Sample records for continuous optimization problems

  1. Partial differential equations constrained combinatorial optimization on an adiabatic quantum computer

    NASA Astrophysics Data System (ADS)

    Chandra, Rishabh

    Partial differential equation-constrained combinatorial optimization (PDECCO) problems are a mixture of continuous and discrete optimization problems. PDECCO problems have discrete controls, but since the partial differential equations (PDE) are continuous, the optimization space is continuous as well. Such problems have several applications, such as gas/water network optimization, traffic optimization, micro-chip cooling optimization, etc. Currently, no efficient classical algorithm which guarantees a global minimum for PDECCO problems exists. A new mapping has been developed that transforms PDECCO problem, which only have linear PDEs as constraints, into quadratic unconstrained binary optimization (QUBO) problems that can be solved using an adiabatic quantum optimizer (AQO). The mapping is efficient, it scales polynomially with the size of the PDECCO problem, requires only one PDE solve to form the QUBO problem, and if the QUBO problem is solved correctly and efficiently on an AQO, guarantees a global optimal solution for the original PDECCO problem.

  2. From nonlinear optimization to convex optimization through firefly algorithm and indirect approach with applications to CAD/CAM.

    PubMed

    Gálvez, Akemi; Iglesias, Andrés

    2013-01-01

    Fitting spline curves to data points is a very important issue in many applied fields. It is also challenging, because these curves typically depend on many continuous variables in a highly interrelated nonlinear way. In general, it is not possible to compute these parameters analytically, so the problem is formulated as a continuous nonlinear optimization problem, for which traditional optimization techniques usually fail. This paper presents a new bioinspired method to tackle this issue. In this method, optimization is performed through a combination of two techniques. Firstly, we apply the indirect approach to the knots, in which they are not initially the subject of optimization but precomputed with a coarse approximation scheme. Secondly, a powerful bioinspired metaheuristic technique, the firefly algorithm, is applied to optimization of data parameterization; then, the knot vector is refined by using De Boor's method, thus yielding a better approximation to the optimal knot vector. This scheme converts the original nonlinear continuous optimization problem into a convex optimization problem, solved by singular value decomposition. Our method is applied to some illustrative real-world examples from the CAD/CAM field. Our experimental results show that the proposed scheme can solve the original continuous nonlinear optimization problem very efficiently.

  3. From Nonlinear Optimization to Convex Optimization through Firefly Algorithm and Indirect Approach with Applications to CAD/CAM

    PubMed Central

    Gálvez, Akemi; Iglesias, Andrés

    2013-01-01

    Fitting spline curves to data points is a very important issue in many applied fields. It is also challenging, because these curves typically depend on many continuous variables in a highly interrelated nonlinear way. In general, it is not possible to compute these parameters analytically, so the problem is formulated as a continuous nonlinear optimization problem, for which traditional optimization techniques usually fail. This paper presents a new bioinspired method to tackle this issue. In this method, optimization is performed through a combination of two techniques. Firstly, we apply the indirect approach to the knots, in which they are not initially the subject of optimization but precomputed with a coarse approximation scheme. Secondly, a powerful bioinspired metaheuristic technique, the firefly algorithm, is applied to optimization of data parameterization; then, the knot vector is refined by using De Boor's method, thus yielding a better approximation to the optimal knot vector. This scheme converts the original nonlinear continuous optimization problem into a convex optimization problem, solved by singular value decomposition. Our method is applied to some illustrative real-world examples from the CAD/CAM field. Our experimental results show that the proposed scheme can solve the original continuous nonlinear optimization problem very efficiently. PMID:24376380

  4. Closed-Loop Optimal Control Implementations for Space Applications

    DTIC Science & Technology

    2016-12-01

    analyses of a series of optimal control problems, several real- time optimal control algorithms are developed that continuously adapt to feedback on the...through the analyses of a series of optimal control problems, several real- time optimal control algorithms are developed that continuously adapt to...information is estimated to average 1 hour per response, including the time for reviewing instruction, searching existing data sources, gathering

  5. Fractional Programming for Communication Systems—Part II: Uplink Scheduling via Matching

    NASA Astrophysics Data System (ADS)

    Shen, Kaiming; Yu, Wei

    2018-05-01

    This two-part paper develops novel methodologies for using fractional programming (FP) techniques to design and optimize communication systems. Part I of this paper proposes a new quadratic transform for FP and treats its application for continuous optimization problems. In this Part II of the paper, we study discrete problems, such as those involving user scheduling, which are considerably more difficult to solve. Unlike the continuous problems, discrete or mixed discrete-continuous problems normally cannot be recast as convex problems. In contrast to the common heuristic of relaxing the discrete variables, this work reformulates the original problem in an FP form amenable to distributed combinatorial optimization. The paper illustrates this methodology by tackling the important and challenging problem of uplink coordinated multi-cell user scheduling in wireless cellular systems. Uplink scheduling is more challenging than downlink scheduling, because uplink user scheduling decisions significantly affect the interference pattern in nearby cells. Further, the discrete scheduling variable needs to be optimized jointly with continuous variables such as transmit power levels and beamformers. The main idea of the proposed FP approach is to decouple the interaction among the interfering links, thereby permitting a distributed and joint optimization of the discrete and continuous variables with provable convergence. The paper shows that the well-known weighted minimum mean-square-error (WMMSE) algorithm can also be derived from a particular use of FP; but our proposed FP-based method significantly outperforms WMMSE when discrete user scheduling variables are involved, both in term of run-time efficiency and optimizing results.

  6. An Algorithm for the Mixed Transportation Network Design Problem

    PubMed Central

    Liu, Xinyu; Chen, Qun

    2016-01-01

    This paper proposes an optimization algorithm, the dimension-down iterative algorithm (DDIA), for solving a mixed transportation network design problem (MNDP), which is generally expressed as a mathematical programming with equilibrium constraint (MPEC). The upper level of the MNDP aims to optimize the network performance via both the expansion of the existing links and the addition of new candidate links, whereas the lower level is a traditional Wardrop user equilibrium (UE) problem. The idea of the proposed solution algorithm (DDIA) is to reduce the dimensions of the problem. A group of variables (discrete/continuous) is fixed to optimize another group of variables (continuous/discrete) alternately; then, the problem is transformed into solving a series of CNDPs (continuous network design problems) and DNDPs (discrete network design problems) repeatedly until the problem converges to the optimal solution. The advantage of the proposed algorithm is that its solution process is very simple and easy to apply. Numerical examples show that for the MNDP without budget constraint, the optimal solution can be found within a few iterations with DDIA. For the MNDP with budget constraint, however, the result depends on the selection of initial values, which leads to different optimal solutions (i.e., different local optimal solutions). Some thoughts are given on how to derive meaningful initial values, such as by considering the budgets of new and reconstruction projects separately. PMID:27626803

  7. Quadratic constrained mixed discrete optimization with an adiabatic quantum optimizer

    NASA Astrophysics Data System (ADS)

    Chandra, Rishabh; Jacobson, N. Tobias; Moussa, Jonathan E.; Frankel, Steven H.; Kais, Sabre

    2014-07-01

    We extend the family of problems that may be implemented on an adiabatic quantum optimizer (AQO). When a quadratic optimization problem has at least one set of discrete controls and the constraints are linear, we call this a quadratic constrained mixed discrete optimization (QCMDO) problem. QCMDO problems are NP-hard, and no efficient classical algorithm for their solution is known. Included in the class of QCMDO problems are combinatorial optimization problems constrained by a linear partial differential equation (PDE) or system of linear PDEs. An essential complication commonly encountered in solving this type of problem is that the linear constraint may introduce many intermediate continuous variables into the optimization while the computational cost grows exponentially with problem size. We resolve this difficulty by developing a constructive mapping from QCMDO to quadratic unconstrained binary optimization (QUBO) such that the size of the QUBO problem depends only on the number of discrete control variables. With a suitable embedding, taking into account the physical constraints of the realizable coupling graph, the resulting QUBO problem can be implemented on an existing AQO. The mapping itself is efficient, scaling cubically with the number of continuous variables in the general case and linearly in the PDE case if an efficient preconditioner is available.

  8. Optimization of the interplanetary trajectories of spacecraft with a solar electric propulsion power plant of minimal power

    NASA Astrophysics Data System (ADS)

    Ivanyukhin, A. V.; Petukhov, V. G.

    2016-12-01

    The problem of optimizing the interplanetary trajectories of a spacecraft (SC) with a solar electric propulsion system (SEPS) is examined. The problem of investigating the permissible power minimum of the solar electric propulsion power plant required for a successful flight is studied. Permissible ranges of thrust and exhaust velocity are analyzed for the given range of flight time and final mass of the spacecraft. The optimization is performed according to Portnyagin's maximum principle, and the continuation method is used for reducing the boundary problem of maximal principle to the Cauchy problem and to study the solution/ parameters dependence. Such a combination results in the robust algorithm that reduces the problem of trajectory optimization to the numerical integration of differential equations by the continuation method.

  9. Genetic-evolution-based optimization methods for engineering design

    NASA Technical Reports Server (NTRS)

    Rao, S. S.; Pan, T. S.; Dhingra, A. K.; Venkayya, V. B.; Kumar, V.

    1990-01-01

    This paper presents the applicability of a biological model, based on genetic evolution, for engineering design optimization. Algorithms embodying the ideas of reproduction, crossover, and mutation are developed and applied to solve different types of structural optimization problems. Both continuous and discrete variable optimization problems are solved. A two-bay truss for maximum fundamental frequency is considered to demonstrate the continuous variable case. The selection of locations of actuators in an actively controlled structure, for minimum energy dissipation, is considered to illustrate the discrete variable case.

  10. Performance of Grey Wolf Optimizer on large scale problems

    NASA Astrophysics Data System (ADS)

    Gupta, Shubham; Deep, Kusum

    2017-01-01

    For solving nonlinear continuous problems of optimization numerous nature inspired optimization techniques are being proposed in literature which can be implemented to solve real life problems wherein the conventional techniques cannot be applied. Grey Wolf Optimizer is one of such technique which is gaining popularity since the last two years. The objective of this paper is to investigate the performance of Grey Wolf Optimization Algorithm on large scale optimization problems. The Algorithm is implemented on 5 common scalable problems appearing in literature namely Sphere, Rosenbrock, Rastrigin, Ackley and Griewank Functions. The dimensions of these problems are varied from 50 to 1000. The results indicate that Grey Wolf Optimizer is a powerful nature inspired Optimization Algorithm for large scale problems, except Rosenbrock which is a unimodal function.

  11. Modeling of tool path for the CNC sheet cutting machines

    NASA Astrophysics Data System (ADS)

    Petunin, Aleksandr A.

    2015-11-01

    In the paper the problem of tool path optimization for CNC (Computer Numerical Control) cutting machines is considered. The classification of the cutting techniques is offered. We also propose a new classification of toll path problems. The tasks of cost minimization and time minimization for standard cutting technique (Continuous Cutting Problem, CCP) and for one of non-standard cutting techniques (Segment Continuous Cutting Problem, SCCP) are formalized. We show that the optimization tasks can be interpreted as discrete optimization problem (generalized travel salesman problem with additional constraints, GTSP). Formalization of some constraints for these tasks is described. For the solution GTSP we offer to use mathematical model of Prof. Chentsov based on concept of a megalopolis and dynamic programming.

  12. Multi-objective optimization of a continuous bio-dissimilation process of glycerol to 1, 3-propanediol.

    PubMed

    Xu, Gongxian; Liu, Ying; Gao, Qunwang

    2016-02-10

    This paper deals with multi-objective optimization of continuous bio-dissimilation process of glycerol to 1, 3-propanediol. In order to maximize the production rate of 1, 3-propanediol, maximize the conversion rate of glycerol to 1, 3-propanediol, maximize the conversion rate of glycerol, and minimize the concentration of by-product ethanol, we first propose six new multi-objective optimization models that can simultaneously optimize any two of the four objectives above. Then these multi-objective optimization problems are solved by using the weighted-sum and normal-boundary intersection methods respectively. Both the Pareto filter algorithm and removal criteria are used to remove those non-Pareto optimal points obtained by the normal-boundary intersection method. The results show that the normal-boundary intersection method can successfully obtain the approximate Pareto optimal sets of all the proposed multi-objective optimization problems, while the weighted-sum approach cannot achieve the overall Pareto optimal solutions of some multi-objective problems. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. GAMBIT: A Parameterless Model-Based Evolutionary Algorithm for Mixed-Integer Problems.

