    NASA Astrophysics Data System (ADS)

    Zubeltzu, Jon; Corsetti, Fabiano; Fernández-Serra, M. V.; Artacho, Emilio

    2016-06-01

    Liquid water is not only of obvious importance but also extremely intriguing, displaying many anomalies that still challenge our understanding of such an a priori simple system. The same is true when looking at nanoconfined water: The liquid between constituents in a cell is confined to such dimensions, and there is already evidence that such water can behave very differently from its bulk counterpart. A striking finding has been reported from computer simulations for two-dimensionally confined water: The liquid displays continuous or discontinuous melting depending on its density. In order to understand this behavior, we have analyzed the melting exhibited by a bilayer of nanoconfined water by means of molecular dynamics simulations. At high density we observe the continuous melting to be related to the phase change of the oxygens only, with the hydrogens remaining liquidlike throughout. Moreover, we find an intermediate hexatic phase for the oxygens between the liquid and a triangular solid ice phase, following the Kosterlitz-Thouless-Halperin-Nelson-Young theory for two-dimensional melting. The liquid itself tends to maintain the local structure of the triangular ice, with its two layers being strongly correlated yet with very slow exchange of matter. The decoupling in the behavior of the oxygens and hydrogens gives rise to a regime in which the complexity of water seems to disappear, resulting in what resembles a simple monoatomic liquid. This intrinsic tendency of our simulated water may be useful for understanding novel behaviors in other confined and interfacial water systems.

  13. Numerical modeling of heat transfer in molten silicon during directional solidification process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Srinivasan, M.; Ramasamy, P., E-mail: ramasamyp@ssn.edu.in

    2015-06-24

    Numerical investigation is performed for some of the thermal and fluid flow properties of silicon melt during directional solidification by numerical modeling. Dimensionless numbers are extremely useful to understand the heat and mass transfer of fluid flow on Si melt and control the flow patterns during crystal growth processes. The average grain size of whole crystal would increase when the melt flow is laminar. In the silicon growth process, the melt flow is mainly driven by the buoyancy force resulting from the horizontal temperature gradient. The thermal and flow pattern influences the quality of the crystal through the convective heatmore » and mass transport. The computations are carried out in a 2D axisymmetric model using the finite-element technique. The buoyancy effect is observed in the melt domain for a constant Rayleigh number and for different Prandtl numbers. The convective heat flux and Reynolds numbers are studied in the five parallel horizontal cross section of melt silicon region. And also, velocity field is simulated for whole melt domain with limited thermal boundaries. The results indicate that buoyancy forces have a dramatic effect on the most of melt region except central part.« less

  14. Solvent Free Low-Melt Viscosity Imide Oligomers And Thermosetting Polyimide Composites

    NASA Technical Reports Server (NTRS)

    Chuang, CHun-Hua (Inventor)

    2006-01-01

    This invention relates to the composition and a solvent-free process for preparing novel imide oligomers and polymers specifically formulated with effective amounts of a dianhydride such as 2,3,3',4-biphenyltetra carboxylic dianydride (a-BPDA), at least one aromatic diamine' and an endcapped of 4-phenylethynylphthalic anhydride (PEPA) or nadic anhydride to produce imide oligomers that possess a low-melt viscosity of 1-60 poise at 260-280" C. When the imide oligomer melt is cured at about 371 C. in a press or autoclave under 100-500 psi, the melt resulted in a thermoset polyimide having a glass transition temperature (T(sub g)) equal to and above 310 C. A novel feature of this process is that the monomers; namely the dianhydrides, diamines and the endcaps, are melt processable to form imide oligomers at temperatures ranging between 232-280 C. (450-535 F) without any solvent. These low-melt imide oligomers can be easily processed by resin transfer molding (RTM), vacuum-assisted resin transfer molding (VARTM) or the resin infusion process with fiber preforms e.g. carbon, glass or quartz preforms to produce polyimide matrix composites with 288-343C (550-650 F) high temperature performance capability.

  15. Integrated melt inclusion and crystal zoning study to track the timescales and pre-eruption dynamics of violent Strombolian eruptions at Llaima volcano, Chile

    NASA Astrophysics Data System (ADS)

    Ruth, D. C.; Costa Rodriguez, F.; Bouvet de Maisonneuve, C.; Calder, E. S.

    2013-12-01

    Melt inclusion compositions in crystals from many volcanic systems are notoriously variable and some times difficult to interpret. Their compositions can be a combination of rapid crystal growth, entrapment of local melt, and diffusive re-equilibration, among other processes. Additionally, chemical zoning in olivine records changing environmental conditions, most importantly temperature and magma composition. Many geochemical studies focus on either melt inclusion data or chemical zoning data to ascertain volcanic processes. Here we combine melt inclusion data with that of chemical zoning of the olivine host crystals from the 2008 violent Strombolian eruption of Llaima volcano, Chile, to obtain a more refined understanding of the processes related to crystal growth, melt inclusion formation, and magma dynamics. We investigated zoning characteristics in a suite of olivine crystals, created X-ray element maps (Al, Ca, Mg, P, Fe), and collected quantitative elemental abundances across chemical zones for detailed diffusion modeling. Melt inclusion compositions were collected via electron microprobe analysis and LA-ICPMS. We observe three types of zoning in the host olivine crystals: normal, reverse, and multiple zones with fluctuating Fo content. Reverse zoning was more common than the other types. Regardless of zoning character, multiple melt inclusions are present within a given olivine, often found near the crystal rim. For some of these melt inclusions, the olivine surrounding the melt inclusion was also zoned, often to a similar composition as the olivine rim. This implies that these inclusions remained connected with interstitial matrix melt until melt inclusion closure. These ';open' melt inclusions exhibited slightly different major (higher SiO2, Na2O+K2O, TiO2) and trace elements (positive Eu and Sr anomalies) compared to melt inclusions in the same olivine that were not surrounded by compositional zoning. Quantitative elemental profiles produce modeled timescales on the order of 10s-100s days prior to eruption. Zoning textures, melt inclusion compositions, and timescale modeling indicates that crystal dissolution (open melt inclusions), mafic magma injection (reverse zoning), and partial melting of upper crustal plagioclase-rich cumulates (positive Eu and Sr anomalies) were occurring in the months prior to the 2008 eruption. The combination of both melt inclusion data and textural data of the host crystals provides deeper insight into the nature and timing of deep and shallow reservoir processes that generate violent Strombolian eruptions at Llaima.

  16. Comparison of structure, morphology, and leach characteristics of multi-phase ceramics produced via melt processing and hot isostatic pressing

    NASA Astrophysics Data System (ADS)

    Dandeneau, Christopher S.; Hong, Tao; Brinkman, Kyle S.; Vance, Eric R.; Amoroso, Jake W.

    2018-04-01

    Melt processing of multi-phase ceramic waste forms offers potential advantages over traditional solid-state synthesis methods given both the prevalence of melters currently in use and the ability to reduce the possibility of airborne radionuclide contamination. In this work, multi-phase ceramics with a targeted hollandite composition of Ba1.0Cs0.3Cr1.0Al0.3Fe1.0Ti5.7O16 were fabricated by melt processing at 1675 °C and hot isostatic pressing (HIP) at 1250 and 1300 °C. X-ray diffraction analysis (XRD) confirmed hollandite as the major phase in all specimens. Zirconolite/pyrochlore peaks and weaker perovskite reflections were observed after melt processing, while HIP samples displayed prominent perovskite peaks and low-intensity zirconolite reflections. Melt processing produced specimens with large (>50 μm) well-defined hollandite grains, while HIP yielded samples with a more fine-grained morphology. Elemental analysis showed "islands" rich in Cs and Ti across the surface of the 1300 °C HIP sample, suggesting partial melting and partitioning of Cs into multiple phases. Photoemission data revealed multiple Cs 3d spin-orbit pairs for the HIP samples, with the lower binding energy doublets likely corresponding to Cs located in more leachable phases. Among all specimens examined, the melt-processed sample exhibited the lowest fractional release rates for Rb and Cs. However, the retention of Sr and Mo was greater in the HIP specimens.

  17. Berezinskii-Kosterlitz-Thouless transition and two-dimensional melting

    NASA Astrophysics Data System (ADS)

    Ryzhov, V. N.; Tareyeva, E. E.; Fomin, Yu D.; Tsiok, E. N.

    2017-12-01

    The main aspects of the theory of phase transitions in two-dimensional degenerate systems (Berezinskii-Kosterlitz-Thouless, or BKT, transitions) are reviewed in detail, including the transition mechanism, the renormalization group as a tool for describing the transition, and how the transition scenario can possibly depend on the core energy of topological defects (in particular, in thin superconducting films). Various melting scenarios in two-dimensional systems are analyzed, and the current status of actual experiments and computer simulations in the field is examined. Whereas in three dimensions melting always occurs as a single first-order transition, in two dimensions, as shown by Halperin, Nelson, and Young, melting via two continuous BKT transitions with an intermediate hexatic phase characterized by quasi-long-range orientational order is possible. But there is also a possibility for a first-order phase transition to occur. Recently, one further melting scenario, different from that occurring in the Berezinskii-Kosterlitz-Thouless-Halperin-Nelson-Young theory, has been proposed, according to which a solid can melt in two stages: a continuous BKT-type solid-hexatic transition and then a first-order hexatic-phase-isotropic-liquid phase transition. Particular attention is given to the melting scenario as a function of the potential shape and to the random pinning effect on two-dimensional melting. In particular, it is shown that random pinning can alter the melting scenario fundamentally in the case of a first-order transition. Also considered is the melting of systems with potentials having a negative curvature in the repulsion region-potentials that are successfully used in describing the anomalous properties of water in two dimensions. This review is an extended version of the report “Old and new in the physics of phase transitions” presented at the scientific session of the Physical Sciences Division of the Russian Academy of Sciences on 21 December 2016 (see Phys. Usp. 60 948-957 (2017); Usp. Fiz. Nauk 187 1021 (2017)). (Editor’s note.)

  18. An Investigation of Sintering Parameters on Titanium Powder for Electron Beam Melting Processing Optimization.

    PubMed

    Drescher, Philipp; Sarhan, Mohamed; Seitz, Hermann

    2016-12-01

    Selective electron beam melting (SEBM) is a relatively new additive manufacturing technology for metallic materials. Specific to this technology is the sintering of the metal powder prior to the melting process. The sintering process has disadvantages for post-processing. The post-processing of parts produced by SEBM typically involves the removal of semi-sintered powder through the use of a powder blasting system. Furthermore, the sintering of large areas before melting decreases productivity. Current investigations are aimed at improving the sintering process in order to achieve better productivity, geometric accuracy, and resolution. In this study, the focus lies on the modification of the sintering process. In order to investigate and improve the sintering process, highly porous titanium test specimens with various scan speeds were built. The aim of this study was to decrease build time with comparable mechanical properties of the components and to remove the residual powder more easily after a build. By only sintering the area in which the melt pool for the components is created, an average productivity improvement of approx. 20% was achieved. Tensile tests were carried out, and the measured mechanical properties show comparatively or slightly improved values compared with the reference.

  19. Hydrodynamic instabilities of flows involving melting in under-saturated porous media

    NASA Astrophysics Data System (ADS)

    Sajjadi, M.; Azaiez, J.

    2016-03-01

    The process of melting in partially saturated porous media is modeled for flow displacements prone to hydrodynamic instabilities due to adverse mobility ratios. The effects of the development of instabilities on the melting process are investigated through numerical simulations as well as analytical solution to unravel the physics of the flow. The effects of melting parameters, namely, the melting potential of the fluid, the rate of heat transfer to the frozen phase, and the saturation of the frozen material along with the parameters defining the viscous forces, i.e., the thermal and solutal log mobility ratios are examined. Results are presented for different scenarios and the enhancement or attenuation of instabilities are discussed based on the dominant physical mechanisms. Beside an extensive qualitative analysis, the performance of different displacement scenarios is compared with respect to the melt production and the extent of contribution of instability to the enhancement of melting. It is shown that the hydrodynamic instabilities tend in general to enhance melting but the rate of enhancement depends on the interplay between the instabilities and melting at the thermal front. A larger melting potential and a smaller saturation of the frozen material tend to increase the contribution of instability to melting.

  20. Real-time monitoring of the mechanism of ibuprofen-cationic dextran crystanule formation using crystallization process informatics system (CryPRINS).

    PubMed

    Abioye, Amos Olusegun; Chi, George Tangyie; Simone, Elena; Nagy, Zoltan

    2016-07-25

    One step aqueous melt-crystallization and in situ granulation was utilized to produce ibuprofen-cationic dextran [diethylaminoethyl dextran (Ddex)] conjugate crystanules without the use of surfactants or organic solvents. This study investigates the mechanism of in situ granulation-induced crystanule formation using ibuprofen (Ibu) and Ddex. Laboratory scale batch aqueous crystallization system containing in situ monitoring probes for particle vision measurement (PVM), UV-vis measurement and focused beam reflectance measurements (FBRM) was adapted using pre-defined formulation and process parameters. Pure ibuprofen showed nucleation domain between 25 and 64°C, producing minicrystals with onset of melting at 76°C and enthalpy of fusion (ΔH) of 26.22kJ/mol. On the other hand Ibu-Ddex crystanules showed heterogeneous nucleation which produced spherical core-shell structure. PVM images suggest that internalization of ibuprofen in Ddex corona occurred during the melting phase (before nucleation) which inhibited crystal growth inside the Ddex corona. The remarkable decrease in ΔH of the crystanules from 26.22 to 11.96kJ/mol and the presence of broad overlapping DSC thermogram suggests formation of ibuprofen-Ddex complex and crystalline-amorphous transformation. However Raman and FTIR spectra did not show any significant chemical interaction between ibuprofen and Ddex. A significant increase in dissolution efficiency from 45 to 81% within 24h and reduced burst release provide evidence for potential application of crystanules in controlled drug delivery systems. It was evident that in situ granulation of ibuprofen inhibited the aqueous crystallization process. It was concluded that in situ granulation-aqueous crystallization technique is a novel unit operation with potential application in continuous pharmaceutical processing. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Increased dissolution rates of tranilast solid dispersions extruded with inorganic excipients.

    PubMed

    Maniruzzaman, Mohammed; Ross, Steven A; Islam, Muhammad Tariqul; Scoutaris, Nikolaos; Nair, Arun; Douroumis, Dennis

    2017-06-01

    The purpose of this study was to evaluate the performance of Neusilin® (NEU) a synthetic magnesium aluminometasilicate as an inorganic drug carrier co-processed with the hydrophilic surfactants Labrasol and Labrafil to develop Tranilast (TLT)-based solid dispersions using continuous melt extrusion (HME) processing. Twin-screw extrusion was optimized to develop various TLT/excipient/surfactant formulations followed by continuous capsule filling in the absence of any downstream equipment. Physicochemical characterization showed the existence of TLT in partially crystalline state in the porous network of inorganic NEU for all extruded formulations. Furthermore, in-line NIR studies revealed a possible intermolecular H-bonding formation between the drug and the carrier resulting in the increase of TLT dissolution rates. The capsules containing TLT-extruded solid dispersions showed enhanced dissolution rates and compared with the marketed Rizaben ® product.

  2. Numerical simulation of hot-melt extrusion processes for amorphous solid dispersions using model-based melt viscosity.

    PubMed

    Bochmann, Esther S; Steffens, Kristina E; Gryczke, Andreas; Wagner, Karl G

    2018-03-01

    Simulation of HME processes is a valuable tool for increased process understanding and ease of scale-up. However, the experimental determination of all required input parameters is tedious, namely the melt rheology of the amorphous solid dispersion (ASD) in question. Hence, a procedure to simplify the application of hot-melt extrusion (HME) simulation for forming amorphous solid dispersions (ASD) is presented. The commercial 1D simulation software Ludovic ® was used to conduct (i) simulations using a full experimental data set of all input variables including melt rheology and (ii) simulations using model-based melt viscosity data based on the ASDs glass transition and the physical properties of polymeric matrix only. Both types of HME computation were further compared to experimental HME results. Variation in physical properties (e.g. heat capacity, density) and several process characteristics of HME (residence time distribution, energy consumption) among the simulations and experiments were evaluated. The model-based melt viscosity was calculated by using the glass transition temperature (T g ) of the investigated blend and the melt viscosity of the polymeric matrix by means of a T g -viscosity correlation. The results of measured melt viscosity and model-based melt viscosity were similar with only few exceptions, leading to similar HME simulation outcomes. At the end, the experimental effort prior to HME simulation could be minimized and the procedure enables a good starting point for rational development of ASDs by means of HME. As model excipients, Vinylpyrrolidone-vinyl acetate copolymer (COP) in combination with various APIs (carbamazepine, dipyridamole, indomethacin, and ibuprofen) or polyethylene glycol (PEG 1500) as plasticizer were used to form the ASDs. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Texturing by cooling a metallic melt in a magnetic field.

    PubMed

    Tournier, Robert F; Beaugnon, Eric

    2009-02-01

    Processing in a magnetic field leads to the texturing of materials along an easy-magnetization axis when a minimum anisotropy energy exists at the processing temperature; the magnetic field can be applied to a particle assembly embedded into a liquid, or to a solid at a high diffusion temperature close to the melting temperature or between the liquidus and the solidus temperatures in a region of partial melting. It has been shown in many experiments that texturing is easy to achieve in congruent and noncongruent compounds by applying the field above the melting temperature T m or above the liquidus temperature of alloys. Texturing from a melt is successful when the overheating temperature is just a few degrees above T m and fails when the processing time above T m is too long or when the overheating temperature is too high; these observations indicate the presence of unmelted crystals above T m with a size depending on these two variables that act as growth nuclei. A recent model that predicts the existence of unmelted crystals above the melting temperature is used to calculate their radius in a bismuth melt.

  4. Channelized Melting Drives Thinning Under a Rapidly Melting Antarctic Ice Shelf

    NASA Astrophysics Data System (ADS)

    Gourmelen, Noel; Goldberg, Dan N.; Snow, Kate; Henley, Sian F.; Bingham, Robert G.; Kimura, Satoshi; Hogg, Anna E.; Shepherd, Andrew; Mouginot, Jeremie; Lenaerts, Jan T. M.; Ligtenberg, Stefan R. M.; van de Berg, Willem Jan

    2017-10-01

    Ice shelves play a vital role in regulating loss of grounded ice and in supplying freshwater to coastal seas. However, melt variability within ice shelves is poorly constrained and may be instrumental in driving ice shelf imbalance and collapse. High-resolution altimetry measurements from 2010 to 2016 show that Dotson Ice Shelf (DIS), West Antarctica, thins in response to basal melting focused along a single 5 km-wide and 60 km-long channel extending from the ice shelf's grounding zone to its calving front. If focused thinning continues at present rates, the channel will melt through, and the ice shelf collapse, within 40-50 years, almost two centuries before collapse is projected from the average thinning rate. Our findings provide evidence of basal melt-driven sub-ice shelf channel formation and its potential for accelerating the weakening of ice shelves.

  5. Hot-melt extrusion as a continuous manufacturing process to form ternary cyclodextrin inclusion complexes.

    PubMed

    Thiry, Justine; Krier, Fabrice; Ratwatte, Shenelka; Thomassin, Jean-Michel; Jerome, Christine; Evrard, Brigitte

    2017-01-01

    The aim of this study was to evaluate hot-melt extrusion (HME) as a continuous process to form cyclodextrin (CD) inclusion complexes in order to increase the solubility and dissolution rate of itraconazole (ITZ), a class II model drug molecule of the Biopharmaceutics Classification System. Different CD derivatives were tested in a 1:1 (CD:ITZ) molar ratio to obtain CD ternary inclusion complexes in the presence of a polymer, namely Soluplus ® (SOL). The CD used in this series of experiments were β-cyclodextrin (βCD), hydroxypropyl-β-cyclodextrin (HPβCD) with degrees of substitution of 0.63 and 0.87, randomly methylated β-cyclodextrin (Rameb ® ), sulfobutylether-β-cyclodextrin (Captisol ® ) and methyl-β-cyclodextrin (Crysmeb ® ). Rheology testing and mini extrusion using a conical twin screw mini extruder were performed to test the processability of the different CD mixtures since CD are not thermoplastic. This allowed Captisol ® and Crysmeb ® to be discarded from the study due to their high impact on the viscosity of the SOL/ITZ mixture. The remaining CD were processed by HME in an 18mm twin screw extruder. Saturation concentration measurements confirmed the enhancement of solubility of ITZ for the four CD formulations. Biphasic dissolution tests indicated that all four formulations had faster release profiles compared to the SOL/ITZ solid dispersion. Formulations of HPβCD 0.63 and Rameb ® even reached 95% of ITZ released in both phases after 1h. The formulations were characterized using thermal differential scanning calorimetry and attenuated total reflectance infra-red analysis. These analyses confirmed that the increased release profile was due to the formation of ternary inclusion complexes. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Some physical aspects of fluid-fluxed melting

    NASA Astrophysics Data System (ADS)

    Patiño Douce, A.

    2012-04-01

    Fluid-fluxed melting is thought to play a crucial role in the origin of many terrestrial magmas. We can visualize the fundamental physics of the process as follows. An infinitesimal amount of fluid infiltrates dry rock at the temperature of its dry solidus. In order to restore equilibrium the temperature must drop, so that enthalpy is released and immediately reabsorbed as enthalpy of melting. The amount of melt produced must be such that the energy balance and thermodynamic equilibrium conditions are simultaneously satisfied. We wish to understand how an initially dry rock melts in response to progressive fluid infiltration, under both batch and fractional melting constraints. The simplest physical model for this process is a binary system in which one of the components makes up a pure solid phase and the other component a pure fluid phase, and in which a binary melt phase exists over certain temperature range. Melting point depression is calculated under the assumption of ideal mixing. The equations of energy balance and thermodynamic equilibrium are solved simultaneously for temperature and melt fraction, using an iterative procedure that allows addition of fluid in infinitesimal increments. Batch melting and fractional melting are simulated by allowing successive melt increments to remain in the system (batch) or not (fractional). Despite their simplified nature, these calculations reveal some important aspects of fluid-fluxed melting. The model confirms that, if the solubility of the fluid in the melt is sufficiently high, fluid fluxed melting is an efficient mechanism of magma generation. One might expect that the temperature of the infiltrating fluid would have a significant effect on melt productivity, but the results of the calculations show this not to be the case, because a relatively small mass of low molecular weight fluid has a strong effect on the melting point of minerals with much higher molecular weights. The calculations reveal the somewhat surprising result that fluid infiltration produces more melt during fractional melting than during batch melting. This behavior, which is opposite to that of decompression melting of a dry solid, arises because the melting point depression effect of the added fluid is greater during fractional melting than during batch melting, which results in a greater release of enthalpy and, therefore, greater melt production for fractional melting than for batch melting, for the same total amount of fluid added. The difference may be considerable. As an example, suppose that 0.1 mols of H2O infiltrate 1 mol or silicate rock. Depending on the rock composition this may corresponds to ˜ 1 wt% H2O. For a given choice of model parameters (initial temperature, heat capacity and entropy of fusion), about 28% of the rock melts during fractional melting, versus some 23 % during batch melting. Fluid fluxing is a robust process of melt generation, without which magmatism at Earth's convergent plate margins would be impossible.

  7. SEPARATION OF TIN FROM ALLOYS

    DOEpatents

    Kattner, W.T.

    1959-08-11

    A process is described for recovering tin from bronze comprising melting the bronze; slowly cooling the melted metal to from 280 to 240 deg C whereby eta- phase bronze crystallizes; separating the eta-bronze crystals from the liquid metal by mechanical means; melting the separated crystals; slowly cooling the melted eta-crystals to a temperature from 520 to 420 deg C whereby crystals of epsilonbronze precipitate; removing said epsilon-crystals from the remaining molten metal; and reintroducing the remaining molten metal into the process for eta-crystallization.

  8. Alloy Development, Processing and Characterization of Devitrified Titanium Base Microcrystalline Alloys.

    DTIC Science & Technology

    1984-12-01

    quench rates (10V 10V [/sec). Since the heat transport and temperature profile of Ti melt in the cold copper crucible are not well known, melting...experiments in a cold copper crucible by arc heating were conducted using Ti-6.3Si alloy. The temperature measurement at both the surface and the bottom of the...melt spinning compart- ment B, and ribbon processing chamber C. The pre-melted alloy ingot is . - " charged directly into a cold copper crucible while

  9. R-HPDC Process with Forced Convection Mixing Device for Automotive Part of A380 Aluminum Alloy

    PubMed Central

    Zhou, Bing; Kang, Yonglin; Qi, Mingfan; Zhang, Huanhuan; Zhu, Guoming

    2014-01-01

    The continuing quest for cost-effective and complex shaped aluminum castings with fewer defects for applications in the automotive industries has aroused the interest in rheological high pressure die casting (R-HPDC). A new machine, forced convection mixing (FCM) device, based on the mechanical stirring and convection mixing theory for the preparation of semisolid slurry in convenience and functionality was proposed to produce the automotive shock absorber part by R-HPDC process. The effect of barrel temperature and rotational speed of the device on the grain size and morphology of semi-solid slurry were extensively studied. In addition, flow behavior and temperature field of the melt in the FCM process was investigated combining computational fluid dynamics simulation. The results indicate that the microstructure and pore defects at different locations of R-HPDC casting have been greatly improved. The vigorous fluid convection in FCM process has changed the temperature field and composition distribution of conventional solidification. Appropriately increasing the rotational speed can lead to a uniform temperature filed sooner. The lower barrel temperature leads to a larger uniform degree of supercooling of the melt that benefits the promotion of nucleation rate. Both of them contribute to the decrease of the grain size and the roundness of grain morphology. PMID:28788608

  10. Application of the "Full Cavitation Model" to the fundamental study of cavitation in liquid metal processing

    NASA Astrophysics Data System (ADS)

    Lebon, G. S. B.; Pericleous, K.; Tzanakis, I.; Eskin, D.

    2015-01-01

    Ultrasonic cavitation treatment of melt significantly improves the downstream properties and quality of conventional and advanced metallic materials. However, the transfer of this technology has been hindered by difficulties in treating large volumes of liquid metal. To improve the understanding of cavitation processing efficiency, the Full Cavitation Model, which is derived from a reduced form of the Rayleigh-Plesset equation, is modified and applied to the two-phase problem of bubble propagation in liquid melt. Numerical simulations of the sound propagation are performed in the microsecond time scale to predict the maximum and minimum acoustic pressure amplitude fields in the domain. This field is applied to the source term of the bubble transport equation to predict the generation and destruction of cavitation bubbles in a time scale relevant to the fluid flow. The use of baffles to limit flow speed in a launder conduit is studied numerically, to determine the optimum configuration that maximizes the residence time of the liquid in high cavitation activity regions. With this configuration, it is then possible to convert the batch processing of liquid metal into a continuous process. The numerical simulations will be validated against water and aluminium alloy experiments, carried out at Brunel University.

  11. Plate tectonics and continental basaltic geochemistry throughout Earth history

    NASA Astrophysics Data System (ADS)

    Keller, Brenhin; Schoene, Blair

    2018-01-01

    Basaltic magmas constitute the primary mass flux from Earth's mantle to its crust, carrying information about the conditions of mantle melting through which they were generated. As such, changes in the average basaltic geochemistry through time reflect changes in underlying parameters such as mantle potential temperature and the geodynamic setting of mantle melting. However, sampling bias, preservation bias, and geological heterogeneity complicate the calculation of representative average compositions. Here we use weighted bootstrap resampling to minimize sampling bias over the heterogeneous rock record and obtain maximally representative average basaltic compositions through time. Over the approximately 4 Ga of the continental rock record, the average composition of preserved continental basalts has evolved along a generally continuous trajectory, with decreasing compatible element concentrations and increasing incompatible element concentrations, punctuated by a comparatively rapid transition in some variables such as La/Yb ratios and Zr, Nb, and Ti abundances approximately 2.5 Ga ago. Geochemical modeling of mantle melting systematics and trace element partitioning suggests that these observations can be explained by discontinuous changes in the mineralogy of mantle partial melting driven by a gradual decrease in mantle potential temperature, without appealing to any change in tectonic process. This interpretation is supported by the geochemical record of slab fluid input to continental basalts, which indicates no long-term change in the global proportion of arc versus non-arc basaltic magmatism at any time in the preserved rock record.

  12. Influence of scan strategy and molten pool configuration on microstructures and tensile properties of selective laser melting additive manufactured aluminum based parts

    NASA Astrophysics Data System (ADS)

    Dai, Donghua; Gu, Dongdong; Zhang, Han; Xiong, Jiapeng; Ma, Chenglong; Hong, Chen; Poprawe, Reinhart

    2018-02-01

    Selective laser melting additive manufacturing of the AlSi12 material parts through the re-melting of the previously solidified layer using the continuous two layers 90° rotate scan strategy was conducted. The influence of the re-melting behavior and scan strategy on the formation of the ;track-track; and ;layer-layer; molten pool boundaries (MPBs), dimensional accuracy, microstructure feature, tensile properties, microscopic sliding behavior and the fracture mechanism as loaded a tensile force has been studied. It showed that the defects, such as the part distortion, delamination and cracks, were significantly eliminated with the deformation rate less than 1%. The microstructure of a homogeneous distribution of the Si phase, no apparent grain orientation on both sides of the MPBs, was produced in the as-fabricated part, promoting the efficient transition of the load stress. Cracks preferentially initiate at the ;track-track; MPBs when the tensile stress increases to a certain value, resulting in the formation of the cleavage steps along the tensile loading direction. The cracks propagate along the ;layer-layer; MPBs, generating the fine dimples. The mechanical behavior of the SLM-processed AlSi12 parts can be significantly enhanced with the ultimate tensile strength, yield strength and elongation of 476.3 MPa, 315.5 MPa and 6.7%, respectively.

  13. Determination of the Contact Angle Based on the Casimir Effect

    NASA Technical Reports Server (NTRS)

    Mazuruk, K.; Volz, M. P.

    2015-01-01

    In several crystal growth processed based on capillarity, a melt comes into contact with a crucible wall at an angle defined as the contact angle. For molten metals and semiconductors, this contact angle is dependent upon both the crucible and melt material and typical values fall in the range 80-170deg. However, on a microscopic scale, there does not exist a precise and sharp contact angle but rather the melt and solid surfaces merge smoothly and continuously over a distance of up to several micrometers. Accurate modeling requires a more advanced treatment of this interaction. The interaction between the melt and solid surfaces can be calculated by considering two forces: a short-range repulsive force and a longer range (up to a few micrometers) Casimir force. The Casimir force between the two bodies of complex geometry is calculated using a retarded temperature Green's function (Matsubara type) for the photon in the medium. The governing equations are cast in the form of a set of boundary integral equations which are then solved numerically for the case of molten Ge on SiO2. The shape of the molten surface approaching the flat solid body is determined, and the contact angle is defined as the angle between the two surfaces at the microscopically asymptotic distance of 1-2 micrometers. The formulation of this model and the results of the numerical calculations will be presented and discussed.

  14. Analytical and Experimental Investigations of Sodium Heat Pipes and Thermal Energy Storage Systems.

    DTIC Science & Technology

    1982-01-01

    continued) Figure Page 5.1 Cylindrical container for eutectic salt (LiF-NgF -KF) . . . . . . 91 5.2 TESC sample . . . . . . ... . . 0...of fluorides of Mg, Li and K. Experimental results have been used to verify the melting point, and latent heat of fusion of the eutectic salt , in...a melting or solidification curve will provide experimental verification for the latent heat value and melting point of a given eutectic salt . In the

  15. Production and Physical Metallurgy of Pure Metals - Part V

    DTIC Science & Technology

    1960-07-25

    crucible . The essence of arc melting consists in the ignit- ion of an arc between the specimen placed in an intensively cooled copper crucible , and...water-cooled, and the cooling can be regulated by valves. -14- Universal laboratory arc furnace with cooled copper crucible : LOsend continued on next pag...furnaces by ordinary methods is very difficult and re- quires a fundamentally new method of melting. Such a method is arc melting in a water-cooled copper

  16. Study of ultrasonic melt treatment on the quality of horizontal continuously cast Al-1%Si alloy.

    PubMed

    Li, Xin-Tao; Li, Ting-Ju; Li, Xi-Meng; Jin, Jun-Ze

    2006-02-01

    The fluctuation of the melt temperature in a tundish was measured during casting and experiments were conducted to investigate the effects of ultrasonic melt treatment on the surface quality and solidification structures of Al-1%Si ingots. The results show that the uniformity of melt temperature was enhanced with the application of ultrasonic melt treatment. When the ultrasonic power is 1,000W, the surface quality was evidently improved and grains of cast ingots were refined. Moreover, EPMA analysis was adopted to study the relationship between the ultrasonic power and boundary segregation of Si element. The result shows that boundary segregation is suppressed with the increase of ultrasonic power and the phenomenon was theoretically interpreted.

  17. FY16 Annual Accomplishments - Waste Form Development and Performance: Evaluation Of Ceramic Waste Forms - Comparison Of Hot Isostatic Pressed And Melt Processed Fabrication Methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amoroso, J.; Dandeneau, C.

    FY16 efforts were focused on direct comparison of multi-phase ceramic waste forms produced via melt processing and HIP methods. Based on promising waste form compositions previously devised at SRNL, simulant material was prepared at SRNL and a portion was sent to the Australian Nuclear Science and Technology Organization (ANSTO) for HIP treatments, while the remainder of the material was melt processed at SRNL. The microstructure, phase formation, elemental speciation, and leach behavior, and radiation stability of the fabricated ceramics was performed. In addition, melt-processed ceramics designed with different fractions of hollandite, zirconolite, perovskite, and pyrochlore phases were investigated. for performancemore » and properties.« less

  18. Magma Plumbing System at a Young Back-Arc Spreading Center: The Marsili Volcano, Southern Tyrrhenian Sea

    NASA Astrophysics Data System (ADS)

    Trua, T.; Marani, M. P.; Gamberi, F.

