40 CFR 63.1415 - Monitoring requirements.
Code of Federal Regulations, 2013 CFR
2013-07-01
... thermocouple, ultra-violet beam sensor, or infrared sensor) capable of continuously detecting the presence of a... an absorber is used, a scrubbing liquid temperature monitoring device and a specific gravity... condenser exit temperature (product side) monitoring device equipped with a continuous recorder is required...
40 CFR 63.1415 - Monitoring requirements.
Code of Federal Regulations, 2014 CFR
2014-07-01
... thermocouple, ultra-violet beam sensor, or infrared sensor) capable of continuously detecting the presence of a... an absorber is used, a scrubbing liquid temperature monitoring device and a specific gravity... condenser exit temperature (product side) monitoring device equipped with a continuous recorder is required...
40 CFR 63.1415 - Monitoring requirements.
Code of Federal Regulations, 2012 CFR
2012-07-01
... thermocouple, ultra-violet beam sensor, or infrared sensor) capable of continuously detecting the presence of a...) Where an absorber is used, a scrubbing liquid temperature monitoring device and a specific gravity... condenser exit temperature (product side) monitoring device equipped with a continuous recorder is required...
40 CFR 63.1429 - Process vent monitoring requirements.
Code of Federal Regulations, 2010 CFR
2010-07-01
... thermocouple, ultra-violet beam sensor, or infrared sensor) capable of continuously detecting the presence of a... used, a temperature monitoring device equipped with a continuous recorder is required. (i) Where an incinerator other than a catalytic incinerator is used, a temperature monitoring device shall be installed in...
40 CFR 63.1429 - Process vent monitoring requirements.
Code of Federal Regulations, 2012 CFR
2012-07-01
... thermocouple, ultra-violet beam sensor, or infrared sensor) capable of continuously detecting the presence of a... used, a temperature monitoring device equipped with a continuous recorder is required. (i) Where an incinerator other than a catalytic incinerator is used, a temperature monitoring device shall be installed in...
40 CFR 63.1324 - Batch process vents-monitoring equipment.
Code of Federal Regulations, 2013 CFR
2013-07-01
... beam sensor, or infrared sensor) capable of continuously detecting the presence of a pilot flame is...) Where an incinerator is used, a temperature monitoring device equipped with a continuous recorder is required. (i) Where an incinerator other than a catalytic incinerator is used, the temperature monitoring...
40 CFR 63.1324 - Batch process vents-monitoring equipment.
Code of Federal Regulations, 2014 CFR
2014-07-01
... beam sensor, or infrared sensor) capable of continuously detecting the presence of a pilot flame is...) Where an incinerator is used, a temperature monitoring device equipped with a continuous recorder is required. (i) Where an incinerator other than a catalytic incinerator is used, the temperature monitoring...
40 CFR 63.1429 - Process vent monitoring requirements.
Code of Federal Regulations, 2011 CFR
2011-07-01
... thermocouple, ultra-violet beam sensor, or infrared sensor) capable of continuously detecting the presence of a... used, a temperature monitoring device equipped with a continuous recorder is required. (i) Where an incinerator other than a catalytic incinerator is used, a temperature monitoring device shall be installed in...
Kilic, Tugba; Zhang, Yu Shrike; Avci, Huseyin; Hu, Ning; Kim, Duckjin; Branco, Cristina; Aleman, Julio; Massa, Solange; Silvestri, Antonia; Kang, Jian; Desalvo, Anna; Hussaini, Mohammed Abdullah; Chae, Su‐Kyoung; Polini, Alessandro; Bhise, Nupura; Hussain, Mohammad Asif; Lee, HeaYeon
2017-01-01
Development of an efficient sensing platform capable of continual monitoring of biomarkers is needed to assess the functionality of the in vitro organoids and to evaluate their biological responses toward pharmaceutical compounds or chemical species over extended periods of time. Here, a novel label‐free microfluidic electrochemical (EC) biosensor with a unique built‐in on‐chip regeneration capability for continual measurement of cell‐secreted soluble biomarkers from an organoid culture in a fully automated manner without attenuating the sensor sensitivity is reported. The microfluidic EC biosensors are integrated with a human liver‐on‐a‐chip platform for continual monitoring of the metabolic activity of the organoids by measuring the levels of secreted biomarkers for up to 7 d, where the metabolic activity of the organoids is altered by a systemically applied drug. The variations in the biomarker levels are successfully measured by the microfluidic regenerative EC biosensors and agree well with cellular viability and enzyme‐linked immunosorbent assay analyses, validating the accuracy of the unique sensing platform. It is believed that this versatile and robust microfluidic EC biosensor that is capable of automated and continual detection of soluble biomarkers will find widespread use for long‐term monitoring of human organoids during drug toxicity studies or efficacy assessments of in vitro platforms. PMID:28546915
40 CFR 75.11 - Specific provisions for monitoring SO2 emissions.
Code of Federal Regulations, 2011 CFR
2011-07-01
... wood and 14.0% for natural gas (boilers, only); or (2) Install, operate, maintain, and quality assure a continuous moisture monitoring system for measuring and recording the moisture content of the flue gases, in... monitoring systems are acceptable: a continuous moisture sensor; an oxygen analyzer (or analyzers) capable of...
40 CFR 75.11 - Specific provisions for monitoring SO2 emissions.
Code of Federal Regulations, 2010 CFR
2010-07-01
... wood and 14.0% for natural gas (boilers, only); or (2) Install, operate, maintain, and quality assure a continuous moisture monitoring system for measuring and recording the moisture content of the flue gases, in... monitoring systems are acceptable: a continuous moisture sensor; an oxygen analyzer (or analyzers) capable of...
75 FR 34486 - Petitions for Modification
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-17
... while continuously monitoring for methane levels. Immediately prior to the use of the non-permissible equipment, the mine atmosphere will be tested for methane within 6 inches, and would be continuously monitored with an approved instrument capable of providing both visual and audible alarms. Methane levels...
DOT National Transportation Integrated Search
2014-10-01
The goal of this project is to monitor traffic flow continuously with an innovative camera system composed of a custom : designed image sensor integrated circuit (IC) containing trapezoid pixel array and camera system that is capable of : intelligent...
Code of Federal Regulations, 2014 CFR
2014-07-01
... providing a continuous record or an integrating regeneration stream flow monitoring device having an accuracy of ±10 percent or better, capable of recording the total regeneration stream mass or volumetric flow for each regeneration cycle; and a carbon-bed temperature monitoring device, capable of recording...
Code of Federal Regulations, 2014 CFR
2014-07-01
..., an organic monitoring device capable of providing a continuous record, or an integrating regeneration... regeneration stream mass or volumetric flow for each regeneration cycle, and a carbon-bed temperature monitoring device capable of recording the carbon-bed temperature after each regeneration and within 15...
Code of Federal Regulations, 2010 CFR
2010-07-01
... providing a continuous record or an integrating regeneration stream flow monitoring device having an accuracy of ±10 percent or better, capable of recording the total regeneration stream mass or volumetric flow for each regeneration cycle; and a carbon-bed temperature monitoring device, capable of recording...
Code of Federal Regulations, 2012 CFR
2012-07-01
..., an organic monitoring device capable of providing a continuous record, or an integrating regeneration... regeneration stream mass or volumetric flow for each regeneration cycle, and a carbon-bed temperature monitoring device capable of recording the carbon-bed temperature after each regeneration and within 15...
Code of Federal Regulations, 2011 CFR
2011-07-01
... providing a continuous record or an integrating regeneration stream flow monitoring device having an accuracy of ±10 percent or better, capable of recording the total regeneration stream mass or volumetric flow for each regeneration cycle; and a carbon-bed temperature monitoring device, capable of recording...
Code of Federal Regulations, 2012 CFR
2012-07-01
... providing a continuous record or an integrating regeneration stream flow monitoring device having an accuracy of ±10 percent or better, capable of recording the total regeneration stream mass or volumetric flow for each regeneration cycle; and a carbon-bed temperature monitoring device, capable of recording...
Code of Federal Regulations, 2013 CFR
2013-07-01
... providing a continuous record or an integrating regeneration stream flow monitoring device having an accuracy of ±10 percent or better, capable of recording the total regeneration stream mass or volumetric flow for each regeneration cycle; and a carbon-bed temperature monitoring device, capable of recording...
Code of Federal Regulations, 2011 CFR
2011-07-01
..., an organic monitoring device capable of providing a continuous record, or an integrating regeneration... regeneration stream mass or volumetric flow for each regeneration cycle, and a carbon-bed temperature monitoring device capable of recording the carbon-bed temperature after each regeneration and within 15...
Code of Federal Regulations, 2010 CFR
2010-07-01
..., an organic monitoring device capable of providing a continuous record, or an integrating regeneration... regeneration stream mass or volumetric flow for each regeneration cycle, and a carbon-bed temperature monitoring device capable of recording the carbon-bed temperature after each regeneration and within 15...
Code of Federal Regulations, 2013 CFR
2013-07-01
..., an organic monitoring device capable of providing a continuous record, or an integrating regeneration... regeneration stream mass or volumetric flow for each regeneration cycle, and a carbon-bed temperature monitoring device capable of recording the carbon-bed temperature after each regeneration and within 15...
Phase-shift focus monitoring techniques
NASA Astrophysics Data System (ADS)
McQuillan, Matthew; Roberts, Bill
2006-03-01
Depth of focus (DOF) has become a victim of its mathematical relationship with Numerical Aperture (NA). While NA is being increased towards one to maximize scanner resolution capabilities, DOF is being minimized because of its inverse relationship with NA. Moore's law continues to drive the semiconductor industry towards smaller and smaller devices the need for high NA to resolve these shrinking devices will continue to consume the usable depth of focus (UDOF). Due to the shrinking UDOF a demand has been created for a feature or technology that will give engineers the capability to monitor scanner focus. Developing and implementation of various focus monitoring techniques have been used to prevent undetected tool focus excursions. Two overlay techniques to monitor ArF Scanner focus have been evaluated; our evaluation results will be presented here.
40 CFR 63.644 - Monitoring provisions for miscellaneous process vents.
Code of Federal Regulations, 2010 CFR
2010-07-01
... to a thermocouple, an ultraviolet beam sensor, or an infrared sensor) capable of continuously... the equipment will monitor accurately. (1) Where an incinerator is used, a temperature monitoring... incinerator is used, a temperature monitoring device shall be installed in the firebox or in the ductwork...
40 CFR 63.644 - Monitoring provisions for miscellaneous process vents.
Code of Federal Regulations, 2012 CFR
2012-07-01
... to a thermocouple, an ultraviolet beam sensor, or an infrared sensor) capable of continuously... the equipment will monitor accurately. (1) Where an incinerator is used, a temperature monitoring... incinerator is used, a temperature monitoring device shall be installed in the firebox or in the ductwork...
40 CFR 63.644 - Monitoring provisions for miscellaneous process vents.
Code of Federal Regulations, 2014 CFR
2014-07-01
... to a thermocouple, an ultraviolet beam sensor, or an infrared sensor) capable of continuously... the equipment will monitor accurately. (1) Where an incinerator is used, a temperature monitoring... incinerator is used, a temperature monitoring device shall be installed in the firebox or in the ductwork...
Experiences and recommendations in deploying a real-time, water quality monitoring system
NASA Astrophysics Data System (ADS)
O'Flynn, B.; Regan, F.; Lawlor, A.; Wallace, J.; Torres, J.; O'Mathuna, C.
2010-12-01
Monitoring of water quality at a river basin level to meet the requirements of the Water Framework Directive (WFD) using conventional sampling and laboratory-based techniques poses a significant financial burden. Wireless sensing systems offer the potential to reduce these costs considerably, as well as provide more useful, continuous monitoring capabilities by giving an accurate idea of the changing environmental and water quality in real time. It is unlikely that the traditional spot/grab sampling will provide a reasonable estimate of the true maximum and/or mean concentration for a particular physicochemical variable in a water body with marked temporal variability. When persistent fluctuations occur, it is likely only to be detected through continuous measurements, which have the capability of detecting sporadic peaks of concentration. Thus, in situ sensors capable of continuous sampling of parameters required under the WFD would therefore provide more up-to-date information, cut monitoring costs and provide better coverage representing long-term trends in fluctuations of pollutant concentrations. DEPLOY is a technology demonstration project, which began planning and station selection and design in August 2008 aiming to show how state-of-the-art technology could be implemented for cost-effective, continuous and real-time monitoring of a river catchment. The DEPLOY project is seen as an important building block in the realization of a wide area autonomous network of sensors capable of monitoring the spatial and temporal distribution of important water quality and environmental target parameters. The demonstration sites chosen are based in the River Lee, which flows through Ireland's second largest city, Cork, and were designed to include monitoring stations in five zones considered typical of significant river systems--these monitor water quality parameters such as pH, temperature, depth, conductivity, turbidity and dissolved oxygen. Over one million data points have been collected since the multi-sensor system was deployed in May 2009. Extreme meteorological events have occurred during the period of deployment and the collection of real-time water quality data as well as the knowledge, experience and recommendations for future deployments are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
PIERSON, R.M.
1999-10-27
This document provides the technical basis for use of remote reading capabilities with radiological control instruments at River Protection Project facilities. The purpose of this document is to evaluate applications of remote reading capabilities with Radiological Control instrumentation to allow continuous monitoring of radiation dose rates at River Protection Project (RPP) facilities. In addition this document provides a technical basis and implementing guidelines for remote monitoring of dose rates and their potential contribution to maintaining radiation exposures ALARA.
Development of an electronic nose for environmental odour monitoring.
Dentoni, Licinia; Capelli, Laura; Sironi, Selena; Del Rosso, Renato; Zanetti, Sonia; Della Torre, Matteo
2012-10-25
Exhaustive odour impact assessment should involve the evaluation of the impact of odours directly on citizens. For this purpose it might be useful to have an instrument capable of continuously monitoring ambient air quality, detecting the presence of odours and also recognizing their provenance. This paper discusses the laboratory and field tests conducted in order to evaluate the performance of a new electronic nose, specifically developed for monitoring environmental odours. The laboratory tests proved the instrument was able to discriminate between the different pure substances being tested, and to estimate the odour concentrations giving correlation indexes (R2) of 0.99 and errors below 15%. Finally, the experimental monitoring tests conducted in the field, allowed us to verify the effectiveness of this electronic nose for the continuous detection of odours in ambient air, proving its stability to variable atmospheric conditions and its capability to detect odour peaks.
40 CFR 63.114 - Process vent provisions-monitoring requirements.
Code of Federal Regulations, 2010 CFR
2010-07-01
..., temperature monitoring devices shall be installed in the gas stream immediately before and after the catalyst... but not limited to a thermocouple, ultra-violet beam sensor, or infrared sensor) capable of... monitoring device in the firebox equipped with a continuous recorder. This requirement does not apply to gas...
40 CFR 63.114 - Process vent provisions-monitoring requirements.
Code of Federal Regulations, 2011 CFR
2011-07-01
..., temperature monitoring devices shall be installed in the gas stream immediately before and after the catalyst... but not limited to a thermocouple, ultra-violet beam sensor, or infrared sensor) capable of... monitoring device in the firebox equipped with a continuous recorder. This requirement does not apply to gas...
Patton, John M.; Ketchum, David C.; Guy, Michelle R.
2015-11-02
This document provides an overview of the capabilities, design, and use cases of the data acquisition and archiving subsystem at the U.S. Geological Survey National Earthquake Information Center. The Edge and Continuous Waveform Buffer software supports the National Earthquake Information Center’s worldwide earthquake monitoring mission in direct station data acquisition, data import, short- and long-term data archiving, data distribution, query services, and playback, among other capabilities. The software design and architecture can be configured to support acquisition and (or) archiving use cases. The software continues to be developed in order to expand the acquisition, storage, and distribution capabilities.
A real-time intercepting beam-profile monitor for a medical cyclotron
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hendriks, C.; Uittenbosch, T.; Cameron, D.
2013-11-15
There is a lack of real-time continuous beam-diagnostic tools for medical cyclotrons due to high power deposition during proton irradiation. To overcome this limitation, we have developed a profile monitor that is capable of providing continuous feedback about beam shape and current in real time while it is inserted in the beam path. This enables users to optimize the beam profile and observe fluctuations in the beam over time with periodic insertion of the monitor.
NASA Astrophysics Data System (ADS)
Rodgers, John C.; Wasiolek, Piotr T.; Schery, Stephen D.; Alcantara, Raul E.
1999-01-01
The need for a continuous air monitor capable of quick and accurate measurements of airborne radioactivity in close proximity to the work environment during waste management, site restoration, and D&D operations led to the Los Alamos National Laboratory development of an environmental continuous air monitor (ECAM). Monitoring the hostile work environment of waste recovery, for example, presents unique challenges for detector design for detectors previously used for the clean room conditions of the typical plutonium laboratory. The environmental and atmospheric conditions (dust, high wind, etc.) influence aerosol particle penetration into the ECAM sampling head as well as the build-up of deposits on the ECAM filter.
Code of Federal Regulations, 2014 CFR
2014-07-01
... non-vacuum regeneration systems, an integrating regeneration stream flow monitoring device having an accuracy of ±10 percent, capable of recording the total regeneration stream mass for each regeneration cycle. For non-vacuum regeneration systems, an integrating regeneration stream flow monitoring device...
Code of Federal Regulations, 2013 CFR
2013-07-01
... non-vacuum regeneration systems, an integrating regeneration stream flow monitoring device having an accuracy of ±10 percent, capable of recording the total regeneration stream mass for each regeneration cycle. For non-vacuum regeneration systems, an integrating regeneration stream flow monitoring device...
NASA Astrophysics Data System (ADS)
Martin-Fernandez, M. L.; Tobin, M. J.; Clarke, D. T.; Gregory, C. M.; Jones, G. R.
1998-02-01
We describe an instrument designed to monitor molecular motions in multiphasic, weakly fluorescent microscopic systems. It combines synchrotron radiation, a low irradiance polarized microfluorimeter, and an automated, multiframing, single-photon-counting data acquisition system, and is capable of continually accumulating subnanosecond resolved anisotropy decays with a real-time resolution of about 60 s. The instrument has initially been built to monitor ligand-receptor interactions in living cells, but can equally be applied to the continual measurement of any dynamic process involving fluorescent molecules, that occurs over a time scale from a few minutes to several hours. As a particularly demanding demonstration of its capabilities, we have used it to monitor the environmental constraints imposed on the peptide hormone epidermal growth factor during its endocytosis and recycling to the cell surface in live cells.
Code of Federal Regulations, 2013 CFR
2013-07-01
... thermocouple, ultra-violet beam sensor, or infrared sensor) capable of continuously detecting the presence of a..., as appropriate. (1) Where an incinerator is used, a temperature monitoring device equipped with a... temperature monitoring device shall be installed in the firebox or in the ductwork immediately downstream of...
Code of Federal Regulations, 2014 CFR
2014-07-01
... thermocouple, ultra-violet beam sensor, or infrared sensor) capable of continuously detecting the presence of a..., as appropriate. (1) Where an incinerator is used, a temperature monitoring device equipped with a... temperature monitoring device shall be installed in the firebox or in the ductwork immediately downstream of...
Code of Federal Regulations, 2012 CFR
2012-07-01
... thermocouple, ultra-violet beam sensor, or infrared sensor) capable of continuously detecting the presence of a..., as appropriate. (1) Where an incinerator is used, a temperature monitoring device equipped with a... temperature monitoring device shall be installed in the firebox or in the ductwork immediately downstream of...
APDS: the autonomous pathogen detection system.
Hindson, Benjamin J; Makarewicz, Anthony J; Setlur, Ujwal S; Henderer, Bruce D; McBride, Mary T; Dzenitis, John M
2005-04-15
We have developed and tested a fully autonomous pathogen detection system (APDS) capable of continuously monitoring the environment for airborne biological threat agents. The system was developed to provide early warning to civilians in the event of a bioterrorism incident and can be used at high profile events for short-term, intensive monitoring or in major public buildings or transportation nodes for long-term monitoring. The APDS is completely automated, offering continuous aerosol sampling, in-line sample preparation fluidics, multiplexed detection and identification immunoassays, and nucleic acid-based polymerase chain reaction (PCR) amplification and detection. Highly multiplexed antibody-based and duplex nucleic acid-based assays are combined to reduce false positives to a very low level, lower reagent costs, and significantly expand the detection capabilities of this biosensor. This article provides an overview of the current design and operation of the APDS. Certain sub-components of the ADPS are described in detail, including the aerosol collector, the automated sample preparation module that performs multiplexed immunoassays with confirmatory PCR, and the data monitoring and communications system. Data obtained from an APDS that operated continuously for 7 days in a major U.S. transportation hub is reported.
NASA Astrophysics Data System (ADS)
Lee, Seung Yup; Pakela, Julia M.; Hedrick, Taylor L.; Vishwanath, Karthik; Helton, Michael C.; Chung, Yooree; Kolodziejski, Noah J.; Stapels, Christopher J.; McAdams, Daniel R.; Fernandez, Daniel E.; Christian, James F.; O'Reilly, Jameson; Farkas, Dana; Ward, Brent B.; Feinberg, Stephen E.; Mycek, Mary-Ann
2017-02-01
In reconstructive surgery, tissue perfusion/vessel patency is critical to the success of microvascular free tissue flaps. Early detection of flap failure secondary to compromise of vascular perfusion would significantly increase the chances of flap salvage. We have developed a compact, clinically-compatible monitoring system to enable automated, minimally-invasive, continuous, and quantitative assessment of flap viability/perfusion. We tested the system's continuous monitoring capability during extended non-recovery surgery using an in vivo porcine free flap model. Initial results indicated that the system could assess flap viability/perfusion in a quantitative and continuous manner. With proven performance, the compact form constructed with cost-effective components would make this system suitable for clinical translation.
40 CFR 63.114 - Process vent provisions-monitoring requirements.
Code of Federal Regulations, 2014 CFR
2014-07-01
... but not limited to a thermocouple, ultra-violet beam sensor, or infrared sensor) capable of... accurately. (1) Where an incinerator is used, a temperature monitoring device equipped with a continuous recorder is required. (i) Where an incinerator other than a catalytic incinerator is used, a temperature...
40 CFR 63.114 - Process vent provisions-monitoring requirements.
Code of Federal Regulations, 2012 CFR
2012-07-01
... but not limited to a thermocouple, ultra-violet beam sensor, or infrared sensor) capable of... accurately. (1) Where an incinerator is used, a temperature monitoring device equipped with a continuous recorder is required. (i) Where an incinerator other than a catalytic incinerator is used, a temperature...
40 CFR 63.114 - Process vent provisions-monitoring requirements.
Code of Federal Regulations, 2013 CFR
2013-07-01
... but not limited to a thermocouple, ultra-violet beam sensor, or infrared sensor) capable of... accurately. (1) Where an incinerator is used, a temperature monitoring device equipped with a continuous recorder is required. (i) Where an incinerator other than a catalytic incinerator is used, a temperature...
2006-01-01
enabling technologies such as built-in-test, advanced health monitoring algorithms, reliability and component aging models, prognostics methods, and...deployment and acceptance. This framework and vision is consistent with the onboard PHM ( Prognostic and Health Management) as well as advanced... monitored . In addition to the prognostic forecasting capabilities provided by monitoring system power, multiple confounding errors by electronic
Lucani, Daniel; Cataldo, Giancarlos; Cruz, Julio; Villegas, Guillermo; Wong, Sara
2006-01-01
A prototype of a portable ECG-monitoring device has been developed for clinical and non-clinical environments as part of a telemedicine system to provide remote and continuous surveillance of patients. The device can acquire, store and/or transmit ECG signals to computer-based platforms or specially configured access points (AP) with Intranet/Internet capabilities in order to reach remote monitoring stations. Acquired data can be stored in a flash memory card in FAT16 format for later recovery, or transmitted via Bluetooth or USB to a local station or AP. This data acquisition module (DAM) operates in two modes: Holter and on-line transmission.
50 CFR 300.219 - Vessel monitoring system.
Code of Federal Regulations, 2011 CFR
2011-10-01
.... The vessel owner and operator shall continuously operate the VMS unit at all times, except that the...) of this section, provided that the VMS unit is operated continuously and at all times while the... device that is capable of real-time communication with the SAC. The VMS unit used to fulfill the...
50 CFR 300.219 - Vessel monitoring system.
Code of Federal Regulations, 2013 CFR
2013-10-01
.... The vessel owner and operator shall continuously operate the VMS unit at all times, except that the...) of this section, provided that the VMS unit is operated continuously and at all times while the... device that is capable of real-time communication with the SAC. The VMS unit used to fulfill the...
50 CFR 300.219 - Vessel monitoring system.
Code of Federal Regulations, 2010 CFR
2010-10-01
.... The vessel owner and operator shall continuously operate the VMS unit at all times, except that the...) of this section, provided that the VMS unit is operated continuously and at all times while the... device that is capable of real-time communication with the SAC. The VMS unit used to fulfill the...
McLean, Thomas D; Moore, Murray E; Justus, Alan L; Hudston, Jonathan A; Barbé, Benoît
2016-11-01
Evaluation of continuous air monitors in the presence of a plutonium aerosol is time intensive, expensive, and requires a specialized facility. The Radiation Protection Services Group at Los Alamos National Laboratory has designed a Dynamic Radioactive Source, intended to replace plutonium aerosol challenge testing. The Dynamic Radioactive Source is small enough to be inserted into the sampler filter chamber of a typical continuous air monitor. Time-dependent radioactivity is introduced from electroplated sources for real-time testing of a continuous air monitor where a mechanical wristwatch motor rotates a mask above an alpha-emitting electroplated disk source. The mask is attached to the watch's minute hand, and as it rotates, more of the underlying source is revealed. The measured alpha activity increases with time, simulating the arrival of airborne radioactive particulates at the air sampler inlet. The Dynamic Radioactive Source allows the temporal behavior of puff and chronic release conditions to be mimicked without the need for radioactive aerosols. The new system is configurable to different continuous air monitor designs and provides an in-house testing capability (benchtop compatible). It is a repeatable and reusable system and does not contaminate the tested air monitor. Test benefits include direct user control, realistic (plutonium) aerosol spectra, and iterative development of continuous air monitor alarm algorithms. Data obtained using the Dynamic Radioactive Source has been used to elucidate alarm algorithms and to compare the response time of two commercial continuous air monitors.
McLean, Thomas D.; Moore, Murray E.; Justus, Alan L.; ...
2016-01-01
Evaluation of continuous air monitors in the presence of a plutonium aerosol is time intensive, expensive, and requires a specialized facility. The Radiation Protection Services Group at Los Alamos National Laboratory has designed a Dynamic Radioactive Source, intended to replace plutonium aerosol challenge testing. Furthermore, the Dynamic Radioactive Source is small enough to be inserted into the sampler filter chamber of a typical continuous air monitor. Time-dependent radioactivity is introduced from electroplated sources for real-time testing of a continuous air monitor where a mechanical wristwatch motor rotates a mask above an alpha-emitting electroplated disk source. The mask is attached tomore » the watch’s minute hand, and as it rotates, more of the underlying source is revealed. The alpha activity we measured increases with time, simulating the arrival of airborne radioactive particulates at the air sampler inlet. The Dynamic Radioactive Source allows the temporal behavior of puff and chronic release conditions to be mimicked without the need for radioactive aerosols. The new system is configurable to different continuous air monitor designs and provides an in-house testing capability (benchtop compatible). It is a repeatable and reusable system and does not contaminate the tested air monitor. Test benefits include direct user control, realistic (plutonium) aerosol spectra, and iterative development of continuous air monitor alarm algorithms. We also used data obtained using the Dynamic Radioactive Source to elucidate alarm algorithms and to compare the response time of two commercial continuous air monitors.« less
40 CFR 63.427 - Continuous monitoring.
Code of Federal Regulations, 2011 CFR
2011-07-01
... concentration shall be installed in the exhaust air stream. (2) Where a refrigeration condenser system is used... immediately downstream from the outlet to the condenser section. Alternatively, a CEMS capable of measuring...
OKCARS : Oklahoma Collision Analysis and Response System.
DOT National Transportation Integrated Search
2012-10-01
By continuously monitoring traffic intersections to automatically detect that a collision or nearcollision : has occurred, automatically call for assistance, and automatically forewarn oncoming traffic, : our OKCARS has the capability to effectively ...
Real-time, aptamer-based tracking of circulating therapeutic agents in living animals
Ferguson, B. Scott; Hoggarth, David A.; Maliniak, Dan; Ploense, Kyle; White, Ryan J.; Woodward, Nick; Hsieh, Kuangwen; Bonham, Andrew J.; Eisenstein, Michael; Kippin, Tod; Plaxco, Kevin W.; Soh, H. Tom
2014-01-01
A sensor capable of continuously measuring specific molecules in the bloodstream in vivo would give clinicians a valuable window into patients’ health and their response to therapeutics. Such technology would enable truly personalized medicine, wherein therapeutic agents could be tailored with optimal doses for each patient to maximize efficacy and minimize side effects. Unfortunately, continuous, real-time measurement is currently only possible for a handful of targets, such as glucose, lactose, and oxygen, and the few existing platforms for continuous measurement are not generalizable for the monitoring of other analytes, such as small-molecule therapeutics. In response, we have developed a real-time biosensor capable of continuously tracking a wide range of circulating drugs in living subjects. Our microfluidic electrochemical detector for in vivo continuous monitoring (MEDIC) requires no exogenous reagents, operates at room temperature, and can be reconfigured to measure different target molecules by exchanging probes in a modular manner. To demonstrate the system's versatility, we measured therapeutic in vivo concentrations of doxorubicin (a chemotherapeutic) and kanamycin (an antibiotic) in live rats and in human whole blood for several hours with high sensitivity and specificity at sub-minute temporal resolution. Importantly, we show that MEDIC can also obtain pharmacokineticparameters for individual animals in real-time. Accordingly, just as continuous glucose monitoring technology is currently revolutionizing diabetes care, we believe MEDIC could be a powerful enabler for personalized medicine by ensuring delivery of optimal drug doses for individual patients based on direct detection of physiological parameters. PMID:24285484
Stratospheric measurement requirements and satellite-borne remote sensing capabilities
NASA Technical Reports Server (NTRS)
Carmichael, J. J.; Eldridge, R. G.; Frey, E. J.; Friedman, E. J.; Ghovanlou, A. H.
1976-01-01
The capabilities of specific NASA remote sensing systems to provide appropriate measurements of stratospheric parameters for potential user needs were assessed. This was used to evaluate the capabilities of the remote sensing systems to perform global monitoring of the stratosphere. The following conclusions were reached: (1) The performance of current remote stratospheric sensors, in some cases, compares quite well with identified measurement requirements. Their ability to measure other species has not been demonstrated. (2) None of the current, in-situ methods have the capability to satisfy the requirements for global monitoring and the temporal constraints derived from the users needs portion of the study. (3) Existing, non-remote techniques will continue to play an important role in stratospheric investigations for both corroboration of remotely collected data and in the evolutionary development of future remote sensors.
NASA Technical Reports Server (NTRS)
Scheuring, Richard A.; Hamilton, D.; Jones, J. A.; Alexander, D.
2008-01-01
Currently there are several physiological monitoring requirements for Extravehicular Activity (EVA) in the Human-Systems Interface Requirements (HSIR) document, including continuous heart rhythm monitoring. However, it is not known whether heart rhythm monitoring in the lunar surface space suit is a necessary capability for lunar surface operations or in launch/landing suit the event of a cabin depressurization enroute to or from the moon. Methods: Current US astronaut corps demographic information was provided to an expert panel of cardiovascular medicine experts, including specialists in electrophysiology, exercise physiology, interventional cardiology and arrhythmia. This information included averages for male/female age, body mass index (BMI), blood pressure, cholesterol, inflammatory markers, echocardiogram, ranges for coronary artery calcium (CAC) scores for long duration astronauts, and ranges for heart rate (HR) and metabolic (MET) rates obtained during microgravity and lunar EVA. Results: The panel determined that no uncontrolled hazard was likely to occur in the suit during lunar surface or contingency microgravity ops that would require ECG monitoring in the highly screened US astronaut population. However having the capability for rhythm monitoring inside the vehicle (IVA) was considered critical to manage an astronaut in distress. Discussion: Heart rate (HR) monitoring alone allows effective monitoring of astronaut health and function. Consequently, electrocardiographic (ECG) monitoring capability as a clinical tool is not essential in the lunar or launch/landing space suit. However, the panel considered that rhythm monitoring could be useful in certain clinical situations, it was not considered required for safe operations. Also, lunar vehicles should be required to have ECG monitoring capability with a minimum of 5-lead ECG (derived 12- lead) for IVA medical assessments.
NASA Technical Reports Server (NTRS)
Simon, Donald L.
2010-01-01
Aircraft engine performance trend monitoring and gas path fault diagnostics are closely related technologies that assist operators in managing the health of their gas turbine engine assets. Trend monitoring is the process of monitoring the gradual performance change that an aircraft engine will naturally incur over time due to turbomachinery deterioration, while gas path diagnostics is the process of detecting and isolating the occurrence of any faults impacting engine flow-path performance. Today, performance trend monitoring and gas path fault diagnostic functions are performed by a combination of on-board and off-board strategies. On-board engine control computers contain logic that monitors for anomalous engine operation in real-time. Off-board ground stations are used to conduct fleet-wide engine trend monitoring and fault diagnostics based on data collected from each engine each flight. Continuing advances in avionics are enabling the migration of portions of the ground-based functionality on-board, giving rise to more sophisticated on-board engine health management capabilities. This paper reviews the conventional engine performance trend monitoring and gas path fault diagnostic architecture commonly applied today, and presents a proposed enhanced on-board architecture for future applications. The enhanced architecture gains real-time access to an expanded quantity of engine parameters, and provides advanced on-board model-based estimation capabilities. The benefits of the enhanced architecture include the real-time continuous monitoring of engine health, the early diagnosis of fault conditions, and the estimation of unmeasured engine performance parameters. A future vision to advance the enhanced architecture is also presented and discussed
Method for in situ characterization of a medium of dispersed matter in a continuous phase
Kaufman, Eric N.
1995-01-01
A method for in situ characterization of a medium of a dispersed phase in a continuous phase, including the steps of adding a fluorescent dye to one phase capable of producing fluorescence therein when the fluorescent dye is optically excited, optically exciting the fluorescent dye at a wavelength to produce fluorescence in the one phase, and monitoring the fluorescence to distinguish the continuous phase from the dispersed phase.
Remote sensing of environmental impact of land use activities
NASA Technical Reports Server (NTRS)
Paul, C. K.
1977-01-01
The capability to monitor land cover, associated in the past with aerial film cameras and radar systems, was discussed in regard to aircraft and spacecraft multispectral scanning sensors. A proposed thematic mapper with greater spectral and spatial resolutions for the fourth LANDSAT is expected to usher in new environmental monitoring capability. In addition, continuing improvements in image classification by supervised and unsupervised computer techniques are being operationally verified for discriminating environmental impacts of human activities on the land. The benefits of employing remote sensing for this discrimination was shown to far outweigh the incremental costs of converting to an aircraft-satellite multistage system.
Landsat still contributing to environmental research
Loveland, Thomas R.; Cochrane, Mark A.; Henebry, Geoffrey M.
2008-01-01
Landsat data have enabled continuous global monitoring of both human-caused and other land cover disturbances since 1972. Recently degraded performance and intermittent service of the Landsat 7 and Landsat 5 sensors, respectively, have raised concerns about the condition of global Earth observation programs. However, Landsat imagery is still useful for landscape change detection and this capability should continue into the foreseeable future.
Personal continuous air monitor
Morgan, Ronald G.; Salazar, Samuel A.
2000-01-01
A personal continuous air monitor capable of giving immediate warning of the presence of radioactivity has a filter/detector head to be worn in the breathing zone of a user, containing a filter mounted adjacent to radiation detectors, and a preamplifier. The filter/detector head is connected to a belt pack to be worn at the waist or on the back of a user. The belt pack contains a signal processor, batteries, a multichannel analyzer, a logic circuit, and an alarm. An air pump also is provided in the belt pack for pulling air through the filter/detector head by way of an air tube.
Ricci, Francesco; Caprio, Felice; Poscia, Alessandro; Valgimigli, Francesco; Messeri, Dimitri; Lepori, Elena; Dall'Oglio, Giorgio; Palleschi, Giuseppe; Moscone, Danila
2007-04-15
Glucose biosensors based on the use of planar screen-printed electrodes modified with an electrochemical mediator and with glucose oxidase have been optimised for their application in the continuous glucose monitoring in diabetic patients. A full study of their operative stability and temperature dependence has been accomplished, thus giving useful information for in vivo applications. The effect of dissolved oxygen concentration in the working solution was also studied in order to evaluate its effect on the linearity of the sensors. Glucose monitoring performed with serum samples was performed to evaluate the effect of matrix components on operative stability and demonstrated an efficient behaviour for 72 h of continuous monitoring. Finally, these studies led to a sensor capable of detecting glucose at concentrations as low as 0.04 mM and with a good linearity up to 2.0 mM (at 37 degrees C) with an operative stability of ca. 72 h, thus demonstrating the possible application of these sensors for continuous glucose monitoring in conjunction with a microdialysis probe. Moreover, preliminary in vivo experiments for ca. 20 h have demonstrated the feasibility of this system.
Long Term, Operational Monitoring Of Enhanced Oil Recovery In Harsh Environments With INSAR
NASA Astrophysics Data System (ADS)
Sato, S.; Henschel, M. D.
2012-01-01
Since 2004, MDA GSI has provided ground deformation measurements for an oil field in northern Alberta, Canada using InSAR technology. During this period, the monitoring has reliably shown the slow rise of the oil field due to enhanced oil recovery operations. The InSAR monitoring solution is essentially based on the observation of point and point-like targets in the field. Ground conditions in the area are almost continuously changing (in their reflectivity characteristics) making it difficult to ob- serve coherent patterns from the ground. The extended duration of the oil operations has allowed us to continue InSAR monitoring and transition from RADARSAT-1 to RADARSAT-2. With RADARSAT-2 and the enhancement of the satellite resolution capability has provided more targets of opportunity as identified by a differential coherence method. This poster provides an overview of the long term monitoring of the oil field in northern Alberta, Canada.
Support and Maintenance of the International Monitoring System network
NASA Astrophysics Data System (ADS)
Pereira, Jose; Bazarragchaa, Sergelen; Kilgour, Owen; Pretorius, Jacques; Werzi, Robert; Beziat, Guillaume; Hamani, Wacel; Mohammad, Walid; Brely, Natalie
2014-05-01
The Monitoring Facilities Support Section of the Provisional Technical Secretariat (PTS) has as its main task to ensure optimal support and maintenance of an array of 321 monitoring stations and 16 radionuclide laboratories distributed worldwide. Raw seismic, infrasonic, hydroacoustic and radionuclide data from these facilities constitutes the basic product delivered by the International Monitoring System (IMS). In the process of maintaining such a wide array of stations of different technologies, the Support Section contributes to ensuring station mission capability. Mission capable data availability according to the IMS requirements should be at least 98% annually (no more than 7 days down time per year per waveform stations - 14 continuous for radionuclide stations) for continuous data sending stations. In this presentation, we will present our case regarding our intervention at stations to address equipment supportability and maintainability, as these are particularly large activities requiring the removal of a substantial part of the station equipment and installation of new equipment. The objective is always to plan these activities while minimizing downtime and continuing to meet all IMS requirements, including those of data availability mentioned above. We postulate that these objectives are better achieved by planning and making use of preventive maintenance, as opposed to "run-to-failure" with associated corrective maintenance. We use two recently upgraded Infrasound Stations (IS39 Palau and IS52 BIOT) as a case study and establish a comparison between these results and several other stations where corrective maintenance was performed, to demonstrate our hypothesis.
[Development of a wearable electrocardiogram monitor with recognition of physical activity scene].
Wang, Zihong; Wu, Baoming; Yin, Jian; Gong, Yushun
2012-10-01
To overcome the problems of current electrocardiogram (ECG) tele-monitoring devices used for daily life, according to information fusion thought and by means of wearable technology, we developed a new type of wearable ECG monitor with the capability of physical activity recognition in this paper. The ECG monitor synchronously detected electrocardiogram signal and body acceleration signal, and recognized the scene information of physical activity, and finally determined the health status of the heart. With the advantages of accuracy for measurement, easy to use, comfort to wear, private feelings and long-term continuous in monitoring, this ECG monitor is quite fit for the heart-health monitoring in daily life.
Real-time Web GIS to monitor marine water quality using wave glider
NASA Astrophysics Data System (ADS)
Maneesa Amiruddin, Siti
2016-06-01
In the past decade, Malaysia has experienced unprecedented economic development and associated socioeconomic changes. As environmentalists anticipate these changes could have negative impacts on the marine and coastal environment, a comprehensive, continuous and long term marine water quality monitoring programme needs to be strengthened to reflect the government's aggressive mind-set of enhancing its authority in protection, preservation, management and enrichment of vast resources of the ocean. Wave Glider, an autonomous, unmanned marine vehicle provides continuous ocean monitoring at all times and is durable in any weather condition. Geographic Information System (GIS) technology is ideally suited as a tool for the presentation of data derived from continuous monitoring of locations, and used to support and deliver information to environmental managers and the public. Combined with GeoEvent Processor, an extension from ArcGIS for Server, it extends the Web GIS capabilities in providing real-time data from the monitoring activities. Therefore, there is a growing need of Web GIS for easy and fast dissemination, sharing, displaying and processing of spatial information which in turn helps in decision making for various natural resources based applications.
Hammoud, Abbas; Chamseddine, Ahmad; Nguyen, Dang K; Sawan, Mohamad
2016-08-01
The need of continuous real-time monitoring device for in-vivo drug level detection has been widely articulated lately. Such monitoring could guide drug posology and timing of intake, detect low or high drug levels, in order to take adequate measures, and give clinicians a valuable window into patients' health and their response to therapeutics. This paper presents a novel implantable bio-sensor based on impedance measurement capable of continuously monitoring various antiepileptic drug levels. This portable point-of-care microsystem replaces large and stationary conventional macrosystems, and is a one of a kind system designed with an array of electrodes to monitor various anti-epileptic drugs rather than one drug. The micro-system consists of (i) the front-end circuit including an inductive coil to receive energy from an external base station, and to exchange data with the latter; (ii) the power management block; (iii) the readout and control block; and (iv) the biosensor array. The electrical circuitry was designed using the 0.18-um CMOS process technology intended to be miniature and consume ultra-low power.
In vivo sodium concentration continuously monitored with fluorescent sensors.
Dubach, J Matthew; Lim, Edward; Zhang, Ning; Francis, Kevin P; Clark, Heather
2011-02-01
Sodium balance is vital to maintaining normal physiological function. Imbalances can occur in a variety of diseases, during certain surgical operations or during rigorous exercise. There is currently no method to continuously monitor sodium concentration in patients who may be susceptible to hyponatremia. Our approach was to design sodium specific fluorescent sensors capable of measuring physiological fluctuations in sodium concentration. The sensors are submicron plasticized polymer particles containing sodium recognition components that are coated with biocompatible poly(ethylene) glycol. Here, the sensors were brought up in saline and placed in the subcutaneous area of the skin of mice by simple injection. The fluorescence was monitored in real time using a whole animal imager to track changes in sodium concentrations. This technology could be used to monitor certain disease states or warn against dangerously low levels of sodium during exercise.
Optoacoustic technique for noninvasive monitoring of blood oxygenation: a feasibility study
NASA Astrophysics Data System (ADS)
Esenaliev, Rinat O.; Larina, Irina V.; Larin, Kirill V.; Deyo, Donald J.; Motamedi, Massoud; Prough, Donald S.
2002-08-01
Replacement of invasive monitoring of cerebral venous oxygenation with noninvasive techniques offers great promise in the management of life-threatening neurologic illnesses including traumatic brain injury. We developed and built an optoacoustic system to noninvasively monitor cerebral venous oxygenation; the system includes a nanosecond Nd:YAG laser and a specially designed optoacoustic probe. We tested the system in vitro in sheep blood with experimentally varied oxygenation. Our results demonstrated that (1) the amplitude and temporal profile of the optoacoustic waves increase with blood oxygenation in the range from 24% to 92%, (2) optoacoustic signals can be detected despite optical and acoustic attenuation by thick bone, and (3) the system is capable of real-time and continuous measurements. These results suggest that the optoacoustic technique is technically feasible for continuous, noninvasive monitoring of cerebral venous oxygenation.
Software for marine ecological environment comprehensive monitoring system based on MCGS
NASA Astrophysics Data System (ADS)
Wang, X. H.; Ma, R.; Cao, X.; Cao, L.; Chu, D. Z.; Zhang, L.; Zhang, T. P.
2017-08-01
The automatic integrated monitoring software for marine ecological environment based on MCGS configuration software is designed and developed to realize real-time automatic monitoring of many marine ecological parameters. The DTU data transmission terminal performs network communication and transmits the data to the user data center in a timely manner. The software adopts the modular design and has the advantages of stable and flexible data structure, strong portability and scalability, clear interface, simple user operation and convenient maintenance. Continuous site comparison test of 6 months showed that, the relative error of the parameters monitored by the system such as temperature, salinity, turbidity, pH, dissolved oxygen was controlled within 5% with the standard method and the relative error of the nutrient parameters was within 15%. Meanwhile, the system had few maintenance times, low failure rate, stable and efficient continuous monitoring capabilities. The field application shows that the software is stable and the data communication is reliable, and it has a good application prospect in the field of marine ecological environment comprehensive monitoring.
An autonomous structural health monitoring solution
NASA Astrophysics Data System (ADS)
Featherston, Carol A.; Holford, Karen M.; Pullin, Rhys; Lees, Jonathan; Eaton, Mark; Pearson, Matthew
2013-05-01
Combining advanced sensor technologies, with optimised data acquisition and diagnostic and prognostic capability, structural health monitoring (SHM) systems provide real-time assessment of the integrity of bridges, buildings, aircraft, wind turbines, oil pipelines and ships, leading to improved safety and reliability and reduced inspection and maintenance costs. The implementation of power harvesting, using energy scavenged from ambient sources such as thermal gradients and sources of vibration in conjunction with wireless transmission enables truly autonomous systems, reducing the need for batteries and associated maintenance in often inaccessible locations, alongside bulky and expensive wiring looms. The design and implementation of such a system however presents numerous challenges. A suitable energy source or multiple sources capable of meeting the power requirements of the system, over the entire monitoring period, in a location close to the sensor must be identified. Efficient power management techniques must be used to condition the power and deliver it, as required, to enable appropriate measurements to be taken. Energy storage may be necessary, to match a continuously changing supply and demand for a range of different monitoring states including sleep, record and transmit. An appropriate monitoring technique, capable of detecting, locating and characterising damage and delivering reliable information, whilst minimising power consumption, must be selected. Finally a wireless protocol capable of transmitting the levels of information generated at the rate needed in the required operating environment must be chosen. This paper considers solutions to some of these challenges, and in particular examines SHM in the context of the aircraft environment.
Method for in situ characterization of a medium of dispersed matter in a continuous phase
Kaufman, E.N.
1995-03-07
A method is described for the in situ characterization of a medium of a dispersed phase in a continuous phase, including the steps of adding a fluorescent dye to one phase capable of producing fluorescence therein when the fluorescent dye is optically excited, optically exciting the fluorescent dye at a wavelength to produce fluorescence in the one phase, and monitoring the fluorescence to distinguish the continuous phase from the dispersed phase. 2 figs.
Research has shown that polychlorinated biphenyls (PCBs) in some cases can be removed from the environment by biodegradation. Aerobic and anaerobic biological processes have been determined in previous research to be capable of degrading PCBs. During the aerobic and anaerobic d...
Wise, Marcus B.; Thompson, Cyril V.
1998-01-01
An in-line gas monitor capable of accurate gas composition analysis in a continuous real time manner even under strong applied vacuum conditions operates by mixing an air sample with helium forming a sample gas in two complementary sample loops embedded in a manifold which includes two pairs of 3-way solenoid valves. The sample gas is then analyzed in an ion trap mass spectrometer on a continuous basis. Two valve drivers actuate the two pairs of 3-way valves in a reciprocating fashion, so that there is always flow through the in-line gas monitor via one or the other of the sample loops. The duty cycle for the two pairs of 3-way valves is varied by tuning the two valve drivers to a duty cycle typically between 0.2 to 0.7 seconds.
A multiparameter wearable physiologic monitoring system for space and terrestrial applications
NASA Technical Reports Server (NTRS)
Mundt, Carsten W.; Montgomery, Kevin N.; Udoh, Usen E.; Barker, Valerie N.; Thonier, Guillaume C.; Tellier, Arnaud M.; Ricks, Robert D.; Darling, Robert B.; Cagle, Yvonne D.; Cabrol, Nathalie A.;
2005-01-01
A novel, unobtrusive and wearable, multiparameter ambulatory physiologic monitoring system for space and terrestrial applications, termed LifeGuard, is presented. The core element is a wearable monitor, the crew physiologic observation device (CPOD), that provides the capability to continuously record two standard electrocardiogram leads, respiration rate via impedance plethysmography, heart rate, hemoglobin oxygen saturation, ambient or body temperature, three axes of acceleration, and blood pressure. These parameters can be digitally recorded with high fidelity over a 9-h period with precise time stamps and user-defined event markers. Data can be continuously streamed to a base station using a built-in Bluetooth RF link or stored in 32 MB of on-board flash memory and downloaded to a personal computer using a serial port. The device is powered by two AAA batteries. The design, laboratory, and field testing of the wearable monitors are described.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-25
... system conditions when the system experiences dynamic events such as low frequency oscillations, or... R8 requires that dynamic disturbance recorders function continuously. To capture system disturbance... recording capability necessary to monitor the response of the Bulk-Power System to system disturbances...
Custom FPGA processing for real-time fetal ECG extraction and identification.
Torti, E; Koliopoulos, D; Matraxia, M; Danese, G; Leporati, F
2017-01-01
Monitoring the fetal cardiac activity during pregnancy is of crucial importance for evaluating fetus health. However, there is a lack of automatic and reliable methods for Fetal ECG (FECG) monitoring that can perform this elaboration in real-time. In this paper, we present a hardware architecture, implemented on the Altera Stratix V FPGA, capable of separating the FECG from the maternal ECG and to correctly identify it. We evaluated our system using both synthetic and real tracks acquired from patients beyond the 20th pregnancy week. This work is part of a project aiming at developing a portable system for FECG continuous real-time monitoring. Its characteristics of reduced power consumption, real-time processing capability and reduced size make it suitable to be embedded in the overall system, that is the first proposed exploiting Blind Source Separation with this technology, to the best of our knowledge. Copyright © 2016 Elsevier Ltd. All rights reserved.
Patton, John M.; Guy, Michelle R.; Benz, Harley M.; Buland, Raymond P.; Erickson, Brian K.; Kragness, David S.
2016-08-18
This report provides an overview of the capabilities and design of Hydra, the global seismic monitoring and analysis system used for earthquake response and catalog production at the U.S. Geological Survey National Earthquake Information Center (NEIC). Hydra supports the NEIC’s worldwide earthquake monitoring mission in areas such as seismic event detection, seismic data insertion and storage, seismic data processing and analysis, and seismic data output.The Hydra system automatically identifies seismic phase arrival times and detects the occurrence of earthquakes in near-real time. The system integrates and inserts parametric and waveform seismic data into discrete events in a database for analysis. Hydra computes seismic event parameters, including locations, multiple magnitudes, moment tensors, and depth estimates. Hydra supports the NEIC’s 24/7 analyst staff with a suite of seismic analysis graphical user interfaces.In addition to the NEIC’s monitoring needs, the system supports the processing of aftershock and temporary deployment data, and supports the NEIC’s quality assurance procedures. The Hydra system continues to be developed to expand its seismic analysis and monitoring capabilities.
NASA Technical Reports Server (NTRS)
1996-01-01
The Stak-Tracker CEM (Continuous Emission Monitor) Gas Analyzer is an air quality monitor capable of separating the various gases in a bulk exhaust stream and determining the amounts of individual gases present within the stream. The monitor is produced by GE Reuter- Stokes, a subsidiary of GE Corporate Research & Development Center. The Stak-Tracker uses a Langley Research Center software package which measures the concentration of a target gas by determining the degree to which molecules of that gas absorb an infrared beam. The system is environmental-friendly, fast and has relatively low installation and maintenance costs. It is applicable to gas turbines and various industries including glass, paper and cement.
Cuesta-Frau, David; Varela, Manuel; Aboy, Mateo; Miró-Martínez, Pau
2009-01-01
We describe a device for dual channel body temperature monitoring. The device can operate as a real time monitor or as a data logger, and has Bluetooth capabilities to enable for wireless data download to the computer used for data analysis. The proposed device is capable of sampling temperature at a rate of 1 sample per minute with a resolution of 0.01 °C . The internal memory allows for stand-alone data logging of up to 10 days. The device has a battery life of 50 hours in continuous real-time mode. In addition to describing the proposed device in detail, we report the results of a statistical analysis conducted to assess its accuracy and reproducibility. PMID:22408473
Cuesta-Frau, David; Varela, Manuel; Aboy, Mateo; Miró-Martínez, Pau
2009-01-01
We describe a device for dual channel body temperature monitoring. The device can operate as a real time monitor or as a data logger, and has Bluetooth capabilities to enable for wireless data download to the computer used for data analysis. The proposed device is capable of sampling temperature at a rate of 1 sample per minute with a resolution of 0.01 °C . The internal memory allows for stand-alone data logging of up to 10 days. The device has a battery life of 50 hours in continuous real-time mode. In addition to describing the proposed device in detail, we report the results of a statistical analysis conducted to assess its accuracy and reproducibility.
NASA Astrophysics Data System (ADS)
Schmidt, J. B.
1985-09-01
This thesis investigates ways of improving the real-time performance of the Stockpoint Logistics Integrated Communication Environment (SPLICE). Performance evaluation through continuous monitoring activities and performance studies are the principle vehicles discussed. The method for implementing this performance evaluation process is the measurement of predefined performance indexes. Performance indexes for SPLICE are offered that would measure these areas. Existing SPLICE capability to carry out performance evaluation is explored, and recommendations are made to enhance that capability.
30 CFR 250.1629 - Additional production and fuel gas system requirements.
Code of Federal Regulations, 2014 CFR
2014-07-01
... structure. (4) Fire- and gas-detection system. (i) Fire (flame, heat, or smoke) sensors shall be installed... explosive limit. One approved method of providing adequate ventilation is a change of air volume each 5... detection systems shall be capable of continuous monitoring. Fire-detection systems and portions of...
30 CFR 250.1629 - Additional production and fuel gas system requirements.
Code of Federal Regulations, 2013 CFR
2013-07-01
... structure. (4) Fire- and gas-detection system. (i) Fire (flame, heat, or smoke) sensors shall be installed... explosive limit. One approved method of providing adequate ventilation is a change of air volume each 5... detection systems shall be capable of continuous monitoring. Fire-detection systems and portions of...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-23
... refuge purposes. monitoring capabilities.. Invasive Species Continue Same as Same as Same as coordinating... invasive and partnerships invasive plants aquatic species to control through throughout Bear invasive... for at least 32 water bird species; if developed, these habitats could provide suitable nesting...
Ling, Wei; Liew, Guoguang; Li, Ya; Hao, Yafeng; Pan, Huizhuo; Wang, Hanjie; Ning, Baoan; Xu, Hang; Huang, Xian
2018-06-01
The combination of novel materials with flexible electronic technology may yield new concepts of flexible electronic devices that effectively detect various biological chemicals to facilitate understanding of biological processes and conduct health monitoring. This paper demonstrates single- or multichannel implantable flexible sensors that are surface modified with conductive metal-organic frameworks (MOFs) such as copper-MOF and cobalt-MOF with large surface area, high porosity, and tunable catalysis capability. The sensors can monitor important nutriments such as ascorbicacid, glycine, l-tryptophan (l-Trp), and glucose with detection resolutions of 14.97, 0.71, 4.14, and 54.60 × 10 -6 m, respectively. In addition, they offer sensing capability even under extreme deformation and complex surrounding environment with continuous monitoring capability for 20 d due to minimized use of biological active chemicals. Experiments using live cells and animals indicate that the MOF-modified sensors are biologically safe to cells, and can detect l-Trp in blood and interstitial fluid. This work represents the first effort in integrating MOFs with flexible sensors to achieve highly specific and sensitive implantable electrochemical detection and may inspire appearance of more flexible electronic devices with enhanced capability in sensing, energy storage, and catalysis using various properties of MOFs. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bohachek, Randolph Charles
2015-09-01
The Advanced Test Reactor (ATR; TRA-670), which is located in the ATR Complex at Idaho National Laboratory, was constructed in the 1960s for the purpose of irradiating reactor fuels and materials. Other irradiation services, such as radioisotope production, are also performed at ATR. While ATR is safely fulfilling current mission requirements, assessments are continuing. These assessments intend to identify areas to provide defense–in-depth and improve safety for ATR. One of the assessments performed by an independent group of nuclear industry experts recommended that a remote accident management capability be provided. The report stated that: “contemporary practice in commercial power reactorsmore » is to provide a remote shutdown station or stations to allow shutdown of the reactor and management of long-term cooling of the reactor (i.e., management of reactivity, inventory, and cooling) should the main control room be disabled (e.g., due to a fire in the control room or affecting the control room).” This project will install remote reactor monitoring and management capabilities for ATR. Remote capabilities will allow for post scram reactor management and monitoring in the event the main Reactor Control Room (RCR) must be evacuated.« less
Wise, M.B.; Thompson, C.V.
1998-07-14
An in-line gas monitor capable of accurate gas composition analysis in a continuous real time manner even under strong applied vacuum conditions operates by mixing an air sample with helium forming a sample gas in two complementary sample loops embedded in a manifold which includes two pairs of 3-way solenoid valves. The sample gas is then analyzed in an ion trap mass spectrometer on a continuous basis. Two valve drivers actuate the two pairs of 3-way valves in a reciprocating fashion, so that there is always flow through the in-line gas monitor via one or the other of the sample loops. The duty cycle for the two pairs of 3-way valves is varied by tuning the two valve drivers to a duty cycle typically between 0.2 to 0.7 seconds. 3 figs.
A Low Cost Automated Monitoring System for Landslides Using Dual Frequency GPS
NASA Astrophysics Data System (ADS)
Mills, H.; Edwards, S.
2006-12-01
Landslides are an existing and permanent threat to societies across the globe, generating financial and human losses whenever and wherever they occur. Drawing together the strands of science that provide increased understanding of landslide triggers through accurate modelling is therefore vital for the development of mitigation and management strategies. Together with climatic and geomorphological data a key input here is information on the precise location and timing of landslide events. However, the detailed monitoring of landslides and precursor movements is generally limited to episodic campaigns where limiting factors include equipment and mobilisation costs, time constraints and spatial resolution. This research has developed a geodetic tool of benefit to scientists involved in the development of closely coupled models that seek to explain trigger mechanisms such as rainfall duration and intensity and changes in groundwater pressure to actual real land movements. A fully automated low cost dual frequency GPS station for the continuous in-situ monitoring of landslide sites has been developed. System configuration combines a dual frequency GPS receiver, PC board with a GPRS modem and power supply to deliver 24hr/365day operation capability. Individual components have been chosen to provide the highest accuracies while minimising power consumption resulting in a system around half that of equivalent commercial systems. Measurement point-costs can be further reduced through the use of antenna switching and multi antenna arrays. Continuous data is delivered via mobile phone uplink and processed automatically using geodetic software. The developed system has been extensively tested on a purpose built platform capable of simulating ground movements. Co-mounted antennas have allowed direct comparisons with more expensive geodetic GPS receivers. The system is capable of delivering precise 3D coordinates with a 9 mm rms. The system can be up-scaled resulting in the increased spatial density of monitoring and yielding more detailed information on landslide movements for improved downstream modelling and monitoring.
Remote maintenance monitoring system
NASA Technical Reports Server (NTRS)
Simpkins, Lorenz G. (Inventor); Owens, Richard C. (Inventor); Rochette, Donn A. (Inventor)
1992-01-01
A remote maintenance monitoring system retrofits to a given hardware device with a sensor implant which gathers and captures failure data from the hardware device, without interfering with its operation. Failure data is continuously obtained from predetermined critical points within the hardware device, and is analyzed with a diagnostic expert system, which isolates failure origin to a particular component within the hardware device. For example, monitoring of a computer-based device may include monitoring of parity error data therefrom, as well as monitoring power supply fluctuations therein, so that parity error and power supply anomaly data may be used to trace the failure origin to a particular plane or power supply within the computer-based device. A plurality of sensor implants may be rerofit to corresponding plural devices comprising a distributed large-scale system. Transparent interface of the sensors to the devices precludes operative interference with the distributed network. Retrofit capability of the sensors permits monitoring of even older devices having no built-in testing technology. Continuous real time monitoring of a distributed network of such devices, coupled with diagnostic expert system analysis thereof, permits capture and analysis of even intermittent failures, thereby facilitating maintenance of the monitored large-scale system.
USDA/federal user of LANDSAT remote sensing
NASA Technical Reports Server (NTRS)
Allen, R.
1981-01-01
Developed and potential uses of remote sensing in crop condition and acreage assessment, renewable resources inventories, conservation practices, and water and forest management applications are described. Operational approaches, the adaptation of procedures to needs, and the agency's concern about data continuity and cost are discussed as well as support for future technology development for enhanced sensing capability. The use of improved camera systems for soil mapping and conservation monitoring from space shuttle, and of aerospace radar to improve soil moisture monitoring are mentioned.
2014-12-01
dengue hemorrhagic fever. In future work we will continue to evaluate the use of pulse wave forms to predict shock and will assess other...Index Three laboratory Phase I clinical trials have been completed to support a 510(k) application for FDA approval of the first prototype Pulse ... Oximeter with the CRI algorithm and capability for real-time continuous collection of photoplethymographic (PPG) analog signals. An FDA-cleared
Studies and analyses of the space shuttle main engine
NASA Technical Reports Server (NTRS)
Tischer, Alan E.; Glover, R. C.
1987-01-01
The primary objectives were to: evaluate ways to maximize the information yield from the current Space Shuttle Main Engine (SSME) condition monitoring sensors, identify additional sensors or monitoring capabilities which would significantly improve SSME data, and provide continuing support of the Main Engine Cost/Operations (MECO) model. In the area of SSME condition monitoring, the principal tasks were a review of selected SSME failure data, a general survey of condition monitoring, and an evaluation of the current engine monitoring system. A computerized data base was developed to assist in modeling engine failure information propagations. Each of the above items is discussed in detail. Also included is a brief discussion of the activities conducted in support of the MECO model.
NASA Astrophysics Data System (ADS)
Riahi, Reza; Shaegh, Seyed Ali Mousavi; Ghaderi, Masoumeh; Zhang, Yu Shrike; Shin, Su Ryon; Aleman, Julio; Massa, Solange; Kim, Duckjin; Dokmeci, Mehmet Remzi; Khademhosseini, Ali
2016-04-01
There is an increasing interest in developing microfluidic bioreactors and organs-on-a-chip platforms combined with sensing capabilities for continual monitoring of cell-secreted biomarkers. Conventional approaches such as ELISA and mass spectroscopy cannot satisfy the needs of continual monitoring as they are labor-intensive and not easily integrable with low-volume bioreactors. This paper reports on the development of an automated microfluidic bead-based electrochemical immunosensor for in-line measurement of cell-secreted biomarkers. For the operation of the multi-use immunosensor, disposable magnetic microbeads were used to immobilize biomarker-recognition molecules. Microvalves were further integrated in the microfluidic immunosensor chip to achieve programmable operations of the immunoassay including bead loading and unloading, binding, washing, and electrochemical sensing. The platform allowed convenient integration of the immunosensor with liver-on-chips to carry out continual quantification of biomarkers secreted from hepatocytes. Transferrin and albumin productions were monitored during a 5-day hepatotoxicity assessment in which human primary hepatocytes cultured in the bioreactor were treated with acetaminophen. Taken together, our unique microfluidic immunosensor provides a new platform for in-line detection of biomarkers in low volumes and long-term in vitro assessments of cellular functions in microfluidic bioreactors and organs-on-chips.