    PubMed

    Sadowski, Krzysztof L; Thierens, Dirk; Bosman, Peter A N

    2018-01-01

    Learning and exploiting problem structure is one of the key challenges in optimization. This is especially important for black-box optimization (BBO) where prior structural knowledge of a problem is not available. Existing model-based Evolutionary Algorithms (EAs) are very efficient at learning structure in both the discrete, and in the continuous domain. In this article, discrete and continuous model-building mechanisms are integrated for the Mixed-Integer (MI) domain, comprising discrete and continuous variables. We revisit a recently introduced model-based evolutionary algorithm for the MI domain, the Genetic Algorithm for Model-Based mixed-Integer opTimization (GAMBIT). We extend GAMBIT with a parameterless scheme that allows for practical use of the algorithm without the need to explicitly specify any parameters. We furthermore contrast GAMBIT with other model-based alternatives. The ultimate goal of processing mixed dependences explicitly in GAMBIT is also addressed by introducing a new mechanism for the explicit exploitation of mixed dependences. We find that processing mixed dependences with this novel mechanism allows for more efficient optimization. We further contrast the parameterless GAMBIT with Mixed-Integer Evolution Strategies (MIES) and other state-of-the-art MI optimization algorithms from the General Algebraic Modeling System (GAMS) commercial algorithm suite on problems with and without constraints, and show that GAMBIT is capable of solving problems where variable dependences prevent many algorithms from successfully optimizing them.

  14. The expanded invasive weed optimization metaheuristic for solving continuous and discrete optimization problems.

    PubMed

    Josiński, Henryk; Kostrzewa, Daniel; Michalczuk, Agnieszka; Switoński, Adam

    2014-01-01

    This paper introduces an expanded version of the Invasive Weed Optimization algorithm (exIWO) distinguished by the hybrid strategy of the search space exploration proposed by the authors. The algorithm is evaluated by solving three well-known optimization problems: minimization of numerical functions, feature selection, and the Mona Lisa TSP Challenge as one of the instances of the traveling salesman problem. The achieved results are compared with analogous outcomes produced by other optimization methods reported in the literature.

  15. Optimal control of nonlinear continuous-time systems in strict-feedback form.

    PubMed

    Zargarzadeh, Hassan; Dierks, Travis; Jagannathan, Sarangapani

    2015-10-01

    This paper proposes a novel optimal tracking control scheme for nonlinear continuous-time systems in strict-feedback form with uncertain dynamics. The optimal tracking problem is transformed into an equivalent optimal regulation problem through a feedforward adaptive control input that is generated by modifying the standard backstepping technique. Subsequently, a neural network-based optimal control scheme is introduced to estimate the cost, or value function, over an infinite horizon for the resulting nonlinear continuous-time systems in affine form when the internal dynamics are unknown. The estimated cost function is then used to obtain the optimal feedback control input; therefore, the overall optimal control input for the nonlinear continuous-time system in strict-feedback form includes the feedforward plus the optimal feedback terms. It is shown that the estimated cost function minimizes the Hamilton-Jacobi-Bellman estimation error in a forward-in-time manner without using any value or policy iterations. Finally, optimal output feedback control is introduced through the design of a suitable observer. Lyapunov theory is utilized to show the overall stability of the proposed schemes without requiring an initial admissible controller. Simulation examples are provided to validate the theoretical results.

  16. Wind Farm Turbine Type and Placement Optimization

    NASA Astrophysics Data System (ADS)

    Graf, Peter; Dykes, Katherine; Scott, George; Fields, Jason; Lunacek, Monte; Quick, Julian; Rethore, Pierre-Elouan

    2016-09-01

    The layout of turbines in a wind farm is already a challenging nonlinear, nonconvex, nonlinearly constrained continuous global optimization problem. Here we begin to address the next generation of wind farm optimization problems by adding the complexity that there is more than one turbine type to choose from. The optimization becomes a nonlinear constrained mixed integer problem, which is a very difficult class of problems to solve. This document briefly summarizes the algorithm and code we have developed, the code validation steps we have performed, and the initial results for multi-turbine type and placement optimization (TTP_OPT) we have run.

  17. Wind farm turbine type and placement optimization

    DOE PAGES

    Graf, Peter; Dykes, Katherine; Scott, George; ...

    2016-10-03

    The layout of turbines in a wind farm is already a challenging nonlinear, nonconvex, nonlinearly constrained continuous global optimization problem. Here we begin to address the next generation of wind farm optimization problems by adding the complexity that there is more than one turbine type to choose from. The optimization becomes a nonlinear constrained mixed integer problem, which is a very difficult class of problems to solve. Furthermore, this document briefly summarizes the algorithm and code we have developed, the code validation steps we have performed, and the initial results for multi-turbine type and placement optimization (TTP_OPT) we have run.

  18. Taboo Search: An Approach to the Multiple Minima Problem

    NASA Astrophysics Data System (ADS)

    Cvijovic, Djurdje; Klinowski, Jacek

    1995-02-01

    Described here is a method, based on Glover's taboo search for discrete functions, of solving the multiple minima problem for continuous functions. As demonstrated by model calculations, the algorithm avoids entrapment in local minima and continues the search to give a near-optimal final solution. Unlike other methods of global optimization, this procedure is generally applicable, easy to implement, derivative-free, and conceptually simple.

  19. Multidisciplinary Optimization of a Transport Aircraft Wing using Particle Swarm Optimization

    NASA Technical Reports Server (NTRS)

    Sobieszczanski-Sobieski, Jaroslaw; Venter, Gerhard

    2002-01-01

    The purpose of this paper is to demonstrate the application of particle swarm optimization to a realistic multidisciplinary optimization test problem. The paper's new contributions to multidisciplinary optimization is the application of a new algorithm for dealing with the unique challenges associated with multidisciplinary optimization problems, and recommendations as to the utility of the algorithm in future multidisciplinary optimization applications. The selected example is a bi-level optimization problem that demonstrates severe numerical noise and has a combination of continuous and truly discrete design variables. The use of traditional gradient-based optimization algorithms is thus not practical. The numerical results presented indicate that the particle swarm optimization algorithm is able to reliably find the optimum design for the problem presented here. The algorithm is capable of dealing with the unique challenges posed by multidisciplinary optimization as well as the numerical noise and truly discrete variables present in the current example problem.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Graf, Peter; Dykes, Katherine; Scott, George

    The layout of turbines in a wind farm is already a challenging nonlinear, nonconvex, nonlinearly constrained continuous global optimization problem. Here we begin to address the next generation of wind farm optimization problems by adding the complexity that there is more than one turbine type to choose from. The optimization becomes a nonlinear constrained mixed integer problem, which is a very difficult class of problems to solve. Furthermore, this document briefly summarizes the algorithm and code we have developed, the code validation steps we have performed, and the initial results for multi-turbine type and placement optimization (TTP_OPT) we have run.

  1. A novel metaheuristic for continuous optimization problems: Virus optimization algorithm

    NASA Astrophysics Data System (ADS)

    Liang, Yun-Chia; Rodolfo Cuevas Juarez, Josue

    2016-01-01

    A novel metaheuristic for continuous optimization problems, named the virus optimization algorithm (VOA), is introduced and investigated. VOA is an iteratively population-based method that imitates the behaviour of viruses attacking a living cell. The number of viruses grows at each replication and is controlled by an immune system (a so-called 'antivirus') to prevent the explosive growth of the virus population. The viruses are divided into two classes (strong and common) to balance the exploitation and exploration effects. The performance of the VOA is validated through a set of eight benchmark functions, which are also subject to rotation and shifting effects to test its robustness. Extensive comparisons were conducted with over 40 well-known metaheuristic algorithms and their variations, such as artificial bee colony, artificial immune system, differential evolution, evolutionary programming, evolutionary strategy, genetic algorithm, harmony search, invasive weed optimization, memetic algorithm, particle swarm optimization and simulated annealing. The results showed that the VOA is a viable solution for continuous optimization.

  2. Fractional Programming for Communication Systems—Part I: Power Control and Beamforming

    NASA Astrophysics Data System (ADS)

    Shen, Kaiming; Yu, Wei

    2018-05-01

    This two-part paper explores the use of FP in the design and optimization of communication systems. Part I of this paper focuses on FP theory and on solving continuous problems. The main theoretical contribution is a novel quadratic transform technique for tackling the multiple-ratio concave-convex FP problem--in contrast to conventional FP techniques that mostly can only deal with the single-ratio or the max-min-ratio case. Multiple-ratio FP problems are important for the optimization of communication networks, because system-level design often involves multiple signal-to-interference-plus-noise ratio terms. This paper considers the applications of FP to solving continuous problems in communication system design, particularly for power control, beamforming, and energy efficiency maximization. These application cases illustrate that the proposed quadratic transform can greatly facilitate the optimization involving ratios by recasting the original nonconvex problem as a sequence of convex problems. This FP-based problem reformulation gives rise to an efficient iterative optimization algorithm with provable convergence to a stationary point. The paper further demonstrates close connections between the proposed FP approach and other well-known algorithms in the literature, such as the fixed-point iteration and the weighted minimum mean-square-error beamforming. The optimization of discrete problems is discussed in Part II of this paper.

  3. On the problem of solving the optimization for continuous space based on information distribution function of ant colony algorithm

    NASA Astrophysics Data System (ADS)

    Min, Huang; Na, Cai

    2017-06-01

    These years, ant colony algorithm has been widely used in solving the domain of discrete space optimization, while the research on solving the continuous space optimization was relatively little. Based on the original optimization for continuous space, the article proposes the improved ant colony algorithm which is used to Solve the optimization for continuous space, so as to overcome the ant colony algorithm’s disadvantages of searching for a long time in continuous space. The article improves the solving way for the total amount of information of each interval and the due number of ants. The article also introduces a function of changes with the increase of the number of iterations in order to enhance the convergence rate of the improved ant colony algorithm. The simulation results show that compared with the result in literature[5], the suggested improved ant colony algorithm that based on the information distribution function has a better convergence performance. Thus, the article provides a new feasible and effective method for ant colony algorithm to solve this kind of problem.

  4. Optimal Price Decision Problem for Simultaneous Multi-article Auction and Its Optimal Price Searching Method by Particle Swarm Optimization

    NASA Astrophysics Data System (ADS)

    Masuda, Kazuaki; Aiyoshi, Eitaro

    We propose a method for solving optimal price decision problems for simultaneous multi-article auctions. An auction problem, originally formulated as a combinatorial problem, determines both every seller's whether or not to sell his/her article and every buyer's which article(s) to buy, so that the total utility of buyers and sellers will be maximized. Due to the duality theory, we transform it equivalently into a dual problem in which Lagrange multipliers are interpreted as articles' transaction price. As the dual problem is a continuous optimization problem with respect to the multipliers (i.e., the transaction prices), we propose a numerical method to solve it by applying heuristic global search methods. In this paper, Particle Swarm Optimization (PSO) is used to solve the dual problem, and experimental results are presented to show the validity of the proposed method.

  5. A continuous GRASP to determine the relationship between drugs and adverse reactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hirsch, Michael J.; Meneses, Claudio N.; Pardalos, Panos M.

    2007-11-05

    Adverse drag reactions (ADRs) are estimated to be one of the leading causes of death. Many national and international agencies have set up databases of ADR reports for the express purpose of determining the relationship between drugs and adverse reactions that they cause. We formulate the drug-reaction relationship problem as a continuous optimization problem and utilize C-GRASP, a new continuous global optimization heuristic, to approximately determine the relationship between drugs and adverse reactions. Our approach is compared against others in the literature and is shown to find better solutions.