    2018-01-01

    Although spreading rate is commonly taken as a proxy for decompression mantle melting at mid-ocean ridges (MORs), magmatism at back-arc spreading centers (BASCs) is further influenced by the subduction-related flux melting of the mantle. These regions consequently show a diversity of crustal structures, lava compositions, and morphologies not typically found in MORs. Here we investigate the crustal plumbing system of the small-scale, Marsili back-arc spreading center of the Southern Tyrrhenian Sea using plagioclase data from a wide spectrum of lavas (basalts to andesites) dredged from its summit and flanks. We employ petrological modeling to identify the plagioclase populations carried in the individual lavas, allocate them to plausible magmatic components present within the plumbing system, and trace the processes occurring during magma ascent to the surface. The properties of the system, such as mush porosity and abundance of the melt bodies, vary from one magma extraction zone to another along the BASC, evidencing the local variability of melt supply conditions. The plagioclase crystals document a range of relationships with the host lavas, indicating magma extraction from a composite, vertically extensive mush and melt-lens system resembling that of MORs. At the same time, however, in small BASCs, such as in the case of the Marsili Basin, crustal accretion and resulting morphology are significantly influenced by the three-dimensional setting of the basin margins. This is an important deviation from the conventional model based on the linear continuity and essentially two-dimensional framework of MORs.

  19. Multifunctional, High-Temperature Nanocomposites

    NASA Technical Reports Server (NTRS)

    Connell, John W.; Smith, Joseph G.; Siochi, Emilie J.; Working, Dennis C.; Criss, Jim M.; Watson, Kent A.; Delozier, Donavon M.; Ghose, Sayata

    2007-01-01

    In experiments conducted as part of a continuing effort to incorporate multifunctionality into advanced composite materials, blends of multi-walled carbon nanotubes and a resin denoted gPETI-330 h (wherein gPETI h is an abbreviation for gphenylethynyl-terminated imide h) were prepared, characterized, and fabricated into moldings. PETI-330 was selected as the matrix resin in these experiments because of its low melt viscosity (<10 poise at a temperature of 280 C), excellent melt stability (lifetime >2 hours at 280 C), and high temperature performance (>1,000 hours at 288 C). The multi-walled carbon nanotubes (MWCNTs), obtained from the University of Kentucky, were selected because of their electrical and thermal conductivity and their small diameters. The purpose of these experiments was to determine the combination of thermal, electrical, and mechanical properties achievable while still maintaining melt processability. The PETI-330/MWCNT mixtures were prepared at concentrations ranging from 3 to 25 weight-percent of MWCNTs by dry mixing of the constituents in a ball mill using zirconia beads. The resulting powders were characterized for degree of mixing and thermal and rheological properties. The neat resin was found to have melt viscosity between 5 and 10 poise. At 280 C and a fixed strain rate, the viscosity was found to increase with time. At this temperature, the phenylethynyl groups do not readily react and so no significant curing of the resin occurred. For MWCNT-filled samples, melt viscosity was reasonably steady at 280 C and was greater in samples containing greater proportions of MWCNTs. The melt viscosity for 20 weightpercent of MWCNTs was found to be .28,000 poise, which is lower than the initial estimated allowable maximum value of 60,000 poise for injection molding. Hence, MWCNT loadings of as much as 20 percent were deemed to be suitable compositions for scale-up. High-resolution scanning electron microscopy (HRSEM) showed the MWCNTs to be well dispersed in the polymer matrices, while high-resolution transmission electron microscopy shows splits in the walls of the MWCNTs but no catastrophic breakage of tubes. To further assess processing characteristics prior to scale-up, samples containing 10, 15, and 20 weight-percent of MWCNTs were processed through a laboratory melting extruder. HRSEM of the extruded fibers shows significant alignment of MWCNTs in the flow direction (see figure). For the samples containing 20 weight-percent of MWCNTs, difficulties were encountered during feeding, and the temperature of a rotor in the extruder rose to 245 C because of buildup of frictional heat; this indicates that materials of this type having MWCNT concentrations .20 weight- percent may not be melt-processable. On the basis of the results from the foregoing characterizations, samples containing 10, 15, and 20 weight-percent of MWCNTs were scaled up to masses of .300 g and used to make specimens having dimensions of 10.2 by 15.2 by 0.32 cm. These specimens were molded by (1) injecting the mixtures, at temperatures between 260 and 280 C, into a tool made of the low-thermal-expansion alloy InvarR and then (2) curing for 1 hour at 371 C. The tool was designed to impart shear during the injection process in an attempt to achieve some alignment of the MWCNTs in the flow direction.

  20. Containerless Manufacture of Glass Optical Fibers

    NASA Technical Reports Server (NTRS)

    Naumann, R. J.; Ethridge, E. C.

    1985-01-01

    Contamination and crystallization reduced in proposed process. Solid optical fiber drawn from an acoustically levitated lump of molten glass. New material added in solid form, melted and then moved into main body of molten glass. Single axis acoustic levitation furnances levitate glass melts at temperature up to about 700 degrees C. Processing in unit limited to low-melting temperature glasses.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baucom, R.M.; Marchello, J.M.

    Thermoplastic prepregs of LARC-TPI have been produced in a fluidized bed unit on spread continuous fiber tows. The powders are melted on the fibers by radiant heating to adhere the polymer to the fiber. This process produces tow prepreg uniformly without imposing severe stress on the fibers or requiring long high temperature residence times for the polymer. Unit design theory and operating correlations have been developed to provide the basis for scale up to commercial operation. Special features of the operation are the pneumatic tow spreader, fluidized bed and resin feed systems.

  2. Fundamentals of rapid solidification processing

    NASA Technical Reports Server (NTRS)

    Flemings, Merton C.; Shiohara, Yuh

    1985-01-01

    An attempt is made to illustrate the continuous change that occurs in the solidification behavior of undercooled melts, as cooling rates increase from 0.0001 K/sec to about 1000 K/sec. At the higher cooling rates, more significant changes occur as the dendrite tip temperature begins to drop from the equilibrium liquidus. Discontinuous solidification behavior changes will occur if absolute stability is reached, or a metastable phase forms, or solidification proceeds to a glass rather than to a crystalline solid, or if there is significant undercooling prior to nucleation.

  3. Impact Processes in the Solar System

    NASA Technical Reports Server (NTRS)

    Ahrens, Thomas J.

    2004-01-01

    The three main topics of this program as described initially in our May 2003 proposal are: 1) Shock-induced damage and attenuation in planetary materials. 2 ) Shock-induced melting and phase changes. 3) Impact-induced volatilization and vapor speciation of planetary materials Topic 4 has been the subject of a continuing investigation since approximately 1990. On Topic 5, we have a paper in preparation and have submitted a proposal to Astrobiology. 4) Responses of planetary atmospheres to giant impact, 5) Effects of impact-induced shock waves on microbial life

  4. Synchronous partial melting, deformation, and magmatism: evidence from in an exhumed Proterozoic orogen

    NASA Astrophysics Data System (ADS)

    Levine, J. S. F.; Mosher, S.

    2017-12-01

    Older orogenic belts that now expose the middle and lower crust record interaction between partial melting, magmatism, and deformation. A field- and microstructural-based case study from the Wet Mountains of central Colorado, an exhumed section of Proterozoic rock, shows structures associated with anatexis and magmatism, from the grain- to the kilometer-scale, that indicate the interconnection between deformation, partial melting, and magmatism, and allow reconstructions of the processes occurring in hot active orogens. Metamorphic grade, along with the degree of deformation, partial melting, and magmatism increase from northwest to southeast. Deformation synchronous with this high-grade metamorphic event is localized into areas with greater quantities of former melt, and preferential melting occurs within high-strain locations. In the less deformed northwest, partial melting occurs dominantly via muscovite-dehydration melting, with a low abundance of partial melting, and an absence of granitic magmatism. The central Wet Mountains are characterized by biotite dehydration melting, abundant former melt and foliation-parallel inferred melt channels along grain boundaries, and the presence of a nearby granitic pluton. Rocks in the southern portion of the Wet Mountains are characterized by partial melting via both biotite dehydration and granitic wet melting, with widespread partial melting as evidenced by well-preserved former melt microstructures and evidence for back reaction between melt and the host rocks. The southern Wet Mountains has more intense deformation and widespread plutonism than other locations and two generations of dikes and sills. Recognition of textures and fabrics associated with partial melting in older orogens is paramount for interpreting the complex interplay of processes occurring in the cores of orogenic systems.

  5. Modeling of submarine melting in Petermann Fjord, Northwestern Greenland using an ocean general circulation model

    NASA Astrophysics Data System (ADS)

    Cai, C.; Rignot, E. J.; Xu, Y.; An, L.

    2013-12-01

    Basal melting of the floating tongue of Petermann Glacier, in northwestern Greenland is by far the largest process of mass ablation. Melting of the floating tongue is controlled by the buoyancy of the melt water plume, the pressure-dependence of the melting point of sea ice, and the mixing of warm subsurface water with fresh buoyant subglacial discharge. In prior simulations of this melting process, the role of subglacial discharge has been neglected because in similar configurations (floating ice shelves) in the Antarctic, surface runoff is negligible; this is however not true in Greenland. Here, we use the Mass Institute of Technology general circulation model (MITgcm) at a high spatial resolution (10 m x 10 m) to simulate the melting process of the ice shelf in 2-D. the model is constrained by ice shelf bathymetry and ice thickness from NASA Operation IceBridge, ocean temperature/salinity data from Johnson et al. (2011), and subglacial discharge estimated from output products of the Regional Atmospheric Climate Model (RACMO). We compare the results obtained in winter (no runoff) with summer, and the sensitivity of the results to thermal forcing from the ocean, and to the magnitude of subglacial runoff. We conclude on the impact of the ocean and surface melting on the melting regime of the floating ice tongue of Petermann. This work is performed under a contract with NASA Cryosphere Program.

  6. Frictional melting of clayey gouge during seismic fault slip: Experimental observation and implications

    NASA Astrophysics Data System (ADS)

    Han, Raehee; Hirose, Takehiro; Jeong, Gi Young; Ando, Jun-ichi; Mukoyoshi, Hideki

    2014-08-01

    Clayey gouges are common in fault slip zones at shallow depths. Thus, the fault zone processes and frictional behaviors of the gouges are critical to understanding seismic slip at these depths. We conducted rotary shear tests on clayey gouge (~41 wt % clay minerals) at a seismic slip rate of 1.3 m/s. Here we report that the gouge was melted at 5 MPa of normal stress and room humidity conditions. The initial local melting was followed by melt layer formation. Clay minerals (e.g., smectite and illite) and plagioclase were melted and quenched to glass with numerous vesicles. Both flash heating and bulk temperature increases appear to be responsible for the melting. This observation of clayey gouge melting is comparable to that of natural faults (e.g., Chelungpu fault, Taiwan). Due to heterogeneous fault zone properties (e.g., permeability), frictional melting may be one of the important processes in clayey slip zones at shallow depths.

  7. Shallow melt apparatus for semicontinuous czochralski crystal growth

    DOEpatents

    Wang, Tihu; Ciszek, Theodore F.

    2006-01-10

    In a single crystal pulling apparatus for providing a Czochralski crystal growth process, the improvement of a shallow melt In a single crystal pulling apparatus for providing a Czochralski crystal growth process, the improvement of a shallow melt crucible (20) to eliminate the necessity supplying a large quantity of feed stock materials that had to be preloaded in a deep crucible to grow a large ingot, comprising a gas tight container a crucible with a deepened periphery (25) to prevent snapping of a shallow melt and reduce turbulent melt convection; source supply means for adding source material to the semiconductor melt; a double barrier (23) to minimize heat transfer between the deepened periphery (25) and the shallow melt in the growth compartment; offset holes (24) in the double barrier (23) to increase melt travel length between the deepened periphery (25) and the shallow growth compartment; and the interface heater/heat sink (22) to control the interface shape and crystal growth rate.

  8. Solvent-free melting techniques for the preparation of lipid-based solid oral formulations.

    PubMed

    Becker, Karin; Salar-Behzadi, Sharareh; Zimmer, Andreas

    2015-05-01

    Lipid excipients are applied for numerous purposes such as taste masking, controlled release, improvement of swallowability and moisture protection. Several melting techniques have evolved in the last decades. Common examples are melt coating, melt granulation and melt extrusion. The required equipment ranges from ordinary glass beakers for lab scale up to large machines such as fluid bed coaters, spray dryers or extruders. This allows for upscaling to pilot or production scale. Solvent free melt processing provides a cost-effective, time-saving and eco-friendly method for the food and pharmaceutical industries. This review intends to give a critical overview of the published literature on experiences, formulations and challenges and to show possibilities for future developments in this promising field. Moreover, it should serve as a guide for selecting the best excipients and manufacturing techniques for the development of a product with specific properties using solvent free melt processing.

  9. Thermographic Measurements of the Commercial Laser Powder Bed Fusion Process at NIST

    PubMed Central

    Lane, Brandon; Moylan, Shawn; Whitenton, Eric; Ma, Li

    2016-01-01

    Measurement of the high-temperature melt pool region in the laser powder bed fusion (L-PBF) process is a primary focus of researchers to further understand the dynamic physics of the heating, melting, adhesion, and cooling which define this commercially popular additive manufacturing process. This paper will detail the design, execution, and results of high speed, high magnification in-situ thermographic measurements conducted at the National Institute of Standards and Technology (NIST) focusing on the melt pool region of a commercial L-PBF process. Multiple phenomena are observed including plasma plume and hot particle ejection from the melt region. The thermographic measurement process will be detailed with emphasis on the ‘measurability’ of observed phenomena and the sources of measurement uncertainty. Further discussion will relate these thermographic results to other efforts at NIST towards L-PBF process finite element simulation and development of in-situ sensing and control methodologies. PMID:28058036

  10. Thermographic Measurements of the Commercial Laser Powder Bed Fusion Process at NIST.

    PubMed

    Lane, Brandon; Moylan, Shawn; Whitenton, Eric; Ma, Li

    2016-01-01

    Measurement of the high-temperature melt pool region in the laser powder bed fusion (L-PBF) process is a primary focus of researchers to further understand the dynamic physics of the heating, melting, adhesion, and cooling which define this commercially popular additive manufacturing process. This paper will detail the design, execution, and results of high speed, high magnification in-situ thermographic measurements conducted at the National Institute of Standards and Technology (NIST) focusing on the melt pool region of a commercial L-PBF process. Multiple phenomena are observed including plasma plume and hot particle ejection from the melt region. The thermographic measurement process will be detailed with emphasis on the 'measurability' of observed phenomena and the sources of measurement uncertainty. Further discussion will relate these thermographic results to other efforts at NIST towards L-PBF process finite element simulation and development of in-situ sensing and control methodologies.

  11. Role of crystallizational differention in the origin of island-arc andesitic melts: evidence from data on melt inclusions and oxygen isotopes

    NASA Astrophysics Data System (ADS)

    Krasheninnikov, S. P.; Portnyagin, M.; Bindeman, I. N.; Bazanova, L. I.

    2012-12-01

    Several recent studies of melt inclusions in island-arc rocks revealed a strong bimodality of the melt compositions at the predominance of basic and silicic melts and the scarcity of intermediate melts with SiO2=59-66 wt% (e.g. [1]). These observations were used to interpret the origin of island-arc andesites by magma mingling, crustal assimilation and crystal accumulation rather than by fractional crystallization of basaltic magmas. In this work we addressed the question about the scarcity of andesitic melts in island-arc setting by systematic study of bulk compositions, melt inclusions and oxygen isotopes in minerals from Avachinskiy volcano in Kamchatka. We studied ~500 melt inclusions in 6 different mineral phases (Ol, Cpx, Opx, Pl, Amph, Mt), and concentrated on rapidly-quenched tephra samples from 40 Holocene eruptions of andesites and basaltic andesites. The melt inclusions span a large range of compositions from basalts to rhyolites. In comparison with host bulk tephra samples, melt inclusions tend to have more silicic compositions (up to 10 wt% of SiO2), and this disparity tend to increase with increasing SiO2 content in the host rocks. Both melt inclusion and host rock compositions form trends along the line dividing low- and middle-K island-arc series, and variations of major elements are continuous, without apparent bimodality, which is observed in data set from [1]. The MI statistical distribution is rather three-modal with maxima at ~56-58, ~66 and 74 wt% of SiO2. Much of the major element variability in MI can be explained by fractional crystallization from parental basaltic melts using numerical modeling of crystallization path. Magnetite crystallization starts at ~58 wt% of SiO2 and affects significantly on the evolutional path of melts. Abundant crystallization of magnetite lead to formation of more silica rich coexistent melts and change of crystallizing assemblage occurred at ~60 wt% of SiO2, when Opx replaced Ol, and Amph and Ap become stable. Paragenesis of OPx, CPx, Amph, Pl, Mt, Ilm and Ap dominated the following evolution of melts toward strongly acid compositions with 78-80 wt% SiO2. Individual Pl and Amph crystals are in magmatic isotopic equilibrium, have heavy δ18O values increasing from 6.3 ‰ in basaltic andesites to 7.1 ‰ in andesites, suggesting that magmatic evolution started from primary high-d18O basalt likely related to the abundant high-d18O sources described for Kamchatkan primitive magmas. The oxygen isotopic data support the conclusion that island-arc andesitic melts of Avachinsky Volcano generate predominantly due to the processes of fractional crystallization of high-d18O. The new data on composition of melt inclusions allowed us to reconstruct the entire spectrum of parental melts for Avacha volcano. Melt inclusions in different minerals form coherent trends of major elements, which can be well explained by fractional crystallization. Unlike some other island-arc volcanoes, Avachinskiy melts do not display clear bimodality of SiO2 content. Melts of intermediate compositions are relatively abundant and found in minerals from basaltic andesites. [1] Reuby & Blundy (2009) Nature, 461(7268), 1269-1273.

  12. Novel structure design of composite proton exchange membranes with continuous and through-membrane proton-conducting channels

    NASA Astrophysics Data System (ADS)

    Wang, Hang; Tang, Chenxiao; Zhuang, Xupin; Cheng, Bowen; Wang, Wei; Kang, Weimin; Li, Hongjun

    2017-10-01

    The primary goal of this study is to develop a high-performanced proton exchange membrane with the characteristics of through-membrane and continuous solution blown nanofibers as proton-conducting channels. The curled sulfonated phenolphthalein poly (ether sulfone) and poly (vinylidene fluoride) nanofibers were separately fabricated through the solution blowing process which is a new nanofiber fabricating method with high productivity, then they were fabricated into a sandwich-structured mat. Then this sandwich-structured mat was hot-pressed to form the designed structure using different melting temperatures of the two polymers by melting and making poly (vinylidene fluoride) flow into the phenolphthalein poly (ether sulfone) nanofiber mat. The characteristics of the composite membrane, such as morphology and performance of the membrane, were investigated. The characterization results proved the successful preparation of the membrane structure. Performance results showed that the novel structured membrane with through-membrane nanofibers significantly improved water swelling and methanol permeability, though its conductivity is lower than that of Nafion, the cell performance showed comparable results. Therefore, the novel structure design can be considered as a promising method for preparing of proton exchange membranes.

  13. 21 CFR 175.230 - Hot-melt strippable food coatings.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Hot-melt strippable food coatings. 175.230 Section 175.230 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) INDIRECT FOOD ADDITIVES: ADHESIVES AND COMPONENTS OF COATINGS Substances for Use as Components of...

  14. Comparison of structure, morphology, and leach characteristics of multi-phase ceramics produced via melt processing and hot isostatic pressing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dandeneau, Christopher S.; Hong, Tao; Brinkman, Kyle S.

    Melt processing of multi-phase ceramic waste forms offers potential advantages over traditional solid-state synthesis methods given both the prevalence of melters currently in use and the ability to reduce the possibility of airborne radionuclide contamination. In this work, multi-phase ceramics with a targeted hollandite composition of Ba 1.0Cs 0.3Cr 1.0Al 0.3Fe 1.0Ti 5.7O 16 were fabricated by melt processing at 1675 °C and hot isostatic pressing (HIP) at 1250 and 1300 °C. X-ray diffraction analysis (XRD) confirmed hollandite as the major phase in all specimens. Zirconolite/pyrochlore peaks and weaker perovskite reflections were observed after melt processing, while HIP samples displayedmore » prominent perovskite peaks and low-intensity zirconolite reflections. Melt processing produced specimens with large (>50 μm) well-defined hollandite grains, while HIP yielded samples with a more fine-grained morphology. Elemental analysis showed “islands” rich in Cs and Ti across the surface of the 1300 °C HIP sample, suggesting partial melting and partitioning of Cs into multiple phases. Photoemission data revealed multiple Cs 3d spin-orbit pairs for the HIP samples, with the lower binding energy doublets likely corresponding to Cs located in more leachable phases. Among all specimens examined, the melt-processed sample exhibited the lowest fractional release rates for Rb and Cs. However, the retention of Sr and Mo was greater in the HIP specimens.« less

  15. Comparison of structure, morphology, and leach characteristics of multi-phase ceramics produced via melt processing and hot isostatic pressing

    DOE PAGES

    Dandeneau, Christopher S.; Hong, Tao; Brinkman, Kyle S.; ...

    2018-02-08

    Melt processing of multi-phase ceramic waste forms offers potential advantages over traditional solid-state synthesis methods given both the prevalence of melters currently in use and the ability to reduce the possibility of airborne radionuclide contamination. In this work, multi-phase ceramics with a targeted hollandite composition of Ba 1.0Cs 0.3Cr 1.0Al 0.3Fe 1.0Ti 5.7O 16 were fabricated by melt processing at 1675 °C and hot isostatic pressing (HIP) at 1250 and 1300 °C. X-ray diffraction analysis (XRD) confirmed hollandite as the major phase in all specimens. Zirconolite/pyrochlore peaks and weaker perovskite reflections were observed after melt processing, while HIP samples displayedmore » prominent perovskite peaks and low-intensity zirconolite reflections. Melt processing produced specimens with large (>50 μm) well-defined hollandite grains, while HIP yielded samples with a more fine-grained morphology. Elemental analysis showed “islands” rich in Cs and Ti across the surface of the 1300 °C HIP sample, suggesting partial melting and partitioning of Cs into multiple phases. Photoemission data revealed multiple Cs 3d spin-orbit pairs for the HIP samples, with the lower binding energy doublets likely corresponding to Cs located in more leachable phases. Among all specimens examined, the melt-processed sample exhibited the lowest fractional release rates for Rb and Cs. However, the retention of Sr and Mo was greater in the HIP specimens.« less

  16. Influence of processing history on the mechanical properties and electrical resistivity of polycarbonate - multi-walled carbon nanotubes nanocomposites

    NASA Astrophysics Data System (ADS)

    Choong, Gabriel Y. H.; De Focatiis, Davide S. A.

    2015-05-01

    In this work we investigate the effects of compounding temperature and secondary melt processing on the mechanical response and electrical behaviour of polycarbonate filled with 3 wt% carbon nanotubes. The nanocomposites were melt compounded in an industrial setting at a range of temperatures, and subsequently injection moulded or compression moulded. The surface hardness, uniaxial tensile properties and electrical resistivity were measured. Secondary melt processing is found to be the dominant process in determining the final mechanical properties and resistivity of these materials.

  17. Silica-enriched mantle sources of subalkaline picrite-boninite-andesite island arc magmas

    NASA Astrophysics Data System (ADS)

    Bénard, A.; Arculus, R. J.; Nebel, O.; Ionov, D. A.; McAlpine, S. R. B.

    2017-02-01

    Primary arc melts may form through fluxed or adiabatic decompression melting in the mantle wedge, or via a combination of both processes. Major limitations to our understanding of the formation of primary arc melts stem from the fact that most arc lavas are aggregated blends of individual magma batches, further modified by differentiation processes in the sub-arc mantle lithosphere and overlying crust. Primary melt generation is thus masked by these types of second-stage processes. Magma-hosted peridotites sampled as xenoliths in subduction zone magmas are possible remnants of sub-arc mantle and magma generation processes, but are rarely sampled in active arcs. Published studies have emphasised the predominantly harzburgitic lithologies with particularly high modal orthopyroxene in these xenoliths; the former characteristic reflects the refractory nature of these materials consequent to extensive melt depletion of a lherzolitic protolith whereas the latter feature requires additional explanation. Here we present major and minor element data for pristine, mantle-derived, lava-hosted spinel-bearing harzburgite and dunite xenoliths and associated primitive melts from the active Kamchatka and Bismarck arcs. We show that these peridotite suites, and other mantle xenoliths sampled in circum-Pacific arcs, are a distinctive peridotite type not found in other tectonic settings, and are melting residues from hydrous melting of silica-enriched mantle sources. We explore the ability of experimental studies allied with mantle melting parameterisations (pMELTS, Petrolog3) to reproduce the compositions of these arc peridotites, and present a protolith ('hybrid mantle wedge') composition that satisfies the available constraints. The composition of peridotite xenoliths recovered from erupted arc magmas plausibly requires their formation initially via interaction of slab-derived components with refractory mantle prior to or during the formation of primary arc melts. The liquid compositions extracted from these hybrid sources are higher in normative quartz and hypersthene (i.e., they have a more silica-saturated character) in comparison with basalts derived from prior melt-depleted asthenospheric mantle beneath ridges. These primary arc melts range from silica-rich picrite to boninite and high-Mg basaltic andesite along a residual spinel harzburgite cotectic. Silica enrichment in the mantle sources of arc-related, subalkaline picrite-boninite-andesite suites coupled with the amount of water and depth of melting, are important for the formation of medium-Fe ('calc-alkaline') andesite-dacite-rhyolite suites, key lithologies forming the continental crust.

  18. Radioactive scrap metal decontamination technology assessment report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buckentin, J.M.; Damkroger, B.K.; Schlienger, M.E.

    1996-04-01

    Within the DOE complex there exists a tremendous quantity of radioactive scrap metal. As an example, it is estimated that within the gaseous diffusion plants there exists in excess of 700,000 tons of contaminated stainless steel. At present, valuable material is being disposed of when it could be converted into a high quality product. Liquid metal processing represents a true recycling opportunity for this material. By applying the primary production processes towards the material`s decontamination and re-use, the value of the strategic resource is maintained while drastically reducing the volume of material in need of burial. Potential processes for themore » liquid metal decontamination of radioactively contaminated metal are discussed and contrasted. Opportunities and technology development issues are identified and discussed. The processes compared are: surface decontamination; size reduction, packaging and burial; melting technologies; electric arc melting; plasma arc centrifugal treatment; air induction melting; vacuum induction melting; and vacuum induction melting and electroslag remelting.« less

  19. Advanced Cooling for High Power Electric Actuators

    DTIC Science & Technology

    1993-01-01

    heat and heat transfer rates. At point B, the fluid temperature reaches the melting temperature of the PCM and it starts to melt , storing energy in the...working fluid through the duty cycle represented by the square wave in the upper half of the figure. Starting at point A, the actuator goes to peak load...form of latent heat. As the solid material melts , the coolant temperature continues to rise, but at a much lower rate, as the heat conducts through the

  20. Rapid solidification of levitation melted Ni-Sn alloy droplets with high undercooling

    NASA Technical Reports Server (NTRS)

    Shiohara, Yuh; Flemings, Merton C.; Wu, Yanzhong; Piccone, Thomas J.

    1985-01-01

    Experimental results obtained by high-speed optical temperature sensing for the rapid solidification of highly undercooled, levitation-melted Ni-Sn alloy droplets are presented. These data suggest a solidification model proceeding according to overlapping steps: (1) dendritic growth within the bulk undercooled melt, (2) continued recalescence as supersaturation of the interdendritic liquid dissipates, (3) fine-scale remelting within the dendrites, (4) ripening of the fine structure, and (5) solidification of remaining liquid at the end of recalescence.

  1. Formation and metasomatism of continental lithospheric mantle in intra-plate and subduction-related tectonic settings

    NASA Astrophysics Data System (ADS)

    Ionov, Dmitri

    2010-05-01

    Our knowledge of the origin and evolution of the continental lithospheric mantle (CLM) remains fragmentary and partly controversial in spite of recent advances in petrologic, geochemical and geophysical studies of the deep Earth and experimental work. Debate continues on a number of essential topics, like relative contributions of partial melting, metasomatism and ‘re-fertilisation' as well as the timing, conditions and tectonic settings of those processes. These topics can be addressed by studies of ultramafic xenoliths in volcanic rocks which arguably provide the least altered samples of modern and ancient CLM. The subcontinental lithosphere is thought to be a mantle region from which melts have been extracted, thus making the lithosphere more refractory. Melting degrees can be estimated from Al contents while the depth of melt extraction can be assessed from Al-Fe (Mg#) relations in unmetasomatized melting residues in comparison with experimental data, e.g. [1]. High silica and opx in the residues may indicate melting in water-rich conditions. High-precision Mg# and Mn for olivine may constrain degrees and conditions of partial melting and/or metasomatism, tectonic settings, modal compositions (e.g. presence of garnet) and equilibration conditions of mantle peridotites [2]. These estimates require both adequate sampling and high-quality major element and modal data; sampling and analytical uncertainties in published work may contribute substantially to chemical heterogeneities (and different origins) inferred for CLM domains [3]. Very fertile peridotite xenolith suites are rare worldwide [3]. They were initially viewed as representing mantle domains that experienced only very small degrees of melt extraction but are attributed by some workers to ‘refertilization' of refractory mantle by percolating asthenospheric melts. Such alternative mechanisms might be valid for some rare hybrid and Fe-enriched peridotites but they fail to comprehensively explain modal, major and trace element and isotope compositions of fertile lherzolites and thus cannot provide viable alternatives to the concept of melt extraction from pristine mantle as the major mechanism of CLM formation. Published data on xenoliths from andesitic volcanoes and on supra-subduction oceanic peridotites [4] show that the most common rocks in mantle wedge lithosphere are highly refractory harzburgites characterized by a combination of variable but generally high modal opx (18-30%) with very low modal cpx (1.5-3%). At a given olivine (or MgO) content, they have higher opx and silica, and lower cpx, Al and Ca contents than normal refractory peridotite xenoliths in continental basalts; the Mg-Si and Al-Si trends in those rocks resemble those in cratonic peridotites. These features may indicate either fluid fluxing during melting in the mantle wedge or selective post-melting metasomatic enrichments in silica to transform some olivine to opx. High oxygen fugacities and radiogenic Os-isotope compositions in those rocks may be related to enrichments by slab-derived fluids, but these features are not always coupled with trace element enrichments or patterns commonly attributed to "subduction zone metasomatism" deduced from studies of arc volcanic rocks and experiments. The valuable insights provided by experimental work and xenolith case studies are difficult to apply to many natural peridotite series because late-stage processes commonly overlap the evidence for initial melting. References: [1] Herzberg C., J. Petrol. 45: 2507 (2004). [2] Ionov D. & Sobolev A., GCA 72 (S1): A410 (2008). [3] Ionov D., Contrib. Miner. Petrol. (2007) [4] Ionov D., J. Petrol. doi: 10.1093/petrology/egp090 (2010)

  2. Lithospheric processes that enhance melting at rifts

    NASA Astrophysics Data System (ADS)

    Elkins-Tanton, L. T.; Furman, T.

    2008-12-01

    Continental rifts are commonly sites for mantle melting, whether in the form of ridge melting to create new oceanic crust, or as the locus of flood basalt activity, or in the long initial period of rifting before lavas evolve fully into MORBs. The high topography in the lithosphere-asthenosphere boundary under a rift creates mantle upwelling and adiabatic melting even in the absence of a plume. This geometry itself, however, is conducive to lithospheric instability on the sides of the rifts. Unstable lithosphere may founder into the mantle, producing more complex aesthenospheric convective patterns and additional opportunities to produce melt. Lithospheric instabilities can produce additional adiabatic melting in convection produced as they sink, and they may also devolatilize as they sink, introducing the possibility of flux melting to the rift environment. We call this process upside-down melting, since devolatilization and melting proceed as the foundering lithosphere sinks, rather than while rising, as in the more familiar adiabatic decompression melting. Both adiabatic melting and flux melting would take place along the edges of the rift and may even move magmatism outside the rift, as has been seen in Ethiopia. In volcanism postdating the flood basalts on and adjacent to the Ethiopian Plateau there is evidence for both lithospheric thinning and volatile enrichment in the magmas, potentially consistent with the upside-down melting model. Here we present a physical model for the conjunction of adiabatic decompression melting to produce new oceanic crust in the rift, while lithospheric gravitational instabilities drive both adiabatic and flux melting at its margins.

  3. Molecular dynamics study of dual-phase microstructure of Titanium and Zirconium metals during the quenching process

    NASA Astrophysics Data System (ADS)

    Miyazaki, Narumasa; Sato, Kazunori; Shibutani, Yoji

    Dual-phase (DP) transformation, which is composed of felite- and/or martensite- multicomponent microstructural phases, is one of the most effective tools to product functional alloys. To obtain this DP structure such as DP steels and other materials, we usually apply thermal processes such as quenching, tempering and annealing. As the transformation dynamics of DP microstructure depends on conditions of temperature, annealing time, and quenching rate, physical properties of materials are able to be tuned by controlling microstructure type, size, their interfaces and so on. In this study, to understand the behavior of DP transformation and to control physical properties of materials by tuning DP microstructures, we analyze the atomistic dynamics of DP transformation during the quenching process and the detail of DP microstructures by using the molecular dynamics simulations. As target metals of DP transformation, we focus on group 4 transition metals, such as Ti and Zr described by EAM interatomic potentials. For Ti and Zr models we perform molecular dynamics simulations by assuming melt-quenching process from 3000 K to 0 K under the isothermal-isobaric ensemble. During the process for each material, we observe liquid to HCP like transition around the melting temperature, and continuously HCP-BCC like transition around martensitic transformation temperature. Furthermore, we clearly distinguish DP microstructure for each quenched model.

  4. Mantle and crustal contributions to continental flood volcanism

    USGS Publications Warehouse

    Arndt, N.T.; Czamanske, G.K.; Wooden, J.L.; Fedorenko, V.A.