Riahi, Reza; Shaegh, Seyed Ali Mousavi; Ghaderi, Masoumeh; Zhang, Yu Shrike; Shin, Su Ryon; Aleman, Julio; Massa, Solange; Kim, Duckjin; Dokmeci, Mehmet Remzi; Khademhosseini, Ali
2016-01-01
There is an increasing interest in developing microfluidic bioreactors and organs-on-a-chip platforms combined with sensing capabilities for continual monitoring of cell-secreted biomarkers. Conventional approaches such as ELISA and mass spectroscopy cannot satisfy the needs of continual monitoring as they are labor-intensive and not easily integrable with low-volume bioreactors. This paper reports on the development of an automated microfluidic bead-based electrochemical immunosensor for in-line measurement of cell-secreted biomarkers. For the operation of the multi-use immunosensor, disposable magnetic microbeads were used to immobilize biomarker-recognition molecules. Microvalves were further integrated in the microfluidic immunosensor chip to achieve programmable operations of the immunoassay including bead loading and unloading, binding, washing, and electrochemical sensing. The platform allowed convenient integration of the immunosensor with liver-on-chips to carry out continual quantification of biomarkers secreted from hepatocytes. Transferrin and albumin productions were monitored during a 5-day hepatotoxicity assessment in which human primary hepatocytes cultured in the bioreactor were treated with acetaminophen. Taken together, our unique microfluidic immunosensor provides a new platform for in-line detection of biomarkers in low volumes and long-term in vitro assessments of cellular functions in microfluidic bioreactors and organs-on-chips. PMID:27098564
40 CFR 63.5995 - What are my monitoring installation, operation, and maintenance requirements?
Code of Federal Regulations, 2014 CFR
2014-07-01
... for continuity, oxidation, and galvanic corrosion. (c) For each integrating regeneration stream flow... a device that is capable of recording the total regeneration stream mass or volumetric flow for each regeneration cycle. (d) For any other control device, or for other capture systems, ensure that the CPMS is...
40 CFR 63.5995 - What are my monitoring installation, operation, and maintenance requirements?
Code of Federal Regulations, 2012 CFR
2012-07-01
... for continuity, oxidation, and galvanic corrosion. (c) For each integrating regeneration stream flow... a device that is capable of recording the total regeneration stream mass or volumetric flow for each regeneration cycle. (d) For any other control device, or for other capture systems, ensure that the CPMS is...
40 CFR 63.5995 - What are my monitoring installation, operation, and maintenance requirements?
Code of Federal Regulations, 2013 CFR
2013-07-01
... for continuity, oxidation, and galvanic corrosion. (c) For each integrating regeneration stream flow... a device that is capable of recording the total regeneration stream mass or volumetric flow for each regeneration cycle. (d) For any other control device, or for other capture systems, ensure that the CPMS is...
High performance equipped mirrors for MTG FCI-TA and IRS-FTO
NASA Astrophysics Data System (ADS)
Kazakov, T.; San Juan, J. L.; Serrano, J.; Moreno, J.; González, D.; Rodríguez, G.; López, D.; Vázquez, E.; Aivar, J.; Motos, A.; Rahmouni, Christophe; Imperiali, Stephan; Fappani, Denis
2017-09-01
The Meteosat Third Generation (MTG) Programme is being realised through the well established and successful Cooperation between EUMETSAT and ESA. It will ensure the future continuity of MSG with the capabilities to enhance nowcasting, global and regional numerical weather prediction, climate and atmospheric chemistry monitoring data from Geostationary Orbit.
Using Quality of Student Life Indicators at Three Cooperating Colleges: The Cycles Survey.
ERIC Educational Resources Information Center
Royer, Paula Nassif; Kegan, Daniel
The problems of developing a low cost, quality institutional research program capable of longitudinal research, continuous broad bandwidth monitoring and data comparisons with other institutions, led to the development of the Hampshire Cycles Survey as an initial set of student quality of life indicators. Cycles is a multidimensional survey…
Liu, Jason J; Huang, Ming-Chun; Xu, Wenyao; Zhang, Xiaoyi; Stevens, Luke; Alshurafa, Nabil; Sarrafzadeh, Majid
2015-09-01
The ability to continuously monitor respiration rates of patients in homecare or in clinics is an important goal. Past research showed that monitoring patient breathing can lower the associated mortality rates for long-term bedridden patients. Nowadays, in-bed sensors consisting of pressure sensitive arrays are unobtrusive and are suitable for deployment in a wide range of settings. Such systems aim to extract respiratory signals from time-series pressure sequences. However, variance of movements, such as unpredictable extremities activities, affect the quality of the extracted respiratory signals. BreathSens, a high-density pressure sensing system made of e-Textile, profiles the underbody pressure distribution and localizes torso area based on the high-resolution pressure images. With a robust bodyparts localization algorithm, respiratory signals extracted from the localized torso area are insensitive to arbitrary extremities movements. In a study of 12 subjects, BreathSens demonstrated its respiratory monitoring capability with variations of sleep postures, locations, and commonly tilted clinical bed conditions.
Assessing COSMO-SkyMed capability for crops identification and monitoring
NASA Astrophysics Data System (ADS)
Guarini, R.; Dini, L.
2015-12-01
In the last decade, it has been possible to better understand the impact of agricultural human practices on the global environmental change at different spatial (from local to global) and time (from seasonal to decadal) scales. This has been achieved thanks to: big dataset continuously acquired by Earth Observation (EO) satellites; the improved capabilities of remote sensing techniques in extracting valuable information from the EO datasets; the new EO data policy which allowed unrestricted data usage; the net technologies which allowed to quickly and easily share national, international and market-derived information; an increasingly performing computing technology which allows to massively process large amount of data easier and at decreasing costs. To better understand the environmental impacts of agriculture and to monitor the consequences of human agricultural activities on the biosphere, scientists require to better identify crops and monitor crop conditions over time and space. Traditionally, NDVI time series maps derived from optical sensors have been used to this aim. As well-known this important source of information is conditioned by cloud cover. Unlike passive systems, synthetic aperture radar (SAR) ones are almost insensitive to atmospheric influences; thus, they are especially suitable for crop identification and condition monitoring. Among the other SAR systems currently in orbit, the Italian Space Agency (ASI) COSMO Sky-Med® (CSK®) constellation (X-band, frequency 9.6 GHz, wavelength 3.1 cm), especially for its peculiar high revisit capability (up to four images in 16 days with same acquisition geometry) seems to be particular suitable for providing information in addition and/or in alternative to other optical EO systems. To assess the capability of the CSK® constellation in identifying crops and in monitoring crops condition in 2013 ASI started the "AGRICIDOT" project. Some of the main project achievements will be presented at the congress.
Villalonga, Claudia; Damas, Miguel
2014-01-01
Technological advances on the development of mobile devices, medical sensors, and wireless communication systems support a new generation of unobtrusive, portable, and ubiquitous health monitoring systems for continuous patient assessment and more personalized health care. There exist a growing number of mobile apps in the health domain; however, little contribution has been specifically provided, so far, to operate this kind of apps with wearable physiological sensors. The PhysioDroid, presented in this paper, provides a personalized means to remotely monitor and evaluate users' conditions. The PhysioDroid system provides ubiquitous and continuous vital signs analysis, such as electrocardiogram, heart rate, respiration rate, skin temperature, and body motion, intended to help empower patients and improve clinical understanding. The PhysioDroid is composed of a wearable monitoring device and an Android app providing gathering, storage, and processing features for the physiological sensor data. The versatility of the developed app allows its use for both average users and specialists, and the reduced cost of the PhysioDroid puts it at the reach of most people. Two exemplary use cases for health assessment and sports training are presented to illustrate the capabilities of the PhysioDroid. Next technical steps include generalization to other mobile platforms and health monitoring devices. PMID:25295301
Banos, Oresti; Villalonga, Claudia; Damas, Miguel; Gloesekoetter, Peter; Pomares, Hector; Rojas, Ignacio
2014-01-01
Technological advances on the development of mobile devices, medical sensors, and wireless communication systems support a new generation of unobtrusive, portable, and ubiquitous health monitoring systems for continuous patient assessment and more personalized health care. There exist a growing number of mobile apps in the health domain; however, little contribution has been specifically provided, so far, to operate this kind of apps with wearable physiological sensors. The PhysioDroid, presented in this paper, provides a personalized means to remotely monitor and evaluate users' conditions. The PhysioDroid system provides ubiquitous and continuous vital signs analysis, such as electrocardiogram, heart rate, respiration rate, skin temperature, and body motion, intended to help empower patients and improve clinical understanding. The PhysioDroid is composed of a wearable monitoring device and an Android app providing gathering, storage, and processing features for the physiological sensor data. The versatility of the developed app allows its use for both average users and specialists, and the reduced cost of the PhysioDroid puts it at the reach of most people. Two exemplary use cases for health assessment and sports training are presented to illustrate the capabilities of the PhysioDroid. Next technical steps include generalization to other mobile platforms and health monitoring devices.
TOWARDS A NOVEL MODULAR ARCHITECTURE FOR CERN RADIATION MONITORING.
Boukabache, Hamza; Pangallo, Michel; Ducos, Gael; Cardines, Nicola; Bellotta, Antonio; Toner, Ciarán; Perrin, Daniel; Forkel-Wirth, Doris
2017-04-01
The European Organization for Nuclear Research (CERN) has the legal obligation to protect the public and the people working on its premises from any unjustified exposure to ionising radiation. In this context, radiation monitoring is one of the main concerns of the Radiation Protection Group. After 30 y of reliable service, the ARea CONtroller (ARCON) system is approaching the end of its lifecycle, which raises the need for new, more efficient radiation monitors with a high level of modularity to ensure better maintainability. Based on these two main principles, new detectors are currently being developed that will be capable of measuring very low dose rates down to 50 nSv h-1, whilst being able to measure radiation over an extensive range of 8 decades without any auto scaling. To reach these performances, CERN Radiation MOnitoring Electronics (CROME), the new generation of CERN radiation monitors, is based on the versatile architecture that includes new read-out electronics developed by the Instrumentation and Logistics section of the CERN Radiation Protection Group as well as a reconfigurable system on chip capable of performing complex processing calculations. Beside the capabilities of CROME to continuously measure the ambient dose rate, the system generates radiation alarms, provides interlock signals, drives alarm display units through a fieldbus and provides long-term, permanent and reliable data logging. The measurement tests performed during the first phase of the development show very promising results that pave the way to the second phase: the certification. © The Author 2016. Published by Oxford University Press.
TOWARDS A NOVEL MODULAR ARCHITECTURE FOR CERN RADIATION MONITORING
Boukabache, Hamza; Pangallo, Michel; Ducos, Gael; Cardines, Nicola; Bellotta, Antonio; Toner, Ciarán; Perrin, Daniel; Forkel-Wirth, Doris
2017-01-01
Abstract The European Organization for Nuclear Research (CERN) has the legal obligation to protect the public and the people working on its premises from any unjustified exposure to ionising radiation. In this context, radiation monitoring is one of the main concerns of the Radiation Protection Group. After 30 y of reliable service, the ARea CONtroller (ARCON) system is approaching the end of its lifecycle, which raises the need for new, more efficient radiation monitors with a high level of modularity to ensure better maintainability. Based on these two main principles, new detectors are currently being developed that will be capable of measuring very low dose rates down to 50 nSv h−1, whilst being able to measure radiation over an extensive range of 8 decades without any auto scaling. To reach these performances, CERN Radiation MOnitoring Electronics (CROME), the new generation of CERN radiation monitors, is based on the versatile architecture that includes new read-out electronics developed by the Instrumentation and Logistics section of the CERN Radiation Protection Group as well as a reconfigurable system on chip capable of performing complex processing calculations. Beside the capabilities of CROME to continuously measure the ambient dose rate, the system generates radiation alarms, provides interlock signals, drives alarm display units through a fieldbus and provides long-term, permanent and reliable data logging. The measurement tests performed during the first phase of the development show very promising results that pave the way to the second phase: the certification. PMID:27909154
INTEGRATION OF FACILITY MODELING CAPABILITIES FOR NUCLEAR NONPROLIFERATION ANALYSIS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gorensek, M.; Hamm, L.; Garcia, H.
2011-07-18
Developing automated methods for data collection and analysis that can facilitate nuclear nonproliferation assessment is an important research area with significant consequences for the effective global deployment of nuclear energy. Facility modeling that can integrate and interpret observations collected from monitored facilities in order to ascertain their functional details will be a critical element of these methods. Although improvements are continually sought, existing facility modeling tools can characterize all aspects of reactor operations and the majority of nuclear fuel cycle processing steps, and include algorithms for data processing and interpretation. Assessing nonproliferation status is challenging because observations can come frommore » many sources, including local and remote sensors that monitor facility operations, as well as open sources that provide specific business information about the monitored facilities, and can be of many different types. Although many current facility models are capable of analyzing large amounts of information, they have not been integrated in an analyst-friendly manner. This paper addresses some of these facility modeling capabilities and illustrates how they could be integrated and utilized for nonproliferation analysis. The inverse problem of inferring facility conditions based on collected observations is described, along with a proposed architecture and computer framework for utilizing facility modeling tools. After considering a representative sampling of key facility modeling capabilities, the proposed integration framework is illustrated with several examples.« less
NASA Technical Reports Server (NTRS)
1978-01-01
The photo sequence illustrates the movement of an ill infant to a special care hospital by means of a new Pediatric Monitoring and Transport System, in which NASA technology and technical assistance are being applied to an urgent medical problem. Development of the system is a collaborative effort involving several organizations, principally, NASA Ames Research Center and Children's Hospital Medical Center, Oakland, California. Key to the system's efficacy is a custom-designed ambulance-to-hospital and hospital-to-hospital communications network, including two-way voice capability and space-derived biotelemetry; it allows a specialist at the destination hospital to monitor continuously the vital signs of the patient during transit.
Hybrid Modeling Improves Health and Performance Monitoring
NASA Technical Reports Server (NTRS)
2007-01-01
Scientific Monitoring Inc. was awarded a Phase I Small Business Innovation Research (SBIR) project by NASA's Dryden Flight Research Center to create a new, simplified health-monitoring approach for flight vehicles and flight equipment. The project developed a hybrid physical model concept that provided a structured approach to simplifying complex design models for use in health monitoring, allowing the output or performance of the equipment to be compared to what the design models predicted, so that deterioration or impending failure could be detected before there would be an impact on the equipment's operational capability. Based on the original modeling technology, Scientific Monitoring released I-Trend, a commercial health- and performance-monitoring software product named for its intelligent trending, diagnostics, and prognostics capabilities, as part of the company's complete ICEMS (Intelligent Condition-based Equipment Management System) suite of monitoring and advanced alerting software. I-Trend uses the hybrid physical model to better characterize the nature of health or performance alarms that result in "no fault found" false alarms. Additionally, the use of physical principles helps I-Trend identify problems sooner. I-Trend technology is currently in use in several commercial aviation programs, and the U.S. Air Force recently tapped Scientific Monitoring to develop next-generation engine health-management software for monitoring its fleet of jet engines. Scientific Monitoring has continued the original NASA work, this time under a Phase III SBIR contract with a joint NASA-Pratt & Whitney aviation security program on propulsion-controlled aircraft under missile-damaged aircraft conditions.
NASA Astrophysics Data System (ADS)
Catala-Civera, Jose M.; Canos-Marin, Antoni J.; de los Reyes, E.
2000-07-01
Microwave control capabilities have been used to monitor the degradation of polyol, an alcohol composite material commonly used in the footwear industry for polymerization purposes. The liquid flows continuously inside a thin pipe and its desirable properties are altered with time associated to moisture absorption processes. Consequently, variations in the dielectric properties are involved, and they can be detected by permittivity measurements. In this paper, in order to obtain high sensitivity and resolution, a rectangular cavity resonator working at a fixed frequency was designed using as sample holder a rectangular pipe containing the liquid going through. Changes in the liquid modify the original response of the cavity with a non- degraded liquid and these differences have been used to determine the degree of degradation of the material. The final response of the microwave resonator was experimentally validated with measurements in a continuous line.
Advanced Pulse Oximetry System for Remote Monitoring and Management
Pak, Ju Geon; Park, Kee Hyun
2012-01-01
Pulse oximetry data such as saturation of peripheral oxygen (SpO2) and pulse rate are vital signals for early diagnosis of heart disease. Therefore, various pulse oximeters have been developed continuously. However, some of the existing pulse oximeters are not equipped with communication capabilities, and consequently, the continuous monitoring of patient health is restricted. Moreover, even though certain oximeters have been built as network models, they focus on exchanging only pulse oximetry data, and they do not provide sufficient device management functions. In this paper, we propose an advanced pulse oximetry system for remote monitoring and management. The system consists of a networked pulse oximeter and a personal monitoring server. The proposed pulse oximeter measures a patient's pulse oximetry data and transmits the data to the personal monitoring server. The personal monitoring server then analyzes the received data and displays the results to the patient. Furthermore, for device management purposes, operational errors that occur in the pulse oximeter are reported to the personal monitoring server, and the system configurations of the pulse oximeter, such as thresholds and measurement targets, are modified by the server. We verify that the proposed pulse oximetry system operates efficiently and that it is appropriate for monitoring and managing a pulse oximeter in real time. PMID:22933841
Advanced pulse oximetry system for remote monitoring and management.
Pak, Ju Geon; Park, Kee Hyun
2012-01-01
Pulse oximetry data such as saturation of peripheral oxygen (SpO(2)) and pulse rate are vital signals for early diagnosis of heart disease. Therefore, various pulse oximeters have been developed continuously. However, some of the existing pulse oximeters are not equipped with communication capabilities, and consequently, the continuous monitoring of patient health is restricted. Moreover, even though certain oximeters have been built as network models, they focus on exchanging only pulse oximetry data, and they do not provide sufficient device management functions. In this paper, we propose an advanced pulse oximetry system for remote monitoring and management. The system consists of a networked pulse oximeter and a personal monitoring server. The proposed pulse oximeter measures a patient's pulse oximetry data and transmits the data to the personal monitoring server. The personal monitoring server then analyzes the received data and displays the results to the patient. Furthermore, for device management purposes, operational errors that occur in the pulse oximeter are reported to the personal monitoring server, and the system configurations of the pulse oximeter, such as thresholds and measurement targets, are modified by the server. We verify that the proposed pulse oximetry system operates efficiently and that it is appropriate for monitoring and managing a pulse oximeter in real time.
Zhang, Yu Shrike; Aleman, Julio; Shin, Su Ryon; Kim, Duckjin; Mousavi Shaegh, Seyed Ali; Massa, Solange; Riahi, Reza; Chae, Sukyoung; Hu, Ning; Avci, Huseyin; Zhang, Weijia; Silvestri, Antonia; Sanati Nezhad, Amir; Manbohi, Ahmad; De Ferrari, Fabio; Polini, Alessandro; Calzone, Giovanni; Shaikh, Noor; Alerasool, Parissa; Budina, Erica; Kang, Jian; Bhise, Nupura; Pourmand, Adel; Skardal, Aleksander; Shupe, Thomas; Bishop, Colin E.; Dokmeci, Mehmet Remzi; Atala, Anthony; Khademhosseini, Ali
2017-01-01
Organ-on-a-chip systems are miniaturized microfluidic 3D human tissue and organ models designed to recapitulate the important biological and physiological parameters of their in vivo counterparts. They have recently emerged as a viable platform for personalized medicine and drug screening. These in vitro models, featuring biomimetic compositions, architectures, and functions, are expected to replace the conventional planar, static cell cultures and bridge the gap between the currently used preclinical animal models and the human body. Multiple organoid models may be further connected together through the microfluidics in a similar manner in which they are arranged in vivo, providing the capability to analyze multiorgan interactions. Although a wide variety of human organ-on-a-chip models have been created, there are limited efforts on the integration of multisensor systems. However, in situ continual measuring is critical in precise assessment of the microenvironment parameters and the dynamic responses of the organs to pharmaceutical compounds over extended periods of time. In addition, automated and noninvasive capability is strongly desired for long-term monitoring. Here, we report a fully integrated modular physical, biochemical, and optical sensing platform through a fluidics-routing breadboard, which operates organ-on-a-chip units in a continual, dynamic, and automated manner. We believe that this platform technology has paved a potential avenue to promote the performance of current organ-on-a-chip models in drug screening by integrating a multitude of real-time sensors to achieve automated in situ monitoring of biophysical and biochemical parameters. PMID:28265064
Miniaturized pulse oximeter sensor for continuous vital parameter monitoring
NASA Astrophysics Data System (ADS)
Fiala, Jens; Reichelt, Stephan; Werber, Armin; Bingger, Philipp; Zappe, Hans; Förster, Katharina; Klemm, Rolf; Heilmann, Claudia; Beyersdorf, Friedhelm
2007-07-01
A miniaturized photoplethysmographic sensor system which utilizes the principle of pulse oximetry is presented. The sensor is designed to be implantable and will permit continuous monitoring of important human vital parameters such as arterial blood oxygen saturation as well as pulse rate and shape over a long-term period in vivo. The system employs light emitting diodes and a photo transistor embedded in a transparent elastic cu. which is directly wrapped around an arterial vessel. This paper highlights the specific challenges in design, instrumentation, and electronics associated with that sensor location. In vitro measurements were performed using an artificial circulation system which allows for regulation of the oxygen saturation and pulsatile pumping of whole blood through a section of a domestic pig's arterial vessel. We discuss our experimental results compared to reference CO-oximeter measurements and determine the empirical calibration curve. These results demonstrate the capabilities of the pulse oximeter implant for measurement of a wide range of oxygen saturation levels and pave the way for a continuous and mobile monitoring of high-risk cardiovascular patients.
Olsen, Flemming J; Biering-Sørensen, Tor; Krieger, Derk W
2015-05-01
Continuous cardiac rhythm monitoring has undergone compelling progress over the past decades. Cardiac monitoring has emerged from 12-lead electrocardiograms being performed at the discretion of the treating physician to in-hospital telemetry, Holter monitoring, prolonged external event monitoring and most recently toward insertable device monitoring for several years. Significant advantages and disadvantages pertaining to these monitoring options will be addressed in this review. Insertable cardiac monitors have several advantages over external monitoring techniques and may signify a clinical turning point in the field of arrhythmia management. However, their role in the detection of paroxysmal atrial fibrillation after cryptogenic strokes has yet to evolve. This will be the main focus of this review. Issues surrounding patient selection, clinical relevance and determination of cost-effectiveness for prolonged cardiac monitoring require further studies. Furthermore, insertable cardiac monitoring has not only the potential to augment diagnostic capabilities but also to improve the management of paroxysmal atrial fibrillation.
NASA Astrophysics Data System (ADS)
Laneve, Giovanni
2010-05-01
The remote sensing sensors on board of geostationary satellite, as consequence of the high frequency of the observations, allow, in principle, the monitoring of these phenomena characterized by a fast dynamics. The only condition for is that the events to be monitored should be enough strong to be recognizable notwithstanding the low spatial resolution of the present geostationary systems (MSG/SEVIRI, GOES Imager, MTSAT). Apart from meteorological phenomena other events, like those associated with forest fires and/or volcanic eruption, are characterized by a very fast dynamics. These events are also associated with a very strong signal that make them observable by geostationary satellite in a quasi-continuous way. However, in order to make possible the detection of small fires by using the low resolution multi-spectral imagery provided by geostationary sensor like SEVIRI (3x3 km2 at the equator) new algorithms, capable to exploit it high observation frequency, has been developed. This paper is devoted to show the results obtained by comparing some of these algorithms trying to highlight their advantages and limits. The algorithms herein considered are these developed by CRPSM (SFIDE®), UNIBAS/CNR (RST-FIRES) and ESA-ESRIN (MDIFRM). In general, the new approaches proposed by each one of them are capable to promptly detect small fires making possible an operational utilization of the satellite based fire detection system in the fire fighting phases. In fact, these algorithms are quite different from these introduced in the past and specifically devoted to fire detection using low resolution multi-spectral imagery on LEO (Low Earth Orbit) satellite. Thanks to these differences they are capable of detecting sub-hectare (0.2 ha) forest fires providing an useful instrument for monitoring quasi-continuously forest fires, estimating the FRP (Fire Radiative Power), evaluating the burned biomass, retrieving the emission in the atmosphere.
Gallucci, Luca; Menna, Costantino; Angrisani, Leopoldo; Asprone, Domenico; Moriello, Rosario Schiano Lo; Bonavolontà, Francesco; Fabbrocino, Francesco
2017-11-07
Maintenance strategies based on structural health monitoring can provide effective support in the optimization of scheduled repair of existing structures, thus enabling their lifetime to be extended. With specific regard to reinforced concrete (RC) structures, the state of the art seems to still be lacking an efficient and cost-effective technique capable of monitoring material properties continuously over the lifetime of a structure. Current solutions can typically only measure the required mechanical variables in an indirect, but economic, manner, or directly, but expensively. Moreover, most of the proposed solutions can only be implemented by means of manual activation, making the monitoring very inefficient and then poorly supported. This paper proposes a structural health monitoring system based on a wireless sensor network (WSN) that enables the automatic monitoring of a complete structure. The network includes wireless distributed sensors embedded in the structure itself, and follows the monitoring-based maintenance (MBM) approach, with its ABCDE paradigm, namely: accuracy, benefit, compactness, durability, and easiness of operations. The system is structured in a node level and has a network architecture that enables all the node data to converge in a central unit. Human control is completely unnecessary until the periodic evaluation of the collected data. Several tests are conducted in order to characterize the system from a metrological point of view and assess its performance and effectiveness in real RC conditions.
Kern, Christoph; Sutton, Jeff; Elias, Tamar; Lee, Robert Lopaka; Kamibayashi, Kevan P.; Antolik, Loren; Werner, Cynthia A.
2015-01-01
SO2 camera systems allow rapid two-dimensional imaging of sulfur dioxide (SO2) emitted from volcanic vents. Here, we describe the development of an SO2 camera system specifically designed for semi-permanent field installation and continuous use. The integration of innovative but largely “off-the-shelf” components allowed us to assemble a robust and highly customizable instrument capable of continuous, long-term deployment at Kīlauea Volcano's summit Overlook Crater. Recorded imagery is telemetered to the USGS Hawaiian Volcano Observatory (HVO) where a novel automatic retrieval algorithm derives SO2 column densities and emission rates in real-time. Imagery and corresponding emission rates displayed in the HVO operations center and on the internal observatory website provide HVO staff with useful information for assessing the volcano's current activity. The ever-growing archive of continuous imagery and high-resolution emission rates in combination with continuous data from other monitoring techniques provides insight into shallow volcanic processes occurring at the Overlook Crater. An exemplary dataset from September 2013 is discussed in which a variation in the efficiency of shallow circulation and convection, the processes that transport volatile-rich magma to the surface of the summit lava lake, appears to have caused two distinctly different phases of lake activity and degassing. This first successful deployment of an SO2 camera for continuous, real-time volcano monitoring shows how this versatile technique might soon be adapted and applied to monitor SO2 degassing at other volcanoes around the world.
NASA Astrophysics Data System (ADS)
Kern, Christoph; Sutton, Jeff; Elias, Tamar; Lee, Lopaka; Kamibayashi, Kevan; Antolik, Loren; Werner, Cynthia
2015-07-01
SO2 camera systems allow rapid two-dimensional imaging of sulfur dioxide (SO2) emitted from volcanic vents. Here, we describe the development of an SO2 camera system specifically designed for semi-permanent field installation and continuous use. The integration of innovative but largely ;off-the-shelf; components allowed us to assemble a robust and highly customizable instrument capable of continuous, long-term deployment at Kīlauea Volcano's summit Overlook Crater. Recorded imagery is telemetered to the USGS Hawaiian Volcano Observatory (HVO) where a novel automatic retrieval algorithm derives SO2 column densities and emission rates in real-time. Imagery and corresponding emission rates displayed in the HVO operations center and on the internal observatory website provide HVO staff with useful information for assessing the volcano's current activity. The ever-growing archive of continuous imagery and high-resolution emission rates in combination with continuous data from other monitoring techniques provides insight into shallow volcanic processes occurring at the Overlook Crater. An exemplary dataset from September 2013 is discussed in which a variation in the efficiency of shallow circulation and convection, the processes that transport volatile-rich magma to the surface of the summit lava lake, appears to have caused two distinctly different phases of lake activity and degassing. This first successful deployment of an SO2 camera for continuous, real-time volcano monitoring shows how this versatile technique might soon be adapted and applied to monitor SO2 degassing at other volcanoes around the world.
Sachat, Alexandros El; Meristoudi, Anastasia; Markos, Christos; Sakellariou, Andreas; Papadopoulos, Aggelos; Katsikas, Serafim; Riziotis, Christos
2017-03-11
Environmentally robust chemical sensors for monitoring industrial processes or infrastructures are lately becoming important devices in industry. Low complexity and wireless enabled characteristics can offer the required flexibility for sensor deployment in adaptable sensing networks for continuous monitoring and management of industrial assets. Here are presented the design, development and operation of a class of low cost photonic sensors for monitoring the ageing process and the operational characteristics of coolant fluids used in an industrial heavy machinery infrastructure. The chemical, physical and spectroscopic characteristics of specific industrial-grade coolant fluids were analyzed along their entire life cycle range, and proper parameters for their efficient monitoring were identified. Based on multimode polymer or silica optical fibers, wide range (3-11) pH sensors were developed by employing sol-gel derived pH sensitive coatings. The performances of the developed sensors were characterized and compared, towards their coolants' ageing monitoring capability, proving their efficiency in such a demanding application scenario and harsh industrial environment. The operating characteristics of this type of sensors allowed their integration in an autonomous wireless sensing node, thus enabling the future use of the demonstrated platform in wireless sensor networks for a variety of industrial and environmental monitoring applications.
El Sachat, Alexandros; Meristoudi, Anastasia; Markos, Christos; Sakellariou, Andreas; Papadopoulos, Aggelos; Katsikas, Serafim; Riziotis, Christos
2017-01-01
Environmentally robust chemical sensors for monitoring industrial processes or infrastructures are lately becoming important devices in industry. Low complexity and wireless enabled characteristics can offer the required flexibility for sensor deployment in adaptable sensing networks for continuous monitoring and management of industrial assets. Here are presented the design, development and operation of a class of low cost photonic sensors for monitoring the ageing process and the operational characteristics of coolant fluids used in an industrial heavy machinery infrastructure. The chemical, physical and spectroscopic characteristics of specific industrial-grade coolant fluids were analyzed along their entire life cycle range, and proper parameters for their efficient monitoring were identified. Based on multimode polymer or silica optical fibers, wide range (3–11) pH sensors were developed by employing sol-gel derived pH sensitive coatings. The performances of the developed sensors were characterized and compared, towards their coolants’ ageing monitoring capability, proving their efficiency in such a demanding application scenario and harsh industrial environment. The operating characteristics of this type of sensors allowed their integration in an autonomous wireless sensing node, thus enabling the future use of the demonstrated platform in wireless sensor networks for a variety of industrial and environmental monitoring applications. PMID:28287488
NASA Astrophysics Data System (ADS)
Dobler, J. T.; Braun, M.; Zaccheo, T.
2012-12-01
The Laser Atmospheric Transmitter Receiver-Network (LAnTeRN) is a new measurement concept that will enable local, regional and continental determination of key greenhouse gases, with unparalleled accuracy and precision. This new approach will offer the ability to make low bias, high precision, quasi-continuous, measurements to the accuracies required for separating anthropogenic and biogenic sources and sinks. In 2004 ITT Exelis developed an airborne demonstration unit, based on an intensity modulated continuous wave (IM-CW) lidar approach, for actively measuring atmospheric CO2 and O2. The multi-functional fiber laser lidar (MFLL) system relies on low peak power, high reliability, and efficient telecom laser components to implement this unique measurement approach. While evaluating methods for discriminating against thin clouds for the MFLL instrument, a new measurement concept was conceived. LAnTeRN has several fundamental characteristics in common with the MFLL instrument, but is a fundamentally different implementation and capability. The key difference is that LAnTeRN operates in transmission rather than in the traditional backscatter lidar configuration, which has several distinct advantages. Operating as a forward scatter, bistatic lidar system, LAnTeRN enables consideration of continuous monitoring from a geostationary orbit to multiple locations on the ground. Having the receivers on the ground significantly lowers cost and risk compared to an all space based mission, and allows the transmitter subsystem to be implemented, near term, as a hosted payload. Furthermore, the LAnTeRN measurement approach is also applicable for ground to ground measurements where high precision measurements over a long open path is required, such as facilities monitoring, or monitoring of passive volcanoes and fault lines. Using narrow linewidth laser sources allows flexibility to select the position on the absorption feature being probed. This feature allows for weighting the absorption toward lower altitudes for the space implementation or to handle large dynamic range measurements as would be required for volcano monitoring. This presentation will discuss results from a detailed instrument performance analyses, retrieval simulations, and from initial testing of a proof of concept demonstration unit being developed by Exelis. Initial analysis indicate that measurements from a transmitter in geostationary orbit to 25 ground receivers in the eastern U.S. can retrieve column integrated CO2 values to a precision of <0.2 ppm on monthly averages and <0.06 ppm on yearly averages, using conservative estimates of cloud cover and aerosol loading. The capability for continuous monitoring over a fixed geometry makes it possible to independently characterize the atmospheric column, using existing capabilities (e.g. aircore, aircraft and in-situ instrumentation), for quantification of bias. Furthermore, the ability to selectively locate the ground receivers can enable focused studies for specific applications.
Code of Federal Regulations, 2014 CFR
2014-07-01
... and CEMS control capabilities. 2.2Relative Accuracy (RA). The absolute mean difference between the... readings at the zero pollutant level after a stated period of operation during which no unscheduled... Evaluation for CO, O2, and HC CEMS Carbon Monoxide (CO), Oxygen (O2), and Hydrocarbon (HC) CEMS. An Absolute...
Code of Federal Regulations, 2013 CFR
2013-07-01
... and CEMS control capabilities. 2.2Relative Accuracy (RA). The absolute mean difference between the... readings at the zero pollutant level after a stated period of operation during which no unscheduled... Evaluation for CO, O2, and HC CEMS Carbon Monoxide (CO), Oxygen (O2), and Hydrocarbon (HC) CEMS. An Absolute...
Japan-U.S. Relations: Issues for Congress
2012-05-04
decontamination of assets, monitoring of contamination of food and water, aerial detection capability, high-pressure water pumps, fire trucks, and protective...inspired individual consumers to voluntarily impose conservation measures. Radiation has apparently affected Japan’s food chain, leading Tokyo to...the evacuation of Tokyo were not disclosed to the public. Many Japanese continue to doubt whether food grown in areas surrounding the Fukushima
ERIC Educational Resources Information Center
Orsak, Charles; Green, C. Paul
Designed for practical hands-on secondary and postsecondary vocational programs and adult/continuing education programs, this eleven-module curriculum was developed to equip both male and female students with the capabilities to identify, monitor, manage, and curb energy usage in their daily lives and vocational pursuits. It is intended for use as…
Frequency-agile wireless sensor networks
NASA Astrophysics Data System (ADS)
Arms, Steven W.; Townsend, Christopher P.; Churchill, David L.; Hamel, Michael J.; Galbreath, Jacob H.; Mundell, Steven W.
2004-07-01
Our goal was to demonstrate a wireless communications system capable of simultaneous, high speed data communications from a variety of sensors. We have previously reported on the design and application of 2 KHz data logging transceiver nodes, however, only one node may stream data at a time, since all nodes on the network use the same communications frequency. To overcome these limitations, second generation data logging transceivers were developed with software programmable radio frequency (RF) communications. Each node contains on-board memory (2 Mbytes), sensor excitation, instrumentation amplifiers with programmable gains & offsets, multiplexer, 16 bit A/D converter, microcontroller, and frequency agile, bi-directional, frequency shift keyed (FSK) RF serial data link. These systems are capable of continuous data transmission from 26 distinct nodes (902-928 MHz band, 75 kbaud). The system was demonstrated in a compelling structural monitoring application. The National Parks Service requested a means for continual monitoring and recording of sensor data from the Liberty Bell during a move to a new location (Philadelphia, October 2003). Three distinct, frequency agile, wireless sensing nodes were used to detect visible crack shear/opening micromotions, triaxial accelerations, and hairline crack tip strains. The wireless sensors proved to be useful in protecting the Liberty Bell.
A Mobile Multi-Agent Information System for Ubiquitous Fetal Monitoring
Su, Chuan-Jun; Chu, Ta-Wei
2014-01-01
Electronic fetal monitoring (EFM) systems integrate many previously separate clinical activities related to fetal monitoring. Promoting the use of ubiquitous fetal monitoring services with real time status assessments requires a robust information platform equipped with an automatic diagnosis engine. This paper presents the design and development of a mobile multi-agent platform-based open information systems (IMAIS) with an automated diagnosis engine to support intensive and distributed ubiquitous fetal monitoring. The automatic diagnosis engine that we developed is capable of analyzing data in both traditional paper-based and digital formats. Issues related to interoperability, scalability, and openness in heterogeneous e-health environments are addressed through the adoption of a FIPA2000 standard compliant agent development platform—the Java Agent Development Environment (JADE). Integrating the IMAIS with light-weight, portable fetal monitor devices allows for continuous long-term monitoring without interfering with a patient’s everyday activities and without restricting her mobility. The system architecture can be also applied to vast monitoring scenarios such as elder care and vital sign monitoring. PMID:24452256
A wireless sensor network for monitoring volcanic tremors
NASA Astrophysics Data System (ADS)
Lopes Pereira, R.; Trindade, J.; Gonçalves, F.; Suresh, L.; Barbosa, D.; Vazão, T.
2013-08-01
Monitoring of volcanic activity is important to learn about the properties of each volcano and provide early warning systems to the population. Monitoring equipment can be expensive and thus, the degree of monitoring varies from volcano to volcano and from country to country, with many volcanoes not being monitored at all. This paper describes the development of a Wireless Sensor Network (WSN) capable of collecting geophysical measurements on remote active volcanoes. Our main goals were to create a flexible, easy to deploy and maintain, adaptable, low-cost WSN for temporary or permanent monitoring of seismic tremor. The WSN enables the easy installation of a sensor array on an area of tens of thousand of m2, allowing the location of the magma movements causing the seismic tremor to be calculated. This WSN can be used by recording data locally for latter analysis or by continuously transmitting it in real time to a remote laboratory for real-time analyses.
Leveraging Aging in Place Through Sensor-Enhanced In-Home Monitoring.
Wang, Ju; Wang, Jing; Miao, Hongyu; Marschollek, Michael; Wolf, Klaus-Hendrik; Lynch, Kerry A; Gong, Yang
2018-01-01
Seniors expect to age in place, which means living in their own homes as long as possible with familiar facilities and environments. Due to the capability of continuous and unobtrusive monitoring, the sensor-enhanced in-ho monitoring is regarded as a promising solution to support aging in place. In this paper, by reviewing three influential projects in this field of in-home monitoring for aging in place, we present our opinions and suggestions on the development of informatics-supported aging in place for its practical application in healthcare such as diagnosis and nursing in the era of data science. To promote the practical usage of in-home monitoring in aging, we highlight the gap between demands and available approaches. We conclude that in the next stage we should design demand-oriented system, conduct evidence-based research and accelerate interdisciplinary collaboration.
Unmanned Aerial Vehicles for Environmental Monitoring with Special Reference to Heat Loss
NASA Astrophysics Data System (ADS)
Anweiler, Stanisław; Piwowarski, Dawid; Ulbrich, Roman
2017-10-01
This paper presents the design and implementation of device for remote and automatic monitoring of temperature field of large objects. The project aimed to create a quadcopter flying platform equipped with a thermal imaging camera. The object of the research was district heating installations above ground and underground. The results of the work on the implementation of low-cost (below 750 EUR) and efficient heat loss monitoring system. The system consists of a small (<2kg) multirotor platform. To perform thermal images micro camera FlirOne with microcomputer Raspberry Pi3 was used. Exploitation of UAVs in temperature field monitoring reveals only a fraction of their capabilities. The fast-growing multirotor platform market continues to deliver new solutions and improvements. Their use in monitoring the environment is limited only by the imagination of the user.
Continuous real-time measurement of aqueous cyanide
Rosentreter, Jeffrey J.; Gering, Kevin L.
2007-03-06
This invention provides a method and system capable of the continuous, real-time measurement of low concentrations of aqueous free cyanide (CN) using an on-line, flow through system. The system is based on the selective reactivity of cyanide anions and the characteristically nonreactive nature of metallic gold films, wherein this selective reactivity is exploited as an indirect measurement for aqueous cyanide. In the present invention the dissolution of gold, due to the solubilization reaction with the analyte cyanide anion, is monitored using a piezoelectric microbalance contained within a flow cell.
Semantic Interaction for Visual Analytics: Toward Coupling Cognition and Computation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Endert, Alexander
2014-07-01
The dissertation discussed in this article [1] was written in the midst of an era of digitization. The world is becoming increasingly instrumented with sensors, monitoring, and other methods for generating data describing social, physical, and natural phenomena. Thus, data exist with the potential of being analyzed to uncover, or discover, the phenomena from which it was created. However, as the analytic models leveraged to analyze these data continue to increase in complexity and computational capability, how can visualizations and user interaction methodologies adapt and evolve to continue to foster discovery and sensemaking?
Intelligent Hardware-Enabled Sensor and Software Safety and Health Management for Autonomous UAS
NASA Technical Reports Server (NTRS)
Rozier, Kristin Y.; Schumann, Johann; Ippolito, Corey
2015-01-01
Unmanned Aerial Systems (UAS) can only be deployed if they can effectively complete their mission and respond to failures and uncertain environmental conditions while maintaining safety with respect to other aircraft as well as humans and property on the ground. We propose to design a real-time, onboard system health management (SHM) capability to continuously monitor essential system components such as sensors, software, and hardware systems for detection and diagnosis of failures and violations of safety or performance rules during the ight of a UAS. Our approach to SHM is three-pronged, providing: (1) real-time monitoring of sensor and software signals; (2) signal analysis, preprocessing, and advanced on-the- y temporal and Bayesian probabilistic fault diagnosis; (3) an unobtrusive, lightweight, read-only, low-power hardware realization using Field Programmable Gate Arrays (FPGAs) in order to avoid overburdening limited computing resources or costly re-certi cation of ight software due to instrumentation. No currently available SHM capabilities (or combinations of currently existing SHM capabilities) come anywhere close to satisfying these three criteria yet NASA will require such intelligent, hardwareenabled sensor and software safety and health management for introducing autonomous UAS into the National Airspace System (NAS). We propose a novel approach of creating modular building blocks for combining responsive runtime monitoring of temporal logic system safety requirements with model-based diagnosis and Bayesian network-based probabilistic analysis. Our proposed research program includes both developing this novel approach and demonstrating its capabilities using the NASA Swift UAS as a demonstration platform.
Improved Testing Capability and Adaptability Through the Use of Wireless Sensors
NASA Technical Reports Server (NTRS)
Solano, Wanda M.
2003-01-01
From the first Saturn V rocket booster (S-II-T) testing in 1966 and the routine Space Shuttle Main Engine (SSME) testing beginning in 1975, to more recent test programs such as the X-33 Aerospike Engine, the Integrated Powerhead Development (IPD) program, and the Hybrid Sounding Rocket (HYSR), Stennis Space Center (SSC) continues to be a premier location for conducting large-scale testing. Central to each test program is the capability for sensor systems to deliver reliable measurements and high quality data, while also providing a means to monitor the test stand area to the highest degree of safety and sustainability. Sensor wiring is routed along piping and through cable trenches, making its way from the engine test area, through the test stand area and to the signal conditioning building before final transfer to the test control center. When sensor requirements lie outside the reach of the routine sensor cable routing, the use of wireless sensor networks becomes particularly attractive due to their versatility and ease of installation. As part of an on-going effort to enhance the testing capabilities of Stennis Space Center, the Test Technology and Development group has found numerous applications for its sensor-adaptable wireless sensor suite. While not intended for critical engine measurements or control loops, in-house hardware and software development of the sensor suite can provide improved testing capability for a range of applications including the safety monitoring of propellant storage barrels and as an experimental test-bed for embedded health monitoring paradigms.
Applying PCI in Combination Swivel Head Wrench
NASA Astrophysics Data System (ADS)
Chen, Tsang-Chiang; Yang, Chun-Ming; Hsu, Chang-Hsien; Hung, Hsiang-Wen
2017-09-01
Taiwan’s traditional industries are subject to competition in the era of globalization and environmental change, the industry is facing economic pressure and shock, and now sustainable business can only continue to improve production efficiency and quality of technology, in order to stabilize the market, to obtain high occupancy. The use of process capability indices to monitor the quality of the ratchet wrench to find the key function of the dual-use ratchet wrench, the actual measurement data, The use of process capability Cpk index analysis, and draw Process Capability Analysis Chart model. Finally, this study explores the current situation of this case and proposes a lack of improvement and improvement methods to improve the overall quality and thereby enhance the overall industry.
REPORT ON AN ORBITAL MAPPING SYSTEM.
Colvocoresses, Alden P.; ,
1984-01-01
During June 1984, the International Society for Photogrammetry and Remote Sensing accepted a committee report that defines an Orbital Mapping System (OMS) to follow Landsat and other Earth-sensing systems. The OMS involves the same orbital parameters of Landsats 1, 2, and 3, three wave bands (two in the visible and one in the near infrared) and continuous stereoscopic capability. The sensors involve solid-state linear arrays and data acquisition (including stereo) designed for one-dimensional data processing. It has a resolution capability of 10-m pixels and is capable of producing 1:50,000-scale image maps with 20-m contours. In addition to mapping, the system is designed to monitor the works of man as well as nature and in a cost-effective manner.
Liu, Yan; Wang, Hai; Zhao, Wei; Qin, Hongbo; Xie, Yongqiang
2018-01-01
Wearable health monitoring systems have gained considerable interest in recent years owing to their tremendous promise for personal portable health watching and remote medical practices. The sensors with excellent flexibility and stretchability are crucial components that can provide health monitoring systems with the capability of continuously tracking physiological signals of human body without conspicuous uncomfortableness and invasiveness. The signals acquired by these sensors, such as body motion, heart rate, breath, skin temperature and metabolism parameter, are closely associated with personal health conditions. This review attempts to summarize the recent progress in flexible and stretchable sensors, concerning the detected health indicators, sensing mechanisms, functional materials, fabrication strategies, basic and desired features. The potential challenges and future perspectives of wearable health monitoring system are also briefly discussed. PMID:29470408
Liu, Yan; Wang, Hai; Zhao, Wei; Zhang, Min; Qin, Hongbo; Xie, Yongqiang
2018-02-22
Wearable health monitoring systems have gained considerable interest in recent years owing to their tremendous promise for personal portable health watching and remote medical practices. The sensors with excellent flexibility and stretchability are crucial components that can provide health monitoring systems with the capability of continuously tracking physiological signals of human body without conspicuous uncomfortableness and invasiveness. The signals acquired by these sensors, such as body motion, heart rate, breath, skin temperature and metabolism parameter, are closely associated with personal health conditions. This review attempts to summarize the recent progress in flexible and stretchable sensors, concerning the detected health indicators, sensing mechanisms, functional materials, fabrication strategies, basic and desired features. The potential challenges and future perspectives of wearable health monitoring system are also briefly discussed.
Peters, Johanna; Teske, Andreas; Taute, Wolfgang; Döscher, Claas; Höft, Michael; Knöchel, Reinhard; Breitkreutz, Jörg
2018-02-15
The trend towards continuous manufacturing in the pharmaceutical industry is associated with an increasing demand for advanced control strategies. It is a mandatory requirement to obtain reliable real-time information on critical quality attributes (CQA) during every process step as the decision on diversion of material needs to be performed fast and automatically. Where possible, production equipment should provide redundant systems for in-process control (IPC) measurements to ensure continuous process monitoring even if one of the systems is not available. In this paper, two methods for real-time monitoring of granule moisture in a semi-continuous fluid-bed drying unit are compared. While near-infrared (NIR) spectroscopy has already proven to be a suitable process analytical technology (PAT) tool for moisture measurements in fluid-bed applications, microwave resonance technology (MRT) showed difficulties to monitor moistures above 8% until recently. The results indicate, that the newly developed MRT sensor operating at four resonances is capable to compete with NIR spectroscopy. While NIR spectra were preprocessed by mean centering and first derivative before application of partial least squares (PLS) regression to build predictive models (RMSEP = 0.20%), microwave moisture values of two resonances sufficed to build a statistically close multiple linear regression (MLR) model (RMSEP = 0.07%) for moisture prediction. Thereby, it could be verified that moisture monitoring by MRT sensor systems could be a valuable alternative to NIR spectroscopy or could be used as a redundant system providing great ease of application. Copyright © 2017 Elsevier B.V. All rights reserved.
Maintaining US Space Weather Capabilities after DMSP: Research to Operations
NASA Astrophysics Data System (ADS)
Machuzak, J. S.; Gentile, L. C.; Burke, W. J.; Holeman, E. G.; Ober, D. M.; Wilson, G. R.
2012-12-01
The first Defense Meteorological Satellite Program (DMSP) spacecraft was launched in 1972; the last is scheduled to fly in 2020. Presently, there is no replacement for the space-weather monitoring sensors that now fly on DMSP. The present suite has provided comprehensive, long-term records that constitute a critical component of the US space weather corporate memory. Evolving operational needs and research accomplishments justify continued collection of space environmental data. Examples include measurements to: (1) Monitor the Dst index in real time as a driver of next-generation satellite drag models; (2) Quantify electromagnetic energy fluxes from deep space to the ionosphere/ thermosphere that heat neutrals, drive disturbance-dynamo winds and degrade precise orbit determinations; (3) Determine strengths of stormtime electric fields at high and low latitudes that lead to severe blackouts and spacecraft anomalies; (4) Specify variability of plasma density irregularities, equatorial plasma bubbles, and the Appleton anomaly to improve reliability of communication, navigation and surveillance links; (5) Characterize energetic particle fluxes responsible for auroral clutter and radar degradation; (6) Map regions of L-Band scintillation for robust GPS applications; and (7) Update the World Magnetic Field Model needed to maintain guidance system superiority. These examples illustrate the utility of continued space environment awareness. Comprehensive assessments of both operational requirements and research advances are needed to make informed selections of sensors and spacecraft that support future capabilities. A proposed sensor set and satellite constellation to provide the needed measurement capabilities will be presented.
NASA Technical Reports Server (NTRS)
1992-01-01
An ingestible mini-thermometer capable of measuring and relaying internal body temperatures is marketed by Human Technologies, Inc. The CorTemp system, developed by Goddard Space Flight Center and Applied Physics Lab, incorporates space technologies, among them telemetry and microminiaturized circuit, sensor and battery technologies. The capsule is ingested and continually monitors temperature with a vibrating quartz crystal sensor, which telemeters signals to a recorder, where data is displayed and stored. The system is very accurate, and because it does not require wires, allows patients to be monitored in everyday situations. The industrial variant (CSC-100) has wide utility in commercial applications.
Human Research Program (HRP) Exploration Medical Capability (ExMC) Standing Review Panel (SRP)
NASA Technical Reports Server (NTRS)
Cintron, Nitza; Dutson, Eric; Friedl, Karl; Hyman, William; Jemison, Mae; Klonoff, David
2009-01-01
The SRP believes strongly that regularly performed in-flight crew assessments are needed in order to identify a change in health status before a medical condition becomes clinically apparent. It is this early recognition in change that constitutes the foundation of the "occupational health model" expounded in the HRP Requirements Document as a key component of the HRP risk mitigation strategy that will enable its objective of "prevention and mitigation of human health and performance risks". A regular crew status examination of physiological and clinical performance is needed. This can be accomplished through instrumented monitoring of routine embedded tasks. The SRP recommends addition of a new gap to address this action under Category 3.0 Mitigate the Risk. This new gap is closely associated with Task 4.19 which addresses the lack of adequate biomedical monitoring capabilities for performing periodic clinical status evaluations and contingency medical monitoring. A corollary to these gaps is the critical emphasis on preventive medicine, not only during pre- and post-flight phases of a mission as is the current practice, but continued into the in-flight phases of exploration class missions.
Phosphorescent nanosensors for in vivo tracking of histamine levels.
Cash, Kevin J; Clark, Heather A
2013-07-02
Continuously tracking bioanalytes in vivo will enable clinicians and researchers to profile normal physiology and monitor diseased states. Current in vivo monitoring system designs are limited by invasive implantation procedures and biofouling, limiting the utility of these tools for obtaining physiologic data. In this work, we demonstrate the first success in optically tracking histamine levels in vivo using a modular, injectable sensing platform based on diamine oxidase and a phosphorescent oxygen nanosensor. Our new approach increases the range of measurable analytes by combining an enzymatic recognition element with a reversible nanosensor capable of measuring the effects of enzymatic activity. We use these enzyme nanosensors (EnzNS) to monitor the in vivo histamine dynamics as the concentration rapidly increases and decreases due to administration and clearance. The EnzNS system measured kinetics that match those reported from ex vivo measurements. This work establishes a modular approach to in vivo nanosensor design for measuring a broad range of potential target analytes. Simply replacing the recognition enzyme, or both the enzyme and nanosensor, can produce a new sensor system capable of measuring a wide range of specific analytical targets in vivo.
Gallucci, Luca; Menna, Costantino; Angrisani, Leopoldo; Asprone, Domenico
2017-01-01
Maintenance strategies based on structural health monitoring can provide effective support in the optimization of scheduled repair of existing structures, thus enabling their lifetime to be extended. With specific regard to reinforced concrete (RC) structures, the state of the art seems to still be lacking an efficient and cost-effective technique capable of monitoring material properties continuously over the lifetime of a structure. Current solutions can typically only measure the required mechanical variables in an indirect, but economic, manner, or directly, but expensively. Moreover, most of the proposed solutions can only be implemented by means of manual activation, making the monitoring very inefficient and then poorly supported. This paper proposes a structural health monitoring system based on a wireless sensor network (WSN) that enables the automatic monitoring of a complete structure. The network includes wireless distributed sensors embedded in the structure itself, and follows the monitoring-based maintenance (MBM) approach, with its ABCDE paradigm, namely: accuracy, benefit, compactness, durability, and easiness of operations. The system is structured in a node level and has a network architecture that enables all the node data to converge in a central unit. Human control is completely unnecessary until the periodic evaluation of the collected data. Several tests are conducted in order to characterize the system from a metrological point of view and assess its performance and effectiveness in real RC conditions. PMID:29112128
Detection of essential hypertension with physiological signals from wearable devices.
Ghosh, Arindam; Torres, Juan Manuel Mayor; Danieli, Morena; Riccardi, Giuseppe
2015-08-01
Early detection of essential hypertension can support the prevention of cardiovascular disease, a leading cause of death. The traditional method of identification of hypertension involves periodic blood pressure measurement using brachial cuff-based measurement devices. While these devices are non-invasive, they require manual setup for each measurement and they are not suitable for continuous monitoring. Research has shown that physiological signals such as Heart Rate Variability, which is a measure of the cardiac autonomic activity, is correlated with blood pressure. Wearable devices capable of measuring physiological signals such as Heart Rate, Galvanic Skin Response, Skin Temperature have recently become ubiquitous. However, these signals are not accurate and are prone to noise due to different artifacts. In this paper a) we present a data collection protocol for continuous non-invasive monitoring of physiological signals from wearable devices; b) we implement signal processing techniques for signal estimation; c) we explore how the continuous monitoring of these physiological signals can be used to identify hypertensive patients; d) We conduct a pilot study with a group of normotensive and hypertensive patients to test our techniques. We show that physiological signals extracted from wearable devices can distinguish between these two groups with high accuracy.
Code of Federal Regulations, 2012 CFR
2012-07-01
... capabilities. 2.2Relative Accuracy (RA). The absolute mean difference between the pollutant concentration... adjustment took place. 2.4Zero Drift (ZD). The difference in CEMS output readings at the zero pollutant level... Evaluation for CO, O2, and HC CEMS Carbon Monoxide (CO), Oxygen (O2), and Hydrocarbon (HC) CEMS. An Absolute...
Code of Federal Regulations, 2011 CFR
2011-07-01
... capabilities. 2.2Relative Accuracy (RA). The absolute mean difference between the pollutant concentration... adjustment took place. 2.4Zero Drift (ZD). The difference in CEMS output readings at the zero pollutant level... Evaluation for CO, O2, and HC CEMS Carbon Monoxide (CO), Oxygen (O2), and Hydrocarbon (HC) CEMS. An Absolute...
Low-cost, high-performance and efficiency computational photometer design
NASA Astrophysics Data System (ADS)
Siewert, Sam B.; Shihadeh, Jeries; Myers, Randall; Khandhar, Jay; Ivanov, Vitaly
2014-05-01
Researchers at the University of Alaska Anchorage and University of Colorado Boulder have built a low cost high performance and efficiency drop-in-place Computational Photometer (CP) to test in field applications ranging from port security and safety monitoring to environmental compliance monitoring and surveying. The CP integrates off-the-shelf visible spectrum cameras with near to long wavelength infrared detectors and high resolution digital snapshots in a single device. The proof of concept combines three or more detectors into a single multichannel imaging system that can time correlate read-out, capture, and image process all of the channels concurrently with high performance and energy efficiency. The dual-channel continuous read-out is combined with a third high definition digital snapshot capability and has been designed using an FPGA (Field Programmable Gate Array) to capture, decimate, down-convert, re-encode, and transform images from two standard definition CCD (Charge Coupled Device) cameras at 30Hz. The continuous stereo vision can be time correlated to megapixel high definition snapshots. This proof of concept has been fabricated as a fourlayer PCB (Printed Circuit Board) suitable for use in education and research for low cost high efficiency field monitoring applications that need multispectral and three dimensional imaging capabilities. Initial testing is in progress and includes field testing in ports, potential test flights in un-manned aerial systems, and future planned missions to image harsh environments in the arctic including volcanic plumes, ice formation, and arctic marine life.
Georgia's Surface-Water Resources and Streamflow Monitoring Network, 2006
Nobles, Patricia L.; ,
2006-01-01
The U.S. Geological Survey (USGS) network of 223 real-time monitoring stations, the 'Georgia HydroWatch,' provides real-time water-stage data, with streamflow computed at 198 locations, and rainfall recorded at 187 stations. These sites continuously record data on 15-minute intervals and transmit the data via satellite to be incorporated into the USGS National Water Information System database. These data are automatically posted to the USGS Web site for public dissemination (http://waterdata.usgs.gov/ga/nwis/nwis). The real-time capability of this network provides information to help emergency-management officials protect human life and property during floods, and mitigate the effects of prolonged drought. The map at right shows the USGS streamflow monitoring network for Georgia and major watersheds. Streamflow is monitored at 198 sites statewide, more than 80 percent of which include precipitation gages. Various Federal, State, and local agencies fund these streamflow monitoring stations.
Processing Approaches for DAS-Enabled Continuous Seismic Monitoring
NASA Astrophysics Data System (ADS)
Dou, S.; Wood, T.; Freifeld, B. M.; Robertson, M.; McDonald, S.; Pevzner, R.; Lindsey, N.; Gelvin, A.; Saari, S.; Morales, A.; Ekblaw, I.; Wagner, A. M.; Ulrich, C.; Daley, T. M.; Ajo Franklin, J. B.
2017-12-01
Distributed Acoustic Sensing (DAS) is creating a "field as laboratory" capability for seismic monitoring of subsurface changes. By providing unprecedented spatial and temporal sampling at a relatively low cost, DAS enables field-scale seismic monitoring to have durations and temporal resolutions that are comparable to those of laboratory experiments. Here we report on seismic processing approaches developed during data analyses of three case studies all using DAS-enabled seismic monitoring with applications ranging from shallow permafrost to deep reservoirs: (1) 10-hour downhole monitoring of cement curing at Otway, Australia; (2) 2-month surface monitoring of controlled permafrost thaw at Fairbanks, Alaska; (3) multi-month downhole and surface monitoring of carbon sequestration at Decatur, Illinois. We emphasize the data management and processing components relevant to DAS-based seismic monitoring, which include scalable approaches to data management, pre-processing, denoising, filtering, and wavefield decomposition. DAS has dramatically increased the data volume to the extent that terabyte-per-day data loads are now typical, straining conventional approaches to data storage and processing. To achieve more efficient use of disk space and network bandwidth, we explore improved file structures and data compression schemes. Because noise floor of DAS measurements is higher than that of conventional sensors, optimal processing workflow involving advanced denoising, deconvolution (of the source signatures), and stacking approaches are being established to maximize signal content of DAS data. The resulting workflow of data management and processing could accelerate the broader adaption of DAS for continuous monitoring of critical processes.
Wang, Zhiqiang; Shi, Xiaojie; Tolbert, Leon M.; ...
2014-04-30
Here we present a board-level integrated silicon carbide (SiC) MOSFET power module for high temperature and high power density application. Specifically, a silicon-on-insulator (SOI)-based gate driver capable of operating at 200°C ambient temperature is designed and fabricated. The sourcing and sinking current capability of the gate driver are tested under various ambient temperatures. Also, a 1200 V/100 A SiC MOSFET phase-leg power module is developed utilizing high temperature packaging technologies. The static characteristics, switching performance, and short-circuit behavior of the fabricated power module are fully evaluated at different temperatures. Moreover, a buck converter prototype composed of the SOI gate drivermore » and SiC power module is built for high temperature continuous operation. The converter is operated at different switching frequencies up to 100 kHz, with its junction temperature monitored by a thermosensitive electrical parameter and compared with thermal simulation results. The experimental results from the continuous operation demonstrate the high temperature capability of the power module at a junction temperature greater than 225°C.« less
Nagy, Brigitta; Farkas, Attila; Gyürkés, Martin; Komaromy-Hiller, Szofia; Démuth, Balázs; Szabó, Bence; Nusser, Dávid; Borbás, Enikő; Marosi, György; Nagy, Zsombor Kristóf
2017-09-15
The integration of Process Analytical Technology (PAT) initiative into the continuous production of pharmaceuticals is indispensable for reliable production. The present paper reports the implementation of in-line Raman spectroscopy in a continuous blending and tableting process of a three-component model pharmaceutical system, containing caffeine as model active pharmaceutical ingredient (API), glucose as model excipient and magnesium stearate as lubricant. The real-time analysis of API content, blend homogeneity, and tablet content uniformity was performed using a Partial Least Squares (PLS) quantitative method. The in-line Raman spectroscopic monitoring showed that the continuous blender was capable of producing blends with high homogeneity, and technological malfunctions can be detected by the proposed PAT method. The Raman spectroscopy-based feedback control of the API feeder was also established, creating a 'Process Analytically Controlled Technology' (PACT), which guarantees the required API content in the produced blend. This is, to the best of the authors' knowledge, the first ever application of Raman-spectroscopy in continuous blending and the first Raman-based feedback control in the formulation technology of solid pharmaceuticals. Copyright © 2017 Elsevier B.V. All rights reserved.
Global Monitoring of the CTBT: Progress, Capabilities and Plans (Invited)
NASA Astrophysics Data System (ADS)
Zerbo, L.