  6. Conformational Space Annealing explained: A general optimization algorithm, with diverse applications

    NASA Astrophysics Data System (ADS)

    Joung, InSuk; Kim, Jong Yun; Gross, Steven P.; Joo, Keehyoung; Lee, Jooyoung

    2018-02-01

    Many problems in science and engineering can be formulated as optimization problems. One way to solve these problems is to develop tailored problem-specific approaches. As such development is challenging, an alternative is to develop good generally-applicable algorithms. Such algorithms are easy to apply, typically function robustly, and reduce development time. Here we provide a description for one such algorithm called Conformational Space Annealing (CSA) along with its python version, PyCSA. We previously applied it to many optimization problems including protein structure prediction and graph community detection. To demonstrate its utility, we have applied PyCSA to two continuous test functions, namely Ackley and Eggholder functions. In addition, in order to provide complete generality of PyCSA to any types of an objective function, we demonstrate the way PyCSA can be applied to a discrete objective function, namely a parameter optimization problem. Based on the benchmarking results of the three problems, the performance of CSA is shown to be better than or similar to the most popular optimization method, simulated annealing. For continuous objective functions, we found that, L-BFGS-B was the best performing local optimization method, while for a discrete objective function Nelder-Mead was the best. The current version of PyCSA can be run in parallel at the coarse grained level by calculating multiple independent local optimizations separately. The source code of PyCSA is available from http://lee.kias.re.kr.

  7. A Novel Multiobjective Evolutionary Algorithm Based on Regression Analysis

    PubMed Central

    Song, Zhiming; Wang, Maocai; Dai, Guangming; Vasile, Massimiliano

    2015-01-01

    As is known, the Pareto set of a continuous multiobjective optimization problem with m objective functions is a piecewise continuous (m − 1)-dimensional manifold in the decision space under some mild conditions. However, how to utilize the regularity to design multiobjective optimization algorithms has become the research focus. In this paper, based on this regularity, a model-based multiobjective evolutionary algorithm with regression analysis (MMEA-RA) is put forward to solve continuous multiobjective optimization problems with variable linkages. In the algorithm, the optimization problem is modelled as a promising area in the decision space by a probability distribution, and the centroid of the probability distribution is (m − 1)-dimensional piecewise continuous manifold. The least squares method is used to construct such a model. A selection strategy based on the nondominated sorting is used to choose the individuals to the next generation. The new algorithm is tested and compared with NSGA-II and RM-MEDA. The result shows that MMEA-RA outperforms RM-MEDA and NSGA-II on the test instances with variable linkages. At the same time, MMEA-RA has higher efficiency than the other two algorithms. A few shortcomings of MMEA-RA have also been identified and discussed in this paper. PMID:25874246

  8. Continued research on selected parameters to minimize community annoyance from airplane noise

    NASA Technical Reports Server (NTRS)

    Frair, L.

    1981-01-01

    Results from continued research on selected parameters to minimize community annoyance from airport noise are reported. First, a review of the initial work on this problem is presented. Then the research focus is expanded by considering multiobjective optimization approaches for this problem. A multiobjective optimization algorithm review from the open literature is presented. This is followed by the multiobjective mathematical formulation for the problem of interest. A discussion of the appropriate solution algorithm for the multiobjective formulation is conducted. Alternate formulations and associated solution algorithms are discussed and evaluated for this airport noise problem. Selected solution algorithms that have been implemented are then used to produce computational results for example airports. These computations involved finding the optimal operating scenario for a moderate size airport and a series of sensitivity analyses for a smaller example airport.

  9. Impulsive Control for Continuous-Time Markov Decision Processes: A Linear Programming Approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dufour, F., E-mail: dufour@math.u-bordeaux1.fr; Piunovskiy, A. B., E-mail: piunov@liv.ac.uk

    2016-08-15

    In this paper, we investigate an optimization problem for continuous-time Markov decision processes with both impulsive and continuous controls. We consider the so-called constrained problem where the objective of the controller is to minimize a total expected discounted optimality criterion associated with a cost rate function while keeping other performance criteria of the same form, but associated with different cost rate functions, below some given bounds. Our model allows multiple impulses at the same time moment. The main objective of this work is to study the associated linear program defined on a space of measures including the occupation measures ofmore » the controlled process and to provide sufficient conditions to ensure the existence of an optimal control.« less

  10. Distributed Optimization Design of Continuous-Time Multiagent Systems With Unknown-Frequency Disturbances.

    PubMed

    Wang, Xinghu; Hong, Yiguang; Yi, Peng; Ji, Haibo; Kang, Yu

    2017-05-24

    In this paper, a distributed optimization problem is studied for continuous-time multiagent systems with unknown-frequency disturbances. A distributed gradient-based control is proposed for the agents to achieve the optimal consensus with estimating unknown frequencies and rejecting the bounded disturbance in the semi-global sense. Based on convex optimization analysis and adaptive internal model approach, the exact optimization solution can be obtained for the multiagent system disturbed by exogenous disturbances with uncertain parameters.

  11. An Orthogonal Evolutionary Algorithm With Learning Automata for Multiobjective Optimization.

    PubMed

    Dai, Cai; Wang, Yuping; Ye, Miao; Xue, Xingsi; Liu, Hailin

    2016-12-01

    Research on multiobjective optimization problems becomes one of the hottest topics of intelligent computation. In order to improve the search efficiency of an evolutionary algorithm and maintain the diversity of solutions, in this paper, the learning automata (LA) is first used for quantization orthogonal crossover (QOX), and a new fitness function based on decomposition is proposed to achieve these two purposes. Based on these, an orthogonal evolutionary algorithm with LA for complex multiobjective optimization problems with continuous variables is proposed. The experimental results show that in continuous states, the proposed algorithm is able to achieve accurate Pareto-optimal sets and wide Pareto-optimal fronts efficiently. Moreover, the comparison with the several existing well-known algorithms: nondominated sorting genetic algorithm II, decomposition-based multiobjective evolutionary algorithm, decomposition-based multiobjective evolutionary algorithm with an ensemble of neighborhood sizes, multiobjective optimization by LA, and multiobjective immune algorithm with nondominated neighbor-based selection, on 15 multiobjective benchmark problems, shows that the proposed algorithm is able to find more accurate and evenly distributed Pareto-optimal fronts than the compared ones.

  12. The coral reefs optimization algorithm: a novel metaheuristic for efficiently solving optimization problems.

    PubMed

    Salcedo-Sanz, S; Del Ser, J; Landa-Torres, I; Gil-López, S; Portilla-Figueras, J A

    2014-01-01

    This paper presents a novel bioinspired algorithm to tackle complex optimization problems: the coral reefs optimization (CRO) algorithm. The CRO algorithm artificially simulates a coral reef, where different corals (namely, solutions to the optimization problem considered) grow and reproduce in coral colonies, fighting by choking out other corals for space in the reef. This fight for space, along with the specific characteristics of the corals' reproduction, produces a robust metaheuristic algorithm shown to be powerful for solving hard optimization problems. In this research the CRO algorithm is tested in several continuous and discrete benchmark problems, as well as in practical application scenarios (i.e., optimum mobile network deployment and off-shore wind farm design). The obtained results confirm the excellent performance of the proposed algorithm and open line of research for further application of the algorithm to real-world problems.

  13. The Coral Reefs Optimization Algorithm: A Novel Metaheuristic for Efficiently Solving Optimization Problems

    PubMed Central

    Salcedo-Sanz, S.; Del Ser, J.; Landa-Torres, I.; Gil-López, S.; Portilla-Figueras, J. A.

    2014-01-01

    This paper presents a novel bioinspired algorithm to tackle complex optimization problems: the coral reefs optimization (CRO) algorithm. The CRO algorithm artificially simulates a coral reef, where different corals (namely, solutions to the optimization problem considered) grow and reproduce in coral colonies, fighting by choking out other corals for space in the reef. This fight for space, along with the specific characteristics of the corals' reproduction, produces a robust metaheuristic algorithm shown to be powerful for solving hard optimization problems. In this research the CRO algorithm is tested in several continuous and discrete benchmark problems, as well as in practical application scenarios (i.e., optimum mobile network deployment and off-shore wind farm design). The obtained results confirm the excellent performance of the proposed algorithm and open line of research for further application of the algorithm to real-world problems. PMID:25147860

  14. Mixed Integer Programming and Heuristic Scheduling for Space Communication

    NASA Technical Reports Server (NTRS)

    Lee, Charles H.; Cheung, Kar-Ming

    2013-01-01

    Optimal planning and scheduling for a communication network was created where the nodes within the network are communicating at the highest possible rates while meeting the mission requirements and operational constraints. The planning and scheduling problem was formulated in the framework of Mixed Integer Programming (MIP) to introduce a special penalty function to convert the MIP problem into a continuous optimization problem, and to solve the constrained optimization problem using heuristic optimization. The communication network consists of space and ground assets with the link dynamics between any two assets varying with respect to time, distance, and telecom configurations. One asset could be communicating with another at very high data rates at one time, and at other times, communication is impossible, as the asset could be inaccessible from the network due to planetary occultation. Based on the network's geometric dynamics and link capabilities, the start time, end time, and link configuration of each view period are selected to maximize the communication efficiency within the network. Mathematical formulations for the constrained mixed integer optimization problem were derived, and efficient analytical and numerical techniques were developed to find the optimal solution. By setting up the problem using MIP, the search space for the optimization problem is reduced significantly, thereby speeding up the solution process. The ratio of the dimension of the traditional method over the proposed formulation is approximately an order N (single) to 2*N (arraying), where N is the number of receiving antennas of a node. By introducing a special penalty function, the MIP problem with non-differentiable cost function and nonlinear constraints can be converted into a continuous variable problem, whose solution is possible.

  15. Planning Under Uncertainty: Methods and Applications

    DTIC Science & Technology

    2010-06-09

    begun research into fundamental algorithms for optimization and re?optimization of continuous optimization problems (such as linear and quadratic... algorithm yields a 14.3% improvement over the original design while saving 68.2 % of the simulation evaluations compared to standard sample-path...They provide tools for building and justifying computational algorithms for such problems. Year. 2010 Month: 03 Final Research under this grant

  16. MORE: mixed optimization for reverse engineering--an application to modeling biological networks response via sparse systems of nonlinear differential equations.

    PubMed

    Sambo, Francesco; de Oca, Marco A Montes; Di Camillo, Barbara; Toffolo, Gianna; Stützle, Thomas

    2012-01-01

    Reverse engineering is the problem of inferring the structure of a network of interactions between biological variables from a set of observations. In this paper, we propose an optimization algorithm, called MORE, for the reverse engineering of biological networks from time series data. The model inferred by MORE is a sparse system of nonlinear differential equations, complex enough to realistically describe the dynamics of a biological system. MORE tackles separately the discrete component of the problem, the determination of the biological network topology, and the continuous component of the problem, the strength of the interactions. This approach allows us both to enforce system sparsity, by globally constraining the number of edges, and to integrate a priori information about the structure of the underlying interaction network. Experimental results on simulated and real-world networks show that the mixed discrete/continuous optimization approach of MORE significantly outperforms standard continuous optimization and that MORE is competitive with the state of the art in terms of accuracy of the inferred networks.

  17. A sequential linear optimization approach for controller design

    NASA Technical Reports Server (NTRS)

    Horta, L. G.; Juang, J.-N.; Junkins, J. L.

    1985-01-01

    A linear optimization approach with a simple real arithmetic algorithm is presented for reliable controller design and vibration suppression of flexible structures. Using first order sensitivity of the system eigenvalues with respect to the design parameters in conjunction with a continuation procedure, the method converts a nonlinear optimization problem into a maximization problem with linear inequality constraints. The method of linear programming is then applied to solve the converted linear optimization problem. The general efficiency of the linear programming approach allows the method to handle structural optimization problems with a large number of inequality constraints on the design vector. The method is demonstrated using a truss beam finite element model for the optimal sizing and placement of active/passive-structural members for damping augmentation. Results using both the sequential linear optimization approach and nonlinear optimization are presented and compared. The insensitivity to initial conditions of the linear optimization approach is also demonstrated.

