Science.gov

Sample records for continuous morphological evolution

  1. Molecular origins of rapid and continuous morphological evolution.

    PubMed

    Fondon, John W; Garner, Harold R

    2004-12-28

    Mutations in cis-regulatory sequences have been implicated as being the predominant source of variation in morphological evolution. We offer a hypothesis that gene-associated tandem repeat expansions and contractions are a major source of phenotypic variation in evolution. Here, we describe a comparative genomic study of repetitive elements in developmental genes of 92 breeds of dogs. We find evidence for selection for divergence at coding repeat loci in the form of both elevated purity and extensive length polymorphism among different breeds. Variations in the number of repeats in the coding regions of the Alx-4 (aristaless-like 4) and Runx-2 (runt-related transcription factor 2) genes were quantitatively associated with significant differences in limb and skull morphology. We identified similar repeat length variation in the coding repeats of Runx-2, Twist, and Dlx-2 in several other species. The high frequency and incremental effects of repeat length mutations provide molecular explanations for swift, yet topologically conservative morphological evolution.

  2. Cranial morphology of Javanese Homo erectus: new evidence for continuous evolution, specialization, and terminal extinction.

    PubMed

    Kaifu, Yousuke; Aziz, Fachroel; Indriati, Etty; Jacob, Teuku; Kurniawan, Iwan; Baba, Hisao

    2008-10-01

    Our current knowledge of the evolution of Homo during the early to middle Pleistocene is far from complete. This is not only because of the small number of fossil samples available, but also due to the scarcity of standardized datasets which are reliable in terms of landmark identification, interobserver error, and other distorting factors. This study aims to accurately describe the cranial morphological changes of H. erectus in Java using a standardized set of measurements taken by the authors from 18 adult crania from Sangiran, Trinil, Sambungmacan, and Ngandong. The identification of some obscure landmarks was aided by the use of micro-CT imaging. While recent studies tend to emphasize evolutionary conservatism in Javanese H. erectus, our results reinforce the theory that chronologically later groups experienced distinct morphological changes in a number of cranial traits. Some of these changes, particularly those related to brain size expansion, are similar to those observed for the genus Homo as a whole, whereas others are apparently unique specializations restricted to Javanese H. erectus. Such morphological specializations in Java include previously undescribed anteroposterior lengthening of the midcranial base and an anterior shift of the posterior temporal muscle, which might have influenced the morphology of the angular torus and supramastoid sulcus. Analyses of morphological variation indicate that the three crania from Sambungmacan variously fill the morphological gap between the chronologically earlier (Bapang-AG, Bapang Formation above the Grenzbank zone in Sangiran) and later (Ngandong) morphotypes of Java. At least one of the Bapang-AG crania, Sangiran 17, also exhibits a few characteristics which potentially indicate evolution toward the Ngandong condition. These strongly suggest the continuous, gradual morphological evolution of Javanese H. erectus from the Bapang-AG to Ngandong periods. The development of some unique features in later Javanese H

  3. Evolution of morphological allometry.

    PubMed

    Pélabon, Christophe; Firmat, Cyril; Bolstad, Geir H; Voje, Kjetil L; Houle, David; Cassara, Jason; Rouzic, Arnaud Le; Hansen, Thomas F

    2014-07-01

    Morphological allometry refers to patterns of covariance between body parts resulting from variation in body size. Whether measured during growth (ontogenetic allometry), among individuals at similar developmental stage (static allometry), or among populations or species (evolutionary allometry), allometric relationships are often tight and relatively invariant. Consequently, it has been suggested that allometries have low evolvability and could constrain phenotypic evolution by forcing evolving species along fixed trajectories. Alternatively, allometric relationships may result from natural selection for functional optimization. Despite nearly a century of active research, distinguishing between these alternatives remains difficult, partly due to wide differences in the meaning assigned to the term allometry. In particular, a broad use of the term, encompassing any monotonic relationship between body parts, has become common. This usage breaks the connection to the proportional growth regulation that motivated Huxley's original narrow-sense use of allometry to refer to power-law relationships between traits. Focusing on the narrow-sense definition of allometry, we review here evidence for and against the allometry-as-a-constraint hypothesis. Although the low evolvability and the evolutionary invariance of the static allometric slope observed in some studies suggest a possible constraining effect of this parameter on phenotypic evolution, the lack of knowledge about selection on allometry prevents firm conclusions. © 2014 New York Academy of Sciences.

  4. Continuous Lattices and Mathematical Morphology

    DTIC Science & Technology

    1998-06-01

    ARMY RESEARCH LABORATORY Continuous Lattices and Mathematical Morphology by Dennis W. McGuire ARL-TR-1548 ^»»».■■SiSIIIBRHH^ June 1998...Research Laboratory Adelphi, MD 20783-1197 ARL-TR-1548 June 1998 Continuous Lattices and Mathematical Morphology Dennis W. McGuire Sensors and...Washington DC 20301-7100 AMCOM MRDEC Atta AMSMI-RD W C McCorkle Redstone Arsenal AL 35898-5240 Army RsrchPhysics Div Atta AMXRO-EMCS Assoc Dir Math

  5. Morphological Evolution of Asteroids

    NASA Astrophysics Data System (ADS)

    Richardson, D. C.

    2003-08-01

    Recent ground- and space-based observations of asteroids have revealed that these bodies are far more complex than once imagined. Surprisingly low bulk densities, giant craters, unusual shapes, non-principal-axis spin states, and satellites are all challenging our understanding of how asteroids form and evolve. Since asteroids are the remnants of the planet building era, understanding their nature improves our understanding of the origin of solar systems in general. I will review some of the more puzzling aspects of asteroid morphology, including the existence of asteroid satellites, and discuss recent theoretical advances aimed at understanding our tiny neighbors. I will show that both theoretical and observational evidence is pointing increasingly to asteroids being fragile assemblages of smaller pieces, called gravitational aggregates. The consequences of such fragmented internal structure on asteroid evolution and hazard mitigation will be discussed. This work has been supported in part by the National Aeronautics and Space Administration under Contract No. NAG511722 issued through the Office of Space Science.

  6. The morphological evolution of galaxies.

    PubMed

    Abraham, R G; van Den Bergh, S

    2001-08-17

    Many galaxies have taken on their familiar appearance relatively recently. In the distant Universe, galaxy morphology deviates significantly (and systematically) from that of nearby galaxies at redshifts (z) as low as 0.3. This corresponds to a time approximately 3.5 x 10(9) years in the past, which is only approximately 25% of the present age of the Universe. Beyond z = 0.5 (5 x 10(9) years in the past), spiral arms are less well developed and more chaotic, and barred spiral galaxies may become rarer. At z = 1, around 30% of the galaxy population is sufficiently peculiar that classification on Hubble's traditional "tuning fork" system is meaningless. On the other hand, some characteristics of galaxies have not changed much over time. The space density of luminous disk galaxies has not changed significantly since z = 1, indicating that although the general appearance of these galaxies has continuously changed over time, their overall numbers have been conserved.

  7. Morphological rates of angiosperm seed size evolution.

    PubMed

    Sims, Hallie J

    2013-05-01

    The evolution of seed size among angiosperms reflects their ecological diversification in a complex fitness landscape of life-history strategies. The lineages that have evolved seeds beyond the upper and lower boundaries that defined nonflowering seed plants since the Paleozoic are more dispersed across the angiosperm phylogeny than would be expected under a neutral model of phenotypic evolution. Morphological rates of seed size evolution estimated for 40 clades based on 17,375 species ranged from 0.001 (Garryales) to 0.207 (Malvales). Comparative phylogenetic analysis indicated that morphological rates are not associated with the clade's seed size but are negatively correlated with the clade's position in the overall distribution of angiosperm seed sizes; clades with seed sizes closer to the angiosperm mean had significantly higher morphological rates than clades with extremely small or extremely large seeds. Likewise, per-clade taxonomic diversification rates are not associated with the seed size of the clade but with where the clade falls within the angiosperm seed size distribution. These results suggest that evolutionary rates (morphological and taxonomic) are elevated in densely occupied regions of the seed morphospace relative to lineages whose ecophenotypic innovations have moved them toward the edges. © 2013 The Author(s). Evolution © 2013 The Society for the Study of Evolution.

  8. Nanoscale Morphology Evolution Under Ion Irradiation

    SciTech Connect

    Aziz, Michael J.

    2014-11-10

    We showed that the half-century-old paradigm of morphological instability under irradiation due to the curvature-dependence of the sputter yield, can account neither for the phase diagram nor the amplification or decay rates that we measure in the simplest possible experimental system -- an elemental semiconductor with an amorphous surface under noble-gas ion irradiation; We showed that a model of pattern formation based on the impact-induced redistribution of atoms that do not get sputtered away explains our experimental observations; We developed a first-principles, parameter-free approach for predicting morphology evolution, starting with molecular dynamics simulations of single ion impacts, lasting picoseconds, and upscaling through a rigorous crater-function formalism to develop a partial differential equation that predicts morphology evolution on time scales more than twelve orders of magnitude longer than can be covered by the molecular dynamics; We performed the first quantitative comparison of the contributions to morphological instability from sputter removal and from impact-induced redistribution of atoms that are removed, and showed that the former is negligible compared to the latter; We established a new paradigm for impact-induced morphology evolution based on crater functions that incorporate both redistribution and sputter effects; and We developed a model of nanopore closure by irradiation-induced stress and irradiationenhanced fluidity, for the near-surface irradiation regime in which nuclear stopping predominates, and showed that it explains many aspects of pore closure kinetics that we measure experimentally.

  9. Increased morphological asymmetry, evolvability and plasticity in human brain evolution.

    PubMed

    Gómez-Robles, Aida; Hopkins, William D; Sherwood, Chet C

    2013-06-22

    The study of hominin brain evolution relies mostly on evaluation of the endocranial morphology of fossil skulls. However, only some general features of external brain morphology are evident from endocasts, and many anatomical details can be difficult or impossible to examine. In this study, we use geometric morphometric techniques to evaluate inter- and intraspecific differences in cerebral morphology in a sample of in vivo magnetic resonance imaging scans of chimpanzees and humans, with special emphasis on the study of asymmetric variation. Our study reveals that chimpanzee-human differences in cerebral morphology are mainly symmetric; by contrast, there is continuity in asymmetric variation between species, with humans showing an increased range of variation. Moreover, asymmetric variation does not appear to be the result of allometric scaling at intraspecific levels, whereas symmetric changes exhibit very slight allometric effects within each species. Our results emphasize two key properties of brain evolution in the hominine clade: first, evolution of chimpanzee and human brains (and probably their last common ancestor and related species) is not strongly morphologically constrained, thus making their brains highly evolvable and responsive to selective pressures; second, chimpanzee and, especially, human brains show high levels of fluctuating asymmetry indicative of pronounced developmental plasticity. We infer that these two characteristics can have a role in human cognitive evolution.

  10. Intelsat VI - A continuing evolution

    NASA Astrophysics Data System (ADS)

    Bennett, S. B.; Braverman, D. J.

    1984-11-01

    Design, launch, and performance features of the Intelsat VI satellite scheduled for 1986 launch are described. The spacecraft will operated with SS/TDMA techniques and six antenna beams, weigh 23 kg at the beginning of life, carry 80,000 half-circuits, and will be borne aloft by either the STS or Ariane 4. The communications equipment will include Cand K-band receivers, 14/11 GHz upconverters, traveling wave tube amplifiers, and 50 input and output filters. Total interconnectivity will be present for all uplinks and downlinks, which will issue spot and shaped beam coverage of the hemisphere. Satellite power is to be supplied by solar panels furnishing 2 kW continuously and eclipse power is to be drawn from two 44 Ah NiH batteries. Orbit maintenance and attitude control are assigned to six 22 N thrusters.

  11. Matching behavioral evolution to brain morphology.

    PubMed

    Legendre, P; Lapointe, F J

    1995-01-01

    A method is presented to test the relationship between a phylogenetic tree derived from brain morphology, and different hypotheses describing the evolution of a behavioral trait. This is a question of interest for evolutionary psychologists and behavioral biologists. The paper first discusses how hypotheses for behavioral evolution should be coded for such a comparison, then a triple-per-mutation test, originally proposed to compare independently obtained evolutionary trees, is used for the statistical assessment of each hypothesis. Non-parametric correlation coefficients computed between brain components and appropriately coded behavioral states can then be used to suggest what brain components are responsible for the development of the various states of the behavioral trait of interest. The procedure is illustrated with three different applications relating brain evolution to habitat selection in marsupials, locomotory specialization in primates, and trophic adaptation in bats.

  12. Continuous in vitro evolution of catalytic function

    NASA Technical Reports Server (NTRS)

    Wright, M. C.; Joyce, G. F.

    1997-01-01

    A population of RNA molecules that catalyze the template-directed ligation of RNA substrates was made to evolve in a continuous manner in the test tube. A simple serial transfer procedure was used to achieve approximately 300 successive rounds of catalysis and selective amplification in 52 hours. During this time, the population size was maintained against an overall dilution of 3 x 10(298). Both the catalytic rate and amplification rate of the RNAs improved substantially as a consequence of mutations that accumulated during the evolution process. Continuous in vitro evolution makes it possible to maintain laboratory "cultures" of catalytic molecules that can be perpetuated indefinitely.

  13. Continuous in vitro evolution of catalytic function

    NASA Technical Reports Server (NTRS)

    Wright, M. C.; Joyce, G. F.

    1997-01-01

    A population of RNA molecules that catalyze the template-directed ligation of RNA substrates was made to evolve in a continuous manner in the test tube. A simple serial transfer procedure was used to achieve approximately 300 successive rounds of catalysis and selective amplification in 52 hours. During this time, the population size was maintained against an overall dilution of 3 x 10(298). Both the catalytic rate and amplification rate of the RNAs improved substantially as a consequence of mutations that accumulated during the evolution process. Continuous in vitro evolution makes it possible to maintain laboratory "cultures" of catalytic molecules that can be perpetuated indefinitely.

  14. Continuing Evolution of Mars Sample Return

    NASA Technical Reports Server (NTRS)

    Mattingly, Richard; Matousek, Steve; Jordan, Frank

    2004-01-01

    This paper addresses the continued evolution of the Groundbreaking MSR concept over the last year. One of the tenets of the low-cost approach is to use substantial heritage from an earlier mission, Mars Science Laboratory (MSL). Recently, the MSL project developed and switched to a revolutionary landing approach, coined 'sky-crane' where the MSL, which is a rover, is lowered gently to the Martian surface from a hovering vehicle. MSR has adopted this approach, again continuing to capitalize on the heritage for a significant portion of the new lander. In parallel, a MSR Technology Board was formed to reexamine MSR technology needs and participate in a continuing refinement of architectural trades. While the focused technology program continues to be definitized through the remainder of this year, the current assessment of what technology development is required, is discussed in this paper. In addition, the results of new trade studies and considerations will be discussed.

  15. Continuing Evolution of Mars Sample Return

    NASA Technical Reports Server (NTRS)

    Mattingly, Richard; Matousek, Steve; Jordan, Frank

    2004-01-01

    This paper addresses the continued evolution of the Groundbreaking MSR concept over the last year. One of the tenets of the low-cost approach is to use substantial heritage from an earlier mission, Mars Science Laboratory (MSL). Recently, the MSL project developed and switched to a revolutionary landing approach, coined 'sky-crane' where the MSL, which is a rover, is lowered gently to the Martian surface from a hovering vehicle. MSR has adopted this approach, again continuing to capitalize on the heritage for a significant portion of the new lander. In parallel, a MSR Technology Board was formed to reexamine MSR technology needs and participate in a continuing refinement of architectural trades. While the focused technology program continues to be definitized through the remainder of this year, the current assessment of what technology development is required, is discussed in this paper. In addition, the results of new trade studies and considerations will be discussed.

  16. Adapting Digital Libraries to Continual Evolution

    NASA Technical Reports Server (NTRS)

    Barkstrom, Bruce R.; Finch, Melinda; Ferebee, Michelle; Mackey, Calvin

    2002-01-01

    In this paper, we describe five investment streams (data storage infrastructure, knowledge management, data production control, data transport and security, and personnel skill mix) that need to be balanced against short-term operating demands in order to maximize the probability of long-term viability of a digital library. Because of the rapid pace of information technology change, a digital library cannot be a static institution. Rather, it has to become a flexible organization adapted to continuous evolution of its infrastructure.

  17. Adapting Digital Libraries to Continual Evolution

    NASA Technical Reports Server (NTRS)

    Barkstrom, Bruce R.; Finch, Melinda; Ferebee, Michelle; Mackey, Calvin

    2002-01-01

    In this paper, we describe five investment streams (data storage infrastructure, knowledge management, data production control, data transport and security, and personnel skill mix) that need to be balanced against short-term operating demands in order to maximize the probability of long-term viability of a digital library. Because of the rapid pace of information technology change, a digital library cannot be a static institution. Rather, it has to become a flexible organization adapted to continuous evolution of its infrastructure.

  18. Mechanisms and Morphology Evolution in Dealloying

    SciTech Connect

    Chen, Q; Sieradzki, K

    2013-03-08

    Historically, dealloying, the selective dissolution of elemental components from an alloy, has been studied most intensively for binary noble-metal alloys such as Ag-Au, Cu-Au and Zn-Cu. There have been three primacy "mechanisms" proposed to explain ambient temperature dealloying in such systems: "simultaneous" dissolution of both components/redeposition of the more-noble constituent, lattice diffusion-supported by a di-vacancy mechanism of the more reactive component to the alloy/electrolyte interface and percolation dissolution. Here, we briefly discuss each of these mechanisms and the corresponding dealloyed morphology. In order to examine the connection between a mechanism and morphology we examined dealloying of Mg from Mg-Cd alloys under conditions for which vacancy-mediated lattice diffusion occurs at significant rates. Depending on alloy composition and dealloying rate, we observed either "negative" dendrites or bi-continuous structures, each of which is directly associated with the operation of a particular mechanism. Our findings should be useful to researchers employing dealloying to obtain particular types nanostructured features for a variety of applications. (C) 2013 The Electrochemical Society. All rights reserved.

  19. Size and shape in the evolution of ant worker morphology.

    PubMed

    Pie, Marcio R; Tschá, Marcel K

    2013-01-01

    Morphological evolution in ants has been traditionally thought as being strongly influenced by selection for colony ergonomic efficiency. Although many studies have focused on the evolution of social characteristics in ants, little is known about the evolution of worker morphology at a macroevolutionary scale. In this study, we investigate the tempo and mode of the evolution of worker morphology, focusing on changes in size and shape. Our datasets included a large sample of species from different ant genera, as well as variation within the hyperdiverse genus Pheidole, for a total of 1650 measurements. The rate of size evolution was at least five times faster than the rate of shape evolution. The fit of alternative models of morphological evolution indicated statistically significant phylogenetic signal in both size and shape and in all datasets. Finally, tests of rate heterogeneity in phenotypic evolution among lineages identified several shifts in rates of evolution in both datasets, although the timing of shifts in size and shape was usually not concordant.

  20. Size and shape in the evolution of ant worker morphology

    PubMed Central

    Tschá, Marcel K.

    2013-01-01

    Morphological evolution in ants has been traditionally thought as being strongly influenced by selection for colony ergonomic efficiency. Although many studies have focused on the evolution of social characteristics in ants, little is known about the evolution of worker morphology at a macroevolutionary scale. In this study, we investigate the tempo and mode of the evolution of worker morphology, focusing on changes in size and shape. Our datasets included a large sample of species from different ant genera, as well as variation within the hyperdiverse genus Pheidole, for a total of 1650 measurements. The rate of size evolution was at least five times faster than the rate of shape evolution. The fit of alternative models of morphological evolution indicated statistically significant phylogenetic signal in both size and shape and in all datasets. Finally, tests of rate heterogeneity in phenotypic evolution among lineages identified several shifts in rates of evolution in both datasets, although the timing of shifts in size and shape was usually not concordant. PMID:24255818

  1. Modeling nearshore morphological evolution at seasonal scale

    USGS Publications Warehouse

    Walstra, D.-J.R.; Ruggiero, P.; Lesser, G.; Gelfenbaum, G.

    2006-01-01

    A process-based model is compared with field measurements to test and improve our ability to predict nearshore morphological change at seasonal time scales. The field experiment, along the dissipative beaches adjacent to Grays Harbor, Washington USA, successfully captured the transition between the high-energy erosive conditions of winter and the low-energy beach-building conditions typical of summer. The experiment documented shoreline progradation on the order of 20 m and as much as 175 m of onshore bar migration. Significant alongshore variability was observed in the morphological response of the sandbars over a 4 km reach of coast. A detailed sensitivity analysis suggests that the model results are more sensitive to adjusting the sediment transport associated with asymmetric oscillatory wave motions than to adjusting the transport due to mean currents. Initial results suggest that alongshore variations in the initial bathymetry are partially responsible for the observed alongshore variable morphological response during the experiment. Copyright ASCE 2006.

  2. The effect of parity on morphological evolution among phrynosomatid lizards.

    PubMed

    Oufiero, C E; Gartner, G E A

    2014-11-01

    The shift from egg laying to live-bearing is one of the most well-studied transitions in evolutionary biology. Few studies, however, have assessed the effect of this transition on morphological evolution. Here, we evaluated the effect of reproductive mode on the morphological evolution of 10 traits, among 108 species of phrynosomatid lizards. We assess whether the requirement for passing shelled eggs through the pelvic girdle has led to morphological constraints in oviparous species and whether long gestation times in viviparous species have led to constraints in locomotor morphology. We fit models to the data that vary both in their tempo (strength and rate of selection) and mode of evolution (Brownian or Ornstein-Uhlenbeck) and estimates of trait optima. We found that most traits are best fit by a generalized multipeak OU model, suggesting differing trait optima for viviparous vs. oviparous species. Additionally, rates (σ(2) ) of both pelvic girdle and forelimb trait evolution varied with parity; viviparous species had higher rates. Hindlimb traits, however, exhibited no difference in σ(2) between parity modes. In a functional context, our results suggest that the passage of shelled eggs constrains the morphology of the pelvic girdle, but we found no evidence of morphological constraint of the locomotor apparatus in viviparous species. Our results are consistent with recent lineage diversification analyses, leading to the conclusion that transitions to viviparity increase both lineage and morphological diversification.

  3. Comparative evolution of flower and fruit morphology

    PubMed Central

    Whitney, Kenneth D.

    2009-01-01

    Angiosperm diversification has resulted in a vast array of plant morphologies. Only recently has it been appreciated that diversification might have proceeded quite differently for the two key diagnostic structures of this clade, flowers and fruits. These structures are hypothesized to have experienced different selective pressures via their interactions with animals in dispersal mutualisms, resulting in a greater amount of morphological diversification in animal-pollinated flowers than in animal-dispersed fruits. I tested this idea using size and colour traits for the flowers and fruits of 472 species occurring in three floras (St John, Hawaii and the Great Plains). Phylogenetically controlled analyses of nearest-neighbour distances in multidimensional trait space matched the predicted pattern: in each of the three floras, flowers were more divergent from one another than were fruits. In addition, the spacing of species clusters differed for flowers versus fruits in the flora of St John, with clusters in flower space more divergent than those in fruit space. The results are consistent with the idea that a major driver of angiosperm diversification has been stronger selection for divergent floral morphology than for divergent fruit morphology, although genetic, physiological and ecological constraints may also play a role. PMID:19474045

  4. Modeling nearshore morphological evolution at seasonal scale

    NASA Astrophysics Data System (ADS)

    Ruggiero, P.; Walstra, D.; Lesser, G.; Hanes, D.; Gelfenbaum, G.

    2004-12-01

    For the first time, process and nearshore bottom change measurements are being coupled along the dissipative, yet dynamic, beaches of the U.S. Pacific Northwest. A Spring 2001 field experiment on the ebb-tidal delta and adjacent beaches near Grays Harbor, Washington USA provides detailed information about bed sediments, waves, currents, suspended-sediment concentrations, and sea-bed change for the testing and improvement of numerical models of sediment transport and morphology change. Upwelling favorable winds from the NW predominated during the two-month deployment period which successfully captured the transition between the high-energy erosive conditions of winter and the low-energy beach-building conditions typical of summer. During the experiment onshore sandbar migration O(75m), trough infilling O(1m), and sub-aerial beach (shoreline) progradation O(10m) dominated nearshore morphological changes. However, over the four kilometer study area, significant alongshore variability in morphological response was observed. To investigate the mechanisms responsible for these observed morphological changes we are using a combination of data analysis techniques and numerical model simulations. Our specific research questions include: 1) What are the relative contributions of alongshore versus cross-shore processes in seasonal morphological change? and 2) What are the mechanisms responsible for the significant alongshore variability observed in both the sandbar and the shoreline response over only a few kilometers? A recently developed capacity to model cross-shore profile change (1DV) within an overall area modeling framework (2DH or 3D) is being applied to answer these questions. Model parameters are tuned by initially balancing onshore transports due to asymmetric oscillatory wave motion and offshore transport due to undertow along a series of individual cross-shore profiles. Area model results then allow us to explore the role of cell circulation and alongshore

  5. Morphological evolution, ecological diversification and climate change in rodents.

    PubMed

    Renaud, Sabrina; Michaux, Jacques; Schmidt, Daniela N; Aguilar, Jean-Pierre; Mein, Pierre; Auffray, Jean-Christophe

    2005-03-22

    Among rodents, the lineage from Progonomys hispanicus to Stephanomys documents a case of increasing size and dental specialization during an approximately 9 Myr time-interval. On the contrary, some contemporaneous generalist lineages like Apodemus show a limited morphological evolution. Dental shape can be related to diet and can be used to assess the ecological changes along the lineages. Consequently, size and shape of the first upper molar were measured in order to quantify the patterns of morphological evolution along both lineages and compare them to environmental trends. Climatic changes do not have a direct influence on evolution, but they open new ecological opportunities by changing vegetation and allow the evolution of a specialist like Stephanomys. On the other hand, environmental changes are not dramatic enough to destroy the habitat of a long-term generalist like Apodemus. Hence, our results exemplify a case of an influence of climate on the evolution of specialist species, although a generalist species may persist without change.

  6. Asynchronous evolution of physiology and morphology in Anolis lizards.

    PubMed

    Hertz, Paul E; Arima, Yuzo; Harrison, Alexis; Huey, Raymond B; Losos, Jonathan B; Glor, Richard E

    2013-07-01

    Species-rich adaptive radiations typically diversify along several distinct ecological axes, each characterized by morphological, physiological, and behavioral adaptations. We test here whether different types of adaptive traits share similar patterns of evolution within a radiation by investigating patterns of evolution of morphological traits associated with microhabitat specialization and of physiological traits associated with thermal biology in Anolis lizards. Previous studies of anoles suggest that close relatives share the same "structural niche" (i.e., use the same types of perches) and are similar in body size and shape, but live in different "climatic niches" (i.e., use habitats with different insolation and temperature profiles). Because morphology is closely tied to structural niche and field active body temperatures are tied to climatic niches in Anolis, we expected phylogenetic analyses to show that morphology is more evolutionarily conservative than thermal physiology. In support of this hypothesis, we find (1) that thermal biology exhibits more divergence among recently diverged Anolis taxa than does morphology; and (2) diversification of thermal biology among all species often follows diversification in morphology. These conclusions are remarkably consistent with predictions made by anole biologists in the 1960s and 1970s. © 2013 The Author(s). Evolution © 2013 The Society for the Study of Evolution.

  7. Morphological evolution in the San Francisco Bight

    USGS Publications Warehouse

    Hanes, Daniel M.; Barnard, Patrick L.

    2007-01-01

    San Francisco Bight, located near the coast of San Francisco, USA, is an extremely dynamic tidal inlet environmental subject to large waves and strong currents. Wave heights coming from the Pacific Ocean commonly exceed 5 m during winter storms. During peak flow tidal currents approach 3 m/s at the Golden Gate, a 1 km wide entrance that connects San Francisco Bay to the Pacific Ocean. Flow structure in this region varies markedly spatially and temporally due to the complex interaction by wind, waves and tidal currents. A multibeam sonar survey was recently completed that mapped in high resolution, for the first time, the bottom morphology in the region of the ebb tidal delta. This data set includes a giant sand wave field covering an area of approximately 4 square kilometers. The new survey enables the calculation of seabed change that has occurred in the past 50 years, since the last comprehensive survey of the area was completed. This comparison indicates an average erosion of 60 centimeters which equates to a total volume change of approximately 9.3 x 107 m3. Morphologic change also indicates that flood channels have filled and that the entire ebb delta is contracting radially.

  8. Environmental influence on the evolution of morphological complexity in machines.

    PubMed

    Auerbach, Joshua E; Bongard, Josh C

    2014-01-01

    Whether, when, how, and why increased complexity evolves in biological populations is a longstanding open question. In this work we combine a recently developed method for evolving virtual organisms with an information-theoretic metric of morphological complexity in order to investigate how the complexity of morphologies, which are evolved for locomotion, varies across different environments. We first demonstrate that selection for locomotion results in the evolution of organisms with morphologies that increase in complexity over evolutionary time beyond what would be expected due to random chance. This provides evidence that the increase in complexity observed is a result of a driven rather than a passive trend. In subsequent experiments we demonstrate that morphologies having greater complexity evolve in complex environments, when compared to a simple environment when a cost of complexity is imposed. This suggests that in some niches, evolution may act to complexify the body plans of organisms while in other niches selection favors simpler body plans.

  9. Environmental Influence on the Evolution of Morphological Complexity in Machines

    PubMed Central

    Auerbach, Joshua E.; Bongard, Josh C.

    2014-01-01

    Whether, when, how, and why increased complexity evolves in biological populations is a longstanding open question. In this work we combine a recently developed method for evolving virtual organisms with an information-theoretic metric of morphological complexity in order to investigate how the complexity of morphologies, which are evolved for locomotion, varies across different environments. We first demonstrate that selection for locomotion results in the evolution of organisms with morphologies that increase in complexity over evolutionary time beyond what would be expected due to random chance. This provides evidence that the increase in complexity observed is a result of a driven rather than a passive trend. In subsequent experiments we demonstrate that morphologies having greater complexity evolve in complex environments, when compared to a simple environment when a cost of complexity is imposed. This suggests that in some niches, evolution may act to complexify the body plans of organisms while in other niches selection favors simpler body plans. PMID:24391483

  10. The Enduring Utility of Continuous Culturing in Experimental Evolution

    PubMed Central

    Gresham, David; Dunham, Maitreya J.

    2015-01-01

    Studying evolution in the laboratory provides a means of understanding the processes, dynamics and outcomes of adaptive evolution in precisely controlled and readily replicated conditions. The advantages of experimental evolution are maximized when selection is well defined, which enables linking genotype, phenotype and fitness. One means of maintaining a defined selection is continuous culturing: chemostats enable the study of adaptive evolution in nutrient-limited environments in which growth is sub-maximal, whereas cells in turbidostats evolve in nutrient abundance that allows maximal growth. Although the experimental effort required for continuous culturing is considerable relative to the experimental simplicity of serial batch culture, the opposite is true of the environments they produce: continuous culturing results in simplified and constant conditions whereas serial batch cultures are complex and dynamic. The comparative simplicity of the selective environment that is unique to continuous culturing provides an ideal experimental system for addressing key questions in adaptive evolution. PMID:25281774

  11. The enduring utility of continuous culturing in experimental evolution.

    PubMed

    Gresham, David; Dunham, Maitreya J

    2014-12-01

    Studying evolution in the laboratory provides a means of understanding the processes, dynamics and outcomes of adaptive evolution in precisely controlled and readily replicated conditions. The advantages of experimental evolution are maximized when the selection is well defined, which enables linking genotype, phenotype and fitness. One means of maintaining a defined selection is continuous culturing: chemostats enable the study of adaptive evolution in constant nutrient-limited environments, whereas cells in turbidostats evolve in constant nutrient abundance. Although the experimental effort required for continuous culturing is considerable relative to the experimental simplicity of serial batch culture, the opposite is true of the environments they produce: continuous culturing results in simplified and invariant conditions whereas serially diluted batch cultures are complex and dynamic. The comparative simplicity of the selective environment that is unique to continuous culturing provides an ideal experimental system for addressing key questions in adaptive evolution. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. The Continuing Evolution of Land Surface Parameterizations

    NASA Technical Reports Server (NTRS)

    Koster, Randal; Houser, Paul (Technical Monitor)

    2001-01-01

    Land surface models (LSMs) play a critical role in the simulation of climate, for they determine the character of a large fraction of the atmosphere's lower boundary. The LSM partitions the net radiative energy at the land surface into sensible heat, latent heat, and energy storage, and it partitions incident precipitation water into evaporation, runoff, and water storage. Numerous modeling experiments and the existing (though very scant) observational evidence suggest that variations in these partitionings can feed back on the atmospheric processes that induce them. This land-atmosphere feedback can in turn have a significant impact on the generation of continental precipitation. For this and other reasons (including the role of the land surface in converting various atmospheric quantities, such as precipitation, into quantities of perhaps higher societal relevance, such as runoff), many modeling groups are placing a high emphasis on improving the treatment of land surface processes in their models. LSMs have evolved substantially from the original bucket model of Manabe et al. This evolution, which is still ongoing, has been documented considerably. The present paper also takes a look at the evolution of LSMs. The perspective here, though, is different - the evolution is considered strictly in terms of the 'balance' between the formulations of evaporation and runoff processes. The paper will argue that a proper balance is currently missing, largely due to difficulties in treating subgrid variability in soil moisture and its impact on the generation of runoff.

  13. Constraints on the morphological evolution of marsupial shoulder girdles.

    PubMed

    Sears, Karen E

    2004-10-01

    Throughout their evolutionary histories, marsupial mammals have been taxonomically and morphologically less diverse than their sister taxa the placentals. Because of this, it has been proposed that the evolution of marsupials has been constrained by the functional requirements of their mode of reproduction. Marsupials give birth after short gestation times to immature neonates that immediately crawl, under the power of their precociously developed shoulder girdles, to the teat where they attach and complete their early development. Using a novel approach incorporating adult and embryological morphological data, this study is the first to both: (1) statistically support adult patterns of morphological divergence consistent with the constraint hypothesis, and (2) identify ontogenetic patterns of morphological change that demonstrate that the constraint was responsible, at least in part, for their formation. As predicted by the marsupial constraint, the shoulder girdles of adult marsupials are less diverse than those of adult placentals, and adult marsupial scapulae are less morphologically diverse than adult marsupial pelves. Furthermore, marsupials that complete an extensive crawl to the teat are restricted to a common pattern of ontogenetic scapular shape change, strongly supporting the hypothesis that the morphological development of the marsupial scapula has been limited evolutionarily by its obligate role in the crawl to the teat. Because this study establishes that ontogenetic and evolutionary morphological change is correlated within mammalian scapulae, it is probable that the marsupial constraint also restricted the morphological divergence of the scapula over evolutionary time by limiting ontogenetic change in the scapula. These findings, coupled with the importance of the shoulder girdle in mammalian locomotor specialization, support the conclusion that the low morphological diversity of marsupial forms over evolutionary time could be directly due to the

  14. Morphological change in machines accelerates the evolution of robust behavior

    PubMed Central

    Bongard, Josh

    2011-01-01

    Most animals exhibit significant neurological and morphological change throughout their lifetime. No robots to date, however, grow new morphological structure while behaving. This is due to technological limitations but also because it is unclear that morphological change provides a benefit to the acquisition of robust behavior in machines. Here I show that in evolving populations of simulated robots, if robots grow from anguilliform into legged robots during their lifetime in the early stages of evolution, and the anguilliform body plan is gradually lost during later stages of evolution, gaits are evolved for the final, legged form of the robot more rapidly—and the evolved gaits are more robust—compared to evolving populations of legged robots that do not transition through the anguilliform body plan. This suggests that morphological change, as well as the evolution of development, are two important processes that improve the automatic generation of robust behaviors for machines. It also provides an experimental platform for investigating the relationship between the evolution of development and robust behavior in biological organisms. PMID:21220304

  15. Evolution of floral morphology and pollination system in Bignonieae (Bignoniaceae).

    PubMed

    Alcantara, Suzana; Lohmann, Lúcia G

    2010-05-01

    The radiation of angiosperms is associated with shifts among pollination modes that are thought to have driven the diversification of floral forms. However, the exact sequence of evolutionary events that led to such great diversity in floral traits is unknown for most plant groups. Here, we characterize the patterns of evolution of individual floral traits and overall floral morphologies in the tribe Bignonieae (Bignoniaceae). We identified 12 discrete traits that are associated with seven floral types previously described for the group and used a penalized likelihood tree of the tribe to reconstruct the ancestral states of those traits at all nodes of the phylogeny of Bignonieae. In addition, evolutionary correlations among traits were conducted using a maximum likelihood approach to test whether the evolution of individual floral traits followed the correlated patterns of evolution expected under the "pollination syndrome" concept. The ancestral Bignonieae flower presented an Anemopaegma-type morphology, which was followed by several parallel shifts in floral morphologies. Those shifts occurred through intermediate stages resulting in mixed floral morphologies as well as directly from the Anemopaegma-type morphology to other floral types. Positive and negative evolutionary correlations among traits fit patterns expected under the pollination syndrome perspective, suggesting that interactions between Bignonieae flowers and pollinators likely played important roles in the diversification of the group as a whole.

  16. Identifying heterogeneity in rates of morphological evolution: discrete character change in the evolution of lungfish (Sarcopterygii; Dipnoi).

    PubMed

    Lloyd, Graeme T; Wang, Steve C; Brusatte, Stephen L

    2012-02-01

    Quantifying rates of morphological evolution is important in many macroevolutionary studies, and critical when assessing possible adaptive radiations and episodes of punctuated equilibrium in the fossil record. However, studies of morphological rates of change have lagged behind those on taxonomic diversification, and most authors have focused on continuous characters and quantifying patterns of morphological rates over time. Here, we provide a phylogenetic approach, using discrete characters and three statistical tests to determine points on a cladogram (branches or entire clades) that are characterized by significantly high or low rates of change. These methods include a randomization approach that identifies branches with significantly high rates and likelihood ratio tests that pinpoint either branches or clades that have significantly higher or lower rates than the pooled rate of the remainder of the tree. As a test case for these methods, we analyze a discrete character dataset of lungfish, which have long been regarded as "living fossils" due to an apparent slowdown in rates since the Devonian. We find that morphological rates are highly heterogeneous across the phylogeny and recover a general pattern of decreasing rates along the phylogenetic backbone toward living taxa, from the Devonian until the present. Compared with previous work, we are able to report a more nuanced picture of lungfish evolution using these new methods. © 2011 The Author(s). Evolution© 2011 The Society for the Study of Evolution.

  17. Morphology and Tectonic Evolution of Endeavor Deep

    NASA Astrophysics Data System (ADS)

    Pockalny, R. A.; Larson, R. L.; Popham, C. T.; Natland, J. H.; Abrams, L. J.; Sonder, L. J.

    2004-12-01

    Endeavor Deep is located on the Nazca/Juan Fernandez plate boundary near the triple junction of the Pacific, Nazca and Antarctic plates. The deep is the tip of the northward propagating East Ridge, which defines the eastern side of the microplate and is presently exposing ~3 Myr old oceanic crust created at the ultra-fast spreading (~150 km/myr) East Pacific Rise. Recently collected high-resolution EM300 bathymetry, deep-tow DSL120 sidescan, surface-towed magnetics, and near-bottom JASON II observations provide important details about the tectonic character and origin of Endeavor Deep. These data define a 70 km-long, 40 km-wide, and 3 km-deep rift which shoals and narrows toward the rift tip to the NW and is deeper and wider away from the rift tip toward the SE. The southern wall of the rift is uplifted and has a characteristic flexural profile. The northern wall is also uplifted, however, the classic flexural profile is complicated by the presence of a large EW-trending massif, which appears to be a rift-truncated compressional ridge emplaced during a phase of NS-oriented compression. Along both rift walls, a series of terraces suggest a series of down-dropped blocks associated with ongoing extension. Along the rift floor, a relatively flat, featureless bottom in the NW evolves into hummocky terrane in the central part of the basin that is characterized by volcanic features reminiscent of 1-2 km diameter pancakes in plan-view. Farther to the SE, tectonic lineations and pillow ridges oriented parallel to the trend of the rift valley dominate the basin floor. Magnetic profiles across this portion of the survey area indicate a well-formed central magnetic anomaly with a width equivalent to a spreading rate of 20 km/Myr, which is predicted by tectonic reconstructions of the plate boundary. Overall, these observations define a four-phase evolution of Endeavor Deep: 1) initial crustal formation at the ultra-fast spreading East Pacific Rise ~3 Ma, 2) regional compression

  18. The Continued Evolution of the Credit System

    ERIC Educational Resources Information Center

    Aparicio, Alejandro; Willis, Charles E.

    2005-01-01

    In its ongoing support of continuous physician professional development, the American Medical Association (AMA) for use in the AMA Physician's Recognition Award has adopted 2 new learning platforms: Performance Improvement (PI) and Internet Point of Care (PoC). This article highlights the process that led to their adoption and places these new…

  19. Evolution of complex fruiting-body morphologies in homobasidiomycetes.

    PubMed Central

    Hibbett, David S; Binder, Manfred

    2002-01-01

    The fruiting bodies of homobasidiomycetes include some of the most complex forms that have evolved in the fungi, such as gilled mushrooms, bracket fungi and puffballs ('pileate-erect') forms. Homobasidiomycetes also include relatively simple crust-like 'resupinate' forms, however, which account for ca. 13-15% of the described species in the group. Resupinate homobasidiomycetes have been interpreted either as a paraphyletic grade of plesiomorphic forms or a polyphyletic assemblage of reduced forms. The former view suggests that morphological evolution in homobasidiomycetes has been marked by independent elaboration in many clades, whereas the latter view suggests that parallel simplification has been a common mode of evolution. To infer patterns of morphological evolution in homobasidiomycetes, we constructed phylogenetic trees from a dataset of 481 species and performed ancestral state reconstruction (ASR) using parsimony and maximum likelihood (ML) methods. ASR with both parsimony and ML implies that the ancestor of the homobasidiomycetes was resupinate, and that there have been multiple gains and losses of complex forms in the homobasidiomycetes. We also used ML to address whether there is an asymmetry in the rate of transformations between simple and complex forms. Models of morphological evolution inferred with ML indicate that the rate of transformations from simple to complex forms is about three to six times greater than the rate of transformations in the reverse direction. A null model of morphological evolution, in which there is no asymmetry in transformation rates, was rejected. These results suggest that there is a 'driven' trend towards the evolution of complex forms in homobasidiomycetes. PMID:12396494

  20. Morphological evolution in land plants: new designs with old genes

    PubMed Central

    Pires, Nuno D.; Dolan, Liam

    2012-01-01

    The colonization and radiation of multicellular plants on land that started over 470 Ma was one of the defining events in the history of this planet. For the first time, large amounts of primary productivity occurred on the continental surface, paving the way for the evolution of complex terrestrial ecosystems and altering global biogeochemical cycles; increased weathering of continental silicates and organic carbon burial resulted in a 90 per cent reduction in atmospheric carbon dioxide levels. The evolution of plants on land was itself characterized by a series of radical transformations of their body plans that included the formation of three-dimensional tissues, de novo evolution of a multicellular diploid sporophyte generation, evolution of multicellular meristems, and the development of specialized tissues and organ systems such as vasculature, roots, leaves, seeds and flowers. In this review, we discuss the evolution of the genes and developmental mechanisms that drove the explosion of plant morphologies on land. Recent studies indicate that many of the gene families which control development in extant plants were already present in the earliest land plants. This suggests that the evolution of novel morphologies was to a large degree driven by the reassembly and reuse of pre-existing genetic mechanisms. PMID:22232763

  1. Morphological evolution in land plants: new designs with old genes.

    PubMed

    Pires, Nuno D; Dolan, Liam

    2012-02-19

    The colonization and radiation of multicellular plants on land that started over 470 Ma was one of the defining events in the history of this planet. For the first time, large amounts of primary productivity occurred on the continental surface, paving the way for the evolution of complex terrestrial ecosystems and altering global biogeochemical cycles; increased weathering of continental silicates and organic carbon burial resulted in a 90 per cent reduction in atmospheric carbon dioxide levels. The evolution of plants on land was itself characterized by a series of radical transformations of their body plans that included the formation of three-dimensional tissues, de novo evolution of a multicellular diploid sporophyte generation, evolution of multicellular meristems, and the development of specialized tissues and organ systems such as vasculature, roots, leaves, seeds and flowers. In this review, we discuss the evolution of the genes and developmental mechanisms that drove the explosion of plant morphologies on land. Recent studies indicate that many of the gene families which control development in extant plants were already present in the earliest land plants. This suggests that the evolution of novel morphologies was to a large degree driven by the reassembly and reuse of pre-existing genetic mechanisms.

  2. Coastal Foredune Evolution, Part 1: Environmental Factors and Forcing Processes Affecting Morphological Evolution

    DTIC Science & Technology

    2017-02-01

    ERDC/CHL CHETN-II-56 February 2017 Approved for public release; distribution is unlimited. Coastal Foredune Evolution , Part 1: Environmental...Factors and Forcing Processes Affecting Morphological Evolution by Katherine L. Brodie1, Margaret L. Palmsten2, Nicholas J. Spore1 PURPOSE: This... evolution . Part 1 summarizes the short-, meso-, and multi-decadal-timescale environmental factors and forcing processes that influence the

  3. Coastal Foredune Evolution, Part 2: Modeling Approaches for Meso-Scale Morphologic Evolution

    DTIC Science & Technology

    2017-03-01

    ERDC/CHL CHETN-II-57 March 2017 Approved for public release; distribution is unlimited. Coastal Foredune Evolution , Part 2: Modeling Approaches...for Meso-Scale Morphologic Evolution by Margaret L. Palmsten1, Katherine L. Brodie2, and Nicholas J. Spore2 PURPOSE: This Coastal and Hydraulics...Engineering Technical Note (CHETN) is the second of two CHETNs focused on improving technologies to forecast coastal foredune evolution . Part 1

  4. Beach morphology and coastline evolution in the southern Bohai Strait

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Wu, Jianzheng; Li, Weiran; Zhu, Longhai; Hu, Rijun; Jiang, shenghui; Sun, Yonggen; Wang, Huijuan

    2015-10-01

    The beach studied in this paper spans a length of 51 km and is one of several long sandy beaches in the southern Bohai Strait. Due to the obstruction of islands in the northeast and the influence of the underwater topography, the wave environment in the offshore area is complex; beach types and sediment transport characteristics vary along different coasts. The coastlines extracted from six aerial photographs in different years were compared to demonstrate the evolving features. Seven typical beach profiles were selected to study the lateral beach variation characteristics. Continuous wind and wave observation data from Beihuangcheng ocean station during 2009 were employed for the hindcast of the local wave environment using a regional spectral wave model. Then the results of the wave hindcast were incorporated into the LITDRIFT model to compute the sediment transport rates and directions along the coasts and analyze the longshore sand movement. The results show that the coastline evolution of sand beaches in the southern Bohai Strait has spatial and temporal variations and the coast can be divided into four typical regions. Region (I), the north coast of Qimudao, is a slightly eroded and dissipative beach with a large sediment transport rate; Region (II), the southwest coast of Gangluan Port, is a slightly deposited and dissipative beach with moderate sediment transport rate; Region (III), in the central area, is a beach that is gradually transformed from a slightly eroded dissipative beach to a moderately or slightly strong eroded bar-trough beach from west to east with a relatively moderate sediment transport rate. Region (IV), on the east coast, is a strongly eroded and reflective beach with a weak sediment transport rate. The wave conditions exhibit an increasing trend from west to east in the offshore area. The distribution of the wave-induced current inside the wave breaking region and the littoral sediment transport in the nearshore region exhibit a gradual

  5. MATICCE: mapping transitions in continuous character evolution.

    PubMed

    Hipp, Andrew L; Escudero, Marcial

    2010-01-01

    MATICCE is a new software package in the R language for mapping phylogenetic transitions in organismal traits that have continuous distributions. MATICCE integrates over phylogenetic and model uncertainty and provides simulation functions for visualizing evolutionary scenarios based on estimated parameter values. MATICCE is written in the open source R language and freely available through the Comprehensive R Archive Network (http://cran.r-project.org/web/packages/maticce).

  6. Evolution of morphology of bacterial cellulose scaffolds during early culture.

    PubMed

    Luo, Honglin; Zhang, Jing; Xiong, Guangyao; Wan, Yizao

    2014-10-13

    Morphological characteristics of a fibrous tissue engineering (TE) scaffold are key parameters affecting cell behavior. However, no study regarding the evolution of morphology of bacterial cellulose (BC) scaffolds during the culture process has been reported to date. In this work, BC scaffolds cultured for different times starting from 0.5h were characterized. The results demonstrated that the formation of an integrated scaffold and its 3D network structure, porosity, fiber diameter, light transmittance, and the morphology of hydroxyapatite (HAp)-deposited BC scaffolds changed with culture time. However, the surface and crystal structure of BC fibers did not change with culture time and no difference was found in the crystal structure of HAp deposited on BC templates regardless of BC culture time. The findings presented herein suggest that proper selection of culture time can potentially enhance the biological function of BC TE scaffold by optimizing its morphological characteristics. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Changes in Cis-regulatory Elements during Morphological Evolution

    PubMed Central

    Gaunt, Stephen J.; Paul, Yu-Lee

    2012-01-01

    How have animals evolved new body designs (morphological evolution)? This requires explanations both for simple morphological changes, such as differences in pigmentation and hair patterns between different Drosophila populations and species, and also for more complex changes, such as differences in the forelimbs of mice and bats, and the necks of amphibians and reptiles. The genetic changes and pathways involved in these evolutionary steps require identification. Many, though not all, of these events occur by changes in cis-regulatory (enhancer) elements within developmental genes. Enhancers are modular, each affecting expression in only one or a few tissues. Therefore it is possible to add, remove or alter an enhancer without producing changes in multiple tissues, and thereby avoid widespread (pleiotropic) deleterious effects. Ideally, for a given step in morphological evolution it is necessary to identify (i) the change in phenotype, (ii) the changes in gene expression, (iii) the DNA region, enhancer or otherwise, affected, (iv) the mutation involved, (v) the nature of the transcription or other factors that bind to this site. In practice these data are incomplete for most of the published studies upon morphological evolution. Here, the investigations are categorized according to how far these analyses have proceeded. PMID:24832508

  8. Rates of morphological evolution are heterogeneous in Early Cretaceous birds.

    PubMed

    Wang, Min; Lloyd, Graeme T

    2016-04-13

    The Early Cretaceous is a critical interval in the early history of birds. Exceptional fossils indicate that important evolutionary novelties such as a pygostyle and a keeled sternum had already arisen in Early Cretaceous taxa, bridging much of the morphological gap between Archaeopteryx and crown birds. However, detailed features of basal bird evolution remain obscure because of both the small sample of fossil taxa previously considered and a lack of quantitative studies assessing rates of morphological evolution. Here we apply a recently available phylogenetic method and associated sensitivity tests to a large data matrix of morphological characters to quantify rates of morphological evolution in Early Cretaceous birds. Our results reveal that although rates were highly heterogeneous between different Early Cretaceous avian lineages, consistent patterns of significantly high or low rates were harder to pinpoint. Nevertheless, evidence for accelerated evolutionary rates is strongest at the point when Ornithuromorpha (the clade comprises all extant birds and descendants from their most recent common ancestors) split from Enantiornithes (a diverse clade that went extinct at the end-Cretaceous), consistent with the hypothesis that this key split opened up new niches and ultimately led to greater diversity for these two dominant clades of Mesozoic birds. © 2016 The Author(s).

  9. Modeling morphology evolution during injection molding of thermoplastic polymers

    NASA Astrophysics Data System (ADS)

    Pantani, R.; De Santis, F.; Speranza, V.; Titomanlio, G.

    2015-05-01

    The effect of temperature, pressure and flow on relaxation time (or spectrum), crystallization time, nucleation density and rate, spherulite growth rate, the interrelation among these quantities and the distributions of deformation rate and cooling time during the process all together determine the morphology distribution in the final object. A simple model linking all these quantities was developed to describe morphology evolution during polymer processing. The effect of flow on nucleation density and growth rate of an isotactic polypropylene (iPP) is described on the basis of a molecular stretch parameter and the stretch evolution is described by a simple nonlinear Maxwell model, whose relaxation time, in its turn, is determined by the molecular stretch and, obviously, temperature pressure and crystallinity [1]. The model is applied to the description of morphology evolution during the injection molding process of a very accurately characterized iPP as far as rheology, quiescent crystallization and effect of flow on nucleation and spherulitic growth rates. Main characteristics of final morphology are reproduced by the simulations.

  10. Rates of morphological evolution are heterogeneous in Early Cretaceous birds

    PubMed Central

    Lloyd, Graeme T.

    2016-01-01

    The Early Cretaceous is a critical interval in the early history of birds. Exceptional fossils indicate that important evolutionary novelties such as a pygostyle and a keeled sternum had already arisen in Early Cretaceous taxa, bridging much of the morphological gap between Archaeopteryx and crown birds. However, detailed features of basal bird evolution remain obscure because of both the small sample of fossil taxa previously considered and a lack of quantitative studies assessing rates of morphological evolution. Here we apply a recently available phylogenetic method and associated sensitivity tests to a large data matrix of morphological characters to quantify rates of morphological evolution in Early Cretaceous birds. Our results reveal that although rates were highly heterogeneous between different Early Cretaceous avian lineages, consistent patterns of significantly high or low rates were harder to pinpoint. Nevertheless, evidence for accelerated evolutionary rates is strongest at the point when Ornithuromorpha (the clade comprises all extant birds and descendants from their most recent common ancestors) split from Enantiornithes (a diverse clade that went extinct at the end-Cretaceous), consistent with the hypothesis that this key split opened up new niches and ultimately led to greater diversity for these two dominant clades of Mesozoic birds. PMID:27053742

  11. Sperm competition and the evolution of gamete morphology in frogs.

    PubMed

    Byrne, Phillip G; Simmons, Leigh W; Roberts, J Dale

    2003-10-07

    Despite detailed knowledge of the ultrastructure of spermatozoa, there is a paucity of information on the selective pressures that influence sperm form and function. Theoretical models for both internal and external fertilizers predict that sperm competition could favour the evolution of longer sperm. Empirical tests of the external-fertilization model have been restricted to just one group, the fishes, and these tests have proved equivocal. We investigated how sperm competition affects sperm morphology in externally fertilizing myobatrachid frogs. We also examined selection acting on egg size, and covariation between sperm and egg morphology. Species were ranked according to probability of group spawning and hence risk of sperm competition. Body size, testis size and oviposition environment may also influence gamete traits and were included in our analyses. After controlling for phylogenetic relationships between the species examined, we found that an increased risk of sperm competition was associated with increased sperm head and tail lengths. Path analysis showed that sperm competition had its greatest direct effect on sperm tail length, as might be expected under selection resulting from competitive fertilization. Sperm competition did not influence egg size. Oviposition location had a strong influence on egg size and a weak influence on sperm length, with terrestrial spawners having larger gametes than aquatic spawners. Our analysis revealed significant correlated evolution between egg morphology and sperm morphology. These data provide a conclusive demonstration that sperm competition selects for increased sperm length in frogs, and evidence for evolutionary covariance between aspects of male and female gamete morphology.

  12. Modelling morphology evolution during solidification of IPP in processing conditions

    SciTech Connect

    Pantani, R. E-mail: fedesantis@unisa.it E-mail: gtitomanlio@unisa.it; De Santis, F. E-mail: fedesantis@unisa.it E-mail: gtitomanlio@unisa.it; Speranza, V. E-mail: fedesantis@unisa.it E-mail: gtitomanlio@unisa.it; Titomanlio, G. E-mail: fedesantis@unisa.it E-mail: gtitomanlio@unisa.it

    2014-05-15

    During polymer processing, crystallization takes place during or soon after flow. In most of cases, the flow field dramatically influences both the crystallization kinetics and the crystal morphology. On their turn, crystallinity and morphology affect product properties. Consequently, in the last decade, researchers tried to identify the main parameters determining crystallinity and morphology evolution during solidification In processing conditions. In this work, we present an approach to model flow-induced crystallization with the aim of predicting the morphology after processing. The approach is based on: interpretation of the FIC as the effect of molecular stretch on the thermodynamic crystallization temperature; modeling the molecular stretch evolution by means of a model simple and easy to be implemented in polymer processing simulation codes; identification of the effect of flow on nucleation density and spherulites growth rate by means of simple experiments; determination of the condition under which fibers form instead of spherulites. Model predictions reproduce most of the features of final morphology observed in the samples after solidification.

  13. The evolution, morphology, and development of fern leaves

    PubMed Central

    Vasco, Alejandra; Moran, Robbin C.; Ambrose, Barbara A.

    2013-01-01

    Leaves are lateral determinate structures formed in a predictable sequence (phyllotaxy) on the flanks of an indeterminate shoot apical meristem. The origin and evolution of leaves in vascular plants has been widely debated. Being the main conspicuous organ of nearly all vascular plants and often easy to recognize as such, it seems surprising that leaves have had multiple origins. For decades, morphologists, anatomists, paleobotanists, and systematists have contributed data to this debate. More recently, molecular genetic studies have provided insight into leaf evolution and development mainly within angiosperms and, to a lesser extent, lycophytes. There has been recent interest in extending leaf evolutionary developmental studies to other species and lineages, particularly in lycophytes and ferns. Therefore, a review of fern leaf morphology, evolution and development is timely. Here we discuss the theories of leaf evolution in ferns, morphology, and diversity of fern leaves, and experimental results of fern leaf development. We summarize what is known about the molecular genetics of fern leaf development and what future studies might tell us about the evolution of fern leaf development. PMID:24027574

  14. Continuing Evolution: The Rhode Island Early Childhood Summer Institute

    ERIC Educational Resources Information Center

    Horm, Diane M.; O'Keefe, Beverly; Diffendale, Charlotte; Cohen, Amy; Schennum, Ruth; Pucciarelli, Larry; Collins, Cheryl; Merrifield, Margaret; Nardone, Virginia; Martin, Marilyn; Bryan, Linda; DeRobbio, Gail

    2004-01-01

    This narrative chronicles the continued evolution and development of the Rhode Island Early Childhood Summer Institute, an intensive 5-day inservice professional development program designed for educational leaders from various sectors of the early care and education field. The goal is to review the continued use of successful practices…

  15. Continuing Evolution: The Rhode Island Early Childhood Summer Institute

    ERIC Educational Resources Information Center

    Horm, Diane M.; O'Keefe, Beverly; Diffendale, Charlotte; Cohen, Amy; Schennum, Ruth; Pucciarelli, Larry; Collins, Cheryl; Merrifield, Margaret; Nardone, Virginia; Martin, Marilyn; Bryan, Linda; DeRobbio, Gail

    2004-01-01

    This narrative chronicles the continued evolution and development of the Rhode Island Early Childhood Summer Institute, an intensive 5-day inservice professional development program designed for educational leaders from various sectors of the early care and education field. The goal is to review the continued use of successful practices…

  16. Developmental dissociation in morphological evolution of the stickleback opercle

    PubMed Central

    Kimmel, Charles B.; Ullmann, Bonnie; Currey, Mark; Hohenlohe, Paul A.; Cresko, William A.

    2012-01-01

    SUMMARY Oceanic threespine sticklebacks have repeatedly and independently evolved new morphologies upon invasions of freshwater habitats. A consistent derived feature of the freshwater form across populations and geography is a shape change of the opercle, a large early developing facial bone. We show that the principal multivariate axis describing opercle shape development from the young larva to the full adult stage of oceanic fish matches the principal axis of evolutionary change associated with relocation from the oceanic to freshwater habitat. The opercle phenotype of freshwater adults closely resembles the phenotype of the bone in juveniles. Thus evolution to the freshwater condition is in large part by truncation of development; the freshwater fish do not achieve the full ancestral adult bone shape. Additionally, the derived state includes dissociated ontogenetic changes. Dissociability may reflect an underlying modular pattern of opercle development, and facilitate flexibility of morphological evolution. PMID:22765204

  17. Rates of morphological evolution are correlated with species richness in salamanders.

    PubMed

    Rabosky, Daniel L; Adams, Dean C

    2012-06-01

    The tempo and mode of species diversification and phenotypic evolution vary widely across the tree of life, yet the relationship between these processes is poorly known. Previous tests of the relationship between rates of phenotypic evolution and rates of species diversification have assumed that species richness increases continuously through time. If this assumption is violated, simple phylogenetic estimates of net diversification rate may bear no relationship to processes that influence the distribution of species richness among clades. Here, we demonstrate that the variation in species richness among plethodontid salamander clades is unlikely to have resulted from simple time-dependent processes, leading to fundamentally different conclusions about the relationship between rates of phenotypic evolution and species diversification. Morphological evolutionary rates of both size and shape evolution are correlated with clade species richness, but are uncorrelated with simple estimators of net diversification that assume constancy of rates through time. This coupling between species diversification and phenotypic evolution is consistent with the hypothesis that clades with high rates of morphological trait evolution may diversify more than clades with low rates. Our results indicate that assumptions about underlying processes of diversity regulation have important consequences for interpreting macroevolutionary patterns. © 2012 The Author(s). Evolution © 2012 The Society for the Study of Evolution.

  18. Morphology and behaviour: functional links in development and evolution

    PubMed Central

    Bertossa, Rinaldo C.

    2011-01-01

    Development and evolution of animal behaviour and morphology are frequently addressed independently, as reflected in the dichotomy of disciplines dedicated to their study distinguishing object of study (morphology versus behaviour) and perspective (ultimate versus proximate). Although traits are known to develop and evolve semi-independently, they are matched together in development and evolution to produce a unique functional phenotype. Here I highlight similarities shared by both traits, such as the decisive role played by the environment for their ontogeny. Considering the widespread developmental and functional entanglement between both traits, many cases of adaptive evolution are better understood when proximate and ultimate explanations are integrated. A field integrating these perspectives is evolutionary developmental biology (evo-devo), which studies the developmental basis of phenotypic diversity. Ultimate aspects in evo-devo studies—which have mostly focused on morphological traits—could become more apparent when behaviour, ‘the integrator of form and function’, is integrated into the same framework of analysis. Integrating a trait such as behaviour at a different level in the biological hierarchy will help to better understand not only how behavioural diversity is produced, but also how levels are connected to produce functional phenotypes and how these evolve. A possible framework to accommodate and compare form and function at different levels of the biological hierarchy is outlined. At the end, some methodological issues are discussed. PMID:21690124

  19. Cryptic individual scaling relationships and the evolution of morphological scaling.

    PubMed

    Dreyer, Austin P; Saleh Ziabari, Omid; Swanson, Eli M; Chawla, Akshita; Frankino, W Anthony; Shingleton, Alexander W

    2016-08-01

    Morphological scaling relationships between organ and body size-also known as allometries-describe the shape of a species, and the evolution of such scaling relationships is central to the generation of morphological diversity. Despite extensive modeling and empirical tests, however, the modes of selection that generate changes in scaling remain largely unknown. Here, we mathematically model the evolution of the group-level scaling as an emergent property of individual-level variation in the developmental mechanisms that regulate trait and body size. We show that these mechanisms generate a "cryptic individual scaling relationship" unique to each genotype in a population, which determines body and trait size expressed by each individual, depending on developmental nutrition. We find that populations may have identical population-level allometries but very different underlying patterns of cryptic individual scaling relationships. Consequently, two populations with apparently the same morphological scaling relationship may respond very differently to the same form of selection. By focusing on the developmental mechanisms that regulate trait size and the patterns of cryptic individual scaling relationships they produce, our approach reveals the forms of selection that should be most effective in altering morphological scaling, and directs researcher attention on the actual, hitherto overlooked, targets of selection.

  20. A surfzone morphological diffusivity estimated from the evolution of excavated holes

    NASA Astrophysics Data System (ADS)

    Moulton, Melissa; Elgar, Steve; Raubenheimer, Britt

    2014-07-01

    Downslope gravity-driven sediment transport smooths steep nearshore bathymetric features, such as channels, bars, troughs, cusps, mounds, pits, scarps, and bedforms. Downslope transport appears approximately as a diffusive term in the sediment continuity equation predicting changes in bed level, with a morphological diffusivity controlling the rate of seafloor smoothing. Despite the importance of surfzone sediment transport and morphological evolution, the size of the downslope transport term in nearshore models varies widely, and theories have not been tested with field measurements. Here observations of the infill of large excavated holes in an energetic inner surf zone provide the first opportunity to infer the morphological diffusivity in the field. The estimated diffusion coefficient is consistent with a theoretical bedload morphological diffusivity that scales with the three-halves power of the representative bed shear stress.

  1. Morphological evolution in Tropidurinae squamates: an integrated view along a continuum of ecological settings.

    PubMed

    Grizante, M B; Navas, C A; Garland, T; Kohlsdorf, T

    2010-01-01

    Variation in squamate foot morphology is likely relevant during evolutionary processes of habitat colonization because distinct surfaces differ in energetic and functional demands for locomotion. We combined new foot morphological data with published information of limb and tail lengths to investigate evolutionary changes possibly associated with the differential usage of ecological settings by Tropidurinae species. Several traits exhibited significant phylogenetic signal, and we performed conventional and phylogenetic regressions of PC scores (retained from Principal Components Analyses of morphometric traits) on continuous ecological indices. Tropidurines from sandy habitats exhibit larger foot soles, opposite to the evolution of narrow feet in species that use branches and rocks. Also, species that usually move along trunks present longer femora. This study provides evidence for morphological adaptations associated with substrate usage in Tropidurinae, and suggests that opposite morphological profiles might evolve associated with the use of surfaces energetically and functionally contrasting, possibly leading to trade-offs.

  2. Stasis and convergence characterize morphological evolution in eupolypod II ferns

    PubMed Central

    Sundue, Michael A.; Rothfels, Carl J.

    2014-01-01

    Background and Aims Patterns of morphological evolution at levels above family rank remain underexplored in the ferns. The present study seeks to address this gap through analysis of 79 morphological characters for 81 taxa, including representatives of all ten families of eupolypod II ferns. Recent molecular phylogenetic studies demonstrate that the evolution of the large eupolypod II clade (which includes nearly one-third of extant fern species) features unexpected patterns. The traditional ‘athyrioid’ ferns are scattered across the phylogeny despite their apparent morphological cohesiveness, and mixed among these seemingly conservative taxa are morphologically dissimilar groups that lack any obvious features uniting them with their relatives. Maximum-likelihood and maximum-parsimony character optimizations are used to determine characters that unite the seemingly disparate groups, and to test whether the polyphyly of the traditional athyrioid ferns is due to evolutionary stasis (symplesiomorphy) or convergent evolution. The major events in eupolypod II character evolution are reviewed, and character and character state concepts are reappraised, as a basis for further inquiries into fern morphology. Methods Characters were scored from the literature, live plants and herbarium specimens, and optimized using maximum-parsimony and maximum-likelihood, onto a highly supported topology derived from maximum-likelihood and Bayesian analysis of molecular data. Phylogenetic signal of characters were tested for using randomization methods and fitdiscrete. Key Results The majority of character state changes within the eupolypod II phylogeny occur at the family level or above. Relative branch lengths for the morphological data resemble those from molecular data and fit an ancient rapid radiation model (long branches subtended by very short backbone internodes), with few characters uniting the morphologically disparate clades. The traditional athyrioid ferns were

  3. Stasis and convergence characterize morphological evolution in eupolypod II ferns.

    PubMed

    Sundue, Michael A; Rothfels, Carl J

    2014-01-01

    Patterns of morphological evolution at levels above family rank remain underexplored in the ferns. The present study seeks to address this gap through analysis of 79 morphological characters for 81 taxa, including representatives of all ten families of eupolypod II ferns. Recent molecular phylogenetic studies demonstrate that the evolution of the large eupolypod II clade (which includes nearly one-third of extant fern species) features unexpected patterns. The traditional 'athyrioid' ferns are scattered across the phylogeny despite their apparent morphological cohesiveness, and mixed among these seemingly conservative taxa are morphologically dissimilar groups that lack any obvious features uniting them with their relatives. Maximum-likelihood and maximum-parsimony character optimizations are used to determine characters that unite the seemingly disparate groups, and to test whether the polyphyly of the traditional athyrioid ferns is due to evolutionary stasis (symplesiomorphy) or convergent evolution. The major events in eupolypod II character evolution are reviewed, and character and character state concepts are reappraised, as a basis for further inquiries into fern morphology. Characters were scored from the literature, live plants and herbarium specimens, and optimized using maximum-parsimony and maximum-likelihood, onto a highly supported topology derived from maximum-likelihood and Bayesian analysis of molecular data. Phylogenetic signal of characters were tested for using randomization methods and fitdiscrete. The majority of character state changes within the eupolypod II phylogeny occur at the family level or above. Relative branch lengths for the morphological data resemble those from molecular data and fit an ancient rapid radiation model (long branches subtended by very short backbone internodes), with few characters uniting the morphologically disparate clades. The traditional athyrioid ferns were circumscribed based upon a combination of

  4. Morphological Evolution of Spiders Predicted by Pendulum Mechanics

    PubMed Central

    Moya-Laraño, Jordi; Vinković, Dejan; De Mas, Eva; Corcobado, Guadalupe; Moreno, Eulalia

    2008-01-01

    Background Animals have been hypothesized to benefit from pendulum mechanics during suspensory locomotion, in which the potential energy of gravity is converted into kinetic energy according to the energy-conservation principle. However, no convincing evidence has been found so far. Demonstrating that morphological evolution follows pendulum mechanics is important from a biomechanical point of view because during suspensory locomotion some morphological traits could be decoupled from gravity, thus allowing independent adaptive morphological evolution of these two traits when compared to animals that move standing on their legs; i.e., as inverted pendulums. If the evolution of body shape matches simple pendulum mechanics, animals that move suspending their bodies should evolve relatively longer legs which must confer high moving capabilities. Methodology/Principal Findings We tested this hypothesis in spiders, a group of diverse terrestrial generalist predators in which suspensory locomotion has been lost and gained a few times independently during their evolutionary history. In spiders that hang upside-down from their webs, their legs have evolved disproportionately longer relative to their body sizes when compared to spiders that move standing on their legs. In addition, we show how disproportionately longer legs allow spiders to run faster during suspensory locomotion and how these same spiders run at a slower speed on the ground (i.e., as inverted pendulums). Finally, when suspensory spiders are induced to run on the ground, there is a clear trend in which larger suspensory spiders tend to run much more slowly than similar-size spiders that normally move as inverted pendulums (i.e., wandering spiders). Conclusions/Significance Several lines of evidence support the hypothesis that spiders have evolved according to the predictions of pendulum mechanics. These findings have potentially important ecological and evolutionary implications since they could partially

  5. A Nonstationary Markov Model Detects Directional Evolution in Hymenopteran Morphology.

    PubMed

    Klopfstein, Seraina; Vilhelmsen, Lars; Ronquist, Fredrik

    2015-11-01

    Directional evolution has played an important role in shaping the morphological, ecological, and molecular diversity of life. However, standard substitution models assume stationarity of the evolutionary process over the time scale examined, thus impeding the study of directionality. Here we explore a simple, nonstationary model of evolution for discrete data, which assumes that the state frequencies at the root differ from the equilibrium frequencies of the homogeneous evolutionary process along the rest of the tree (i.e., the process is nonstationary, nonreversible, but homogeneous). Within this framework, we develop a Bayesian approach for testing directional versus stationary evolution using a reversible-jump algorithm. Simulations show that when only data from extant taxa are available, the success in inferring directionality is strongly dependent on the evolutionary rate, the shape of the tree, the relative branch lengths, and the number of taxa. Given suitable evolutionary rates (0.1-0.5 expected substitutions between root and tips), accounting for directionality improves tree inference and often allows correct rooting of the tree without the use of an outgroup. As an empirical test, we apply our method to study directional evolution in hymenopteran morphology. We focus on three character systems: wing veins, muscles, and sclerites. We find strong support for a trend toward loss of wing veins and muscles, while stationarity cannot be ruled out for sclerites. Adding fossil and time information in a total-evidence dating approach, we show that accounting for directionality results in more precise estimates not only of the ancestral state at the root of the tree, but also of the divergence times. Our model relaxes the assumption of stationarity and reversibility by adding a minimum of additional parameters, and is thus well suited to studying the nature of the evolutionary process in data sets of limited size, such as morphology and ecology.