2013-12-01
The Preparatory Commission for the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO), established in 1996, is tasked with building up the verification regime of the CTBT. The regime includes a global system for monitoring the earth, the oceans and the atmosphere for nuclear tests, and an on-site inspection (OSI) capability. More than 80% of the 337 facilities of the International Monitoring System (IMS) have been installed and are sending data to the International Data Centre (IDC) in Vienna, Austria for processing. These IMS data along with IDC processed and reviewed products are available to all States that have signed the Treaty. Concurrent with the build-up of the global monitoring networks, near-field geophysical methods are being developed and tested for OSIs. The monitoring system is currently operating in a provisional mode, as the Treaty has not yet entered into force. Progress in installing and operating the IMS and the IDC and in building up an OSI capability will be described. The capabilities of the monitoring networks have progressively improved as stations are added to the IMS and IDC processing techniques refined. Detection thresholds for seismic, hydroacoustic, infrasound and radionuclide events have been measured and in general are equal to or lower than the predictions used during the Treaty negotiations. The measurements have led to improved models and tools that allow more accurate predictions of future capabilities and network performance under any configuration. Unplanned tests of the monitoring network occurred when the DPRK announced nuclear tests in 2006, 2009, and 2013. All three tests were well above the detection threshold and easily detected and located by the seismic monitoring network. In addition, noble gas consistent with the nuclear tests in 2006 and 2013 (according to atmospheric transport models) was detected by stations in the network. On-site inspections of these tests were not conducted as the Treaty has not entered into force. In order to achieve a credible and trustworthy Verification System, increased focus is being put on the development of OSI operational capabilities while operating and sustaining the existing monitoring system, increasing the data availability and quality, and completing the remaining facilities of the IMS. Furthermore, as mandated by the Treaty, the CTBTO also seeks to continuously improve its technologies and methods through interaction with the scientific community. Workshops and scientific conferences such as the CTBT Science and Technology Conference series provide venues for exchanging ideas, and mechanisms have been developed for sharing IMS data with researchers who are developing and testing new and innovative methods pertinent to the verification regime. While progress is steady on building up the verification regime, there is also progress in gaining entry into force of the Treaty, which requires the signatures and ratifications of the DPRK, India and Pakistan; it also requires the ratifications of China, Egypt, Iran, Israel and the United States. Thirty-six other States, whose signatures and ratifications are needed for entry into force have already done so.
Geosynchronous SAR for Terrain & Atmosphere with short Revisit (GeoSTARe)
NASA Astrophysics Data System (ADS)
Monti-Guarnieri, Andrea; Recchia, Andrea; Rocca, Fabio; Bombaci, Ornella; Germani, Chiara; Broquetas, Antoni; Wadge, Geoff; Hobbs, Steve
2016-08-01
GeoSTARe would be a mission combining the continuous view capabilities from geostationary orbits of super-continental areas with the all-day, all-weather imaging capabilities of Synthetic Aperture Radar. It would complement Copernicus Sentinel-1 bringing the repeat time from days down to hours.In that, it would provide novel and unique observations. The well proven potentials of Radar in sensing roughness, deformations, and moisture, combined with the short time to get any image, from minutes to an hour, and the immediate data download and exploitation (thanks to the geostationary orbit) makes GeoSTARe a game changer in those fields where hourly-to-daily monitoring is a must.
Definition, Capabilities, and Components of a Terrestrial Carbon Monitoring System
NASA Technical Reports Server (NTRS)
West, Tristram O.; Brown, Molly E.; Duren, Riley M.; Ogle, Stephen M.; Moss, Richard H.
2013-01-01
Research efforts for effectively and consistently monitoring terrestrial carbon are increasing in number. As such, there is a need to define carbon monitoring and how it relates to carbon cycle science and carbon management. There is also a need to identify capabilities of a carbon monitoring system and the system components needed to develop the capabilities. Capabilities that enable the effective application of a carbon monitoring system for monitoring and management purposes may include: reconciling carbon stocks and fluxes, developing consistency across spatial and temporal scales, tracking horizontal movement of carbon, attribution of emissions to originating sources, cross-sectoral accounting, uncertainty quantification, redundancy and policy relevance. Focused research is needed to integrate these capabilities for sustained estimates of carbon stocks and fluxes. Additionally, if monitoring is intended to inform management decisions, management priorities should be considered prior to development of a monitoring system.
Fire Monitoring from the New Generation of US Polar and Geostationary Satellites
NASA Astrophysics Data System (ADS)
Csiszar, I.; Justice, C. O.; Prins, E.; Schroeder, W.; Schmidt, C.; Giglio, L.
2012-04-01
Sensors on the new generation of US operational environmental satellites will provide measurements suitable for active fire detection and characterization. The NPOESS Preparatory Project (NPP) satellite, launched on October 28, 2011, carries the Visible Infrared Imager Radiometer Suite (VIIRS), which is expected to continue the active fire data record from the Moderate Resolution Imaging Spectroradiometer (MODIS) on the NASA Earth Observing System Terra and Aqua Satellites. Early evaluation of the VIIRS active fire product, including comparison to near-simultaneous MODIS data, is underway. The new generation of Geostationary Operational Environmental Satellite (GOES) series, starting with GOES-R to be launched in 2015, will carry the Advanced Baseline Imager (ABI), providing higher spatial and temporal resolution than the current GOES imager. The ABI will also include a dedicated band to provide radiance observations over a wider dynamic range to detect and characterize hot targets. In this presentation we discuss details of the monitoring capabilities from both VIIRS and ABI and the current status of the corresponding algorithm development and testing efforts. An integral part of this activity is explicit product validation, utilizing high resolution satellite and airborne imagery as reference data. The new capabilities also represent challenges to establish continuity with data records from heritage missions, and to coordinate compatible international missions towards a global multi-platform fire monitoring system. These objectives are pursued by the Fire Mapping and Monitoring Implementation Team of the Global Observation of Forest and Land Cover Dynamics (GOFC-GOLD) program, which also provides coordinated contribution to relevant initiatives by the Committee on Earth Observation Satellites (CEOS), the Coordination Group for Meteorological Satellites (CGMS) and the Global Climate Observing System (GCOS).
Neurometric assessment of intraoperative anesthetic
Kangas, Lars J.; Keller, Paul E.
1998-01-01
The present invention is a method and apparatus for collecting EEG data, reducing the EEG data into coefficients, and correlating those coefficients with a depth of unconsciousness or anesthetic depth, and which obtains a bounded first derivative of anesthetic depth to indicate trends. The present invention provides a developed artificial neural network based method capable of continuously analyzing EEG data to discriminate between awake and anesthetized states in an individual and continuously monitoring anesthetic depth trends in real-time. The present invention enables an anesthesiologist to respond immediately to changes in anesthetic depth of the patient during surgery and to administer the correct amount of anesthetic.
NASA Astrophysics Data System (ADS)
Wu, Hsin-Yu; Cunningham, Brian T.
2014-04-01
We demonstrate an approach for detection, identification, and kinetic monitoring of drugs flowing within tubing, through the use of a plasmonic nanodome array (PNA) surface. The PNA structures are fabricated using a low-cost nanoreplica molding process upon a flexible plastic substrate that is subsequently integrated with a flow cell that connects in series with ordinary intravenous (IV) drug delivery tubing. To investigate the potential clinical applications for point-of-care detection and real-time monitoring, we perform SERS detection of ten pharmaceutical compounds (hydrocodone, levorphanol, morphine, oxycodone, methadone, phenobarbital, dopamine, diltiazem, promethazine, and mitoxantrone). We demonstrate dose-dependent SERS signal magnitude, resulting in detection limits (ng ml-1) well below typical administered dosages (mg ml-1). Further, we show that the detected drugs are not permanently attached to the PNA surface, and thus our approach is capable of performing continuous monitoring of drug delivery as materials flow through IV tubing that is connected in series with the sensor. Finally, we demonstrate the potential co-detection of multiple drugs when they are mixed together, and show excellent reproducibility and stability of SERS measurements for periods extending at least five days. The capabilities reported here demonstrate the potential to use PNA SERS surfaces for enhancing the safety of IV drug delivery.We demonstrate an approach for detection, identification, and kinetic monitoring of drugs flowing within tubing, through the use of a plasmonic nanodome array (PNA) surface. The PNA structures are fabricated using a low-cost nanoreplica molding process upon a flexible plastic substrate that is subsequently integrated with a flow cell that connects in series with ordinary intravenous (IV) drug delivery tubing. To investigate the potential clinical applications for point-of-care detection and real-time monitoring, we perform SERS detection of ten pharmaceutical compounds (hydrocodone, levorphanol, morphine, oxycodone, methadone, phenobarbital, dopamine, diltiazem, promethazine, and mitoxantrone). We demonstrate dose-dependent SERS signal magnitude, resulting in detection limits (ng ml-1) well below typical administered dosages (mg ml-1). Further, we show that the detected drugs are not permanently attached to the PNA surface, and thus our approach is capable of performing continuous monitoring of drug delivery as materials flow through IV tubing that is connected in series with the sensor. Finally, we demonstrate the potential co-detection of multiple drugs when they are mixed together, and show excellent reproducibility and stability of SERS measurements for periods extending at least five days. The capabilities reported here demonstrate the potential to use PNA SERS surfaces for enhancing the safety of IV drug delivery. Electronic supplementary information (ESI) available: Fabrication of PNA substrates, fabrication details of the flow cell, details of FDTD simulation, characterization of the scattering volume, and detection of diltiazem diluted in DI water and PBS. See DOI: 10.1039/c4nr00027g
A real-time monitoring system for the facial nerve.
Prell, Julian; Rachinger, Jens; Scheller, Christian; Alfieri, Alex; Strauss, Christian; Rampp, Stefan
2010-06-01
Damage to the facial nerve during surgery in the cerebellopontine angle is indicated by A-trains, a specific electromyogram pattern. These A-trains can be quantified by the parameter "traintime," which is reliably correlated with postoperative functional outcome. The system presented was designed to monitor traintime in real-time. A dedicated hardware and software platform for automated continuous analysis of the intraoperative facial nerve electromyogram was specifically designed. The automatic detection of A-trains is performed by a software algorithm for real-time analysis of nonstationary biosignals. The system was evaluated in a series of 30 patients operated on for vestibular schwannoma. A-trains can be detected and measured automatically by the described method for real-time analysis. Traintime is monitored continuously via a graphic display and is shown as an absolute numeric value during the operation. It is an expression of overall, cumulated length of A-trains in a given channel; a high correlation between traintime as measured by real-time analysis and functional outcome immediately after the operation (Spearman correlation coefficient [rho] = 0.664, P < .001) and in long-term outcome (rho = 0.631, P < .001) was observed. Automated real-time analysis of the intraoperative facial nerve electromyogram is the first technique capable of reliable continuous real-time monitoring. It can critically contribute to the estimation of functional outcome during the course of the operative procedure.
Jílek, K; Timková, J
2015-06-01
During the Eighth International Conference on High Levels of Natural Radiation and Radon Areas held in autumn 2014 at Prague, the third intercomparison of radon/thoron gas and radon short-lived decay products measurement instruments was organised by and held at the Natural Radiation Division of the National Radiation Protection Institute (NRPI; SÚRO v.v.i.) in Prague. The intercomparison was newly focussed also on continuous monitors with active sampling adapters capable to distinguish radon/thoron gas in their mix field.The results of radon gas measurements carried out in the big NRPI radon chamber indicated very well an average deviation of up to 5 % from the reference NRPI value for 80 % of all the exposed instruments. The results of equilibrium equivalent concentration continuous monitors indicated an average deviation of up to 5 % from the reference NRPI value for 40 % of all the exposed instruments and their ~8-10 % shift compared with the NRPI. The results of investigated ambient conditions upon response of exposed continuous monitors indicated influence of aerosol changes upon response of radon monitors with an active air sampling adapters through the filter, only. The exposures of both radon/thoron gas discriminative continuous monitors and passive detectors have been indicated inconsistent results: on one hand, their excellent agreement up to several per cent for both the gases, and on the other hand, systematic unsatisfactory differences up to 40 %. Additional radon/thoron exercises are recommended to improve both the instruments themselves and quality of their operators. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Woskov, Paul P.; Cohn, Daniel R.; Titus, Charles H.; Surma, Jeffrey E.
1997-01-01
Microwave-induced plasma for continuous, real time trace element monitoring under harsh and variable conditions. The sensor includes a source of high power microwave energy and a shorted waveguide made of a microwave conductive, high temperature capability refractory material communicating with the source of the microwave energy to generate a plasma. The high power waveguide is constructed to be robust in a hot, hostile environment. It includes an aperture for the passage of gases to be analyzed and a spectrometer is connected to receive light from the plasma. Provision is made for real time in situ calibration. The spectrometer disperses the light, which is then analyzed by a computer. The sensor is capable of making continuous, real time quantitative measurements of desired elements, such as the heavy metals lead and mercury. The invention may be incorporated into a high temperature process device and implemented in situ for example, such as with a DC graphite electrode plasma arc furnace. The invention further provides a system for the elemental analysis of process streams by removing particulate and/or droplet samples therefrom and entraining such samples in the gas flow which passes through the plasma flame. Introduction of and entraining samples in the gas flow may be facilitated by a suction pump, regulating gas flow, gravity or combinations thereof.
Wu, Hsin-Yu; Cunningham, Brian T
2014-05-21
We demonstrate an approach for detection, identification, and kinetic monitoring of drugs flowing within tubing, through the use of a plasmonic nanodome array (PNA) surface. The PNA structures are fabricated using a low-cost nanoreplica molding process upon a flexible plastic substrate that is subsequently integrated with a flow cell that connects in series with ordinary intravenous (IV) drug delivery tubing. To investigate the potential clinical applications for point-of-care detection and real-time monitoring, we perform SERS detection of ten pharmaceutical compounds (hydrocodone, levorphanol, morphine, oxycodone, methadone, phenobarbital, dopamine, diltiazem, promethazine, and mitoxantrone). We demonstrate dose-dependent SERS signal magnitude, resulting in detection limits (ng ml(-1)) well below typical administered dosages (mg ml(-1)). Further, we show that the detected drugs are not permanently attached to the PNA surface, and thus our approach is capable of performing continuous monitoring of drug delivery as materials flow through IV tubing that is connected in series with the sensor. Finally, we demonstrate the potential co-detection of multiple drugs when they are mixed together, and show excellent reproducibility and stability of SERS measurements for periods extending at least five days. The capabilities reported here demonstrate the potential to use PNA SERS surfaces for enhancing the safety of IV drug delivery.
A wearable, low-power, health-monitoring instrumentation based on a Programmable System-on-Chip.
Massot, Bertrand; Gehin, Claudine; Nocua, Ronald; Dittmar, Andre; McAdams, Eric
2009-01-01
Improvement in quality and efficiency of health and medicine, at home and in hospital, has become of paramount importance. The solution of this problem would require the continuous monitoring of several key patient parameters, including the assessment of autonomic nervous system (ANS) activity using non-invasive sensors, providing information for emotional, sensorial, cognitive and physiological analysis of the patient. Recent advances in embedded systems, microelectronics, sensors and wireless networking enable the design of wearable systems capable of such advanced health monitoring. The subject of this article is an ambulatory system comprising a small wrist device connected to several sensors for the detection of the autonomic nervous system activity. It affords monitoring of skin resistance, skin temperature and heart activity. It is also capable of recording the data on a removable media or sending it to computer via a wireless communication. The wrist device is based on a Programmable System-on-Chip (PSoC) from Cypress: PSoCs are mixed-signal arrays, with dynamic, configurable digital and analogical blocks and an 8-bit Microcontroller unit (MCU) core on a single chip. In this paper we present first of all the hardware and software architecture of the device, and then results obtained from initial experiments.
Soil moisture monitoring for crop management
NASA Astrophysics Data System (ADS)
Boyd, Dale
2015-07-01
The 'Risk management through soil moisture monitoring' project has demonstrated the capability of current technology to remotely monitor and communicate real time soil moisture data. The project investigated whether capacitance probes would assist making informed pre- and in-crop decisions. Crop potential and cropping inputs are increasingly being subject to greater instability and uncertainty due to seasonal variability. In a targeted survey of those who received regular correspondence from the Department of Primary Industries it was found that i) 50% of the audience found the information generated relevant for them and less than 10% indicted with was not relevant; ii) 85% have improved their knowledge/ability to assess soil moisture compared to prior to the project, with the most used indicator of soil moisture still being rain fall records; and iii) 100% have indicated they will continue to use some form of the technology to monitor soil moisture levels in the future. It is hoped that continued access to this information will assist informed input decisions. This will minimise inputs in low decile years with a low soil moisture base and maximise yield potential in more favourable conditions based on soil moisture and positive seasonal forecasts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wemple, R.P.; Meyer, R.D.; Jacobson, R.D.
This work in partnership with industry is a continuation of cost- effective innovative, directional boring development begun in FY90 and planed to extend into FY94. Several demonstrations of the strategy of building hybrid hardware from utilities installation, geothermal, and soil mechanics technologies have been performed at Sandia National Laboratories (SNL) and at Charles Machine works (CMW) test sites as well as at a commercial refinery site. Additional tests at the SNL Directional Boring Test Range (DBTR) and a lagoon site are planned in calendar 1991. A new companion project to develop and demonstrate a hybrid capability for horizontal logging withmore » penetrometers, specialty instruments and samplers has been taken from concept to early prototype hardware. The project goal of extending the tracking/locating capability of the shallow boring equipment to 80in. is being pursued with encouraging results at 40in. depths. Boring costs, not including tailored well completions dictated by individual site parameters, are estimated at $20 to $50 per foot. Applications continue to emerge for this work and interest continues to be expressed by DoD and EPA researchers and environmental site engineers. 12 figs.« less
Ubiquitous and continuous SAR imaging for natural hazards: present and future of remote sensing
NASA Astrophysics Data System (ADS)
Monti Guarnieri, Andrea; Rocca, Fabio
2017-04-01
Constellation of optical and SAR sensors have achieved unprecedented performances: dense constellation of cubesats - like the next constellation of 88 Dove satellites (Planet labs), launched simultaneously this February - reduce the revisit time to nearly daily. This brings great value to many domains, like the assessment of risk and damage in natural hazards, post-earthquake response, real time flood monitoring. The limits to optical imaging due to cloud coverage could then be removed with drones. Alternatively, decades of coherent exploitation of Synthetic Aperture Radars have demonstrated their unique capabilities in precise deformation monitoring, penetration in canopies and subsurfaces (glacier and deserts), 3D imaging of volumes, sensitivity to soil moisture and generation of water vapor maps. Thanks to these capabilities, for one, early warning was possible for a landslide at Bingham Canyon Mine (one of the largest in history), whereas monitoring of infrastructures, natural gas and carbon dioxide storage reservoirs, dams, mines is already an established business. Many of these applications are made possible by the Sentinel-1 SAR constellation, the first to provide systematic coherent acquisitions and free and open data. More than 50000 products are downloaded daily. Nonetheless, the present revisit times of this constellation (1-3 days), or the future 6 hours of Cosmo-SKYmed I and II constellations, will leave a gap that cannot be fruitfully exploited for early warning of landslides, real time mapping of flooding, hydrometeor forecasts, real-time regional alerts of collapse, continuous soil moisture mapping for precision farming. On the other side, the limited penetration capabilities of C-band (Sentinel-1) and X band (Cosmo, TerraSAR constellations) would not allow sufficient penetration to monitor volumes, like ice, sands and forests. In order to fill these gaps, two novel SAR systems are under study and will possibly appear in the next decades: geosynchronous systems and bistatic constellations. The geosynchronous SAR exploits the geostationary orbit to create a hundred kilometers wide real antenna, fixed in the sky, if relative to the ground. If one satellite is exploited, the full antenna would be spanned in twelve hours, and images of medium resolution (ten meter or so) could be got every one-two hours, and finally coarse resolution products, like water vapor or soil moisture maps for flash-flood now-casting, could be generated every fifteen minutes. However, thanks to the intrinsic possibility of phase coherence of the microwaves, a constellation of mini or microsatellites could be deployed to act as a single instrument. Power and resolution would improve with the number of satellites squared, and the revisit would be reduced to minutes. This would be a unique system to provide day-and-night, all-weather imaging capabilities with the additional coherent Radar capabilities to monitor deformations, water-vapor, volumes, soil moisture. The bistatic SAR companion is a passive satellite (or a constellation of) flying in close formation with an active one. Such a system would provide the same capabilities of present TanDEM-X constellation, but enhanced to 3D volume penetration if L band is used.
Use of near-infrared spectroscopy (NIRS) in cerebral tissue oxygenation monitoring in neonates.
Gumulak, Rene; Lucanova, Lucia Casnocha; Zibolen, Mirko
2017-06-01
Near-infrared spectroscopy (NIRS) is a technology capable of non-invasive, continuous measuring of regional tissue oxygen saturation (StO 2 ). StO 2 represents a state of hemodynamic stability, which is influenced by many factors. Extensive research has been done in the field of measuring StO 2 of various organs. The current clinical availability of several NIRS-based devices reflects an important development in prevention, detection and correction of discrepancy in oxygen delivery to the brain and vital organs. Managing cerebral ischemia remains a significant issue in the neonatal intensive care units (NICU). Cerebral tissue oxygenation (cStO 2 ) and cerebral fractional tissue extraction (cFTOE) are reported in a large number of clinical studies. This review provides a summary of the concept of function, current variability of NIRS-based devices used in neonatology, clinical applications in continuous cStO 2 monitoring, limitations, disadvantages, and the potential of current technology.
Insoo Kim; Bhagat, Yusuf A
2016-08-01
The standard in noninvasive blood pressure (BP) measurement is an inflatable cuff device based on the oscillometric method, which poses several practical challenges for continuous BP monitoring. Here, we present a novel ultra-wide band RF Doppler radar sensor for next-generation mobile interface for the purpose of characterizing fluid flow speeds, and for ultimately measuring cuffless blood flow in the human wrist. The system takes advantage of the 7.1~10.5 GHz ultra-wide band signals which can reduce transceiver complexity and power consumption overhead. Moreover, results obtained from hardware development, antenna design and human wrist modeling, and subsequent phantom development are reported. Our comprehensive lab bench system setup with a peristaltic pump was capable of characterizing various speed flow components during a linear velocity sweep of 5~62 cm/s. The sensor holds potential for providing estimates of heart rate and blood pressure.
Design of a prototype device for remote patient care with mild cognitive impairment
NASA Astrophysics Data System (ADS)
Sanchez-Ocampo, M.; Segura-Giraldo, B.; Floréz-Hurtado, R.; Cortés-Aguirre, C.
2016-04-01
This paper describes the design of a prototype telecare system, which allows to provide home care to patients with mild cognitive impairment and thus ensures their permanence in their usual environment. Telecare is oriented towards people who require constant attention due to conditions of advanced age, illness, physical risk or limited capabilities. Telecare offers these people a greater degree of independence. QFD methodology is used to develop electronic devices intended to monitor the environment and physiological state of the user continuously, providing communication between the telecare system and a monitoring center in order to take the most appropriate actions in any abnormal event.
Home geriatric physiological measurements.
Tamura, Toshiyo
2012-10-01
In an ageing society, the elderly can be monitored with numerous physiological, physical and passive devices. Sensors can be installed in the home for continuous mobility assistance and unobtrusive disease prevention. This review presents several modern sensors, which improve the quality of life and assist the elderly, disabled people and their caregivers. The main concept of geriatric sensors is that they are capable of providing assistance without limiting or disturbing the subject's daily routine, giving him or her greater comfort, pleasure and well-being. Furthermore, this review includes associated technologies of wearable/implantable monitoring systems and the 'smart-house' project. This review concludes by discussing future challenges of the future aged society.
Flow Cytometry and Solid Organ Transplantation: A Perfect Match
Maguire, Orla; Tario, Joseph D.; Shanahan, Thomas C.; Wallace, Paul K.; Minderman, Hans
2015-01-01
In the field of transplantation, flow cytometry serves a well-established role in pre-transplant crossmatching and monitoring immune reconstitution following hematopoietic stem cell transplantation. The capabilities of flow cytometers have continuously expanded and this combined with more detailed knowledge of the constituents of the immune system, their function and interaction and newly developed reagents to study these parameters have led to additional utility of flow cytometry-based analyses, particularly in the post-transplant setting. This review discusses the impact of flow cytometry on managing alloantigen reactions, monitoring opportunistic infections and graft rejection and gauging immunosuppression in the context of solid organ transplantation. PMID:25296232
Vadose Zone Monitoring as a Key to Groundwater Protection from Pollution Hazard
NASA Astrophysics Data System (ADS)
Dahan, Ofer
2016-04-01
Minimization subsurface pollution is much dependent on the capability to provide real-time information on the chemical and hydrological properties of the percolating water. Today, most monitoring programs are based on observation wells that enable data acquisitions from the saturated part of the subsurface. Unfortunately, identification of pollutants in well water is clear evidence that the contaminants already crossed the entire vadose-zone and accumulated in the aquifer water to detectable concentration. Therefore, effective monitoring programs that aim at protecting groundwater from pollution hazard should include vadose zone monitoring technologies that are capable to provide real-time information on the chemical composition of the percolating water. Obviously, identification of pollution process in the vadose zone may provide an early warning on potential risk to groundwater quality, long before contaminates reach the water-table and accumulate in the aquifers. Since productive agriculture must inherently include down leaching of excess lower quality water, understanding the mechanisms controlling transport and degradation of pollutants in the unsaturated is crucial for water resources management. A vadose-zone monitoring system (VMS), which was specially developed to enable continuous measurements of the hydrological and chemical properties of percolating water, was used to assess the impact of various agricultural setups on groundwater quality, including: (a) intensive organic and conventional greenhouses, (b) citrus orchard and open field crops , and (c) dairy farms. In these applications frequent sampling of vadose zone water for chemical and isotopic analysis along with continuous measurement of water content was used to assess the link between agricultural setups and groundwater pollution potential. Transient data on variation in water content along with solute breakthrough at multiple depths were used to calibrate flow and transport models. These models where then used to assess the long term impact of various agricultural setups on the quantity and quality of groundwater recharge. Relevant publications: Turkeltaub et al., WRR. 2016; Turkeltaub et al., J. Hydrol. 2015: Dahan et al., HESS 2014. Baram et al., J. Hydrol. 2012.
Remote personal health monitoring with radio waves
NASA Astrophysics Data System (ADS)
Nguyen, Andrew
2008-03-01
We present several techniques utilizing radio-frequency identification (RFID) technology for personal health monitoring. One technique involves using RFID sensors external to the human body, while another technique uses both internal and external RFID sensors. Simultaneous monitoring of many patients in a hospital setting can also be done using networks of RFID sensors. All the monitoring are done wirelessly, either continuously or periodically in any interval, in which the sensors collect information on human parts such as the lungs or heart and transmit this information to a router, PC or PDA device connected to the internet, from which patient's condition can be diagnosed and viewed by authorized medical professionals in remote locations. Instantaneous information allows medical professionals to intervene properly and timely to prevent possible catastrophic effects to patients. The continuously monitored information provides medical professionals more complete and long-term studies of patients. All of these result in not only enhancement of the health treatment quality but also significant reduction of medical expenditure. These techniques demonstrate that health monitoring of patients can be done wirelessly at any time and any place without interfering with the patients' normal activities. Implementing the RFID technology would not only help reduce the enormous and significantly growing medical costs in the U.S.A., but also help improve the health treatment capability as well as enhance the understanding of long-term personal health and illness.
Parsaei, H.; Vakily, A.; Shafiei, A.M.
2017-01-01
Background: The basic requirements for monitoring anesthetized patients during surgery are assessing cardiac and respiratory function. Esophageal stethoscopes have been developed for this purpose, but these devices may not provide clear heart and lung sound due to existence of various noises in operating rooms. In addition, the stethoscope is not applicable for continues monitoring, and it is unsuitable for observing inaccessible patients in some conditions such as during CT scan. Objective: A wireless electronic esophageal stethoscope is designed for continues auscultation of heart and lung sounds in anesthetized patients. The system consists of a transmitter and a receiver. The former acquires, amplifies and transmits the acquired sound signals to the latter via a frequency modulation transmitter. The receiver demodulates, amplifies, and delivers the received signal to a headphone to be heard by anesthesiologist. Results: The usability and effectiveness of the designed system was qualitatively evaluated by 5 anesthesiologists in Namazi Hospital and Shahid Chamran Hospital, Shiraz, Iran on 30 patients in several operating rooms in different conditions; e.g., when electro surgery instruments are working. Fortunately, the experts on average ranked good quality for the heard heart and lung sounds and very good on the user friendly being of the instrument. Conclusion: Evaluation results demonstrate that the developed system is capable of capturing and transmitting heart and lung sounds successfully. Therefore, it can be used to continuously monitor anesthetized patients’ cardiac and respiratory function. Since via the instrument wireless auscultation is possible, it could be suitable for observing inaccessible patients in several conditions such as during CT scan. PMID:28451580
Ground-based Space Weather Monitoring with LOFAR
NASA Astrophysics Data System (ADS)
Wise, Michael; van Haarlem, Michiel; Lawrence, Gareth; Reid, Simon; Bos, Andre; Rawlings, Steve; Salvini, Stef; Mitchell, Cathryn; Soleimani, Manuch; Amado, Sergio; Teresa, Vital
As one of the first of a new generation of radio instruments, the International LOFAR Telescope (ILT) will provide a number of unique and novel capabilities for the astronomical community. These include remote configuration and operation, dynamic real-time processing and system response, and the ability to provide multiple simultaneous streams of data to a community whose scientific interests run the gamut from lighting in the atmospheres of distant planets to the origins of the universe itself. The LOFAR (LOw Frequency ARray) system is optimized for a frequency range from 30-240 MHz and consists of multiple antenna fields spread across Europe. In the Netherlands, a total 36 LOFAR stations are nearing completion with an initial 8 international stations currently being deployed in Germany, France, Sweden, and the UK. Digital beam-forming techniques make the LOFAR system agile and allow for rapid repointing of the telescope as well as the potential for multiple simultaneous observations. With its dense core array and long interferometric baselines, LOFAR has the potential to achieve unparalleled sensitivity and spatial resolution in the low frequency radio regime. LOFAR will also be one of the first radio observatories to feature automated processing pipelines to deliver fully calibrated science products to its user community. As we discuss in this presentation, the same capabilities that make LOFAR a powerful tool for radio astronomy also provide an excellent platform upon which to build a ground-based monitoring system for space weather events. For example, the ability to monitor Solar activity in near real-time is one of the key scientific capabilities being developed for LOFAR. With only a fraction of its total observing capacity, LOFAR will be able to provide continuous monitoring of the Solar spectrum over the entire 10-240 MHz band down to microsecond timescales. Autonomous routines will scan these incoming spectral data for evidence of Solar flares and be capable of generating various responses including alerting external observatories or reallocating internal observing capacity to create short cadence (1-10 sec) images of the Sun. More uniquely, the core development, already invested by LOFAR to produce astronomical images of the sky, makes an excellent framework on which to build a near real-time ionospheric monitor and thereby study the effects of space weather events on our atmosphere. One of the key technical challenges to producing high quality scientific images in the low frequency radio regime are the effects of the active ionosphere over the detector array on signal propagation through the earth's atmosphere. To correct for these effects, the current LOFAR system includes an adaptive calibration employing both single and multi-layer phase screen models for the ionosphere. The output of this calibration automatically produces continuous ionospheric measurements with a data cadence in seconds. Although limited to the sky over the array, the resulting TEC maps can have vertical and horizontal resolutions down to 2m and relative accuracies of 0.001 TECU. The intent is to publish both Solar and ionospheric data-streams to the space weather community providing an excellent complement to existing space-based monitoring assets. In this presentation, we will describe the current and planned capabilities of the LOFAR system as well as show some first examples of the potential data products taken during the ongoing commissioning phase. We will also discuss plans to build upon the current LOFAR infrastructure and provide a source of near real-time monitoring data to the space weather community.
Jung, HaRim; Song, MoonBae; Youn, Hee Yong; Kim, Ung Mo
2015-01-01
A content-matched (CM) range monitoring query over moving objects continually retrieves the moving objects (i) whose non-spatial attribute values are matched to given non-spatial query values; and (ii) that are currently located within a given spatial query range. In this paper, we propose a new query indexing structure, called the group-aware query region tree (GQR-tree) for efficient evaluation of CM range monitoring queries. The primary role of the GQR-tree is to help the server leverage the computational capabilities of moving objects in order to improve the system performance in terms of the wireless communication cost and server workload. Through a series of comprehensive simulations, we verify the superiority of the GQR-tree method over the existing methods. PMID:26393613
Li, Michelle W; Martin, R Scott
2007-07-01
Here we describe a reversibly sealed microchip device that incorporates poly(dimethylsiloxane) (PDMS)-based valves for the rapid injection of analytes from a continuously flowing stream into a channel network for analysis with microchip electrophoresis. The microchip was reversibly sealed to a PDMS-coated glass substrate and microbore tubing was used for the introduction of gas and fluids to the microchip device. Two pneumatic valves were incorporated into the design and actuated on the order of hundreds of milliseconds, allowing analyte from a continuously flowing sampling stream to be injected into an electrophoresis separation channel. The device was characterized in terms of the valve actuation time and pushback voltage. It was also found that the addition of sodium dodecyl sulfate (SDS) to the buffer system greatly increased the reproducibility of the injection scheme and enabled the analysis of amino acids derivatized with naphthalene-2,3-dicarboxaldehyde/cyanide. Results from continuous injections of a 0.39 nL fluorescein plug into the optimized system showed that the injection process was reproducible (RSD of 0.7%, n = 10). Studies also showed that the device was capable of monitoring off-chip changes in concentration with a device lag time of 90 s. Finally, the ability of the device to rapidly monitor on-chip concentration changes was demonstrated by continually sampling from an analyte plug that was derivatized upstream from the electrophoresis/continuous flow interface. A reversibly sealed device of this type will be useful for the continuous monitoring and analysis of processes that occur either off-chip (such as microdialysis sampling) or on-chip from other integrated functions.
Non-invasive heart rate monitoring system using giant magneto resistance sensor.
Kalyan, Kubera; Chugh, Vinit Kumar; Anoop, C S
2016-08-01
A simple heart rate (HR) monitoring system designed and developed using the Giant Magneto-Resistance (GMR) sensor is presented in this paper. The GMR sensor is placed on the wrist of the human and it provides the magneto-plethysmographic signal. This signal is processed by the simple analog and digital instrumentation stages to render the heart rate indication. A prototype of the system has been built and test results on 26 volunteers have been reported. The error in HR estimation of the system is merely 1 beat per minute. The performance of the system when layer of cloth is present between the sensor and the human body is investigated. The capability of the system as a HR variability estimator has also been established through experimentation. The proposed technique can be used as an efficient alternative to conventional HR monitors and is well suited for remote and continuous monitoring of HR.
Continuous acoustic emission monitoring of reinforced concrete under accelerated corrosion
NASA Astrophysics Data System (ADS)
Di Benedetti, M.; Loreto, G.; Nanni, A.; Matta, F.; Gonzalez-Nunez, M. A.
2011-04-01
The development of techniques capable of evaluating deterioration of reinforced concrete (RC) structures is instrumental to the advancement of techniques for the structural health monitoring (SHM) and service life estimate for constructed facilities. One of the main causes leading to degradation of RC is the corrosion of the steel reinforcement. This process can be modeled phenomenologically, while laboratory tests aimed at studying durability responses are typically accelerated in order to provide useful results within a realistic period of time. To assess the condition of damage in RC, a number of nondestructive methods have been recently studied. Acoustic emission (AE) is emerging as a nondestructive tool to detect the onset and progression of deterioration mechanisms. In this paper, the development of accelerated corrosion and continuous AE monitoring test set-up for RC specimens are presented. Relevant information are provided with regard to the characteristics of the corrosion circuit, continuous measurement and acquisition of corrosion potential, selection of AE sensors and AE parameter setting. The effectiveness of the setup in detecting and characterizing the initiation and progression of the corrosion phenomenon is discussed on the basis of preliminary results from small-scale, pre-cracked RC specimens, which are representative of areas near the clear cover in typical RC bridge members.
Continuous, real time microwave plasma element sensor
Woskov, Paul P.; Smatlak, Donna L.; Cohn, Daniel R.; Wittle, J. Kenneth; Titus, Charles H.; Surma, Jeffrey E.
1995-01-01
Microwave-induced plasma for continuous, real time trace element monitoring under harsh and variable conditions. The sensor includes a source of high power microwave energy and a shorted waveguide made of a microwave conductive, refractory material communicating with the source of the microwave energy to generate a plasma. The high power waveguide is constructed to be robust in a hot, hostile environment. It includes an aperture for the passage of gases to be analyzed and a spectrometer is connected to receive light from the plasma. Provision is made for real time in situ calibration. The spectrometer disperses the light, which is then analyzed by a computer. The sensor is capable of making continuous, real time quantitative measurements of desired elements, such as the heavy metals lead and mercury.
Webb, R. Chad; Ma, Yinji; Krishnan, Siddharth; Li, Yuhang; Yoon, Stephen; Guo, Xiaogang; Feng, Xue; Shi, Yan; Seidel, Miles; Cho, Nam Heon; Kurniawan, Jonas; Ahad, James; Sheth, Niral; Kim, Joseph; Taylor VI, James G.; Darlington, Tom; Chang, Ken; Huang, Weizhong; Ayers, Joshua; Gruebele, Alexander; Pielak, Rafal M.; Slepian, Marvin J.; Huang, Yonggang; Gorbach, Alexander M.; Rogers, John A.
2015-01-01
Continuous monitoring of variations in blood flow is vital in assessing the status of microvascular and macrovascular beds for a wide range of clinical and research scenarios. Although a variety of techniques exist, most require complete immobilization of the subject, thereby limiting their utility to hospital or clinical settings. Those that can be rendered in wearable formats suffer from limited accuracy, motion artifacts, and other shortcomings that follow from an inability to achieve intimate, noninvasive mechanical linkage of sensors with the surface of the skin. We introduce an ultrathin, soft, skin-conforming sensor technology that offers advanced capabilities in continuous and precise blood flow mapping. Systematic work establishes a set of experimental procedures and theoretical models for quantitative measurements and guidelines in design and operation. Experimental studies on human subjects, including validation with measurements performed using state-of-the-art clinical techniques, demonstrate sensitive and accurate assessment of both macrovascular and microvascular flow under a range of physiological conditions. Refined operational modes eliminate long-term drifts and reduce power consumption, thereby providing steps toward the use of this technology for continuous monitoring during daily activities. PMID:26601309
Final Technical Report. Project Boeing SGS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bell, Thomas E.
Boeing and its partner, PJM Interconnection, teamed to bring advanced “defense-grade” technologies for cyber security to the US regional power grid through demonstration in PJM’s energy management environment. Under this cooperative project with the Department of Energy, Boeing and PJM have developed and demonstrated a host of technologies specifically tailored to the needs of PJM and the electric sector as a whole. The team has demonstrated to the energy industry a combination of processes, techniques and technologies that have been successfully implemented in the commercial, defense, and intelligence communities to identify, mitigate and continuously monitor the cyber security of criticalmore » systems. Guided by the results of a Cyber Security Risk-Based Assessment completed in Phase I, the Boeing-PJM team has completed multiple iterations through the Phase II Development and Phase III Deployment phases. Multiple cyber security solutions have been completed across a variety of controls including: Application Security, Enhanced Malware Detection, Security Incident and Event Management (SIEM) Optimization, Continuous Vulnerability Monitoring, SCADA Monitoring/Intrusion Detection, Operational Resiliency, Cyber Range simulations and hands on cyber security personnel training. All of the developed and demonstrated solutions are suitable for replication across the electric sector and/or the energy sector as a whole. Benefits identified include; Improved malware and intrusion detection capability on critical SCADA networks including behavioral-based alerts resulting in improved zero-day threat protection; Improved Security Incident and Event Management system resulting in better threat visibility, thus increasing the likelihood of detecting a serious event; Improved malware detection and zero-day threat response capability; Improved ability to systematically evaluate and secure in house and vendor sourced software applications; Improved ability to continuously monitor and maintain secure configuration of network devices resulting in reduced vulnerabilities for potential exploitation; Improved overall cyber security situational awareness through the integration of multiple discrete security technologies into a single cyber security reporting console; Improved ability to maintain the resiliency of critical systems in the face of a targeted cyber attack of other significant event; Improved ability to model complex networks for penetration testing and advanced training of cyber security personnel« less
A total patient monitoring system for point-of-care applications
NASA Astrophysics Data System (ADS)
Whitchurch, Ashwin K.; Abraham, Jose K.; Varadan, Vijay K.
2007-04-01
Traditionally, home care for chronically ill patients and the elderly requires periodic visits to the patient's home by doctors or healthcare personnel. During these visits, the visiting person usually records the patient's vital signs and takes decisions as to any change in treatment and address any issues that the patient may have. Patient monitoring systems have since changed this scenario by significantly reducing the number of home visits while not compromising on continuous monitoring. This paper describes the design and development of a patient monitoring systems capable of concurrent remote monitoring of 8 patient-worn sensors: Electroencephalogram (EEG), Electrocardiogram (ECG), temperature, airflow pressure, movement and chest expansion. These sensors provide vital signs useful for monitoring the health of chronically ill patients and alerts can be raised if certain specified signal levels fall above or below a preset threshold value. The data from all eight sensors are digitally transmitted to a PC or to a standalone network appliance which relays the data through an available internet connection to the remote monitoring client. Thus it provides a real-time rendering of the patient's health at a remote location.
Overview of IMS infrasound station and engineering projects
NASA Astrophysics Data System (ADS)
Marty, J.; Doury, B.; Kramer, A.; Martysevich, P.
2015-12-01
The Provisional Technical Secretariat (PTS) of the Comprehensive Nuclear-Test-Ban Treaty (CTBTO) has a continuous interest in enhancing its capability in acoustic source detection, localization and characterization. The infrasound component of the International Monitoring System (IMS) constitutes the only worldwide ground-based infrasound network. It consists of sixty stations, among which forty-eight are already certified and continuously transmit data to the International Data Centre (IDC) in Vienna, Austria. Each infrasound station is composed of an array of infrasound sensors capable of measuring micro-pressure changes produced at ground level by infrasonic waves. The characteristics of infrasonic waves are computed in near real-time by IDC automatic detection software and are used as an input to IDC source categorization and localization algorithms. The PTS is continuously working towards the completion and sustainment of the IMS infrasound network. The objective of this presentation is to review the main activities performed in the IMS infrasound network over the last five years. This includes construction, installation, certification, major upgrade and revalidation activities. Major technology development projects to improve the reliability and robustness of IMS infrasound stations as well as their compliance with IMS Operational Manual requirements will also be presented. This includes advances in array geometry, wind noise reduction, system calibration, meteorological data as well as power and communication infrastructures. Finally the impact of all these changes on the overall detection capability of the IMS infrasound network will be highlighted.
NASA Astrophysics Data System (ADS)
von Hillebrandt-Andrade, C.; Huerfano Moreno, V. A.; McNamara, D. E.; Saurel, J. M.
2014-12-01
The magnitude-9.3 Sumatra-Andaman Islands earthquake of December 26, 2004, increased global awareness to the destructive hazard of earthquakes and tsunamis. Post event assessments of global coastline vulnerability highlighted the Caribbean as a region of high hazard and risk and that it was poorly monitored. Nearly 100 tsunamis have been reported for the Caribbean region and Adjacent Regions in the past 500 years and continue to pose a threat for its nations, coastal areas along the Gulf of Mexico, and the Atlantic seaboard of North and South America. Significant efforts to improve monitoring capabilities have been undertaken since this time including an expansion of the United States Geological Survey (USGS) Global Seismographic Network (GSN) (McNamara et al., 2006) and establishment of the United Nations Educational, Scientific and Cultural Organization (UNESCO) Intergovernmental Coordination Group (ICG) for the Tsunami and other Coastal Hazards Warning System for the Caribbean and Adjacent Regions (CARIBE EWS). The minimum performance standards it recommended for initial earthquake locations include: 1) Earthquake detection within 1 minute, 2) Minimum magnitude threshold = M4.5, and 3) Initial hypocenter error of <30 km. In this study, we assess current compliance with performance standards and model improvements in earthquake and tsunami monitoring capabilities in the Caribbean region since the first meeting of the UNESCO ICG-Caribe EWS in 2006. The three measures of network capability modeled in this study are: 1) minimum Mw detection threshold; 2) P-wave detection time of an automatic processing system and; 3) theoretical earthquake location uncertainty. By modeling three measures of seismic network capability, we can optimize the distribution of ICG-Caribe EWS seismic stations and select an international network that will be contributed from existing real-time broadband national networks in the region. Sea level monitoring improvements both offshore and along the coast will also be addressed. With the support of Member States and other countries and organizations it has been possible to significantly expand the sea level network thus reducing the amount of time it now takes to verify tsunamis.
Neurometric assessment of intraoperative anesthetic
Kangas, L.J.; Keller, P.E.
1998-07-07
The present invention is a method and apparatus for collecting EEG data, reducing the EEG data into coefficients, and correlating those coefficients with a depth of unconsciousness or anesthetic depth, and which obtains a bounded first derivative of anesthetic depth to indicate trends. The present invention provides a developed artificial neural network based method capable of continuously analyzing EEG data to discriminate between awake and anesthetized states in an individual and continuously monitoring anesthetic depth trends in real-time. The present invention enables an anesthesiologist to respond immediately to changes in anesthetic depth of the patient during surgery and to administer the correct amount of anesthetic. 7 figs.
Neurometric assessment of intraoperative anesthetic
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kangas, L.J.; Keller, P.E.
1998-07-07
The present invention is a method and apparatus for collecting EEG data, reducing the EEG data into coefficients, and correlating those coefficients with a depth of unconsciousness or anesthetic depth, and which obtains a bounded first derivative of anesthetic depth to indicate trends. The present invention provides a developed artificial neural network based method capable of continuously analyzing EEG data to discriminate between awake and anesthetized states in an individual and continuously monitoring anesthetic depth trends in real-time. The present invention enables an anesthesiologist to respond immediately to changes in anesthetic depth of the patient during surgery and to administermore » the correct amount of anesthetic. 7 figs.« less
General Purpose Data-Driven Monitoring for Space Operations
NASA Technical Reports Server (NTRS)
Iverson, David L.; Martin, Rodney A.; Schwabacher, Mark A.; Spirkovska, Liljana; Taylor, William McCaa; Castle, Joseph P.; Mackey, Ryan M.
2009-01-01
As modern space propulsion and exploration systems improve in capability and efficiency, their designs are becoming increasingly sophisticated and complex. Determining the health state of these systems, using traditional parameter limit checking, model-based, or rule-based methods, is becoming more difficult as the number of sensors and component interactions grow. Data-driven monitoring techniques have been developed to address these issues by analyzing system operations data to automatically characterize normal system behavior. System health can be monitored by comparing real-time operating data with these nominal characterizations, providing detection of anomalous data signatures indicative of system faults or failures. The Inductive Monitoring System (IMS) is a data-driven system health monitoring software tool that has been successfully applied to several aerospace applications. IMS uses a data mining technique called clustering to analyze archived system data and characterize normal interactions between parameters. The scope of IMS based data-driven monitoring applications continues to expand with current development activities. Successful IMS deployment in the International Space Station (ISS) flight control room to monitor ISS attitude control systems has led to applications in other ISS flight control disciplines, such as thermal control. It has also generated interest in data-driven monitoring capability for Constellation, NASA's program to replace the Space Shuttle with new launch vehicles and spacecraft capable of returning astronauts to the moon, and then on to Mars. Several projects are currently underway to evaluate and mature the IMS technology and complementary tools for use in the Constellation program. These include an experiment on board the Air Force TacSat-3 satellite, and ground systems monitoring for NASA's Ares I-X and Ares I launch vehicles. The TacSat-3 Vehicle System Management (TVSM) project is a software experiment to integrate fault and anomaly detection algorithms and diagnosis tools with executive and adaptive planning functions contained in the flight software on-board the Air Force Research Laboratory TacSat-3 satellite. The TVSM software package will be uploaded after launch to monitor spacecraft subsystems such as power and guidance, navigation, and control (GN&C). It will analyze data in real-time to demonstrate detection of faults and unusual conditions, diagnose problems, and react to threats to spacecraft health and mission goals. The experiment will demonstrate the feasibility and effectiveness of integrated system health management (ISHM) technologies with both ground and on-board experiments.
Architecture for Improving Terrestrial Logistics Based on the Web of Things
Castro, Miguel; Jara, Antonio J.; Skarmeta, Antonio
2012-01-01
Technological advances for improving supply chain efficiency present three key challenges for managing goods: tracking, tracing and monitoring (TTM), in order to satisfy the requirements for products such as perishable goods where the European Legislations requires them to ship within a prescribed temperature range to ensure freshness and suitability for consumption. The proposed system integrates RFID for tracking and tracing through a distributed architecture developed for heavy goods vehicles, and the sensors embedded in the SunSPOT platform for monitoring the goods transported based on the concept of the Internet of Things. This paper presents how the Internet of Things is integrated for improving terrestrial logistics offering a comprehensive and flexible architecture, with high scalability, according to the specific needs for reaching an item-level continuous monitoring solution. The major contribution from this work is the optimization of the Embedded Web Services based on RESTful (Web of Things) for the access to TTM services at any time during the transportation of goods. Specifically, it has been extended the monitoring patterns such as observe and blockwise transfer for the requirements from the continuous conditional monitoring, and for the transfer of full inventories and partial ones based on conditional queries. In definitive, this work presents an evolution of the previous TTM solutions, which were limited to trailer identification and environment monitoring, to a solution which is able to provide an exhaustive item-level monitoring, required for several use cases. This exhaustive monitoring has required new communication capabilities through the Web of Things, which has been optimized with the use and improvement of a set of communications patterns. PMID:22778657
Architecture for improving terrestrial logistics based on the Web of Things.
Castro, Miguel; Jara, Antonio J; Skarmeta, Antonio
2012-01-01
Technological advances for improving supply chain efficiency present three key challenges for managing goods: tracking, tracing and monitoring (TTM), in order to satisfy the requirements for products such as perishable goods where the European Legislations requires them to ship within a prescribed temperature range to ensure freshness and suitability for consumption. The proposed system integrates RFID for tracking and tracing through a distributed architecture developed for heavy goods vehicles, and the sensors embedded in the SunSPOT platform for monitoring the goods transported based on the concept of the Internet of Things. This paper presents how the Internet of Things is integrated for improving terrestrial logistics offering a comprehensive and flexible architecture, with high scalability, according to the specific needs for reaching an item-level continuous monitoring solution. The major contribution from this work is the optimization of the Embedded Web Services based on RESTful (Web of Things) for the access to TTM services at any time during the transportation of goods. Specifically, it has been extended the monitoring patterns such as observe and blockwise transfer for the requirements from the continuous conditional monitoring, and for the transfer of full inventories and partial ones based on conditional queries. In definitive, this work presents an evolution of the previous TTM solutions, which were limited to trailer identification and environment monitoring, to a solution which is able to provide an exhaustive item-level monitoring, required for several use cases. This exhaustive monitoring has required new communication capabilities through the Web of Things, which has been optimized with the use and improvement of a set of communications patterns.
Fang, Lu; Liang, Bo; Yang, Guang; Hu, Yichuan; Zhu, Qin; Ye, Xuesong
2017-11-15
A minimally invasive glucose biosensor capable of continuous monitoring of subcutaneous glucose has been developed in this study. This sensor was prepared using electropolymerized conductive polymer polyaniline (PANI) nanofibers as an enzyme immobilization material and polyurethane (PU)/epoxy-enhanced polyurethane (E-PU) bilayer coating as a protective membrane. The sensor showed almost the same sensitivity (63nA/mM) and linearity (0-20mM with the correlation coefficient r 2 of 0.9997) in both PBS and bovine serum tests. When stored in 37°C bovine serum, the sensor's sensitivity gradually increased about 30% of the initial value within the first 13 days and then remained stable for the rest of the study period of 53 days. In vivo implantation experiments using mice models showed real-time response to the variation of blood glucose with an average signal delay of about 8min. Continuous monitoring showed that the sensor response increased for the first 12 days and then entered a stable period for 14 days. The sensor's baseline (530±10nA) and the total response to 1ml 50% dextrose injection were almost the same (267±15nA) in the stable period. The in vivo stable performances indicated that the sensor could be used as an implantable device for long-term invasive monitoring of blood glucose. Copyright © 2017 Elsevier B.V. All rights reserved.
Noninvasive optoacoustic monitoring of cerebral venous blood oxygenation in newborns
NASA Astrophysics Data System (ADS)
Petrov, Irene Y.; Wynne, Karon E.; Petrov, Yuriy; Esenaliev, Rinat O.; Richardson, C. Joan; Prough, Donald S.
2012-02-01
Cerebral ischemia after birth and during labor is a major cause of death and severe complications such as cerebral palsy. In the USA alone, cerebral palsy results in permanent disability of 10,000 newborns per year and approximately 500,000 of the total population. Currently, no technology is capable of direct monitoring of cerebral oxygenation in newborns. This study proposes the use of an optoacoustic technique for noninvasive cerebral ischemia monitoring by probing the superior sagittal sinus (SSS), a large central cerebral vein. We developed and built a multi-wavelength, near-infrared optoacoustic system suitable for noninvasive monitoring of cerebral ischemia in newborns with normal weight (NBW), low birth-weight (LBW, 1500 - 2499 g) and very low birth-weight (VLBW, < 1500 g). The system was capable of detecting SSS signals through the open anterior and posterior fontanelles as well as through the skull. We tested the system in NBW, LBW, and VLBW newborns (weight range: from 675 g to 3,000 g) admitted to the neonatal intensive care unit. We performed single and continuous measurements of the SSS blood oxygenation. The data acquisition, processing and analysis software developed by our group provided real-time, absolute SSS blood oxygenation measurements. The SSS blood oxygenation ranged from 60% to 80%. Optoacoustic monitoring of the SSS blood oxygenation provides valuable information because adequate cerebral oxygenation would suggest that no therapy was necessary; conversely, evidence of cerebral ischemia would prompt therapy to increase cerebral blood flow.
NASA Astrophysics Data System (ADS)
Reagan, Daniel; Sabato, Alessandro; Niezrecki, Christopher
2017-04-01
Civil engineering structures such as bridges, buildings, and tunnels continue to be used despite aging and deterioration well past their design life. In 2013, the American Society of Civil Engineers (ASCE) rated the state of the U.S. bridges as mediocre, despite the $12.8 billion USD annually invested. Traditional inspection and monitoring techniques may produce inconsistent results, are labor intensive and too time-consuming to be considered effective for large-scale monitoring. Therefore, new structural health monitoring systems must be developed that are automated, highly accurate, minimally invasive, and cost effective. Three-dimensional (3D) digital image correlation (DIC) systems possess the capability of extracting full-field strain, displacement, and geometry profiles. Furthermore, as this measurement technique is implemented within an Unmanned Aerial Vehicle (UAV) the capability to expedite the optical-based measurement process is increased as well as the infrastructure downtime being reduced. These resulting integrity maps of the structure of interest can be easily interpreted by trained personal. Within this paper, the feasibility of performing DIC measurements using a pair of cameras installed on a UAV is shown. Performance is validated with in-flight measurements. Also, full-field displacement monitoring, 3D measurement stitching, and 3D point-tracking techniques are employed in conjunction with 3D mapping and data management software. The results of these experiments show that the combination of autonomous flight with 3D DIC and other non-contact measurement systems provides a highly valuable and effective civil inspection platform.
NASA Technical Reports Server (NTRS)
Scheuring, Richard A.; Hamilton, Doug; Jones, Jeffrey A.; Alexander, David
2009-01-01
There are currently several physiological monitoring requirements for EVA in the Human-Systems Interface Requirements (HSIR) document. There are questions as to whether the capability to monitor heart rhythm in the lunar surface space suit is a necessary capability for lunar surface operations. Similarly, there are questions as to whether the capability to monitor heart rhythm during a cabin depressurization scenario in the launch/landing space suit is necessary. This presentation seeks to inform space medicine personnel of recommendations made by an expert panel of cardiovascular medicine specialists regarding in-suit ECG heart rhythm monitoring requirements during lunar surface operations. After a review of demographic information and clinical cases and panel discussion, the panel recommended that ECG monitoring capability as a clinical tool was not essential in the lunar space suit; ECG monitoring was not essential in the launch/landing space suit for contingency scenarios; the current hear rate monitoring capability requirement for both launch/landing and lunar space suits should be maintained; lunar vehicles should be required to have ECG monitoring capability with a minimum of 5-lead ECG for IVA medical assessments; and, exercise stress testing for astronaut selection and retention should be changed from the current 85% maximum heart rate limit to maximal, exhaustive 'symptom-limited' testing to maximize diagnostic utility as a screening tool for evaluating the functional capacity of astronauts and their cardiovascular health.
Monitoring and verification R&D
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pilat, Joseph F; Budlong - Sylvester, Kory W; Fearey, Bryan L
2011-01-01
The 2010 Nuclear Posture Review (NPR) report outlined the Administration's approach to promoting the agenda put forward by President Obama in Prague on April 5, 2009. The NPR calls for a national monitoring and verification R&D program to meet future challenges arising from the Administration's nonproliferation, arms control and disarmament agenda. Verification of a follow-on to New START could have to address warheads and possibly components along with delivery capabilities. Deeper cuts and disarmament would need to address all of these elements along with nuclear weapon testing, nuclear material and weapon production facilities, virtual capabilities from old weapon and existingmore » energy programs and undeclared capabilities. We only know how to address some elements of these challenges today, and the requirements may be more rigorous in the context of deeper cuts as well as disarmament. Moreover, there is a critical need for multiple options to sensitive problems and to address other challenges. There will be other verification challenges in a world of deeper cuts and disarmament, some of which we are already facing. At some point, if the reductions process is progressing, uncertainties about past nuclear materials and weapons production will have to be addressed. IAEA safeguards will need to continue to evolve to meet current and future challenges, and to take advantage of new technologies and approaches. Transparency/verification of nuclear and dual-use exports will also have to be addressed, and there will be a need to make nonproliferation measures more watertight and transparent. In this context, and recognizing we will face all of these challenges even if disarmament is not achieved, this paper will explore possible agreements and arrangements; verification challenges; gaps in monitoring and verification technologies and approaches; and the R&D required to address these gaps and other monitoring and verification challenges.« less
Mavrogordato, Mark; Taylor, Mark; Taylor, Andrew; Browne, Martin
2011-05-01
Acoustic emission (AE) is a non-destructive technique that is capable of passively monitoring failure of a construct with excellent temporal resolution. Previous investigations using AE to monitor the integrity of a total hip replacement (THR) have used surface mounted sensors; however, the AE signal attenuates as it travels through materials and across interfaces. This study proposes that directly embedded sensors within the femoral stem of the implant will reduce signal attenuation effects and eliminate potential complications and variability associated with fixing the sensor to the sample. Data was collected during in vitro testing of implanted constructs, and information from both embedded and externally mounted AE sensors was compared and corroborated by micro-Computed Tomography (micro-CT) images taken before and after testing. The results of this study indicate that the embedded sensors gave a closer corroboration to observed damage using micro-CT and were less affected by unwanted noise sources. This has significant implications for the use of AE in assessing the state of THR constructs in vitro and it is hypothesised that directly embedded AE sensors may provide the first steps towards an in vivo, cost effective, user friendly, non-destructive system capable of continuously monitoring the condition of the implanted construct. Copyright © 2010 IPEM. Published by Elsevier Ltd. All rights reserved.
Everything is Data - Overview of Modular System of Sensors for Museum Environment
NASA Astrophysics Data System (ADS)
Valach, J.; Juliš, K.; Štefcová, P.; Pech, M.; Wolf, B.; Kotyk, M.; Frankl, J.
2015-08-01
The main aim of project nearing completion was to develop a modular and scalable system of sensors for monitoring of internal environment of museum exhibitions and depositories. The sensors vary according to parameters being monitored and at the same time also according to required energy autonomy, processing capability and bandwidth requirements. Sensors developed can be divided into three groups: environmental sensors, biosensors and sensors of vibrations. Data acquired by the sensors are archived and stored in open format. Metadata stored alongside true numerical data from measurement, represent assurance of future computer readability in data mining application. Long continuous series of data can provide sufficient data for acquisition of dose-response function.
A portable infrasound generator.
Park, Joseph; Robertson, James
2009-04-01
The rotary subwoofer is a novel low frequency transducer capable of efficiently generating infrasound from a compact source. A field-deployable version of this device may find application as a calibration source for infrasound arrays of the International Monitoring System (IMS) [(2001). The Global Verification Regime and the International Monitoring System (CTBTO Preparatory Commission Vienna International Centre, Vienna, Austria)]. A prototype tested at the IMS infrasound array I59US demonstrated the ability to insonify all elements of the array from a standoff distance of 3.8 km. Signal-to-noise ratios of continuous wave signals ranged from 5 to 15 dB, indicating the utility of this source to transmit controllable infrasound signals over distances of 5 km.
Upgrades to MINERVA control software
NASA Astrophysics Data System (ADS)
Wilson, Maurice; Eastman, Jason D.
2017-01-01
The MINiature Exoplanet Radial Velocity Array (MINERVA) is an array of four robotic telescopes located on Mt. Hopkins in Arizona that will find and characterize rocky planets around our nearest stars. We discuss the latest upgrades to the MINERVA robotic control software. Previously, our robotic control software was only capable of taking radial velocities or photometry for the entire night, but not both. We have recently increased the speed and ease of transitioning between photometry and radial velocity (RV) observations. We can now arbitrarily assign a subset of the telescopes to either photometric or spectroscopic observations. This capability enables us to monitor stellar activity while measuring the star’s RV, gather photometry on one star while continuing our RV survey of other targets and provide education and public outreach opportunities where others can observe with one or more telescopes while we continue using the remaining telescopes for research. This material is based upon work supported by the National Science Foundation Graduate Research Fellowship Program under Grant No. 1144152.
NASA Astrophysics Data System (ADS)
Żymełka, Piotr; Nabagło, Daniel; Janda, Tomasz; Madejski, Paweł
2017-12-01
Balanced distribution of air in coal-fired boiler is one of the most important factors in the combustion process and is strongly connected to the overall system efficiency. Reliable and continuous information about combustion airflow and fuel rate is essential for achieving optimal stoichiometric ratio as well as efficient and safe operation of a boiler. Imbalances in air distribution result in reduced boiler efficiency, increased gas pollutant emission and operating problems, such as corrosion, slagging or fouling. Monitoring of air flow trends in boiler is an effective method for further analysis and can help to appoint important dependences and start optimization actions. Accurate real-time monitoring of the air distribution in boiler can bring economical, environmental and operational benefits. The paper presents a novel concept for online monitoring system of air distribution in coal-fired boiler based on real-time numerical calculations. The proposed mathematical model allows for identification of mass flow rates of secondary air to individual burners and to overfire air (OFA) nozzles. Numerical models of air and flue gas system were developed using software for power plant simulation. The correctness of the developed model was verified and validated with the reference measurement values. The presented numerical model for real-time monitoring of air distribution is capable of giving continuous determination of the complete air flows based on available digital communication system (DCS) data.
Li, Gen; Ma, Ke; Sun, Jian; Jin, Gui; Qin, Mingxin; Feng, Hua
2017-01-01
Cerebral edema is a common disease, secondary to craniocerebral injury, and real-time continuous monitoring of cerebral edema is crucial for treating patients after traumatic brain injury. This work established a noninvasive and noncontact system by monitoring the magnetic induction phase shift (MIPS) which is associated with brain tissue conductivity. Sixteen rabbits (experimental group n = 10, control group, n = 6) were used to perform a 24 h MIPS and intracranial pressure (ICP) simultaneously monitored experimental study. For the experimental group, after the establishment of epidural freeze-induced cerebral edema models, the MIPS presented a downward trend within 24 h, with a change magnitude of −13.1121 ± 2.3953°; the ICP presented an upward trend within 24 h, with a change magnitude of 12–41 mmHg. The ICP was negatively correlated with the MIPS. In the control group, the MIPS change amplitude was −0.87795 ± 1.5146 without obvious changes; the ICP fluctuated only slightly at the initial value of 12 mmHg. MIPS had a more sensitive performance than ICP in the early stage of cerebral edema. These results showed that this system is basically capable of monitoring gradual increases in the cerebral edema solution volume. To some extent, the MIPS has the potential to reflect the ICP changes. PMID:28282851
Romey, Matthew; Jovanovič, Lois; Bevier, Wendy; Markova, Kateryna; Strasma, Paul; Zisser, Howard
2012-11-01
Stress hyperglycemia in the critically ill is associated with increased morbidity and mortality. Continuous glucose monitoring offers a solution to the difficulties of dosing intravenous insulin properly to maintain glycemic control. The purpose of this study was to evaluate an intravascular continuous glucose monitoring (IV-CGM) system with a sensing element based on the concept of quenched fluorescence. A second-generation intravascular continuous glucose sensor was evaluated in 13 volunteer subjects with type 1 diabetes mellitus. There were 21 study sessions of up to 24 h in duration. Sensors were inserted into peripheral veins of the upper extremity, up to two sensors per subject per study session. Sensor output was compared with temporally correlated reference measurements obtained from venous samples on a laboratory glucose analyzer. Data were obtained from 23 sensors in 13 study sessions with 942 paired reference values. Fourteen out of 23 sensors (60.9%) had a mean absolute relative difference ≤ 10%. Eighty-nine percent of paired points were in the clinically accurate A zone of the Clarke error grid and met ISO 15197 performance criteria. Adequate venous blood flow was identified as a necessary condition for accuracy when local sensor readings are compared with venous blood glucose. The IV-CGM system was capable of achieving a high level of glucose measurement accuracy. However, superficial peripheral veins may not provide adequate blood flow for reliable indwelling blood glucose monitoring. © 2012 Diabetes Technology Society.