  18. On unified modeling, theory, and method for solving multi-scale global optimization problems

    NASA Astrophysics Data System (ADS)

    Gao, David Yang

    2016-10-01

    A unified model is proposed for general optimization problems in multi-scale complex systems. Based on this model and necessary assumptions in physics, the canonical duality theory is presented in a precise way to include traditional duality theories and popular methods as special applications. Two conjectures on NP-hardness are proposed, which should play important roles for correctly understanding and efficiently solving challenging real-world problems. Applications are illustrated for both nonconvex continuous optimization and mixed integer nonlinear programming.

  19. Recent experience in simultaneous control-structure optimization

    NASA Technical Reports Server (NTRS)

    Salama, M.; Ramaker, R.; Milman, M.

    1989-01-01

    To show the feasibility of simultaneous optimization as design procedure, low order problems were used in conjunction with simple control formulations. The numerical results indicate that simultaneous optimization is not only feasible, but also advantageous. Such advantages come at the expense of introducing complexities beyond those encountered in structure optimization alone, or control optimization alone. Examples include: larger design parameter space, optimization may combine continuous and combinatoric variables, and the combined objective function may be nonconvex. Future extensions to include large order problems, more complex objective functions and constraints, and more sophisticated control formulations will require further research to ensure that the additional complexities do not outweigh the advantages of simultaneous optimization. Some areas requiring more efficient tools than currently available include: multiobjective criteria and nonconvex optimization. Efficient techniques to deal with optimization over combinatoric and continuous variables, and with truncation issues for structure and control parameters of both the model space as well as the design space need to be developed.

  20. Distributed Optimization for a Class of Nonlinear Multiagent Systems With Disturbance Rejection.

    PubMed

    Wang, Xinghu; Hong, Yiguang; Ji, Haibo

    2016-07-01

    The paper studies the distributed optimization problem for a class of nonlinear multiagent systems in the presence of external disturbances. To solve the problem, we need to achieve the optimal multiagent consensus based on local cost function information and neighboring information and meanwhile to reject local disturbance signals modeled by an exogenous system. With convex analysis and the internal model approach, we propose a distributed optimization controller for heterogeneous and nonlinear agents in the form of continuous-time minimum-phase systems with unity relative degree. We prove that the proposed design can solve the exact optimization problem with rejecting disturbances.

  1. Multi-step optimization strategy for fuel-optimal orbital transfer of low-thrust spacecraft

    NASA Astrophysics Data System (ADS)

    Rasotto, M.; Armellin, R.; Di Lizia, P.

    2016-03-01

    An effective method for the design of fuel-optimal transfers in two- and three-body dynamics is presented. The optimal control problem is formulated using calculus of variation and primer vector theory. This leads to a multi-point boundary value problem (MPBVP), characterized by complex inner constraints and a discontinuous thrust profile. The first issue is addressed by embedding the MPBVP in a parametric optimization problem, thus allowing a simplification of the set of transversality constraints. The second problem is solved by representing the discontinuous control function by a smooth function depending on a continuation parameter. The resulting trajectory optimization method can deal with different intermediate conditions, and no a priori knowledge of the control structure is required. Test cases in both the two- and three-body dynamics show the capability of the method in solving complex trajectory design problems.

  2. Quadratic Optimization in the Problems of Active Control of Sound

    NASA Technical Reports Server (NTRS)

    Loncaric, J.; Tsynkov, S. V.; Bushnell, Dennis M. (Technical Monitor)

    2002-01-01

    We analyze the problem of suppressing the unwanted component of a time-harmonic acoustic field (noise) on a predetermined region of interest. The suppression is rendered by active means, i.e., by introducing the additional acoustic sources called controls that generate the appropriate anti-sound. Previously, we have obtained general solutions for active controls in both continuous and discrete formulations of the problem. We have also obtained optimal solutions that minimize the overall absolute acoustic source strength of active control sources. These optimal solutions happen to be particular layers of monopoles on the perimeter of the protected region. Mathematically, minimization of acoustic source strength is equivalent to minimization in the sense of L(sub 1). By contrast. in the current paper we formulate and study optimization problems that involve quadratic functions of merit. Specifically, we minimize the L(sub 2) norm of the control sources, and we consider both the unconstrained and constrained minimization. The unconstrained L(sub 2) minimization is certainly the easiest problem to address numerically. On the other hand, the constrained approach allows one to analyze sophisticated geometries. In a special case, we call compare our finite-difference optimal solutions to the continuous optimal solutions obtained previously using a semi-analytic technique. We also show that the optima obtained in the sense of L(sub 2) differ drastically from those obtained in the sense of L(sub 1).

  3. Comparison of penalty functions on a penalty approach to mixed-integer optimization

    NASA Astrophysics Data System (ADS)

    Francisco, Rogério B.; Costa, M. Fernanda P.; Rocha, Ana Maria A. C.; Fernandes, Edite M. G. P.

    2016-06-01

    In this paper, we present a comparative study involving several penalty functions that can be used in a penalty approach for globally solving bound mixed-integer nonlinear programming (bMIMLP) problems. The penalty approach relies on a continuous reformulation of the bMINLP problem by adding a particular penalty term to the objective function. A penalty function based on the `erf' function is proposed. The continuous nonlinear optimization problems are sequentially solved by the population-based firefly algorithm. Preliminary numerical experiments are carried out in order to analyze the quality of the produced solutions, when compared with other penalty functions available in the literature.

  4. A Bell-Curved Based Algorithm for Mixed Continuous and Discrete Structural Optimization

    NASA Technical Reports Server (NTRS)

    Kincaid, Rex K.; Weber, Michael; Sobieszczanski-Sobieski, Jaroslaw

    2001-01-01

    An evolutionary based strategy utilizing two normal distributions to generate children is developed to solve mixed integer nonlinear programming problems. This Bell-Curve Based (BCB) evolutionary algorithm is similar in spirit to (mu + mu) evolutionary strategies and evolutionary programs but with fewer parameters to adjust and no mechanism for self adaptation. First, a new version of BCB to solve purely discrete optimization problems is described and its performance tested against a tabu search code for an actuator placement problem. Next, the performance of a combined version of discrete and continuous BCB is tested on 2-dimensional shape problems and on a minimum weight hub design problem. In the latter case the discrete portion is the choice of the underlying beam shape (I, triangular, circular, rectangular, or U).

  5. Distributed Learning, Extremum Seeking, and Model-Free Optimization for the Resilient Coordination of Multi-Agent Adversarial Groups

    DTIC Science & Technology

    2016-09-07

    been demonstrated on maximum power point tracking for photovoltaic arrays and for wind turbines . 3. ES has recently been implemented on the Mars...high-dimensional optimization problems . Extensions and applications of these techniques were developed during the realization of the project. 15...studied problems of dynamic average consensus and a class of unconstrained continuous-time optimization algorithms for the coordination of multiple

  6. The Optimization Based Dynamic and Cyclic Working Strategies for Rechargeable Wireless Sensor Networks with Multiple Base Stations and Wireless Energy Transfer Devices

    PubMed Central

    Ding, Xu; Han, Jianghong; Shi, Lei

    2015-01-01

    In this paper, the optimal working schemes for wireless sensor networks with multiple base stations and wireless energy transfer devices are proposed. The wireless energy transfer devices also work as data gatherers while charging sensor nodes. The wireless sensor network is firstly divided into sub networks according to the concept of Voronoi diagram. Then, the entire energy replenishing procedure is split into the pre-normal and normal energy replenishing stages. With the objective of maximizing the sojourn time ratio of the wireless energy transfer device, a continuous time optimization problem for the normal energy replenishing cycle is formed according to constraints with which sensor nodes and wireless energy transfer devices should comply. Later on, the continuous time optimization problem is reshaped into a discrete multi-phased optimization problem, which yields the identical optimality. After linearizing it, we obtain a linear programming problem that can be solved efficiently. The working strategies of both sensor nodes and wireless energy transfer devices in the pre-normal replenishing stage are also discussed in this paper. The intensive simulations exhibit the dynamic and cyclic working schemes for the entire energy replenishing procedure. Additionally, a way of eliminating “bottleneck” sensor nodes is also developed in this paper. PMID:25785305

  7. The optimization based dynamic and cyclic working strategies for rechargeable wireless sensor networks with multiple base stations and wireless energy transfer devices.

    PubMed

    Ding, Xu; Han, Jianghong; Shi, Lei

    2015-03-16

    In this paper, the optimal working schemes for wireless sensor networks with multiple base stations and wireless energy transfer devices are proposed. The wireless energy transfer devices also work as data gatherers while charging sensor nodes. The wireless sensor network is firstly divided into sub networks according to the concept of Voronoi diagram. Then, the entire energy replenishing procedure is split into the pre-normal and normal energy replenishing stages. With the objective of maximizing the sojourn time ratio of the wireless energy transfer device, a continuous time optimization problem for the normal energy replenishing cycle is formed according to constraints with which sensor nodes and wireless energy transfer devices should comply. Later on, the continuous time optimization problem is reshaped into a discrete multi-phased optimization problem, which yields the identical optimality. After linearizing it, we obtain a linear programming problem that can be solved efficiently. The working strategies of both sensor nodes and wireless energy transfer devices in the pre-normal replenishing stage are also discussed in this paper. The intensive simulations exhibit the dynamic and cyclic working schemes for the entire energy replenishing procedure. Additionally, a way of eliminating "bottleneck" sensor nodes is also developed in this paper.

  8. Two-level optimization of composite wing structures based on panel genetic optimization

    NASA Astrophysics Data System (ADS)

    Liu, Boyang

    The design of complex composite structures used in aerospace or automotive vehicles presents a major challenge in terms of computational cost. Discrete choices for ply thicknesses and ply angles leads to a combinatorial optimization problem that is too expensive to solve with presently available computational resources. We developed the following methodology for handling this problem for wing structural design: we used a two-level optimization approach with response-surface approximations to optimize panel failure loads for the upper-level wing optimization. We tailored efficient permutation genetic algorithms to the panel stacking sequence design on the lower level. We also developed approach for improving continuity of ply stacking sequences among adjacent panels. The decomposition approach led to a lower-level optimization of stacking sequence with a given number of plies in each orientation. An efficient permutation genetic algorithm (GA) was developed for handling this problem. We demonstrated through examples that the permutation GAs are more efficient for stacking sequence optimization than a standard GA. Repair strategies for standard GA and the permutation GAs for dealing with constraints were also developed. The repair strategies can significantly reduce computation costs for both standard GA and permutation GA. A two-level optimization procedure for composite wing design subject to strength and buckling constraints is presented. At wing-level design, continuous optimization of ply thicknesses with orientations of 0°, 90°, and +/-45° is performed to minimize weight. At the panel level, the number of plies of each orientation (rounded to integers) and inplane loads are specified, and a permutation genetic algorithm is used to optimize the stacking sequence. The process begins with many panel genetic optimizations for a range of loads and numbers of plies of each orientation. Next, a cubic polynomial response surface is fitted to the optimum buckling load. The resulting response surface is used for wing-level optimization. In general, complex composite structures consist of several laminates. A common problem in the design of such structures is that some plies in the adjacent laminates terminate in the boundary between the laminates. These discontinuities may cause stress concentrations and may increase manufacturing difficulty and cost. We developed measures of continuity of two adjacent laminates. We studied tradeoffs between weight and continuity through a simple composite wing design. Finally, we compared the two-level optimization to a single-level optimization based on flexural lamination parameters. The single-level optimization is efficient and feasible for a wing consisting of unstiffened panels.

  9. Supercomputer optimizations for stochastic optimal control applications

    NASA Technical Reports Server (NTRS)

    Chung, Siu-Leung; Hanson, Floyd B.; Xu, Huihuang

    1991-01-01

    Supercomputer optimizations for a computational method of solving stochastic, multibody, dynamic programming problems are presented. The computational method is valid for a general class of optimal control problems that are nonlinear, multibody dynamical systems, perturbed by general Markov noise in continuous time, i.e., nonsmooth Gaussian as well as jump Poisson random white noise. Optimization techniques for vector multiprocessors or vectorizing supercomputers include advanced data structures, loop restructuring, loop collapsing, blocking, and compiler directives. These advanced computing techniques and superconducting hardware help alleviate Bellman's curse of dimensionality in dynamic programming computations, by permitting the solution of large multibody problems. Possible applications include lumped flight dynamics models for uncertain environments, such as large scale and background random aerospace fluctuations.