    1993-01-01

    Arndt, N.T., Czamanske, G.K., Wooden, J.L. and Fedorenko, V.A., 1993. Mantle and crustal contributions to continental flood volcanism. In: M.J.R. Wortel, U. Hansen and R. Sabadini (Editors), Relationships between Mantle Processes and Geological Processes at or near the Earth's Surface. Tectonophysics, 223: 39-52. Most continental flood basalts are enriched in incompatible elements and have high initial 87Sr/86Sr ratios and low ??{lunate}Nd values. Many are depleted in Nb and Ta. The commonly-held view that these characteristics are inherited directly from a source in metasomatized lithospheric mantle is inconsistent with the following arguments: (1) thermomechanical modelling demonstrates that flood basalt magmas come mainly from an asthenospheric or plume source, with minimal direct melting of the continental lithospheric mantle. The low water contents of most flood basalts argue against proposals that hydrous lithosphere was the source. (2) Lithospheric mantle normally has low concentrations of incompatible elements, and chondrite-normalized Nb and Ta contents similar to those of other incompatible elements. Such material cannot be the unmodified source of Nb-Ta-depleted basalts such as those from the Karoo, Ferrar, or Columbia River provinces. We suggest there are two main controls on the compositions of continental flood basalts. The first is lithospheric thickness, which strongly influences the depth and degree of mantle melting of a plume or asthenospheric source, and thus has an important influence on the composition of primary magmas. All liquids formed by partial melting of peridotite at sub-lithosphere depths are highly magnesian (20-25 wt.% MgO) but have variable trace-element contents. Where the lithosphere is thick, the source melts at high pressure, garnet is present, the degree of melting is low, and trace-element concentrations are high. This type of magma evolves to produce the high-Ti type of continental flood basalt. Where the lithosphere is thinner, the source ascends to shallower levels, the degree of melting is greater, garnet may be exhausted, and the magmas have lower trace-element contents; these magmas yield low-Ti basalts. The second control is processing of magmas in chambers that were periodically replenished and tapped, while continuously fractionating and assimilating their wall rocks. The uniform compositions of basalts that evolve in such chambers are far removed from those of their picritic parental magmas. Major elements in continental flood basalts reflect control by olivine, pyroxene, and plagioclase crystallization, and this assemblage places the magma chambers at crustal depth. We believe that trace-element and isotopic compositions are also buffered, and that the erupted basalts represent steady-state liquids tapped from these magma chambers. These processes impose a crustal signature on the magmas, as expressed most strongly in the concentrations of incompatible elements (e.g., Nb-Ta anomalies) and their isotopic characteristics. ?? 1993.

  5. Melting Curve of Molecular Crystal GeI4

    NASA Astrophysics Data System (ADS)

    Fuchizaki, Kazuhiro; Hamaya, Nozomu

    2014-07-01

    In situ synchrotron x-ray diffraction measurements were carried out to determine the melting curve of the molecular crystal GeI4. We found that the melting line rapidly increases with a pressure up to about 3 GPa, at which it abruptly breaks. Such a strong nonlinear shape of the melting curve can be approximately captured by the Kumari-Dass-Kechin equation. The parameters involved in the equation could be determined from the equation of state for the crystalline phase, which was also established in the present study. The melting curve predicted from the equation approaches the actual melting curve as the degree of approximation involved in obtaining the equation is improved. However, the treatment is justifiable only if the slope of the melting curve is everywhere continuous. We believe that this is not the case for GeI4's melting line at the breakpoint, as inferred from the nature of breakdown of the Kraut-Kennedy and the Magalinskii-Zubov relationships.The breakpoint may then be a triple point among the crystalline phase and two possible liquid phases.

  6. Materials and manufacturing processes for increased life/reliability. [of turbine wheels

    NASA Technical Reports Server (NTRS)

    Duttweiler, R. E.

    1977-01-01

    Improvements in both quality and durability of disk raw material for both military and commercial engines necessitated an entirely new concept in raw material process control which imposes careful selection, screening and sampling of the basic alloy ingredients, followed by careful monitoring of the melting parameters in all phases of the vacuum melting sequence. Special care is taken to preclude solidification conditions that produce adverse levels of segregation. Melt furnaces are routinely cleaned and inspected for contamination. Ingots are also cleaned and inspected before entering the final melt step.

  7. Compressible magma/mantle dynamics: 3-D, adaptive simulations in ASPECT

    NASA Astrophysics Data System (ADS)

    Dannberg, Juliane; Heister, Timo

    2016-12-01

    Melt generation and migration are an important link between surface processes and the thermal and chemical evolution of the Earth's interior. However, their vastly different timescales make it difficult to study mantle convection and melt migration in a unified framework, especially for 3-D global models. And although experiments suggest an increase in melt volume of up to 20 per cent from the depth of melt generation to the surface, previous computations have neglected the individual compressibilities of the solid and the fluid phase. Here, we describe our extension of the finite element mantle convection code ASPECT that adds melt generation and migration. We use the original compressible formulation of the McKenzie equations, augmented by an equation for the conservation of energy. Applying adaptive mesh refinement to this type of problems is particularly advantageous, as the resolution can be increased in areas where melt is present and viscosity gradients are high, whereas a lower resolution is sufficient in regions without melt. Together with a high-performance, massively parallel implementation, this allows for high-resolution, 3-D, compressible, global mantle convection simulations coupled with melt migration. We evaluate the functionality and potential of this method using a series of benchmarks and model setups, compare results of the compressible and incompressible formulation, and show the effectiveness of adaptive mesh refinement when applied to melt migration. Our model of magma dynamics provides a framework for modelling processes on different scales and investigating links between processes occurring in the deep mantle and melt generation and migration. This approach could prove particularly useful applied to modelling the generation of komatiites or other melts originating in greater depths. The implementation is available in the Open Source ASPECT repository.

  8. Welding pool measurement using thermal array sensor

    NASA Astrophysics Data System (ADS)

    Cho, Chia-Hung; Hsieh, Yi-Chen; Chen, Hsin-Yi

    2015-08-01

    Selective laser melting (SLM) is an additive manufacturing (AM) technology that uses a high-power laser beam to melt metal powder in chamber of inert gas. The process starts by slicing the 3D CAD data as a digital information source into layers to create a 2D image of each layer. Melting pool was formed by using laser irradiation on metal powders which then solidified to consolidated structure. In a selective laser melting process, the variation of melt pool affects the yield of a printed three-dimensional product. For three dimensional parts, the border conditions of the conductive heat transport have a very large influence on the melt pool dimensions. Therefore, melting pool is an important behavior that affects the final quality of the 3D object. To meet the temperature and geometry of the melting pool for monitoring in additive manufacturing technology. In this paper, we proposed the temperature sensing system which is composed of infrared photodiode, high speed camera, band-pass filter, dichroic beam splitter and focus lens. Since the infrared photodiode and high speed camera look at the process through the 2D galvanometer scanner and f-theta lens, the temperature sensing system can be used to observe the melting pool at any time, regardless of the movement of the laser spot. In order to obtain a wide temperature detecting range, 500 °C to 2500 °C, the radiation from the melting pool to be measured is filtered into a plurality of radiation portions, and since the intensity ratio distribution of the radiation portions is calculated by using black-body radiation. The experimental result shows that the system is suitable for melting pool to measure temperature.

  9. Precipitation-snowmelt timing and snowmelt augmentation of large peak flow events, western Cascades, Oregon

    NASA Astrophysics Data System (ADS)

    Jennings, Keith; Jones, Julia A.

    2015-09-01

    This study tested multiple hydrologic mechanisms to explain snowpack dynamics in extreme rain-on-snow floods, which occur widely in the temperate and polar regions. We examined 26, 10 day large storm events over the period 1992-2012 in the H.J. Andrews Experimental Forest in western Oregon, using statistical analyses (regression, ANOVA, and wavelet coherence) of hourly snowmelt lysimeter, air and dewpoint temperature, wind speed, precipitation, and discharge data. All events involved snowpack outflow, but only seven events had continuous net snowpack outflow, including three of the five top-ranked peak discharge events. Peak discharge was not related to precipitation rate, but it was related to the 10 day sum of precipitation and net snowpack outflow, indicating an increased flood response to continuously melting snowpacks. The two largest peak discharge events in the study had significant wavelet coherence at multiple time scales over several days; a distribution of phase differences between precipitation and net snowpack outflow at the 12-32 h time scale with a sharp peak at π/2 radians; and strongly correlated snowpack outflow among lysimeters representing 42% of basin area. The recipe for an extreme rain-on-snow event includes persistent, slow melt within the snowpack, which appears to produce a near-saturated zone within the snowpack throughout the landscape, such that the snowpack may transmit pressure waves of precipitation directly to streams, and this process is synchronized across the landscape. Further work is needed to understand the internal dynamics of a melting snowpack throughout a snow-covered landscape and its contribution to extreme rain-on-snow floods.

  10. Advanced optic fabrication using ultrafast laser radiation

    NASA Astrophysics Data System (ADS)

    Taylor, Lauren L.; Qiao, Jun; Qiao, Jie

    2016-03-01

    Advanced fabrication and finishing techniques are desired for freeform optics and integrated photonics. Methods including grinding, polishing and magnetorheological finishing used for final figuring and polishing of such optics are time consuming, expensive, and may be unsuitable for complex surface features while common photonics fabrication techniques often limit devices to planar geometries. Laser processing has been investigated as an alternative method for optic forming, surface polishing, structure writing, and welding, as direct tuning of laser parameters and flexible beam delivery are advantageous for complex freeform or photonics elements and material-specific processing. Continuous wave and pulsed laser radiation down to the nanosecond regime have been implemented to achieve nanoscale surface finishes through localized material melting, but the temporal extent of the laser-material interaction often results in the formation of a sub-surface heat affected zone. The temporal brevity of ultrafast laser radiation can allow for the direct vaporization of rough surface asperities with minimal melting, offering the potential for smooth, final surface quality with negligible heat affected material. High intensities achieved in focused ultrafast laser radiation can easily induce phase changes in the bulk of materials for processing applications. We have experimentally tested the effectiveness of ultrafast laser radiation as an alternative laser source for surface processing of monocrystalline silicon. Simulation of material heating associated with ultrafast laser-material interaction has been performed and used to investigate optimized processing parameters including repetition rate. The parameter optimization process and results of experimental processing will be presented.

  11. Making mushy magma chambers in the lower continental crust: Cold storage and compositional bimodality

    NASA Astrophysics Data System (ADS)

    Jackson, Matthew; Blundy, Jon; Sparks, Steve

    2017-04-01

    Increasing geological and geophysical evidence suggests that crustal magma reservoirs are normally low melt fraction 'mushes' rather than high melt fraction 'magma chambers'. Yet high melt fractions must form within these mush reservoirs to explain the observed flow and eruption of low crystallinity magmas. In many models, crystallinity is linked directly to temperature, with higher temperature corresponding to lower crystallinity (higher melt fraction). However, increasing temperature yields less evolved (silicic) melt composition for a given starting material. If mobile, low crystallinity magmas require high temperature, it is difficult to explain how they can have evolved composition. Here we use numerical modelling to show that reactive melt flow in a porous and permeable mush reservoir formed by the intrusion of numerous basaltic sills into the lower continental crust produces magma in high melt fraction (> 0.5) layers akin to conventional magma chambers. These magma-chamber-like layers contain evolved (silicic) melt compositions and form at low (close to solidus) temperatures near the top of the mush reservoir. Evolved magma is therefore kept in 'cold storage' at low temperature, but also at low crystallinity so the magma is mobile and can leave the mush reservoir. Buoyancy-driven reactive flow and accumulation of melt in the mush reservoir controls the temperature and composition of magma that can leave the reservoir. The modelling also shows that processes in lower crustal mush reservoirs produce mobile magmas that contain melt of either silicic or mafic composition. Intermediate melt compositions are present but are not within mobile magmas. Silicic melt compositions are found at high melt fraction within the magma-chamber like layers near the top of the mush reservoir. Mafic melt compositions are found at high melt fraction within the cooling sills. Melt elsewhere in the reservoir has intermediate composition, but remains trapped in the reservoir because the local melt fraction is too low to form a mobile magma. The model results are consistent with geochemical data suggesting that lower crustal magma reservoirs supply silicic and mafic melts to arc volcanoes, but intermediate magmas are formed by mixing in shallower reservoirs. We suggest here that lower crustal magma chambers primarily form in response to changes in bulk composition caused by melt migration and chemical reaction in a mush reservoir. This process is different to the conventional and widely applied models of magma chamber formation. Similar processes are likely to operate in shallow mush reservoirs, but will likely be further complicated by the presence of volatile phases, and mixing of different melt compositions sourced from deeper mush reservoirs.

  12. Computational-Experimental Processing of Boride/Carbide Composites by Reactive Infusion of Hf Alloy Melts into B4C

    DTIC Science & Technology

    2015-09-16

    AFRL-AFOSR-VA-TR-2015-0314 Computational -Experimental Processing of Boride /Carbide Composites by Reactive Infusion of Hf Alloy Melts into B4C...Computational -Experimental Processing of Boride /Carbide Composites by Reactive Infusion of Hf Alloy Melts into B4C 5a.  CONTRACT NUMBER 5b.  GRANT...with a packed bed of B4C to form boride - carbide precipitates. Although the ultimate goal of the research endeavor is to enhance significantly the

  13. Neutralization of cement-asbestos waste by melting in an arc-resistance furnace.

    PubMed

    Witek, Jerzy; Kusiorowski, Robert

    2017-11-01

    The paper presents the results of research on asbestos waste disposal by the melting process. The tests were carried out in a laboratory arc-resistance electric furnace. The obtained results showed that the fibrous structure of asbestos contained in cement-asbestos waste was completely destroyed. This led to the formation of new mineral phases without dangerous properties. The melting test was conducted on raw cement-asbestos samples without any additives and with a content of mineral compounds, the aim of which was to support the melting process. The additives were selected among others on the basis of the computer simulation results carried out using FactSage database computing system. The research results indicate that the melting process of asbestos wastes is a potential and interesting method of neutralizing hazardous asbestos waste, which allows for further treatment and material recycling. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. In situ study on atomic mechanism of melting and freezing of single bismuth nanoparticles

    PubMed Central

    Li, Yingxuan; Zang, Ling; Jacobs, Daniel L.; Zhao, Jie; Yue, Xiu; Wang, Chuanyi

    2017-01-01

    Experimental study of the atomic mechanism in melting and freezing processes remains a formidable challenge. We report herein on a unique material system that allows for in situ growth of bismuth nanoparticles from the precursor compound SrBi2Ta2O9 under an electron beam within a high-resolution transmission electron microscope (HRTEM). Simultaneously, the melting and freezing processes within the nanoparticles are triggered and imaged in real time by the HRTEM. The images show atomic-scale evidence for point defect induced melting, and a freezing mechanism mediated by crystallization of an intermediate ordered liquid. During the melting and freezing, the formation of nucleation precursors, nucleation and growth, and the relaxation of the system, are directly observed. Based on these observations, an interaction–relaxation model is developed towards understanding the microscopic mechanism of the phase transitions, highlighting the importance of cooperative multiscale processes. PMID:28194017

  15. In situ study on atomic mechanism of melting and freezing of single bismuth nanoparticles

    NASA Astrophysics Data System (ADS)

    Li, Yingxuan; Zang, Ling; Jacobs, Daniel L.; Zhao, Jie; Yue, Xiu; Wang, Chuanyi

    2017-02-01

    Experimental study of the atomic mechanism in melting and freezing processes remains a formidable challenge. We report herein on a unique material system that allows for in situ growth of bismuth nanoparticles from the precursor compound SrBi2Ta2O9 under an electron beam within a high-resolution transmission electron microscope (HRTEM). Simultaneously, the melting and freezing processes within the nanoparticles are triggered and imaged in real time by the HRTEM. The images show atomic-scale evidence for point defect induced melting, and a freezing mechanism mediated by crystallization of an intermediate ordered liquid. During the melting and freezing, the formation of nucleation precursors, nucleation and growth, and the relaxation of the system, are directly observed. Based on these observations, an interaction-relaxation model is developed towards understanding the microscopic mechanism of the phase transitions, highlighting the importance of cooperative multiscale processes.

  16. In situ study on atomic mechanism of melting and freezing of single bismuth nanoparticles.

    PubMed

    Li, Yingxuan; Zang, Ling; Jacobs, Daniel L; Zhao, Jie; Yue, Xiu; Wang, Chuanyi

    2017-02-13

    Experimental study of the atomic mechanism in melting and freezing processes remains a formidable challenge. We report herein on a unique material system that allows for in situ growth of bismuth nanoparticles from the precursor compound SrBi 2 Ta 2 O 9 under an electron beam within a high-resolution transmission electron microscope (HRTEM). Simultaneously, the melting and freezing processes within the nanoparticles are triggered and imaged in real time by the HRTEM. The images show atomic-scale evidence for point defect induced melting, and a freezing mechanism mediated by crystallization of an intermediate ordered liquid. During the melting and freezing, the formation of nucleation precursors, nucleation and growth, and the relaxation of the system, are directly observed. Based on these observations, an interaction-relaxation model is developed towards understanding the microscopic mechanism of the phase transitions, highlighting the importance of cooperative multiscale processes.

  17. Liquid Crystalline Thermosets from Ester, Ester-imide, and Ester-amide Oligomers

    NASA Technical Reports Server (NTRS)

    Dingemans, Theodorus J. (Inventor); Weiser, Erik S. (Inventor); St. Clair, Terry L. (Inventor)

    2009-01-01

    Main chain thermotropic liquid crystal esters, ester-imides, and ester-amides were prepared from AA, BB, and AB type monomeric materials and end-capped with phenylacetylene, phenylmaleimide, or nadimide reactive end-groups. The end-capped liquid crystal oligomers are thermotropic and have, preferably, molecular weights in the range of approximately 1000-15,000 grams per mole. The end-capped liquid crystaloligomers have broad liquid crystalline melting ranges and exhibit high melt stability and very low melt viscosities at accessible temperatures. The end-capped liquid crystal oli-gomers are stable forup to an hour in the melt phase. They are highly processable by a variety of melt process shape forming and blending techniques. Once processed and shaped, the end-capped liquid crystal oigomers were heated to further polymerize and form liquid crystalline thermosets (LCT). The fully cured products are rubbers above their glass transition temperatures.

  18. Production of Synthetic Nuclear Melt Glass

    PubMed Central

    Molgaard, Joshua J.; Auxier, John D.; Giminaro, Andrew V.; Oldham, Colton J.; Gill, Jonathan; Hall, Howard L.

    2016-01-01

    Realistic surrogate nuclear debris is needed within the nuclear forensics community to test and validate post-detonation analysis techniques. Here we outline a novel process for producing bulk surface debris using a high temperature furnace. The material developed in this study is physically and chemically similar to trinitite (the melt glass produced by the first nuclear test). This synthetic nuclear melt glass is assumed to be similar to the vitrified material produced near the epicenter (ground zero) of any surface nuclear detonation in a desert environment. The process outlined here can be applied to produce other types of nuclear melt glass including that likely to be formed in an urban environment. This can be accomplished by simply modifying the precursor matrix to which this production process is applied. The melt glass produced in this study has been analyzed and compared to trinitite, revealing a comparable crystalline morphology, physical structure, void fraction, and chemical composition. PMID:26779720

  19. A New Spinel-Olivine Oxybarometer: Near-Liquidus Partitioning of V between Olivine-Melt, Spinel-Melt, and Spinel-Olivine in Martian Basalt Composition Y980459 as a Function of Oxygen Fugacity

    NASA Technical Reports Server (NTRS)

    Papike, J. J.; Le, L.; Burger, P. V.; Shearer, C. K.; Bell, A. S.; Jones, J.

    2013-01-01

    Our research on valence state partitioning began in 2005 with a review of Cr, Fe, Ti, and V partitioning among crystallographic sites in olivine, pyroxene, and spinel [1]. That paper was followed by several on QUE94201 melt composition and specifically on Cr, V, and Eu partitioning between pyroxene and melt [2-5]. This paper represents the continuation of our examination of the partitioning of multivalent V between olivine, spinel, and melt in martian olivine-phyric basalts of Y980459 composition [6, 7]. Here we introduce a new, potentially powerful oxybarometer, V partitioning between spinel and olivine, which can be used when no melt is preserved in the meteorite. The bulk composition of QUE94201 was ideal for our study of martian pyroxene-phyric basalts and specifically the partitioning between pyroxene-melt for Cr, V, and Eu. Likewise, bulk composition Y980459 is ideal for the study of martian olivine-phyric basalts and specifically for olivine-melt, spinel-melt, and spinel-olivine partitioning of V as a function of oxygen fugacity.

  20. Evaluation of alloy 690 process pot at the contact with borosilicate melt pool during vitrification of high-level nuclear waste

    NASA Astrophysics Data System (ADS)

    Sengupta, Pranesh; Kaushik, C. P.; Kale, G. B.; Das, D.; Raj, K.; Sharma, B. P.

    2009-08-01

    Understanding the material behaviour under service conditions is essential to enhance the life span of alloy 690 process pot used in vitrification of high-level nuclear waste. During vitrification process, interaction of alloy 690 with borosilicate melt takes place for substantial time period. Present experimental studies show that such interactions may result in Cr carbide precipitation along grain boundaries, Cr depletion in austenitic matrix and intergranular attack close to alloy 690/borosilicate melt pool interfaces. Widths of Cr depleted zone within alloy 690 is found to follow kinetics of the type x = 10.9 × 10 -6 + 1 × 10 -8t1/2 m. Based on the experimental results it is recommended that compositional modification of alloy 690 process pot adjacent to borosilicate melt pool need to be considered seriously for any efforts towards reduction and/or prevention of process pot failures.

  1. Anatomy of a late spring snowfall on sea ice

    NASA Astrophysics Data System (ADS)

    Perovich, Donald; Polashenski, Christopher; Arntsen, Alexandra; Stwertka, Carolyn

    2017-03-01

    Spring melt initiation is a critical process for Arctic sea ice. Melting conditions decrease surface albedo at a time of high insolation, triggering powerful albedo feedback. Weather events during melt initiation, such as new snowfalls, can stop or reverse the albedo decline, however. Here we present field observations of such a snow event and demonstrate its enduring impact through summer. Snow fell 3-6 June 2014 in the Chukchi Sea, halting melt onset. The snow not only raised albedo but also provided a significant negative latent heat flux, averaging -51 W m-2 from 3 to 6 June. The snowfall delayed sustained melt by 11 days, creating cascading impacts on surface energy balance that totaled some 135 MJ/m2 by mid-August. The findings highlight the sensitivity of sea ice conditions on seasonal time scales to melt initiation processes.

  2. Development of a floating drug delivery system with superior buoyancy in gastric fluid using hot-melt extrusion coupled with pressurized CO₂.

    PubMed

    Almutairy, B K; Alshetaili, A S; Ashour, E A; Patil, H; Tiwari, R V; Alshehri, S M; Repka, M A

    2016-03-01

    The present study aimed to develop a continuous single-step manufacturing platform to prepare a porous, low-density, and floating multi-particulate system (mini-tablet, 4 mm size). This process involves injecting inert, non-toxic pressurized CO₂gas (P-CO₂) in zone 4 of a 16-mm hot-melt extruder (HME) to continuously generate pores throughout the carrier matrix. Unlike conventional methods for preparing floating drug delivery systems, additional chemical excipients and additives are not needed in this approach to create minute openings on the surface of the matrices. The buoyancy efficiency of the prepared floating system (injection of P-CO₂) in terms of lag time (0 s) significantly improved (P < 0.05), compared to the formulation prepared by adding the excipient sodium bicarbonate (lag time 120 s). The main advantages of this novel manufacturing technique include: (i) no additional chemical excipients need to be incorporated in the formulation, (ii) few manufacturing steps are required, (iii) high buoyancy efficiency is attained, and (iv) the extrudate is free of toxic solvent residues. Floating mini-tablets containing acetaminophen (APAP) as a model drug within the matrix-forming carrier (Eudragit® RL PO) have been successfully processed via this combined technique (P-CO₂/HME). Desired controlled release profile of APAP from the polymer Eudragit® RL PO is attained in the optimized formulation, which remains buoyant on the surface of gastric fluids prior to gastric emptying time (average each 4 h).

  3. Hot-Melt Extrusion: from Theory to Application in Pharmaceutical Formulation.

    PubMed

    Patil, Hemlata; Tiwari, Roshan V; Repka, Michael A

    2016-02-01

    Hot-melt extrusion (HME) is a promising technology for the production of new chemical entities in the developmental pipeline and for improving products already on the market. In drug discovery and development, industry estimates that more than 50% of active pharmaceutical ingredients currently used belong to the biopharmaceutical classification system II (BCS class II), which are characterized as poorly water-soluble compounds and result in formulations with low bioavailability. Therefore, there is a critical need for the pharmaceutical industry to develop formulations that will enhance the solubility and ultimately the bioavailability of these compounds. HME technology also offers an opportunity to earn intellectual property, which is evident from an increasing number of patents and publications that have included it as a novel pharmaceutical formulation technology over the past decades. This review had a threefold objective. First, it sought to provide an overview of HME principles and present detailed engineered extrusion equipment designs. Second, it included a number of published reports on the application of HME techniques that covered the fields of solid dispersions, microencapsulation, taste masking, targeted drug delivery systems, sustained release, films, nanotechnology, floating drug delivery systems, implants, and continuous manufacturing using the wet granulation process. Lastly, this review discussed the importance of using the quality by design approach in drug development, evaluated the process analytical technology used in pharmaceutical HME monitoring and control, discussed techniques used in HME, and emphasized the potential for monitoring and controlling hot-melt technology.

  4. Mixing Silicate Melts with High Viscosity Contrast by Chaotic Dynamics: Results from a New Experimental Device

    NASA Astrophysics Data System (ADS)

    de Campos, Cristina; Perugini, Diego; Ertel-Ingrisch, Werner; Dingwell, Donald B.; Poli, Giampiero

    2010-05-01

    A new experimental device has been developed to perform chaotic mixing between high viscosity melts under controlled fluid-dynamic conditions. The apparatus is based on the Journal Bearing System (JBS). It consists of an outer cylinder hosting the melts of interest and an inner cylinder, which is eccentrically located. Both cylinders can be independently moved to generate chaotic streamlines in the mixing system. Two experiments were performed using as end-members different proportions of a peralkaline haplogranite and a mafic melt, corresponding to the 1 atm eutectic composition in the An-Di binary system. The two melts were stirred together in the JBS for ca. two hours, at 1,400° C and under laminar fluid dynamic condition (Re of the order of 10-7). The viscosity ratio between the two melts, at the beginning of the experiment, was of the order of 103. Optical analyses of experimental samples revealed, at short length scale (of the order of μm), a complex pattern of mixed structures. These consisted of an intimate distribution of filaments; a complex inter-fingering of the two melts. Such features are typically observed in rocks thought to be produced by magma mixing processes. Stretching and folding dynamics between the melts induced chaotic flow fields and generated wide compositional interfaces. In this way, chemical diffusion processes become more efficient, producing melts with highly heterogeneous compositions. A remarkable modulation of compositional fields has been obtained by performing short time-scale experiments and using melts with a high viscosity ratio. This indicates that chaotic mixing of magmas can be a very efficient process in modulating compositional variability in igneous systems, especially under high viscosity ratios and laminar fluid-dynamic regimes. Our experimental device may replicate magma mixing features, observed in natural rocks, and therefore open new frontiers in the study of this important petrologic and volcanological process.

  5. Model of melting (crystallization) process of the condensed disperse phase in the smoky plasmas

    NASA Astrophysics Data System (ADS)

    Dragan, G. S.; Kolesnikov, K. V.; Kutarov, V. V.

    2018-01-01

    The paper presents an analysis of the causes of a formation of spatial ordered grain structures in a smoky plasma. We are modeling the process of melting (crystallization) of a condensed phase in this environment taking into account the screened electrostatic interaction and the diffusion-drift force. We discuss an influence of the charge on the melting temperatures.

  6. Electropolishing of Re-melted SLM Stainless Steel 316L Parts Using Deep Eutectic Solvents: 3 × 3 Full Factorial Design

    NASA Astrophysics Data System (ADS)

    Alrbaey, K.; Wimpenny, D. I.; Al-Barzinjy, A. A.; Moroz, A.

    2016-07-01

    This three-level three-factor full factorial study describes the effects of electropolishing using deep eutectic solvents on the surface roughness of re-melted 316L stainless steel samples produced by the selective laser melting (SLM) powder bed fusion additive manufacturing method. An improvement in the surface finish of re-melted stainless steel 316L parts was achieved by optimizing the processing parameters for a relatively environmentally friendly (`green') electropolishing process using a Choline Chloride ionic electrolyte. The results show that further improvement of the response value-average surface roughness ( Ra) can be obtained by electropolishing after re-melting to yield a 75% improvement compared to the as-built Ra. The best Ra value was less than 0.5 μm, obtained with a potential of 4 V, maintained for 30 min at 40 °C. Electropolishing has been shown to be effective at removing the residual oxide film formed during the re-melting process. The material dissolution during the process is not homogenous and is directed preferentially toward the iron and nickel, leaving the surface rich in chromium with potentially enhanced properties. The re-melted and polished surface of the samples gave an approximately 20% improvement in fatigue life at low stresses (approximately 570 MPa). The results of the study demonstrate that a combination of re-melting and electropolishing provides a flexible method for surface texture improvement which is capable of delivering a significant improvement in surface finish while holding the dimensional accuracy of parts within an acceptable range.

  7. Solvent free low-melt viscosity imide oligomers and thermosetting polymide composites

    NASA Technical Reports Server (NTRS)

    Chuang, Chun-Hua (Inventor)

    2012-01-01

    .[.This invention relates to the composition and a solvent-free process for preparing novel imide oligomers and polymers specifically formulated with effective amounts of a dianhydride such as 2,3,3',4-biphenyltetra carboxylic dianydride (a-BPDA), at least one aromatic diamine and an endcapped of 4-phenylethynylphthalic anhydride (PEPA) or nadic anhydride to produce imide oligomers that possess a low-melt viscosity of 1-60 poise at 260-280.degree. C. When the imide oligomer melt is cured at about 371.degree. C. in a press or autoclave under 100-500 psi, the melt resulted in a thermoset polyimide having a glass transition temperature (T.sub.g) equal to and above 310.degree. C. A novel feature of this process is that the monomers; namely the dianhydrides, diamines and the endcaps, are melt processable to form imide oligomers at temperatures ranging between 232-280.degree. C. (450-535.degree. F.) without any solvent. These low-melt imide oligomers can be easily processed by resin transfer molding (RTM), vacuum-assisted resin transfer molding (VARTM) or the resin infusion process with fiber preforms e.g. carbon, glass or quartz preforms to produce polyimide matrix composites with 288-343.degree. C. (550-650.degree. F.) high temperature performance capability..]. .Iadd.This invention relates to compositions and a solvent-free reaction process for preparing imide oligomers and polymers specifically derived from effective amounts of dianhydrides such as 2,3,3',4'-biphenyltetracarboxylic dianhydride (a-BPDA), at least one aromatic polyamine and an end-cap such as 4-phenylethynyphthalic anhydride (PEPA) or nadic anhydride to produce imide oligomers that possess a low-melt viscosity of 1-60 poise at 260.degree. C.-280.degree. C..Iaddend.

  8. Partial melting of lower oceanic crust gabbro: Constraints from poikilitic clinopyroxene primocrysts

    NASA Astrophysics Data System (ADS)

    Leuthold, Julien; Lissenberg, C. Johan; O'Driscoll, Brian; Karakas, Ozge; Falloon, Trevor; Klimentyeva, Dina N.; Ulmer, Peter

    2018-03-01

    Successive magma batches underplate, ascend, stall and erupt along spreading ridges, building the oceanic crust. It is therefore important to understand the processes and conditions under which magma differentiates at mid ocean ridges. Although fractional crystallization is considered to be the dominant mechanism for magma differentiation, open-system igneous complexes also experience Melting-Assimilation-Storage-Hybridization (MASH, Hildreth and Moorbath, 1988) processes. Here, we examine crystal-scale records of partial melting in lower crustal gabbroic cumulates from the slow-spreading Atlantic oceanic ridge (Kane Megamullion; collected with Jason ROV) and the fast-spreading East Pacific Rise (Hess Deep; IODP expedition 345). Clinopyroxene oikocrysts in these gabbros preserve marked intra-crystal geochemical variations that point to crystallization-dissolution episodes of the gabbro eutectic assemblage. Kane Megamullion and Hess Deep clinopyroxene core1 primocrysts and their plagioclase inclusions indicate crystallization from high temperature basalt (>1160 and >1200°C, respectively), close to clinopyroxene saturation temperature (<50% and <25% crystallization). Step-like compatible Cr (and co-varying Al) and incompatible Ti, Zr, Y and rare earth elements (REE) decrease from anhedral core1 to overgrown core2, while Mg# and Sr/Sr* ratios increase. We show that partial resorption textures and geochemical zoning result from partial melting of REE-poor lower oceanic crust gabbroic cumulate (protolith) following intrusion by hot primitive mantle-derived melt, and subsequent overgrowth crystallization (refertilization) from a hybrid melt. In addition, towards the outer rims of crystals, Ti, Zr, Y and the REE strongly increase and Al, Cr, Mg#, Eu/Eu* and Sr/Sr* decrease, suggesting crystallization either from late-stage percolating relatively differentiated melt or from in situ trapped melt. Intrusion of primitive hot reactive melt and percolation of interstitial differentiated melt are two distinct MASH processes in the lower oceanic crust. They are potentially fundamental mechanisms for generating the wide compositional variation observed in mid-ocean ridge basalts. We furthermore propose that such processes operate at both slow- and fast-spreading ocean ridges. Thermal numerical modelling shows that the degree of lower crustal partial melting at slow-spreading ridges can locally increase up to 50%, but the overall crustal melt volume is low (less than ca. 5% of total mantle-derived and crustal melts; ca. 20% in fast-spreading ridges).

  9. 40 CFR 98.145 - Procedures for estimating missing data.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... PROGRAMS (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Glass Production § 98.145 Procedures for estimating... carbonate-based raw materials charged to any continuous glass melting furnace use the best available...

  10. 40 CFR 98.145 - Procedures for estimating missing data.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... PROGRAMS (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Glass Production § 98.145 Procedures for estimating... carbonate-based raw materials charged to any continuous glass melting furnace use the best available...

  11. Electron-Beam Atomic Spectroscopy for In Situ Measurements of Melt Composition for Refractory Metals: Analysis of Fundamental Physics and Plasma Models

    NASA Astrophysics Data System (ADS)

    Gasper, Paul Joseph; Apelian, Diran

    2015-04-01

    Electron-beam (EB) melting is used for the processing of refractory metals, such as Ta, Nb, Mo, and W. These metals have high value and are critical to many industries, including the semiconductor, aerospace, and nuclear industries. EB melting can also purify secondary feedstock, enabling the recovery and recycling of these materials. Currently, there is no method for measuring melt composition in situ during EB melting. Optical emission spectroscopy of the plasma generated by EB impact with vapor above the melt, a technique here termed electron-beam atomic spectroscopy, can be used to measure melt composition in situ, allowing for analysis of melt dynamics, facilitating improvement of EB melting processes and aiding recycling and recovery of these critical and high-value metals. This paper reviews the physics of the plasma generation by EB impact by characterizing the densities and energies of electrons, ions, and neutrals, and describing the interactions between them. Then several plasma models are introduced and their suitability to this application analyzed. Lastly, a potential method for calibration-free composition measurement is described and the challenges for implementation addressed.