  6. A Nonstationary Markov Model Detects Directional Evolution in Hymenopteran Morphology

    PubMed Central

    Klopfstein, Seraina; Vilhelmsen, Lars; Ronquist, Fredrik

    2015-01-01

    Directional evolution has played an important role in shaping the morphological, ecological, and molecular diversity of life. However, standard substitution models assume stationarity of the evolutionary process over the time scale examined, thus impeding the study of directionality. Here we explore a simple, nonstationary model of evolution for discrete data, which assumes that the state frequencies at the root differ from the equilibrium frequencies of the homogeneous evolutionary process along the rest of the tree (i.e., the process is nonstationary, nonreversible, but homogeneous). Within this framework, we develop a Bayesian approach for testing directional versus stationary evolution using a reversible-jump algorithm. Simulations show that when only data from extant taxa are available, the success in inferring directionality is strongly dependent on the evolutionary rate, the shape of the tree, the relative branch lengths, and the number of taxa. Given suitable evolutionary rates (0.1–0.5 expected substitutions between root and tips), accounting for directionality improves tree inference and often allows correct rooting of the tree without the use of an outgroup. As an empirical test, we apply our method to study directional evolution in hymenopteran morphology. We focus on three character systems: wing veins, muscles, and sclerites. We find strong support for a trend toward loss of wing veins and muscles, while stationarity cannot be ruled out for sclerites. Adding fossil and time information in a total-evidence dating approach, we show that accounting for directionality results in more precise estimates not only of the ancestral state at the root of the tree, but also of the divergence times. Our model relaxes the assumption of stationarity and reversibility by adding a minimum of additional parameters, and is thus well suited to studying the nature of the evolutionary process in data sets of limited size, such as morphology and ecology. PMID:26272507

  7. River bed morphology evolution following a streamside landslide

    NASA Astrophysics Data System (ADS)

    Copertino, Vito; Fortunato Dal Sasso, Silvano; Giosa, Luciana; Scavone, Giuseppina; Sole, Aurelia; Telesca, Vito

    2010-05-01

    with predictions of mathematical models and software simulations of river bed altimetric evolution in different morphologic scenarios. (This work was supported by Dipartimento Infrastrutture, OO. PP. e Mobilità - Basilicata Region - Italy).

  8. The Missing Magnetic Morphology Term In Stellar Rotation Evolution

    NASA Astrophysics Data System (ADS)

    Garraffo, Cecilia; Drake, Jeremy J.; Cohen, Ofer

    2016-08-01

    Observations of young open clusters have revealedabimodaldistribution of the rotation periods of solar-like starsthathas proven difficult to explain under the existing rubric ofmagnetic braking. Recent studies suggest that magneticcomplexity can play an important role incontrollingstellar spin-down rates. In this talk I will discuss the missing term representing magnetic morphology in the context of stellar spin-down models. Using state-of-the-artmagnetohydrodynamical magnetized wind simulations we have derived analytical expressions representing the magnetic field morphology dependence of mass and angular momentum loss rates. Magnetic field complexity provides a natural physical basis for stellar rotation evolution models requiring a rapid transition between weak and strong spin-down modes.

  9. Morphology Evolution during Injection Molding: effect of packing pressure

    NASA Astrophysics Data System (ADS)

    Pantani, R.; Coccorullo, I.; Speranza, V.; Titomanlio, G.

    2007-04-01

    Injection molding is one of the most widely employed methods for manufacturing polymeric products. The final properties and the quality of an injection molded part are to a great extent affected by morphology. Thus, the prediction of microstructure formation is of technological importance, also for optimizing processing variables, in order to cut down on the expensive costs of tooling and the trial-and-error procedures. In this work, some injection molding tests were performed with the aim of studying the effects of packing pressure on morphology distribution. The resulting morphology of the moldings was in fact characterized by adopting different experimental techniques and, in order to underline the effects of holding pressure, it was compared with previous results gathered on samples obtained applying a lower holding pressure. Furthermore, the molding tests were simulated by means of a code developed at University of Salerno, which implements procedures able to model molecular orientation, crystallization kinetics and morphology evolution. The results obtained show that on increasing holding pressure the molecular orientation inside the samples increases, and simulations show that this is due mainly to the increase of relaxation time caused by the higher pressures. Furthermore, a sensible reduction of the percentage of α-phase is found on increasing the holding pressure, whereas the percentage of mesomorphic phase increases and a small fraction of γ-phase is found, which was not present in the samples molded at lower holding pressures.

  10. Evolution of morphological and climatic adaptations in Veronica L. (Plantaginaceae)

    PubMed Central

    Wang, Jian-Cheng; Pan, Bo-Rong

    2016-01-01

    Perennials and annuals apply different strategies to adapt to the adverse environment, based on ‘tolerance’ and ‘avoidance’, respectively. To understand lifespan evolution and its impact on plant adaptability, we carried out a comparative study of perennials and annuals in the genus Veronica from a phylogenetic perspective. The results showed that ancestors of the genus Veronicawere likely to be perennial plants. Annual life history of Veronica has evolved multiple times and subtrees with more annual species have a higher substitution rate. Annuals can adapt to more xeric habitats than perennials. This indicates that annuals are more drought-resistant than their perennial relatives. Due to adaptation to similar selective pressures, parallel evolution occurs in morphological characters among annual species of Veronica. PMID:27602296

  11. Evolution of Mound Morphology in Reversible Homoepitaxy on Cu(100)

    SciTech Connect

    Zuo, J.; Wendelken, J.

    1997-04-01

    Evolution of mound morphology in reversible homoepitaxy on Cu(100) was studied via spot-profile-analysis (SPA) LEED and scanning tunneling microscopy. The mound separation shows coarsening vs growth time with L(t){approximately}t{sup 1/4}, in support of theory based on capillarity between mounds. The growth ultimately reaches a steady state characterized by a selected mound angle of {approximately}5.6{degree}. We suggest that this results from a downhill current driven by step edge line tension in balance with an uphill current due to the Schwoebel barrier effect. Also, we have clarified the interpretation for the evolution of the SPA-LEED profile from a ring structure to a single time-invariant peak. {copyright} {ital 1997} {ital The American Physical Society}

  12. Primer and interviews: molecular mechanisms of morphological evolution.

    PubMed

    Kiefer, Julie C

    2010-12-01

    The beauty of the developing embryo, and the awe that it inspires, lure many scientists into the field of developmental biology. What compels cells to divide, migrate, and morph into a being with a complex body plan? Evolutionary developmental biologists hold similar fascinations, with dynamics that take place on a grander timescale. How do phenotypic traits diverge over evolutionary time? This primer illustrates how a deep understanding of the basic principles that underlie developmental biology have changed how scientists think about the evolution of body form. The primer culminates in a conversation with David Stern, PhD, and Michael Shapiro, PhD, who discuss current topics in morphological evolution, why the field should be of interest to classic developmental biologists, and what lies ahead.

  13. Primer and interviews: Molecular mechanisms of morphological evolution

    PubMed Central

    Kiefer, Julie C

    2010-01-01

    The beauty of the developing embryo, and the awe that it inspires, lure many scientists into the field of developmental biology. What compels cells to divide, migrate, and morph into a being with a complex body plan? Evolutionary developmental biologists hold similar fascinations, with dynamics that take place on a grander timescale. How do phenotypic traits diverge over evolutionary time? This primer illustrates how a deep understanding of the basic principles that underlie developmental biology have changed how scientists think about the evolution of body form. The primer culminates in a conversation with David Stern, PhD, and Michael Shapiro, PhD, who discuss current topics in morphological evolution, why the field should be of interest to classic developmental biologists, and what lies ahead. Developmental Dynamics 239:3497–3505, 2010. © 2010 Wiley-Liss, Inc. PMID:21069831

  14. Morphological evolution and embryonic developmental diversity in metazoa.

    PubMed

    Salazar-Ciudad, Isaac

    2010-02-01

    Most studies of pattern formation and morphogenesis in metazoans focus on a small number of model species, despite the fact that information about a wide range of species and developmental stages has accumulated in recent years. By contrast, this article attempts to use this broad knowledge base to arrive at a classification of developmental types through which metazoan body plans are generated. This classification scheme pays particular attention to the diverse ways by which cell signalling and morphogenetic movements depend on each other, and leads to several testable hypotheses regarding morphological variation within and between species, as well as metazoan evolution.

  15. Soil surface morphology evolution under spatiallynon-uniform rainfall

    NASA Astrophysics Data System (ADS)

    Cheraghi, M.; Rinaldo, A.; Sander, G. C.; Barry, D. A.

    2016-12-01

    We evaluated the applicability of a large-scale river network evolution modelused to simulate morphological changes of a laboratory-scale landscape onwhich there were no visible rills. Previously, such models were used onlyat the landscape scale, or in laboratory experiments where rills form in thesoils surface. The flume-scale experiment (1-m × 2-m surface area) was de-signed to allow model calibration. Low-cohesive fine sand was placed in theflume while the slope and relief height were 5% and 25 cm, respectively.Non-uniform rainfall with an average intensity of 85 mmh -1 and a stan-dard deviation of 26% was applied to the sediment surface for 16 h. Highresolution Digital Elevation Models were captured at intervals during theexperiment. Estimates of the overland flow drainage network were derivedand, using these, the river network evolution model was numerically solvedand calibrated. A noticeable feature of the experiment was a steep transitionzone in soil elevation that migrated upstream during the experiment. Physi-cally, this zone indicates where the shear stress is sufficient to cause sediment1erosion. The model was calibrated during the first 4 h of experiment. Af-terwards, it predicted the subsequent 12 h of measured surface morphologychanges. Therefore, the applicability of the landscape evolution model wasextended for non-uniform rainfall and in absence of visible rills.Keywords:Numerical simulation, Particle Swarm Optimization, Sediment transport,River network evolution model.

  16. The missing magnetic morphology term in stellar rotation evolution

    NASA Astrophysics Data System (ADS)

    Garraffo, Cecilia; Drake, Jeremy J.; Cohen, Ofer

    2016-11-01

    Aims: This study examines the relationship between magnetic field complexity and mass and angular momentum losses. Observations of open clusters have revealed a bimodal distribution of the rotation periods of solar-like stars that has proven difficult to explain under the existing rubric of magnetic braking. Recent studies suggest that magnetic complexity can play an important role in controlling stellar spin-down rates. However, magnetic morphology is still neglected in most rotation evolution models due to the difficulty of properly accounting for its effects on wind driving and angular momentum loss. Methods: Using state-of-the-art magnetohydrodynamical magnetized wind simulations we study the effect that different distributions of the magnetic flux at different levels of geometrical complexity have on mass and angular momentum loss rates. Results: Angular momentum loss rates depend strongly on the level of complexity of the field but are independent of the way this complexity is distributed. We deduce the analytical terms representing the magnetic field morphology dependence of mass and angular momentum loss rates. We also define a parameter that best represents complexity for real stars. As a test, we use these analytical methods to estimate mass and angular momentum loss rates for 8 stars with observed magnetograms and compare them to the simulated results. Conclusions: Magnetic field complexity provides a natural physical basis for stellar rotation evolution models requiring a rapid transition between weak and strong spin-down modes.

  17. The evolution of larval morphology and swimming performance in ascidians.

    PubMed

    McHenry, Matthew J; Patek, Sheila N

    2004-06-01

    The complexity of organismal function challenges our ability to understand the evolution of animal locomotion. To meet this challenge, we used a combination of biomechanics, phylogenetic comparative analyses, and theoretical morphology to examine evolutionary changes in body shape and how those changes affected swimming performance in ascidian larvae. Results of phylogenetic comparative analyses suggest that coloniality evolved at least three times among ascidians and that colonial species have a convergent larval morphology characterized by a large trunk volume and shorter tail length in proportion to the trunk. To explore the functional significance of this evolutionary change, we first verified the accuracy of a mathematical model of swimming biomechanics in a solitary (C. intestinalis) and a colonial (D. occidentalis) species and then ran numerous simulations of the model that varied in tail length and trunk volume. The results of these simulations were used to construct landscapes of speed and cost of transport predictions within a trunk volume/tail length morphospace. Our results suggest that the reduction of proportionate tail length in colonial species resulted in improved energetic economy of swimming. The increase in the size of larvae with the origin of coloniality facilitated faster swimming with negligible energetic cost, but may have required a reduction in adult fecundity. Therefore, the evolution of ascidians appears to be influenced by a trade-off between the fecundity of the adult stage and the swimming performance of larvae.

  18. The continuity of bacterial and physicochemical evolution: theory and experiments.

    PubMed

    Spitzer, Jan

    2014-01-01

    The continuity of chemical and biological evolution, incorporating life's emergence, can be explored experimentally by energizing 'dead' bacterial biomacromolecules with nutrients under cycling physicochemical gradients. This approach arises from three evolutionary principles rooted in physical chemistry: (i) broken bacterial cells cannot spontaneously self-assemble into a living state without the supply of external energy - 2nd law of thermodynamics, (ii) the energy delivery must be cycling - the primary mechanism of chemical evolution at rotating planetary surfaces under solar irradiation, (iii) the cycling energy must act on chemical mixtures of high molecular diversity and crowding - provided by dead bacterial populations. Copyright © 2014 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  19. Morphological evolution of the lizard skull: a geometric morphometrics survey.

    PubMed

    Stayton, C Tristan

    2005-01-01

    Patterns of diversity among lizard skulls were studied from a morphological, phylogenetic, and functional perspective. A sample of 1,030 lizard skulls from 441 species in 17 families was used to create a lizard skull morphospace. This morphospace was combined with a phylogeny of lizard families to summarize general trends in the evolution of the lizard skull. A basal morphological split between the Iguania and Scleroglossa was observed. Iguanians are characterized by a short, high skull, with large areas of attachment for the external adductor musculature, relative to their sister group. The families of the Iguania appear to possess more intrafamilial morphological diversity than families of the Scleroglossa, but rarefaction of the data reveals this to be an artifact caused by the greater number of species represented in Iguanian families. Iguanian families also appear more dissimilar to one another than families of the Scleroglossa. Permutation tests indicate that this pattern is real and not due to the smaller number of families in the Iguanidae. Parallel and convergent evolution is observed among lizards with similar diets: ant and termite specialists, carnivores, and herbivores. However, these patterns are superimposed over the more general phylogenetic pattern of lizard skull diversity. This study has three central conclusions. Different clades of lizards show different patterns of disparity and divergence in patterns of morphospace occupation. Phylogeny imposes a primary signal upon which a secondary ecological signal is imprinted. Evolutionary patterns in skull metrics, taken with functional landmarks, allow testing of trends and the development of new hypotheses concerning both shape and biomechanics.

  20. Langevin Equation for the Morphological Evolution of Strained Epitaxial Films

    NASA Astrophysics Data System (ADS)

    Vvedensky, Dimitri; Haselwandter, Christoph

    2006-03-01

    A stochastic partial differential equation for the morphological evolution of strained epitaxial films is derived from an atomistic master equation. The transition rules in this master equation are based on previous kinetic Monte Carlo (KMC) simulations of a model that incorporates the effects of strain through local environment-dependent energy barriers to adatom detachment from step edges. The morphological consequences of these rules are seen in the transition from layer-by-layer growth to the appearance of three-dimensional islands with increasing strain. The regularization of the exact Langevin description of these rules yields a continuum equation whose lowest-order terms provide a coarse-grained theory of this model. The coefficients in this equation are expressed in terms of the parameters of the original lattice model, so a direct comparison between the morphologies produced by KMC simulations and this Langevin equation are meaningful. Comparisons with previous approaches are made to provide an atomistic interpretation of a similar equation derived by Golovin et al. based on classical elasticity.

  1. Simulating the evolution of coastal morphology and stratigraphy with a new morphological-behaviour model (GEOMBEST)

    USGS Publications Warehouse

    Stolper, D.; List, J.H.; Thieler, E.R.

    2005-01-01

    A new morphological-behaviour model is used to simulate evolution of coastal morphology associated with cross-shore translations of the shoreface, barrier, and estuary. The model encapsulates qualitative principles drawn from established geological concepts that are parameterized to provide quantitative predictions of morphological change on geological time scales (order 10 3 years), as well as shorter time scales applicable for long-term coastal management (order 101 to 102 years). Changes in sea level, and sediment volume within the shoreface, barrier, and estuary, drive the model behaviour. Further parameters, defining substrate erodibility, sediment composition, and time-dependent shoreface response, constrain the evolution of the shoreface towards an equilibrium profile. Results from numerical experiments are presented for the low-gradient autochthonous setting of North Carolina and the steep allochthonous setting of the Washington shelf. Simulations in the Currituck region of North Carolina examined the influence of sediment supply, substrate composition, and substrate erodibility on barrier transgression. Results demonstrate that the presence of a lithified substrate reduces the rate of barrier transgression compared to scenarios where an erodible, sand-rich substrate exists. Simulations of the Washington coast, 20 km north of the Columbia River, confirmed that the model can reproduce complex stratigraphy involving regressive and transgressive phases of coastal evolution. Results suggest that the first major addition of sediment to the shelf occurred around 12 900 years ago and resulted from the rapid addition of sediment volume from the Columbia River attributed to the Missoula floods. This was followed by a period where little or no sediment was added (12 400-9100 BP) and a third period when most sediment was added to the shelf (9100 BP to present) from the Columbia River. Comparing results from each setting demonstrates an indirect control that substrate

  2. Quantum jumps, superpositions, and the continuous evolution of quantum states

    NASA Astrophysics Data System (ADS)

    Dick, Rainer

    2017-02-01

    The apparent dichotomy between quantum jumps on the one hand, and continuous time evolution according to wave equations on the other hand, provided a challenge to Bohr's proposal of quantum jumps in atoms. Furthermore, Schrödinger's time-dependent equation also seemed to require a modification of the explanation for the origin of line spectra due to the apparent possibility of superpositions of energy eigenstates for different energy levels. Indeed, Schrödinger himself proposed a quantum beat mechanism for the generation of discrete line spectra from superpositions of eigenstates with different energies. However, these issues between old quantum theory and Schrödinger's wave mechanics were correctly resolved only after the development and full implementation of photon quantization. The second quantized scattering matrix formalism reconciles quantum jumps with continuous time evolution through the identification of quantum jumps with transitions between different sectors of Fock space. The continuous evolution of quantum states is then recognized as a sum over continually evolving jump amplitudes between different sectors in Fock space. In today's terminology, this suggests that linear combinations of scattering matrix elements are epistemic sums over ontic states. Insights from the resolution of the dichotomy between quantum jumps and continuous time evolution therefore hold important lessons for modern research both on interpretations of quantum mechanics and on the foundations of quantum computing. They demonstrate that discussions of interpretations of quantum theory necessarily need to take into account field quantization. They also demonstrate the limitations of the role of wave equations in quantum theory, and caution us that superpositions of quantum states for the formation of qubits may be more limited than usually expected.

  3. Reading Ombrone river delta evolution through beach ridges morphology

    NASA Astrophysics Data System (ADS)

    Mammi, Irene; Piccardi, Marco; Pranzini, Enzo; Rossi, Lorenzo

    2017-04-01

    The present study focuses on the evolution of the Ombrone River delta (Southern Tuscany, Italy) in the last five centuries, when fluvial sediment input was huge also as a consequence of the deforestation performed on the watershed. The aim of this study is to find a correlation between river input and beach ridges morphology and to explain the different distribution of wetlands and sand deposits on the two sides of the delta. Visible, NIR and TIR satellite images were processed to retrieve soil wetness associated to sand ridges and interdune silty deposits. High resolution LiDAR data were analysed using vegetation filter and GIS enhancement algorithms in order to highlight small morphological variations, especially in areas closer to the river where agriculture has almost deleted these morphologies. A topographic survey and a very high resolution 3D model obtained from a set of images acquired by an Unmanned Aerial Vehicle (UAV) were carried out in selected sites, both to calibrate satellite LiDAR 3D data, and to map low relief areas. Historical maps, aerial photography and written documents were analysed for dating ancient shorelines associated to specific beach ridges. Thus allowing the reconstruction of erosive and accretive phases of the delta. Seventy beach ridges were identified on the two wings of the delta. On the longer down-drift side (Northern wing) beach ridges are more spaced at the apex and gradually converge to the extremity, where the Bruna River runs and delimits the sub aerial depositional area of the Ombrone River. On the shorter up-drift lobe (Southern wing), beach ridges are closer, but run almost parallel each other. In this case, a rocky headland called Collelungo promontory closes and cuts the beach ridges sequence but shallow water depth allows sediment by pass. One kilometre to the south a more pronounced promontory encloses a small pocket beach (Cala di Forno) and identifies the limit of the subaerial depositionary area. Beach ridges

  4. Probing the evolution and morphology of hard carbon spheres

    SciTech Connect

    Pol, Vilas G.; Wen, Jianguo; Lau, Kah Chun; Callear, Samantha; Bowron, Daniel T.; Lin, Chi-Kai; Deshmukh, Sanket A.; Sankaranarayanan, Subramanian; Curtiss, Larry A.; David, William; Miller, Dean J.; Thackeray, Michael M.

    2014-03-01

    Monodispersed hard carbon spheres can be synthesized quickly and reproducibly by autogenic reactions of hydrocarbon precursors, notably polyethylene (including plastic waste), at high temperature and pressure. The carbon microparticles formed by this reaction have a unique spherical architecture, with a dominant internal nanometer layered motif, and they exhibit diamond-like hardness and electrochemical properties similar to graphite. In the present study, in-situ monitoring by X-ray diffraction along with electron microscopy, Raman spectroscopy, neutron pair-distribution function analysis, and computational modeling has been used to elucidate the morphology and evolution of the carbon spheres that form from the autogenic reaction of polyethylene at high temperature and pressure. A mechanism is proposed on how polyethylene evolves from a linear chain-based material to a layered carbon motif. Heating the spheres to 2400-2800 °C under inert conditions increases their graphitic character, particularly at the surface, which enhances their electrochemical and tribological properties.

  5. Time evolution of morphology in mechanically alloyed Fe-Cu.

    PubMed

    Wille, Catharina G; Al-Kassab, Tala'at; Kirchheim, Reiner

    2011-05-01

    Being widely accessible as well as already utilised in many applications, Fe-Cu acts as an ideal binary model alloy to elaborate the enforced nonequilibrium enhanced solubility in such a solution system that shows a limited regime of miscibility and characterised by a large positive heat of mixing. In addition to the detailed analysis of ball milled Fe-Cu powders by means of Atom Probe Tomography (APT), site specific structural analysis has been performed in this study using Transmission Electron Microscopy (TEM). In this contribution results on powders with low Cu concentrations (2.5-10 at%) are presented. Combining a ductile element (Cu, fcc) and a brittle one (Fe, bcc), striking differences in morphology were expected and found on all length-scales, depending on the mixing ratio of the two elements. However, not only could the atomic mixing of Fe and Cu be evaluated, but also the distribution of impurities, mostly stemming from the fabrication procedure. The combination of APT and TEM enables a correlation between the structural evolution and the chemical mixing during the milling process. For the first time, a clear distinction can be drawn between the morphological evolution at the surface and in the interior of the powder particles. This became possible owing to the site specific sample preparation of TEM lamellae by Focussed Ion Beam (FIB). Surprisingly, the texture arising from the ball milling process can directly be related to the classical rolling texture of cold rolled Fe. In addition, full homogeneity can be achieved even on the nano-scale for this material as shown by APT, resulting in an extended miscibility region in comparison to the equilibrium phase diagram. Grain sizes were determined by means of XRD and TEM. The strain corrected XRD results are in very good agreement with the values derived by TEM, both confirming a truly nanocrystalline structure.

  6. Etching mechanism and morphology evolution in dry etching

    NASA Astrophysics Data System (ADS)

    Lee, Sang Ho

    III-V compound semiconductors (GaAs(100), GaP(100), InP(100), and GaN(0001)) and an insulator (amorphous SiO2) were etched, then their morphological dependencies on etch conditions were studied. All of them were etched in Cl 2/H2/Ar plasmas. Low energy electron enhanced etching (LE4) technique was mostly used to prevent surface and subsurface damage that may interfere with surface roughness. This technique exploits electrons from a DC plasma positive column instead of ion bombardment for the chemical reaction enhancement on sample surfaces. However, the effects of ion bombardment were also studied. The selection of bombarding species (electrons or ions) and energy of the bombarding species were controlled by biasing potentials for samples. In any case, the bias potential to sample surfaces was kept within a range of low energy during bombardment to prevent etch-induced damage which may affect the morphological evolution. The x-ray Triple Axis Diffractometer (TAD) was used to monitor structural damage after etching; energy dispersive x-ray spectroscopy (EDX), for chemical impurities or etch product residues. However, no structural damage nor residue was detected within the experimental conditions. Scanning electron microscopy (SEM) was used to observe surface morphologies; then, height variations over the surfaces were obtained using atomic force microscopy (AFM). The AFM data quantified statistical behavior (i.e. rms height variation, skewness, auto-covariance function, structure factor) of the surfaces. Such statistical behavior was linked with atomic mechanisms through scaling theory. This methodology revealed that quenched noise and thermochemical properties, which are highly dependent on temperature, govern surface morphologies for GaAs(100), GaP(100), and Inp(100). Although the nature of quenched noise is not well understood, this study shows that ridges in the mum range act as quenched noise. The quenched noise originates in nonuniform thermochemical

  7. Tensile Deformation and Morphological Evolution of Precise Acid Copolymers

    NASA Astrophysics Data System (ADS)

    Middleton, Luri Robert; Szewczyk, Steve; Schwartz, Eric; Azoulay, Jason; Murtagh, Dustin; Cordaro, Joseph; Wagener, Kenneth; Winey, Karen

    2015-03-01

    Acid- and ion-containing polymers have specific interactions that produce complex and hierarchical morphologies that provide tunable mechanical properties. We report tensile testing and in situ x-ray scattering measurements of a homologous series of precise poly(ethylene-co-acrylic acid) copolymers (pxAA). Upon variation of the number of backbone carbons (x = 9, 15, 21) between pendant acrylic acid groups along the linear polyethylene chain, these materials exhibit pronounced changes in both their tensile properties as well as their morphological evolution during deformation. The hierarchical layered acid aggregate structure coincides with the onset of a strain hardening mechanism and was observed in both a semi-crystalline sample (p21AA) as well as an amorphous sample (p15AA). The polymer with the shortest spacing between acid groups (p9AA) maintains a liquid-like distribution of acid aggregates during deformation, exhibiting low tensile strength which we attribute to facile acid exchange between acid aggregates during deformation. Our results indicate that the formation of the hierarchical layered structure, which coincides with polymer strain-hardening regime, originates from the associating acid groups cooperatively preventing disentanglement. NSF-DMR-1103858.

  8. Plastic Deformation and Morphological Evolution of Precise Acid Copolymers

    NASA Astrophysics Data System (ADS)

    Middleton, L. Robert; Azoulay, Jason; Murtagh, Dustin; Cordaro, Joseph; Winey, Karen

    2014-03-01

    Acid- and ion-containing polymers have specific interactions that produce complex and hierarchical morphologies that provide remarkable mechanical properties. Historically, correlating the hierarchical structure and the mechanical properties of these polymers has been challenging due to the random arrangements of the polar groups along the backbone, ex situ characterization and the difficulty in deconvolution the effects of crystalline and amorphous regions along with secondary interactions between polymer chains. We address these challenges through in situ deformation of precise acid copolymers and relate the structural evolution to bulk properties by considering a series of copolymers with 9, 15 or 21 carbons between acid groups. Simultaneous synchrotron X-ray scattering and room temperature uniaxial tensile experiments of these precise acid copolymers were conducted. The different deformation mechanisms are compared and the microstructural evolution during deformation is discussed. For example, the liquid-like distribution of acid aggregates within the bulk copolymer transitions into a layered structure concurrent to a dramatic increase in tensile strength. Overall, we evaluate the effect and control of introducing acid groups on mechanical deformation of the bulk copolymers.

  9. Crystal morphology and gas evolution during solidification processes

    NASA Astrophysics Data System (ADS)

    Bianchi, Marcus Vinicius Andrade

    A theoretical and experimental study of the solidification process has been performed to obtain fundamental understanding relevant to metal casting, solidification of alloys, freezing of biological materials and other areas. The emphasis is on the effect of the morphology of the crystals on the solidification of binary systems and the role of dissolved gas evolution on gas porosity formation. Of specific interest is the effect of gas bubble nucleation and of crystal morphology on the effective thermal conductivity of the solidifying system. An analytical and a semi-analytical method are used to calculate the gas species redistribution due to the movement of the solid-liquid interface during the freezing processes. The gas segregation at the interface strongly depends on the solidification rate (i.e., the interface velocity). The results are important to predict the formation of gas voids in castings and, most importantly, to avoid them. It is found that for a constant solidification rate, bubble nucleation always occurs at the interface despite the magnitude of the interface velocity. On the other hand, when the solidification rate is inversely proportional to the square root of time bubble nucleation can be avoided by ensuring that the initial gas concentration is smaller than a ratio involving the gas solubilities in the liquid and in the solid. An experimental apparatus is designed and constructed to study solidification on a microscopic scale. The temperature gradient and the solidification rate are controlled and aqueous solutions of ammonium chloride of different initial concentrations are frozen in a controlled manner in order to measure the microscopic characteristic lengths of the crystals grown from ammonium chloride solutions of low initial concentrations. Air-saturated water is also solidified and the dissolved gas bubble nucleation observed. Microscopic geometric lengths of the crystal that form the mushy zone are correlated with the velocity of the

  10. History, Evolution, and Continuing Innovations of Intracranial Aneurysm Surgery.

    PubMed

    Lai, Leon T; O'Neill, Anthea H

    2017-06-01

    Evolution in the surgical treatment of intracranial aneurysms is driven by the need to refine and innovate. From an early application of the Hunterian carotid ligation to modern-day sophisticated aneurysm clip designs, progress has been made through dedication and technical maturation of cerebrovascular neurosurgeons to overcome challenges in their practices. The global expansion of endovascular services has challenged the existence of aneurysm surgery, changing the complexity of the aneurysm case mix and volume that are referred for surgical repair. Concepts of how to best treat intracranial aneurysms have evolved over generations and will continue to do so with further technological innovations. As with the evolution of any type of surgery, innovations frequently arise from the criticism of current techniques. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Estimating the distribution of Galaxy Morphologies on a continuous space

    NASA Astrophysics Data System (ADS)

    Vinci, Giuseppe; Freeman, Peter; Newman, Jeffrey; Wasserman, Larry; Genovese, Christopher

    2014-05-01

    The incredible variety of galaxy shapes cannot be summarized by human defined discrete classes of shapes without causing a possibly large loss of information. Dictionary learning and sparse coding allow us to reduce the high dimensional space of shapes into a manageable low dimensional continuous vector space. Statistical inference can be done in the reduced space via probability distribution estimation and manifold estimation.

  12. Diversity and constraints in the floral morphological evolution of Leandra s.str. (Melastomataceae).

    PubMed

    Reginato, Marcelo; Michelangeli, Fabián A

    2016-09-01

    Putative processes related to floral diversification and its relation to speciation are still largely unaccounted for in the Melastomataceae. Leandra s.str. is one of the most diverse lineages of the Neotropical Miconieae and ranks among the ten most diverse groups in the Atlantic Forest. Here, we describe the floral diversity of this lineage in a continuous framework and address several questions related to floral evolution and putative developmental and environmental constraints in its morphology. The morphological data set includes individual size measurements and shape scores (from elliptical Fourier analysis) for hypanthia, petals, stamens and styles. We evaluate whether there is evidence of correlation among these floral structures, shifts and convergent patterns, and association of these traits with elevation. Leandra s.str. flower structures present a strong phylogenetic signal and tend to be conserved among close relatives. The extremes in flower regimes seem to be quite distinct, but non-overlapping discrete flower types are not observed. Overall, the morphology of Leandra s.str. floral structures is correlated, and anther colour and inflorescence architecture correlate with flower structures. Additionally, the rates of species diversification and morphological evolution are correlated in most clades. Although some flower regimes tend to occur in different elevational ranges, no significant association is observed. The general idea that hypanthium-ovary fusion is associated with fruit types in the Melastomataceae does not hold for Leandra s.str., where, instead, hypanthium-ovary fusion seems to be associated with anther shape. The lowest rate of flower morphological change, when compared with species diversification rates, is observed in the clade that possesses the most specialized flowers in the group. While stuck on a single general pollination system, Leandra s.str. seems to be greatly wandering around it, given the flower diversity and convergent

  13. In vivo continuous evolution of genes and pathways in yeast

    PubMed Central

    Crook, Nathan; Abatemarco, Joseph; Sun, Jie; Wagner, James M.; Schmitz, Alexander; Alper, Hal S.

    2016-01-01

    Directed evolution remains a powerful, highly generalizable approach for improving the performance of biological systems. However, implementations in eukaryotes rely either on in vitro diversity generation or limited mutational capacities. Here we synthetically optimize the retrotransposon Ty1 to enable in vivo generation of mutant libraries up to 1.6 × 107 l−1 per round, which is the highest of any in vivo mutational generation approach in yeast. We demonstrate this approach by using in vivo-generated libraries to evolve single enzymes, global transcriptional regulators and multi-gene pathways. When coupled to growth selection, this approach enables in vivo continuous evolution (ICE) of genes and pathways. Through a head-to-head comparison, we find that ICE libraries yield higher-performing variants faster than error-prone PCR-derived libraries. Finally, we demonstrate transferability of ICE to divergent yeasts, including Kluyveromyces lactis and alternative S. cerevisiae strains. Collectively, this work establishes a generic platform for rapid eukaryotic-directed evolution across an array of target cargo. PMID:27748457

  14. Probability distributions of continuous measurement results for conditioned quantum evolution

    NASA Astrophysics Data System (ADS)

    Franquet, A.; Nazarov, Yuli V.

    2017-02-01

    We address the statistics of continuous weak linear measurement on a few-state quantum system that is subject to a conditioned quantum evolution. For a conditioned evolution, both the initial and final states of the system are fixed: the latter is achieved by the postselection in the end of the evolution. The statistics may drastically differ from the nonconditioned case, and the interference between initial and final states can be observed in the probability distributions of measurement outcomes as well as in the average values exceeding the conventional range of nonconditioned averages. We develop a proper formalism to compute the distributions of measurement outcomes, and evaluate and discuss the distributions in experimentally relevant setups. We demonstrate the manifestations of the interference between initial and final states in various regimes. We consider analytically simple examples of nontrivial probability distributions. We reveal peaks (or dips) at half-quantized values of the measurement outputs. We discuss in detail the case of zero overlap between initial and final states demonstrating anomalously big average outputs and sudden jump in time-integrated output. We present and discuss the numerical evaluation of the probability distribution aiming at extending the analytical results and describing a realistic experimental situation of a qubit in the regime of resonant fluorescence.

  15. Low mass galaxy clusters and galaxy morphology evolution

    NASA Astrophysics Data System (ADS)

    Nilo Castellón, J. L.; Órdenes, Y.; Ramos, F.; Alonso, M. V.; Cuevas, H.; García Lambas, D.; Ramírez, A.

    We present preliminary results about the galaxy morphology evolution in three low mass galaxy clusters: RX J0533.9-5809 ([VMF98]046, z 0.198), RX J1204.3-0350 ([VMF98]113, z 0.261) and RX J0533.8-5746 ([VMF98]045, z 0.295). Full photometric catalogues were created using SExtractor v2.8.0. Also, photometric redshifts (z phot ) were obtained for all the object classified as galaxies, using the ANNz code. Color-Magnitude Diagrams (CMD) were generated for those galaxies clas- sified as cluster members. Clear Red Cluster Sequences (RCS) with a me- dian slopes of -0.03 are observed for all the tree clusters. Based on the RCS best fit, a blue and a red population of galaxies were defined, observ- ing that the color distribution of the cluster [VMF98]045 is well fitted by a double Gaussian function (2 0.2), while the clusters [VMF98]046 and [VMF98]113 presents a third population between the blue and red peak dis- tributions. These preliminary results would show the existence of a possible transi- tion population between the blue and the red population in these low mass galaxy clusters at low redshifts.

  16. Aggregate Morphology Evolution by Sintering: Number & Diameter of Primary Particles.

    PubMed

    Eggersdorfer, Max L; Kadau, Dirk; Herrmann, Hans J; Pratsinis, Sotiris E

    2012-04-01

    The structure of fractal-like agglomerates (physically-bonded) and aggregates (chemically- or sinter-bonded) is important in aerosol synthesis of nanoparticles, and in monitoring combustion emissions and atmospheric particles. It influences also particle mobility, scattering, and eventually performance of nanocomposites, suspensions and devices made with such particles. Here, aggregate sintering by viscous flow of amorphous materials (silica, polymers) and grain boundary diffusion of crystalline ceramics (titania, alumina) or metals (Ni, Fe, Ag etc.) is investigated. A scaling law is found between average aggregate projected area and equivalent number of constituent primary particles during sintering: from fractal-like agglomerates to aggregates and eventually compact particles (e.g. spheres). This is essentially a relation independent of time, material properties and sintering mechanisms. It is used to estimate the equivalent primary particle diameter and number in aggregates. The evolution of aggregate morphology or structure is quantified by the effective fractal dimension (Df ) and mass-mobility exponent (Dfm ) and the corresponding prefactors. The Dfm increases monotonically during sintering converging to 3 for a compact particle. Therefore Dfm and its prefactor could be used to gauge the degree or extent of sintering of agglomerates made by a known collision mechanism. This analysis is exemplified by comparison to experiments of silver nanoparticle aggregates sintered at different temperatures in an electric tube furnace.

  17. Gravity and the Evolution of Cardiopulmonary Morphology in Snakes

    PubMed Central

    Lillywhite, Harvey B.; Albert, James S.; Sheehy, Coleman M.; Seymour, Roger S.

    2011-01-01

    Physiological investigations of snakes have established the importance of heart position and pulmonary structure in contexts of gravity effects on blood circulation. Here we investigate morphological correlates of cardiopulmonary physiology in contexts related to ecology, behavior and evolution. We analyze data for heart position and length of vascular lung in 154 species of snakes that exhibit a broad range of characteristic behaviors and habitat associations. We construct a composite phylogeny for these species, and we codify gravitational stress according to species habitat and behavior. We use conventional regression and phylogenetically independent contrasts to evaluate whether trait diversity is correlated with gravitational habitat related to evolutionary transitions within the composite tree topology. We demonstrate that snake species living in arboreal habitats, or which express strongly climbing behaviors, possess relatively short blood columns between the heart and the head, as well as relatively short vascular lungs, compared to terrestrial species. Aquatic species, which experience little or no gravity stress in water, show the reverse – significantly longer heart–head distance and longer vascular lungs. These phylogenetic differences complement the results of physiological studies and are reflected in multiple habitat transitions during the evolutionary histories of these snake lineages, providing strong evidence that heart–to–head distance and length of vascular lung are co–adaptive cardiopulmonary features of snakes. PMID:22079804

  18. Aggregate Morphology Evolution by Sintering: Number & Diameter of Primary Particles

    PubMed Central

    Eggersdorfer, Max L.; Kadau, Dirk; Herrmann, Hans J.; Pratsinis, Sotiris E.

    2013-01-01

    The structure of fractal-like agglomerates (physically-bonded) and aggregates (chemically- or sinter-bonded) is important in aerosol synthesis of nanoparticles, and in monitoring combustion emissions and atmospheric particles. It influences also particle mobility, scattering, and eventually performance of nanocomposites, suspensions and devices made with such particles. Here, aggregate sintering by viscous flow of amorphous materials (silica, polymers) and grain boundary diffusion of crystalline ceramics (titania, alumina) or metals (Ni, Fe, Ag etc.) is investigated. A scaling law is found between average aggregate projected area and equivalent number of constituent primary particles during sintering: from fractal-like agglomerates to aggregates and eventually compact particles (e.g. spheres). This is essentially a relation independent of time, material properties and sintering mechanisms. It is used to estimate the equivalent primary particle diameter and number in aggregates. The evolution of aggregate morphology or structure is quantified by the effective fractal dimension (Df) and mass-mobility exponent (Dfm) and the corresponding prefactors. The Dfm increases monotonically during sintering converging to 3 for a compact particle. Therefore Dfm and its prefactor could be used to gauge the degree or extent of sintering of agglomerates made by a known collision mechanism. This analysis is exemplified by comparison to experiments of silver nanoparticle aggregates sintered at different temperatures in an electric tube furnace. PMID:23658467

  19. Morphologic Evolution of the Mount St. Helens Crater Area, Washington

    NASA Technical Reports Server (NTRS)

    Beach, G. L.

    1985-01-01

    The large rockslide-avalanche that preceded the eruption of Mount St. Helens on 18 May 1980 removed approximately 2.8 cubic km of material from the summit and north flank of the volcano, forming a horseshoe-shaped crater 2.0 km wide and 3.9 km long. A variety of erosional and depositional processes, notably mass wasting and gully development, acted to modify the topographic configuration of the crater area. To document this morphologic evolution, a series of annual large-scale topographic maps is being produced as a base for comparitive geomorphic analysis. Four topographic maps of the Mount St. Helens crater area at a scale of 1:4000 were produced by the National Mapping Division of the U. S. Geological Survey. Stereo aerial photography for the maps was obtained on 23 October 1980, 10 September 1981, 1 September 1982, and 17 August 1983. To quantify topographic changes in the study area, each topographic map is being digitized and corresponding X, Y, and Z values from successive maps are being computer-compared.

  20. Gravity and the evolution of cardiopulmonary morphology in snakes.

    PubMed

    Lillywhite, Harvey B; Albert, James S; Sheehy, Coleman M; Seymour, Roger S

    2012-02-01

    Physiological investigations of snakes have established the importance of heart position and pulmonary structure in contexts of gravity effects on blood circulation. Here we investigate morphological correlates of cardiopulmonary physiology in contexts related to ecology, behavior and evolution. We analyze data for heart position and length of vascular lung in 154 species of snakes that exhibit a broad range of characteristic behaviors and habitat associations. We construct a composite phylogeny for these species, and we codify gravitational stress according to species habitat and behavior. We use conventional regression and phylogenetically independent contrasts to evaluate whether trait diversity is correlated with gravitational habitat related to evolutionary transitions within the composite tree topology. We demonstrate that snake species living in arboreal habitats, or which express strongly climbing behaviors, possess relatively short blood columns between the heart and the head, as well as relatively short vascular lungs, compared to terrestrial species. Aquatic species, which experience little or no gravity stress in water, show the reverse - significantly longer heart-head distance and longer vascular lungs. These phylogenetic differences complement the results of physiological studies and are reflected in multiple habitat transitions during the evolutionary histories of these snake lineages, providing strong evidence that heart-to-head distance and length of vascular lung are co-adaptive cardiopulmonary features of snakes.

  1. Morphological evolution of silver nanoparticles and its effect on metal-induced chemical etching of silicon.

    PubMed

    Baek, Seong-Ho; Kong, Bo Hyun; Cho, Hyung Koun; Kim, Jae Hyun

    2013-05-01

    In this report, we have demonstrated the morphological evolution of the silver nanoparticles (AgNPs) by controlling the growth conditions and its effect on morphology of silicon (Si) during metal-induced electroless etching (MICE). Self-organized AgNPs with peculiarly shape were synthesized by an electroless plating method in a conventional aqueous hydrofluoric acid (HF) and silver nitrate (AgNO3) solution. AgNP nuclei were densely created on Si wafer surface, and they had a strong tendency to merge and form continuous metal films with increasing AgNO3 concentrations. Also, we have demonstrated that the fabrication of aligned Si nanowire (SiNW) arrays in large area of p-Si (111) substrates by MICE in a mixture of HF and hydrogen peroxide (H2O2) solution. We have found that the morphology of the initial AgNPs and oxidant concentration (H2O2) greatly influence on the shape of the SiNW etching profile. The morphological results showed that AgNP shapes were closely related to the etching direction of SiNWs, that is, the spherical AgNPs preferred to move vertical to the Si substrate, whereas non-spherical AgNPs changed their movement to the [100] directions. In addition, as the etching activity was increased at higher H2O2 concentrations, AgNPs had a tendency to move from the original [111] direction to the energetically preferred [100] direction.

  2. Morphological evolution in the variable resin-producing Detarieae (Fabaceae): do morphological characters retain a phylogenetic signal?

    PubMed Central

    Fougère-Danezan, Marie; Herendeen, Patrick S.; Maumont, Stéphan; Bruneau, Anne

    2010-01-01

    Background and Aims Previous molecular phylogenetic studies disagree with the informal generic-level taxonomic groups based on morphology. In this study morphological characters in the caesalpinioid clade Detarieae are evaluated within a phylogenetic framework as a means of better understanding phylogenetic relationships and morphological evolution. Methods Morphological characters were observed and scored for representative species of Detarieae focusing on the resin-producing genera. Phylogenetic analyses were carried out with morphological characters alone and then combined with DNA sequences. Key Results Despite a high level of homoplasy, morphological data support several clades corresponding to those recovered in molecular phylogenetic analyses. The more strongly supported clades are each defined by at least one morphological synapomorphy. Several characters (e.g. apetaly) previously used to define informal generic groups evolved several times independently, leading to the differences observed with the molecular phylogenetic analyses. Although floral evolution is complex in Detarieae some patterns are recovered. Conclusions New informal taxonomic groupings are proposed based on the present findings. Floral evolution in the diverse Detarieae clade is characterized by a repeated tendency toward zygomorphy through the reduction of lateral petals and toward complete loss of petals. PMID:19939978

  3. Kinematic morphology of large-scale structure: evolution from potential to rotational flow

    SciTech Connect

    Wang, Xin; Szalay, Alex; Aragón-Calvo, Miguel A.; Neyrinck, Mark C.; Eyink, Gregory L.

    2014-09-20

    As an alternative way to describe the cosmological velocity field, we discuss the evolution of rotational invariants constructed from the velocity gradient tensor. Compared with the traditional divergence-vorticity decomposition, these invariants, defined as coefficients of the characteristic equation of the velocity gradient tensor, enable a complete classification of all possible flow patterns in the dark-matter comoving frame, including both potential and vortical flows. We show that this tool, first introduced in turbulence two decades ago, is very useful for understanding the evolution of the cosmic web structure, and in classifying its morphology. Before shell crossing, different categories of potential flow are highly associated with the cosmic web structure because of the coherent evolution of density and velocity. This correspondence is even preserved at some level when vorticity is generated after shell crossing. The evolution from the potential to vortical flow can be traced continuously by these invariants. With the help of this tool, we show that the vorticity is generated in a particular way that is highly correlated with the large-scale structure. This includes a distinct spatial distribution and different types of alignment between the cosmic web and vorticity direction for various vortical flows. Incorporating shell crossing into closed dynamical systems is highly non-trivial, but we propose a possible statistical explanation for some of the phenomena relating to the internal structure of the three-dimensional invariant space.

  4. Subocclusal dental morphology of sahelanthropus tchadensis and the evolution of teeth in hominins.

    PubMed

    Emonet, Edouard-Georges; Andossa, Likius; Taïsso Mackaye, Hassane; Brunet, Michel

    2014-01-01

    The evolution of the teeth in hominins is characterized by, among other characters, major changes in root morphology. However, little is known of the evolution from a plesiomorphic, ape-like root morphology to the crown hominin morphology. Here we present a study of the root morphology of the Miocene Chadian hominin Sahelanthropus tchadensis and its comparison to other hominins. The morphology of the whole lower dentition (I1 -M3 ) was investigated and described. The comparison with the species Ardipithecus kaddaba and Ardipithecus ramidus indicates a global homogeneity of root morphology in early hominins. This morphology, characterized notably by a reduction of the size and number of the roots of premolars, is a composite between an ape-like morphology and the later hominin morphology. Trends for root evolution in hominins are proposed, including the transition from a basal hominoid to extant Homo sapiens. This study also illustrates the low association between the evolution of tooth root morphology and the evolution of crowns in hominins.

  5. Morphology and evolution of the jaw suspension in lamniform sharks.

    PubMed

    Wilga, C D

    2005-07-01

    The morphology of the jaw suspension and jaw protrusion mechanism in lamniform sharks is described and mapped onto a cladogram to investigate how changes in jaw suspension and protrusion have evolved. This has revealed that several evolutionary modifications in the musculoskeletal apparatus of the jaws have taken place among lamniform sharks. Galeomorph sharks (Carcharhiniformes, Lamniformes, Orectolobiformes, and Heterodontiformes) have paired ethmopalatine ligaments connecting the ethmoid process of the upper jaw to the ethmoid region of the cranium. Basal lamniform sharks also acquired a novel single palatonasal ligament connecting the symphysis of the upper jaw to the cranium mid-ventral to the nasal capsule. Sharks in the family Lamnidae subsequently lost the original paired ethmopalatine ligament while retaining the novel palatonasal ligament. Thus, basal lamniform taxa (Mitsukurina owstoni, Carcharius taurus, Alopias vulpinnis) have increased ligamentous support of the lateral region of the upper jaw while derived species (Lamnidae) have lost this lateral support but gained anterior support. In previous studies the morphology of the jaw suspension has been shown to play a major role in the mechanism of upper jaw protrusion in elasmobranchs. The preorbitalis is the primary muscle effecting upper jaw protrusion in squalean (sister group to galeomorphs) and carcharhiniform (sister group to lamniforms) sharks. The preorbitalis originates from the quadratomandibularis muscle and inserts onto the nasal capsule in squalean and carcharhiniform sharks. Carcharhiniform sharks have evolved a subdivided preorbitalis muscle with the new division inserting near the ethmoid process of the palatoquadrate (upper jaw). Alopid sharks have also independently evolved a partially subdivided preorbitalis with the new division inserting at the base of the ethmoid process and surrounding connective tissue. Lamnid sharks have retained the two preorbitalis divisions but have modified

  6. Clades reach highest morphological disparity early in their evolution

    NASA Astrophysics Data System (ADS)

    Hughes, Martin; Gerber, Sylvain; Albion Wills, Matthew

    2013-08-01

    There are few putative macroevolutionary trends or rules that withstand scrutiny. Here, we test and verify the purported tendency for animal clades to reach their maximum morphological variety relatively early in their evolutionary histories (early high disparity). We present a meta-analysis of 98 metazoan clades radiating throughout the Phanerozoic. The disparity profiles of groups through time are summarized in terms of their center of gravity (CG), with values above and below 0.50 indicating top- and bottom-heaviness, respectively. Clades that terminate at one of the "big five" mass extinction events tend to have truncated trajectories, with a significantly top-heavy CG distribution overall. The remaining 63 clades show the opposite tendency, with a significantly bottom-heavy mean CG (relatively early high disparity). Resampling tests are used to identify groups with a CG significantly above or below 0.50; clades not terminating at a mass extinction are three times more likely to be significantly bottom-heavy than top-heavy. Overall, there is no clear temporal trend in disparity profile shapes from the Cambrian to the Recent, and early high disparity is the predominant pattern throughout the Phanerozoic. Our results do not allow us to distinguish between ecological and developmental explanations for this phenomenon. To the extent that ecology has a role, however, the paucity of bottom-heavy clades radiating in the immediate wake of mass extinctions suggests that early high disparity more probably results from the evolution of key apomorphies at the base of clades rather than from physical drivers or catastrophic ecospace clearing.

  7. The morphology, processes, and evolution of Monterey Fan: a revisit

    USGS Publications Warehouse

    Gardner, James V.; Bohannon, Robert G.; Field, Michael E.; Masson, Douglas G.

    2010-01-01

    Long-range (GLORIA) and mid-range (TOBI) sidescan imagery and seismic-reflection profiles have revealed the surface morphology and architecture of the complete Monterey Fan. The fan has not developed a classic wedge shape because it has been blocked for much of its history by Morro Fracture Zone. The barrier has caused the fan to develop an upper-fan and lower-fan sequence that are distinctly different from one another. The upper-fan sequence is characterized by Monterey and Ascension Channels and associated Monterey Channel-levee system. The lower-fan sequence is characterized by depositional lobes of the Ascension, Monterey, and Sur-Parkington-Lucia systems, with the Monterey depositional lobe being the youngest. Presently, the Monterey depositional lobe is being downcut because the system has reached a new, lower base level in the Murray Fracture Zone. A five-step evolution of Monterey Fan is presented, starting with initial fan deposition in the Late Miocene, about 5.5 Ma. This first stage was one of filling bathymetric lows in the oceanic basement in what was to become the upper-fan segment. The second stage involved filling the bathymetric low on the north side of Morro Fracture Zone, and probably not much sediment was transported beyond the fracture zone. The third stage witnessed sediment being transported around both ends of Morro Fracture Zone and initial sedimentation on the lower-fan segment. During the fourth stage Ascension Channel was diverted into Monterey Channel, thereby cutting off sedimentation to the Ascension depositional lobe.

  8. Clades reach highest morphological disparity early in their evolution

    PubMed Central

    Hughes, Martin; Gerber, Sylvain; Wills, Matthew Albion

    2013-01-01

    There are few putative macroevolutionary trends or rules that withstand scrutiny. Here, we test and verify the purported tendency for animal clades to reach their maximum morphological variety relatively early in their evolutionary histories (early high disparity). We present a meta-analysis of 98 metazoan clades radiating throughout the Phanerozoic. The disparity profiles of groups through time are summarized in terms of their center of gravity (CG), with values above and below 0.50 indicating top- and bottom-heaviness, respectively. Clades that terminate at one of the “big five” mass extinction events tend to have truncated trajectories, with a significantly top-heavy CG distribution overall. The remaining 63 clades show the opposite tendency, with a significantly bottom-heavy mean CG (relatively early high disparity). Resampling tests are used to identify groups with a CG significantly above or below 0.50; clades not terminating at a mass extinction are three times more likely to be significantly bottom-heavy than top-heavy. Overall, there is no clear temporal trend in disparity profile shapes from the Cambrian to the Recent, and early high disparity is the predominant pattern throughout the Phanerozoic. Our results do not allow us to distinguish between ecological and developmental explanations for this phenomenon. To the extent that ecology has a role, however, the paucity of bottom-heavy clades radiating in the immediate wake of mass extinctions suggests that early high disparity more probably results from the evolution of key apomorphies at the base of clades rather than from physical drivers or catastrophic ecospace clearing. PMID:23884651

  9. Continuous evolution of Bacillus thuringiensis toxins overcomes insect resistance.

    PubMed

    Badran, Ahmed H; Guzov, Victor M; Huai, Qing; Kemp, Melissa M; Vishwanath, Prashanth; Kain, Wendy; Nance, Autumn M; Evdokimov, Artem; Moshiri, Farhad; Turner, Keith H; Wang, Ping; Malvar, Thomas; Liu, David R

    2016-05-05

    The Bacillus thuringiensis δ-endotoxins (Bt toxins) are widely used insecticidal proteins in engineered crops that provide agricultural, economic, and environmental benefits. The development of insect resistance to Bt toxins endangers their long-term effectiveness. Here we have developed a phage-assisted continuous evolution selection that rapidly evolves high-affinity protein-protein interactions, and applied this system to evolve variants of the Bt toxin Cry1Ac that bind a cadherin-like receptor from the insect pest Trichoplusia ni (TnCAD) that is not natively bound by wild-type Cry1Ac. The resulting evolved Cry1Ac variants bind TnCAD with high affinity (dissociation constant Kd = 11-41 nM), kill TnCAD-expressing insect cells that are not susceptible to wild-type Cry1Ac, and kill Cry1Ac-resistant T. ni insects up to 335-fold more potently than wild-type Cry1Ac. Our findings establish that the evolution of Bt toxins with novel insect cell receptor affinity can overcome insect Bt toxin resistance and confer lethality approaching that of the wild-type Bt toxin against non-resistant insects.

  10. Continuous evolution of B. thuringiensis toxins overcomes insect resistance

    PubMed Central

    Badran, Ahmed H.; Guzov, Victor M.; Huai, Qing; Kemp, Melissa M.; Vishwanath, Prashanth; Kain, Wendy; Nance, Autumn M.; Evdokimov, Artem; Moshiri, Farhad; Turner, Keith H.; Wang, Ping; Malvar, Thomas; Liu, David R.

    2016-01-01

    The Bacillus thuringiensis δ-endotoxins (Bt toxins) are widely used insecticidal proteins in engineered crops that provide agricultural, economic, and environmental benefits. The development of insect resistance to Bt toxins endangers their long-term effectiveness. We developed a phage-assisted continuous evolution (PACE) selection that rapidly evolves high-affinity protein-protein interactions, and applied this system to evolve variants of the Bt toxin Cry1Ac that bind a cadherin-like receptor from the insect pest Trichoplusia ni (TnCAD) that is not natively targeted by wild-type Cry1Ac. The resulting evolved Cry1Ac variants bind TnCAD with high affinity (Kd = 11–41 nM), kill TnCAD-expressing insect cells that are not susceptible to wild-type Cry1Ac, and kill Cry1Ac-resistant T. ni insects up to 335-fold more potently than wild-type Cry1Ac. Our findings establish that the evolution of Bt toxins with novel insect cell receptor affinity can overcome Bt toxin resistance in insects and confer lethality approaching that of the wild-type Bt toxin against non-resistant insects. PMID:27120167

  11. Continuous in vitro evolution of bacteriophage RNA polymerase promoters

    NASA Technical Reports Server (NTRS)

    Breaker, R. R.; Banerji, A.; Joyce, G. F.

    1994-01-01

    Rapid in vitro evolution of bacteriophage T7, T3, and SP6 RNA polymerase promoters was achieved by a method that allows continuous enrichment of DNAs that contain functional promoter elements. This method exploits the ability of a special class of nucleic acid molecules to replicate continuously in the presence of both a reverse transcriptase and a DNA-dependent RNA polymerase. Replication involves the synthesis of both RNA and cDNA intermediates. The cDNA strand contains an embedded promoter sequence, which becomes converted to a functional double-stranded promoter element, leading to the production of RNA transcripts. Synthetic cDNAs, including those that contain randomized promoter sequences, can be used to initiate the amplification cycle. However, only those cDNAs that contain functional promoter sequences are able to produce RNA transcripts. Furthermore, each RNA transcript encodes the RNA polymerase promoter sequence that was responsible for initiation of its own transcription. Thus, the population of amplifying molecules quickly becomes enriched for those templates that encode functional promoters. Optimal promoter sequences for phage T7, T3, and SP6 RNA polymerase were identified after a 2-h amplification reaction, initiated in each case with a pool of synthetic cDNAs encoding greater than 10(10) promoter sequence variants.

  12. Continuous in vitro evolution of bacteriophage RNA polymerase promoters

    NASA Technical Reports Server (NTRS)

    Breaker, R. R.; Banerji, A.; Joyce, G. F.

    1994-01-01

    Rapid in vitro evolution of bacteriophage T7, T3, and SP6 RNA polymerase promoters was achieved by a method that allows continuous enrichment of DNAs that contain functional promoter elements. This method exploits the ability of a special class of nucleic acid molecules to replicate continuously in the presence of both a reverse transcriptase and a DNA-dependent RNA polymerase. Replication involves the synthesis of both RNA and cDNA intermediates. The cDNA strand contains an embedded promoter sequence, which becomes converted to a functional double-stranded promoter element, leading to the production of RNA transcripts. Synthetic cDNAs, including those that contain randomized promoter sequences, can be used to initiate the amplification cycle. However, only those cDNAs that contain functional promoter sequences are able to produce RNA transcripts. Furthermore, each RNA transcript encodes the RNA polymerase promoter sequence that was responsible for initiation of its own transcription. Thus, the population of amplifying molecules quickly becomes enriched for those templates that encode functional promoters. Optimal promoter sequences for phage T7, T3, and SP6 RNA polymerase were identified after a 2-h amplification reaction, initiated in each case with a pool of synthetic cDNAs encoding greater than 10(10) promoter sequence variants.

  13. Continuous Adaptive Population Reduction (CAPR) for Differential Evolution Optimization.

    PubMed

    Wong, Ieong; Liu, Wenjia; Ho, Chih-Ming; Ding, Xianting

    2017-06-01

    Differential evolution (DE) has been applied extensively in drug combination optimization studies in the past decade. It allows for identification of desired drug combinations with minimal experimental effort. This article proposes an adaptive population-sizing method for the DE algorithm. Our new method presents improvements in terms of efficiency and convergence over the original DE algorithm and constant stepwise population reduction-based DE algorithm, which would lead to a reduced number of cells and animals required to identify an optimal drug combination. The method continuously adjusts the reduction of the population size in accordance with the stage of the optimization process. Our adaptive scheme limits the population reduction to occur only at the exploitation stage. We believe that continuously adjusting for a more effective population size during the evolutionary process is the major reason for the significant improvement in the convergence speed of the DE algorithm. The performance of the method is evaluated through a set of unimodal and multimodal benchmark functions. In combining with self-adaptive schemes for mutation and crossover constants, this adaptive population reduction method can help shed light on the future direction of a completely parameter tune-free self-adaptive DE algorithm.

  14. Statistical Quadrature Evolution for Continuous-Variable Quantum Key Distribution

    NASA Astrophysics Data System (ADS)

    Gyongyosi, Laszlo; Imre, Sandor

    2016-05-01

    We propose a statistical quadrature evolution (SQE) method for multicarrier continuous-variable quantum key distribution (CVQKD). A multicarrier CVQKD protocol utilizes Gaussian subcarrier quantum continuous variables (CV) for information transmission. The SQE framework provides a minimal error estimate of the quadratures of the CV quantum states from the discrete, measured noisy subcarrier variables. We define a method for the statistical modeling and processing of noisy Gaussian subcarrier quadratures. We introduce the terms statistical secret key rate and statistical private classical information, which quantities are derived purely by the statistical functions of our method. We prove the secret key rate formulas for a multiple access multicarrier CVQKD. The framework can be established in an arbitrary CVQKD protocol and measurement setting, and are implementable by standard low-complexity statistical functions, which is particularly convenient for an experimental CVQKD scenario. This work was partially supported by the GOP-1.1.1-11-2012-0092 project sponsored by the EU and European Structural Fund, by the Hungarian Scientific Research Fund - OTKA K-112125, and by the COST Action MP1006.

  15. Surface morphology evolution during low energy ion bombardment of silicon and gallium antimonide

    NASA Astrophysics Data System (ADS)

    Ozaydin-Ince, Gozde

    expected from existing linear theory. It was observed that, although Si surfaces remained smooth during bombardment at room temperature when a small amount of Molybdenum atoms was supplied to the surface during ion bombardment, correlated structures with two different characteristic length scales developed. The shorter length scale features ("dots") coarsened with time until they reached a constant spatial wavelength. The longer length scale corrugations associated with kinetic roughening, however, continued to grow in amplitude during bombardment. The evolution of this kinetic roughening could be described by the Family-Vicsek scaling hypothesis. A new noise term associated with inhomogeneities in local relaxation was proposed to quantitatively explain the early time kinetics. In addition, in-situ wafer curvature measurements were performed during ion bombardment to study the real-time stress state of the surface. The measurements showed that initially a compressive stress developed during bombardment, likely due to amorphization of the surface. However, seeding caused a larger tensile stress to develop with further bombardment, possibly due to the formation of higher density regions around the Mo seed atoms on the surface. The effects of this large tensile stress on the surface instability and the formation of the nanodots were also examined. Simulations of existing continuum equations of surface morphology evolution during normal incidence ion bombardment at room temperature were performed to study the effects of individual terms on the surface morphology, as well as their relations with each other. It was observed that the noisy Kuramoto-Sivashinsky model could only qualitatively predict the surface evolution, but could not reproduce all of the experimental results. Finally, the morphology evolution of GaSb(100) surfaces during ion bombardment at different energies was also studied. Formation of correlated nanodots with a length scale of approximately 30 nm was

  16. Morphological diversity and evolution of egg and clutch structure in amphibians

    USGS Publications Warehouse

    Altig, Ronald; McDiarmid, Roy W.

    2007-01-01

    The first part of this synthesis summarizes the morphology of the jelly layers surrounding an amphibian ovum. We propose a standard terminology and discuss the evolution of jelly layers. The second part reviews the morphological diversity and arrangement of deposited eggs?the ovipositional mode; we recognize 5 morphological classes including 14 modes. We discuss some of the oviductal, ovipositional, and postovipositional events that contribute to these morphologies. We have incorporated data from taxa from throughout the world but recognize that other types will be discovered that may modify understanding of these modes. Finally, we discuss the evolutionary context of the diversity of clutch structure and present a first estimate of its evolution.

  17. CONTINUOUS, AUTOMATED AND SIMULTANEOUS MEASUREMENT OF OXYGEN UPTAKE AND CARBON DIOXIDE EVOLUTION IN BIOLOGICAL SYSTEMS

    EPA Science Inventory

    Commercial respirometers are capable of continuously and automatically measuring oxygen uptake in bioreactors. A method for continuously and automatically measuring carbon dioxide evolution can be retrofitted to commercial respirometers. Continuous and automatic measurements of...

  18. CONTINUOUS, AUTOMATED AND SIMULTANEOUS MEASUREMENT OF OXYGEN UPTAKE AND CARBON DIOXIDE EVOLUTION IN BIOLOGICAL SYSTEMS

    EPA Science Inventory

    Commercial respirometers are capable of continuously and automatically measuring oxygen uptake in bioreactors. A method for continuously and automatically measuring carbon dioxide evolution can be retrofitted to commercial respirometers. Continuous and automatic measurements of...

  19. Long-term morphologic evolution of the Hangzhou Bay, China

    NASA Astrophysics Data System (ADS)

    Wen, W.; Zhijun, D.; Hualiang, X.

    2013-12-01

    Estuaries are the most productive ecosystems of coastal zones in the world, which are significant to mankind as places of navigation, recreation and commerce as well as extensive and diverse habitats for wildlife. However, most estuary environments in the world had occurred greatly changes in recent decades. These estuaries have suffered from impacts of forcing factors including wave climate, mean sea level change and storm surge, especial to the intensive human activities such as training wall construction, channel dredging, sand mining and dam constructions. Thus, there have been increasing concerns about estuary environment changes under effects of different factors. Riverine loads into the Changjiang Estuary have declined dramatically with the construction of Three Gorges Dam (TGD) in 2003. The morphological evolution of the Hangzhou bay that located the southern proximity of the Yangtze estuary starts to attract increasing attentions due to most material of the Hangzhou bay received from Yangtze estuary. In this paper, historical bathymetric charts were digitized and analyzed within a GIS to provide quantitative estimate of changes in volumes in different regions below 0 m elevation. The results show that Hangzhou bay has experienced a major loss in estuarine volume of about 15% with annual mean sediment deposition rate of 80 million m3/a during the last 75 years. However, there is a large-scale spatial adjustment in Hangzhou bay: Bathymetric changes of the Hangzhou bay can be rapidly shifted within the range of 8-10 classes. Volume of the Jinshanzui upstream of the Hangzhou bay has obviously decreased in the last 75 years, especially during 2003-2008. However, Volume of the southern Hangzhou bay has experienced slowly decrease with minor deposition. The northern Hangzhou bay had largely volume changes with rapidly decrease during 1931-1981, and drastically increase since 2003. Further analysis of the bathymetric data relating to possible factors indicates

  20. RPAS Monitoring of the Morphological Evolution of Coastal Foredunes

    NASA Astrophysics Data System (ADS)

    Taddia, Yuri; Corbau, Corinne; Elena, Zambello; Russo, Valentina; Pellegrinelli, Alberto; Simeoni, Umberto

    2016-04-01

    The coastal environment is in rapid and continuous evolution and it is easily affected by many natural and antropic factors. Beaches are often backed by vegetated dunes and fulfill many different valuable ecosystem functions. They act as protective buffers against storm surge, wave attack and erosion, providing a unique habitat for flora and fauna. Coastal embryo dunes, found above mean high water, are dynamic landform being able to supply sand to the beach when needed. They may form rapidly and may be rapidly destructed due to high tides and storm waves or human interferences. The southern part (3 km long) of Rosolina (Adriatic Sea, Italy) is characterized by a wide beach bordered by a complex dune system. The geomorphological characteristics of embryo dunes have been identified by using an RPAS in order to develop a fast and low-cost surveying technique. The aircraft has flown at a 50 meters altitude, taking photos with a 12Mpix RGB camera and a GSD of about 1 cm. The images overlap of 80% in the flight direction and 60% laterally. Fourteen targets have been collocated in the area as ground control points and were surveyed using Network Real Time Kinematic (NRTK) GNSS. Images and GCPs were elaborated in Agisoft PhotoScan to generate the model. A similar NRTK survey has been performed to integrate the wrong data (due to vegetation) for the creation of a digital elevation model (DEM) in a first step and finally to validate the model obtained through UAV photogrammetry through a comparison with specially surveyed points. The creation of a DEM from photos is one of main tasks and its accuracy is critical. A challenge in this work was to recognize the vegetation in the sand dunes area to exclude all the points not belonging to the ground. This was possible through a classification process based on slope detection. Finally, the suitable elevation accuracy has been reached and the survey has revealed a complex dune system characterized by: • on the upper part of the

  1. Are rates of species diversification correlated with rates of morphological evolution?

    PubMed Central

    Adams, Dean C.; Berns, Chelsea M.; Kozak, Kenneth H.; Wiens, John J.

    2009-01-01

    Some major evolutionary theories predict a relationship between rates of proliferation of new species (species diversification) and rates of morphological divergence between them. However, this relationship has not been rigorously tested using phylogeny-based approaches. Here, we test this relationship with morphological and phylogenetic data from 190 species of plethodontid salamanders. Surprisingly, we find that rates of species diversification and morphological evolution are not significantly correlated, such that rapid diversification can occur with little morphological change, and vice versa. We also find that most clades have undergone remarkably similar patterns of morphological evolution (despite extensive sympatry) and that those relatively novel phenotypes are not associated with rapid diversification. Finally, we find a strong relationship between rates of size and shape evolution, which has not been previously tested. PMID:19439441

  2. Continuous evolution of cloud droplet spectrum in cumulus cloud

    NASA Astrophysics Data System (ADS)

    Gotoh, Toshiyuki; Saito, Izumi; Watanabe, Takeshi

    2016-11-01

    We have developed a new method that can seamlessly simulate the continuous growth of cloud droplets to rain drops from the first principle. A cubic box ascending with a mean updraft was introduced and the updraft velocity was self-consistently determined in such a way that the mean turbulent velocity within the box vanished. All the degrees of freedom were numerically integrated by using the Lagrangian dynamics for the droplets and the Eulerian direct numerical simulation for the turbulence. The key processes included were turbulent transport, condensation/evaporation, Reynolds number dependent drag, collision-coalescence, and entrainment. We have examined the evolution of the droplet spectrum over 400 s for a few of the initial droplet spectra: (1) single peak, (2) double peaks, (3) observed distribution, each of which had the same initial mean radius 10 μm and the same mean droplet density np = 125 cm-3. The turbulence was in steady state at Rλ = 86 and ɛ = 33 cm2s-3. It is found that the mass spectrum peak moves slowly toward the larger radius in the early stage and then quickly evolves to have the second peak through the autoconversion to the accretion state. Effects of the condensation and coalescence would also be reported. Grants-in-Aid for Scientific Research Nos.15H02218 and hp150088, hp160085 and jh160012.

  3. Morphological evolution of growing crystals - A Monte Carlo simulation

    NASA Technical Reports Server (NTRS)

    Xiao, Rong-Fu; Alexander, J. Iwan D.; Rosenberger, Franz

    1988-01-01

    The combined effects of nutrient diffusion and surface kinetics on the crystal morphology were investigated using a Monte Carlo model to simulate the evolving morphology of a crystal growing from a two-component gaseous nutrient phase. The model combines nutrient diffusion, based on a modified diffusion-limited aggregation process, with anisotropic surface-attachment kinetics and surface diffusion. A variety of conditions, ranging from kinetic-controlled to diffusion-controlled growth, were examined. Successive transitions from compact faceted (dominant surface kinetics) to open dendritic morphologies (dominant volume diffusion) were obtained.

  4. Malagasy cichlids differentially limit impacts of body shape evolution on oral jaw functional morphology.

    PubMed

    Martinez, Christopher M; Sparks, John S

    2017-09-01

    Patterns of trait covariation, such as integration and modularity, are vital factors that influence the evolution of vertebrate body plans. In functional systems, decoupling of morphological modules buffers functional change in one trait by reducing correlated variation with another. However, for complex morphologies with many-to-one mapping of form to function (MTOM), resistance to functional change may also be achieved by constraining morphological variation within a functionally stable region of morphospace. For this research, we used geometric morphometrics to evaluate the evolution of body shape and its relationship with jaw functional morphology in two independent radiations of endemic Malagasy cichlid (Teleostei: Cichlidae). Our results suggested that the two subfamilies used different strategies to mitigate impacts of body shape variation on a metric of jaw function, maxillary kinematic transmission (MKT): (1) modularity between cranial and postcranial morphologies, and (2) integration of body and jaw evolution, with jaw morphologies varying in a manner that limits change in MKT. This research shows that, unlike modularity, MTOM allows traits to retain strong evolutionary covariation while still reducing impacts on functionality. These results suggest that MTOM, and its influence on the evolution of correlated traits, is likely much more widespread than is currently understood. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.

  5. Applications of Physical Modeling to the Evolution of Slot Canyon Morphology

    NASA Astrophysics Data System (ADS)

    Carter, C. L.; Anderson, R. S.