Romey, Matthew; Jovanovič, Lois; Bevier, Wendy; Markova, Kateryna; Strasma, Paul; Zisser, Howard
2012-01-01
Background Stress hyperglycemia in the critically ill is associated with increased morbidity and mortality. Continuous glucose monitoring offers a solution to the difficulties of dosing intravenous insulin properly to maintain glycemic control. The purpose of this study was to evaluate an intravascular continuous glucose monitoring (IV-CGM) system with a sensing element based on the concept of quenched fluorescence. Method A second-generation intravascular continuous glucose sensor was evaluated in 13 volunteer subjects with type 1 diabetes mellitus. There were 21 study sessions of up to 24 h in duration. Sensors were inserted into peripheral veins of the upper extremity, up to two sensors per subject per study session. Sensor output was compared with temporally correlated reference measurements obtained from venous samples on a laboratory glucose analyzer. Results Data were obtained from 23 sensors in 13 study sessions with 942 paired reference values. Fourteen out of 23 sensors (60.9%) had a mean absolute relative difference ≤ 10%. Eighty-nine percent of paired points were in the clinically accurate A zone of the Clarke error grid and met ISO 15197 performance criteria. Adequate venous blood flow was identified as a necessary condition for accuracy when local sensor readings are compared with venous blood glucose. Conclusions The IV-CGM system was capable of achieving a high level of glucose measurement accuracy. However, superficial peripheral veins may not provide adequate blood flow for reliable indwelling blood glucose monitoring. PMID:23294770
Integrity monitoring of vehicle positioning in urban environment using RTK-GNSS, IMU and speedometer
NASA Astrophysics Data System (ADS)
El-Mowafy, Ahmed; Kubo, Nobuaki
2017-05-01
Continuous and trustworthy positioning is a critical capability for advanced driver assistance systems (ADAS). To achieve continuous positioning, methods such as global navigation satellite systems real-time kinematic (RTK), Doppler-based positioning, and positioning using low-cost inertial measurement unit (IMU) with car speedometer data are combined in this study. To ensure reliable positioning, the system should have integrity monitoring above a certain level, such as 99%. Achieving this level when combining different types of measurements that have different characteristics and different types of errors is a challenge. In this study, a novel integrity monitoring approach is presented for the proposed integrated system. A threat model of the measurements of the system components is discussed, which includes both the nominal performance and possible fault modes. A new protection level is presented to bound the maximum directional position error. The proposed approach was evaluated through a kinematic test in an urban area in Japan with a focus on horizontal positioning. Test results show that by integrating RTK, Doppler with IMU/speedometer, 100% positioning availability was achieved. The integrity monitoring availability was assessed and found to meet the target value where the position errors were bounded by the protection level, which was also less than an alert level, indicating the effectiveness of the proposed approach.
Optical detection of blade flutter. [in YF-100 turbofan engine
NASA Technical Reports Server (NTRS)
Nieberding, W. C.; Pollack, J. L.
1977-01-01
The paper examines the capabilities of photoelectric scanning (PES) and stroboscopic imagery (SI) as optical monitoring tools for detection of the onset of flutter in the fan blades of an aircraft gas turbine engine. Both optical techniques give visual data in real time as well as video-tape records. PES is shown to be an ideal flutter monitor, since a single cathode ray tube displays the behavior of all the blades in a stage simultaneously. Operation of the SI system continuously while searching for a flutter condition imposes severe demands on the flash tube and affects its reliability, thus limiting its use as a flutter monitor. A better method of operation is to search for flutter with the PES and limit the use of SI to those times when the PES indicates interesting blade activity.
Ye, X. W.; Su, Y. H.; Han, J. P.
2014-01-01
In the last two decades, a significant number of innovative sensing systems based on optical fiber sensors have been exploited in the engineering community due to their inherent distinctive advantages such as small size, light weight, immunity to electromagnetic interference (EMI) and corrosion, and embedding capability. A lot of optical fiber sensor-based monitoring systems have been developed for continuous measurement and real-time assessment of diversified engineering structures such as bridges, buildings, tunnels, pipelines, wind turbines, railway infrastructure, and geotechnical structures. The purpose of this review article is devoted to presenting a summary of the basic principles of various optical fiber sensors, innovation in sensing and computational methodologies, development of novel optical fiber sensors, and the practical application status of the optical fiber sensing technology in structural health monitoring (SHM) of civil infrastructure. PMID:25133250
Ye, X W; Su, Y H; Han, J P
2014-01-01
In the last two decades, a significant number of innovative sensing systems based on optical fiber sensors have been exploited in the engineering community due to their inherent distinctive advantages such as small size, light weight, immunity to electromagnetic interference (EMI) and corrosion, and embedding capability. A lot of optical fiber sensor-based monitoring systems have been developed for continuous measurement and real-time assessment of diversified engineering structures such as bridges, buildings, tunnels, pipelines, wind turbines, railway infrastructure, and geotechnical structures. The purpose of this review article is devoted to presenting a summary of the basic principles of various optical fiber sensors, innovation in sensing and computational methodologies, development of novel optical fiber sensors, and the practical application status of the optical fiber sensing technology in structural health monitoring (SHM) of civil infrastructure.
[An ultra-low power, wearable, long-term ECG monitoring system with mass storage].
Liu, Na; Chen, Yingmin; Zhang, Wenzan; Luo, Zhangyuan; Jin, Xun; Ying, Weihai
2012-01-01
In this paper, we described an ultra-low power, wearable ECG system capable of long term monitoring and mass storage. This system is based on micro-chip PIC18F27J13 with consideration of its high level of integration and low power consumption. The communication with the micro-SD card is achieved through SPI bus. Through the USB, it can be connected to the computer for replay and disease diagnosis. Given its low power cost, lithium cells are used to support continuous ECG acquiring and storage for up to 15 days. Meanwhile, the wearable electrodes avoid the pains and possible risks in implanting. Besides, the mini size of the system makes long wearing possible for patients and meets the needs of long-term dynamic monitoring and mass storage requirements.
Millimeter wave sensor for monitoring effluents
Gopalsami, Nachappa; Bakhtiari, Sasan; Raptis, Apostolos C.; Dieckman, Stephen L.
1995-01-01
A millimeter-wave sensor for detecting and measuring effluents from processing plants either remotely or on-site includes a high frequency signal source for transmitting frequency-modulated continuous waves in the millimeter or submillimeter range with a wide sweep capability and a computer-controlled detector for detecting a plurality of species of effluents on a real time basis. A high resolution spectrum of an effluent, or effluents, is generated by a deconvolution of the measured spectra resulting in a narrowing of the line widths by 2 or 3 orders of magnitude as compared with the pressure broadened spectra detected at atmospheric pressure for improved spectral specificity and measurement sensitivity. The sensor is particularly adapted for remote monitoring such as where access is limited or sensor cost restricts multiple sensors as well as for large area monitoring under nearly all weather conditions.
A system for respiratory motion detection using optical fibers embedded into textiles.
D'Angelo, L T; Weber, S; Honda, Y; Thiel, T; Narbonneau, F; Luth, T C
2008-01-01
In this contribution, a first prototype for mobile respiratory motion detection using optical fibers embedded into textiles is presented. The developed system consists of a T-shirt with an integrated fiber sensor and a portable monitoring unit with a wireless communication link enabling the data analysis and visualization on a PC. A great effort is done worldwide to develop mobile solutions for health monitoring of vital signs for patients needing continuous medical care. Wearable, comfortable and smart textiles incorporating sensors are good approaches to solve this problem. In most of the cases, electrical sensors are integrated, showing significant limits such as for the monitoring of anaesthetized patients during Magnetic Resonance Imaging (MRI). OFSETH (Optical Fibre Embedded into technical Textile for Healthcare) uses optical sensor technologies to extend the current capabilities of medical technical textiles.
A wireless sensor network for monitoring volcano-seismic signals
NASA Astrophysics Data System (ADS)
Lopes Pereira, R.; Trindade, J.; Gonçalves, F.; Suresh, L.; Barbosa, D.; Vazão, T.
2014-12-01
Monitoring of volcanic activity is important for learning about the properties of each volcano and for providing early warning systems to the population. Monitoring equipment can be expensive, and thus the degree of monitoring varies from volcano to volcano and from country to country, with many volcanoes not being monitored at all. This paper describes the development of a wireless sensor network (WSN) capable of collecting geophysical measurements on remote active volcanoes. Our main goals were to create a flexible, easy-to-deploy and easy-to-maintain, adaptable, low-cost WSN for temporary or permanent monitoring of seismic tremor. The WSN enables the easy installation of a sensor array in an area of tens of thousands of m2, allowing the location of the magma movements causing the seismic tremor to be calculated. This WSN can be used by recording data locally for later analysis or by continuously transmitting it in real time to a remote laboratory for real-time analyses. We present a set of tests that validate different aspects of our WSN, including a deployment on a suspended bridge for measuring its vibration.
Continuous, real time microwave plasma element sensor
Woskov, P.P.; Smatlak, D.L.; Cohn, D.R.; Wittle, J.K.; Titus, C.H.; Surma, J.E.
1995-12-26
Microwave-induced plasma is described for continuous, real time trace element monitoring under harsh and variable conditions. The sensor includes a source of high power microwave energy and a shorted waveguide made of a microwave conductive, refractory material communicating with the source of the microwave energy to generate a plasma. The high power waveguide is constructed to be robust in a hot, hostile environment. It includes an aperture for the passage of gases to be analyzed and a spectrometer is connected to receive light from the plasma. Provision is made for real time in situ calibration. The spectrometer disperses the light, which is then analyzed by a computer. The sensor is capable of making continuous, real time quantitative measurements of desired elements, such as the heavy metals lead and mercury. 3 figs.
Continuous welding of unidirectional fiber reinforced thermoplastic tape material
NASA Astrophysics Data System (ADS)
Schledjewski, Ralf
2017-10-01
Continuous welding techniques like thermoplastic tape placement with in situ consolidation offer several advantages over traditional manufacturing processes like autoclave consolidation, thermoforming, etc. However, still there is a need to solve several important processing issues before it becomes a viable economic process. Intensive process analysis and optimization has been carried out in the past through experimental investigation, model definition and simulation development. Today process simulation is capable to predict resulting consolidation quality. Effects of material imperfections or process parameter variations are well known. But using this knowledge to control the process based on online process monitoring and according adaption of the process parameters is still challenging. Solving inverse problems and using methods for automated code generation allowing fast implementation of algorithms on targets are required. The paper explains the placement technique in general. Process-material-property-relationships and typical material imperfections are described. Furthermore, online monitoring techniques and how to use them for a model based process control system are presented.
Mortellaro, Mark; DeHennis, Andrew
2014-11-15
A continuous glucose monitoring (CGM) system consisting of a wireless, subcutaneously implantable glucose sensor and a body-worn transmitter is described and clinical performance over a 28 day implant period in 12 type 1 diabetic patients is reported. The implantable sensor is constructed of a fluorescent, boronic-acid based glucose indicating polymer coated onto a miniaturized, polymer-encased optical detection system. The external transmitter wirelessly communicates with and powers the sensor and contains Bluetooth capability for interfacing with a Smartphone application. The accuracy of 19 implanted sensors were evaluated over 28 days during 6 in-clinic sessions by comparing the CGM glucose values to venous blood glucose measurements taken every 15 min. Mean absolute relative difference (MARD) for all sensors was 11.6 ± 0.7%, and Clarke error grid analysis showed that 99% of paired data points were in the combined A and B zones. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Lee, Seung Min; Byeon, Hang Jin; Lee, Joong Hoon; Baek, Dong Hyun; Lee, Kwang Ho; Hong, Joung Sook; Lee, Sang-Hoon
2014-08-01
The long-term, continuous, inconspicuous, and noiseless monitoring of bioelectrical signals is critical to the early diagnosis of disease and monitoring health and wellbeing. However, it is a major challenge to record the bioelectrical signals of patients going about their daily lives because of the difficulties of integrating skin-like conducting materials, the measuring system, and medical technologies in a single platform. In this study, we developed a thin epidermis-like electronics that is capable of repeated self-adhesion onto skin, integration with commercial electronic components through soldering, and conformal contact without serious motion artifacts. Using well-mixed carbon nanotubes and adhesive polydimethylsiloxane, we fabricated an epidermal carbon nanotube electronics which maintains excellent conformal contact even within wrinkles in skin, and can be used to record electrocardiogram signals robustly. The electrode is biocompatible and can even be operated in water, which means patients can live normal lives despite wearing a complicated recording system.
Lee, Seung Min; Byeon, Hang Jin; Lee, Joong Hoon; Baek, Dong Hyun; Lee, Kwang Ho; Hong, Joung Sook; Lee, Sang-Hoon
2014-01-01
The long-term, continuous, inconspicuous, and noiseless monitoring of bioelectrical signals is critical to the early diagnosis of disease and monitoring health and wellbeing. However, it is a major challenge to record the bioelectrical signals of patients going about their daily lives because of the difficulties of integrating skin-like conducting materials, the measuring system, and medical technologies in a single platform. In this study, we developed a thin epidermis-like electronics that is capable of repeated self-adhesion onto skin, integration with commercial electronic components through soldering, and conformal contact without serious motion artifacts. Using well-mixed carbon nanotubes and adhesive polydimethylsiloxane, we fabricated an epidermal carbon nanotube electronics which maintains excellent conformal contact even within wrinkles in skin, and can be used to record electrocardiogram signals robustly. The electrode is biocompatible and can even be operated in water, which means patients can live normal lives despite wearing a complicated recording system. PMID:25123356
Wu, Hongpeng; Dong, Lei; Zheng, Huadan; Yu, Yajun; Ma, Weiguang; Zhang, Lei; Yin, Wangbao; Xiao, Liantuan; Jia, Suotang; Tittel, Frank K.
2017-01-01
Quartz-enhanced photoacoustic spectroscopy (QEPAS) is a sensitive gas detection technique which requires frequent calibration and has a long response time. Here we report beat frequency (BF) QEPAS that can be used for ultra-sensitive calibration-free trace-gas detection and fast spectral scan applications. The resonance frequency and Q-factor of the quartz tuning fork (QTF) as well as the trace-gas concentration can be obtained simultaneously by detecting the beat frequency signal generated when the transient response signal of the QTF is demodulated at its non-resonance frequency. Hence, BF-QEPAS avoids a calibration process and permits continuous monitoring of a targeted trace gas. Three semiconductor lasers were selected as the excitation source to verify the performance of the BF-QEPAS technique. The BF-QEPAS method is capable of measuring lower trace-gas concentration levels with shorter averaging times as compared to conventional PAS and QEPAS techniques and determines the electrical QTF parameters precisely. PMID:28561065
Space Weather Monitoring with GOES-16: Instruments and Data Products
NASA Astrophysics Data System (ADS)
Loto'aniu, Paul; Rodriguez, Juan; Redmon, Robert; Machol, Janet; Kress, Brian; Seaton, Daniel; Darnel, Jonathan; Rowland, William; Tilton, Margaret; Denig, William; Boudouridis, Athanasios; Codrescu, Stefan; Claycomb, Abram
2017-04-01
Since their inception in the 1970s, the NOAA GOES satellites have monitored the sources of space weather on the sun and the effects of space weather at Earth. The GOES-16 spacecraft, the first of four satellites as part of the GOES-R spacecraft series mission, was launched in November 2016. The space weather instruments on GOES-16 have significantly improved capabilities over older GOES instruments. They will image the sun's atmosphere in extreme-ultraviolet and monitor solar irradiance in X-rays and UV, solar energetic particles, magnetospheric energetic particles, galactic cosmic rays, and the Earth's magnetic field. These measurements are important for providing alerts and warnings to many worldwide customers, including the NOAA National Weather Service, satellite operators, the power utilities, and NASA's human activities in space. This presentation reviews the capabilities of the GOES-16 space weather instruments and presents initial post launch data along with a discussion of calibration activities and the current status of the instruments. We also describe the space weather Level 2+ products that are being developed for the GOES-R series including solar thematic maps, automated magnetopause crossing detection and spacecraft charging estimates. These new and continuing data products will be an integral part of NOAA space weather operations in the GOES-R era.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bosas, Joseph
The National Security Campus (NSC) collects a large amount of test data used The National Security Campus (NSC) collects a large amount of test data used to accept high value and high rigor product. The data has been used historically to support root cause analysis when anomalies are detected in down-stream processes. The opportunity to use the data for predictive failure analysis however, had never been exploited. The primary goal of the Test Data Monitor (TDM) software is to provide automated capabilities to analyze data in near-real-time and report trends that foreshadow actual product failures. To date, the aerospace industrymore » as a whole is challenged at utilizing collected data to the degree that modern technology allows. As a result of the innovation behind TDM, Honeywell is able to monitor millions of data points through a multitude of SPC algorithms continuously and autonomously so that our personnel resources can more efficiently and accurately direct their attention to suspect processes or features. TDM’s capabilities have been recognized by our U.S. Department of Energy National Nuclear Security Administration (NNSA) sponsor for potential use at other sites within the NNSA. This activity supports multiple initiatives including expectations of the NNSA and broader corporate goals that center around data-based quality controls on production.« less
Kubisch, Rebekka; Bohrn, Ulrich; Fleischer, Maximilian; Stütz, Evamaria
2012-01-01
Pollution of drinking water sources represents a continuously emerging problem in global environmental protection. Novel techniques for real-time monitoring of water quality, capable of the detection of unanticipated toxic and bioactive substances, are urgently needed. In this study, the applicability of a cell-based sensor system using selected eukaryotic cell lines for the detection of aquatic pollutants is shown. Readout parameters of the cells were the acidification (metabolism), oxygen consumption (respiration) and impedance (morphology) of the cells. A variety of potential cytotoxic classes of substances (heavy metals, pharmaceuticals, neurotoxins, waste water) was tested with monolayers of L6 cells (rat myoblasts). The cytotoxicity or cellular effects induced by inorganic ions (Ni2+ and Cu2+) can be detected with the metabolic parameters acidification and respiration down to 0.5 mg/L, whereas the detection limit for other substances like nicotine and acetaminophen are rather high, in the range of 0.1 mg/L and 100 mg/L. In a close to application model a real waste water sample shows detectable signals, indicating the existence of cytotoxic substances. The results support the paradigm change from single substance detection to the monitoring of overall toxicity. PMID:22737014
Kubisch, Rebekka; Bohrn, Ulrich; Fleischer, Maximilian; Stütz, Evamaria
2012-01-01
Pollution of drinking water sources represents a continuously emerging problem in global environmental protection. Novel techniques for real-time monitoring of water quality, capable of the detection of unanticipated toxic and bioactive substances, are urgently needed. In this study, the applicability of a cell-based sensor system using selected eukaryotic cell lines for the detection of aquatic pollutants is shown. Readout parameters of the cells were the acidification (metabolism), oxygen consumption (respiration) and impedance (morphology) of the cells. A variety of potential cytotoxic classes of substances (heavy metals, pharmaceuticals, neurotoxins, waste water) was tested with monolayers of L6 cells (rat myoblasts). The cytotoxicity or cellular effects induced by inorganic ions (Ni(2+) and Cu(2+)) can be detected with the metabolic parameters acidification and respiration down to 0.5 mg/L, whereas the detection limit for other substances like nicotine and acetaminophen are rather high, in the range of 0.1 mg/L and 100 mg/L. In a close to application model a real waste water sample shows detectable signals, indicating the existence of cytotoxic substances. The results support the paradigm change from single substance detection to the monitoring of overall toxicity.
Filling the monitoring gaps across the US Arctic by permanently adopting USArray stations
NASA Astrophysics Data System (ADS)
Buurman, H.; West, M. E.
2017-12-01
The USArray project represents a truly unique opportunity to fundamentally change geophysical monitoring in the US Arctic. The addition of more than 200 stations capable of recording seismic, infrasound, ground temperature and meteorologic data has brought a diverse group of organizations to the table, fostering new connections and collaborations between scientists whose paths otherwise would not cross. With the array slated for removal beginning in 2019, there is a window of opportunity to advocate for permanently retaining a subset of the USArray stations. The Alaska Earthquake Center has drafted a plan to permanently adopt a subset of the USArray stations and maintain them as part of the seismic network in Alaska. The expanded seismic network would substantially improve on the Alaska Earthquake Center's ongoing mission to advance Alaska's resilience to earthquake hazards. By continuing to provide public climate and infrasound data, the Alaska Earthquake Center would also fill important gaps in the weather, wildfire and climate research monitoring networks across Alaska. The many challenges in adopting USArray stations include choosing which stations to retain, upgrading the power systems to have 24/7 data transmission through the long Alaskan winter months, and lowering the costs of continuous telemetry.
Thermal diffusivity and nuclear spin relaxation: a continuous wave free precession NMR study.
Venâncio, Tiago; Engelsberg, Mario; Azeredo, Rodrigo B V; Colnago, Luiz A
2006-07-01
Continuous wave free precession (CWFP) nuclear magnetic resonance is capable of yielding quantitative and easily obtainable information concerning the kinetics of processes that change the relaxation rates of the nuclear spins through the action of some external agent. In the present application, heat flow from a natural rubber sample to a liquid nitrogen thermal bath caused a large temperature gradient leading to a non-equilibrium temperature distribution. The ensuing local changes in the relaxation rates could be monitored by the decay of the CWFP signals and, from the decays, it was possible to ascertain the prevalence of a diffusive process and to obtain an average value for the thermal diffusivity.
Magnetic Earth Ionosphere Resonant Frequencies
NASA Technical Reports Server (NTRS)
Spaniol, Craig
1994-01-01
The Community College Division is pleased to report progress of NASA funded research at West Virginia State College. During this reporting period, the project research group has continued with activities to develop instrumentation capability designed to monitor resonant cavity frequencies in the atmospheric region between the Earth's surface and the ionosphere. In addition, the project's principal investigator, Dr. Craig Spaniol, and NASA technical officer, Dr. John Sutton, have written and published technical papers intended to expand the scientific and technical framework needed for project research. This research continues to provide an excellent example of government and education working together to provide significant research in the college environment. This cooperative effort has provided many students with technical project work which compliments their education.
Modular Subsea Monitoring Network (MSM) - Realizing Integrated Environmental Monitoring Solutions
NASA Astrophysics Data System (ADS)
Mosch, Thomas; Fietzek, Peer
2016-04-01
In a variety of scientific and industrial application areas, ranging i.e. from the supervision of hydrate fields over the detection and localization of fugitive emissions from subsea oil and gas production to fish farming, fixed point observatories are useful and applied means. They monitor the water column and/or are placed at the sea floor over long periods of time. They are essential oceanographic platforms for providing valuable long-term time series data and multi-parameter measurements. Various mooring and observatory endeavors world-wide contribute valuable data needed for understanding our planet's ocean systems and biogeochemical processes. Continuously powered cabled observatories enable real-time data transmission from spots of interest close to the shore or to ocean infrastructures. Independent of the design of the observatories they all rely on sensors which demands for regular maintenance. This work is in most cases associated with cost-intensive maintenance on a regular time basis for the entire sensor carrying fixed platform. It is mandatory to encounter this asset for long-term monitoring by enhancing hardware efficiency. On the basis of two examples of use from the area of hydrate monitoring (off Norway and Japan) we will present the concept of the Modular Subsea Monitoring Network (MSM). The modular, scalable and networking capabilities of the MSM allow for an easy adaptation to different monitoring tasks. Providing intelligent power management, combining chemical and acoustical sensors, adaptation of the payload according to the monitoring tasks, autonomous powering, modular design for easy transportation, storage and mobilization, Vessel of Opportunity-borne launching and recovery capability with a video-guided launcher system and a rope recovery system are key facts addressed during the development of the MSM. Step by step the MSM concept applied to the observatory hardware will also be extended towards the gathered data to maximize the efficiency of subsea monitoring in a variety of applications.
Advances in Machine Technology.
Clark, William R; Villa, Gianluca; Neri, Mauro; Ronco, Claudio
2018-01-01
Continuous renal replacement therapy (CRRT) machines have evolved into devices specifically designed for critically ill over the past 40 years. In this chapter, a brief history of this evolution is first provided, with emphasis on the manner in which changes have been made to address the specific needs of the critically ill patient with acute kidney injury. Subsequently, specific examples of technology developments for CRRT machines are discussed, including the user interface, pumps, pressure monitoring, safety features, and anticoagulation capabilities. © 2018 S. Karger AG, Basel.
Simulation of wear in overhead current collection systems
NASA Astrophysics Data System (ADS)
Klapas, D.; Benson, F. A.; Hackam, R.
1985-09-01
Apparatus have been designed to simulate the wear from conductors in a railway current collection system. The main features of the wear machine include a continuous monitoring of the strip wear, strip traversing, and dwell-time test facilities for the investigation of oxidational wear on a copper disk, simulating the contact wire. Disk wear is measured in situ by the spherical indentations method. Typical results of the specific wear rate are also presented to demonstrate the capability of the apparatus.
Combined effects of hydrazine exposure and endurance testing on solenoid-actuated valve performance
NASA Technical Reports Server (NTRS)
Hagler, R., Jr.
1974-01-01
Results are presented from a test program which was conducted to assess the capability of various solenoid-actuated valve design concepts to provide performance characteristics commensurate with long-duration (ten-year) missions to explore the outer planets. The valves were installed in a hydrazine flow test setup and periodically cycled during a nine-month test period under test conditions comparable to anticipated mission operating conditions. In situ valve performance was periodically determined, and leakage was continuously monitored.
NASA Technical Reports Server (NTRS)
Hansen, James
1993-01-01
We summarize reasons for the Climsat proposition; we also stress the need for certain climate monitoring other than that supplied by Climsat, especially solar irradiance, and we stress the complementarity of Climsat monitoring to plans for detailed EOS measurements. Existing and planned observations will not provide measurements of most climate forcing and feedback parameters with the accuracy needed to measure plausible decadal changes. Stratospheric water vapor and aerosol requirements are not met, for example, even though the present SAGE II instrument on the ERBS spacecraft measures those two parameters accurately, because ERBS is not expected to last more than a few years and it does not provide global coverage. We stress the imminence of a potential data gap even of those parameters, such as solar irradiance and stratospheric aerosols, for which monitoring capability has been proven and currently is in place. We find that most of the missing global climate forcings and feedbacks can be measured by three small instruments, which would need to be deployed on two spacecraft to obtain adequate sampling and global coverage. The monitoring must be maintained continuously for at least two decades. Such continuity can be attained by replacing a satellite after it fails, the functioning satellite providing calibration transfer to the new satellite. Certain complementary monitoring data are also needed, including solar monitoring from space, in order to fully meet requirements for monitoring all the climate forcings and feedbacks. The complementary data needs are discussed toward the end of this section. We summarize the proposed Climsat measurements and compare the expected accuracies to those which are needed to analyze changes of the global thermal energy cycle on decadal time scales. We stress the need to get broader participation of the scientific community in the monitoring and analysis activity. Finally, we discuss related climate process and diagnostic measurements.
SCAILET - An intelligent assistant for satellite ground terminal operations
NASA Technical Reports Server (NTRS)
Shahidi, A. K.; Crapo, J. A.; Schlegelmilch, R. F.; Reinhart, R. C.; Petrik, E. J.; Walters, J. L.; Jones, R. E.
1992-01-01
Space communication artificial intelligence for the link evaluation terminal (SCAILET) is an experimenter interface to the link evaluation terminal (LET) developed by NASA through the application of artificial intelligence to an advanced ground terminal. The high-burst-rate (HBR) LET provides the required capabilities for wideband communications experiments with the advanced communications technology satellite (ACTS). The HBR-LET terminal consists of seven major subsystems and is controlled and monitored by a minicomputer through an IEEE-488 or RS-232 interface. Programming scripts configure HBR-LET and allow data acquisition but are difficult to use and therefore the full capabilities of the system are not utilized. An intelligent assistant module was developed as part of the SCAILET module and solves problems encountered during configuration of the HBR-LET system. This assistant is a graphical interface with an expert system running in the background and allows users to configure instrumentation, program sequences and reference documentation. The simplicity of use makes SCAILET a superior interface to the ASCII terminal and continuous monitoring allows nearly flawless configuration and execution of HBR-LET experiments.
A Wirelessly Powered Micro-Spectrometer for Neural Probe-Pin Device
NASA Technical Reports Server (NTRS)
Choi, Sang H.; Kim, Min Hyuck; Song, Kyo D.; Yoon, Hargsoon; Lee, Uhn
2015-01-01
Treatment of neurological anomalies, places stringent demands on device functionality and size. A micro-spectrometer has been developed for use as an implantable neural probe to monitor neuro-chemistry in synapses. The microspectrometer, based on a NASA-invented miniature Fresnel grating, is capable of differentiating the emission spectra from various brain tissues. The micro-spectrometer meets the size requirements, and is able to probe the neuro-chemistry and suppression voltage typically associated with a neural anomaly. This neural probe-pin device (PPD) is equipped with wireless power technology (WPT) enabling operation in a continuous manner without requiring an implanted battery. The implanted neural PPD, together with a neural electronics interface and WPT, allow real-time measurement and control/feedback for remediation of neural anomalies. The design and performance of the combined PPD/WPT device for monitoring dopamine in a rat brain will be presented to demonstrate the current level of development. Future work on this device will involve the addition of an embedded expert system capable of performing semi-autonomous management of neural functions through a routine of sensing, processing, and control.
A wirelessly powered microspectrometer for neural probe-pin device
NASA Astrophysics Data System (ADS)
Choi, Sang H.; Kim, Min H.; Song, Kyo D.; Yoon, Hargsoon; Lee, Uhn
2015-12-01
Treatment of neurological anomalies, whether done invasively or not, places stringent demands on device functionality and size. We have developed a micro-spectrometer for use as an implantable neural probe to monitor neuro-chemistry in synapses. The micro-spectrometer, based on a NASA-invented miniature Fresnel grating, is capable of differentiating the emission spectra from various brain tissues. The micro-spectrometer meets the size requirements, and is able to probe the neuro-chemistry and suppression voltage typically associated with a neural anomaly. This neural probe-pin device (PPD) is equipped with wireless power technology (WPT) to enable operation in a continuous manner without requiring an implanted battery. The implanted neural PPD, together with a neural electronics interface and WPT, enable real-time measurement and control/feedback for remediation of neural anomalies. The design and performance of the combined PPD/WPT device for monitoring dopamine in a rat brain will be presented to demonstrate the current level of development. Future work on this device will involve the addition of an embedded expert system capable of performing semi-autonomous management of neural functions through a routine of sensing, processing, and control.
Plate motions and deformations from geologic and geodetic data
NASA Technical Reports Server (NTRS)
Jordan, Thomas H.
1990-01-01
An analysis of geodetic data in the vicinity of the Crustal Dynamics Program (CDP) site at Vandenberg Air Force Base (VNDN) is presented. The utility of space-geodetic data in the monitoring of transient strains associated with earthquakes in tectonically active areas like California is investigated. Particular interest is in the possibility that space-geodetic methods may be able to provide critical new data on deformations precursory to large seismic events. Although earthquake precursory phenomena are not well understood, the monitoring of small strains in the vicinity of active faults is a promising technique for studying the mechanisms that nucleate large earthquakes and, ultimately, for earthquake prediction. Space-geodetic techniques are now capable of measuring baselines of tens to hundreds of kilometers with a precision of a few parts in 108. Within the next few years, it will be possible to record and analyze large-scale strain variations with this precision continuously in real time. Thus, space-geodetic techniques may become tools for earthquake prediction. In anticipation of this capability, several questions related to the temporal and spatial scales associated with subseismic deformation transients are examined.
Liu, Nehemiah T; Salinas, Jose
2016-11-01
Although air transport medical services are today an integral part of trauma systems in most developed countries, to date, there are no reviews on recent innovations in civilian en route care. The purpose of this systematic review was to identify potential machine learning and new vital signs monitoring technologies in civilian en route care that could help close civilian and military capability gaps in monitoring and the early detection and treatment of various trauma injuries. MEDLINE, the Cochrane Database of Systematic Reviews, and citation review of relevant primary and review articles were searched for studies involving civilian en route care, air medical transport, and technologies from January 2005 to November 2015. Data were abstracted on study design, population, year, sponsors, innovation category, details of technologies, and outcomes. Thirteen observational studies involving civilian medical transport met inclusion criteria. Studies either focused on machine learning and software algorithms (n = 5), new vital signs monitoring (n = 6), or both (n = 2). Innovations involved continuous digital acquisition of physiologic data and parameter extraction. Importantly, all studies (n = 13) demonstrated improved outcomes where applicable and potential use during civilian and military en route care. However, almost all studies required further validation in prospective and/or randomized controlled trials. Potential machine learning technologies and monitoring of novel vital signs such as heart rate variability and complexity in civilian en route care could help enhance en route care for our nation's war fighters. In a complex global environment, they could potentially fill capability gaps such as monitoring and the early detection and treatment of various trauma injuries. However, the impact of these innovations and technologies will require further validation before widespread acceptance and prehospital use. Systematic review, level V.
NASA Technical Reports Server (NTRS)
Underwood, Lauren
2013-01-01
ForWarn is a satellite-based forest monitoring tool that is being used to detect and monitor disturbances to forest conditions and forest health. It has been developed through the synergistic efforts, capabilities and contributions of four federal agencies, including the US Forest Service Eastern Forest and Western Wildland Environmental Threat Assessment Centers, NASA Stennis Space Center (SSC), Department of Energy's (DOE) Oak Ridge National Laboratory (ORNL) and US Geological Survey Earth (USGS) Earth Research Observation System (EROS), as well as university partners, including the University of North Carolina Asheville's National Environmental Modeling and Analysis Center (NEMAC). This multi-organizational partnership is key in producing a unique, path finding near real-time forest monitoring system that is now used by many federal, state and local government end-users. Such a system could not have been produced so effectively by any of these groups on their own. The forests of the United States provide many societal values and benefits, ranging from ecological, economic, cultural, to recreational. Therefore, providing a reliable and dependable forest and other wildland monitoring system is important to ensure the continued health, productivity, sustainability and prudent use of our Nation's forests and forest resources. ForWarn does this by producing current health indicator maps of our nation's forests based on satellite data from NASA's MODIS (Moderate Resolution Imaging Spectroradiometer) sensors. Such a capability can provide noteworthy value, cost savings and significant impact at state and local government levels because at those levels of government, once disturbances are evident and cause negative impacts, a response must be carried out. The observations that a monitoring system like ForWarn provide, can also contribute to a much broader-scale understanding of vegetation disturbances.
ESUMS: a mobile system for continuous home monitoring of rehabilitation patients.
Strisland, Frode; Svagård, Ingrid; Seeberg, Trine M; Mathisen, Bjørn Magnus; Vedum, Jon; Austad, Hanne O; Liverud, Anders E; Kofod-Petersen, Anders; Bendixen, Ole Christian
2013-01-01
The pressure on the healthcare services is building up for several reasons. The ageing population trend, the increase in life-style related disease prevalence, as well as the increased treatment capabilities with associated general expectation all add pressure. The use of ambient healthcare technologies can alleviate the situation by enabling time and cost-efficient monitoring and follow-up of patients discharged from hospital care. We report on an ambulatory system developed for monitoring of physical rehabilitation patients. The system consists of a wearable multisensor monitoring device; a mobile phone with client application aggregating the data collected; a service-oriented-architecture based server solution; and a PC application facilitating patient follow-up by their health professional carers. The system has been tested and verified for accuracy in controlled environment trials on healthy volunteers, and also been usability tested by 5 congestive heart failure patients and their nurses. This investigation indicated that patients were able to use the system, and that nurses got an improved basis for patient follow-up.
Development of a brain monitoring system for multimodality investigation in awake rats.
Limnuson, Kanokwan; Narayan, Raj K; Chiluwal, Amrit; Bouton, Chad; Ping Wang; Chunyan Li
2016-08-01
Multimodal brain monitoring is an important approach to gain insight into brain function, modulation, and pathology. We have developed a unique micromachined neural probe capable of real-time continuous monitoring of multiple physiological, biochemical and electrophysiological variables. However, to date, it has only been used in anesthetized animals due to a lack of an appropriate interface for awake animals. We have developed a versatile headstage for recording the small neural signal and bridging the sensors to the remote sensing units for multimodal brain monitoring in awake rats. The developed system has been successfully validated in awake rats by simultaneously measuring four cerebral variables: electrocorticography, oxygen tension, temperature and cerebral blood flow. Reliable signal recordings were obtained with minimal artifacts from movement and environmental noise. For the first time, multiple variables of cerebral function and metabolism were simultaneously recorded from awake rats using a single neural probe. The system is envisioned for studying the effects of pharmacologic treatments, mapping the development of central nervous system diseases, and better understanding normal cerebral physiology.
Ferreira, J; Seoane, F; Lindecrantz, K
2013-01-01
Personalised Health Systems (PHS) that could benefit the life quality of the patients as well as decreasing the health care costs for society among other factors are arisen. The purpose of this paper is to study the capabilities of the System-on-Chip Impedance Network Analyser AD5933 performing high speed single frequency continuous bioimpedance measurements. From a theoretical analysis, the minimum continuous impedance estimation time was determined, and the AD5933 with a custom 4-Electrode Analog Front-End (AFE) was used to experimentally determine the maximum continuous impedance estimation frequency as well as the system impedance estimation error when measuring a 2R1C electrical circuit model. Transthoracic Electrical Bioimpedance (TEB) measurements in a healthy subject were obtained using 3M gel electrodes in a tetrapolar lateral spot electrode configuration. The obtained TEB raw signal was filtered in MATLAB to obtain the respiration and cardiogenic signals, and from the cardiogenic signal the impedance derivative signal (dZ/dt) was also calculated. The results have shown that the maximum continuous impedance estimation rate was approximately 550 measurements per second with a magnitude estimation error below 1% on 2R1C-parallel bridge measurements. The displayed respiration and cardiac signals exhibited good performance, and they could be used to obtain valuable information in some plethysmography monitoring applications. The obtained results suggest that the AD5933-based monitor could be used for the implementation of a portable and wearable Bioimpedance plethysmograph that could be used in applications such as Impedance Cardiography. These results combined with the research done in functional garments and textile electrodes might enable the implementation of PHS applications in a relatively short time from now.
Jung, HaRim; Song, MoonBae; Youn, Hee Yong; Kim, Ung Mo
2015-09-18
A content-matched (CM) rangemonitoring query overmoving objects continually retrieves the moving objects (i) whose non-spatial attribute values are matched to given non-spatial query values; and (ii) that are currently located within a given spatial query range. In this paper, we propose a new query indexing structure, called the group-aware query region tree (GQR-tree) for efficient evaluation of CMrange monitoring queries. The primary role of the GQR-tree is to help the server leverage the computational capabilities of moving objects in order to improve the system performance in terms of the wireless communication cost and server workload. Through a series of comprehensive simulations, we verify the superiority of the GQR-tree method over the existing methods.
Methods and techniques for measuring gas emissions from agricultural and animal feeding operations.
Hu, Enzhu; Babcock, Esther L; Bialkowski, Stephen E; Jones, Scott B; Tuller, Markus
2014-01-01
Emissions of gases from agricultural and animal feeding operations contribute to climate change, produce odors, degrade sensitive ecosystems, and pose a threat to public health. The complexity of processes and environmental variables affecting these emissions complicate accurate and reliable quantification of gas fluxes and production rates. Although a plethora of measurement technologies exist, each method has its limitations that exacerbate accurate quantification of gas fluxes. Despite a growing interest in gas emission measurements, only a few available technologies include real-time, continuous monitoring capabilities. Commonly applied state-of-the-art measurement frameworks and technologies were critically examined and discussed, and recommendations for future research to address real-time monitoring requirements for forthcoming regulation and management needs are provided.
NASA Technical Reports Server (NTRS)
Wallace, J. W.; Lovelady, R. W.; Ferguson, R. L.
1981-01-01
A prototype water quality monitoring system is described which offers almost continuous in situ monitoring. The two-man portable system features: (1) a microprocessor controlled central processing unit which allows preprogrammed sampling schedules and reprogramming in situ; (2) a subsurface unit for multiple depth capability and security from vandalism; (3) an acoustic data link for communications between the subsurface unit and the surface control unit; (4) eight water quality parameter sensors; (5) a nonvolatile magnetic bubble memory which prevents data loss in the event of power interruption; (6) a rechargeable power supply sufficient for 2 weeks of unattended operation; (7) a water sampler which can collect samples for laboratory analysis; (8) data output in direct engineering units on printed tape or through a computer compatible link; (9) internal electronic calibration eliminating external sensor adjustment; and (10) acoustic location and recovery systems. Data obtained in Saginaw Bay, Lake Huron are tabulated.
Toward Wireless Health Monitoring via an Analog Signal Compression-Based Biosensing Platform.
Zhao, Xueyuan; Sadhu, Vidyasagar; Le, Tuan; Pompili, Dario; Javanmard, Mehdi
2018-06-01
Wireless all-analog biosensor design for the concurrent microfluidic and physiological signal monitoring is presented in this paper. The key component is an all-analog circuit capable of compressing two analog sources into one analog signal by the analog joint source-channel coding (AJSCC). Two circuit designs are discussed, including the stacked-voltage-controlled voltage source (VCVS) design with the fixed number of levels, and an improved design, which supports a flexible number of AJSCC levels. Experimental results are presented on the wireless biosensor prototype, composed of printed circuit board realizations of the stacked-VCVS design. Furthermore, circuit simulation and wireless link simulation results are presented on the improved design. Results indicate that the proposed wireless biosensor is well suited for sensing two biological signals simultaneously with high accuracy, and can be applied to a wide variety of low-power and low-cost wireless continuous health monitoring applications.
Background: Preflight Screening, In-flight Capabilities, and Postflight Testing
NASA Technical Reports Server (NTRS)
Gibson, Charles Robert; Duncan, James
2009-01-01
Recommendations for minimal in-flight capabilities: Retinal Imaging - provide in-flight capability for the visual monitoring of ocular health (specifically, imaging of the retina and optic nerve head) with the capability of downlinking video/still images. Tonometry - provide more accurate and reliable in-flight capability for measuring intraocular pressure. Ultrasound - explore capabilities of current on-board system for monitoring ocular health. We currently have limited in-flight capabilities on board the International Space Station for performing an internal ocular health assessment. Visual Acuity, Direct Ophthalmoscope, Ultrasound, Tonometry(Tonopen):
Low-Cost, Distributed Environmental Monitors for Factory Worker Health
Thomas, Geb W.; Sousan, Sinan; Tatum, Marcus; Liu, Xiaoxing; Zuidema, Christopher; Fitzpatrick, Mitchell; Koehler, Kirsten A.; Peters, Thomas M.
2018-01-01
An integrated network of environmental monitors was developed to continuously measure several airborne hazards in a manufacturing facility. The monitors integrated low-cost sensors to measure particulate matter, carbon monoxide, ozone and nitrogen dioxide, noise, temperature and humidity. The monitors were developed and tested in situ for three months in several overlapping deployments, before a full cohort of 40 was deployed in a heavy vehicle manufacturing facility for a year of data collection. The monitors collect data from each sensor and report them to a central database every 5 min. The work includes an experimental validation of the particle, gas and noise monitors. The R2 for the particle sensor ranges between 0.98 and 0.99 for particle mass densities up to 300 μg/m3. The R2 for the carbon monoxide sensor is 0.99 for concentrations up to 15 ppm. The R2 for the oxidizing gas sensor is 0.98 over the sensitive range from 20 to 180 ppb. The noise monitor is precise within 1% between 65 and 95 dBA. This work demonstrates the capability of distributed monitoring as a means to examine exposure variability in both space and time, building an important preliminary step towards a new approach for workplace hazard monitoring. PMID:29751534
A Smartphone-Based Driver Safety Monitoring System Using Data Fusion
Lee, Boon-Giin; Chung, Wan-Young
2012-01-01
This paper proposes a method for monitoring driver safety levels using a data fusion approach based on several discrete data types: eye features, bio-signal variation, in-vehicle temperature, and vehicle speed. The driver safety monitoring system was developed in practice in the form of an application for an Android-based smartphone device, where measuring safety-related data requires no extra monetary expenditure or equipment. Moreover, the system provides high resolution and flexibility. The safety monitoring process involves the fusion of attributes gathered from different sensors, including video, electrocardiography, photoplethysmography, temperature, and a three-axis accelerometer, that are assigned as input variables to an inference analysis framework. A Fuzzy Bayesian framework is designed to indicate the driver’s capability level and is updated continuously in real-time. The sensory data are transmitted via Bluetooth communication to the smartphone device. A fake incoming call warning service alerts the driver if his or her safety level is suspiciously compromised. Realistic testing of the system demonstrates the practical benefits of multiple features and their fusion in providing a more authentic and effective driver safety monitoring. PMID:23247416
Problems, pitfalls and probes: Welcome to the jungle of electrochemical noise technology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Edgemon, G.L.
1998-02-19
The rise in electrochemical noise (EN) as a corrosion monitoring technique has resulted in unique problems associated with the field application of this method. Many issues relate to the design of the EN probe electrodes. The ability of an electrochemical noise monitoring system to identify and discriminate between localized corrosion mechanisms is related primarily to the capability of the probe to separate the corrosion cell anode from the corresponding cathode. Effectiveness of this separation is largely determined by the details of and the proper design of the probe that is in the environment of interest. No single probe design ormore » geometry can be effectively use in every situation to monitor all types of corrosion. In this paper the authors focus on a case study and probe development history related to monitoring corrosion in an extremely hostile environment using EN. While the ultimate application of EN was and continues to be successful, the case study shows that patience and persistence was necessary to meet and properly implement the monitoring program. Other possible source of problems and frustration with implementing EN are also discussed.« less
NASA Astrophysics Data System (ADS)
Forcier, Bob
2003-09-01
This paper describes a digital-ultrasonic ground network, which forms an unique "unattended mote sensor system" for monitoring the environment, personnel, facilities, vehicles, power generation systems or aircraft in Counter-Terrorism, Force Protection, Prognostic Health Monitoring (PHM) and other ground applications. Unattended wireless smart sensor/tags continuously monitor the environment and provide alerts upon changes or disruptions to the environment. These wireless smart sensor/tags are networked utilizing ultrasonic wireless motes, hybrid RF/Ultrasonic Network Nodes and Base Stations. The network is monitored continuously with a 24/7 remote and secure monitoring system. This system utilizes physical objects such as a vehicle"s structure or a building to provide the media for two way secure communication of key metrics and sensor data and eliminates the "blind spots" that are common in RF solutions because of structural elements of buildings, etc. The digital-ultrasonic sensors have networking capability and a 32-bit identifier, which provide a platform for a robust data acquisition (DAQ) for a large amount of sensors. In addition, the network applies a unique "signature" of the environment by comparing sensor-to-sensor data to pick up on minute changes, which would signal an invasion of unknown elements or signal a potential tampering in equipment or facilities. The system accommodates satellite and other secure network uplinks in either RF or UWB protocols. The wireless sensors can be dispersed by ground or air maneuvers. In addition, the sensors can be incorporated into the structure or surfaces of vehicles, buildings, or clothing of field personnel.
Satellite-based Tropical Cyclone Monitoring Capabilities
NASA Astrophysics Data System (ADS)
Hawkins, J.; Richardson, K.; Surratt, M.; Yang, S.; Lee, T. F.; Sampson, C. R.; Solbrig, J.; Kuciauskas, A. P.; Miller, S. D.; Kent, J.
2012-12-01
Satellite remote sensing capabilities to monitor tropical cyclone (TC) location, structure, and intensity have evolved by utilizing a combination of operational and research and development (R&D) sensors. The microwave imagers from the operational Defense Meteorological Satellite Program [Special Sensor Microwave/Imager (SSM/I) and the Special Sensor Microwave Imager Sounder (SSMIS)] form the "base" for structure observations due to their ability to view through upper-level clouds, modest size swaths and ability to capture most storm structure features. The NASA TRMM microwave imager and precipitation radar continue their 15+ yearlong missions in serving the TC warning and research communities. The cessation of NASA's QuikSCAT satellite after more than a decade of service is sorely missed, but India's OceanSat-2 scatterometer is now providing crucial ocean surface wind vectors in addition to the Navy's WindSat ocean surface wind vector retrievals. Another Advanced Scatterometer (ASCAT) onboard EUMETSAT's MetOp-2 satellite is slated for launch soon. Passive microwave imagery has received a much needed boost with the launch of the French/Indian Megha Tropiques imager in September 2011, basically greatly supplementing the very successful NASA TRMM pathfinder with a larger swath and more frequent temporal sampling. While initial data issues have delayed data utilization, current news indicates this data will be available in 2013. Future NASA Global Precipitation Mission (GPM) sensors starting in 2014 will provide enhanced capabilities. Also, the inclusion of the new microwave sounder data from the NPP ATMS (Oct 2011) will assist in mapping TC convective structures. The National Polar orbiting Partnership (NPP) program's VIIRS sensor includes a day night band (DNB) with the capability to view TC cloud structure at night when sufficient lunar illumination exits. Examples highlighting this new capability will be discussed in concert with additional data fusion efforts.
Kroll, Ryan R; Boyd, J Gordon; Maslove, David M
2016-09-20
As the sensing capabilities of wearable devices improve, there is increasing interest in their application in medical settings. Capabilities such as heart rate monitoring may be useful in hospitalized patients as a means of enhancing routine monitoring or as part of an early warning system to detect clinical deterioration. To evaluate the accuracy of heart rate monitoring by a personal fitness tracker (PFT) among hospital inpatients. We conducted a prospective observational study of 50 stable patients in the intensive care unit who each completed 24 hours of heart rate monitoring using a wrist-worn PFT. Accuracy of heart rate recordings was compared with gold standard measurements derived from continuous electrocardiographic (cECG) monitoring. The accuracy of heart rates measured by pulse oximetry (Spo2.R) was also measured as a positive control. On a per-patient basis, PFT-derived heart rate values were slightly lower than those derived from cECG monitoring (average bias of -1.14 beats per minute [bpm], with limits of agreement of 24 bpm). By comparison, Spo2.R recordings produced more accurate values (average bias of +0.15 bpm, limits of agreement of 13 bpm, P<.001 as compared with PFT). Personal fitness tracker device performance was significantly better in patients in sinus rhythm than in those who were not (average bias -0.99 bpm vs -5.02 bpm, P=.02). Personal fitness tracker-derived heart rates were slightly lower than those derived from cECG monitoring in real-world testing and not as accurate as Spo2.R-derived heart rates. Performance was worse among patients who were not in sinus rhythm. Further clinical evaluation is indicated to see if PFTs can augment early warning systems in hospitals. ClinicalTrials.gov NCT02527408; https://clinicaltrials.gov/ct2/show/NCT02527408 (Archived by WebCite at http://www.webcitation.org/6kOFez3on).
Monitoring Fires from Space: a case study in transitioning from research to applications
NASA Astrophysics Data System (ADS)
Justice, C. O.; Giglio, L.; Vadrevu, K. P.; Csiszar, I. A.; Schroeder, W.; Davies, D.
2012-12-01
This paper discusses the heritage and relationships between science and applications in the context of global satellite-based fire monitoring. The development of algorithms for satellite-based fire detection has been supported primarily by NASA for the polar orbiters with a global focus, and initially by NOAA and more recently by EUMETSAT for the geostationary satellites, with a regional focus. As the feasibility and importance of space-based fire monitoring was recognized, satellite missions were designed to include fire detection capabilities. As a result, the algorithms and accuracy of the detections have improved. Due to the role of fire in the Earth System and its relevance to society, at each step in the development of the sensing capability the research has made a transition into fire-related applications to such an extent that there is now broad use of these data worldwide. The origin of the polar-orbiting satellite fire detection capability was with the AVHRR sensor beginning in the early 1980s, but was transformed with the launch of the EOS MODIS instruments, which included sensor characteristics specifically for fire detection. NASA gave considerable emphasis on the accuracy assessment of the fire detection and the development of fire characterization and burned area products from MODIS. Collaboration between the MODIS Fire Team and the RSAC USFS, initiated in the context of the Montana wildfires of 2001, prompted the development of a Rapid Response System for fire data and eventually led to operational use of MODIS data by the USFS for strategic fire monitoring. Building on this success, the Fire Information for Resource Management Systems (FIRMS) project was funded by NASA Applications to further develop products and services for the fire information community. The FIRMS was developed as a web-based geospatial tool, offering a range of geospatial data services, including SMS text messaging and is now widely used. This system, developed in the research domain, has now been successfully moved to an operational home at the UN FAO, as the Global Fire Information Management System (GFIMS). With a view to operational data continuity, the Suomi-NPP/JPSS VIIRS system was also designed with a fire detection capability, and is providing promising results for fire monitoring both from the standard operational production system and experimental product enhancements. International coordination on fire observations and outreach has been successfully developed under the GOFC GOLD program.
Lab-on-Skin: A Review of Flexible and Stretchable Electronics for Wearable Health Monitoring.
Liu, Yuhao; Pharr, Matt; Salvatore, Giovanni Antonio
2017-10-24
Skin is the largest organ of the human body, and it offers a diagnostic interface rich with vital biological signals from the inner organs, blood vessels, muscles, and dermis/epidermis. Soft, flexible, and stretchable electronic devices provide a novel platform to interface with soft tissues for robotic feedback and control, regenerative medicine, and continuous health monitoring. Here, we introduce the term "lab-on-skin" to describe a set of electronic devices that have physical properties, such as thickness, thermal mass, elastic modulus, and water-vapor permeability, which resemble those of the skin. These devices can conformally laminate on the epidermis to mitigate motion artifacts and mismatches in mechanical properties created by conventional, rigid electronics while simultaneously providing accurate, non-invasive, long-term, and continuous health monitoring. Recent progress in the design and fabrication of soft sensors with more advanced capabilities and enhanced reliability suggest an impending translation of these devices from the research lab to clinical environments. Regarding these advances, the first part of this manuscript reviews materials, design strategies, and powering systems used in soft electronics. Next, the paper provides an overview of applications of these devices in cardiology, dermatology, electrophysiology, and sweat diagnostics, with an emphasis on how these systems may replace conventional clinical tools. The review concludes with an outlook on current challenges and opportunities for future research directions in wearable health monitoring.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Irminger, Philip; Starke, Michael R; Dimitrovski, Aleksandar D
2014-01-01
Power system equipment manufacturers and researchers continue to experiment with novel overhead electric conductor designs that support better conductor performance and address congestion issues. To address the technology gap in testing these novel designs, Oak Ridge National Laboratory constructed the Powerline Conductor Accelerated Testing (PCAT) facility to evaluate the performance of novel overhead conductors in an accelerated fashion in a field environment. Additionally, PCAT has the capability to test advanced sensors and measurement methods for accessing overhead conductor performance and condition. Equipped with extensive measurement and monitoring devices, PCAT provides a platform to improve/validate conductor computer models and assess themore » performance of novel conductors. The PCAT facility and its testing capabilities are described in this paper.« less
Detection of generalized synchronization using echo state networks
NASA Astrophysics Data System (ADS)
Ibáñez-Soria, D.; Garcia-Ojalvo, J.; Soria-Frisch, A.; Ruffini, G.
2018-03-01
Generalized synchronization between coupled dynamical systems is a phenomenon of relevance in applications that range from secure communications to physiological modelling. Here, we test the capabilities of reservoir computing and, in particular, echo state networks for the detection of generalized synchronization. A nonlinear dynamical system consisting of two coupled Rössler chaotic attractors is used to generate temporal series consisting of time-locked generalized synchronized sequences interleaved with unsynchronized ones. Correctly tuned, echo state networks are able to efficiently discriminate between unsynchronized and synchronized sequences even in the presence of relatively high levels of noise. Compared to other state-of-the-art techniques of synchronization detection, the online capabilities of the proposed Echo State Network based methodology make it a promising choice for real-time applications aiming to monitor dynamical synchronization changes in continuous signals.
Building EOS capability for Malaysia - the options
NASA Astrophysics Data System (ADS)
Subari, M. D.; Hassan, A.
2014-06-01
Earth observation satellite (EOS) is currently a major tool to monitor earth dynamics and increase human understanding of earth surface process. Since the early 80s, Malaysia has been using EOS images for various applications, such as weather forecasting, land use mapping, agriculture, environment monitoring and others. Until now, all EOS images were obtained from foreign satellite systems. Realising on the strategic need of having its own capability, Malaysia embarked into EOS development programs in the early 90s. Starting with TiungSAT-1, a micro-satellite carrying small camera, then followed by RazakSAT, a small satellite carrying 2.5 m panchromatic (PAN) medium-aperture-camera, the current satellite program development, the RazakSAT-2, designed to carry a 1.0 m high resolution PAN and 4.0m multi-spectral camera, would become a strategic initiative of the government in developing and accelerating the nation's capability in the area of satellite technology and its application. Would this effort continue until all needs of the remote sensing community being fulfilled by its own EOS? This paper will analyze the intention of the Malaysian government through its National Space Policy and other related policy documents, and proposes some policy options on this. Key factors to be considered are specific data need of the EOS community, data availability and the more subjective political motivations such as national pride.
ConA-based glucose sensing using the long-lifetime azadioxatriangulenium fluorophore
NASA Astrophysics Data System (ADS)
Cummins, Brian; Simpson, Jonathan; Gryczynski, Zygmunt; Sørensen, Thomas Just; Laursen, Bo W.; Graham, Duncan; Birch, David; Coté, Gerard
2014-02-01
Fluorescent glucose sensing technologies have been identified as possible alternatives to current continuous glucose monitoring approaches. We have recently introduced a new, smart fluorescent ligand to overcome the traditional problems of ConA-based glucose sensors. For this assay to be translated into a continuous glucose monitoring device where both components are free in solution, the molecular weight of the smart fluorescent ligand must be increased. We have identified ovalbumin as a naturally-occurring glycoprotein that could serve as the core-component of a 2nd generation smart fluorescent ligand. It has a single asparagine residue that is capable of displaying an N-linked glycan and a similar isoelectric point to ConA. Thus, binding between ConA and ovalbumin can potentially be monovalent and sugar specific. This work is the preliminary implementation of fluorescently-labeled ovalbumin in the ConA-based assay. We conjugate the red-emitting, long-lifetime azadioxatriangulenium (ADOTA+) dye to ovalbumin, as ADOTA have many advantageous properties to track the equilibrium binding of the assay. The ADOTA-labeled ovalbumin is paired with Alexa Fluor 647-labeled ConA to create a Förster Resonance Energy Transfer (FRET) assay that is glucose dependent. The assay responds across the physiologically relevant glucose range (0-500 mg/dL) with increasing intensity from the ADOTA-ovalbumin, showing that the strategy may allow for the translation of the smart fluorescent ligand concept into a continuous glucose monitoring device.
Miniature PCR based portable bioaerosol monitor development.
Agranovski, I E; Usachev, E V; Agranovski, E; Usacheva, O V
2017-01-01
A portable bioaerosol monitor is greatly demanded technology in many areas including air quality control, occupational exposure assessment and health risk evaluation, environmental studies and, especially, in defence and bio-terrorism applications. Our recent groundwork allowed us to formulate the concept of a portable bioaerosol monitor, which needs to be light, user friendly, reliable and capable of detecting airborne pathogens within 1-1·5 h on the spot. Conceptually, the event of a bioaerosol concentration burst is determined by triggers to commence the representative air sampling with sequential real-time polymerase chain reaction (PCR) confirmation of the targeted micro-organism present in the air. To minimize reagent consumption and idle running of the technology, an event of a bioaerosol burst is confirmed by three parameters: aerosol particle size, concentration and composition. Only particle sizes above 200 nm attract interest in the bioaerosol. Only an elevated aerosol concentration above the threshold (background aerosol concentration) is a signal to commence the analytical procedure. The combination of our previously developed personal bioaerosol sampler, aerosol particle counter based trigger and portable real-time PCR device formed the basis of the bioaerosol monitoring technology. The portable real-time PCR device was advanced to provide internally controlled detection, significantly reducing false-positive alarms. The technique is capable of detecting selected airborne micro-organisms on the spot within 30-80 min, depending on the genome organization of the particular strain. Due to recent outbreaks of infectious airborne diseases and the continuing threat of intentionally released bioaerosol attacks, investigations into the possibility of the early and reliable detection of pathogenic micro-organisms in the air is becoming increasingly important. The proposed technology consisting of a bioaerosol sampler, technology trigger and PCR device is capable of detecting selected airborne micro-organisms on the spot within a short time period. Journal of Applied Microbiology © 2016 The Society for Applied Microbiology.
Real-Time Deposition Monitor for Ultrathin Conductive Films
NASA Technical Reports Server (NTRS)
Hines, Jacqueline
2011-01-01
A device has been developed that can be used for the real-time monitoring of ultrathin (2 or more) conductive films. The device responds in less than two microseconds, and can be used to monitor film depositions up to about 60 thick. Actual thickness monitoring capability will vary based on properties of the film being deposited. This is a single-use device, which, due to the very low device cost, can be disposable. Conventional quartz/crystal microbalance devices have proven inadequate to monitor the thickness of Pd films during deposition of ultrathin films for hydrogen sensor devices. When the deposited film is less than 100 , the QCM measurements are inadequate to allow monitoring of the ultrathin films being developed. Thus, an improved, high-sensitivity, real-time deposition monitor was needed to continue Pd film deposition development. The new deposition monitor utilizes a surface acoustic wave (SAW) device in a differential delay-line configuration to produce both a reference response and a response for the portion of the device on which the film is being deposited. Both responses are monitored simultaneously during deposition. The reference response remains unchanged, while the attenuation of the sensing path (where the film is being deposited) varies as the film thickness increases. This device utilizes the fact that on high-coupling piezoelectric substrates, the attenuation of an SAW undergoes a transition from low to very high, and back to low as the conductivity of a film on the device surface goes from nonconductive to highly conductive. Thus, the sensing path response starts with a low insertion loss, and as a conductive film is deposited, the film conductivity increases, causing the device insertion loss to increase dramatically (by up to 80 dB or more), and then with continued film thickness increases (and the corresponding conductivity increases), the device insertion loss goes back down to the low level at which it started. This provides a continuous, real-time monitoring of film deposition. For use with different films, the device would need to be calibrated to provide an understanding of how film thickness is related to film conductivity, as the device is responding primarily to conductivity effects (and not to mass loading effects) in this ultrathin film regime.