  10. Discrete particle swarm optimization to solve multi-objective limited-wait hybrid flow shop scheduling problem

    NASA Astrophysics Data System (ADS)

    Santosa, B.; Siswanto, N.; Fiqihesa

    2018-04-01

    This paper proposes a discrete Particle Swam Optimization (PSO) to solve limited-wait hybrid flowshop scheduing problem with multi objectives. Flow shop schedulimg represents the condition when several machines are arranged in series and each job must be processed at each machine with same sequence. The objective functions are minimizing completion time (makespan), total tardiness time, and total machine idle time. Flow shop scheduling model always grows to cope with the real production system accurately. Since flow shop scheduling is a NP-Hard problem then the most suitable method to solve is metaheuristics. One of metaheuristics algorithm is Particle Swarm Optimization (PSO), an algorithm which is based on the behavior of a swarm. Originally, PSO was intended to solve continuous optimization problems. Since flow shop scheduling is a discrete optimization problem, then, we need to modify PSO to fit the problem. The modification is done by using probability transition matrix mechanism. While to handle multi objectives problem, we use Pareto Optimal (MPSO). The results of MPSO is better than the PSO because the MPSO solution set produced higher probability to find the optimal solution. Besides the MPSO solution set is closer to the optimal solution

  11. Adaptive Grouping Cloud Model Shuffled Frog Leaping Algorithm for Solving Continuous Optimization Problems

    PubMed Central

    Liu, Haorui; Yi, Fengyan; Yang, Heli

    2016-01-01

    The shuffled frog leaping algorithm (SFLA) easily falls into local optimum when it solves multioptimum function optimization problem, which impacts the accuracy and convergence speed. Therefore this paper presents grouped SFLA for solving continuous optimization problems combined with the excellent characteristics of cloud model transformation between qualitative and quantitative research. The algorithm divides the definition domain into several groups and gives each group a set of frogs. Frogs of each region search in their memeplex, and in the search process the algorithm uses the “elite strategy” to update the location information of existing elite frogs through cloud model algorithm. This method narrows the searching space and it can effectively improve the situation of a local optimum; thus convergence speed and accuracy can be significantly improved. The results of computer simulation confirm this conclusion. PMID:26819584

  12. Inversion of geophysical potential field data using the finite element method

    NASA Astrophysics Data System (ADS)

    Lamichhane, Bishnu P.; Gross, Lutz

    2017-12-01

    The inversion of geophysical potential field data can be formulated as an optimization problem with a constraint in the form of a partial differential equation (PDE). It is common practice, if possible, to provide an analytical solution for the forward problem and to reduce the problem to a finite dimensional optimization problem. In an alternative approach the optimization is applied to the problem and the resulting continuous problem which is defined by a set of coupled PDEs is subsequently solved using a standard PDE discretization method, such as the finite element method (FEM). In this paper, we show that under very mild conditions on the data misfit functional and the forward problem in the three-dimensional space, the continuous optimization problem and its FEM discretization are well-posed including the existence and uniqueness of respective solutions. We provide error estimates for the FEM solution. A main result of the paper is that the FEM spaces used for the forward problem and the Lagrange multiplier need to be identical but can be chosen independently from the FEM space used to represent the unknown physical property. We will demonstrate the convergence of the solution approximations in a numerical example. The second numerical example which investigates the selection of FEM spaces, shows that from the perspective of computational efficiency one should use 2 to 4 times finer mesh for the forward problem in comparison to the mesh of the physical property.

  13. Time-domain finite elements in optimal control with application to launch-vehicle guidance. PhD. Thesis

    NASA Technical Reports Server (NTRS)

    Bless, Robert R.

    1991-01-01

    A time-domain finite element method is developed for optimal control problems. The theory derived is general enough to handle a large class of problems including optimal control problems that are continuous in the states and controls, problems with discontinuities in the states and/or system equations, problems with control inequality constraints, problems with state inequality constraints, or problems involving any combination of the above. The theory is developed in such a way that no numerical quadrature is necessary regardless of the degree of nonlinearity in the equations. Also, the same shape functions may be employed for every problem because all strong boundary conditions are transformed into natural or weak boundary conditions. In addition, the resulting nonlinear algebraic equations are very sparse. Use of sparse matrix solvers allows for the rapid and accurate solution of very difficult optimization problems. The formulation is applied to launch-vehicle trajectory optimization problems, and results show that real-time optimal guidance is realizable with this method. Finally, a general problem solving environment is created for solving a large class of optimal control problems. The algorithm uses both FORTRAN and a symbolic computation program to solve problems with a minimum of user interaction. The use of symbolic computation eliminates the need for user-written subroutines which greatly reduces the setup time for solving problems.

  14. An hp symplectic pseudospectral method for nonlinear optimal control

    NASA Astrophysics Data System (ADS)

    Peng, Haijun; Wang, Xinwei; Li, Mingwu; Chen, Biaosong

    2017-01-01

    An adaptive symplectic pseudospectral method based on the dual variational principle is proposed and is successfully applied to solving nonlinear optimal control problems in this paper. The proposed method satisfies the first order necessary conditions of continuous optimal control problems, also the symplectic property of the original continuous Hamiltonian system is preserved. The original optimal control problem is transferred into a set of nonlinear equations which can be solved easily by Newton-Raphson iterations, and the Jacobian matrix is found to be sparse and symmetric. The proposed method, on one hand, exhibits exponent convergence rates when the number of collocation points are increasing with the fixed number of sub-intervals; on the other hand, exhibits linear convergence rates when the number of sub-intervals is increasing with the fixed number of collocation points. Furthermore, combining with the hp method based on the residual error of dynamic constraints, the proposed method can achieve given precisions in a few iterations. Five examples highlight the high precision and high computational efficiency of the proposed method.

  15. Robust quantum optimizer with full connectivity.

    PubMed

    Nigg, Simon E; Lörch, Niels; Tiwari, Rakesh P

    2017-04-01

    Quantum phenomena have the potential to speed up the solution of hard optimization problems. For example, quantum annealing, based on the quantum tunneling effect, has recently been shown to scale exponentially better with system size than classical simulated annealing. However, current realizations of quantum annealers with superconducting qubits face two major challenges. First, the connectivity between the qubits is limited, excluding many optimization problems from a direct implementation. Second, decoherence degrades the success probability of the optimization. We address both of these shortcomings and propose an architecture in which the qubits are robustly encoded in continuous variable degrees of freedom. By leveraging the phenomenon of flux quantization, all-to-all connectivity with sufficient tunability to implement many relevant optimization problems is obtained without overhead. Furthermore, we demonstrate the robustness of this architecture by simulating the optimal solution of a small instance of the nondeterministic polynomial-time hard (NP-hard) and fully connected number partitioning problem in the presence of dissipation.

  16. Optimization strategies based on sequential quadratic programming applied for a fermentation process for butanol production.

    PubMed

    Pinto Mariano, Adriano; Bastos Borba Costa, Caliane; de Franceschi de Angelis, Dejanira; Maugeri Filho, Francisco; Pires Atala, Daniel Ibraim; Wolf Maciel, Maria Regina; Maciel Filho, Rubens

    2009-11-01

    In this work, the mathematical optimization of a continuous flash fermentation process for the production of biobutanol was studied. The process consists of three interconnected units, as follows: fermentor, cell-retention system (tangential microfiltration), and vacuum flash vessel (responsible for the continuous recovery of butanol from the broth). The objective of the optimization was to maximize butanol productivity for a desired substrate conversion. Two strategies were compared for the optimization of the process. In one of them, the process was represented by a deterministic model with kinetic parameters determined experimentally and, in the other, by a statistical model obtained using the factorial design technique combined with simulation. For both strategies, the problem was written as a nonlinear programming problem and was solved with the sequential quadratic programming technique. The results showed that despite the very similar solutions obtained with both strategies, the problems found with the strategy using the deterministic model, such as lack of convergence and high computational time, make the use of the optimization strategy with the statistical model, which showed to be robust and fast, more suitable for the flash fermentation process, being recommended for real-time applications coupling optimization and control.

  17. Tailored parameter optimization methods for ordinary differential equation models with steady-state constraints.

    PubMed

    Fiedler, Anna; Raeth, Sebastian; Theis, Fabian J; Hausser, Angelika; Hasenauer, Jan

    2016-08-22

    Ordinary differential equation (ODE) models are widely used to describe (bio-)chemical and biological processes. To enhance the predictive power of these models, their unknown parameters are estimated from experimental data. These experimental data are mostly collected in perturbation experiments, in which the processes are pushed out of steady state by applying a stimulus. The information that the initial condition is a steady state of the unperturbed process provides valuable information, as it restricts the dynamics of the process and thereby the parameters. However, implementing steady-state constraints in the optimization often results in convergence problems. In this manuscript, we propose two new methods for solving optimization problems with steady-state constraints. The first method exploits ideas from optimization algorithms on manifolds and introduces a retraction operator, essentially reducing the dimension of the optimization problem. The second method is based on the continuous analogue of the optimization problem. This continuous analogue is an ODE whose equilibrium points are the optima of the constrained optimization problem. This equivalence enables the use of adaptive numerical methods for solving optimization problems with steady-state constraints. Both methods are tailored to the problem structure and exploit the local geometry of the steady-state manifold and its stability properties. A parameterization of the steady-state manifold is not required. The efficiency and reliability of the proposed methods is evaluated using one toy example and two applications. The first application example uses published data while the second uses a novel dataset for Raf/MEK/ERK signaling. The proposed methods demonstrated better convergence properties than state-of-the-art methods employed in systems and computational biology. Furthermore, the average computation time per converged start is significantly lower. In addition to the theoretical results, the analysis of the dataset for Raf/MEK/ERK signaling provides novel biological insights regarding the existence of feedback regulation. Many optimization problems considered in systems and computational biology are subject to steady-state constraints. While most optimization methods have convergence problems if these steady-state constraints are highly nonlinear, the methods presented recover the convergence properties of optimizers which can exploit an analytical expression for the parameter-dependent steady state. This renders them an excellent alternative to methods which are currently employed in systems and computational biology.

  18. Optimal Control for Stochastic Delay Evolution Equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meng, Qingxin, E-mail: mqx@hutc.zj.cn; Shen, Yang, E-mail: skyshen87@gmail.com

    2016-08-15

    In this paper, we investigate a class of infinite-dimensional optimal control problems, where the state equation is given by a stochastic delay evolution equation with random coefficients, and the corresponding adjoint equation is given by an anticipated backward stochastic evolution equation. We first prove the continuous dependence theorems for stochastic delay evolution equations and anticipated backward stochastic evolution equations, and show the existence and uniqueness of solutions to anticipated backward stochastic evolution equations. Then we establish necessary and sufficient conditions for optimality of the control problem in the form of Pontryagin’s maximum principles. To illustrate the theoretical results, we applymore » stochastic maximum principles to study two examples, an infinite-dimensional linear-quadratic control problem with delay and an optimal control of a Dirichlet problem for a stochastic partial differential equation with delay. Further applications of the two examples to a Cauchy problem for a controlled linear stochastic partial differential equation and an optimal harvesting problem are also considered.« less

  19. Optimal Control of Thermo--Fluid Phenomena in Variable Domains

    NASA Astrophysics Data System (ADS)

    Volkov, Oleg; Protas, Bartosz

    2008-11-01

    This presentation concerns our continued research on adjoint--based optimization of viscous incompressible flows (the Navier--Stokes problem) coupled with heat conduction involving change of phase (the Stefan problem), and occurring in domains with variable boundaries. This problem is motivated by optimization of advanced welding techniques used in automotive manufacturing, where the goal is to determine an optimal heat input, so as to obtain a desired shape of the weld pool surface upon solidification. We argue that computation of sensitivities (gradients) in such free--boundary problems requires the use of the shape--differential calculus as a key ingredient. We also show that, with such tools available, the computational solution of the direct and inverse (optimization) problems can in fact be achieved in a similar manner and in a comparable computational time. Our presentation will address certain mathematical and computational aspects of the method. As an illustration we will consider the two--phase Stefan problem with contact point singularities where our approach allows us to obtain a thermodynamically consistent solution.