    2003-12-01

    Abrasion-dominated fluvial erosion generates slot canyons with intricately undulating wall morphology. Flows in slot canyons are unique in that the walls comprise a significant portion of the wetted perimeter of the flow. Wire Pass, UT incises through massive cross-bedded Navajo Sandstone. The canyon ranges in width from <1 m to ˜5 m in the slotted sections, and in depth from ˜5 m to ˜25 m. Incision in Wire Pass and related slots is limited to ephemeral flash floods; paleoflood debris indicates that the depth-to-width ratios of these flows are at least 1:1. Sub-meter resolution field mapping of a 20 m length of Wire Pass shows that the wall morphology is a complicated combination of both in-phase (meander-like), and out-of-phase (pinch and swell) type undulations. In order to understand the evolution of slot canyon wallforms, and the influence of these shapes on flow dynamics, we recorded the evolution of four distinct canyon wall morphologies in a 2.4 m flume box at the St. Anthony Falls Laboratory. In a substrate consisting of approximately 3:2 mixtures of F110 sand and plaster of Paris, we molded in-phase and out-of-phase undulations, and wide (6.5 cm) and narrow (4 cm) straight initial wall profiles. Sediment-laden water flowed through each canyon at discharges ranging from 2.6 L/s to 4.2 L/s. We made velocity measurements in three dimensions in sections of each canyon. At 5 hr intervals we documented wall and bed morphology at 0.5 cm resolution using a Keyance LK-500 laser mounted on a moving cart. Initial results show that wall faces in both undulating canyons evolve at different rates, and their flow fields are strongly asymmetric. Upstream-facing walls in undulating canyons eroded most rapidly. In the straight-walled canyons, small perturbations developed in the walls. Each canyon incised downward and headward from a knickpoint generated by a consistent lower boundary. Incision depths averaged ˜6 cm. Incision generally propagated around small cracks in

  6. Surface morphology evolution in silicon during ion beam processing

    SciTech Connect

    Bedrossian P; Caturla, M; Diaz de la Rubia, T; Johnson, M

    1999-08-01

    The Semiconductor Industry Association (SIA) projects that the semiconductor chips used in personal computers and scientific workstations will reach five times the speed and ten times the memory capacity of the current pentium-class processor by the year 2007. However, 1 GHz on-chip clock speeds and 64 Gbits/Chip DRAM technology will not come easy and without a price. Such technologies will require scaling the minimum feature size of CMOS devices (the transistors in the silicon chip) down to below 100nm from the current 180 to 250 nm. This requirement has profound implications for device manufacturing. Existing processing techniques must increasingly be understood quantitatively and modeled with unprecedented precision. Indeed, revolutionary advances in the development of physics-based process simulation tools will be required to achieve the goals for cost efficient manufacturing, and to satisfy the needs of the defense industrial base. These advances will necessitate a fundamental improvement in our basic understanding of microstructure evolution during processing. In order to cut development time and costs, the semiconductor industry makes extensive use of simple models of dopant implantation, and of phenomenological models of defect annealing and diffusion. However, the production of a single device often requires more than 200 processing steps, and the cumulative effects of the various steps are far too complex to be treated with these models. The lack of accurate process modeling simulators is proving to be a serious impediment to the development of next generation devices. New atomic-level models are required to describe the point defect distributions produced by the implantation process, and the defect and dopant diffusion resulting from rapid thermal annealing steps. In this LDRD project, we investigated the migration kinetics of defects and dopants in silicon both experimentally and theoretically to provide a fundamental database for use in the development

  7. The Continuing Infrared Evolution of SN1987A

    NASA Astrophysics Data System (ADS)

    Dwek, Eli; Arendt, Richard; Bouchet, Patrice; Burrows, David; Challis, Peter; Danziger, John; De Buizer, James; Gehrz, Robert; Kirshner, Robert; McCray, Richard; Park, Sangwook; Polomski, Elisha; Woodward, Charles

    2008-03-01

    We will use the SPITZER to continue the ongoing monitoring of SN1987A, the youngest supernova remnant that is undergoing noticable evolutionary changes during the lifetime of the Great Observatories. At infrared wavelengths SN1987A provides a unique complimentary view of the interaction of the SN blast wave with the equatorial ring (ER). Dust in the ER is being swept up by the expanding shock and collisionally heated by the X-ray emitting gas observed with CHANDRA, giving rise to IR emission that reveals the composition and amount of dust that formed in the outflow of the presupernova star. The IR observations also provide a unique tool for studying physical processes - the collisional heating and destruction of dust - in dusty X-ray emitting plasmas. Parts of the blast wave has penetrated the denser regions of the ER, creating the 'hotspots' observed with HUBBLE. IR line emission from these regions provide important information on the physical conditions and the elemental and dust composition in these cooling shocks. Additionally, the ejecta of the SN explosion contains dust that was observed to have formed about 530 days after the explosion. Its imminent interaction with the ring will heat up this dust, which will be observable with SPITZER. In addition to providing useful information on SN1987A and its environment, the proposed observations will address key global issues regarding the origin and evolution of dust in the universe: how much dust is formed in SN ejecta and in quiescent stellar outflows, and how efficiently grains are destroyed by interstellar shock waves.

  8. The Continuing Infrared Evolution of SN1987A

    NASA Astrophysics Data System (ADS)

    Dwek, Eli; Arendt, Richard; Bouchet, Patrice; Burrows, David; Challis, Peter; Danziger, John; De Buizer, James; Gehrz, Robert; Kirshner, Robert; McCray, Richard; Park, Sangwook; Polomski, Elisha; Woodward, Charles

    2007-05-01

    We will use the SPITZER to continue the ongoing monitoring of SN1987A, the youngest supernova remnant that is undergoing noticable evolutionary changes during the lifetime of the Great Observatories. At infrared wavelengths SN1987A provides a unique complimentary view of the interaction of the SN blast wave with the equatorial ring (ER). Dust in theÊ ERÊ is being swept up by the expanding shock and collisionally heated by the X-ray emitting gas observed with CHANDRA, giving rise to IR emission that reveals the composition and amount of dust that formed in the outflow of the presupernova star. The IR observations also provide a unique tool for studying physical processes - the collisional heating and destruction of dust -Ê in dusty X-ray emitting plasmas. Parts of the blast wave has penetrated the denser regions of the ER, creating the 'hotspots' observed with HUBBLE. IR line emission from these regions provide important information on the physical conditions and theÊelemental and dust composition in these cooling shocks. Additionally, the ejecta of the SN explosion contains dust that was observed to have formed about 530 days after the explosion. Its imminent interaction with the ring will heat up this dust, which will be observable with SPITZER. In addition to providing useful information on SN1987A and its environment, the proposed observations will address key global issues regarding the origin and evolution of dust in the universe: how much dust is formed in SN ejecta and in quiescent stellar outflows, and how efficiently grains are destroyed by interstellar shock waves.

  9. Constraining supermassive black hole evolution through the continuity equation

    NASA Astrophysics Data System (ADS)

    Tucci, Marco; Volonteri, Marta

    2017-03-01

    The population of supermassive black holes (SMBHs) is split between those that are quiescent, such as those seen in local galaxies including the Milky Way, and those that are active, resulting in quasars and active galactic nuclei (AGN). Outside our neighborhood, all the information we have on SMBHs is derived from quasars and AGN, giving us a partial view. We study the evolution of the SMBH population, total and active, by the continuity equation, backwards in time from z = 0 to z = 4. Type-1 and type-2 AGN are differentiated in our model on the basis of their respective Eddington ratio distributions, chosen on the basis of observational estimates. The duty cycle is obtained by matching the luminosity function of quasars, and the average radiative efficiency is the only free parameter in the model. For higher radiative efficiencies (≳ 0.07), a large fraction of the SMBH population, most of them quiescent, must already be in place by z = 4. For lower radiative efficiencies ( 0.05), the duty cycle increases with the redshift and the SMBH population evolves dramatically from z = 4 onwards. The mass function of active SMBHs does not depend on the choice of the radiative efficiency or of the local SMBH mass function, but it is mainly determined by the quasar luminosity function once the Eddington ratio distribution is fixed. Only direct measurement of the total black-hole mass function at redshifts z ≳ 2 could break these degeneracies, offering important constraints on the average radiative efficiency. Focusing on type-1 AGN, for which observational estimates of the mass function and Eddington ratio distribution exist at various redshifts, models with lower radiative efficiencies better reproduce the high-mass end of the mass function at high z, but tend to over-predict it at low z, and vice-versa for models with higher radiative efficiencies.

  10. Chance and necessity: the evolution of morphological complexity and diversity.

    PubMed

    Carroll, S B

    2001-02-22

    The primary foundation for contemplating the possible forms of life elsewhere in the Universe is the evolutionary trends that have marked life on Earth. For its first three billion years, life on Earth was a world of microscopic forms, rarely achieving a size greater than a millimetre or a complexity beyond two or three cell types. But in the past 600 million years, the evolution of much larger and more complex organisms has transformed the biosphere. Despite their disparate forms and physiologies, the evolution and diversification of plants, animals, fungi and other macroforms has followed similar global trends. One of the most important features underlying evolutionary increases in animal and plant size, complexity and diversity has been their modular construction from reiterated parts. Although simple filamentous and spherical forms may evolve wherever cellular life exists, the evolution of motile, modular mega-organisms might not be a universal pattern.

  11. Microstructural evolution and grain morphology of ZrN pellets

    NASA Astrophysics Data System (ADS)

    Park, Sungho; Han, Ilsu; Lee, Hyunjun; Huh, Sunchul; Park, Wonjo

    2009-04-01

    Improvements in the mechanical integrity of zirconium nitride (ZrN) inert matrixes in advanced nuclear fuels were addressed in this work. This was done by first better understanding and then controlling texture and microstructural evolution of the former. Several samples were examined via orientation imaging microscopy: several monolithic specimens were hot isostatically pressed (HIP), and two sintered specimens with 80 % and 85 % density Grain size and crystallographic orientation studies revealed sample microstructure and their evolution during sintering. A correlation between larger grains and orientations near to <111> parallel to the compression axis during cold pressing was present for the 85 % density sample.

  12. Evolution & Phylogenetic Analysis: Classroom Activities for Investigating Molecular & Morphological Concepts

    ERIC Educational Resources Information Center

    Franklin, Wilfred A.

    2010-01-01

    In a flexible multisession laboratory, students investigate concepts of phylogenetic analysis at both the molecular and the morphological level. Students finish by conducting their own analysis on a collection of skeletons representing the major phyla of vertebrates, a collection of primate skulls, or a collection of hominid skulls.

  13. Evolution & Phylogenetic Analysis: Classroom Activities for Investigating Molecular & Morphological Concepts

    ERIC Educational Resources Information Center

    Franklin, Wilfred A.

    2010-01-01

    In a flexible multisession laboratory, students investigate concepts of phylogenetic analysis at both the molecular and the morphological level. Students finish by conducting their own analysis on a collection of skeletons representing the major phyla of vertebrates, a collection of primate skulls, or a collection of hominid skulls.

  14. Exploring the Relationship Between Hydrograph Characteristics and the Time Evolution of Sand Bed Morphology

    NASA Astrophysics Data System (ADS)

    Ockelford, A.; Parsons, D. R.; Hardy, R. J.; Ashworth, P. J.; Best, J.

    2015-12-01

    The development of sand bed morphology in response to steady flow is adequately described in most bedform phase diagrams. This includes the prediction of bedform wavelength, height and shape, all important parameters in estimating flow resistance. However, during time-varying flow, such as that experienced during the passage of a flood wave, the implicit assumption that bedform adjustment tracks changes in flow depth and velocity does not hold true due to bedform hysteresis. Consequently, there is a need to understand which characteristics of unsteady flow drive the disequilibrium dynamics between bedform geometry and hydraulic conditions. This paper describes a series of experiments designed to identify the impacts of hydrograph characteristics on the morphodynamic evolution of alluvial dunes. Mobile sand bed (D50 of 450μm) experiments were undertaken in a 16m long, 1.6m wide flume. Sediment was water worked under steady unidirectional flow until equilibrium bed conditions were achieved, after which a hydrograph was applied. At the end of the hydrograph, a period of steady flow was once again run until equilibrium conditions were attained. Hydrograph one consisted of steeply rising (80 minutes) and falling (65 minutes) limbs with hydrograph two characterised by longer rising (170 minutes) and falling (230 minutes) limbs. During the hydrograph discharge was changed in discrete steps. Bed morphology profiles were measured continuously along a 5m by 0.6m, centreline transect using twelve ultrasonic sensors. Three-dimensional flow was measured with a stack of Acoustic Doppler Velocimeters downstream of the transect. Suspended sediment was quantified using a three-frequency set of Acoustic Backscatter Sensors. The impact of these differing hydrograph characteristics are discussed in terms of differences between equilibrium bed morphologies, evolving flow field characteristics and the dynamics of suspended sediment concentrations through the hydrographs.

  15. Temperature-dependent morphological evolution of clustered gold surface

    NASA Astrophysics Data System (ADS)

    Kumar, Mukesh; Govind

    2012-07-01

    The present pragmatic deals with the surface morphology and the temperature induced modifications of gold surface. The gold surface consists of three dimensional (3D) large nanoclusters and the shape of these nanoclusters was identified as cap like structure with approximately circular periphery. The effect of temperature on the gold surface has been characterized by Scanning Tunnelling Microscopy technique. Annealing the gold surface at 473 K induce inter-diffusion of the 3D-nanoclusters, while the formation of nanoscale step and terrace morphology near the cluster boundary has been detected at 573 K. This study also reveals that the clusters size and roughness of gold surface varies differently in different range of annealing temperature.

  16. Evolution of P3 morphology in Australopithecus afarensis.

    PubMed

    Leonard, W R; Hegmon, M

    1987-05-01

    The Australopithecus afarensis dental sample exhibits a wide range of variation, which is most notable in the morphology of the lower third premolar (P3). P3 morphology in the A. afarensis sample ranges from the primitive sectorial extreme in AL 128-23 to the derived, bicuspid (molarized) extreme in AL 333w-1. In this paper, the degree and patterning of variation of the 20 known A. afarensis P3s are examined and the evolutionary implications are discussed. Initially, a series of dental and mandibular metric criteria are evaluated to determine whether this sample may be analyzed as a single species. From the metrics, it is clear that the single species hypothesis cannot be rejected. Next, a series of morphological criteria is devised to measure P3 molarization. Taken as a whole, the A. afarensis P3 sample displays more variation than a sample of modern hominoids (Pan troglodytes) and shows a slight trend toward increased molarization through time. When separated by sex, the A. afarensis sample still displays greater variation than the chimpanzee sample; however, only the male A. afarensis specimens show a trend toward increased molarization. Additionally, the male A. afarensis P3s are more molarized than the female, a pattern that is seen as well (though less markedly) in the chimpanzee sample. The trend toward increased molarization over time indicates selection for grinding in A. afarensis. The sexual differences parallel those seen in the postcrania (cf. Stern and Susman: Am. J. Phys. Anthropol. 60:279-318, 1983), as the females tend to retain the primitive condition, while the males display the derived morphology. Consequently, a model of sexual differences in niche exploitation, with the females exploiting a more arboreal environment, would seem to be supported by both the dental and postcranial evidence.

  17. Lidar observations of wind- and wave-driven morphological evolution of coastal foredunes

    NASA Astrophysics Data System (ADS)

    Spore, N.; Brodie, K. L.; Kershner, C. M.

    2016-02-01

    Coastal foredunes are continually evolving geomorphic features that are slowly built up by wind-blown sand and rapidly eroded during storms by large waves and swash. Landward aeolian transport removes sediment from the active beach and surf-zone, trapping it in the dune, where as coastal erosion both removes sediment from the dune and can decrease the overall fetch and sediment supply available to the dune. Understanding how wave and wind-driven process interact with each other and the dune-beach system itself is a critical component of improving predictions of coastal evolution. To investigate these processes, two 50 m alongshore by 25 m cross-shore patches of dune along an open coast beach fronting the Atlantic Ocean in Duck, NC were scanned with a high resolution terrestrial lidar scanner ( 5000 points per m^2) every three weeks over the last year to observe detailed morphological evolution of the dune and upper beach. Sequential scans were co-registered to each other using fixed objects in the field of view, significantly increasing precision and accuracy of the observations. The north study site featured a 7.5 m tall scarped foredune system, where as the southern study site featured a 6 m tall, hummocky, prograding foredune. Initial analyses show large accretion events on the southern prograding site. For example, during one three week period in February, portions of the site accreted over 40 cm. In contrast, during the same three week period at the northern site (less than 1 km away), response was alongshore variable with erosion and accretion of roughly 10 cm on the foredune face. Further analysis will focus on separating wind vs. wave driven evolution of these sites. Funded by the USACE Coastal Inlets Research Program.

  18. Rates of morphological evolution in Captorhinidae: an adaptive radiation of Permian herbivores.

    PubMed

    Brocklehurst, Neil

    2017-01-01

    The evolution of herbivory in early tetrapods was crucial in the establishment of terrestrial ecosystems, although it is so far unclear what effect this innovation had on the macro-evolutionary patterns observed within this clade. The clades that entered this under-filled region of ecospace might be expected to have experienced an "adaptive radiation": an increase in rates of morphological evolution and speciation driven by the evolution of a key innovation. However such inferences are often circumstantial, being based on the coincidence of a rate shift with the origin of an evolutionary novelty. The conclusion of an adaptive radiation may be made more robust by examining the pattern of the evolutionary shift; if the evolutionary innovation coincides not only with a shift in rates of morphological evolution, but specifically in the morphological characteristics relevant to the ecological shift of interest, then one may more plausibly infer a causal relationship between the two. Here I examine the impact of diet evolution on rates of morphological change in one of the earliest tetrapod clades to evolve high-fibre herbivory: Captorhinidae. Using a method of calculating heterogeneity in rates of discrete character change across a phylogeny, it is shown that a significant increase in rates of evolution coincides with the transition to herbivory in captorhinids. The herbivorous captorhinids also exhibit greater morphological disparity than their faunivorous relatives, indicating more rapid exploration of new regions of morphospace. As well as an increase in rates of evolution, there is a shift in the regions of the skeleton undergoing the most change; the character changes in the herbivorous lineages are concentrated in the mandible and dentition. The fact that the increase in rates of evolution coincides with increased change in characters relating to food acquisition provides stronger evidence for a causal relationship between the herbivorous diet and the radiation

  19. Comparative Evolution of Morphological Regulatory Functions in Candida Species

    PubMed Central

    Lackey, Erika; Vipulanandan, Geethanjali; Childers, Delma S.

    2013-01-01

    Morphological transitions play an important role in virulence and virulence-related processes in a wide variety of pathogenic fungi, including the most commonly isolated human fungal pathogen Candida albicans. While environmental signals, transcriptional regulators, and target genes associated with C. albicans morphogenesis are well-characterized, considerably little is known about morphological regulatory mechanisms and the extent to which they are evolutionarily conserved in less pathogenic and less filamentous non-albicans Candida species (NACS). We have identified specific optimal filament-inducing conditions for three NACS (C. tropicalis, C. parapsilosis, and C. guilliermondii), which are very limited, suggesting that these species may be adapted for niche-specific filamentation in the host. Only a subset of evolutionarily conserved C. albicans filament-specific target genes were induced upon filamentation in C. tropicalis, C. parapsilosis, and C. guilliermondii. One of the genes showing conserved expression was UME6, a key filament-specific regulator of C. albicans hyphal development. Constitutive high-level expression of UME6 was sufficient to drive increased filamentation as well as biofilm formation and partly restore conserved filament-specific gene expression in both C. tropicalis and C. parapsilosis, suggesting that evolutionary differences in filamentation ability among pathogenic Candida species may be partially attributed to alterations in the expression level of a conserved filamentous growth machinery. In contrast to UME6, NRG1, an important repressor of C. albicans filamentation, showed only a partly conserved role in controlling NACS filamentation. Overall, our results suggest that C. albicans morphological regulatory functions are partially conserved in NACS and have evolved to respond to more specific sets of host environmental cues. PMID:23913541

  20. Surface morphological evolution during annealing of epitaxial Cu(001) layers

    SciTech Connect

    Purswani, J. M.; Gall, D.

    2008-08-15

    Single crystal Cu(001) layers were grown on MgO(001) by ultrahigh vacuum magnetron sputtering at T{sub s}=100 deg. C. Quantitative surface morphological analyses by in situ scanning tunneling microscopy show that the surfaces exhibit self-affine mound structures with a scaling exponent of 0.82{+-}0.03 and a mound radius r{sub c} that increases from 31{+-}8 to 39{+-}6 nm for increasing layer thickness t=24-120 nm. In situ annealing at 200 and 300 deg. C leads to a thermodynamically driven mass transport that minimizes the surface step density, resulting in broader mounds and a smaller root mean square surface roughness {sigma}. This effect is most pronounced for t=24 nm, for which r{sub c} increases from 31{+-}8 to 70{+-}20 nm and {sigma} decreases from 1.3{+-}0.1 to 0.74{+-}0.08 nm, resulting in a decrease in the average surface slope from {chi}=7 deg. to 2 deg. and an increase in the average terrace width w{sub T} by more than a factor of 4. In contrast, w{sub T} increases by only 20% for t=120 nm. This remarkable difference between 'thin' and 'thick' layers is attributed to diverging surface morphological pathways during annealing: The strong smoothening for t=24 nm is due to a competitive coalescence process where some mounds grow laterally at the expense of their smaller neighbors, which die out. In contrast, the initially wider mounds of thicker layers (t=120 nm) combine to form a quasistable surface morphology that exhibits anisotropic mound structures, which limit mass transport and stabilize the surface step density.

  1. A continuous phenotype space model of cancer evolution

    NASA Astrophysics Data System (ADS)

    Masip, David; Korobeinikiov, Andrei

    2017-02-01

    It was suggested that the ability of cancer to avoid immune response pressure (that should be expected to be capable to annihilate cancer at its early stage) can be attributed to the ability of the cancer cells to evolve. The goal of this notice is to illustrate this possibility by the means of mathematical modelling. In this notice, we construct a simple mechanistic model of cancer evolution, which is based upon a classical model of cancer-immune response interaction. Numerical simulations confirm the hypothesis that if cancer mutates fast enough and if immune response is not sufficiently strong, then cancer is able to avoid immune response pressure by evolution.

  2. Morphological Evolution of Block Copolymer Particles: Effect of Solvent Evaporation Rate on Particle Shape and Morphology.

    PubMed

    Shin, Jae Man; Kim, YongJoo; Yun, Hongseok; Yi, Gi-Ra; Kim, Bumjoon J

    2017-02-28

    Shape and morphology of polymeric particles are of great importance in controlling their optical properties or self-assembly into unusual superstructures. Confinement of block copolymers (BCPs) in evaporative emulsions affords particles with diverse structures, including prolate ellipsoids, onion-like spheres, oblate ellipsoids, and others. Herein, we report that the evaporation rate of solvent from emulsions encapsulating symmetric polystyrene-b-polybutadiene (PS-b-PB) determines the shape and internal nanostructure of micron-sized BCP particles. A distinct morphological transition from the ellipsoids with striped lamellae to the onion-like spheres was observed with decreasing evaporation rate. Experiments and dissipative particle dynamics (DPD) simulations showed that the evaporation rate affected the organization of BCPs at the particle surface, which determined the final shape and internal nanostructure of the particles. Differences in the solvent diffusion rates in PS and PB at rapid evaporation rates induced alignment of both domains perpendicular to the particle surface, resulting in ellipsoids with axial lamellar stripes. Slower evaporation rates provided sufficient time for BCP organization into onion-like structures with PB as the outermost layer, owing to the preferential interaction of PB with the surroundings. BCP molecular weight was found to influence the critical evaporation rate corresponding to the morphological transition from ellipsoid to onion-like particles, as well as the ellipsoid aspect ratio. DPD simulations produced morphologies similar to those obtained from experiments and thus elucidated the mechanism and driving forces responsible for the evaporation-induced assembly of BCPs into particles with well-defined shapes and morphologies.

  3. Evolution of the Central Sulcus Morphology in Primates

    PubMed Central

    Hopkins, William D.; Meguerditchian, Adrien; Coulon, Olivier; Bogart, Stephanie; Mangin, Jean- François; Sherwood, Chet C.; Grabowski, Mark W.; Bennett, Allyson J.; Pierre, Peter J.; Fears, Scott; Woods, Roger; Hof, Patrick R.; Vauclair, Jacques

    2014-01-01

    The central sulcus (CS) divides the pre- and post-central gyri along the dorsal-ventral plane of which all motor and sensory functions are topographically organized. The motor-hand area of the precentral gyrus or knob has been described as the anatomical substrate of the hand in humans. Given the importance of the hand in primate evolution, here we examined the evolution of the motor-hand area by comparing the relative size and pattern of cortical folding of the CS surface area from magnetic resonance images in 131 primates including Old World monkeys, apes, and humans. We found that humans and great apes have a well-formed motor-hand area that can be seen in the variation in depth of the CS along the dorsal-ventral plane. We further found that great apes have relatively large CS surface areas compared to Old World monkeys. However, relative to great apes, humans have a small motor-hand area in terms of both adjusted and absolute surface areas. PMID:25139259

  4. Surface morphological evolution of epitaxial CrN(001) layers

    SciTech Connect

    Frederick, J.R.; Gall, D.

    2005-09-01

    CrN layers, 57 and 230 nm thick, were grown on MgO(001) at T{sub s}=600-800 deg. C by ultrahigh-vacuum magnetron sputter deposition in pure N{sub 2} discharges from an oblique deposition angle {alpha}=80 deg. . Layers grown at 600 deg. C nucleate as single crystals with a cube-on-cube epitaxial relationship with the substrate. However, rough surfaces with cauliflower-type morphologies cause the nucleation of misoriented CrN grains that develop into cone-shaped grains that protrude out of the epitaxial matrix to form triangular faceted surface mounds. The surface morphology of epitaxial CrN(001) grown at 700 deg. C is characterized by dendritic ridge patterns extending along the orthogonal <110> directions superposed by square-shaped super mounds with <100> edges. The ridge patterns are attributed to a Bales-Zangwill instability while the supermounds form due to atomic shadowing which leads to the formation of epitaxial inverted pyramids that are separated from the surrounding layer by tilted nanovoids. Growth at 800 deg. C yields complete single crystals with smooth surfaces. The root-mean-square surface roughness for 230-nm-thick layers decreases from 18.8 to 9.3 to 1.1 nm as T{sub s} is raised from 600 to 700 to 800 deg. C. This steep decrease is due to a transition in the roughening mechanism from atomic shadowing to kinetic roughening. Atomic shadowing is dominant at 600 and 700 deg. C, where misoriented grains and supermounds, respectively, capture a larger fraction of the oblique deposition flux in comparison to the surrounding epitaxial matrix, resulting in a high roughening rate that is described by a power law with an exponent {beta}>0.5. In contrast, kinetic roughening controls the surface morphology for T{sub s}=800 deg. C, as well as the epitaxial fraction of the layers grown at 600 and 700 deg. C, yielding relatively smooth surfaces and {beta}{<=}0.27.

  5. Effect of Morphology of Co3O4 for Oxygen Evolution Reaction in Alkaline Water Electrolysis

    PubMed Central

    Xu, Qi-Zhi; Xu, Qi-Zhi; Su, Yu-Zhi; Wu, Hao; Cheng, Hui; Hui, Yun-Ping; Li, Nan; Liu, Zhao-Qing

    2014-01-01

    In this paper, three different morphological Co3O4 electrodes for oxygen evolution reaction (OER) have been synthesized. By comparing the three morphologies of Co3O4, the electrocatalytic properties show that the urchin-like spheres of Co3O4 electrode has relative low overpotential and good electrocatalysis stability, indicating that the structure of urchin-like Co3O4 spheres exhibit an easy OER for water splitting. PMID:25525423

  6. Evolution and Functional Morphology of the Proboscis in Kalyptorhynchia (Platyhelminthes)

    PubMed Central

    Smith, Julian P. S.; Litvaitis, Marian K.; Gobert, Stefan; Uyeno, Theodore; Artois, Tom

    2015-01-01

    Predatory flatworms belonging to the taxon Kalyptorhynchia are characterized by an anterior muscular proboscis that they use to seize prey. In many cases, the proboscis is armed with hooks, derived either from the extracellular matrix that surrounds the muscles or from intracellular deposits in the epithelium covering the proboscis. Glands associated with the proboscis reportedly are venomous; however, there are few direct tests of this hypothesis. This article reviews the structure and current knowledge of the function of the proboscis in the Kalyptorhynchia, points to areas in which the current understanding of phylogenetic relationships within this taxon is incongruent with our hypothesis of how the proboscis evolved, and addresses areas in need of further research, especially as regards functional morphology and biomechanics. PMID:26002347

  7. Evolution and Functional Morphology of the Proboscis in Kalyptorhynchia (Platyhelminthes).

    PubMed

    Smith, Julian P S; Litvaitis, Marian K; Gobert, Stefan; Uyeno, Theodore; Artois, Tom

    2015-08-01

    Predatory flatworms belonging to the taxon Kalyptorhynchia are characterized by an anterior muscular proboscis that they use to seize prey. In many cases, the proboscis is armed with hooks, derived either from the extracellular matrix that surrounds the muscles or from intracellular deposits in the epithelium covering the proboscis. Glands associated with the proboscis reportedly are venomous; however, there are few direct tests of this hypothesis. This article reviews the structure and current knowledge of the function of the proboscis in the Kalyptorhynchia, points to areas in which the current understanding of phylogenetic relationships within this taxon is incongruent with our hypothesis of how the proboscis evolved, and addresses areas in need of further research, especially as regards functional morphology and biomechanics.

  8. Evolution of pyramid morphology during InAs(001) homoepitaxy

    SciTech Connect

    Babu, J. Bubesh; Yoh, Kanji

    2010-08-16

    Growth of InAs(001) homoepitaxial layer has been carried out especially at the bistable region, where the coexistence of both In-stabilized (4x2) and As-stabilized (2x4) surface reconstruction are found to be predominant. The observation of pyramid morphology in this bistable region is reported here. Atomic force microscopy studies have been performed on such pyramids. The heights of the observed pyramids vary from 12 to 26 nm with their bases from 3.6x1.2 to 18x6.3 {mu}m{sup 2}. Formation of such pyramids in the bistable region is attributed to the unique anomalous As-desorption observed during the surface reconstruction.

  9. The seahorse genome and the evolution of its specialized morphology.

    PubMed

    Lin, Qiang; Fan, Shaohua; Zhang, Yanhong; Xu, Meng; Zhang, Huixian; Yang, Yulan; Lee, Alison P; Woltering, Joost M; Ravi, Vydianathan; Gunter, Helen M; Luo, Wei; Gao, Zexia; Lim, Zhi Wei; Qin, Geng; Schneider, Ralf F; Wang, Xin; Xiong, Peiwen; Li, Gang; Wang, Kai; Min, Jiumeng; Zhang, Chi; Qiu, Ying; Bai, Jie; He, Weiming; Bian, Chao; Zhang, Xinhui; Shan, Dai; Qu, Hongyue; Sun, Ying; Gao, Qiang; Huang, Liangmin; Shi, Qiong; Meyer, Axel; Venkatesh, Byrappa

    2016-12-14

    Seahorses have a specialized morphology that includes a toothless tubular mouth, a body covered with bony plates, a male brood pouch, and the absence of caudal and pelvic fins. Here we report the sequencing and de novo assembly of the genome of the tiger tail seahorse, Hippocampus comes. Comparative genomic analysis identifies higher protein and nucleotide evolutionary rates in H. comes compared with other teleost fish genomes. We identified an astacin metalloprotease gene family that has undergone expansion and is highly expressed in the male brood pouch. We also find that the H. comes genome lacks enamel matrix protein-coding proline/glutamine-rich secretory calcium-binding phosphoprotein genes, which might have led to the loss of mineralized teeth. tbx4, a regulator of hindlimb development, is also not found in H. comes genome. Knockout of tbx4 in zebrafish showed a 'pelvic fin-loss' phenotype similar to that of seahorses.

  10. Extensive morphological divergence and rapid evolution of the larval neuromuscular junction in Drosophila.

    PubMed

    Campbell, Megan; Ganetzky, Barry

    2012-03-13

    Although the complexity and circuitry of nervous systems undergo evolutionary change, we lack understanding of the general principles and specific mechanisms through which it occurs. The Drosophila larval neuromuscular junction (NMJ), which has been widely used for studies of synaptic development and function, is also an excellent system for studies of synaptic evolution because the genus spans >40 Myr of evolution and the same identified synapse can be examined across the entire phylogeny. We have now characterized morphology of the NMJ on muscle 4 (NMJ4) in >20 species of Drosophila. Although there is little variation within a species, NMJ morphology and complexity vary extensively between species. We find no significant correlation between NMJ phenotypes and phylogeny for the species examined, suggesting that drift alone cannot explain the phenotypic variation and that selection likely plays an important role. However, the nature of the selective pressure is still unclear because basic parameters of synaptic function remain uniform. Whatever the mechanism, NMJ morphology is evolving rapidly in comparison with other morphological features because NMJ phenotypes differ even between several sibling species pairs. The discovery of this unexpectedly extensive divergence in NMJ morphology among Drosophila species provides unique opportunities to investigate mechanisms that regulate synaptic growth; the interrelationships between synaptic morphology, neural function, and behavior; and the evolution of nervous systems and behavior in natural populations.

  11. Evolution of accreditation in continuing nursing education in America.

    PubMed

    Whitehead, Tanya D; Lacey-Haun, Lora

    2008-11-01

    There is widespread agreement that nurses must acquire and maintain the specialized knowledge needed to provide highly skilled care and to demonstrate their competence to the public, their employers, their profession, and patients on an ongoing basis throughout their work lives. Nurses report that continuing nursing education is the third most vital component of nursing skill building. Nurses from states that mandate continuing nursing education, as well as those from states that do not, rank continuing nursing education just after their workplace experience and their basic nursing education in importance. A wide range of organizations create and disseminate continuing nursing education to nurses in states with and without mandated continuing nursing education requirements. Although there is no governmental standard for the field, nursing monitors education across work-life stages. The National Council of State Boards of Nursing monitors nursing licensure and continuing nursing education. The credentialing arm of the American Nurses Association, the American Nurses Credentialing Center, acting in synch with national organizations that call for accreditation standards in the health care professions, provides review and accreditation of providers and approvers of continuing nursing education on a national basis and is, itself, internationally certified by International Standards for a Sustainable World.

  12. Multiple speciation events in an arthropod with divergent evolution in sexual morphology.

    PubMed

    Sota, Teiji; Tanabe, Tsutomu

    2010-03-07

    Sexual selection can facilitate divergent evolution of traits related to mating and consequently promote speciation. Theoretically, independent operation of sexual selection in different populations can lead to divergence of sexual traits among populations and result in allopatric speciation. Here, we show that divergent evolution in sexual morphology affecting mating compatibility (body size and genital morphologies) and speciation have occurred in a lineage of millipedes, the Parafontaria tonominea species complex. In this millipede group, male and female body and genital sizes exhibit marked, correlated divergence among populations, and the diverged morphologies result in mechanical reproductive isolation between sympatric species. The morphological divergence occurred among populations independently and without any correlation with climatic variables, although matching between sexes has been maintained, suggesting that morphological divergence was not a by-product of climatic adaptation. The diverged populations underwent restricted dispersal and secondary contact without hybridization. The extent of morphological difference between sympatric species is variable, as is diversity among allopatric populations; consequently, the species complex appears to contain many species. This millipede case suggests that sexual selection does contribute to species richness via morphological diversification when a lineage of organisms consists of highly divided populations owing to limited dispersal.

  13. Morphological and functional diversity in therizinosaur claws and the implications for theropod claw evolution

    PubMed Central

    Lautenschlager, Stephan

    2014-01-01

    Therizinosaurs are a group of herbivorous theropod dinosaurs from the Cretaceous of North America and Asia, best known for their iconically large and elongate manual claws. However, among Therizinosauria, ungual morphology is highly variable, reflecting a general trend found in derived theropod dinosaurs (Maniraptoriformes). A combined approach of shape analysis to characterize changes in manual ungual morphology across theropods and finite-element analysis to assess the biomechanical properties of different ungual shapes in therizinosaurs reveals a functional diversity related to ungual morphology. While some therizinosaur taxa used their claws in a generalist fashion, other taxa were functionally adapted to use the claws as grasping hooks during foraging. Results further indicate that maniraptoriform dinosaurs deviated from the plesiomorphic theropod ungual morphology resulting in increased functional diversity. This trend parallels modifications of the cranial skeleton in derived theropods in response to dietary adaptation, suggesting that dietary diversification was a major driver for morphological and functional disparity in theropod evolution. PMID:24807260

  14. Morphological and functional diversity in therizinosaur claws and the implications for theropod claw evolution.

    PubMed

    Lautenschlager, Stephan

    2014-06-22

    Therizinosaurs are a group of herbivorous theropod dinosaurs from the Cretaceous of North America and Asia, best known for their iconically large and elongate manual claws. However, among Therizinosauria, ungual morphology is highly variable, reflecting a general trend found in derived theropod dinosaurs (Maniraptoriformes). A combined approach of shape analysis to characterize changes in manual ungual morphology across theropods and finite-element analysis to assess the biomechanical properties of different ungual shapes in therizinosaurs reveals a functional diversity related to ungual morphology. While some therizinosaur taxa used their claws in a generalist fashion, other taxa were functionally adapted to use the claws as grasping hooks during foraging. Results further indicate that maniraptoriform dinosaurs deviated from the plesiomorphic theropod ungual morphology resulting in increased functional diversity. This trend parallels modifications of the cranial skeleton in derived theropods in response to dietary adaptation, suggesting that dietary diversification was a major driver for morphological and functional disparity in theropod evolution.

  15. The Evolution of Dendrite Morphology during Isothermal Coarsening

    NASA Technical Reports Server (NTRS)

    Alkemper, Jens; Mendoza, Roberto; Kammer, Dimitris; Voorhees, Peter W.

    2003-01-01

    Dendrite coarsening is a common phenomenon in casting processes. From the time dendrites are formed until the inter-dendritic liquid is completely solidified dendrites are changing shape driven by variations in interfacial curvature along the dendrite and resulting in a reduction of total interfacial area. During this process the typical length-scale of the dendrite can change by orders of magnitude and the final microstructure is in large part determined by the coarsening parameters. Dendrite coarsening is thus crucial in setting the materials parameters of ingots and of great commercial interest. This coarsening process is being studied in the Pb-Sn system with Sn-dendrites undergoing isothermal coarsening in a Pb-Sn liquid. Results are presented for samples of approximately 60% dendritic phase, which have been coarsened for different lengths of times. Presented are three-dimensional microstructures obtained by serial-sectioning and an analysis of these microstructures with regard to interface orientation and interfacial curvatures. These graphs reflect the evolution of not only the microstructure itself, but also of the underlying driving forces of the coarsening process. As a visualization of the link between the microstructure and the driving forces a three-dimensional microstructure with the interfaces colored according to the local interfacial mean curvature is shown.

  16. Correlated evolution of body and fin morphology in the cichlid fishes.

    PubMed

    Feilich, Kara L

    2016-10-01

    Body and fin shapes are chief determinants of swimming performance in fishes. Different configurations of body and fin shapes can suit different locomotor specializations. The success of any configuration is dependent upon the hydrodynamic interactions between body and fins. Despite the importance of body-fin interactions for swimming, there are few data indicating whether body and fin configurations evolve in concert, or whether these structures vary independently. The cichlid fishes are a diverse family whose well-studied phylogenetic relationships make them ideal for the study of macroevolution of ecomorphology. This study measured body, and caudal and median fin morphology from radiographs of 131 cichlid genera, using morphometrics and phylogenetic comparative methods to determine whether these traits exhibit correlated evolution. Partial least squares canonical analysis revealed that body, caudal fin, dorsal fin, and anal fin shapes all exhibited strong correlated evolution consistent with locomotor ecomorphology. Major patterns included the evolution of deep body profiles with long fins, suggestive of maneuvering specialization; and the evolution of narrow, elongate caudal peduncles with concave tails, a combination that characterizes economical cruisers. These results demonstrate that body shape evolution does not occur independently of other traits, but among a suite of other morphological changes that augment locomotor specialization. © 2016 The Author(s). Evolution © 2016 The Society for the Study of Evolution.

  17. Morphological bubble evolution induced by air diffusion on submerged hydrophobic structures

    NASA Astrophysics Data System (ADS)

    Lv, Pengyu; Xiang, Yaolei; Xue, Yahui; Lin, Hao; Duan, Huiling

    2017-03-01

    Bubbles trapped in the cavities always play important roles in the underwater applications of structured hydrophobic surfaces. Air exchange between bubbles and surrounding water has a significant influence on the morphological bubble evolution, which in turn frequently affects the functionalities of the surfaces, such as superhydrophobicity and drag reduction. In this paper, air diffusion induced bubble evolution on submerged hydrophobic micropores under reduced pressures is investigated experimentally and theoretically. The morphological behaviors of collective and single bubbles are observed using confocal microscopy. Four representative evolution phases of bubbles are captured in situ. After depressurization, bubbles will not only grow and coalesce but also shrink and split although the applied pressure remains negative. A diffusion-based model is used to analyze the evolution behavior and the results are consistent with the experimental data. A criterion for bubble growth and shrinkage is also derived along with a phase diagram, revealing that the competition of effective gas partial pressures across the two sides of the diffusion layer dominates the bubble evolution process. Strategies for controlling the bubble evolution behavior are also proposed based on the phase diagram. The current work provides a further understanding of the general behavior of bubble evolution induced by air diffusion and can be employed to better designs of functional microstructured hydrophobic surfaces.

  18. Reach-scale morphological adjustments and stages of channel evolution: The case of the Trebbia River (northern Italy)

    NASA Astrophysics Data System (ADS)

    Bollati, I. M.; Pellegrini, L.; Rinaldi, M.; Duci, G.; Pelfini, M.

    2014-09-01

    A multitemporal series of aerial photos and cross-section topographic surveys have been used to analyze reach-scale channel evolution along a segment (length of about 22 km) of the lower Trebbia River (Northern Italy) with the aims to investigate the relations between channel width vs. bed-level adjustments and to identify spatio-temporal patterns of stages of channel evolution. Dendrochronology was used to determine the age of tree establishment of riparian and island forests during channel evolution. We identified a first phase of major adjustments (1954-1992) following a series of disturbances, dominated by channel narrowing and bed incision. During the final stage of narrowing, woody vegetation establishment contributed to stabilize new floodplain or island surfaces. A period of partial morphological recovery occurred from 1992 to 2010, dominated by an inversion of trend of channel width. During the phase of partial recovery, a stage of widening combined with a continuation of bed incision was identified, and a last stage characterized by widening and initial aggradation was observed on the central portion of the study reaches. Suitability and differences of existing channel evolution models (CEMs) derived in other geographical contexts were discussed, and a specific conceptual model comprising four stages of channel evolution was developed for the lower Trebbia River.

  19. Morphological Evolution and Weak Interface Development within CVD-Zirconia Coating Deposited on Hi-Nicalon Fiber

    NASA Technical Reports Server (NTRS)

    Li, Hao; Lee, Jinil; Libera, Matthew R.; Lee, Woo Y.; Kebbede, Anteneh; Lance, Michael J.; Wang, Hongyu; Morscher, Gregory N.; Gray, Hugh R. (Technical Monitor)

    2002-01-01

    The phase contents and morphology of a ZrO2 fiber coating deposited at 1050 C on Hi-Nicalon(Tm) by chemical vapor deposition were examined as a function of deposition time from 5 to 120 min. The morphological evolution in the ZrO2 coating was correlated to the development of delamination within the ZrO2 coating. The delamination appears to occur as a result of: (1) continuous formation of tetragonal ZrO2 nuclei on the deposition surface; (2) martensitic transformation of the tetragonal phase to a monoclinic phase upon reaching a critical grain size; and (3) development of significant compressive hoop stresses due to the volume dilation associated with the transformation. Our observations suggest that it will be of critical importance to further understand and eventually control the nucleation and grain growth behavior of CVD ZrO2 and its phase transformation behavior for its potential applications for composites.

  20. Sequential evolution of bacterial morphology by co-option of a developmental regulator

    PubMed Central

    Jiang, Chao; Brown, Pamela J.B.; Ducret, Adrien; Brun1, Yves V.

    2014-01-01

    What mechanisms underlie the transitions responsible for the diverse shapes observed in the living world? While bacteria display a myriad of morphologies1, the mechanisms responsible for the evolution of bacterial cell shape are not understood. We investigated morphological diversity in a group of bacteria that synthesize an appendage-like extension of the cell envelope called the stalk2,3. The location and number of stalks varies among species, as exemplified by three distinct sub-cellular positions of stalks within a rod-shaped cell body: polar in the Caulobacter genus, and sub-polar or bi-lateral in the Asticcacaulis genus4. Here we show that a developmental regulator of Caulobacter crescentus, SpmX5, was co-opted in the Asticcacaulis genus to specify stalk synthesis at either the sub-polar or bi-lateral positions. We show that stepwise evolution of a specific region of SpmX led to the gain of a new function and localization of this protein, which drove the sequential transition in stalk positioning. Our results indicate that evolution of protein function, co-option, and modularity are key elements in the evolution of bacterial morphology. Therefore, similar evolutionary principles of morphological transitions apply to both single-celled prokaryotes and multicellular eukaryotes. PMID:24463524

  1. Structure trees and species trees: what they say about morphological development and evolution.

    PubMed

    Geeta, R

    2003-01-01

    The evolutionary history of morphological structures generally is equated with that of the taxa that carry them. It is argued here that, analogous to genes, developmental genetic pathways underlying morphological structures may be subject to developmental evolutionary changes that result, for instance, in duplication (serial homology analogous to gene duplication and paralogy). Entities that undergo evolution are expected to be related to each other as a tree. Just as with molecular evolution, "structure trees" and species trees sometimes may be incongruent, with implications for morphological homology concepts. Detection of structure trees through morphological evolutionary analyses may point to an entity that is maintained through evolution, possibly in part because it is a developmentally integrated structure ("individualized"). This idea is illustrated in a morphological evolutionary analysis of leaf primordia. These analyses suggest that leaf primordia in monocots and close relatives are related to each other as a tree and, therefore, are developmentally integrated, evolving entities. Among monocot primordia this tree structure breaks down, and it is concluded that there is no entity, the "monocot leaf primordium." However, one group of primordia is identified within monocots that have uniform characteristics and that are well represented by model species maize and rice. Such analyses of structure trees can facilitate the extrapolation and interpretation of results from molecular developmental and other comparative studies.

  2. Continuous Evolution of Statistical Estimators for Optimal Decision-Making

    PubMed Central

    Saunders, Ian; Vijayakumar, Sethu

    2012-01-01

    In many everyday situations, humans must make precise decisions in the presence of uncertain sensory information. For example, when asked to combine information from multiple sources we often assign greater weight to the more reliable information. It has been proposed that statistical-optimality often observed in human perception and decision-making requires that humans have access to the uncertainty of both their senses and their decisions. However, the mechanisms underlying the processes of uncertainty estimation remain largely unexplored. In this paper we introduce a novel visual tracking experiment that requires subjects to continuously report their evolving perception of the mean and uncertainty of noisy visual cues over time. We show that subjects accumulate sensory information over the course of a trial to form a continuous estimate of the mean, hindered only by natural kinematic constraints (sensorimotor latency etc.). Furthermore, subjects have access to a measure of their continuous objective uncertainty, rapidly acquired from sensory information available within a trial, but limited by natural kinematic constraints and a conservative margin for error. Our results provide the first direct evidence of the continuous mean and uncertainty estimation mechanisms in humans that may underlie optimal decision making. PMID:22761657

  3. The Continuing Evolution of Effective IT Security Practices

    ERIC Educational Resources Information Center

    Voloudakis, John

    2006-01-01

    In the past three years, higher education institutions have made a number of moves to secure their critical systems and protect their users, resulting in a marked change in the techniques used to combat security threats. Today, continued progress may depend on the development of an enterprise IT security program. (Contains 10 notes.)

  4. The Continuing Evolution of Effective IT Security Practices

    ERIC Educational Resources Information Center

    Voloudakis, John

    2006-01-01

    In the past three years, higher education institutions have made a number of moves to secure their critical systems and protect their users, resulting in a marked change in the techniques used to combat security threats. Today, continued progress may depend on the development of an enterprise IT security program. (Contains 10 notes.)

  5. Morphology evolution of MoS2: From monodisperse nanoparticles to self-assembled nanobelts

    NASA Astrophysics Data System (ADS)

    Yu, Ting; Luo, Xingfang; Han, Shuming; Cao, Yingjie; Yuan, Cailei; Yang, Yong; Li, Qinliang

    2016-02-01

    The MoS2 nanobelts were successfully synthesized on SiO2/Si substrates using a vapor phase sulfurization process. Atomic force microscopy (AFM) techniques are employed to comprehensively study the morphology evolution of MoS2 from monodisperse nanoparticles to self-assembled nanobelts on the SiO2/Si substrates. A possible three-step morphology evolution process, which includes initial nucleation process, self-assembly process, and subsequent crystal growth process (Ostwald ripening), is proposed to explain the formation of MoS2. Moreover, MoS2 nanobelts are characterized by Raman spectroscopy and photo-luminescence (PL). These results provide the possibility to develop an easier-to-cooperate and morphology-controllable approach to fabricate novel architectures.

  6. Coral reefs promote the evolution of morphological diversity and ecological novelty in labrid fishes.

    PubMed

    Price, S A; Holzman, R; Near, T J; Wainwright, P C

    2011-05-01

    Although coral reefs are renowned biodiversity hotspots it is not known whether they also promote the evolution of exceptional ecomorphological diversity. We investigated this question by analysing a large functional morphological dataset of trophic characters within Labridae, a highly diverse group of fishes. Using an analysis that accounts for species relationships, the time available for diversification and model uncertainty we show that coral reef species have evolved functional morphological diversity twice as fast as non-reef species. In addition, coral reef species occupy 68.6% more trophic morphospace than non-reef species. Our results suggest that coral reef habitats promote the evolution of both trophic novelty and morphological diversity within fishes. Thus, the preservation of coral reefs is necessary, not only to safeguard current biological diversity but also to conserve the underlying mechanisms that can produce functional diversity in future.

  7. [Role of genes and their cis-regulatory elements during animal morphological evolution].

    PubMed

    Sun, Boyuan; Tu, Jianbo; Li, Ying; Yang, Mingyao

    2014-06-01

    Cis-regulatory hypothesis is one of the most important theories in evolutionary developmental biology (evo-devo), which claims that evolution of cis-regulatory elements (CREs) plays a key role during evolution of morphology. However, an increasing number of experimental results show that cis-regulatory hypothesis alone is not far enough to explain the complexity of evo-devo processes. Other modifications, including mutations of protein coding, gene and genome duplications, and flexibility of homeodomains and CREs, also cause the morphological changes in animals. In this review, we retrospect the recent results of evolution of CREs and genes associated with CREs and discuss new methods and trends for research in evo-devo.

  8. Morphology evolution from thin-hexapod to aggregated sphere of Cu{sub 2}O microcrystals

    SciTech Connect

    Lee, Yong-Jung; Huh, Young-Duk

    2011-11-15

    Highlights: {yields} In this work we report the first simple morphology-controlled synthesis for various morphologies of Cu{sub 2}O microcrystals. {yields} We synthesized the Cu{sub 2}O microcrystals using a conventional microwave oven only for 3 min. {yields} We find that the amount of glucose and the microwave irradiation time play important roles in controlling the morphology of Cu{sub 2}O microcrystals. -- Abstract: A range of morphologies of Cu{sub 2}O microcrystals, such as thin-hexapod, thick-hexapod, truncated hexapod, truncated octahedron, cuboctahedron, and aggregated sphere were prepared by the reduction reaction from the mixed solution of CuCl{sub 2}, NaOH, glucose, and poly(ethylene) glycol. Monodispersed and well-crystallized Cu{sub 2}O microcrystals were prepared for only a few minutes using a conventional microwave oven. The amount of glucose and the microwave irradiation time play important roles in controlling the morphology of the Cu{sub 2}O microcrystals. The morphology of the Cu{sub 2}O microcrystals was changed from thin-hexapod to aggregated sphere by the glucose concentration. The morphology of Cu{sub 2}O microcrystals was changed from thick-hexapod to octahedron by increasing the microwave irradiation time. The crystal growth mechanism and morphology evolution of Cu{sub 2}O microcrystals are discussed.

  9. Osteological Variation among Extreme Morphological Forms in the Mexican Salamander Genus Chiropterotriton (Amphibia: Plethodontidae): Morphological Evolution And Homoplasy

    PubMed Central

    Darda, David M.; Wake, David B.

    2015-01-01

    Osteological variation is recorded among and within four of the most distinctive species of the Mexican salamander genus Chiropterotriton. Analysis of the data is consistent with the monophyletic status of the genus and documents previously unrecorded intraspecific and interspecific variation. Most of the recorded variation involves qualitative and quantitative proportional differences, but four fixed differences constitute autapomorphic states that affirm and diagnose some species (C. dimidiatus, C. magnipes). Osteological variation in 15 characters is analyzed with respect to predictions generated from four hypotheses: 1) phylogeny, 2) adaptation to specific habitats (the four species include cave-dwelling, terrestrial, and arboreal forms), 3) size-free shape, and 4) size. High levels of intraspecific variation suggest that the characters studied are not subject to rigid functional constraints in salamanders, regardless of size. The pattern predicted by the hypothesis based on size differences seen among these four Chiropterotriton species matches most closely the observed pattern of relative skull robustness. Since size change and heterochrony are often associated in plethodontid evolution, it is likely that changes in developmental timing play a role in the morphological transitions among these morphologically diverse taxa. Webbed feet, miniaturization, body shape, and an unusual tarsal arrangement are morphologies exhibited in species of Chiropterotrition that are shown to be homoplastic with other clades of tropical plethodontids. Although extensive homoplasy in salamanders might be seen as a roadblock to unraveling phylogenetic hypotheses, the homologous developmental systems that appear to underlie such homoplasy may reveal common and consistent evolutionary processes at work. PMID:26060996

  10. Osteological Variation among Extreme Morphological Forms in the Mexican Salamander Genus Chiropterotriton (Amphibia: Plethodontidae): Morphological Evolution And Homoplasy.

    PubMed

    Darda, David M; Wake, David B

    2015-01-01

    Osteological variation is recorded among and within four of the most distinctive species of the Mexican salamander genus Chiropterotriton. Analysis of the data is consistent with the monophyletic status of the genus and documents previously unrecorded intraspecific and interspecific variation. Most of the recorded variation involves qualitative and quantitative proportional differences, but four fixed differences constitute autapomorphic states that affirm and diagnose some species (C. dimidiatus, C. magnipes). Osteological variation in 15 characters is analyzed with respect to predictions generated from four hypotheses: 1) phylogeny, 2) adaptation to specific habitats (the four species include cave-dwelling, terrestrial, and arboreal forms), 3) size-free shape, and 4) size. High levels of intraspecific variation suggest that the characters studied are not subject to rigid functional constraints in salamanders, regardless of size. The pattern predicted by the hypothesis based on size differences seen among these four Chiropterotriton species matches most closely the observed pattern of relative skull robustness. Since size change and heterochrony are often associated in plethodontid evolution, it is likely that changes in developmental timing play a role in the morphological transitions among these morphologically diverse taxa. Webbed feet, miniaturization, body shape, and an unusual tarsal arrangement are morphologies exhibited in species of Chiropterotrition that are shown to be homoplastic with other clades of tropical plethodontids. Although extensive homoplasy in salamanders might be seen as a roadblock to unraveling phylogenetic hypotheses, the homologous developmental systems that appear to underlie such homoplasy may reveal common and consistent evolutionary processes at work.

  11. Morphology evolution of gold nanoparticles as function of time, temperature, and Au(III)/sodium ascorbate molar ratio

    NASA Astrophysics Data System (ADS)

    Priolisi, Ornella; Fabrizi, Alberto; Deon, Giovanna; Bonollo, Franco; Cattini, Stefano

    2016-01-01

    In this work the morphology evolution of Au nanoparticles (AuNPs), obtained by direct reduction, was studied as a function of time, temperature, and Au(III)/sodium ascorbate molar ratio. The NPs morphology was examined by transmission electron microscope with image analysis, while time evolution was investigated by visible and near-infrared absorption spectroscopy and dynamic light scattering. It is found that initially formed star-like NPs transform in more spheroidal particles and the evolution appears more rapid by increasing the temperature while a large amount of reducing agent prevents the remodeling of AuNPs. An explication of morphology evolution is proposed.

  12. Shear Induced Morphology Evolution and Dynamic Viscoelastic Behavior of Binary and Ternary Elastomer Blends

    NASA Astrophysics Data System (ADS)

    Dong, Xia; Liu, Xianggui; Liu, Wei; Han, Charles C.; Wang, Dujin

    2015-03-01

    The morphology evolution and rheological response of a near-critical composition polybutadiene /polyisoprene blend and solution-polymerized styrene-butadiene rubber/polyisoprene/silica ternary composites after various shear flow were in situ studied with the rheological and rheo-optical techniques. The relationship between the morphology of the blend during the relaxation after the cessation of steady shear with different shear rates and their corresponding rheological properties was successfully established. It was found that the different shear-induced morphologies under steady shear would relax to the equilibrium states via varied mechanisms after the shear cessation. The storage modulus G' increased significantly in the breakup process of the string-like phase. In long time scale, silica slowed down the succeeding breakup of the string-phase domains and simultaneous coalescence of broken droplets, and then effectively reduced the droplets size and stabilized the morphology. The authors thank the financial support from National Natural Science Foundation of China (No. 51173195).

  13. Insight into diversity, body size and morphological evolution from the largest Early Cretaceous enantiornithine bird

    PubMed Central

    Zhou, Zhonghe; Clarke, Julia; Zhang, Fucheng

    2008-01-01

    Most of Mesozoic bird diversity comprises species that are part of one of two major lineages, namely Ornithurae, including living birds, and Enantiornithes, a major radiation traditionally referred to as ‘opposite birds’. Here we report the largest Early Cretaceous enantiornithine bird from north-east China, which provides evidence that basal members of Enantiornithes share more morphologies with ornithurine birds than previously recognized. Morphological evolution in these two groups has been thought to be largely parallel, with derived members of Enantiornithes convergent on the ‘advanced’ flight capabilities of ornithurine birds. The presence of an array of morphologies previously thought to be derived within ornithurine and enantiornithine birds in a basal enantiornithine species provides evidence of the complex character evolution in these two major lineages. The cranial morphology of the new specimen is among the best preserved for Mesozoic avians. The new species extends the size range known for Early Cretaceous Enantiornithes significantly and provides evidence of forelimb to hind limb proportions distinct from all other known members of the clade. As such, it sheds new light on avian body size evolution and diversity, and allows a re-evaluation of a previously proposed hypothesis of competitive exclusion among Early Cretaceous avian clades. PMID:18397240

  14. Sequential evolution of bacterial morphology by co-option of a developmental regulator.

    PubMed

    Jiang, Chao; Brown, Pamela J B; Ducret, Adrien; Brun, Yves V

    2014-02-27

    What mechanisms underlie the transitions responsible for the diverse shapes observed in the living world? Although bacteria exhibit a myriad of morphologies, the mechanisms responsible for the evolution of bacterial cell shape are not understood. We investigated morphological diversity in a group of bacteria that synthesize an appendage-like extension of the cell envelope called the stalk. The location and number of stalks varies among species, as exemplified by three distinct subcellular positions of stalks within a rod-shaped cell body: polar in the genus Caulobacter and subpolar or bilateral in the genus Asticcacaulis. Here we show that a developmental regulator of Caulobacter crescentus, SpmX, is co-opted in the genus Asticcacaulis to specify stalk synthesis either at the subpolar or bilateral positions. We also show that stepwise evolution of a specific region of SpmX led to the gain of a new function and localization of this protein, which drove the sequential transition in stalk positioning. Our results indicate that changes in protein function, co-option and modularity are key elements in the evolution of bacterial morphology. Therefore, similar evolutionary principles of morphological transitions apply to both single-celled prokaryotes and multicellular eukaryotes.

  15. Sequential evolution of bacterial morphology by co-option of a developmental regulator

    NASA Astrophysics Data System (ADS)

    Jiang, Chao; Brown, Pamela J. B.; Ducret, Adrien; Brun, Yves V.

    2014-02-01

    What mechanisms underlie the transitions responsible for the diverse shapes observed in the living world? Although bacteria exhibit a myriad of morphologies, the mechanisms responsible for the evolution of bacterial cell shape are not understood. We investigated morphological diversity in a group of bacteria that synthesize an appendage-like extension of the cell envelope called the stalk. The location and number of stalks varies among species, as exemplified by three distinct subcellular positions of stalks within a rod-shaped cell body: polar in the genus Caulobacter and subpolar or bilateral in the genus Asticcacaulis. Here we show that a developmental regulator of Caulobacter crescentus, SpmX, is co-opted in the genus Asticcacaulis to specify stalk synthesis either at the subpolar or bilateral positions. We also show that stepwise evolution of a specific region of SpmX led to the gain of a new function and localization of this protein, which drove the sequential transition in stalk positioning. Our results indicate that changes in protein function, co-option and modularity are key elements in the evolution of bacterial morphology. Therefore, similar evolutionary principles of morphological transitions apply to both single-celled prokaryotes and multicellular eukaryotes.

  16. Five molecular markers reveal extensive morphological homoplasy and reticulate evolution in the Malva alliance (Malvaceae).

    PubMed

    Escobar García, Pedro; Schönswetter, Peter; Fuertes Aguilar, Javier; Nieto Feliner, Gonzalo; Schneeweiss, Gerald M

    2009-02-01

    The Malva alliance is a well-defined group with extensive morphological homoplasy. As a result, the relationships among the taxa as well as the evolution of morphological traits have remained elusive and the traditional classifications are highly artificial. Using five molecular markers (nuclear ITS, plastid matK plus trnK, ndhF, trnL-trnF, psbA-trnH), we arrived at a phylogenetic hypothesis of this group, the genera Alcea, Althaea and Malvalthaea being studied here for the first time with molecular data. Althaea and, in particular, Lavatera and Malva are highly polyphyletic as currently circumscribed, because their diagnostic characters, the number and degree of fusion of the epicalyx bracts, evolve in a highly homoplasious manner. In contrast, fruit morphology largely agrees with the molecularly delimited groups. Hybrid origins confirmed for the genus Malvalthaea and for Lavatera mauritanica and hybridization in the group of ruderal small-flowered mallows underline the importance of reticulate evolution in shaping the history of this group and complicating the interpretation of morphological evolution.

  17. Insight into diversity, body size and morphological evolution from the largest Early Cretaceous enantiornithine bird.

    PubMed

    Zhou, Zhonghe; Clarke, Julia; Zhang, Fucheng

    2008-05-01

    Most of Mesozoic bird diversity comprises species that are part of one of two major lineages, namely Ornithurae, including living birds, and Enantiornithes, a major radiation traditionally referred to as 'opposite birds'. Here we report the largest Early Cretaceous enantiornithine bird from north-east China, which provides evidence that basal members of Enantiornithes share more morphologies with ornithurine birds than previously recognized. Morphological evolution in these two groups has been thought to be largely parallel, with derived members of Enantiornithes convergent on the 'advanced' flight capabilities of ornithurine birds. The presence of an array of morphologies previously thought to be derived within ornithurine and enantiornithine birds in a basal enantiornithine species provides evidence of the complex character evolution in these two major lineages. The cranial morphology of the new specimen is among the best preserved for Mesozoic avians. The new species extends the size range known for Early Cretaceous Enantiornithes significantly and provides evidence of forelimb to hind limb proportions distinct from all other known members of the clade. As such, it sheds new light on avian body size evolution and diversity, and allows a re-evaluation of a previously proposed hypothesis of competitive exclusion among Early Cretaceous avian clades.

  18. Continuous scaling 3d micro flow printing for improved spot morphology in protein microarrays - biomed 2013.

    PubMed

    Romanov, Valentin; Gale, Bruce; Eckman, Josh; Miles, Adam; Brooks, Benjamin

    2013-01-01

    The protein microarray platform while innovative still poses a number of challenges which can only be met through creative and sophisticated system design. Pin printing while allowing for flexibility as to the type of medium printed does not offer the kind of spot reproducibility that a very sensitive application may require. The Continuous Flow Microspotter (CFM) was designed to not only allow for flexibility and reproducibility but to also achieve solution stability through flow scaling. This study uses the emerging CFM for printing protein and antibodies three dimensionally for general protein microarray applications. Consistent spot morphology, a continual and persistent problem in traditional pin printed microarrays, was compared under variable printed flow rates. The final assessment was performed using a rudimentary shear model. Force effects discussion and statistical data was used to demonstrate the versatility of the system.

  19. Morphology, development, and evolution of fetal membranes and placentation in squamate reptiles.

    PubMed

    Blackburn, Daniel G; Flemming, Alexander F

    2009-09-15

    Current studies on fetal membranes of reptiles are providing insight into three major historical transformations: evolution of the amniote egg, evolution of viviparity, and evolution of placentotrophy. Squamates (lizards and snakes) are ideal for such studies because their fetal membranes sustain embryos in oviparous species and contribute to placentas in viviparous species. Ultrastructure of the fetal membranes in oviparous corn snakes (Pituophis guttatus) shows that the chorioallantois is specialized for gas exchange and the omphalopleure, for water absorption. Transmission and scanning electron microscopic studies of viviparous thamnophine snakes (Thamnophis, Storeria) have revealed morphological specializations for gas exchange and absorption in the intra-uterine environment that represent modifications of features found in oviparous species. Thus, fetal membranes in oviparous species show morphological differentiation for distinct functions that have been recruited and enhanced under viviparous conditions. The ultimate in specialization of fetal membranes is found in viviparous skinks of South America (Mabuya) and Africa (Trachylepis, Eumecia), in which placentotrophy accounts for nearly all of the nutrients for development. Ongoing research on these lizards has revealed morphological specializations of the chorioallantoic placenta through which nutrient transfer is accomplished. In addition, African Trachylepis show an invasive form of implantation, in which uterine epithelium is replaced by invading chorionic cells. Ongoing analysis of these lizards shows how integration of multiple lines of evidence can provide insight into the evolution of developmental and reproductive specializations once thought to be confined to eutherian mammals.

  20. Large Magellanic Cloud Planetary Nebula Morphology: Probing Stellar Populations and Evolution.

    PubMed

    Stanghellini; Shaw; Balick; Blades

    2000-05-10

    Planetary nebulae (PNe) in the Large Magellanic Cloud (LMC) offer the unique opportunity to study both the population and evolution of low- and intermediate-mass stars, by means of the morphological type of the nebula. Using observations from our LMC PN morphological survey, and including images available in the Hubble Space Telescope Data Archive and published chemical abundances, we find that asymmetry in PNe is strongly correlated with a younger stellar population, as indicated by the abundance of elements that are unaltered by stellar evolution (Ne, Ar, and S). While similar results have been obtained for Galactic PNe, this is the first demonstration of the relationship for extragalactic PNe. We also examine the relation between morphology and abundance of the products of stellar evolution. We found that asymmetric PNe have higher nitrogen and lower carbon abundances than symmetric PNe. Our two main results are broadly consistent with the predictions of stellar evolution if the progenitors of asymmetric PNe have on average larger masses than the progenitors of symmetric PNe. The results bear on the question of formation mechanisms for asymmetric PNe-specifically, that the genesis of PNe structure should relate strongly to the population type, and by inference the mass, of the progenitor star and less strongly on whether the central star is a member of a close binary system.

  1. Modeling morphology evolution and densification during solid-state sintering via kinetic Monte Carlo simulation

    NASA Astrophysics Data System (ADS)

    Chen, Shaohua; Xu, Yaopengxiao; Jiao, Yang

    2016-12-01

    Microstructure control is an important subject in solid-state sintering and plays a crucial role in determining post-sintering material properties, such as strength, toughness and density, to name but a few. The preponderance of existing numerical sintering simulations model the morphology evolution and densification process driven by surface energy minimization by either dilating the particles to be sintered or using the vacancy annihilation model. Here, we develop a novel kinetic Monte Carlo model to model morphology evolution and densification during free sintering. Specifically, we derive analytically a heterogeneous densification rate of the sintering system by considering sintering stress induced mass transport. The densification of the system is achieved by modeling the sintering stress induced mass transfer via applying effective particle displacement and grain boundary migration with an efficient two-step iterative interfacial energy minimization procedure. Coarsening is also considered in the later stages of the simulations. We show that our model can accurately capture the diffusion-induced evolution of particle morphology, including neck formation and growth, as well as realistically reproduce the overall densification of the sintered material. The computationally obtained dynamic density evolution curves for both two-particle sintering and many-particle material sintering are found to be in excellent agreement with the corresponding experimental master sintering curves. Our model can be utilized to control a variety of structural and physical properties of the sintered materials, such as the pore size and final material density.

  2. Cation-containing Polymers with Co-continuous Microphase-Separated Morphologies for Rapid Transport Membranes

    NASA Astrophysics Data System (ADS)

    Beyer, Frederick; Price, Samuel; Savage, Alice; Ren, Xiaoming; Pomerantz, Natalie; Zukas, Walter

    2015-03-01

    Cation-containing polymer membranes are the subject of renewed research for their potential to enable the use of alkaline fuel cells, and are also of interest for their water vapor transport properties. Charge and water vapor transport are both heavily dependent on membrane morphology and the development of hydrophilic channels throughout the material. Reaction induced phase separation has been shown to create such morphologies when used with uncharged copolymers and crosslinking monomers. Here we have applied this same technique but used ion-containing block copolymers of 4-vinylbenzyltrimethylammonium chloride and styrene to create a cation-containing polymer membrane having a microphase-separated, co-continuous morphology, as characterized by small-angle X-ray scattering (SAXS) and high-angle annular dark field scanning transmission electron microscopy (HAADF STEM). These materials show excellent charge transport behavior and water vapor transport properties, surpassing commercially available materials. These results and efforts to improve other important physical characteristics for membrane applications will be presented.

  3. Continuous detection of cerebral vasodilatation and vasoconstriction using intracranial pulse morphological template matching.

    PubMed

    Asgari, Shadnaz; Gonzalez, Nestor; Subudhi, Andrew W; Hamilton, Robert; Vespa, Paul; Bergsneider, Marvin; Roach, Robert C; Hu, Xiao

    2012-01-01

    Although accurate and continuous assessment of cerebral vasculature status is highly desirable for managing cerebral vascular diseases, no such method exists for current clinical practice. The present work introduces a novel method for real-time detection of cerebral vasodilatation and vasoconstriction using pulse morphological template matching. Templates consisting of morphological metrics of cerebral blood flow velocity (CBFV) pulse, measured at middle cerebral artery using Transcranial Doppler, are obtained by applying a morphological clustering and analysis of intracranial pulse algorithm to the data collected during induced vasodilatation and vasoconstriction in a controlled setting. These templates were then employed to define a vasodilatation index (VDI) and a vasoconstriction index (VCI) for any inquiry data segment as the percentage of the metrics demonstrating a trend consistent with those obtained from the training dataset. The validation of the proposed method on a dataset of CBFV signals of 27 healthy subjects, collected with a similar protocol as that of training dataset, during hyperventilation (and CO₂ rebreathing tests) shows a sensitivity of 92% (and 82%) for detection of vasodilatation (and vasoconstriction) and the specificity of 90% (and 92%), respectively. Moreover, the proposed method of detection of vasodilatation (vasoconstriction) is capable of rejecting all the cases associated with vasoconstriction (vasodilatation) and outperforms other two conventional techniques by at least 7% for vasodilatation and 19% for vasoconstriction.

  4. Continuous Detection of Cerebral Vasodilatation and Vasoconstriction Using Intracranial Pulse Morphological Template Matching

    PubMed Central

    Asgari, Shadnaz; Gonzalez, Nestor; Subudhi, Andrew W.; Hamilton, Robert; Vespa, Paul; Bergsneider, Marvin; Roach, Robert C.; Hu, Xiao

    2012-01-01

    Although accurate and continuous assessment of cerebral vasculature status is highly desirable for managing cerebral vascular diseases, no such method exists for current clinical practice. The present work introduces a novel method for real-time detection of cerebral vasodilatation and vasoconstriction using pulse morphological template matching. Templates consisting of morphological metrics of cerebral blood flow velocity (CBFV) pulse, measured at middle cerebral artery using Transcranial Doppler, are obtained by applying a morphological clustering and analysis of intracranial pulse algorithm to the data collected during induced vasodilatation and vasoconstriction in a controlled setting. These templates were then employed to define a vasodilatation index (VDI) and a vasoconstriction index (VCI) for any inquiry data segment as the percentage of the metrics demonstrating a trend consistent with those obtained from the training dataset. The validation of the proposed method on a dataset of CBFV signals of 27 healthy subjects, collected with a similar protocol as that of training dataset, during hyperventilation (and CO2 rebreathing tests) shows a sensitivity of 92% (and 82%) for detection of vasodilatation (and vasoconstriction) and the specificity of 90% (and 92%), respectively. Moreover, the proposed method of detection of vasodilatation (vasoconstriction) is capable of rejecting all the cases associated with vasoconstriction (vasodilatation) and outperforms other two conventional techniques by at least 7% for vasodilatation and 19% for vasoconstriction. PMID:23226385

  5. Evolution of sperm morphology in anurans: insights into the roles of mating system and spawning location.

    PubMed

    Zeng, Yu; Lou, Shang Ling; Liao, Wen Bo; Jehle, Robert

    2014-05-15

    The degree of postcopulatory sexual selection, comprising variable degrees of sperm competition and cryptic female choice, is an important evolutionary force to influence sperm form and function. Here we investigated the effects of mating system and spawning location on the evolution of sperm morphology in 67 species of Chinese anurans. We also examined how relative testes size as an indicator of the level of sperm competition affected variation in sperm morphology across a subset of 29 species. We found a significant association of mating system and spawning location with sperm morphology. However, when removing the effects of body mass or absolute testes mass for species for which such data were available, this effect became non-significant. Consistent with predictions from sperm competition theory, we found a positive correlation between sperm morphology and relative testes size after taking phylogeny into account. Our findings suggest that sexual selection in Chinese anurans favors longer sperm when the level of sperm competition is high. Pre-copulatory male-male competition and spawning location, on the other hand, do not affect the evolution of sperm morphology after taking body mass and absolute testes mass into account.