NASA Technical Reports Server (NTRS)
Hall, Callie; Arnone, Robert
2006-01-01
The NASA Applied Sciences Program seeks to transfer NASA data, models, and knowledge into the hands of end-users by forming links with partner agencies and associated decision support tools (DSTs). Through the NASA REASoN (Research, Education and Applications Solutions Network) Cooperative Agreement, the Oceanography Division of the Naval Research Laboratory (NRLSSC) is developing new products through the integration of data from NASA Earth-Sun System assets with coastal ocean forecast models and other available data to enhance coastal management in the Gulf of Mexico. The recipient federal agency for this research effort is the National Oceanic and Atmospheric Administration (NOAA). The contents of this report detail the effort to further the goals of the NASA Applied Sciences Program by demonstrating the use of NASA satellite products combined with data-assimilating ocean models to provide near real-time information to maritime users and coastal managers of the Gulf of Mexico. This effort provides new and improved capabilities for monitoring, assessing, and predicting the coastal environment. Coastal managers can exploit these capabilities through enhanced DSTs at federal, state and local agencies. The project addresses three major issues facing coastal managers: 1) Harmful Algal Blooms (HABs); 2) hypoxia; and 3) freshwater fluxes to the coastal ocean. A suite of ocean products capable of describing Ocean Weather is assembled on a daily basis as the foundation for this semi-operational multiyear effort. This continuous realtime capability brings decision makers a new ability to monitor both normal and anomalous coastal ocean conditions with a steady flow of satellite and ocean model conditions. Furthermore, as the baseline data sets are used more extensively and the customer list increased, customer feedback is obtained and additional customized products are developed and provided to decision makers. Continual customer feedback and response with new improved products are required between the researcher and customer. This document details the methods by which these coastal ocean products are produced including the data flow, distribution, and verification. Product applications and the degree to which these products are used successfully within NOAA and coordinated with the Mississippi Department of Marine Resources (MDMR) is benchmarked.
NASA Astrophysics Data System (ADS)
Lukaczyk, T.
2015-12-01
Unmanned aircraft systems (UAS) are now being used for monitoring climate change over both land and seas. Their uses include monitoring of cloud conditions and atmospheric composition of chemicals and aerosols due to pollution, dust storms, fires, volcanic activity and air-sea fluxes. Additional studies of carbon flux are important for various ecosystem studies of both marine and terrestrial environments specifically, and can be related to climate change dynamics. Many measurements are becoming more complex as additional sensors become small enough to operate on more widely available small UAS. These include interferometric radars as well as scanning and fan-beam lidar systems which produce data streams even greater than those of high resolution video. These can be used to precisely map surfaces of the earth, ocean or ice features that are important for a variety of earth system studies. As these additional sensor capabilities are added to UAS the ability to transmit data back to ground or ship monitoring sites is limited by traditional wireless communication protocols. We describe results of tests of optical communication systems that provide significantly greater communication bandwidths for UAS, and discuss both the bandwidth and effective range of these systems, as well as their power and weight requirements both for systems on UAS, as well as those of ground-based receiver stations. We justify our additional use of Delay and Disruption Tolerant Networking (DTN) communication protocols with optical communication methods to ensure security and continuity of command and control operations. Finally, we discuss the implications for receiving, geo-referencing, archiving and displaying data streams from sensors communicated via optical communication to better enable real-time anomaly detection and adaptive sampling capabilities using multiple UAS or other unmanned or manned systems.
NASA Astrophysics Data System (ADS)
Holdsworth, David W.; Detombe, Sarah A.; Chiodo, Chris; Fricke, Stanley T.; Drangova, Maria
2011-03-01
Advances in laboratory imaging systems for CT, SPECT, MRI, and PET facilitate routine micro-imaging during pre-clinical investigations. Challenges still arise when dealing with immune-compromised animals, biohazardous agents, and multi-modality imaging. These challenges can be overcome with an appropriate animal management system (AMS), with the capability for supporting and monitoring a rat or mouse during micro-imaging. We report the implementation and assessment of a new AMS system for mice (PRA-3000 / AHS-2750, ASI Instruments, Warren MI), designed to be compatible with a commercial micro-CT / micro-SPECT imaging system (eXplore speCZT, GE Healthcare, London ON). The AMS was assessed under the following criteria: 1) compatibility with the imaging system (i.e. artifact generation, geometric dimensions); 2) compatibility with live animals (i.e. positioning, temperature regulation, anesthetic supply); 3) monitoring capabilities (i.e. rectal temperature, respiratory and cardiac monitoring); 4) stability of co-registration; and 5) containment. Micro-CT scans performed using a standardized live-animal protocol (90 kVp, 40 mA, 900 views, 16 ms per view) exhibited low noise (+/-19 HU) and acceptable artifact from high-density components within the AMS (e.g. ECG pad contacts). Live mice were imaged repeatedly (with removal and replacement of the AMS) and spatial registration was found to be stable to within +/-0.07 mm. All animals tolerated enclosure within the AMS for extended periods (i.e. > one hour) without distress, based on continuous recordings of rectal temperature, ECG waveform and respiratory rate. A sealed AMS system extends the capability of a conventional micro-imaging system to include immune-compromised and biosafety level 2 mouse-imaging protocols.
Incorporating engine health monitoring capability into the SSME Block II controller
NASA Astrophysics Data System (ADS)
Clarke, James W.; Copa, Roderick J.
An account is given of the architecture of the SSME's Block II controller's architecture, its incorporation of smart input electronics (SIE), and the potential benefits of this technology in SSME health-monitoring capabilities. SIE allows the Block II controller to conduct its control functions while simultaneously furnishing the computational capabilities and sensor input interface for any newly defined health-monitoring functions. It is expected that the SIE technology may be directly transferred to any follow-on engine design.
NASA Astrophysics Data System (ADS)
Budisulistiorini, S. H.; Canagaratna, M. R.; Croteau, P. L.; Baumann, K.; Edgerton, E. S.; Kollman, M. S.; Ng, N. L.; Verma, V.; Shaw, S. L.; Knipping, E. M.; Worsnop, D. R.; Jayne, J. T.; Weber, R. J.; Surratt, J. D.
2014-07-01
Currently, there are a limited number of field studies that evaluate the long-term performance of the Aerodyne Aerosol Chemical Speciation Monitor (ACSM) against established monitoring networks. In this study, we present seasonal intercomparisons of the ACSM with collocated fine aerosol (PM2.5) measurements at the Southeastern Aerosol Research and Characterization (SEARCH) Jefferson Street (JST) site near downtown Atlanta, GA, during 2011-2012. Intercomparison of two collocated ACSMs resulted in strong correlations (r2 > 0.8) for all chemical species, except chloride (r2 = 0.21) indicating that ACSM instruments are capable of stable and reproducible operation. In general, speciated ACSM mass concentrations correlate well (r2 > 0.7) with the filter-adjusted continuous measurements from JST, although the correlation for nitrate is weaker (r2 = 0.55) in summer. Correlations of the ACSM NR-PM1 (non-refractory particulate matter with aerodynamic diameter less than or equal to 1 μm) plus elemental carbon (EC) with tapered element oscillating microbalance (TEOM) PM2.5 and Federal Reference Method (FRM) PM1 mass are strong with r2 > 0.7 and r2 > 0.8, respectively. Discrepancies might be attributed to evaporative losses of semi-volatile species from the filter measurements used to adjust the collocated continuous measurements. This suggests that adjusting the ambient aerosol continuous measurements with results from filter analysis introduced additional bias to the measurements. We also recommend to calibrate the ambient aerosol monitoring instruments using aerosol standards rather than gas-phase standards. The fitting approach for ACSM relative ionization for sulfate was shown to improve the comparisons between ACSM and collocated measurements in the absence of calibrated values, suggesting the importance of adding sulfate calibration into the ACSM calibration routine.
NASA Astrophysics Data System (ADS)
Patil, D. L.; Gautam, R.; Rizvi, S.; Singh, M. K.
2016-12-01
The persistent and widespread winter fog impacts the Indo-Gangetic Plains (IGP) on an annual basis, disrupting day-to-day lives of millions of people in parts of northern India, Pakistan, Nepal and Bangladesh. The IGP is a densely-populated region located south of the Himalaya, in the northern parts of south Asia. During the past three decades or so, associated with growing population and energy demands, the IGP has witnessed strong upward trends in air pollution, particularly leading to poor air quality in the winter months. Co-occurring with the dense haze over the IGP, severe fog episodes persist throughout the months of December and January. Building on our recent work on satellite-based detection of fog, we have further extended the detection capability towards the development of a near-real time (NRT) fog monitoring system using satellite radiances and products. Here, we use multi-spectral radiances and aerosol/cloud retrievals from Terra/Aqua MODIS data for NRT fog monitoring over the IGP for both daytime as well as nighttime. Specifically, the nighttime fog detection algorithm employs a bi-spectral brightness temperature difference technique between two spectral channels: 3.9 μm and 11 μm. Our ongoing efforts also include extending fog detection capability in NRT to geostationary satellites, for providing continuous monitoring of the onset, evolution and spatial-temporal variation of fog, as well as the geospatial integration of surface meteorological observations of visibility, relative humidity, temperature. We anticipate that the ongoing and future development of a fog monitoring system may be of particular assistance to air and rail transportation management, as well as of general interest to the public. The outputs of fog detection algorithm and related aerosol/cloud parameters are operationally disseminated via http://fogsouthasia.com/.
Advancing the capabilities of reservoir remote sensing by leveraging multi-source satellite data
NASA Astrophysics Data System (ADS)
Gao, H.; Zhang, S.; Zhao, G.; Li, Y.
2017-12-01
With a total global capacity of more than 6000 km3, reservoirs play a key role in the hydrological cycle and in water resources management. However, essential reservoir data (e.g., elevation, storage, and evaporation loss) are usually not shared at a large scale. While satellite remote sensing offers a unique opportunity for monitoring large reservoirs from space, the commonly used radar altimeters can only detect storage variations of about 15% of global lakes at a repeat period of 10 days or longer. To advance the capabilities of reservoir sensing, we developed a series of algorithms geared towards generating long term reservoir records at improved spatial coverage, and at improved temporal resolution. To this goal, observations are leveraged from multiple satellite sensors, which include radar/laser altimeters, imagers, and passive microwave radiometers. In South Asia, we demonstrate that reservoir storage can be estimated under all-weather conditions at a 4 day time step, with the total capacity of monitored reservoirs increased to 45%. Within the Continuous United States, a first Landsat based evaporation loss dataset was developed (containing 204 reservoirs) from 1984 to 2011. The evaporation trends of these reservoirs are identified and the causes are analyzed. All of these algorithms and products were validated with gauge observations. Future satellite missions, which will make significant contributions to monitoring global reservoirs, are also discussed.
Patel, Nakul Gamanlal; Rozen, Warren Matthew; Marsh, Daniel; Chow, Whitney T H; Vickers, Tobias; Khan, Lubna; Miller, George S; Hunter-Smith, David J; Ramakrishnan, Venkat V
2016-04-01
Advances in mobile telecommunication, improved mobile internet and affordability have led to a significant increase in smartphone use within medicine. The capability of instant messaging, photography, videography, word processing, drawing and internet access allow significant potential in this small portable device. Smartphone use within medicine has grown tremendously worldwide given its affordability, improved internet and capabilities. We have searched for apps specifically helpful in the perioperative care of microsurgical breast reconstructive patients. The useful apps have been subdivided: (I) communication apps-multimedia messaging, WhatsApp, PicSafeMedi: allow efficient communication via text, picture and video messages leading to earlier assessment and definitive management of free flaps; (II) storage apps-Notability, Elogbook: electronic storage of patient notes and logbooks of case which can be shared with others if required; (III) educational apps-FlapApp, Touch Surgery, PubMed on tap: step by step guides to surgical procedures to aid learning and medical journal database; (IV) flap monitoring app-SilpaRamanitor: free flap monitoring app based on photographic analysis for earlier detection of compromised flaps. There has been remarkable growth in smartphones use among surgeons. Apps are being developed for every conceivable use. The future will be in wearable smart devices that allow continuous monitoring with the potential to instigate change should deviations from the norm occur. The smart watch is the start of this digital revolution.
Rozen, Warren Matthew; Marsh, Daniel; Chow, Whitney T.H.; Vickers, Tobias; Khan, Lubna; Miller, George S.; Hunter-Smith, David J.; Ramakrishnan, Venkat V.
2016-01-01
Background Advances in mobile telecommunication, improved mobile internet and affordability have led to a significant increase in smartphone use within medicine. The capability of instant messaging, photography, videography, word processing, drawing and internet access allow significant potential in this small portable device. Smartphone use within medicine has grown tremendously worldwide given its affordability, improved internet and capabilities. Methods We have searched for apps specifically helpful in the perioperative care of microsurgical breast reconstructive patients. Results The useful apps have been subdivided: (I) communication apps—multimedia messaging, WhatsApp, PicSafeMedi: allow efficient communication via text, picture and video messages leading to earlier assessment and definitive management of free flaps; (II) storage apps—Notability, Elogbook: electronic storage of patient notes and logbooks of case which can be shared with others if required; (III) educational apps—FlapApp, Touch Surgery, PubMed on tap: step by step guides to surgical procedures to aid learning and medical journal database; (IV) flap monitoring app—SilpaRamanitor: free flap monitoring app based on photographic analysis for earlier detection of compromised flaps. Conclusions There has been remarkable growth in smartphones use among surgeons. Apps are being developed for every conceivable use. The future will be in wearable smart devices that allow continuous monitoring with the potential to instigate change should deviations from the norm occur. The smart watch is the start of this digital revolution. PMID:27047783
NASA Technical Reports Server (NTRS)
Lietzke, K. R.
1974-01-01
The application of remotely-sensed information to the mineral, fossil fuel, and geothermal energy extraction industry is investigated. Public and private cost savings are documented in geologic mapping activities. Benefits and capabilities accruing to the ERS system are assessed. It is shown that remote sensing aids in resource extraction, as well as the monitoring of several dynamic phenomena, including disturbed lands, reclamation, erosion, glaciation, and volcanic and seismic activity.
In-Suit Doppler Technology Assessment
NASA Technical Reports Server (NTRS)
Schulze, Arthur E.; Greene, Ernest R.; Nadeau, John J.
1991-01-01
The objective of this program was to perform a technology assessment survey of non-invasive air embolism detection utilizing Doppler ultrasound methodologies. The primary application of this technology will be a continuous monitor for astronauts while performing extravehicular activities (EVA's). The technology assessment was to include: (1) development of a full understanding of all relevant background research; and (2) a survey of the medical ultrasound marketplace for expertise, information, and technical capability relevant to this development. Upon completion of the assessment, LSR was to provide an overview of technological approaches and R&D/manufacturing organizations.
The GOES-R Spacecraft Space Weather Instruments and Level 2+ Products
NASA Astrophysics Data System (ADS)
Loto'aniu, Paul; Rodriguez, Juan; Machol, Janet; Kress, Brian; Darnel, Jonathan; Redmon, Robert; Rowland, William; Seation, Daniel; Tilton, Margaret; Denig, William
2016-04-01
Since their inception in the 1970s, the GOES satellites have monitored the sources of space weather on the sun and the effects of space weather at Earth. The space weather instruments on GOES-R will monitor: solar X-rays, UV light, solar energetic particles, magnetospheric energetic particles, galactic cosmic rays, and Earth's magnetic field. These measurements are important for providing alerts and warnings to many customers, including satellite operators, the power utilities, and NASA's human activities in space. This presentation reviews the capabilities of the GOES-R space weather instruments and describes the space weather Level 2+ products that are being developed for GOES-R. These new and continuing data products will be an integral part of NOAA space weather operations in the GOES-R era.
A review of smart homes- present state and future challenges.
Chan, Marie; Estève, Daniel; Escriba, Christophe; Campo, Eric
2008-07-01
In the era of information technology, the elderly and disabled can be monitored with numerous intelligent devices. Sensors can be implanted into their home for continuous mobility assistance and non-obtrusive disease prevention. Modern sensor-embedded houses, or smart houses, cannot only assist people with reduced physical functions but help resolve the social isolation they face. They are capable of providing assistance without limiting or disturbing the resident's daily routine, giving him or her greater comfort, pleasure, and well-being. This article presents an international selection of leading smart home projects, as well as the associated technologies of wearable/implantable monitoring systems and assistive robotics. The latter are often designed as components of the larger smart home environment. The paper will conclude by discussing future challenges of the domain.
Update to Permeable Pavement Research at the Edison ...
The EPA’s Urban Watershed Management Branch (UWMB) has been monitoring the permeable pavement demonstration site at the Edison Environmental Center, NJ since 2010. This site has three different types of permeable pavements including interlocking concrete permeable pavers, pervious concrete, and porous asphalt. The permeable pavements are limited to parking spaces while adjacent driving lanes are impermeable and drain to the permeable surfaces. The parking lot is instrumented for continuous monitoring with thermistors and water content reflectometers that measure moisture as infiltrate passes through the storage gallery beneath the permeable pavements into the underlying native soil. Each permeable surface of the parking lot has four lined sections that capture infiltrate in tanks for water quality analyses; these tanks are capable of holding volumes up to 4.1 m3, which represents up to 38 mm (1.5 in.) for direct rainfall on the porous pavement and runoff from adjacent driving lanes that drain into the permeable surface.Previous technical releases concerning the demonstration site focused on monitoring techniques, observed chloride and nutrient concentrations, surface hydrology, and infiltration and evaporation rates. This presentation summarizes these past findings and addresses current water quality efforts including pH, solids analysis, total organic carbon, and chemical oxygen demand. Stormwater runoff continues to be a major cause of water pollution in
Optical monitoring of cerebral microcirculation in neurointensive care.
Rejmstad, Peter; Haj-Hosseini, Neda; Åneman, Oscar; Wårdell, Karin
2017-12-08
Continuous optical monitoring of local cerebral microcirculation could benefit neurointensive care patients treated for subarachnoid hemorrhage (SAH). The aim of the study was to evaluate laser Doppler flowmetry (LDF) and diffuse reflectance spectroscopy (DRS) for long-term monitoring of brain microcirculation and oxygen saturation (SO 2 ) in the neurointensive care unit (NICU). A fiber optic probe was designed for intraparenchymal use and connected to LDF and DRS for assessment of the local blood flow (perfusion and tissue reflectance (TLI)) and SO 2 in the brain. The optically monitored parameters were compared with conventional NICU monitors and Xe-CT. The LDF signals were low with median and 25 to 75% interquartiles of perfusion = 70 (59 to 83) a.u. and TLI = 2.0 (1.0 to 2.4) a.u. and showed correlation with the NICU monitors in terms of heart rate. Median and interquartiles of SO 2 were 17.4 (15.7 to 19.8) %. The lack of correlation between local perfusion and cerebral perfusion pressure indicated intact cerebral autoregulation. The systems were capable of monitoring both local perfusion and SO 2 with stable signals in the NICU over 4 days. Further clinical studies are required to evaluate the optical systems' potential for assessing the onset of secondary brain injury.
Continuous non-invasive end-tidal CO2 monitoring in pediatric inpatients with diabetic ketoacidosis.
Agus, Michael S D; Alexander, Jamin L; Mantell, Patricia A
2006-08-01
Pediatric inpatients with diabetic ketoacidosis (DKA) are routinely subjected to frequent blood draws in order to closely monitor degree of acidosis and response to therapy. The typical level of acidosis monitoring is less than ideal, however, because of the high cost and invasiveness of frequent blood labs. Previous studies have validated end-tidal carbon dioxide (EtCO2) monitoring in the emergency department (ED) for varying periods of time. We extend these findings to the inpatient portion of the hospitalization during which the majority of blood tests are sent. All patients admitted to an intermediate care unit in (InCU) a large children's hospital were fitted with an appropriately sized oral/nasal cannula capable of sensing EtCO2. Laboratory studies were obtained according to hospital clinical practice guidelines. In a retrospective analysis, EtCO2 values were correlated with serum total CO2 (stCO2), venous pH (vpH), venous pCO2 (vpCO2), and calculated bicarbonate from venous blood gas (vHCO3-). A total of 78 consecutive episodes of DKA in 72 patients aged 1-21 yr were monitored for 3-38 h with both capnography and laboratory testing, producing 334 comparisons. Initial values were as follows, reported as median (range): stCO2, 11 (4-22) mmol/L; vpH, 7.281 (6.998-7.441); vpCO2, 28.85 (9.3-43.3) mmHg; and vHCO3-, 14 (3-25) mmol/L. EtCO2 was correlated well with stCO2 (r = 0.84, p < 0.001), vHCO3- (r = 0.84, p < 0.001), and vpCO2 (r = 0.79, p < 0.001). These data support the findings of previous studies limited to ED populations and suggest that non-invasive EtCO2 monitoring is a valuable and reliable tool to continuously follow acidosis in the setting of the acutely ill pediatric patient with DKA. Continuous EtCO2 monitoring offers the practitioner an early warning system for unexpected changes in acidosis that augments the utility of intermittent blood gas determinations.
NASA Astrophysics Data System (ADS)
Zheng, Qiaofeng; Han, Baoguo; Ou, Jinping
2018-07-01
In this paper, a ship-bridge collision monitoring system based on flexible quantum tunneling composite (QTC) with cushioning capability is proposed by investigating the sensing capability and positioning capability of QTC to collisions. QTCs with different rubber matrix and thickness were fabricated, and collision tests between steel ball and QTCs sensors were designed to simulate ship-bridge collision. The results show that QTCs have a sensing range over 50 MPa with stress resolution ranging between 0.017 and 0.13 MPa, enough to achieve the full-time monitoring of ship-bridge collision. The system has instant and repeatable respond to impact load, and can accurately position the collisions. Moreover, QTC can remarkably absorb the kinetic energy during collisions, exhibiting excellent cushioning capability. These findings indicate the proposed ship-bridge collision monitoring system has great potential for application to detecting collision information such as collision occurrence and duration, impact load and collision location, as well as providing basis for citizen evacuation, post-accident damage estimation and rescue strategy.
Code of Federal Regulations, 2011 CFR
2011-07-01
... meet for the operation of my continuous emission monitoring systems and continuous opacity monitoring system? 62.15220 Section 62.15220 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... the operation of my continuous emission monitoring systems and continuous opacity monitoring system...
Code of Federal Regulations, 2010 CFR
2010-07-01
... meet for the operation of my continuous emission monitoring systems and continuous opacity monitoring system? 62.15220 Section 62.15220 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... the operation of my continuous emission monitoring systems and continuous opacity monitoring system...
Integration of a computerized two-finger gripper for robot workstation safety
NASA Technical Reports Server (NTRS)
Sneckenberger, John E.; Yoshikata, Kazuki
1988-01-01
A microprocessor-based controller has been developed that continuously monitors and adjusts the gripping force applied by a special two-finger gripper. This computerized force sensing gripper system enables the endeffector gripping action to be independently detected and corrected. The gripping force applied to a manipulated object is real-time monitored for problem situations, situations which can occur during both planned and errant robot arm manipulation. When unspecified force conditions occur at the gripper, the gripping force controller initiates specific reactions to cause dynamic corrections to the continuously variable gripping action. The force controller for this intelligent gripper has been interfaced to the controller of an industrial robot. The gripper and robot controllers communicate to accomplish the successful completion of normal gripper operations as well as unexpected hazardous situations. An example of an unexpected gripping condition would be the sudden deformation of the object being manipulated by the robot. The capabilities of the interfaced gripper-robot system to apply workstation safety measures (e.g., stop the robot) when these unexpected gripping effects occur have been assessed.
Motor recovery monitoring using acceleration measurements in post acute stroke patients.
Gubbi, Jayavardhana; Rao, Aravinda S; Fang, Kun; Yan, Bernard; Palaniswami, Marimuthu
2013-04-16
Stroke is one of the major causes of morbidity and mortality. Its recovery and treatment depends on close clinical monitoring by a clinician especially during the first few hours after the onset of stroke. Patients who do not exhibit early motor recovery post thrombolysis may benefit from more aggressive treatment. A novel approach for monitoring stroke during the first few hours after the onset of stroke using a wireless accelerometer based motor activity monitoring system is developed. It monitors the motor activity by measuring the acceleration of the arms in three axes. In the presented proof of concept study, the measured acceleration data is transferred wirelessly using iMote2 platform to the base station that is equipped with an online algorithm capable of calculating an index equivalent to the National Institute of Health Stroke Score (NIHSS) motor index. The system is developed by collecting data from 15 patients. We have successfully demonstrated an end-to-end stroke monitoring system reporting an accuracy of calculating stroke index of more than 80%, highest Cohen's overall agreement of 0.91 (with excellent κ coefficient of 0.76). A wireless accelerometer based 'hot stroke' monitoring system is developed to monitor the motor recovery in acute-stroke patients. It has been shown to monitor stroke patients continuously, which has not been possible so far with high reliability.
Visual Sensing for Urban Flood Monitoring
Lo, Shi-Wei; Wu, Jyh-Horng; Lin, Fang-Pang; Hsu, Ching-Han
2015-01-01
With the increasing climatic extremes, the frequency and severity of urban flood events have intensified worldwide. In this study, image-based automated monitoring of flood formation and analyses of water level fluctuation were proposed as value-added intelligent sensing applications to turn a passive monitoring camera into a visual sensor. Combined with the proposed visual sensing method, traditional hydrological monitoring cameras have the ability to sense and analyze the local situation of flood events. This can solve the current problem that image-based flood monitoring heavily relies on continuous manned monitoring. Conventional sensing networks can only offer one-dimensional physical parameters measured by gauge sensors, whereas visual sensors can acquire dynamic image information of monitored sites and provide disaster prevention agencies with actual field information for decision-making to relieve flood hazards. The visual sensing method established in this study provides spatiotemporal information that can be used for automated remote analysis for monitoring urban floods. This paper focuses on the determination of flood formation based on image-processing techniques. The experimental results suggest that the visual sensing approach may be a reliable way for determining the water fluctuation and measuring its elevation and flood intrusion with respect to real-world coordinates. The performance of the proposed method has been confirmed; it has the capability to monitor and analyze the flood status, and therefore, it can serve as an active flood warning system. PMID:26287201
Motor recovery monitoring using acceleration measurements in post acute stroke patients
2013-01-01
Background Stroke is one of the major causes of morbidity and mortality. Its recovery and treatment depends on close clinical monitoring by a clinician especially during the first few hours after the onset of stroke. Patients who do not exhibit early motor recovery post thrombolysis may benefit from more aggressive treatment. Method A novel approach for monitoring stroke during the first few hours after the onset of stroke using a wireless accelerometer based motor activity monitoring system is developed. It monitors the motor activity by measuring the acceleration of the arms in three axes. In the presented proof of concept study, the measured acceleration data is transferred wirelessly using iMote2 platform to the base station that is equipped with an online algorithm capable of calculating an index equivalent to the National Institute of Health Stroke Score (NIHSS) motor index. The system is developed by collecting data from 15 patients. Results We have successfully demonstrated an end-to-end stroke monitoring system reporting an accuracy of calculating stroke index of more than 80%, highest Cohen’s overall agreement of 0.91 (with excellent κ coefficient of 0.76). Conclusion A wireless accelerometer based ‘hot stroke’ monitoring system is developed to monitor the motor recovery in acute-stroke patients. It has been shown to monitor stroke patients continuously, which has not been possible so far with high reliability. PMID:23590690
Continuous monitoring of sediment and nutrients in the Illinois River at Florence, Illinois, 2012-13
Terrio, Paul J.; Straub, Timothy D.; Domanski, Marian M.; Siudyla, Nicholas A.
2015-01-01
The Illinois River is the largest river in Illinois and is the primary contributing watershed for nitrogen, phosphorus, and suspended-sediment loading to the upper Mississippi River from Illinois. In addition to streamflow, the following water-quality constituents were monitored at the Illinois River at Florence, Illinois (U.S. Geological Survey station number 05586300), during May 2012–October 2013: phosphate, nitrate, turbidity, temperature, specific conductance, pH, and dissolved oxygen. The objectives of this monitoring were to (1) determine performance capabilities of the in-situ instruments; (2) collect continuous data that would provide an improved understanding of constituent characteristics during normal, low-, and high-flow periods and during different climatic and land-use seasons; (3) evaluate the ability to use continuous turbidity as a surrogate constituent to determine suspended-sediment concentrations; and (4) evaluate the ability to develop a regression model for total phosphorus using phosphate, turbidity, and other measured parameters. Reliable data collection was achieved, following some initial periods of instrument and data-communication difficulties. The resulting regression models for suspended sediment had coefficient of determination (R2) values of about 0.9. Nitrate plus nitrite loads computed using continuous data were found to be approximately 8 percent larger than loads computed using traditional discrete-sampling based models. A regression model for total phosphorus was developed by using historic orthophosphate data (important during periods of low flow and low concentrations) and historic suspended-sediment data (important during periods of high flow and higher concentrations). The R2of the total phosphorus regression model using orthophosphorus and suspended sediment was 0.8. Data collection and refinement of the regression models is ongoing.
Volcano hazards program in the United States
Tilling, R.I.; Bailey, R.A.
1985-01-01
Volcano monitoring and volcanic-hazards studies have received greatly increased attention in the United States in the past few years. Before 1980, the Volcanic Hazards Program was primarily focused on the active volcanoes of Kilauea and Mauna Loa, Hawaii, which have been monitored continuously since 1912 by the Hawaiian Volcano Observatory. After the reawakening and catastrophic eruption of Mount St. Helens in 1980, the program was substantially expanded as the government and general public became aware of the potential for eruptions and associated hazards within the conterminous United States. Integrated components of the expanded program include: volcanic-hazards assessment; volcano monitoring; fundamental research; and, in concert with federal, state, and local authorities, emergency-response planning. In 1980 the David A. Johnston Cascades Volcano Observatory was established in Vancouver, Washington, to systematically monitor the continuing activity of Mount St. Helens, and to acquire baseline data for monitoring the other, presently quiescent, but potentially dangerous Cascade volcanoes in the Pacific Northwest. Since June 1980, all of the eruptions of Mount St. Helens have been predicted successfully on the basis of seismic and geodetic monitoring. The largest volcanic eruptions, but the least probable statistically, that pose a threat to western conterminous United States are those from the large Pleistocene-Holocene volcanic systems, such as Long Valley caldera (California) and Yellowstone caldera (Wyoming), which are underlain by large magma chambers still potentially capable of producing catastrophic caldera-forming eruptions. In order to become better prepared for possible future hazards associated with such historically unpecedented events, detailed studies of these, and similar, large volcanic systems should be intensified to gain better insight into caldera-forming processes and to recognize, if possible, the precursors of caldera-forming eruptions. ?? 1985.
Continuous monitoring of water flow and solute transport using vadose zone monitoring technology
NASA Astrophysics Data System (ADS)
Dahan, O.
2009-04-01
Groundwater contamination is usually attributed to pollution events that initiate on land surface. These may be related to various sources such as industrial, urban or agricultural, and may appear as point or non point sources, through a single accidental event or a continuous pollution process. In all cases, groundwater pollution is a consequence of pollutant transport processes that take place in the vadose zone above the water table. Attempts to control pollution events and prevent groundwater contamination usually involve groundwater monitoring programs. This, however, can not provide any protection against contamination since pollution identification in groundwater is clear evidence that the groundwater is already polluted and contaminants have already traversed the entire vadose zone. Accordingly, an efficient monitoring program that aims at providing information that may prevent groundwater pollution has to include vadose-zone monitoring systems. Such system should provide real-time information on the hydrological and chemical properties of the percolating water and serve as an early warning system capable of detecting pollution events in their early stages before arrival of contaminants to groundwater. Recently, a vadose-zone monitoring system (VMS) was developed to allow continuous monitoring of the hydrological and chemical properties of percolating water in the deep vadose zone. The VMS includes flexible time-domain reflectometry (FTDR) probes for continuous tracking of water content profiles, and vadose-zone sampling ports (VSPs) for frequent sampling of the deep vadose pore water at multiple depths. The monitoring probes and sampling ports are installed through uncased slanted boreholes using a flexible sleeve that allows attachment of the monitoring devices to the borehole walls while achieving good contact between the sensors and the undisturbed sediment column. The system has been successfully implemented in several studies on water flow and contaminant transport in various hydrological and geological setups. These include floodwater infiltration in arid environments, land use impact on groundwater quality, and control of remediation process in a contaminated vadose zone. The data which is collected by the VMS allows direct measurements of flow velocities and fluxes in the vadose zone while continuously monitoring the chemical evolution of the percolating water. While real time information on the hydrological and chemical properties of the percolating water in the vadose is essential to prevent groundwater contamination it is also vital for any remediation actions. Remediation of polluted soils and aquifers essentially involves manipulation of surface and subsurface hydrological, physical and biochemical conditions to improve pollutant attenuation. Controlling the biochemical conditions to enhance biodegradation often includes introducing degrading microorganisms, applying electron donors or acceptors, or adding nutrients that can promote growth of the desired degrading organisms. Accordingly real time data on the hydrological and chemical properties of the vadose zone may be used to select remediation strategies and determine its efficiency on the basis of real time information.
2009-09-01
Tele-maintenance Capability with Remote Serial Console Access and Proactive Monitoring of Medical Devices PRINCIPAL INVESTIGATOR...Remote Serial Console Access and Proactive Monitoring of Medical Devices 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d...ORGANIZATION REPORT NUMBER Concepteers LLC 880 Bergen Avenue, Suite 403 Jersey City, NJ 07306 9. SPONSORING / MONITORING
Wearable dry sensors with bluetooth connection for use in remote patient monitoring systems.
Gargiulo, Gaetano; Bifulco, Paolo; Cesarelli, Mario; Jin, Craig; McEwan, Alistair; van Schaik, Andre
2010-01-01
Cost reduction has become the primary theme of healthcare reforms globally. More providers are moving towards remote patient monitoring, which reduces the length of hospital stays and frees up their physicians and nurses for acute cases and helps them to tackle staff shortages. Physiological sensors are commonly used in many human specialties e.g. electrocardiogram (ECG) electrodes, for monitoring heart signals, and electroencephalogram (EEG) electrodes, for sensing the electrical activity of the brain, are the most well-known applications. Consequently there is a substantial unmet need for physiological sensors that can be simply and easily applied by the patient or primary carer, are comfortable to wear, can accurately sense parameters over long periods of time and can be connected to data recording systems using Bluetooth technology. We have developed a small, battery powered, user customizable portable monitor. This prototype is capable of recording three-axial body acceleration, skin temperature, and has up to four bio analogical front ends. Moreover, it is also able of continuous wireless transmission to any Bluetooth device including a PDA or a cellular phone. The bio-front end can use long-lasting dry electrodes or novel textile electrodes that can be embedded in clothes. The device can be powered by a standard mobile phone which has a Ni-MH 3.6 V battery, to sustain more than seven days continuous functioning when using the Bluetooth Sniff mode to reduce TX power. In this paper, we present some of the evaluation experiments of our wearable personal monitor device with a focus on ECG applications.
Framework and implementation of a continuous network-wide health monitoring system for roadways
NASA Astrophysics Data System (ADS)
Wang, Ming; Birken, Ralf; Shahini Shamsabadi, Salar
2014-03-01
According to the 2013 ASCE report card America's infrastructure scores only a D+. There are more than four million miles of roads (grade D) in the U.S. requiring a broad range of maintenance activities. The nation faces a monumental problem of infrastructure management in the scheduling and implementation of maintenance and repair operations, and in the prioritization of expenditures within budgetary constraints. The efficient and effective performance of these operations however is crucial to ensuring roadway safety, preventing catastrophic failures, and promoting economic growth. There is a critical need for technology that can cost-effectively monitor the condition of a network-wide road system and provide accurate, up-to-date information for maintenance activity prioritization. The Versatile Onboard Traffic Embedded Roaming Sensors (VOTERS) project provides a framework and the sensing capability to complement periodical localized inspections to continuous network-wide health monitoring. Research focused on the development of a cost-effective, lightweight package of multi-modal sensor systems compatible with this framework. An innovative software infrastructure is created that collects, processes, and evaluates these large time-lapse multi-modal data streams. A GIS-based control center manages multiple inspection vehicles and the data for further analysis, visualization, and decision making. VOTERS' technology can monitor road conditions at both the surface and sub-surface levels while the vehicle is navigating through daily traffic going about its normal business, thereby allowing for network-wide frequent assessment of roadways. This deterioration process monitoring at unprecedented time and spatial scales provides unique experimental data that can be used to improve life-cycle cost analysis models.
NASA Technical Reports Server (NTRS)
Welton, Ellsworth J.; McGill, Matthew J.; Yorks, John E.; Hlavka, Dennis L.; Hart, William D.; Palm, Stephen P.; Colarco, Peter R.
2011-01-01
Spaceborne lidar profiling of aerosol and cloud layers has been successfully implemented during a number of prior missions, including LITE, ICESat, and CALIPSO. Each successive mission has added increased capability and further expanded the role of these unique measurements in wide variety of applications ranging from climate, to air quality, to special event monitoring (ie, volcanic plumes). Many researchers have come to rely on the availability of profile data from CALIPSO, especially data coincident with measurements from other A-Train sensors. The CALIOP lidar on CALIPSO continues to operate well as it enters its fifth year of operations. However, active instruments have more limited lifetimes than their passive counterparts, and we are faced with a potential gap in lidar profiling from space if the CALIOP lidar fails before a new mission is operational. The ATLID lidar on EarthCARE is not expected to launch until 2015 or later, and the lidar component of NASA's proposed Aerosols, Clouds, and Ecosystems (ACE) mission would not be until after 2020. Here we present a new aerosol and cloud lidar that was recently selected to provide profiling data from the International Space Station (ISS) starting in 2013. The Cloud-Aerosol Transport System (CATS) is a three wavelength (1064, 532, 355 nm) elastic backscatter lidar with HSRL capability at 532 nm. Depolarization measurements will be made at all wavelengths. The primary objective of CATS is to continue the CALIPSO aerosol and cloud profile data record, ideally with overlap between both missions and EarthCARE. In addition, the near real time data capability of the ISS will enable CATS to support operational applications such as air quality and special event monitoring. The HSRL channel will provide a demonstration of technology and a data testbed for direct extinction retrievals in support of ACE mission development. An overview of the instrument and mission will be provided, along with a summary of the science objectives and simulated data.
Non-contact flow gauging for the extension and development of rating curves
NASA Astrophysics Data System (ADS)
Perks, Matthew; Large, Andy; Russell, Andy
2015-04-01
Accurate measurement of river discharge is fundamental to understanding hydrological processes, associated hazards and ecological responses within fluvial systems. Established protocols for determining river discharge are partial, predominantly invasive and logistically difficult during high flows. There is demand for new methods for accurate quantification of flow velocity under high-flow/flood conditions to in turn enable better post-event reconstruction of peak discharge. As a consequence considerable effort has been devoted to the development of innovative technologies for the representation of flow in open channels. Remotely operated fixed and mobile systems capable of providing quantitative estimates of instantaneous and time-averaged flow characteristics using non-contact methods has been a major development. Amongst the new approaches for stand-alone continuous monitoring of surface flows is Large Scale Particle Image Velocimetry (LSPIV). Here we adapt the LSPIV concept, to provide continuous discharge measurements in non-uniform channels with complex flow conditions. High Definition videos (1080p; 30fps) of the water surface are acquired at 5 minute intervals. The image is rectified to correct for perspective distortion using a new, open source tool which minimises errors resulting from oblique image capture. Naturally occurring artefacts on the water surface (e.g. bubbles, debris, etc.) are tracked with the Kanade-Lucas-Tomasi (KLT) algorithm. The data generated is in the form of a complex surface water velocity field which can be interrogated to extract a range of hydrological information such as the streamwise velocity at a cross-section of interest, or even allow the interrogation of hydrodynamic flow structures. Here we demonstrate that this approach is capable of generating river discharge data comparable to concurrent measurements made using existing, accepted technologies (e.g. ADCP). The outcome is better constraint and extension of rating curves. The approach is suited to water management authorities throughout Europe who seek ever-increasingly cost-effective and non-invasive techniques for maximising the monitoring capabilities of their operational network.
Improvements and Additions to NASA Near Real-Time Earth Imagery
NASA Technical Reports Server (NTRS)
Cechini, Matthew; Boller, Ryan; Baynes, Kathleen; Schmaltz, Jeffrey; DeLuca, Alexandar; King, Jerome; Thompson, Charles; Roberts, Joe; Rodriguez, Joshua; Gunnoe, Taylor;
2016-01-01
For many years, the NASA Global Imagery Browse Services (GIBS) has worked closely with the Land, Atmosphere Near real-time Capability for EOS (Earth Observing System) (LANCE) system to provide near real-time imagery visualizations of AIRS (Atmospheric Infrared Sounder), MLS (Microwave Limb Sounder), MODIS (Moderate Resolution Imaging Spectrometer), OMI (Ozone Monitoring Instrument), and recently VIIRS (Visible Infrared Imaging Radiometer Suite) science parameters. These visualizations are readily available through standard web services and the NASA Worldview client. Access to near real-time imagery provides a critical capability to GIBS and Worldview users. GIBS continues to focus on improving its commitment to providing near real-time imagery for end-user applications. The focus of this presentation will be the following completed or planned GIBS system and imagery enhancements relating to near real-time imagery visualization.
Vega, Estela; Garralda, Elena; Alvarez, Rafael; de la Varga, Lisardo U.; Pascual, Jesús R.; Sánchez, Gema; Sarno, Francesca; Prieto, Susana H.; Perea, Sofía; Lopéz-Casas, Pedro P.; López-Ríos, Fernando; Hidalgo, Manuel
2017-01-01
Cancer genomics and translational medicine rely on the molecular profiling of patient's tumor obtained during surgery or biopsy. Alternatively, blood is a less invasive source of tumor DNA shed, amongst other ways, as cell-free DNA (cfDNA). Highly-sensitive assays capable to detect cancer genetic events from patient's blood plasma became popularly known as liquid biopsy (LqB). Importantly, retrospective studies including small number of selected patients with metastatic colorectal cancer (mCRC) patients treated with anti-EGFR therapy have shown LqB capable to detect the acquired clonal mutations in RAS genes leading to therapy resistance. However, the usefulness of LqB in the real-life clinical monitoring of these patients still lack additional validation on controlled studies. In this context, we designed a prospective LqB clinical trial to monitor newly diagnosed KRAS wild-type (wt) mCRC patients who received a standard FOLFIRI-cetuximab regimen. We used BEAMing technique for evaluate cfDNA mutations in KRAS, NRAS, BRAF, and PIK3CA in twenty-five patients during a 2-y period. A total of 2,178 cfDNA mutation analyses were performed and we observed that: a) continued wt circulating status was correlated with a prolonged response; b) smoldering increases in mutant cfDNA were correlated with acquired resistance; while c) mutation upsurge/explosion anticipated a remarkable clinical deterioration. The current study provides evidences, obtained for the first time in an unbiased and prospective manner, that reinforces the utility of LqB for monitoring mCRC patients. PMID:27852040
Toledo, Rodrigo A; Cubillo, Antonio; Vega, Estela; Garralda, Elena; Alvarez, Rafael; de la Varga, Lisardo U; Pascual, Jesús R; Sánchez, Gema; Sarno, Francesca; Prieto, Susana H; Perea, Sofía; Lopéz-Casas, Pedro P; López-Ríos, Fernando; Hidalgo, Manuel
2017-05-23
Cancer genomics and translational medicine rely on the molecular profiling of patient's tumor obtained during surgery or biopsy. Alternatively, blood is a less invasive source of tumor DNA shed, amongst other ways, as cell-free DNA (cfDNA). Highly-sensitive assays capable to detect cancer genetic events from patient's blood plasma became popularly known as liquid biopsy (LqB). Importantly, retrospective studies including small number of selected patients with metastatic colorectal cancer (mCRC) patients treated with anti-EGFR therapy have shown LqB capable to detect the acquired clonal mutations in RAS genes leading to therapy resistance. However, the usefulness of LqB in the real-life clinical monitoring of these patients still lack additional validation on controlled studies. In this context, we designed a prospective LqB clinical trial to monitor newly diagnosed KRAS wild-type (wt) mCRC patients who received a standard FOLFIRI-cetuximab regimen. We used BEAMing technique for evaluate cfDNA mutations in KRAS, NRAS, BRAF, and PIK3CA in twenty-five patients during a 2-y period. A total of 2,178 cfDNA mutation analyses were performed and we observed that: a) continued wt circulating status was correlated with a prolonged response; b) smoldering increases in mutant cfDNA were correlated with acquired resistance; while c) mutation upsurge/explosion anticipated a remarkable clinical deterioration. The current study provides evidences, obtained for the first time in an unbiased and prospective manner, that reinforces the utility of LqB for monitoring mCRC patients.
An autonomous unmanned aerial vehicle sensing system for structural health monitoring of bridges
NASA Astrophysics Data System (ADS)
Reagan, Daniel; Sabato, Alessandro; Niezrecki, Christopher; Yu, Tzuyang; Wilson, Richard
2016-04-01
As civil infrastructure (i.e. bridges, railways, and tunnels) continues to age; the frequency and need to perform inspection more quickly on a broader scale increases. Traditional inspection and monitoring techniques (e.g., visual inspection, mechanical sounding, rebound hammer, cover meter, electrical potential measurements, ultrasound, and ground penetrating radar) may produce inconsistent results, require lane closure, are labor intensive and time-consuming. Therefore, new structural health monitoring systems must be developed that are automated, highly accurate, minimally invasive, and cost effective. Three-dimensional (3D) digital image correlation (DIC) systems have the merits of extracting full-field strain, deformation, and geometry profiles. These profiles can then be stitched together to generate a complete integrity map of the area of interest. Concurrently, unmanned aerial vehicles (UAVs) have emerged as valuable resources for positioning sensing equipment where it is either difficult to measure or poses a risk to human safety. UAVs have the capability to expedite the optical-based measurement process, offer increased accessibility, and reduce interference with local traffic. Within this work, an autonomous unmanned aerial vehicle in conjunction with 3D DIC was developed for monitoring bridges. The capabilities of the proposed system are demonstrated in both laboratory measurements and data collected from bridges currently in service. Potential measurement influences from platform instability, rotor vibration and positioning inaccuracy are also studied in a controlled environment. The results of these experiments show that the combination of autonomous flight with 3D DIC and other non-contact measurement systems provides a valuable and effective civil inspection platform.
Sensor for Monitoring Nanodevice-Fabrication Plasmas
NASA Technical Reports Server (NTRS)
Bolshakov, Alexander
2004-01-01
The term plasma process diagnostics (PPD) refers to a spectroscopic technique and sensing hardware that have been proposed for monitoring plasma processes used to fabricate electronic devices that feature sizes as small as several nanometers. Nanometer dimensions are characteristic of the quantum level of miniaturization, where single impurity atoms or molecules can drastically change the local properties of the nanostructures. Such changes may be purposely used in nanoscale design but may also be extremely damaging or cause improper operation of the fabricated devices. Determination of temperature and densities of reactants near the developing features is important, since the structural synthesis is affected by characteristics of the local microenvironment. Consequently, sensors capable of nonintrusive monitoring with high sensitivity and high resolution are essential for real-time atomistic control of reaction kinetics and minimizing trace contamination in plasma processes used to fabricate electronic nanodevices. Such process-monitoring sensors are required to be compact, multiparametric, and immune to the harsh environments of processing plasmas. PPD is intended to satisfy these requirements. The specific technique used to implement plasma diagnostics with a PPD sensor would be an advanced version of continuous-wave cavity-ringdown spectroscopy (CW-CRDS) capable of profiling spectral line broadenings in order to derive both Doppler and Stark components. CRDS is based on measurements of the rate of absorption of laser light in an optical resonator. The ultimate sensitivity results from a very long absorption path length within the cavity and immunity to variations in incident laser intensity. The proposed version of this technique would involve the use of multiplexing tunable laser diodes and an actively modulated high-reflectivity optical resonator, thus offering a synergistic combination of simplicity, compactness, high sensitivity, and high resolution. The multiplexing capabilities of diode lasers could be utilized to make the PPD sensor a single, simple, compact, and inexpensive tool for the acquisition of multiparametric data. A PPD sensor would be capable of continuous measurement of such physical parameters as gas temperature, gas velocity, electron number density, and absolute densities of reacting chemical species. A laser beam can be easily adjusted to analyze the immediate vicinity of the growing nanostructures (or features etched down) in real time. The absorption enhancement in an optical cavity would afford the sensitivity needed for measurement of the temperature and densities of species at concentrations significantly lower than measurable by other nonintrusive techniques. It is anticipated that fully developed PPD sensors would enable simultaneous measurement of local temperature and determination of plasma species responsible for the synthesis and functionalization of nanodevices. These sensors would also enable tracking the pathways and origins of damaging contaminants, thereby providing feedback for adjustment of processes to optimize them and reduce contamination. The PPD sensors should also be useful for optimization of conventional microelectronics manufacturing plasma processes. Going beyond plasma processes for fabrication of electronic devices, PPD sensors could be used for monitoring of atoms, molecules, ions, radicals, clusters, and particles in a variety of other settings, including outer space. Because of their high sensitivity, such sensors could also prove useful for detecting traces of illegal drugs and explosives.
NASA Astrophysics Data System (ADS)
Marty, J.; Martysevich, P.; Kramer, A.; Haralabus, G.
2012-04-01
The Provisional Technical Secretariat (PTS) of the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO) has a continuous interest in enhancing its capability in infrasound source localization and characterization. This capability is based on the processing of data recorded by the infrasound network of the International Monitoring System (IMS). This infrasound network consists of sixty stations, among which forty-five are already certified and continuously transmit data to the International Data Center (IDC) in Vienna, Austria. Each infrasound station is composed of an array of infrasound sensors capable of measuring micro-pressure changes produced at ground level by infrasonic waves. It is the responsibility of the Engineering and Development Section of the IMS Division to ensure the highest quality for IMS infrasound data. This includes the design of robust and reliable infrasound stations, the use of accurate and calibrated infrasound measuring chains, the installation of efficient wind noise reduction systems and the implementation of quality-control tools. The purpose of this paper is to present ongoing PTS infrasound engineering and development projects related to the testing and validation of wind noise reduction system models, the implementation of infrasound data QC tools, the definition of guidelines for the design of IMS power supply systems and the development of a portable infrasound calibrator and of field kits for site survey and certification.
Code of Federal Regulations, 2011 CFR
2011-07-01
... meet for the operation of my continuous emission monitoring systems and continuous opacity monitoring system? 60.1765 Section 60.1765 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... continuous emission monitoring systems and continuous opacity monitoring system? Use the required span values...
Code of Federal Regulations, 2010 CFR
2010-07-01
... meet for the operation of my continuous emission monitoring systems and continuous opacity monitoring system? 60.1765 Section 60.1765 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... continuous emission monitoring systems and continuous opacity monitoring system? Use the required span values...
Vegetation monitoring for Guatemala: a comparison between simulated VIIRS and MODIS satellite data
Boken, Vijendra K.; Easson, Gregory L.; Rowland, James
2010-01-01
The advanced very high resolution radiometer (AVHRR) and moderate resolution imaging spectroradiometer (MODIS) data are being widely used for vegetation monitoring across the globe. However, sensors will discontinue collecting these data in the near future. National Aeronautics and Space Administration is planning to launch a new sensor, visible infrared imaging radiometer suite (VIIRS), to continue to provide satellite data for vegetation monitoring. This article presents a case study of Guatemala and compares the simulated VIIRS-Normalized Difference Vegetation Index (NDVI) with MODIS-NDVI for four different dates each in 2003 and 2005. The dissimilarity between VIIRS-NDVI and MODIS-NDVI was examined on the basis of the percent difference, the two-tailed student's t-test, and the coefficient of determination, R 2. The per cent difference was found to be within 3%, the p-value ranged between 0.52 and 0.99, and R 2 exceeded 0.88 for all major types of vegetation (basic grains, rubber, sugarcane, coffee and forests) found in Guatemala. It was therefore concluded that VIIRS will be almost equally capable of vegetation monitoring as MODIS.
A beam monitor based on MPGD detectors for hadron therapy
NASA Astrophysics Data System (ADS)
Altieri, P. R.; Di Benedetto, D.; Galetta, G.; Intonti, R. A.; Mercadante, A.; Nuzzo, S.; Verwilligen, P.
2018-02-01
Remarkable scientific and technological progress during the last years has led to the construction of accelerator based facilities dedicated to hadron therapy. This kind of technology requires precise and continuous control of position, intensity and shape of the ions or protons used to irradiate cancers. Patient safety, accelerator operation and dose delivery should be optimized by a real time monitoring of beam intensity and profile during the treatment, by using non-destructive, high spatial resolution detectors. In the framework of AMIDERHA (AMIDERHA - Enhanced Radiotherapy with HAdron) project funded by the Ministero dell'Istruzione, dell'Università e della Ricerca (Italian Ministry of Education and Research) the authors are studying and developing an innovative beam monitor based on Micro Pattern Gaseous Detectors (MPDGs) characterized by a high spatial resolution and rate capability. The Monte Carlo simulation of the beam monitor prototype was carried out to optimize the geometrical set up and to predict the behavior of the detector. A first prototype has been constructed and successfully tested using 55Fe, 90Sr and also an X-ray tube. Preliminary results on both simulations and tests will be presented.
NASA Astrophysics Data System (ADS)
Chow, Eric Y.
Glaucoma affects about 65 million people and is the second leading cause of blindness in the world. Although the condition is irreversible and incurable, early detection is vital to slowing and even stopping the progression of the disease. Our work focuses on the design, fabrication, and assembly of a continuous active glaucoma intraocular pressure (IOP) monitor that provides clinicians with the necessary data to more accurately diagnose and treat patients. Major benefits of an active monitoring device include the potential to develop a closed-loop treatment system and to operate independently for extended periods of time. The fully wireless operation uses gigahertzfrequency electromagnetic wave propagation, which allows for an orientation independent transfer of power and data over reasonable distances. Our system is comprised of a MEMS capacitive sensor, capacitive power storage array, ASIC, and monopole antenna assembled into a biocompatible liquid crystal polymer (LCP) package. We have performed in vivo trials on rabbits, both chronic and acute, to validate system functionality, fully wireless feasibility, and biocompatibility. Heart failure (HF) affects approximately 2% of the adult population in developed countries and 6-10% of people over the age of 65. Continuous monitoring of blood pressure, flow, and chemistry from a minimally invasive device can serve as a diagnostic and early-warning system for cardiac health. We developed a miniaturized system attached to the outer surface of an FDA approved stent, used as both the antenna for wireless telemetry/powering and structural support. The system comprises of a MEMS pressure sensor, ASIC for the sensor interface and wireless capabilities, LCP substrate, and FDA approved stent. In vivo studies on pigs validated functionality and fully wireless operation and demonstrate the feasibility of a stent-based wireless implant for continuous monitoring of blood pressure as well as other parameters including oxygen, flow and turbulence, chemistry, and glucose.
On Line Enrichment Monitor (OLEM) UF 6 Tests for 1.5" Sch40 SS Pipe, Revision 1
DOE Office of Scientific and Technical Information (OSTI.GOV)
March-Leuba, José A.; Garner, Jim; Younkin, Jim
As global uranium enrichment capacity under international safeguards expands, the International Atomic Energy Agency (IAEA) is challenged to develop effective safeguards approaches at gaseous centrifuge enrichment plants while working within budgetary constraints. The “Model Safeguards Approach for Gas Centrifuge Enrichment Plants” (GCEPs) developed by the IAEA Division of Concepts and Planning in June 2006, defines the three primary Safeguards objectives to be the timely detection of: 1) diversion of significant quantities of natural (NU), depleted (DU) or low-enriched uranium (LEU) from declared plant flow, 2) facility misuse to produce undeclared LEU product from undeclared feed, and 3) facility misuse tomore » produce enrichments higher than the declared maximum, in particular, highly enriched uranium (HEU). The ability to continuously and independently (i.e. with a minimum of information from the facility operator) monitor not only the uranium mass balance but also the 235U mass balance in the facility could help support all three verification objectives described above. Two key capabilities required to achieve an independent and accurate material balance are 1) continuous, unattended monitoring of in-process UF 6 and 2) monitoring of cylinders entering and leaving the facility. The continuous monitoring of in-process UF 6 would rely on a combination of load-cell monitoring of the cylinders at the feed and withdrawal stations, online monitoring of gas enrichment, and a high-accuracy net weight measurement of the cylinder contents. The Online Enrichment Monitor (OLEM) is the instrument that would continuously measure the time-dependent relative uranium enrichment, E(t), in weight percent 235U, of the gas filling or being withdrawn from the cylinders. The OLEM design concept combines gamma-ray spectrometry using a collimated NaI(Tl) detector with gas pressure and temperature data to calculate the enrichment of the UF 6 gas within the unit header pipe as a function of time. The OLEM components have been tested on ORNL UF 6 flow loop. Data were collected at five different enrichment levels (0.71%, 2.97%, 4.62%, 6.0%, and 93.7%) at several pressure conditions. The test data were collected in the standard OLEM N.4242 file format for each of the conditions with a 10-minute sampling period and then averaged over the span of constant pressures. Analysis of the collected data has provided enrichment constants that can be used for 1.5” stainless steel schedule 40 pipe measurement sites. The enrichment constant is consistent among all the wide range of enrichment levels and pressures used.« less
Solar powered wrist worn acquisition system for continuous photoplethysmogram monitoring.
Dieffenderfer, James P; Beppler, Eric; Novak, Tristan; Whitmire, Eric; Jayakumar, Rochana; Randall, Clive; Qu, Weiguo; Rajagopalan, Ramakrishnan; Bozkurt, Alper
2014-01-01
We present a solar-powered, wireless, wrist-worn platform for continuous monitoring of physiological and environmental parameters during the activities of daily life. In this study, we demonstrate the capability to produce photoplethysmogram (PPG) signals using this platform. To adhere to a low power budget for solar-powering, a 574 nm green light source is used where the PPG from the radial artery would be obtained with minimal signal conditioning. The system incorporates two monocrystalline solar cells to charge the onboard 20 mAh lithium polymer battery. Bluetooth Low Energy (BLE) is used to tether the device to a smartphone that makes the phone an access point to a dedicated server for long term continuous storage of data. Two power management schemes have been proposed depending on the availability of solar energy. In low light situations, if the battery is low, the device obtains a 5-second PPG waveform every minute to consume an average power of 0.57 mW. In scenarios where the battery is at a sustainable voltage, the device is set to enter its normal 30 Hz acquisition mode, consuming around 13.7 mW. We also present our efforts towards improving the charge storage capacity of our on-board super-capacitor.
NASA Astrophysics Data System (ADS)
Gunawan, D.; Amalia, A.; Rahmat, R. F.; Muchtar, M. A.; Siregar, I.
2018-02-01
Identification of software maturity level is a technique to determine the quality of the software. By identifying the software maturity level, the weaknesses of the software can be observed. As a result, the recommendations might be a reference for future software maintenance and development. This paper discusses the software Capability Level (CL) with case studies on Quality Management Unit (Unit Manajemen Mutu) University of Sumatera Utara (UMM-USU). This research utilized Standard CMMI Appraisal Method for Process Improvement class C (SCAMPI C) model with continuous representation. This model focuses on activities for developing quality products and services. The observation is done in three process areas, such as Project Planning (PP), Project Monitoring and Control (PMC), and Requirements Management (REQM). According to the measurement of software capability level for UMM-USU software, turns out that the capability level for the observed process area is in the range of CL1 and CL2. Planning Project (PP) is the only process area which reaches capability level 2, meanwhile, PMC and REQM are still in CL 1 or in performed level. This research reveals several weaknesses of existing UMM-USU software. Therefore, this study proposes several recommendations for UMM-USU to improve capability level for observed process areas.
Monitoring and Evaluation of Cultivated Land Irrigation Guarantee Capability with Remote Sensing
NASA Astrophysics Data System (ADS)
Zhang, C., Sr.; Huang, J.; Li, L.; Wang, H.; Zhu, D.
2015-12-01
Abstract: Cultivated Land Quality Grade monitoring and evaluation is an important way to improve the land production capability and ensure the country food safety. Irrigation guarantee capability is one of important aspects in the cultivated land quality monitoring and evaluation. In the current cultivated land quality monitoring processing based on field survey, the irrigation rate need much human resources investment in long investigation process. This study choses Beijing-Tianjin-Hebei as study region, taking the 1 km × 1 km grid size of cultivated land unit with a winter wheat-summer maize double cropping system as study object. A new irrigation capacity evaluation index based on the ratio of the annual irrigation requirement retrieved from MODIS data and the actual quantity of irrigation was proposed. With the years of monitoring results the irrigation guarantee capability of study area was evaluated comprehensively. The change trend of the irrigation guarantee capability index (IGCI) with the agricultural drought disaster area in rural statistical yearbook of Beijing-Tianjin-Hebei area was generally consistent. The average of IGCI value, the probability of irrigation-guaranteed year and the weighted average which controlled by the irrigation demand index were used and compared in this paper. The experiment results indicate that the classification result from the present method was close to that from irrigation probability in the gradation on agriculture land quality in 2012, with overlap of 73% similar units. The method of monitoring and evaluation of cultivated land IGCI proposed in this paper has a potential in cultivated land quality level monitoring and evaluation in China. Key words: remote sensing, evapotranspiration, MODIS cultivated land quality, irrigation guarantee capability Authors: Chao Zhang, Jianxi Huang, Li Li, Hongshuo Wang, Dehai Zhu China Agricultural University zhangchaobj@gmail.com
Evaluation of EDR-3 vibration, shock, temperature, and humidity recording unit
NASA Technical Reports Server (NTRS)
Rees, Kevin G.; Mondale, C. F.
1990-01-01
The purpose of this evaluation was to determine if the self-contained, off-the-shelf, Environmental Data Recorder 3 (EDR-3) could be qualified to monitor shock, vibration, and temperature during rail transportation of space shuttle solid rocket components. The evaluation testing started in November 1989 and continued until June 1990. Two EDR-3 units were used to monitor both on- and off-plant shipments of shuttle components. In addition, extensive testing was performed at Thiokol's Vibration Test facility, T-53. Testing demonstrated that the EDR-3 is capable of successfully monitoring actual shipments of solid rocket hardware. Thiokol metrology has verified the accuracy of temperature monitoring. In addition, calibrated shock/vibration testing demonstrated that the EDR-3 does accurately record acceleration. It is recommended that the vendor modify the EDR-3 data recovery system to allow remote communication via a 30-foot cable. This would permit communication with the unit mounted on a case segment after a rail car cover is installed. The vendor will make this change and produce a new model, designated EDR-3-10. It is further recommended that Thiokol qualify the EDR-3-10 for transportation monitoring of redesigned solid rocket motor (RSRM) components.
Smart wearable body sensors for patient self-assessment and monitoring.
Appelboom, Geoff; Camacho, Elvis; Abraham, Mickey E; Bruce, Samuel S; Dumont, Emmanuel Lp; Zacharia, Brad E; D'Amico, Randy; Slomian, Justin; Reginster, Jean Yves; Bruyère, Olivier; Connolly, E Sander
2014-01-01
Innovations in mobile and electronic healthcare are revolutionizing the involvement of both doctors and patients in the modern healthcare system by extending the capabilities of physiological monitoring devices. Despite significant progress within the monitoring device industry, the widespread integration of this technology into medical practice remains limited. The purpose of this review is to summarize the developments and clinical utility of smart wearable body sensors. We reviewed the literature for connected device, sensor, trackers, telemonitoring, wireless technology and real time home tracking devices and their application for clinicians. Smart wearable sensors are effective and reliable for preventative methods in many different facets of medicine such as, cardiopulmonary, vascular, endocrine, neurological function and rehabilitation medicine. These sensors have also been shown to be accurate and useful for perioperative monitoring and rehabilitation medicine. Although these devices have been shown to be accurate and have clinical utility, they continue to be underutilized in the healthcare industry. Incorporating smart wearable sensors into routine care of patients could augment physician-patient relationships, increase the autonomy and involvement of patients in regards to their healthcare and will provide for novel remote monitoring techniques which will revolutionize healthcare management and spending.