  12. On the impact of ice-ocean interaction on Greenland glaciers versus calving speed.

    NASA Astrophysics Data System (ADS)

    Rignot, E. J.; Menemenlis, D.; Morlighem, M.; Wood, M.; Millan, R.; Mouginot, J.; An, L.

    2016-12-01

    Glacier retreat from frontal ablation is a delicate balance between subaqueous melt, calving processes and bed geometry. Here, we model subaqueous melt from a large number of Greenland tidewater glaciers using generalized 3D, high resolution simulations of ice melt from the MITgcm ocean model constrained by subglacial melt from RACMO2.3 and ISSM, ocean temperature from ECCO2-4km Arctic, and bed topography from OMG and MC for 1992-2015. The results are analyzed in combination with ice-front retreat and glacier speed from Landsat and imaging radar data since the 1990s. We find that subaqueous melt is 2-3 times greater in summer than in winter and doubled in magnitude since the 1990s because of enhanced ice sheet runoff and warmer ocean temperature. Glaciers that retreated rapidly are characterized by subaqueous melt rates comparable to their calving speed and favorable bed geometry. Glaciers dominated by calving processes are in contrast more resilient to thermal forcing from the ocean, especially in the presence of stabilizing geometry. The study highlights the fundamental importance of calving processes in controlling glacier retreat in Greenland.

  13. Energy-efficient modification of reduction-melting for lead recovery from cathode ray tube funnel glass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Okada, Takashi, E-mail: t-okada@u-fukui.ac.jp; Yonezawa, Susumu

    2013-08-15

    Highlights: • We recovered Pb from cathode ray tube funnel glass using reduction melting process. • We modified the melting process to achieve Pb recovery with low energy consumption. • Pb in the funnel glass is efficiently recovered at 1000 °C by adding Na{sub 2}CO{sub 3}. • Pb remaining in the glass after reduction melting is extracted with 1 M HCl. • 98% of Pb in the funnel glass was recovered by reduction melting and HCl leaching. - Abstract: Lead can be recovered from funnel glass of waste cathode ray tubes via reduction melting. While low-temperature melting is necessary formore » reduced energy consumption, previously proposed methods required high melting temperatures (1400 °C) for the reduction melting. In this study, the reduction melting of the funnel glass was performed at 900–1000 °C using a lab-scale reactor with varying concentrations of Na{sub 2}CO{sub 3} at different melting temperatures and melting times. The optimum Na{sub 2}CO{sub 3} dosage and melting temperature for efficient lead recovery was 0.5 g per 1 g of the funnel glass and 1000 °C respectively. By the reduction melting with the mentioned conditions, 92% of the lead in the funnel glass was recovered in 60 min. However, further lead recovery was difficult because the rate of the lead recovery decreased as with the recovery of increasing quantity of the lead from the glass. Thus, the lead remaining in the glass after the reduction melting was extracted with 1 M HCl, and the lead recovery improved to 98%.« less

  14. The melting and solidification of nanowires

    NASA Astrophysics Data System (ADS)

    Florio, B. J.; Myers, T. G.

    2016-06-01

    A mathematical model is developed to describe the melting of nanowires. The first section of the paper deals with a standard theoretical situation, where the wire melts due to a fixed boundary temperature. This analysis allows us to compare with existing results for the phase change of nanospheres. The equivalent solidification problem is also examined. This shows that solidification is a faster process than melting; this is because the energy transfer occurs primarily through the solid rather than the liquid which is a poorer conductor of heat. This effect competes with the energy required to create new solid surface which acts to slow down the process, but overall conduction dominates. In the second section, we consider a more physically realistic boundary condition, where the phase change occurs due to a heat flux from surrounding material. This removes the singularity in initial melt velocity predicted in previous models of nanoparticle melting. It is shown that even with the highest possible flux the melting time is significantly slower than with a fixed boundary temperature condition.

  15. The effect of salt on the melting of ice: A molecular dynamics simulation study.

    PubMed

    Kim, Jun Soo; Yethiraj, Arun

    2008-09-28

    The effect of added salt (NaCl) on the melting of ice is studied using molecular dynamics simulations. The equilibrium freezing point depression observed in the simulations is in good agreement with experimental data. The kinetic aspects of melting are investigated in terms of the exchange of water molecules between ice and the liquid phase. The ice/liquid equilibrium is a highly dynamic process with frequent exchange of water molecules between ice and the liquid phase. The balance is disturbed when ice melts and the melting proceeds in two stages; the inhibition of the association of water molecules to the ice surface at short times, followed by the increased dissociation of water molecules from the ice surface at longer times. We also find that Cl(-) ions penetrate more deeply into the interfacial region than Na(+) ions during melting. This study provides an understanding of the kinetic aspects of melting that could be useful in other processes such as the inhibition of ice growth by antifreeze proteins.

  16. EFFECTS OF LASER RADIATION ON MATTER. LASER PLASMA: Laser—ultrasonic formation of melts of high-speed tool steels

    NASA Astrophysics Data System (ADS)

    Gureev, D. M.

    1994-09-01

    A study was made of the influence of ultrasonic vibrations on the processes of heat and mass transfer, and of structure formation during ultrafast crystallisation of laser melts of T1 high-speed tool steel. Acoustic flows which appeared in laser melts effectively smoothed out the temperature inhomogeneities and flattened the relief of the molten surface even when the laser radiation acted for just ~1 ms. The transformation of the mechanical energy of ultrasonic vibrations into heat increased the depth of the laser melt baths and suppressed crack formation. The observed changes in the structural and phase composition appeared as a change in the microhardness of the solidified laser melts. The geometry of coupling of ultrasound into a laser melt influenced the changes in the microhardness, suggesting a need for a more detailed analysis of the structure formation processes in the course of ultrafast crystallisation of laser melts in an ultrasonic field.

  17. Optimization of heat transfer during the directional solidification process of 1600 kg silicon feedstock

    NASA Astrophysics Data System (ADS)

    Hu, Chieh; Chen, Jyh Chen; Nguyen, Thi Hoai Thu; Hou, Zhi Zhong; Chen, Chun Hung; Huang, Yen Hao; Yang, Michael

    2018-02-01

    In this study, the power ratio between the top and side heaters and the moving velocity of the side insulation are designed to control the shape of the crystal-melt interface during the growth process of a 1600 kg multi-crystalline silicon ingot. The power ratio and insulation gap are adjusted to ensure solidification of the melt. To ensure that the crystal-melt interface is slightly convex in relation to the melt during the entire solidification process, the power ratio should be augmented gradually in the initial stages while being held to a constant value in the middle stages. Initially the gap between the side and the bottom insulation is kept small to reduce thermal stress inside the seed crystals. However, the growth rate will be slow in the early stages of the solidification process. Therefore, the movement of the side insulation is fast in the initial stages but slower in the middle stages. In the later stages, the side insulation gap is fixed. With these modifications, the convexity of the crystal-melt interface in relation to the melt can be maintained during the growth process with an approximately 41% reduction in the thermal stress inside the growing ingot and an 80% reduction in dislocation density along the center line of the ingot compared with the original case.

  18. The Deep Crust Magmatic Refinery, Part 2 : The Magmatic Output of Numerical Models.

    NASA Astrophysics Data System (ADS)

    Bouilhol, P.; Riel, N., Jr.; Van Hunen, J.

    2016-12-01

    Metamorphic and magmatic processes occurring in the deep crust ultimately control the chemical and physical characteristic of the continental crust. A complex interplay between magma intrusion, crystallization, and reaction with the pre-existing crust provide a wide range of differentiated magma and cumulates (and / or restites) that will feed the upper crustal levels with evolved melt while constructing the lower crust. With growing evidence from field and experimental studies, it becomes clearer that crystallization and melting processes are non-exclusive but should be considered together. Incoming H2O bearing mantle melts will start to fractionate to a certain extent, forming cumulates but also releasing heat and H2O to the intruded host-rock allowing it to melt in saturated conditions. The end-result of such dynamic system is a function of the amount and composition of melt input, and extent of reaction with the host which is itself dependent on the migration mode of the melts. To better constrain lower crust processes, we have built up a numerical model [see Riel et al. associated abstract for methods] to explore different parameters, unravelling the complex interplay between melt percolation / crystallization and degassing / re-melting in a so called "hot zone" model. We simulated the intrusion of water bearing mantle melts at the base of an amphibolitized lower crust during a magmatic event that lasts 5 Ma. We varied several parameters such as Moho depth and melt rock ratio to better constrain what controls the final melt / lower crust composition.. We show the evolution of the chemical characteristics of the melt that escape the system during this magmatic event, as well as the resulting lower crust characteristics. We illustrate how the evolution of melt major elements composition reflects the progressive replacement of the crust towards compositions that are dominated by the mantle melt input. The resulting magmas cover a wide range of composition from tonalite to granite, and the modelled lower crust shows all the petrological characteristic of observed lower arc-crust.

  19. Kimberlite ascent by assimilation-fuelled buoyancy.

    PubMed

    Russell, James K; Porritt, Lucy A; Lavallée, Yan; Dingwell, Donald B

    2012-01-18

    Kimberlite magmas have the deepest origin of all terrestrial magmas and are exclusively associated with cratons. During ascent, they travel through about 150 kilometres of cratonic mantle lithosphere and entrain seemingly prohibitive loads (more than 25 per cent by volume) of mantle-derived xenoliths and xenocrysts (including diamond). Kimberlite magmas also reputedly have higher ascent rates than other xenolith-bearing magmas. Exsolution of dissolved volatiles (carbon dioxide and water) is thought to be essential to provide sufficient buoyancy for the rapid ascent of these dense, crystal-rich magmas. The cause and nature of such exsolution, however, remains elusive and is rarely specified. Here we use a series of high-temperature experiments to demonstrate a mechanism for the spontaneous, efficient and continuous production of this volatile phase. This mechanism requires parental melts of kimberlite to originate as carbonatite-like melts. In transit through the mantle lithosphere, these silica-undersaturated melts assimilate mantle minerals, especially orthopyroxene, driving the melt to more silicic compositions, and causing a marked drop in carbon dioxide solubility. The solubility drop manifests itself immediately in a continuous and vigorous exsolution of a fluid phase, thereby reducing magma density, increasing buoyancy, and driving the rapid and accelerating ascent of the increasingly kimberlitic magma. Our model provides an explanation for continuous ascent of magmas laden with high volumes of dense mantle cargo, an explanation for the chemical diversity of kimberlite, and a connection between kimberlites and cratons.

  20. Development of an Ointment Formulation Using Hot-Melt Extrusion Technology.

    PubMed

    Bhagurkar, Ajinkya M; Angamuthu, Muralikrishnan; Patil, Hemlata; Tiwari, Roshan V; Maurya, Abhijeet; Hashemnejad, Seyed Meysam; Kundu, Santanu; Murthy, S Narasimha; Repka, Michael A

    2016-02-01

    Ointments are generally prepared either by fusion or by levigation methods. The current study proposes the use of hot-melt extrusion (HME) processing for the preparation of a polyethylene glycol base ointment. Lidocaine was used as a model drug. A modified screw design was used in this process, and parameters such as feeding rate, barrel temperature, and screw speed were optimized to obtain a uniform product. The product characteristics were compared with an ointment of similar composition prepared by conventional fusion method. The rheological properties, drug release profile, and texture characteristics of the hot-melt extruded product were similar to the conventionally prepared product. This study demonstrates a novel application of the hot-melt extrusion process in the manufacturing of topical semi-solids.

  1. Cat Mountain: A meteoritic sample of an impact-melted chondritic asteroid

    NASA Technical Reports Server (NTRS)

    Kring, David A.

    1993-01-01

    Although impact cratering and collisional disruption are the dominant geologic processes affecting asteroids, samples of impact melt breccias comprise less than 1 percent of ordinary chondritic material and none exist among enstatite and carbonaceous chondrite groups. Because the average collisional velocity among asteroids is sufficiently large to produce impact melts, this paucity of impact-melted material is generally believed to be a sampling bias, making it difficult to determine the evolutionary history of chondritic bodies and how impact processes may have affected the physical properties of asteroids (e.g., their structural integrity and reflectance spectra). To help address these and related issues, the first petrographic description of a new chondritic impact melt breccia sample, tentatively named Cat Mountain, is presented.

  2. Temperature and emissivity measurements at the sapphire single crystal fiber growth process

    NASA Astrophysics Data System (ADS)

    Bufetova, G. A.; Rusanov, S. Ya.; Seregin, V. F.; Pyrkov, Yu. N.; Tsvetkov, V. B.

    2017-12-01

    We present a new method for evaluation the absorption coefficient of the crystal melt around the phase transition zone for the spectral range of semitransparency. The emissivity distribution across the crystallization front of the sapphire crystal fiber was measured at the quasi-stationary laser heated pedestal growth (LHPG) process (Fejer et al., 1984; Feigelson, 1986) and the data for solid state, melt and phase transition zone (melt-solid interface) were obtained. The sapphire melt absorption coefficient was estimated to be 14 ± 2 cm-1 in the spectral range 1-1.4 μm around the melt point. It is consistent with data, obtained by different other methods. This method can be applied to determine the absorption coefficient for other materials.

  3. The influence of melt infiltration on the Li and Mg isotopic composition of the Horoman Peridotite Massif

    NASA Astrophysics Data System (ADS)

    Lai, Yi-Jen; Pogge von Strandmann, Philip A. E.; Dohmen, Ralf; Takazawa, Eiichi; Elliott, Tim

    2015-09-01

    We have analysed the Li and Mg isotope ratios of a suite of samples from the Horoman Peridotite Massif. Our results show that most Li and all Mg isotopic compositions of the Horoman peridotites are constant over 100 metres of continuous outcrop, yielding values for pristine mantle of δ7Li = 3.8 ± 1.4‰ (2SD, n = 9), δ25Mg = -0.12 ± 0.02‰ and δ26Mg = -0.23 ± 0.04‰ (2SD, n = 17), in keeping with values for undisturbed mantle xenoliths. However, there are also some anomalously low δ7Li values (-0.2‰ to 1.6‰), which coincide with locations that show enrichment of incompatible elements, indicative of the prior passage of small degree melts. We suggest Li diffused from infiltrating melts with high [Li] into the low [Li] minerals and kinetically fractionated 7Li/6Li as a result. Continued diffusion after the melt flow had ceased would have resulted in the disappearance of this isotopically light signature in less than 15 Ma. In order to preserve this feature, the melt infiltration must have been a late stage event and the massif must have subsequently cooled over a maximum of ∼0.3 Ma from peak temperature (950 °C, assuming the melts were hydrous) to Li closure temperature (700 °C), likely during emplacement. The constant δ26Mg values of Horoman peridotites suggest that chemical potential gradients caused by melt infiltration were insufficient to drive associated δ26Mg fractionation greater than our external precision of 0.03‰.

  4. Elucidation and visualization of solid-state transformation and mixing in a pharmaceutical mini hot melt extrusion process using in-line Raman spectroscopy.

    PubMed

    Van Renterghem, Jeroen; Kumar, Ashish; Vervaet, Chris; Remon, Jean Paul; Nopens, Ingmar; Vander Heyden, Yvan; De Beer, Thomas

    2017-01-30

    Mixing of raw materials (drug+polymer) in the investigated mini pharma melt extruder is achieved by using co-rotating conical twin screws and an internal recirculation channel. In-line Raman spectroscopy was implemented in the barrels, allowing monitoring of the melt during processing. The aim of this study was twofold: to investigate (I) the influence of key process parameters (screw speed - barrel temperature) upon the product solid-state transformation during processing of a sustained release formulation in recirculation mode; (II) the influence of process parameters (screw speed - barrel temperature - recirculation time) upon mixing of a crystalline drug (tracer) in an amorphous polymer carrier by means of residence time distribution (RTD) measurements. The results indicated a faster mixing endpoint with increasing screw speed. Processing a high drug load formulation above the drug melting temperature resulted in the production of amorphous drug whereas processing below the drug melting point produced solid dispersions with partially amorphous/crystalline drug. Furthermore, increasing the screw speed resulted in lower drug crystallinity of the solid dispersion. RTD measurements elucidated the improved mixing capacity when using the recirculation channel. In-line Raman spectroscopy has shown to be an adequate PAT-tool for product solid-state monitoring and elucidation of the mixing behavior during processing in a mini extruder. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Metals processing control by counting molten metal droplets

    DOEpatents

    Schlienger, Eric; Robertson, Joanna M.; Melgaard, David; Shelmidine, Gregory J.; Van Den Avyle, James A.

    2000-01-01

    Apparatus and method for controlling metals processing (e.g., ESR) by melting a metal ingot and counting molten metal droplets during melting. An approximate amount of metal in each droplet is determined, and a melt rate is computed therefrom. Impedance of the melting circuit is monitored, such as by calculating by root mean square a voltage and current of the circuit and dividing the calculated current into the calculated voltage. Analysis of the impedance signal is performed to look for a trace characteristic of formation of a molten metal droplet, such as by examining skew rate, curvature, or a higher moment.

  6. Pyrolysis and gasification-melting of automobile shredder residue.

    PubMed

    Roh, Seon Ah; Kim, Woo Hyun; Yun, Jin Han; Min, Tae Jin; Kwak, Yeon Ho; Seo, Yong Chil

    2013-10-01

    Automobile shredder residue (ASR) from end-of-life vehicles (ELVs) in Korea has commonly been disposed of in landfills. Due to the growing number of scrapped cars and the decreasing availability of landfill space, effective technology for reducing ASR is needed. However ASR is a complex mixture, and finding an appropriate treatment is not easy on account of the harmful compounds in ASR. Therefore, research continues to seek an effective treatment technology. However most studies have thus far been performed in the laboratory, whereas few commercial and pilot studies have been performed. This paper studies the pyrolysis and gasification-melting of ASR. The pyrolyis characteristics have been analyzed in a thermogravimetric analyzer (TGA), a Lindberg furnace, and a fixed-bed pyrolyzer to study the fundamental characteristics of ASR thermal conversion. As a pilot study, shaft-type gasification-melting was performed. High-temperature gasification-melting was performed in a 5000 kg/day pilot system. The gas yield and syngas (H2 and CO) concentration increase when the reaction temperature increases. Gas with a high calorific value of more than 16,800 kJ/m3 was produced in the pyrolyzer. From the gasification-melting process, syngas of CO (30-40%) and H2(10-15%) was produced, with 5% CH4 produced as well. Slag generation was 17% of the initial ASR, with 5.8% metal content and 4% fly ash. The concentration of CO decreases, whereas the H2, CO2, and CH4 concentrations increase with an increase in the equivalence ratio (ER). The emission levels of dioxin and air pollution compounds except nitrogen oxides (NO(x)) were shown to satisfy Korean regulations.

  7. High-Pressure Minerals in Meteorites: Constraints on Shock Conditions and Duration

    NASA Technical Reports Server (NTRS)

    Sharp, Thomas G.

    2004-01-01

    The objective of this research was to better understand the conditions and duration of shock metamorphism in meteorites through microstructural and microanalytical characterization of high-pressure minerals. A) Continue to investigate the mineralogy and microstructures of melt-veins in a suite of chondritic samples ranging from shock grades S3 through S6 to determine how the mineral assemblages that crystallize at high-pressure and are related to shock grade. B) Investigate the chemical, mineralogical, and microstructural heterogeneities that occur across melt veins to interpret crystallization histories. C) Use static high-pressure experiments to simulate crystallization of melt veins for mineralogical and textural comparisons with the melt veins of naturally shocked samples. D) Characterize the compositions and defect microstructures of polycrystalline ringwoodite, wadsleyite, majorite, (Mg,Fe)Si03-ilmenite and (Mg,Fe)SiO3-perovskite in S6 samples to understand the mechanisms of phase transformations that occur during shock. These results will combined with kinetic data to constrain the time scales of kinetic processes. E) Investigate the transformations of metastable high-pressure minerals back to low- pressure forms to constrain post-shock temperatures and estimates of the peak shock pressure. Of these objectives, we have obtained publishable data on A, B and D. I am currently doing difficult high-pressure melting and quench experiments on an L chondrite known as Mbale. These experiments will provide additional constraints on the mineral assemblages that are produced during rapid quench of an L chondrite at pressures of 16 to 25 GPa. Results from published or nearly published research is presented below. Lists of theses, dissertations and publications are given below.

  8. Modeling of subaqueous melting in Petermann Fjord, Northwestern Greenland using an ocean general circulation model

    NASA Astrophysics Data System (ADS)

    Cai, C.; Rignot, E. J.; Xu, Y.; An, L.; Tinto, K. J.; van den Broeke, M. R.

    2014-12-01

    Basal melting of the floating tongue of Petermann Glacier, in northwestern Greenland is by far the largest process of mass ablation. Melting of the floating tongue is controlled by the buoyancy of the melt water plume, the pressure-dependence of the melting point of sea ice, and the mixing of warm subsurface water with fresh buoyant subglacial discharge. In prior simulations of this melting process, the role of subglacial discharge has been neglected because in similar configurations (floating ice shelves) in the Antarctic, surface runoff is negligible; this is however not true in Greenland. Here, we use the Mass Institute of Technology general circulation model (MITgcm) at a high spatial resolution (10 m x 10 m) to simulate the melting process of the ice shelf in 2-D. The model is constrained by ice shelf bathymetry and ice thickness (refined model in the immediate vicinity of the grounding line) from NASA Operation IceBridge (2011), ocean temperature/salinity data from Johnson et al. (2011), ocean tide height and current from the Arctic Ocean Tidal Inverse Model (AOTIM-5) by Padman and Erofeeva (2004) and subglacial discharge at the grounding line calculated by the hydrostatic potential of the ice from estimated products of the Regional Atmospheric Climate Model (RACMO) of Royal Netherlands Meteorological Institute (KNMI). We compare the results obtained in winter (no runoff) with summer, and the sensitivity of the results to thermal forcing from the ocean, and to the variation of tide height and current, and to the magnitude of subglacial runoff. We conclude on the impact of the ocean and surface melting on the melting regime of the floating ice tongue of Petermann. The basal melt rate increases ~20% with summer surface runoff. This work is performed under a contract with NASA Cryosphere Program.

  9. A Dynamic Mesh-Based Approach to Model Melting and Shape of an ESR Electrode

    NASA Astrophysics Data System (ADS)

    Karimi-Sibaki, E.; Kharicha, A.; Bohacek, J.; Wu, M.; Ludwig, A.

    2015-10-01

    This paper presents a numerical method to investigate the shape of tip and melt rate of an electrode during electroslag remelting process. The interactions between flow, temperature, and electromagnetic fields are taken into account. A dynamic mesh-based approach is employed to model the dynamic formation of the shape of electrode tip. The effect of slag properties such as thermal and electrical conductivities on the melt rate and electrode immersion depth is discussed. The thermal conductivity of slag has a dominant influence on the heat transfer in the system, hence on melt rate of electrode. The melt rate decreases with increasing thermal conductivity of slag. The electrical conductivity of slag governs the electric current path that in turn influences flow and temperature fields. The melting of electrode is a quite unstable process due to the complex interaction between the melt rate, immersion depth, and shape of electrode tip. Therefore, a numerical adaptation of electrode position in the slag has been implemented in order to achieve steady state melting. In fact, the melt rate, immersion depth, and shape of electrode tip are interdependent parameters of process. The generated power in the system is found to be dependent on both immersion depth and shape of electrode tip. In other words, the same amount of power was generated for the systems where the shapes of tip and immersion depth were different. Furthermore, it was observed that the shape of electrode tip is very similar for the systems running with the same ratio of power generation to melt rate. Comparison between simulations and experimental results was made to verify the numerical model.

  10. Toward an Arctic Strategy

    DTIC Science & Technology

    2009-02-01

    Arctic Sea Ice Extent6 Reduced ice pack area translates to less reflected solar energy, which further accelerates the ongoing melting process . Light... process , creating a vicious cycle where melting ice causes the remaining ice to melt faster.7 Modelers previously agreed that the Arctic Ocean could be...freight ports stand to benefit by shipping through the Arctic region.10 For example, an ocean voyage from Yokohama, Japan, to Hamburg, Germany via the

  11. A multi-component evaporation model for beam melting processes

    NASA Astrophysics Data System (ADS)

    Klassen, Alexander; Forster, Vera E.; Körner, Carolin

    2017-02-01

    In additive manufacturing using laser or electron beam melting technologies, evaporation losses and changes in chemical composition are known issues when processing alloys with volatile elements. In this paper, a recently described numerical model based on a two-dimensional free surface lattice Boltzmann method is further developed to incorporate the effects of multi-component evaporation. The model takes into account the local melt pool composition during heating and fusion of metal powder. For validation, the titanium alloy Ti-6Al-4V is melted by selective electron beam melting and analysed using mass loss measurements and high-resolution microprobe imaging. Numerically determined evaporation losses and spatial distributions of aluminium compare well with experimental data. Predictions of the melt pool formation in bulk samples provide insight into the competition between the loss of volatile alloying elements from the irradiated surface and their advective redistribution within the molten region.

  12. Melt electrospinning of poly(ε-caprolactone) scaffolds: phenomenological observations associated with collection and direct writing.

    PubMed

    Brown, Toby D; Edin, Fredrik; Detta, Nicola; Skelton, Anthony D; Hutmacher, Dietmar W; Dalton, Paul D

    2014-12-01

    Melt electrospinning and its additive manufacturing analogue, melt electrospinning writing (MEW), are two processes which can produce porous materials for applications where solvent toxicity and accumulation in solution electrospinning are problematic. This study explores the melt electrospinning of poly(ε-caprolactone) (PCL) scaffolds, specifically for applications in tissue engineering. The research described here aims to inform researchers interested in melt electrospinning about technical aspects of the process. This includes rapid fiber characterization using glass microscope slides, allowing influential processing parameters on fiber morphology to be assessed, as well as observed fiber collection phenomena on different collector substrates. The distribution and alignment of melt electrospun PCL fibers can be controlled to a certain degree using patterned collectors to create large numbers of scaffolds with shaped macroporous architectures. However, the buildup of residual charge in the collected fibers limits the achievable thickness of the porous template through such scaffolds. One challenge identified for MEW is the ability to control charge buildup so that fibers can be placed accurately in close proximity, and in many centimeter heights. The scale and size of scaffolds produced using MEW, however, indicate that this emerging process will fill a technological niche in biofabrication. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Determination of melt pool dimensions using DOE-FEM and RSM with process window during SLM of Ti6Al4V powder

    NASA Astrophysics Data System (ADS)

    Zhuang, Jyun-Rong; Lee, Yee-Ting; Hsieh, Wen-Hsin; Yang, An-Shik

    2018-07-01

    Selective laser melting (SLM) shows a positive prospect as an additive manufacturing (AM) technique for fabrication of 3D parts with complicated structures. A transient thermal model was developed by the finite element method (FEM) to simulate the thermal behavior for predicting the time evolution of temperature field and melt pool dimensions of Ti6Al4V powder during SLM. The FEM predictions were then compared with published experimental measurements and calculation results for model validation. This study applied the design of experiment (DOE) scheme together with the response surface method (RSM) to conduct the regression analysis based on four processing parameters (exactly, the laser power, scanning speed, preheating temperature and hatch space) for predicting the dimensions of the melt pool in SLM. The preliminary RSM results were used to quantify the effects of those parameters on the melt pool size. The process window was further implemented via two criteria of the width and depth of the molten pool to screen impractical conditions of four parameters for including the practical ranges of processing parameters. The FEM simulations confirmed the good accuracy of the critical RSM models in the predictions of melt pool dimensions for three typical SLM working scenarios.

  14. Evaluation of the physicochemical properties and compaction behavior of melt granules produced in microwave-induced and conventional melt granulation in a single pot high shear processor.

    PubMed

    Loh, Z H; Sia, B Y; Heng, Paul W S; Lee, C C; Liew, Celine V

    2011-12-01

    Recently, microwave-induced melt granulation was shown to be a promising alternative to conventional melt granulation with improved process monitoring capabilities. This study aimed to compare the physicochemical and compaction properties of granules produced from microwave-induced and conventional melt granulation. Powder admixtures comprising equivalent proportions by weight of lactose 200 M and anhydrous dicalcium phosphate were granulated with polyethylene glycol 3350 under the influence of microwave-induced and conventional heating in a 10-L single pot high shear processor. The properties of the granules and compacts produced from the two processes were compared. Relative to conventional melt granulation, the rates at which the irradiated powders heated up in microwave-induced melt granulation were lower. Agglomerate growth proceeded at a slower rate, and this necessitated longer massing durations for growth induction. These factors prompted greater evaporative moisture losses from the melt granules. Additionally, nonuniform heating of the powders under the influence of microwaves led to increased inter-batch variations in the binder contents of resultant melt granules and a reliance of content homogeneity on massing duration. Agglomerate growth proceeded more rapidly under the influence of conventional heating due to the enhanced heating capabilities of the powders. Melt granules produced using the conventional method possessed higher moisture contents and improved content homogeneity. The compaction behavior of melt granules were affected by their mean sizes, porosities, flow properties, binder, and moisture contents. The last two factors were responsible for the disparities in compaction behavior of melt granules produced from microwave-induced and conventional melt granulation.

  15. Detection of Supra-Glacial Lakes on the Greenland Ice Sheet Using MODIS Images

    NASA Astrophysics Data System (ADS)

    Verin, Gauthier; Picard, Ghislain; Libois, Quentin; Gillet-Chaulet, Fabien; Roux, Antoine

    2015-04-01

    During melt season, supra-glacial lakes form on the margins of the Greenland ice sheet. Because of their size exceeding several kilometers, and their concentration, they affect surface albedo leading to an amplification of the regional melt. Furthermore, they foster hydro-fracturing that propagate liquid water to the bedrock and therefore enhance the basal lubrication which may affect the ice motion. It is known that Greenland ice sheet has strongly responded to recent global warming. As air temperature increases, melt duration and melt intensity increase and surface melt area extends further inland. These recent changes may play an important role in the mass balance of the Greenland ice sheet. In this context, it is essential to better monitor and understand supra-glacial spatio-temporal dynamics in order to better assess future sea level rise. In this study MODIS (Moderate Resolution Imaging Spectroradiometer) images have been used to detect supra-glacial lakes. The observation site is located on the West margin of the ice sheet, between 65°N and 70°N where the concentration of lake is maximum. The detection is performed by a fully automatic algorithm using images processing techniques introduced by Liang et al. (2012) which can be summarized in three steps: the selection of usable MODIS images, mainly we exclude images with too many clouds. The detection of lake and the automatic correction of false detections. This algorithm is capable to tag each individual lake allowing a survey of all lake geometrical properties over the entire melt season. We observed a large population of supra-glacial lakes over 14 melt seasons, from 2000 to 2013 on an extended area of 70.000 km2. In average, lakes are observed from June 9 ± 8.7 days to September 13 ± 13.9 days, and reach a maximum total area of 699 km2 ± 146 km2. As the melt season progresses, lakes form higher in altitude up to 1800 m above sea level. Results show a very strong inter-annual variability in term of date of melt and freeze up onset, melt season duration, maximum total surface area and number of lakes. As it has already been noticed, we observed a strong spatial persistence. Lakes tend to form at the same place for several years, probably because of the ice sheet surface topography. In order to investigate possible links with climatic parameters we calculated positive degree day (PDD). The main result of this comparison is a strong correlation between melt intensity and the altitude of lakes. During warmer summer, lakes form higher in altitude and consequently the extent of melting increase. Recent studies showed this trend is likely to continue and to increase in the years to come.

  16. Strip casting with fluxing agent applied to casting roll

    DOEpatents

    Williams, R.S.; O`Malley, R.J.; Sussman, R.C.

    1997-07-29

    A strip caster for producing a continuous strip includes a tundish for containing a melt, a pair of horizontally disposed water cooled casting rolls and devices for electrostatically coating the outer peripheral chill surfaces of the casting rolls with a powder flux material. The casting rolls are juxtaposed relative to one another for forming a pouting basin for receiving the melt through a teeming tube thereby establishing a meniscus between the rolls for forming the strip. The melt is protected from the outside air by a non-oxidizing gas passed through a supply line to a sealing chamber. A preferred flux is boron oxide having a melting point of about 550 C. The flux coating enhances wetting of the steel melt to the casting roll and dissolves any metal oxide formed on the roll. 3 figs.

  17. Selective Laser Melting Produced Ti-6Al-4V: Post-Process Heat Treatments to Achieve Superior Tensile Properties

    PubMed Central

    Becker, Thorsten H.

    2018-01-01

    Current post-process heat treatments applied to selective laser melting produced Ti-6Al-4V do not achieve the same microstructure and therefore superior tensile behaviour of thermomechanical processed wrought Ti-6Al-4V. Due to the growing demand for selective laser melting produced parts in industry, research and development towards improved mechanical properties is ongoing. This study is aimed at developing post-process annealing strategies to improve tensile behaviour of selective laser melting produced Ti-6Al-4V parts. Optical and electron microscopy was used to study α grain morphology as a function of annealing temperature, hold time and cooling rate. Quasi-static uniaxial tensile tests were used to measure tensile behaviour of different annealed parts. It was found that elongated α’/α grains can be fragmented into equiaxial grains through applying a high temperature annealing strategy. It is shown that bi-modal microstructures achieve a superior tensile ductility to current heat treated selective laser melting produced Ti-6Al-4V samples. PMID:29342079

  18. Microstructural and mechanical investigation of aluminium alloy (Al 1050) melted by microwave hybrid heating

    NASA Astrophysics Data System (ADS)

    Shashank Lingappa, M.; Srinath, M. S.; Amarendra, H. J.