  6. Evolution of sperm morphology in anurans: insights into the roles of mating system and spawning location

    PubMed Central

    2014-01-01

    Background The degree of postcopulatory sexual selection, comprising variable degrees of sperm competition and cryptic female choice, is an important evolutionary force to influence sperm form and function. Here we investigated the effects of mating system and spawning location on the evolution of sperm morphology in 67 species of Chinese anurans. We also examined how relative testes size as an indicator of the level of sperm competition affected variation in sperm morphology across a subset of 29 species. Results We found a significant association of mating system and spawning location with sperm morphology. However, when removing the effects of body mass or absolute testes mass for species for which such data were available, this effect became non-significant. Consistent with predictions from sperm competition theory, we found a positive correlation between sperm morphology and relative testes size after taking phylogeny into account. Conclusions Our findings suggest that sexual selection in Chinese anurans favors longer sperm when the level of sperm competition is high. Pre-copulatory male-male competition and spawning location, on the other hand, do not affect the evolution of sperm morphology after taking body mass and absolute testes mass into account. PMID:24884745

  7. Anatomical study of the morphological continuity between iliotibial tract and the fibularis longus fascia.

    PubMed

    Wilke, Jan; Engeroff, Tobias; Nürnberger, Frank; Vogt, Lutz; Banzer, Winfried

    2016-04-01

    Recent research indicates that the skeletal muscles of the human body do not function as independent actuators. Instead, they seem to be linked by connective tissue forming myofascial chains. While the existence of such meridians has been demonstrated for the ventral and the dorsal side of the body, no data are available for morphological fusion of lateral muscles. This study aimed to provide evidence for the inferior part of the lateral myofascial chain. Fourteen legs (7 embalmed cadavers, four ♂, 86 ± 7 years) were dissected to reveal a potential myofascial continuity between the fibularis longus muscle, more detailed, its fascia, and the iliotibial tract (ITT). Three investigators judged the general existence as well as the degree and characteristics of the continuity. If an anatomical continuity was evident, strain was applied to both structures in order to evaluate the tissues' ability for tensile transmission. An indirect connection between the iliotibial tract and the fascia of the fibularis longus muscle was found: in all examined legs, the ITT fused strongly with the crural fascia. The latter was hardly separable from the fibularis longus fascia. Application of strain to the ITT caused local movement in the crural fascia and the underlying fascia of the fibularis muscle. The iliotibial tract fuses firmly with the crural fascia and the degree of continuity suggests that moderate amounts of strain might be transmitted. However, biomechanical studies precisely quantifying this tensile transmission are warranted in order to estimate the relevance of the linkage for the locomotor system.

  8. Morphological and crystallographic evolution of bainite transformation in Fe-0.15C binary alloy.

    PubMed

    Zhang, Di; Terasaki, Hidenori; Komizo, Yuichi

    2010-01-01

    In this article, an in situ observation method, combining laser scanning confocal microscopy and electron backscattering diffraction, was used to investigate the morphological and crystallographic evolution of bainite transformation in a Fe-0.15C binary alloy. The nucleation at a grain boundary and inclusions, sympathetic nucleation, and impingement event of bainitic ferrite were directly shown in real time. The variant evolution during bainite transformation and misorientation between bainitic ferrites were clarified. Strong variant selection was observed during sympathetic nucleation. (c) 2009 Wiley-Liss, Inc.

  9. The geometry of the marmot (rodentia: sciuridae) mandible: phylogeny and patterns of morphological evolution.

    PubMed

    Cardini, Andrea

    2003-04-01

    Marmots have a prominent role in the study of mammalian social evolution, but only recently has their systematics received the attention it deserves if sociobiological studies are to be placed in a phylogenetic context. Sciurid morphology can be used as model to test the congruence between morphological change and phylogeny because sciurid skeletal characters are considered to be inclined to convergence. However, no morphological study involving all marmot species has ever been undertaken. Geometric morphometric techniques were applied in a comparative study of the marmot mandible. The adults of all 14 living marmot species were compared, and mean mandible shape were used to investigate morphological evolution in the genus Marmota. Three major trends were observed. First, the phylogenetic signal in the variation of landmark geometry, which describes mandible morphology, seems to account for the shape differences at intermediate taxonomic levels. The subgenera Marmota and Petromarmota, recently proposed on the basis of mitochondrial cytochrome b sequence, receive support from mandible morphology. When other sciurid genera were included in the analysis, the monophyly of the genus Marmota and that of the tribe Marmotini (i.e., marmots, prairie dogs, and ground squirrels) was strengthened by the morphological data. Second, the marmotine mandible may have evolved as a mosaic of characters and does not show convergence determined by size similarities. Third, allopatric speciation in peripheral isolates may have acted as a powerful force for modeling shape. This hypothesis is strongly supported by the peculiar mandible of M. vancouverensis and, to a lesser degree, by that of M. olympus, both thought to have originated as isolated populations in Pleistocene ice-free refugia.

  10. Craters and basins on Ganymede and Callisto - Morphological indicators of crustal evolution

    NASA Astrophysics Data System (ADS)

    Passey, Q. R.; Shoemaker, E. M.

    The morphologic characteristics of craters and palimpsests on Ganymede and Callisto are surveyed, and the crustal properties of these satellites and the evolution of the properties are studied. The morphology of bowl-shaped craters, smooth-floored craters, craters without central peaks, craters with central pits, chain craters on Callisto, the Gilgamesh and Western Equatorial Basins on Ganymede, crater palimpsests and penepalimpsests, multiring structures on Callisto, and the Galileo Regio rimmed furrow system on Ganymede are described individually. The crustal evolution is addressed by examining the development of the Galileo Regio system, the distribution of crater retention ages, the record of ray clusters, the thermal history of the lithosphere of Ganymede, and the origin of the central pits. It is suggested that as the lithosphere of each satellite cooled and thickened, crater retentivity spread as a wave from the polar regions and the antapex toward the apex; at any given location, progressively larger craters were retained with the passage of time.

  11. Craters and basins on Ganymede and Callisto - Morphological indicators of crustal evolution

    NASA Technical Reports Server (NTRS)

    Passey, Q. R.; Shoemaker, E. M.

    1982-01-01

    The morphologic characteristics of craters and palimpsests on Ganymede and Callisto are surveyed, and the crustal properties of these satellites and the evolution of the properties are studied. The morphology of bowl-shaped craters, smooth-floored craters, craters without central peaks, craters with central pits, chain craters on Callisto, the Gilgamesh and Western Equatorial Basins on Ganymede, crater palimpsests and penepalimpsests, multiring structures on Callisto, and the Galileo Regio rimmed furrow system on Ganymede are described individually. The crustal evolution is addressed by examining the development of the Galileo Regio system, the distribution of crater retention ages, the record of ray clusters, the thermal history of the lithosphere of Ganymede, and the origin of the central pits. It is suggested that as the lithosphere of each satellite cooled and thickened, crater retentivity spread as a wave from the polar regions and the antapex toward the apex; at any given location, progressively larger craters were retained with the passage of time.

  12. Evolution of Yb-particle fractals towards equilibrium morphology on CoYb alloy thin films

    NASA Astrophysics Data System (ADS)

    Liu, B. X.; Ding, J. R.

    1991-11-01

    Room temperature ageing and high temperature annealing were conducted to study the restructuring of the ion induced fractal aggregates on CoYb alloy thin films. The evolution of the nonequilibrium fractals towards equilibrium compact clusters was observed by tracing the microstructure change under transmission electron microscopy examination. The fractal aggregates restructured and eventually turned into an equilibrium morphology of Yb particles distributing uniformly on the film surfaces.

  13. Molecular phylogeny, systematics and morphological evolution of the acorn barnacles (Thoracica: Sessilia: Balanomorpha).

    PubMed

    Pérez-Losada, Marcos; Høeg, Jens T; Simon-Blecher, Noa; Achituv, Yair; Jones, Diana; Crandall, Keith A

    2014-12-01

    The Balanomorpha are the largest group of barnacles and rank among the most diverse, commonly encountered and ecologically important marine crustaceans in the world. Paradoxically, despite their relevance and extensive study for over 150years, their evolutionary relationships are still unresolved. Classical morphological systematics was often based on non-cladistic approaches, while modern phylogenetic studies suffer from severe undersampling of taxa and characters (both molecular and morphological). Here we present a phylogenetic analysis of the familial relationships within the Balanomorpha. We estimate divergence times and examine morphological diversity based on five genes, 156 specimens, 10 fossil calibrations, and six key morphological characters. Two balanomorphan superfamilies, eight families and twelve genera were identified as polyphyletic. Chthamaloids, chionelasmatoid and pachylasmatoids split first from the pedunculated ancestors followed by a clade of tetraclitoids and coronuloids, and most of the balanoids. The Balanomorpha split from the Verrucidae (outgroup) in the Lower Cretaceous (139.6 Mya) with all the main lineages, except Pachylasmatoidea, having emerged by the Paleocene (60.9 Mya). Various degrees of convergence were observed in all the assessed morphological characters except the maxillipeds, which suggests that classical interpretations of balanomorphan morphological evolution need to be revised and reinterpreted.

  14. Surface roughness and morphology evolution of optical glass with micro-cracks during chemical etching.

    PubMed

    Xiao, Huapan; Wang, Hairong; Fu, Guanglong; Chen, Zhi

    2017-01-20

    Chemical etching is usually utilized to measure, reduce, and remove the subsurface micro-cracks in optical components, which makes it significant to study the surface evolution of optical components during the etching process. Etching experiments were carried out for glass with artificial cracks and micro-cracks under different etching conditions. The etching rate was obtained, which is linear with the hydrofluoric acid (HF) concentration and greatly affected by etching temperature. By measuring the surface roughness (SR) and morphology of glasses after etching, it is found that the crack width always increases with etching time, while the crack depth remains unchanged after the crack is completely exposed. Meanwhile, the SR increases sharply at first, then increases slowly, and finally decreases with the increase of etching time. Considering the influence of HF concentration, etching temperature, and the diffusion coefficient on the etching rate, simulation models were established for etching trailing indent cracks (TICs) to further analyze the evolution of SR and morphology. The simulation results were compared with the experimental ones, also indicating that the maximum SR (Ra) increases greatly with the crack's aspect ratio and the model for analyzing the crack's morphology evolution is more reasonable.

  15. Many-to-one form-to-function mapping weakens parallel morphological evolution.

    PubMed

    Thompson, Cole J; Ahmed, Newaz I; Veen, Thor; Peichel, Catherine L; Hendry, Andrew P; Bolnick, Daniel I; Stuart, Yoel E

    2017-09-07

    Evolutionary ecologists aim to explain and predict evolutionary change under different selective regimes. Theory suggests that such evolutionary prediction should be more difficult for biomechanical systems in which different trait combinations generate the same functional output: "many-to-one mapping". Many-to-one mapping of phenotype to function enables multiple morphological solutions to meet the same adaptive challenges. Therefore, many-to-one mapping should undermine parallel morphological evolution, and hence evolutionary predictability, even when selection pressures are shared among populations. Studying 16 replicate pairs of lake- and stream-adapted threespine stickleback (Gasterosteus aculeatus), we quantified three parts of the teleost feeding apparatus and used biomechanical models to calculate their expected functional outputs. The three feeding structures differed in their form-to-function relationship from one-to-one (lower jaw lever ratio) to increasingly many-to-one (buccal suction index, opercular 4-bar linkage). We tested for (1) weaker linear correlations between phenotype and calculated function, and (2) less parallel evolution across lake-stream pairs, in the many-to-one systems relative to the one-to-one system. We confirm both predictions, thus supporting the theoretical expectation that increasing many-to-one mapping undermines parallel evolution. Therefore, sole consideration of morphological variation within and among populations might not serve as a proxy for functional variation when multiple adaptive trait combinations exist. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  16. Morphological Evolution and Sediment Partitioning Through a Large Confluence-Diffluence Unit

    NASA Astrophysics Data System (ADS)

    Hackney, C. R.; Darby, S. E.; Parsons, D. R.; Leyland, J.; Best, J.; Aalto, R. E.; Nicholas, A. P.

    2015-12-01

    Confluence-diffluence units are key nodes in fluvial systems, controlling local bed morphology, the routing of sediment and water and ultimately defining channel stability and the larger-scale, planform dynamics. The Chaktomuk Junction on the Mekong River is the site of the confluence of the Tonlé Sap and Mekong rivers, as well as the diffluence of the Mekong and Bassac rivers. This junction defines the upstream apex of the Mekong delta. As such, the morphological evolution of this confluence-diffluence over single flood events, and larger temporal scales, determines the partitioning of water and sediment as it enters the Mekong delta, as well as to the critically important ecosystem that is the Tonlé Sap Lake. Here, we present data from a series of high spatial resolution topographic (Multibeam Echo Sounder), flow (Acoustic Doppler Current Profiler) and sub-bottom profiling (Parametric Echo Sounder) surveys undertaken on the Chaktomuk Junction, which reveal the temporal and spatial evolution of this critically important confluence-diffluence unit. We show spatial patterns of morphological change across a range of monsoonal flow stages and at various temporal scales, as well as sub-bottom profiling across the large bars present at the confluence. We also identify the response in the partitioning of the suspended and bedload portions of sediment transport through the confluence-diffluence, and elucidate the implications of this partitioning for the evolution of the downstream channel.

  17. Computational Examination of Orientation-Dependent Morphological Evolution during the Electrodeposition and Electrodissolution of Magnesium

    SciTech Connect

    DeWitt, S.; Hahn, N.; Zavadil, K.; Thornton, K.

    2015-12-30

    Here a new model of electrodeposition and electrodissolution is developed and applied to the evolution of Mg deposits during anode cycling. The model captures Butler-Volmer kinetics, facet evolution, the spatially varying potential in the electrolyte, and the time-dependent electrolyte concentration. The model utilizes a diffuse interface approach, employing the phase field and smoothed boundary methods. Scanning electron microscope (SEM) images of magnesium deposited on a gold substrate show the formation of faceted deposits, often in the form of hexagonal prisms. Orientation-dependent reaction rate coefficients were parameterized using the experimental SEM images. Three-dimensional simulations of the growth of magnesium deposits yield deposit morphologies consistent with the experimental results. The simulations predict that the deposits become narrower and taller as the current density increases due to the depletion of the electrolyte concentration near the sides of the deposits. Increasing the distance between the deposits leads to increased depletion of the electrolyte surrounding the deposit. Two models relating the orientation-dependence of the deposition and dissolution reactions are presented. Finally, the morphology of the Mg deposit after one deposition-dissolution cycle is significantly different between the two orientation-dependence models, providing testable predictions that suggest the underlying physical mechanisms governing morphology evolution during deposition and dissolution.

  18. Computational Examination of Orientation-Dependent Morphological Evolution during the Electrodeposition and Electrodissolution of Magnesium

    DOE PAGES

    DeWitt, S.; Hahn, N.; Zavadil, K.; ...

    2015-12-30

    Here a new model of electrodeposition and electrodissolution is developed and applied to the evolution of Mg deposits during anode cycling. The model captures Butler-Volmer kinetics, facet evolution, the spatially varying potential in the electrolyte, and the time-dependent electrolyte concentration. The model utilizes a diffuse interface approach, employing the phase field and smoothed boundary methods. Scanning electron microscope (SEM) images of magnesium deposited on a gold substrate show the formation of faceted deposits, often in the form of hexagonal prisms. Orientation-dependent reaction rate coefficients were parameterized using the experimental SEM images. Three-dimensional simulations of the growth of magnesium deposits yieldmore » deposit morphologies consistent with the experimental results. The simulations predict that the deposits become narrower and taller as the current density increases due to the depletion of the electrolyte concentration near the sides of the deposits. Increasing the distance between the deposits leads to increased depletion of the electrolyte surrounding the deposit. Two models relating the orientation-dependence of the deposition and dissolution reactions are presented. Finally, the morphology of the Mg deposit after one deposition-dissolution cycle is significantly different between the two orientation-dependence models, providing testable predictions that suggest the underlying physical mechanisms governing morphology evolution during deposition and dissolution.« less

  19. Mona Lisa smile: the morphological enigma of human and great ape evolution.

    PubMed

    Grehan, John R

    2006-07-01

    The science of human evolution is confronted with the popular chimpanzee theory and the earlier but largely ignored orangutan theory. The quality and scope of published documentation and verification of morphological features suggests there is very little in morphology to support a unique common ancestor for humans and chimpanzees. A close relationship between humans and African apes is currently supported by only eight unproblematic characters. The orangutan relationship is supported by about 28 well-supported characters, and it is also corroborated by the presence of orangutan-related features in early hominids. The uniquely shared morphology of humans and orangutans raises doubts about the almost universal belief that DNA sequence similarities necessarily demonstrate a closer evolutionary relationship between humans and chimpanzees. A new evolutionary reconstruction is proposed for the soft tissue anatomy, physiology, and behavioral biology of the first hominids that includes concealed ovulation, male beard and mustache, prolonged mating, extended pair-bonding, "house" construction, mechanical "genius," and artistic expression.

  20. Evolution of nanodot morphology on polycarbonate (PC) surfaces by 40 keV Ar{sup +}

    SciTech Connect

    Goyal, Meetika Chawla, Mahak; Gupta, Divya; Shekhawat, Nidhi; Sharma, Annu; Aggarwal, Sanjeev

    2016-05-06

    In the present paper we have discussed the effect of 40 keV Ar{sup +} ions irradiation on nanoscale surface morphology of Polycarbonate (PC) substrate. Specimens were sputtered at off normal incidences of 30°, 40° and 50° with the fluence of 1 × 10{sup 16} Ar{sup +}cm{sup −2}. The topographical behaviour of specimens was studied by using Atomic Force Microscopy (AFM) technique. AFM study demonstrates the evolution of nano dot morphology on PC specimens on irradiating with 1 × 10{sup 16} Ar{sup +}cm{sup −2}. Average size of dots varied from 37-95 nm in this specified range of incidence while density of dots varied from 0.17-3.0 × 107 dotscm{sup −2}. Such variations in morphological features have been supported by estimation of ion range and sputtering yield through SRIM simulations.

  1. Molecular mechanisms for the evolution of bacterial morphologies and growth modes.

    PubMed

    Randich, Amelia M; Brun, Yves V

    2015-01-01

    Bacteria exhibit a rich diversity of morphologies. Within this diversity, there is a uniformity of shape for each species that is replicated faithfully each generation, suggesting that bacterial shape is as selectable as any other biochemical adaptation. We describe the spatiotemporal mechanisms that target peptidoglycan synthesis to different subcellular zones to generate the rod-shape of model organisms Escherichia coli and Bacillus subtilis. We then demonstrate, using the related genera Caulobacter and Asticcacaulis as examples, how the modularity of the core components of the peptidoglycan synthesis machinery permits repositioning of the machinery to achieve different growth modes and morphologies. Finally, we highlight cases in which the mechanisms that underlie morphological evolution are beginning to be understood, and how they depend upon the expansion and diversification of the core components of the peptidoglycan synthesis machinery.

  2. Morphological basis for the evolution of acoustic diversity in oscine songbirds.

    PubMed

    Riede, Tobias; Goller, Franz

    2014-03-22

    Acoustic properties of vocalizations arise through the interplay of neural control with the morphology and biomechanics of the sound generating organ, but in songbirds it is assumed that the main driver of acoustic diversity is variation in telencephalic motor control. Here we show, however, that variation in the composition of the vibrating tissues, the labia, underlies diversity in one acoustic parameter, fundamental frequency (F0) range. Lateral asymmetry and arrangement of fibrous proteins in the labia into distinct layers is correlated with expanded F0 range of species. The composition of the vibrating tissues thus represents an important morphological foundation for the generation of a broad F0 range, indicating that morphological specialization lays the foundation for the evolution of complex acoustic repertoires.

  3. Concentration gradient induced morphology evolution of silica nanostructure growth on photoresist-derived carbon micropatterns

    NASA Astrophysics Data System (ADS)

    Liu, Dan; Shi, Tielin; Xi, Shuang; Lai, Wuxing; Liu, Shiyuan; Li, Xiaoping; Tang, Zirong

    2012-09-01

    The evolution of silica nanostructure morphology induced by local Si vapor source concentration gradient has been investigated by a smart design of experiments. Silica nanostructure or their assemblies with different morphologies are obtained on photoresist-derived three-dimensional carbon microelectrode array. At a temperature of 1,000°C, rope-, feather-, and octopus-like nanowire assemblies can be obtained along with the Si vapor source concentration gradient flow. While at 950°C, stringlike assemblies, bamboo-like nanostructures with large joints, and hollow structures with smaller sizes can be obtained along with the Si vapor source concentration gradient flow. Both vapor-liquid-solid and vapor-quasiliquid-solid growth mechanisms have been applied to explain the diverse morphologies involving branching, connecting, and batch growth behaviors. The present approach offers a potential method for precise design and controlled synthesis of nanostructures with different features.

  4. Morphological basis for the evolution of acoustic diversity in oscine songbirds

    PubMed Central

    Riede, Tobias; Goller, Franz

    2014-01-01

    Acoustic properties of vocalizations arise through the interplay of neural control with the morphology and biomechanics of the sound generating organ, but in songbirds it is assumed that the main driver of acoustic diversity is variation in telencephalic motor control. Here we show, however, that variation in the composition of the vibrating tissues, the labia, underlies diversity in one acoustic parameter, fundamental frequency (F0) range. Lateral asymmetry and arrangement of fibrous proteins in the labia into distinct layers is correlated with expanded F0 range of species. The composition of the vibrating tissues thus represents an important morphological foundation for the generation of a broad F0 range, indicating that morphological specialization lays the foundation for the evolution of complex acoustic repertoires. PMID:24500163

  5. Molecular mechanisms for the evolution of bacterial morphologies and growth modes

    PubMed Central

    Randich, Amelia M.; Brun, Yves V.

    2015-01-01

    Bacteria exhibit a rich diversity of morphologies. Within this diversity, there is a uniformity of shape for each species that is replicated faithfully each generation, suggesting that bacterial shape is as selectable as any other biochemical adaptation. We describe the spatiotemporal mechanisms that target peptidoglycan synthesis to different subcellular zones to generate the rod-shape of model organisms Escherichia coli and Bacillus subtilis. We then demonstrate, using the related genera Caulobacter and Asticcacaulis as examples, how the modularity of the core components of the peptidoglycan synthesis machinery permits repositioning of the machinery to achieve different growth modes and morphologies. Finally, we highlight cases in which the mechanisms that underlie morphological evolution are beginning to be understood, and how they depend upon the expansion and diversification of the core components of the peptidoglycan synthesis machinery. PMID:26106381

  6. Concentration gradient induced morphology evolution of silica nanostructure growth on photoresist-derived carbon micropatterns

    PubMed Central

    2012-01-01

    The evolution of silica nanostructure morphology induced by local Si vapor source concentration gradient has been investigated by a smart design of experiments. Silica nanostructure or their assemblies with different morphologies are obtained on photoresist-derived three-dimensional carbon microelectrode array. At a temperature of 1,000°C, rope-, feather-, and octopus-like nanowire assemblies can be obtained along with the Si vapor source concentration gradient flow. While at 950°C, stringlike assemblies, bamboo-like nanostructures with large joints, and hollow structures with smaller sizes can be obtained along with the Si vapor source concentration gradient flow. Both vapor–liquid-solid and vapor-quasiliquid-solid growth mechanisms have been applied to explain the diverse morphologies involving branching, connecting, and batch growth behaviors. The present approach offers a potential method for precise design and controlled synthesis of nanostructures with different features. PMID:22938090

  7. History of studies on mammalian middle ear evolution: a comparative morphological and developmental biology perspective.

    PubMed

    Takechi, Masaki; Kuratani, Shigeru

    2010-09-15

    The mammalian middle ear represents one of the most fundamental morphological features that define this class of vertebrates. Its skeletal pattern differs conspicuously from those of other amniotes and has attracted the attention of comparative zoologists for about 200 years. To reconcile this morphological inconsistency, early comparative morphologists suggested that the mammalian middle ear was derived from elements of the jaw joint of nonmammalian amniotes. Fossils of mammalian ancestors also implied a transition in skeletal morphology that resulted in the mammalian state. During the latter half of the 20th century, developmental mechanisms controlling the formation of the jaw skeleton became the subject of studies in developmental biology and molecular genetics. Mammalian middle ear evolution can now be interpreted as a series of changes in the developmental program of the pharyngeal arches. In this review, we summarize the history of middle ear research, highlight some of the remaining problems, and suggest possible future directions. We propose that to understand mammalian middle ear evolution, it is essential to identify the critical developmental events underlying the particular mammalian anatomy and to describe the evolutionary sequence of changes in developmental and molecular terms. We also discuss the degree of consistency between the developmental explanation of the mammalian middle ear based on molecular biology and morphological changes in the fossil record.

  8. Life on the rocks: habitat use drives morphological and performance evolution in lizards.

    PubMed

    Goodman, Brett A; Miles, Donald B; Schwarzkopf, Lin

    2008-12-01

    As a group, lizards occupy a vast array of habitats worldwide, yet there remain relatively few cases where habitat use (ecology), morphology, and thus, performance, are clearly related. The best known examples include: increased limb length in response to increased arboreal perch diameter in anoles and increased limb length in response to increased habitat openness for some skinks. Rocky habitats impose strong natural selection on specific morphological characteristics, which differs from that imposed on terrestrial species, because moving about on inclined substrates of irregular sizes and shapes constrains locomotor performance in predictable ways. We quantified habitat use, morphology, and performance of 19 species of lizards (family Scincidae, subfamily Lygosominae) from 23 populations in tropical Australia. These species use habitats with considerable variation in rock availability. Comparative phylogenetic analyses revealed that occupation of rock-dominated habitats correlated with the evolution of increased limb length, compared to species from forest habitats that predominantly occupied leaf litter. Moreover, increased limb length directly affected performance, with species from rocky habitats having greater sprinting, climbing, and clinging ability than their relatives from less rocky habitats. Thus, we found that the degree of rock use is correlated with both morphological and performance evolution in this group of tropical lizards.

  9. Electrodeposition of Rhodium Nanowires Arrays and Their Morphology-Dependent Hydrogen Evolution Activity

    PubMed Central

    Zhang, Liqiu; Liu, Lichun; Wang, Hongdan; Shen, Hongxia; Cheng, Qiong; Yan, Chao; Park, Sungho

    2017-01-01

    This work reports on the electrodeposition of rhodium (Rh) nanowires with a controlled surface morphology synthesized using an anodic aluminum oxide (AAO) template. Vertically aligned Rh nanowires with a smooth and coarse morphology were successfully deposited by adjusting the electrode potential and the concentration of precursor ions and by involving a complexing reagent in the electrolyte solution. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) analyses were used to follow the morphological evolution of Rh nanowires. As a heterogeneous electrocatalyst for hydrogen evolution reactions (HER), the coarse Rh nanowire array exhibited an enhanced catalytic performance respect to smooth ones due to the larger surface area to mass ratio and the higher density of catalytically active defects, as evidenced by voltammetric measurements and TEM. Results suggest that the morphology of metallic nanomaterials could be readily engineered by electrodeposition. The controlled electrodeposition offers great potential for the development of an effective synthesis tool for heterogeneous catalysts with a superior performance for wide applications. PMID:28467375

  10. Morphological and Molecular Evolution Are Not Linked in Lamellodiscus (Plathyhelminthes, Monogenea)

    PubMed Central

    Poisot, Timothée; Verneau, Olivier; Desdevises, Yves

    2011-01-01

    Lamellodiscus Johnston & Tiegs 1922 (Monogenea, Diplectanidae) is a genus of common parasites on the gills of sparid fishes. Here we show that this genus is probably undergoing a fast molecular diversification, as reflected by the important genetic variability observed within three molecular markers (partial nuclear 18S rDNA, Internal Transcribed Spacer 1, and mitonchondrial Cytochrome Oxidase I). Using an updated phylogeny of this genus, we show that molecular and morphological evolution are weakly correlated, and that most of the morphologically defined taxonomical units are not consistent with the molecular data. We suggest that Lamellodiscus morphology is probably constrained by strong environmental (host-induced) pressure, and discuss why this result can apply to other taxa. Genetic variability within nuclear 18S and mitochondrial COI genes are compared for several monogenean genera, as this measure may reflect the level of diversification within a genus. Overall our results suggest that cryptic speciation events may occur within Lamellodiscus, and discuss the links between morphological and molecular evolution. PMID:22022582

  11. High-temperature morphological evolution of lithographically introduced cavities in silicon carbide

    SciTech Connect

    Narushima, Takayuki; Glaeser, Andreas M.

    2000-12-01

    Internal cavities of controlled geometry and crystallography were introduced in 6H silicon carbide single crystals by combining lithographic methods, ion beam etching, and solid-state diffusion bonding. The morphological evolution of these internal cavities (negative crystals) in response to anneals of up to 128 h duration at 1900 degrees C was examined using optical microscopy. Surface energy anisotropy and faceting have a strong influence on both the geometric and kinetic characteristics of evolution. Decomposition of 12{bar 1}0 cavity edges into 101{bar 0} facets was observed after 16 h anneals, indicating that 12{bar 1}0 faces are not components of the Wulff shape. The shape evolution kinetics of penny-shaped cavities were also investigated. Experimentally observed evolution rates decreased much more rapidly with those predicted by a model in which surface diffusion is assumed to be rate-limiting. This suggests that the development of facets, and the associated loss of ledges and terraces during the initial stages of evolution results in an evolution process limited by the nucleation rate of attachment/detachment sites (ledges) on the facets.

  12. The Motions and Morphologies of cloud features on Neptune: continued monitoring with Keck Adaptive Optics

    NASA Astrophysics Data System (ADS)

    Martin, S. C.; de Pater, I.; Gibbard, S. G.; Macintosh, B. A.; Roe, H. G.; Max, C. E.

    2002-09-01

    We present near infrared images taken in the H band (1.4-1.8 microns) using the newly commissioned NIRC2 at the W. M. Keck II telescope as part of a continuing program to monitor the atmospheric dynamics of Neptune using Adaptive Optics. These images with a resolution of .06 arcseconds reveal five infrared bright groups of features. Two groups of features (30-40 deg N and 20-50 deg S) are confined in latitude but span all longitudes creating bands around the planet. Small cloud morphology and relative motions in the wide Southern band (20-50 deg S) identify apparent cloud shearing events and differences in relative speeds within latitude bands. One localized group of features (30 deg N) shows interesting morphologies with marked departures from lines of latitude. Another localized group of South Polar features (70 deg S) show changes in morphology from a teardrop to a train of clouds to an arc of features during three years of observations. The final group of features is spatially diffuse and spans many latitude lines but is tightly confined in longitude. This research was supported in part by the STC Program of the National Science Foundation under Agreement No. AST-9876783, and in part under the auspices of the US Department of Energy at Lawrence Livermore National Laboratory, Univ. of Calif. under contract No. W-7405-Eng-48. Data presented herein were obtained at the W.M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W.M. Keck Foundation.

  13. Morphological healing evolution of penny-shaped fatigue microcracks in pure iron at elevated temperatures

    NASA Astrophysics Data System (ADS)

    Zhang, H. L.; Huang, P. Z.; Sun, J.; Gao, H.

    2004-08-01

    This letter reports a joint experimental and numerical investigation of high temperature morphological healing of micron-sized intragranular microcracks in pure iron. Irregular penny-shaped microcracks were first created by low-cycle fatigue and then subjected to annealing in vaccum at 1173K. It is shown theoretically that, depending on its initial aspect ratio, a penny-shaped microcrack may evolve via surface diffusion into an isolated spherical void, or a doughnut-shaped channel pore with or without a central spherical void. Subsequent evolution causes the doughnut-shaped channel pore to break up into a ring of spherical voids via Rayleigh's instabilities. These results were confirmed with experimental observations of typical configurations of voids that result from the crack healing process. The experimentally observed evolution time is also in good agreement with the predictions of finite element simulations of the evolution process.

  14. Evolution of polyvinylidene fluoride (PVDF) hierarchical morphology during slow gelation process and its superhydrophobicity.

    PubMed

    Li, Xianfeng; Zhou, Chong; Du, Runhong; Li, Nana; Han, Xutong; Zhang, Yufeng; An, Shulin; Xiao, Changfa

    2013-06-26

    In the paper, we proposed an evolution process of polyvinylidene fluoride (PVDF) macromolecular aggregation in a mixed solvent through the simple and slow gelation process at room temperature. The mixed solvent is prepared with a room-temperature solvent and a high-temperature solvent. The evolution process can be terminated by quenching and exchanging with nonsolvent in a nonsolvent coagulation bath properly, and then the vivid petal-like nanostructure and microspherulite is formed simultaneously. This hierarchical morphology endows PVDF with superhydrophobic and self-cleaning properties, which is useful to PVDF coating and membrane materials. The evolution processes are investigated through the measurements of differential scanning calorimetry (DSC), X-ray diffraction (XRD). In addition, the rheological properties of solution, dry gel and wet gel, are explored.

  15. Ecological causes of morphological evolution in the three-spined stickleback.

    PubMed

    Spence, Rowena; Wootton, Robert J; Barber, Iain; Przybylski, Mirosław; Smith, Carl

    2013-06-01

    The central assumption of evolutionary theory is that natural selection drives the adaptation of populations to local environmental conditions, resulting in the evolution of adaptive phenotypes. The three-spined stickleback (Gasterosteus aculeatus) displays remarkable phenotypic variation, offering an unusually tractable model for understanding the ecological mechanisms underpinning adaptive evolutionary change. Using populations on North Uist, Scotland we investigated the role of predation pressure and calcium limitation on the adaptive evolution of stickleback morphology and behavior. Dissolved calcium was a significant predictor of plate and spine morph, while predator abundance was not. Stickleback latency to emerge from a refuge varied with morph, with populations with highly reduced plates and spines and high predation risk less bold. Our findings support strong directional selection in three-spined stickleback evolution, driven by multiple selective agents.

  16. Morphological-evolution pathway during phase separation in polymer solutions with highly asymmetrical miscibility gap

    NASA Astrophysics Data System (ADS)

    Zhang, Gang; Yang, Tao; Yang, Sen; Wang, Yunzhi

    2017-09-01

    Microstructural evolution during thermally induced phase separation in a polymer solution with a highly asymmetrical miscibility gap is analyzed using Flory-Huggins thermodynamics and nonlinear Cahn-Hilliard kinetics. Computer simulation results demonstrate that, in contrast to systems with symmetric miscibility gaps, interesting morphological-evolution pathways (MEPs) including cluster-to-percolation and percolation-to-cluster transitions are identified. These MEPs are rationalized according to asynchronous evolution of the two product phases. For a highly asymmetric polymer system, the initial solution composition is also found to play a critical role in determining the MEPs. According to the simulation results a map of MEPs in terms of initial solution composition and aging time of phase separation is established to guide future microstructural design in asymmetrical polymer solutions.

  17. Ecological causes of morphological evolution in the three-spined stickleback

    PubMed Central

    Spence, Rowena; Wootton, Robert J; Barber, Iain; Przybylski, Mirosław; Smith, Carl

    2013-01-01

    The central assumption of evolutionary theory is that natural selection drives the adaptation of populations to local environmental conditions, resulting in the evolution of adaptive phenotypes. The three-spined stickleback (Gasterosteus aculeatus) displays remarkable phenotypic variation, offering an unusually tractable model for understanding the ecological mechanisms underpinning adaptive evolutionary change. Using populations on North Uist, Scotland we investigated the role of predation pressure and calcium limitation on the adaptive evolution of stickleback morphology and behavior. Dissolved calcium was a significant predictor of plate and spine morph, while predator abundance was not. Stickleback latency to emerge from a refuge varied with morph, with populations with highly reduced plates and spines and high predation risk less bold. Our findings support strong directional selection in three-spined stickleback evolution, driven by multiple selective agents. PMID:23789080

  18. A reactor-like spinneret used in 3D printing alginate hollow fiber: a numerical study of morphological evolution.

    PubMed

    Li, Y; Liu, Y; Jiang, C; Li, S; Liang, G; Hu, Q

    2016-02-28

    In this paper, a reactor-like spinneret is proposed to generate a continuous hollow hydrogel fiber. In order to reliably control the deforming dynamics, the components of the spinneret are standardized in order to ease the online observation of morphological evolution. We found that not only did a co-flow occur in the tubular space, but a relatively large shrinkage of the shell layer at the outlet also occurred. Whereupon a weak coupling of the velocity field and diffusion-reacting co-flow was developed to describe the monitored co-flow morphology and to simulate the intermediate state of the concentration field, as well as to calculate the shrinkage profile with an integral formula. And a critical isogram [G]cri was determined to correspond to the morphological segmental feature, to trigger gelation and shrinkage as a threshold of solubility and the integral upper limit of the shrinkage region. Experimental evidence indicates that: the simulation is able to effectively predict the inner diameter of the hollow fiber; the transient inner diameter of the fiber at the outlet is expanded by approximately 70 μm (co-flow distance = 15 mm) as compared to the initial fluid dynamics value, and that the relative mean error of the simulated inner diameter was less than 8%. The proposed study provides deeper insight into the printing of hollow fibers and other gelling processes which utilize a reactor-like spinneret.

  19. Biogeography, phylogeny, and morphological evolution of central Texas cave and spring salamanders.

    PubMed

    Bendik, Nathan F; Meik, Jesse M; Gluesenkamp, Andrew G; Roelke, Corey E; Chippindale, Paul T

    2013-09-17

    Subterranean faunal radiations can result in complex patterns of morphological divergence involving both convergent or parallel phenotypic evolution and cryptic species diversity. Salamanders of the genus Eurycea in central Texas provide a particularly challenging example with respect to phylogeny reconstruction, biogeography and taxonomy. These predominantly aquatic species inhabit karst limestone aquifers and spring outflows, and exhibit a wide range of morphological and genetic variation. We extensively sampled spring and cave populations of six Eurycea species within this group (eastern Blepsimolge clade), to reconstruct their phylogenetic and biogeographic history using mtDNA and examine patterns and origins of cave- and surface-associated morphological variation. Genetic divergence is generally low, and many populations share ancestral haplotypes and/or show evidence of introgression. This pattern likely indicates a recent radiation coupled with a complex history of intermittent connections within the aquatic karst system. Cave populations that exhibit the most extreme troglobitic morphologies show no or very low divergence from surface populations and are geographically interspersed among them, suggesting multiple instances of rapid, parallel phenotypic evolution. Morphological variation is diffuse among cave populations; this is in contrast to surface populations, which form a tight cluster in morphospace. Unexpectedly, our analyses reveal two distinct and previously unrecognized morphological groups encompassing multiple species that are not correlated with spring or cave habitat, phylogeny or geography, and may be due to developmental plasticity. The evolutionary history of this group of spring- and cave-dwelling salamanders reflects patterns of intermittent isolation and gene flow influenced by complex hydrogeologic dynamics that are characteristic of karst regions. Shallow genetic divergences among several species, evidence of genetic exchange, and

  20. Biogeography, phylogeny, and morphological evolution of central Texas cave and spring salamanders

    PubMed Central

    2013-01-01

    Background Subterranean faunal radiations can result in complex patterns of morphological divergence involving both convergent or parallel phenotypic evolution and cryptic species diversity. Salamanders of the genus Eurycea in central Texas provide a particularly challenging example with respect to phylogeny reconstruction, biogeography and taxonomy. These predominantly aquatic species inhabit karst limestone aquifers and spring outflows, and exhibit a wide range of morphological and genetic variation. We extensively sampled spring and cave populations of six Eurycea species within this group (eastern Blepsimolge clade), to reconstruct their phylogenetic and biogeographic history using mtDNA and examine patterns and origins of cave- and surface-associated morphological variation. Results Genetic divergence is generally low, and many populations share ancestral haplotypes and/or show evidence of introgression. This pattern likely indicates a recent radiation coupled with a complex history of intermittent connections within the aquatic karst system. Cave populations that exhibit the most extreme troglobitic morphologies show no or very low divergence from surface populations and are geographically interspersed among them, suggesting multiple instances of rapid, parallel phenotypic evolution. Morphological variation is diffuse among cave populations; this is in contrast to surface populations, which form a tight cluster in morphospace. Unexpectedly, our analyses reveal two distinct and previously unrecognized morphological groups encompassing multiple species that are not correlated with spring or cave habitat, phylogeny or geography, and may be due to developmental plasticity. Conclusions The evolutionary history of this group of spring- and cave-dwelling salamanders reflects patterns of intermittent isolation and gene flow influenced by complex hydrogeologic dynamics that are characteristic of karst regions. Shallow genetic divergences among several species

  1. Physiological and Morphological Changes Induced by Nutrient Limitation of Pseudomonas fluorescens 378 in Continuous Culture

    PubMed Central

    Persson, Anders; Molin, Göran; Weibull, Claes

    1990-01-01

    Pseudomonas fluorescens 378 was studied in continuous culture at a dilution rate of 0.05 or 0.15 h−1 and under a limitation of carbon/energy, nitrogen, phosphorus, iron(III), or oxygen. Cultures were examined for nutritional consumption, production of biosurfactant AP-6 and lipase, and electron microscopy morphology. Morphological features were lysis and plasmolysis of the cells, vacuoles in the cells, granules in cell nuclei, and DNA coagulation during transmission electron microscopy preparation. Biosurfactant and lipase production were lost after 8 to 15 retention times, but under iron limitation and at low dilution rate they were maintained for more than 30 retention times. Consumption of nutrients varied between different cultures. Between 2.4 and 6.0 g of succinic acid per g (dry weight) was consumed; the highest value was obtained under phosphorus limitation. The uptake of nitrogen was mostly about 0.16 g/g (dry weight), and that of phosphorus varied between 13 and 58 mg/g (dry weight). Phosphorus-limited cells reduced their phosphorus consumption by at least 50% compared with other limitations. Cell morphology varied among different cultures. Up to 25% cell lysis occurred at the higher dilution rate. The frequencies of plasmolysis varied between 0 and 85%. Granules in nuclei were found in 65 to 100% of the cells. Vacuoles appeared mostly in low numbers, but at the lower dilution rate under phosphorus or iron limitation the frequencies increased to between 25 and 85%. At high dilution rate, the DNA coagulated in 30 to 70% of the cells. Multivariate data analysis demonstrated a general difference between the two tested dilution rates; i.e., both nutritional and morphological features differed more between the two tested dilution rates than between the different limitations. Cultures at the lower dilution rate changed more with time; this was especially pronounced for phosphorus or iron limitation. The data analysis also showed a correlation between

  2. What explains patterns of species richness? The relative importance of climatic-niche evolution, morphological evolution, and ecological limits in salamanders.

    PubMed

    Kozak, Kenneth H; Wiens, John J

    2016-08-01

    A major goal of evolutionary biology and ecology is to understand why species richness varies among clades. Previous studies have suggested that variation in richness among clades might be related to variation in rates of morphological evolution among clades (e.g., body size and shape). Other studies have suggested that richness patterns might be related to variation in rates of climatic-niche evolution. However, few studies, if any, have tested the relative importance of these variables in explaining patterns of richness among clades. Here, we test their relative importance among major clades of Plethodontidae, the most species-rich family of salamanders. Earlier studies have suggested that climatic-niche evolution explains patterns of diversification among plethodontid clades, whereas rates of morphological evolution do not. A subsequent study stated that rates of morphological evolution instead explained patterns of species richness among plethodontid clades (along with "ecological limits" on richness of clades, leading to saturation of clades with species, given limited resources). However, they did not consider climatic-niche evolution. Using phylogenetic multiple regression, we show that rates of climatic-niche evolution explain most variation in richness among plethodontid clades, whereas rates of morphological evolution do not. We find little evidence that ecological limits explain patterns of richness among plethodontid clades. We also test whether rates of morphological and climatic-niche evolution are correlated, and find that they are not. Overall, our results help explain richness patterns in a major amphibian group and provide possibly the first test of the relative importance of climatic niches and morphological evolution in explaining diversity patterns.

  3. Surfactant-directed synthesis of silver nanorods and characteristic spectral changes occurred by their morphology evolution

    NASA Astrophysics Data System (ADS)

    Zhang, Wen; Hu, Guansong; Zhang, Wanzhong; Qiao, Xueliang; Wu, Kai; Chen, Qingyuan; Cai, Yuchun

    2014-11-01

    Silver nanorods with different polydispersity were synthesized in the cetyltrimethylammonium bromide (CTAB) rod-shaped micelles by inducing the orientation growth of silver seeds and adjusting the volumes of CTAB. The reaction for the formation of silver nanorods had basically finished in 10 min. A suitable volume of CTAB (i.e., 15.0 mL of 0.1 M CTAB) is beneficial to obtain high-quality silver nanorods in the given reaction system. That is, the volume of added CTAB is a key factor to determine the polydispersity of the formed nanorods. The aging time plays a critical role in the morphology evolution of silver nanorods due to the oxidation of silver nanorods with Br-, O2 and the Ostwald ripening of the nanoparticles. As a result, the characteristic spectral changes occurred due to the morphology evolution of silver nanorods. The ablation in the top ends of the longer nanorods is often accompanied by the growth of some shorter nanorods and nanospheres. The size distribution of silver nanorods might be more uniform in the early aging stage. All the nanorods in the colloidal solution should turn into the near-spherical nanoparticles with larger sizes and thus the characteristic absorption should change to single peak centered at about 400 nm. Based on the research results, mathematical models are proposed for explaining the formation and morphology changes of silver nanorods. The morphology evolution of silver nanorods may be important and can be used as a reference for preparing silver nanorods, nanowires and other anisotropic nanomaterials.

  4. Morphological Evolution of Gyroid-Forming Block Copolymer Thin Films with Varying Solvent Evaporation Rate.

    PubMed

    Wu, Yi-Hsiu; Lo, Ting-Ya; She, Ming-Shiuan; Ho, Rong-Ming

    2015-08-05

    In this study, we aim to examine the morphological evolution of block copolymer (BCP) nanostructured thin films through solvent evaporation at different rates for solvent swollen polystyrene-block-poly(l-lactide) (PS-PLLA). Interesting phase transitions from disorder to perpendicular cylinder and then gyroid can be found while using a partially selective solvent for PS to swell PS-PLLA thin film followed by solvent evaporation. During the transitions, gyroid-forming BCP thin film with characteristic crystallographic planes of (111)G, (110)G, and (211)G parallel to air surface can be observed, and will gradually transform into coexisting (110)G and (211)G planes, and finally transforms to (211)G plane due to the preferential segregation of constituted block to the surface (i.e., the thermodynamic origin for self-assembly) that affects the relative amount of each component at the air surface. With the decrease on the evaporation rate, the disorder phase will transform to parallel cylinder and then directly to (211)G without transition to perpendicular cylinder phase. Most importantly, the morphological evolution of PS-PLLA thin films is strongly dependent upon the solvent removal rate only in the initial stage of the evaporation process due to the anisotropy of cylinder structure. Once the morphology is transformed back to the isotropic gyroid structure after long evaporation, the morphological evolution will only relate to the variation of the surface composition. Similar phase transitions at the substrate can also be obtained by controlling the ratio of PLLA-OH to PS-OH homopolymers to functionalize the substrate. As a result, the fabrication of well-defined nanostructured thin films with controlled orientation can be achieved by simple swelling and deswelling with controlled evaporation rate.

  5. The evolution of morphological diversity in continental assemblages of passerine birds.

    PubMed

    Jønsson, Knud Andreas; Lessard, Jean-Philippe; Ricklefs, Robert E

    2015-04-01

    Understanding geographic variation in the species richness and lineage composition of regional biotas is a long-standing goal in ecology. Why do some evolutionary lineages proliferate while others do not, and how do new colonists fit into an established fauna? Here, we analyze the morphological structure of assemblages of passerine birds in four biogeographic regions to examine the relative influence of colonization history and niche-based processes on continental communities of passerine birds. Using morphological traits related to habitat choice, foraging technique, and movement, we quantify the morphological spaces occupied by different groups of passerine birds. We further quantify morphological overlap between groups by multivariate discriminant analysis and null model analyses of trait dispersion. Finally, we use subclade disparity through time to assess the temporal component of morphological evolution. We find mixed support for the prediction, based on priority, that first colonizers constrain subsequent colonizers. Indeed, our results show that the assembly of continental communities is idiosyncratic with regards to the diversification of new clades and the filling of morphospace. © 2015 The Author(s).

  6. Morphology Evolution and Dynamic Viscoelastic Behavior of Ternary Elastomer Blends under Shear

    NASA Astrophysics Data System (ADS)

    Dong, Xia; Liu, Xianggui; Han, Charles C.; Wang, Dujin

    The influence of nanoparticle geometry, such as size and shape, on the phase morphology of partially miscible binary polymer blends under and after shear has been examined by rheological and rheo-optical techniques. The phase morphologies of the solution-polymerized styrene-butadiene rubber and low vinyl content polyisoprene (SSBR/LPI) blend systems were affected by the dispersion status of fillers which were determined by filler shapes and shear strength. Under weak shear flow, the domain morphology of the OMMT filled blend was much thinner than that of the SiO2 filled blend. Under strong shear flow, the string-like phase interface of the OMMT filled blend was much blurred compared with that of the SiO2 filled blend. After shear cessation, the orientation status of OMMT sheets determined the orientation of newborn domains. Combined morphology observation and rheological analysis showed that the anisotropic structure and the unfavorable bending energy of OMMT sheets played important roles on phase morphology and its evolution process during or after shear. The authors thank the financial support from National Natural Science Foundation of China (No.51173195).

  7. On the evolution of morphology of zirconium sponge during reduction and distillation

    SciTech Connect

    Kapoor, K. Padmaprabu, C.; Nandi, D.

    2008-03-15

    High purity zirconium metal is produced by magnesio-thermic reduction of zirconium tetrachloride followed by vacuum distillation. The reduction process is carried out in a batch giving metal sponge and magnesium chloride in the reduced mass. The sponge is purified to using by vacuum distillation. The morphology of the sponge formed during the reduction and its influence on further processing has significant importance. In the present study, a detailed investigation involving evolution of the morphology of sponge particles and its implication during the vacuum distillation was carried out. The study of the microstructure was done using scanning electron microscopy and X-ray diffraction. It is observed that the nascent sponge formed is highly unstable which transforms to a needle-like morphology almost immediately, which further transforms to rounded and finally to a bulk shape. Faceting of the surface and needle-shape formation were observed in these particles, this is probably due to anisotropy in the surface energy. The morphology of the sponge formed during the reduction influences the distillation process. The fine needle-like shape sponge morphology leads to particle ejection, which is explained to be due to curvature effect. This is responsible for the formation of unwanted mass during distillation. XRD line broadening analysis indicates that the individual sponge particles are free from structural defects (dislocation) and are nearly single crystalline in nature.

  8. Developmental programmes in the evolution of Equisetum reproductive morphology: a hierarchical modularity hypothesis.

    PubMed

    Tomescu, Alexandru M F; Escapa, Ignacio H; Rothwell, Gar W; Elgorriaga, Andrés; Cúneo, N Rubén

    2017-03-01

    The origin of the Equisetum strobilus has long been debated and the fossil record has played an important role in these discussions. The paradigm underlying these debates has been the perspective of the shoot as node-internode alternation, with sporangiophores attached at nodes. However, fossils historically excluded from these discussions (e.g. Cruciaetheca and Peltotheca ) exhibit reproductive morphologies that suggest attachment of sporangiophores along internodes, challenging traditional views. This has rekindled discussions around the evolution of the Equisetum strobilus, but lack of mechanistic explanations has led discussions to a stalemate. A shift of focus from the node-internode view to a perspective emphasizing the phytomer as a modular unit of the shoot, frees the debate of homology constraints on the nature of the sporangiophore and inspires a mechanism-based hypothesis for the evolution of the strobilus. The hypothesis, drawing on data from developmental anatomy, regulatory mechanisms and the fossil record, rests on two tenets: (1) the equisetalean shoot grows by combined activity of the apical meristem, laying down the phytomer pattern, and intercalary meristems responsible for internode elongation; and (2) activation of reproductive growth programmes in the intercalary meristem produces sporangiophore whorls along internodes. Hierarchical expression of regulatory modules responsible for (1) transition to reproductive growth; (2) determinacy of apical growth; and (3) node-internode differentiation within phytomers, can explain reproductive morphologies illustrated by Cruciaetheca (module 1 only), Peltotheca (modules 1 and 2) and Equisetum (all three modules). This model has implications - testable by studies of the fossil record, phylogeny and development - for directionality in the evolution of reproductive morphology ( Cruciaetheca - Peltotheca - Equisetum ) and for the homology of the Equisetum stobilus. Furthermore, this model implies that

  9. Evolution of Vocal Diversity through Morphological Adaptation without Vocal Learning or Complex Neural Control.

    PubMed

    Garcia, Sarah M; Kopuchian, Cecilia; Mindlin, Gabriel B; Fuxjager, Matthew J; Tubaro, Pablo L; Goller, Franz

    2017-09-11

    The evolution of complex behavior is driven by the interplay of morphological specializations and neuromuscular control mechanisms [1-3], and it is often difficult to tease apart their respective contributions. Avian vocal learning and associated neural adaptations are thought to have played a major role in bird diversification [4-8], whereas functional significance of substantial morphological diversity of the vocal organ remains largely unexplored. Within the most species-rich order, Passeriformes, "tracheophones" are a suboscine group that, unlike their oscine sister taxon, does not exhibit vocal learning [9] and is thought to phonate with tracheal membranes [10, 11] instead of the two independent sources found in other passerines [12-14]. Here we show tracheophones possess three sound sources, two oscine-like labial pairs and the unique tracheal membranes, which collectively represent the largest described number of sound sources for a vocal organ. Birds with experimentally disabled tracheal membranes were still able to phonate. Instead of the main sound source, the tracheal membranes constitute a morphological specialization, which, through interaction with bronchial labia, contributes to different acoustic features such as spectral complexity, amplitude modulation, and enhanced sound amplitude. In contrast, these same features arise in oscines from neuromuscular control of two labial sources [15-17]. These findings are supported by a modeling approach and provide a clear example for how a morphological adaptation of the tracheophone vocal organ can generate specific, complex sound features. Morphological specialization therefore constitutes an alternative path in the evolution of acoustic diversity to that of oscine vocal learning and complex neural control. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. High lability of sexual system over 250 million years of evolution in morphologically conservative tadpole shrimps

    PubMed Central

    2013-01-01

    Background Sexual system is a key factor affecting the genetic diversity, population structure, genome structure and the evolutionary potential of species. The sexual system androdioecy – where males and hermaphrodites coexist in populations – is extremely rare, yet is found in three crustacean groups, barnacles, a genus of clam shrimps Eulimnadia, and in the order Notostraca, the tadpole shrimps. In the ancient crustacean order Notostraca, high morphological conservatism contrasts with a wide diversity of sexual systems, including androdioecy. An understanding of the evolution of sexual systems in this group has been hampered by poor phylogenetic resolution and confounded by the widespread occurrence of cryptic species. Here we use a multigene supermatrix for 30 taxa to produce a comprehensive phylogenetic reconstruction of Notostraca. Based on this phylogenetic reconstruction we use character mapping techniques to investigate the evolution of sexual systems. We also tested the hypothesis that reproductive assurance has driven the evolution of androdioecy in Notostraca. Results Character mapping analysis showed that sexual system is an extremely flexible trait within Notostraca, with repeated shifts between gonochorism and androdioecy, the latter having evolved a minimum of five times. In agreement with the reproductive assurance hypothesis androdioecious notostracans are found at significantly higher latitudes than gonochoric ones indicating that post glacial re-colonisation may have selected for the higher colonisation ability conferred by androdioecy. Conclusions In contrast to their conserved morphology, sexual system in Notostraca is highly labile and the rare reproductive mode androdioecy has evolved repeatedly within the order. Furthermore, we conclude that this lability of sexual system has been maintained for at least 250 million years and may have contributed to the long term evolutionary persistence of Notostraca. Our results further our

  11. Morphological evolution of cluster red sequence galaxies in the past 9 Gyr

    NASA Astrophysics Data System (ADS)

    De Propris, Roberto; Bremer, Malcolm N.; Phillipps, Steven

    2016-10-01

    Galaxies arrive on the red sequences of clusters at high redshift (z > 1) once their star formation is quenched and evolve passively thereafter. However, we have previously found that cluster red sequence galaxies (CRSGs) undergo significant morphological evolution subsequent to the cessation of star formation, at some point in the past 9-10 Gyr. Through a detailed study of a large sample of cluster red sequence galaxies spanning 0.2 < z < 1.4 we elucidate the details of this evolution. Below z ˜ 0.5-0.6 (in the last 5-6 Gyr) there is little or no morphological evolution in the population as a whole, unlike in the previous 4-5 Gyr. Over this earlier time (i) disc-like systems with Sérsic n < 2 progressively disappear, as (ii) the range of their axial ratios similarly decreases, removing the most elongated systems (those consistent with thin discs seen at an appreciable inclination angle) and (iii) radial colour gradients (bluer outwards) decrease in an absolute sense from significant age-related gradients to a residual level consistent with the metallicity-induced gradients seen in low-redshift cluster members. The distribution of their effective radii shows some evidence of evolution, consistent with growth of at most a factor <1.5 between z ˜ 1.4 and ˜0.5, significantly less than for comparable field galaxies, while the distribution of their central (<1 kpc) bulge surface densities shows no evolution at least at z < 1. A simple model involving the fading and thickening of a disc component after comparatively recent quenching (after z ˜ 1.5) around an otherwise passively evolving older spheroid component is consistent with all of these findings.

  12. Morphological characteristics and medium-term evolution of the beaches between Ceuta and Cabo Negro (Morocco)

    NASA Astrophysics Data System (ADS)

    Anfuso, G.; Martínez Del Pozo, J. A.; Nachite, D.; Benavente, J.; Macias, A.

    2007-05-01

    This work presents the results of a combined study on the beach morphology and the evolution at short- and medium-term of the littoral between Ceuta and Cabo Negro (Morocco). It is an interesting sector showing a great increase of human occupation and coastal structures. The monitoring program allowed for the reconstruction of the beach morphological behavior and the seasonal changes. The studied beaches presented reflective profiles recording little seasonality, with the most notable morphological changes being strictly related to storms. Surf Similarity and Surf Scaling parameters highlighted the existence of intermediate and reflective beach states, characterized by plunging breakers. Aerial photographs and a satellite image have been geo-referenced and elaborated with GIS tools to reconstruct the short- and medium-term evolution of the littoral and the sediment transport pathways. The littoral showed important erosion at short- and medium-term related to a negative sedimentary budget because of offshore transport. Sand accumulation was recorded close to the main ports, i.e., Marina Smir and Marina Kabila. These port structures constituted impermeable, fixed limits, which divided the studied area into littoral cells. Other free, transit limits were also observed.

  13. Adaptive responses and invasion: the role of plasticity and evolution in snail shell morphology

    PubMed Central

    Kistner, Erica J; Dybdahl, Mark F

    2013-01-01

    Invasive species often exhibit either evolved or plastic adaptations in response to spatially varying environmental conditions. We investigated whether evolved or plastic adaptation was driving variation in shell morphology among invasive populations of the New Zealand mud snail (Potamopyrgus antipodarum) in the western United States. We found that invasive populations exhibit considerable shell shape variation and inhabit a variety of flow velocity habitats. We investigated the importance of evolution and plasticity by examining variation in shell morphological traits 1) between the parental and F1 generations for each population and 2) among populations of the first lab generation (F1) in a common garden, full-sib design using Canonical Variate Analyses (CVA). We compared the F1 generation to the parental lineages and found significant differences in overall shell shape indicating a plastic response. However, when examining differences among the F1 populations, we found that they maintained among-population shell shape differences, indicating a genetic response. The F1 generation exhibited a smaller shell morph more suited to the low-flow common garden environment within a single generation. Our results suggest that phenotypic plasticity in conjunction with evolution may be driving variation in shell morphology of this widespread invasive snail. PMID:23467920

  14. Adaptive responses and invasion: the role of plasticity and evolution in snail shell morphology.

    PubMed

    Kistner, Erica J; Dybdahl, Mark F

    2013-02-01

    Invasive species often exhibit either evolved or plastic adaptations in response to spatially varying environmental conditions. We investigated whether evolved or plastic adaptation was driving variation in shell morphology among invasive populations of the New Zealand mud snail (Potamopyrgus antipodarum) in the western United States. We found that invasive populations exhibit considerable shell shape variation and inhabit a variety of flow velocity habitats. We investigated the importance of evolution and plasticity by examining variation in shell morphological traits 1) between the parental and F1 generations for each population and 2) among populations of the first lab generation (F1) in a common garden, full-sib design using Canonical Variate Analyses (CVA). We compared the F1 generation to the parental lineages and found significant differences in overall shell shape indicating a plastic response. However, when examining differences among the F1 populations, we found that they maintained among-population shell shape differences, indicating a genetic response. The F1 generation exhibited a smaller shell morph more suited to the low-flow common garden environment within a single generation. Our results suggest that phenotypic plasticity in conjunction with evolution may be driving variation in shell morphology of this widespread invasive snail.

  15. Evolution of mir-92a Underlies Natural Morphological Variation in Drosophila melanogaster

    PubMed Central

    Arif, Saad; Murat, Sophie; Almudi, Isabel; Nunes, Maria D.S.; Bortolamiol-Becet, Diane; McGregor, Naomi S.; Currie, James M.S.; Hughes, Harri; Ronshaugen, Matthew; Sucena, Élio; Lai, Eric C.; Schlötterer, Christian; McGregor, Alistair P.

    2013-01-01

    Summary Identifying the genetic mechanisms underlying phenotypic change is essential to understanding how gene regulatory networks and ultimately the genotype-to-phenotype map evolve. It is recognized that microRNAs (miRNAs) have the potential to facilitate evolutionary change [1–3]; however, there are no known examples of natural morphological variation caused by evolutionary changes in miRNA expression. Therefore, the contribution of miRNAs to evolutionary change remains unknown [1, 4]. Drosophila melanogaster subgroup species display a portion of trichome-free cuticle on the femur of the second leg called the “naked valley.” It was previously shown that Ultrabithorax (Ubx) is involved in naked valley variation between D. melanogaster and D. simulans [5, 6]. However, naked valley size also varies among populations of D. melanogaster, ranging from 1,000 up to 30,000 μm2. We investigated the genetic basis of intraspecific differences in the naked valley in D. melanogaster and found that neither Ubx nor shavenbaby (svb) [7, 8] contributes to this morphological difference. Instead, we show that changes in mir-92a expression underlie the evolution of naked valley size in D. melanogaster through repression of shavenoid (sha) [9]. Therefore, our results reveal a novel mechanism for morphological evolution and suggest that modulation of the expression of miRNAs potentially plays a prominent role in generating organismal diversity. PMID:23453955

  16. Evolution of a morphological novelty occurred before genome compaction in a lineage of extreme parasites

    PubMed Central

    Haag, Karen L.; James, Timothy Y.; Pombert, Jean-François; Larsson, Ronny; Schaer, Tobias M. M.; Refardt, Dominik; Ebert, Dieter

    2014-01-01

    Intracellular parasitism results in extreme adaptations, whose evolutionary history is difficult to understand, because the parasites and their known free-living relatives are so divergent from one another. Microsporidia are intracellular parasites of humans and other animals, which evolved highly specialized morphological structures, but also extreme physiologic and genomic simplification. They are suggested to be an early-diverging branch on the fungal tree, but comparisons to other species are difficult because their rates of molecular evolution are exceptionally high. Mitochondria in microsporidia have degenerated into organelles called mitosomes, which have lost a genome and the ability to produce ATP. Here we describe a gut parasite of the crustacean Daphnia that despite having remarkable morphological similarity to the microsporidia, has retained genomic features of its fungal ancestors. This parasite, which we name Mitosporidium daphniae gen. et sp. nov., possesses a mitochondrial genome including genes for oxidative phosphorylation, yet a spore stage with a highly specialized infection apparatus—the polar tube—uniquely known only from microsporidia. Phylogenomics places M. daphniae at the root of the microsporidia. A comparative genomic analysis suggests that the reduction in energy metabolism, a prominent feature of microsporidian evolution, was preceded by a reduction in the machinery controlling cell cycle, DNA recombination, repair, and gene expression. These data show that the morphological features unique to M. daphniae and other microsporidia were already present before the lineage evolved the extreme host metabolic dependence and loss of mitochondrial respiration for which microsporidia are well known. PMID:25313038

  17. Pollinator-mediated selection on floral morphology: evidence for transgressive evolution in a derived hybrid lineage.

    PubMed

    Anton, K A; Ward, J R; Cruzan, M B

    2013-03-01

    Hybridization between closely related lineages is a mechanism that might promote substantive changes in phenotypic traits of descendants, resulting in transgressive evolution. Interbreeding between divergent but morphologically similar lineages can produce exceptional phenotypes, but the potential for transgressive variation to facilitate long-term trait changes in derived hybrid lineages has received little attention. We compare pollinator-mediated selection on transgressive floral traits in both early-generation and derived hybrid lineages of the Piriqueta cistoides ssp. caroliniana complex. The bowl-shaped flowers of morphotypes in this complex have similar gross morphologies and attract a common suite of small insect pollinators. However, they are defined by significant differences in characters that generate pollinator interest and visitation, including floral area and petal separation. In common garden experiments, patterns of pollen deposition in early-generation recombinant hybrids indicate that Piriqueta's pollinators favour flowers with greater area and reduced petal separation. Changes in floral morphology in derived hybrid lineages are consistent with predictions from selection gradients, but the magnitude of change is limited relative to the range of transgressive variation. These results suggest that hybridization provides variation for evolution of divergent floral traits. However, the potential for extreme transgressive variants to contribute to phenotypic shifts may be limited due to reduced heritability, evolutionary constraints or fitness trade-offs. © 2013 The Authors. Journal of Evolutionary Biology © 2013 European Society For Evolutionary Biology.

  18. Sediment replenishment: Influence of the geometrical configuration on the morphological evolution of channel-bed

    NASA Astrophysics Data System (ADS)

    Battisacco, E.; Franca, M. J.; Schleiss, A. J.

    2016-11-01

    Dams trap sediment in the upstream reservoir, which may lead to river bed armoring, streambank erosion and failure, channel incision and reduction of the morphological diversity in the downstream river reaches. The replenishment of sediment is a mitigation measure for this problem to be applied in river reaches downstream of dams. Previously performed field experiments always used one single volume of sediment replenishment. To explore different alternatives, the replenished volume was here divided in four deposits with the motivation to influence also the morphological evolution downstream. Six different geometrical configurations together with three submergence conditions of sediment replenishment were tested for the first time in a laboratory experiment and are herein discussed. The results of the sediment replenishment mitigation technique are described in terms of occupied surface of the flume bed and the temporal evolution of erosion and transport of the introduced sediments. It is shown that, under our experimental conditions, complete submersion of the replenishment volume results in complete erosion of the placed sediment, with a high persistence of the added material along the channel length. The geometrical configuration of the replenishment volume plays a key role for the evolution of bed-forms downstream. Parallel configurations lead to a wider spread of material across the channel. Alternated configurations are suitable to produce sediment clustering and high persistence of placed material in the channel. Observed periodic mounds, considered as the initiating condition for alternate bars, follow a wavelength related to the length of the replenishment when the replenishment volumes are alternating.

  19. Asymmetric ecological conditions favor Red-Queen type of continued evolution over stasis.

    PubMed

    Nordbotten, Jan Martin; Stenseth, Nils C

    2016-02-16

    Four decades ago, Leigh Van Valen presented the Red Queen's hypothesis to account for evolution of species within a multispecies ecological community [Van Valen L (1973) Evol Theory 1(1):1-30]. The overall conclusion of Van Valen's analysis was that evolution would continue even in the absence of abiotic perturbations. Stenseth and Maynard Smith presented in 1984 [Stenseth NC, Maynard Smith J (1984) Evolution 38(4):870-880] a model for the Red Queen's hypothesis showing that both Red-Queen type of continuous evolution and stasis could result from a model with biotically driven evolution. However, although that contribution demonstrated that both evolutionary outcomes were possible, it did not identify which ecological conditions would lead to each of these evolutionary outcomes. Here, we provide, using a simple, yet general population-biologically founded eco-evolutionary model, such analytically derived conditions: Stasis will predominantly emerge whenever the ecological system contains only symmetric ecological interactions, whereas both Red-Queen and stasis type of evolution may result if the ecological interactions are asymmetrical, and more likely so with increasing degree of asymmetry in the ecological system (i.e., the more trophic interactions, host-pathogen interactions, and the like there are [i.e., +/- type of ecological interactions as well as asymmetric competitive (-/-) and mutualistic (+/+) ecological interactions]). In the special case of no between-generational genetic variance, our results also predict dynamics within these types of purely ecological systems.

  20. Bayesian Morphological Clock Methods Resurrect Placoderm Monophyly and Reveal Rapid Early Evolution in Jawed Vertebrates.

    PubMed

    King, Benedict; Qiao, Tuo; Lee, Michael S Y; Zhu, Min; Long, John A

    2017-07-01

    The phylogeny of early gnathostomes provides an important framework for understanding one of the most significant evolutionary events, the origin and diversification of jawed vertebrates. A series of recent cladistic analyses have suggested that the placoderms, an extinct group of armoured fish, form a paraphyletic group basal to all other jawed vertebrates. We revised and expanded this morphological data set, most notably by sampling autapomorphies in a similar way to parsimony-informative traits, thus ensuring this data (unlike most existing morphological data sets) satisfied an important assumption of Bayesian tip-dated morphological clock approaches. We also found problems with characters supporting placoderm paraphyly, including character correlation and incorrect codings. Analysis of this data set reveals that paraphyly and monophyly of core placoderms (excluding maxillate forms) are essentially equally parsimonious. The two alternative topologies have different root positions for the jawed vertebrates but are otherwise similar. However, analysis using tip-dated clock methods reveals strong support for placoderm monophyly, due to this analysis favoring trees with more balanced rates of evolution. Furthermore, enforcing placoderm paraphyly results in higher levels and unusual patterns of rate heterogeneity among branches, similar to that generated from simulated trees reconstructed with incorrect root positions. These simulations also show that Bayesian tip-dated clock methods outperform parsimony when the outgroup is largely uninformative (e.g., due to inapplicable characters), as might be the case here. The analysis also reveals that gnathostomes underwent a rapid burst of evolution during the Silurian period which declined during the Early Devonian. This rapid evolution during a period with few articulated fossils might partly explain the difficulty in ascertaining the root position of jawed vertebrates. © The Author(s) 2016. Published by Oxford University

  1. Controls on the Evolution of River Channel Morphology on Volcanic Islands

    NASA Astrophysics Data System (ADS)

    Dahlquist, M. P.; West, A. J.

    2015-12-01

    River channel morphology is thought to record the interaction of climatic and tectonic drivers of erosion, together with material properties of bedrock and the temporal changes in each of these parameters. However, unraveling the geophysical story told by river networks is complicated by the complexity of the interactions involved and the impracticality of making observations of river network evolution in situ over geological time scales. In this work, we exploit spatial gradients in an effort to understand fundamental controls on river channel morphology in volcanic terrains. We focus primarily on the Banda Arc, a complex tectonic domain with tectonic, volcanic, and climatic gradients that produce islands with river network geometries in a variety of stages and styles of evolution. We compute the Χ statistic - an integration of upstream drainage area over the length of a river - for rivers draining the Banda Arc islands, focusing on the currently and formerly active volcanic islands of the Arc. We compare Χ plots from across the Banda Arc with those from the Hawaiian Islands, which offer a time series of evolving river networks on volcanic islands of similar composition and a more stable tectonic domain to gain improved understanding of the role of tectonics and time in river network evolution. We find major disequilibria across main drainage divides in extinct volcanic terrains with little tectonic activity, as networks are forced away from their initial radial patterns by variations in lithology and/or climate. Tectonically active islands in the Banda Arc have generally smaller disequilibria across divides and produce more regular drainage patterns, indicating that, at the scale of individual volcanic islands, the tectonic signal may dominate in channel morphology.

  2. PH dependent morphological evolution of beta-Bi2O3/PANI composite for supercapacitor applications.

    PubMed

    Ganesh, T; Ham, Dukho; Chang, Jinho; Cai, Gangri; Kil, Byung Ho; Min, Sun-Ki; Mane, Rajaram S; Han, Sung-Hwan

    2011-01-01

    Crystalline beta-Bi2O3 was synthesized through pH-dependent chemical bath deposition process, altering the morphology and evolution from nanoparticles (approximately 40 nm) at pH 9 to platelets (approximately 40 nm width and 0.8 microm length) at pH 12. In-situ aniline nucleation and growth at less basic condition on the beta-Bi2O3 increased the surface area and specific capacitance of the device. The morphological change of beta-Bi2O3/PANI composite from nanoparticles to platelets like nanostructure facilitated higher specific capacitance from 210 to 430 F/g at a scan rate of 10 mV/s with enhanced ionic diffusion and retention of specific capacitance up to 84% at higher scan rates.

  3. Morphological evolution of copper nanoparticles: Microemulsion reactor system versus batch reactor system

    NASA Astrophysics Data System (ADS)

    Xia, Ming; Tang, Zengmin; Kim, Woo-Sik; Yu, Taekyung; Park, Bum Jun

    2017-07-01

    In the synthesis of nanoparticles, the reaction rate is important to determine the morphology of nanoparticles. We investigated morphology evolution of Cu nanoparticles in this two different reactors, microemulsion reactor and batch reactor. In comparison with the batch reactor system, the enhanced mass and heat transfers in the emulsion system likely led to the relatively short nucleation time and the highly homogeneous environment in the reaction mixture, resulting in suppressing one or two dimensional growth of the nanoparticles. We believe that this work can offer a good model system to quantitatively understand the crystal growth mechanism that depends strongly on the local monomer concentration, the efficiency of heat transfer, and the relative contribution of the counter ions (Br- and Cl-) as capping agents.