  20. Modelling on optimal portfolio with exchange rate based on discontinuous stochastic process

    NASA Astrophysics Data System (ADS)

    Yan, Wei; Chang, Yuwen

    2016-12-01

    Considering the stochastic exchange rate, this paper is concerned with the dynamic portfolio selection in financial market. The optimal investment problem is formulated as a continuous-time mathematical model under mean-variance criterion. These processes follow jump-diffusion processes (Weiner process and Poisson process). Then the corresponding Hamilton-Jacobi-Bellman(HJB) equation of the problem is presented and its efferent frontier is obtained. Moreover, the optimal strategy is also derived under safety-first criterion.

  1. Final Report---Optimization Under Nonconvexity and Uncertainty: Algorithms and Software

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jeff Linderoth

    2011-11-06

    the goal of this work was to develop new algorithmic techniques for solving large-scale numerical optimization problems, focusing on problems classes that have proven to be among the most challenging for practitioners: those involving uncertainty and those involving nonconvexity. This research advanced the state-of-the-art in solving mixed integer linear programs containing symmetry, mixed integer nonlinear programs, and stochastic optimization problems. The focus of the work done in the continuation was on Mixed Integer Nonlinear Programs (MINLP)s and Mixed Integer Linear Programs (MILP)s, especially those containing a great deal of symmetry.

  2. A tabu search evalutionary algorithm for multiobjective optimization: Application to a bi-criterion aircraft structural reliability problem

    NASA Astrophysics Data System (ADS)

    Long, Kim Chenming

    Real-world engineering optimization problems often require the consideration of multiple conflicting and noncommensurate objectives, subject to nonconvex constraint regions in a high-dimensional decision space. Further challenges occur for combinatorial multiobjective problems in which the decision variables are not continuous. Traditional multiobjective optimization methods of operations research, such as weighting and epsilon constraint methods, are ill-suited to solving these complex, multiobjective problems. This has given rise to the application of a wide range of metaheuristic optimization algorithms, such as evolutionary, particle swarm, simulated annealing, and ant colony methods, to multiobjective optimization. Several multiobjective evolutionary algorithms have been developed, including the strength Pareto evolutionary algorithm (SPEA) and the non-dominated sorting genetic algorithm (NSGA), for determining the Pareto-optimal set of non-dominated solutions. Although numerous researchers have developed a wide range of multiobjective optimization algorithms, there is a continuing need to construct computationally efficient algorithms with an improved ability to converge to globally non-dominated solutions along the Pareto-optimal front for complex, large-scale, multiobjective engineering optimization problems. This is particularly important when the multiple objective functions and constraints of the real-world system cannot be expressed in explicit mathematical representations. This research presents a novel metaheuristic evolutionary algorithm for complex multiobjective optimization problems, which combines the metaheuristic tabu search algorithm with the evolutionary algorithm (TSEA), as embodied in genetic algorithms. TSEA is successfully applied to bicriteria (i.e., structural reliability and retrofit cost) optimization of the aircraft tail structure fatigue life, which increases its reliability by prolonging fatigue life. A comparison for this application of the proposed algorithm, TSEA, with several state-of-the-art multiobjective optimization algorithms reveals that TSEA outperforms these algorithms by providing retrofit solutions with greater reliability for the same costs (i.e., closer to the Pareto-optimal front) after the algorithms are executed for the same number of generations. This research also demonstrates that TSEA competes with and, in some situations, outperforms state-of-the-art multiobjective optimization algorithms such as NSGA II and SPEA 2 when applied to classic bicriteria test problems in the technical literature and other complex, sizable real-world applications. The successful implementation of TSEA contributes to the safety of aeronautical structures by providing a systematic way to guide aircraft structural retrofitting efforts, as well as a potentially useful algorithm for a wide range of multiobjective optimization problems in engineering and other fields.

  3. A survey of methods of feasible directions for the solution of optimal control problems

    NASA Technical Reports Server (NTRS)

    Polak, E.

    1972-01-01

    Three methods of feasible directions for optimal control are reviewed. These methods are an extension of the Frank-Wolfe method, a dual method devised by Pironneau and Polack, and a Zontendijk method. The categories of continuous optimal control problems are shown as: (1) fixed time problems with fixed initial state, free terminal state, and simple constraints on the control; (2) fixed time problems with inequality constraints on both the initial and the terminal state and no control constraints; (3) free time problems with inequality constraints on the initial and terminal states and simple constraints on the control; and (4) fixed time problems with inequality state space contraints and constraints on the control. The nonlinear programming algorithms are derived for each of the methods in its associated category.

  4. Determination of Nerve Fiber Diameter Distribution From Compound Action Potential: A Continuous Approach.

    PubMed

    Un, M Kerem; Kaghazchi, Hamed

    2018-01-01

    When a signal is initiated in the nerve, it is transmitted along each nerve fiber via an action potential (called single fiber action potential (SFAP)) which travels with a velocity that is related with the diameter of the fiber. The additive superposition of SFAPs constitutes the compound action potential (CAP) of the nerve. The fiber diameter distribution (FDD) in the nerve can be computed from the CAP data by solving an inverse problem. This is usually achieved by dividing the fibers into a finite number of diameter groups and solve a corresponding linear system to optimize FDD. However, number of fibers in a nerve can be measured sometimes in thousands and it is possible to assume a continuous distribution for the fiber diameters which leads to a gradient optimization problem. In this paper, we have evaluated this continuous approach to the solution of the inverse problem. We have utilized an analytical function for SFAP and an assumed a polynomial form for FDD. The inverse problem involves the optimization of polynomial coefficients to obtain the best estimate for the FDD. We have observed that an eighth order polynomial for FDD can capture both unimodal and bimodal fiber distributions present in vivo, even in case of noisy CAP data. The assumed FDD distribution regularizes the ill-conditioned inverse problem and produces good results.

  5. Mathematical improvement of the Hopfield model for feasible solutions to the traveling salesman problem by a synapse dynamical system.

    PubMed

    Takahashi, Y

    1998-01-01

    It is well known that the Hopfield Model (HM) for neural networks to solve the Traveling Salesman Problem (TSP) suffers from three major drawbacks. (1) It can converge on nonoptimal locally minimum solutions. (2) It can converge on infeasible solutions. (3) Results are very sensitive to the careful tuning of its parameters. A number of methods have been proposed to overcome (a) well. In contrast, work on (b) and (c) has not been sufficient; techniques have not been generalized to more general optimization problems. Thus this paper mathematically resolves (b) and (c) to such an extent that the resolution can be applied to solving with some general network continuous optimization problems including the Hopfield version of the TSP. It first constructs an Extended HM (E-HM) that overcomes both (b) and (c). Fundamental techniques of the E-HM lie in the addition of a synapse dynamical system cooperated with the current HM unit dynamical system. It is this synapse dynamical system that makes the TSP constraint hold at any final states for whatever choices of the IIM parameters and an initial state. The paper then generalizes the E-HM further to a network that can solve a class of continuous optimization problems with a constraint equation where both of the objective function and the constraint function are nonnegative and continuously differentiable.

  6. Biomimicry of symbiotic multi-species coevolution for discrete and continuous optimization in RFID networks.

    PubMed

    Lin, Na; Chen, Hanning; Jing, Shikai; Liu, Fang; Liang, Xiaodan

    2017-03-01

    In recent years, symbiosis as a rich source of potential engineering applications and computational model has attracted more and more attentions in the adaptive complex systems and evolution computing domains. Inspired by different symbiotic coevolution forms in nature, this paper proposed a series of multi-swarm particle swarm optimizers called PS 2 Os, which extend the single population particle swarm optimization (PSO) algorithm to interacting multi-swarms model by constructing hierarchical interaction topologies and enhanced dynamical update equations. According to different symbiotic interrelationships, four versions of PS 2 O are initiated to mimic mutualism, commensalism, predation, and competition mechanism, respectively. In the experiments, with five benchmark problems, the proposed algorithms are proved to have considerable potential for solving complex optimization problems. The coevolutionary dynamics of symbiotic species in each PS 2 O version are also studied respectively to demonstrate the heterogeneity of different symbiotic interrelationships that effect on the algorithm's performance. Then PS 2 O is used for solving the radio frequency identification (RFID) network planning (RNP) problem with a mixture of discrete and continuous variables. Simulation results show that the proposed algorithm outperforms the reference algorithms for planning RFID networks, in terms of optimization accuracy and computation robustness.

  7. ORACLS: A system for linear-quadratic-Gaussian control law design

    NASA Technical Reports Server (NTRS)

    Armstrong, E. S.

    1978-01-01

    A modern control theory design package (ORACLS) for constructing controllers and optimal filters for systems modeled by linear time-invariant differential or difference equations is described. Numerical linear-algebra procedures are used to implement the linear-quadratic-Gaussian (LQG) methodology of modern control theory. Algorithms are included for computing eigensystems of real matrices, the relative stability of a matrix, factored forms for nonnegative definite matrices, the solutions and least squares approximations to the solutions of certain linear matrix algebraic equations, the controllability properties of a linear time-invariant system, and the steady state covariance matrix of an open-loop stable system forced by white noise. Subroutines are provided for solving both the continuous and discrete optimal linear regulator problems with noise free measurements and the sampled-data optimal linear regulator problem. For measurement noise, duality theory and the optimal regulator algorithms are used to solve the continuous and discrete Kalman-Bucy filter problems. Subroutines are also included which give control laws causing the output of a system to track the output of a prescribed model.

  8. A Mixed Integer Efficient Global Optimization Framework: Applied to the Simultaneous Aircraft Design, Airline Allocation and Revenue Management Problem

    NASA Astrophysics Data System (ADS)

    Roy, Satadru

    Traditional approaches to design and optimize a new system, often, use a system-centric objective and do not take into consideration how the operator will use this new system alongside of other existing systems. This "hand-off" between the design of the new system and how the new system operates alongside other systems might lead to a sub-optimal performance with respect to the operator-level objective. In other words, the system that is optimal for its system-level objective might not be best for the system-of-systems level objective of the operator. Among the few available references that describe attempts to address this hand-off, most follow an MDO-motivated subspace decomposition approach of first designing a very good system and then provide this system to the operator who decides the best way to use this new system along with the existing systems. The motivating example in this dissertation presents one such similar problem that includes aircraft design, airline operations and revenue management "subspaces". The research here develops an approach that could simultaneously solve these subspaces posed as a monolithic optimization problem. The monolithic approach makes the problem a Mixed Integer/Discrete Non-Linear Programming (MINLP/MDNLP) problem, which are extremely difficult to solve. The presence of expensive, sophisticated engineering analyses further aggravate the problem. To tackle this challenge problem, the work here presents a new optimization framework that simultaneously solves the subspaces to capture the "synergism" in the problem that the previous decomposition approaches may not have exploited, addresses mixed-integer/discrete type design variables in an efficient manner, and accounts for computationally expensive analysis tools. The framework combines concepts from efficient global optimization, Kriging partial least squares, and gradient-based optimization. This approach then demonstrates its ability to solve an 11 route airline network problem consisting of 94 decision variables including 33 integer and 61 continuous type variables. This application problem is a representation of an interacting group of systems and provides key challenges to the optimization framework to solve the MINLP problem, as reflected by the presence of a moderate number of integer and continuous type design variables and expensive analysis tool. The result indicates simultaneously solving the subspaces could lead to significant improvement in the fleet-level objective of the airline when compared to the previously developed sequential subspace decomposition approach. In developing the approach to solve the MINLP/MDNLP challenge problem, several test problems provided the ability to explore performance of the framework. While solving these test problems, the framework showed that it could solve other MDNLP problems including categorically discrete variables, indicating that the framework could have broader application than the new aircraft design-fleet allocation-revenue management problem.

  9. Optimisation of strain selection in evolutionary continuous culture

    NASA Astrophysics Data System (ADS)

    Bayen, T.; Mairet, F.

    2017-12-01

    In this work, we study a minimal time control problem for a perfectly mixed continuous culture with n ≥ 2 species and one limiting resource. The model that we consider includes a mutation factor for the microorganisms. Our aim is to provide optimal feedback control laws to optimise the selection of the species of interest. Thanks to Pontryagin's Principle, we derive optimality conditions on optimal controls and introduce a sub-optimal control law based on a most rapid approach to a singular arc that depends on the initial condition. Using adaptive dynamics theory, we also study a simplified version of this model which allows to introduce a near optimal strategy.