    2017-07-01

    Microwave processing of metals is an emerging area. Melting of bulk metallic materials through microwave irradiation is still immature. In view of this, the present paper discusses the melting of bulk Al 1050 metallic material through microwave irradiation. The melting process is carried out successfully in a domestic microwave oven with 900 W power at 2450 MHz frequency. Metallurgical and mechanical characterization of the processed and as-received material is carried out. Aluminium phase is found to be dominant in processed material when tested through x-ray diffraction (XRD). Microstructure study of as-cast metal through scanning electron microscopy (SEM) reveals the formation of uniform hexagonal grain structure free from pores and cavities. The average tensile strength of the cast material is found to be around 21% higher, when compared to as-received material. Vickers’ microhardness of the as-cast metal is measured and is 10% higher than that of the as-received metal. Radiography on as-cast metal shows no significant defects. Al 1050 material melted through microwave irradiation has exhibited superior properties than the as-received Al 1050.

  19. Microstructure and Magnetic Properties of Magnetic Material Fabricated by Selective Laser Melting

    NASA Astrophysics Data System (ADS)

    Jhong, Kai Jyun; Huang, Wei-Chin; Lee, Wen Hsi

    Selective Laser Melting (SLM) is a powder-based additive manufacturing which is capable of producing parts layer-by-layer from a 3D CAD model. The aim of this study is to adopt the selective laser melting technique to magnetic material fabrication. [1]For the SLM process to be practical in industrial use, highly specific mechanical properties of the final product must be achieved. The integrity of the manufactured components depend strongly on each single laser-melted track and every single layer, as well as the strength of the connections between them. In this study, effects of the processing parameters, such as the space distance of surface morphology is analyzed. Our hypothesis is that when a magnetic product is made by the selective laser melting techniques instead of traditional techniques, the finished component will have more precise and effective properties. This study analyzed the magnitudes of magnetic properties in comparison with different parameters in the SLM process and compiled a completed product to investigate the efficiency in contrast with products made with existing manufacturing processes.

  20. In Situ Self Assembly of Nanocomposites: Competition of Chaotic Advection and Interfacial Effects as Observed by X-Ray Diffreaction

    PubMed Central

    Ratnaweera, Dilru R.; Mahesha, Chaitra; Zumbrunnen, David A.; Perahia, Dvora

    2015-01-01

    The effects of chaotic advection on the in situ assembly of a hierarchal nanocomposite of Poly Amide 6, (nylon 6 or PA6) and platelet shape nanoparticles (NPs) were studied. The assemblies were formed by chaotic advection, where melts of pristine PA6 and a mixture of PA6 with NPs were segregated into discrete layers and extruded into film in a continuous process. The process assembles the nanocomposite into alternating pristine-polymer and oriented NP/polymer layers. The structure of these hierarchal assemblies was probed by X-rays as a processing parameter, N, was varied. This parameter provides a measure of the extent of in situ structuring by chaotic advection. We found that all assemblies are semi-crystalline at room temperature. Increasing N impacts the ratio of α to γ crystalline forms. The effects of the chaotic advection vary with the concentration of the NPs. For nanocomposites with lower NP concentrations the amount of the γ crystalline form increased with N. However, at higher NP concentrations, interfacial effects of the NP play a significant role in determining the structure, where the NPs oriented along the melt flow direction and the polymer chains oriented perpendicular to the NP surfaces. PMID:28347015

  1. Reworking of Archean mantle in the NE Siberian craton by carbonatite and silicate melt metasomatism: Evidence from a carbonate-bearing, dunite-to-websterite xenolith suite from the Obnazhennaya kimberlite

    NASA Astrophysics Data System (ADS)

    Ionov, Dmitri A.; Doucet, Luc S.; Xu, Yigang; Golovin, Alexander V.; Oleinikov, Oleg B.

    2018-03-01

    The Obnazhennaya kimberlite in the NE Siberian craton hosts a most unusual cratonic xenolith suite, with common rocks rich in pyroxenes and garnet, and no sheared peridotites. We report petrographic and chemical data for whole rocks (WR) and minerals of 20 spinel and garnet peridotites from Obnazhennaya with Re-depletion Os isotope ages of 1.8-2.9 Ga (Ionov et al., 2015a) as well as 2 pyroxenites. The garnet-bearing rocks equilibrated at 1.6-2.8 GPa and 710-1050 °C. Some xenoliths contain vermicular spinel-pyroxene aggregates with REE patterns in clinopyroxene mimicking those of garnet. The peridotites show significant scatter of Mg# (0.888-0.924), Cr2O3 (0.2-1.4 wt.%) and high NiO (0.3-0.4 wt.%). None are pristine melting residues. Low-CaO-Al2O3 (≤0.9 wt.%) dunites and harzburgites are melt-channel materials. Peridotites with low to moderate Al2O3 (0.4-1.8 wt.%) usually have CaO > Al2O3, and some have pockets of calcite texturally equilibrated with olivine and garnet. Such carbonates, exceptional in mantle xenoliths and reported here for the first time for the Siberian mantle, provide direct evidence for modal makeover and Ca and LREE enrichments by ephemeral carbonate-rich melts. Peridotites rich in CaO and Al2O3 (2.7-8.0 wt.%) formed by reaction with silicate melts. We infer that the mantle lithosphere beneath Obnazhennaya, initially formed in the Mesoarchean, has been profoundly modified. Pervasive inter-granular percolation of highly mobile and reactive carbonate-rich liquids may have reduced the strength of the mantle lithosphere leading the way for reworking by silicate melts. The latest events before the kimberlite eruption were the formation of the carbonate-phlogopite pockets, fine-grained pyroxenite veins and spinel-pyroxene symplectites. The reworked lithospheric sections are preserved at Obnazhennaya, but similar processes could erode lithospheric roots in the SE Siberian craton (Tok) and the North China craton, where ancient melting residues and reworked garnet-bearing peridotites are absent. The modal, chemical and Os-isotope compositions of the Obnazhennaya xenoliths produced by reaction of refractory peridotites with melts are very particular (high Ca/Al, no Mg#-Al correlations, highly variable Cr, low 187Os/188Os, continuous modal range from olivine-rich to low-olivine peridotites, wehrlites and websterites) and distinct from those of fertile lherzolites in off-craton xenoliths and peridotite massifs. These features argue against the concept of 'refertilization' of cratonic and other refractory peridotites by mantle-derived melts as a major mechanism to form fertile to moderately depleted lherzolites in continental lithosphere. The Obnazhennaya xenoliths represent a natural rock series produced by 'refertilization', but include no rocks equivalent in modal, major and trace element to the fertile lherzolites. This study shows that 'refertilization' yields broad, continuous ranges of modal and chemical compositions with common wehrlites and websterites that are rare among off-craton xenoliths.

  2. Laser Cutting of Thin Nickel Bellows

    NASA Technical Reports Server (NTRS)

    Butler, C. L.

    1986-01-01

    Laser cutting technique produces narrow, precise, fast, and repeatable cuts in thin nickel-allow bellows material. Laser cutting operation uses intense focused beam to melt material and assisting gas to force melted material through part thickness, creating void. When part rotated or moved longitudinally, melting and material removal continuous and creates narrow, fast, precise, and repeatable cut. Technique used to produce cuts of specified depths less than material thickness. Avoids distortion, dents, and nicks produced in delicate materials during lathe trimming operations, which require high cutting-tool pressure and holding-fixture forces.

  3. The mechanics of granitoid systems and maximum entropy production rates.

    PubMed

    Hobbs, Bruce E; Ord, Alison

    2010-01-13

    A model for the formation of granitoid systems is developed involving melt production spatially below a rising isotherm that defines melt initiation. Production of the melt volumes necessary to form granitoid complexes within 10(4)-10(7) years demands control of the isotherm velocity by melt advection. This velocity is one control on the melt flux generated spatially just above the melt isotherm, which is the control valve for the behaviour of the complete granitoid system. Melt transport occurs in conduits initiated as sheets or tubes comprising melt inclusions arising from Gurson-Tvergaard constitutive behaviour. Such conduits appear as leucosomes parallel to lineations and foliations, and ductile and brittle dykes. The melt flux generated at the melt isotherm controls the position of the melt solidus isotherm and hence the physical height of the Transport/Emplacement Zone. A conduit width-selection process, driven by changes in melt viscosity and constitutive behaviour, operates within the Transport Zone to progressively increase the width of apertures upwards. Melt can also be driven horizontally by gradients in topography; these horizontal fluxes can be similar in magnitude to vertical fluxes. Fluxes induced by deformation can compete with both buoyancy and topographic-driven flow over all length scales and results locally in transient 'ponds' of melt. Pluton emplacement is controlled by the transition in constitutive behaviour of the melt/magma from elastic-viscous at high temperatures to elastic-plastic-viscous approaching the melt solidus enabling finite thickness plutons to develop. The system involves coupled feedback processes that grow at the expense of heat supplied to the system and compete with melt advection. The result is that limits are placed on the size and time scale of the system. Optimal characteristics of the system coincide with a state of maximum entropy production rate. This journal is © 2010 The Royal Society

  4. A seismogenic zone in the deep crust indicated by pseudotachylytes and ultramylonites in granulite-facies rocks of Calabria (Southern Italy)

    NASA Astrophysics Data System (ADS)

    Altenberger, U.; Prosser, G.; Grande, A.; Günter, C.; Langone, A.

    2013-10-01

    Pseudotachylyte veins frequently associated with mylonites and ultramylonites occur within migmatitic paragneisses, metamonzodiorites, as well as felsic and mafic granulites at the base of the section of the Hercynian lower crust exposed in Calabria (Southern Italy). The crustal section is tectonically superposed on lower grade units. Ultramylonites and pseudotachylytes are particularly well developed in migmatitic paragneisses, whereas sparse fault-related pseudotachylytes and thin mylonite/ultramylonite bands occur in granulite-facies rocks. The presence of sillimanite and clinopyroxene in ultramylonites and mylonites indicates that relatively high-temperature conditions preceded the formation of pseudotachylytes. We have analysed pseudotachylytes from different rock types to ascertain their deep crustal origin and to better understand the relationships between brittle and ductile processes during deformation of the deeper crust. Different protoliths were selected to test how lithology controls pseudotachylyte composition and textures. In migmatites and felsic granulites, euhedral or cauliflower-shaped garnets directly crystallized from pseudotachylyte melts of near andesitic composition. This indicates that pseudotachylytes originated at deep crustal conditions (>0.75 GPa). In mafic protoliths, quenched needle-to-feather-shaped high-alumina orthopyroxene occurs in contact with newly crystallized plagioclase. The pyroxene crystallizes in garnet-free and garnet-bearing veins. The simultaneous growth of orthopyroxene and plagioclase as well as almandine, suggests lower crustal origin, with pressures in excess of 0.85 GPa. The existence of melts of different composition in the same vein indicates the stepwise, non-equilibrium conditions of frictional melting. Melt formed and intruded into pre-existing anisotropies. In mafic granulites, brittle faulting is localized in a previously formed thin high-temperature mylonite bands. migmatitic gneisses are deformed into ultramylonite domains characterized by s-c fabric. Small grain size and fluids lowered the effective stress on the c planes favouring a seismic event and the consequent melt generation. Microstructures and ductile deformation of pseudotachylytes suggest continuous ductile flow punctuated by episodes of high-strain rate, leading to seismic events and melting.

  5. Paleoproterozoic mantle enrichment beneath the Fennoscandian Shield: Isotopic insight from carbonatites and lamprophyres

    NASA Astrophysics Data System (ADS)

    Woodard, Jeremy; Huhma, Hannu

    2015-11-01

    The isotope geochemistry of carbonatite from Naantali, southwest Finland as well as lamprophyres from North Savo, eastern Finland and the NW Ladoga region, northwest Russia has been investigated. These Paleoproterozoic dykes represent melting of an enriched mantle source spread over a 96,000 km2 area within the Fennoscandian Shield and intruded during post-collisional extension. The carbonatites have εNd(T) ranging from -0.8 to + 0.4, while lamprophyres have εNd(T) between -0.8 and + 0.3. 87Sr/86Sr ratios from the primary carbonatite samples from Naantali form a tight cluster between 0.70283 and 0.70303. For the lamprophyres, 87Sr/86Sr ratios range from 0.70327-0.70339 from NW Ladoga and 0.70316-0.70327 from North Savo. These characteristics are consistent with derivation from an enriched mantle showing an EMII trend, formed when sediments of mixed Archean and Proterozoic provenance were recycled back into the mantle via subduction during the preceding Svecofennian orogeny. Linear mixing of these subducted sediments and depleted mantle shows that a multistage process of enrichment is required to produce the observed isotope compositions. Batch melting of the subducted sediment first generated hydrous alkaline silicate melt, which crystallised as mica- and amphibole-rich veins in the mantle wedge. Continued melting of the subducted material under higher P-T conditions produced carbonatite melt, which infiltrated preferentially into this vein network. Assuming the silicate melt exerts greater influence on 87Sr/86Sr ratios while the carbonatite more greatly affects 143Nd/144Nd ratios, the model predicts significant regional variation in the silicate metasomatism with more consistent carbonatite metasomatism throughout the Fennoscandian subcontinental lithospheric mantle. The subducted sediments were likely also rich in organic matter, resulting in highly negative δ13C in mantle carbonates. The model predicts a higher content of organic carbon in the sediments in close proximity to the Archean continent, decreasing with distance.

  6. Analytical solutions for combined close-contact and natural convection melting in horizontal cylindrical heat storage capsule

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saitoh, T.S.; Hoshi, A.

    1998-07-01

    Melting and solidification of a phase change material (PCM) in a capsule is of practical importance in latent heat thermal energy storage (LHTES) systems which are considered to be very promising to reduce a peak demand of electricity in the summer season and carbon dioxide (CO{sub 2}) emissions. Two melting modes are involved in melting of capsules. One is close-contact melting between the solid bulk and the capsule wall, and another is natural convection melting in the liquid region. Close-contact melting processes for a single enclosure have been solved using several numerical methods (e.g., Saitoh and Kato (1994)). In additionmore » close-contact melting heat transfer characteristics including melt flow in the liquid film under inner wall temperature distribution were analyzed and simple approximate equations were already presented by Saitoh and Hoshi (1997). The effects of Stefan number and variable temperature profile etc. were clarified in detail. And the melting velocity of the solid bulk under various conditions was also studied theoretically. In addition the effects of variable inner wall temperature on molten mass fraction were investigated. The present paper reports analytical solutions for combined close-contact and natural convection melting in horizontal cylindrical capsule. Moreover, natural convection melting in the liquid region were analyzed in this report. The upper interface shape of the solid bulk is approximated by a circular arc throughout the melting process. For the sake of verification, close-contact melting heat-transfer characteristics including natural convection in the liquid region were studied experimentally. Apparent shift of upper solid-liquid interface is good agreement with the experiment. The present simple approximate solutions will be useful to facilitate designing of the practical capsule bed LHTES systems.« less

  7. A simple snowmelt lysimeter

    Treesearch

    Harold F. Haupt

    1969-01-01

    A simple gage on the lysimeter principle has been developed to provide continuous readings of the volume of water flowing from the base of a snowpack in the form of surface melt alone or rain percolate and surface melt combined. The data obtained show promise, after two seasons of being applicable in river flood forecasting, as well as in studies of snow hydrology....

  8. Fabrication, properties, and applications of porous metals with directional pores

    PubMed Central

    NAKAJIMA, Hideo

    2010-01-01

    Lotus-type porous metals with aligned long cylindrical pores are fabricated by unidirectional solidification from the melt with a dissolved gas such as hydrogen, nitrogen, or oxygen. The gas atoms can be dissolved into the melt via a pressurized gas atmosphere or thermal decomposition of gaseous compounds. Three types of solidification techniques have been developed: mold casting, continuous zone melting, and continuous casting techniques. The last method is superior from the viewpoint of mass production of lotus metals. The observed anisotropic behaviors of the mechanical properties, sound absorption, and thermal conductivity are inherent to the anisotropic porous structure. In particular, the remarkable anisotropy in the mechanical strength is attributed to the stress concentration around the pores aligned perpendicular to the loading direction. Heat sinks are a promising application of lotus metals due to the high cooling performance with a large heat transfer. PMID:21084772

  9. Fabrication, properties, and applications of porous metals with directional pores.

    PubMed

    Nakajima, Hideo

    2010-01-01

    Lotus-type porous metals with aligned long cylindrical pores are fabricated by unidirectional solidification from the melt with a dissolved gas such as hydrogen, nitrogen, or oxygen. The gas atoms can be dissolved into the melt via a pressurized gas atmosphere or thermal decomposition of gaseous compounds. Three types of solidification techniques have been developed: mold casting, continuous zone melting, and continuous casting techniques. The last method is superior from the viewpoint of mass production of lotus metals. The observed anisotropic behaviors of the mechanical properties, sound absorption, and thermal conductivity are inherent to the anisotropic porous structure. In particular, the remarkable anisotropy in the mechanical strength is attributed to the stress concentration around the pores aligned perpendicular to the loading direction. Heat sinks are a promising application of lotus metals due to the high cooling performance with a large heat transfer.

  10. Chlorine and fluorine partition coefficients and abundances in sub-arc mantle xenoliths (Kamchatka, Russia): Implications for melt generation and volatile recycling processes in subduction zones

    NASA Astrophysics Data System (ADS)

    Bénard, A.; Koga, K. T.; Shimizu, N.; Kendrick, M. A.; Ionov, D. A.; Nebel, O.; Arculus, R. J.

    2017-02-01

    We report chlorine (Cl) and fluorine (F) abundances in minerals, interstitial glasses, and melt inclusions in 12 andesite-hosted, spinel harzburgite xenoliths and crosscutting pyroxenite veins exhumed from the sub-arc lithospheric mantle beneath Avacha volcano in the Kamchatka Arc (NE Russia). The data are used to calculate equilibrium mineral-melt partition coefficients (D mineral / melt) for Cl and F relevant to subduction-zone processes and unravel the history of volatile depletion and enrichment mechanisms in an arc setting. Chlorine is ∼100 times more incompatible in pyroxenes (DClmineral/melt = 0.005-0.008 [±0.002-0.003]) than F (DFmineral/melt = 0.50-0.57 [±0.21-0.24]), which indicates that partial melting of mantle sources leads to strong depletions in Cl relative to F in the residues. The data set in this study suggests a strong control of melt composition on DCl,Fpyroxene/melt, in particular H2O contents and Al/(Al + Si), which is in line with recent experiments. Fluorine is compatible in Ca-amphibole in the 'wet' sub-arc mantle (DFamphibole/melt = 3.5-3.7 [±1.5]) but not Cl (DClamphibole/melt = 0.03-0.05 [±0.01-0.03]), indicating that amphibole may fractionate F from Cl in the mantle wedge. The inter-mineral partition coefficients for Cl and F in this study are consistent amongst different harzburgite samples, whether they contain glass or not. In particular, disseminated amphibole hosts much of the Cl and F bulk rock budgets of spinel harzburgites (DClamphibole/pyroxene up to 14 and DFamphibole/pyroxene up to 40). Chlorine and fluorine are variably enriched (up to 1500 ppm Cl and 750 ppm F) in the parental arc picrite and boninite melts of primitive pyroxenite veins (and related melt inclusions) crosscutting spinel harzburgites. Based on the data in this study, the main inferences on the behaviour of Cl and F during melting and metasomatic processes in the sub-arc mantle are as follow: (i) Melting models show that most depleted mantle protoliths of intra-oceanic arc sources can have extremely low Cl/F (0.002-0.007) before being overprinted by subduction-derived components. (ii) Chlorine has a higher percolation distance in the mantle than F. Even for small fluid or melt volumes, Cl and F signatures of partial melting are overprinted by those of pervasive percolation, which increases Cl/F in percolating agents and bulk peridotites during chromatographic interaction and/or amphibole-forming metasomatic reactions. These processes ultimately control the bulk Cl and F compositions of the residual mantle lithosphere beneath arcs, and likely in other tectonic settings. (iii) Fluxed melting models suggest that Cl enrichment in arc picrite and boninite melts in this study, and in many arc melt inclusions reported in the literature, could be related to the infiltration of high Cl/F fluids derived from subducted serpentinite or altered crust in mantle wedge sources. However, these high Cl/F signatures should be re-evaluated with new models in light of the possible overprint of pervasive percolation effects in the mantle. The breakdown of amphibole (and/or mica) in the deep metasomatised mantle at higher pressure and temperature conditions than in the slab may explain, at least in part, the positive correlations between F abundances and Cl/F in primitive arc melt inclusions and slab depth.

  11. Method for laser machining explosives and ordnance

    DOEpatents

    Muenchausen, Ross E.; Rivera, Thomas; Sanchez, John A.

    2003-05-06

    Method for laser machining explosives and related articles. A laser beam is directed at a surface portion of a mass of high explosive to melt and/or vaporize the surface portion while directing a flow of gas at the melted and/or vaporized surface portion. The gas flow sends the melted and/or vaporized explosive away from the charge of explosive that remains. The method also involves splitting the casing of a munition having an encased explosive. The method includes rotating a munition while directing a laser beam to a surface portion of the casing of an article of ordnance. While the beam melts and/or vaporizes the surface portion, a flow of gas directed at the melted and/or vaporized surface portion sends it away from the remaining portion of ordnance. After cutting through the casing, the beam then melts and/or vaporizes portions of the encased explosive and the gas stream sends the melted/vaporized explosive away from the ordnance. The beam is continued until it splits the article, after which the encased explosive, now accessible, can be removed safely for recycle or disposal.

  12. Geomorphologic mapping of the lunar crater Tycho and its impact melt deposits

    NASA Astrophysics Data System (ADS)

    Krüger, T.; van der Bogert, C. H.; Hiesinger, H.

    2016-07-01

    Using SELENE/Kaguya Terrain Camera and Lunar Reconnaissance Orbiter Camera (LROC) data, we produced a new, high-resolution (10 m/pixel), geomorphological and impact melt distribution map for the lunar crater Tycho. The distal ejecta blanket and crater rays were investigated using LROC wide-angle camera (WAC) data (100 m/pixel), while the fine-scale morphologies of individual units were documented using high resolution (∼0.5 m/pixel) LROC narrow-angle camera (NAC) frames. In particular, Tycho shows a large coherent melt sheet on the crater floor, melt pools and flows along the terraced walls, and melt pools on the continuous ejecta blanket. The crater floor of Tycho exhibits three distinct units, distinguishable by their elevation and hummocky surface morphology. The distribution of impact melt pools and ejecta, as well as topographic asymmetries, support the formation of Tycho as an oblique impact from the W-SW. The asymmetric ejecta blanket, significantly reduced melt emplacement uprange, and the depressed uprange crater rim at Tycho suggest an impact angle of ∼25-45°.

  13. A hydrodynamic mechanism of meteor ablation. The melt-spraying model

    NASA Astrophysics Data System (ADS)

    Girin, Oleksandr G.

    2017-10-01

    Context. Hydrodynamic conditions are similar in a molten meteoroid and a liquid drop in a high-speed airflow. Despite the fact that the latter is well-studied, both experimentally and theoretically, hydrodynamic instability theory has not been applied to study the fragmentation of molten meteoroids. Aims: We aim to treat quasi-continuous spraying of meteoroid melt due to hydrodynamic instability as a possible mechanism of ablation. Our objectives are to calculate the time development of particle release, the released particle sizes and their distribution by sizes, as well as the meteoroid mass loss law. Methods: We have applied gradient instability theory to model the behaviour of the meteoroid melt layer and its interaction with the atmosphere. We have assumed a spherical meteoroid and that the meteoroid has a shallow entry angle, such that the density of the air stream interacting with the meteoroid is nearly constant. Results: High-frequency spraying of the molten meteoroid is numerically simulated. The intermediate and final size distributions of released particles are calculated, as well as the meteoroid mass loss law. Fast and slow meteoroids of iron and stone compositions are modelled, resulting in significant differences in the size distribution of melt particles sprayed from each meteoroid. Less viscous iron melt produces finer particles and a denser aerosol wake than a stony one does. Conclusions: Analysis of the critical conditions for the gradient instability mechanism shows that the dynamic pressure of the air-stream at heights up to 100 km is sufficient to overcome surface tension forces and pull out liquid particles from the meteoroid melt by means of unstable disturbances. Hence, the proposed melt-spraying model is able to explain quasi-continuous mode of meteoroid fragmentation at large heights and low dynamic pressures. A closed-form solution of the meteoroid ablation problem is obtained due to the melt-spraying model usage, at the meteoroid composition, initial radius and velocity being given. The movies associated to Figs. 6 and 7 are available at http://www.aanda.org

  14. Update on the Greenland Ice Sheet Melt Extent: 1979-1999

    NASA Technical Reports Server (NTRS)

    Abdalati, Waleed; Steffen, Konrad

    2000-01-01

    Analysis of melt extent on the Greenland ice sheet is updated to span the time period 1979-1999 is examined along with its spatial and temporal variability using passive microwave satellite data. In order to acquire the full record, the issue of continuity between previous passive microwave sensors (SMMR, SSM/I F-8, and SSM/I F-11), and the most recent SSM/I F-13 sensor is addressed. The F-13 Cross-polarized gradient ratio (XPGR) melt-classification threshold is determined to be -0.0154. Results show that for the 21-year record, an increasing melt trend of nearly 1 %/yr is observed, and this trend is driven by conditions on in the western portion of the ice sheet, rather than the east, where melt appears to have decreased slightly. Moreover, the eruption of Mt. Pinatubo in 1991 is likely to have had some impact the melt, but not as much as previously suspected. The 1992 melt anomaly is 1.7 standard deviations from the mean. Finally, the relationship between coastal temperatures and melt extent suggest an increase in surface runoff contribution to sea level of 0.31 mm/yr for a 1 C temperature rise.

  15. A massively parallel adaptive scheme for melt migration in geodynamics computations

    NASA Astrophysics Data System (ADS)

    Dannberg, Juliane; Heister, Timo; Grove, Ryan

    2016-04-01

    Melt generation and migration are important processes for the evolution of the Earth's interior and impact the global convection of the mantle. While they have been the subject of numerous investigations, the typical time and length-scales of melt transport are vastly different from global mantle convection, which determines where melt is generated. This makes it difficult to study mantle convection and melt migration in a unified framework. In addition, modelling magma dynamics poses the challenge of highly non-linear and spatially variable material properties, in particular the viscosity. We describe our extension of the community mantle convection code ASPECT that adds equations describing the behaviour of silicate melt percolating through and interacting with a viscously deforming host rock. We use the original compressible formulation of the McKenzie equations, augmented by an equation for the conservation of energy. This approach includes both melt migration and melt generation with the accompanying latent heat effects, and it incorporates the individual compressibilities of the solid and the fluid phase. For this, we derive an accurate and stable Finite Element scheme that can be combined with adaptive mesh refinement. This is particularly advantageous for this type of problem, as the resolution can be increased in mesh cells where melt is present and viscosity gradients are high, whereas a lower resolution is sufficient in regions without melt. Together with a high-performance, massively parallel implementation, this allows for high resolution, 3d, compressible, global mantle convection simulations coupled with melt migration. Furthermore, scalable iterative linear solvers are required to solve the large linear systems arising from the discretized system. Finally, we present benchmarks and scaling tests of our solver up to tens of thousands of cores, show the effectiveness of adaptive mesh refinement when applied to melt migration and compare the compressible and incompressible formulation. We then apply our software to large-scale 3d simulations of melting and melt transport in mantle plumes interacting with the lithosphere. Our model of magma dynamics provides a framework for modelling processes on different scales and investigating links between processes occurring in the deep mantle and melt generation and migration. The presented implementation is available online under an Open Source license together with an extensive documentation.

  16. Process parameters, orientation, and functional properties of melt-processed bulk Y-Ba-Cu-O superconductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zakharchenko, I.V.; Terryll, K.M.; Rao, K.V.

    1995-03-01

    This study compared the microstructure, texturing, and functional properties (critical currents) of YBa{sub 2}Cu{sub 3}O{sub 7{minus}x}-based bulk pellets that were prepared by the quench-melt-growth-process (QMGP), melt-textured growth (MTG), and conventional solid-state reaction (SSR) approaches. Using two X-ray diffraction (XRD) methods, {theta}-2{theta}, and rocking curves, the authors found that the individual grains of two melt-processed pellets exhibited remarkable preferred orientational alignment (best rocking curve width = 3.2{degree}). However, the direction of the preferred orientation among the grains was random. Among the three types of bulk materials studied, the QMGP sample was found to have the best J{sub c} values, {approx} 4,500more » A/cm{sup 2} at 77 K in a field of 2 kG, as determined from SQUID magnetic data.« less

  17. Studies on Hot-Melt Prepregging on PRM-II-50 Polyimide Resin with Graphite Fibers

    NASA Technical Reports Server (NTRS)

    Shin, E. Eugene; Sutter, James K.; Juhas, John; Veverka, Adrienne; Klans, Ojars; Inghram, Linda; Scheiman, Dan; Papadopoulos, Demetrios; Zoha, John; Bubnick, Jim

    2004-01-01

    A second generation PMR (in situ Polymerization of Monomer Reactants) polyimide resin PMR-II-50, has been considered for high temperature and high stiffness space propulsion composites applications for its improved high temperature performance. As part of composite processing optimization, two commercial prepregging methods: solution vs. hot-melt processes were investigated with M40J fabrics from Toray. In a previous study a systematic chemical, physical, thermal and mechanical characterization of these composites indicated the poor resin-fiber interfacial wetting, especially for the hot-melt process, resulted in poor composite quality. In order to improve the interfacial wetting, optimization of the resin viscosity and process variables were attempted in a commercial hot-melt prepregging line. In addition to presenting the results from the prepreg quality optimization trials, the combined effects of the prepregging method and two different composite cure methods, i.e. hot press vs. autoclave on composite quality and properties are discussed.

  18. Studies on Hot-Melt Prepregging of PMR-II-50 Polyimide Resin with Graphite Fibers

    NASA Technical Reports Server (NTRS)

    Shin, E. Eugene; Sutter, James K.; Juhas, John; Veverka, Adrienne; Klans, Ojars; Inghram, Linda; Scheiman, Dan; Papadopoulos, Demetrios; Zoha, John; Bubnick, Jim

    2003-01-01

    A Second generation PMR (in situ Polymerization of Monomer Reactants) polyimide resin, PMR-II-50, has been considered for high temperature and high stiffness space propulsion composites applications for its improved high temperature performance. As part of composite processing optimization, two commercial prepregging methods: solution vs. hot-melt processes were investigated with M40J fabrics from Toray. In a previous study a systematic chemical, physical, thermal and mechanical characterization of these composites indicated that poor resin-fiber interfacial wetting, especially for the hot-melt process, resulted in poor composite quality. In order to improve the interfacial wetting, optimization of the resin viscosity and process variables were attempted in a commercial hot-melt prepregging line. In addition to presenting the results from the prepreg quality optimization trials, the combined effects of the prepregging method and two different composite cure methods, i.e., hot press vs. autoclave on composite quality and properties are discussed.

  19. Core formation in the early solar system through percolation: 4-D in-situ visualization of melt migration

    NASA Astrophysics Data System (ADS)

    Bromiley, G.; Berg, M.; Le Godec, Y.; Mezouar, N.; Atwood, R. C.; Phillipe, J.

    2015-12-01

    Although core formation was a key stage in the evolution of terrestrial planets, the physical processes which resulted in segregation of iron and silicate remain poorly understood. Formation of a silicate magma oceans provides an obvious mechanism for segregation of core-forming liquids, although recent work has strengthened arguments for a complex, multi-stage model of core formation. Extreme pressure1 and the effects of deformation2 have both been shown to promote percolation of Fe-rich melts in a solid silicate matrix, providing mechanisms for early, low temperature core-formation. However, the efficiency of these processes remains untested and we lack meaningful experimental data on resulting melt segregation velocities. Arguments regarding the efficiency of core formation through percolation of Fe-rich melts in solid silicate are based on simple, empirical models. Here, we review textural evidence from recent experiments which supports early core formation driven by deformation-aided percolation of Fe-rich melts. We then present results of novel in-situ synchrotron studies designed to provide time-resolved 3-D microimaging of percolating melt in model systems under extreme conditions. Under low strain rates characteristic of deformation-aided core formation, segregation of metallic (core-forming) melts by percolation is driven by stress gradients. This is expected to ultimately result in channelization and efficient segregation of melts noted in high-strain, low pressure experiments3. In-situ visualization also demonstrates that percolation of viscous metallic melts is surprisingly rapid. A combination of melt channelization and hydraulic fracture results in rapid, episodic melt migration, even over the limited time scale of experiments. The efficiency of this process depends strongly on the geometry of the melt network and is scaled to grain size in the matrix. We use both in-situ visualization and high-resolution ex-situ analysis to provide accurate constraints on melt migration velocities via this combined mechanism and will propose a model by which results can be scaled to core formation in the early solar system. References[1] Shi et al. Nature GeoSc. 6, 971 (2013).[2] Bruhn et al. Nature 403, 883 (2000).[3] Kohlstedt & Holtzman Ann. Rev. Earth. Planet. Sci. 37, 561 (2009).

  20. LARC powder prepreg system

    NASA Technical Reports Server (NTRS)

    Baucom, Robert M.; Marchello, Joseph M.

    1990-01-01

    Thermoplastic prepregs of LARC-TPI have been produced in a fluidized bed unit on spread continuous fiber tows. The powders are melted on the fibers by radiant heating to adhere the polymer to the fiber. This process produces tow prepreg uniformly without imposing severe stress on the fibers or requiring long high temperature residence times for the polymer. Unit design theory and operating correlations have been developed to provide the basis for scale up to commercial operation. Special features of the operation are the pneumatic tow spreader, fluidized bed and resin feed systems.

  1. Controlled laser production of elongated articles from particulates

    DOEpatents

    Dixon, Raymond D.; Lewis, Gary K.; Milewski, John O.

    2002-01-01

    It has been discovered that wires and small diameter rods can be produced using laser deposition technology in a novel way. An elongated article such as a wire or rod is constructed by melting and depositing particulate material into a deposition zone which has been designed to yield the desired article shape and dimensions. The article is withdrawn from the deposition zone as it is formed, thus enabling formation of the article in a continuous process. Alternatively, the deposition zone is moved along any of numerous deposition paths away from the article being formed.

  2. Processes active in mafic magma chambers: The example of Kilauea Iki Lava Lake, Hawaii

    USGS Publications Warehouse

    Helz, R.T.