  4. Inside the trap: gland morphologies, digestive enzymes, and the evolution of plant carnivory in the Caryophyllales⋆

    PubMed Central

    Renner, Tanya; Specht, Chelsea D

    2013-01-01

    The digestion of prey by carnivorous plants is determined in part by suites of enzymes that are associated with morphologically and anatomically diverse trapping mechanisms. Chitinases represent a group of enzymes known to be integral to effective plant carnivory. In non-carnivorous plants, chitinases commonly act as pathogenesis-related proteins, which are either induced in response to insect herbivory and fungal elicitors, or constitutively expressed in tissues vulnerable to attack. In the Caryophyllales carnivorous plant lineage, multiple classes of chitinases are likely involved in both pathogenic response and digestion of prey items. We review what is currently known about trap morphologies, provide an examination of the diversity, roles, and evolution of chitinases, and examine how herbivore and pathogen defense mechanisms may have been coopted for plant carnivory in the Caryophyllales. PMID:23830995

  5. Convergent Evolution of Unique Morphological Adaptations to a Subterranean Environment in Cave Millipedes (Diplopoda)

    PubMed Central

    Golovatch, Sergei; Wesener, Thomas; Tian, Mingyi

    2017-01-01

    Animal life in caves has fascinated researchers and the public alike because of the unusual and sometimes bizarre morphological adaptations observed in numerous troglobitic species. Despite their worldwide diversity, the adaptations of cave millipedes (Diplopoda) to a troglobitic lifestyle have rarely been examined. In this study, morphological characters were analyzed in species belonging to four different orders (Glomerida, Polydesmida, Chordeumatida, and Spirostreptida) and six different families (Glomeridae, Paradoxosomatidae, Polydesmidae, Haplodesmidae, Megalotylidae, and Cambalopsidae) that represent the taxonomic diversity of class Diplopoda. We focused on the recently discovered millipede fauna of caves in southern China. Thirty different characters were used to compare cave troglobites and epigean species within the same genera. A character matrix was created to analyze convergent evolution of cave adaptations. Males and females were analyzed independently to examine sex differences in cave adaptations. While 10 characters only occurred in a few phylogenetic groups, 20 characters were scored for in all families. Of these, four characters were discovered to have evolved convergently in all troglobitic millipedes. The characters that represented potential morphological cave adaptations in troglobitic species were: (1) a longer body; (2) a lighter body color; (3) elongation of the femora; and (4) elongation of the tarsi of walking legs. Surprisingly, female, but not male, antennae were more elongated in troglobites than in epigean species. Our study clearly shows that morphological adaptations have evolved convergently in different, unrelated millipede orders and families, most likely as a direct adaptation to cave life. PMID:28178274

  6. [Evolutionary myology as a research method in the morphological evolution of human muscles].

    PubMed

    Kaneff, A

    1977-01-01

    The author presents the evolutionary myology as a complex research method by which the morphological transformation of human muscles could be proved. This process of muscle transformation is elucidated by 3 investigation types: 1. Morphological macroscopic investigation of the variations of certain human muscle. 2. Comparative anatomic investigation of the same muscle. 3. Muscle organogenetic study of human embryos and fetuses. The macroscopic morphological investigation of the variations of any human muscle enables the examination of the variability in its complete versatility and volume if a sufficient number of preparations are investigated. A line of successive muscle variations could be composed from the established variants, arranged one after another. Furthermore, the frequency of each variation could be determined in per cents. The material for comparative-anatomic investigation must be selected according to the contemporary zoology. The variation line of human material can be properly directed due to that examination. Now it is possible to understand which is the initial form, the transitional forms and the final form of the transformation process. Thus the direction of transformation process could be understand. The muscle organogenetic investigation must be carried out on human embryos and fetuses of different ages. In this way muscle and tendion primordium could be observed directly and in the same time the important factors about the primordium maturity and its eventual shifting could be established. The example described refers to the transformation of m. abductor pollicis longus. It reveals how the evolutionary myology can be used to prove the morphological evolution of any muscle.

  7. Seasonal-scale nearshore morphological evolution: Field observations and numerical modeling

    USGS Publications Warehouse

    Ruggiero, P.; Walstra, D.-J.R.; Gelfenbaum, G.; van, Ormondt M.

    2009-01-01

    A coupled waves-currents-bathymetric evolution model (DELFT-3D) is compared with field measurements to test hypotheses regarding the processes responsible for alongshore varying nearshore morphological changes at seasonal time scales. A 2001 field experiment, along the beaches adjacent to Grays Harbor, Washington, USA, captured the transition between the high-energy erosive conditions of winter and the low-energy beach-building conditions typical of summer. The experiment documented shoreline progradation on the order of 10-20 m and on average approximately 70 m of onshore sandbar migration during a four-month period. Significant alongshore variability was observed in the morphological response of the sandbar over a 4 km reach of coast with sandbar movement ranging from 20 m of offshore migration to over 175 m of onshore bar migration, the largest seasonal-scale onshore migration event observed in a natural setting. Both observations and model results suggest that, in the case investigated here, alongshore variations in initial bathymetry are primarily responsible for the observed alongshore variable morphological changes. Alongshore varying incident hydrodynamic forcing, occasionally significant in this region due to a tidal inlet and associated ebb-tidal delta, was relatively minor during the study period and appears to play an insignificant role in the observed alongshore variability in sandbar behavior at kilometer-scale. The role of fully three-dimensional cell circulation patterns in explaining the observed morphological variability also appears to be minor, at least in the case investigated here. ?? 2009 Elsevier B.V.

  8. Correlated evolution of beak morphology and song in the neotropical woodcreeper radiation.

    PubMed

    Derryberry, Elizabeth Perrault; Seddon, Nathalie; Claramunt, Santiago; Tobias, Joseph Andrew; Baker, Adam; Aleixo, Alexandre; Brumfield, Robb Thomas

    2012-09-01

    Mating signals may diversify as a byproduct of morphological adaptation to different foraging niches, potentially driving speciation. Although many studies have focused on the direct influence of ecological and sexual selection on signal divergence, the role of indirect mechanisms remains poorly understood. Using phenotypic and molecular datasets, we explored the interplay between morphological and vocal evolution in an avian radiation characterized by dramatic beak variation, the Neotropical woodcreepers (Dendrocolaptinae). We found evidence of a trade-off between the rate of repetition of song syllables and frequency bandwidth: slow paced songs had either narrow or wide frequency bandwidths, and bandwidth decreased as song pace increased. This bounded phenotypic space for song structure supports the hypothesis that passerine birds face a motor constraint during song production. Diversification of acoustic characters within this bounded space was correlated with diversification of beak morphology. In particular, species with larger beaks produced slower songs with narrower frequency bandwidths, suggesting that ecological selection on beak morphology influences the diversification of woodcreeper songs. Because songs in turn mediate mate choice and species recognition in birds, these results indicate a broader role for ecology in avian diversification.

  9. Convergent Evolution of Unique Morphological Adaptations to a Subterranean Environment in Cave Millipedes (Diplopoda).

    PubMed

    Liu, Weixin; Golovatch, Sergei; Wesener, Thomas; Tian, Mingyi

    2017-01-01

    Animal life in caves has fascinated researchers and the public alike because of the unusual and sometimes bizarre morphological adaptations observed in numerous troglobitic species. Despite their worldwide diversity, the adaptations of cave millipedes (Diplopoda) to a troglobitic lifestyle have rarely been examined. In this study, morphological characters were analyzed in species belonging to four different orders (Glomerida, Polydesmida, Chordeumatida, and Spirostreptida) and six different families (Glomeridae, Paradoxosomatidae, Polydesmidae, Haplodesmidae, Megalotylidae, and Cambalopsidae) that represent the taxonomic diversity of class Diplopoda. We focused on the recently discovered millipede fauna of caves in southern China. Thirty different characters were used to compare cave troglobites and epigean species within the same genera. A character matrix was created to analyze convergent evolution of cave adaptations. Males and females were analyzed independently to examine sex differences in cave adaptations. While 10 characters only occurred in a few phylogenetic groups, 20 characters were scored for in all families. Of these, four characters were discovered to have evolved convergently in all troglobitic millipedes. The characters that represented potential morphological cave adaptations in troglobitic species were: (1) a longer body; (2) a lighter body color; (3) elongation of the femora; and (4) elongation of the tarsi of walking legs. Surprisingly, female, but not male, antennae were more elongated in troglobites than in epigean species. Our study clearly shows that morphological adaptations have evolved convergently in different, unrelated millipede orders and families, most likely as a direct adaptation to cave life.

  10. Morphology Evolution of High Efficiency Perovskite Solar Cells via Vapor Induced Intermediate Phases.

    PubMed

    Zuo, Lijian; Dong, Shiqi; De Marco, Nicholas; Hsieh, Yao-Tsung; Bae, Sang-Hoon; Sun, Pengyu; Yang, Yang

    2016-12-07

    Morphology is critical component to achieve high device performance hybrid perovskite solar cells. Here, we develop a vapor induced intermediate phase (VIP) strategy to manipulate the morphology of perovskite films. By exposing the perovskite precursor films to different saturated solvent vapor atmospheres, e.g., dimethylformamide and dimethylsufoxide, dramatic film morphological evolution occurs, associated with the formation of different intermediate phases. We observe that the crystallization kinetics is significantly altered due to the formation of these intermediate phases, yielding highly crystalline perovskite films with less defect states and high carrier lifetimes. The perovskite solar cells with the reconstructed films exhibits the highest power conversion efficiency (PCE) up to 19.2% under 1 sun AM 1.5G irradiance, which is among the highest planar heterojunction perovskite solar cells. Also, the perovskite solar cells with VIP processing shows less hysteresis behavior and a stabilized power output over 18%. Our work opens up a new direction for morphology control through intermediate phase formation, and paves the way toward further enhancing the device performances of perovskite solar cells.

  11. Deep time perspective on turtle neck evolution: chasing the Hox code by vertebral morphology.

    PubMed

    Böhmer, Christine; Werneburg, Ingmar

    2017-08-21

    The unparalleled ability of turtle neck retraction is possible in three different modes, which characterize stem turtles, living side-necked (Pleurodira), and hidden-necked (Cryptodira) turtles, respectively. Despite the conservatism in vertebral count among turtles, there is significant functional and morphological regionalization in the cervical vertebral column. Since Hox genes play a fundamental role in determining the differentiation in vertebra morphology and based on our reconstruction of evolutionary genetics in deep time, we hypothesize genetic differences among the turtle groups and between turtles and other land vertebrates. We correlated anterior Hox gene expression and the quantifiable shape of the vertebrae to investigate the morphological modularity in the neck across living and extinct turtles. This permitted the reconstruction of the hypothetical ancestral Hox code pattern of the whole turtle clade. The scenario of the evolution of axial patterning in turtles indicates shifts in the spatial expression of HoxA-5 in relation to the reduction of cervical ribs in modern turtles and of HoxB-5 linked with a lower morphological differentiation between the anterior cervical vertebrae observed in cryptodirans. By comparison with the mammalian pattern, we illustrate how the fixed count of eight cervical vertebrae in turtles resulted from the emergence of the unique turtle shell.

  12. Molecular phylogenetics and morphological evolution of St. John's wort (Hypericum; Hypericaceae).

    PubMed

    Nürk, Nicolai M; Madriñán, Santiago; Carine, Mark A; Chase, Mark W; Blattner, Frank R

    2013-01-01

    Phylogenetic hypotheses for the large cosmopolitan genus Hypericum (St. John's wort) have previously been based on morphology, and molecular studies have thus far included only a few species. In this study, we used 360 sequences of the internal transcribed spacer (ITS) region of nuclear ribosomal DNA (nrDNA) for 206 species representing Hypericum (incl. Triadenum and Thornea) and three other genera of Hypericaceae to generate an explicit phylogenetic hypothesis for the genus using parsimony and model-based methods. The results indicate that the small genus Triadenum is nested in a clade within Hypericum containing most of the New World species. Sister to Hypericum is Thornea from Central America. Within Hypericum, three large clades and two smaller grades were found; these are based on their general morphology, especially characters used previously in taxonomy of the genus. Relative to the most recent classification, around 60% of the sections of Hypericum were monophyletic. We used a Bayesian approach to reconstruct ancestral states of selected morphological characters, which resulted in recognition of characters that support major clades within the genus and a revised interpretation of morphological evolution in Hypericum. The shrubby habit represents the plesiomorphic state from which herbs evolved several times. Arborescent species have radiated convergently in high-elevation habitats in tropical Africa and South America.

  13. Polyploid evolution and biogeography in Chelone (Scrophulariaceae): morphological and isozyme evidence.

    PubMed

    Nelson, A D; Elisens, W J

    1999-10-01

    Chelone is a genus of perennial herbs comprising three diploid species (C. cuthbertii, C. glabra, and C. lyonii) and a fourth species (C. obliqua) that occurs as tetraploid and hexaploid races. To assess patterns of isozyme and morphological variation, and to test hypotheses of hybridization and allopolyploidy, we analyzed variation among 16 isozyme loci from 61 populations and 16 morphological characters from 33 populations representing all taxa and ploidy levels. Based on morphological analyses using clustering (unweighted pair group method using an arithmetic average) and ordination (principal components analysis and canonical variance analysis) methods, we recognize three diploid species without infraspecific taxa. Polyploids in the C. obliqua complex were most similar morphologically to diploid populations of C. glabra and C. lyonii. Patterns of isozyme variation among polyploids, which included fixed heterozygosity and recombinant profiles of alleles present in diploids, suggested polytopic origins of tetraploids and hexaploids. Our data indicate independent origins of polyploids in or near the southern Blue Ridge, Interior Highlands and Plains, and Atlantic Coastal Plain regions from progenitors most similar to C. glabra and C. lyonii. Extant tetraploids were not implicated in evolution of hexaploids, and plants similar to C. cuthbertii appeared unlikely as diploid progenitors for polyploids. We propose multiple differentiation and hybridization/polyploidization cycles in different geographic regions to explain the pattern of allopatry and inferred polytopic origins among polyploids.

  14. Rates of speciation and morphological evolution are correlated across the largest vertebrate radiation.

    PubMed

    Rabosky, Daniel L; Santini, Francesco; Eastman, Jonathan; Smith, Stephen A; Sidlauskas, Brian; Chang, Jonathan; Alfaro, Michael E

    2013-01-01

    Several evolutionary theories predict that rates of morphological change should be positively associated with the rate at which new species arise. For example, the theory of punctuated equilibrium proposes that phenotypic change typically occurs in rapid bursts associated with speciation events. However, recent phylogenetic studies have found little evidence linking these processes in nature. Here we demonstrate that rates of species diversification are highly correlated with the rate of body size evolution across the 30,000+ living species of ray-finned fishes that comprise the majority of vertebrate biological diversity. This coupling is a general feature of fish evolution and transcends vast differences in ecology and body-plan organization. Our results may reflect a widespread speciational mode of character change in living fishes. Alternatively, these findings are consistent with the hypothesis that phenotypic 'evolvability'-the capacity of organisms to evolve-shapes the dynamics of speciation through time at the largest phylogenetic scales.

  15. Topographic signatures of spatially-limited storm morphologies revealed from numerical landscape evolution modelling

    NASA Astrophysics Data System (ADS)

    Valters, Declan; Brocklehurst, Simon

    2016-04-01

    Landscape evolution models typically forsake realistic spatial and temporal patterns of rainfall, assuming spatially uniform rainfall input and steady-state runoff conditions. The implications of this assumption are explored, using extensions made to the CHILD numerical landscape evolution model. A variety of rainfall distribution patterns are tested - from isolated intense storm cells associated with convective precipitation, to more extensive rainfall patterns associated with frontal or stratiform types of precipitation. Several topographic metrics are used to quantify the imprint left by variations in dominant storm shape and size, including the channel steepness (ksn) and chi (χ) gradient indices. All else being equal, resultant landscape topography is shown to be sensitive to the dominant storm morphology and storm cell positioning at the range and catchment scales.

  16. Morphological Evolution of Physical Robots through Model-Free Phenotype Development

    PubMed Central

    Brodbeck, Luzius; Hauser, Simon; Iida, Fumiya

    2015-01-01

    Artificial evolution of physical systems is a stochastic optimization method in which physical machines are iteratively adapted to a target function. The key for a meaningful design optimization is the capability to build variations of physical machines through the course of the evolutionary process. The optimization in turn no longer relies on complex physics models that are prone to the reality gap, a mismatch between simulated and real-world behavior. We report model-free development and evaluation of phenotypes in the artificial evolution of physical systems, in which a mother robot autonomously designs and assembles locomotion agents. The locomotion agents are automatically placed in the testing environment and their locomotion behavior is analyzed in the real world. This feedback is used for the design of the next iteration. Through experiments with a total of 500 autonomously built locomotion agents, this article shows diversification of morphology and behavior of physical robots for the improvement of functionality with limited resources. PMID:26091255

  17. Fitting models of continuous trait evolution to incompletely sampled comparative data using approximate Bayesian computation.

    PubMed

    Slater, Graham J; Harmon, Luke J; Wegmann, Daniel; Joyce, Paul; Revell, Liam J; Alfaro, Michael E

    2012-03-01

    In recent years, a suite of methods has been developed to fit multiple rate models to phylogenetic comparative data. However, most methods have limited utility at broad phylogenetic scales because they typically require complete sampling of both the tree and the associated phenotypic data. Here, we develop and implement a new, tree-based method called MECCA (Modeling Evolution of Continuous Characters using ABC) that uses a hybrid likelihood/approximate Bayesian computation (ABC)-Markov-Chain Monte Carlo approach to simultaneously infer rates of diversification and trait evolution from incompletely sampled phylogenies and trait data. We demonstrate via simulation that MECCA has considerable power to choose among single versus multiple evolutionary rate models, and thus can be used to test hypotheses about changes in the rate of trait evolution across an incomplete tree of life. We finally apply MECCA to an empirical example of body size evolution in carnivores, and show that there is no evidence for an elevated rate of body size evolution in the pinnipeds relative to terrestrial carnivores. ABC approaches can provide a useful alternative set of tools for future macroevolutionary studies where likelihood-dependent approaches are lacking. © 2011 The Author(s). Evolution© 2011 The Society for the Study of Evolution.

  18. Modelling of sediment transport and morphological evolution under the combined action of waves and currents

    NASA Astrophysics Data System (ADS)

    Franz, Guilherme; Delpey, Matthias T.; Brito, David; Pinto, Lígia; Leitão, Paulo; Neves, Ramiro

    2017-09-01

    Coastal defence structures are often constructed to prevent beach erosion. However, poorly designed structures may cause serious erosion problems in the downdrift direction. Morphological models are useful tools to predict such impacts and assess the efficiency of defence structures for different scenarios. Nevertheless, morphological modelling is still a topic under intense research effort. The processes simulated by a morphological model depend on model complexity. For instance, undertow currents are neglected in coastal area models (2DH), which is a limitation for simulating the evolution of beach profiles for long periods. Model limitations are generally overcome by predefining invariant equilibrium profiles that are allowed to shift offshore or onshore. A more flexible approach is described in this paper, which can be generalised to 3-D models. The present work is based on the coupling of the MOHID modelling system and the SWAN wave model. The impacts of different designs of detached breakwaters and groynes were simulated in a schematic beach configuration following a 2DH approach. The results of bathymetry evolution are in agreement with the patterns found in the literature for several existing structures. The model was also tested in a 3-D test case to simulate the formation of sandbars by undertow currents. The findings of this work confirmed the applicability of the MOHID modelling system to study sediment transport and morphological changes in coastal zones under the combined action of waves and currents. The same modelling methodology was applied to a coastal zone (Costa da Caparica) located at the mouth of a mesotidal estuary (Tagus Estuary, Portugal) to evaluate the hydrodynamics and sediment transport both in calm water conditions and during events of highly energetic waves. The MOHID code is available in the GitHub repository.

  19. The Morphology and Distribution of Submerged Reefs in the Maui Nui Complex, Hawaii: New Insights Into Their Evolution Since the Early Pleistocene

    NASA Astrophysics Data System (ADS)

    Faichney, I. D.; Webster, J. M.; Clague, D. A.; Kelley, C.; Appelgate, B.; Moore, J. G.

    2008-12-01

    Recent work on submerged drowned reefs in Hawaii has provided insight into reef development within the Late Pleistocene but reefs of the Early Pleistocene remain largely unexplored. The Maui-Nui Complex (MNC) provides a natural laboratory to study reef evolution throughout this time period as new data indicate the reefs grew from 1.1 - 0.5 Ma. We use new high resolution bathymetric data combined with existing regional data and field observations from ROV and submersible dives to make a detailed analysis of reef morphology and structure around the MNC. We focus specifically on the south-central region of the complex which provide the best reef exposure and find that the morphology of the reefs varies both regionally and temporally within this region. Barrier and pinnacle features dominate the steeper margins in the north of the study area while wide, shallow backstepping occurs to the south. Additionally, the central part of the study area shows karst morphology and patch and lagoonal features between the islands. We propose that this variation in the morphology and structure of the reefs has been controlled by variations in three main factors; the subsidence rates of the complex, the amplitude and period of eustatic sea-level cycles and finally the slope and continuity of the substrate. We argue that the interaction of these three factors explains the observed variations in reef morphology within the MNC and finally we present a new model of reef evolution over the last 1.5 Ma.

  20. Decadal morphological evolution of the Yangtze Estuary in response to river input changes and estuarine engineering projects

    NASA Astrophysics Data System (ADS)

    Luan, Hua Long; Ding, Ping Xing; Wang, Zheng Bing; Ge, Jian Zhong; Yang, Shi Lun

    2016-07-01

    The Yangtze Estuary in China has been intensively influenced by human activities including altered river and sediment discharges in its catchment and local engineering projects in the estuary over the past half century. River sediment discharge has significantly decreased since the 1980s because of upstream dam construction and water-soil conservation. We analyzed bathymetric data from the Yangtze Estuary between 1958 and 2010 and divided the entire estuary into two sections: inner estuary and mouth bar area. The deposition and erosion pattern exhibited strong temporal and spatial variations. The inner estuary and mouth bar area underwent different changes. The inner estuary was altered from sedimentation to erosion primarily at an intermediate depth (5-15 m) along with river sediment decline. In contrast, the mouth bar area showed continued accretion throughout the study period. The frequent river floods during the 1990s and simultaneously decreasing river sediment probably induced the peak erosion of the inner estuary in 1986-1997. We conclude that both sediment discharge and river flood events played important roles in the decadal morphological evolution of the Yangtze Estuary. Regarding the dredged sediment, the highest net accretion rate occurred in the North Passage where jetties and groins were constructed to regulate the navigation channel in 1997-2010. In this period, the jetties induced enhanced deposition at the East Hengsha Mudflat and the high accretion rate within the mouth bar area was maintained. The impacts of estuarine engineering projects on morphological change extended beyond their sites.

  1. Effect of fast mold surface temperature evolution on iPP part morphology gradients

    SciTech Connect

    Liparoti, Sara; Sorrentino, Andrea; Guzman, Gustavo; Cakmak, Mukerrem; Titomanlio, Giuseppe

    2016-03-09

    The control of mold surface temperature is an important factor that affects the sample surface morphology as well as the structural gradients (orientation crystal size, and type) as well as cooling stresses. The frozen layer thickness formed during the filling stage also has a very significant effect on the flow resistance and thus on the resulting pressure drop and flow length in thin wall parts. The possibility to have a hot mold during filling and a quick cooling soon afterward is a significant process enhancement particularly for specialized applications such as micro injection molding and for the reproduction of micro structured surfaces. Up to now, several methods (electromagnetic, infrared, hot vapor fleshing etc,) were tried to achieve fast temperature evolution of the mold. Unfortunately, all these methods require a complex balance between thermal and mechanical problems, equipment cost, energy consumption, safety, molding cycle time and part quality achievable. In this work, a thin electrical resistance was designed and used to generate a fast and confined temperature variation on mold surface (by joule effect). Since the whole temperature evolution can take place in a few seconds, one can couple the advantages of a high surface temperature during filling with the advantages of a low mold temperature, fast cooling and low heating dissipation. Some experiments were performed with a commercial iPP resin. The effects of the surface temperature and of the heating time (under constant electric power) on surface finishing and on the final morphology (thickness and structure of the different layers) are explored and discussed.

  2. Effect of fast mold surface temperature evolution on iPP part morphology gradients

    NASA Astrophysics Data System (ADS)

    Liparoti, Sara; Sorrentino, Andrea; Guzman, Gustavo; Cakmak, Mukerrem; Titomanlio, Giuseppe

    2016-03-01

    The control of mold surface temperature is an important factor that affects the sample surface morphology as well as the structural gradients (orientation crystal size, and type) as well as cooling stresses. The frozen layer thickness formed during the filling stage also has a very significant effect on the flow resistance and thus on the resulting pressure drop and flow length in thin wall parts. The possibility to have a hot mold during filling and a quick cooling soon afterward is a significant process enhancement particularly for specialized applications such as micro injection molding and for the reproduction of micro structured surfaces. Up to now, several methods (electromagnetic, infrared, hot vapor fleshing etc,) were tried to achieve fast temperature evolution of the mold. Unfortunately, all these methods require a complex balance between thermal and mechanical problems, equipment cost, energy consumption, safety, molding cycle time and part quality achievable. In this work, a thin electrical resistance was designed and used to generate a fast and confined temperature variation on mold surface (by joule effect). Since the whole temperature evolution can take place in a few seconds, one can couple the advantages of a high surface temperature during filling with the advantages of a low mold temperature, fast cooling and low heating dissipation. Some experiments were performed with a commercial iPP resin. The effects of the surface temperature and of the heating time (under constant electric power) on surface finishing and on the final morphology (thickness and structure of the different layers) are explored and discussed.

  3. Resolution of Brassicaceae Phylogeny Using Nuclear Genes Uncovers Nested Radiations and Supports Convergent Morphological Evolution

    PubMed Central

    Huang, Chien-Hsun; Sun, Renran; Hu, Yi; Zeng, Liping; Zhang, Ning; Cai, Liming; Zhang, Qiang; Koch, Marcus A.; Al-Shehbaz, Ihsan; Edger, Patrick P.; Pires, J. Chris; Tan, Dun-Yan; Zhong, Yang; Ma, Hong

    2016-01-01

    Brassicaceae is one of the most diverse and economically valuable angiosperm families with widely cultivated vegetable crops and scientifically important model plants, such as Arabidopsis thaliana. The evolutionary history, ecological, morphological, and genetic diversity, and abundant resources and knowledge of Brassicaceae make it an excellent model family for evolutionary studies. Recent phylogenetic analyses of the family revealed three major lineages (I, II, and III), but relationships among and within these lineages remain largely unclear. Here, we present a highly supported phylogeny with six major clades using nuclear markers from newly sequenced transcriptomes of 32 Brassicaceae species and large data sets from additional taxa for a total of 55 species spanning 29 out of 51 tribes. Clade A consisting of Lineage I and Macropodium nivale is sister to combined Clade B (with Lineage II and others) and a new Clade C. The ABC clade is sister to Clade D with species previously weakly associated with Lineage II and Clade E (Lineage III) is sister to the ABCD clade. Clade F (the tribe Aethionemeae) is sister to the remainder of the entire family. Molecular clock estimation reveals an early radiation of major clades near or shortly after the Eocene–Oligocene boundary and subsequent nested divergences of several tribes of the previously polytomous Expanded Lineage II. Reconstruction of ancestral morphological states during the Brassicaceae evolution indicates prevalent parallel (convergent) evolution of several traits over deep times across the entire family. These results form a foundation for future evolutionary analyses of structures and functions across Brassicaceae. PMID:26516094

  4. Imitation, genetic lineages, and time influenced the morphological evolution of the violin.

    PubMed

    Chitwood, Daniel H

    2014-01-01

    Violin design has been in flux since the production of the first instruments in 16th century Italy. Numerous innovations have improved the acoustical properties and playability of violins. Yet, other attributes of the violin affect its performance less, and with fewer constraints, are potentially more sensitive to historical vagaries unrelated to quality. Although the coarse shape of violins is integral to their design, details of the body outline can vary without significantly compromising sound quality. What can violin shapes tell us about their makers and history, including the degree that luthiers have influenced each other and the evolution of complex morphologies over time? Here, I provide an analysis of morphological evolution in the violin family, sampling the body shapes of over 9,000 instruments over 400 years of history. Specific shape attributes, which discriminate instruments produced by different luthiers, strongly correlate with historical time. Linear discriminant analysis reveals luthiers who likely copied the outlines of their instruments from others, which historical accounts corroborate. Clustering of averaged violin shapes places luthiers into four major groups, demonstrating a handful of discrete shapes predominate in most instruments. Violin shapes originating from multi-generational luthier families tend to cluster together, and familial origin is a significant explanatory factor of violin shape. Together, the analysis of four centuries of violin shapes demonstrates not only the influence of history and time leading to the modern violin, but widespread imitation and the transmission of design by human relatedness.

  5. Imitation, Genetic Lineages, and Time Influenced the Morphological Evolution of the Violin

    PubMed Central

    Chitwood, Daniel H.

    2014-01-01

    Violin design has been in flux since the production of the first instruments in 16th century Italy. Numerous innovations have improved the acoustical properties and playability of violins. Yet, other attributes of the violin affect its performance less, and with fewer constraints, are potentially more sensitive to historical vagaries unrelated to quality. Although the coarse shape of violins is integral to their design, details of the body outline can vary without significantly compromising sound quality. What can violin shapes tell us about their makers and history, including the degree that luthiers have influenced each other and the evolution of complex morphologies over time? Here, I provide an analysis of morphological evolution in the violin family, sampling the body shapes of over 9,000 instruments over 400 years of history. Specific shape attributes, which discriminate instruments produced by different luthiers, strongly correlate with historical time. Linear discriminant analysis reveals luthiers who likely copied the outlines of their instruments from others, which historical accounts corroborate. Clustering of averaged violin shapes places luthiers into four major groups, demonstrating a handful of discrete shapes predominate in most instruments. Violin shapes originating from multi-generational luthier families tend to cluster together, and familial origin is a significant explanatory factor of violin shape. Together, the analysis of four centuries of violin shapes demonstrates not only the influence of history and time leading to the modern violin, but widespread imitation and the transmission of design by human relatedness. PMID:25295734

  6. The morphological evolution of the axial structure and the curved columnar grain in the weld

    NASA Astrophysics Data System (ADS)

    Han, Rihong; Lu, Shanping; Dong, Wenchao; Li, Dianzhong; Li, Yiyi

    2015-12-01

    The competitive growth of microstructures in the entire weld pool for both the Al-Cu alloy and the pure aluminum was simulated by the cellular automata method to comparatively investigate the micro-mechanisms for the morphological evolution of the axial structure and the curved columnar grain in the weld. The competitive mechanism of grains during the epitaxial growth and the morphological evolution of the grain structure in the weld with various welding speeds were studied. The results indicate that both the thermal conditions and the solidification characteristic of the weld metal exert an important influence on the grain competition and the resulting structure in the weld. For the Al-Cu alloy, the dendritic structure with a large S/L interface curvature appears during the epitaxial growth. The preferential orientation affects the competition result obviously. Owing to the anisotropic growth kinetics, the straight axial structure forms at low welding speeds. With the increase of the welding speed, the width of the axial region decreases and eventually disappears. For the pure aluminum, the S/L interface during the epitaxial growth is planar, and the grain competition is controlled by the thermal conditions completely. The columnar grains curve gradually to follow the highest temperature gradient direction at low welding speeds and become straight at high welding speeds.

  7. Synergistic effect of silver seeds and organic modifiers on the morphology evolution mechanism of silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Wang, Aili; Yin, Hengbo; Ren, Min; Liu, Yuming; Jiang, Tingshun

    2008-08-01

    Triangular, truncated triangular, quadrangular, hexagonal, and net-structured silver nanoplates as well as decahedral silver nanoparticles were manipulatively prepared starting from silver nitrate and silver seeds in the presence of poly(ethylene glycol) (PEG), poly( N-vinyl pyrrolidone) (PVP), and Tween 80 at room temperature, respectively. UV-vis spectroscopy, XRD, HRTEM, SAED, and FTIR were used to illustrate the crystal growth process and to characterize the resultant silver nanoparticles. It was found that the silver seeds and organic modifiers synergistically affected the morphology evolution of the silver nanoparticles. The co-presence of silver seeds and PEG was beneficial to the formation of triangular and truncated triangular silver nanoplates; the silver seeds and PVP favored the formation of polygonal silver nanoplates; the silver seeds and Tween 80 preferred to the formation of net-structured silver plates. The morphology evolution of the resultant silver nanoparticles was correlated with the crystallinity of the silver seeds and the adsorption ability of the organic modifiers on the crystal surfaces.

  8. STM/AFM studies of the evolution of morphology of electroplated Ni/W alloys

    NASA Astrophysics Data System (ADS)

    Zhu, L.; Younes, O.; Ashkenasy, N.; Shacham-Diamand, Y.; Gileadi, E.

    2002-11-01

    The surface morphology evolution of Ni/W alloys was studied, as a function of the alloy composition. Using the modified plating baths developed in our laboratory recently, electroplated Ni/W alloys with different W content, in the range of 7-67 atom percent (a/o), can be obtained. This was found to lead to different structures, ranging from polycrystalline fcc-Ni type structure to amorphous, followed by orthorhombic with increasing W content in the alloy. Powder XRD was studied to determine the crystal structures. Ex situ STM, AFM and SEM were used to study in detail the surface morphologies of the different alloys, and their evolution with increasing W content. The important findings are that a mixture of two crystalline forms can give rise to an amorphous structure. Hillocks that are usually a characteristic of epitaxial growth can also exist in the amorphous alloys. Oriented scratches caused by stress can also be formed. Up to 20 a/o of W is deposited in the alloys in crystalline form, with the fcc-Ni type structure. Between 20 and about 40 a/o an amorphous structure is observed, and above that an orthorhombic crystal structure is seen, which is characteristic of the NiW binary alloy. Careful choice of the composition of the plating bath allowed us to deposit an alloy containing 67 a/o W, which corresponds to the composition NiW 2.

  9. Phylogeny and evolution of the Betulaceae as inferred from DNA sequences, morphology, and paleobotany.

    PubMed

    Chen, Z D; Manchester, S R; Sun, H Y

    1999-08-01

    Phylogeny of the Betulaceae is assessed on the basis of rbcL, ITS, and morphological data. Based upon 26 rbcL sequences representing most "higher" hamamelid families, the Betulaceae are monophyletic, with Casuarinaceae as its sister group, regardless of whether the outgroup is Cunoniaceae, Cercidiphyllaceae, Hamamelidaceae, or Nothofagus. Within the Betulaceae, two sister clades are evident, corresponding to the subfamilies Betuloideae and Coryloideae. However, with only 13 phylogenetically informative sites, the rbcL sequences provide limited intra-subfamilial resolution. Internal transcribed spacer (ITS) sequences provided 96 phylogenetically informative sites from 491 aligned sites resulting in a single most parsimonious tree of 374 steps (consistency index = 0.791) with two major lineages corresponding to the two traditional subfamilies: Betuloideae (Alnus, Betula) and Coryloideae (Corylus, Ostryopsis, Carpinus, Ostrya). This arrangement is mostly consistent with those from rbcL and morphology and is greatly reinforced by analyses with the three data sets combined. In the Coryloideae, the Ostryopsis-Carpinus-Ostrya clade is well supported, with Corylus as its sister group. The sister-group relationship between Ostryopsis and the Carpinus-Ostrya clade is well supported by ITS, rbcL, and morphological data. Phylogenetic relationships among the extant genera deduced by these analyses are compatible with inferences from ecological evolution and the extensive fossil record.

  10. A Three-Dimensional Analysis of Morphological Evolution and Locomotor Performance of the Carnivoran Forelimb

    PubMed Central

    Martín-Serra, Alberto; Figueirido, Borja; Palmqvist, Paul

    2014-01-01

    In this study, three-dimensional landmark-based methods of geometric morphometrics are used for estimating the influence of phylogeny, allometry and locomotor performance on forelimb shape in living and extinct carnivorans (Mammalia, Carnivora). The main objective is to investigate morphological convergences towards similar locomotor strategies in the shape of the major forelimb bones. Results indicate that both size and phylogeny have strong effects on the anatomy of all forelimb bones. In contrast, bone shape does not correlate in the living taxa with maximum running speed or daily movement distance, two proxies closely related to locomotor performance. A phylomorphospace approach showed that shape variation in forelimb bones mainly relates to changes in bone robustness. This indicates the presence of biomechanical constraints resulting from opposite demands for energetic efficiency in locomotion –which would require a slender forelimb– and resistance to stress –which would be satisfied by a robust forelimb–. Thus, we interpret that the need of maintaining a trade-off between both functional demands would limit shape variability in forelimb bones. Given that different situations can lead to one or another morphological solution, depending on the specific ecology of taxa, the evolution of forelimb morphology represents a remarkable “one-to-many mapping” case between anatomy and ecology. PMID:24454891

  11. Adaptive simplification and the evolution of gecko locomotion: Morphological and biomechanical consequences of losing adhesion

    PubMed Central

    Higham, Timothy E.; Birn-Jeffery, Aleksandra V.; Collins, Clint E.; Hulsey, C. Darrin; Russell, Anthony P.

    2015-01-01

    Innovations permit the diversification of lineages, but they may also impose functional constraints on behaviors such as locomotion. Thus, it is not surprising that secondary simplification of novel locomotory traits has occurred several times among vertebrates and could potentially lead to exceptional divergence when constraints are relaxed. For example, the gecko adhesive system is a remarkable innovation that permits locomotion on surfaces unavailable to other animals, but has been lost or simplified in species that have reverted to a terrestrial lifestyle. We examined the functional and morphological consequences of this adaptive simplification in the Pachydactylus radiation of geckos, which exhibits multiple unambiguous losses or bouts of simplification of the adhesive system. We found that the rates of morphological and 3D locomotor kinematic evolution are elevated in those species that have simplified or lost adhesive capabilities. This finding suggests that the constraints associated with adhesion have been circumvented, permitting these species to either run faster or burrow. The association between a terrestrial lifestyle and the loss/reduction of adhesion suggests a direct link between morphology, biomechanics, and ecology. PMID:25548182

  12. Experiments on the evolution of laccolith morphology in plan-view

    NASA Astrophysics Data System (ADS)

    Currier, Ryan M.; Forsythe, Patrick; Grossmeier, Corinne; Laliberte, Michael; Yagle, Brian

    2017-04-01

    The ultimate shape of a laccolith is the result of competition between internal magmatic phenomena (e.g. overpressure and the process of solidification), and the state of the external host rock (e.g. thickness of the overburden, the presence of faults, and regional tectonic stresses). Intrusion morphology can be utilized as an inferential tool to better understand emplacement dynamics and history. One specific shape aspect rarely considered is the intrusion's ellipticity, which is the ratio of its long to short axes in plan view. Here, with a series of simple analog experiments that integrate the effects of flow along pre-existing fractures and solidification during emplacement, an assessment is performed of the existing models for formation of a laccolith's plan morphology; i.e. growth-dependent and feeder-dependent. The results of these experiments suggest that neither model fully captures the behavior of laccolith ellipticity evolution, and an updated model of formation that takes into account the control of the feeder dike, homogenization of overburden bending moments, and the processes involving solidification is presented. Furthermore, experimental results are compared with ellipticity measurements of natural laccoliths. There are proportionately more high ellipticity laccoliths in Nature than in experiments. This is interpreted as an induced morphological effect by magma viscosity, crustal heterogeneities, and/or incremental assembly.

  13. Morphology evolution and rheological properties of polybutadiene/polyisoprene blend after the cessation of steady shear

    NASA Astrophysics Data System (ADS)

    Liu, Wei; Dong, Xia; Zou, Fasheng; Yang, Jian; Wang, Dujin; Han, Charles C.

    2013-09-01

    The morphology evolution and rheological response of a near-critical composition polybutadiene/polyisoprene blend after the cessation of steady shear was studied with an ARES rheometer and a shear light scattering photometer equipped with an optical microscope in this work. The relationship between the morphology of the blend during the relaxation after the cessation of steady shear with different shear rates and their corresponding rheological properties was successfully established. It was found that the different shear-induced morphologies under steady shear would relax to the equilibrium states via varied mechanisms after the shear cessation. The average size of the dispersed domains in the coarsening process was influenced by the pre-shear history. The results indicated that the pre-shear history could slow down the growth rate of phase domains during the coarsening process. It had effect on the coarsening mechanism on the early stage of relaxation after the cessation of very strong shear when the homogenization effects were strong, but no effect on the late stage. The storage modulus G' increased significantly in the breakup process of the string-like phase. After all the string-like structures were broken up into small ellipsoids, then G' gradually decreased and finally approached to an invariant value. The characteristic rheological behavior can be attributed to the different structure on the relaxation process.

  14. A three-dimensional analysis of morphological evolution and locomotor performance of the carnivoran forelimb.

    PubMed

    Martín-Serra, Alberto; Figueirido, Borja; Palmqvist, Paul

    2014-01-01

    In this study, three-dimensional landmark-based methods of geometric morphometrics are used for estimating the influence of phylogeny, allometry and locomotor performance on forelimb shape in living and extinct carnivorans (Mammalia, Carnivora). The main objective is to investigate morphological convergences towards similar locomotor strategies in the shape of the major forelimb bones. Results indicate that both size and phylogeny have strong effects on the anatomy of all forelimb bones. In contrast, bone shape does not correlate in the living taxa with maximum running speed or daily movement distance, two proxies closely related to locomotor performance. A phylomorphospace approach showed that shape variation in forelimb bones mainly relates to changes in bone robustness. This indicates the presence of biomechanical constraints resulting from opposite demands for energetic efficiency in locomotion -which would require a slender forelimb- and resistance to stress -which would be satisfied by a robust forelimb-. Thus, we interpret that the need of maintaining a trade-off between both functional demands would limit shape variability in forelimb bones. Given that different situations can lead to one or another morphological solution, depending on the specific ecology of taxa, the evolution of forelimb morphology represents a remarkable "one-to-many mapping" case between anatomy and ecology.

  15. A gene fusion at a homeobox locus: alterations in leaf shape and implications for morphological evolution.

    PubMed Central

    Chen, J J; Janssen, B J; Williams, A; Sinha, N

    1997-01-01

    Compound leaves are seen in many angiosperm genera and are thought to be either fundamentally different from simple leaves or elaborations of simple leaves. The knotted1-like homeobox (knox) genes are known to regulate plant development. When overexpressed in homologous or heterologous species, this family of genes can cause changes in leaf morphology, including excessive leaf compounding in tomato. We describe here an instance of a spontaneously arisen fusion between a gene encoding a metabolic enzyme and a homeodomain protein. We show that the fusion results in overexpression of the homeodomain protein and a change in morphology that approximates the changes caused by overexpression of the same gene under the control of the cauliflower mosaic virus 35S promoter in transgenic plants. Exon-shuffling events can account for the modularity of proteins. If the shuffled exons are associated with altered promoters, changes in gene expression patterns can result. Our results show that gene fusions of this nature can cause changes in expression patterns that lead to altered morphology. We suggest that such phenomena may have played a role in the evolution of form. PMID:9286107

  16. Morphological homoplasy, life history evolution, and historical biogeography of plethodontid salamanders inferred from complete mitochondrial genomes

    PubMed Central

    Mueller, Rachel Lockridge; Macey, J. Robert; Jaekel, Martin; Wake, David B.; Boore, Jeffrey L.

    2004-01-01

    The evolutionary history of the largest salamander family (Plethodontidae) is characterized by extreme morphological homoplasy. Analysis of the mechanisms generating such homoplasy requires an independent molecular phylogeny. To this end, we sequenced 24 complete mitochondrial genomes (22 plethodontids and two outgroup taxa), added data for three species from GenBank, and performed partitioned and unpartitioned Bayesian, maximum likelihood, and maximum parsimony phylogenetic analyses. We explored four dataset partitioning strategies to account for evolutionary process heterogeneity among genes and codon positions, all of which yielded increased model likelihoods and decreased numbers of supported nodes in the topologies (Bayesian posterior probability >0.95) relative to the unpartitioned analysis. Our phylogenetic analyses yielded congruent trees that contrast with the traditional morphology-based taxonomy; the monophyly of three of four major groups is rejected. Reanalysis of current hypotheses in light of these evolutionary relationships suggests that (i) a larval life history stage reevolved from a direct-developing ancestor multiple times; (ii) there is no phylogenetic support for the “Out of Appalachia” hypothesis of plethodontid origins; and (iii) novel scenarios must be reconstructed for the convergent evolution of projectile tongues, reduction in toe number, and specialization for defensive tail loss. Some of these scenarios imply morphological transformation series that proceed in the opposite direction than was previously thought. In addition, they suggest surprising evolutionary lability in traits previously interpreted to be conservative. PMID:15365171

  17. Postcopulatory sexual selection is associated with accelerated evolution of sperm morphology.

    PubMed

    Rowe, Melissah; Albrecht, Tomáš; Cramer, Emily R A; Johnsen, Arild; Laskemoen, Terje; Weir, Jason T; Lifjeld, Jan T

    2015-04-01

    Rapid diversification of sexual traits is frequently attributed to sexual selection, though explicit tests of this hypothesis remain limited. Spermatozoa exhibit remarkable variability in size and shape, and studies report a correlation between sperm morphology (sperm length and shape) and sperm competition risk or female reproductive tract morphology. However, whether postcopulatory processes (e.g., sperm competition and cryptic female choice) influence the speed of evolutionary diversification in sperm form is unknown. Using passerine birds, we quantified evolutionary rates of sperm length divergence among lineages (i.e., species pairs) and determined whether these rates varied with the level of sperm competition (estimated as relative testes mass). We found that relative testes mass was significantly and positively associated with more rapid phenotypic divergence in sperm midpiece and flagellum lengths, as well as total sperm length. In contrast, there was no association between relative testes mass and rates of evolutionary divergence in sperm head size, and models suggested that head length is evolutionarily constrained. Our results are the first to show an association between the strength of sperm competition and the speed of sperm evolution, and suggest that postcopulatory sexual selection promotes rapid evolutionary diversification of sperm morphology. © 2015 The Author(s).

  18. Morphological Evolution of Nanocluster Aggregates and Single Crystals in Alkaline Zinc Electrodeposition

    SciTech Connect

    Desai, D; Turney, DE; Anantharaman, B; Steingart, DA; Banerjee, S

    2014-04-24

    The morphology of Zn electrodeposits is studied on carbon-coated transmission electron microscopy grids. At low over-potentials (eta = -50 mV), the morphology develops by aggregation at two distinct length scales: similar to 5 nm diameter monocrystalline nanoclusters form similar to 50 nm diameter polycrystalline aggregates, and the aggregates form a branched network. Epitaxial (00 (0) over bar2) growth above an overpotential of vertical bar eta(c)vertical bar > 125 mV leads to the formation of hexagonal single crystals up to 2 mu m in diameter. Potentiostatic current transients were used to calculate the nucleation rate from Scharifker et al.'s model. The exp(eta) dependence of the nucleation rates indicates that atomistic nucleation theory explains the nucleation process better than Volmer-Weber theory. A kinetic model is provided using the rate equations of vapor solidification to simulate the evolution of the different morphologies. On solving these equations, we show that aggregation is attributed to cluster impingement and cluster diffusion while single-crystal formation is attributed to direct attachment.

  19. Morphological homoplasy, life history evolution, and historical biogeography of plethodontid salamanders inferred from complete mitochondrial genomes

    SciTech Connect

    Mueller, Rachel Lockridge; Macey, J. Robert; Jaekel, Martin; Wake, David B.; Boore, Jeffrey L.

    2004-08-01

    The evolutionary history of the largest salamander family (Plethodontidae) is characterized by extreme morphological homoplasy. Analysis of the mechanisms generating such homoplasy requires an independent, molecular phylogeny. To this end, we sequenced 24 complete mitochondrial genomes (22 plethodontids and two outgroup taxa), added data for three species from GenBank, and performed partitioned and unpartitioned Bayesian, ML, and MP phylogenetic analyses. We explored four dataset partitioning strategies to account for evolutionary process heterogeneity among genes and codon positions, all of which yielded increased model likelihoods and decreased numbers of supported nodes in the topologies (PP > 0.95) relative to the unpartitioned analysis. Our phylogenetic analyses yielded congruent trees that contrast with the traditional morphology-based taxonomy; the monophyly of three out of four major groups is rejected. Reanalysis of current hypotheses in light of these new evolutionary relationships suggests that (1) a larval life history stage re-evolved from a direct-developing ancestor multiple times, (2) there is no phylogenetic support for the ''Out of Appalachia'' hypothesis of plethodontid origins, and (3) novel scenarios must be reconstructed for the convergent evolution of projectile tongues, reduction in toe number, and specialization for defensive tail loss. Some of these novel scenarios imply morphological transformation series that proceed in the opposite direction than was previously thought. In addition, they suggest surprising evolutionary lability in traits previously interpreted to be conservative.

  20. Morphological Evolution of Oxide Scales Grown on Ferritic Steels in Steam

    SciTech Connect

    Wright, Ian G; Howe, Jane Y; Sabau, Adrian S

    2009-01-01

    This study is concerned with the thermally-grown oxide scales formed inside tubes in a steam boiler during normal operation, and the influence of the morphological evolution of those scales on how strains are developed and accommodated. Understanding such details is an important consideration in modeling the tendency for scale spallation or exfoliation. Overall, the scales formed on ferritic steels in steam can be simplistically described as a layer of essentially pure magnetite in contact with the steam, and a second layer of magnetite containing alloying elements (especially Cr) next to the alloy. Hematite also can develop as a third, outermost oxide layer that may be non-uniform in thickness, and penetrate inwards along grain boundaries in the magnetite layer. A peculiar variant of this morphology often reported on low-alloy ferritic steels after boiler service (but not on laboratory-oxidized specimens) has a relatively thick outer magnetite layer and multiple inner layers described as decreasing in thickness as the alloy surface is approached. These inner layers appear to be repeating sets of double layers of pure magnetite and magnetite containing alloying elements. The results of detailed examination of such multi-layered morphology and the implications for the mode of scale growth and failure are discussed.

  1. Anatomy, morphology and evolution of the patella in squamate lizards and tuatara (Sphenodon punctatus).

    PubMed

    Regnault, Sophie; Jones, Marc E H; Pitsillides, Andrew A; Hutchinson, John R

    2016-05-01

    The patella (kneecap) is the largest and best-known of the sesamoid bones, postulated to confer biomechanical advantages including increasing joint leverage and reinforcing the tendon against compression. It has evolved several times independently in amniotes, but despite apparently widespread occurrence in lizards, the patella remains poorly characterised in this group and is, as yet, completely undescribed in their nearest extant relative Sphenodon (Rhynchocephalia). Through radiography, osteological and fossil studies we examined patellar presence in diverse lizard and lepidosauromorph taxa, and using computed tomography, dissection and histology we investigated in greater depth the anatomy and morphology of the patella in 16 lizard species and 19 Sphenodon specimens. We have found the first unambiguous evidence of a mineralised patella in Sphenodon, which appears similar to the patella of lizards and shares several gross and microscopic anatomical features. Although there may be a common mature morphology, the squamate patella exhibits a great deal of variability in development (whether from a cartilage anlage or not, and in the number of mineralised centres) and composition (bone, mineralised cartilage or fibrotendinous tissue). Unlike in mammals and birds, the patella in certain lizards and Sphenodon appears to be a polymorphic trait. We have also explored the evolution of the patella through ancestral state reconstruction, finding that the patella is ancestral for lizards and possibly Lepidosauria as a whole. Clear evidence of the patella in rhynchocephalian or stem lepidosaurian fossil taxa would clarify the evolutionary origin(s) of the patella, but due to the small size of this bone and the opportunity for degradation or loss we could not definitively conclude presence or absence in the fossils examined. The pattern of evolution in lepidosaurs is unclear but our data suggest that the emergence of this sesamoid may be related to the evolution of secondary

  2. Convergence and Divergence in the Evolution of Cat Skulls: Temporal and Spatial Patterns of Morphological Diversity

    PubMed Central

    Sakamoto, Manabu; Ruta, Marcello

    2012-01-01

    Background Studies of biological shape evolution are greatly enhanced when framed in a phylogenetic perspective. Inclusion of fossils amplifies the scope of macroevolutionary research, offers a deep-time perspective on tempo and mode of radiations, and elucidates life-trait changes. We explore the evolution of skull shape in felids (cats) through morphometric analyses of linear variables, phylogenetic comparative methods, and a new cladistic study of saber-toothed cats. Methodology/Principal Findings A new phylogenetic analysis supports the monophyly of saber-toothed cats (Machairodontinae) exclusive of Felinae and some basal felids, but does not support the monophyly of various saber-toothed tribes and genera. We quantified skull shape variation in 34 extant and 18 extinct species using size-adjusted linear variables. These distinguish taxonomic group membership with high accuracy. Patterns of morphospace occupation are consistent with previous analyses, for example, in showing a size gradient along the primary axis of shape variation and a separation between large and small-medium cats. By combining the new phylogeny with a molecular tree of extant Felinae, we built a chronophylomorphospace (a phylogeny superimposed onto a two-dimensional morphospace through time). The evolutionary history of cats was characterized by two major episodes of morphological divergence, one marking the separation between saber-toothed and modern cats, the other marking the split between large and small-medium cats. Conclusions/Significance Ancestors of large cats in the ‘Panthera’ lineage tend to occupy, at a much later stage, morphospace regions previously occupied by saber-toothed cats. The latter radiated out into new morphospace regions peripheral to those of extant large cats. The separation between large and small-medium cats was marked by considerable morphologically divergent trajectories early in feline evolution. A chronophylomorphospace has wider applications in

  3. Resolution of Brassicaceae Phylogeny Using Nuclear Genes Uncovers Nested Radiations and Supports Convergent Morphological Evolution.

    PubMed

    Huang, Chien-Hsun; Sun, Renran; Hu, Yi; Zeng, Liping; Zhang, Ning; Cai, Liming; Zhang, Qiang; Koch, Marcus A; Al-Shehbaz, Ihsan; Edger, Patrick P; Pires, J Chris; Tan, Dun-Yan; Zhong, Yang; Ma, Hong

    2016-02-01

    Brassicaceae is one of the most diverse and economically valuable angiosperm families with widely cultivated vegetable crops and scientifically important model plants, such as Arabidopsis thaliana. The evolutionary history, ecological, morphological, and genetic diversity, and abundant resources and knowledge of Brassicaceae make it an excellent model family for evolutionary studies. Recent phylogenetic analyses of the family revealed three major lineages (I, II, and III), but relationships among and within these lineages remain largely unclear. Here, we present a highly supported phylogeny with six major clades using nuclear markers from newly sequenced transcriptomes of 32 Brassicaceae species and large data sets from additional taxa for a total of 55 species spanning 29 out of 51 tribes. Clade A consisting of Lineage I and Macropodium nivale is sister to combined Clade B (with Lineage II and others) and a new Clade C. The ABC clade is sister to Clade D with species previously weakly associated with Lineage II and Clade E (Lineage III) is sister to the ABCD clade. Clade F (the tribe Aethionemeae) is sister to the remainder of the entire family. Molecular clock estimation reveals an early radiation of major clades near or shortly after the Eocene-Oligocene boundary and subsequent nested divergences of several tribes of the previously polytomous Expanded Lineage II. Reconstruction of ancestral morphological states during the Brassicaceae evolution indicates prevalent parallel (convergent) evolution of several traits over deep times across the entire family. These results form a foundation for future evolutionary analyses of structures and functions across Brassicaceae. © The Author 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  4. Emergence of tissue sensitivity to Hox protein levels underlies the evolution of an adaptive morphological trait.

    PubMed

    Refki, Peter Nagui; Armisén, David; Crumière, Antonin Jean Johan; Viala, Séverine; Khila, Abderrahman

    2014-08-15

    Growth control scales morphological attributes and, therefore, provides a critical contribution to the evolution of adaptive traits. Yet, the genetic mechanisms underlying growth in the context of specific ecological adaptations are poorly understood. In water striders, adaptation to locomotion on the water surface is associated with allometric and functional changes in thoracic appendages, such that T2-legs, used as propelling oars, are longer than T3-legs, used as steering rudders. The Hox gene Ubx establishes this derived morphology by elongating T2-legs but shortening T3-legs. Using gene expression assays, RNAi knockdown, and comparative transcriptomics, we demonstrate that the evolution of water surface rowing as a novel means of locomotion is associated with the evolution of a dose-dependent promoting-repressing effect of Ubx on leg growth. In the water strider Limnoporus dissortis, T3-legs express six to seven times higher levels of Ubx compared to T2-legs. Ubx RNAi shortens T2-legs and the severity of this phenotype increases with increased depletion of Ubx protein. Conversely, Ubx RNAi lengthens T3-legs but this phenotype is partially rescued when Ubx protein is further depleted. This dose-dependent effect of Ubx on leg growth is absent in non-rowing relatives that retain the ancestral relative leg length. We also show that the spatial patterns of expression of dpp, wg, hh, egfr, dll, exd, hth, and dac are unchanged in Ubx RNAi treatments. This indicates that the dose-dependent opposite effect of Ubx on T2- and T3-legs operates without any apparent effect on the spatial expression of major leg patterning genes. Our data suggest that scaling of adaptive allometries can evolve through changes in the levels of expression of Hox proteins early during ontogeny, and in the sensitivity of the tissues that express them, without any major effects on pattern formation. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  5. Emergence of tissue sensitivity to Hox protein levels underlies the evolution of an adaptive morphological trait

    PubMed Central

    Refki, Peter Nagui; Armisén, David; Crumière, Antonin Jean Johan; Viala, Séverine; Khila, Abderrahman

    2014-01-01

    Growth control scales morphological attributes and, therefore, provides a critical contribution to the evolution of adaptive traits. Yet, the genetic mechanisms underlying growth in the context of specific ecological adaptations are poorly understood. In water striders, adaptation to locomotion on the water surface is associated with allometric and functional changes in thoracic appendages, such that T2-legs, used as propelling oars, are longer than T3-legs, used as steering rudders. The Hox gene Ubx establishes this derived morphology by elongating T2-legs but shortening T3-legs. Using gene expression assays, RNAi knockdown, and comparative transcriptomics, we demonstrate that the evolution of water surface rowing as a novel means of locomotion is associated with the evolution of a dose-dependent promoting-repressing effect of Ubx on leg growth. In the water strider Limnoporus dissortis, T3-legs express six to seven times higher levels of Ubx compared to T2-legs. Ubx RNAi shortens T2-legs and the severity of this phenotype increases with increased depletion of Ubx protein. Conversely, Ubx RNAi lengthens T3-legs but this phenotype is partially rescued when Ubx protein is further depleted. This dose-dependent effect of Ubx on leg growth is absent in non-rowing relatives that retain the ancestral relative leg length. We also show that the spatial patterns of expression of dpp, wg, hh, egfr, dll, exd, hth, and dac are unchanged in Ubx RNAi treatments. This indicates that the dose-dependent opposite effect of Ubx on T2- and T3-legs operates without any apparent effect on the spatial expression of major leg patterning genes. Our data suggest that scaling of adaptive allometries can evolve through changes in the levels of expression of Hox proteins early during ontogeny, and in the sensitivity of the tissues that express them, without any major effects on pattern formation. PMID:24886828

  6. Convergence and divergence in the evolution of cat skulls: temporal and spatial patterns of morphological diversity.

    PubMed

    Sakamoto, Manabu; Ruta, Marcello

    2012-01-01

    Studies of biological shape evolution are greatly enhanced when framed in a phylogenetic perspective. Inclusion of fossils amplifies the scope of macroevolutionary research, offers a deep-time perspective on tempo and mode of radiations, and elucidates life-trait changes. We explore the evolution of skull shape in felids (cats) through morphometric analyses of linear variables, phylogenetic comparative methods, and a new cladistic study of saber-toothed cats. A new phylogenetic analysis supports the monophyly of saber-toothed cats (Machairodontinae) exclusive of Felinae and some basal felids, but does not support the monophyly of various saber-toothed tribes and genera. We quantified skull shape variation in 34 extant and 18 extinct species using size-adjusted linear variables. These distinguish taxonomic group membership with high accuracy. Patterns of morphospace occupation are consistent with previous analyses, for example, in showing a size gradient along the primary axis of shape variation and a separation between large and small-medium cats. By combining the new phylogeny with a molecular tree of extant Felinae, we built a chronophylomorphospace (a phylogeny superimposed onto a two-dimensional morphospace through time). The evolutionary history of cats was characterized by two major episodes of morphological divergence, one marking the separation between saber-toothed and modern cats, the other marking the split between large and small-medium cats. Ancestors of large cats in the 'Panthera' lineage tend to occupy, at a much later stage, morphospace regions previously occupied by saber-toothed cats. The latter radiated out into new morphospace regions peripheral to those of extant large cats. The separation between large and small-medium cats was marked by considerable morphologically divergent trajectories early in feline evolution. A chronophylomorphospace has wider applications in reconstructing temporal transitions across two-dimensional trait spaces, can

  7. Vertical distribution, flight behaviour and evolution of wing morphology in Morpho butterflies.

    PubMed

    Devries, P J; Penz, Carla M; Hill, Ryan I

    2010-09-01

    1. Flight is a key innovation in the evolution of insects that is crucial to their dispersal, migration, territoriality, courtship and predator avoidance. Male butterflies have characteristic territoriality and courtship flight behaviours, and females use a characteristic flight behaviour when searching for host plants. This implies that selection acts on wing morphology to maximize flight performance for conducting important behaviours among sexes. 2. Butterflies in the genus Morpho are obvious components of neotropical forests, and many observations indicate that they show two broad categories of flight behaviour and flight height. Although species can be categorized as using gliding or flapping flight, and flying at either canopy or understorey height, the association of flight behaviour and flight height with wing shape evolution has never been explored. 3. Two clades within Morpho differ in flight behaviour and height. Males and females of one clade inhabit the forest understorey and use flapping flight, whereas in the other clade, males use gliding flight at canopy level and females use flapping flight in both canopy and understorey. 4. We used independent contrasts to answer whether wing shape is associated with flight behaviour and height. Given a single switch to canopy habitation and gliding flight, we compared contrasts for the node at which the switch to canopy flight occurred with the distribution of values in the two focal clades. We found significant changes in wing shape at the transition to canopy flight only in males, and no change in size for either sex. A second node within the canopy clade suggests that other factors may also be involved in wing shape evolution. Our results reinforce the hypothesis that natural selection acts differently on male and female butterfly wing shape and indicate that the transition to canopy flight cannot explain all wing shape diversity in Morpho. 5. This study provides a starting point for characterizing evolution

  8. Early Pleistocene third metacarpal from Kenya and the evolution of modern human-like hand morphology.

    PubMed

    Ward, Carol V; Tocheri, Matthew W; Plavcan, J Michael; Brown, Francis H; Manthi, Fredrick Kyalo

    2014-01-07

    Despite discoveries of relatively complete hands from two early hominin species (Ardipithecus ramidus and Australopithecus sediba) and partial hands from another (Australopithecus afarensis), fundamental questions remain about the evolution of human-like hand anatomy and function. These questions are driven by the paucity of hand fossils in the hominin fossil record between 800,000 and 1.8 My old, a time interval well documented for the emergence and subsequent proliferation of Acheulian technology (shaped bifacial stone tools). Modern and Middle to Late Pleistocene humans share a suite of derived features in the thumb, wrist, and radial carpometacarpal joints that is noticeably absent in early hominins. Here we show that one of the most distinctive features of this suite in the Middle Pleistocene to recent human hand, the third metacarpal styloid process, was present ∼1.42 Mya in an East African hominin from Kaitio, West Turkana, Kenya. This fossil thus provides the earliest unambiguous evidence for the evolution of a key shared derived characteristic of modern human and Neandertal hand morphology and suggests that the distinctive complex of radial carpometacarpal joint features in the human hand arose early in the evolution of the genus Homo and probably in Homo erectus sensu lato.

  9. Early Pleistocene third metacarpal from Kenya and the evolution of modern human-like hand morphology

    PubMed Central

    Ward, Carol V.; Tocheri, Matthew W.; Plavcan, J. Michael; Brown, Francis H.; Manthi, Fredrick Kyalo

    2014-01-01

    Despite discoveries of relatively complete hands from two early hominin species (Ardipithecus ramidus and Australopithecus sediba) and partial hands from another (Australopithecus afarensis), fundamental questions remain about the evolution of human-like hand anatomy and function. These questions are driven by the paucity of hand fossils in the hominin fossil record between 800,000 and 1.8 My old, a time interval well documented for the emergence and subsequent proliferation of Acheulian technology (shaped bifacial stone tools). Modern and Middle to Late Pleistocene humans share a suite of derived features in the thumb, wrist, and radial carpometacarpal joints that is noticeably absent in early hominins. Here we show that one of the most distinctive features of this suite in the Middle Pleistocene to recent human hand, the third metacarpal styloid process, was present ∼1.42 Mya in an East African hominin from Kaitio, West Turkana, Kenya. This fossil thus provides the earliest unambiguous evidence for the evolution of a key shared derived characteristic of modern human and Neandertal hand morphology and suggests that the distinctive complex of radial carpometacarpal joint features in the human hand arose early in the evolution of the genus Homo and probably in Homo erectus sensu lato. PMID:24344276

  10. Evolution of life cycle, colony morphology, and host specificity in the family Hydractiniidae (Hydrozoa, Cnidaria).

    PubMed

    Miglietta, Maria Pia; Cunningham, Clifford W

    2012-12-01

    Biased transitions are common throughout the tree of life. The class hydrozoa is no exception, having lost the feeding medusa stage at least 70 times. The family hydractiniidae includes one lineage with pelagic medusae (Podocoryna) and several without (e.g., Hydractinia). The benthic colony stage also varies widely in host specificity and in colony form. The five-gene phylogeny presented here requires multiple transitions between character states for medusae, host specificity, and colony phenotype. Significant phylogenetic correlations exist between medusoid form, colony morphology, and host specificity. Species with nonfeeding medusae are usually specialized on a single host type, and reticulate colonies are correlated with nonmotile hosts. The history of feeding medusae is less certain. Podocoryna is nested within five lineages lacking medusae. This requires either repeated losses of medusae, or the remarkable re-evolution of a feeding medusa after at least 150 million years. Traditional ancestral reconstruction favors medusa regain, but a likelihood framework testing biased transitions cannot distinguish between multiple losses versus regain. A hypothesis of multiple losses of feeding medusae requires transient selection pressure favoring such a loss. Populations of species with feeding medusae are always locally rare and lack of feeding medusae does not result in restricted species distribution around the world. © 2012 The Author(s). Evolution© 2012 The Society for the Study of Evolution.

  11. Cure kinetics, morphologies, and mechanical properties of thermoplastic/MWCNT modified multifunctional glassy epoxies prepared via continuous reaction methods

    NASA Astrophysics Data System (ADS)

    Cheng, Xiaole

    The primary goal of this dissertation is to develop a novel continuous reactor method to prepare partially cured epoxy prepolymers for aerospace prepreg applications with the aim of replacing traditional batch reactors. Compared to batch reactors, the continuous reactor is capable of solubilizing and dispersing a broad range of additives including thermoplastic tougheners, stabilizers, nanoparticles and curatives and advancing epoxy molecular weights and viscosities while reducing energy consumption. In order to prove this concept, polyethersulfone (PES) modified 4, 4'-diaminodiphenylsulfone (44DDS)/tetraglycidyl-4, 4'-diaminodiphenylmethane (TGDDM) epoxy prepolymers were firstly prepared using both continuous reactor and batch reactor methods. Kinetic studies confirmed the chain extension reaction in the continuous reactor is similar to the batch reactor, and the molecular weights and viscosities of prepolymers were readily controlled through reaction kinetics. Atomic force microscopy (AFM) confirmed similar cured network morphologies for formulations prepared from batch and continuous reactors. Additionally tensile strength, tensile modulus and fracture toughness analyses concluded mechanical properties of cured epoxy matrices produced from both reactors were equivalent. Effects of multifunctional epoxy compositions on thermoplastics phase-separated morphologies were systematically studied using a combination of AFM with nanomechanical mapping, spectroscopic and calorimetric techniques to provide new insights to tailor cured reaction induced phase separation (CRIPS) in multifunctional epoxy blend networks. Furthermore, how resultant crosslinked glassy polymer network and phase-separated morphologies correlated with mechanical properties are discussed in detail. Multiwall carbon nanotube (MWCNT)/TGDDM epoxy prepolymers were further prepared by combining the successful strategies for advancing epoxy chemistries and dispersing nanotubes using the continuous reactor

  12. Continuous variable quantum optical simulation for time evolution of quantum harmonic oscillators.

    PubMed

    Deng, Xiaowei; Hao, Shuhong; Guo, Hong; Xie, Changde; Su, Xiaolong

    2016-03-10

    Quantum simulation enables one to mimic the evolution of other quantum systems using a controllable quantum system. Quantum harmonic oscillator (QHO) is one of the most important model systems in quantum physics. To observe the transient dynamics of a QHO with high oscillation frequency directly is difficult. We experimentally simulate the transient behaviors of QHO in an open system during time evolution with an optical mode and a logical operation system of continuous variable quantum computation. The time evolution of an atomic ensemble in the collective spontaneous emission is analytically simulated by mapping the atomic ensemble onto a QHO. The measured fidelity, which is used for quantifying the quality of the simulation, is higher than its classical limit. The presented simulation scheme provides a new tool for studying the dynamic behaviors of QHO.

  13. Continuous variable quantum optical simulation for time evolution of quantum harmonic oscillators

    PubMed Central

    Deng, Xiaowei; Hao, Shuhong; Guo, Hong; Xie, Changde; Su, Xiaolong

    2016-01-01

    Quantum simulation enables one to mimic the evolution of other quantum systems using a controllable quantum system. Quantum harmonic oscillator (QHO) is one of the most important model systems in quantum physics. To observe the transient dynamics of a QHO with high oscillation frequency directly is difficult. We experimentally simulate the transient behaviors of QHO in an open system during time evolution with an optical mode and a logical operation system of continuous variable quantum computation. The time evolution of an atomic ensemble in the collective spontaneous emission is analytically simulated by mapping the atomic ensemble onto a QHO. The measured fidelity, which is used for quantifying the quality of the simulation, is higher than its classical limit. The presented simulation scheme provides a new tool for studying the dynamic behaviors of QHO. PMID:26961962

  14. Evolution of the axial system in craniates: morphology and function of the perivertebral musculature

    PubMed Central

    2011-01-01

    The axial musculoskeletal system represents the plesiomorphic locomotor engine of the vertebrate body, playing a central role in locomotion. In craniates, the evolution of the postcranial skeleton is characterized by two major transformations. First, the axial skeleton became increasingly functionally and morphologically regionalized. Second, the axial-based locomotion plesiomorphic for craniates became progressively appendage-based with the evolution of extremities in tetrapods. These changes, together with the transition to land, caused increased complexity in the planes in which axial movements occur and moments act on the body and were accompanied by profound changes in axial muscle function. To increase our understanding of the evolutionary transformations of the structure and function of the perivertebral musculature, this review integrates recent anatomical and physiological data (e.g., muscle fiber types, activation patterns) with gross-anatomical and kinematic findings for pivotal craniate taxa. This information is mapped onto a phylogenetic hypothesis to infer the putative character set of the last common ancestor of the respective taxa and to conjecture patterns of locomotor and muscular evolution. The increasing anatomical and functional complexity in the muscular arrangement during craniate evolution is associated with changes in fiber angulation and fiber-type distribution, i.e., increasing obliqueness in fiber orientation and segregation of fatigue-resistant fibers in deeper muscle regions. The loss of superficial fatigue-resistant fibers may be related to the profound gross anatomical reorganization of the axial musculature during the tetrapod evolution. The plesiomorphic function of the axial musculature -mobilization- is retained in all craniates. Along with the evolution of limbs and the subsequent transition to land, axial muscles additionally function to globally stabilize the trunk against inertial and extrinsic limb muscle forces as well as

  15. Assessing phylogenetic dependence of morphological traits using co-inertia prior to investigate character evolution in Loricariinae catfishes.

    PubMed

    Covain, Raphaël; Dray, Stéphane; Fisch-Muller, Sonia; Montoya-Burgos, Juan I

    2008-03-01

    With the increase of laboratory facilities, molecular phylogenies are playing a predominant role in evolutionary analyses. However, understanding the evolution of morphological traits remains essential for a comprehensive view of the evolution of a group. Here we present a new approach based on co-inertia analysis for identifying characters which variations are dependent to the phylogeny, a prerequisite for analyzing the evolution of characters. Our approach has the advantage of treating the full data set at once, including qualitative and quantitative variables. It provides a graphical output giving the contribution of each variable to the co-structure, allowing a direct discrimination among phylogenetically dependent and independent variables. We have implemented this approach in deciphering the evolution of morphological traits in a highly specialized group of Neotropical catfishes: the Loricariinae. We have first inferred a molecular phylogeny of this group based on the 12S and 16S mitochondrial genes. The resulting phylogeny indicated that the subtribe Harttiini was restricted to the single genus Harttia, and within the subtribe Loricariini, two sister subtribes were distinguished, Sturisomina (new subtribe), and Loricariina. Among Loricariina, the morphological groups Loricariichthys and Loricaria+Pseudohemiodon were confirmed. The co-inertia analysis highlighted a strong relationship between the morphological and the genetic data sets, and identified three quantitative and eight qualitative variables linked to the phylogeny. The evolution of quantitative variables was assessed using the orthogram method and showed a major punctual event in the evolution of the number of caudal-fin rays, and a more gradual pattern of evolution of the number of teeth along the phylogeny. The evolution of qualitative variables was inferred using ancestral states reconstructions and highlighted parallel patterns of evolution in characters linked to the mouth, suggesting co-evolution

  16. Asymmetric ecological conditions favor Red-Queen type of continued evolution over stasis

    PubMed Central

    Nordbotten, Jan Martin; Stenseth, Nils C.