Land movement monitoring at the Mavropigi lignite mine using spaceborne D-InSAR
NASA Astrophysics Data System (ADS)
Papadaki, Eirini; Tripolitsiotis, Achilleas; Steiakakis, Chrysanthos; Agioutantis, Zacharias; Mertikas, Stelios; Partsinevelos, Panagiotis; Schilizzi, Pavlos
2013-08-01
This paper examines the capability of remote sensing radar interferometry to monitor land movements, as it varies with time, in areas close to open pit lignite mines. The study area is the "Mavropigi" lignite mine in Ptolemais, Northern Greece; whose continuous operation is of vital importance to the electric power supply of Greece. The mine is presently 100-120m deep while horizontal and vertical movements have been measured in the vicinity of the pit. Within the mine, ground geodetic monitoring has revealed an average rate of movement amounting to 10-20mm/day at the southeast slopes. In this work, differential interferometry (DInSAR), using 19 Synthetic Aperture Radar (SAR) images of ALOS satellite, has been applied to monitor progression of land movement caused my mining within the greater area of "Mavropigi" region. The results of this work show that DInSAR can be used effectively to capture ground movement information, well before signs of movements can be observed visually in the form of imminent fissures and tension cracks. The advantage of remote sensing interferometry is that it can be applied even in inaccessible areas where monitoring with ground equipment is either impossible or of high-cost (large areas).
Real-Time Smart Textile-Based System to Monitor Pressure Offloading of Diabetic Foot Ulcers.
Raviglione, Andrea; Reif, Roberto; Macagno, Maurizio; Vigano, Davide; Schram, Justin; Armstrong, David
2017-09-01
The lifetime risk of developing a diabetic foot ulcer (DFU) is at least 25%. A DFU carries a 50% risk for infection and at least 20% of those receive some form of amputation. The most significant parameter that prevents or delays ulcer healing is high plantar pressure. To improve the patient's healing process, the DFU's plantar pressure should remain cumulatively low. Therefore, a tool that continuously measures the DFU loading, and provides real-time feedback can improve the healing outcome. We report the development of a system capable of continuously measuring the pressure, which could have applications to monitor DFU. The system contains a textile pressure sensor attached to a stretchable band, hardware that collects data and transmits them via Bluetooth to a phone, an app that gathers the data and stores them in the cloud, and a web dashboard that displays the data to the clinician. The sensor was characterized in vitro using the system, and the web-dashboard was developed and tested on simulated patient data. We demonstrate the feasibility of developing the system and characterize the pressure response of the device. As a result, we demonstrate a viable method for monitoring DFU off-loading in real time. The presented study demonstrates the feasibility to develop a simple, modular wearable system that opens up new possibilities for diabetic foot ulcer care by providing a way of monitoring the pressure under the ulcer in real time.
Earth physicist describes US nuclear test monitoring system
NASA Astrophysics Data System (ADS)
1986-01-01
The U. S. capabilities to monitor underground nuclear weapons tests in the USSR was examined. American methods used in monitoring the underground nuclear tests are enumerated. The U. S. technical means of monitoring Solviet nuclear weapons testing, and whether it is possible to conduct tests that could not be detected by these means are examined. The worldwide seismic station network in 55 countries available to the U. S. for seismic detection and measurement of underground nuclear explosions, and also the systems of seismic research observatories in 15 countries and seismic grouping stations in 12 countries are outlined including the advanced computerized data processing capabilities of these facilities. The level of capability of the U. S. seismic system for monitoring nuclear tests, other, nonseismic means of monitoring, such as hydroacoustic and recording of effects in the atmosphere, ionosphere, and the Earth's magnetic field, are discussed.
Code of Federal Regulations, 2011 CFR
2011-07-01
... monitoring requirements for a continuous emissions monitoring system? 63.7747 Section 63.7747 Protection of... apply for alternative monitoring requirements for a continuous emissions monitoring system? (a) You may... prevention technique, a description of the continuous monitoring system or method including appropriate...
Code of Federal Regulations, 2010 CFR
2010-07-01
... monitoring requirements for a continuous emissions monitoring system? 63.7747 Section 63.7747 Protection of... apply for alternative monitoring requirements for a continuous emissions monitoring system? (a) You may... prevention technique, a description of the continuous monitoring system or method including appropriate...
Kovatchev, Boris P; Renard, Eric; Cobelli, Claudio; Zisser, Howard C; Keith-Hynes, Patrick; Anderson, Stacey M; Brown, Sue A; Chernavvsky, Daniel R; Breton, Marc D; Farret, Anne; Pelletier, Marie-Josée; Place, Jérôme; Bruttomesso, Daniela; Del Favero, Simone; Visentin, Roberto; Filippi, Alessio; Scotton, Rachele; Avogaro, Angelo; Doyle, Francis J
2013-07-01
To evaluate the feasibility of a wearable artificial pancreas system, the Diabetes Assistant (DiAs), which uses a smart phone as a closed-loop control platform. Twenty patients with type 1 diabetes were enrolled at the Universities of Padova, Montpellier, and Virginia and at Sansum Diabetes Research Institute. Each trial continued for 42 h. The United States studies were conducted entirely in outpatient setting (e.g., hotel or guest house); studies in Italy and France were hybrid hospital-hotel admissions. A continuous glucose monitoring/pump system (Dexcom Seven Plus/Omnipod) was placed on the subject and was connected to DiAs. The patient operated the system via the DiAs user interface in open-loop mode (first 14 h of study), switching to closed-loop for the remaining 28 h. Study personnel monitored remotely via 3G or WiFi connection to DiAs and were available on site for assistance. The total duration of proper system communication functioning was 807.5 h (274 h in open-loop and 533.5 h in closed-loop), which represented 97.7% of the total possible time from admission to discharge. This exceeded the predetermined primary end point of 80% system functionality. This study demonstrated that a contemporary smart phone is capable of running outpatient closed-loop control and introduced a prototype system (DiAs) for further investigation. Following this proof of concept, future steps should include equipping insulin pumps and sensors with wireless capabilities, as well as studies focusing on control efficacy and patient-oriented clinical outcomes.
40 CFR 60.1250 - What is my schedule for evaluating continuous emission monitoring systems?
Code of Federal Regulations, 2011 CFR
2011-07-01
... continuous emission monitoring systems? 60.1250 Section 60.1250 Protection of Environment ENVIRONMENTAL... Continuous Emission Monitoring § 60.1250 What is my schedule for evaluating continuous emission monitoring systems? (a) Conduct annual evaluations of your continuous emission monitoring systems no more than 13...
Characterizing Graphene-modified Electrodes for Interfacing with Arduino®-based Devices.
Arris, Farrah Aida; Ithnin, Mohamad Hafiz; Salim, Wan Wardatul Amani Wan
2016-08-01
Portable low-cost platform and sensing systems for identification and quantitative measurement are in high demand for various environmental monitoring applications, especially in field work. Quantifying parameters in the field requires both minimal sample handling and a device capable of performing measurements with high sensitivity and stability. Furthermore, the one-device-fits-all concept is useful for continuous monitoring of multiple parameters. Miniaturization of devices can be achieved by introducing graphene as part of the transducer in an electrochemical sensor. In this project, we characterize graphene deposition methods on glassy-carbon electrodes (GCEs) with the goal of interfacing with an Arduino-based user-friendly microcontroller. We found that a galvanostatic electrochemical method yields the highest peak current of 10 mA, promising a highly sensitive electrochemical sensor. An Atlas Scientific™ printed circuit board (PCB) was connected to an Arduino® microcontroller using a multi-circuit connection that can be interfaced with graphene-based electrochemical sensors for environmental monitoring.
Dust devil signatures in infrasound records of the International Monitoring System
NASA Astrophysics Data System (ADS)
Lorenz, Ralph D.; Christie, Douglas
2015-03-01
We explore whether dust devils have a recognizable signature in infrasound array records, since several Comprehensive Nuclear-Test-Ban Treaty verification stations conducting continuous measurements with microbarometers are in desert areas which see dust devils. The passage of dust devils (and other boundary layer vortices, whether dust laden or not) causes a local temporary drop in pressure: the high-pass time domain filtering in microbarometers results in a "heartbeat" signature, which we observe at the Warramunga station in Australia. We also observe a ~50 min pseudoperiodicity in the occurrence of these signatures and some higher-frequency infrasound. Dust devils do not significantly degrade the treaty verification capability. The pipe arrays for spatial averaging used in infrasound monitoring degrade the detection efficiency of small devils, but the long observation time may allow a useful census of large vortices, and thus, the high-sensitivity infrasonic array data from the monitoring network can be useful in studying columnar vortices in the lower atmosphere.
Space Science at Los Alamos National Laboratory
NASA Astrophysics Data System (ADS)
Smith, Karl
2017-09-01
The Space Science and Applications group (ISR-1) in the Intelligence and Space Research (ISR) division at the Los Alamos National Laboratory lead a number of space science missions for civilian and defense-related programs. In support of these missions the group develops sensors capable of detecting nuclear emissions and measuring radiations in space including γ-ray, X-ray, charged-particle, and neutron detection. The group is involved in a number of stages of the lifetime of these sensors including mission concept and design, simulation and modeling, calibration, and data analysis. These missions support monitoring of the atmosphere and near-Earth space environment for nuclear detonations as well as monitoring of the local space environment including space-weather type events. Expertise in this area has been established over a long history of involvement with cutting-edge projects continuing back to the first space based monitoring mission Project Vela. The group's interests cut across a large range of topics including non-proliferation, space situational awareness, nuclear physics, material science, space physics, astrophysics, and planetary physics.
A wearable bluetooth LE sensor for patient monitoring during MRI scans.
Vogt, Christian; Reber, Jonas; Waltisberg, Daniel; Buthe, Lars; Marjanovic, Josip; Munzenrieder, Niko; Pruessmann, Klaas P; Troster, Gerhard
2016-08-01
This paper presents a working prototype of a wearable patient monitoring device capable of recording the heart rate, blood oxygen saturation, surface temperature and humidity during an magnetic resonance imaging (MRI) experiment. The measured values are transmitted via Bluetooth low energy (LE) and displayed in real time on a smartphone on the outside of the MRI room. During 7 MRI image acquisitions of at least 1 min and a total duration of 25 min no Bluetooth data packets were lost. The raw measurements of the light intensity for the photoplethysmogram based heart rate measurement shows an increased noise floor by 50LSB (least significant bit) during the MRI operation, whereas the temperature and humidity readings are unaffected. The device itself creates a magnetic resonance (MR) signal loss with a radius of 14 mm around the device surface and shows no significant increase in image noise of an acquired MRI image due to its radio frequency activity. This enables continuous and unobtrusive patient monitoring during MRI scans.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kamal, N.; Sawhney, P.
1998-10-01
The succession of nuclear tests by India and Pakistan in May 1998 has changed the nature of their missile rivalry, which is only one of numerous manifestations of their relationship as hardened adversaries, deeply sensitive to each other's existing and evolving defense capabilities. The political context surrounding this costly rivalry remains unmediated by arms control measures or by any nascent prospect of detente. As a parallel development, sensible voices in both countries will continue to talk of building mutual confidence through openness to avert accidents, misjudgments, and misinterpretations. To facilitate a future peace process, this paper offers possible suggestions formore » stabilization that could be applied to India's and Pakistan's missile situation. Appendices include descriptions of existing missile agreements that have contributed to better relations for other countries as well as a list of the cooperative monitoring technologies available to provide information useful in implementing subcontinent missile regimes.« less
Wearable salivary uric acid mouthguard biosensor with integrated wireless electronics.
Kim, Jayoung; Imani, Somayeh; de Araujo, William R; Warchall, Julian; Valdés-Ramírez, Gabriela; Paixão, Thiago R L C; Mercier, Patrick P; Wang, Joseph
2015-12-15
This article demonstrates an instrumented mouthguard capable of non-invasively monitoring salivary uric acid (SUA) levels. The enzyme (uricase)-modified screen printed electrode system has been integrated onto a mouthguard platform along with anatomically-miniaturized instrumentation electronics featuring a potentiostat, microcontroller, and a Bluetooth Low Energy (BLE) transceiver. Unlike RFID-based biosensing systems, which require large proximal power sources, the developed platform enables real-time wireless transmission of the sensed information to standard smartphones, laptops, and other consumer electronics for on-demand processing, diagnostics, or storage. The mouthguard biosensor system offers high sensitivity, selectivity, and stability towards uric acid detection in human saliva, covering the concentration ranges for both healthy people and hyperuricemia patients. The new wireless mouthguard biosensor system is able to monitor SUA level in real-time and continuous fashion, and can be readily expanded to an array of sensors for different analytes to enable an attractive wearable monitoring system for diverse health and fitness applications. Copyright © 2015 Elsevier B.V. All rights reserved.
Wearable salivary uric acid mouthguard biosensor with integrated wireless electronics
Kim, Jayoung; Imani, Somayeh; de Araujo, William R.; Warchall, Julian; Valdés-Ramírez, Gabriela; Paixão, Thiago R.L.C.; Mercier, Patrick P.; Wang, Joseph
2016-01-01
This article demonstrates an instrumented mouthguard capable of non-invasively monitoring salivary uric acid (SUA) levels. The enzyme (uricase)-modified screen printed electrode system has been integrated onto a mouthguard platform along with anatomically-miniaturized instrumentation electronics featuring a potentiostat, microcontroller, and a Bluetooth Low Energy (BLE) transceiver. Unlike RFID-based biosensing systems, which require large proximal power sources, the developed platform enables real-time wireless transmission of the sensed information to standard smartphones, laptops, and other consumer electronics for on-demand processing, diagnostics, or storage. The mouthguard biosensor system offers high sensitivity, selectivity, and stability towards uric acid detection in human saliva, covering the concentration ranges for both healthy people and hyperuricemia patients. The new wireless mouthguard biosensor system is able to monitor SUA level in real-time and continuous fashion, and can be readily expanded to an array of sensors for different analytes to enable an attractive wearable monitoring system for diverse health and fitness applications. PMID:26276541
Agelastos, Anthony; Allan, Benjamin; Brandt, Jim; ...
2016-05-18
A detailed understanding of HPC applications’ resource needs and their complex interactions with each other and HPC platform resources are critical to achieving scalability and performance. Such understanding has been difficult to achieve because typical application profiling tools do not capture the behaviors of codes under the potentially wide spectrum of actual production conditions and because typical monitoring tools do not capture system resource usage information with high enough fidelity to gain sufficient insight into application performance and demands. In this paper we present both system and application profiling results based on data obtained through synchronized system wide monitoring onmore » a production HPC cluster at Sandia National Laboratories (SNL). We demonstrate analytic and visualization techniques that we are using to characterize application and system resource usage under production conditions for better understanding of application resource needs. Furthermore, our goals are to improve application performance (through understanding application-to-resource mapping and system throughput) and to ensure that future system capabilities match their intended workloads.« less
Monitoring pulse oximetry via radiotelemetry in freely-moving lambs.
Reix, Philippe; Dumont, Sylvain; Duvareille, Charles; Cyr, Jonathan; Moreau-Bussière, François; Arsenault, Julie; Praud, Jean-Paul
2005-05-12
This study was aimed at validating the use of a custom-made wireless pulse oximeter in freely moving lambs, using radiotelemetry transmission. First, measurements obtained simultaneously using the new, wireless oximeter and a standard commercially-available pulse oximeter (Nonin 8500) were compared in five lambs during 5min episodes of normoxia, hypoxia and hyperoxia. Correlation between the two oximeters for both SpO(2) and heart rate was very good, regardless of oxygenation conditions. Secondly, the capabilities of our device were assessed during more than 45h of polysomnographic recordings in seven lambs. According to the plethysmographic pulse waveform, reliable SpO(2) values were obtained in more than 85% of recording time. Multiple decreases in SpO(2) were readily observed after spontaneous apneas in preterm lambs. It is concluded that our wireless pulse oximeter performs as reliably as a standard pulse oximeter for monitoring SpO(2) variations in lambs, and offers new perspectives for researchers interested in continuous monitoring of oxygenation throughout sleep stages and wakefulness.
NASA Astrophysics Data System (ADS)
Kumagai, H.; Yepes, H.; Vaca, M.; Caceres, V.; Nagai, T.; Yokoe, K.; Imai, T.; Miyakawa, K.; Yamashina, T.; Arrais, S.; Vasconez, F.; Pinajota, E.; Cisneros, C.; Ramos, C.; Paredes, M.; Gomezjurado, L.; Garcia-Aristizabal, A.; Molina, I.; Ramon, P.; Segovia, M.; Palacios, P.; Enriquez, W.; Inoue, I.; Nakano, M.; Inoue, H.
2006-12-01
Tungurahua and Cotopaxi are andesitic active volcanoes in Ecuadorian Andes. Tungurahua continues its eruptive activity since 1999, in which explosive eruptions accompanying pyroclastic flows occurred in July- August, 2006. Cotopaxi is one of the world's highest glacier-clad active volcanoes, and its seismic activity remains high since 2001. To enhance the monitoring capability of these volcanoes, we have installed broadband seismometers (Guralp CMG-40T: 60 s-50 Hz) and infrasonic sensors (ACO TYPE7144/4144: 10 s- 100 Hz) on these volcanoes through the technical cooperation program of Japan International Cooperation Agency (JICA). Three and five stations are currently installed at Tungurahua and Cotopaxi, respectively, and additional two stations will be installed at Tungurahua. Both seismic and infrasonic waveform data at each station are digitized by a Geotech Smart24D datalogger with a sampling frequency of 50 Hz, and transmitted by a digital telemetry system using 2.4 GHz Wireless LAN to the central office in Quito. The Tungurahua's eruptive activity accompanying pyroclastic flows in July-August 2006 was monitored in real-time by the network. The observed waveforms show a wide variety of signatures in response to various eruption styles: intermittent tremor during Strombolian eruptions, five-hour-long continuous strong tremor during heightened eruptions, very-long-period (VLP) seismic signals (10-50 s) associated with pyroclastic flows, and impulsive seismic and infrasonic events of explosions. At Cotopaxi Volcano, VLP signals (2 s) accompanying long- period signals (1-2 Hz) were detected by our network. Similar events occurred in 2002, and are interpreted as gas-release process from magma in an intruded dike beneath Cotopaxi (Molina et al, submitted to JGR). The present observation of the same type of events suggests that the intruded dike is still active beneath Cotopaxi. These signals detected by our networks are highly useful to understand volcanic processes beneath Tungurahua and Cotopaxi, which contribute to improve the monitoring capability of these volcanoes.
A New, Scalable and Low Cost Multi-Channel Monitoring System for Polymer Electrolyte Fuel Cells.
Calderón, Antonio José; González, Isaías; Calderón, Manuel; Segura, Francisca; Andújar, José Manuel
2016-03-09
In this work a new, scalable and low cost multi-channel monitoring system for Polymer Electrolyte Fuel Cells (PEFCs) has been designed, constructed and experimentally validated. This developed monitoring system performs non-intrusive voltage measurement of each individual cell of a PEFC stack and it is scalable, in the sense that it is capable to carry out measurements in stacks from 1 to 120 cells (from watts to kilowatts). The developed system comprises two main subsystems: hardware devoted to data acquisition (DAQ) and software devoted to real-time monitoring. The DAQ subsystem is based on the low-cost open-source platform Arduino and the real-time monitoring subsystem has been developed using the high-level graphical language NI LabVIEW. Such integration can be considered a novelty in scientific literature for PEFC monitoring systems. An original amplifying and multiplexing board has been designed to increase the Arduino input port availability. Data storage and real-time monitoring have been performed with an easy-to-use interface. Graphical and numerical visualization allows a continuous tracking of cell voltage. Scalability, flexibility, easy-to-use, versatility and low cost are the main features of the proposed approach. The system is described and experimental results are presented. These results demonstrate its suitability to monitor the voltage in a PEFC at cell level.
A New, Scalable and Low Cost Multi-Channel Monitoring System for Polymer Electrolyte Fuel Cells
Calderón, Antonio José; González, Isaías; Calderón, Manuel; Segura, Francisca; Andújar, José Manuel
2016-01-01
In this work a new, scalable and low cost multi-channel monitoring system for Polymer Electrolyte Fuel Cells (PEFCs) has been designed, constructed and experimentally validated. This developed monitoring system performs non-intrusive voltage measurement of each individual cell of a PEFC stack and it is scalable, in the sense that it is capable to carry out measurements in stacks from 1 to 120 cells (from watts to kilowatts). The developed system comprises two main subsystems: hardware devoted to data acquisition (DAQ) and software devoted to real-time monitoring. The DAQ subsystem is based on the low-cost open-source platform Arduino and the real-time monitoring subsystem has been developed using the high-level graphical language NI LabVIEW. Such integration can be considered a novelty in scientific literature for PEFC monitoring systems. An original amplifying and multiplexing board has been designed to increase the Arduino input port availability. Data storage and real-time monitoring have been performed with an easy-to-use interface. Graphical and numerical visualization allows a continuous tracking of cell voltage. Scalability, flexibility, easy-to-use, versatility and low cost are the main features of the proposed approach. The system is described and experimental results are presented. These results demonstrate its suitability to monitor the voltage in a PEFC at cell level. PMID:27005630
40 CFR 60.3040 - What is my schedule for evaluating continuous emission monitoring systems?
Code of Federal Regulations, 2010 CFR
2010-07-01
... continuous emission monitoring systems? 60.3040 Section 60.3040 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES... continuous emission monitoring systems? (a) Conduct annual evaluations of your continuous emission monitoring...
Development of a nanowire based titanium needle probe sensor for glucose monitoring
NASA Astrophysics Data System (ADS)
Deshpande, Devesh C.
The need for continuous monitoring of various physiological functions such as blood glucose levels, neural functions and cholesterol levels has fostered the research and development of various schemes of biosensors to sense and help control the respective function. The needs of patients for sensors with minimal discomfort, longer life and better performance have necessitated the development towards smaller and more efficient sensors. In addition, the need for higher functionality from smaller sensors has led to the development of sensors with multiple electrodes, each electrode capable of sensing a different body function. Such multi-electrode sensors need to be fabricated using micro-fabrication processes in order to achieve precise control over the size, shape and placement of the electrodes. Multielectrode sensors fabricated using silicon and polymers have been demonstrated. One physiological function that attracts widespread interest is continuous glucose monitoring in our blood, since Diabetes affects millions of people all over the world. Significant deviations of blood glucose levels from the normal levels of 4-8 mM can cause fainting, coma and damage to the eyes, kidneys, nerves and blood vessels. For chronic patients, continuous monitoring of glucose levels is essential for accurate and timely treatment. A few continuous monitoring sensors are available in the market, but they have problems and cannot replace the strip type one-time glucose monitoring systems as yet. To address this need, large scale research efforts have been targeted towards continuous monitoring. The demand for higher accuracy and sensitivity has motivated researchers to evaluate the use of nanostructures in sensing. The large surface area-to-volume ratio of such structures could enable further miniaturization and push the detection limits, potentially enabling even single molecule detection. This research involved the development of a biocompatible titanium needle probe sensor for glucose monitoring. The working electrode of the sensor comprised of vertically aligned, free standing Au nanowires to utilize the advantages of nanostructures. The sensor was fabricated on biocompatible titanium substrate using Micro/Nano fabrication processes such as Plasma Enhanced Chemical Vapor Deposition (PECVD), Electron Beam Evaporation, Lithography, aligned nanowire growth and wet and plasma etching. Arrays of free-standing nanowires were grown at room temperature and pressure using a novel template based growth process. After fabrication of the sensor, immobilization of an enzyme was carried out on the sensing electrode to ensure selectivity of the sensor to glucose. This was achieved by using self-assembled thiol monolayers and entrapment in a conducting polymer matrix. Glucose oxidase was used for this purpose, which catalyzed the conversion of glucose to gluconic acid, producing hydrogen peroxide in the process. Amperometry was used for glucose detection, in which a constant voltage was applied to the sensor. This potential oxidized the hydrogen peroxide and produced changes in the current which were correlated to the glucose concentration. This dissertation will address the importance of continuous glucose monitoring, current technology and problems faced, the design and fabrication of the sensor and electrochemical sensing to detect glucose levels in solution. Finally, the problems encountered during the process will be discussed and the future work will be detailed.
Remotely Characterizing the Topographic and Thermal Evolution of Kīlauea's Lava Flow Field
NASA Astrophysics Data System (ADS)
Rumpf, M. E.; Vaughan, R. G.; Poland, M. P.
2017-12-01
New technologies in satellite data acquisition and the continuous development of analysis software capabilities are greatly improving the ability of scientists to monitor volcanoes in near-real-time. Satellite-based thermal infrared (TIR) data are used to monitor and analyze new and ongoing volcanic activity by identifying and quantifying surface thermal characteristics and lava flow discharge rates. Improved detector sensitivities provide unprecedented spatial detail in visible to shortwave infrared (VSWIR) satellite imagery. The acquisition of stereo and tri-stereo visible imagery, as well as SAR, by an increasing number of satellite systems enables the creation of digital elevation models (DEMs) at higher temporal frequencies and resolutions than in the past. Free, user-friendly software programs, such as NASA's Ames Stereo Pipeline and Google Earth Engine, ease the accessibility and usability of satellite data to users unfamiliar with traditional analysis techniques. An effective and efficient integration of these technologies can be utilized towards volcano monitoring.Here, we use the active lava flows from the East Rift Zone vents of Kīlauea Volcano, Hawai`i as a testing ground for developing new techniques in multi-sensor volcano remote sensing. We use DEMs generated from stereo and tri-stereo images captured by the WorldView3 and Pleiades satellite systems to assess topographic changes over time at the active flow fields. Time-series data of lava flow area, thickness, and discharge rate developed from thermal emission measurements collected by ASTER, Landsat 8, and WorldView3 are compared to satellite-detected topographic changes and to ground observations of flow development to identify behavioral patterns and to monitor flow field evolution. We explore methods of combining these visual and TIR data sets collected by multiple satellite systems with a variety of resolutions and repeat times. Our ultimate goal is to develop integrative tools for near-real-time volcano monitoring. In addition, we recommend improvements to future satellite mission capabilities (e.g., repeat times, resolutions) to improve lava flow monitoring techniques.
Code of Federal Regulations, 2010 CFR
2010-07-01
... meet for the operation of my continuous emission monitoring systems and continuous opacity monitoring... additional requirements must I meet for the operation of my continuous emission monitoring systems and continuous opacity monitoring system? Use the required span values and applicable performance specifications...
Code of Federal Regulations, 2011 CFR
2011-07-01
... meet for the operation of my continuous emission monitoring systems and continuous opacity monitoring... additional requirements must I meet for the operation of my continuous emission monitoring systems and continuous opacity monitoring system? Use the required span values and applicable performance specifications...
Rivenes Lafontan, Sara; Sundby, Johanne; Ersdal, Hege L.; Abeid, Muzdalifat; Kidanto, Hussein L.; Mbekenga, Columba K.
2018-01-01
To increase labor monitoring and prevent neonatal morbidity and mortality, a new wireless, strap-on electronic fetal heart rate monitor called Moyo was introduced in Tanzania in 2016. As part of the ongoing evaluation of the introduction of the monitor, the aim of this study was to explore the attitudes and perceptions of women who had worn the monitor continuously during their most recent delivery and perceptions about how it affected care. This knowledge is important to identify barriers towards adaptation in order to introduce new technology more effectively. We carried out 20 semi-structured individual interviews post-labor at two hospitals in Tanzania. A thematic content analysis was used to analyze the data. Our results indicated that the use of the monitor positively affected the women’s birth experience. It provided much-needed reassurance about the wellbeing of the child. The women considered that wearing Moyo improved care due to an increase in communication and attention from birth attendants. However, the women did not fully understand the purpose and function of the device and overestimated its capabilities. This highlights the need to improve how and when information is conveyed to women in labor. PMID:29425167
Lin, Zhiming; Chen, Jun; Li, Xiaoshi; Zhou, Zhihao; Meng, Keyu; Wei, Wei; Yang, Jin; Wang, Zhong Lin
2017-09-26
Heart-rate monitoring plays a critical role in personal healthcare management. A low-cost, noninvasive, and user-friendly heart-rate monitoring system is highly desirable. Here, a self-powered wireless body sensor network (BSN) system is developed for heart-rate monitoring via integration of a downy-structure-based triboelectric nanogenerator (D-TENG), a power management circuit, a heart-rate sensor, a signal processing unit, and Bluetooth module for wireless data transmission. By converting the inertia energy of human walking into electric power, a maximum power of 2.28 mW with total conversion efficiency of 57.9% was delivered at low operation frequency, which is capable of immediately and sustainably driving the highly integrated BSN system. The acquired heart-rate signal by the sensor would be processed in the signal process circuit, sent to an external device via the Bluetooth module, and displayed on a personal cell phone in a real-time manner. Moreover, by combining a TENG-based generator and a TENG-based sensor, an all-TENG-based wireless BSN system was developed, realizing continuous and self-powered heart-rate monitoring. This work presents a potential method for personal heart-rate monitoring, featured as being self-powered, cost-effective, noninvasive, and user-friendly.
Microprocessor Based Real-Time Monitoring of Multiple ECG Signals
Nasipuri, M.; Basu, D.K.; Dattagupta, R.; Kundu, M.; Banerjee, S.
1987-01-01
A microprocessor based system capable of realtime monitoring of multiple ECG signals has been described. The system consists of a number of microprocessors connected in a hierarchical fashion and capable of working concurrently on ECG data collected from different channels. The system can monitor different arrhythmic abnormalities for at least 36 patients even for a heart rate of 500 beats/min.
Mahoney, Diane F; Purtilo, Ruth B; Webbe, Frank M; Alwan, Majd; Bharucha, Ashok J; Adlam, Tim D; Jimison, Holly B; Turner, Beverly; Becker, S Ann
2007-07-01
Innovative technologies are rapidly emerging that offer caregivers the support and means to assist older adults with cognitive impairment to continue living "at home." Technology research and development efforts applied to older adults with dementia invoke special grant review and institutional review board concerns, to ensure not only safe but also ethically appropriate interventions. Evidence is emerging, however, that tensions are growing between innovators and reviewers. Reviewers with antitechnology biases are in a position to stifle needed innovation. Technology developers who fail to understand the clinical and caregiving aspects of dementia may design applications that are not in alignment with users' capabilities. To bridge this divide, we offer an analysis of the ethical issues surrounding home monitoring, a model framework, and ethical guidelines for technology research and development for persons with Alzheimer's disease and their caregivers.
Feedback dew-point sensor utilizing optimally cut plastic optical fibres
NASA Astrophysics Data System (ADS)
Hadjiloucas, S.; Irvine, J.; Keating, D. A.
2000-01-01
A plastic optical fibre reflectance sensor that makes full use of the critical angle of the fibres is implemented to monitor dew formation on a Peltier-cooled reflector surface. The optical configuration permits isolation of optoelectronic components from the sensing head and better light coupling between the reflector and the detecting fibre, giving a better signal of the onset of dew formation on the reflector. Continuous monitoring of the rate of change in reflectance as well as the absolute reflectance signals, the use of a novel polymethyl-methacrylate-coated hydrophobic film reflector on the Peltier element and the application of feedback around the point of dew formation, further reduces the possibility of contamination of the sensor head. Under closed-loop operation, the sensor is capable of cycling around the point of dew formation at a frequency of 2.5 Hz.
Low frequency electric and magnetic fields
NASA Technical Reports Server (NTRS)
Spaniol, Craig
1989-01-01
Following preliminary investigations of the low frequency electric and magnetic fields that may exists in the Earth-ionospheric cavity, measurements were taken with state-of-the art spectrum analyzers. As a follow up to this activity, an investigation was initiated to determine sources and values for possible low frequency signal that would appear in the cavity. The lowest cavity resonance is estimated at about 8 Hz, but lower frequencies may be an important component of our electromagnetic environment. The potential field frequencies produced by the electron were investigated by a classical model that included possible cross coupling of the electric and gravitation fields. During this work, an interesting relationship was found that related the high frequency charge field with the extremely low frequency of the gravitation field. The results of numerical calculations were surprisingly accurate and this area of investigation is continuing. The work toward continued development of a standardized monitoring facility is continuing with the potential of installing the prototype at West Virginia State College early in 1990. This installation would be capable of real time monitoring of ELF signals in the Earth-ionoshpere cavity and would provide some directional information. A high gain, low noise, 1/f frequency corrected preamplifier was designed and tested for the ferrite core magnetic sensor. The potential application of a super conducting sensor for the ELF magnetic field detection is under investigation. It is hoped that a fully operational monitoring network could pinpoint the location of ELF signal sources and provide new information on where these signals originate and what causes them, assuming that they are natural in origin.
NASA Astrophysics Data System (ADS)
Kato, Teruyuki; Terada, Yukihiro; Nagai, Toshihiko; Koshimura, Shun'ichi
2010-05-01
We have developed a GPS buoy system for monitoring tsunami for over 12 years. The idea was that a buoy equipped with a GPS antenna and placed offshore may be an effective way of monitoring tsunami before its arrival to the coast and to give warning to the coastal residents. The key technology for the system is real-time kinematic (RTK) GPS technology. We have successfully developed the system; we have detected tsunamis of about 10cm in height for three large earthquakes, namely, the 23 June 2001 Peru earthquake (Mw8.4), the 26 September 2003 Tokachi earthquake (Mw8.3) and the 5 September 2004 earthquake (Mw7.4). The developed GPS buoy system is also capable of monitoring sea waves that are mainly caused by winds. Only the difference between tsunami and sea waves is their frequency range and can be segregated each other by a simple filtering technique. Given the success of GPS buoy experiments, the system has been adopted as a part of the Nationwide Ocean Wave information system for Port and HArborS (NOWPHAS) by the Ministry of Land, Infrastructure, Transport and Tourism of Japan. They have established more than eight GPS buoys along the Japanese coasts and the system has been operated by the Port and Airport Research Institute. As a future scope, we are now planning to implement some other additional facilities for the GPS buoy system. The first application is a so-called GPS/Acoustic system for monitoring ocean bottom crustal deformation. The system requires acoustic waves to detect ocean bottom reference position, which is the geometrical center of an array of transponders, by measuring distances between a position at the sea surface (vessel) and ocean bottom equipments to return the received sonic wave. The position of the vessel is measured using GPS. The system was first proposed by a research group at the Scripps Institution of Oceanography in early 1980's. The system was extensively developed by Japanese researchers and is now capable of detecting ocean bottom positions with a few centimeters in accuracy. The system is now operational for more than ten sites along the Japanese coasts. Currently, however, the measurements are not continuous but have been done once to several times a year using a boat. If a GPS and acoustic system is placed on a buoy, ocean bottom position could be monitored in near real-time and continuous manner. This will allow us to monitor more detailed and short term crustal deformations at the sea bottom. Another application plan is for an atmospheric research. Previous researchers have shown that GPS is capable of measuring atmospheric water vapor through estimating tropospheric zenith delay measurements of GPS at the sea surface. Information of water vapor content and its temporal variation over sea surface will much contribute to weather forecast on land which has mostly been conducted only by land observations. Considering that the atmospheric mass moves from west to east in general in and around Japanese islands, information of water vapor together with other atmospheric data from an array of GPS buoy placed in the west of Japanese Islands, will much improve weather forecast. We try to examine if this is also feasible. As a conclusion of a series of GPS buoy experiments, we could assert that GPS buoy system will be a powerful tool to monitor ocean surface and much contribute to provide safe and secure life of people.
Monitoring in traumatic brain injury.
Matz, P G; Pitts, L
1997-01-01
In the past several years, improvements in technology have advanced the monitoring capabilities for patients with TBI. The primary goal of monitoring the patient with TBI is to prevent secondary insults to the brain, primarily cerebral ischemia. Cerebral ischemia may occur early and without clinical correlation and portends a poor outcome. Measurement of ICP is the cornerstone of monitoring in the patient with TBI. Monitoring of ICP provides a measurement of CPP and a rough estimation of CBF. However, with alterations in pressure autoregulation, measurement of CPP does not always allow for determination of CBF. To circumvent this problem, direct measurements of CBF can be performed using clearance techniques (133Xe, N2O, Xe-CT) or invasive monitoring techniques (LDF, TDF, NIRS). Although direct and quantitative, clearance techniques do not allow for continuous monitoring. Invasive CBF monitoring techniques are new, and artifactual results can be problematic. The techniques of jugular venous saturation monitoring and TCD are well established and are powerful adjuncts to ICP monitoring. They allow the clinician to monitor cerebral oxygen extraction and blood flow velocity, respectively, for any given CPP. Use of TCD may predict posttraumatic vasospasm before clinical sequelae. Jugular venous saturation monitoring may detect clinically occult episodes of cerebral ischemia and increased oxygen extraction. Jugular venous saturation monitoring optimizes the use of hyperventilation in the treatment of intracranial hypertension. Although PET and SPECT scanning allow direct measurement of CMRO2, these techniques have limited application currently. Similarly, microdialysis is in its infancy but has demonstrated great promise for metabolic monitoring. EEG and SEP are excellent adjuncts to the monitoring arsenal and provide immediate information on current brain function. With improvements in electronic telemetry, functional monitoring by EEG or SEP may become an important part of routine monitoring in TBI.
Applied Operations Research: Operator's Assistant
NASA Technical Reports Server (NTRS)
Cole, Stuart K.
2015-01-01
NASA operates high value critical equipment (HVCE) that requires trouble shooting, periodic maintenance and continued monitoring by Operations staff. The complexity HVCE and information required to maintain and trouble shoot HVCE to assure continued mission success as paper is voluminous. Training on new HVCE is commensurate with the need for equipment maintenance. LaRC Research Directorate has undertaken a proactive research to support Operations staff by initiation of the development and prototyping an electronic computer based portable maintenance aid (Operator's Assistant). This research established a goal with multiple objectives and a working prototype was developed. The research identified affordable solutions; constraints; demonstrated use of commercial off the shelf software; use of the US Coast Guard maintenance solution; NASA Procedure Representation Language; and the identification of computer system strategies; where these demonstrations and capabilities support the Operator, and maintenance. The results revealed validation against measures of effectiveness and overall proved a substantial training and capability sustainment tool. The research indicated that the OA could be deployed operationally at the LaRC Compressor Station with an expectation of satisfactorily results and to obtain additional lessons learned prior to deployment at other LaRC Research Directorate Facilities. The research revealed projected cost and time savings.
Real-Time Data Streaming and Storing Structure for the LHD's Fusion Plasma Experiments
NASA Astrophysics Data System (ADS)
Nakanishi, Hideya; Ohsuna, Masaki; Kojima, Mamoru; Imazu, Setsuo; Nonomura, Miki; Emoto, Masahiko; Yoshida, Masanobu; Iwata, Chie; Ida, Katsumi
2016-02-01
The LHD data acquisition and archiving system, i.e., LABCOM system, has been fully equipped with high-speed real-time acquisition, streaming, and storage capabilities. To deal with more than 100 MB/s continuously generated data at each data acquisition (DAQ) node, DAQ tasks have been implemented as multitasking and multithreaded ones in which the shared memory plays the most important role for inter-process fast and massive data handling. By introducing a 10-second time chunk named “subshot,” endless data streams can be stored into a consecutive series of fixed length data blocks so that they will soon become readable by other processes even while the write process is continuing. Real-time device and environmental monitoring are also implemented in the same way with further sparse resampling. The central data storage has been separated into two layers to be capable of receiving multiple 100 MB/s inflows in parallel. For the frontend layer, high-speed SSD arrays are used as the GlusterFS distributed filesystem which can provide max. 2 GB/s throughput. Those design optimizations would be informative for implementing the next-generation data archiving system in big physics, such as ITER.
SCIAMACHY’s View of the Polar Atmosphere
Gottwald, M.; Krieg, E.; von Savigny, C.; Noël, S.; Reichl, A.; Bovensmann, H.; Burrows, J.P.
2007-01-01
The instrument SCIAMACHY onboard the European ENVISAT mission provides unique capabilities for deriving atmospheric geophysical parameters. Since its launch in early 2002 it has operated successfully in orbit. Due to ENVISAT’s high inclination orbit the polar regions are monitored continuously. We report here results about the status of the polar atmosphere in the past 5 years with special emphasis on the southern hemisphere. This part of the atmosphere is considered to be highly sensitive to anthropogenic impacts on the Earth system and thus to climate change. The acquired data permit retrieving information on the Earth’s atmosphere from troposphere up to the mesosphere
40 CFR 60.2941 - What is my schedule for evaluating continuous emission monitoring systems?
Code of Federal Regulations, 2010 CFR
2010-07-01
... continuous emission monitoring systems? 60.2941 Section 60.2941 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES... emission monitoring systems? (a) Conduct annual evaluations of your continuous emission monitoring systems...
Dose Monitoring in Radiology Departments: Status Quo and Future Perspectives.
Boos, J; Meineke, A; Bethge, O T; Antoch, G; Kröpil, P
2016-05-01
The number of computed tomography examinations has continuously increased over the last decades and accounts for a major part of the collective radiation dose from medical investigations. For purposes of quality assurance in modern radiology a systematic monitoring and analysis of dose related data from radiological examinations is mandatory. Various ways of collecting dose data are available today, for example the Digital Imaging and Communication in Medicine - Structured Report (DICOM-SR), optical character recognition and DICOM-modality performed procedure steps (MPPS). The DICOM-SR is part of the DICOM-standard and provides the DICOM-Radiation Dose Structured Report, which is an easily applicable and comprehensive solution to collect radiation dose parameters. This standard simplifies the process of data collection and enables comprehensive dose monitoring. Various commercial dose monitoring software devices with varying characteristics are available today. In this article, we discuss legal obligations, various ways to monitor dose data, current dose monitoring software solutions and future perspectives in regard to the EU Council Directive 2013/59/EURATOM. • Automated, systematic dose monitoring is an important element in quality assurance of radiology departments. • DICOM-RDSR-capable CT scanners facilitate the monitoring of dose data. • A variety of commercial and non-commercial dose monitoring software tools are available today. • Successful dose monitoring requires comprehensive infrastructure for monitoring, analysing and optimizing radiation exposure. Citation Format: • Boos J, Meineke A, Bethge OT et al. Dose Monitoring in Radiology Departments: Status Quo and Future Perspectives. Fortschr Röntgenstr 2016; 188: 443 - 450. © Georg Thieme Verlag KG Stuttgart · New York.
40 CFR 60.3040 - What is my schedule for evaluating continuous emission monitoring systems?
Code of Federal Regulations, 2011 CFR
2011-07-01
... continuous emission monitoring systems? 60.3040 Section 60.3040 Protection of Environment ENVIRONMENTAL... continuous emission monitoring systems? (a) Conduct annual evaluations of your continuous emission monitoring... emission monitoring systems daily and quarterly as specified in appendix F of this part. ...
40 CFR 60.2939 - What continuous emission monitoring systems must I install?
Code of Federal Regulations, 2010 CFR
2010-07-01
... and Qualification Monitoring § 60.2939 What continuous emission monitoring systems must I install? (a) You must install, calibrate, maintain, and operate continuous emission monitoring systems for carbon... carbon monoxide. (b) You must install, evaluate, and operate each continuous emission monitoring system...
40 CFR 60.2939 - What continuous emission monitoring systems must I install?
Code of Federal Regulations, 2011 CFR
2011-07-01
... and Qualification Monitoring § 60.2939 What continuous emission monitoring systems must I install? (a) You must install, calibrate, maintain, and operate continuous emission monitoring systems for carbon... carbon monoxide. (b) You must install, evaluate, and operate each continuous emission monitoring system...
A reliable sewage quality abnormal event monitoring system.
Li, Tianling; Winnel, Melissa; Lin, Hao; Panther, Jared; Liu, Chang; O'Halloran, Roger; Wang, Kewen; An, Taicheng; Wong, Po Keung; Zhang, Shanqing; Zhao, Huijun
2017-09-15
With closing water loop through purified recycled water, wastewater becomes a part of source water, requiring reliable wastewater quality monitoring system (WQMS) to manage wastewater source and mitigate potential health risks. However, the development of reliable WQMS is fatally constrained by severe contamination and biofouling of sensors due to the hostile analytical environment of wastewaters, especially raw sewages, that challenges the limit of existing sensing technologies. In this work, we report a technological solution to enable the development of WQMS for real-time abnormal event detection with high reliability and practicality. A vectored high flow hydrodynamic self-cleaning approach and a dual-sensor self-diagnostic concept are adopted for WQMS to effectively encounter vital sensor failing issues caused by contamination and biofouling and ensure the integrity of sensing data. The performance of the WQMS has been evaluated over a 3-year trial period at different sewage catchment sites across three Australian states. It has demonstrated that the developed WQMS is capable of continuously operating in raw sewage for a prolonged period up to 24 months without maintenance and failure, signifying the high reliability and practicality. The demonstrated WQMS capability to reliably acquire real-time wastewater quality information leaps forward the development of effective wastewater source management system. The reported self-cleaning and self-diagnostic concepts should be applicable to other online water quality monitoring systems, opening a new way to encounter the common reliability and stability issues caused by sensor contamination and biofouling. Copyright © 2017 Elsevier Ltd. All rights reserved.
A Real Time Controller For Applications In Smart Structures
NASA Astrophysics Data System (ADS)
Ahrens, Christian P.; Claus, Richard O.
1990-02-01
Research in smart structures, especially the area of vibration suppression, has warranted the investigation of advanced computing environments. Real time PC computing power has limited development of high order control algorithms. This paper presents a simple Real Time Embedded Control System (RTECS) in an application of Intelligent Structure Monitoring by way of modal domain sensing for vibration control. It is compared to a PC AT based system for overall functionality and speed. The system employs a novel Reduced Instruction Set Computer (RISC) microcontroller capable of 15 million instructions per second (MIPS) continuous performance and burst rates of 40 MIPS. Advanced Complimentary Metal Oxide Semiconductor (CMOS) circuits are integrated on a single 100 mm by 160 mm printed circuit board requiring only 1 Watt of power. An operating system written in Forth provides high speed operation and short development cycles. The system allows for implementation of Input/Output (I/O) intensive algorithms and provides capability for advanced system development.
Solid motor diagnostic instrumentation. [design of self-contained instrumentation
NASA Technical Reports Server (NTRS)
Nakamura, Y.; Arens, W. E.; Wuest, W. S.
1973-01-01
A review of typical surveillance and monitoring practices followed during the flight phases of representative solid-propellant upper stages and apogee motors was conducted to evaluate the need for improved flight diagnostic instrumentation on future spacecraft. The capabilities of the flight instrumentation package were limited to the detection of whether or not the solid motor was the cause of failure and to the identification of probable primary failure modes. Conceptual designs of self-contained flight instrumentation packages capable of meeting these reqirements were generated and their performance, typical cost, and unit characteristics determined. Comparisons of a continuous real time and a thresholded hybrid design were made on the basis of performance, mass, power, cost, and expected life. The results of this analysis substantiated the feasibility of a self-contained independent flight instrumentation module as well as the existence of performance margins by which to exploit growth option applications.
Implementation of Wireless and Intelligent Sensor Technologies in the Propulsion Test Environment
NASA Technical Reports Server (NTRS)
Solano, Wanda M.; Junell, Justin C.; Shumard, Kenneth
2003-01-01
From the first Saturn V rocket booster (S-II-T) testing in 1966 and the routine Space Shuttle Main Engine (SSME) testing beginning in 1975, to more recent test programs such as the X-33 Aerospike Engine, the Integrated Powerhead Development (IPD) program, and the Hybrid Sounding Rocket (HYSR), Stennis Space Center (SSC) continues to be a premier location for conducting large-scale propulsion testing. Central to each test program is the capability for sensor systems to deliver reliable measurements and high quality data, while also providing a means to monitor the test stand area to the highest degree of safety and sustainability. As part of an on-going effort to enhance the testing capabilities of Stennis Space Center, the Test Technology and Development group is developing and applying a number of wireless and intelligent sensor technologies in ways that are new to the test existing test environment.
40 CFR 60.1235 - How are the data from the continuous emission monitoring systems used?
Code of Federal Regulations, 2010 CFR
2010-07-01
... emission monitoring systems used? 60.1235 Section 60.1235 Protection of Environment ENVIRONMENTAL... Continuous Emission Monitoring § 60.1235 How are the data from the continuous emission monitoring systems used? You must use data from the continuous emission monitoring systems for sulfur dioxide, nitrogen...
40 CFR 60.1235 - How are the data from the continuous emission monitoring systems used?
Code of Federal Regulations, 2011 CFR
2011-07-01
... emission monitoring systems used? 60.1235 Section 60.1235 Protection of Environment ENVIRONMENTAL... Continuous Emission Monitoring § 60.1235 How are the data from the continuous emission monitoring systems used? You must use data from the continuous emission monitoring systems for sulfur dioxide, nitrogen...
Predictive Monitoring for Improved Management of Glucose Levels
Reifman, Jaques; Rajaraman, Srinivasan; Gribok, Andrei; Ward, W. Kenneth
2007-01-01
Background Recent developments and expected near-future improvements in continuous glucose monitoring (CGM) devices provide opportunities to couple them with mathematical forecasting models to produce predictive monitoring systems for early, proactive glycemia management of diabetes mellitus patients before glucose levels drift to undesirable levels. This article assesses the feasibility of data-driven models to serve as the forecasting engine of predictive monitoring systems. Methods We investigated the capabilities of data-driven autoregressive (AR) models to (1) capture the correlations in glucose time-series data, (2) make accurate predictions as a function of prediction horizon, and (3) be made portable from individual to individual without any need for model tuning. The investigation is performed by employing CGM data from nine type 1 diabetic subjects collected over a continuous 5-day period. Results With CGM data serving as the gold standard, AR model-based predictions of glucose levels assessed over nine subjects with Clarke error grid analysis indicated that, for a 30-minute prediction horizon, individually tuned models yield 97.6 to 100.0% of data in the clinically acceptable zones A and B, whereas cross-subject, portable models yield 95.8 to 99.7% of data in zones A and B. Conclusions This study shows that, for a 30-minute prediction horizon, data-driven AR models provide sufficiently-accurate and clinically-acceptable estimates of glucose levels for timely, proactive therapy and should be considered as the modeling engine for predictive monitoring of patients with type 1 diabetes mellitus. It also suggests that AR models can be made portable from individual to individual with minor performance penalties, while greatly reducing the burden associated with model tuning and data collection for model development. PMID:19885110
Liu, Jiao; Yao, Changhong; Meng, Yingying; Cao, Xupeng; Wu, Peichun; Xue, Song
2018-01-01
Triacylglycerol (TAG) from photosynthetic microalgae is a sustainable feedstock for biodiesel production. Physiological stress triggers microalgal TAG accumulation. However excessive physiological stress will impair the photosynthesis system seriously thus decreasing TAG productivity because of the low biomass production. Hence, it is critical to quantitatively and timely monitor the degree of the stress while the microalgal cells growing so that the optimal TAG productivity can be obtained. The lack of an on-line monitored indicator has limited our ability to gain knowledge of cellular "health status" information regarding high TAG productivity. Therefore, to monitor the degree of nitrogen stress of the cells, we investigated the correlation between the photosynthetic system II (PS II) quantum yield and the degree of stress based on the high relevancy between photosynthetic reduction and nitrogen stress-induced TAG accumulation in microalgal cells. Δ F/F m ', which is the chlorophyll fluorescence parameter that reflects the effective capability of PS II, was identified to be a critical factor to indicate the degree of stress of the cells. In addition, the concept of a nitrogen stress index has been defined to quantify the degree of stress. Based on this index and by monitoring Δ F/F m ' and guiding the supply of nitrogen in culture medium to maintain a stable degree of stress, a stable and efficient semi-continuous process for TAG production has been established. The results indicate that the semi-continuous cultivation process with a controlled degree of stress by monitoring the Δ F/F m ' indicator will have a significant impact on microalgal TAG production, especially for the outdoor controllable cultivation of microalgae on a large scale.
Parallel computer processing and modeling: applications for the ICU
NASA Astrophysics Data System (ADS)
Baxter, Grant; Pranger, L. Alex; Draghic, Nicole; Sims, Nathaniel M.; Wiesmann, William P.
2003-07-01
Current patient monitoring procedures in hospital intensive care units (ICUs) generate vast quantities of medical data, much of which is considered extemporaneous and not evaluated. Although sophisticated monitors to analyze individual types of patient data are routinely used in the hospital setting, this equipment lacks high order signal analysis tools for detecting long-term trends and correlations between different signals within a patient data set. Without the ability to continuously analyze disjoint sets of patient data, it is difficult to detect slow-forming complications. As a result, the early onset of conditions such as pneumonia or sepsis may not be apparent until the advanced stages. We report here on the development of a distributed software architecture test bed and software medical models to analyze both asynchronous and continuous patient data in real time. Hardware and software has been developed to support a multi-node distributed computer cluster capable of amassing data from multiple patient monitors and projecting near and long-term outcomes based upon the application of physiologic models to the incoming patient data stream. One computer acts as a central coordinating node; additional computers accommodate processing needs. A simple, non-clinical model for sepsis detection was implemented on the system for demonstration purposes. This work shows exceptional promise as a highly effective means to rapidly predict and thereby mitigate the effect of nosocomial infections.
Resourcesat-1: A global multi-observation mission for resources monitoring
NASA Astrophysics Data System (ADS)
Seshadri, K. S. V.; Rao, Mukund; Jayaraman, V.; Thyagarajan, K.; Sridhara Murthi, K. R.
2005-07-01
With an array of Indian Remote Sensing Satellites (IRS), a wide variety of national applications have been developed as an inter-agency effort over the past 20 years. Now, the capacity of the programme has been extended into the global arena and IRS is providing operational data services to the global user community. The recently launched IRS satellite, Resourcesat-1, was placed into perfect orbit by India's PSLV and is providing valuable imaging services. Resourcesat-1 is actually like 3 satellites "rolled" into one, imaging a wide field of 710 km area at ˜55 m resolution in multispectral bands from the AWiFS, 23 m resolution in a systematic 142 km swath from four bands of the LISS-3 and the 5.8 m multi-spectral images from the most advanced sensor—LISS-4. Yet another aspect of Resourcesat-1 is it that it marks a "watershed" in terms of a quantum jump in technological capability that India has achieved compared to past missions. The mission has many newer features—the advanced imaging sensors, the more precise attitude and orbit determination systems, the satellite positioning system onboard, the mass storage devices and many other features. This mission has led IRS into a new technological era, and when combined with the technological capability of the forthcoming Cartosat missions, India would have developed technologies that will take us into the new generation of EO satellites for the coming years. This paper provides a detailed description of the Resourcesat-1 mission. From the applications point of view, Resourcesat-1 will open up new avenues for environmental monitoring and resources management—especially for vegetation assessment and disaster management support. The monitoring capability of this mission is also extremely important for a number of applications. The mission has global imaging and servicing capabilities and could be received through the Antrix-Space Imaging network, which markets Resourcesat-1 data worldwide. This paper also describes the applications potentials and global capabilities of the mission. Resourcesat-1 will have continuity and after that a new generation system will provide enhanced and more unique imaging services. Actually, India has a 25 years strategy for EO and a perspective of the same is also described in this paper.
Continuous Seismic Threshold Monitoring
1992-05-31
Continuous threshold monitoring is a technique for using a seismic network to monitor a geographical area continuously in time. The method provides...area. Two approaches are presented. Site-specific monitoring: By focusing a seismic network on a specific target site, continuous threshold monitoring...recorded events at the site. We define the threshold trace for the network as the continuous time trace of computed upper magnitude limits of seismic
Laser Spectroscopy Multi-Gas Monitor: Results of Technology Demonstration on ISS
NASA Technical Reports Server (NTRS)
Mudgett, Paul D.; Pilgrim, Jeffrey S.
2015-01-01
Tunable diode laser spectroscopy (TDLS) is an up and coming trace and major gas monitoring technology with unmatched selectivity, range and stability. The technology demonstration of the 4 gas Multi-Gas Monitor (MGM), reported at the 2014 ICES conference, operated continuously on the International Space Station (ISS) for nearly a year. The MGM is designed to measure oxygen, carbon dioxide, ammonia and water vapor in ambient cabin air in a low power, relatively compact device. While on board, the MGM experienced a number of challenges, unplanned and planned, including a test of the ammonia channel using a commercial medical ammonia inhalant. Data from the unit was downlinked once per week and compared with other analytical resources on board, notably the Major Constituent Analyzer (MCA), a magnetic sector mass spectrometer. MGM spent the majority of the time installed in the Nanoracks Frame 2 payload facility in front breathing mode (sampling the ambient environment of the Japanese Experiment Module), but was also used to analyze recirculated rack air. The capability of the MGM to be operated in portable mode (via internal rechargeable lithium ion polymer batteries or by plugging into any Express Rack 28VDC connector) was a part of the usability demonstration. Results to date show unprecedented stability and accuracy of the MGM vs. the MCA for oxygen and carbon dioxide. The ammonia challenge (approx. 75 ppm) was successful as well, showing very rapid response time in both directions. Work on an expansion of capability in a next generation MGM has just begun. Combustion products and hydrazine are being added to the measurable target analytes. An 8 to 10 gas monitor (aka Gas Tricorder 1.0) is envisioned for use on ISS, Orion and Exploration missions.
The Engineering Strong Ground Motion Network of the National Autonomous University of Mexico
NASA Astrophysics Data System (ADS)
Velasco Miranda, J. M.; Ramirez-Guzman, L.; Aguilar Calderon, L. A.; Almora Mata, D.; Ayala Hernandez, M.; Castro Parra, G.; Molina Avila, I.; Mora, A.; Torres Noguez, M.; Vazquez Larquet, R.
2014-12-01
The coverage, design, operation and monitoring capabilities of the strong ground motion program at the Institute of Engineering (IE) of the National Autonomous University of Mexico (UNAM) is presented. Started in 1952, the seismic instrumentation intended initially to bolster earthquake engineering projects in Mexico City has evolved into the largest strong ground motion monitoring system in the region. Today, it provides information not only to engineering projects, but also to the near real-time risk mitigation systems of the country, and enhances the general understanding of the effects and causes of earthquakes in Mexico. The IE network includes more than 100 free-field stations and several buildings, covering the largest urban centers and zones of significant seismicity in Central Mexico. Of those stations, approximately one-fourth send the observed acceleration to a processing center in Mexico City continuously, and the rest require either periodic visits for the manual recovery of the data or remote interrogation, for later processing and cataloging. In this research, we document the procedures and telecommunications systems used systematically to recover information. Additionally, we analyze the spatial distribution of the free-field accelerographs, the quality of the instrumentation, and the recorded ground motions. The evaluation criteria are based on the: 1) uncertainty in the generation of ground motion parameter maps due to the spatial distribution of the stations, 2) potential of the array to provide localization and magnitude estimates for earthquakes with magnitudes greater than Mw 5, and 3) adequacy of the network for the development of Ground Motion Prediction Equations due to intra-plate and intra-slab earthquakes. We conclude that the monitoring system requires a new redistribution, additional stations, and a substantial improvement in the instrumentation and telecommunications. Finally, we present an integral plan to improve the current network's monitoring capabilities.
40 CFR 62.15180 - How are the data from the continuous emission monitoring systems used?
Code of Federal Regulations, 2010 CFR
2010-07-01
... emission monitoring systems used? 62.15180 Section 62.15180 Protection of Environment ENVIRONMENTAL... Constructed on or Before August 30, 1999 Continuous Emission Monitoring § 62.15180 How are the data from the continuous emission monitoring systems used? You must use data from the continuous emission monitoring...
Code of Federal Regulations, 2010 CFR
2010-07-01
... must I collect with my continuous emission monitoring systems and is this requirement enforceable? 62... with my continuous emission monitoring systems and is this requirement enforceable? (a) Where continuous emission monitoring systems are required, obtain 1-hour arithmetic averages. Make sure the...
Code of Federal Regulations, 2011 CFR
2011-07-01
... must I collect with my continuous emission monitoring systems and is this requirement enforceable? 62... with my continuous emission monitoring systems and is this requirement enforceable? (a) Where continuous emission monitoring systems are required, obtain 1-hour arithmetic averages. Make sure the...
40 CFR 60.1725 - How are the data from the continuous emission monitoring systems used?
Code of Federal Regulations, 2011 CFR
2011-07-01
... emission monitoring systems used? 60.1725 Section 60.1725 Protection of Environment ENVIRONMENTAL... Before August 30, 1999 Model Rule-Continuous Emission Monitoring § 60.1725 How are the data from the continuous emission monitoring systems used? You must use data from the continuous emission monitoring...
Code of Federal Regulations, 2010 CFR
2010-07-01
... monitoring data I must collect with my continuous emission monitoring systems, and is the data collection... with my continuous emission monitoring systems, and is the data collection requirement enforceable? (a) Where continuous emission monitoring systems are required, obtain 1-hour arithmetic averages. Make sure...
Code of Federal Regulations, 2010 CFR
2010-07-01
... monitoring data I must collect with my continuous emission monitoring systems, and is the data collection... collect with my continuous emission monitoring systems, and is the data collection requirement enforceable? (a) Where continuous emission monitoring systems are required, obtain 1-hour arithmetic averages...
Code of Federal Regulations, 2011 CFR
2011-07-01
... monitoring data I must collect with my continuous emission monitoring systems, and is the data collection... collect with my continuous emission monitoring systems, and is the data collection requirement enforceable? (a) Where continuous emission monitoring systems are required, obtain 1-hour arithmetic averages...
Code of Federal Regulations, 2010 CFR
2010-07-01
... must I collect with my continuous parameter monitoring systems and is this requirement enforceable? 62... with my continuous parameter monitoring systems and is this requirement enforceable? (a) Where continuous parameter monitoring systems are used, obtain 1-hour arithmetic averages for three parameters: (1...
Code of Federal Regulations, 2011 CFR
2011-07-01
... must I collect with my continuous parameter monitoring systems and is this requirement enforceable? 62... with my continuous parameter monitoring systems and is this requirement enforceable? (a) Where continuous parameter monitoring systems are used, obtain 1-hour arithmetic averages for three parameters: (1...
40 CFR 62.15180 - How are the data from the continuous emission monitoring systems used?
Code of Federal Regulations, 2011 CFR
2011-07-01
... emission monitoring systems used? 62.15180 Section 62.15180 Protection of Environment ENVIRONMENTAL... Constructed on or Before August 30, 1999 Continuous Emission Monitoring § 62.15180 How are the data from the continuous emission monitoring systems used? You must use data from the continuous emission monitoring...
Code of Federal Regulations, 2011 CFR
2011-07-01
... monitoring data I must collect with my continuous emission monitoring systems, and is the data collection... with my continuous emission monitoring systems, and is the data collection requirement enforceable? (a) Where continuous emission monitoring systems are required, obtain 1-hour arithmetic averages. Make sure...
40 CFR 60.1725 - How are the data from the continuous emission monitoring systems used?
Code of Federal Regulations, 2010 CFR
2010-07-01
... emission monitoring systems used? 60.1725 Section 60.1725 Protection of Environment ENVIRONMENTAL... Before August 30, 1999 Model Rule-Continuous Emission Monitoring § 60.1725 How are the data from the continuous emission monitoring systems used? You must use data from the continuous emission monitoring...
Research Progress and Accomplishments on ISS
NASA Technical Reports Server (NTRS)
Roe, Lesa B.; Uri, John J.
2002-01-01
The first research payloads reached the International Space Station (ISS) more than two years ago, with research operating continuously since March 2001. Seven research racks are currently on-orbit, with three more arriving soon to expand science capabilities. Through the first five expeditions, 60 unique NASA-managed investigations from 11 nations have been supported, many continuing into later missions. More than 90,000 experiment hours have been completed, and more than 1,000 hours of crew time have been dedicated to research, numbers that grow daily. The multidisciplinary program includes research in life sciences, physical sciences, biotechnology, Earth sciences, technology demonstrations as well as commercial endeavors and educational activities. The Payload Operations and Integration Center monitors the onboard activities around the clock, working with numerous Principal Investigators and Payload Developers at their remote sites. Future years will see expansion of the station with research modules provided by the European Space Agency and Japan, which will be outfitted with additional research racks. The first research payloads arrived at ISS more than two years ago, and continuous science has been ongoing for more than one and a half years. During this time, the research capabilities have been tremendously increased, even as assembly of the overall platform continues. Despite significant challenges along the way, ISS continues to successfully support a large number of investigations in a variety of research disciplines. The results of some of the early investigations are reaching the publication stage. The near future looms with new challenges, but experience to date and dedicated efforts give reason to be optimistic that the challenges will be overcome and that new and greater successes will be added to past ones.