    2009-01-01

    Kilauea Iki lava lake formed in 1959 as a closed chamber of 40??million m3 of picritic magma. Repeated drilling and sampling of the lake allows recognition of processes of magmatic differentiation, and places time restrictions on the periods when they operated. This paper focuses on evidence for the occurrence of lateral convection in the olivine-depleted layer, and constraints on the timing of this process, as documented by chemical, petrographic and thermal data on drill core from the lake. Lateral convection appears to have occurred in two distinct layers within the most olivine-poor part of the lake, created a slightly olivine-enriched septum in the center of the olivine-depleted section. A critical marker for this process is the occurrence of loose clusters of augite microphenocrysts, which are confined to the upper half of the olivine-poor zone. This process, which took place between late 1962 and mid-1964, is inferred to be double-diffusive convection. Both this convection and a process of buoyant upwelling of minimum-density liquid from deep within the lake (Helz, R.T., Kirschenbaum H. and Marinenko, J.W., 1989. Diapiric melt transfer: a quick, efficient process of igneous differentiation: Geological Society of America Bulletin, v. 101, 578-594) result from the fact that melt density in Kilauea Iki compositions decreases as olivine and augite crystallize, above the incoming of plagioclase. The resulting density vs. depth profile creates (1) a region of gravitationally stable melt at the top of the chamber (the locus of double-diffusive convection) and (2) a region of gravitationally unstable melt at the base of the melt column (the source of upwelling minimum-density melt, Helz, R.T., Kirschenbaum H. and Marinenko, J.W., 1989. Diapiric melt transfer: a quick, efficient process of igneous differentiation: Geological Society of America Bulletin, v. 101, 578-594). By contrast the variation of melt density with temperature for the 1965 Makaopuhi lava lake does not show a decrease in density as temperature decreases, so neither process should have occurred in that lava lake. Because many mafic magmas crystallize significant olivine and/or pyroxene before they begin to crystallize plagioclase, the density relations observed for Kilauea Iki, and the processes that result from them, may be relevant to crystallization in other mafic magma chambers. The results for the 1965 Makaopuhi lava lake emphasize the role of bulk composition as a critical control on magmatic processes.

  3. High Resolution Continuous Flow Analysis System for Polar Ice Cores

    NASA Astrophysics Data System (ADS)

    Dallmayr, Remi; Azuma, Kumiko; Yamada, Hironobu; Kjær, Helle Astrid; Vallelonga, Paul; Azuma, Nobuhiko; Takata, Morimasa

    2014-05-01

    In the last decades, Continuous Flow Analysis (CFA) technology for ice core analyses has been developed to reconstruct the past changes of the climate system 1), 2). Compared with traditional analyses of discrete samples, a CFA system offers much faster and higher depth resolution analyses. It also generates a decontaminated sample stream without time-consuming sample processing procedure by using the inner area of an ice-core sample.. The CFA system that we have been developing is currently able to continuously measure stable water isotopes 3) and electrolytic conductivity, as well as to collect discrete samples for the both inner and outer areas with variable depth resolutions. Chemistry analyses4) and methane-gas analysis 5) are planned to be added using the continuous water stream system 5). In order to optimize the resolution of the current system with minimal sample volumes necessary for different analyses, our CFA system typically melts an ice core at 1.6 cm/min. Instead of using a wire position encoder with typical 1mm positioning resolution 6), we decided to use a high-accuracy CCD Laser displacement sensor (LKG-G505, Keyence). At the 1.6 cm/min melt rate, the positioning resolution was increased to 0.27mm. Also, the mixing volume that occurs in our open split debubbler is regulated using its weight. The overflow pumping rate is smoothly PID controlled to maintain the weight as low as possible, while keeping a safety buffer of water to avoid air bubbles downstream. To evaluate the system's depth-resolution, we will present the preliminary data of electrolytic conductivity obtained by melting 12 bags of the North Greenland Eemian Ice Drilling (NEEM) ice core. The samples correspond to different climate intervals (Greenland Stadial 21, 22, Greenland Stadial 5, Greenland Interstadial 5, Greenland Interstadial 7, Greenland Stadial 8). We will present results for the Greenland Stadial -8, whose depths and ages are between 1723.7 and 1724.8 meters, and 35.520 to 35.636 kyr b2k 7), respectively. The results show the conductivity measured upstream and downstream of the debubbler. We will calculate the depth resolution of our system and compare it with earlier studies. 1) Bigler at al, "Optimization of High-Resolution Continuous Flow Analysis For Transient Climate Signals in Ice Cores". Environ. Sci. Technol. 2011, 45, 4483-4489 2) Kaufmann et al, "An Improved Continuous Flow Analysis System for High Resolution Field Measurements on Ice Cores". Environmental Environ. Sci. Technol. 2008, 42, 8044-8050 3) Gkinis, V., T. J. Popp, S. J. Johnsen and T, Blunier, 2010: A continuous stream flash evaporator for the calibration of an IR cavity ring down spectrometer for the isotopic analysis of water. Isotopes in Environmental and Health Studies, 46(4), 463-475. 4) McConnell et al, "Continuous ice-core chemical analyses using inductively coupled plasma mass spectrometry. Environ. Sci. Technol. 2002, 36, 7-11 5) Rhodes et al, "Continuous methane measurements from a late Holocene Greenland ice core : Atmospheric and in-situ signals" Earth and Planetary Science Letters. 2013, 368, 9-19 6) Breton et al, "Quantifying Signal Dispersion in a Hybrid Ice Core Melting System". Environ. Sci. Technol. 2012, 46, 11922-11928 7) Rasmussen et al, " A first chronology for the NEEM ice core". Climate of the Past. 2013, 9, 2967--3013

  4. Internal Catchment Process Simulation in a Snow-Dominated Basin: Performance Evaluation with Spatiotemporally Variable Runoff Generation and Groundwater Dynamics

    NASA Astrophysics Data System (ADS)

    Kuras, P. K.; Weiler, M.; Alila, Y.; Spittlehouse, D.; Winkler, R.

    2006-12-01

    Hydrologic models have been increasingly used in forest hydrology to overcome the limitations of paired watershed experiments, where vegetative recovery and natural variability obscure the inferences and conclusions that can be drawn from such studies. Models, however, are also plagued by uncertainty stemming from a limited understanding of hydrological processes in forested catchments and parameter equifinality is a common concern. This has created the necessity to improve our understanding of how hydrological systems work, through the development of hydrological measures, analyses and models that address the question: are we getting the right answers for the right reasons? Hence, physically-based, spatially-distributed hydrologic models should be validated with high-quality experimental data describing multiple concurrent internal catchment processes under a range of hydrologic regimes. The distributed hydrology soil vegetation model (DHSVM) frequently used in forest management applications is an example of a process-based model used to address the aforementioned circumstances, and this study takes a novel approach at collectively examining the ability of a pre-calibrated model application to realistically simulate outlet flows along with the spatial-temporal variation of internal catchment processes including: continuous groundwater dynamics at 9 locations, stream and road network flow at 67 locations for six individual days throughout the freshet, and pre-melt season snow distribution. Model efficiency was improved over prior evaluations due to continuous efforts in improving the quality of meteorological data in the watershed. Road and stream network flows were very well simulated for a range of hydrological conditions, and the spatial distribution of the pre-melt season snowpack was in general agreement with observed values. The model was effective in simulating the spatial variability of subsurface flow generation, except at locations where strong stream-groundwater interactions existed, as the model is not capable of simulating such processes and subsurface flows always drain to the stream network. The model has proven overall to be quite capable in realistically simulating internal catchment processes in the watershed, which creates more confidence in future model applications exploring the effects of various forest management scenarios on the watershed's hydrological processes.

  5. Cold-Worked Inconel(R) 718 Bars

    NASA Technical Reports Server (NTRS)

    Montano, J. W.

    1988-01-01

    Cold working and double aging yield high strength without sacrifice of resistance to corrosion. Report presents data on mechanical properties and stress-corrosion resistance of triple-melted, solution-treated, work-strengthened, direct-double-aged Inconel(R) 718 alloy. Triple melting consists of vacuum induction melting, electro-slag remelting, and vacuum arm remelting. Data indicate advance in processing of large-diameter bars. New process increases yield strength without reducing the elongation, reduction of area, and grain size.

  6. Axial vibration control of melt structure of sodium nitrate in crystal growth process

    NASA Astrophysics Data System (ADS)

    Sadovskiy, Andrey; Sukhanova, Ekaterina; Belov, Stanislav; Kostikov, Vladimir; Zykova, Marina; Artyushenko, Maxim; Zharikov, Evgeny; Avetissov, Igor

    2015-05-01

    The melt structure evolution under the action of the low-frequency axial vibration control (AVC) technique was studied in situ by Raman spectroscopy for several complex chemical compound melts: sodium nitrate, margarine acid, paraffin mixture (C17-C20). The measurements were conducted in the temperature range from the melting point up to 60 °C above. Comparison of crystallization heats for AVC activated and steady melts with melting heats of AVC-CZ and conventional CZ produced powders allowed to propose the energy diagram of NaNO3 states for activated and non-activated melts and crystals based on DTA, XRD, DSC and Raman experimental data.

  7. Global simulation of the induction heating TSSG process of SiC for the effects of Marangoni convection, free surface deformation and seed rotation

    NASA Astrophysics Data System (ADS)

    Yamamoto, Takuya; Okano, Yasunori; Ujihara, Toru; Dost, Sadik

    2017-07-01

    A global numerical simulation was performed for the induction heating Top-Seeded Solution Growth (TSSG) process of SiC. Analysis included the furnace and growth melt. The effects of interfacial force due to free surface tension gradient, the RF coil-induced electromagnetic body force, buoyancy, melt free surface deformation, and seed rotation were examined. The simulation results showed that the contributions of free surface tension gradient and the electromagnetic body force to the melt flow are significant. Marangoni convection affects the growth process adversely by making the melt flow downward in the region under the seed crystal. This downward flow reduces carbon flux into the seed and consequently lowers growth rate. The effects of free surface deformation and seed rotation, although positive, are not so significant compared with those of free surface tension gradient and the electromagnetic body force. Due to the small size of the melt the contribution of buoyancy is also small.

  8. Lower continental crust formation through focused flow in km-scale melt conduits: The zoned ultramafic bodies of the Chilas Complex in the Kohistan island arc (NW Pakistan)

    NASA Astrophysics Data System (ADS)

    Jagoutz, O.; Müntener, O.; Burg, J.-P.; Ulmer, P.; Jagoutz, E.

    2006-02-01

    Whole-rock and Sm-Nd isotopic data of the main units of the Chilas zoned ultramafic bodies (Kohistan paleo-island arc, NW Pakistan) indicate that ultramafic rocks and gabbronorite sequences stem from a common magma. However, field observations rule out formation of both ultramafic and mafic sequences in terms of gravitational crystal settling in a large magma chamber. Contacts between ultramafic and gabbronorite sequences show emplacement of the dunitic bodies into a semi-consolidated gabbronoritic crystal-mush, which in turn has intruded and reacted with the ultramafic rocks to produce concentric zoning. Field and petrological observations indicate a replacive origin of the dunite. Bulk Mg#'s of dunitic rocks range from 0.87-0.81 indicating that the dunite-forming melt underwent substantial fractionation-differentiation and that percolative fractional crystallization probably generated the dunitic core. The REE chemistry of clinopyroxene in primitive dunite samples and the Nd isotopic composition of ultramafic rocks are in equilibrium with the surrounding gabbronorite. Accordingly, liquids that formed the dunitic rocks and later the mafic sequence derived from a similar depleted source ( ɛNd˜4.8). We propose a mechanism for the comagmatic emplacement, where km-scale ultramafic bodies represent continuous channels reaching down into the upper mantle. The melt-filled porosity in these melt channels diminishes the mean-depth-integrated density difference to the surrounding rocks. Due to buoyancy forces, melt channels raise into the overlying crustal sequence. In the light of such processes, the ultramafic bodies are interpreted as melt channels through which the Chilas gabbronorite sequence was fed. The estimated basaltic-andesitic, low Mg# (˜0.53) bulk composition of the Chilas gabbronorite sequence closely matches estimates of lower crustal compositions. Since the mafic sequence originated from a primary, high Mg# (> 0.7) basaltic arc magma, differentiation of such high Mg# magmas within km-scale isolated melt conduits may explain the "Mg#-gap" between bulk estimates of the continental crust and primary basaltic magmas, a major paradox in the andesite model of crust formation.

  9. Melting, glass transition, and apparent heat capacity of α-D-glucose by thermal analysis.

    PubMed

    Magoń, A; Pyda, M

    2011-11-29

    The thermal behaviors of α-D-glucose in the melting and glass transition regions were examined utilizing the calorimetric methods of standard differential scanning calorimetry (DSC), standard temperature-modulated differential scanning calorimetry (TMDSC), quasi-isothermal temperature-modulated differential scanning calorimetry (quasi-TMDSC), and thermogravimetric analysis (TGA). The quantitative thermal analyses of experimental data of crystalline and amorphous α-D-glucose were performed based on heat capacities. The total, apparent and reversingheat capacities, and phase transitions were evaluated on heating and cooling. The melting temperature (T(m)) of a crystalline carbohydrate such as α-D-glucose, shows a heating rate dependence, with the melting peak shifted to lower temperature for a lower heating rate, and with superheating of around 25K. The superheating of crystalline α-D-glucose is observed as shifting the melting peak for higher heating rates, above the equilibrium melting temperature due to of the slow melting process. The equilibrium melting temperature and heat of fusion of crystalline α-D-glucose were estimated. Changes of reversing heat capacity evaluated by TMDSC at glass transition (T(g)) of amorphous and melting process at T(m) of fully crystalline α-D-glucose are similar. In both, the amorphous and crystalline phases, the same origin of heat capacity changes, in the T(g) and T(m) area, are attributable to molecular rotational motion. Degradation occurs simultaneously with the melting process of the crystalline phase. The stability of crystalline α-D-glucose was examined by TGA and TMDSC in the melting region, with the degradation shown to be resulting from changes of mass with temperature and time. The experimental heat capacities of fully crystalline and amorphous α-D-glucose were analyzed in reference to the solid, vibrational, and liquid heat capacities, which were approximated based on the ATHAS scheme and Data Bank. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Newell, J; Miller, D; Stone, M

    The Savannah River National Laboratory (SRNL) was tasked to provide an assessment of the downstream impacts to the Defense Waste Processing Facility (DWPF) of decisions regarding the implementation of Al-dissolution to support sludge mass reduction and processing. Based on future sludge batch compositional projections from the Liquid Waste Organization's (LWO) sludge batch plan, assessments have been made with respect to the ability to maintain comparable projected operating windows for sludges with and without Al-dissolution. As part of that previous assessment, candidate frits were identified to provide insight into melt rate for average sludge batches representing with and without Al-dissolution flowsheets.more » Initial melt rate studies using the melt rate furnace (MRF) were performed using five frits each for Cluster 2 and Cluster 4 compositions representing average without and with Al-dissolution. It was determined, however, that the REDOX endpoint (Fe{sup 2+}/{Sigma}Fe for the glass) for Clusters 2 and 4 resulted in an overly oxidized feed which negatively affected the initial melt rate tests. After the sludge was adjusted to a more reduced state, additional testing was performed with frits that contained both high and low concentrations of sodium and boron oxides. These frits were selected strictly based on the ability to ascertain compositional trends in melt rate and did not necessarily apply to any acceptability criteria for DWPF processing. The melt rate data are in general agreement with historical trends observed at SRNL and during processing of SB3 (Sludge Batch 3)and SB4 in DWPF. When MAR acceptability criteria were applied, Frit 510 was seen to have the highest melt rate at 0.67 in/hr for Cluster 2 (without Al-dissolution), which is compositionally similar to SB4. For Cluster 4 (with Al-dissolution), which is compositionally similar to SB3, Frit 418 had the highest melt rate at 0.63 in/hr. Based on this data, there appears to be a slight advantage of the Frit 510 based system without Al-dissolution relative to the Frit 418 based system with Al-dissolution. Though the without aluminum dissolution scenario suggests a slightly higher melt rate with frit 510, several points must be taken into consideration: (1) The MRF does not have the ability to assess liquid feeds and, thus, rheology impacts. Instead, the MRF is a 'static' test bed in which a mass of dried melter feed (SRAT product plus frit) is placed in an 'isothermal' furnace for a period of time to assess melt rate. These conditions, although historically effective in terms of identifying candidate frits for specific sludge batches and mapping out melt rate versus waste loading trends, do not allow for assessments of the potential impact of feed rheology on melt rate. That is, if the rheological properties of the slurried melter feed resulted in the mounding of the feed in the melter (i.e., the melter feed was thick and did not flow across the cold cap), melt rate and/or melter operations (i.e., surges) could be negatively impacted. This could affect one or both flowsheets. (2) Waste throughput factors were not determined for Frit 510 and Frit 418 over multiple waste loadings. In order to provide insight into the mission life versus canister count question, one needs to define the maximum waste throughput for both flowsheets. Due to funding limitations, the melt rate testing only evaluated melt rate at a fixed waste loading. (3) DWPF will be processing SB5 through their facility in mid-November 2008. Insight into the over arching questions of melt rate, waste throughput, and mission life can be obtained directly from the facility. It is recommended that processing of SB5 through the facility be monitored closely and that data be used as input into the decision making process on whether to implement Al-dissolution for future sludge batches.« less

  11. Economical Fabrication of Thick-Section Ceramic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Babcock, Jason; Ramachandran, Gautham; Williams, Brian; Benander, Robert

    2010-01-01

    A method was developed for producing thick-section [>2 in. (approx.5 cm)], continuous fiber-reinforced ceramic matrix composites (CMCs). Ultramet-modified fiber interface coating and melt infiltration processing, developed previously for thin-section components, were used for the fabrication of CMCs that were an order of magnitude greater in thickness [up to 2.5 in. (approx.6.4 cm)]. Melt processing first involves infiltration of a fiber preform with the desired interface coating, and then with carbon to partially densify the preform. A molten refractory metal is then infiltrated and reacts with the excess carbon to form the carbide matrix without damaging the fiber reinforcement. Infiltration occurs from the inside out as the molten metal fills virtually all the available void space. Densification to <5 vol% porosity is a one-step process requiring no intermediate machining steps. The melt infiltration method requires no external pressure. This prevents over-infiltration of the outer surface plies, which can lead to excessive residual porosity in the center of the part. However, processing of thick-section components required modification of the conventional process conditions, and the means by which the large amount of molten metal is introduced into the fiber preform. Modification of the low-temperature, ultraviolet-enhanced chemical vapor deposition process used to apply interface coatings to the fiber preform was also required to accommodate the high preform thickness. The thick-section CMC processing developed in this work proved to be invaluable for component development, fabrication, and testing in two complementary efforts. In a project for the Army, involving SiC/SiC blisk development, nominally 0.8 in. thick x 8 in. diameter (approx. 2 cm thick x 20 cm diameter) components were successfully infiltrated. Blisk hubs were machined using diamond-embedded cutting tools and successfully spin-tested. Good ply uniformity and extremely low residual porosity (<2 percent) were achieved, the latter being far lower than that achieved with SiC matrix composites fabricated via CVI or PIP. The pyrolytic carbon/zirconium nitride interface coating optimized in this work for use on carbon fibers was incorporated in the SiC/SiC composites and yielded a >41 ksi (approx. 283 MPa) flexural strength.

  12. Inclusions of Sulphide Immiscible Melts in Primitive Olivine Phenocrysts from Mantle-Derived Magmas; Preliminary Results

    NASA Astrophysics Data System (ADS)

    Danyushevsky, L.; Ryan, C.; Kamenetsky, V.; Crawford, A.

    2001-12-01

    Sulphide inclusions have been identified in olivine phenocrysts (and in one case in a spinel phenocryst) in primitive volcanic rocks from mid- ocean ridges, subduction-related island arcs and backarc basins. These inclusions represent droplets of an immiscible sulphide melt and are trapped by olivine crystals growing from silicate melts. Sulphide melt is usually trapped as separate inclusions, however combined inclusions of sulphide and silicate melts have also been observed. Sulphide inclusions have rounded shapes and vary in size from several up to 100 microns in diameter. At room temperature sulphide inclusions consist of several phases. These phases are formed as a result of crystallisation of the sulphide melt after it was trapped. Crystallisation occurs due to decreasing temperature in the magma chamber after trapping and/or when magma ascents from the magma chamber during eruptions. In all studied sulphides three different phases can be identified: a high- Fe, low-Ni, low-Cu phase; a high-Fe, high-Ni, low-Cu phase; and high-Fe, low-Ni, high-Cu phase. Low-Cu phases appear to be monomineralic, whereas the high-Cu phase is usually composed of a fine intergrowth of high- and low-Cu phases, resembling the quench 'spinifex' structure. Fe, Ni and Cu are the major elements in all sulphides studied. The amount of Ni decreases with decreasing forsterite content of the host olivine phenocryst, which is an index of the degree of silicate magma fractionation. Since Ni content of the silicate magma is decreasing during fractionation, this indicates either that the immiscible sulfide melt remains in equilibrium with the silicate melt continuously changing its composition during fractionation, or that the sulfide melt is continuously separated from the silicate melt during fractionation, with later formed droplets having lower Ni content due to the lower Ni content of the evolved, stronger fractionated silicate melt. Trace element contents of the sulfide inclusions have been analysed on the proton microprobe at CSIRO in Sydney. The main trace elements in the sulfide inclusions are Zn, Pb, Ag, and Se. Other trace elements are below detection limits, which are normally at a level of several ppm. Zn concentrations (120 +/- 40 ppm) in sulphides are similar to those in silicate melts. This indicates that separation of the sulfide melt does not affect Zn contents of silicate melts. On the contrary, Ag (30 +/- 10 ppm) and Pb (40 +/- 10 ppm) contents in sulphides are at least in order of magnitude higher than in the silicate melt, and thus separation of the immiscible sulfide melt can significantly decrease Pb and Ag contents of the silicate magma. The widespread occurrence of sulfide inclusions, which were also described in olivine phenocrysts from ocean island basalts, indicates common saturation at low pressure of mantle-derived magmas with reduced sulfur.

  13. Crystallization process

    DOEpatents

    Adler, Robert J.; Brown, William R.; Auyang, Lun; Liu, Yin-Chang; Cook, W. Jeffrey

    1986-01-01

    An improved crystallization process is disclosed for separating a crystallizable material and an excluded material which is at least partially excluded from the solid phase of the crystallizable material obtained upon freezing a liquid phase of the materials. The solid phase is more dense than the liquid phase, and it is separated therefrom by relative movement with the formation of a packed bed of solid phase. The packed bed is continuously formed adjacent its lower end and passed from the liquid phase into a countercurrent flow of backwash liquid. The packed bed extends through the level of the backwash liquid to provide a drained bed of solid phase adjacent its upper end which is melted by a condensing vapor.

  14. Spiders: water-driven erosive structures in the southern hemisphere of Mars.

    PubMed

    Prieto-Ballesteros, Olga; Fernández-Remolar, David C; Rodríguez-Manfredi, José Antonio; Selsis, Franck; Manrubia, Susanna C

    2006-08-01

    Recent data from space missions reveal that there are ongoing climatic changes and erosive processes that continuously modify surface features of Mars. We have investigated the seasonal dynamics of a number of morphological features located at Inca City, a representative area at high southern latitude that has undergone seasonal processes. By integrating visual information from the Mars Orbiter Camera on board the Mars Global Surveyor and climatic cycles from a Mars' General Circulation Model, and considering the recently reported evidence for the presence of water-ice and aqueous precipitates on Mars, we propose that a number of the erosive features identified in Inca City, among them spiders, result from the seasonal melting of aqueous salty solutions.

  15. Solids precipitation and polymerization of asphaltenes in coal-derived liquids

    DOEpatents

    Kydd, Paul H.

    1984-01-01

    The precipitation and removal of particulate solids from coal-derived liquids by adding a process-derived anti-solvent liquid fraction and continuing the precipitation process at a temperature above the melting point of the mixed liquids for sufficient time to allow the asphaltenes to polymerize and solids to settle at atmospheric pressure conditions. The resulting clarified light hydrocarbon overflow liquid contains less than about 0.02 W % ash and is suitable as turbine fuel or as boiler fuel for burning without particulate emission control equipment. An underflow liquid fraction containing less than about 0.1 W % solids along with low sulfur and nitrogen concentrations is suitable as a boiler fuel with emission control equipment.

  16. Software Analytical Instrument for Assessment of the Process of Casting Slabs

    NASA Astrophysics Data System (ADS)

    Franěk, Zdeněk; Kavička, František; Štětina, Josef; Masarik, Miloš

    2010-06-01

    The paper describes the original proposal of ways of solution and function of the program equipment for assessment of the process of casting slabs. The program system LITIOS was developed and implemented in EVRAZ Vitkovice Steel Ostrava on the equipment of continuous casting of steel (further only ECC). This program system works on the data warehouse of technological parameters of casting and quality parameters of slabs. It enables an ECC technologist to analyze the course of casting melt and with using statistics methods to set the influence of single technological parameters on the duality of final slabs. The system also enables long term monitoring and optimization of the production.

  17. Rheological signatures of gelation and effect of shear melting on aging colloidal suspension

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jatav, Shweta; Joshi, Yogesh M, E-mail: joshi@iitk.ac.in

    2014-09-01

    Colloidal suspensions that are out of thermodynamic equilibrium undergo physical aging wherein their structure evolves to lower the free energy. In aqueous suspension of Laponite, physical aging accompanies increases of elastic and viscous moduli as a function of time. In this work, we study temporal evolution of elastic and viscous moduli at different frequencies and observe that freshly prepared aqueous suspension of Laponite demonstrates identical rheological behavior reported for the crosslinking polymeric materials undergoing chemical gelation. Consequently at a certain time, tan δ is observed to be independent of frequency. However, for samples preserved under rest condition for longer duration beforemore » applying the shear melting, the liquid to solid transition subsequent to shear melting shows greater deviation from classical gelation. We also obtain continuous relaxation time spectra from the frequency dependence of viscous modulus. We observe that, with an increase in the rest time, continuous relaxation time spectrum shows gradual variation from negative slope, describing dominance of fast relaxation modes to positive slope representing dominance of slow relaxation modes. We propose that the deviation from gelation behavior for the shear melted suspensions originates from inability of shear melting to completely break the percolated structure thereby creating unbroken aggregates. The volume fraction of such unbroken aggregates increases with the rest time. For small rest times presence of fewer number of unbroken aggregates cause deviation from the classical gelation. On the other hand, at high rest times presence of greater fraction of unbroken aggregates subsequent to shear melting demonstrate dynamic arrest leading to inversion of relaxation time spectra.« less

  18. 3D Compressible Melt Transport with Adaptive Mesh Refinement

    NASA Astrophysics Data System (ADS)

    Dannberg, Juliane; Heister, Timo

    2015-04-01

    Melt generation and migration have been the subject of numerous investigations, but their typical time and length-scales are vastly different from mantle convection, which makes it difficult to study these processes in a unified framework. The equations that describe coupled Stokes-Darcy flow have been derived a long time ago and they have been successfully implemented and applied in numerical models (Keller et al., 2013). However, modelling magma dynamics poses the challenge of highly non-linear and spatially variable material properties, in particular the viscosity. Applying adaptive mesh refinement to this type of problems is particularly advantageous, as the resolution can be increased in mesh cells where melt is present and viscosity gradients are high, whereas a lower resolution is sufficient in regions without melt. In addition, previous models neglect the compressibility of both the solid and the fluid phase. However, experiments have shown that the melt density change from the depth of melt generation to the surface leads to a volume increase of up to 20%. Considering these volume changes in both phases also ensures self-consistency of models that strive to link melt generation to processes in the deeper mantle, where the compressibility of the solid phase becomes more important. We describe our extension of the finite-element mantle convection code ASPECT (Kronbichler et al., 2012) that allows for solving additional equations describing the behaviour of silicate melt percolating through and interacting with a viscously deforming host rock. We use the original compressible formulation of the McKenzie equations, augmented by an equation for the conservation of energy. This approach includes both melt migration and melt generation with the accompanying latent heat effects. We evaluate the functionality and potential of this method using a series of simple model setups and benchmarks, comparing results of the compressible and incompressible formulation and showing the potential of adaptive mesh refinement when applied to melt migration. Our model of magma dynamics provides a framework for modelling processes on different scales and investigating links between processes occurring in the deep mantle and melt generation and migration. This approach could prove particularly useful applied to modelling the generation of komatiites or other melts originating in greater depths. Keller, T., D. A. May, and B. J. P. Kaus (2013), Numerical modelling of magma dynamics coupled to tectonic deformation of lithosphere and crust, Geophysical Journal International, 195 (3), 1406-1442. Kronbichler, M., T. Heister, and W. Bangerth (2012), High accuracy mantle convection simulation through modern numerical methods, Geophysical Journal International, 191 (1), 12-29.

  19. Evolutions of lamellar structure during melting and solidification of Fe9577 nanoparticle from molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Wu, Yongquan; Shen, Tong; Lu, Xionggang

    2013-03-01

    A structural evolution during solidification and melting processes of nanoparticle Fe9577 was investigated from MD simulations. A perfect lamellar structure, consisting alternately of fcc and hcp layers, was obtained from solidification process. A structural heredity of early embryo is proposed to explain the structural preference of solidification. Defects were found inside the solid core and play the same role as surface premelting on melting. hcp was found more stable than fcc in high temperature. The difference between melting and solidification points can be deduced coming fully from the overcoming of thermodynamic energy barrier, instead of kinetic delay of structural relaxation.

  20. Glass and Glass-Ceramic Materials from Simulated Composition of Lunar and Martian Soils: Selected Properties and Potential Applications

    NASA Technical Reports Server (NTRS)

    Ray, C. S.; Sen, S.; Reis, S. T.; Kim, C. W.

    2005-01-01

    In-situ resource processing and utilization on planetary bodies is an important and integral part of NASA's space exploration program. Within this scope and context, our general effort is primarily aimed at developing glass and glass-ceramic type materials using lunar and martian soils, and exploring various applications of these materials for planetary surface operations. Our preliminary work to date have demonstrated that glasses can be successfully prepared from melts of the simulated composition of both lunar and martian soils, and the melts have a viscosity-temperature window appropriate for drawing continuous glass fibers. The glasses are shown to have the potential for immobilizing certain types of nuclear wastes without deteriorating their chemical durability and thermal stability. This has a direct impact on successfully and economically disposing nuclear waste generated from a nuclear power plant on a planetary surface. In addition, these materials display characteristics that can be manipulated using appropriate processing protocols to develop glassy or glass-ceramic magnets. Also discussed in this presentation are other potential applications along with a few selected thermal, chemical, and structural properties as evaluated up to this time for these materials.

  1. Melting of the Dipalmitoylphosphatidylcholine Monolayer.

    PubMed

    Xu, Lu; Bosiljevac, Gordon; Yu, Kyle; Zuo, Yi Y

    2018-04-17

    Langmuir monolayer self-assembled at the air-water interface represents an excellent model for studying phase transition and lipid polymorphism in two dimensions. Compared with numerous studies of phospholipid phase transitions induced by isothermal compression, there are very scarce reports on two-dimensional phase transitions induced by isobaric heating. This is mainly due to technical difficulties of continuously regulating temperature variations while maintaining a constant surface pressure in a classical Langmuir-type film balance. Here, with technological advances in constrained drop surfactometry and closed-loop axisymmetric drop shape analysis, we studied the isobaric heating process of the dipalmitoylphosphatidylcholine (DPPC) monolayer. It is found that temperature and surface pressure are two equally important intensive properties that jointly determine the phase behavior of the phospholipid monolayer. We have determined a critical point of the DPPC monolayer at a temperature of 44 °C and a surface pressure of 57 mN/m. Beyond this critical point, no phase transition can exist in the DPPC monolayer, either by isothermal compression or by isobaric heating. The melting process of the DPPC monolayer studied here provides novel insights into the understanding of a wide range of physicochemical and biophysical phenomena, such as surface thermodynamics, critical phenomena, and biophysical study of pulmonary surfactants.

  2. Neutralization of Hydroxide Ion in Melt-Grown NaCl Crystals

    NASA Technical Reports Server (NTRS)

    Otterson, Dumas A.

    1961-01-01

    Many recent studies of solid-state phenomena, particularly in the area of crystal imperfections, have involved the use of melt-grown NaCl single crystals. Quite often trace impurities in these materials have had a prominent effect on these phenomena. Trace amounts of hydroxide ion have been found in melt-grown NaCl crystals. This paper describes a nondestructive method of neutralizing the hydroxide ion in such crystals. Crystals of similar hydroxide content are maintained at an elevated temperature below the melting point of NaCl in a flowing atmosphere containing. dry hydrogen chloride. Heat treatment is continued until an analysis of the test specimens shows no excess hydroxide ion. A colorimetric method previously described4 is used for this analysis.

  3. Recent Changes in Arctic Sea Ice Melt Onset, Freeze-Up, and Melt Season Length

    NASA Technical Reports Server (NTRS)

    Markus, Thorsten; Stroeve, Julienne C.; Miller, Jeffrey

    2010-01-01

    In order to explore changes and trends in the timing of Arctic sea ice melt onset and freeze-up and therefore melt season length, we developed a method that obtains this information directly from satellite passive microwave data, creating a consistent data set from 1979 through present. We furthermore distinguish between early melt (the first day of the year when melt is detected) and the first day of continuous melt. A similar distinction is made for the freeze-up. Using this method we analyze trends in melt onset and freeze-up for 10 different Arctic regions. In all regions except for the Sea of Okhotsk, which shows a very slight and statistically insignificant positive trend (O.4 days/decade), trends in melt onset are negative, i.e. towards earlier melt. The trends range from -1.0day/decade for the Bering Sea to -7.3 days/decade for the East Greenland Sea. Except for the Sea of Okhotsk all areas also show a trend towards later autumn freeze onset. The Chukchi/Beaufort Seas and Laptev/East Siberian Seas observe the strongest trends with 7 days/decade. For the entire Arctic, the melt season length has increased by about 20 days over the last 30 years. Largest trends of over 1O days/decade are seen for Hudson Bay, the East Greenland Sea the Laptev/East Siberian Seas, and the Chukchi/Beaufort Seas. Those trends are statistically significant a1 the 99% level.