    2016-01-01

    Four decades ago, Leigh Van Valen presented the Red Queen’s hypothesis to account for evolution of species within a multispecies ecological community [Van Valen L (1973) Evol Theory 1(1):1–30]. The overall conclusion of Van Valen’s analysis was that evolution would continue even in the absence of abiotic perturbations. Stenseth and Maynard Smith presented in 1984 [Stenseth NC, Maynard Smith J (1984) Evolution 38(4):870–880] a model for the Red Queen’s hypothesis showing that both Red-Queen type of continuous evolution and stasis could result from a model with biotically driven evolution. However, although that contribution demonstrated that both evolutionary outcomes were possible, it did not identify which ecological conditions would lead to each of these evolutionary outcomes. Here, we provide, using a simple, yet general population-biologically founded eco-evolutionary model, such analytically derived conditions: Stasis will predominantly emerge whenever the ecological system contains only symmetric ecological interactions, whereas both Red-Queen and stasis type of evolution may result if the ecological interactions are asymmetrical, and more likely so with increasing degree of asymmetry in the ecological system (i.e., the more trophic interactions, host–pathogen interactions, and the like there are [i.e., +/− type of ecological interactions as well as asymmetric competitive (−/−) and mutualistic (+/+) ecological interactions]). In the special case of no between-generational genetic variance, our results also predict dynamics within these types of purely ecological systems. PMID:26831108

  17. Morphology and biomechanics of the pinniped jaw: mandibular evolution without mastication.

    PubMed

    Jones, Katrina E; Ruff, Christopher B; Goswami, Anjali

    2013-07-01

    Pinnipeds (seals, sea lions, and walruses) underwent a shift in jaw function away from typical carnivoran mastication to more novel marine behaviors during the terrestrial-aquatic transition. Here we test the effect of aquatic prey capture and male-male combat on the morphological evolution of a mammal jaw that does not masticate. Nine three-dimensional landmarks were taken along the mandible for 25 species (N = 83), and corpus and symphysis external and cortical breadths for a subset of five species (N = 33). Principal components analysis was performed on size-corrected landmark data to assess variation in overall jaw morphology across pinnipeds. Corpus breadths were input to a beam model to calculate strength properties and estimated bite force of specific species with contrasting behaviors (filter feeding, suction feeding, grip-and-tear feeding, and male-male combat). Results indicate that, although phylogenetic signal in jaw shape is strong, function is also important in determining morphology. Filter feeders display an elongate symphysis and a long toothrow that may play a role in filtering krill. Grip-and-tear feeders have a long jaw and large estimated bite force relative to non-biting species. However, the largest estimated bite forces were observed in males of male-male combative species, likely due to the high selection pressure associated with male success in highly polygynous species. The suction feeding jaw is weak in biting but has a different morphology in the two suction feeding taxa. In conclusion, familial patterns of pinniped jaw shape due to phylogenetic relatedness have been modified by adaptations to specialized behavior of individual taxa.

  18. Modeled alongshore circulation and morphologic evolution onshore of a large submarine canyon

    NASA Astrophysics Data System (ADS)

    Hansen, J. E.; Raubenheimer, B.; List, J. H.; Elgar, S.; Guza, R. T.; Lippmann, T. C.

    2012-12-01

    Alongshore circulation and morphologic evolution observed at an ocean beach during the Nearshore Canyon Experiment, onshore of a large submarine canyon in San Diego, CA (USA), are investigated using a two-dimensional depth-averaged numerical model (Delft3D). The model is forced with waves observed in ~500 m water depth and tidal constituents derived from satellite altimetry. Consistent with field observations, the model indicates that refraction of waves over the canyon results in wave focusing ~500 m upcoast of the canyon and shadowing onshore of the canyon. The spatial variability in the modeled wave field results in a corresponding non-uniform alongshore circulation field. In particular, when waves approach from the northwest the alongshore flow converges near the wave focal zone, while waves that approach from the southwest result in alongshore flow that diverges away from the wave focal zone. The direction and magnitude of alongshore flows are determined by a balance between the (often opposing) radiation stress and alongshore pressure gradients, consistent with observations and previous results. The largest observed morphologic evolution, vertical accretion of about 1.5 m in about 3 m water depth near the wave focal zone, occurred over a one-week period when waves from the northwest reached heights of 1.8 m. The model, with limited tuning, replicates the magnitude and spatial extent of the observed accretion and indicates that net accretion of the cross-shore profile was owing to alongshore transport from converging alongshore flows. The good agreement between the observed and modeled morphology change allows for an in-depth examination of the alongshore force balance that resulted in the sediment convergence. These results indicate that, at least in this case, a depth-averaged hydrodynamic model can replicate observed surfzone morphologic change resulting from forcing that is strongly non-uniform in the alongshore. Funding was provided by the Office of Naval

  19. Towards optimal sensor morphology for specific tasks: evolution of an artificial compound eye for estimating time to contact

    NASA Astrophysics Data System (ADS)

    Lichtensteiger, Lukas

    2000-10-01

    For a systematic investigation of the interdependence between an agent's morphology and its task environment we constructed a system that is able to automatically generate optimal sensor morphologies for given tasks. The system consists of a robot with an artificial compound eye where the angular positions of the individual facets can be autonomously modified. This paper describes experiments on using artificial evolution to optimize the compound eye morphology for the task of estimating time to contact with obstacles. The resulting morphologies are in good agreement with the theoretically predicted optimal sensor density distribution for this task. By comparing our results with earlier experiments we find that our robot is able to evolve different optimal morphologies depending on the task required. Since the accuracy of our system proved to be good enough to easily distinguish qualitatively different optimal sensor morphologies we hope that also for more complex task environments it will allow us to identify the optimal sensor distribution with good precision.

  20. Continuous lateral gradients in film morphology for position sensitive detection and organic solar cell optimization

    NASA Astrophysics Data System (ADS)

    Campoy-Quiles, M.; Randon, V.; Mróz, M. M.; Jarzaguet, M.; Garriga, M.; Cabanillas-González, J.

    2013-07-01

    We present a method to fabricate binary organic donor and acceptor blends exhibiting a controlled lateral gradient in morphology. Upon combining photometry, ellipsometry and Xray maps together with photoinduced absorption measurements, we show how the gradual exposure to solvent vapor results in a varying degree of polymer crystallinity for the polythiophene/soluble fullerene system along one direction. These morphologically graded samples are characterized by a spectral photoresponse that depends on the specific location in the area of the device where the light beam impinges, a property that stands as proof-of-concept for position sensitive detection. Moreover, we demonstrate that the development of graded morphologies is an effective one-step method which allows for fast performance optimization of organic solar cells. Finally, the appropriateness of eight different solvents for morphology control via vapor annealing is evaluated in a time-effective way using the advanced method, which helps to identify boiling point and solubility as the key processing parameters.

  1. Control of Crystal Morphology for Mold Flux During High-Aluminum AHSS Continuous Casting Process

    NASA Astrophysics Data System (ADS)

    GUO, Jing; SEO, Myung-Duk; SHI, Cheng-Bin; CHO, Jung-Wook; KIM, Seon-Hyo

    2016-08-01

    In the present manuscript, the efforts to control the crystal morphology are carried out aiming at improving the lubrication of lime-alumina-based mold flux for casting advanced high-strength steel with high aluminum. Jackson α factors for crystals of melt crystallization in multi-component mold fluxes are established and reasonably evaluated by applying thermodynamic databases to understand the crystal morphology control both in lime-alumina-based and lime-silica-based mold fluxes. The results show that Jackson α factor and supercooling are the most critical factors to determine the crystal morphology in a mold flux. Crystals precipitating in mold fluxes appear with different morphologies due to their different Jackson α factors and are likely to be more faceted with higher Jackson α factor. In addition, there is a critical supercooling degree for crystal morphology dendritic transition. When the supercooling over the critical value, the crystals transform from faceted shape to dendritic ones in morphology as the kinetic roughening occurs. Typically, the critical supercooling degrees for cuspidine dendritic transition in the lime-silica-based mold fluxes are evaluated to be between 0.05 and 0.06. Finally, addition of a small amount of Li2O in the mold flux can increase the Jackson α factor and decrease the supercooling for cuspidine precipitation; thus, it is favorable to enhance a faceted cuspidine crystal.

  2. Kinetics and cluster morphology evolution of shear-driven aggregation of well-stabilized colloids.

    PubMed

    Meng, Xia; Wu, Hua; Morbidelli, Massimo

    2015-01-27

    We investigate the shear-driven aggregation of polystyrene colloids that are stabilized by both fixed and surfactant charges, using a microchannel device, in various particle volume fractions. The objective is to understand how the primary particles evolve to clusters with shearing time, how the cluster morphology develops along the aggregation with the effect of breakage and restructuring, and whether non-Derjaguin-Landau-Verwey-Overbeek (DLVO) interactions are present, affecting the kinetics. The time evolution of the primary particle conversion to big clusters is characterized by an induction time, followed by an explosive increase when the cluster size reaches a certain critical value, which confirms the self-acceleration kinetics developed in the literature. The size of the critical clusters has been quantified for the first time, and its scaling with the shear rate follows the literature prediction well. Moreover, analysis of the shear-driven kinetics confirms the presence of substantial non-DLVO interactions in the given system.

  3. Numerical simulation of wrinkle morphology formation and the evolution of different Bacillus subtilis biofilms.

    PubMed

    Wang, Xiaoling; Hao, Mudong; Wang, Guoqing

    2016-01-01

    Wrinkle morphology is a distinctive phenomenon observed in mature biofilms that are produced by a great number of bacteria. The wrinkle pattern depends on the mechanical properties of the agar substrate and the biofilm itself, governed by the extracellular matrix (ECM). Here we study the macroscopic structures and the evolution of Bacillus subtilis biofilm wrinkles using the commercial finite element software ABAQUS. A mechanical model and simulation are set up to analyze and evaluate bacteria biofilm's wrinkle characteristics. We uncover the wrinkle formation mechanism and enumerate the quantitative relationship between wrinkle structure and mechanical properties of biofilm and its substrate. Our work can be used to modify the wrinkle pattern and control the biofilm size.

  4. Shared Human-Chimpanzee Pattern of Perinatal Femoral Shaft Morphology and Its Implications for the Evolution of Hominin Locomotor Adaptations

    PubMed Central

    Morimoto, Naoki; Zollikofer, Christoph P. E.; Ponce de León, Marcia S.

    2012-01-01

    Background Acquisition of bipedality is a hallmark of human evolution. How bipedality evolved from great ape-like locomotor behaviors, however, is still highly debated. This is mainly because it is difficult to infer locomotor function, and even more so locomotor kinematics, from fossil hominin long bones. Structure-function relationships are complex, as long bone morphology reflects phyletic history, developmental programs, and loading history during an individual’s lifetime. Here we discriminate between these factors by investigating the morphology of long bones in fetal and neonate great apes and humans, before the onset of locomotion. Methodology/Principal Findings Comparative morphometric analysis of the femoral diaphysis indicates that its morphology reflects phyletic relationships between hominoid taxa to a greater extent than taxon-specific locomotor adaptations. Diaphyseal morphology in humans and chimpanzees exhibits several shared-derived features, despite substantial differences in locomotor adaptations. Orangutan and gorilla morphologies are largely similar, and likely represent the primitive hominoid state. Conclusions/Significance These findings are compatible with two possible evolutionary scenarios. Diaphyseal morphology may reflect retained adaptive traits of ancestral taxa, hence human-chimpanzee shared-derived features may be indicative of the locomotor behavior of our last common ancestor. Alternatively, diaphyseal morphology might reflect evolution by genetic drift (neutral evolution) rather than selection, and might thus be more informative about phyletic relationships between taxa than about locomotor adaptations. Both scenarios are consistent with the hypothesis that knuckle-walking in chimpanzees and gorillas resulted from convergent evolution, and that the evolution of human bipedality is unrelated to extant great ape locomotor specializations. PMID:22848680

  5. Extensive and continuous duplication facilitates rapid evolution and diversification of gene families.

    PubMed

    Chang, Dan; Duda, Thomas F

    2012-08-01

    The origin of novel gene functions through gene duplication, mutation, and natural selection represents one of the mechanisms by which organisms diversify and one of the possible paths leading to adaptation. Nonetheless, the extent, role, and consequences of duplications in the origins of ecological adaptations, especially in the context of species interactions, remain unclear. To explore the evolution of a gene family that is likely linked to species associations, we investigated the evolutionary history of the A-superfamily of conotoxin genes of predatory marine cone snails (Conus species). Members of this gene family are expressed in the venoms of Conus species and are presumably involved in predator-prey associations because of their utility in prey capture. We recovered sequences of this gene family from genomic DNA of four closely related species of Conus and reconstructed the evolutionary history of these genes. Our study is the first to directly recover conotoxin genes from Conus genomes to investigate the evolution of conotoxin gene families. Our results revealed a phenomenon of rapid and continuous gene turnover that is coupled with heightened rates of evolution. This continuous duplication pattern has not been observed previously, and the rate of gene turnover is at least two times higher than estimates from other multigene families. Conotoxin genes are among the most rapidly evolving protein-coding genes in metazoans, a phenomenon that may be facilitated by extensive gene duplications and have driven changes in conotoxin functions through neofunctionalization. Together these mechanisms led to dramatically divergent arrangements of A-superfamily conotoxin genes among closely related species of Conus. Our findings suggest that extensive and continuous gene duplication facilitates rapid evolution and drastic divergence in venom compositions among species, processes that may be associated with evolutionary responses to predator-prey interactions.

  6. Non-unity molecular heritability demonstrated by continuous evolution in vitro

    NASA Technical Reports Server (NTRS)

    Schmitt, T.; Lehman, N.

    1999-01-01

    INTRODUCTION: When catalytic RNA is evolved in vitro, the molecule's chemical reactivity is usually the desired selection target. Sometimes the phenotype of a particular RNA molecule cannot be unambiguously determined from its genotype, however. This can occur if a nucleotide sequence can adopt multiple folded states, an example of non-unity heritability (i.e. one genotype gives rise to more than one phenotype). In these cases, more rounds of selection are required to achieve a phenotypic shift. We tested the influence of non-unity heritability at the molecular level by selecting for variants of a ligase ribozyme via continuous evolution. RESULTS: During 20 bursts of continuous evolution of a 152-nucleotide ligase ribozyme in which the Mg2+ concentration was periodically lowered, a nine-error variant of the starting 'wild-type' molecule became dominant in the last eight bursts. This variant appears to be more active than the wild type. Kinetic analyses of the mutant suggest that it may not possess a higher first-order catalytic rate constant, however. Examination of the multiple RNA conformations present under the continuous evolution conditions suggests that the mutant is superior to the wild type because it is less likely to misfold into inactive conformers. CONCLUSIONS: The evolution of genotypes that are more likely to exhibit a particular phenotype is an epiphenomenon usually ascribed only to complex living systems. We show that this can occur at the molecular level, demonstrating that in vitro systems may have more life-like characteristics than previously thought, and providing additional support for an RNA world.

  7. Non-unity molecular heritability demonstrated by continuous evolution in vitro

    NASA Technical Reports Server (NTRS)

    Schmitt, T.; Lehman, N.

    1999-01-01

    INTRODUCTION: When catalytic RNA is evolved in vitro, the molecule's chemical reactivity is usually the desired selection target. Sometimes the phenotype of a particular RNA molecule cannot be unambiguously determined from its genotype, however. This can occur if a nucleotide sequence can adopt multiple folded states, an example of non-unity heritability (i.e. one genotype gives rise to more than one phenotype). In these cases, more rounds of selection are required to achieve a phenotypic shift. We tested the influence of non-unity heritability at the molecular level by selecting for variants of a ligase ribozyme via continuous evolution. RESULTS: During 20 bursts of continuous evolution of a 152-nucleotide ligase ribozyme in which the Mg2+ concentration was periodically lowered, a nine-error variant of the starting 'wild-type' molecule became dominant in the last eight bursts. This variant appears to be more active than the wild type. Kinetic analyses of the mutant suggest that it may not possess a higher first-order catalytic rate constant, however. Examination of the multiple RNA conformations present under the continuous evolution conditions suggests that the mutant is superior to the wild type because it is less likely to misfold into inactive conformers. CONCLUSIONS: The evolution of genotypes that are more likely to exhibit a particular phenotype is an epiphenomenon usually ascribed only to complex living systems. We show that this can occur at the molecular level, demonstrating that in vitro systems may have more life-like characteristics than previously thought, and providing additional support for an RNA world.

  8. EVOLUTION OF THE RADIO REMNANT OF SUPERNOVA 1987A: MORPHOLOGICAL CHANGES FROM DAY 7000

    SciTech Connect

    Ng, C.-Y.; Zanardo, G.; Potter, T. M.; Staveley-Smith, L.; Gaensler, B. M.; Manchester, R. N.; Tzioumis, A. K.

    2013-11-10

    We present radio imaging observations of supernova remnant 1987A at 9 GHz, taken with the Australia Telescope Compact Array over 21 years from 1992 to 2013. By employing a Fourier modeling technique to fit the visibility data, we show that the remnant structure has evolved significantly since day 7000 (mid-2006): the emission latitude has gradually decreased such that the overall geometry has become more similar to a ring structure. Around the same time, we find a decreasing trend in the east-west asymmetry of the surface emissivity. These results could reflect the increasing interaction of the forward shock with material around the circumstellar ring, and the relative weakening of the interaction with the lower-density material at higher latitudes. The morphological evolution caused an apparent break in the remnant expansion measured with a torus model, from a velocity of 4600{sup +150}{sub -}200 km s{sup –1} between day 4000 and 7000 to 2400{sup +100}{sub -200} km s{sup –1} after day 7000. However, we emphasize that there is no conclusive evidence for a physical slowing of the shock at any given latitude in the expanding remnant, and that a change of radio morphology alone appears to dominate the evolution. This is supported by our ring-only fits which show a constant expansion of 3890 ± 50 km s{sup –1} without deceleration between days 4000 and 9000. We suggest that once the emission latitude no longer decreases, the expansion velocity obtained from the torus model should return to the same value as that measured with the ring model.

  9. Discrete layers of interacting growing protein seeds: convective and morphological stages of evolution.

    PubMed

    Lappa, Marcello

    2005-03-01

    The growth of several macromolecular seeds uniformly distributed on the bottom of a protein reactor (i.e., a discrete layer of N crystals embedded within a horizontal layer of liquid with no-slip boundaries) under microgravity conditions is investigated for different values of N and for two values of the geometrical aspect ratio of the container. The fluid dynamics of the growth reactor and the morphological (shape-change) evolution of the crystals are analyzed by means of a recently developed moving boundary method based on differential equations coming from the protein "surface incorporation kinetics." The face growth rates are found to depend on the complex multicellular structure of the convective field and on associated "pluming phenomena." This correspondence is indirect evidence of the fact that mass transport in the bulk and surface attachment kinetics are competitive as rate-limiting steps for growth. Significant adjustments in the roll pattern take place as time passes. The convective field undergoes an interesting sequence of transitions to different values of the mode and to different numbers of rising solutal jets. The structure of the velocity field and the solutal effects, in turn, exhibit sensitivity to the number of interacting crystals if this number is small. In the opposite case, a certain degree of periodicity can be highlighted for a core zone not affected by edge effects. The results with no-slip lateral walls are compared with those for periodic boundary conditions to assess the role played by geometrical constraints in determining edge effects and the wavelength selection process. The numerical method provides "microscopic" and "morphological" details as well as general rules and trends about the macroscopic evolution (i.e., "ensemble behaviors") of the system.

  10. Cypris morphology in the barnacles Ibla and Paralepas (Crustacea: Cirripedia Thoracica) implications for cirripede evolution.

    PubMed

    Høeg, Jens T; Achituv, Yair; Chan, Benny K K; Chan, Karen; Jensen, Peter Gram; Pérez-Losada, Marcos

    2009-02-01

    We used scanning electron microscopy (SEM) to describe cypris morphology in species of the barnacles Ibla and Paralepas, both of which are pivotal in understanding cirripede evolution. In Ibla, we also studied late naupliar stages with video and SEM. Special emphasis was put on the lattice organs, the antennules and the thorax and telson. In Paralepas we had settled specimens only and could therefore only investigate the carapace with the lattice organs. Cyprids of Ibla quadrivalvis and Paralepas dannevigi have five sets of lattice organs, grouped as two anterior and three posterior pairs. The organs are of the pore-field type and the terminal pore is situated anteriorly in the first pair, just as in the Rhizocephala and the Thoracica. In Ibla the armament of antennular sensilla resembles that found in the Thoracica but differs from the Rhizocephala. The absence of setules on the A and B setae sited terminally on the fourth antennular segment is a similarity with the Acrothoracica. The attachment disc is angled rather than facing distally and is encircled by a low cuticular velum. The thoracopods have two-segmented endopods and exopods as in the Thoracica, but the number, shape, and position of thoracopodal setae differ somewhat from other species of that superorder. Both Ibla and Paralepas cyprids have a deeply cleaved telson, but no independent abdominal part. In cypris morphology, Ibla and Paralepas show several synapomorphies with the clade comprising Rhizocephala and Thoracica and there are no specific apomorphies with either the Acrothoracica, the Rhizocephala or any particular subgroup within the Thoracica. This is in agreement with recent molecular evidence that Ibla (Ibliformes) is the sister taxon to all other Thoracica and the ibliforms therefore become the outgroup of choice for studying character evolution within the superorder. Paralepas, and other pedunculated barnacles without shell plates, are apparently not primitive but are secondarily evolved

  11. MORPHOLOGICAL EVOLUTION OF A THREE-DIMENSIONAL CORONAL MASS EJECTION CLOUD RECONSTRUCTED FROM THREE VIEWPOINTS

    SciTech Connect

    Feng, L.; Gan, W. Q.; Inhester, B.; Wei, Y.; Zhang, T. L.; Wang, M. Y.

    2012-05-20

    The propagation properties of coronal mass ejections (CMEs) are crucial to predict its geomagnetic effect. A newly developed three-dimensional (3D) mask fitting reconstruction method using coronagraph images from three viewpoints has been described and applied to the CME ejected on 2010 August 7. The CME's 3D localization, real shape, and morphological evolution are presented. Due to its interaction with the ambient solar wind, the morphology of this CME changed significantly in the early phase of evolution. Two hours after its initiation, it was expanding almost self-similarly. The CME's 3D localization is quite helpful to link remote sensing observations to in situ measurements. The investigated CME was propagating to Venus with its flank just touching STEREO B. Its corresponding interplanetary CME in the interplanetary space shows a possible signature of a magnetic cloud with a preceding shock in Venus Express (VEX) observations, while from STEREO B only a shock is observed. We have calculated three principal axes for the reconstructed 3D CME cloud. The orientation of the major axis is, in general, consistent with the orientation of a filament (polarity inversion line) observed by SDO/AIA and SDO/HMI. The flux rope axis derived by the Minimal Variance Analysis from VEX indicates a radial-directed axis orientation. It might be that locally only the leg of the flux rope passed through VEX. The height and speed profiles from the Sun to Venus are obtained. We find that the CME speed possibly had been adjusted to the speed of the ambient solar wind flow after leaving the COR2 field of view and before arriving at Venus. A southward deflection of the CME from the source region is found from the trajectory of the CME geometric center. We attribute it to the influence of the coronal hole where the fast solar wind emanated from.

  12. Evolution of Soot Particle Morphology and Mixing State in the Atmosphere

    NASA Astrophysics Data System (ADS)

    Mazzoleni, C.; China, S.; Sharma, N.; Gorkowski, K.; Dubey, M.; Aiken, A. C.; Zaveri, R. A.; Salvadori, N.; Chakrabarty, R. K.; Moosmuller, H.; Onasch, T. B.; Herndon, S.; Williams, L. R.; Liu, S.; Dzepina, K.; Helmig, D.; Hueber, J.; Fialho, P. J.; Mazzoleni, L. R.; kumar, S.; Dziobak, M.; Wright, K.

    2013-12-01

    Soot particles (aka black carbon) impact the environment and climate by affecting Earth's radiation balance, cloud microphysics, and atmospheric chemistry. The complex morphology and mixing state of soot particles influence their optical properties and therefore their radiative forcing, the particles' transport, lifecycle, and heterogeneous chemistry. How soot morphology and mixing state alter during transport from the source to remote areas is still not well understood. While aging, soot particles can change shape, oxidize and mix, and become coated by organic and inorganic materials. In this study, we investigate the morphological and mixing state evolution of single soot particles in different stages of their 'life' in the atmosphere. This analysis will include an overview of several samples collected in various locations and atmospheric conditions: 1) particles freshly emitted near freeway on-ramps in Southern Michigan (USA); 2) particles emitted in two biomass burning events in New Mexico (USA), one close to the sampling location and another hundreds of miles away; 3) particles in the urban atmosphere of Mexico City and in the uplifted boundary layer captured on the top of the Pico de Tres Padres Mountain (on the north edge of Mexico City); 4) particles collected in the Sacramento urban area and the Sierra Nevada foothills (CA, USA); 5) particles collected in Detling (UK), and mostly transported from London, and 6) long-range transported particles in the free troposphere and collected at the Pico Mountain Observatory, located near the top of the Pico Volcano in the Azores (Portugal). We analyzed a large number of individual particles using electron microscopy and X-ray spectroscopy followed by image analysis. The projected structural properties of soot particles were characterized using size (maximum length, maximum width, and area equivalent diameter) and shape descriptors (e.g., aspect ratio, roundness, and convexity). The particle mass-fractal dimensions

  13. Evolution through mutation and selection of biological and morphological features in the intertidal zone

    NASA Astrophysics Data System (ADS)

    Da Lio, C.; D'Alpaos, A.; Marani, M.

    2011-12-01

    The presence and continued existence of tidal morphologies, and in particular of salt marshes, is intimately connected with the presence/absence of halophytic vegetation. In fact, observations and models coupling morphodynamic and biological processes indicate that vegetation crucially affects the marsh equilibrium configurations in relation to the dissipation of wind waves and to the production of organic soil associated with the presence of plants. Often, different vegetation species live within very narrow elevation intervals, associated with similarly narrow ranges of environmental pressures (chiefly hypersalinity and hypoxia). Here we develop and use a 1D model of coupled biological-morphological mutation and selection to study how observed ecosystem properties emerge and how feedbacks between biological and morphological properties concur to select observed bio-morphic 'traits'. We see that the ability to transform their own environment, through increased inorganic deposition and organic soil production, allows vegetation species to more quickly develop adaptations to a changing forcing (e.g. sea level rise). Furthermore, we observe the emergence of zonation and succession and characterize the emerging biodiversity and ecosystem properties as a function of forcing characteristics (e.g. tidal range, rate of sea level rise, and inorganic sediment availability).

  14. Origin and evolution of Petrocosmea (Gesneriaceae) inferred from both DNA sequence and novel findings in morphology with a test of morphology-based hypotheses.

    PubMed

    Qiu, Zhi-Jing; Lu, Yuan-Xue; Li, Chao-Qun; Dong, Yang; Smith, James F; Wang, Yin-Zheng

    2015-07-03

    Petrocosmea Oliver (Gesneriaceae) currently comprises 38 species with four non-nominate varieties, nearly all of which have been described solely from herbarium specimens. However, the dried specimens have obscured the full range of extremely diverse morphological variation that exists in the genus and has resulted in a poor subgeneric classification system that does not reflect the evolutionary history of this group. It is important to develop innovative methods to find new morphological traits and reexamine and reevaluate the traditionally used morphological data based on new hypothesis. In addition, Petrocosmea is a mid-sized genus but exhibits extreme diverse floral variants. This makes the genus of particular interest in addressing the question whether there are any key factors that is specifically associated with their evolution and diversification. Here we present the first phylogenetic analyses of the genus based on dense taxonomic sampling and multiple genes combined with a comprehensive morphological investigation. Maximum-parsimony, maximum likelihood and Bayesian analyses of molecular data from two nuclear DNA and six cpDNA regions support the monophyly of Petrocosmea and recover five major clades within the genus, which is strongly corroborated by the reconstruction of ancestral states for twelve new morphological characters directly observed from living material. Ancestral area reconstruction shows that its most common ancestor was likely located east and southeast of the Himalaya-Tibetan plateau. The origin of Petrocosmea from a potentially Raphiocarpus-like ancestor might have involved a series of morphological modifications from caulescent to acaulescent habit as well as from a tetrandrous flower with a long corolla-tube to a diandrous flower with a short corolla-tube, also evident in the vestigial caulescent habit and transitional floral form in clade A that is sister to the remainder of the genus. Among the five clades in Petrocosmea, the

  15. The Effect of Hydrogen Carrier Gas on the Morphological Evolution and Material Properties of GaN on Sapphire

    SciTech Connect

    Ng, T.B.; Han, J.; Biefeld, R.M.; Zolper, J.C.; Crawford, M.H.; Follstaell, D.M.

    1998-01-01

    In-situ optical reflectance is used to monitor the morphological evolution of the two-step GaN growth on sapphire. The amount of H{sub 2} carrier gas used in the growth is observed to strongly influence the morphological evolution of the low temperature buffer layer and the subsequent high temperature nucleation behavior, which in turn affects the structural and electrical properties of the GaN epitaxial films. The optical reflectance transients correlate with the sizes and distributions of nuclei as observed by AFM.

  16. The morphological development of newly inundated intertidal areas: the mechanisms driving the early evolution of an estuarine environment designed and constructed by humans

    NASA Astrophysics Data System (ADS)

    Dale, Jonathan; Burgess, Heidi; Cundy, Andrew

    2017-04-01

    elevation excavated during site construction, drained by a series of natural and engineered channels. Results indicate different rates and patterns of sedimentation and resulting morphology across the site. Near the breach continuous sedimentation of > 15cm over a 1 year period was measured, compared to rhythmic periods of accretion and erosion inland. These variations have been related to site design, former land-use and different sediment sources. The evolution of developing creek networks, formed by pluvial action and sediment "piping", are controlled by unconformities found in the sub-surface sediment related to Holocene site evolution. Analysis of the sedimentary processes and subsequent morphological development of these areas provides a new insight into coastal and estuarine evolution in an anthropogenically designed and constructed estuarine environment.

  17. Vitamin D3 suppresses morphological evolution of the cribriform cancerous phenotype.

    PubMed

    Deevi, Ravi K; McClements, Jane; McCloskey, Karen D; Fatehullah, Aliya; Tkocz, Dorota; Javadi, Arman; Higginson, Robyn; Marsh Durban, Victoria; Jansen, Marnix; Clarke, Alan; Loughrey, Maurice B; Campbell, Frederick C

    2016-08-02

    Development of cribriform morphology (CM) heralds malignant change in human colon but lack of mechanistic understanding hampers preventive therapy. This study investigated CM pathobiology in three-dimensional (3D) Caco-2 culture models of colorectal glandular architecture, assessed translational relevance and tested effects of 1,25(OH)2D3,theactive form of vitamin D. CM evolution was driven by oncogenic perturbation of the apical polarity (AP) complex comprising PTEN, CDC42 and PRKCZ (phosphatase and tensin homolog, cell division cycle 42 and protein kinase C zeta). Suppression of AP genes initiated a spatiotemporal cascade of mitotic spindle misorientation, apical membrane misalignment and aberrant epithelial configuration. Collectively, these events promoted "Swiss cheese-like" cribriform morphology (CM) comprising multiple abnormal "back to back" lumens surrounded by atypical stratified epithelium, in 3D colorectal gland models. Intestinal cancer driven purely by PTEN-deficiency in transgenic mice developed CM and in human CRC, CM associated with PTEN and PRKCZ readouts. Treatment of PTEN-deficient 3D cultures with 1,25(OH)2D3 upregulated PTEN, rapidly activated CDC42 and PRKCZ, corrected mitotic spindle alignment and suppressed CM development. Conversely, mutationally-activated KRAS blocked1,25(OH)2D3 rescue of glandular architecture. We conclude that 1,25(OH)2D3 upregulates AP signalling to reverse CM in a KRAS wild type (wt), clinically predictive CRC model system. Vitamin D could be developed as therapy to suppress inception or progression of a subset of colorectal tumors.

  18. Comparative morphology and evolution of the otic region in toothed whales (Cetacea, Mammalia).

    PubMed

    Oelschläger, H A

    1986-11-01

    The otic region in the skull of archeocetes and odontocetes is compared and interpreted with special emphasis on the morphology and suspension of the ear bones. In archeocetes, the periotic was obviously separate from the mastoid but still integrated within the skull via a long anterior and posterior process. The rotation of the cochlear part of the periotic was already obvious. The tympanic bone was attached to a decreasing number of neighboring elements, with the periotic becoming more and more important in the later archeocetes. The accessory air sacs of the tympanic cavity had invaded some of the adjacent skeletal elements and attained a moderate-to-remarkable extension. In the evolution of the odontocetes, the periotic and tympanic were successively uncoupled from the skull and combined to a new morphological and functional unit (tympanoperiotic complex). This uncoupling was mainly achieved by shortening the periotical processes and simultaneously extending the tympanic air sacs. For functional reasons, however, the periotic (posterior process) stayed in immediate contact with the mastoid, the latter remaining in the lateral wall of skull. In advanced marine dolphins, the bony sheaths of the accessory air sacs are largely reduced, presumably because of volume fluctuations in the tympanic cavity during diving. The perfect uncoupling of the ear bones from the skull obviously was an essential prerequisite for directional hearing, for effective ultrasound orientation and communication, and finally, for the striking development of the dolphin brain.

  19. Endocranial morphology of Microchoerus erinaceus (Euprimates, Tarsiiformes) and early evolution of the Euprimates brain.

    PubMed

    Ramdarshan, Anusha; Orliac, Maeva J

    2016-01-01

    Innovations in brain structure and increase in brain size relative to body mass are key features of Primates evolutionary history. Surprisingly, the endocranial morphology of early Euprimates is still rather poorly known, and our understanding of early euprimate brain evolution (Eocene epoch) relies on a handful of specimens. In this article, we describe the endocranial cast of the tarsiiform Microchoerus erinaceus from the late Early Eocene of Perrière (Quercy fissure filling, France) based on a virtual reconstruction extracted from CT scan data of the endocranial cavity of the complete, undeformed specimen UM-PRR1771. The endocast of M. erinaceus shows the derived features observed in other Euprimates (e.g. sylvian fissure and temporal lobe), with limited neocortical folding, and a telencephalic flexure comparable to that of extant primates. Comparison with the endocasts of other available late Eocene primates shows that they already exhibited a variety of brain morphologies, highlighting the complex history of the external features of the primate brain, as early as the Eocene. M. erinaceus was a fruit and gum eater considered as nocturnal based on its orbit size. However, its brain showed small olfactory bulbs--smaller than in the coeval diurnal taxa Adapis parisiensis--and a neocorticalization similar to folivorous taxa. These observations contrast with patterns observed in primates today where nocturnal taxa have larger olfactory bulbs than diurnal taxa, and call into question a direct correlation between frugivory and neocorticalization increase in primates. © 2015 Wiley Periodicals, Inc.

  20. Dynamic Fractal TRIDYN: Modeling Surface Morphology and Composition Evolution under Ion Bombardment

    NASA Astrophysics Data System (ADS)

    Drobny, Jon; Hayes, Alyssa; Ruzic, David

    2016-10-01

    Fractal TRIDYN (FTRIDYN) is an upgraded version of the Monte-Carlo, Binary Collision Approximation (BCA) code TRIDYN that includes an explicit, dynamically evolving fractal model of surface roughness in addition to the dynamic composition model included in standard TRIDYN. The complete effect of surface roughness on plasma-material interactions, especially the time-resolved dynamics of surfaces under ion bombardment, is not fully understood. Presented is a version of FTRIDYN that includes new algorithms for handling the evolution of fractal surfaces. Fractals provide a consistent and physically realistic method to model rough surfaces using fractal dimension as a single input parameter that correlates with roughness. Particularly, a new algorithm for measuring the fractal dimension of noisy surfaces and capturing complicated surface morphology has been designed and utilized for this purpose. This allows for the simulation of a surface that evolves simultaneously in both surface composition and morphology, opening up the possibility of exploring these phenomena together. Simulations for proposed Plasma-Facing Components (PFCs) for fusion reactors, Beryllium and Tungsten, as well as for Argon incident on Silicon, are presented in this study. Supported by DOE Project DE-S0008658.

  1. Morphological evolution of self-deposition Bi2Se3 nanosheets by oxygen plasma treatment

    NASA Astrophysics Data System (ADS)

    Jia, Guozhi; Wu, Zengna; Wang, Peng; Yao, Jianghong; Chang, Kai

    2016-02-01

    Bi2Se3 nanosheets were successfully synthesized by a microwave-assisted approach in the presence of polyvinylpyrroli done at a temperature of 180 °C for 2 h. The thin film was prepared on a silicon wafer via a self-deposition process in a Bi2Se3 nanosheet ink solution using the evaporation-induced self-assembly method. The structure and morphology of the obtained products were characterized by X-ray diffraction, scanning electron microscopy (SEM), x-ray photoelectron spectroscopy, and Raman spectroscopy. The highly uniform Bi2Se3 particles could be formed by controlling the oxygen plasma treatment time. After the plasma pretreatment from 10 to 20 s, the surface of Bi2Se3 film evolved from the worm-like structure to particles. The highly uniform thin film was formed on further increasing the plasma treatment time, which is consistent with the observed SEM results. Several important processes can result in the morphological evolution of Bi2Se3 nanosheets: (1) formation of Bi2Se3 oxide layer; (2) self-assembly of oxide nanoparticles under the action of high-energy oxygen plasma; and (3) electrostatic interaction and etching mechanism.

  2. Artificial evolution of the morphology and kinematics in a flapping-wing mini-UAV.

    PubMed

    de Margerie, E; Mouret, J B; Doncieux, S; Meyer, J-A

    2007-12-01

    Birds demonstrate that flapping-wing flight (FWF) is a versatile flight mode, compatible with hovering, forward flight and gliding to save energy. This extended flight domain would be especially useful on mini-UAVs. However, design is challenging because aerodynamic efficiency is conditioned by complex movements of the wings, and because many interactions exist between morphological (wing area, aspect ratio) and kinematic parameters (flapping frequency, stroke amplitude, wing unfolding). Here we used artificial evolution to optimize these morpho-kinematic features on a simulated 1 kg UAV, equipped with wings articulated at the shoulder and wrist. Flight tests were conducted in a dedicated steady aerodynamics simulator. Parameters generating horizontal flight for minimal mechanical power were retained. Results showed that flight at medium speed (10-12 m s(-1)) can be obtained for reasonable mechanical power (20 W kg(-1)), while flight at higher speed (16-20 m s(-1)) implied increased power (30-50 W kg(-1)). Flight at low speed (6-8 m s(-1)) necessitated unrealistic power levels (70-500 W kg(-1)), probably because our simulator neglected unsteady aerodynamics. The underlying adaptation of morphology and kinematics to varying flight speed were compared to available biological data on the flight of birds.

  3. Production and packaging of a biological arsenal: Evolution of centipede venoms under morphological constraint

    PubMed Central

    Undheim, Eivind A. B.; Hamilton, Brett R.; Kurniawan, Nyoman D.; Bowlay, Greg; Cribb, Bronwen W.; Merritt, David J.; Fry, Bryan G.; King, Glenn F.; Venter, Deon J.

    2015-01-01

    Venom represents one of the most extreme manifestations of a chemical arms race. Venoms are complex biochemical arsenals, often containing hundreds to thousands of unique protein toxins. Despite their utility for prey capture, venoms are energetically expensive commodities, and consequently it is hypothesized that venom complexity is inversely related to the capacity of a venomous animal to physically subdue prey. Centipedes, one of the oldest yet least-studied venomous lineages, appear to defy this rule. Although scutigeromorph centipedes produce less complex venom than those secreted by scolopendrid centipedes, they appear to rely heavily on venom for prey capture. We show that the venom glands are large and well developed in both scutigerid and scolopendrid species, but that scutigerid forcipules lack the adaptations that allow scolopendrids to inflict physical damage on prey and predators. Moreover, we reveal that scolopendrid venom glands have evolved to accommodate a much larger number of secretory cells and, by using imaging mass spectrometry, we demonstrate that toxin production is heterogeneous across these secretory units. We propose that the differences in venom complexity between centipede orders are largely a result of morphological restrictions of the venom gland, and consequently there is a strong correlation between the morphological and biochemical complexity of this unique venom system. The current data add to the growing body of evidence that toxins are not expressed in a spatially homogenous manner within venom glands, and they suggest that the link between ecology and toxin evolution is more complex than previously thought. PMID:25775536

  4. Production and packaging of a biological arsenal: evolution of centipede venoms under morphological constraint.

    PubMed

    Undheim, Eivind A B; Hamilton, Brett R; Kurniawan, Nyoman D; Bowlay, Greg; Cribb, Bronwen W; Merritt, David J; Fry, Bryan G; King, Glenn F; Venter, Deon J

    2015-03-31

    Venom represents one of the most extreme manifestations of a chemical arms race. Venoms are complex biochemical arsenals, often containing hundreds to thousands of unique protein toxins. Despite their utility for prey capture, venoms are energetically expensive commodities, and consequently it is hypothesized that venom complexity is inversely related to the capacity of a venomous animal to physically subdue prey. Centipedes, one of the oldest yet least-studied venomous lineages, appear to defy this rule. Although scutigeromorph centipedes produce less complex venom than those secreted by scolopendrid centipedes, they appear to rely heavily on venom for prey capture. We show that the venom glands are large and well developed in both scutigerid and scolopendrid species, but that scutigerid forcipules lack the adaptations that allow scolopendrids to inflict physical damage on prey and predators. Moreover, we reveal that scolopendrid venom glands have evolved to accommodate a much larger number of secretory cells and, by using imaging mass spectrometry, we demonstrate that toxin production is heterogeneous across these secretory units. We propose that the differences in venom complexity between centipede orders are largely a result of morphological restrictions of the venom gland, and consequently there is a strong correlation between the morphological and biochemical complexity of this unique venom system. The current data add to the growing body of evidence that toxins are not expressed in a spatially homogenous manner within venom glands, and they suggest that the link between ecology and toxin evolution is more complex than previously thought.

  5. Did Adult Diurnal Activity Influence the Evolution of Wing Morphology in Opoptera Butterflies?

    PubMed

    Penz, C M; Heine, K B

    2016-02-01

    The butterfly genus Opoptera includes eight species, three of which have diurnal habits while the others are crepuscular (the usual activity period for members of the tribe Brassolini). Although never measured in the field, it is presumed that diurnal Opoptera species potentially spend more time flying than their crepuscular relatives. If a shift to diurnal habits potentially leads to a higher level of activity and energy expenditure during flight, then selection should operate on increased aerodynamic and energetic efficiency, leading to changes in wing shape. Accordingly, we ask whether diurnal habits have influenced the evolution of wing morphology in Opoptera. Using phylogenetically independent contrasts and Wilcoxon rank sum tests, we confirmed our expectation that the wings of diurnal species have higher aspect ratios (ARs) and lower wing centroids (WCs) than crepuscular congeners. These wing shape characteristics are known to promote energy efficiency during flight. Three Opoptera wing morphotypes established a priori significantly differed in AR and WC values. The crepuscular, cloud forest dweller Opoptera staudingeri (Godman & Salvin) was exceptional in having an extended forewing tip and the highest AR and lowest WC within Opoptera, possibly to facilitate flight in a cooler environment. Our study is the first to investigate how butterfly wing morphology might evolve as a response to a behavioral shift in adult time of activity.

  6. a New Model for Describing Evolution and Control of Disaster System Including Instantaneous and Continuous Actions

    NASA Astrophysics Data System (ADS)

    Chen, Chang-Kun; Li, Zhi; Sun, Yun-Feng

    A new model for describing the disaster system including instantaneous and continuous action synchronously has been developed. The model is composed of three primary parts, that is, the impact from its causative disaster events, stochastic noise of disaster node and self-healing function, and every part is modeled concretely in terms of their characteristics in practice. Some key parameters, namely link appearance probability, retardation coefficient, ultimate repair capacity of government, dynamical modes considering different disaster evolving chains, and the positions of link with the specific performance in disaster network system are involved. Combined with a case study, the proposed model is applied to a certain disaster evolution system, and the influence law of different parameters on disaster evolution process, in disaster networks with instantaneous-action and/or continuous-action, is presented and compared. The results indicate that the destructive impact in the networks by link in continuous action is far greater an order of magnitude than that in instantaneous action. If a link in continuous action emerges in the disaster network system, properties of the causative event for the link, link appearance probability and its position in the network all have a notable influence to the severity of the disaster network. In addition, some peculiar phenomena are also commendably observed in the disaster evolution process based on the model, such as the multipeaks emerging in the destroyed rate number curve for some crisis nodes caused by their various inducing paths together with the relevant retardation coefficients, the existence of the critical value for ultimate repair capacity to recover the disaster node, and so on.

  7. Non-decoupled morphological evolution of the fore- and hindlimb of sabretooth predators.

    PubMed

    Martín-Serra, Alberto; Figueirido, Borja; Palmqvist, Paul

    2017-07-12

    Specialized organisms are useful for exploring the combined effects of selection of functional traits and developmental constraints on patterns of phenotypic integration. Sabretooth predators are one of the most interesting examples of specialization among mammals. Their hypertrophied, sabre-shaped upper canines and their powerfully built forelimbs have been interpreted as adaptations to a highly specialized predatory behaviour. Given that the elongated and laterally compressed canines of sabretooths were more vulnerable to fracture than the shorter canines of conical-tooth cats, it has been long hypothesized that the heavily muscled forelimbs of sabretooths were used for immobilizing prey before developing a quick and precise killing bite. However, the effect of this unique adaptation on the covariation between the fore- and the hindlimb has not been explored in a quantitative fashion. In this paper, we investigate if the specialization of sabretooth predators decoupled the morphological variation of their forelimb with respect to their hindlimb or, in contrast, both limbs vary in the same fashion as in conical-tooth cats, which do not show such extreme adaptations in their forelimb. We use 3D geometric morphometrics and different morphological indices to compare the fore- and hindlimb of conical- and sabretooth predators. Our results indicate that the limb bones of sabretooth predators covary following the same trend of conical-tooth cats. Therefore, we show that the predatory specialization of sabretooth predators did not result in a decoupling of the morphological evolution of their fore- and hindlimbs. The role of developmental constraints and natural selection on this coordinate variation between the fore- and the hindlimb is discussed in the light of this new evidence. © 2017 Anatomical Society.

  8. Doping concentration driven morphological evolution of Fe doped ZnO nanostructures

    SciTech Connect

    Sahai, A.; Goswami, N.; Kumar, Y.; Agarwal, V.; Olive-Méndez, S. F.

    2014-10-28

    In this paper, systematic study of structural, vibrational, and optical properties of undoped and 1-10 at.% Fe doped ZnO nanostructures, synthesized adopting chemical precipitation route, has been reported. Prepared nanostructures were characterized employing an assortment of microscopic and spectroscopic techniques, namely Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), Energy Dispersive X-ray (EDX) Spectroscopy, X-ray Diffraction (XRD), Fourier Transform Infrared (FTIR), Micro-Raman Spectroscopy (μRS), and UV-visible and Photoluminescence (PL) spectroscopy. With Fe incorporation, a gradual morphological transformation of nanostructures is demonstrated vividly through SEM/TEM characterizations. Interestingly, the morphology of nanostructures evolves with 1–10 at. % Fe doping concentration in ZnO. Nanoparticles obtained with 1 at. % Fe evolve to nanorods for 3 at. % Fe; nanorods transform to nanocones (for 5 at. % and 7 at. % Fe) and finally nanocones transform to nanoflakes at 10 at. % Fe. However, at all these stages, concurrence of primary hexagonal phase of Zn{sub 1-x}Fe{sub x}O along with the secondary phases of cubic ZnFe{sub 2}O{sub 4} and rhombohedric Fe{sub 2}O{sub 3}, is revealed through XRD analysis. Based on collective XRD, SEM, TEM, and EDX interpretations, a model for morphological evolution of nanostructures was proposed and the pivotal role of Fe dopant was deciphered. Furthermore, vibrational properties analyzed through Raman and FTIR spectroscopies unravel the intricacies of formation and gradual enhancement of secondary phases with increased Fe concentration. UV-visible and PL spectroscopic analyses provided further insight of optical processes altering with Fe incorporation. The blue shift and gradual quenching of visible photoluminescence with Fe doping was found in accordance with structural and vibrational analyses and explicated accordingly.

  9. Evolution of Morphological and Physical Properties of Laboratory Interstellar Organic Residues with Ultraviolet Irradiation

    NASA Astrophysics Data System (ADS)

    Piani, L.; Tachibana, S.; Hama, T.; Tanaka, H.; Endo, Y.; Sugawara, I.; Dessimoulie, L.; Kimura, Y.; Miyake, A.; Matsuno, J.; Tsuchiyama, A.; Fujita, K.; Nakatsubo, S.; Fukushi, H.; Mori, S.; Chigai, T.; Yurimoto, H.; Kouchi, A.

    2017-03-01

    Refractory organic compounds formed in molecular clouds are among the building blocks of the solar system objects and could be the precursors of organic matter found in primitive meteorites and cometary materials. However, little is known about the evolutionary pathways of molecular cloud organics from dense molecular clouds to planetary systems. In this study, we focus on the evolution of the morphological and viscoelastic properties of molecular cloud refractory organic matter. We found that the organic residue, experimentally synthesized at ∼10 K from UV-irradiated H2O-CH3OH-NH3 ice, changed significantly in terms of its nanometer- to micrometer-scale morphology and viscoelastic properties after UV irradiation at room temperature. The dose of this irradiation was equivalent to that experienced after short residence in diffuse clouds (≤104 years) or irradiation in outer protoplanetary disks. The irradiated organic residues became highly porous and more rigid and formed amorphous nanospherules. These nanospherules are morphologically similar to organic nanoglobules observed in the least-altered chondrites, chondritic porous interplanetary dust particles, and cometary samples, suggesting that irradiation of refractory organics could be a possible formation pathway for such nanoglobules. The storage modulus (elasticity) of photo-irradiated organic residues is ∼100 MPa irrespective of vibrational frequency, a value that is lower than the storage moduli of minerals and ice. Dust grains coated with such irradiated organics would therefore stick together efficiently, but growth to larger grains might be suppressed due to an increase in aggregate brittleness caused by the strong connections between grains.

  10. Polyphyly and convergent morphological evolution in Commelinales and Commelinidae: evidence from rbcL sequence data.

    PubMed

    Givnish, T J; Evans, T M; Pires, J C; Sytsma, K J

    1999-08-01

    Phylogenetic relationships of the five families of the order Commelinales remain an area of deep uncertainty in higher-level monocot systematics, despite intensive morphological and anatomical study. To test the monophyly of the Commelinales and the subclass Commelinidae, evaluate their relationships, and analyze evolutionary trends in their morphology, ecology, and biogeography, we conducted parsimony analyses on 95 rbcL sequences representing 17 taxa of Commelinales, 16 taxa of other Commelinidae, and 63 taxa from Arecidae, Liliidae, and Zingiberidae. Commelinales is polyphyletic and Commelinidae paraphyletic, with Eriocaulaceae and Xyridaceae sister to Poaceae and its relatives, Rapateaceae sister to Bromeliaceae and Mayacaceae, and Commelinaceae sister to Philydrales and allies. Thurnia is sister to Prionium at the base of Cyperaceae-Juncaceae; only 1 of Cronquist's multifamily commelinoid orders is diagnosed as monophyletic. We propose a revised Commelinidae, incorporating 4 revised superorders (Bromelianae, Commelinanae, Dasypogonanae, Arecanae) and 10 orders ((Poales, Eriocaulales, Cyperales, Typhales, Bromeliales), (Commelinales, Philydrales, Zingiberales), (Dasypogonales), (Arecales)). Morphological and anatomical characters used to define the original Commelinales and Commelinidae appear to be plesiomorphic or to reflect convergence or recurrent mutation; several characters supporting our revised classification are anatomical traits that seem relatively insulated from environmental selection pressures. The Commelinidae distal to the Arecales arose in South America, with amphiatlantic Bromeliaceae-Mayacaceae-Rapateaceae originating in the Guayana Shield. Ecological diversification involved the repeated invasion of shady, infertile, or arid microsites. The numbers of species in families of the revised Commelinidae are related partly to the extent of adaptive radiation in those families, but seem more strongly related to nonadaptive features promoting

  11. Adaptive evolution of a derived radius morphology in manakins (Aves, Pipridae) to support acrobatic display behavior.

    PubMed

    Friscia, Anthony; Sanin, Gloria D; Lindsay, Willow R; Day, Lainy B; Schlinger, Barney A; Tan, Josh; Fuxjager, Matthew J

    2016-06-01

    The morphology of the avian skeleton is often studied in the context of adaptations for powered flight. The effects of other evolutionary forces, such as sexual selection, on avian skeletal design are unclear, even though birds produce diverse behaviors that undoubtedly require a variety of osteological modifications. Here, we investigate this issue in a family of passerine birds called manakins (Pipridae), which have evolved physically unusual and elaborate courtship displays. We report that, in species within the genus Manacus, the shaft of the radius is heavily flattened and shows substantial solidification. Past work anecdotally notes this morphology and attributes it to the species' ability to hit their wings together above their heads to produce loud mechanical sonations. Our results show that this feature is unique to Manacus compared to the other species in our study, including a variety of taxa that produce other sonations through alternate wing mechanisms. At the same time, our data reveal striking similarities across species in total radius volume and solidification. Together, this suggests that supposedly adaptive alterations in radial morphology occur within a conserved framework of a set radius volume and solidness, which in turn is likely determined by natural selection. Further allometric analyses imply that the radius is less constrained by body size and the structural demands that underlie powered flight, compared to other forelimb bones that are mostly unmodified across taxa. These results are consistent with the idea that the radius is more susceptible to selective modification by sexual selection. Overall, this study provides some of the first insight into the osteological evolution of passerine birds, as well as the way in which opposing selective forces can shape skeletal design in these species. J. Morphol. 277:766-775, 2016. © 2016 Wiley Periodicals, Inc.

  12. The first 50Myr of dinosaur evolution: macroevolutionary pattern and morphological disparity.

    PubMed

    Brusatte, Stephen L; Benton, Michael J; Ruta, Marcello; Lloyd, Graeme T

    2008-12-23

    The evolutionary radiation of dinosaurs in the Late Triassic and Early Jurassic was a pivotal event in the Earth's history but is poorly understood, as previous studies have focused on vague driving mechanisms and have not untangled different macroevolutionary components (origination, diversity, abundance and disparity). We calculate the morphological disparity (morphospace occupation) of dinosaurs throughout the Late Triassic and Early Jurassic and present new measures of taxonomic diversity. Crurotarsan archosaurs, the primary dinosaur 'competitors', were significantly more disparate than dinosaurs throughout the Triassic, but underwent a devastating extinction at the Triassic-Jurassic boundary. However, dinosaur disparity showed only a slight non-significant increase after this event, arguing against the hypothesis of ecological release-driven morphospace expansion in the Early Jurassic. Instead, the main jump in dinosaur disparity occurred between the Carnian and Norian stages of the Triassic. Conversely, dinosaur diversity shows a steady increase over this time, and measures of diversification and faunal abundance indicate that the Early Jurassic was a key episode in dinosaur evolution. Thus, different aspects of the dinosaur radiation (diversity, disparity and abundance) were decoupled, and the overall macroevolutionary pattern of the first 50Myr of dinosaur evolution is more complex than often considered.

  13. Film morphology evolution during solvent vapor annealing of highly efficient small molecule donor/acceptor blends.

    PubMed

    Engmann, Sebastian; Ro, Hyun Wook; Herzing, Andrew; Snyder, Chad R; Richter, Lee J; Geraghty, Paul B; Jones, David J

    2016-10-28

    Solution-processable small molecule photovoltaics based on the novel molecular donor, benzodithiophene terthiophene rhodanine (BTR), recently have shown maximum power conversion efficiencies above 8 % for active layer thicknesses up to 400 nm, using post process solvent vapor annealing (SVA) with tetrahydrofuran (THF). Here we report an in-situ study on the morphology evolution during SVA using the moderate solvent THF and the good solvent chloroform (CF). The combination of real-time grazing incidence X-ray diffraction (GIXD) and grazing incidence small angle X-ray scattering (GISAXS) allows us to draw a complete picture of the evolution of crystallinity and phase purity during post process annealing. We find that the relative crystallinity compared to the as-cast films is only modestly affected by SVA and solvent choice. However, both the phase purity and the characteristic domain sizes within the film vary significantly and are controlled by the solvent quality as well as exposure time. Using THF, films with high phase purity and desirable characteristic length scales of about 30 nm can be achieved, while the use of CF rapidly leads to excessive film coarsening and less preferable domain sizes on the order of 60 nm, too large for optimized charge separation.

  14. Anti-predator defence drives parallel morphological evolution in flea beetles

    PubMed Central

    Ge, Deyan; Chesters, Douglas; Gómez-Zurita, Jesús; Zhang, Lijie; Yang, Xingke; Vogler, Alfried P.

    2011-01-01

    Complex morphological or functional traits are frequently considered evolutionarily unique and hence useful for taxonomic classification. Flea beetles (Alticinae) are characterized by an extraordinary jumping apparatus in the usually greatly expanded femur of their hind legs that separates them from the related Galerucinae. Here, we examine the evolution of this trait using phylogenetic analysis and a time-calibrated tree from mitochondrial (rrnL and cox1) and nuclear (small subunits and large subunits) genes, as well as morphometrics of femora using elliptic Fourier analysis. The phylogeny strongly supports multiple independent origins of the metafemoral spring and therefore rejects the monophyly of Alticinae, as defined by this trait. Geometric outline analysis of femora shows the great plasticity of this structure and its correlation with the type and diversity of the metafemoral springs. The recognition of convergence in jumping apparatus now resolves the long-standing difficulties of Galerucinae–Alticinae classification, and cautions against the value of trait complexity as a measure of taxonomic significance. The lineage also shows accelerated species diversification rates relative to other leaf beetles, which may be promoted by the same ecological factors that also favour the repeated evolution of jumping as an anti-predation mechanism. PMID:21159678

  15. Impact constraints on the environment for chemical evolution and the continuity of life

    NASA Technical Reports Server (NTRS)

    Oberbeck, Verne R.; Fogleman, Guy

    1990-01-01

    The moon and the earth were bombarded heavily by planetesimals and asteroids that were capable of interfering with chemical evolution and the origin of life. This paper explores the frequency of giant terrestrial impacts able to stop prebiotic chemistry in the probable regions of chemical evolution. The limited time available between impacts disruptive to prebiotic chemistry at the time of the oldest evidence of life suggests the need for a rapid process for chemical evolution of life. On the other hand, rapid chemical evolution in cloud systems and lakes or other shallow evaporating water bodies would have been possible because reactants could have been concentrated and polymerized rapidly in this environment. Thus life probably could have originated near the surface between frequent surface-sterilizing impacts. There may not have been continuity of life depending on sunlight because there is evidence that life, existing as early as 3.8 Gyr ago, may have been destroyed by giant impacts. The first such organisms on earth were probably not the ancestors of present life.

  16. Impact constraints on the environment for chemical evolution and the continuity of life.

    PubMed

    Oberbeck, V R; Fogleman, G

    1990-01-01

    The Moon and the Earth were bombarded heavily by planetesimals and asteroids that were capable of interfering with chemical evolution and the origin of life. In this paper, we explore the frequency of giant terrestrial impacts able to stop prebiotic chemistry in the probable regions of chemical evolution. The limited time available between impacts disruptive to prebiotic chemistry at the time of the oldest evidence of life suggests the need for a rapid process for chemical evolution of life. The classical hypothesis for the origin of life through the slow accumulation of prebiotic reactants in the primordial soup in the entire ocean may not be consistent with constraints imposed by the impact history of Earth. On the other hand, rapid chemical evolution in cloud systems and lakes or other shallow evaporating water bodies would have been possible because reactants could have been concentrated and polymerized rapidly in this environment. Thus, life probably could have originated near the surface between frequent surface sterilizing impacts. There may not have been continuity of life depending on sunlight because there is evidence that life, existing as early as 3.8 Gyr ago, may have been destroyed by giant impacts. The first such organisms on Earth were probably not the ancestors of present life.

  17. Impact constraints on the environment for chemical evolution and the continuity of life

    NASA Astrophysics Data System (ADS)

    Oberbeck, Verne R.; Fogleman, Guy

    1990-03-01

    The Moon and the Earth were bombarded heavily by planetesimals and asteroids that were capable of interfering with chemical evolution and the origin of life. In this paper, we explore the frequency of giant terrestrial impacts able to stop prebiotic chemistry in the probable regions of chemical evolution. The limited time available between impacts disruptive to prebiotic chemistry at the time of the oldest evidence of life suggests the need for a rapid process for chemical evolution of life. The classical hypothesis for the origin of life through the slow accumulation of prebiotic reactants in the primordial soup in the entire ocean may not be consistent with constraints imposed by the impact history of Earth. On the other hand, rapid chemical evolution in cloud systems and lakes or other shallow evaporating water bodies would have been possible because reactants could have been concentrated and polymerized rapidly in this environment. Thus, life probably could have originated near the surface between frequent surface sterilizing impacts. There may not have been continuity of life depending on sunlight because there is evidence that life, existing as early as 3.8 Gyr ago, may have been destroyed by giant impacts. The first such organisms on Earth where probably not the ancestors of present life.

  18. Surface morphology evolution during plasma etching of silicon: roughening, smoothing and ripple formation

    NASA Astrophysics Data System (ADS)

    Ono, Kouichi; Nakazaki, Nobuya; Tsuda, Hirotaka; Takao, Yoshinori; Eriguchi, Koji

    2017-10-01

    Atomic- or nanometer-scale roughness on feature surfaces has become an important issue to be resolved in the fabrication of nanoscale devices in industry. Moreover, in some cases, smoothing of initially rough surfaces is required for planarization of film surfaces, and controlled surface roughening is required for maskless fabrication of organized nanostructures on surfaces. An understanding, under what conditions plasma etching results in surface roughening and/or smoothing and what are the mechanisms concerned, is of great technological as well as fundamental interest. In this article, we review recent developments in the experimental and numerical study of the formation and evolution of surface roughness (or surface morphology evolution such as roughening, smoothing, and ripple formation) during plasma etching of Si, with emphasis being placed on a deeper understanding of the mechanisms or plasma–surface interactions that are responsible for. Starting with an overview of the experimental and theoretical/numerical aspects concerned, selected relevant mechanisms are illustrated and discussed primarily on the basis of systematic/mechanistic studies of Si etching in Cl-based plasmas, including noise (or stochastic roughening), geometrical shadowing, surface reemission of etchants, micromasking by etch inhibitors, and ion scattering/chanelling. A comparison of experiments (etching and plasma diagnostics) and numerical simulations (Monte Carlo and classical molecular dynamics) indicates a crucial role of the ion scattering or reflection from microscopically roughened feature surfaces on incidence in the evolution of surface roughness (and ripples) during plasma etching; in effect, the smoothing/non-roughening condition is characterized by reduced effects of the ion reflection, and the roughening-smoothing transition results from reduced ion reflections caused by a change in the predominant ion flux due to that in plasma conditions. Smoothing of initially rough

  19. Continued Evolution of West Nile Virus, Houston, Texas, USA, 2002–2012

    PubMed Central

    Mann, Brian R.; McMullen, Allison R.; Swetnam, Daniele M.; Salvato, Vence; Reyna, Martin; Guzman, Hilda; Bueno, Rudy; Dennett, James A.; Tesh, Robert B.

    2013-01-01

    We investigated the genetics and evolution of West Nile virus (WNV) since initial detection in the United States in 1999 on the basis of continual surveillance studies in the Houston, Texas, USA, metropolitan area (Harris County) as a surrogate model for WNV evolution on a national scale. Full-length genomic sequencing of 14 novel 2010–2012 WNV isolates collected from resident birds in Harris County demonstrates emergence of 4 independent genetic groups distinct from historical strains circulating in the greater Houston region since 2002. Phylogenetic and geospatial analyses of the 2012 WNV isolates indicate closer genetic relationship with 2003–2006 Harris County isolates than more recent 2007–2011 isolates. Inferred monophyletic relationships of these groups with several 2006–2009 northeastern US isolates supports potential introduction of a novel WNV strain in Texas since 2010. These results emphasize the need to maintain WNV surveillance activities to better understand WNV transmission dynamics in the United States. PMID:23965756

  20. Continuous In Vitro Evolution of a Ribozyme that Catalyzes Three Successive Nucleotidyl Addition Reactions

    NASA Technical Reports Server (NTRS)

    McGinness, Kathleen E.; Wright, Martin C.; Joyce, Gerald F.

    2002-01-01

    Variants of the class I ligase ribozyme, which catalyzes joining of the 3' end of a template bound oligonucleotide to its own 5' end, have been made to evolve in a continuous manner by a simple serial transfer procedure that can be carried out indefinitely. This process was expanded to allow the evolution of ribozymes that catalyze three successive nucleotidyl addition reactions, two template-directed mononucleotide additions followed by RNA ligation. During the development of this behavior, a population of ribozymes was maintained against an overall dilution of more than 10(exp 406). The resulting ribozymes were capable of catalyzing the three-step reaction pathway, with nucleotide addition occurring in either a 5' yieldig 3' or a 3' yielding 5' direction. This purely chemical system provides a functional model of a multi-step reaction pathway that is undergoing Darwinian evolution.

  1. Bi-stage time evolution of nano-morphology on inductively coupled plasma etched fused silica surface caused by surface morphological transformation

    NASA Astrophysics Data System (ADS)

    Jiang, Xiaolong; Zhang, Lijuan; Bai, Yang; Liu, Ying; Liu, Zhengkun; Qiu, Keqiang; Liao, Wei; Zhang, Chuanchao; Yang, Ke; Chen, Jing; Jiang, Yilan; Yuan, Xiaodong

    2017-07-01

    In this work, we experimentally investigate the surface nano-roughness during the inductively coupled plasma etching of fused silica, and discover a novel bi-stage time evolution of surface nano-morphology. At the beginning, the rms roughness, correlation length and nano-mound dimensions increase linearly and rapidly with etching time. At the second stage, the roughening process slows down dramatically. The switch of evolution stage synchronizes with the morphological change from dual-scale roughness comprising long wavelength underlying surface and superimposed nano-mounds to one scale of nano-mounds. A theoretical model based on surface morphological change is proposed. The key idea is that at the beginning, etched surface is dual-scale, and both larger deposition rate of etch inhibitors and better plasma etching resistance at the surface peaks than surface valleys contribute to the roughness development. After surface morphology transforming into one-scale, the difference of plasma resistance between surface peaks and valleys vanishes, thus the roughening process slows down.

  2. Evolution of channel morphology in a large river subject to rectification

    NASA Astrophysics Data System (ADS)

    Scorpio, Vittoria; Mastronunzio, Marco; Proto, Matteo; Zen, Simone; Bertoldi, Walter; Prà, Elena Dai; Comiti, Francesco; Surian, Nicola; Zolezzi, Guido

    2016-04-01

    Many large rivers in Europe have been subject to heavy modifications for land reclamation and flood mitigation through centuries. As a consequence, the study of the pre-alteration morphological patterns and of the related channel evolution following the anthropic modifications is rather challenging. The Adige River is the second longest river in Italy and drains 12,100 km2 of the Eastern Italian Alps. Currently, it features a straight to sinuous pattern and an average channel width of 40-60 m. A massive rectification scheme aiming at land reclamation of the Adige valley bottom was planned in the late 18th century, and implemented starting in the first decades of 19th century. Nowadays, it can be considered one of the most altered rivers in Italy, not only due to channelization but also to the presence of many hydropower reservoirs and check-dams along its tributaries. This study aims to the reconstruction of the Adige River's evolutionary trajectory over the last 250 years, and comprehension of key control factors driving channel evolution. A multi-temporal analysis of historical maps and orthophotos from 1776, to 2006 was performed in order to assess channel modifications. In addition, land use changes at the basin scale, years of occurrence of most relevant flood events, and climate variability over the investigated period were analyzed. The detailed topographical map surveyed in 1803 was taken as a reference, and the study sector (115 km long) was divided into 39 reaches. Active channel, bars, riparian vegetation and channel control works were geo-processed. Results show that the Adige River suffered the most intense alteration from 1803 to 1855, and especially from 1847 to 1855. During this period channel narrowing ranged from 14% to 70%, coupled with pattern changes and decreases in the braiding, sinuosity and anabrancing indices. Most important alterations occurred in the reaches presenting a multi-thread morphology in 1803, as their average width declined

  3. Convergent, parallel and correlated evolution of trophic morphologies in the subfamily schizothoracinae from the Qinghai-Tibetan plateau.

    PubMed

    Qi, Delin; Chao, Yan; Guo, Songchang; Zhao, Lanying; Li, Taiping; Wei, Fulei; Zhao, Xinquan

    2012-01-01

    Schizothoracine fishes distributed in the water system of the Qinghai-Tibetan plateau (QTP) and adjacent areas are characterized by being highly adaptive to the cold and hypoxic environment of the plateau, as well as by a high degree of diversity in trophic morphology due to resource polymorphisms. Although convergent and parallel evolution are prevalent in the organisms of the QTP, it remains unknown whether similar evolutionary patterns have occurred in the schizothoracine fishes. Here, we constructed for the first time a tentative molecular phylogeny of the schizothoracine fishes based on the complete sequences of the cytochrome b gene. We employed this molecular phylogenetic framework to examine the evolution of trophic morphologies. We used Pagel's maximum likelihood method to estimate the evolutionary associations of trophic morphologies and food resource use. Our results showed that the molecular and published morphological phylogenies of Schizothoracinae are partially incongruent with respect to some intergeneric relationships. The phylogenetic results revealed that four character states of five trophic morphologies and of food resource use evolved at least twice during the diversification of the subfamily. State transitions are the result of evolutionary patterns including either convergence or parallelism or both. Furthermore, our analyses indicate that some characters of trophic morphologies in the Schizothoracinae have undergone correlated evolution, which are somewhat correlated with different food resource uses. Collectively, our results reveal new examples of convergent and parallel evolution in the organisms of the QTP. The adaptation to different trophic niches through the modification of trophic morphologies and feeding behaviour as found in the schizothoracine fishes may account for the formation and maintenance of the high degree of diversity and radiations in fish communities endemic to QTP.

  4. Convergent, Parallel and Correlated Evolution of Trophic Morphologies in the Subfamily Schizothoracinae from the Qinghai-Tibetan Plateau

    PubMed Central

    Qi, Delin; Chao, Yan; Guo, Songchang; Zhao, Lanying; Li, Taiping; Wei, Fulei; Zhao, Xinquan

    2012-01-01

    Schizothoracine fishes distributed in the water system of the Qinghai-Tibetan plateau (QTP) and adjacent areas are characterized by being highly adaptive to the cold and hypoxic environment of the plateau, as well as by a high degree of diversity in trophic morphology due to resource polymorphisms. Although convergent and parallel evolution are prevalent in the organisms of the QTP, it remains unknown whether similar evolutionary patterns have occurred in the schizothoracine fishes. Here, we constructed for the first time a tentative molecular phylogeny of the schizothoracine fishes based on the complete sequences of the cytochrome b gene. We employed this molecular phylogenetic framework to examine the evolution of trophic morphologies. We used Pagel's maximum likelihood method to estimate the evolutionary associations of trophic morphologies and food resource use. Our results showed that the molecular and published morphological phylogenies of Schizothoracinae are partially incongruent with respect to some intergeneric relationships. The phylogenetic results revealed that four character states of five trophic morphologies and of food resource use evolved at least twice during the diversification of the subfamily. State transitions are the result of evolutionary patterns including either convergence or parallelism or both. Furthermore, our analyses indicate that some characters of trophic morphologies in the Schizothoracinae have undergone correlated evolution, which are somewhat correlated with different food resource uses. Collectively, our results reveal new examples of convergent and parallel evolution in the organisms of the QTP. The adaptation to different trophic niches through the modification of trophic morphologies and feeding behaviour as found in the schizothoracine fishes may account for the formation and maintenance of the high degree of diversity and radiations in fish communities endemic to QTP. PMID:22470515

  5. Functional evolution in the ancestral lineage of vertebrates or when genomic complexity was wagging its morphological tail.

    PubMed

    Aburomia, Rami; Khaner, Oded; Sidow, Arend

    2003-01-01

    Early vertebrate evolution is characterized by a significant increase of organismal complexity over a relatively short time span. We present quantitative evidence for a high rate of increase in morphological complexity during early vertebrate evolution. Possible molecular evolutionary mechanisms that underlie this increase in complexity fall into a small number of categories, one of which is gene duplication and subsequent structural or regulatory neofunctionalization. We discuss analyses of two gene families whose regulatory and structural evolution shed light on the connection between gene duplication and increases in organismal complexity.