Salim, Anas Mustafa; Elgizoli, Bashir
2016-01-01
The principal aim of this study was to explore the self-perception of community pharmacists of their professional identity and roles and how they think patients and doctors perceive them. The study also aimed at exploring their opinions regarding role expansion and how they assess their capabilities. This is an exploratory study that employed qualitative method. Individual, in-depth interviews were conducted with a purposive sample of 50 community pharmacists working in Khartoum State, Sudan, from October to November 2015. Each interview was recorded, transcribed, and coded into themes. Thematic analysis was carried out. The study revealed nine different identities of community pharmacists including supplier of medicines, medicines maker, dispenser, patient counselor, medicines expert, clinical practitioner, health promoter, monitor of medicines use, and family practice identity. Participants described that most of the patients value their professional role while doctors perceive them as merely dispensers. Most of participants believe that they are capable to fulfill their roles; however, they identified the need for continuous education. The study revealed that community pharmacists are thirst to role expansion. The study concluded that community pharmacists are aware of the different identities of their profession. The good recognition of their role by patients reflects good service provided while lack of integrated primary health care system that join doctors and pharmacists resulted in lack of pharmacists' recognition by doctors. Continuous educational program is needed for community pharmacists, and role expansion will allow for better self-perception and better profession contribution in healthcare.
Continuing global monitoring of anthropogenic and volcanic SO2 sources from Aura/OMI to SNPP/OMPS
NASA Astrophysics Data System (ADS)
Li, C.; Krotkov, N. A.; Carn, S. A.; Joiner, J.; McLinden, C. A.; Fioletov, V.
2017-12-01
Sulfur dioxide (SO2) is an important trace gas that has significant impacts on air quality, the climate, and stratospheric ozone. It is predominantly emitted from anthropogenic sources such as coal-fired power plants and smelters, but also has sizable sources from volcanic activity. The Ozone Monitoring Instrument (OMI) aboard NASA's Earth Observing System (EOS) Aura spacecraft has been providing global observations of both anthropogenic and volcanic SO2 since its launch in 2004. The Ozone Mapping and Profiler Suite (OMPS) nadir mapper, launched aboard the NASA/NOAA Suomi National Polar-orbiting Partnership (SNPP) satellite in 2011, will continue the 13+ year OMI SO2 time series. However, it is a significant challenge to build a coherent data record between OMI and OMPS, as the SO2 signal is relatively weak and its retrieval is subject to a number of interferences such as ozone absorption. Additionally, the two instruments also have different spectral and spatial resolutions that result in different sensitivities to SO2. Even a relatively small error in retrievals, due to either algorithmic or instrumental factors, may lead to a large inter-instrument bias in SO2. In this presentation, we report on our latest effort and progress in developing EOS continuity SNPP/OMPS SO2 products. We have applied a consistent retrieval technique based on principal component analysis (PCA) of measured radiance data to both OMI and OMPS. We show that the PCA retrieval technique, which extracts principal components (PCs) from measured radiances and applies these PCs in spectral fitting to minimize the effects of various interfering processes, is capable of producing highly consistent OMI and OMPS SO2 data for both anthropogenic sources and large volcanic eruptions. To gain a quantitative understanding of the two instruments' capabilities of monitoring SO2 sources, we have also applied a new emission estimation technique that combines satellite SO2 and wind information to both of them. This method allows SO2 emissions from 500 sources worldwide to be detected and quantified from OMI data. The OMPS-based emission estimates using the same method agree well with OMI-based ones, although OMPS detects fewer of the smaller sources seen by OMI, owing to its coarser spatial resolution.
Carbon fiber epoxy composites for both strengthening and health monitoring of structures.
Salvado, Rita; Lopes, Catarina; Szojda, Leszek; Araújo, Pedro; Gorski, Marcin; Velez, Fernando José; Castro-Gomes, João; Krzywon, Rafal
2015-05-06
This paper presents a study of the electrical and mechanical behavior of several continuous carbon fibers epoxy composites for both strengthening and monitoring of structures. In these composites, the arrangement of fibers was deliberately diversified to test and understand the ability of the composites for self-sensing low strains. Composites with different arrangements of fibers and textile weaves, mainly unidirectional continuous carbon reinforced composites, were tested at the dynamometer. A two-probe method was considered to measure the relative electrical resistance of these composites during loading. The measured relative electrical resistance includes volume and contact electrical resistances. For all tested specimens, it increases with an increase in tensile strain, at low strain values. This is explained by the improved alignment of fibers and resulting reduction of the number of possible contacts between fibers during loading, increasing as a consequence the contact electrical resistance of the composite. Laboratory tests on strengthening of structural elements were also performed, making hand-made composites by the "wet process", which is commonly used in civil engineering for the strengthening of all types of structures in-situ. Results show that the woven epoxy composite, used for strengthening of concrete elements is also able to sense low deformations, below 1%. Moreover, results clearly show that this textile sensor also improves the mechanical work of the strengthened structural elements, increasing their bearing capacity. Finally, the set of obtained results supports the concept of a textile fabric capable of both structural upgrade and self-monitoring of structures, especially large structures of difficult access and needing constant, sometimes very expensive, health monitoring.
Carbon Fiber Epoxy Composites for Both Strengthening and Health Monitoring of Structures
Salvado, Rita; Lopes, Catarina; Szojda, Leszek; Araújo, Pedro; Gorski, Marcin; Velez, Fernando José; Castro-Gomes, João; Krzywon, Rafal
2015-01-01
This paper presents a study of the electrical and mechanical behavior of several continuous carbon fibers epoxy composites for both strengthening and monitoring of structures. In these composites, the arrangement of fibers was deliberately diversified to test and understand the ability of the composites for self-sensing low strains. Composites with different arrangements of fibers and textile weaves, mainly unidirectional continuous carbon reinforced composites, were tested at the dynamometer. A two-probe method was considered to measure the relative electrical resistance of these composites during loading. The measured relative electrical resistance includes volume and contact electrical resistances. For all tested specimens, it increases with an increase in tensile strain, at low strain values. This is explained by the improved alignment of fibers and resulting reduction of the number of possible contacts between fibers during loading, increasing as a consequence the contact electrical resistance of the composite. Laboratory tests on strengthening of structural elements were also performed, making hand-made composites by the “wet process”, which is commonly used in civil engineering for the strengthening of all types of structures in-situ. Results show that the woven epoxy composite, used for strengthening of concrete elements is also able to sense low deformations, below 1%. Moreover, results clearly show that this textile sensor also improves the mechanical work of the strengthened structural elements, increasing their bearing capacity. Finally, the set of obtained results supports the concept of a textile fabric capable of both structural upgrade and self-monitoring of structures, especially large structures of difficult access and needing constant, sometimes very expensive, health monitoring. PMID:25954955
Extragalactic Science With Kepler
NASA Astrophysics Data System (ADS)
Fanelli, Michael N.; Marcum, P.
2012-01-01
Although designed as an exoplanet and stellar astrophysics experiment, the Kepler mission provides a unique capability to explore the essentially unknown photometric stability of galactic systems at millimag levels using Kepler's blend of high precision and continuous monitoring. Time series observations of galaxies are sensitive to both quasi-continuous variability, driven by accretion activity from embedded active nuclei, and random, episodic events, such as supernovae. In general, galaxies lacking active nuclei are not expected to be variable with the timescales and amplitudes observed in stellar sources and are free of source motions that affect stars (e.g., parallax). These sources can serve as a population of quiescent, non-variable sources, which may be used to quantify the photometric stability and noise characteristics of the Kepler photometer. A factor limiting galaxy monitoring in the Kepler FOV is the overall lack of detailed quantitative information for the galaxy population. Despite these limitations, a significant number of galaxies are being observed, forming the Kepler Galaxy Archive. Observed sources total approximately 100, 250, and 700 in Cycles 1-3 (Cycle 3 began in June 2011). In this poster we interpret the properties of a set of 20 galaxies monitored during quarters 4 through 8, their associated light curves, photometric and astrometric precision and potential variability. We describe data analysis issues relevant to extended sources and available software tools. In addition, we detail ongoing surveys that are providing new photometric and morphological information for galaxies over the entire field. These new datasets will both aid the interpretation of the time series, and improve source selection, e.g., help identify candidate AGNs and starburst systems, for further monitoring.
Kim, Sun Kyu; Burris, David R; Bryant-Genevier, Jonathan; Gorder, Kyle A; Dettenmaier, Erik M; Zellers, Edward T
2012-06-05
We demonstrate the use of two prototype Si-microfabricated gas chromatographs (μGC) for continuous, short-term measurements of indoor trichloroethylene (TCE) vapor concentrations related to the investigation of TCE vapor intrusion (VI) in two houses. In the first house, with documented TCE VI, temporal variations in TCE air concentrations were monitored continuously for up to 48 h near the primary VI entry location under different levels of induced differential pressure (relative to the subslab). Concentrations ranged from 0.23 to 27 ppb by volume (1.2-150 μg/m(3)), and concentration trends agreed closely with those determined from concurrent reference samples. The sensitivity and temporal resolution of the measurements were sufficiently high to detect transient fluctuations in concentration resulting from short-term changes in variables affecting the extent of VI. Spatial monitoring showed a decreasing TCE concentration gradient with increasing distance from the primary VI entry location. In the second house, with no TCE VI, spatial profiles derived from the μGC prototype data revealed an intentionally hidden source of TCE within a closet, demonstrating the capability for locating non-VI sources. Concentrations measured in this house ranged from 0.51 to 56 ppb (2.7-300 μg/m(3)), in good agreement with reference method values. This first field demonstration of μGC technology for automated, near-real-time, selective VOC monitoring at low- or subppb levels augurs well for its use in short- and long-term on-site analysis of indoor air in support of VI assessments.
Real-time imaging of subarachnoid hemorrhage in piglets with electrical impedance tomography.
Dai, Meng; Wang, Liang; Xu, Canhua; Li, Lianfeng; Gao, Guodong; Dong, Xiuzhen
2010-09-01
Subarachnoid hemorrhage (SAH) is one of the most severe medical emergencies in neurosurgery. Early detection or diagnosis would significantly reduce the rate of disability and mortality, and improve the prognosis of the patients. Although the present medical imaging techniques generally have high sensitivity to identify bleeding, the use of an additional, non-invasive imaging technique capable of continuously monitoring SAH is required to prevent contingent bleeding or re-bleeding. In this study, electrical impedance tomography (EIT) was applied to detect the onset of SAH modeled on eight piglets in real time, with the subsequent process being monitored continuously. The experimental SAH model was introduced by one-time injection of 5 ml fresh autologous arterial blood into the cisterna magna. Results showed that resistivity variations within the brain caused by the added blood could be detected using the EIT method and may be associated not only with the resistivity difference among brain tissues, but also with variations of cerebrospinal fluid dynamics. In conclusion, EIT has unique potential for use in clinical practice to provide invaluable real-time neuroimaging data for SAH after the improvement of electrode design, anisotropic realistic modeling and instrumentation.
Talarico, Daria; Cinti, Stefano; Arduini, Fabiana; Amine, Aziz; Moscone, Danila; Palleschi, Giuseppe
2015-07-07
An automatable flow system for the continuous and long-term monitoring of the phosphate level has been developed using an amperometric detection method based on the use of a miniaturized sensor. This method is based on the monitoring of an electroactive complex obtained by the reaction between phosphate and molybdate that is consequently reduced at the electrode surface. The use of a screen-printed electrode modified with carbon black nanoparticles (CBNPs) leads to the quantification of the complex at low potential, because CBNPs are capable of electrocatalitically enhancing the phosphomolybdate complex reduction at +125 mV versus Ag/AgCl without fouling problems. The developed system also incorporates reagents and waste storage and is connected to a portable potentiostat for rapid detection and quantification of phosphate. Main analytical parameters, such as working potential, reagent concentration, type of cell, and flow rate, were evaluated and optimized. This system was characterized by a low detection limit (6 μM). Interference studies were carried out. Good recovery percentages comprised between 89 and 131.5% were achieved in different water sources, highlighting its suitability for field measurements.
Code of Federal Regulations, 2010 CFR
2010-07-01
... monitoring data I must collect with my continuous parameter monitoring systems and is the data collection... must collect with my continuous parameter monitoring systems and is the data collection requirement enforceable? (a) Where continuous parameter monitoring systems are used, obtain 1-hour arithmetic averages for...
Code of Federal Regulations, 2011 CFR
2011-07-01
... monitoring data I must collect with my continuous emission monitoring systems and is the data collection... I must collect with my continuous emission monitoring systems and is the data collection requirement enforceable? (a) Where continuous emission monitoring systems are required, obtain 1-hour arithmetic averages...
Code of Federal Regulations, 2011 CFR
2011-07-01
... monitoring data I must collect with my continuous parameter monitoring systems and is the data collection... must collect with my continuous parameter monitoring systems and is the data collection requirement enforceable? (a) Where continuous parameter monitoring systems are used, obtain 1-hour arithmetic averages for...
Code of Federal Regulations, 2010 CFR
2010-07-01
... monitoring data I must collect with my continuous emission monitoring systems and is the data collection... I must collect with my continuous emission monitoring systems and is the data collection requirement enforceable? (a) Where continuous emission monitoring systems are required, obtain 1-hour arithmetic averages...
A New Meteo-oceanographic and Environmental Monitoring Laboratory in Brazil
NASA Astrophysics Data System (ADS)
Fontes, Roberto F. C.; Dottori, Marcelo; Silveira, Ilson C. A.; Castro, Belmiro M.
2013-04-01
The newer oil provinces in the pre-salt regions off the Brazilian Coast have raised the necessity of the creation of monitoring and observational centers, regarding the best comprehension on the ocean and atmosphere dynamics. The relation between industry and university is a concept based on collaboration, and it is an innovative social experiment in Brazil. The sustainability of that collaboration depends on the balance of mutual interests on private business and public academic institutions. The entrepreneur needs continuous accesses to the new academic researches, and the greatest benefit, for the academy, are funding complementation and personnel qualification. We need to establish a thread of new challenges, some of them based on disruption of paradigms in the Brazilian academic culture, and removal of obstructive clauses from the entrepreneur. Questioning and methods revalidation, in the oceanic environment areas, also requires a collaborative and interdisciplinary effort, congregating the physical aspects along with others compartments of the environmental monitoring. We proposed the creation of a Meteo-oceanographic and Environmental Monitoring Laboratory - LAMMOA (Portuguese acronym), which will be installed in a new facility funded by PETROBRAS (the Brazilian leading oil company) and ruled by USP, UNESP and UNICAMP, the state public universities in Santos (São Paulo State, Brazil). The new facility will be a research center in oil and gas activities, named CENPEG-BS (Portuguese acronym for Research Center of Oil and Gas in the Bay of Santos). Several laboratories and groups will work together, in a highly collaborative environment and so, capable of quickly respond to sudden demands on offshore activities and logistic operations, as well as in contingency situations. LAMMOA will continuous monitor oceanic regions where the pre-salt activities of oil exploitation occur. It will monitor meteo-oceanographic parameters like winds, waves and currents, providing suitable data for offshore and transportation activities. For such, LAMMOA will operate a system of moored acoustic current meters and others environmental sensors, applying analytical and numerical methods for improving comprehension of the oceanic environment. Oceanographic gliders, satellite measurements and newer observational technics should replace expensive hydrographic surveys, and enhance the efforts on the knowledge of oceanographic processes as those that occur in the Brazil Current. We hope these actions create a new culture on continuous monitoring the ocean, along and offshore the 8,000-km Brazilian coast, including its continental shelf and coastal regions.
Shapiro, A C; Rohmann, S O
2005-05-01
Continuous summit-to-sea maps showing both land features and shallow-water coral reefs have been completed in Puerto Rico and the U.S. Virgin Islands, using circa 2000 Landsat 7 Enhanced Thematic Mapper (ETM+) Imagery. Continuous land/sea terrain was mapped by merging Digital Elevation Models (DEM) with satellite-derived bathymetry. Benthic habitat characterizations were created by unsupervised classifications of Landsat imagery clustered using field data, and produced maps with an estimated overall accuracy of>75% (Tau coefficient >0.65). These were merged with Geocover-LC (land use/land cover) data to create continuous land/ sea cover maps. Image pairs from different dates were analyzed using Principle Components Analysis (PCA) in order to detect areas of change in the marine environment over two different time intervals: 2000 to 2001, and 1991 to 2003. This activity demonstrates the capabilities of Landsat imagery to produce continuous summit-to-sea maps, as well as detect certain changes in the shallow-water marine environment, providing a valuable tool for efficient coastal zone monitoring and effective management and conservation.
Improvements to measuring water flux in the vadose zone.
Masarik, Kevin C; Norman, John M; Brye, Kristofor R; Baker, John M
2004-01-01
Evaluating the impact of land use practices on ground water quality has been difficult because few techniques are capable of monitoring the quality and quantity of soil water flow below the root zone without disturbing the soil profile and affecting natural flow processes. A recently introduced method, known as equilibrium tension lysimetry, was a major improvement but it was not a true equilibrium since it still required manual intervention to maintain proper lysimeter suction. We addressed this issue by developing an automated equilibrium tension lysimeter (AETL) system that continuously matches lysimeter tension to soil-water matric potential of the surrounding soil. The soil-water matric potential of the bulk soil is measured with a heat-dissipation sensor, and a small DC pump is used to apply suction to a lysimeter. The improved automated approach reported here was tested in the field for a 12-mo period. Powered by a small 12-V rechargeable battery, the AETLs were able to continuously match lysimeter suction to soil-water matric potential for 2-wk periods with minimal human attention, along with the added benefit of collecting continuous soil-water matric potential data. We also demonstrated, in the laboratory, methods for continuous measurement of water depth in the AETL, a capability that quantifies drainage on a 10-min interval, making it a true water-flux meter. Equilibrium tension lysimeters have already been demonstrated to be a reliable method of measuring drainage flux, and the further improvements have created a more effective device for studying water drainage and chemical leaching through the soil matrix.
NASA Technical Reports Server (NTRS)
Mundt, C.
1999-01-01
Sensors 2000! is developing pill-shaped biotelemeters for measuring physiological parameters during space flight life sciences experiments using rodents aboard the ISS Gravitational Biology Facility, with the additional capability for monitoring the health of astronauts in the Human Research Facility. The first "pill transmitter" is capable of measuring pressure and temperature for up to 10 months. The NASA objective is to utilize these devices. The pill-transmitters can also be used by non-NASA users for medical applications. One application is fetal surgery. The 44pill" is small enough to be endoscopically placed into the womb through a tube used during surgeries to correct fetal defects before birth. After surgery, the pill-transmitter will continue to monitor body temperature, pressure and other vital signs in the womb, radioing results to physicians. It will help them to detect preterm-labor, a serious problem after fetal surgery. The pill is about one-third-of-an-inch across and one-and-one-third-inches long. Future pill-versions will include pH, heartrate, and ECG. A pH-pill prototype is currently being tested. Sensors 2000! has also designed and built a 2-channel biotelemetry receiver and has developed data acquisition software to display and record the measured physiological parameters. A DSP-base hand-held receiver (trisponder) is currently under development.
Using the Leitz LMS 2000 for monitoring and improvement of an e-beam
NASA Astrophysics Data System (ADS)
Blaesing-Bangert, Carola; Roeth, Klaus-Dieter; Ogawa, Yoichi
1994-11-01
Kaizen--a continuously improving--is a philosophy lived in Japan which is also becoming more and more important in Western companies. To implement this philosophy in the semiconductor industry, a high performance metrology tool is essential to determine the status of production quality periodically. An important prerequisite for statistical process control is the high stability of the metrology tool over several months or years; the tool-induced shift should be as small as possible. The pattern placement metrology tool Leitz LMS 2000 has been used in a major European mask house for several years now to qualify masks within the tightest specifications and to monitor the MEBES III and its cassettes. The mask shop's internal specification for the long term repeatability of the pattern placement metrology tool is 19 nm instead of 42 nm as specified by the supplier of the tool. Then the process capability of the LMS 2000 over 18 months is represented by an average cpk value of 2.8 for orthogonality, 5.2 for x-scaling, and 3.0 for y-scaling. The process capability of the MEBES III and its cassettes was improved in the past years. For instance, 100% of the masks produced with a process tolerance of +/- 200 nm are now within this limit.
NASA Astrophysics Data System (ADS)
Luber, David R.; Marion, John E.; Fields, David
2012-05-01
Logos Technologies has developed and fielded the Kestrel system, an aerostat-based, wide area persistent surveillance system dedicated to force protection and ISR mission execution operating over forward operating bases. Its development included novel imaging and stabilization capability for day/night operations on military aerostat systems. The Kestrel system's contribution is a substantial enhancement to aerostat-based, force protection systems which to date have relied on narrow field of view ball gimbal sensors to identify targets of interest. This inefficient mechanism to conduct wide area field of view surveillance is greatly enhanced by Kestrel's ability to maintain a constant motion imagery stare of the entire forward operating base (FOB) area. The Kestrel airborne sensor enables 360° coverage out to extended ranges which covers a city sized area at moderate resolution, while cueing a narrow field of view sensor to provide high resolution imagery of targets of interest. The ground station exploitation system enables operators to autonomously monitor multiple regions of interest in real time, and allows for backtracking through the recorded imagery, while continuing to monitor ongoing activity. Backtracking capability allows operators to detect threat networks, their CONOPS, and locations of interest. Kestrel's unique advancement has already been utilized successfully in OEF operations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Swaja, R.E.; Greene, R.T.; Sims, C.S.
1985-04-01
An international intercomparison of nuclear accident dosimetry systems was conducted during September 12-16, 1983, at Oak Ridge National Laboratory (ORNL) using the Health Physics Research Reactor operated in the pulse mode to simulate criticality accidents. This study marked the twentieth in a series of annual accident dosimetry intercomparisons conducted at ORNL. Participants from ten organizations attended this intercomparison and measured neutron and gamma doses at area monitoring stations and on phantoms for three different shield conditions. Results of this study indicate that foil activation techniques are the most popular and accurate method of determining accident-level neutron doses at area monitoringmore » stations. For personnel monitoring, foil activation, blood sodium activation, and thermoluminescent (TL) methods are all capable of providing accurate dose estimates in a variety of radiation fields. All participants in this study used TLD's to determine gamma doses with very good results on the average. Chemical dosemeters were also shown to be capable of yielding accurate estimates of total neutron plus gamma doses in a variety of radiation fields. While 83% of all neutron measurements satisfied regulatory standards relative to reference values, only 39% of all gamma results satisfied corresponding guidelines for gamma measurements. These results indicate that continued improvement in accident dosimetry evaluation and measurement techniques is needed.« less
NASA Astrophysics Data System (ADS)
Pasam, Gopi Krishna; Manohar, T. Gowri
2016-09-01
Determination of available transfer capability (ATC) requires the use of experience, intuition and exact judgment in order to meet several significant aspects in the deregulated environment. Based on these points, this paper proposes two heuristic approaches to compute ATC. The first proposed heuristic algorithm integrates the five methods known as continuation repeated power flow, repeated optimal power flow, radial basis function neural network, back propagation neural network and adaptive neuro fuzzy inference system to obtain ATC. The second proposed heuristic model is used to obtain multiple ATC values. Out of these, a specific ATC value will be selected based on a number of social, economic, deregulated environmental constraints and related to specific applications like optimization, on-line monitoring, and ATC forecasting known as multi-objective decision based optimal ATC. The validity of results obtained through these proposed methods are scrupulously verified on various buses of the IEEE 24-bus reliable test system. The results presented and derived conclusions in this paper are very useful for planning, operation, maintaining of reliable power in any power system and its monitoring in an on-line environment of deregulated power system. In this way, the proposed heuristic methods would contribute the best possible approach to assess multiple objective ATC using integrated methods.
Enhanced Capabilities for Subcritical Experiments (ECSE) Risk Management Plan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Urban, Mary Elizabeth
Risk is a factor, element, constraint, or course of action that introduces an uncertainty of outcome that could impact project objectives. Risk is an inherent part of all activities, whether the activity is simple and small, or large and complex. Risk management is a process that identifies, evaluates, handles, and monitors risks that have the potential to affect project success. The risk management process spans the entire project, from its initiation to its successful completion and closeout, including both technical and programmatic (non-technical) risks. This Risk Management Plan (RMP) defines the process to be used for identifying, evaluating, handling, andmore » monitoring risks as part of the overall management of the Enhanced Capabilities for Subcritical Experiments (ECSE) ‘Project’. Given the changing nature of the project environment, risk management is essentially an ongoing and iterative process, which applies the best efforts of a knowledgeable project staff to a suite of focused and prioritized concerns. The risk management process itself must be continually applied throughout the project life cycle. This document was prepared in accordance with DOE O 413.3B, Program and Project Management for the Acquisition of Capital Assets, its associated guide for risk management DOE G 413.3-7, Risk Management Guide, and LANL ADPM AP-350-204, Risk and Opportunity Management.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alhroob, M.; Boyd, G.; Hasib, A.
Precision ultrasonic measurements in binary gas systems provide continuous real-time monitoring of mixture composition and flow. Using custom micro-controller-based electronics, we have developed an ultrasonic instrument, with numerous potential applications, capable of making continuous high-precision sound velocity measurements. The instrument measures sound transit times along two opposite directions aligned parallel to - or obliquely crossing - the gas flow. The difference between the two measured times yields the gas flow rate while their average gives the sound velocity, which can be compared with a sound velocity vs. molar composition look-up table for the binary mixture at a given temperature andmore » pressure. The look-up table may be generated from prior measurements in known mixtures of the two components, from theoretical calculations, or from a combination of the two. We describe the instrument and its performance within numerous applications in the ATLAS experiment at the CERN Large Hadron Collider (LHC). The instrument can be of interest in other areas where continuous in-situ binary gas analysis and flowmetry are required. (authors)« less
Swensen, James S.; Xiao, Yi; Ferguson, Brian S.; Lubin, Arica A.; Lai, Rebecca Y.; Heeger, Alan J.; Plaxco, Kevin W.; Soh, H. Tom.
2009-01-01
The development of a biosensor system capable of continuous, real-time measurement of small-molecule analytes directly in complex, unprocessed aqueous samples has been a significant challenge, and successful implementation has been achieved for only a limited number of targets. Towards a general solution to this problem, we report here the Microfluidic Electrochemical Aptamer-based Sensor (MECAS) chip wherein we integrate target-specific DNA aptamers that fold, and thus generate an electrochemical signal, in response to the analyte with a microfluidic detection system. As a model, we demonstrate the continuous, real-time (~1 minute time resolution) detection of the small molecule drug cocaine at near physiological, low micromolar concentrations directly in undiluted, otherwise unmodified blood serum. We believe our approach of integrating folding-based electrochemical sensors with miniaturized detection systems may lay the ground work for the real-time, point-of-care detection of a wide variety of molecular targets. PMID:19271708
Damage detection and locating using tone burst and continuous excitation modulation method
NASA Astrophysics Data System (ADS)
Li, Zheng; Wang, Zhi; Xiao, Li; Qu, Wenzhong
2014-03-01
Among structural health monitoring techniques, nonlinear ultrasonic spectroscopy methods are found to be effective diagnostic approach to detecting nonlinear damage such as fatigue crack, due to their sensitivity to incipient structural changes. In this paper, a nonlinear ultrasonic modulation method was developed to detect and locate a fatigue crack on an aluminum plate. The method is different with nonlinear wave modulation method which recognizes the modulation of low-frequency vibration and high-frequency ultrasonic wave; it recognizes the modulation of tone burst and high-frequency ultrasonic wave. In the experiment, a Hanning window modulated sinusoidal tone burst and a continuous sinusoidal excitation were simultaneously imposed on the PZT array which was bonded on the surface of an aluminum plate. The modulations of tone burst and continuous sinusoidal excitation was observed in different actuator-sensor paths, indicating the presence and location of fatigue crack. The results of experiments show that the proposed method is capable of detecting and locating the fatigue crack successfully.
Zayachkivsky, Andrew; Lehmkuhle, Mark J.; Dudek, F. Edward
2015-01-01
Many progressive neurologic diseases in humans, such as epilepsy, require pre-clinical animal models that slowly develop the disease in order to test interventions at various stages of the disease process. These animal models are particularly difficult to implement in immature rodents, a classic model organism for laboratory study of these disorders. Recording continuous EEG in young animal models of seizures and other neurological disorders presents a technical challenge due to the small physical size of young rodents and their dependence on the dam prior to weaning. Therefore, there is not only a clear need for improving pre-clinical research that will better identify those therapies suitable for translation to the clinic but also a need for new devices capable of recording continuous EEG in immature rodents. Here, we describe the technology behind and demonstrate the use of a novel miniature telemetry system, specifically engineered for use in immature rats or mice, which is also effective for use in adult animals. PMID:26274779
Greenland Ice Sheet Monitoring Network (GLISN): Contributions to Science and Society
NASA Astrophysics Data System (ADS)
Anderson, K. R.; Bonaime, S.; Clinton, J. F.; Dahl-Jensen, T.; Debski, W. M.; Giardini, D.; Govoni, A.; Kanao, M.; Larsen, T. B.; Lasocki, S.; Lee, W. S.; McCormack, D. A.; Mykkeltveit, S.; Nettles, M.; Stutzmann, E.; Strollo, A.; Sweet, J. R.; Tsuboi, S.; Vallee, M.
2017-12-01
The Greenland Ice Sheet Monitoring Network (GLISN) is a broadband, multi-use seismological network, enhanced by selected geodetic observations, designed with the capability to allow researchers to understand the changes currently occurring in the Arctic, and with the operational characteristics necessary to enable response to those changes as understanding improves. GLISN was established through an international collaboration, with 10 nations coordinating their efforts to develop the current 34-station observing network during the last eight years. All of the data collected are freely and openly available in near-real time. The network was designed to transform the community capability for recording, analysis, and interpretation of seismic signals generated by discrete events in Greenland and the Arctic, as well as those traversing the region. Data from the network support a wide range of uses, including estimation of the properties of the solid Earth that control isostatic adjustment rates and set key boundary conditions for ice-sheet evolution; analysis of tectonic earthquakes throughout Greenland and the Arctic; study of the seismic signals associated with large calving events and changing glacier dynamics; and variations in ice and snow properties within the Greenland Ice Sheet. Recordings from the network have also provided invaluable data for rapid evaluation and understanding of the devastating landslide and tsunami that occurred near Nuugaatsiaq, Greenland, in June, 2017. The GLISN strategy of maximizing data quality from a network of approximately evenly distributed stations, delivering data in near-real time, and archiving a continuous data stream easily accessible to researchers, allows continuous discovery of new uses while also facilitating the generation of data products, such as catalogs of tectonic and glacial earthquakes and GPS-based estimates of snow height, that allow for assessment of change over time.
NASA Astrophysics Data System (ADS)
Borsa, A. A.; Agnew, D. C.; Cayan, D. R.
2014-12-01
The western United States (WUS) has been experiencing severe drought since 2013. The solid earth response to the accompanying loss of surface and near-surface water mass should be a broad region of uplift. We use seasonally-adjusted time series from continuously operating GPS stations in the EarthScope Plate Boundary Observatory and several smaller networks to measure this uplift, which reaches 15 mm in the California Coastal Ranges and Sierra Nevada and has a median value of 4 mm over the entire WUS. The pattern of mass loss due to the drought, which we recover from an inversion of uplift observations, ranges up to 50 cm of water equivalent and is consistent with observed decreases in precipitation and streamflow. We estimate the total deficit to be 240 Gt, equivalent to a uniform 10 cm layer of water over the entire region, or the magnitude of the current annual mass loss from the Greenland Ice Sheet. In the WUS, interannual changes in crustal loading are driven by changes in cool-season precipitation, which cause variations in surface water, snowpack, soil moisture, and groundwater. The results here demonstrate that the existing network of continuous GPS stations can be used to recover loading changes due to both wet and dry climate patterns. This suggests a new role for GPS networks such as that of the Plate Boundary Observatory. The exceptional stability of the GPS monumentation means that this network is also capable of monitoring the long-term effects of regional climate change. Surface displacement observations from GPS have the potential to expand the capabilities of the current hydrological observing network for monitoring current and future hydrological changes, with obvious social and economic benefits.
NASA JSC water monitor system: City of Houston field demonstration
NASA Technical Reports Server (NTRS)
Taylor, R. E.; Jeffers, E. L.; Fricks, D. H.
1979-01-01
A water quality monitoring system with on-line and real time operation similar to the function in a spacecraft was investigated. A system with the capability to determine conformance to future high effluent quality standards and to increase the potential for reclamation and reuse of water was designed. Although all system capabilities were not verified in the initial field trial, fully automated operation over a sustained period with only routine manual adjustments was accomplished. Two major points were demonstrated: (1) the water monitor system has great potential in water monitoring and/or process control applications; and (2) the water monitor system represents a vast improvement over conventional (grab sample) water monitoring techniques.
Akay, Erdem; Yilmaz, Cagatay; Kocaman, Esat S; Turkmen, Halit S; Yildiz, Mehmet
2016-09-19
The significance of strain measurement is obvious for the analysis of Fiber-Reinforced Polymer (FRP) composites. Conventional strain measurement methods are sufficient for static testing in general. Nevertheless, if the requirements exceed the capabilities of these conventional methods, more sophisticated techniques are necessary to obtain strain data. Fiber Bragg Grating (FBG) sensors have many advantages for strain measurement over conventional ones. Thus, the present paper suggests a novel method for biaxial strain measurement using embedded FBG sensors during the fatigue testing of FRP composites. Poisson's ratio and its reduction were monitored for each cyclic loading by using embedded FBG sensors for a given specimen and correlated with the fatigue stages determined based on the variations of the applied fatigue loading and temperature due to the autogenous heating to predict an oncoming failure of the continuous fiber-reinforced epoxy matrix composite specimens under fatigue loading. The results show that FBG sensor technology has a remarkable potential for monitoring the evolution of Poisson's ratio on a cycle-by-cycle basis, which can reliably be used towards tracking the fatigue stages of composite for structural health monitoring purposes.
Increasing trend of wearables and multimodal interface for human activity monitoring: A review.
Kumari, Preeti; Mathew, Lini; Syal, Poonam
2017-04-15
Activity recognition technology is one of the most important technologies for life-logging and for the care of elderly persons. Elderly people prefer to live in their own houses, within their own locality. If, they are capable to do so, several benefits can follow in terms of society and economy. However, living alone may have high risks. Wearable sensors have been developed to overcome these risks and these sensors are supposed to be ready for medical uses. It can help in monitoring the wellness of elderly persons living alone by unobtrusively monitoring their daily activities. The study aims to review the increasing trends of wearable devices and need of multimodal recognition for continuous or discontinuous monitoring of human activity, biological signals such as Electroencephalogram (EEG), Electrooculogram (EOG), Electromyogram (EMG), Electrocardiogram (ECG) and parameters along with other symptoms. This can provide necessary assistance in times of ominous need, which is crucial for the advancement of disease-diagnosis and treatment. Shared control architecture with multimodal interface can be used for application in more complex environment where more number of commands is to be used to control with better results in terms of controlling. Copyright © 2016 Elsevier B.V. All rights reserved.
Akay, Erdem; Yilmaz, Cagatay; Kocaman, Esat S.; Turkmen, Halit S.; Yildiz, Mehmet
2016-01-01
The significance of strain measurement is obvious for the analysis of Fiber-Reinforced Polymer (FRP) composites. Conventional strain measurement methods are sufficient for static testing in general. Nevertheless, if the requirements exceed the capabilities of these conventional methods, more sophisticated techniques are necessary to obtain strain data. Fiber Bragg Grating (FBG) sensors have many advantages for strain measurement over conventional ones. Thus, the present paper suggests a novel method for biaxial strain measurement using embedded FBG sensors during the fatigue testing of FRP composites. Poisson’s ratio and its reduction were monitored for each cyclic loading by using embedded FBG sensors for a given specimen and correlated with the fatigue stages determined based on the variations of the applied fatigue loading and temperature due to the autogenous heating to predict an oncoming failure of the continuous fiber-reinforced epoxy matrix composite specimens under fatigue loading. The results show that FBG sensor technology has a remarkable potential for monitoring the evolution of Poisson’s ratio on a cycle-by-cycle basis, which can reliably be used towards tracking the fatigue stages of composite for structural health monitoring purposes. PMID:28773901
Earlier warning: a multi-indicator approach to monitoring trends in the illicit use of medicines.
Mounteney, Jane; Haugland, Siren
2009-03-01
The availability of medicines on the illicit drug market is currently high on the international policy agenda, linked to adverse health consequences including addiction, drug related overdoses and injection related problems. Continuous surveillance of illicit use of medicines allows for earlier identification and reporting of emerging trends and increased possibilities for earlier intervention to prevent spread of use and drug related harm. This paper aims to identify data sources capable of monitoring the illicit use of medicines; present trend findings for Rohypnol and Subutex using a multi-indicator monitoring approach; and consider the relevance of such models for policy makers. Data collection and analysis were undertaken in Bergen, Norway, using the Bergen Earlier Warning System (BEWS), a multi-indicator drug monitoring system. Data were gathered at six monthly intervals from April 2002 to September 2006. Drug indicator data from seizures, treatment, pharmacy sales, helplines, key informants and media monitoring were triangulated and an aggregated differential was used to plot trends. Results for the 4-year period showed a decline in the illicit use of Rohypnol and an increase in the illicit use of Subutex. Multi-indicator surveillance models can play a strategic role in the earlier identification and reporting of emerging trends in illicit use of medicines.
Esenaliev, Rinat O.
2017-01-01
Abstract. Optoacoustic (photoacoustic) diagnostic modality is a technique that combines high optical contrast and ultrasound spatial resolution. We proposed using the optoacoustic technique for a number of applications, including cancer detection, monitoring of thermotherapy (hyperthermia, coagulation, and freezing), monitoring of cerebral blood oxygenation in patients with traumatic brain injury, neonatal patients, fetuses during late-stage labor, central venous oxygenation monitoring, and total hemoglobin concentration monitoring as well as hematoma detection and characterization. We developed and built optical parametric oscillator-based systems and multiwavelength, fiber-coupled highly compact, laser diode-based systems for optoacoustic imaging, monitoring, and sensing. To provide sufficient output pulse energy, a specially designed fiber-optic system was built and incorporated in ultrasensitive, wideband optoacoustic probes. We performed preclinical and clinical tests of the systems and the optoacoustic probes in backward mode for most of the applications and in forward mode for the breast cancer and cerebral applications. The high pulse energy and repetition rate allowed for rapid data acquisition with high signal-to-noise ratio from cerebral blood vessels, such as the superior sagittal sinus, central veins, and peripheral veins and arteries, as well as from intracranial hematomas. The optoacoustic systems were capable of automatic, real-time, continuous measurements of blood oxygenation in these blood vessels. PMID:28444150
NASA Astrophysics Data System (ADS)
Richards, Lisa M.; Weber, Erica L.; Parthasarathy, Ashwin B.; Kappeler, Kaelyn L.; Fox, Douglas J.; Dunn, Andrew K.
2012-02-01
Monitoring cerebral blood flow (CBF) during neurosurgery can provide important physiological information for a variety of surgical procedures. Although multiple intraoperative vascular monitoring technologies are currently available, a quantitative method that allows for continuous monitoring is still needed. Laser speckle contrast imaging (LSCI) is an optical imaging method with high spatial and temporal resolution that has been widely used to image CBF in animal models in vivo. In this pilot clinical study, we adapted a Zeiss OPMI Pentero neurosurgical microscope to obtain LSCI images by attaching a camera and a laser diode. This LSCI adapted instrument has been used to acquire full field flow images from 10 patients during tumor resection procedures. The patient's ECG was recorded during acquisition and image registration was performed in post-processing to account for pulsatile motion artifacts. Digital photographs confirmed alignment of vasculature and flow images in four cases, and a relative change in blood flow was observed in two patients after bipolar cautery. The LSCI adapted instrument has the capability to produce real-time, full field CBF image maps with excellent spatial resolution and minimal intervention to the surgical procedure. Results from this study demonstrate the feasibility of using LSCI to monitor blood flow during neurosurgery.
Wearable nanosensor systems and their applications in healthcare
NASA Astrophysics Data System (ADS)
Ramasamy, Mouli; Kumar, Prashanth S.; Varadan, Vijay K.
2017-04-01
The development of intelligent miniaturized nano-bio-and info-tech based sensors capable of wireless communication will fundamentally change the way we monitor and treat patients with chronic disease and after surgery. These new sensors will allow the monitoring of the patients as they maintain their normal daily activities, and provide warning to healthcare workers when critical events arise. This will facilitate early discharge of patients from hospitals as well as providing reassurance to patients and family that potential problems will be detected at an early stage. The use of continuous monitoring allows both transient and progressive abnormalities to be reliably detected thus avoiding the problems of conventional diagnosis and monitoring methods where by data is captured only for a brief period during hospital/clinic visits. We have been working with a printable organic semiconductor and thin film transistor, and have fabricated and tested various biosensors that can measure important physiological signs before and after surgery. Integrated into "smart" fabrics - garments with wireless technology - and independent e-bandaid sensors, nanosensors in tattoos and socks, minimally invasive implantable devices, the sensor systems will be able to monitor a patient's condition in real time and thus provide point-of-care diagnostics to health-care professionals and greater freedom for patients.
NASA Astrophysics Data System (ADS)
Esenaliev, Rinat O.
2017-09-01
Optoacoustic (photoacoustic) diagnostic modality is a technique that combines high optical contrast and ultrasound spatial resolution. We proposed using the optoacoustic technique for a number of applications, including cancer detection, monitoring of thermotherapy (hyperthermia, coagulation, and freezing), monitoring of cerebral blood oxygenation in patients with traumatic brain injury, neonatal patients, fetuses during late-stage labor, central venous oxygenation monitoring, and total hemoglobin concentration monitoring as well as hematoma detection and characterization. We developed and built optical parametric oscillator-based systems and multiwavelength, fiber-coupled highly compact, laser diode-based systems for optoacoustic imaging, monitoring, and sensing. To provide sufficient output pulse energy, a specially designed fiber-optic system was built and incorporated in ultrasensitive, wideband optoacoustic probes. We performed preclinical and clinical tests of the systems and the optoacoustic probes in backward mode for most of the applications and in forward mode for the breast cancer and cerebral applications. The high pulse energy and repetition rate allowed for rapid data acquisition with high signal-to-noise ratio from cerebral blood vessels, such as the superior sagittal sinus, central veins, and peripheral veins and arteries, as well as from intracranial hematomas. The optoacoustic systems were capable of automatic, real-time, continuous measurements of blood oxygenation in these blood vessels.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-28
... Quality Assurance Requirements for Continuous Opacity Monitoring Systems at Stationary Sources AGENCY... direct final rule titled ``Quality Assurance Requirements for Continuous Opacity Monitoring Systems at...--Quality Assurance Requirements for Continuous Opacity Monitoring Systems at Stationary Sources Docket, EPA...
StressHacker: Towards Practical Stress Monitoring in the Wild with Smartwatches.
Hao, Tian; Walter, Kimberly N; Ball, Marion J; Chang, Hung-Yang; Sun, Si; Zhu, Xinxin
2017-01-01
In modern life, the nonstop and pervasive stress tends to keep us on long-lasting high alert, which over time, could lead to a broad range of health problems from depression, metabolic disorders to heart diseases. However, there is a stunning lack of practical tools for effective stress management that can help people navigate through their daily stress. This paper presents the feasibility evaluation of StressHacker, a smartwatch-based system designed to continuously and passively monitor one's stress level using bio-signals obtained from the on-board sensors. With the proliferation of smartwatches, StressHacker is highly accessible and suited for daily use. Our preliminary evaluation is based on 300 hours of data collected in a real-life setting (12 subjects, 29 days). The result suggests that StressHacker is capable of reliably capturing daily stress dynamics (precision = 86.1%, recall = 91.2%), thus with great potential to enable seamless and personalized stress management.
Civil helicopter propulsion system reliability and engine monitoring technology assessments
NASA Technical Reports Server (NTRS)
Murphy, J. A.; Zuk, J.
1982-01-01
A study to reduce operating costs of helicopters, particularly directed at the maintenance of the propulsion subsystem, is presented. The tasks of the study consisted of problem definition refinement, technology solutions, diagnostic system concepts, and emergency power augmentation. Quantifiable benefits (reduced fuel consumption, on-condition engine maintenance, extended drive system overhaul periods, and longer oil change intervals) would increase the initial cost by $43,000, but the benefit of $24.46 per hour would result in breakeven at 1758 hours. Other benefits not capable of being quantified but perhaps more important include improved aircraft avilability due to reduced maintenance time, potential for increased operating limits due to continuous automatic monitoring of gages, and less time and fuel required to make engine power checks. The most important improvement is the on-condition maintenance program, which will require the development of algorithms, equipment, and procedures compatible with all operating environments.
Piezoelectric extraction of ECG signal
NASA Astrophysics Data System (ADS)
Ahmad, Mahmoud Al
2016-11-01
The monitoring and early detection of abnormalities or variations in the cardiac cycle functionality are very critical practices and have significant impact on the prevention of heart diseases and their associated complications. Currently, in the field of biomedical engineering, there is a growing need for devices capable of measuring and monitoring a wide range of cardiac cycle parameters continuously, effectively and on a real-time basis using easily accessible and reusable probes. In this paper, the revolutionary generation and extraction of the corresponding ECG signal using a piezoelectric transducer as alternative for the ECG will be discussed. The piezoelectric transducer pick up the vibrations from the heart beats and convert them into electrical output signals. To this end, piezoelectric and signal processing techniques were employed to extract the ECG corresponding signal from the piezoelectric output voltage signal. The measured electrode based and the extracted piezoelectric based ECG traces are well corroborated. Their peaks amplitudes and locations are well aligned with each other.
da Silveira, Raquel Pinhão; Rodrigues, Ana Paula de Castro; Santelli, Ricardo Erthal; Cordeiro, Renato Campello; Bidone, Edison Dausacker
2011-10-01
This study addressed the identification and monitoring of pollution sources of terrestrial origin in rivers (domestic sewage and industrial effluents) and critical fluvial segments in highly polluted environments under tidal influence (mixing marine and continental sources) from Guanabara Bay Basin, Rio de Janeiro, Brazil. The mass balance of contaminants was determined in conditions of continuous flow (low tide) during dry season (lower dilution capability). The results allowed the evaluation of the potential of contaminant mass generation by the different river segments and the estimation of their natural and anthropogenic components. The water quality of Iguaçú and Sarapuí Rivers were evaluated for metals and biochemical oxygen demand. The method gave an excellent response, including the possibility of sources identification and contaminated river segments ranking. The approach also offers fast execution and data interpretation, being highly efficient.
Shih, Jeanne-Louise; Kobayashi, Makiko; Jen, Cheng-Kuei
2010-09-01
Piezoelectric films have been deposited by a sol-gel spray technique onto 75-μm-thick titanium and stainless steel (SS) membranes and have been fabricated into flexible ultrasonic transducers (FUTs). FUTs using titanium membranes were glued and those using SS membranes brazed onto steel pipes, procedures that serve as on-site installation techniques for the purpose of offering continuous thickness monitoring capabilities at up to 490 °C. At 150 °C, the thickness measurement accuracy of a pipe with an outer diameter of 26.6 mm and a wall thickness of 2.5 mm was estimated to be 26 μm and the center frequency of the FUT was 10.8 MHz. It is demonstrated that the frequency bandwidth of the FUTs and SNR of signals using glue or brazing materials as high-temperature couplant for FUTs are sufficient to inspect the steel pipes even with a 2.5 mm wall thickness.
Soft microfluidic assemblies of sensors, circuits, and radios for the skin.
Xu, Sheng; Zhang, Yihui; Jia, Lin; Mathewson, Kyle E; Jang, Kyung-In; Kim, Jeonghyun; Fu, Haoran; Huang, Xian; Chava, Pranav; Wang, Renhan; Bhole, Sanat; Wang, Lizhe; Na, Yoon Joo; Guan, Yue; Flavin, Matthew; Han, Zheshen; Huang, Yonggang; Rogers, John A
2014-04-04
When mounted on the skin, modern sensors, circuits, radios, and power supply systems have the potential to provide clinical-quality health monitoring capabilities for continuous use, beyond the confines of traditional hospital or laboratory facilities. The most well-developed component technologies are, however, broadly available only in hard, planar formats. As a result, existing options in system design are unable to effectively accommodate integration with the soft, textured, curvilinear, and time-dynamic surfaces of the skin. Here, we describe experimental and theoretical approaches for using ideas in soft microfluidics, structured adhesive surfaces, and controlled mechanical buckling to achieve ultralow modulus, highly stretchable systems that incorporate assemblies of high-modulus, rigid, state-of-the-art functional elements. The outcome is a thin, conformable device technology that can softly laminate onto the surface of the skin to enable advanced, multifunctional operation for physiological monitoring in a wireless mode.
Recent Advances in Fluorescent Arylboronic Acids for Glucose Sensing
Hansen, Jon Stefan; Christensen, Jørn Bolstad
2013-01-01
Continuous glucose monitoring (CGM) is crucial in order to avoid complications caused by change in blood glucose for patients suffering from diabetes mellitus. The long-term consequences of high blood glucose levels include damage to the heart, eyes, kidneys, nerves and other organs, among others, caused by malign glycation of vital protein structures. Fluorescent monitors based on arylboronic acids are promising candidates for optical CGM, since arylboronic acids are capable of forming arylboronate esters with 1,2-cis-diols or 1,3-diols fast and reversibly, even in aqueous solution. These properties enable arylboronic acid dyes to provide immediate information of glucose concentrations. Thus, the replacement of the commonly applied semi-invasive and non-invasive techniques relying on glucose binding proteins, such as concanavalin A, or enzymes, such as glucose oxidase, glucose dehydrogenase and hexokinases/glucokinases, might be possible. The recent progress in the development of fluorescent arylboronic acid dyes will be emphasized in this review. PMID:25586415
NASA Astrophysics Data System (ADS)
Schmitter, E. D.
2013-04-01
Remote sensing of the ionosphere bottom using long wave radio signal propagation is a still going strong and inexpensive method for continuous monitoring purposes. We present a propagation model describing the time development of solar flare effects. Based on monitored amplitude and phase data from VLF/LF transmitters gained at a mid-latitude site during the currently increasing solar cycle no. 24 a parameterized electron density profile is calculated as a function of time and fed into propagation calculations using the LWPC (Long Wave Propagation Capability). The model allows to include lower ionosphere recombination and attachment coefficients, as well as to identify the relevant forcing X-ray wavelength band, and is intended to be a small step forward to a better understanding of the solar-lower ionosphere interaction mechanisms within a consistent framework.
NASA Astrophysics Data System (ADS)
Simarski, Lynn Teo
Research reported at an AGU session on Galileo's Earth/Moon flyby refined the spacecraft's distinctive portrait of the Earth-Moon system. The Galileo team presented dramatic new views of the Earth and Moon taken last December. Andrew P. Ingersoll showed a color movie of the rotating Earth, made through spectral filters with which Galileo viewed the Earth almost continuously for 25 hours.Galileo also made finely tuned observations of vegetation and clouds, using three very closely spaced spectral wavelengths in the near-infrared, explained W. Reid Thompson. In the resulting images, Argentinian grassland and Brazilian rain forest are clearly distinguished, demonstrating the applicability of this technique for routine monitoring of deforestation, shifts in vegetation due to climate, and other phenomena. Thompson suggested that this capability could be used on the Earth Observing System. One of the spectral bands may also have potential for monitoring cloud condensation, as it appears to differentiate actively condensing, vapor-heavy clouds from higher and drier clouds.
Developing an automated risk management tool to minimize bird and bat mortality at wind facilities.
Robinson Willmott, Julia; Forcey, Greg M; Hooton, Lauren A
2015-11-01
A scarcity of baseline data is a significant barrier to understanding and mitigating potential impacts of offshore development on birds and bats. Difficult and sometimes unpredictable conditions coupled with high expense make gathering such data a challenge. The Acoustic and Thermographic Offshore Monitoring (ATOM) system combines thermal imaging with acoustic and ultrasound sensors to continuously monitor bird and bat abundance, flight height, direction, and speed. ATOM's development and potential capabilities are discussed, and illustrated using onshore and offshore test data obtained over 16 months in the eastern USA. Offshore deployment demonstrated birds tending to fly into winds and activity declining sharply in winds >10 km h(-1). Passerines showed distinct seasonal changes in flight bearing and flew higher than non-passerines. ATOM data could be used to automatically shut down wind turbines to minimize collision mortality while simultaneously providing information for modeling activity in relation to weather and season.
Fault detection monitor circuit provides ''self-heal capability'' in electronic modules - A concept
NASA Technical Reports Server (NTRS)
Kennedy, J. J.
1970-01-01
Self-checking technique detects defective solid state modules used in electronic test and checkout instrumentation. A ten bit register provides failure monitor and indication for 1023 comparator circuits, and the automatic fault-isolation capability permits the electronic subsystems to be repaired by replacing the defective module.
40 CFR 60.1740 - What is my schedule for evaluating continuous emission monitoring systems?
Code of Federal Regulations, 2010 CFR
2010-07-01
... continuous emission monitoring systems? 60.1740 Section 60.1740 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES... evaluating continuous emission monitoring systems? (a) Conduct annual evaluations of your continuous emission...
Code of Federal Regulations, 2011 CFR
2011-07-01
... opacity monitoring system and how are the data used? 60.1270 Section 60.1270 Protection of Environment... Continuous Emission Monitoring § 60.1270 What is required for my continuous opacity monitoring system and how... system. (b) Install, evaluate, and operate each continuous opacity monitoring system according to § 60.13...
NASA Astrophysics Data System (ADS)
Henriksson, Jakob; Bermudez, Luis; Satapathy, Goutam
2013-04-01
There is a large amount of sensor data generated today by various sensors, from in-situ buoys to mobile underwater gliders. Providing sensor data to the users through standardized services, language and data model is the promise of OGC's Sensor Web Enablement (SWE) initiative. As the amount of data grows it is becoming difficult for data providers, planners and managers to ensure reliability of data and services and to monitor critical data changes. Intelligent Automation Inc. (IAI) is developing a net-centric alerting capability to address these issues. The capability is built on Sensor Observation Services (SOSs), which is used to collect and monitor sensor data. The alerts can be configured at the service level and at the sensor data level. For example it can alert for irregular data delivery events or a geo-temporal statistic of sensor data crossing a preset threshold. The capability provides multiple delivery mechanisms and protocols, including traditional techniques such as email and RSS. With this capability decision makers can monitor their assets and data streams, correct failures or be alerted about a coming phenomena.
Timely detection and monitoring of oil leakage by satellite optical data.
NASA Astrophysics Data System (ADS)
Grimaldi, C. S. L.; Coviello, I.; Lacava, T.; Pergola, N.; Tramutoli, V.
2009-04-01
Sea oil pollution can derive from different sources. Accidental release of oil into the oceans caused by "human errors" (tankers collisions and/or shipwrecks) or natural hazards (hurricanes, landslides, earthquakes) have remarkable ecological impact on maritime and coastal environments. Katrina Hurricane, for example, hitting oil and gas infrastructures off USA coasts caused the destruction of more than 100 platforms and the release into the sea of more than 10,000 gallons of crude oil. In order to reduce the environmental impact of such kind of technological hazards, timely detection and continuously updated information are fundamental. Satellite remote sensing can give a significant contribution in such a direction. Nowadays, SAR (Synthetic Aperture Radar) technology has been recognized as the most efficient for oil spill detection and mapping, thanks to the high spatial resolution and all-time/weather capability of the present operational sensors. Anyway, due to their current revisiting cycles, SAR systems cannot be profitably used for a rapid detection and for a continuous and near real-time monitoring of these phenomena. Until COSMO-Skymed SAR constellation, that will be able to improve SAR observational frequency, will not be fully operational, passive optical sensors on board meteorological satellites, thanks to their high temporal resolution, may represent a suitable alternative for early detection and continuous monitoring of oil spills, provided that adequate and reliable data analysis techniques exist. Recently, an innovative technique for oil spill detection and monitoring, based on the general Robust Satellite Techniques (RST) approach, has been proposed. It exploits the multi-temporal analysis of optical data acquired by both AVHRR (Advanced Very High Resolution Radiometer) and MODIS (Moderate Resolution Imaging Spectroradiometer) sensors in order to detect, automatically and timely, the presence of oil spill over the sea surface, trying to minimize the "false-detections" possibly caused by spurious effects (e.g. clouds). In this paper, preliminary results obtained applying the proposed methodology to different test-cases are shown and discussed.
NASA Astrophysics Data System (ADS)
Mulvey, Christine S.; Sherwood, Carly A.; Bigio, Irving J.
2009-11-01
Apoptosis-programmed cell death-is a cellular process exhibiting distinct biochemical and morphological changes. An understanding of the early morphological changes that a cell undergoes during apoptosis can provide the opportunity to monitor apoptosis in tissue, yielding diagnostic and prognostic information. There is avid interest regarding the involvement of apoptosis in cancer. The initial response of a tumor to successful cancer treatment is often massive apoptosis. Current apoptosis detection methods require cell culture disruption. Our aim is to develop a nondisruptive optical method to monitor apoptosis in living cells and tissues. This would allow for real-time evaluation of apoptotic progression of the same cell culture over time without alteration. Elastic scattering spectroscopy (ESS) is used to monitor changes in light-scattering properties of cells in vitro due to apoptotic morphology changes. We develop a simple instrument capable of wavelength-resolved ESS measurements from cell cultures in the backward direction. Using Mie theory, we also develop an algorithm that extracts the size distribution of scatterers in the sample. The instrument and algorithm are validated with microsphere suspensions. For cell studies, Chinese hamster ovary (CHO) cells are cultured to confluence on plates and are rendered apoptotic with staurosporine. Backscattering measurements are performed on pairs of treated and control samples at a sequence of times up to 6-h post-treatment. Initial results indicate that ESS is capable of discriminating between treated and control samples as early as 10- to 15-min post-treatment, much earlier than is sensed by standard assays for apoptosis. Extracted size distributions from treated and control samples show a decrease in Rayleigh and 150-nm scatterers, relative to control samples, with a corresponding increase in 200-nm particles. Work continues to correlate these size distributions with underlying morphology. To our knowledge, this is the first report of the use of backscattering spectral measurements to quantitatively monitor apoptosis in viable cell cultures in vitro.
New generation of space capabilities resulting from US/RF cooperative efforts
NASA Astrophysics Data System (ADS)
Humpherys, Thomas; Misnik, Victor; Sinelshchikov, Valery; Stair, A. T., Jr.; Khatulev, Valery; Carpenter, Jack; Watson, John; Chvanov, Dmitry; Privalsky, Victor
2006-09-01
Previous successful international cooperative efforts offer a wealth of experience in dealing with highly sensitive issues, but cooperative remote sensing for monitoring and understanding the global environmental is in the national interest of all countries. Cooperation between international partners is paramount, particularly with the Russian Federation, due to its technological maturity and strategic political and geographical position in the world. Based on experience gained over a decade of collaborative space research efforts, continued cooperation provides an achievable goal as well as understanding the fabric of our coexistence. Past cooperative space research efforts demonstrate the ability of the US and Russian Federation to develop a framework for cooperation, working together on a complex, state-of-the-art joint satellite program. These efforts consisted of teams of scientists and engineers who overcame numerous cultural, linguistic, engineering approaches and different political environments. Among these major achievements are: (1) field measurement activities with US satellites MSTI and MSX and the Russian RESURS-1 satellite, as well as the joint experimental use of the US FISTA aircraft; (2) successful joint Science, Conceptual and Preliminary Design Reviews; (3) joint publications of scientific research technical papers, (4) Russian investment in development, demonstration and operation of the Monitor-E spacecraft (Yacht satellite bus), (5) successful demonstration of the conversion of the SS-19 into a satellite launch system, and (6) negotiation of contractual and technical assistant agreements. This paper discusses a new generation of science and space capabilities available to the Remote Sensing community. Specific topics include: joint requirements definition process and work allocation for hardware and responsibility for software development; the function, description and status of Russian contributions in providing space component prototypes and test articles; summary of planned experimental measurements and simulations; results of the ROKOT launch system; performance of the Monitor-E spacecraft; prototype joint mission operations control center; and a Handbook for Success in satellite collaborative efforts based upon a decade of lessons learned.
Atwood, Elizabeth C.; Englhart, Sandra; Lorenz, Eckehard; Halle, Winfried; Wiedemann, Werner; Siegert, Florian
2016-01-01
Vast and disastrous fires occurred on Borneo during the 2015 dry season, pushing Indonesia into the top five carbon emitting countries. The region was affected by a very strong El Niño-Southern Oscillation (ENSO) climate phenomenon, on par with the last severe event in 1997/98. Fire dynamics in Central Kalimantan were investigated using an innovative sensor offering higher sensitivity to a wider range of fire intensities at a finer spatial resolution (160 m) than heretofore available. The sensor is onboard the TET-1 satellite, part of the German Aerospace Center (DLR) FireBird mission. TET-1 images (acquired every 2–3 days) from the middle infrared were used to detect fires continuously burning for almost three weeks in the protected peatlands of Sebangau National Park as well as surrounding areas with active logging and oil palm concessions. TET-1 detection capabilities were compared with MODIS active fire detection and Landsat burned area algorithms. Fire dynamics, including fire front propagation speed and area burned, were investigated. We show that TET-1 has improved detection capabilities over MODIS in monitoring low-intensity peatland fire fronts through thick smoke and haze. Analysis of fire dynamics revealed that the largest burned areas resulted from fire front lines started from multiple locations, and the highest propagation speeds were in excess of 500 m/day (all over peat > 2m deep). Fires were found to occur most often in concessions that contained drainage infrastructure but were not cleared prior to the fire season. Benefits of implementing this sensor system to improve current fire management techniques are discussed. Near real-time fire detection together with enhanced fire behavior monitoring capabilities would not only improve firefighting efforts, but also benefit analysis of fire impact on tropical peatlands, greenhouse gas emission estimations as well as mitigation measures to reduce severe fire events in the future. PMID:27486664
Crundall-Goode, Amanda; Goode, Kevin M; Clark, Andrew L
2017-04-01
Home tele-monitoring (HTM) is used to monitor the clinical signs and symptoms of patients with chronic heart failure (CHF) in order to reduce unplanned hospital admissions. However, not all patients who are referred will agree to use HTM, and some patients choose to withdraw early from its use. ADaPT-HF will investigate whether depression, anxiety, low perceived control, reduced technology capability, level of education, age or the severity or complexity of a patient's illness can predict refusal of, or early withdrawal from, HTM in patients with CHF. The study will recruit 288 patients who have been recently admitted to hospital with heart failure who have been referred for HTM. At the time of referral, patients will complete depression (nine-item Patient Health Questionnaire), anxiety (seven-item Generalised Anxiety Disorder questionnaire), perceived control (eight-item revised Controlled Attitudes Scale) and technology capability (ten-item Technology Readiness Index 2.0) screening questionnaires. In addition, data on demographics, diagnosis, clinical examination, socio-economic status, history of comorbidities, medication, biochemistry and haematology will be recorded. The primary outcome will be a composite of refusal of or early withdrawal from HTM. The principle analysis will be made using logistic regression. By establishing which factors influence a patient's decision to refuse or withdraw early from HTM, it may be possible to redesign HTM referral processes. It may be that patients with CHF who also have depression, anxiety, low control and poor technology skills should not be referred until they receive appropriate support or that they should be managed differently when they do receive HTM. The results of ADAPT-HF may provide a way of making more efficient and cost-effective use of HTM services.