  4. Melting of Simple Solids and the Elementary Excitations of the Communal Entropy

    NASA Astrophysics Data System (ADS)

    Bongiorno, Angelo

    2010-03-01

    The melting phase transition of simple solids is addressed through the use of atomistic computer simulations. Three transition metals (Ni, Au, and Pt) and a semiconductor (Si) are considered in this study. Iso-enthalpic molecular dynamics simulations are used to compute caloric curves across the solid-to-liquid phase transition of a periodic crystalline system, to construct the free energy function of the solid and liquid phases, and thus to derive the thermodynamical limit of the melting point, latent heat and entropy of fusion of the material. The computational strategy used in this study yields accurate estimates of melting parameters, it consents to determine the superheating and supercooling temperature limits, and it gives access to the atomistic mechanisms mediating the melting process. In particular, it is found that the melting phase transition in simple solids is driven by exchange steps involving a few atoms and preserving the crystalline structure. These self-diffusion phenomena correspond to the elementary excitations of the communal entropy and, as their rate depends on the local material cohesivity, they mediate both the homogeneous and non-homogeneous melting process in simple solids.

  5. Characterization of Mullite-Zirconia Composite Processed by Non-Transferred and Transferred Arc Plasma

    NASA Astrophysics Data System (ADS)

    Yugeswaran, S.; Selvarajan, V.; Lusvarghi, L.; I. Y. Tok, A.; D. Siva Rama, Krishna

    2009-04-01

    The arc plasma melting technique is a simple method to synthesize high temperature reaction composites. In this study, mullite-zirconia composite was synthesized by transferred and non-transferred arc plasma melting, and the results were compared. A mixture of alumina and zircon powders with a mole ratio of 3: 2 were ball milled for four hours and melted for two minutes in the transferred and non-transferred mode of plasma arcs. Argon and air were used as plasma forming gases. The phase and microstructural formation of melted samples were investigated by X-ray diffraction (XRD) and scanning electron microscope (SEM). The microstructure of the composites was found to be affected by the mode of melting. In transferred arc melting, zirconia flowers with uniform lines along with mullite whiskers were obtained. In the case of non-transferred arc plasma melting, mullite whiskers along with star shape zirconia were formed. Differential thermal analysis (DTA) of the synthesized mullite-zirconia composites provided a deeper understanding of the mechanisms of mullite formation during the two different processes.

  6. Melting dynamics of ice in the mesoscopic regime

    PubMed Central

    Citroni, Margherita; Fanetti, Samuele; Falsini, Naomi; Foggi, Paolo; Bini, Roberto

    2017-01-01

    How does a crystal melt? How long does it take for melt nuclei to grow? The melting mechanisms have been addressed by several theoretical and experimental works, covering a subnanosecond time window with sample sizes of tens of nanometers and thus suitable to determine the onset of the process but unable to unveil the following dynamics. On the other hand, macroscopic observations of phase transitions, with millisecond or longer time resolution, account for processes occurring at surfaces and time limited by thermal contact with the environment. Here, we fill the gap between these two extremes, investigating the melting of ice in the entire mesoscopic regime. A bulk ice Ih or ice VI sample is homogeneously heated by a picosecond infrared pulse, which delivers all of the energy necessary for complete melting. The evolution of melt/ice interfaces thereafter is monitored by Mie scattering with nanosecond resolution, for all of the time needed for the sample to reequilibrate. The growth of the liquid domains, over distances of micrometers, takes hundreds of nanoseconds, a time orders of magnitude larger than expected from simple H-bond dynamics. PMID:28536197

  7. Reactive modification of polyesters and their blends

    NASA Astrophysics Data System (ADS)

    Wan, Chen

    2004-12-01

    As part of a broader research effort to investigate the chemical modification of polyesters by reactive processing a low molecular weight (MW) unsaturated polyester (UP) and a higher MW saturated polyester, polyethylene terephthalate (PET), alone or blended with polypropylene (PP) were melt processed in a batch mixer and continuous twin screw extruders. Modification was monitored by on-line rheology and the products were characterized primarily by off-line rheology, morphology and thermal analysis. Efforts were made to establish processing/property relationships and provide an insight of the accompanying structural changes. The overall response of the reactively modified systems was found to be strongly dependent on the component characteristics, blend composition, type and concentrations of reactive additives and processing conditions. The work concluded that UP can be effectively modified through reactive melt processing. Its melt viscosity and MW can be increased through chemical reactions between organic peroxides (POX) and chain unsaturation or between MgO and carboxyl/hydroxyl end groups. Reactive blending of PP/UP blends through peroxide modification gave finer and more uniform morphology than unreacted blends and at a given PP/UP weight ratio more thermoplastic elastomers-like rheological behavior. This is due to the continuously decreasing viscosity ratio of PP/UP towards unity by the competing reactions between POX and the blend components and formation of PP-UP copolymers which serve as in-situ compatibilizers to promote better interfacial adhesion. Kinetics of the competing reactions were analyzed through a developed model. In addition to POX concentration and mixing efficiency, rheology and morphology of UP/PP bends were significantly affected by the addition of inorganic and organic coagents. Addition of coagents such as a difunctional maleimide, MgO and/or an anhydride functionalized PP during reactive blending offers effective means for tailoring the desired rheological and structural characteristics of the final products for potential applications such as low density extrusion foaming or compatibilization of immiscible polymer blends. Important modification conditions through coagents are identified and reaction mechanisms are proposed. A high MW saturated polyester, PET, can also be rheologically modified in extruders through low MW multifunctional anhydride and epoxy compounds by chain extension/branching. Several such modifiers were successfully screened in terms of their reactivity towards PET under controlled reactive extrusion conditions. A dianhydride with medium reactivity was then successfully used in a one-step reactive modification/extrusion foaming process to produce low density foams. A similar process was successfully used to produce small cell size foams from a four component system containing PET, PP and lesser amounts of a low molecular weight multifunctional epoxy compound and an acid functionalized polyolefin, the latter acting as compatibilizers.

  8. Molten salt CO2 capture and electro-transformation (MSCC-ET) into capacitive carbon at medium temperature: effect of the electrolyte composition.

    PubMed

    Deng, Bowen; Chen, Zhigang; Gao, Muxing; Song, Yuqiao; Zheng, Kaiyuan; Tang, Juanjuan; Xiao, Wei; Mao, Xuhui; Wang, Dihua

    2016-08-15

    Electrochemical transformation of CO2 into functional materials or fuels (i.e., carbon, CO) in high temperature molten salts has been demonstrated as a promising way of carbon capture, utilisation and storage (CCUS) in recent years. In a view of continuous operation, the electrolysis process should match very well with the CO2 absorption kinetics. At the same time, in consideration of the energy efficiency, a molten salt electrochemical cell running at lower temperature is more beneficial to a process powered by the fluctuating renewable electricity from solar/wind farms. Ternary carbonates (Li : Na : K = 43.5 : 31.5 : 25.0) and binary chlorides (Li : K = 58.5 : 41.5), two typical kinds of eutectic melt with low melting points and a wide electrochemical potential window, could be the ideal supporting electrolyte for the molten salt CO2 capture and electro-transformation (MSCC-ET) process. In this work, the CO2 absorption behaviour in Li2O/CaO containing carbonates and chlorides were investigated on a home-made gas absorption testing system. The electrode processes as well as the morphology and properties of carbon obtained in different salts are compared to each other. It was found that the composition of molten salts significantly affects the absorption of CO2, electrode processes and performance of the product. Furthermore, the relationship between the absorption and electro-transformation kinetics are discussed based on the findings.

  9. Magmatic Processes at Kilauea Volcano Revealed by the Puu Oo Eruption

    NASA Astrophysics Data System (ADS)

    Garcia, M. O.; Marske, J. P.; Pietruszka, A. P.; Rhodes, J. M.; Norman, M. D.; Eiler, J.

    2008-12-01

    The ongoing Puu Oo eruption (1983 to present) provides an unprecedented opportunity to probe the crustal and mantle magmatic processes beneath Kilauea volcano. Here we present Pb, Sr, Nd and O isotope ratios, major- and trace-element abundances, olivine compositions, and petrography data for Puu Oo lavas an compare them to the Kilauea historical record. Crustal processes are dominated by olivine fractionation and accumulation with minor clinopyroxene fractionation, and to a lesser extent and only periodically when eruption rates decrease, by crustal contamination. Systematic variations in Sr isotope ratios, incompatible trace element ratios, and MgO-normalized major elements document remarkable changes in parental magma compositions delivered to Puu Oo. Inflections in some trends correlate broadly with increasing intermediate depth earthquakes under the Kilauea's summit and to changes in eruption rate. Thus, volcanic events are influenced by melting and transport processes. One surprising feature is the systematic trend of Puu Oo rock compositions away from and beyond typical historical Kilauea compositions towards those of lavas from neighboring Mauna Loa volcano. The source for this component in Puu Oo lavas is a hybrid with about equal mixtures of historical Kilauea and Mauna Loa end members. The Puu Oo lava trend continues the cyclic pattern of compositional variation that extends back over 1000 years. Similar trends are also recorded on a coarser scale in HSDP lavas. These patterns of cyclic compositional variation are important for understanding melting processes in Hawaiian and other volcanoes.

  10. Strip casting with fluxing agent applied to casting roll

    DOEpatents

    Williams, Robert S.; O'Malley, Ronald J.; Sussman, Richard C.

    1997-01-01

    A strip caster (10) for producing a continuous strip (24) includes a tundish (12) for containing a melt (14), a pair of horizontally disposed water cooled casting rolls (22) and devices (29) for electrostatically coating the outer peripheral chill surfaces (44) of the casting rolls with a powder flux material (56). The casting rolls are juxtaposed relative to one another for forming a pouting basin (18) for receiving the melt through a teeming tube (16) thereby establishing a meniscus (20) between the rolls for forming the strip. The melt is protected from the outside air by a non-oxidizing gas passed through a supply line (28) to a sealing chamber (26). A preferred flux is boron oxide having a melting point of about 550.degree. C. The flux coating enhances wetting of the steel melt to the casting roll and dissolves any metal oxide formed on the roll.

  11. ARTICLES: Thermohydrodynamic models of the interaction of pulse-periodic radiation with matter

    NASA Astrophysics Data System (ADS)

    Arutyunyan, R. V.; Baranov, V. Yu; Bol'shov, Leonid A.; Malyuta, D. D.; Mezhevov, V. S.; Pis'mennyĭ, V. D.

    1987-02-01

    Experimental and theoretical investigations were made of the processes of drilling and deep melting of metals by pulsed and pulse-periodic laser radiation. Direct photography of the surface revealed molten metal splashing due to interaction with single CO2 laser pulses. A proposed thermohydrodynamic model was used to account for the experimental results and to calculate the optimal parameters of pulse-periodic radiation needed for deep melting. The melt splashing processes were simulated numerically.

  12. Numerical Simulation of the Evolution of Solidification Microstructure in Laser Deposition (Preprint)

    DTIC Science & Technology

    2007-08-01

    the deposition process. This model is applied to Ti-6Al-4V. 1. Instruction Laser deposition is an extension of the laser cladding process...uses a focused laser beam as a heat source to create a melt pool on an underlying substrate. Powder material is then injected into the melt pool...melt pool Deposited layer Remelted zone Substrate Shielding gas Laser beam Powder The governing equations have been discretized using a

  13. Particle Image Velocimetry During Injection Molding

    NASA Astrophysics Data System (ADS)

    Bress, Thomas; Dowling, David

    2012-11-01

    Injection molding involves the unsteady non-isothermal flow of a non-Newtonian polymer melt. An optical-access mold has been used to perform particle image velocimetry (PIV) on molten polystyrene during injection molding. Velocimetry data of the mold-filling flow will be presented. Statistical assessments of the velocimetry data and scaled residuals of the continuity equation suggest that PIV can be conducted in molten plastics with an uncertainty of +/-2 percent. Simulations are often used to model polymer flow during injection molding to design molds and select processing parameters but it is difficult to determine the accuracy of these simulations due to a lack of in-mold velocimetry and melt-front progression data. Moldflow was used to simulate the filling of the optical-access mold, and these simulated results are compared to the appropriately-averaged time-varying velocity field measurements. Simulated results for melt-front progression are also compared with the experimentally observed flow fronts. The ratio of the experimentally measured average velocity magnitudes to the simulation magnitudes was found on average to be 0.99 with a standard deviation of 0.25, and the difference in velocity orientations was found to be 0.9 degree with a standard deviation of 3.2 degrees. formerly at the University of Michigan.

  14. Patterns and Potential Drivers of Dramatic Changes in Tibetan Lakes, 1972–2010

    PubMed Central

    Li, Yingkui; Liao, Jingjuan; Guo, Huadong; Liu, Zewen; Shen, Guozhuang

    2014-01-01

    Most glaciers in the Himalayas and the Tibetan Plateau are retreating, and glacier melt has been emphasized as the dominant driver for recent lake expansions on the Tibetan Plateau. By investigating detailed changes in lake extents and levels across the Tibetan Plateau from Landsat/ICESat data, we found a pattern of dramatic lake changes from 1970 to 2010 (especially after 2000) with a southwest-northeast transition from shrinking, to stable, to rapidly expanding. This pattern is in distinct contrast to the spatial characteristics of glacier retreat, suggesting limited influence of glacier melt on lake dynamics. The plateau-wide pattern of lake change is related to precipitation variation and consistent with the pattern of permafrost degradation induced by rising temperature. More than 79% of lakes we observed on the central-northern plateau (with continuous permafrost) are rapidly expanding, even without glacial contributions, while lakes fed by retreating glaciers in southern regions (with isolated permafrost) are relatively stable or shrinking. Our study shows the limited role of glacier melt and highlights the potentially important contribution of permafrost degradation in predicting future water availability in this region, where understanding these processes is of critical importance to drinking water, agriculture, and hydropower supply of densely populated areas in South and East Asia. PMID:25372787

  15. Cooling of the magma ocean due to accretional disruption of the surface insulating layer

    NASA Technical Reports Server (NTRS)

    Sasaki, Sho

    1992-01-01

    Planetary accretion has been considered as a process to heat planets. Some fraction of the kinetic energy of incoming planetesimals is trapped to heat the planetary interior (Kaula, 1979; Davies, 1984). Moreover, blanketing effect of a primary atmosphere (Hayashi et al., 1979; Sasaki, 1990) or a degassed atmosphere (Abe and Matsui, 1986; Zahnle et al., 1988) would raise the surface temperature of the Earth-size planets to be higher than the melting temperature. The primordial magma ocean was likely to be formed during accretion of terrestrial planets. In the magma ocean, if crystallized fractions were heavier than melt, they would sink. But if solidified materials were lighter than the melt (like anorthosite of the lunar early crust) they would float to form a solid shell surrounding the planet. (In an icy satellite, solidified water ice should easily float on liquid water because of its small density.) The surface solid lid would prevent efficient convective heat transfer and slow the interior cooling. Consider that the accretion of planetesimals still continues in this cooling stage. Shock disruption at planetesimal impact events may destroy the solid insulating layer. Even if the layer survives impacts, the surface layer is finally overturned by Rayleigh-Taylor instability, since accreting materials containing metals are heavier than the surface solidified lid of silicates.

  16. Patterns and potential drivers of dramatic changes in Tibetan lakes, 1972-2010.

    PubMed

    Li, Yingkui; Liao, Jingjuan; Guo, Huadong; Liu, Zewen; Shen, Guozhuang

    2014-01-01

    Most glaciers in the Himalayas and the Tibetan Plateau are retreating, and glacier melt has been emphasized as the dominant driver for recent lake expansions on the Tibetan Plateau. By investigating detailed changes in lake extents and levels across the Tibetan Plateau from Landsat/ICESat data, we found a pattern of dramatic lake changes from 1970 to 2010 (especially after 2000) with a southwest-northeast transition from shrinking, to stable, to rapidly expanding. This pattern is in distinct contrast to the spatial characteristics of glacier retreat, suggesting limited influence of glacier melt on lake dynamics. The plateau-wide pattern of lake change is related to precipitation variation and consistent with the pattern of permafrost degradation induced by rising temperature. More than 79% of lakes we observed on the central-northern plateau (with continuous permafrost) are rapidly expanding, even without glacial contributions, while lakes fed by retreating glaciers in southern regions (with isolated permafrost) are relatively stable or shrinking. Our study shows the limited role of glacier melt and highlights the potentially important contribution of permafrost degradation in predicting future water availability in this region, where understanding these processes is of critical importance to drinking water, agriculture, and hydropower supply of densely populated areas in South and East Asia.

  17. Femtosecond laser melting of silver nanoparticles: comparison of model simulations and experimental results

    NASA Astrophysics Data System (ADS)

    Cheng, Chung-Wei; Chang, Chin-Lun; Chen, Jinn-Kuen; Wang, Ben

    2018-05-01

    Ultrafast laser-induced melting of silver nanoparticles (NPs) using a femtosecond laser pulse is investigated both theoretically and experimentally. The sintered Ag structure fabricated from printed Ag NP ink using femtosecond laser (1064 nm, 300 fs) irradiation is experimentally studied. A two-temperature model with dynamic optical properties and particle size effects on the melting temperature of Ag NPs is considered. The rapid phase change model is incorporated to simulate the Ag NPs' ultrafast laser-induced melting process, and a multi-shot melting threshold fluence predicted from the simulated single-shot melting threshold is developed.

  18. Chondritic Meteorites: Nebular and Parent-Body Formation Processes

    NASA Technical Reports Server (NTRS)

    Rubin, Alan E.; Lindstrom, David (Technical Monitor)

    2002-01-01

    It is important to identify features in chondrites that formed as a result of parent-body modification in order to disentangle nebular and asteroidal processes. However, this task is difficult because unmetamorphosed chondritic meteorites are mixtures of diverse components including various types of chondrules, chondrule fragments, refractory and mafic inclusions, metal-sulfide grains and fine-grained matrix material. Shocked chondrites can contain melt pockets, silicate-darkened material, metal veins, silicate melt veins, and impact-melt-rock clasts. This grant paid for several studies that went far in helping to distinguish primitive nebular features from those produced during asteroidal modification processes.

  19. Melt-Infiltration Process For SiC Ceramics And Composites

    NASA Technical Reports Server (NTRS)

    Behrendt, Donald R.; Singh, Mrityunjay

    1994-01-01

    Reactive melt infiltration produces silicon carbide-based ceramics and composites faster and more economically than do such processes as chemical vapor infiltration (CVI), reaction sintering, pressureless sintering, hot pressing, and hot isostatic pressing. Process yields dense, strong materials at relatively low cost. Silicon carbide ceramics and composites made by reactive melt infiltration used in combustor liners of jet engines and in nose cones and leading edges of high-speed aircraft and returning spacecraft. In energy industry, materials used in radiant-heater tubes, heat exchangers, heat recuperators, and turbine parts. Materials also well suited to demands of advanced automobile engines.

  20. Melting and solidification behavior of Cu/Al and Ti/Al bimetallic core/shell nanoparticles during additive manufacturing by molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Rahmani, Farzin; Jeon, Jungmin; Jiang, Shan; Nouranian, Sasan

    2018-05-01

    Molecular dynamics (MD) simulations were performed to investigate the role of core volume fraction and number of fusing nanoparticles (NPs) on the melting and solidification of Cu/Al and Ti/Al bimetallic core/shell NPs during a superfast heating and slow cooling process, roughly mimicking the conditions of selective laser melting (SLM). One recent trend in the SLM process is the rapid prototyping of nanoscopically heterogeneous alloys, wherein the precious core metal maintains its particulate nature in the final manufactured part. With this potential application in focus, the current work reveals the fundamental role of the interface in the two-stage melting of the core/shell alloy NPs. For a two-NP system, the melting zone gets broader as the core volume fraction increases. This effect is more pronounced for the Ti/Al system than the Cu/Al system because of a larger difference between the melting temperatures of the shell and core metals in the former than the latter. In a larger six-NP system (more nanoscopically heterogeneous), the melting and solidification temperatures of the shell Al roughly coincide, irrespective of the heating or cooling rate, implying that in the SLM process, the part manufacturing time can be reduced due to solidification taking place at higher temperatures. The nanostructure evolution during the cooling of six-NP systems is further investigated. [Figure not available: see fulltext.

  1. The Role of Lug Preheating, Melt Pool Temperature, and Lug Entrance Delay on the Cast-on-Strap Joining Process

    NASA Astrophysics Data System (ADS)

    Pahlavan, Sohrab; Nikpour, Saman; Mirjalili, Mostafa; Alagheband, Ali; Azimi, Mohammadyousef; Taji, Iman

    2017-07-01

    This work deals with effective parameters in the cast-on-strap (COS) process during which grid lugs of a lead-acid battery are joined together by a strap. The effects of lug preheating, melt pool temperature, and lug entrance delay on the quality of joints and casting defects were investigated. Lug preheating was found to propitiously reduce joint internal voids because of flux elimination. Its adverse effect on lowering lug wettability, however, made it unfavorable under the experimental conditions. The melt pool temperature also showed a two-sided effect depending on the process conditions. Raising the temperature increases the strap melt fluidity, which improves the joint contact area; however, it has a negative effect on lug wettability by flux evaporation. Besides, higher temperatures cause more lug back-melting and, hence, lower relative contact lengths. Therefore, an intermediate temperature of 683 K (410 °C) was found to make the most proper condition. Moreover, the case at which the lugs enter the mold coincident with its filling by the melt rendered the best joint quality. In this condition, the melt flows through the interlug spaces, which helps the voids to escape, resulting in the better joint interface. As the conclusion, the lug entrance time has the most effective role on joint quality, considering that lug preheating does not show any improving effect.

  2. Formation of cordierite-bearing lavas during anatexis in the lower crust beneath Lipari Island (Aeolian arc, Italy)

    USGS Publications Warehouse

    Di, Martino C.; Forni, F.; Frezzotti, M.L.; Palmeri, R.; Webster, J.D.; Ayuso, R.A.; Lucchi, F.; Tranne, C.A.

    2011-01-01

    Cordierite-bearing lavas (CBL;~105 ka) erupted from the Mt. S. Angelo volcano at Lipari (Aeolian arc, Italy) are high-K andesites, displaying a range in the geochemical and isotopic compositions that reflect heterogeneity in the source and/or processes. CBL consist of megacrysts of Ca-plagioclase and clinopyroxene, euhedral crystals of cordierite and garnet, microphenocrysts of orthopyroxene and plagioclase, set in a heterogeneous rhyodacitic-rhyolitic groundmass containing abundant metamorphic and gabbroic xenoliths. New petrographic, chemical and isotopic data indicate formation of CBL by mixing of basaltic-andesitic magmas and high-K peraluminous rhyolitic magmas of anatectic origin and characterize partial melting processes in the lower continental crust of Lipari. Crustal anatectic melts generated through two main dehydration-melting peritectic reactions of metasedimentary rocks: (1) Biotite + Aluminosilicate + Quartz + Albite = Garnet + Cordierite + K-feldspar + Melt; (2) Biotite + Garnet + Quartz = Orthopyroxene + Cordierite + K-feldspar + Melt. Their position into the petrogenetic grid suggests that heating and consequent melting of metasedimentary rocks occurred at temperatures of 725 < T < 900??C and pressures of 0.4-0.45 GPa. Anatexis in the lower crust of Lipari was induced by protracted emplacement of basic magmas in the lower crust (~130 Ky). Crustal melting of the lower crust at 105 ka affected the volcano evolution, impeding frequent maficmagma eruptions, and promoting magma stagnation and fractional crystallization processes. ?? 2011 Springer-Verlag.

  3. Present Permafrost Thaw in Central Yakutia, North-East Siberia: Surficial Geology and Hydrology Evidence

    NASA Astrophysics Data System (ADS)

    Czerniawska, Jolanta; Chlachula, Jiri

    2017-04-01

    Current climate change in the high-latitudes of Eurasia is a generally accepted phenomenon characterized by increased annual temperature values and marked weather anomalies observed in the sub-polar and polar regions. In the northern and NE Siberia, this trend of the MAT rise, documented particularly over the last three decades, is believed to account for the territorial lowland as well as insular mountain frozen ground thaw that in turn has triggered ecosystem feedbacks on the local as well as regional scales. In the northern regions of Yakutia, this is principally witnessed by accelerated near-surface dynamics of seasonally activated de-freezing grounds and inter-linked geomorphic and hydrological actions affecting large-scale tundra landscape settings. In the southern and central taiga-forest areas with perennial alpine and continuous permafrost conditions, respectively, an increased depth of the seasonally melted top-soil layers has become evident accompanied by thermokarst lake expansion and ground surface collapsing. Some cryogenic depressions generated from small gullies over the past decades eloquently demonstrate the intensity and scales of the current permafrost degradation in the Siberian North. The fluvial discharge is most dynamic in late spring to mid-summer because of the cumulative effect of snow-melting because of a high solar radiation and short intervals of torrential rains. Yet, the climate-change-dependent and most active geomorphic agent is the accelerated permafrost thaw seen in landslides and tundra-forest cover decay due to a higher water table. Numerous preserved biotic fossiliferous records Pleistocene and early Holocene in age are being exposed in this process providing unique palaeoecology evidence at particular sites. These climate-generated processes have mostly highly negative effects to the natural habitats (migratory animal routes and riverine biota due to an earlier ice-melting) as well as the local settlement communities (infrastructure destruction resulting from the top-ground melt-water saturation, road-base disintegration, slope slumping, drinking water supply, etc.).

  4. Hardfacing of duplex stainless steel using melting and diffusion processes

    NASA Astrophysics Data System (ADS)

    Lailatul, H.; Maleque, M. A.

    2017-03-01

    Duplex stainless steel (DSS) is a material with high potential successes in many new applications such as rail car manufacturing, automotive and chemical industries. Although DSS is widely used in various industries, this material has faced wear and hardness problems which obstruct a wider capability of this material and causes problems in current application. Therefore, development of surface modification has been introduced to produce hard protective layer or coating on DSS. The main aim of this work is to brief review on hard surface layer formation on DSS using melting and diffusion processes. Melting technique using tungsten inert gas (TIG) torch and diffusion technique using gas nitriding are the effective process to meet this requirement. The processing route plays a significant role in developing the hard surface layer for any application with effective cost and environmental factors. The good understanding and careful selection of processing route to form products are very important factors to decide the suitable techniques for surface engineering treatment. In this paper, an attempt is also made to consolidate the important research works done on melting and diffusion techniques of DSS in the past. The advantages and disadvantages between melting and diffusion technique are presented for better understanding on the feasibility of hard surface formation on DSS. Finally, it can be concluded that this work will open an avenue for further research on the application of suitable process for hard surface formation on DSS.

  5. Sustainable Engineering and Improved Recycling of PET for High-Value Applications: Transforming Linear PET to Lightly Branched PET with a Novel, Scalable Process

    NASA Astrophysics Data System (ADS)

    Pierre, Cynthia; Torkelson, John

    2009-03-01

    A major challenge for the most effective recycling of poly(ethylene terephthalate) concerns the fact that initial melt processing of PET into a product leads to substantial degradation of molecular weight. Thus, recycled PET has insufficient melt viscosity for reuse in high-value applications such as melt-blowing of PET bottles. Academic and industrial research has tried to remedy this situation by synthesis and use of ``chain extenders'' that can lead to branched PET (with higher melt viscosity than the linear recycled PET) via condensation reactions with functional groups on the PET. Here we show that simple processing of PET via solid-state shear pulverization (SSSP) leads to enhanced PET melt viscosity without need for chemical additives. We hypothesize that this branching results from low levels of chain scission accompanying SSSP, leading to formation of polymeric radicals that participate in chain transfer and combination reactions with other PET chains and thereby to in situ branch formation. The pulverized PET exhibits vastly enhanced crystallization kinetics, eliminating the need to employ cold crystallization to achieve maximum PET crystallinity. Results of SSSP processing of PET will be compared to results obtained with poly(butylene terephthalate).

  6. A Computational Study on Porosity Evolution in Parts Produced by Selective Laser Melting

    NASA Astrophysics Data System (ADS)

    Tan, J. L.; Tang, C.; Wong, C. H.

    2018-06-01

    Selective laser melting (SLM) is a powder-bed additive manufacturing process that uses laser to melt powders, layer by layer to generate a functional 3D part. There are many different parameters, such as laser power, scanning speed, and layer thickness, which play a role in determining the quality of the printed part. These parameters contribute to the energy density applied on the powder bed. Defects arise when insufficient or excess energy density is applied. A common defect in these cases is the presence of porosity. This paper studies the formation of porosities when inappropriate energy densities are used. A computational model was developed to simulate the melting and solidification process of SS316L powders in the SLM process. Three different sets of process parameters were used to produce 800-µm-long melt tracks, and the characteristics of the porosities were analyzed. It was found that when low energy density parameters were used, the pores were found to be irregular in shapes and were located near the top surface of the powder bed. However, when high energy density parameters were used, the pores were either elliptical or spherical in shapes and were usually located near the bottom of the keyholes.

  7. Crystal Nucleation and Growth in Undercooled Melts of Pure Zr, Binary Zr-Based and Ternary Zr-Ni-Cu Glass-Forming Alloys

    NASA Astrophysics Data System (ADS)

    Herlach, Dieter M.; Kobold, Raphael; Klein, Stefan

    2018-03-01

    Glass formation of a liquid undercooled below its melting temperature requires the complete avoidance of crystal nucleation and subsequent crystal growth. Even though they are not part of the glass formation process, a detailed knowledge of both processes involved in crystallization is mandatory to determine the glass-forming ability of metals and metallic alloys. In the present work, methods of containerless processing of drops by electrostatic and electromagnetic levitation are applied to undercool metallic melts prior to solidification. Heterogeneous nucleation on crucible walls is completely avoided giving access to large undercoolings. A freely suspended drop offers the additional benefit of showing the rapid crystallization process of an undercooled melt in situ by proper diagnostic means. As a reference, crystal nucleation and dendrite growth in the undercooled melt of pure Zr are experimentally investigated. Equivalently, binary Zr-Cu, Zr-Ni and Zr-Pd and ternary Zr-Ni-Cu alloys are studied, whose glass-forming abilities differ. The experimental results are analyzed within classical nucleation theory and models of dendrite growth. The findings give detailed knowledge about the nucleation-undercooling statistics and the growth kinetics over a large range of undercooling.

  8. Experimental simulation of magma-carbonate interaction beneath Mt. Vesuvius, Italy

    NASA Astrophysics Data System (ADS)

    Jolis, E. M.; Freda, C.; Troll, V. R.; Deegan, F. M.; Blythe, L. S.; McLeod, C. L.; Davidson, J. P.

    2013-11-01

    We simulated the process of magma-carbonate interaction beneath Mt. Vesuvius in short duration piston-cylinder experiments under controlled magmatic conditions (from 0 to 300 s at 0.5 GPa and 1,200 °C), using a Vesuvius shoshonite composition and upper crustal limestone and dolostone as starting materials. Backscattered electron images and chemical analysis (major and trace elements and Sr isotopes) of sequential experimental products allow us to identify the textural and chemical evolution of carbonated products during the assimilation process. We demonstrate that melt-carbonate interaction can be extremely fast (minutes), and results in dynamic contamination of the host melt with respect to Ca, Mg and 87Sr/86Sr, coupled with intense CO2 vesiculation at the melt-carbonate interface. Binary mixing between carbonate and uncontaminated melt cannot explain the geochemical variations of the experimental charges in full and convection and diffusion likely also operated in the charges. Physical mixing and mingling driven by exsolving volatiles seems to be a key process to promote melt homogenisation. Our results reinforce hypotheses that magma-carbonate interaction is a relevant and ongoing process at Mt. Vesuvius and one that may operate not only on a geological, but on a human timescale.

  9. Britte reaction of a high-temperature ion melt

    NASA Astrophysics Data System (ADS)

    Zimanowski, B.; Büttner, R.; Nestler, J.

    1997-05-01

    An experimental study on explosive interaction between transparent melt (T = 1120 K) and entrapped water (T = 300 K) has been performed. Intense explosions occurred, resulting from catastrophic fragmentation of the melt and increasing heat transfer to the water in a cascading process. In earlier experiments a quasi-isochoric brittle reaction of the melt was identified to be the major explosion mechanism. Using a transparent melt, this brittle reaction could directly be observed by high-speed cinematography. The pictures revealed two fragmentation mechanisms: a) formation of leading cracks (mm to cm scale) due to excess water pressure, and b) slower μm scaled melt fragmentation induced by strain build-up in the melt during rapid cooling.

  10. Low-Degree Partial Melting Experiments of CR and H Chondrite Compositions: Implications for Asteroidal Magmatism Recorded in GRA 06128 and GRA 06129 T

    NASA Technical Reports Server (NTRS)

    Usui, T.; Jones, John H.; Mittlefehldt, D. W.

    2010-01-01

    Studies of differentiated meteorites have revealed a diversity of differentiation processes on their parental asteroids; these differentiation mechanisms range from whole-scale melting to partial melting without the core formation [e.g., 1]. Recently discovered paired achondrites GRA 06128 and GRA 06129 (hereafter referred to as GRA) represent unique asteroidal magmatic processes. These meteorites are characterized by high abundances of sodic plagioclase and alkali-rich whole-rock compositions, implying that they could originate from a low-degree partial melt from a volatile-rich oxidized asteroid [e.g., 2, 3, 4]. These conditions are consistent with the high abundances of highly siderophile elements, suggesting that their parent asteroid did not segregate a metallic core [2]. In this study, we test the hypothesis that low-degree partial melts of chondritic precursors under oxidizing conditions can explain the whole-rock and mineral chemistry of GRA based on melting experiments of synthesized CR- and H-chondrite compositions.

  11. Bernard J. Wood Receives 2013 Harry H. Hess Medal: Citation

    NASA Astrophysics Data System (ADS)

    Hofmann, Albrecht W.

    2014-01-01

    As Harry Hess recognized over 50 years ago, mantle melting is the fundamental motor for planetary evolution and differentiation. Melting generates the major divisions of crust mantle and core. The distribution of chemical elements between solids, melts, and gaseous phases is fundamental to understanding these differentiation processes. Bernie Wood, together with Jon Blundy, has combined experimental petrology and physicochemical theory to revolutionize the understanding of the distribution of trace elements between melts and solids in the Earth. Knowledge of these distribution laws allows the reconstruction of the source compositions of the melts (deep in Earth's interior) from their abundances in volcanic rocks. Bernie's theoretical treatment relates the elastic strain of the lattice caused by the substitution of a trace element in a crystal to the ionic radius and charge of this element. This theory, and its experimental calibrations, brought order to a literature of badly scattered, rather chaotic experimental data that allowed no satisfactory quantitative modeling of melting processes in the mantle.