  10. Robust quantum optimizer with full connectivity

    PubMed Central

    Nigg, Simon E.; Lörch, Niels; Tiwari, Rakesh P.

    2017-01-01

    Quantum phenomena have the potential to speed up the solution of hard optimization problems. For example, quantum annealing, based on the quantum tunneling effect, has recently been shown to scale exponentially better with system size than classical simulated annealing. However, current realizations of quantum annealers with superconducting qubits face two major challenges. First, the connectivity between the qubits is limited, excluding many optimization problems from a direct implementation. Second, decoherence degrades the success probability of the optimization. We address both of these shortcomings and propose an architecture in which the qubits are robustly encoded in continuous variable degrees of freedom. By leveraging the phenomenon of flux quantization, all-to-all connectivity with sufficient tunability to implement many relevant optimization problems is obtained without overhead. Furthermore, we demonstrate the robustness of this architecture by simulating the optimal solution of a small instance of the nondeterministic polynomial-time hard (NP-hard) and fully connected number partitioning problem in the presence of dissipation. PMID:28435880

  11. Optimal preview control for a linear continuous-time stochastic control system in finite-time horizon

    NASA Astrophysics Data System (ADS)

    Wu, Jiang; Liao, Fucheng; Tomizuka, Masayoshi

    2017-01-01

    This paper discusses the design of the optimal preview controller for a linear continuous-time stochastic control system in finite-time horizon, using the method of augmented error system. First, an assistant system is introduced for state shifting. Then, in order to overcome the difficulty of the state equation of the stochastic control system being unable to be differentiated because of Brownian motion, the integrator is introduced. Thus, the augmented error system which contains the integrator vector, control input, reference signal, error vector and state of the system is reconstructed. This leads to the tracking problem of the optimal preview control of the linear stochastic control system being transformed into the optimal output tracking problem of the augmented error system. With the method of dynamic programming in the theory of stochastic control, the optimal controller with previewable signals of the augmented error system being equal to the controller of the original system is obtained. Finally, numerical simulations show the effectiveness of the controller.

  12. Applying Squeaky-Wheel Optimization Schedule Airborne Astronomy Observations

    NASA Technical Reports Server (NTRS)

    Frank, Jeremy; Kuerklue, Elif

    2004-01-01

    We apply the Squeaky Wheel Optimization (SWO) algorithm to the problem of scheduling astronomy observations for the Stratospheric Observatory for Infrared Astronomy, an airborne observatory. The problem contains complex constraints relating the feasibility of an astronomical observation to the position and time at which the observation begins, telescope elevation limits, special use airspace, and available fuel. Solving the problem requires making discrete choices (e.g. selection and sequencing of observations) and continuous ones (e.g. takeoff time and setting up observations by repositioning the aircraft). The problem also includes optimization criteria such as maximizing observing time while simultaneously minimizing total flight time. Previous approaches to the problem fail to scale when accounting for all constraints. We describe how to customize SWO to solve this problem, and show that it finds better flight plans, often with less computation time, than previous approaches.

  13. Design of optimally normal minimum gain controllers by continuation method

    NASA Technical Reports Server (NTRS)

    Lim, K. B.; Juang, J.-N.; Kim, Z. C.

    1989-01-01

    A measure of the departure from normality is investigated for system robustness. An attractive feature of the normality index is its simplicity for pole placement designs. To allow a tradeoff between system robustness and control effort, a cost function consisting of the sum of a norm of weighted gain matrix and a normality index is minimized. First- and second-order necessary conditions for the constrained optimization problem are derived and solved by a Newton-Raphson algorithm imbedded into a one-parameter family of neighboring zero problems. The method presented allows the direct computation of optimal gains in terms of robustness and control effort for pole placement problems.

  14. New Perspectives on Human Problem Solving

    ERIC Educational Resources Information Center

    Goldstone, Robert L.; Pizlo, Zygmunt

    2009-01-01

    In November 2008 at Purdue University, the 2nd Workshop on Human Problem Solving was held. This workshop, which was a natural continuation of the first workshop devoted almost exclusively to optimization problems, addressed a wider range of topics that reflect the scope of the "Journal of Problem Solving." The workshop was attended by 35…

  15. Numerical optimization using flow equations.

    PubMed

    Punk, Matthias

    2014-12-01

    We develop a method for multidimensional optimization using flow equations. This method is based on homotopy continuation in combination with a maximum entropy approach. Extrema of the optimizing functional correspond to fixed points of the flow equation. While ideas based on Bayesian inference such as the maximum entropy method always depend on a prior probability, the additional step in our approach is to perform a continuous update of the prior during the homotopy flow. The prior probability thus enters the flow equation only as an initial condition. We demonstrate the applicability of this optimization method for two paradigmatic problems in theoretical condensed matter physics: numerical analytic continuation from imaginary to real frequencies and finding (variational) ground states of frustrated (quantum) Ising models with random or long-range antiferromagnetic interactions.

  16. Numerical optimization using flow equations

    NASA Astrophysics Data System (ADS)

    Punk, Matthias

    2014-12-01

    We develop a method for multidimensional optimization using flow equations. This method is based on homotopy continuation in combination with a maximum entropy approach. Extrema of the optimizing functional correspond to fixed points of the flow equation. While ideas based on Bayesian inference such as the maximum entropy method always depend on a prior probability, the additional step in our approach is to perform a continuous update of the prior during the homotopy flow. The prior probability thus enters the flow equation only as an initial condition. We demonstrate the applicability of this optimization method for two paradigmatic problems in theoretical condensed matter physics: numerical analytic continuation from imaginary to real frequencies and finding (variational) ground states of frustrated (quantum) Ising models with random or long-range antiferromagnetic interactions.

  17. Shape complexes: the intersection of label orderings and star convexity constraints in continuous max-flow medical image segmentation

    PubMed Central

    Baxter, John S. H.; Inoue, Jiro; Drangova, Maria; Peters, Terry M.

    2016-01-01

    Abstract. Optimization-based segmentation approaches deriving from discrete graph-cuts and continuous max-flow have become increasingly nuanced, allowing for topological and geometric constraints on the resulting segmentation while retaining global optimality. However, these two considerations, topological and geometric, have yet to be combined in a unified manner. The concept of “shape complexes,” which combine geodesic star convexity with extendable continuous max-flow solvers, is presented. These shape complexes allow more complicated shapes to be created through the use of multiple labels and super-labels, with geodesic star convexity governed by a topological ordering. These problems can be optimized using extendable continuous max-flow solvers. Previous approaches required computationally expensive coordinate system warping, which are ill-defined and ambiguous in the general case. These shape complexes are demonstrated in a set of synthetic images as well as vessel segmentation in ultrasound, valve segmentation in ultrasound, and atrial wall segmentation from contrast-enhanced CT. Shape complexes represent an extendable tool alongside other continuous max-flow methods that may be suitable for a wide range of medical image segmentation problems. PMID:28018937

  18. Efficient computation of optimal actions.

    PubMed

    Todorov, Emanuel

    2009-07-14

    Optimal choice of actions is a fundamental problem relevant to fields as diverse as neuroscience, psychology, economics, computer science, and control engineering. Despite this broad relevance the abstract setting is similar: we have an agent choosing actions over time, an uncertain dynamical system whose state is affected by those actions, and a performance criterion that the agent seeks to optimize. Solving problems of this kind remains hard, in part, because of overly generic formulations. Here, we propose a more structured formulation that greatly simplifies the construction of optimal control laws in both discrete and continuous domains. An exhaustive search over actions is avoided and the problem becomes linear. This yields algorithms that outperform Dynamic Programming and Reinforcement Learning, and thereby solve traditional problems more efficiently. Our framework also enables computations that were not possible before: composing optimal control laws by mixing primitives, applying deterministic methods to stochastic systems, quantifying the benefits of error tolerance, and inferring goals from behavioral data via convex optimization. Development of a general class of easily solvable problems tends to accelerate progress--as linear systems theory has done, for example. Our framework may have similar impact in fields where optimal choice of actions is relevant.

  19. Neural-network-based online HJB solution for optimal robust guaranteed cost control of continuous-time uncertain nonlinear systems.

    PubMed

    Liu, Derong; Wang, Ding; Wang, Fei-Yue; Li, Hongliang; Yang, Xiong

    2014-12-01

    In this paper, the infinite horizon optimal robust guaranteed cost control of continuous-time uncertain nonlinear systems is investigated using neural-network-based online solution of Hamilton-Jacobi-Bellman (HJB) equation. By establishing an appropriate bounded function and defining a modified cost function, the optimal robust guaranteed cost control problem is transformed into an optimal control problem. It can be observed that the optimal cost function of the nominal system is nothing but the optimal guaranteed cost of the original uncertain system. A critic neural network is constructed to facilitate the solution of the modified HJB equation corresponding to the nominal system. More importantly, an additional stabilizing term is introduced for helping to verify the stability, which reinforces the updating process of the weight vector and reduces the requirement of an initial stabilizing control. The uniform ultimate boundedness of the closed-loop system is analyzed by using the Lyapunov approach as well. Two simulation examples are provided to verify the effectiveness of the present control approach.

  20. Optimal Trajectories for the Helicopter in One-Engine-Inoperative Terminal-Area Operations

    NASA Technical Reports Server (NTRS)

    Zhao, Yiyuan; Chen, Robert T. N.

    1996-01-01

    This paper presents a summary of a series of recent analytical studies conducted to investigate One-Engine-Inoperative (OEI) optimal control strategies and the associated optimal trajectories for a twin engine helicopter in Category-A terminal-area operations. These studies also examine the associated heliport size requirements and the maximum gross weight capability of the helicopter. Using an eight states, two controls, augmented point-mass model representative of the study helicopter, Continued TakeOff (CTO), Rejected TakeOff (RTO), Balked Landing (BL), and Continued Landing (CL) are investigated for both Vertical-TakeOff-and-Landing (VTOL) and Short-TakeOff-and-Landing (STOL) terminal-area operations. The formulation of the nonlinear optimal control problems with considerations for realistic constraints, solution methods for the two-point boundary-value problem, a new real-time generation method for the optimal OEI trajectories, and the main results of this series of trajectory optimization studies are presented. In particular, a new balanced- weight concept for determining the takeoff decision point for VTOL Category-A operations is proposed, extending the balanced-field length concept used for STOL operations.

  1. Data-Driven Zero-Sum Neuro-Optimal Control for a Class of Continuous-Time Unknown Nonlinear Systems With Disturbance Using ADP.

    PubMed

    Wei, Qinglai; Song, Ruizhuo; Yan, Pengfei

    2016-02-01

    This paper is concerned with a new data-driven zero-sum neuro-optimal control problem for continuous-time unknown nonlinear systems with disturbance. According to the input-output data of the nonlinear system, an effective recurrent neural network is introduced to reconstruct the dynamics of the nonlinear system. Considering the system disturbance as a control input, a two-player zero-sum optimal control problem is established. Adaptive dynamic programming (ADP) is developed to obtain the optimal control under the worst case of the disturbance. Three single-layer neural networks, including one critic and two action networks, are employed to approximate the performance index function, the optimal control law, and the disturbance, respectively, for facilitating the implementation of the ADP method. Convergence properties of the ADP method are developed to show that the system state will converge to a finite neighborhood of the equilibrium. The weight matrices of the critic and the two action networks are also convergent to finite neighborhoods of their optimal ones. Finally, the simulation results will show the effectiveness of the developed data-driven ADP methods.