Atwood, Elizabeth C; Englhart, Sandra; Lorenz, Eckehard; Halle, Winfried; Wiedemann, Werner; Siegert, Florian
2016-01-01
Vast and disastrous fires occurred on Borneo during the 2015 dry season, pushing Indonesia into the top five carbon emitting countries. The region was affected by a very strong El Niño-Southern Oscillation (ENSO) climate phenomenon, on par with the last severe event in 1997/98. Fire dynamics in Central Kalimantan were investigated using an innovative sensor offering higher sensitivity to a wider range of fire intensities at a finer spatial resolution (160 m) than heretofore available. The sensor is onboard the TET-1 satellite, part of the German Aerospace Center (DLR) FireBird mission. TET-1 images (acquired every 2-3 days) from the middle infrared were used to detect fires continuously burning for almost three weeks in the protected peatlands of Sebangau National Park as well as surrounding areas with active logging and oil palm concessions. TET-1 detection capabilities were compared with MODIS active fire detection and Landsat burned area algorithms. Fire dynamics, including fire front propagation speed and area burned, were investigated. We show that TET-1 has improved detection capabilities over MODIS in monitoring low-intensity peatland fire fronts through thick smoke and haze. Analysis of fire dynamics revealed that the largest burned areas resulted from fire front lines started from multiple locations, and the highest propagation speeds were in excess of 500 m/day (all over peat > 2m deep). Fires were found to occur most often in concessions that contained drainage infrastructure but were not cleared prior to the fire season. Benefits of implementing this sensor system to improve current fire management techniques are discussed. Near real-time fire detection together with enhanced fire behavior monitoring capabilities would not only improve firefighting efforts, but also benefit analysis of fire impact on tropical peatlands, greenhouse gas emission estimations as well as mitigation measures to reduce severe fire events in the future.
NASA Astrophysics Data System (ADS)
Arosio, Diego; Munda, Stefano; Tresoldi, Greta; Papini, Monica; Longoni, Laura; Zanzi, Luigi
2017-10-01
This work is based on the assumption that a resistivity meter can effectively monitor water saturation in earth levees and can be used as a warning system when saturation exceeds the expected seasonal maxima. We performed time-lapse ERT measurements to assess the capability of this method to detect areas where seepage is critical. These measurements were also very useful to design a prototype monitoring system with remarkable savings by customizing the specifications according to field observations. The prototype consists of a remotely controlled low-power resistivity meter with a spread of 48 stainless steel 20 × 20 cm plate electrodes buried at half-meter depth. We deployed the newly-designed permanent monitoring system on a critical levee segment. A weather station and an ultrasonic water level sensor were also installed in order to analyse the correlation of resistivity with temperature, rainfalls and water level seasonal variations. The preliminary analysis of the monitoring data shows that the resistivity maps follow a very reasonable trend related with the saturation/drying cycle of the levee caused by the seasonal variations of the water level in the irrigation channel. Sharp water level changes cause delayed and smooth resistivity variations. Rainfalls and, to a lesser extent, temperature seem to have an influence on the collected data but effects are apparently negligible beyond 1 m depth. The system is currently operating and results are continuously monitored.
Enhanced Raman Monitor Project
NASA Technical Reports Server (NTRS)
Westenskow, Dwayne
1996-01-01
Monitoring of gaseous contaminants stems from the need to ensure a healthy and safe environment. NASA/Ames needs sensors that are able to monitor common atmospheric gas concentrations as well as trace amounts of contaminant gases. To provide an accurate assessment of air quality, a monitoring system would need to be continuous and on-line with full spectrum capabilities, allowing simultaneous detection of all gas components in a sample, including both combustible and non-combustible gases. The system demands a high degree of sensitivity to detect low gas concentrations in the low-ppm and sub-ppm regions. For clean and healthy air ('good' category), criteria established by the EPA requires that contaminant concentrations not exceed 4 ppm of carbon monoxide (CO) in an 8 hour period, 60 ppb of ozone(O3) in a one hour period and 30 ppb of sulfur dioxide (SO2) in a 24 hour period. One step below this is the National Ambient Air Quality Standard ('moderate' category) which requires that contaminant concentrations not exceed 9 ppm of carbon monoxide (CO), 120 ppb of ozone (O3) and 140 ppb of sulfur dioxide (SO2) for their respective time periods. Ideally a monitor should be able to detect the concentrations specified in the 'good' category. To benchmark current abilities of Raman technology in gas phase analysis, laboratory experiments were performed to evaluate the RASCAL II anesthetic gas monitor.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Continuous methane monitoring device... Installations § 77.211-1 Continuous methane monitoring device; installation and operation; automatic deenergization of electric equipment. Continuous methane monitoring devices shall be set to deenergize...
40 CFR 60.1235 - How are the data from the continuous emission monitoring systems used?
Code of Federal Regulations, 2013 CFR
2013-07-01
... emission monitoring systems used? 60.1235 Section 60.1235 Protection of Environment ENVIRONMENTAL... Continuous Emission Monitoring § 60.1235 How are the data from the continuous emission monitoring systems... oxides, and carbon monoxide to demonstrate continuous compliance with the emission limits specified in...
40 CFR 60.1235 - How are the data from the continuous emission monitoring systems used?
Code of Federal Regulations, 2014 CFR
2014-07-01
... emission monitoring systems used? 60.1235 Section 60.1235 Protection of Environment ENVIRONMENTAL... Continuous Emission Monitoring § 60.1235 How are the data from the continuous emission monitoring systems... oxides, and carbon monoxide to demonstrate continuous compliance with the emission limits specified in...
40 CFR 60.1235 - How are the data from the continuous emission monitoring systems used?
Code of Federal Regulations, 2012 CFR
2012-07-01
... emission monitoring systems used? 60.1235 Section 60.1235 Protection of Environment ENVIRONMENTAL... Continuous Emission Monitoring § 60.1235 How are the data from the continuous emission monitoring systems... oxides, and carbon monoxide to demonstrate continuous compliance with the emission limits specified in...
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Continuous methane monitoring device... Installations § 77.211-1 Continuous methane monitoring device; installation and operation; automatic deenergization of electric equipment. Continuous methane monitoring devices shall be set to deenergize...
40 CFR 60.1740 - What is my schedule for evaluating continuous emission monitoring systems?
Code of Federal Regulations, 2011 CFR
2011-07-01
... continuous emission monitoring systems? 60.1740 Section 60.1740 Protection of Environment ENVIRONMENTAL... evaluating continuous emission monitoring systems? (a) Conduct annual evaluations of your continuous emission monitoring systems no more than 13 months after the previous evaluation was conducted. (b) Evaluate your...
40 CFR 62.15195 - What is my schedule for evaluating continuous emission monitoring systems?
Code of Federal Regulations, 2010 CFR
2010-07-01
... continuous emission monitoring systems? 62.15195 Section 62.15195 Protection of Environment ENVIRONMENTAL... evaluating continuous emission monitoring systems? (a) Conduct annual evaluations of your continuous emission monitoring systems no more than 13 months after the previous evaluation was conducted. (b) Evaluate your...
40 CFR 62.15195 - What is my schedule for evaluating continuous emission monitoring systems?
Code of Federal Regulations, 2011 CFR
2011-07-01
... continuous emission monitoring systems? 62.15195 Section 62.15195 Protection of Environment ENVIRONMENTAL... evaluating continuous emission monitoring systems? (a) Conduct annual evaluations of your continuous emission monitoring systems no more than 13 months after the previous evaluation was conducted. (b) Evaluate your...
NASA Astrophysics Data System (ADS)
Hill, D. P.
1984-06-01
Recent patterns of geologic unrest in long Valley caldera in east-central California emphasize that this large, silicic volcanic system and the adjacent, geologically youthful Inyo-Mono Craters volcanic chain are still active and capable of producing locally hazardous volcanic eruptions. A series of four magnitude -6 earthquakes in May 1980 called attention to this current episode of unrest, and subsequent activity has included numerous earthquake swarms in the south moat of the caldera accompanied by inflation of the resurgent dome by more than 50 cm over the last five years. The seismicity associated with this unrest is currently monitored by a network of 31 telemetered seismic stations with an automatic processing system that yelds hypocentral locations and earthquake magnitudes in near-real time. Deformation of the ground is monitored by a) a series of overlapping trilateration networks that provide coverage ranging from annual measurements of regional deformation to daily measurements of deformation local to the active, southern section of the caldera, b) a regional network of level lines surveyed annually, c) a regional network of precise gravity stations occupied annually, d) local, L-shaped level figures surveyed every few months, and e) a network of fourteen borehole tiltmeter clusters (two instruments in each cluster) and a borehole dilatometer, the telemetered signals from which provide continuous data on deformation rates. Additional telemetered data provide continuous information on fluctuations in the local magnetic field, hydrogen gas emission rates at three sites, and water level and temperatures in three wells. Continuous data on disharge rates and temperatures from hot springs and fumaroles are collected by several on-site recorders within the caldera, and samples for liquid and gas chemistry are collected several times per year from selected hot springs and fumaroles.
McGarraugh, Geoffrey V; Clarke, William L; Kovatchev, Boris P
2010-05-01
The purpose of the analysis was to compare the clinical utility of data from traditional self-monitoring of blood glucose (SMBG) to that of continuous glucose monitoring (CGM). A clinical study of the clinical accuracy of the FreeStyle Navigator CGM System (Abbott Diabetes Care, Alameda, CA), which includes SMBG capabilities, was conducted by comparison to the YSI blood glucose analyzer (YSI Inc., Yellow Springs, OH) using 58 subjects with type 1 diabetes. The Continuous Glucose-Error Grid Analysis (CG-EGA) was used as the analytical tool. Using CG-EGA, the "clinically accurate," "benign errors," and "clinical errors" were 86.8%, 8.7%, and 4.5% for SMBG and 92.7%, 3.7%, and 3.6% for CGM, respectively. If blood glucose is viewed as a process in time, SMBG would provide accurate information about this process 86.8% of the time, whereas CGM would provide accurate information about this process 92.7% of the time (P < 0.0001). In the hypoglycemic range, however, SMBG is more accurate as the "clinically accurate," "benign errors," and "clinical errors" were 83.5%, 6.4%, and 10.1% for SMBG and 57.1%, 8.4%, and 34.5% (P < 0.0001) for CGM, respectively. While SMBG produces more accurate instantaneous glucose values than CGM, control of blood glucose involves a system in flux, and CGM provides more detailed insight into the dynamics of that system. In the normal and elevated glucose ranges, the additional information about the direction and rate of glucose change provided by the FreeStyle Navigator CGM System increases the ability to make correct clinical decisions when compared to episodic SMBG tests.
Accessing 3D microtissue metabolism: Lactate and oxygen monitoring in hepatocyte spheroids.
Weltin, Andreas; Hammer, Steffen; Noor, Fozia; Kaminski, Yeda; Kieninger, Jochen; Urban, Gerald A
2017-01-15
3D hepatic microtissues, unlike 2D cell cultures, retain many of the in-vivo-like functionalities even after long-term cultivation. Such 3D cultures are increasingly applied to investigate liver damage due to drug exposure in toxicology. However, there is a need for thorough metabolic characterization of these microtissues for mechanistic understanding of effects on culture behaviour. We measured metabolic parameters from single human HepaRG hepatocyte spheroids online and continuously with electrochemical microsensors. A microsensor platform for lactate and oxygen was integrated in a standard 96-well plate. Electrochemical microsensors for lactate and oxygen allow fast, precise and continuous long-term measurement of metabolic parameters directly in the microwell. The demonstrated capability to precisely detect small concentration changes by single spheroids is the key to access their metabolism. Lactate levels in the culture medium starting from 50µM with production rates of 5µMh -1 were monitored and precisely quantified over three days. Parallel long-term oxygen measurements showed no oxygen depletion or hypoxic conditions in the microwell. Increased lactate production by spheroids upon suppression of the aerobic metabolism was observed. The dose-dependent decrease in lactate production caused by the addition of the hepatotoxic drug Bosentan was determined. We showed that in a toxicological application, metabolic monitoring yields quantitative, online information on cell viability, which complements and supports other methods such as microscopy. The demonstrated continuous access to 3D cell culture metabolism within a standard setup improves in vitro toxicology models in replacement strategies of animal experiments. Controlling the microenvironment of such organotypic cultures has impact in tissue engineering, cancer therapy and personalized medicine. Copyright © 2016 Elsevier B.V. All rights reserved.
40 CFR 60.3038 - What continuous emission monitoring systems must I install?
Code of Federal Regulations, 2011 CFR
2011-07-01
... December 9, 2004 Model Rule-Monitoring § 60.3038 What continuous emission monitoring systems must I install? (a) You must install, calibrate, maintain, and operate continuous emission monitoring systems for... system according to the “Monitoring Requirements” in § 60.13. ...
40 CFR 60.3038 - What continuous emission monitoring systems must I install?
Code of Federal Regulations, 2010 CFR
2010-07-01
... December 9, 2004 Model Rule-Monitoring § 60.3038 What continuous emission monitoring systems must I install? (a) You must install, calibrate, maintain, and operate continuous emission monitoring systems for... system according to the “Monitoring Requirements” in § 60.13. ...
Downey, C L; Brown, J M; Jayne, D G; Randell, R
2018-06-01
Vital signs monitoring is used to identify deteriorating patients in hospital. The most common tool for vital signs monitoring is an early warning score, although emerging technologies allow for remote, continuous patient monitoring. A number of reviews have examined the impact of continuous monitoring on patient outcomes, but little is known about the patient experience. This study aims to discover what patients think of monitoring in hospital, with a particular emphasis on intermittent early warning scores versus remote continuous monitoring, in order to inform future implementations of continuous monitoring technology. Semi-structured interviews were undertaken with 12 surgical inpatients as part of a study testing a remote continuous monitoring device. All patients were monitored with both an early warning score and the new device. Interviews were audio-recorded, transcribed verbatim and analysed using thematic analysis. Patients can see the value in remote, continuous monitoring, particularly overnight. However, patients appreciate the face-to-face aspect of early warning score monitoring as it allows for reassurance, social interaction, and gives them further opportunity to ask questions about their medical care. Early warning score systems are widely used to facilitate detection of the deteriorating patient. Continuous monitoring technologies may provide added reassurance. However, patients value personal contact with their healthcare professionals and remote monitoring should not replace this. We suggest that remote monitoring is best introduced in a phased manner, and initially as an adjunct to usual care, with careful consideration of the patient experience throughout. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Kelly, P. J.; Ketner, D. M.; Kern, C.; Lahusen, R. G.; Lockett, C.; Parker, T.; Paskievitch, J.; Pauk, B.; Rinehart, A.; Werner, C. A.
2015-12-01
In recent years, the USGS Volcano Hazards Program has worked to implement continuous real-time in situ volcanic gas monitoring at volcanoes in the Cascade Range and Alaska. The main goal of this ongoing effort is to better link the compositions of volcanic gases to other real-time monitoring data, such as seismicity and deformation, in order to improve baseline monitoring and early detection of volcanic unrest. Due to the remote and difficult-to-access nature of volcanic-gas monitoring sites in the Cascades and Alaska, we developed Multi-GAS instruments that can operate unattended for long periods of time with minimal direct maintenance from field personnel. Our Multi-GAS stations measure H2O, CO2, SO2, and H2S gas concentrations, are comprised entirely of commercial off-the-shelf components, and are powered by small solar energy systems. One notable feature of our Multi-GAS stations is that they include a unique capability to perform automated CO2, SO2, and H2S sensor verifications using portable gas standards while deployed in the field, thereby allowing for rigorous tracking of sensor performances. In addition, we have developed novel onboard data-processing routines that allow diagnostic and monitoring data - including gas ratios (e.g. CO2/SO2) - to be streamed in real time to internal observatory and public web pages without user input. Here we present over one year of continuous data from a permanent Multi-GAS station installed in August 2014 in the crater of Mount St. Helens, Washington, and several months of data from a station installed near the summit of Augustine Volcano, Alaska in June 2015. Data from the Mount St. Helens Multi-GAS station has been streaming to a public USGS site since early 2015, a first for a permanent Multi-GAS site. Neither station has detected significant changes in gas concentrations or compositions since they were installed, consistent with low levels of seismicity and deformation.
Frequency Based Volcanic Activity Detection through Remotely Sensed Data
NASA Astrophysics Data System (ADS)
Worden, A. K.; Dehn, J.; Webley, P. W.
2015-12-01
Satellite remote sensing has proved to offer a useful and relatively inexpensive method for monitoring large areas where field work is logistically unrealistic, and potentially dangerous. Current sensors are able to detect the majority of explosive volcanic activity; those that tend to effect and represent larger scale changes in the volcanic systems, eventually relating to ash producing periods of extended eruptive activity, and effusive activity. As new spaceborne sensors are developed, the ability to detect activity improves so that a system to gauge the frequency of volcanic activity can be used as a useful monitoring tool. Four volcanoes were chosen for development and testing of a method to monitor explosive activity: Stromboli (Italy); Shishaldin and Cleveland (Alaska, USA); and Karymsky (Kamchatka, Russia). Each volcano studied had similar but unique signatures of pre-cursory and eruptive activity. This study has shown that this monitoring tool could be applied to a wide range of volcanoes and still produce useful and robust data. Our method deals specifically with the detection of small scale explosive activity. The method described here could be useful in an operational setting, especially at remote volcanoes that have the potential to impact populations, infrastructure, and the aviation community. A number of important factors will affect the validity of application of this method. They are: (1) the availability of a continuous and continually populated dataset; (2) appropriate and reasonable sensor resolutions; (3) a recorded history of the volcano's previous activity; and, if available, (4) some ground-based monitoring system. We aim to develop the method further to be able to capture and evaluate the frequency of other volcanic processes such as lava flows, phreatomagmatic eruptions and dome growth and collapse. The work shown here has served to illustrate the capability of this method and monitoring tool for use at remote, un-instrumented volcanoes.
Remotely Monitored Sealing Array Software
DOE Office of Scientific and Technical Information (OSTI.GOV)
2012-09-12
The Remotely Monitored Sealing Array (RMSA) utilizes the Secure Sensor Platform (SSP) framework to establish the fundamental operating capabilities for communication, security, power management, and cryptography. In addition to the SSP framework the RMSA software has unique capabilities to support monitoring a fiber optic seal. Fiber monitoring includes open and closed as well as parametric monitoring to detect tampering attacks. The fiber monitoring techniques, using the SSP power management processes, allow the seals to last for years while maintaining the security requirements of the monitoring application. The seal is enclosed in a tamper resistant housing with software to support activemore » tamper monitoring. New features include LED notification of fiber closure, the ability to retrieve the entire fiber optic history via translator command, separate memory storage for fiber optic events, and a more robust method for tracking and resending failed messages.« less
Distributed intelligent monitoring and reporting facilities
NASA Astrophysics Data System (ADS)
Pavlou, George; Mykoniatis, George; Sanchez-P, Jorge-A.
1996-06-01
Distributed intelligent monitoring and reporting facilities are of paramount importance in both service and network management as they provide the capability to monitor quality of service and utilization parameters and notify degradation so that corrective action can be taken. By intelligent, we refer to the capability of performing the monitoring tasks in a way that has the smallest possible impact on the managed network, facilitates the observation and summarization of information according to a number of criteria and in its most advanced form and permits the specification of these criteria dynamically to suit the particular policy in hand. In addition, intelligent monitoring facilities should minimize the design and implementation effort involved in such activities. The ISO/ITU Metric, Summarization and Performance management functions provide models that only partially satisfy the above requirements. This paper describes our extensions to the proposed models to support further capabilities, with the intention to eventually lead to fully dynamically defined monitoring policies. The concept of distributing intelligence is also discussed, including the consideration of security issues and the applicability of the model in ODP-based distributed processing environments.
40 CFR 60.2941 - What is my schedule for evaluating continuous emission monitoring systems?
Code of Federal Regulations, 2011 CFR
2011-07-01
... continuous emission monitoring systems? 60.2941 Section 60.2941 Protection of Environment ENVIRONMENTAL... emission monitoring systems? (a) Conduct annual evaluations of your continuous emission monitoring systems... emission monitoring systems daily and quarterly as specified in appendix F of this part. ...
Continued Development of Compact Multi-gas Monitor for Life Support Systems Control in Space
NASA Technical Reports Server (NTRS)
Delgado-Alonso, Jesús; Phillips, Straun; Chullen, Cinda; Quinn, Gregory
2016-01-01
Miniature optic gas sensors (MOGS) based on luminescent materials have shown great potential as alternatives to Near-Infrared-based gas sensor systems for the advanced space suit portable life support system (PLSS). The unique capability of MOGS for carbon dioxide and oxygen monitoring under wet conditions has been reported, as has the fast recovery of MOGS humidity sensors after long periods of being wet. Lower volume and power requirements are also potential advantages of MOGS over both traditional and advanced Non-Dispersive Infrared (NDIR) gas sensors, which have shown so far longer life than luminescent sensors. This paper presents the most recent results in the development and analytical validation of a compact multi-gas sensor unit based on luminescent sensors for the PLSS. Results of extensive testing are presented, including studies conducted at Intelligent Optical Systems laboratories, a United Technology Corporation Aerospace Systems (UTAS) laboratory, and a Johnson Space Center laboratory. The potential of this sensor technology for gas monitoring in PLSSs and other life support systems and the advantages and limitations found through detailed sensor validation are discussed.
Self-Powered Real-Time Arterial Pulse Monitoring Using Ultrathin Epidermal Piezoelectric Sensors.
Park, Dae Yong; Joe, Daniel J; Kim, Dong Hyun; Park, Hyewon; Han, Jae Hyun; Jeong, Chang Kyu; Park, Hyelim; Park, Jung Gyu; Joung, Boyoung; Lee, Keon Jae
2017-10-01
Continuous monitoring of an arterial pulse using a pressure sensor attached on the epidermis is an important technology for detecting the early onset of cardiovascular disease and assessing personal health status. Conventional pulse sensors have the capability of detecting human biosignals, but have significant drawbacks of power consumption issues that limit sustainable operation of wearable medical devices. Here, a self-powered piezoelectric pulse sensor is demonstrated to enable in vivo measurement of radial/carotid pulse signals in near-surface arteries. The inorganic piezoelectric sensor on an ultrathin plastic achieves conformal contact with the complex texture of the rugged skin, which allows to respond to the tiny pulse changes arising on the surface of epidermis. Experimental studies provide characteristics of the sensor with a sensitivity (≈0.018 kPa -1 ), response time (≈60 ms), and good mechanical stability. Wireless transmission of detected arterial pressure signals to a smart phone demonstrates the possibility of self-powered and real-time pulse monitoring system. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Niewiadomska-Szynkiewicz, Ewa; Sikora, Andrzej; Marks, Michał
2016-01-01
Using mobile robots or unmanned vehicles to assist optimal wireless sensors deployment in a working space can significantly enhance the capability to investigate unknown environments. This paper addresses the issues of the application of numerical optimization and computer simulation techniques to on-line calculation of a wireless sensor network topology for monitoring and tracking purposes. We focus on the design of a self-organizing and collaborative mobile network that enables a continuous data transmission to the data sink (base station) and automatically adapts its behavior to changes in the environment to achieve a common goal. The pre-defined and self-configuring approaches to the mobile-based deployment of sensors are compared and discussed. A family of novel algorithms for the optimal placement of mobile wireless devices for permanent monitoring of indoor and outdoor dynamic environments is described. They employ a network connectivity-maintaining mobility model utilizing the concept of the virtual potential function for calculating the motion trajectories of platforms carrying sensors. Their quality and utility have been justified through simulation experiments and are discussed in the final part of the paper. PMID:27649186
Continued Development of Compact Multi-Gas Monitor for Life Support Systems Control in Space
NASA Technical Reports Server (NTRS)
Delgado, Jesus; Phillips, Straun; Chullen, Cinda
2015-01-01
Miniature optic gas sensors (MOGS) based on luminescent materials have shown great potential as alternatives to NIR-based gas sensor systems for the Portable Life Support System (PLSS). The unique capability of MOGS for carbon dioxide and oxygen monitoring under wet conditions has been reported, as has the fast recovery of MOGS humidity sensors after long periods of being wet. Lower volume and power requirements are also potential advantages of MOGS over both traditional and advanced Non-Dispersive Infrared (NDIR) gas sensors, which have shown so far longer life than luminescent sensors. In this paper we present the most recent results in the development and analytical validation of a compact multi-gas sensor unit based on luminescent sensors for the PLSS. Results of extensive testing are presented, including studies conducted at Intelligent Optical Systems laboratories, a United Technology Corporation Aerospace Systems (UTAS) laboratory, and a Johnson Space Center laboratory. The potential of this sensor technology for gas monitoring in PLSSs and other life support systems and the advantages and limitations found through detailed sensor validation are discussed.
Front-end Electronics for Unattended Measurement (FEUM). Results of Prototype Evaluation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Conrad, Ryan C.; Keller, Daniel T.; Morris, Scott J.
2015-07-01
The International Atomic Energy Agency (IAEA) deploys unattended monitoring systems to provide continuous monitoring of nuclear material within safeguarded facilities around the world. As the number of unattended monitoring instruments increases, the IAEA is challenged to become more efficient in the implementation of those systems. In 2010, the IAEA initiated the Front-End Electronics for Unattended Measurement (FEUM) project with the goals of greater flexibility in the interfaces to various sensors and data acquisition systems, and improved capabilities for remotely located sensors (e.g., where sensor and front-end electronics might be separated by tens of meters). In consultation with the IAEA, amore » technical evaluation of a candidate FEUM device produced by a commercial vendor has been performed. This evaluation assessed the device against the IAEA’s original technical specifications and a broad range of important parameters that include sensor types, cable lengths and types, industrial electromagnetic noise that can degrade signals from remotely located detectors, and high radiation fields. Testing data, interpretation, findings and recommendations are provided.« less
NASA Astrophysics Data System (ADS)
Khani, Rouhollah; Ghiamati, Ebrahim; Boroujerdi, Ramin; Rezaeifard, Abdolreza; Zaryabi, Mohadeseh Hosseinpour
2016-06-01
Cadmium (Cd) which is an extremely toxic could be found in many products like plastics, fossil fuel combustion, cosmetics, water resources, and wastewaters. It is capable of causing serious environmental and health problems such as lung, prostate, renal cancers and the other disorders. So, the development of a sensor to continually monitor cadmium is considerably demanding. Tetrakis(4-nitrophenyl)porphyrin, T(4-NO2-P)P, was synthesized and used as a new and highly selective fluorescent probe for monitoring cadmium ions in the "turn-on" mode. There was a linear relationship between fluorescence intensity and the concentration of Cd(II) in the range of 1.0 × 10- 6 to 1.0 × 10- 5 mol L- 1 with a detection limit of 0.276 μM. To examine the most important parameters involved and their interactions in the sensor optimization procedure, a four-factor central composite design (CCD) combined with response surface modeling (RSM) was implemented. The practical applicability of the developed sensor was investigated using real cosmetic, and personal care samples.
Design and implementation of a bluetooth-based band-aid pulse rate sensor
NASA Astrophysics Data System (ADS)
Kumar, Prashanth S.; Oh, Sechang; Rai, Pratyush; Kwon, Hyeokjun; Banerjee, Nilanjan; Varadan, Vijay K.
2011-04-01
Remote patient monitoring systems capable of collecting vital patient data such as blood pressure readings, Electrocardiograph (ECG) waveforms, and heart rate can obviate the need for repeated visits to the hospital. Moreover, such systems that continuously monitor the human physiology can provide valuable data to prognosticate the onset of critical health problems. The key to such remote health diagnostics is the design of minimally intrusive, low cost sensors that do not impede a patient's quotidian life but at the same time collect reliable noise free data. To this end, in this paper, we design and implement a Bluetooth-based wireless sensor system with a disposable sensor element and a reusable wireless component that can be worn as a "band-aid". The sensor is a piezoelectric polymer film placed on the wrist in proximity to the radial artery. The band-aid sized sensor allows non-intrusive monitoring of the pulsatile flow of blood in the artery. The sensor, using the Bluetooth module, can communicate with any Bluetooth enabled computer, mobile phone, or PDA. The data collected from the patient can be remotely viewed and analyzed by a physician.
Science Data Report for the Optical Properties Monitor (OPM) Experiment
NASA Technical Reports Server (NTRS)
Wilkes, Donald R.; Zwiener, James M.
1999-01-01
Long term stability of spacecraft materials when exposed to the space environment continues to be a major area of investigation. The natural and induced environment surrounding a spacecraft can decrease material performance and limit useful lifetimes. The Optical Properties Monitor (OPM) experiment provided the capability to perform the important flight testing of materials and was flown on the Russian Mir Station to study the long term effects of the natural and induced space environment on materials. The core of the OPM in-flight analysis was three independent optical instruments. These instruments included an integrating sphere spectral reflectometer, a vacuum ultraviolet spectrometer, and a Total Integrated Scatter instrument. The OPM also monitored selected components of the environment including molecular contamination. The OPM was exposed on the exterior of the Mir Docking Module for approximately 8-1/2 months. This report describes the OPM experiment, a brief background of its development, program organization, experiment description, mission overview including space environment definition, performance overview, materials data including flight and ground data, in-depth post flight analysis including ground analysis measurements and a summary discussion of the findings and results.
Continued Development of Compact Multi-Gas Monitor for Life Support Systems Control in Space
NASA Technical Reports Server (NTRS)
Delgado-Alonso, Jesus; Phillips, Straun; Berry, David; DiCarmine, Paul; Chullen, Cinda; Quinn, Gregory
2016-01-01
Miniature optical gas sensors based on luminescent materials have shown great potential as alternatives to NIR-based gas sensor systems for the Portable Life Support System (PLSS). The unique capability of luminescent sensors for carbon dioxide and oxygen monitoring under wet conditions has been reported, as has the fast recovery of humidity sensors after long periods of being wet. Lower volume and power requirements are also potential advantages over both traditional and advanced non-dispersive infrared (NDIR) gas sensors, which have so far shown longer life than luminescent sensors. In this paper we present the most recent results in the development and analytical validation of a compact multi-gas sensor unit based on luminescent sensors for the PLSS. Results of extensive testing are presented, including studies conducted in Intelligent Optical Systems laboratories, a United Technologies Corporation Aerospace Systems (UTC) laboratory, and a Johnson Space Center laboratory. The potential of this sensor technology for gas monitoring in PLSSs and other life support systems, and the advantages and limitations found through detailed sensor validation are discussed.
Niewiadomska-Szynkiewicz, Ewa; Sikora, Andrzej; Marks, Michał
2016-09-14
Using mobile robots or unmanned vehicles to assist optimal wireless sensors deployment in a working space can significantly enhance the capability to investigate unknown environments. This paper addresses the issues of the application of numerical optimization and computer simulation techniques to on-line calculation of a wireless sensor network topology for monitoring and tracking purposes. We focus on the design of a self-organizing and collaborative mobile network that enables a continuous data transmission to the data sink (base station) and automatically adapts its behavior to changes in the environment to achieve a common goal. The pre-defined and self-configuring approaches to the mobile-based deployment of sensors are compared and discussed. A family of novel algorithms for the optimal placement of mobile wireless devices for permanent monitoring of indoor and outdoor dynamic environments is described. They employ a network connectivity-maintaining mobility model utilizing the concept of the virtual potential function for calculating the motion trajectories of platforms carrying sensors. Their quality and utility have been justified through simulation experiments and are discussed in the final part of the paper.
Li, Chuan; Peng, Juan; Liang, Ming
2014-01-01
Oil debris sensors are effective tools to monitor wear particles in lubricants. For in situ applications, surrounding noise and vibration interferences often distort the oil debris signature of the sensor. Hence extracting oil debris signatures from sensor signals is a challenging task for wear particle monitoring. In this paper we employ the maximal overlap discrete wavelet transform (MODWT) with optimal decomposition depth to enhance the wear particle monitoring capability. The sensor signal is decomposed by the MODWT into different depths for detecting the wear particle existence. To extract the authentic particle signature with minimal distortion, the root mean square deviation of kurtosis value of the segmented signal residue is adopted as a criterion to obtain the optimal decomposition depth for the MODWT. The proposed approach is evaluated using both simulated and experimental wear particles. The results show that the present method can improve the oil debris monitoring capability without structural upgrade requirements. PMID:24686730
Li, Chuan; Peng, Juan; Liang, Ming
2014-03-28
Oil debris sensors are effective tools to monitor wear particles in lubricants. For in situ applications, surrounding noise and vibration interferences often distort the oil debris signature of the sensor. Hence extracting oil debris signatures from sensor signals is a challenging task for wear particle monitoring. In this paper we employ the maximal overlap discrete wavelet transform (MODWT) with optimal decomposition depth to enhance the wear particle monitoring capability. The sensor signal is decomposed by the MODWT into different depths for detecting the wear particle existence. To extract the authentic particle signature with minimal distortion, the root mean square deviation of kurtosis value of the segmented signal residue is adopted as a criterion to obtain the optimal decomposition depth for the MODWT. The proposed approach is evaluated using both simulated and experimental wear particles. The results show that the present method can improve the oil debris monitoring capability without structural upgrade requirements.
NASA Astrophysics Data System (ADS)
Lee, Stephen
2017-05-01
Embedded combat medical personnel require accurate and timely biometric data to ensure appropriate life saving measures. Injured warfighter's operating in remote environments require both assessment and monitoring often while still engaged with enemy forces. Small wearable devices that can be placed on injured personnel capable of collecting essential biometric data, including the capacity to remotely deliver collected data in real-time, would allow additional medical monitoring and triage that will greatly help the medic in the battlefield. These new capabilities will provide a force multiplier through remote assessment, increased survivability, and in freeing engaged warfighter's from direct monitoring thus improving combat effectiveness and increasing situational awareness. Key questions around what information does the medic require and how effective it can be relayed to support personnel are at their early stages of development. A low power biometric wearable device capable of reliable electrocardiogram (EKG) rhythm, temperature, pulse, and other vital data collection which can provide real-time remote monitoring are in development for the Soldier.
Continuous Monitoring of Glucose for Type 1 Diabetes: A Health Technology Assessment.
2018-01-01
Type 1 diabetes is a condition in which the pancreas produces little or no insulin. People with type 1 diabetes must manage their blood glucose levels by monitoring the amount of glucose in their blood and administering appropriate amounts of insulin via injection or an insulin pump. Continuous glucose monitoring may be beneficial compared to self-monitoring of blood glucose using a blood glucose meter. It provides insight into a person's blood glucose levels on a continuous basis, and can identify whether blood glucose levels are trending up or down. We conducted a health technology assessment, which included an evaluation of clinical benefit, value for money, and patient preferences related to continuous glucose monitoring. We compared continuous glucose monitoring with self-monitoring of blood glucose using a finger-prick and a blood glucose meter. We performed a systematic literature search for studies published since January 1, 2010. We created a Markov model projecting the lifetime horizon of adults with type 1 diabetes, and performed a budget impact analysis from the perspective of the health care payer. We also conducted interviews and focus group discussions with people who self-manage their type 1 diabetes or support the management of a child with type 1 diabetes. Twenty studies were included in the clinical evidence review. Compared with self-monitoring of blood glucose, continuous glucose monitoring improved the percentage of time patients spent in the target glycemic range by 9.6% (95% confidence interval 8.0-11.2) to 10.0% (95% confidence interval 6.75-13.25) and decreased the number of severe hypoglycemic events.Continuous glucose monitoring was associated with higher costs and small increases in health benefits (quality-adjusted life-years). Incremental cost-effectiveness ratios (ICERs) ranged from $592,206 to $1,108,812 per quality-adjusted life-year gained in analyses comparing four continuous glucose monitoring interventions to usual care. However, the uncertainty around the ICERs was large. The net budget impact of publicly funding continuous glucose monitoring assuming a 20% annual increase in adoption of continuous glucose monitoring would range from $8.5 million in year 1 to $16.2 million in year 5.Patient engagement surrounding the topic of continuous glucose monitoring was robust. Patients perceived that these devices provided important social, emotional, and medical and safety benefits in managing type 1 diabetes, especially in children. Continuous glucose monitoring was more effective than self-monitoring of blood glucose in managing type 1 diabetes for some outcomes, such as time spent in the target glucose range and time spent outside the target glucose range (moderate certainty in this evidence). We were less certain that continuous glucose monitoring would reduce the number of severe hypoglycemic events. Compared with self-monitoring of blood glucose, the costs of continuous glucose monitoring were higher, with only small increases in health benefits. Publicly funding continuous glucose monitoring for the type 1 diabetes population in Ontario would result in additional costs to the health system over the next 5 years. Adult patients and parents of children with type 1 diabetes reported very positive experiences with continuous glucose monitoring. The high ongoing cost of continuous glucose monitoring devices was seen as the greatest barrier to their widespread use.
Continuous Monitoring of Glucose for Type 1 Diabetes: A Health Technology Assessment
Vandersluis, Stacey; Kabali, Conrad; Djalalov, Sandjar; Gajic-Veljanoski, Olga; Wells, David; Holubowich, Corinne
2018-01-01
Background Type 1 diabetes is a condition in which the pancreas produces little or no insulin. People with type 1 diabetes must manage their blood glucose levels by monitoring the amount of glucose in their blood and administering appropriate amounts of insulin via injection or an insulin pump. Continuous glucose monitoring may be beneficial compared to self-monitoring of blood glucose using a blood glucose meter. It provides insight into a person's blood glucose levels on a continuous basis, and can identify whether blood glucose levels are trending up or down. Methods We conducted a health technology assessment, which included an evaluation of clinical benefit, value for money, and patient preferences related to continuous glucose monitoring. We compared continuous glucose monitoring with self-monitoring of blood glucose using a finger-prick and a blood glucose meter. We performed a systematic literature search for studies published since January 1, 2010. We created a Markov model projecting the lifetime horizon of adults with type 1 diabetes, and performed a budget impact analysis from the perspective of the health care payer. We also conducted interviews and focus group discussions with people who self-manage their type 1 diabetes or support the management of a child with type 1 diabetes. Results Twenty studies were included in the clinical evidence review. Compared with self-monitoring of blood glucose, continuous glucose monitoring improved the percentage of time patients spent in the target glycemic range by 9.6% (95% confidence interval 8.0–11.2) to 10.0% (95% confidence interval 6.75–13.25) and decreased the number of severe hypoglycemic events. Continuous glucose monitoring was associated with higher costs and small increases in health benefits (quality-adjusted life-years). Incremental cost-effectiveness ratios (ICERs) ranged from $592,206 to $1,108,812 per quality-adjusted life-year gained in analyses comparing four continuous glucose monitoring interventions to usual care. However, the uncertainty around the ICERs was large. The net budget impact of publicly funding continuous glucose monitoring assuming a 20% annual increase in adoption of continuous glucose monitoring would range from $8.5 million in year 1 to $16.2 million in year 5. Patient engagement surrounding the topic of continuous glucose monitoring was robust. Patients perceived that these devices provided important social, emotional, and medical and safety benefits in managing type 1 diabetes, especially in children. Conclusions Continuous glucose monitoring was more effective than self-monitoring of blood glucose in managing type 1 diabetes for some outcomes, such as time spent in the target glucose range and time spent outside the target glucose range (moderate certainty in this evidence). We were less certain that continuous glucose monitoring would reduce the number of severe hypoglycemic events. Compared with self-monitoring of blood glucose, the costs of continuous glucose monitoring were higher, with only small increases in health benefits. Publicly funding continuous glucose monitoring for the type 1 diabetes population in Ontario would result in additional costs to the health system over the next 5 years. Adult patients and parents of children with type 1 diabetes reported very positive experiences with continuous glucose monitoring. The high ongoing cost of continuous glucose monitoring devices was seen as the greatest barrier to their widespread use. PMID:29541282
40 CFR Table 4 to Subpart Hhhhhhh... - Applicability of the General Provisions to Part 63
Code of Federal Regulations, 2014 CFR
2014-07-01
... SSM plan for continuous monitoring systems No. § 63.8(c)(5) Continuous opacity monitoring system...) Written procedures for continuous monitoring systems Yes, except for last sentence, which refers to an SSM plan. SSM plans are not required § 63.8(e) Continuous monitoring systems performance evaluation Yes...
Code of Federal Regulations, 2010 CFR
2010-07-01
... emission monitoring systems are operating correctly? 60.1240 Section 60.1240 Protection of Environment... Continuous Emission Monitoring § 60.1240 How do I make sure my continuous emission monitoring systems are operating correctly? (a) Conduct initial, daily, quarterly, and annual evaluations of your continuous...
Code of Federal Regulations, 2013 CFR
2013-07-01
... emission monitoring systems are operating correctly? 60.1240 Section 60.1240 Protection of Environment... Continuous Emission Monitoring § 60.1240 How do I make sure my continuous emission monitoring systems are operating correctly? (a) Conduct initial, daily, quarterly, and annual evaluations of your continuous...
Code of Federal Regulations, 2012 CFR
2012-07-01
... emission monitoring systems are operating correctly? 60.1240 Section 60.1240 Protection of Environment... Continuous Emission Monitoring § 60.1240 How do I make sure my continuous emission monitoring systems are operating correctly? (a) Conduct initial, daily, quarterly, and annual evaluations of your continuous...
Code of Federal Regulations, 2014 CFR
2014-07-01
... emission monitoring systems are operating correctly? 60.1240 Section 60.1240 Protection of Environment... Continuous Emission Monitoring § 60.1240 How do I make sure my continuous emission monitoring systems are operating correctly? (a) Conduct initial, daily, quarterly, and annual evaluations of your continuous...
Code of Federal Regulations, 2011 CFR
2011-07-01
... emission monitoring systems are operating correctly? 60.1240 Section 60.1240 Protection of Environment... Continuous Emission Monitoring § 60.1240 How do I make sure my continuous emission monitoring systems are operating correctly? (a) Conduct initial, daily, quarterly, and annual evaluations of your continuous...
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Requirements for Validating Continuous Emission Monitoring Systems (CEMS) 3 Table 3 of Subpart AAAA to Part 60 Protection of Environment... Continuous Emission Monitoring Systems (CEMS) For the following continuous emission monitoring systems Use...
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 6 2011-07-01 2011-07-01 false Requirements for Validating Continuous Emission Monitoring Systems (CEMS) 3 Table 3 of Subpart AAAA to Part 60 Protection of Environment... Continuous Emission Monitoring Systems (CEMS) For the following continuous emission monitoring systems Use...
40 CFR 63.990 - Absorbers, condensers, and carbon adsorbers used as control devices.
Code of Federal Regulations, 2012 CFR
2012-07-01
... adsorber is used, an integrating regeneration stream flow monitoring device having an accuracy of ±10 percent or better, capable of recording the total regeneration stream mass or volumetric flow for each regeneration cycle; and a carbon bed temperature monitoring device, capable of recording the carbon bed...
40 CFR 63.990 - Absorbers, condensers, and carbon adsorbers used as control devices.
Code of Federal Regulations, 2014 CFR
2014-07-01
... adsorber is used, an integrating regeneration stream flow monitoring device having an accuracy of ±10 percent or better, capable of recording the total regeneration stream mass or volumetric flow for each regeneration cycle; and a carbon bed temperature monitoring device, capable of recording the carbon bed...
40 CFR 63.990 - Absorbers, condensers, and carbon adsorbers used as control devices.
Code of Federal Regulations, 2011 CFR
2011-07-01
... adsorber is used, an integrating regeneration stream flow monitoring device having an accuracy of ±10 percent or better, capable of recording the total regeneration stream mass or volumetric flow for each regeneration cycle; and a carbon bed temperature monitoring device, capable of recording the carbon bed...
40 CFR 63.990 - Absorbers, condensers, and carbon adsorbers used as control devices.
Code of Federal Regulations, 2013 CFR
2013-07-01
... adsorber is used, an integrating regeneration stream flow monitoring device having an accuracy of ±10 percent or better, capable of recording the total regeneration stream mass or volumetric flow for each regeneration cycle; and a carbon bed temperature monitoring device, capable of recording the carbon bed...
40 CFR 63.990 - Absorbers, condensers, and carbon adsorbers used as control devices.
Code of Federal Regulations, 2010 CFR
2010-07-01
... adsorber is used, an integrating regeneration stream flow monitoring device having an accuracy of ±10 percent or better, capable of recording the total regeneration stream mass or volumetric flow for each regeneration cycle; and a carbon bed temperature monitoring device, capable of recording the carbon bed...
Application of smart optical fiber sensors for structural load monitoring
NASA Astrophysics Data System (ADS)
Davies, Heddwyn; Everall, Lorna A.; Gallon, Andrew M.
2001-06-01
This paper describes a smart monitoring system, incorporating optical fiber sensing techniques, capable of providing important structural information to designers and users alike. This technology has wide industrial and commercial application in areas including aerospace, civil, maritime and automotive engineering. In order to demonstrate the capability of the sensing system it has been installed in a 35m free-standing carbon fiber yacht mast, where a complete optical network of strain and temperature sensors were embedded into a composite mast and boom during lay-up. The system was able to monitor the behavior of the composite rig through a range of handling conditions. The resulting strain information can be used by engineers to improve the structural design process. Embedded fiber optic sensors have wide ranging application for structural load monitoring. Due to their small size, optical fiber sensors can be readily embedded into composite materials. Other advantages include their immediate multiplexing capability and immunity to electro-magnetic interference. The capability of this system has been demonstrated within the maritime and industrial environment, but can be adapted for any application.
NASA Technical Reports Server (NTRS)
Welton, Ellsworth J.; McGill, Mathew J.; Yorks. John E.; Hlavka, Dennis L.; Hart, William D.; Palm, Stephen P.; Colarco, Peter R.
2012-01-01
Spaceborne lidar profiling of aerosol and cloud layers has been successfully implemented during a number of prior missions, including LITE, ICESat, and CALIPSO. Each successive mission has added increased capability and further expanded the role of these unique measurements in wide variety of applications ranging from climate, to air quality, to special event monitoring (ie, volcanic plumes). Many researchers have come to rely on the availability of profile data from CALIPSO, especially data coincident with measurements from other A-Train sensors. The CALIOP lidar on CALIPSO continues to operate well as it enters its fifth year of operations. However, active instruments have more limited lifetimes than their passive counterparts, and we are faced with a potential gap in lidar profiling from space if the CALIOP lidar fails before a new mission is operational. The ATLID lidar on EarthCARE is not expected to launch until 2015 or later, and the lidar component of NASA's proposed Aerosols, Clouds, and Ecosystems (ACE) mission would not be until after 2020. Here we present a new aerosol and cloud lidar that was recently selected to provide profiling data from the International Space Station (ISS) starting in 2013. The Cloud-Aerosol Transport System (CATS) is a three wavelength (1064,532,355 nm) elastic backscatter lidar with HSRL capability at 532 nm. Depolarization measurements will be made at all wavelengths. The primary objective of CATS is to continue the CALIPSO aerosol and cloud profile data record, ideally with overlap between both missions and EarthCARE. In addition, the near real time (NRT) data capability ofthe ISS will enable CATS to support operational applications such as aerosol and air quality forecasting and special event monitoring. The HSRL channel will provide a demonstration of technology and a data testbed for direct extinction retrievals in support of ACE mission development. An overview of the instrument and mission will be provided, along with a summary of the science objectives and simulated data. Input from the ICAP community is desired to help plan our NRT mission goals and interactions with ICAP forecasters.
Early Forest Fire Detection Using Radio-Acoustic Sounding System
Sahin, Yasar Guneri; Ince, Turker
2009-01-01
Automated early fire detection systems have recently received a significant amount of attention due to their importance in protecting the global environment. Some emergent technologies such as ground-based, satellite-based remote sensing and distributed sensor networks systems have been used to detect forest fires in the early stages. In this study, a radio-acoustic sounding system with fine space and time resolution capabilities for continuous monitoring and early detection of forest fires is proposed. Simulations show that remote thermal mapping of a particular forest region by the proposed system could be a potential solution to the problem of early detection of forest fires. PMID:22573967
Transforming care delivery through health information technology.
Wheatley, Benjamin
2013-01-01
The slow but progressive adoption of health information technology (IT) nationwide promises to usher in a new era in health care. Electronic health record systems provide a complete patient record at the point of care and can help to alleviate some of the challenges of a fragmented delivery system, such as drug-drug interactions. Moreover, health IT promotes evidence-based practice by identifying gaps in recommended treatment and providing clinical decision-support tools. In addition, the data collected through digital records can be used to monitor patient outcomes and identify potential improvements in care protocols. Kaiser Permanente continues to advance its capability in each of these areas.
Assembling Amperometric Biosensors for Clinical Diagnostics
Belluzo, María Soledad; Ribone, María Élida; Lagier, Claudia Marina
2008-01-01
Clinical diagnosis and disease prevention routinely require the assessment of species determined by chemical analysis. Biosensor technology offers several benefits over conventional diagnostic analysis. They include simplicity of use, specificity for the target analyte, speed to arise to a result, capability for continuous monitoring and multiplexing, together with the potentiality of coupling to low-cost, portable instrumentation. This work focuses on the basic lines of decisions when designing electron-transfer-based biosensors for clinical analysis, with emphasis on the strategies currently used to improve the device performance, the present status of amperometric electrodes for biomedicine, and the trends and challenges envisaged for the near future. PMID:27879771
Gas House Autonomous System Monitoring
NASA Technical Reports Server (NTRS)
Miller, Luke; Edsall, Ashley
2015-01-01
Gas House Autonomous System Monitoring (GHASM) will employ Integrated System Health Monitoring (ISHM) of cryogenic fluids in the High Pressure Gas Facility at Stennis Space Center. The preliminary focus of development incorporates the passive monitoring and eventual commanding of the Nitrogen System. ISHM offers generic system awareness, adept at using concepts rather than specific error cases. As an enabler for autonomy, ISHM provides capabilities inclusive of anomaly detection, diagnosis, and abnormality prediction. Advancing ISHM and Autonomous Operation functional capabilities enhances quality of data, optimizes safety, improves cost effectiveness, and has direct benefits to a wide spectrum of aerospace applications.
Mooney, Deirdre M; Fung, Erik; Doshi, Rahul N; Shavelle, David M
2015-01-01
Heart failure (HF) is a costly, challenging and highly prevalent medical condition. Hospitalization for acute decompensation is associated with high morbidity and mortality. Despite application of evidence-based medical therapies and technologies, HF remains a formidable challenge for virtually all healthcare systems. Repeat hospitalizations for acute decompensated HF (ADHF) can have major financial impact on institutions and resources. Early and accurate identification of impending ADHF is of paramount importance yet there is limited high quality evidence or infrastructure to guide management in the outpatient setting. Historically, ADHF was identified by physical exam findings or invasive hemodynamic monitoring during a hospital admission; however, advances in medical microelectronics and the advent of device-based diagnostics have enabled long-term ambulatory monitoring of HF patients in the outpatient setting. These monitors have evolved from piggybacking on cardiac implantable electrophysiologic devices to standalone implantable hemodynamic monitors that transduce left atrial or pulmonary artery pressures as surrogate measures of left ventricular filling pressure. As technology evolves, devices will likely continue to miniaturize while their capabilities grow. An important, persistent challenge that remains is developing systems to translate the large volumes of real-time data, particularly data trends, into actionable information that leads to appropriate, safe and timely interventions without overwhelming outpatient cardiology and general medical practices. Future directions for implantable hemodynamic monitors beyond their utility in heart failure may include management of other major chronic diseases such as pulmonary hypertension, end stage renal disease and portal hypertension.
An Optimized Autonomous Space In-situ Sensorweb (OASIS) for Volcano Monitoring
NASA Astrophysics Data System (ADS)
Song, W.; Shirazi, B.; Lahusen, R.; Chien, S.; Kedar, S.; Webb, F.
2006-12-01
In response to NASA's announced requirement for Earth hazard monitoring sensor-web technology, we are developing a prototype real-time Optimized Autonomous Space In-situ Sensorweb. The prototype will be focused on volcano hazard monitoring at Mount St. Helens, which has been in continuous eruption since October 2004. The system is designed to be flexible and easily configurable for many other applications as well. The primary goals of the project are: 1) integrating complementary space (i.e., Earth Observing One (EO- 1) satellite) and in-situ (ground-based) elements into an interactive, autonomous sensor-web; 2) advancing sensor-web power and communication resource management technology; and 3) enabling scalability for seamless infusion of future space and in-situ assets into the sensor-web. To meet these goals, we are developing: 1) a test-bed in-situ array with smart sensor nodes capable of making autonomous data acquisition decisions; 2) efficient self-organization algorithm of sensor-web topology to support efficient data communication and command control; 3) smart bandwidth allocation algorithms in which sensor nodes autonomously determine packet priorities based on mission needs and local bandwidth information in real- time; and 4) remote network management and reprogramming tools. The space and in-situ control components of the system will be integrated such that each element is capable of triggering the other. Sensor-web data acquisition and dissemination will be accomplished through the use of SensorML language standards for geospatial information. The three-year project will demonstrate end-to-end system performance with the in-situ test-bed at Mount St. Helens and NASA's EO-1 platform.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ibbott, Geoffrey S.; Followill, David S.; Molineu, H. Andrea
The Radiological Physics Center (RPC) has functioned continuously for 38 years to assure the National Cancer Institute and the cooperative groups that institutions participating in multi-institutional trials can be expected to deliver radiation treatments that are clinically comparable to those delivered by other institutions in the cooperative groups. To accomplish this, the RPC monitors the machine output, the dosimetry data used by the institutions, the calculation algorithms used for treatment planning, and the institutions' quality control procedures. The methods of monitoring include on-site dosimetry review by an RPC physicist and a variety of remote audit tools. The introduction of advancedmore » technology clinical trials has prompted several study groups to require participating institutions and personnel to become credentialed, to ensure their familiarity and capability with techniques such as three-dimensional conformal radiotherapy, intensity-modulated radiotherapy, stereotactic body radiotherapy, and brachytherapy. The RPC conducts a variety of credentialing activities, beginning with questionnaires to evaluate an institution's understanding of the protocol and their capabilities. Treatment-planning benchmarks are used to allow the institution to demonstrate their planning ability and to facilitate a review of the accuracy of treatment-planning systems under relevant conditions. The RPC also provides mailable anthropomorphic phantoms to verify tumor dose delivery for special treatment techniques. While conducting these reviews, the RPC has amassed a large amount of data describing the dosimetry at participating institutions. Representative data from the monitoring programs are discussed, and examples are presented of specific instances in which the RPC contributed to the discovery and resolution of dosimetry errors.« less
NASA Astrophysics Data System (ADS)
Jayles, C.; Exertier, P.; Martin, N.; Chauveau, J. P.; Samain, E.; Tourain, C.; Auriol, A.; Guillemot, P.
2016-12-01
The main applications for DORIS are precise orbit determination, and precise Geodesy. Onboard Jason-2 for instance, the DORIS tracking component is the French contribution to the precise orbit determination capability, a key capability for altimetry product scientific result accuracy. T2L2 is a time transfer technique based on the propagation of light pulses for synchronization between two clocks. Hosting T2L2 on-board Jason-2 was to allow for very fine DORIS USO (Ultra-Stable Oscillator) frequency monitoring, and for this purpose T2L2 was connected to the DORIS USO. Thanks to the continuous tracking of T2L2/Jason-2 by the Laser Ranging network it is possible to monitor the USO for several days, weeks, and even much longer, and thus to also compare with the DIODE (the DORIS on-board orbit determination software) frequency bias estimates. The DORIS USO frequency biases estimate comparison between two independent systems, T2L2 and DIODE, can be of benefit to both, allowing the accuracies of both systems to be better understood, and for improvements to be made to both systems. Such comparison is the central topic of the present paper. T2L2 monitors the DORIS on-board USO frequency with an accuracy of much better than 10-12 which is the specification for the Doppler instrumentation. The paper investigates the limits of the DORIS-DIODE frequency bias estimates using T2L2, showing that USO frequency compliance accuracy of 10-12 has been reached.
Araz, Coskun; Zeyneloglu, Pinar; Pirat, Arash; Veziroglu, Nukhet; Camkiran Firat, Aynur; Arslan, Gulnaz
2015-04-01
Hemodynamic monitoring is vital during liver transplant surgeries because distinct hemodynamic changes are expected. The continuous noninvasive arterial pressure (CNAP) monitor is a noninvasive device for continuous arterial pressure measurement by a tonometric method. This study compared continuous noninvasive arterial pressure monitoring with invasive direct arterial pressure monitoring in living-liver donors during transplant. There were 40 patients analyzed while undergoing hepatic lobectomy for liver transplant. Invasive pressure monitoring was established at the radial artery and continuous noninvasive arterial pressure monitoring using a finger sensor was recorded simultaneously from the contralateral arm. Systolic, diastolic, and mean arterial pressures from the 2 methods were compared. Correlation between the 2 methods was calculated. A total of 5433 simultaneous measurements were obtained. For systolic arterial blood pressure, 55% continuous noninvasive arterial pressure measurements were within 10% direct arterial measurement; the correlation was 0.479, continuous noninvasive arterial pressure bias was -0.3 mm Hg, and limits of agreement were 32.0 mm Hg. For diastolic arterial blood pressure, 50% continuous noninvasive arterial pressure measurements were within 10% direct arterial measurement; the correlation was 0.630, continuous noninvasive arterial pressure bias was -0.4 mm Hg, and limits of agreement were 21.1 mm Hg. For mean arterial blood pressure, 60% continuous noninvasive arterial pressure measurements were within 10% direct arterial measurement; the correlation was 0.692, continuous noninvasive arterial pressure bias was +0.4 mm Hg, and limits of agreement were 20.8 mm Hg. The 2 monitoring techniques did not show acceptable agreement. Our results suggest that continuous noninvasive arterial pressure monitoring is not equivalent to invasive arterial pressure monitoring in donors during living-donor liver transplant.
A structural health monitoring fastener for tracking fatigue crack growth in bolted metallic joints
NASA Astrophysics Data System (ADS)
Rakow, Alexi Schroder
Fatigue cracks initiating at fastener hole locations in metallic components are among the most common form of airframe damage. The fastener hole site has been surveyed as the second leading initiation site for fatigue related accidents of fixed wing aircraft. Current methods for inspecting airframes for these cracks are manual, whereby inspectors rely on non-destructive inspection equipment or hand-held probes to scan over areas of a structure. Use of this equipment often demands disassembly of the vehicle to search appropriate hole locations for cracks, which elevates the complexity and cost of these maintenance inspections. Improved reliability, safety, and reduced cost of such maintenance can be realized by the permanent integration of sensors with a structure to detect this damage. Such an integrated system of sensors would form a structural health monitoring (SHM) system. In this study, an Additive, Interleaved, Multi-layer Electromagnetic (AIME) sensor was developed and integrated with the shank of a fastener to form a SHM Fastener, a new SHM technology targeted at detection of fastener hole cracks. The major advantages of the SHM Fastener are its installation, which does not require joint layer disassembly, its capability to detect inner layer cracks, and its capability to operate in a continuous autonomous mode. Two methods for fabricating the proposed SHM Fastener were studied. The first option consisted of a thin flexible printed circuit film that was bonded around a thin metallic sleeve placed around the fastener shank. The second option consisted of coating sensor materials directly to the shank of a part in an effort to increase the durability of the sensor under severe loading conditions. Both analytical and numerical models were developed to characterize the capability of the sensors and provide a design tool for the sensor layout. A diagnostic technique for crack growth monitoring was developed to complete the SHM system, which consists of the sensor, data acquisition hardware, algorithm, and diagnostic display. The AIME sensor design, SHM Fastener, and complete SHM system are presented along with experimental results from a series of single-layer and bolted double lap joint aluminum laboratory specimens to validate the capability of these sensors to monitor metallic joints for fastener hole cracks. Fatigue cracks were successfully tracked to over 0.7 inches from the fastener hole in these tests. Sensor output obtained from single-layer fatigue specimens was compared with analytical predictions for fatigue crack growth versus cycle number showing a good correlation in trend between sensor output and predicted crack size.
Code of Federal Regulations, 2011 CFR
2011-07-01
... opacity monitoring system and how are the data used? 60.1760 Section 60.1760 Protection of Environment... continuous opacity monitoring system and how are the data used? (a) Install, calibrate, maintain, and operate a continuous opacity monitoring system. (b) Install, evaluate, and operate each continuous opacity...
Code of Federal Regulations, 2010 CFR
2010-07-01
... Continuous Emission Monitoring Systems (CEMS) 6 Table 6 to Subpart BBBB of Part 60 Protection of Environment...—Requirements for Validating Continuous Emission Monitoring Systems (CEMS) For the following continuous emission monitoring systems Use the following methods in appendix A of this part to validate poollutant concentratin...
Code of Federal Regulations, 2011 CFR
2011-07-01
... Continuous Emission Monitoring Systems (CEMS) 6 Table 6 to Subpart BBBB of Part 60 Protection of Environment...—Requirements for Validating Continuous Emission Monitoring Systems (CEMS) For the following continuous emission monitoring systems Use the following methods in appendix A of this part to validate poollutant concentratin...
Fiber optic sensing subsystem for temperature monitoring in space in-flight applications
NASA Astrophysics Data System (ADS)
Abad, S.; Araujo, F.; Pinto, F.; González Torres, J.; Rodriguez, R.; Moreno, M. A.
2017-11-01
Fiber Optic Sensor (FOS) technology presents long recognized advantages which enable to mitigate deficient performance of conventional technology in hazard-environments common in spacecraft monitoring applications, such as: multiplexing capability, immunity to EMI/RFI, remote monitoring, small size and weight, electrical insulation, intrinsically safe operation, high sensibility and long term reliability. A key advantage is also the potential reduction of Assembly Integration and Testing (AIT) time achieved by the multiplexing capability and associated reduced harness. In the frame of the ESA's ARTES5.2 and FLPP-Phase 3 programs, Airbus DS-Crisa and FiberSensing are developing a Fiber Bragg Grating (FBG) - based temperature monitoring system for application in space telecommunication platforms and launchers. The development encompasses both the interrogation unit and the FBG temperature sensors and associated fiber harness. In parallel Airbus DS - Crisa is developing a modular RTU (RTU2015) to provide maximum flexibility and mission-customization capability for RTUs maintaining the ESA's standards at I/O interface level [1]. In this context, the FBG interrogation unit is designed as a module to be compatible, in both physical dimensions and electrical interfaces aspects, with the Electrical Internal Interface Bus of the RTU2015, thus providing the capability for a hybrid electrical and optical monitoring system.
Code of Federal Regulations, 2011 CFR
2011-07-01
... monitoring data I must collect with my continuous parameter monitoring systems and is the data collection... parameter monitoring systems and is the data collection requirement enforceable? (a) Where continuous parameter monitoring systems are used, obtain 1-hour arithmetic averages for three parameters: (1) Load...
Code of Federal Regulations, 2010 CFR
2010-07-01
... monitoring data I must collect with my continuous parameter monitoring systems and is the data collection... parameter monitoring systems and is the data collection requirement enforceable? (a) Where continuous parameter monitoring systems are used, obtain 1-hour arithmetic averages for three parameters: (1) Load...
Additional studies for the spectrophotometric measurement of iodine in water
NASA Technical Reports Server (NTRS)
1972-01-01
Previous work in iodine spectroscopy is briefly reviewed. Continued studies of the direct spectrophotometric determination of aqueous iodine complexed with potassium iodide show that free iodine is optimally determined at the isosbestic point for these solutions. The effects on iodine determinations of turbidity and chemical substances (in trace amounts) is discussed and illustrated. At the levels tested, iodine measurements are not significantly altered by such substances. A preliminary design for an on-line, automated iodine monitor with eventual capability of operating also as a controller was analyzed and developed in detail with respect single beam colorimeter operating at two wavelengths (using a rotating filter wheel). A flow-through sample cell allows the instrument to operate continuously, except for momentary stop flow when measurements are made. The timed automatic cycling of the system may be interrupted whenever desired, for manual operation. An analog output signal permits controlling an iodine generator.
Method for using acoustic sounder categories to determine atmospheric stability
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schubert, J.F.
1979-01-01
Capabilities of the diffusion meteorologist have been expanded by the acoustic sounder, an economical tool for monitoring in real time the height of the mixed layer. The acoustic sounder continuously measures the rate of change in the height of the mixed layer which is an important parameter in calculating the transport and diffusion of radioactive and nonradioactive air pollutants. Continuous record of convective cells, gravity waves, inversions, and frontal systems permit analysis of the synoptic (analysis of stability in terms of simultaneous weather information) and complex (analysis of the stability of a single place by the relative frequencies of variousmore » stability types or groups of such types) stabilities of the local area. Sounder data obtained at the Savannah River Plant was compared on an hourly basis to data obtained at the WJBF-TV tower located approximately 20 km northwest of the acoustic sounder site.« less