  6. Evolution of terrace risers along the upper Rhine graben inferred from morphologic dating methods: evidence of climatic and tectonic forcing

    NASA Astrophysics Data System (ADS)

    Nivière, B.; Marquis, Guy

    2000-06-01

    We show that morphologic dating techniques that have been applied successfully in arid and semi-arid areas are also suitable for slowly evolving scarps that are usually found in temperate climate environments. We have attempted two morphologic approaches, based on diffusion, to relate the present-day shape of an abandoned terrace riser to its age. The first assumes a model of scarp degradation based on a diffusive process (the D method). The second evaluates the state of scarp degradation using the slope distribution (the SD method) along a topographic profile. By using a manmade scarp of known age, we have obtained a mass diffusivity close to 1.4m2ka-1 when the area experiences a temperate climate characterized by a continuous vegetation cover. However, this value decreases during glacial episodes, probably on account of the permafrost. Even though the SD method requires an age correction that can be easily computed, only this method reveals that at several profiles a later scarp reactivation event has occurred. Indeed, along several profiles, the slope distribution was best fitted by two offset Gaussian curves, suggesting that some scarps have undergone a complex evolution that cannot be modelled with a single diffusive process. This scarp reactivation may correspond to a new incisive episode and allows one to estimate the vertical incision rate along the terrace riser. Applied to a Wurmian terrace riser of the upper Rhine valley (NE France), this approach reveals that the vertical incision rate ranges from 0.2 to 0.85mmyr-1 between 35 and 15ka and that the terrace bevelling occurred during two episodes related to climatic forcing. Moreover, we can identify a component of tectonic forcing evidenced by an increase to the north of vertical incision rate and Rhine stream-power. Another major result is showing that this terrace riser is not isochronous along its strike and that younger portions result from lateral incision of a 30ka pre-existing scarp.

  7. Comet 67P's morphological dichotomy and surface evolution from the Rosetta/OSIRIS camera

    NASA Astrophysics Data System (ADS)

    Ramy El-Maarry, M.; Thomas, Nicolas; Gracia-Berná, Antonio; Pajola, Maurizio; Groussin, Olivier; ROSETTA/OSIRIS

    2016-10-01

    The Rosetta mission orbited comet 67P/Churyumov-Gerasimenko from Aug, 2014 to Sep, 2016. During this time, it obtained the most comprehensive image dataset for a comet's nucleus in terms of resolution, as well as spatial and temporal coverage, using the OSIRIS camera. These images have shown the surface of the comet to be very diverse in its texture and geology. In particular, the 2-year duration of the mission permitted imaging of both hemispheres and the possibility to assess the morphology and surface evolution of comet's 67P's northern hemisphere before and after perihelion passage (in Aug, 2015). The northern hemisphere (NH) is morphologically diverse including regions of consolidated, often fractured materials, smooth terrains showing aeolian-like landforms and seasonal variations, dust-covered areas suggestive of an air-fall-like mechanism, and irregular large-scale depressions suggestive of massive outburst activities. On the other hand, the southern hemisphere (SH) shows a clear dichotomy with the North showing regionally rougher terrains with little or no smooth deposits. Similarly, dusty coatings that were observed in the northern hemisphere are generally lacking in addition to the absence of large depressions. Overall, the SH shows significantly less topographical variation in comparison to the NH. The difference in relief between the NH and SH may be explained by the differences in erosional extent between both hemispheres. The SH has a shorter yet more intensive summer (close to perihelion), which could result in levels of erosion in the SH that are up to a factor of 3 higher than that of the NH. Another notable difference between both hemispheres is the absence of smooth deposits and dust coatings in the SH. The absence of similar deposits in the south may suggest that activity in the SH occurs with much higher intensity leading to ejection of dust particles at velocities exceeding comet's escape velocity. During the meeting, we plan to summarize the

  8. Corolla monosymmetry: evolution of a morphological novelty in the Brassicaceae family.

    PubMed

    Busch, Andrea; Horn, Stefanie; Mühlhausen, Andreas; Mummenhoff, Klaus; Zachgo, Sabine

    2012-04-01

    expression shift from an ancestral early adaxial expression in floral meristems to an adaxial CYC2 transcript accumulation later in petal development. This study emphasizes the potential of regulatory changes in the evolution of morphological novelties, like corolla monosymmetry in the Brassicaceae. In combination with a corymboid inflorescence, monosymmetry might have served as a key invention driving diversification in the genus Iberis comprising more than 20 monosymmetric species.

  9. Influence of surface morphology evolution of SubPc layers on the performance of SubPc/C60 organic photovoltaic cells

    NASA Astrophysics Data System (ADS)

    Kim, Jinhyun; Yim, Sanggyu

    2011-11-01

    In this study, small-molecule organic solar cells based on choloro[subphthalocyaninato]boron (III) (SubPc) as an electron donor and fullerene (C60) as an electron acceptor were fabricated by varying the thickness, d, of the SubPc layer. The power conversion efficiency was maximized to 1.8% at d ˜ 130 Å due to the relatively large values of the short-circuit current density (JSC) and fill factor (FF). This optimal thickness was also strongly related to the surface morphology evolution of the SubPc thin films. The corrugated surface nanostructures were continually formed until the thickness of the film increased up to 130 Å, which is advantageous for the formation of an interdigitated electron donor-acceptor interface. In contrast, for films thicker than 130 Å, the corrugated surface structures were filled with subsequently deposited molecules, leading to a smoother morphology and consequently reduced JSC and FF value of the cells.

  10. A New LC-MS-based Strategy to integrate chemistry, morphology, and evolution of eggplant (Solanum) species

    USDA-ARS?s Scientific Manuscript database

    The economically valuable giant genus Solanum, containing dozens of functional food species such as eggplant and tomato, affords an excellent system to compare and correlate metabolic chemistry with species morphology and evolution. Here, we devised a strategy based on repeatable reversed-phase LC-T...

  11. Application of morphological synthesis for understanding electrode microstructure evolution as a function of applied charge/discharge cycles

    NASA Astrophysics Data System (ADS)

    Glazoff, Michael V.; Dufek, Eric J.; Shalashnikov, Egor V.

    2016-10-01

    Morphological synthesis operations were employed for understanding electrode microstructure transformations and evolution accompanying the application of charge/discharge cycles to electrochemical storage systems (batteries). Using state-of-the-art morphological algorithms, it was possible to predict microstructure evolution in porous Si electrodes for Li-ion batteries with reasonable accuracy. The developed techniques could be considered supplementary to a phase-field mesoscopic approach to microstructure evolution that is based upon clear and definitive changes in the appearance of microstructure. However, unlike in phase field, the governing equations for the morphological approach are geometry, not physics, based. A similar non-physics-based approach to understanding different phenomena was attempted with the introduction of cellular automata. It is anticipated that morphological synthesis will represent a useful supplementary tool to phase field and will render assistance to unraveling the underlying microstructure-property relationships. The paper contains data on electrochemical characterization of different electrode materials that was conducted in parallel to the morphological study.

  12. Application of morphological synthesis for understanding electrode microstructure evolution as a function of applied charge/discharge cycles

    SciTech Connect

    Glazoff, Michael V.; Dufek, Eric J.; Shalashnikov, Egor V.

    2016-09-15

    Morphological analysis and synthesis operations were employed for analysis of electrode microstructure transformations and evolution accompanying the application of charge/discharge cycles to electrochemical storage systems (batteries). Using state-of-the-art morphological algorithms, it was possible to predict microstructure evolution in porous Si electrodes for Li-ion batteries with sufficient accuracy. Algorithms for image analyses (segmentation, feature extraction, and 3D-reconstructions using 2D-images) were also developed. Altogether, these techniques could be considered supplementary to phase-field mesoscopic approach to microstructure evolution that is based upon clear and definitive changes in the appearance of microstructure. However, unlike in phase-field, the governing equations for morphological approach are geometry-, not physics-based. Similar non-physics based approach to understanding different phenomena was attempted with the introduction of cellular automata. It is anticipated that morphological synthesis and analysis will represent a useful supplementary tool to phase-field and will render assistance to unraveling the underlying microstructure-property relationships. The paper contains data on electrochemical characterization of different electrode materials that was conducted in parallel to morphological study.

  13. Application of morphological synthesis for understanding electrode microstructure evolution as a function of applied charge/discharge cycles

    DOE PAGES

    Glazoff, Michael V.; Dufek, Eric J.; Shalashnikov, Egor V.

    2016-09-15

    Morphological analysis and synthesis operations were employed for analysis of electrode microstructure transformations and evolution accompanying the application of charge/discharge cycles to electrochemical storage systems (batteries). Using state-of-the-art morphological algorithms, it was possible to predict microstructure evolution in porous Si electrodes for Li-ion batteries with sufficient accuracy. Algorithms for image analyses (segmentation, feature extraction, and 3D-reconstructions using 2D-images) were also developed. Altogether, these techniques could be considered supplementary to phase-field mesoscopic approach to microstructure evolution that is based upon clear and definitive changes in the appearance of microstructure. However, unlike in phase-field, the governing equations for morphological approach are geometry-,more » not physics-based. Similar non-physics based approach to understanding different phenomena was attempted with the introduction of cellular automata. It is anticipated that morphological synthesis and analysis will represent a useful supplementary tool to phase-field and will render assistance to unraveling the underlying microstructure-property relationships. The paper contains data on electrochemical characterization of different electrode materials that was conducted in parallel to morphological study.« less

  14. Kinematic and morphological evolution and dynamics of coronal mass ejections in interplanetary space

    NASA Astrophysics Data System (ADS)

    Poomvises, Watanachak

    2010-12-01

    Studies of Coronal mass ejections (CMEs) are scientifically intriguing and practically important. CMEs are the main driver of space weather that specifies plasma, magnetic and particle conditions in near-Earth space. When CMEs pass through and interact with the Earth's magnetosphere, they can cause significant disruption in space and produce a variety of harmful effects on human's technological systems from space to the ground. Many studies have been carried out to understand their evolution. However, their kinematic and morphological evolution as they pass from Sun to Earth is still poorly understood, largely due to the lack of direct observations. Since the launch of the twin-STEREO spacecraft in 2006, tracking of CMEs in interplanetary space was made available for the first time. Further, one could make unprecedented 3-D measurement of CMEs, thanks to the simultaneous observations from two vantage points in space. In this dissertation, I make use of STEREO observations to study the kinematic and morphological evolution of CMEs in interplanetary space. The Raytrace model is utilized as a powerful tool to measure CMEs evolution in 3D. I find that CME leading edge (LE) velocity converges from an initial range between 400 km/s and 1500 km/s at 5 to 10 RS to a narrow range between 500 km/s and 750 km/s at 50 RS. The expansion velocity is also found to converge into a narrow range between 75 km/s and 175 km/s. Both LE and expansion velocities are nearly constant after 50 RS. I further find that the acceleration of CMEs in the inner heliosphere from ˜ 10 to 90 RS can be described by an exponential function, with an initial value as large as ˜ 80 m/s2 but exponentially decreasing to almost zero (more precisely, less than +/- 5 m/s2 considering the uncertainty of measurements). These results are important for constructing accurate space weather prediction models. In addition to the observational study, I have used the theoretical flux rope model to explain the

  15. Morphological classification of low viscosity drop bag breakup in a continuous air jet stream

    NASA Astrophysics Data System (ADS)

    Zhao, Hui; Liu, Hai-Feng; Li, Wei-Feng; Xu, Jian-Liang

    2010-11-01

    To investigate the effect of Rayleigh-Taylor wave number in the region of maximum cross stream dimension (NRT) on drop breakup morphology, the breakup properties of accelerating low viscosity liquid drops (water and ethanol drops, diameter=1.2-6.6 mm, Weber number=10-80) were investigated using high-speed digital photography. The results of morphological analysis show a good correlation of the observed breakup type with NRT; bag breakup occurred when NRT was 1/√3 -1, bag-stamen breakup at 1-2, and dual-bag breakup at 2-3. The number of nodes in bag breakup, bag-stamen breakup, and dual-bag breakup all increased with Weber number. The experimental results are consistent with the model estimates and in good agreement with those reported in the literature.

  16. Modified differential evolution algorithm with onlooker bee operator for mixed discrete-continuous optimization.

    PubMed

    Miao, Yongfei; Su, Qinghua; Hu, Zhongbo; Xia, Xuewen

    2016-01-01

    For solving non-linear programming problems containing discrete and continuous variables, this article suggests two modified algorithms based on differential evolution (DE). The two proposed algorithms incorporate a novel random search strategy into DE/best/1 and DE/cur-to-best/1 respectively. Inspired by the artificial bee colony algorithm, the random search strategy overcomes the searching unbalance of DE/best/1 and DE/cur-to-best/1 by enhancing the global exploration capability of promising individuals. Two numerical experiments are given to test the two modified algorithms. Experiment 1 is conducted on the benchmark function set of CEC2005 in order to verify the effectiveness of the improved strategy. Experiment 2 is designed to optimize two mixed discrete-continuous problems to illustrate the competitiveness and the practicality of the proposed algorithms. In particular, the modified DE/cur-to-best/1 finds the new optima of two engineering optimization problems.

  17. Cladistic analysis of continuous modularized traits provides phylogenetic signals in Homo evolution.

    PubMed

    González-José, Rolando; Escapa, Ignacio; Neves, Walter A; Cúneo, Rubén; Pucciarelli, Héctor M

    2008-06-05

    Evolutionary novelties in the skeleton are usually expressed as changes in the timing of growth of features intrinsically integrated at different hierarchical levels of development. As a consequence, most of the shape-traits observed across species do vary quantitatively rather than qualitatively, in a multivariate space and in a modularized way. Because most phylogenetic analyses normally use discrete, hypothetically independent characters, previous attempts have disregarded the phylogenetic signals potentially enclosed in the shape of morphological structures. When analysing low taxonomic levels, where most variation is quantitative in nature, solving basic requirements like the choice of characters and the capacity of using continuous, integrated traits is of crucial importance in recovering wider phylogenetic information. This is particularly relevant when analysing extinct lineages, where available data are limited to fossilized structures. Here we show that when continuous, multivariant and modularized characters are treated as such, cladistic analysis successfully solves relationships among main Homo taxa. Our attempt is based on a combination of cladistics, evolutionary-development-derived selection of characters, and geometric morphometrics methods. In contrast with previous cladistic analyses of hominid phylogeny, our method accounts for the quantitative nature of the traits, and respects their morphological integration patterns. Because complex phenotypes are observable across different taxonomic groups and are potentially informative about phylogenetic relationships, future analyses should point strongly to the incorporation of these types of trait.

  18. Plateau-Rayleigh Instability Morphology Evolution (PRIME): From Electrospun Core-Shell Polymer Fibers to Polymer Microbowls.

    PubMed

    Chiu, Yu-Jing; Tseng, Hsiao-Fan; Lo, Yu-Ching; Wu, Bo-Hao; Chen, Jiun-Tai

    2017-03-01

    Electrospun core-shell fibers have great potentials in many areas, such as tissue engineering, drug delivery, and organic solar cells. Although many core-shell fibers have been prepared and studied, the morphology transformation of core-shell fibers have been rarely studied. In this work, the morphology evolution of electrospun core-shell polymer fibers driven by the Plateau-Rayleigh instability is investigated. Polystyrene/poly(methyl methacrylate) (PS/PMMA) core-shell fibers are first prepared by using blend solutions and a single axial electrospinning setup. After PS/PMMA core-shell fibers are annealed on a PS film, the fibers undulate and sink into the polymer film, forming core-shell hemispheres. The evolution process, which can be observed in situ by optical microscopy, is mainly driven by achieving lower surface and interfacial energies. The morphologies of the transformed structures can be confirmed by a selective removal technique, and polymer microbowls can be obtained.

  19. Genome replication engineering assisted continuous evolution (GREACE) to improve microbial tolerance for biofuels production

    PubMed Central

    2013-01-01

    Background Microbial production of biofuels requires robust cell growth and metabolism under tough conditions. Conventionally, such tolerance phenotypes were engineered through evolutionary engineering using the principle of “Mutagenesis followed-by Selection”. The iterative rounds of mutagenesis-selection and frequent manual interventions resulted in discontinuous and inefficient strain improvement processes. This work aimed to develop a more continuous and efficient evolutionary engineering method termed as “Genome Replication Engineering Assisted Continuous Evolution” (GREACE) using “Mutagenesis coupled-with Selection” as its core principle. Results The core design of GREACE is to introduce an in vivo continuous mutagenesis mechanism into microbial cells by introducing a group of genetically modified proofreading elements of the DNA polymerase complex to accelerate the evolution process under stressful conditions. The genotype stability and phenotype heritability can be stably maintained once the genetically modified proofreading element is removed, thus scarless mutants with desired phenotypes can be obtained. Kanamycin resistance of E. coli was rapidly improved to confirm the concept and feasibility of GREACE. Intrinsic mechanism analysis revealed that during the continuous evolution process, the accumulation of genetically modified proofreading elements with mutator activities endowed the host cells with enhanced adaptation advantages. We further showed that GREACE can also be applied to engineer n-butanol and acetate tolerances. In less than a month, an E. coli strain capable of growing under an n-butanol concentration of 1.25% was isolated. As for acetate tolerance, cell growth of the evolved E. coli strain increased by 8-fold under 0.1% of acetate. In addition, we discovered that adaptation to specific stresses prefers accumulation of genetically modified elements with specific mutator strengths. Conclusions We developed a novel GREACE method

  20. Plantain starch granules morphology, crystallinity, structure transition, and size evolution upon acid hydrolysis.

    PubMed

    Hernández-Jaimes, C; Bello-Pérez, L A; Vernon-Carter, E J; Alvarez-Ramirez, J

    2013-06-05

    Plantain native starch was hydrolysed with sulphuric acid for twenty days. Hydrolysis kinetics was described by a logistic function, with a zero-order rate during the first seven days, followed by a slower kinetics dynamics at longer times. X-ray diffraction results revealed a that gradual increase in crystallinity occurred during the first seven days, followed by a decrease to values similar to those found in the native starch. Differential scanning calorimetry analysis suggested a sharp structure transition by the seventh day probably due to a molecular rearrangement of the starch blocklets and inhomogeneous erosion of the amorphous regions and semi crystalline lamellae. Scanning electron micrographs showed that starch granules morphology was continually degraded from an initial oval-like shape to irregular shapes due to aggregation effects. Granule size distribution broadened as hydrolysis time proceeded probably due to fragmentation and agglomeration phenomena of the hydrolysed starch granules.

  1. The octopus genome and the evolution of cephalopod neural and morphological novelties.

    PubMed

    Albertin, Caroline B; Simakov, Oleg; Mitros, Therese; Wang, Z Yan; Pungor, Judit R; Edsinger-Gonzales, Eric; Brenner, Sydney; Ragsdale, Clifton W; Rokhsar, Daniel S

    2015-08-13

    Coleoid cephalopods (octopus, squid and cuttlefish) are active, resourceful predators with a rich behavioural repertoire. They have the largest nervous systems among the invertebrates and present other striking morphological innovations including camera-like eyes, prehensile arms, a highly derived early embryogenesis and a remarkably sophisticated adaptive colouration system. To investigate the molecular bases of cephalopod brain and body innovations, we sequenced the genome and multiple transcriptomes of the California two-spot octopus, Octopus bimaculoides. We found no evidence for hypothesized whole-genome duplications in the octopus lineage. The core developmental and neuronal gene repertoire of the octopus is broadly similar to that found across invertebrate bilaterians, except for massive expansions in two gene families previously thought to be uniquely enlarged in vertebrates: the protocadherins, which regulate neuronal development, and the C2H2 superfamily of zinc-finger transcription factors. Extensive messenger RNA editing generates transcript and protein diversity in genes involved in neural excitability, as previously described, as well as in genes participating in a broad range of other cellular functions. We identified hundreds of cephalopod-specific genes, many of which showed elevated expression levels in such specialized structures as the skin, the suckers and the nervous system. Finally, we found evidence for large-scale genomic rearrangements that are closely associated with transposable element expansions. Our analysis suggests that substantial expansion of a handful of gene families, along with extensive remodelling of genome linkage and repetitive content, played a critical role in the evolution of cephalopod morphological innovations, including their large and complex nervous systems.

  2. The octopus genome and the evolution of cephalopod neural and morphological novelties

    PubMed Central

    Albertin, Caroline B.; Simakov, Oleg; Mitros, Therese; Wang, Z. Yan; Pungor, Judit R.; Edsinger-Gonzalez, Eric; Brenner, Sydney; Ragsdale, Clifton W.; Rokhsar, Daniel S.

    2016-01-01

    Coleoid cephalopods (octopus, squid, and cuttlefish) are active, resourceful predators with a rich behavioral repertoire1. They have the largest nervous systems among the invertebrates2 and present other striking morphological innovations including camera-like eyes, prehensile arms, a highly derived early embryogenesis, and the most sophisticated adaptive coloration system among all animals1,3. To investigate the molecular bases of cephalopod brain and body innovations we sequenced the genome and multiple transcriptomes of the California two-spot octopus, Octopus bimaculoides. We found no evidence for hypothesized whole genome duplications in the octopus lineage4–6. The core developmental and neuronal gene repertoire of the octopus is broadly similar to that found across invertebrate bilaterians, except for massive expansions in two gene families formerly thought to be uniquely enlarged in vertebrates: the protocadherins, which regulate neuronal development, and the C2H2 superfamily of zinc finger transcription factors. Extensive mRNA editing generates transcript and protein diversity in genes involved in neural excitability, as previously described7, as well as in genes participating in a broad range of other cellular functions. We identified hundreds of cephalopod-specific genes, many of which showed elevated expression levels in such specialized structures as the skin, the suckers, and the nervous system. Finally, we found evidence for large-scale genomic rearrangements that are closely associated with transposable element expansions. Our analysis suggests that substantial expansion of a handful of gene families, along with extensive remodeling of genome linkage and repetitive content, played a critical role in the evolution of cephalopod morphological innovations, including their large and complex nervous systems. PMID:26268193

  3. Geometric evolution law for modeling strongly anisotropic thin-film morphology.

    PubMed

    Ograin, Christopher; Lowengrub, John

    2011-12-01

    The morphology of the solid-vapor interface of a nanoscale thin crystalline film is influenced by many factors including surface diffusion, attachment-detachment, deposition, and interface kinetics. Using a high-order accurate and efficient numerical method, we investigate the dynamics of two dimensional thin films when all of these effects are considered. The observed morphologies consist of facets of constant slope separated by narrow transition intervals: kinks (valleys) and antikinks (hills). The number of kinks and antikinks decreases as the system coarsens in time. Our numerical results confirm that when deposition is present, the only possible coarsening event is the kink-ternary where two kinks meet and annihilate an antikink. We characterize the total amount of coarsening, the time over which the coarsening occurs and the associated coarsening scaling laws when all effects are considered. As found in previous work that considered only attachment-detachment, or surface diffusion, there are three distinct coarsening regimes associated with increasing magnitudes of the deposition flux-fast coarsening, a regime in which periodic structures form with little or no subsequent coarsening, and a regime in which the film surface evolves chaotically. We find that the inclusion of attachment-detachment leads to additional coarsening compared to the dynamics that result from driven surface diffusion alone. When deposition and interface kinetics are both considered, the slowdown of evolution caused by the kinetic effects necessitates a decrease in the deposition flux in order to produce a nonchaotic coarsening regime. Together, these provide testable predictions for experiments of thin-film dynamics.

  4. Molecular phylogenetics of the Brazilian giant bromeliads (Alcantarea, Bromeliaceae): implications for morphological evolution and biogeography.

    PubMed

    Versieux, Leonardo M; Barbará, Thelma; Wanderley, Maria das Graças Lapa; Calvente, Alice; Fay, Michael F; Lexer, Christian

    2012-07-01

    The genus Alcantarea comprises near 30 species endemic to rocky outcrops from eastern Brazil. Most species are ornamental and several are threatened due to habitat loss and over collection. In this paper we examine the phylogenetics of Alcantarea and its relationship with the Brazilian members of Vriesea, a genus of which Alcantarea has been treated as a subgenus. We discuss the morphological evolution of the stamen position and its implication for pollination and the occurrence of Alcantarea in the Espinhaço mountain range rocky savanna-like habitat vegetation. DNA sequence data derived from two plastid markers (trnK-rps16, trnC-petN) and from a low copy nuclear gene (Floricaula/Leafy) together with 20 nuclear microsatellite loci were the data source to perform analyses and construct phylogenetic and Neighbor Joining trees for the genus. Alcantarea is well supported as monophyletic in both Bayesian and parsimony analyses, but sections of Vriesea, represented by the eastern Brazilian species, appear paraphyletic. Microsatellites delimit geographically isolated species groups. Nevertheless individuals belonging to a single species may appear related to distinct clusters of species, suggesting that hybridization and/or homoplasy and/or incomplete lineage sorting are also influencing the analysis based on such markers and may be the reasons for some unexpected results. Alcantarea brasiliana is hypothesized as putative hybrid between A. imperialis and A. geniculata. Spreading stamens, a morphological floral characteristic assumed to be related to Chiropterophily, apparently evolved multiple times within the genus, and invasion of rocky savanna-like habitat vegetation by Atlantic rainforest ancestors seems to have occurred multiple times as well.

  5. Vitamin D3 suppresses morphological evolution of the cribriform cancerous phenotype

    PubMed Central

    Deevi, Ravi K.; McClements, Jane; McCloskey, Karen D.; Fatehullah, Aliya; Tkocz, Dorota; Javadi, Arman; Higginson, Robyn; Durban, Victoria Marsh; Jansen, Marnix; Loughrey, Maurice B.; Campbell, Frederick C.

    2016-01-01

    Development of cribriform morphology (CM) heralds malignant change in human colon but lack of mechanistic understanding hampers preventive therapy. This study investigated CM pathobiology in three-dimensional (3D) Caco-2 culture models of colorectal glandular architecture, assessed translational relevance and tested effects of 1,25(OH)2D3, the active form of vitamin D. CM evolution was driven by oncogenic perturbation of the apical polarity (AP) complex comprising PTEN, CDC42 and PRKCZ (phosphatase and tensin homolog, cell division cycle 42 and protein kinase C zeta). Suppression of AP genes initiated a spatiotemporal cascade of mitotic spindle misorientation, apical membrane misalignment and aberrant epithelial configuration. Collectively, these events promoted “Swiss cheese-like” cribriform morphology (CM) comprising multiple abnormal “back to back” lumens surrounded by atypical stratified epithelium, in 3D colorectal gland models. Intestinal cancer driven purely by PTEN-deficiency in transgenic mice developed CM and in human CRC, CM associated with PTEN and PRKCZ readouts. Treatment of PTEN-deficient 3D cultures with 1,25(OH)2D3 upregulated PTEN, rapidly activated CDC42 and PRKCZ, corrected mitotic spindle alignment and suppressed CM development. Conversely, mutationally-activated KRAS blocked 1,25(OH)2D3 rescue of glandular architecture. We conclude that 1,25(OH)2D3 upregulates AP signalling to reverse CM in a KRAS wild type (wt), clinically predictive CRC model system. Vitamin D could be developed as therapy to suppress inception or progression of a subset of colorectal tumors. PMID:27119498

  6. A Real Time Investigation of Morphological Evolution During Solidification of Different Alloy Systems

    NASA Technical Reports Server (NTRS)

    Sen, S.; Kaukler, W. F.; Curreri, P. A.

    1999-01-01

    Solidification phenomenon which occur at the solid/liquid (s/I) interface play a major role in the determination of structure and hence the technologically important properties of a casting. However, metals being opaque, conclusions related to several important phenomenon such as boundary layer thickness, morphological evolution, and eutectic and cell spacing are deduced from quenching experiments and subsequent post solidification metallographic analysis. Consequently, limited information is obtained about the dynamics of the process. This paper will discuss the recent efforts at the Space Science Laboratory, NASA Marshall Space Flight Center, to view and quantify in-situ and in real time the dynamics of the solidification process and to measure interfacial undercooling. First, a high resolution x-ray transmission microscope (XTM) has been developed to monitor fundamental interfacial phenomena during directional solidification of metals and alloys. The XTM operates in the range of 10-100 KeV and through projection is capable of achieving magnification of up to 16OX. Secondly, an innovative collapsible furnace has been designed to quantify interfacial undercooling by measuring the temperature of a moving s/I interface in reference to a fixed s/l interface. This measurement technique is non-intrusive in nature and is based on the Seebeck principle. In this paper real time results obtained to characterize the dynamics of irregular eutectic spacing will be presented. As an example fiber to lamella or plate transition in the Al-Al2Au eutectic system will be discussed. Further, a resolution limit of 25 micron has permitted viewing in real time morphological instability and cellular growth in Al-Au and Al-Ag systems. Simultaneously, a systematic investigation has been carried out to measure interfacial undercooling for Pb-1 wt.% Sn at and near the marginal stability regime. In conjunction with the XTM observations this study attempts to validate existing relationships

  7. Phenotypic evolution of human craniofacial morphology after admixture: a geometric morphometrics approach.

    PubMed

    Martínez-Abadías, Neus; González-José, Rolando; González-Martín, Antonio; Van der Molen, Silvina; Talavera, Arturo; Hernández, Patricia; Hernández, Miquel

    2006-03-01

    An evolutionary, diachronic approach to the phenotypic craniofacial pattern arisen in a human population after high levels of admixture and gene flow was achieved by means of geometric morphometrics. Admixture has long been studied after molecular data. Nevertheless, few efforts have been made to explain the morphological outcome in human craniofacial samples. The Spanish-Amerindian contact can be considered a good scenario for such an analysis. Here we present a comparative analysis of craniofacial shape changes observed between two putative ancestor groups, Spanish and precontact Aztecs, and two diachronic admixed groups, corresponding to early and late colonial periods from the Mexico's Central Valley. Quantitative shape comparisons of Amerindian, Spanish, and admixed groups were used to test the expectations of quantitative genetics for admixture events. In its simplest form, this prediction states that an admixed group will present phenotypic values falling between those of both parental groups. Results show that, in general terms, although the human skull is a complex, integrated structure, the craniofacial morphology observed fits the theoretical expectations of quantitative genetics. Thus, it is predictive of population structure and history. In fact, results obtained after the craniofacial analysis are in accordance with previous molecular and historical interpretations, providing evidence that admixture is a main microevolutionary agent influencing modern Mexican gene pool. However, expectations are not straightforward when moderate shape changes are considered. Deviations detected at localized structures, such as the upper and lower face, highlight the evolution of a craniofacial pattern exclusively inherent to the admixed groups, indicating that quantitative characters might respond to admixture in a complicated, nondirectional way. (c) 2005 Wiley-Liss, Inc.

  8. Elephant brain. Part I: gross morphology, functions, comparative anatomy, and evolution.

    PubMed

    Shoshani, Jeheskel; Kupsky, William J; Marchant, Gary H

    2006-06-30

    We report morphological data on brains of four African, Loxodonta africana, and three Asian elephants, Elephas maximus, and compare findings to literature. Brains exhibit a gyral pattern more complex and with more numerous gyri than in primates, humans included, and in carnivores, but less complex than in cetaceans. Cerebral frontal, parietal, temporal, limbic, and insular lobes are well developed, whereas the occipital lobe is relatively small. The insula is not as opercularized as in man. The temporal lobe is disproportionately large and expands laterally. Humans and elephants have three parallel temporal gyri: superior, middle, and inferior. Hippocampal sizes in elephants and humans are comparable, but proportionally smaller in elephant. A possible carotid rete was observed at the base of the brain. Brain size appears to be related to body size, ecology, sociality, and longevity. Elephant adult brain averages 4783 g, the largest among living and extinct terrestrial mammals; elephant neonate brain averages 50% of its adult brain weight (25% in humans). Cerebellar weight averages 18.6% of brain (1.8 times larger than in humans). During evolution, encephalization quotient has increased by 10-fold (0.2 for extinct Moeritherium, approximately 2.0 for extant elephants). We present 20 figures of the elephant brain, 16 of which contain new material. Similarities between human and elephant brains could be due to convergent evolution; both display mosaic characters and are highly derived mammals. Humans and elephants use and make tools and show a range of complex learning skills and behaviors. In elephants, the large amount of cerebral cortex, especially in the temporal lobe, and the well-developed olfactory system, structures associated with complex learning and behavioral functions in humans, may provide the substrate for such complex skills and behavior.

  9. Morphological Evolution of Noble Metal Nanoparticles in Chloroform: Mechanism of Switching on/off by Protic Species

    PubMed Central

    Douglas-Gallardo, O. A.; Gomez, C. G.; Macchione, M. A.; Cometto, F. P.; Coronado, E. A.; Macagno, V. A.; Pérez, M. A.

    2015-01-01

    The morphological stability/morphological reshaping of noble metal nanoparticles are studied experimentally in order to unravel the chemical mechanisms lying beneath. Gold and silver nanoparticles (AuNPs and AgNPs, respectively) formed in chloroformic environment are used, as model synthetic systems, to study phenomena of morphological change. The morphological evolution of NPs that follows their formation, is characterized by spectroscopy (UV-Visible, Raman and FTIR) and TEM (Transmission Electron Microscopy). The change of NP morphology involves the increase of the average NP size and the broadening of size distribution, in a close resemblance with the effect characteristically obtained from the Ostwald ripening. The effect of the poor solvating properties of chloroform in stabilizing small charged species (H+, Ag+, Au+) as well as the principle of electroneutrality of matter are analyzed in order to formulate a feasible reaction scheme consisting of a three-step processes: the generation of soluble intermediary species by corrosion of nanoparticles, the diffusion of intermediary species from one nanoparticle to another, and the re-deposition process involving the reduction of intermediary species. This basic reaction scheme is used as hypothesis to plan and perform experiments, which reveal that molecular oxygen dissolved in the dispersive medium can drive NP corrosion, however, protic species are also required as co-reactant. The polarity of the hydrogen bond and the ligand properties of the anions produced by deprotonation are feature of the protic species that enable/disable the corrosion and, in turn, the NP morphological evolution. PMID:26889378

  10. Evolution of unusual morphologies in Lentibulariaceae (bladderworts and allies) and Podostemaceae (river-weeds): a pictorial report at the interface of developmental biology and morphological diversification

    PubMed Central

    Rutishauser, Rolf

    2016-01-01

    Background Various groups of flowering plants reveal profound (‘saltational’) changes of their bauplans (architectural rules) as compared with related taxa. These plants are known as morphological misfits that appear as rather large morphological deviations from the norm. Some of them emerged as morphological key innovations (perhaps ‘hopeful monsters’) that gave rise to new evolutionary lines of organisms, based on (major) genetic changes. Scope This pictorial report places emphasis on released bauplans as typical for bladderworts (Utricularia, approx. 230 secies, Lentibulariaceae) and river-weeds (Podostemaceae, three subfamilies, approx. 54 genera, approx. 310 species). Bladderworts (Utricularia) are carnivorous, possessing sucking traps. They live as submerged aquatics (except for their flowers), as humid terrestrials or as epiphytes. Most Podostemaceae are restricted to rocks in tropical river-rapids and waterfalls. They survive as submerged haptophytes in these extreme habitats during the rainy season, emerging with their flowers afterwards. The recent scientific progress in developmental biology and evolutionary history of both Lentibulariaceae and Podostemaceae is summarized. Conclusions Lentibulariaceae and Podostemaceae follow structural rules that are different from but related to those of more typical flowering plants. The roots, stems and leaves – as still distinguishable in related flowering plants – are blurred (‘fuzzy’). However, both families have stable floral bauplans. The developmental switches to unusual vegetative morphologies facilitated rather than prevented the evolution of species diversity in both families. The lack of one-to-one correspondence between structural categories and gene expression may have arisen from the re-use of existing genetic resources in novel contexts. Understanding what developmental patterns are followed in Lentibulariaceae and Podostemaceae is a necessary prerequisite to discover the genetic

  11. Evolution of unusual morphologies in Lentibulariaceae (bladderworts and allies) and Podostemaceae (river-weeds): a pictorial report at the interface of developmental biology and morphological diversification.

    PubMed

    Rutishauser, Rolf

    2016-04-01

    Various groups of flowering plants reveal profound ('saltational') changes of their bauplans (architectural rules) as compared with related taxa. These plants are known as morphological misfits that appear as rather large morphological deviations from the norm. Some of them emerged as morphological key innovations (perhaps 'hopeful monsters') that gave rise to new evolutionary lines of organisms, based on (major) genetic changes. This pictorial report places emphasis on released bauplans as typical for bladderworts (Utricularia, approx. 230 secies, Lentibulariaceae) and river-weeds (Podostemaceae, three subfamilies, approx. 54 genera, approx. 310 species). Bladderworts (Utricularia) are carnivorous, possessing sucking traps. They live as submerged aquatics (except for their flowers), as humid terrestrials or as epiphytes. Most Podostemaceae are restricted to rocks in tropical river-rapids and waterfalls. They survive as submerged haptophytes in these extreme habitats during the rainy season, emerging with their flowers afterwards. The recent scientific progress in developmental biology and evolutionary history of both Lentibulariaceae and Podostemaceae is summarized. Lentibulariaceae and Podostemaceae follow structural rules that are different from but related to those of more typical flowering plants. The roots, stems and leaves - as still distinguishable in related flowering plants - are blurred ('fuzzy'). However, both families have stable floral bauplans. The developmental switches to unusual vegetative morphologies facilitated rather than prevented the evolution of species diversity in both families. The lack of one-to-one correspondence between structural categories and gene expression may have arisen from the re-use of existing genetic resources in novel contexts. Understanding what developmental patterns are followed in Lentibulariaceae and Podostemaceae is a necessary prerequisite to discover the genetic alterations that led to the evolution of these

  12. Quantum measurements in continuous time, non-Markovian evolutions and feedback.

    PubMed

    Barchielli, Alberto; Gregoratti, Matteo

    2012-11-28

    In this article, we reconsider a version of quantum trajectory theory based on the stochastic Schrödinger equation with stochastic coefficients, which was mathematically introduced in the 1990s, and we develop it in order to describe the non-Markovian evolution of a quantum system continuously measured and controlled, thanks to a measurement-based feedback. Indeed, realistic descriptions of a feedback loop have to include delay and thus need a non-Markovian theory. The theory allows us to put together non-Markovian evolutions and measurements in continuous time, in agreement with the modern axiomatic formulation of quantum mechanics. To illustrate the possibilities of such a theory, we apply it to a two-level atom stimulated by a laser. We introduce closed loop control too, via the stimulating laser, with the aim of enhancing the 'squeezing' of the emitted light, or other typical quantum properties. Note that here we change the point of view with respect to the usual applications of control theory. In our model, the 'system' is the two-level atom, but we do not want to control its state, to bring the atom to a final target state. Our aim is to control the 'Mandel Q-parameter' and the spectrum of the emitted light; in particular, the spectrum is not a property at a single time, but involves a long interval of times (a Fourier transform of the autocorrelation function of the observed output is needed).

  13. Heat transfer and solidification microstructure evolution of continuously cast steel by non-steady physical simulation

    NASA Astrophysics Data System (ADS)

    Lan, Peng; Nguyen, Diem Ai; Lee, Soo-Yeon; Cho, Jung-Wook

    2017-05-01

    The heat transfer and solidification microstructure evolution during continuous casting were experimentally studied in this work. A new approach to physically simulate the steel solidification behavior during continuous casting was developed. Six steel grades with different solidification mode were introduced to elucidate the carbon equivalent dependent mold heat flux, prior austenite grain size and secondary dendrite arm spacing. It is found that the non-steady mold heat fluxes in the experiment against time for all steel grades are comparative to that versus distance in practical continuous casting. Due to the occurrence of L→L+δ→δ+γ→γ transformation with the largest amount of volume contraction in hypo-peritectic steel, it shows the lowest mold heat flux among these six steel grades. It is also demonstrated from the solidification microstructure results that the prior austenite grain size and secondary dendrite arm spacing in the physical simulation are in good agreement with those in continuously cast strand. In addition, the steel with a higher temperature for the onset of δ→γ transformation reveals the larger prior austenite grains resulted from the higher grains growth rate in the post solidification process.

  14. Development of a lecithotrophic pilidium larva illustrates convergent evolution of trochophore-like morphology.

    PubMed

    Hunt, Marie K; Maslakova, Svetlana A

    2017-01-01

    's morphological and developmental features are best explained by transition from planktotrophy to lecithotrophy in the context of pilidial development, rather than by retention of or reversal to what is often assumed to be the spiralian ancestral larval type - the trochophore. Development of pilidium nielseni is a compelling example of convergent evolution of a trochophore-like body plan within Spiralia.

  15. Sediment transport dynamics linked to morphological evolution of the Selenga River delta, Lake Baikal, Russia

    NASA Astrophysics Data System (ADS)

    Dong, T. Y.; Nittrouer, J.; McElroy, B. J.; Czapiga, M. J.; Il'icheva, E.; Pavolv, M.; Parker, G.

    2014-12-01

    for all lobes, and that the delta is undergoing an active phase of erosion, characterized by channel incision and extensive lateral erosion of terraces; this process of delta 'self-cannibalization' contributes to the downstream sediment flux and morphological evolution of the delta.

  16. Evolution of galaxy structure using visual morphologies in CANDELS and Hydro-ART simulations

    NASA Astrophysics Data System (ADS)

    Mozena, Mark W.

    2013-08-01

    The general properties, morphologies, and classes of galaxies in the local Universe are well studied. Most local galaxies are morphologically members of the Hubble sequence and can be crudely separated into elliptical red quiescent galaxies or disky blue star-forming galaxies. This Hubble sequence of relaxed structures has been shown to dominate galaxy populations out to a redshift of z~1. The description of galaxies at earlier times is not well known nor is it understood how and at what epoch the Hubble sequence formed. Of particular interest is the structure of galaxies at z~2. This epoch was an active time for galaxy growth and was the peak epoch for star formation rate, active galactic nuclei activity, and mergers between galaxies. With the installation of the near-infrared Wide Field Camera 3 (WFC3) on the Hubble Space Telescope in 2009, large area photometric surveys of galaxies were able to be performed for the first time at moderate redshifts (z~2) in wavebands that effectively trace the older stellar populations and stellar mass of the galaxies rather than the clumpy star-forming regions. Using WFC3 HST images, an in-depth morphology classification system was developed to probe the galaxy populations at higher redshifts (focusing on z~2). These visual classifications were used with other galaxy parameters (stellar mass, color, star formation rate, radius, Sersic profiles, etc) to identify and quantify the moderate redshift galaxy populations and study how these populations changed with time to form the relaxed Hubble sequence Universe we observe today. Additionally, these same tools that were used to probe galaxy populations at z~2 in the observed Universe were also used on simulated galaxy images produced from state-of-the-art cosmological simulations. These Hydro-ART simulations build artificial galaxies that are compared to observations so as to shed light on the relevant mechanisms in galaxy evolution. By classifying and comparing the populations

  17. Continuous "in vitro" Evolution of a Ribozyme Ligase: A Model Experiment for the Evolution of a Biomolecule

    ERIC Educational Resources Information Center

    Ledbetter, Michael P.; Hwang, Tony W.; Stovall, Gwendolyn M.; Ellington, Andrew D.

    2013-01-01

    Evolution is a defining criterion of life and is central to understanding biological systems. However, the timescale of evolutionary shifts in phenotype limits most classroom evolution experiments to simple probability simulations. "In vitro" directed evolution (IVDE) frequently serves as a model system for the study of Darwinian…

  18. Continuous "in vitro" Evolution of a Ribozyme Ligase: A Model Experiment for the Evolution of a Biomolecule

    ERIC Educational Resources Information Center

    Ledbetter, Michael P.; Hwang, Tony W.; Stovall, Gwendolyn M.; Ellington, Andrew D.

    2013-01-01

    Evolution is a defining criterion of life and is central to understanding biological systems. However, the timescale of evolutionary shifts in phenotype limits most classroom evolution experiments to simple probability simulations. "In vitro" directed evolution (IVDE) frequently serves as a model system for the study of Darwinian…

  19. Structural and morphological evolution of thrust wedges above a ductile layer with different viscous behavior

    NASA Astrophysics Data System (ADS)

    Cerca, M.; Barrientos, B.; Garcia-Marquez, J.; Portillo-Pineda, R.; Hernandez-Bernal, C.

    2007-05-01

    A series of scaled physical experiments illustrate the importance of differences in density and viscous behavior of décollement in the structural evolution of thrust wedges during shortening. In particular, we have analyzed the effect of changes in viscosity in the morphological evolution and strain of the brittle overburden surface. Ten models properly scaled in geometry and mechanical behavior of natural geological materials were deformed at the Modeling Laboratory (LAMMG) of UNAM. Mechanical stratification of the models included basal and upper brittle layers of 1 and 2 cm, respectively; separated by an intermediate viscous layer of 0.5 cm. Brittle layers were constructed with grains of quartz sand following a Mohr-Coulomb criterion of faulting and bulk density of ca. 1300 kg m-3. The viscous layer was composed of silicon-sand mixtures having differences in dynamic viscosity (Pa s) and density (kg m-3) as the following cases: (A) 2.0 e 4 and 978, (B) 3.3 e 4 and 1195, (C) 4.7 e 4 and 1270. The experiments were carried out in a Plexiglas box of 40x15x10 cm and deformed by moving a vertical wall at a constant velocity of 1.5 cm hr-1. Cross sections of the experiments were obtained for values of bulk shortening of ca. 20 and 40 percent. The modeling results suggest a close relation of structural style of the thrust wedge with the initial conditions of décollement viscosity. Low viscosity models have a structural development characterized by low angle napes and detachment folds with limb rotation indicating a predominant vergence towards foreland. High viscosity models have a greater mechanical coupling between décollement and overburden and develop preferentially detachment folds with higher elevation and undefined vergence. The evolution of the surface in two models with different initial dynamic viscosity, cases A and B, was analyzed at the optical interferometry laboratory of CIO with two full-field optical techniques: fringe projection and laser speckle

  20. An interface tracking method applied to morphological evolution during phase change

    NASA Technical Reports Server (NTRS)

    Shyy, W.; Udaykumar, H. S.; Liang, S.-J.

    1992-01-01

    The focus of this work is the numerical simulation of interface motion during solidification of pure materials. First, the applicability of the oft-used quasi-stationary approximation for interface motion is assessed. It is seen that such an approximation results in poor accuracy for nontrivial Stefan numbers. Solution of the full set of equations including grid movement terms yields close agreement with analytical results. Next, a generic interface tracking procedure is designed, which overcomes restrictions of single-valuedness of the interface imposed by commonly used mapping methods. This method incorporates with ease interface phenomena involving curvature, which assume importance at the smaller scales of a deformed interface. The method is then applied to study the development of a morphologically unstable phase interface. The issue of appropriate scaling has been addressed. The Gibbs-Thomson effect for curved interfaces has been included. The evolution of the interface, with the competing mechanisms of undercooling and surface tension is found to culminate in tip-splitting, cusp formation and persistent cellular development.

  1. Repeated evolution of exaggerated dewlaps and other throat morphology in lizards.

    PubMed

    Ord, T J; Klomp, D A; Garcia-Porta, J; Hagman, M

    2015-11-01

    The existence of elaborate ornamental structures in males is often assumed to reflect the outcome of female mate choice for showy males. However, female mate choice appears weak in many iguanian lizards, but males still exhibit an array of ornament-like structures around the throat. We performed a phylogenetic comparative study to assess whether these structures have originated in response to male-male competition or the need for improved signal efficiency in visually difficult environments. We found little evidence for the influence of male-male competition. Instead, forest species were more likely to exhibit colourful throat appendages than species living in open habitats, suggesting selection for signal efficiency. On at least three independent occasions, throat ornamentation has become further elaborated into a large, conspicuously coloured moving dewlap. Although the function of the dewlap is convergent, the underlying hyoid apparatus has evolved very differently, revealing the same adaptive outcome has been achieved through multiple evolutionary trajectories. More generally, our findings highlight that extravagant, ornament-like morphology can evolve in males without the direct influence of female mate choice and that failure to consider alternative hypotheses for the evolution of these structures can obscure the true origins of signal diversity among closely related taxa.

  2. Evolution of grain size and morphology of Si thin films fabricated on lunar regolith glass

    NASA Astrophysics Data System (ADS)

    Gramajo, C.; Williams, L.; Feltrin, A.; Alemu, A.; Freundlich, A.

    2006-10-01

    A critical requirement for space colonization and in particular for its lunar exploration component is the availability of large amounts of electric energy. Novel architectures which involve the in situ manufacture of solar cells on the Moon using indigenous lunar materials have been proposed to meet this need [1]. In support of this effort, this study delves on several aspects of interest starting from the fabrication of a glass substrate from lunar regolith, to the deposition of Si films and the effects of thermal processing induced changes on the properties of these films. The experiments were implemented using several types of commercially available glasses as well as in-house fabricated regolith glass. In particular, the study provides valuable information on the effect of temperature on the interactions between Si and the substrates, and also the interaction between metallic contact layers and Si, which could affect regions beyond their common interface. This insight sheds a light on the evolution of grain size and morphology of Si thin films grown on lunar regolith.

  3. Phylogenetic estimation and morphological evolution of Arundinarieae (Bambusoideae: Poaceae) based on plastome phylogenomic analysis.

    PubMed

    Attigala, Lakshmi; Wysocki, William P; Duvall, Melvin R; Clark, Lynn G

    2016-08-01

    We explored phylogenetic relationships among the twelve lineages of the temperate woody bamboo clade (tribe Arundinarieae) based on plastid genome (plastome) sequence data. A representative sample of 28 taxa was used and maximum parsimony, maximum likelihood and Bayesian inference analyses were conducted to estimate the Arundinarieae phylogeny. All the previously recognized clades of Arundinarieae were supported, with Ampelocalamus calcareus (Clade XI) as sister to the rest of the temperate woody bamboos. Well supported sister relationships between Bergbambos tessellata (Clade I) and Thamnocalamus spathiflorus (Clade VII) and between Kuruna (Clade XII) and Chimonocalmus (Clade III) were revealed by the current study. The plastome topology was tested by taxon removal experiments and alternative hypothesis testing and the results supported the current plastome phylogeny as robust. Neighbor-net analyses showed few phylogenetic signal conflicts, but suggested some potentially complex relationships among these taxa. Analyses of morphological character evolution of rhizomes and reproductive structures revealed that pachymorph rhizomes were most likely the ancestral state in Arundinarieae. In contrast leptomorph rhizomes either evolved once with reversions to the pachymorph condition or multiple times in Arundinarieae. Further, pseudospikelets evolved independently at least twice in the Arundinarieae, but the ancestral state is ambiguous. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Mechanisms of morphological evolution on faceted core-shell nanowire surfaces

    NASA Astrophysics Data System (ADS)

    Zhang, Qian; Aqua, Jean-Noël; Voorhees, Peter W.; Davis, Stephen H.

    2016-06-01

    Core-shell nanowires with radial heterostructures hold great promise in photonic and electronic applications and controlling the formation of these heterostructures in the core-shell configuration remains a challenge. Recently, GaAs nanowires have been used as substrates to create AlGaAs shells. The deposition of the AlGaAs layer leads to the spontaneous formation of Al-rich stripes along certain crystallographic directions and quantum dots/wires near the apexes of the shell. A general two-dimensional model has been developed for the motion of the faceted solid-vapor interfaces for pure materials that accounts for capillarity and deposition. With this model, the growth processes and morphological evolution of shells of nanowires around hexagonal cores (six small facets {112} in the corners of six equivalent facets {110}) are investigated in detail both analytically and numerically. It is found that deposition can yield facets that are not present on the Wulff shape. These small facets can have slowly time-varying sizes that can lead to stripe structures and quantum dots/wires depending on the balances between diffusion and deposition. The effects of deposition rates and polarity (or asymmetry) on planes {112} on the development of the configurations of nanowires are discussed. The numerical results are compared with experimental results giving almost quantitative agreement, despite the fact that only pure materials are treated herein whereas the experiments deal with alloys.

  5. Morphological evolution and structural characterization of bismuth telluride (Bi2Te3) nanostructures

    NASA Astrophysics Data System (ADS)

    Kumar, Pushpendra; Srivastava, Punita; Singh, Jai; Belwal, Ritu; Pandey, Mukesh Kumar; Hui, K. S.; Hui, K. N.; Singh, Kedar

    2013-07-01

    Atomically thin two-dimensional (2D) nanomaterials with a layered structure, such as graphene and hexagonal boron nitride (h-BN), have been attracting a large amount of attention due to their unique properties and fascinating application in several devices for energy harvesting. Recently, single and few-layer Bi2Te3 2D nanosheets have attracted great attention. In this paper, the morphological evolution of Bi2Te3 2D nanosheets to nanotubes, which were fabricated by bottom-up assembly at low temperature by a controlled wet-chemical growth mechanism, is reported. The products are ultrathin nanosheets with thicknesses down to a few quintuple layers, and single, double and multiwall nanotubes with lengths of up to 2 µm. As a new member, Bi2Te3 nanotubes have extremely large surface-to-volume ratios and can be electrically gated more efficiently than the bulk form to enhance surface state effects potentially in transport measurements. The method presented herein allows the mass production of identical tubes that can be easily integrated into device structures for futuristic applications.

  6. Evolution of Shh endoderm enhancers during morphological transition from ventral lungs to dorsal gas bladder

    PubMed Central

    Sagai, Tomoko; Amano, Takanori; Maeno, Akiteru; Kimura, Tetsuaki; Nakamoto, Masatoshi; Takehana, Yusuke; Naruse, Kiyoshi; Okada, Norihiro; Kiyonari, Hiroshi; Shiroishi, Toshihiko

    2017-01-01

    Shh signalling plays a crucial role for endoderm development. A Shh endoderm enhancer, MACS1, is well conserved across terrestrial animals with lungs. Here, we first show that eliminating mouse MACS1 causes severe defects in laryngeal development, indicating that MACS1-directed Shh signalling is indispensable for respiratory organogenesis. Extensive phylogenetic analyses revealed that MACS1 emerged prior to the divergence of cartilaginous and bony fishes, and even euteleost fishes have a MACS1 orthologue. Meanwhile, ray-finned fishes evolved a novel conserved non-coding sequence in the neighbouring region. Transgenic assays showed that MACS1 drives reporter expression ventrally in laryngeal epithelium. This activity has been lost in the euteleost lineage, and instead, the conserved non-coding sequence of euteleosts acquired an enhancer activity to elicit dorsal epithelial expression in the posterior pharynx and oesophagus. These results implicate that evolution of these two enhancers is relevant to the morphological transition from ventral lungs to dorsal gas bladder. PMID:28155855

  7. Structural and morphological evolution of gallium nitride nanorods grown by chemical beam epitaxy

    SciTech Connect

    Kuo, Shou-Yi; Lai, Fang-I; Chen, Wei-Chun; Hsiao, Chien-Nan; Lin, Woei-Tyng

    2009-07-15

    The morphological and structural evolution is presented for GaN nanorods grown by chemical beam epitaxy on (0001) Al{sub 2}O{sub 3} substrates. Their structural and optical properties are investigated by x-ray diffraction, scanning and transmission electron microscopy, and temperature-dependent photoluminescence measurements. While increasing the growth temperature and the flow rate of radio-frequency nitrogen radical, the three-dimensional growth mode will be enhanced to form one-dimensional nanostructures. The high density of well-aligned nanorods with a diameter of 30-50 nm formed uniformly over the entire sapphire substrate. The x-ray diffraction patterns and transmission electron microscopic images indicate that the self-assembled GaN nanorods are a pure single crystal and preferentially oriented in the c-axis direction. Particularly, the ''S-shape'' behavior with localization of {approx}10 meV observed in the temperature-dependent photoluminescence might be ascribed to the fluctuation in crystallographic defects and composition.

  8. Morphology and crystal phase evolution of GeO 2 in liquid phase deposition process

    NASA Astrophysics Data System (ADS)

    Jing, Chengbin; Sun, Wei; Wang, Wei; Li, Yi; Chu, Junhao

    2012-01-01

    Morphology and crystal phase evolution of GeO 2 in liquid phase deposition (LPD) process is investigated. Rod-like solid phases precipitate out of solution ahead of truncated cube-like phases. SEM, XRD and TEM analyses reveal that the two sorts of solid phases are tetragonal GeO 2 and hexagonal GeO 2, respectively. The tetragonal GeO 2 phases start to experience a re-dissolving process as soon as the hexagonal phases come into being. The prior precipitation of the rod-like phase arises from a relatively low solute saturation of tetragonal GeO 2. Fast growth of a tetragonal GeO 2 phase along [111] direction leads to development of a rod-like shape. The re-dissolving phenomenon does not agree with the classic growth kinetics of crystals but is strongly favored by our calculations based on thermodynamics. The GeO 2 solutes are released in a fluctuant way by germanate ions, which promotes the occurrence of the re-dissolution phenomenon. The current researches open a door for room-temperature LPD growth of not only the hexagonal GeO 2 particles and film but also the one-dimensional tetragonal GeO 2 product.

  9. Convergent evolution of phenotypic integration and its alignment with morphological diversification in Caribbean Anolis ecomorphs.

    PubMed

    Kolbe, Jason J; Revell, Liam J; Szekely, Brian; Brodie, Edmund D; Losos, Jonathan B

    2011-12-01

    The adaptive landscape and the G-matrix are keys concepts for understanding how quantitative characters evolve during adaptive radiation. In particular, whether the adaptive landscape can drive convergence of phenotypic integration (i.e., the pattern of phenotypic variation and covariation summarized in the P-matrix) is not well studied. We estimated and compared P for 19 morphological traits in eight species of Caribbean Anolis lizards, finding that similarity in P among species was not correlated with phylogenetic distance. However, greater similarity in P among ecologically similar Anolis species (i.e., the trunk-ground ecomorph) suggests the role of convergent natural selection. Despite this convergence and relatively deep phylogenetic divergence, a large portion of eigenstructure of P is retained among our eight focal species. We also analyzed P as an approximation of G to test for correspondence with the pattern of phenotypic divergence in 21 Caribbean Anolis species. These patterns of covariation were coincident, suggesting that either genetic constraint has influenced the pattern of among-species divergence or, alternatively, that the adaptive landscape has influenced both G and the pattern of phenotypic divergence among species. We provide evidence for convergent evolution of phenotypic integration for one class of Anolis ecomorph, revealing yet another important dimension of evolutionary convergence in this group. No Claim to original U.S. government works.

  10. Interfacial morphology evolution of KTa1-xNbxO3 crystal growth

    NASA Astrophysics Data System (ADS)

    Li, Shuhui; Pan, Xiuhong; Liu, Yan; Jin, Weiqing; Zhang, Minghui; Yu, Jianding

    2017-06-01

    Two-dimensional growth of Potassium tantalate niobate (KTa1-xNbxO3) crystals with x = 0.94 was visualized by a high-temperature in situ observation system. Moreover, the interfacial morphology evolution and the interfacial kinetics during crystal growth were systematically studied by optical microscope. It was found that a square-shaped crystal surrounded by {1 1 0} planes was formed in the melt with small undercooling degree, while a large amount of rod-shaped crystals along with [0 0 1] direction predominated under large undercooling conditions. XRD results proved the orthorhombic phase of both shaped crystals. Interfacial kinetics analysis demonstrated the two-dimensional nucleation mechanism in the growth of square-shaped crystal. In contrast, the rod-shaped crystals were inclined to the rough surface growth mechanism. Furthermore, the surface compositional distribution of the as-grown crystal was carried out by EMPA, indicating that rod-shaped crystals had a smaller composition fluctuation than the square-shaped one, mainly due to the depressed segregating effect by the faster growth rate. The analysis of the mechanism and performance can promote the understanding of the KTN crystal.

  11. The evolution of the plant genome-to-morphology auxin circuit.

    PubMed

    Kutschera, Ulrich; Niklas, Karl J

    2016-09-01

    In his Generelle Morphologie der Organismen (1866), 150 years ago, Ernst Haeckel (1834-1919) combined developmental patterns in animals with the concept of organismic evolution, and 50 years ago, a new era of plant research started when focus shifted from crop species (sunflower, maize etc.) to thale cress (Arabidopsis thaliana) as a model organism. In this contribution, we outline the general principles of developmental evolutionary biology sensu Haeckel and describe the evolutionary genome-to-morphology-plant hormone auxin (IAA, indole-3-acetic acid)-circuit with reference to other phytohormones and a focus on land plants (embryophytes) plus associated epiphytic microbes. Our primary conclusion is that a system-wide approach is required to truly understand the ontogeny of any organism, because development proceeds according to signal pathways that integrate and respond to external as well as internal stimuli. We also discuss IAA-regulated embryology in A. thaliana and epigenetic phenomena in the gametophyte development, and outline how these processes are connected to the seminal work of Ernst Haeckel.

  12. Dynamical Evolution and High-Energy Radiation of Mixed-Morphology Supernova Remnants

    NASA Astrophysics Data System (ADS)

    Shimizu, Takafumi

    2014-03-01

    Evolution of a supernova remnant (SNR) without an active neutron star is basically described by probation of shock waves. The shock waves accelerate charged particles. The particles accelerated to GeV radiate synchrotron radio emission, which appears to be shelllike morphology. The shock waves heat matter up to keV, and heated-electrons ionize ions. Compared with a time-scale of shock-heating of electrons by the shock, a time-scale of ionization of ions by electron collisions in the shock down stream region is longer. Hence an ionization state of SNR plasma is thought to be under-ionized state in which the ionization temperature is lower than the electron temperature, or collisional ionization equilibrium state at late time. In fact, X-ray spectra of many SNRs are explained by such plasma state model. SNRs that exhibit shell-like morphology in thermal X-ray as well as radio are categorized into shell-like SNRs. In contrast to shell-like SNRs, some SNRs exhibit shell-like radio but center-filled thermal X-ray morphology. Such SNRs are categorized into mixed-morphology SNRs (MM SNRs). Many MM SNRs interact with molecular clouds, suggested by OH maser and near infrared observations, and hence are thought to be remnants of core-collapse supernova of massive stars. Interestingly, recombination radiation X-rays, which are evidence that X-ray emitting plasmas are over-ionized states in which the ionization temperature is higher than the electron temperature, are detected from six MM SNRs. The center-filled X-rays with recombination radiation can not be explained by a picture of shock-wave propagation that explains the X-rays of shell-like SNRs. As well as X-rays, MM SNRs are characteristic in γ-ray emission. Several MM SNRs and shell-like SNRs are detected in the GeV γ-ray band by Fermi. The 1 - 100 GeV γ-ray luminosities of MM SNRs are ˜ 1034-1036 erg s-1, which are systematically higher than those of shell-like SNRs of ˜ 1033-1035 erg s-1. Such high luminosities

  13. Temporal evolution of surface structure and morphology in thin-film growth and etching processes

    NASA Astrophysics Data System (ADS)

    Drotar, Jason Todd

    The temporal evolution of surface structure and morphology in growth and etching processes is of great importance to the understanding of such processes. For example, by looking at the time dependence of the surface roughness, one can often discover the scaling symmetries inherent in a process. In addition to providing clues about what mechanisms might be at work, these symmetries are also of practical interest. While much effort has been devoted to understanding the basic mechanisms that influence the temporal scaling of such systems, many systems still cannot be explained in terms of the known universality classes. Studies of both continuum and discrete models of surface roughening are presented. The temporal scaling of the Kuramoto-Sivashinsky (KS) equation has been studied using direct numerical integration, and the existence of two distinct scaling regimes is observed. The results are discussed in the context of previous computational and analytical results and compared to existing experimental studies of ion sputtering. It is found that low-energy ion sputtering experiments are consistent with the early-time KS scaling regime; while high-energy ion sputtering experiments are consistent with asymptotic Kardar-Parisi-Zhang (KPZ) behavior. Next, the temporal scaling behavior of a line-of-sight model of surface roughening has been studied. The model can be applied to both growth and etching processes. Several different limiting cases for the sticking coefficients have been examined using analytical arguments and computational techniques, and it is found that the scaling exponents are, in some cases, universal. The predicted scaling exponents, in some cases, do not belong to any of the known universality classes and therefore define a new universality class. In another case, the exponents are identical to the exponents predicted by the Edwards-Wilkinson equation. The newly discovered universality classes are used to explain experimentally observed behavior of

  14. A three-dimensional analysis of the morphological evolution and locomotor behaviour of the carnivoran hind limb

    PubMed Central

    2014-01-01

    Background The shape of the appendicular bones in mammals usually reflects adaptations towards different locomotor abilities. However, other aspects such as body size and phylogeny also play an important role in shaping bone design. We used 3D landmark-based geometric morphometrics to analyse the shape of the hind limb bones (i.e., femur, tibia, and pelvic girdle bones) of living and extinct terrestrial carnivorans (Mammalia, Carnivora) to quantitatively investigate the influence of body size, phylogeny, and locomotor behaviour in shaping the morphology of these bones. We also investigated the main patterns of morphological variation within a phylogenetic context. Results Size and phylogeny strongly influence the shape of the hind limb bones. In contrast, adaptations towards different modes of locomotion seem to have little influence. Principal Components Analysis and the study of phylomorphospaces suggest that the main source of variation in bone shape is a gradient of slenderness-robustness. Conclusion The shape of the hind limb bones is strongly influenced by body size and phylogeny, but not to a similar degree by locomotor behaviour. The slender-robust “morphological bipolarity” found in bone shape variability is probably related to a trade-off between maintaining energetic efficiency and withstanding resistance to stresses. The balance involved in this trade-off impedes the evolution of high phenotypic variability. In fact, both morphological extremes (slender/robust) are adaptive in different selective contexts and lead to a convergence in shape among taxa with extremely different ecologies but with similar biomechanical demands. Strikingly, this “one-to-many mapping” pattern of evolution between morphology and ecology in hind limb bones is in complete contrast to the “many-to-one mapping” pattern found in the evolution of carnivoran skull shape. The results suggest that there are more constraints in the evolution of the shape of the appendicular

  15. A three-dimensional analysis of the morphological evolution and locomotor behaviour of the carnivoran hind limb.

    PubMed

    Martín-Serra, Alberto; Figueirido, Borja; Palmqvist, Paul

    2014-06-14

    The shape of the appendicular bones in mammals usually reflects adaptations towards different locomotor abilities. However, other aspects such as body size and phylogeny also play an important role in shaping bone design.We used 3D landmark-based geometric morphometrics to analyse the shape of the hind limb bones (i.e., femur, tibia, and pelvic girdle bones) of living and extinct terrestrial carnivorans (Mammalia, Carnivora) to quantitatively investigate the influence of body size, phylogeny, and locomotor behaviour in shaping the morphology of these bones. We also investigated the main patterns of morphological variation within a phylogenetic context. Size and phylogeny strongly influence the shape of the hind limb bones. In contrast, adaptations towards different modes of locomotion seem to have little influence. Principal Components Analysis and the study of phylomorphospaces suggest that the main source of variation in bone shape is a gradient of slenderness-robustness. The shape of the hind limb bones is strongly influenced by body size and phylogeny, but not to a similar degree by locomotor behaviour. The slender-robust "morphological bipolarity" found in bone shape variability is probably related to a trade-off between maintaining energetic efficiency and withstanding resistance to stresses. The balance involved in this trade-off impedes the evolution of high phenotypic variability. In fact, both morphological extremes (slender/robust) are adaptive in different selective contexts and lead to a convergence in shape among taxa with extremely different ecologies but with similar biomechanical demands. Strikingly, this "one-to-many mapping" pattern of evolution between morphology and ecology in hind limb bones is in complete contrast to the "many-to-one mapping" pattern found in the evolution of carnivoran skull shape. The results suggest that there are more constraints in the evolution of the shape of the appendicular skeleton than in that of skull shape

  16. Eco-evolution in size-structured ecosystems: simulation case study of rapid morphological changes in alewife.

    PubMed

    Kang, Jung Koo; Thibert-Plante, Xavier

    2017-02-27

    Over the last 300 years, interactions between alewives and zooplankton communities in several lakes in the U.S. have caused the alewives' morphology to transition rapidly from anadromous to landlocked. Lakes with landlocked alewives contain smaller-bodied zooplankton than those without alewives. Landlocked adult alewives display smaller body sizes, narrower gapes, smaller inter-gill-raker spacings, reach maturity at an earlier age, and are less fecund than anadromous alewives. Additionally, landlocked alewives consume pelagic prey exclusively throughout their lives whereas anadromous alewives make an ontogenetic transition from pelagic to littoral prey. These rapid, well-documented changes in the alewives' morphology provide important insights into the morphological evolution of fish. Predicting the morphological evolution of fish is crucial for fisheries and ecosystem management, but the involvement of multiple trophic interactions make predictions difficult. To obtain an improved understanding of rapid morphological change in fish, we developed an individual-based model that simulated rapid changes in the body size and gill-raker count of a fish species in a hypothetical, size-structured prey community. Model parameter values were based mainly on data from empirical studies on alewives. We adopted a functional trait approach; consequently, the model explicitly describes the relationships between prey body size, alewife body size, and alewife gill-raker count. We sought to answer two questions: (1) How does the impact of alewife populations on prey feed back to impact alewife size and gill raker number under several alternative scenarios? (2) Will the trajectory of the landlocked alewives' morphological evolution change after 150-300 years in freshwater? Over the first 250 years, the alewives' numbers of gill-rakers only increased when reductions in their body size substantially improved their ability to forage for small prey. Additionally, alewives' gill

  17. TRIBUTE: In Goethe's Wake: Marvalee Wake's conceptual contributions to the development and evolution of a science of morphology.

    PubMed

    Hall, Brian K

    2005-01-01

    De-crying the typological approach in much of the teaching of morphology, from the outset of her career Marvalee Wake advocated a synthetic, mechanistic and pluralistic developmental and evolutionary morphology. In this short essay, I do not evaluate Wake's contributions to our knowledge of the morphology of caecilians, nor her contributions to viviparity, both of which are seminal and substantive, nor do I examine her role as mentor, supervisor and collaborator, but assess her broader conceptual contributions to the development and evolution of morphology as a science. One of the earliest morphologists to take on board the concept of constraint, she viewed constraint explicitly in relation to adaptation and diversity. Her approach to morphology as a science was hierarchical - measure form and function in a phylogenetic context; seek explanations at developmental, functional, ecological, evolutionary levels of the biological hierarchy; integrate those explanations to the other levels. The explanatory power of morphology thus practised allows morphology to inform evolutionary biology and evolutionary theory, and paves the way for the integrative biology Wake has long championed.

  18. Using meta-differential evolution to enhance a calculation of a continuous blood glucose level.

    PubMed

    Koutny, Tomas

    2016-09-01

    We developed a new model of glucose dynamics. The model calculates blood glucose level as a function of transcapillary glucose transport. In previous studies, we validated the model with animal experiments. We used analytical method to determine model parameters. In this study, we validate the model with subjects with type 1 diabetes. In addition, we combine the analytic method with meta-differential evolution. To validate the model with human patients, we obtained a data set of type 1 diabetes study that was coordinated by Jaeb Center for Health Research. We calculated a continuous blood glucose level from continuously measured interstitial fluid glucose level. We used 6 different scenarios to ensure robust validation of the calculation. Over 96% of calculated blood glucose levels fit A+B zones of the Clarke Error Grid. No data set required any correction of model parameters during the time course of measuring. We successfully verified the possibility of calculating a continuous blood glucose level of subjects with type 1 diabetes. This study signals a successful transition of our research from an animal experiment to a human patient. Researchers can test our model with their data on-line at https://diabetes.zcu.cz. Copyright © 2016 The Author. Published by Elsevier Ireland Ltd.. All rights reserved.