  12. Use of Permanent Magnets in Electromagnetic Facilities for the Treatment of Aluminum Alloys

    NASA Astrophysics Data System (ADS)

    Beinerts, Toms; Bojarevičs, Andris; Bucenieks, Imants; Gelfgat, Yuri; Kaldre, Imants

    2016-06-01

    The possibility of applying the electromagnetic induction pump with permanent magnets for the transportation and stirring of aluminum melts in metallurgical furnaces is investigated. The electromagnetic and hydraulic characteristics of the pump have been investigated theoretically and experimentally with regard to its position in the furnace. The results of the experiments performed with a model in a eutectic InGaSn melt are in good agreement with the calculation data. Extrapolation of the experimental results on the physical characteristics of aluminum melts allows recommending such pumps for contactless control of motion and heat/mass transfer in aluminum melts in different technological processes. A high temperature and the aggressive properties of aluminum alloys make it complicated to use different mechanical devices to solve technological problems, such as liquid metal transportation, dosing, stirring, etc. In this case, any device units or elements moving in or contacting with the melt suffer from corrosion polluting the melt. Therefore, of more importance and topicality are contactless electromagnetic methods for processing of molten metals.

  13. Lithospheric thickness controlled compositional variations in potassic basalts of Northeast China by melt-rock interactions

    NASA Astrophysics Data System (ADS)

    Liu, Jian-Qiang; Chen, Li-Hui; Zeng, Gang; Wang, Xiao-Jun; Zhong, Yuan; Yu, Xun

    2016-03-01

    Melt-rock interaction is a common mantle process; however, it remains unclear how this process affects the composition of potassic basalt. Here we present a case study to highlight the link between compositional variations in the potassic basalts and melt-rock interaction in cold lithosphere. Cenozoic potassic basalts in Northeast China are strongly enriched in incompatible elements and show EM1-type Sr-Nd-Pb isotopes, suggesting an enriched mantle source. These rocks show good correlations between 87Sr/86Sr and K2O/Na2O and Rb/Nb. Notably, these ratios decrease with increasing lithospheric thickness, which may reflect melt-lithosphere interaction. Phlogopite precipitated when potassic melts passed through the lithospheric mantle, and K and Rb contents of the residual melts decreased over time. The thicker the lithosphere, the greater the loss of K and Rb from the magma. Therefore, the compositions of potassic basalts were controlled by both their enriched sources and reactions with lithospheric mantle.

  14. Vertically extensive and unstable magmatic systems: A unified view of igneous processes.

    PubMed

    Cashman, Katharine V; Sparks, R Stephen J; Blundy, Jonathan D

    2017-03-24

    Volcanoes are an expression of their underlying magmatic systems. Over the past three decades, the classical focus on upper crustal magma chambers has expanded to consider magmatic processes throughout the crust. A transcrustal perspective must balance slow (plate tectonic) rates of melt generation and segregation in the lower crust with new evidence for rapid melt accumulation in the upper crust before many volcanic eruptions. Reconciling these observations is engendering active debate about the physical state, spatial distribution, and longevity of melt in the crust. Here we review evidence for transcrustal magmatic systems and highlight physical processes that might affect the growth and stability of melt-rich layers, focusing particularly on conditions that cause them to destabilize, ascend, and accumulate in voluminous but ephemeral shallow magma chambers. Copyright © 2017, American Association for the Advancement of Science.

  15. Evaluation of methods for characterizing the melting curves of a high temperature cobalt-carbon fixed point to define and determine its melting temperature

    NASA Astrophysics Data System (ADS)

    Lowe, David; Machin, Graham

    2012-06-01

    The future mise en pratique for the realization of the kelvin will be founded on the melting temperatures of particular metal-carbon eutectic alloys as thermodynamic temperature references. However, at the moment there is no consensus on what should be taken as the melting temperature. An ideal melting or freezing curve should be a completely flat plateau at a specific temperature. Any departure from the ideal is due to shortcomings in the realization and should be accommodated within the uncertainty budget. However, for the proposed alloy-based fixed points, melting takes place over typically some hundreds of millikelvins. Including the entire melting range within the uncertainties would lead to an unnecessarily pessimistic view of the utility of these as reference standards. Therefore, detailed analysis of the shape of the melting curve is needed to give a value associated with some identifiable aspect of the phase transition. A range of approaches are or could be used; some purely practical, determining the point of inflection (POI) of the melting curve, some attempting to extrapolate to the liquidus temperature just at the end of melting, and a method that claims to give the liquidus temperature and an impurity correction based on the analytical Scheil model of solidification that has not previously been applied to eutectic melting. The different methods have been applied to cobalt-carbon melting curves that were obtained under conditions for which the Scheil model might be valid. In the light of the findings of this study it is recommended that the POI continue to be used as a pragmatic measure of temperature but where required a specified limits approach should be used to define and determine the melting temperature.

  16. Energetic additive manufacturing process with feed wire

    DOEpatents

    Harwell, Lane D.; Griffith, Michelle L.; Greene, Donald L.; Pressly, Gary A.

    2000-11-07

    A process for additive manufacture by energetic wire deposition is described. A source wire is fed into a energy beam generated melt-pool on a growth surface as the melt-pool moves over the growth surface. This process enables the rapid prototyping and manufacture of fully dense, near-net shape components, as well as cladding and welding processes. Alloys, graded materials, and other inhomogeneous materials can be grown using this process.

  17. In Situ Salt Formation during Melt Extrusion for Improved Chemical Stability and Dissolution Performance of a Meloxicam-Copovidone Amorphous Solid Dispersion.

    PubMed

    Haser, Abbe; Cao, Tu; Lubach, Joseph W; Zhang, Feng

    2018-03-05

    As the pipeline for poorly soluble compounds continues to grow, drug degradation during melt extrusion must be addressed. We present a novel method for stabilizing a thermally labile drug substance while preserving its physical stability and even improving its dissolution performance. In a previous study, we found that incorporating meglumine during extrusion of meloxicam results in chemical stabilization that cannot be achieved using process optimization alone. The purpose of this study is to understand the mechanism behind this stabilization and its impact on the performance of a meloxicam-Kollidon VA64 amorphous solid dispersion. The meloxicam concentration was maintained at 10% (w/w) for blends with and without meglumine. The optimal meglumine blend contained an equimolar amount of meloxicam to meglumine with the remainder consisting of Kollidon VA64. Both formulations were processed with optimized extrusion conditions and analyzed by HPLC for purity. Meglumine at a 1:1 molar ratio with meloxicam results in 100% purity of meloxicam after melt extrusion. Solid-state NMR revealed a proton transfer between the meloxicam and meglumine indicating an in situ salt formation. During non-sink dissolution, the meglumine ASD enables meloxicam to maintain supersaturatation (≅50 times more than meloxicam free acid) for >7.25 h. The ASD without meglumine began precipitating 2.25 h following the pH shift. The ASDs were placed at 40 °C/75% RH for 6 months, and their stability was assessed. No significant chemical degradation, recrystallization, or significant moisture uptake was observed after six months' storage at 40 °C/75% RH.

  18. A novel process for production of spherical PBT powders and their processing behavior during laser beam melting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmidt, Jochen, E-mail: jochen.schmidt@fau.de; Sachs, Marius; Fanselow, Stephanie

    2016-03-09

    Additive manufacturing processes like laser beam melting of polymers are established for production of prototypes and individualized parts. The transfer to other areas of application and to serial production is currently hindered by the limited availability of polymer powders with good processability. Within this contribution a novel process route for the production of spherical polymer micron-sized particles of good flowability has been established and applied to produce polybutylene terephthalate (PBT) powders. Moreover, the applicability of the PBT powders in selective laser beam melting and the dependencies of process parameters on device properties will be outlined. First, polymer micro particles aremore » produced by a novel wet grinding method. To improve the flowability the produced particles the particle shape is optimized by rounding in a heated downer reactor. A further improvement of flowability of the cohesive spherical PBT particles is realized by dry coating. An improvement of flowability by a factor of about 5 is achieved by subsequent rounding of the comminution product and dry-coating as proven by tensile strength measurements of the powders. The produced PBT powders were characterized with respect to their processability. Therefore thermal, rheological, optical and bulk properties were analyzed. Based on these investigations a range of processing parameters was derived. Parameter studies on thin layers, produced in a selective laser melting system, were conducted. Hence appropriate parameters for processing the PBT powders by laser beam melting, like building chamber temperature, scan speed and laser power have been identified.« less

  19. Homogeneous nucleation and microstructure evolution in million-atom molecular dynamics simulation

    PubMed Central

    Shibuta, Yasushi; Oguchi, Kanae; Takaki, Tomohiro; Ohno, Munekazu

    2015-01-01

    Homogeneous nucleation from an undercooled iron melt is investigated by the statistical sampling of million-atom molecular dynamics (MD) simulations performed on a graphics processing unit (GPU). Fifty independent instances of isothermal MD calculations with one million atoms in a quasi-two-dimensional cell over a nanosecond reveal that the nucleation rate and the incubation time of nucleation as functions of temperature have characteristic shapes with a nose at the critical temperature. This indicates that thermally activated homogeneous nucleation occurs spontaneously in MD simulations without any inducing factor, whereas most previous studies have employed factors such as pressure, surface effect, and continuous cooling to induce nucleation. Moreover, further calculations over ten nanoseconds capture the microstructure evolution on the order of tens of nanometers from the atomistic viewpoint and the grain growth exponent is directly estimated. Our novel approach based on the concept of “melting pots in a supercomputer” is opening a new phase in computational metallurgy with the aid of rapid advances in computational environments. PMID:26311304

  20. Continued development of thallium bromide and related compounds for gamma-ray spectrometers

    NASA Astrophysics Data System (ADS)

    Kim, H.; Churilov, A.; Ciampi, G.; Cirignano, L.; Higgins, W.; Kim, S.; O'Dougherty, P.; Olschner, F.; Shah, Kanai

    2011-02-01

    Thallium bromide (TlBr) and related ternary compounds, TlBrI and TlBrCl, have been under development for room temperature gamma-ray spectroscopy due to high density, high Z and wide bandgap of the material. Low melting point and cubic crystal structure of selected compositions of these compounds facilitate crystal growth by melt techniques. Recent advances in material purification, crystal growth, and device processing have led to mobility-lifetime products of electrons in the mid 10 -3 cm 2/V range enabling working detectors of greater than 15 mm thickness to be fabricated. In this paper we report on our recent progress on TlBr detector development and first results from TlBr xCl 1- x devices. Pulse height spectra will be presented from TlBr arrays as thick as 18 mm. Depth corrected spectra will also be presented. For a 5 mm thick TlBr array, energy resolution of less than 1% (FWHM at 662 keV) was obtained after depth correction.

  1. Continuous Czochralski growth. Development of advanced Czochralski growth process to produce low cost 150 kg silicon ingots from a single crucible for technology readiness

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The improvement of growth rates using radiation shielding and investigation of the crucible melt interaction for improved yields were emphasized. Growth runs were performed from both 15 and 16 inch diameter crucibles, producing 30 and 37 kg ingots respectively. Efforts to increase the growth rate of 150 mm diameter ingots were limited by temperature instabilities believed to be caused by undesirable thermal convections in the larger melts. The radiation shield improved the growth rate somewhat, but the thermal instability was still evident, leading to nonround ingots and loss of dislocation-free structure. A 38 kg crystal was grown to demonstrate the feasibility of producing 150 kg with four growth cycles. After the grower construction phase, the Hamco microprocessor control system was interfaced to the growth facility, including the sensor for automatic control of seeding temperature, and the sensor for automatic shouldering. Efforts focused upon optimization of the seeding, necking, and shoulder growth automation programs.

  2. Passive microwave derived snowmelt timing: significance, spatial and temporal variability, and potential applications

    NASA Astrophysics Data System (ADS)

    Semmens, Kathryn Alese

    Snow accumulation and melt are dynamic features of the cryosphere indicative of a changing climate. Spring melt and refreeze timing are of particular importance due to the influence on subsequent hydrological and ecological processes, including peak runoff and green-up. To investigate the spatial and temporal variability of melt timing across a sub-arctic region (the Yukon River Basin (YRB), Alaska/Canada) dominated by snow and lacking substantial ground instrumentation, passive microwave remote sensing was utilized to provide daily brightness temperatures (Tb) regardless of clouds and darkness. Algorithms to derive the timing of melt onset and the end of melt-refreeze, a critical transition period where the snowpack melts during the day and refreezes at night, were based on thresholds for Tb and diurnal amplitude variations (day and night difference). Tb data from the Special Sensor Microwave Imager (1988 to 2011) was used for analyzing YRB terrestrial snowmelt timing and for characterizing melt regime patterns for icefields in Alaska and Patagonia. Tb data from the Advanced Microwave Scanning Radiometer for EOS (2003 to 2010) was used for determining the occurrence of early melt events (before melt onset) associated with fog or rain on snow, for investigating the correlation between melt timing and forest fires, and for driving a flux-based snowmelt runoff model. From the SSM/I analysis: the melt-refreeze period lengthened for the majority of the YRB with later end of melt-refreeze and earlier melt onset; and positive Tb anomalies were found in recent years from glacier melt dynamics. From the AMSR-E analysis: early melt events throughout the YRB were most often associated with warm air intrusions and reflect a consistent spatial distribution; years and areas of earlier melt onset and refreeze had more forest fire occurrences suggesting melt timing's effects extend to later seasons; and satellite derived melt timing served as an effective input for model simulation of discharge in remote, ungauged snow-dominated basins. The melt detection methodology and results present a new perspective on the changing cryosphere, provide an understanding of melt's influence on other earth system processes, and develop a baseline from which to assess and evaluate future change. The temporal and spatial variability conveyed through the regional context of this research may be useful to communities in climate change adaptation planning.

  3. Paradise Lost: Uncertainties in melting and melt extraction processes beneath oceanic spreading ridges

    NASA Astrophysics Data System (ADS)

    Kelemen, P. B.

    2014-12-01

    In many ways, decompression melting and focused melt transport beneath oceanic spreading ridges is the best understood igneous process on Earth. However, there are remaining - increasing - uncertainties in interpreting residual mantle peridotites. Indicators of degree of melting in residual peridotite are questionable. Yb concentration and spinel Cr# are affected by (a) small scale variations in reactive melt transport, (b) variable extents of melt extraction, and (c) "impregnation", i.e. partial crystallization of cooling melt in pore space. Roughly 75% of abyssal peridotites have undergone major element refertilization. Many may have undergone several melting events. The following three statements are inconsistent: (1) Peridotite melt productivity beyond cpx exhaustion is > 0.1%/GPa. (2) Crustal thickness is independent of spreading rate at rates > 2 cm/yr full rate (excluding ultra-slow spreading ridges). (3) Thermal models predict, and observations confirm, thick thermal boundary layers beneath slow spreading ridges. If (a) melt productivity is << 0.1%/GPa beyond cpx-out, and (b) cpx-out occurs > 15 km below the seafloor beneath most ridges, then the independence of crustal thickness with spreading rate can be understood. Most sampled peridotites from ridges melted beyond cpx-out. Cpx in these rocks formed via impregnation and/or exsolution during cooling. Most peridotites beneath ridges may undergo cpx exhaustion during decompression melting. This would entail an upward modification of potential temperature estimates. Alternatively, perhaps oceanic crustal thickness does vary with spreading rate but this is masked by complicated tectonics and serpentinization at slow-spreading ridges. Dissolution channels (dunites) are predicted to coalesce downstream, but numerical models of these have not shown why > 95% of oceanic crust forms in a zone < 5 km wide. There may be permeability barriers guiding deeper melt toward the ridge, but field studies have not identified them. Permeable "shear bands" may guide melt to the ridge, but their nature in open systems at natural grain size and strain rates is uncertain. 2D and 3D focused solid upwelling due to melt buoyancy deep in the melting region, where pyroxenes are abundant and permeability is low, may warrant renewed attention.

  4. MeltMigrator: A MATLAB-based software for modeling three-dimensional melt migration and crustal thickness variations at mid-ocean ridges following a rules-based approach

    NASA Astrophysics Data System (ADS)

    Bai, Hailong; Montési, Laurent G. J.; Behn, Mark D.

    2017-01-01

    MeltMigrator is a MATLAB®-based melt migration software developed to process three-dimensional mantle temperature and velocity data from user-supplied numerical models of mid-ocean ridges, calculate melt production and melt migration trajectories in the mantle, estimate melt flux along plate boundaries, and predict crustal thickness distribution on the seafloor. MeltMigrator is also capable of calculating compositional evolution depending on the choice of petrologic melting model. Programmed in modules, MeltMigrator is highly customizable and can be expanded to a wide range of applications. We have applied it to complex mid-ocean ridge model settings, including transform faults, oblique segments, ridge migration, asymmetrical spreading, background mantle flow, and ridge-plume interaction. In this technical report, we include an example application to a segmented mid-ocean ridge. MeltMigrator is available as a supplement to this paper, and it is also available from GitHub and the University of Maryland Geodynamics Group website.

  5. Internal oxidation phenomenon in pure copper

    NASA Astrophysics Data System (ADS)

    Rudolf, Rebeka; Anžel, Ivan

    2009-04-01

    This paper presents two special kinds of internal oxidation phenomenon that can take place in pure metals containing a high concentration of non-equilibrium defects. These processes are Internal Oxidation (IO) and Internal Carbonisation (IC). Both processes start with the dissolution of oxidant (O or C) into the pure metal at the free surfaces, and continue with the diffusion of oxidant atoms into the metal matrix volume, where they are trapped at numerous defects within the crystal lattice. Increasing oxidant activity at these places causes local oxidation of the matrix and, consequently, precipitation of fine oxide or graphite particles. The IO and IC processes were tested on the rapidly solidified pure copper which was produced by the Chill-Block Melt Spinning Technique. Analysis of the IO process showed the formation of Cu-Cu2O, and the formation of Cu-C composite from the IC process.

  6. Bulk YBa2Cu3O(x) superconductors through pressurized partial melt growth processing

    NASA Technical Reports Server (NTRS)

    Hu, S.; Hojaji, H.; Barkatt, A.; Boroomand, M.; Hung, M.; Buechele, A. C.; Thorpe, A. N.; Davis, D. D.; Alterescu, S.

    1992-01-01

    A novel pressurized partial melt growth process has been developed for producing large pieces of bulk Y-Ba-Cu-O superconductors. During long-time partial melt growth stage, an additional driving force for solidification is obtained by using pressurized oxygen gas. The microstructure and superconducting properties of the resulting samples were investigated. It was found that this new technique can eliminate porosity and inhomogeneity, promote large-scale grain-texturing, and improve interdomain coupling as well.

  7. Electrolysis of lunar soil to produce oxygen and metals

    NASA Technical Reports Server (NTRS)

    Colson, Russell O.; Haskin, Larry A.; Keller, R.

    1991-01-01

    The discussion of melt electrolysis consists of three sections. The implications of the chemistry and physics of fluxed and raw melts on melt electrolysis are discussed first. This includes discussion of the factor that influence melt resistivity, melt viscosity, oxygen production efficiency, and the theoretical energy required to produce oxygen. Second, the implications of phase equilibria and solubilities in silicate melts on the selection of materials for container and electrodes are discussed. The implications of proposed container and electrode materials on melt composition and how this effects expected resistivities, viscosities, as outlined in the first section are discussed. Finally, a general discussion of the basic features of both the fluxed and unfluxed melt electrolysis is given, including their advantages and disadvantages and how they compare with alternative processes.

  8. Real-time control data wrangling for development of mathematical control models of technological processes

    NASA Astrophysics Data System (ADS)

    Vasilyeva, N. V.; Koteleva, N. I.; Fedorova, E. R.

    2018-05-01

    The relevance of the research is due to the need to stabilize the composition of the melting products of copper-nickel sulfide raw materials in the Vanyukov furnace. The goal of this research is to identify the most suitable methods for the aggregation of the real time data for the development of a mathematical model for control of the technological process of melting copper-nickel sulfide raw materials in the Vanyukov furnace. Statistical methods of analyzing the historical data of the real technological object and the correlation analysis of process parameters are described. Factors that exert the greatest influence on the main output parameter (copper content in matte) and ensure the physical-chemical transformations are revealed. An approach to the processing of the real time data for the development of a mathematical model for control of the melting process is proposed. The stages of processing the real time information are considered. The adopted methodology for the aggregation of data suitable for the development of a control model for the technological process of melting copper-nickel sulfide raw materials in the Vanyukov furnace allows us to interpret the obtained results for their further practical application.

  9. Melt processing of Bi--2212 superconductors using alumina

    DOEpatents

    Holesinger, Terry G.

    1999-01-01

    Superconducting articles and a method of forming them, where the superconducting phase of an article is Bi.sub.2 Sr.sub.2 CaCu.sub.2 O.sub.y (Bi-2212). Alumina is combined with Bi-2212 powder or Bi-2212 precursor powder and, in order to form an intimate mixture, the mixture is melted and rapidly cooled to form a glassy solid. The glassy solid is comminuted and the resulting powder is combined with a carrier. An alternative to melting is to form the mixture of nanophase alumina and material having a particle size of less than about 10 microns. The powder, with the carrier, is melt processed to form a superconducting article.

  10. Electromagnetic containerless undercooling facility and experiments for the Shuttle

    NASA Technical Reports Server (NTRS)

    Frost, R. T.; Flemings, M. C.; Szekely, J.; El-Kaddah, N.; Shiohara, Y.

    1984-01-01

    An electromagnetic furnace is being prepared for flights aboard the Space Shuttle. This apparatus is capable of melting metals and alloys up to 1400 C melting point by induction heating with subsequent solidification of the freely levitated melt without contact with any container. The solidification can be carried out with greatly reduced fields resulting in minimal heating and stirring of the free melt. Sequential specimens can be processed during flight. Several experiments are planned for a series of flights, beginning in 1985 with an undercooling experiment of NiSn alloys. These will be interspersed with detailed studies of fluid flow caused by low and high field levels in order to quantify the corresponding effect upon the solidification process.

  11. Investigating evaporation of melting ice particles within a bin melting layer model

    NASA Astrophysics Data System (ADS)

    Neumann, Andrea J.

    Single column models have been used to help develop algorithms for remote sensing retrievals. Assumptions in the single-column models may affect the assumptions of the remote sensing retrievals. Studies of the melting layer that use single column models often assume environments that are near or at water saturation. This study investigates the effects of evaporation upon melting particles to determine whether the assumption of negligible mass loss still holds within subsaturated melting layers. A single column, melting layer model is modified to include the effects of sublimation and evaporation upon the particles. Other changes to the model include switching the order in which the model loops over particle sizes and model layers; including a particle sedimentation scheme; adding aggregation, accretion, and collision and coalescence processes; allowing environmental variables such as the water vapor diffusivity and the Schmidt number to vary with the changes in the environment; adding explicitly calculated particle temperature, changing the particle terminal velocity parameterization; and using a newly-derived effective density-dimensional relationship for use in particle mass calculations. Simulations of idealized melting layer environments show that significant mass loss due to evaporation during melting is possible within subsaturated environments. Short melting distances, accelerating particle fall speeds, and short melting times help constrain the amount of mass lost due to evaporation while melting is occurring, even in subsaturated profiles. Sublimation prior to melting can also be a significant source of mass loss. The trends shown on the particle scale also appear in the bulk distribution parameters such as rainfall rate and ice water content. Simulations incorporating observed melting layer environments show that significant mass loss due to evaporation during the melting process is possible under certain environmental conditions. A profile such as the first melting layer profile on 10 May 2011 from the Midlatitude Continental Convective Clouds Experiment (MC3E) that is neither too saturated nor too subsaturated is possible and shows considerable mass loss for all particle sizes. Most melting layer profiles sampled during MC3E were too saturated for more than a dozen or two of the smallest particle sizes to experience significant mass loss. The aggregation, accretion, and collision and coalescence processes also countered significant mass loss at the largest particles sizes because these particles are efficient at collecting smaller particles due to their relative large sweep-out area. From these results, it appears that the assumption of negligible mass loss due to evaporation while melting is occurring is not always valid. Studies that use large, low-density snowflakes and high RH environments can safely use the assumption of negligible mass loss. Studies that use small ice particles or low RH environments (RH less than about 80%) cannot use the assumption of negligible mass loss due to evaporation. Retrieval algorithms may be overestimating surface precipitation rates and intensities in subsaturated environments due to the assumptions of negligible mass loss while melting and near-saturated melting layer environments.

  12. Physicochemical properties of film-coated melt-extruded pellets.

    PubMed

    Young, Chistopher R; Crowley, Michael; Dietzsch, Caroline; McGinity, James W

    2007-02-01

    The purpose of this study was to investigate the physicochemical properties of poly(ethylene oxide) (PEO) and guaifenesin containing beads prepared by a melt-extrusion process and film-coated with a methacrylic acid copolymer. Solubility parameter calculations, thermal gravimetric analysis (TGA), scanning electron microscopy (SEM), modulated differential scanning calorimetry (MDSC), X-ray powder diffraction (XRPD) and high performance liquid chromatography (HPLC) were used to determine drug/polymer miscibility and/or the thermal processibility of the systems. Powder blends of guaifenesin, PEO and functional excipients were processed using a melt-extrusion and spheronization technique and then film-coated in a fluidized bed apparatus. Solubility parameter calculations were used to predict miscibility between PEO and guaifenesin, and miscibility was confirmed by SEM and observation of a single melting point for extruded drug/polymer blends during MDSC investigations. The drug was stable following melt-extrusion as determined by TGA and HPLC; however, drug release rate from pellets decreased upon storage in sealed HDPE containers with silica desiccants at 40 degrees C/75% RH. The weight loss on drying, porosity and tortuosity determinations were not influenced by storage. Recrystallization of guaifenesin and PEO was confirmed by SEM and XRPD. Additionally, the pellets exhibited a change in adhesion behaviour during dissolution testing. The addition of ethylcellulose to the extruded powder blend decreased and stabilized the drug release rate from the thermally processed pellets. The current study also demonstrated film-coating to be an efficient process for providing melt-extruded beads with pH-dependent drug release properties that were stable upon storage at accelerated conditions.

  13. Sources and mobility of carbonate melts beneath cratons, with implications for deep carbon cycling, metasomatism and rift initiation

    NASA Astrophysics Data System (ADS)

    Tappe, Sebastian; Romer, Rolf L.; Stracke, Andreas; Steenfelt, Agnete; Smart, Katie A.; Muehlenbachs, Karlis; Torsvik, Trond H.

    2017-05-01

    Kimberlite and carbonatite magmas that intrude cratonic lithosphere are among the deepest probes of the terrestrial carbon cycle. Their co-existence on thick continental shields is commonly attributed to continuous partial melting sequences of carbonated peridotite at >150 km depths, possibly as deep as the mantle transition zone. At Tikiusaaq on the North Atlantic craton in West Greenland, approximately 160 Ma old ultrafresh kimberlite dykes and carbonatite sheets provide a rare opportunity to study the origin and evolution of carbonate-rich melts beneath cratons. Although their Sr-Nd-Hf-Pb-Li isotopic compositions suggest a common convecting upper mantle source that includes depleted and recycled oceanic crust components (e.g., negative ΔεHf coupled with > + 5 ‰ δ7Li), incompatible trace element modelling identifies only the kimberlites as near-primary low-degree partial melts (0.05-3%) of carbonated peridotite. In contrast, the trace element systematics of the carbonatites are difficult to reproduce by partial melting of carbonated peridotite, and the heavy carbon isotopic signatures (-3.6 to - 2.4 ‰ δ13C for carbonatites versus -5.7 to - 3.6 ‰ δ13C for kimberlites) require open-system fractionation at magmatic temperatures. Given that the oxidation state of Earth's mantle at >150 km depth is too reduced to enable larger volumes of 'pure' carbonate melt to migrate, it is reasonable to speculate that percolating near-solidus melts of carbonated peridotite must be silicate-dominated with only dilute carbonate contents, similar to the Tikiusaaq kimberlite compositions (e.g., 16-33 wt.% SiO2). This concept is supported by our findings from the North Atlantic craton where kimberlite and other deeply derived carbonated silicate melts, such as aillikites, exsolve their carbonate components within the shallow lithosphere en route to the Earth's surface, thereby producing carbonatite magmas. The relative abundances of trace elements of such highly differentiated 'cratonic carbonatites' have only little in common with those of metasomatic agents that act on the deeper lithosphere. Consequently, carbonatite trace element systematics should only be used with caution when constraining carbon mobility and metasomatism at mantle depths. Regardless of the exact nature of carbonate-bearing melts within the mantle lithosphere, they play an important role in enrichment processes, thereby decreasing the stability of buoyant cratons and promoting rift initiation - as exemplified by the Mesozoic-Cenozoic breakup of the North Atlantic craton.

  14. Evidence for the presence of carbonate melt during the formation of cumulates in the Colli Albani Volcanic District, Italy

    NASA Astrophysics Data System (ADS)

    Shaw, Cliff S. J.

    2018-06-01

    Fergusite and syenite xenoliths and mafic lapilli from two locations in the Villa Senni ignimbrite of the Colli Albani Volcanic District show evidence for fractionation of a silicate magma that led to exsolution of an immiscible carbonate melt. The fergusite xenoliths are divided into two groups on the basis of their clinopyroxene compositions. Group 1 clinopyroxene records the crystallisation of a silicate melt and enrichment of the melt in Al, Ti and Mn and depletion in Si as well as enrichment in incompatible trace elements. The second group of clinopyroxene compositions (group 2) comes mainly from Ba-F-phlogopite- and Ti-andradite-bearing fergusites. They have significantly higher Si and lower Al and Ti and, like the coexisting phlogopite and garnet are strongly enriched in Mn. The minerals in the fergusites containing group 2 clinopyroxene are enriched in Ba, Sr, Cs, V and Li all of which are expected to partition strongly into a carbonate melt phase relative to the coexisting silicate melt. The compositional data suggest that the group 1 fergusites record sidewall crystallisation of CO2-rich silicate melt and that once the melt reached a critical degree of fractionation, carbonate melt exsolved. The group 2 fergusites record continued crystallisation in this heterogeneous silicate - carbonate melt system. Composite xenoliths of fergusite and thermometamorphic skarn record contact times of hundreds to a few thousand years indicating that fractionation and assimilation was relatively rapid.

  15. Melter Throughput Enhancements for High-Iron HLW

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kruger, A. A.; Gan, Hoa; Joseph, Innocent

    2012-12-26

    This report describes work performed to develop and test new glass and feed formulations in order to increase glass melting rates in high waste loading glass formulations for HLW with high concentrations of iron. Testing was designed to identify glass and melter feed formulations that optimize waste loading and waste processing rate while meeting all processing and product quality requirements. The work included preparation and characterization of crucible melts to assess melt rate using a vertical gradient furnace system and to develop new formulations with enhanced melt rate. Testing evaluated the effects of waste loading on glass properties and themore » maximum waste loading that can be achieved. The results from crucible-scale testing supported subsequent DuraMelter 100 (DM100) tests designed to examine the effects of enhanced glass and feed formulations on waste processing rate and product quality. The DM100 was selected as the platform for these tests due to its extensive previous use in processing rate determination for various HLW streams and glass compositions.« less

  16. Integrating Multiculturalism in Education for the 2020 Classroom: Moving beyond the "Melting Pot" of Festivals and Recognition Months

    ERIC Educational Resources Information Center

    Childs, Kamshia

    2017-01-01

    Purpose: This paper aims to take a brief glance at the past of multicultural education in classrooms and discusses the ever-changing "melting pot" of cultures expected to continue to grow even more diverse in the USA in the next few years. It seeks to identify ideas and approaches that will help integrate multiculturalism into the…

  17. Silicon dendritic web growth

    NASA Technical Reports Server (NTRS)

    Duncan, S.

    1984-01-01

    Technological goals for a silicon dendritic web growth program effort are presented. Principle objectives for this program include: (1) grow long web crystals front continuously replenished melt; (2) develop temperature distribution in web and melt; (3) improve reproductibility of growth; (4) develop configurations for increased growth rates (width and speed); (5) develop new growth system components as required for improved growth; and (6) evaluate quality of web growth.

  18. The Arctic Circle: A Ring of Influence

    DTIC Science & Technology

    2010-05-03

    that objective. 1 INTRODUCTION International awareness regarding the Arctic Circle continues to grow due to increasing polar ice melt, and the need... ice melt has created opportunities for Arctic countries to expand their territorial areas for access to more natural resources. Those resources...bringing fish up further north than ever seen before‖ states then Navy Commander Ray Chartier, National Ice Center Director, in his Sea Power interview

  19. Water solubility in aluminous orthopyroxene and the origin of Earth's asthenosphere.

    PubMed

    Mierdel, Katrin; Keppler, Hans; Smyth, Joseph R; Langenhorst, Falko

    2007-01-19

    Plate tectonics is based on the concept of rigid lithosphere plates sliding on a mechanically weak asthenosphere. Many models assume that the weakness of the asthenosphere is related to the presence of small amounts of hydrous melts. However, the mechanism that may cause melting in the asthenosphere is not well understood. We show that the asthenosphere coincides with a zone where the water solubility in mantle minerals has a pronounced minimum. The minimum is due to a sharp decrease of water solubility in aluminous orthopyroxene with depth, whereas the water solubility in olivine continuously increases with pressure. Melting in the asthenosphere may therefore be related not to volatile enrichment but to a minimum in water solubility, which causes excess water to form a hydrous silicate melt.

  20. Nonlinear system identification of the reduction nickel oxide smelting process in electric arc furnace

    NASA Astrophysics Data System (ADS)

    Gubin, V.; Firsov, A.

    2018-03-01

    As the title implies the article describes the nonlinear system identification of the reduction smelting process of nickel oxide in electric arc furnaces. It is suggested that for operational control ratio of components of the charge must be solved the problem of determining the qualitative composition of the melt in real time. The use of 0th harmonic of phase voltage AC furnace as an indirect measure of the melt composition is proposed. Brief description of the mechanism of occurrence and nature of the non-zero 0th harmonic of the AC voltage of the arc is given. It is shown that value of 0th harmonic of the arc voltage is not function of electrical parameters but depends of the material composition of the melt. Processed industrial data are given. Hammerstein-Wiener model is used for description of the dependence of 0th harmonic of the furnace voltage from the technical parameters of melting furnace: the melt composition and current. Recommendations are given about the practical use of the model.

Top