  19. Martian groundwater outflow processes and morphology; reconstruction of paleohydrology using landscape evolution experiments

    NASA Astrophysics Data System (ADS)

    Marra, Wouter A.; Kleinhans, Maarten G.; de Jong, Steven M.; Hauber, Ernst

    2015-04-01

    Groundwater played an important role in the aqueous history of Mars but how, how long, and with what intensity remains unclear. Two types of fluvial landforms related to groundwater emergence are the giant outflow channels and the disputed sapping valleys. Understanding of the relation between subsurface and surface processes is slim, which limits inferences of climate implications from the observable morphology. We aim to increase this understanding and to apply this knowledge to Martian cases to reconstruct former hydrological conditions. Using a series of sandbox experiments, we investigated formative processes of valleys formed by groundwater. These experiments showed the morphology and processes of groundwater sapping and pressurized groundwater outflow (see Marra et al, 2014, Icarus doi:10.1016/j.icarus.2013.12.026) and further focused on landscape characteristics of groundwater sapping sourced locally or distally, and identified various processes linked to pressurized groundwater outbursts including the formation and eruption of subsurface reservoirs that can explain the high reconstructed discharges of large outflow valleys (see Marra et al, 2014, JGR doi:10.1002/2014JE004701). Based on the experiments, we identified novel morphological indicators for groundwater outflow in the outflow channel region of Lunae and Ophir Plana. These, in combination with the classic outflow features, show a clear trend of increasing outflow magnitude with decreasing elevation to the northeast, indicating a head from a common aquifer. The putative aquifer we identified was likely recharged by infiltration over the Tharsis region. Outflow channel activity peaked in the Hesperian, but continued in the Amazonian at a lower magnitude. Our results agree well with groundwater recharge in the Noachian and Early Hesperian, corresponding to a climate that sustained an active hydrological cycle. Furthermore, the large outflow events require a confining layer to build up enough pressure

  20. Monitoring the morphological evolution of complex glaciers: the Planpincieux case-study (Mont Blanc - Aosta Valley)

    NASA Astrophysics Data System (ADS)

    Giordan, Daniele; Manconi, Andrea; Allasia, Paolo; Curtaz, Michèle; Vagliasindi, Marco; Bertolo, Davide

    2014-05-01

    The Planpincieux Glacier (PG) is located on the Italian side of the Grandes Jorasses massif, Mont Blanc, Italy. This area is historically known for the occasional activation of ice falls events from the frontal part of the glacier. The PG is a so-called "polythermal" glacier, meaning that the liquid water present at contact between ice and the bedrock in the lower part of the glacier itself plays an important role in the glacier dynamics, and ice falls might occur in a sudden and unpredictable fashion. In this scenario, the accurate analysis of the glacier morphological evolution assumes a crucial role. Starting from 2012, within the framework of the regional plan for glaciers risk detection, a research project was set up to study the Planpincieux Glacier and evaluate the potential hazard concerning the possible activation of large ice or ice-snow avalanches triggered by icefall events in that area. Dynamics of such avalanches, as well as potentially endangered areas, have been evaluated in an expertise by the SLF Institute. Therefore, the availability of both qualitative information and quantitative measurements relevant to the glacier movements represented a primary goal. After a careful evaluation of several possible technical solutions to achieve displacement monitoring also based on the results of a preliminary study managed by the ETH Zurich (prof. M. Funk), we installed an experimental monitoring station located on the opposite side of the valley, at the top of the Mt. de la Saxe, ca. 3.5 km away from the main target. The monitoring station is composed of two modules, including: (i) a surveillance module, based on a medium resolution digital camera, observing large part of the slope; (ii) a photogrammetric module, based on a high resolution digital camera equipped with a 300mm optical zoom, pointed on the Planpincieux glacier front. At this stage, our analyses focused mainly on the qualitative assessment and recognition of impulsive phenomena affecting the

  1. Diamond Morphology: Link to Metasomatic Events in the Mantle or Record of Evolution of Kimberlitic Fluid?

    NASA Astrophysics Data System (ADS)

    Fedortchouk, Y.

    2009-05-01

    Morphology and surface features on diamonds show tremendous variation even within a single kimberlite body reflecting a complex history of growth and dissolution. But does the diamond surface record the conditions in the several mantle sources sampled by the rising kimberlite magma, or evolution of the fluid system in the kimberlite magma itself? To address this question I revised morphological classification of diamonds from several kimberlite pipes from EKATI Mine property, N.W.T., Canada. The novelty of the approach, compared to the existing classifications, is in utilizing a random but large dataset of diamond dissolution experiments accumulated by several researchers including myself. These experiments have shown that similar forms (e.g. trigon etch pits) can be produced in a variety of conditions and environments, whereas their shape and size would depend on the reactant. Similarly, different types of resorption features always form together and can be used for deriving the composition of oxidizing fluid. The proposed classification method is focused on relating various types of diamond surfaces to the composition and conditions of oxidizing media. The study uses parcels of micro-and macro-diamonds (total of 125 carats) from Misery, Grizzly, Leslie and Koala kimberlites, EKATI Mine property, Northwest Territories, Canada. Only octahedron and hexoctahedron diamonds were selected (total ~600 stones). Diamond surfaces were studied using an optical and Field- Emission Scanning Electron Microscope to define resorption elements - simple surface features. These elements were identified for each of the three categories: 1) present on octahedral faces (well-preserved diamonds), 2) present on hexoctahedral faces (rounded resorbed diamonds), and 3) frosting (micro-features). Consistent associations of several elements define Resorption Types of diamonds, which form during a single oxidizing event. We further relate these types to the composition of the C-H-O + chlorides

  2. Synthesis and morphological evolution of inorganic nanoparticles in gas phase flames

    NASA Astrophysics Data System (ADS)

    Xing, Yangchuan

    The formation and growth of flame-generated inorganic nanoparticles at low particle volume fractions (ca. 0.1 ppm) were investigated experimentally. Alumina nanoparticles were synthesized from precursor trimethylaluminum in a well-defined/characterized laminar counterflow diffusion flame (CHsb4/Nsb2/Osb2) reactor. Experimental techniques included spatially resolved angle-dependent/polarized laser light scattering and thermophoretic sampling/TEM image analysis. Local aggregate morphology was characterized via. spherule size, aggregate size and aggregate fractal structure. The effects of flame temperature, precursor concentration and flame strain rate were also systematically studied. Higher precursor concentration resulted in larger spherule diameters, found to be in the range 13-26 nm under current experimental conditions. Nominal strain rate, varied from 11 to 20 ssp{-1}, was found to have a negligible effect on spherule size. Aggregate structure was characterized by fractal dimension, Dsb{f}, found by image analysis to be 1.55 ± 0.03 for aggregates without apparent restructuring (early in the flames). Dsb{f} approached 3 after the flame sheet due to the collapse of aggregates. Alumina aggregate morphological evolution was tracked using both TEM-image analysis and laser light scattering. Significant aggregate shrinkage due to high temperature sintering was found near the flame sheet, with a gyration-radius shrinkage rate of about 16 mum/s at temperatures near 2000 K. A theoretical approach was also developed to model spherule growth (and, hence, specific surface area) in such aerosol processes. This formulation, based on the competition between coalescence and Brownian coagulation rates, incorporates the surface melting concept into the surface self-diffusion coefficient, now dependent on particle size via. curvature and surface energy. This approach was used to calculate spherule growth in heating (and cooling) environments. Predicted spherule sizes show

  3. Meso-Cenozoic morphological evolution of NW Africa, the case of the Tuareg swell.

    NASA Astrophysics Data System (ADS)

    Rougier, S.; Gautheron, C.; Barbarand, J.; Missenard, Y.; Zeyen, H.; Pinna, R.; Bonin, B.; Liégeois, J.-P.; Ouabadi, A.; Frizon de Lamotte, D.

    2012-04-01

    The continental crust of Africa, largely built during the Pan-African orogeny (late Neoproterozoic) has acquired in its northern part, during Paleozoic times, an arch and basin morphology. Meso-Cenozoic large scale topographic anomalies, associated to Cenozoic intraplate volcanism, such as Hoggar, Tibesti or Darfur domes, are superimposed to these structures. Precise ages of swells, as well as their relations with Paleozoic arch and basin morphology of the area, remain controversial. The aim of this study, focussed on the Hoggar dome, in southern Algeria, is to produce new constraints on the Post-Paleozoic evolution of this region. The Tuareg shield, from which Hoggar is the main central part and Aïr a SE extension, forms a topographic high reaching an altitude >2900m (Mt Tahat, Atakor district), exposing Precambrian rocks over 500000km2. While presumed Cretaceous sedimentary remnants suggest a possible stage of slightly positive topography during the Mesozoic, current high topography is emphasized by Cenozoic volcanic formations, mostly basaltic in composition. We present new low-temperature thermochronology data, with apatite fission track and (U-Th)/He ages on Hoggar and Aïr substratum. We combine these results with thermal, gravimetric and isostatic two-dimensional lithosphere-scale geophysical models, following the method of Zeyen & Fernandez (1994). Preliminary thermochronological results present ages from 99+-6 to 166+-10 Myr for AFT, and AHe from 10 to 300 Myr. Thermal simulations of these data suggest that currently outcropping Precambrian Hoggar basement could have experienced temperatures of approximately 80°C between Upper Cretaceous and Eocene. We propose that these elevated temperatures are related to burial beneath a 1 to 3 km thick sedimentary cover, depending on thermal gradient. The base of this sedimentary cover could correspond to the poorly described Upper Cretaceous remnants, currently uplifted up to 1450 m. These results are in agreement

  4. Evolution of the Karyopherin-β Family of Nucleocytoplasmic Transport Factors; Ancient Origins and Continued Specialization

    PubMed Central

    O'Reilly, Amanda J.; Dacks, Joel B.; Field, Mark C.

    2011-01-01

    Background Macromolecular transport across the nuclear envelope (NE) is achieved through nuclear pore complexes (NPCs) and requires karyopherin-βs (KAP-βs), a family of soluble receptors, for recognition of embedded transport signals within cargo. We recently demonstrated, through proteomic analysis of trypanosomes, that NPC architecture is likely highly conserved across the Eukaryota, which in turn suggests conservation of the transport mechanisms. To determine if KAP-β diversity was similarly established early in eukaryotic evolution or if it was subsequently layered onto a conserved NPC, we chose to identify KAP-β sequences in a diverse range of eukaryotes and to investigate their evolutionary history. Results Thirty six predicted proteomes were scanned for candidate KAP-β family members. These resulting sequences were resolved into fifteen KAP-β subfamilies which, due to broad supergroup representation, were most likely represented in the last eukaryotic common ancestor (LECA). Candidate members of each KAP-β subfamily were found in all eukaryotic supergroups, except XPO6, which is absent from Archaeplastida. Phylogenetic reconstruction revealed the likely evolutionary relationships between these different subfamilies. Many species contain more than one representative of each KAP-β subfamily; many duplications are apparently taxon-specific but others result from duplications occurring earlier in eukaryotic history. Conclusions At least fifteen KAP-β subfamilies were established early in eukaryote evolution and likely before the LECA. In addition we identified expansions at multiple stages within eukaryote evolution, including a multicellular plant-specific KAP-β, together with frequent secondary losses. Taken with evidence for early establishment of NPC architecture, these data demonstrate that multiple pathways for nucleocytoplasmic transport were established prior to the radiation of modern eukaryotes but that selective pressure continues to sculpt

  5. Effect of Austenite Deformation and Continuous Cooling on Microstructure Evolution in a Pipeline Steel

    NASA Astrophysics Data System (ADS)

    Zhao, H.; Gray, J. M.; Palmiere, E. J.

    The effect of austenite deformation and continuous cooling on the evolution of microstructure in a high temperature processing (HTP) concept pipeline steel was investigated in this research. It was found that without austenite deformation, the transformed microstructure consists of blocky quasi-polygonal ferrite (QF) grains and parallel bainitic ferrite (BF) laths at a cooling rate of 0.5 °C/s. With increased cooling rates, the fraction of BF laths is raised and the microstructure reaches full BF at cooling rates of 5°C/s and higher. After austenite deformation, BF laths disappear at low cooling rates of 0.5 1°C/s and QF is the dominant phase. At a higher cooling rate of 5°C/s, the fraction of QF is reduced and acicualr ferrite (AF) becomes the main phase surrounded by QF grains. Increasing the cooling rate further, QF disappears and fthe raction of BF rises, finally leading to a BF dominant microstructure at a cooling rate of 50°C/s. Factors influencing these microstructure evolution characteristics were discussed, including segregation of niobium atoms at austenite grain boundary and the introduction of intragranular nucleation sites by deformation.

  6. Organic tissues in rotating bioreactors: fluid-mechanical aspects, dynamic growth models, and morphological evolution.

    PubMed

    Lappa, Marcello

    2003-12-05

    This analysis deals with advances in tissue-engineering models and computational methods as well as with novel results on the relative importance of "controlling forces" in the growth of organic constructs. Specifically, attention is focused on the rotary culture system, because this technique has proven to be the most practical solution for providing a suitable culture environment supporting three-dimensional tissue assemblies. From a numerical point of view, the growing biological specimen gives rise to a moving boundary problem. A "volume-of-fraction" method is specifically and carefully developed according to the complex properties and mechanisms of organic tissue growth and, in particular, taking into account the sensitivity of the construct/liquid interface to the effect of the fluid-dynamic shear stress (it induces changes in tissue metabolism and function that elicit a physiological response from the biological cells). The present study uses available data to introduce a set of growth models. The surface conditions are coupled to the transfer of mass and momentum at the specimen/culture-medium interface and lead to the introduction of a group of differential equations for the nutrient concentration around the sample and for the evolution of tissue mass displacement. The models are then used to show how the proposed surface kinetic laws can predict (through sophisticated numerical simulations) many of the known characteristics of biological tissues grown using rotating-wall perfused vessel bioreactors. This procedure provides a validation of the models and associated numerical method and also gives insight into the mechanisms of the phenomena. The interplay between the increasing size of the tissue and the structure of the convective field is investigated. It is shown that this interaction is essential in determining the time evolution of the tissue shape. The size of the growing specimen plays a critical role with regard to the intensity of convection and

  7. Photosynthetic efficiency and oxygen evolution of Chlamydomonas reinhardtii under continuous and flashing light.

    PubMed

    Vejrazka, Carsten; Janssen, Marcel; Benvenuti, Giulia; Streefland, Mathieu; Wijffels, René H

    2013-02-01

    As a result of mixing and light attenuation in a photobioreactor (PBR), microalgae experience light/dark (L/D) cycles that can enhance PBR efficiency. One parameter which characterizes L/D cycles is the duty cycle; it determines the time fraction algae spend in the light. The objective of this study was to determine the influence of different duty cycles on oxygen yield on absorbed light energy and photosynthetic oxygen evolution. Net oxygen evolution of Chlamydomonas reinhardtii was measured for four duty cycles (0.05, 0.1, 0.2, and 0.5) in a biological oxygen monitor (BOM). Oversaturating light flashes were applied in a square-wave fashion with four flash frequencies (5, 10, 50, and 100 Hz). Algae were precultivated in a turbidostat and acclimated to a low photon flux density (PFD). A photosynthesis-irradiance (PI) curve was measured under continuous illumination and used to calculate the net oxygen yield, which was maximal between a PFD of 100 and 200 μmol m⁻² s⁻¹. Net oxygen yield under flashing light was duty cycle-dependent: the highest yield was observed at a duty cycle of 0.1 (i.e., time-averaged PFD of 115 μmol m⁻² s⁻¹). At lower duty cycles, maintenance respiration reduced net oxygen yield. At higher duty cycles, photon absorption rate exceeded the maximal photon utilization rate, and, as a result, surplus light energy was dissipated which led to a reduction in net oxygen yield. This behavior was identical with the observation under continuous light. Based on these data, the optimal balance between oxygen yield and production rate can be determined to maximize PBR productivity.

  8. Dynamical patterning modules: physico-genetic determinants of morphological development and evolution

    NASA Astrophysics Data System (ADS)

    Newman, Stuart A.; Bhat, Ramray

    2008-03-01

    The shapes and forms of multicellular organisms arise by the generation of new cell states and types and changes in the numbers and rearrangements of the various kinds of cells. While morphogenesis and pattern formation in all animal species are widely recognized to be mediated by the gene products of an evolutionarily conserved 'developmental-genetic toolkit', the link between these molecular players and the physics underlying these processes has been generally ignored. This paper introduces the concept of 'dynamical patterning modules' (DPMs), units consisting of one or more products of the 'toolkit' genes that mobilize physical processes characteristic of chemically and mechanically excitable meso- to macroscopic systems such as cell aggregates: cohesion, viscoelasticity, diffusion, spatiotemporal heterogeneity based on lateral inhibition and multistable and oscillatory dynamics. We suggest that ancient toolkit gene products, most predating the emergence of multicellularity, assumed novel morphogenetic functions due to change in the scale and context inherent to multicellularity. We show that DPMs, acting individually and in concert with each other, constitute a 'pattern language' capable of generating all metazoan body plans and organ forms. The physical dimension of developmental causation implies that multicellular forms during the explosive radiation of animal body plans in the middle Cambrian, approximately 530 million years ago, could have explored an extensive morphospace without concomitant genotypic change or selection for adaptation. The morphologically plastic body plans and organ forms generated by DPMs, and their ontogenetic trajectories, would subsequently have been stabilized and consolidated by natural selection and genetic drift. This perspective also solves the apparent 'molecular homology-analogy paradox', whereby widely divergent modern animal types utilize the same molecular toolkit during development by proposing, in contrast to the Neo

  9. Connections between morphological and mechanical evolution during galvanic corrosion of micromachined polycrystalline and monocrystalline silicon

    NASA Astrophysics Data System (ADS)

    Miller, David C.; Boyce, Brad L.; Kotula, Paul G.; Stoldt, Conrad R.

    2008-06-01

    Many microsystems fabrication technologies currently employ a metallic overlayer, such as gold, in electrical contact with silicon structural layers. During postprocessing in hydrofluoric-based acid solutions, a galvanic cell is created between the silicon and the metallic layer. Micromachined tensile specimens reveal that such etching in the presence of a galvanic cell can cause a catastrophic reduction in the tensile strength and apparent modulus of silicon. Detailed failure analysis was also used to compare fractured corroded Si to otherwise identical reference specimens via surface based (electron and scanning probe) microscopy as well as cross-section based structural- and composition-characterization techniques. For both polycrystalline and single-crystal silicon, galvanic corrosion can result in a thick corroded surface layer created via porous silicon formation, and/or generalized material removal depending on the etch chemistry and conditions. Under certain etching conditions, the porous silicon formation process results in cavity formation as well as preferential grain-boundary attack leading to intergranular fracture. The nature and severity of corrosion damage are shown to be influenced by the surface wetting characteristics of the etch chemistry, with poor wetting resulting in localized attack facilitated by the microstructure and good wetting resulting in generalized attack. The measured stiffness of the tensile specimens can be used to determine the effective modulus and porosity of the corroded surface layer. Extending beyond previous investigations, the present work examines the quantitative connection between the choice of chemical etchant, the corresponding damage morphology, and the resulting degradation in strength and apparent modulus. The present work also uniquely identifies important differences in polycrystalline and single-crystal Si based on their disparate damage evolution and related mechanical performance.

  10. Co-extrusion of biocompatible polymers for scaffolds with co-continuous morphology.

    PubMed

    Washburn, Newell R; Simon, Carl G; Tona, Alessandro; Elgendy, Hoda M; Karim, Alamgir; Amis, Eric J

    2002-04-01

    A methodology for the preparation of porous scaffolds for tissue engineering using co-extrusion is presented. Poly(epsilon-caprolactone) is blended with poly(ethylene oxide) in a twinscrew extruder to form a two-phase material with micron-sized domains. Selective dissolution of the poly(ethylene oxide) with water results in a porous material. A range of blend volume fractions results in co-continuous networks of polymer and void spaces. Annealing studies demonstrate that the characteristic pore size may be increased to larger than 100 microm. The mechanical properties of the scaffolds are characterized by a compressive modulus on the order of 1 MPa at low strains but displaying a marked strain-dependence. The results of osteoblast seeding suggest it is possible to use co-extrusion to prepare polymer scaffolds without the introduction of toxic contaminants. Polymer co-extrusion is amenable to both laboratory- and industrial-scale production of scaffolds for tissue engineering and only requires rheological characterization of the blend components. This method leads to scaffolds that have continuous void space and controlled characteristic length scales without the use of potentially toxic organic solvents.

  11. On the granulosa cells of ovarian follicles. II. Identification of different morphological patterns of granulosa cells in evolutive follicles.

    PubMed

    Zecchi, S; Repice, F; Balboni, G C

    1981-03-15

    An attempt has been made for identifying different types of granulosa cells in the wall of cavitary ovarian follicles. Human, porcine and rat ovaries have been examined at the light and electron microscopes. Some smears of granulosa cells as well as human foetal ovaries have been also studied. These preliminary results seem to confirm that in the granulosa layer of evolutive follicles the cells may present some different morphological and histochemical features.

  12. Diurnal Evolution of Aerosol Optical Properties and Morphology at Pico Tres Padres: A Phenomenological Analysis

    NASA Astrophysics Data System (ADS)

    Mazzoleni, C.; Chakrabarty, R.; Dubey, M. K.; Moosmuller, H.; Chylek, P.; Onasch, T. B.; Herndon, S.; Zavala, M.; Kolb, C.

    2007-05-01

    Aerosol optical properties affect planetary radiative balance and therefore climate. The optical properties are related to chemical composition, size distribution, and morphology, which also have implications for human health and environmental degradation. During the MILAGRO field campaign, we measured ensemble aerosol absorption and angle-integrated scattering in Mexico City. These measurements were performed using the Los Alamos aerosol photoacoustic instrument with an integrated nephelometer (LAPA) operating at 781 nm. The LAPA was mounted on-board the Aerodyne Inc. mobile laboratory, which hosted a wide variety of gaseous and aerosol instruments. During the campaign, the Aerodyne mobile laboratory was moved to different sites, capturing the influence of spatial and temporal parameters including location, aging, elevation, and sources on ambient air pollution. The LAPA operated almost continuously between the 3rd and the 28th of March 2006. During the same period we collected ambient aerosols on more than 100 Nuclepore filters for scanning electron microscopy (SEM) analysis. Filter samples were collected during specific pollution events and different times of the day. Subsequently, SEM images of selected filters were taken to study particle morphology. The elemental composition of a few individual particles was also qualitatively assessed by energy dispersive X-ray spectroscopy. Between March 7th and 19th the laboratory was sampling air close to the top of the Pico Tres Padres, a ~3000 m high mountain on the north side of the Mexico City. Daily changes of aerosol loading and pollutant concentrations followed the expected diurnal variations of the boundary layer height. Here we report a preliminary analysis of aerosol absorption, scattering, and morphology at Pico Tres Padres for three specific days (9th, 11th and 12th of March 2006). The single scattering albedo (ratio of scattering to total extinction) during these three days showed a characteristic drop in the

  13. Recovery of glomerular morphology in the olfactory bulb of young mice after disruption caused by continuous odorant exposure.

    PubMed

    Monjaraz-Fuentes, Fernanda; Millán-Adalco, Diana; Palomero-Rivero, Marcela; Hudson, Robyn; Drucker-Colín, René

    2017-09-01

    Olfactory glomeruli are the first synaptic site of the olfactory system and are formed by the convergence of axons of the same type of sensory neurons onto the olfactory bulbs of the brain. Although the anatomical organization of glomeruli is conserved across species, their particular role in olfactory processing remains uncertain. We studied the composition and maintenance of glomeruli by means of a genetic model, mI7-IRES-tauGFP knock-in young mice, where the cytoskeleton of sensory neurons expressing the mI7 olfactory receptor is tagged with green fluorescent protein. Animals were continuously exposed to heptaldehyde, a cognate ligand of the mI7 receptor, from postnatal days 5-10. We hypothesized that continuous odorant exposure will induce changes in glomerular morphology, and that this can be recovered if the normal odorant environment is reestablished within the early postnatal period. We assessed changes in the distribution of mI7 axons in glomerular morphology, as well as possible changes in the number of the mI7 olfactory sensory neurons. Following odorant exposure the well-defined convergence of mI7 fibers into a single glomerulus was disrupted, producing numerous neighboring glomeruli partially innervated by mI7 fibers. After the normal odor environment was reestablished the number of glomeruli partially innervated by mI7 fibers decreased significantly. Moreover, we found that multiple supernumerary mI7 glomeruli were formed. Our results confirm the significant role of sensory input in glomerular formation and maintenance. Additionally, we show that the developing olfactory system actively maintains glomerular morphology, suggesting the importance of this for olfactory processing. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Jet Morphology and Coma Analysis of 103P/Hartley 2: Temporal Evolution and Interspecies Comparisons

    NASA Astrophysics Data System (ADS)

    Vaughan, Charles M.; Pierce, Donna M.; Cochran, Anita L.

    2014-11-01

    We present our results on an expanded study of the jet and coma behavior of comet 103P/Hartley 2 (a continuation of original results presented in Vaughan et al. 2012). We observed Hartley 2 pre- and post-perihelion in 2010 using the George and Cynthia Mitchell Spectrograph on the 2.7 m telescope at McDonald Observatory. Data for CN, C2, C3, CH, and NH2 were collected over six nights from 15 July to 10 November. The spectral data were used to create coma maps for each of the observed species, and the maps were processed using radial and azimuthal division techniques to create enhanced images of the coma to examine coma morphological features. To compliment the ongoing investigation of Hartley 2 as studied by the EPOXI flyby mission, we use findings from other researchers (Belton et al. 2012; Syal et al. 2012; Thomas et al. 2012) to identify dust jet locations on the nucleus and compare the computed jet directions to the radical densities in the coma at our observation times. We also calculate production rates and mixing ratios with water for suspected parent species. This work was funded by the National Science Foundation Graduate K-12 (GK-12) STEM Fellows program (Award No. DGE-0947419) and NASA’s Planetary Atmospheres program (Award No. NNX14AH18G).

  15. How discordant morphological and molecular evolution among microorganisms can revise our notions of biodiversity on Earth.

    PubMed

    Lahr, Daniel J G; Laughinghouse, Haywood Dail; Oliverio, Angela M; Gao, Feng; Katz, Laura A

    2014-10-01

    Microscopy has revealed tremendous diversity of bacterial and eukaryotic forms. Recent molecular analyses show discordance in estimates of biodiversity between morphological and molecular analyses. Moreover, phylogenetic analyses of the diversity of microbial forms reveal evidence of convergence at scales as deep as interdomain: morphologies shared between bacteria and eukaryotes. Here, we highlight examples of such discordance, focusing on exemplary lineages such as testate amoebae, ciliates, and cyanobacteria. These have long histories of morphological study, enabling deeper analyses on both the molecular and morphological sides. We discuss examples in two main categories: (i) morphologically identical (or highly similar) individuals that are genetically distinct and (ii) morphologically distinct individuals that are genetically the same. We argue that hypotheses about discordance can be tested using the concept of neutral morphologies, or more broadly neutral phenotypes, as a null hypothesis.

  16. Morphological Analysis of Apo Volcanic Complex in Southern Mindanao, Philippines: implications on volcano-tectonic evolution of different volcanic units

    NASA Astrophysics Data System (ADS)

    Herrero, T. M. L.; van Wyk de Vries, B.; Lagmay, A. M. A.; Eco, R. C.

    2015-12-01

    The Apo Volcanic Complex (AVC) is one of the largest volcanic centers in the Philippines, located in the southern island of Mindanao. It is composed of four edifices and several smaller cones. The youngest volcanic unit, the Apo Dome, is the highest elevation in the Philippines. This unit is classified as potentially active, whereas other units, Talomo, Sibulan and Kitubod, are inactive. The study gives insight to the construction and deformation history of the volcanic units and imparts foresight to subsequent events that can affect populated areas. A morphological analysis integrating high-resolution digital terrain models and public domain satellite data and images was done to recognize and discriminate volcanic units and characterize volcano-tectonic features and processes. Morphological domains were defined based on surface textures, slope variation, degrees and controls of erosion, and lineament density and direction. This establishes the relative ages and extent of volcanic units as well as the volcano-tectonic evolution of the complex. Six edifice building events were recognized, two of which form the elevated base of Apo dome. The geodynamic setting of the region is imprinted in the volcanic units as five morphostructural lineaments. They reveal the changes in maximum regional stress through time such as the N-S extension found across the whole volcanic complex displaying the current stress regime. This has implications on the locality and propagation of geothermal activity, magma ascent, and edifice collapses. One main result of the compounded effects of inherited structures and current stress regime is the Sandawa Collapse Zone. This is a large valley formed by several collapses where NE-SW fractures propagate and the increasing lateral spreading by debuttressing continue to eat away the highest peak. The AVC is surrounded by the major metropolitan area of Davao City to the east and the cities of Kidapawan and Digos to the west and south, respectively

  17. Continuing evolution of equine influenza virus in Central Asia, 2007-2012.

    PubMed

    Karamendin, Kobey; Kydyrmanov, A; Kasymbekov, Y; Khan, E; Daulbayeva, K; Asanova, S; Zhumatov, K; Seidalina, A; Sayatov, M; Fereidouni, S R

    2014-09-01

    Equine influenza (EI) continues to be an important respiratory pathogen of horses worldwide. Since 2007 several outbreaks of EI have occurred in Central Asian countries, including Kazakhstan, western Mongolia, India and western China. Phylogenetic analysis showed that two H3N8 equine influenza virus (EIV) isolates from Kazakhstan, A/equine/Almaty/26/2007 and A/equine/South Kazakhstan/236/12, were related to Florida sublineage 2, with high similarity to EIVs circulating in the same period in neighbouring countries. New outbreaks of EI during 2011 and 2012 in Kazakhstan and other Central Asian countries were caused by viruses of the same lineage. Genetic characterization of the viruses showed formation of a small EIV cluster with specific genetic signatures and continued evolution of this lineage in Central Asia between 2007 and 2012. The main genetic changes were observed in hemagglutinin gene without any antigenic drift. Although no vaccination policy was carried out in Kazakhstan, application of Florida clade 2-based vaccines is recommended.

  18. The evolution of continuous learning of the structure of the environment.

    PubMed

    Kolodny, Oren; Edelman, Shimon; Lotem, Arnon

    2014-03-06

    Continuous, 'always on', learning of structure from a stream of data is studied mainly in the fields of machine learning or language acquisition, but its evolutionary roots may go back to the first organisms that were internally motivated to learn and represent their environment. Here, we study under what conditions such continuous learning (CL) may be more adaptive than simple reinforcement learning and examine how it could have evolved from the same basic associative elements. We use agent-based computer simulations to compare three learning strategies: simple reinforcement learning; reinforcement learning with chaining (RL-chain) and CL that applies the same associative mechanisms used by the other strategies, but also seeks statistical regularities in the relations among all items in the environment, regardless of the initial association with food. We show that a sufficiently structured environment favours the evolution of both RL-chain and CL and that CL outperforms the other strategies when food is relatively rare and the time for learning is limited. This advantage of internally motivated CL stems from its ability to capture statistical patterns in the environment even before they are associated with food, at which point they immediately become useful for planning.

  19. The evolution of continuous learning of the structure of the environment

    PubMed Central

    Kolodny, Oren; Edelman, Shimon; Lotem, Arnon

    2014-01-01

    Continuous, ‘always on’, learning of structure from a stream of data is studied mainly in the fields of machine learning or language acquisition, but its evolutionary roots may go back to the first organisms that were internally motivated to learn and represent their environment. Here, we study under what conditions such continuous learning (CL) may be more adaptive than simple reinforcement learning and examine how it could have evolved from the same basic associative elements. We use agent-based computer simulations to compare three learning strategies: simple reinforcement learning; reinforcement learning with chaining (RL-chain) and CL that applies the same associative mechanisms used by the other strategies, but also seeks statistical regularities in the relations among all items in the environment, regardless of the initial association with food. We show that a sufficiently structured environment favours the evolution of both RL-chain and CL and that CL outperforms the other strategies when food is relatively rare and the time for learning is limited. This advantage of internally motivated CL stems from its ability to capture statistical patterns in the environment even before they are associated with food, at which point they immediately become useful for planning. PMID:24402920

  20. Unpacking boxes: Integration of molecular, morphological and ecological approaches reveals extensive patterns of reticulate evolution in box eucalypts.

    PubMed

    Flores-Rentería, Lluvia; Rymer, Paul D; Riegler, Markus

    2017-03-01

    Reticulate evolution by hybridization is considered a common process shaping the evolution of many plant species, however, reticulation could also be due to incomplete lineage sorting in biodiverse systems. For our study we selected a group of closely related plant taxa with contrasting yet partially overlapping geographic distributions and different population sizes, to distinguish between reticulated patterns due to hybridization and incomplete lineage sorting. We predicted that sympatric or proximal populations of different species are more likely to have gene flow than geographically distant populations of the same widespread species. Furthermore, for species with restricted distributions, and therefore, small effective population sizes, we predicted complete lineage sorting. Eastern grey box eucalypt species (Eucalyptus supraspecies Moluccanae) provide an ideal system to explore patterns of reticulate evolution. They form a diverse, recently evolved and phylogenetically undefined group within Eucalyptus, with overlapping morphological features and hybridization in nature. We used a multi-faceted approach, combining analyses of chloroplast and nuclear DNA, as well as seedling morphology, flowering time and ecological spatial differentiation in order to test for species delimitation and reticulate evolution in this group. The multiple layers of results were consistent and suggested a lack of monophyly at different hierarchical levels due to multidirectional gene flow among several species, challenging species delimitation. Chloroplast and nuclear haplotypes were shared among different species in geographic proximity, consistent with hybridization zones. Furthermore, species with restricted distributions appeared better resolved due to lineage sorting in the absence of hybridization. We conclude that a combination of molecular, morphological and ecological approaches is required to disentangle patterns of reticulate evolution in the box eucalypts. Published by

  1. Influence of Harbor construction on downcoast morphological evolution: Santa Barbara, California

    USGS Publications Warehouse

    Revell, D.L.; Barnard, P.L.; Mustain, N.; Storlazzi, C.D.

    2008-01-01

    Sand impoundment caused by construction of the Santa Barbara Harbor in the 1920s, created an erosion wave that impacted downcoast Carpinteria Beach. Historic beach and shoreline changes were analyzed to understand continuing erosion using a combination of historic air photos, lidar, and physical measurements. The long-term analyses show a clockwise rotation with erosion of - 0.35 m/yr at the updrift end and accretion downdrift of 0.3 m/yr. Storm impacts measured before and after the 1982-83 and 1997-98 El Ni??o events show similar rotation patterns, providing evidence that El Ni??os may be driving coastal evolution. Differences in shoreline responses between El Nino events show that the erosion hotspot migrated downdrift following construction of a revetment after the 1982-83 storms. Seasonal field measurements in the winter show beach narrowing while sediment coarsen variably alongshore. The coarsest materials and erosion hotspot are co-located at the end of the revetment on the city beach. Copyright ASCE 2008.

  2. Controllable synthesis, morphology evolution and electrochemical properties of LiFePO4 cathode materials for Li-ion batteries.

    PubMed

    Song, Jianjun; Wang, Lin; Shao, Guangjie; Shi, Meiwu; Ma, Zhipeng; Wang, Guiling; Song, Wei; Liu, Shuang; Wang, Caixia

    2014-05-07

    Monodispersed LiFePO4 nanocrystals with diverse morphologies were successfully synthesized via a mild and controllable solvothermal approach with a mixture of ethylene glycol and oleic acid as the solvent. Morphology evolution of LiFePO4 nanoparticles from nanoplates to nanorods can be simply realized by varying the volume ratio of oleic acid to ethylene glycol. Moreover, the mechanism of competitive adsorption between ethylene glycol and oleic acid was proposed for the formation of different morphologies. Electrochemical measurements show that the LiFePO4/C nanorods have an initial discharge capacity of 155 mA h g(-1) at 0.5 C with a capacity retention of 80% at a high rate of 5 C, which confirms that LiFePO4/C nanorods exhibit excellent rate capability and cycling stability.

  3. Crystal Growth and Dissolution of Methylammonium Lead Iodide Perovskite in Sequential Deposition: Correlation between Morphology Evolution and Photovoltaic Performance.

    PubMed

    Hsieh, Tsung-Yu; Huang, Chi-Kai; Su, Tzu-Sen; Hong, Cheng-You; Wei, Tzu-Chien

    2017-03-15

    Crystal morphology and structure are important for improving the organic-inorganic lead halide perovskite semiconductor property in optoelectronic, electronic, and photovoltaic devices. In particular, crystal growth and dissolution are two major phenomena in determining the morphology of methylammonium lead iodide perovskite in the sequential deposition method for fabricating a perovskite solar cell. In this report, the effect of immersion time in the second step, i.e., methlyammonium iodide immersion in the morphological, structural, optical, and photovoltaic evolution, is extensively investigated. Supported by experimental evidence, a five-staged, time-dependent evolution of the morphology of methylammonium lead iodide perovskite crystals is established and is well connected to the photovoltaic performance. This result is beneficial for engineering optimal time for methylammonium iodide immersion and converging the solar cell performance in the sequential deposition route. Meanwhile, our result suggests that large, well-faceted methylammonium lead iodide perovskite single crystal may be incubated by solution process. This offers a low cost route for synthesizing perovskite single crystal.

  4. Ecology and caudal skeletal morphology in birds: the convergent evolution of pygostyle shape in underwater foraging taxa.

    PubMed

    Felice, Ryan N; O'Connor, Patrick M

    2014-01-01

    Birds exhibit a specialized tail that serves as an integral part of the flight apparatus, supplementing the role of the wings in facilitating high performance aerial locomotion. The evolution of this function for the tail contributed to the diversification of birds by allowing them to utilize a wider range of flight behaviors and thus exploit a greater range of ecological niches. The shape of the wings and the tail feathers influence the aerodynamic properties of a bird. Accordingly, taxa that habitually utilize different flight behaviors are characterized by different flight apparatus morphologies. This study explores whether differences in flight behavior are also associated with variation in caudal vertebra and pygostyle morphology. Details of the tail skeleton were characterized in 51 Aequornithes and Charadriiformes species. Free caudal vertebral morphology was measured using linear metrics. Variation in pygostyle morphology was characterized using Elliptical Fourier Analysis, a geometric morphometric method for the analysis of outline shapes. Each taxon was categorized based on flight style (flap, flap-glide, dynamic soar, etc.) and foraging style (aerial, terrestrial, plunge dive, etc.). Phylogenetic MANOVAs and Flexible Discriminant Analyses were used to test whether caudal skeletal morphology can be used to predict flight behavior. Foraging style groups differ significantly in pygostyle shape, and pygostyle shape predicts foraging style with less than 4% misclassification error. Four distinct lineages of underwater foraging birds exhibit an elongate, straight pygostyle, whereas aerial and terrestrial birds are characterized by a short, dorsally deflected pygostyle. Convergent evolution of a common pygostyle phenotype in diving birds suggests that this morphology is related to the mechanical demands of using the tail as a rudder during underwater foraging. Thus, distinct locomotor behaviors influence not only feather attributes but also the underlying

  5. Ecology and Caudal Skeletal Morphology in Birds: The Convergent Evolution of Pygostyle Shape in Underwater Foraging Taxa

    PubMed Central

    Felice, Ryan N.; O’Connor, Patrick M.

    2014-01-01

    Birds exhibit a specialized tail that serves as an integral part of the flight apparatus, supplementing the role of the wings in facilitating high performance aerial locomotion. The evolution of this function for the tail contributed to the diversification of birds by allowing them to utilize a wider range of flight behaviors and thus exploit a greater range of ecological niches. The shape of the wings and the tail feathers influence the aerodynamic properties of a bird. Accordingly, taxa that habitually utilize different flight behaviors are characterized by different flight apparatus morphologies. This study explores whether differences in flight behavior are also associated with variation in caudal vertebra and pygostyle morphology. Details of the tail skeleton were characterized in 51 Aequornithes and Charadriiformes species. Free caudal vertebral morphology was measured using linear metrics. Variation in pygostyle morphology was characterized using Elliptical Fourier Analysis, a geometric morphometric method for the analysis of outline shapes. Each taxon was categorized based on flight style (flap, flap-glide, dynamic soar, etc.) and foraging style (aerial, terrestrial, plunge dive, etc.). Phylogenetic MANOVAs and Flexible Discriminant Analyses were used to test whether caudal skeletal morphology can be used to predict flight behavior. Foraging style groups differ significantly in pygostyle shape, and pygostyle shape predicts foraging style with less than 4% misclassification error. Four distinct lineages of underwater foraging birds exhibit an elongate, straight pygostyle, whereas aerial and terrestrial birds are characterized by a short, dorsally deflected pygostyle. Convergent evolution of a common pygostyle phenotype in diving birds suggests that this morphology is related to the mechanical demands of using the tail as a rudder during underwater foraging. Thus, distinct locomotor behaviors influence not only feather attributes but also the underlying

  6. Testing for X-Ray–SZ Differences and Redshift Evolution in the X-Ray Morphology of Galaxy Clusters

    DOE PAGES

    Nurgaliev, D.; McDonald, M.; Benson, B. A.; ...

    2017-05-16

    We present a quantitative study of the X-ray morphology of galaxy clusters, as a function of their detection method and redshift. We analyze two separate samples of galaxy clusters: a sample of 36 clusters atmore » $$0.35\\lt z\\lt 0.9$$ selected in the X-ray with the ROSAT PSPC 400 deg(2) survey, and a sample of 90 clusters at $$0.25\\lt z\\lt 1.2$$ selected via the Sunyaev–Zel’dovich (SZ) effect with the South Pole Telescope. Clusters from both samples have similar-quality Chandra observations, which allow us to quantify their X-ray morphologies via two distinct methods: centroid shifts (w) and photon asymmetry ($${A}_{\\mathrm{phot}}$$). The latter technique provides nearly unbiased morphology estimates for clusters spanning a broad range of redshift and data quality. We further compare the X-ray morphologies of X-ray- and SZ-selected clusters with those of simulated clusters. We do not find a statistically significant difference in the measured X-ray morphology of X-ray and SZ-selected clusters over the redshift range probed by these samples, suggesting that the two are probing similar populations of clusters. We find that the X-ray morphologies of simulated clusters are statistically indistinguishable from those of X-ray- or SZ-selected clusters, implying that the most important physics for dictating the large-scale gas morphology (outside of the core) is well-approximated in these simulations. Finally, we find no statistically significant redshift evolution in the X-ray morphology (both for observed and simulated clusters), over the range of $$z\\sim 0.3$$ to $$z\\sim 1$$, seemingly in contradiction with the redshift-dependent halo merger rate predicted by simulations.« less

  7. Testing for X-Ray-SZ Differences and Redshift Evolution in the X-Ray Morphology of Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    Nurgaliev, D.; McDonald, M.; Benson, B. A.; Bleem, L.; Bocquet, S.; Forman, W. R.; Garmire, G. P.; Gupta, N.; Hlavacek-Larrondo, J.; Mohr, J. J.; Nagai, D.; Rapetti, D.; Stark, A. A.; Stubbs, C. W.; Vikhlinin, A.

    2017-05-01

    We present a quantitative study of the X-ray morphology of galaxy clusters, as a function of their detection method and redshift. We analyze two separate samples of galaxy clusters: a sample of 36 clusters at 0.35< z< 0.9 selected in the X-ray with the ROSAT PSPC 400 deg2 survey, and a sample of 90 clusters at 0.25< z< 1.2 selected via the Sunyaev-Zel’dovich (SZ) effect with the South Pole Telescope. Clusters from both samples have similar-quality Chandra observations, which allow us to quantify their X-ray morphologies via two distinct methods: centroid shifts (w) and photon asymmetry ({A}{phot}). The latter technique provides nearly unbiased morphology estimates for clusters spanning a broad range of redshift and data quality. We further compare the X-ray morphologies of X-ray- and SZ-selected clusters with those of simulated clusters. We do not find a statistically significant difference in the measured X-ray morphology of X-ray and SZ-selected clusters over the redshift range probed by these samples, suggesting that the two are probing similar populations of clusters. We find that the X-ray morphologies of simulated clusters are statistically indistinguishable from those of X-ray- or SZ-selected clusters, implying that the most important physics for dictating the large-scale gas morphology (outside of the core) is well-approximated in these simulations. Finally, we find no statistically significant redshift evolution in the X-ray morphology (both for observed and simulated clusters), over the range of z˜ 0.3 to z˜ 1, seemingly in contradiction with the redshift-dependent halo merger rate predicted by simulations.

  8. Morphologic evolution of the wilderness area breach at Fire Island, New York—2012–15

    USGS Publications Warehouse

    Hapke, Cheryl J.; Nelson, Timothy R.; Henderson, Rachel E.; Brenner, Owen T.; Miselis, Jennifer L.

    2017-09-18

    IntroductionHurricane Sandy, which made landfall on October 29, 2012, near Atlantic City, New Jersey, had a significant impact on the coastal system along the south shore of Long Island, New York. A record significant wave height of 9.6 meters (m) was measured at wave buoy 44025, approximately 48 kilometers offshore of Fire Island, New York. Surge and runup during the storm resulted in extensive beach and dune erosion and breaching of the Fire Island barrier island system at two locations, including a breach that formed within the Otis Pike Fire Island High Dune Wilderness area on the eastern side of Fire Island.The U.S. Geological Survey (USGS) has a long history of conducting morphologic change and processes research at Fire Island. One of the primary objectives of the current research effort is to understand the morphologic evolution of the barrier system on a variety of time scales (from storm scale to decade(s) to century). A number of studies that support the project objectives have been published. Prior to Hurricane Sandy, however, little information was available on specific storm-driven change in this region. The USGS received Hurricane Sandy supplemental funding (project GS2–2B: Linking Coastal Processes and Vulnerability, Fire Island, New York, Regional Study) to enhance existing research efforts at Fire Island. The existing research was greatly expanded to include inner continental shelf mapping and investigations of processes of inner shelf sediment transport; beach and dune response and recovery; and observation, analysis, and modeling of the newly formed breach in the Otis Pike High Dune Wilderness area, herein referred to as the wilderness breach. The breach formed at the site of Old Inlet, which was open from 1763 to 1825. The location of the initial island breaching does not directly correspond with topographic lows of the dunes, but instead the breach formed in the location of a cross-island boardwalk that was destroyed during Hurricane Sandy

  9. Functional and morphological evolution of remnant pancreas after resection for pancreatic adenocarcinoma.

    PubMed

    Park, Shin-Young; Park, Keun-Myoung; Shin, Woo Young; Choe, Yun-Mee; Hur, Yoon-Seok; Lee, Keon-Young; Ahn, Seung-Ik

    2017-07-01

    Functional and morphological evolution of remnant pancreas after resection for pancreatic adenocarcinoma is investigated.The medical records of 45 patients who had undergone radical resection for pancreatic adenocarcinoma from March 2010 to September 2013 were reviewed retrospectively. There were 34 patients in the pancreaticoduodenectomy (PD) group and 10 patients in the distal pancreatectomy (DP) group. One patient received total pancreatectomy. The endocrine function was measured using the glucose tolerance index (GTI), which was derived by dividing daily maximum serum glucose fluctuation by daily minimum glucose. Remnant pancreas volume (RPV) was estimated by considering pancreas body and tail as a column, and head as an ellipsoid, respectively. The pancreatic atrophic index (PAI) was defined as the ratio of pancreatic duct width to total pancreas width. Representative indices of each patient were compared before and after resection up to 2 years postoperatively.The area under receiver operating characteristic curve of GTI for diagnosing DM was 0.823 (95% confidence interval, 0.699-0.948, P < .001). Overall, GTI increased on postoperative day 1 (POD#1, mean ± standard deviation, 1.79 ± 1.40 vs preoperative, 1.02 ± 1.41; P = .001), and then decreased by day 7 (0.89 ± 1.16 vs POD#1, P < .001). In the PD group, the GTI on POD#14 became lower than preoperative (0.51 ± 0.38 vs 0.96 ± 1.37; P = .03). PAI in the PD group was significantly lower at 1 month postoperatively (0.22 ± 0.12 vs preoperative, 0.38 ± 0.18; P < .001). In the PD group, RPV was significantly lower at 1 month postoperatively (25.3 ± 18.3 cm vs preoperative, 32.4 ± 20.1 cm; P = .02), due to the resolution of pancreatic duct dilatation. RPV of the DP group showed no significant change. GTI was negatively related to RPV preoperatively (r = -0.317, P = .04), but this correlation disappeared postoperatively (r = -0

  10. Processing temperature driven morphological evolution of ZnO nanostructures prepared by electro-exploding wire technique

    NASA Astrophysics Data System (ADS)

    Kumar, Lalit; Medwal, Rohit; Sen, P.; Annapoorni, S.

    2014-03-01

    This article presents an effective approach for the synthesis of ZnO nanoparticles with desired morphology via an environmentally benevolent electro-exploding wire (EEW) technique. In this process, ZnO nanoparticles evolve through the plasma generated from the parent Zn metal. Compared to other typical chemical methods, electro-exploding wire technique is a simple and economical technique that normally operates in water or organic liquids under ambient conditions. The effect of different processing temperatures in the range (5-80 °C), on the morphology of ZnO nanoparticles is clearly demonstrated. At 5 °C, nanoparticles with spherical morphology are observed. However, elliptical morphology is observed at room temperature and multipod nanorods at 50 °C and 80 °C. The evolution of ZnO phase is investigated with the help of time dependent UV-vis absorption and photoluminescence (PL) studies. The mechanism of formation and different morphologies of ZnO nanoparticles formed are also proposed.

  11. Dual lattice model of the evolution of facultative symbiosis with continuous Prisoner's Dilemma game.

    PubMed

    Ezoe, Hideo

    2009-08-21

    Mutualism is ubiquitous in nature and is thought to have played a key role in the history of life. However, how mutualism could evolve despite being prone to unilateral exploitation is a puzzling question in evolutionary ecology. Some theoretical studies have shown that spatial structure of habitat can facilitate the emergence and maintenance of mutualism. However, they are based on the simple assumption that the trait in question is discrete: each individual is either a mutualist or a non-mutualist. In this article I develop a simple simulation model of coevolution of facultative symbiosis using a one-shot continuous Prisoner's Dilemma game to investigate the evolutionary dynamics of mutualism between two species. In this model I assume continuous traits for both species from -1 (fully deceptive) to 1 (fully cooperative). The habitat has a dual-lattice structure, each layer is inhabited by one species. Interspecific interaction is restricted between two corresponding sites of the two layers. Without limitation on the magnitude of a single mutation, I find that mutualism can arise and persist when the intrinsic reproduction rate is low (but is above a threshold) and the benefit/cost ratio of the cooperative strategy is large, which is consistent with Yamamura et al. [2004. Evolution of mutualism through spatial effects. J. Theor. Biol. 226, 421-428]. In these cases, extreme antagonism often evolves starting from a neutral population that seems nearly stable, but once mutualism arises, the cooperative individuals quickly increase and both the populations eventually become mutualistic on average, although they are polymorphic. However, when the effect of a single mutation was limited to be small, extreme antagonism is much likely to dominate unless the intrinsic reproduction rate is low. When only one species is allowed to evolve, mutualism arises when the initial strategy of the other species is cooperative. Otherwise, excessive deception evolves in the former, and

  12. How discordant morphological and molecular evolution among microorganisms can revise our notions of biodiversity on earth

    PubMed Central

    Lahr, Daniel J. G.; Laughinghouse, H. Dail; Oliverio, Angela; Gao, Feng; Katz, Laura A.

    2014-01-01

    Microscopy has revealed a tremendous diversity of bacterial and eukaryotic forms. More recent molecular analyses show discordance in estimates of biodiversity based on morphological analyses. Moreover, phylogenetic analyses of the diversity of microbial forms have revealed evidence of convergence at scales as large as interdomain – i.e. convergent forms shared between bacteria and eukaryotes. Here, we highlight examples of such discordance, focusing on exemplary lineages such as testate amoebae, ciliates and cyanobacteria, which have long histories of morphological study. We discuss examples in two categories: 1) morphologically identical (or highly similar) individuals that are genetically distinct and 2) morphologically distinct individuals that are genetically distinct. We argue that hypotheses about discordance can be tested using the concept of neutral morphologies, or more broadly neutral phenotypes, as a null hypothesis. PMID:25156897

  13. Surface Evolution of Nano-Textured 4H–SiC Homoepitaxial Layers after High Temperature Treatments: Morphology Characterization and Graphene Growth

    PubMed Central

    Liu, Xingfang; Chen, Yu; Sun, Changzheng; Guan, Min; Zhang, Yang; Zhang, Feng; Sun, Guosheng; Zeng, Yiping

    2015-01-01

    Nano-textured 4H–SiC homoepitaxial layers (NSiCLs) were grown on 4H–SiC(0001) substrates using a low pressure chemical vapor deposition technique (LPCVD), and subsequently were subjected to high temperature treatments (HTTs) for investigation of their surface morphology evolution and graphene growth. It was found that continuously distributed nano-scale patterns formed on NSiCLs which were about submicrons in-plane and about 100 nanometers out-of-plane in size. After HTTs under vacuum, pattern sizes reduced, and the sizes of the remains were inversely proportional to the treatment time. Referring to Raman spectra, the establishment of multi-layer graphene (MLG) on NSiCL surfaces was observed. MLG with sp2 disorders was obtained from NSiCLs after a high temperature treatment under vacuum at 1700 K for two hours, while MLG without sp2 disorders was obtained under Ar atmosphere at 1900 K.

  14. Design by Nature in a Confined Flood Alleviation Scheme: Analysis of Form-Process Feedbacks and Morphological Evolution

    NASA Astrophysics Data System (ADS)

    Hetherington, D.; German, S.

    2015-12-01

    any conventional hard flood risk alleviation schemes have been detrimental to natural geomorphic processes and have damaged fluvial habitats. This is primarily due to the over-riding focus on managing flood risk by dictating channel capacity and hydraulics, which is not always conducive to the promotion of geomorphologically-healthy and diverse conditions that allow and promote natural processes. This paper explains how the principles of fluvial geomorphology had a large influence on the design, construction and post project monitoring of a flood alleviation scheme in Wales within a heavily confined river corridor that is designated as having special ecological status; without adversely impacting on flood risk. The challenge was to ensure that the physical habitat required by the important species (including Atlantic Salmon and Ranunculus) were retained and that the surrounding infrastructure and properties were not at risk of being undercut as a result of scour in the confined high energy channel. A geomorphologically-guided soft engineering approach was taken to promote local morphological diversity and flow diversity, utilising information from up and downstream natural river reaches, and general geomorphological principles. The proposed layout was modelled in 1D to understand the effects of the reprofiling on flows, allowing for a basic assessment of coarse sediment transport to be undertaken. A combination of terrestrial laser scanning and contact GPS surveys were used to monitor morphological evolution post construction, and to determine how morphological form adjusted post-construction within the confined channel. This paper will introduce the guiding principles of process restoration that influenced scheme design, and then report on the morphological evolution of the river channel that occurred as river processes produced and maintained a dynamic, diverse and healthy physical habitat. Keywords: Process Restoration; Form Process Feedbacks; Fluvial

  15. The joint evolution of traits and habitat: ontogenetic shifts in leaf morphology and wetland specialization in Lasthenia.

    PubMed

    Forrestel, Elisabeth J; Ackerly, David D; Emery, Nancy C

    2015-11-01

    The interplay between functional traits and habitat associations drives species' evolutionary responses to environmental heterogeneity, including processes such as adaptation, ecological speciation, and niche evolution. Seasonal variation is an aspect of the environment that varies across habitats, and could result in adaptive shifts in trait values across the life cycle of a plant. Here, we use phylogenetic comparative methods to evaluate the joint evolution of plant traits and habitat associations in Lasthenia (Asteraceae), a small clade of predominantly annual plants that have differentiated into an ecologically diverse range of habitats, including seasonal ephemeral wetlands known as vernal pools. Our results support the hypothesis that there is a link between the evolution of leaf morphology and the ecohydrological niche in Lasthenia, and, in the formation of aerenchyma (air space), differentiation between vernal pool and terrestrial taxa is fine-tuned to specific stages of plant ontogeny that reflects the evolution of heterophylly. Our findings demonstrate how the relationships between traits and habitat type can vary across the development of an organism, while highlighting a carefully considered comparative approach for examining correlated trait and niche evolution in a recently diversified and ecologically diverse plant clade. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  16. Clinical staging and electroencephalographic evolution of continuous spikes and waves during sleep.

    PubMed

    Fernández, Iván Sánchez; Peters, Jurriaan M; Hadjiloizou, Stavros; Prabhu, Sanjay P; Zarowski, Marcin; Stannard, Karen M; Takeoka, Masanori; Rotenberg, Alexander; Kothare, Sanjeev V; Loddenkemper, Tobias

    2012-07-01

    Currently, in continuous spikes and waves during sleep (CSWS) there is a lack of systematic assessments of the clinically relevant stages and the evolution of the electroencephalographic features. The aim of this study is to describe the evolution over time of clinical and electroencephalographic features in CSWS. We enrolled patients from our video-electroencephalography (EEG) monitoring unit with CSWS and with overnight EEG studies with at least one overnight assessment per year over a minimum period of 3 years. We studied clinical presentation and electroencephalographic features. We calculated the (1) spike-wave percentage (SWP) as the percentage of 1-s bins containing at least one spike-wave complex and (2) spike frequency (SF) as the number of spikes per 100 s. Nine children (six boys) met the inclusion criteria during a 15-year period. Seven (78%) had an abnormal development prior to the epilepsy onset, and in two (22%) seizures were the only presenting symptom. Median age at epilepsy onset was 2 years (range 2 days to 4 years), at neuropsychological regression 5.1 years (4-7.7 years), and at seizure freedom 8.6 years (6.5-11.4 years). Median duration and range of clinically relevant stages were as follows: dormant stage (birth-epilepsy onset median 2 years, range 2 days-4 years), prodromal stage (epilepsy onset-neuropsychological regression 3.9 years, range 0.9-7.7 years), acute stage (neuropsychological regression-seizure freedom 2.9 years, range 2.1-6.6 years), and residual stage (after seizure freedom). Seven patients (78%) had a structural lesion on neuroimaging. At last follow-up (median 11.4 years, range 7.2-20.3 years), eight patients (89%) were receiving antiepileptic treatment, and all patients had residual neurocognitive deficits. During the acute stage, SWP was <85% in 13 (42%) of 31 assessments, and after seizure freedom, 3 of 5 patients (60%) had SWP >85%. Evolution of electroencephalographic patterns included increasing

  17. Prediction of damage evolution in continuous fiber metal matrix composites subjected to fatigue loading

    SciTech Connect

    Allen, D.; Helms, K.; Lagoudas, D.

    1995-08-01

    A life prediction model is being developed by the authors for application to metal matrix composites (MMC`s). The systems under study are continuous silicon carbide fibers imbedded in titanium matrix. The model utilizes a computationally based framework based on thermodynamics and continuum mechanics, and accounts for matrix inelasticity, damage evolution, and environmental degradation due to oxidation. The computational model utilizes the finite element method, and an evolutionary analysis of a unit cell is accomplished via a time stepping algorithm. The computational scheme accounts for damage growth such as fiber-matrix debonding, surface cracking, and matrix cracking via the inclusion of cohesive zone elements in the unit cell. These elements are located based on experimental evidence also obtained by the authors. The current paper outlines the formulation utilized by the authors to solve this problem, and recent results are discussed. Specifically, results are given for a four-ply unidirectional composite subjected to cyclic fatigue loading at 650{degrees}C both in air and inert gas. The effects of oxidation on the life of the composite are predicted with the model, and the results are compared to limited experimental results.

  18. Gradual learning and the evolution of cooperation in the spatial Continuous Prisoner's Dilemma

    NASA Astrophysics Data System (ADS)

    Jiménez, R.; Lugo, H.; San Miguel, M.

    2009-09-01

    The usual mechanism for modeling learning in spatially structured evolutionary games has to date been imitation of some successful neighbor. However, it seems natural that individuals hesitate to imitate their neighbor’s acts, specially if they can imply high costs. Here we study the effect of incorporating resistance to imitation on these models. Our framework is the spatial Continuous Prisoner’s Dilemma. For this evolutionary game, it has been reported that occasional errors in the imitation process can explain the emergence of cooperation from a non-cooperative initial state. In this work, we show that this only occurs for particular regimes of low costs of cooperation. Furthermore, we display how resistance gets greater the range of scenarios where cooperative individuals can invade selfish populations. In this context, where resistance to imitation can be interpreted as a general rule of gradual learning, our results show that the less that is learnt in a single step from a successful neighbors, the larger the degree of global cooperation finally attained. In general, the effect of step-by-step learning can be more efficient for the evolution of cooperation than a full blast one.

  19. The Continued Optical to Mid-IR Evolution of V838 Monocerotis

    NASA Astrophysics Data System (ADS)

    Loebman, Sarah; Wisniewski, J. P.; Kowalski, A. F.; Barry, R. K.; Bjorkman, K. S.; Bond, H. E.; Clampin, M.; Hammel, H. B.; Hawley, S. L.; Lynch, D. K.; Munshi, F. A.; Russell, R. W.; Schmidt, S. J.; Sitko, M. L.

    2010-01-01

    V838 Monocerotis is an eruptive variable which gained notoriety in 2002 when it brightened by 9 magnitudes in a series of outbursts, and eventually developed a spectacular light echo. The star's mid-IR flux increased by a factor of 2 between 2004 and 2007, suggesting that new dust was condensing from the expanding ejecta of the outbursts, while more recent optical spectroscopic observations suggest that these expanding ejecta have engulfed the system's B3V binary companion. We present new optical, near-IR, and mid-IR spectroscopic and mid-IR photometric observations of V838 Monocerotis obtained between 2008-2009 at the Apache Point Observatory 3.5m, NASA IRTF 3m, and Gemini South 8m telescopes. We discuss the chemistry and continued evolution of recently formed dust in the system in the context of previously published photometric, spectroscopic, and spectro-polarimetric observations of the system. This work is supported at The Aerospace Corporation by the Independent Research and Development program; JPW acknowledges support from a NSF Astronomy & Astrophysics Postdoctoral Fellowship, AST 08-02230.

  20. Residual Ductility and Microstructural Evolution in Continuous-Bending-under-Tension of AA-6022-T4

    PubMed Central

    Zecevic, Milovan; Roemer, Timothy J.; Knezevic, Marko; Korkolis, Yannis P.; Kinsey, Brad L.

    2016-01-01

    A ubiquitous experiment to characterize the formability of sheet metal is the simple tension test. Past research has shown that if the material is repeatedly bent and unbent during this test (i.e., Continuous-Bending-under-Tension, CBT), the percent elongation at failure can significantly increase. In this paper, this phenomenon is evaluated in detail for AA-6022-T4 sheets using a custom-built CBT device. In particular, the residual ductility of specimens that are subjected to CBT processing is investigated. This is achieved by subjecting a specimen to CBT processing and then creating subsize tensile test and microstructural samples from the specimens after varying numbers of CBT cycles. Interestingly, the engineering stress initially increases after CBT processing to a certain number of cycles, but then decreases with less elongation achieved for increasing numbers of CBT cycles. Additionally, a detailed microstructure and texture characterization are performed using standard scanning electron microscopy and electron backscattered diffraction imaging. The results show that the material under CBT preserves high integrity to large plastic strains due to a uniform distribution of damage formation and evolution in the material. The ability to delay ductile fracture during the CBT process to large plastic strains, results in formation of a strong <111> fiber texture throughout the material. PMID:28773257

  1. Modeling the effects of ion dose and crystallographic symmetry on the morphological evolution of embedded precipitates under thermal annealing

    NASA Astrophysics Data System (ADS)

    Li, Kun-Dar

    2014-10-01

    Thermal annealing is one of the most common techniques to synthesize embedded precipitates by ion implantation process. In this study, an anisotropic phase field model is presented to investigate the effects of ion dose and crystallographic symmetry on the morphological formation and evolution of embedded precipitates during post-implantation thermal annealing process. This theoretical model provides an efficient numerical approach to understand the phenomenon of faceted precipitates formation by ion implantation. As a theoretical analysis, the interfacial energy and diffusion kinetics play prominent roles in the mechanism of atomic diffusion for the precipitates formation. With a low ion dose, faceted precipitates are developed by virtue of the anisotropic interfacial energy. As an increase of ion dose, connected precipitates with crystallographic characters on the edge are appeared. For a high ion dose, labyrinth-like nanostructures of precipitates are produced and the characteristic morphology of crystallographic symmetry becomes faint. These simulation results for the morphological evolutions of embedded precipitates by ion implantation are corresponded with many experimental observations in the literatures. The quantitative analyses of the simulations are also well described the consequence of precipitates formation under different conditions.

  2. Evolution of Morphology and Composition of the Carbides in Cr-Mo-V Steel after Service Exposure

    NASA Astrophysics Data System (ADS)

    Dong, Jiling; Shin, Keesam; He, Yinsheng; Song, Geewook; Jung, Jinesung

    2011-06-01

    Low alloy Cr-Mo-V steels are usually used in steam power generation units. The evolution of the carbides often leads to embrittlement of the components during elongated service. Therefore, the determination of carbide evolution mechanism during long-time service is important to understand and prevent premature failures such as temper embrittlement. In this study, low alloy Cr-Mo-V steels used as main steam pipes in a thermal power plant were studied after various service times as well as in the as-fabricated condition. Electron microscopic analyses were carried out on extraction replicas to observe and analyze the morphology and composition of the carbides. Predominant plate-like vanadium-rich carbides were observed in the as-fabricated condition. When exposed to on-site service, the V-rich carbides transformed to Mo-rich carbides which have a typical H morphology. The change of morphology and composition of the carbide is mainly due to the gradual depletion of Mo from the solid solution. In addition, a non-destructive carbide extraction method was established for examination of the precipitates in the working turbine rotor.

  3. Evolution effects of the copper surface morphology on the nucleation density and growth of graphene domains at different growth pressures

    NASA Astrophysics Data System (ADS)

    Hedayat, Seyed Mahdi; Karimi-Sabet, Javad; Shariaty-Niassar, Mojtaba

    2017-03-01

    In this work, we study the influence of the surface morphology of the catalytic copper substrate on the nucleation density and the growth rate of graphene domains at low and atmospheric pressure chemical vapor deposition (LPCVD and APCVD) processes. In order to obtain a wide range of initial surface morphology, precisely controlled electropolishing methods were developed to manipulate the roughntreess value of the as-received Cu substrate (RMS = 30 nm) to ultra-rough (RMS = 130 nm) and ultra-smooth (RMS = 2 nm) surfaces. The nucleation and growth of graphene domains show obviously different trends at LPCVD and APCVD conditions. In contrast to APCVD condition, the nucleation density of graphene domains is almost equal in substrates with different initial roughness values at LPCVD condition. We show that this is due to the evolution of the surface morphology of the Cu substrate during the graphene growth steps. By stopping the surface sublimation of copper substrate in a confined space saturated with Cu atoms, the evolution of the Cu surface was impeded. This results in the reduction of the nucleation density of graphene domains up to 24 times in the pre-smoothed Cu substrates at LPCVD condition.

  4. Investigation of the operating conditions to morphology evolution of β-L-glutamic acid during seeded cooling crystallization

    NASA Astrophysics Data System (ADS)

    Zhang, Fangkun; Liu, Tao; Huo, Yan; Guan, Runduo; Wang, Xue Z.

    2017-07-01

    In this paper the effects of operating conditions including cooling rate, initial supersaturation, and seeding temperature were investigated on the morphology evolution of β-L-glutamic acid (β-LGA) during seeded cooling crystallization. Based on the results of in-situ image acquisition of the crystal morphology evolution during the crystallization process, it was found that the crystal products tend to be plate-like or short rod-like under a slow cooling rate, low initial supersaturation, and low seeding temperature. In the opposite, the operating conditions of a faster cooling rate, higher initial supersaturation, and higher seeding temperature tend to produce long rod-like or needle-like crystals, and meanwhile, the length and width of crystal products will be increased together with a wider crystal size distribution (CSD). The aspect ratio of crystals, defined by the crystal length over width measured from in-situ or sample images, was taken as a shape index to analyze the crystal morphologies. Based on comparative analysis of the experimental results, guidelines on these operating conditions were given for obtaining the desired crystal shapes, along with the strategies for obtaining a narrower CSD for better product quality. Experimental verifications were performed to illustrate the proposed guidelines on the operating conditions for seeded cooling crystallization of LGA solution.

  5. Observations of Interannual Dune Morphological Evolution With Comparisons to Shoreline Change Along the Columbia River Littoral Cell

    NASA Astrophysics Data System (ADS)

    Doermann, L.; Kaminsky, G. M.; Ruggiero, P.

    2006-12-01

    Beach topographic data have been collected along the 160 km-long Columbia River Littoral Cell in southwest Washington and northwest Oregon, USA as part of the Southwest Washington Coastal Erosion Study and a NANOOS pilot project. The monitoring program includes the collection of cross-shore beach profiles at 49 sites for each of the 34 seasons since 1997 (with few exceptions), enabling the investigation of the seasonal to interannual morphological variability of this high-energy coast. We focus here on the dunes backing the beaches, aiming to quantitatively describe the wide variety of characteristics they exhibit, as well as to relate dune evolution to shoreline change. To analyze the large volume of high-quality data, we use automated algorithms and systematic processes to identify the location of the dune toe, crest, and face, and calculate a volume (where enough data are available) and beach width for each survey. We define the position of the dune face as the elevation half-way between the average dune toe and average dune crest elevations at each profile location, and beach width as the horizontal distance between the 2-m contour (~MSL) and the dune toe. Much like shoreline proxies lower on the beach profile, (e.g., the 3-m contour), the location of the dune toe shows large seasonal variability with onshore deposition of sand in summer months and offshore sand transport in the winter. However, the location of the dune face and the elevation of the dune crest are much less variable and are useful in describing the evolution of the dune/beach system in the horizontal and vertical directions, respectively, over interannual time scales. On beaches with the highest shoreline change rates in the study area, the dune face follows the progradational trend of the shoreline with the dune face prograding at approximately 25-50% of the rate of the shoreline. Along many of these beaches that experienced severe erosion during the El Niño of 1997/98, the dune face

  6. Effect of Phase Contiguity and Morphology on the Evolution of Deformation Texture in Two-Phase Alloys

    NASA Astrophysics Data System (ADS)

    Gurao, N. P.; Suwas, Satyam

    2017-02-01

    Deformation texture evolution in two-phase xFe- yNi-(100- x- y)Cr model alloys and Ti-13Nb-13Zr alloy was studied during rolling to develop an understanding of micro-mechanisms of deformation in industrially relevant two-phase FCC-BCC steels and HCP-BCC titanium alloys, respectively. It was found that volume fraction and contiguity of phases lead to systematic changes in texture, while morphology affects the strength of texture. There was a characteristic change in texture from typical Brass-type to a weaker Copper-type texture in the austenite phase accompanied with a change from alpha fiber to gamma fiber in ferrite phase for Fe-Ni-Cr alloys with increase in fraction of harder ferrite phase. However, similar characteristic texture evolution was noted in both α and β phase irrespective of the different initial morphologies in Ti-13Nb-13Zr alloy. Viscoplastic self-consistent simulations with two-phase scheme were able to qualitatively predict texture evolution in individual phases. It is proposed that the transition from iso-strain-type behavior for equiaxed microstructure at low strain to iso-stress-type behavior at higher strain is aided by the presence of higher volume fraction of the second phase and increasing aspect ratio of individual phases in two-phase alloys.

  7. The evolution of unisexual flowers: morphological and functional convergence results from diverse developmental transitions.

    PubMed

    Mitchell, Caroline H; Diggle, Pamela K

    2005-07-01

    Unisexual flower morphology was examined within a phylogenetic context in order to identify developmental transitions associated with the multiple origins of dioecy in flowering plants. Historically, two categories of unisexual flowers have been recognized: type I flowers exhibit rudiments of the nonfunctional organ type, while type II flowers bear no vestigial sexual organs. Mapping of these flower types onto a composite phylogeny shows that type II morphology is homoplasious and has resulted from at least four distinct evolutionary developmental pathways. The historical assignment of unisexual flowers into only two morphological types has masked important developmental and evolutionary dynamics.

  8. The thorax morphology of Epiophlebia (Insecta: Odonata) nymphs--including remarks on ontogenesis and evolution.

    PubMed

    Büsse, Sebastian; Helmker, Benjamin; Hörnschemeyer, Thomas

    2015-08-06

    The species of Epiophlebia are unique among the recent Odonata in showing a mixture of morphological characters of dragonflies (Anisoptera) and damselflies (Zygoptera). The status of the four described extant species of Epiophlebia is disputable from a genetic as well as from a morphological point of view. Here we present an analysis of the thoracic musculature of different nymphal instars of Epiophlebia laidlawi and Epiophlebia superstes to elucidate their morphology and ontogenetic development. In total, 75 muscles have been identified in the thorax of Epiophlebia. This represents the highest number of thoracic muscles ever found in any odonate. It includes six muscles that are reported for the first time for Odonata, and three of these are even new for Pterygota. In total, our results indicate that Epiophlebia has the most ancestral thoracic morphology among Odonata.

  9. The role of behaviour in adaptive morphological evolution of African proboscideans.

    PubMed

    Lister, Adrian M

    2013-08-15

    The fossil record richly illustrates the origin of morphological adaptation through time. However, our understanding of the selective forces responsible in a given case, and the role of behaviour in the process, is hindered by assumptions of synchrony between environmental change, behavioural innovation and morphological response. Here I show, from independent proxy data through a 20-million-year sequence of fossil proboscideans in East Africa, that changes in environment, diet and morphology are often significantly offset chronologically, allowing dissection of the roles of behaviour and different selective drivers. These findings point the way to hypothesis-driven testing of the interplay between habitat change, behaviour and morphological adaptation with the use of independent proxies in the fossil record.

  10. The thorax morphology of Epiophlebia (Insecta: Odonata) nymphs – including remarks on ontogenesis and evolution

    PubMed Central

    Büsse, Sebastian; Helmker, Benjamin; Hörnschemeyer, Thomas

    2015-01-01

    The species of Epiophlebia are unique among the recent Odonata in showing a mixture of morphological characters of dragonflies (Anisoptera) and damselflies (Zygoptera). The status of the four described extant species of Epiophlebia is disputable from a genetic as well as from a morphological point of view. Here we present an analysis of the thoracic musculature of different nymphal instars of Epiophlebia laidlawi and Epiophlebia superstes to elucidate their morphology and ontogenetic development. In total, 75 muscles have been identified in the thorax of Epiophlebia. This represents the highest number of thoracic muscles ever found in any odonate. It includes six muscles that are reported for the first time for Odonata, and three of these are even new for Pterygota. In total, our results indicate that Epiophlebia has the most ancestral thoracic morphology among Odonata. PMID:26246088

  11. Limits in the evolution of biological form: a theoretical morphologic perspective.

    PubMed

    McGhee, George R

    2015-12-06

    Limits in the evolution of biological form can be empirically demonstrated by using theoretical morphospace analyses, and actual analytic examples are given for univalved ammonoid shell form, bivalved brachiopod shell form and helical bryozoan colony form. Limits in the evolution of form in these animal groups can be shown to be due to functional and developmental constraints on possible evolutionary trajectories in morphospace. Future evol