  2. SfM with MRFs: discrete-continuous optimization for large-scale structure from motion.

    PubMed

    Crandall, David J; Owens, Andrew; Snavely, Noah; Huttenlocher, Daniel P

    2013-12-01

    Recent work in structure from motion (SfM) has built 3D models from large collections of images downloaded from the Internet. Many approaches to this problem use incremental algorithms that solve progressively larger bundle adjustment problems. These incremental techniques scale poorly as the image collection grows, and can suffer from drift or local minima. We present an alternative framework for SfM based on finding a coarse initial solution using hybrid discrete-continuous optimization and then improving that solution using bundle adjustment. The initial optimization step uses a discrete Markov random field (MRF) formulation, coupled with a continuous Levenberg-Marquardt refinement. The formulation naturally incorporates various sources of information about both the cameras and points, including noisy geotags and vanishing point (VP) estimates. We test our method on several large-scale photo collections, including one with measured camera positions, and show that it produces models that are similar to or better than those produced by incremental bundle adjustment, but more robustly and in a fraction of the time.

  3. Sparseness- and continuity-constrained seismic imaging

    NASA Astrophysics Data System (ADS)

    Herrmann, Felix J.

    2005-04-01

    Non-linear solution strategies to the least-squares seismic inverse-scattering problem with sparseness and continuity constraints are proposed. Our approach is designed to (i) deal with substantial amounts of additive noise (SNR < 0 dB); (ii) use the sparseness and locality (both in position and angle) of directional basis functions (such as curvelets and contourlets) on the model: the reflectivity; and (iii) exploit the near invariance of these basis functions under the normal operator, i.e., the scattering-followed-by-imaging operator. Signal-to-noise ratio and the continuity along the imaged reflectors are significantly enhanced by formulating the solution of the seismic inverse problem in terms of an optimization problem. During the optimization, sparseness on the basis and continuity along the reflectors are imposed by jointly minimizing the l1- and anisotropic diffusion/total-variation norms on the coefficients and reflectivity, respectively. [Joint work with Peyman P. Moghaddam was carried out as part of the SINBAD project, with financial support secured through ITF (the Industry Technology Facilitator) from the following organizations: BG Group, BP, ExxonMobil, and SHELL. Additional funding came from the NSERC Discovery Grants 22R81254.

  4. Fleet Assignment Using Collective Intelligence

    NASA Technical Reports Server (NTRS)

    Antoine, Nicolas E.; Bieniawski, Stefan R.; Kroo, Ilan M.; Wolpert, David H.

    2004-01-01

    Product distribution theory is a new collective intelligence-based framework for analyzing and controlling distributed systems. Its usefulness in distributed stochastic optimization is illustrated here through an airline fleet assignment problem. This problem involves the allocation of aircraft to a set of flights legs in order to meet passenger demand, while satisfying a variety of linear and non-linear constraints. Over the course of the day, the routing of each aircraft is determined in order to minimize the number of required flights for a given fleet. The associated flow continuity and aircraft count constraints have led researchers to focus on obtaining quasi-optimal solutions, especially at larger scales. In this paper, the authors propose the application of this new stochastic optimization algorithm to a non-linear objective cold start fleet assignment problem. Results show that the optimizer can successfully solve such highly-constrained problems (130 variables, 184 constraints).

  5. Weak unique continuation property and a related inverse source problem for time-fractional diffusion-advection equations

    NASA Astrophysics Data System (ADS)

    Jiang, Daijun; Li, Zhiyuan; Liu, Yikan; Yamamoto, Masahiro

    2017-05-01

    In this paper, we first establish a weak unique continuation property for time-fractional diffusion-advection equations. The proof is mainly based on the Laplace transform and the unique continuation properties for elliptic and parabolic equations. The result is weaker than its parabolic counterpart in the sense that we additionally impose the homogeneous boundary condition. As a direct application, we prove the uniqueness for an inverse problem on determining the spatial component in the source term by interior measurements. Numerically, we reformulate our inverse source problem as an optimization problem, and propose an iterative thresholding algorithm. Finally, several numerical experiments are presented to show the accuracy and efficiency of the algorithm.

  6. Optimal perturbations for nonlinear systems using graph-based optimal transport

    NASA Astrophysics Data System (ADS)

    Grover, Piyush; Elamvazhuthi, Karthik

    2018-06-01

    We formulate and solve a class of finite-time transport and mixing problems in the set-oriented framework. The aim is to obtain optimal discrete-time perturbations in nonlinear dynamical systems to transport a specified initial measure on the phase space to a final measure in finite time. The measure is propagated under system dynamics in between the perturbations via the associated transfer operator. Each perturbation is described by a deterministic map in the measure space that implements a version of Monge-Kantorovich optimal transport with quadratic cost. Hence, the optimal solution minimizes a sum of quadratic costs on phase space transport due to the perturbations applied at specified times. The action of the transport map is approximated by a continuous pseudo-time flow on a graph, resulting in a tractable convex optimization problem. This problem is solved via state-of-the-art solvers to global optimality. We apply this algorithm to a problem of transport between measures supported on two disjoint almost-invariant sets in a chaotic fluid system, and to a finite-time optimal mixing problem by choosing the final measure to be uniform. In both cases, the optimal perturbations are found to exploit the phase space structures, such as lobe dynamics, leading to efficient global transport. As the time-horizon of the problem is increased, the optimal perturbations become increasingly localized. Hence, by combining the transfer operator approach with ideas from the theory of optimal mass transportation, we obtain a discrete-time graph-based algorithm for optimal transport and mixing in nonlinear systems.

  7. Optimal and Autonomous Control Using Reinforcement Learning: A Survey.

    PubMed

    Kiumarsi, Bahare; Vamvoudakis, Kyriakos G; Modares, Hamidreza; Lewis, Frank L

    2018-06-01

    This paper reviews the current state of the art on reinforcement learning (RL)-based feedback control solutions to optimal regulation and tracking of single and multiagent systems. Existing RL solutions to both optimal and control problems, as well as graphical games, will be reviewed. RL methods learn the solution to optimal control and game problems online and using measured data along the system trajectories. We discuss Q-learning and the integral RL algorithm as core algorithms for discrete-time (DT) and continuous-time (CT) systems, respectively. Moreover, we discuss a new direction of off-policy RL for both CT and DT systems. Finally, we review several applications.

  8. LETTER TO THE EDITOR: Constant-time solution to the global optimization problem using Brüschweiler's ensemble search algorithm

    NASA Astrophysics Data System (ADS)

    Protopopescu, V.; D'Helon, C.; Barhen, J.

    2003-06-01

    A constant-time solution of the continuous global optimization problem (GOP) is obtained by using an ensemble algorithm. We show that under certain assumptions, the solution can be guaranteed by mapping the GOP onto a discrete unsorted search problem, whereupon Brüschweiler's ensemble search algorithm is applied. For adequate sensitivities of the measurement technique, the query complexity of the ensemble search algorithm depends linearly on the size of the function's domain. Advantages and limitations of an eventual NMR implementation are discussed.

  9. Automated trajectory planning for multiple-flyby interplanetary missions

    NASA Astrophysics Data System (ADS)

    Englander, Jacob

    Many space mission planning problems may be formulated as hybrid optimal control problems (HOCP), i.e. problems that include both real-valued variables and categorical variables. In interplanetary trajectory design problems the categorical variables will typically specify the sequence of planets at which to perform flybys, and the real-valued variables will represent the launch date, ight times between planets, magnitudes and directions of thrust, flyby altitudes, etc. The contribution of this work is a framework for the autonomous optimization of multiple-flyby interplanetary trajectories. The trajectory design problem is converted into a HOCP with two nested loops: an "outer-loop" that finds the sequence of flybys and an "inner-loop" that optimizes the trajectory for each candidate yby sequence. The problem of choosing a sequence of flybys is posed as an integer programming problem and solved using a genetic algorithm (GA). This is an especially difficult problem to solve because GAs normally operate on a fixed-length set of decision variables. Since in interplanetary trajectory design the number of flyby maneuvers is not known a priori, it was necessary to devise a method of parameterizing the problem such that the GA can evolve a variable-length sequence of flybys. A novel "null gene" transcription was developed to meet this need. Then, for each candidate sequence of flybys, a trajectory must be found that visits each of the flyby targets and arrives at the final destination while optimizing some cost metric, such as minimizing ▵v or maximizing the final mass of the spacecraft. Three different classes of trajectory are described in this work, each of which requireda different physical model and optimization method. The choice of a trajectory model and optimization method is especially challenging because of the nature of the hybrid optimal control problem. Because the trajectory optimization problem is generated in real time by the outer-loop, the inner-loop optimization algorithm cannot require any a priori information and must always return a solution. In addition, the upper and lower bounds on each decision variable cannot be chosen a priori by the user because the user has no way to know what problem will be solved. Instead a method of choosing upper and lower bounds via a set of simple rules was developed and used for all three types of trajectory optimization problem. Many optimization algorithms were tested and discarded until suitable algorithms were found for each type of trajectory. The first class of trajectories use chemical propulsion and may only apply a ▵v at the periapse of each flyby. These Multiple Gravity Assist (MGA) trajectories are optimized using a cooperative algorithm of Differential Evolution (DE) and Particle Swarm Optimization (PSO). The second class of trajectories, known as Multiple Gravity Assist with one Deep Space Maneuver (MGA-DSM), also use chemical propulsion but instead of maneuvering at the periapse of each flyby as in the MGA case a maneuver is applied at a free point along each planet-to-planet arc, i.e. there is one maneuver for each pair of flybys. MGA-DSM trajectories are parameterized by more variables than MGA trajectories, and so the cooperative algorithm of DE and PSO that was used to optimize MGA trajectories was found to be less effective when applied to MGA-DSM. Instead, either PSO or DE alone were found to be more effective. The third class of trajectories addressed in this work are those using continuousthrust propulsion. Continuous-thrust trajectory optimization problems are more challenging than impulsive-thrust problems because the control variables are a continuous time series rather than a small set of parameters and because the spacecraft does not follow a conic section trajectory, leading to a large number of nonlinear constraints that must be satisfied to ensure that the spacecraft obeys the equations of motion. Many models and optimization algorithms were applied including direct transcription with nonlinear programming (DTNLP), the inverse-polynomial shapebased method, and feasible region analysis. However the only physical model and optimization method that proved reliable enough were the Sims-Flanagan transcription coupled with a nonlinear programming solver and the monotonic basin hopping (MBH) global search heuristic. The methods developed here are demonstrated to optimize a set of example trajectories, including a recreation of the Cassini mission, a Galileo-like mission, and conceptual continuous-thrust missions to Jupiter, Mercury, and Uranus.

  10. Reinforcement-Learning-Based Robust Controller Design for Continuous-Time Uncertain Nonlinear Systems Subject to Input Constraints.

    PubMed

    Liu, Derong; Yang, Xiong; Wang, Ding; Wei, Qinglai

    2015-07-01

    The design of stabilizing controller for uncertain nonlinear systems with control constraints is a challenging problem. The constrained-input coupled with the inability to identify accurately the uncertainties motivates the design of stabilizing controller based on reinforcement-learning (RL) methods. In this paper, a novel RL-based robust adaptive control algorithm is developed for a class of continuous-time uncertain nonlinear systems subject to input constraints. The robust control problem is converted to the constrained optimal control problem with appropriately selecting value functions for the nominal system. Distinct from typical action-critic dual networks employed in RL, only one critic neural network (NN) is constructed to derive the approximate optimal control. Meanwhile, unlike initial stabilizing control often indispensable in RL, there is no special requirement imposed on the initial control. By utilizing Lyapunov's direct method, the closed-loop optimal control system and the estimated weights of the critic NN are proved to be uniformly ultimately bounded. In addition, the derived approximate optimal control is verified to guarantee the uncertain nonlinear system to be stable in the sense of uniform ultimate boundedness. Two simulation examples are provided to illustrate the effectiveness and applicability of the present approach.

  11. Fuel management optimization using genetic algorithms and code independence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeChaine, M.D.; Feltus, M.A.

    1994-12-31

    Fuel management optimization is a hard problem for traditional optimization techniques. Loading pattern optimization is a large combinatorial problem without analytical derivative information. Therefore, methods designed for continuous functions, such as linear programming, do not always work well. Genetic algorithms (GAs) address these problems and, therefore, appear ideal for fuel management optimization. They do not require derivative information and work well with combinatorial. functions. The GAs are a stochastic method based on concepts from biological genetics. They take a group of candidate solutions, called the population, and use selection, crossover, and mutation operators to create the next generation of bettermore » solutions. The selection operator is a {open_quotes}survival-of-the-fittest{close_quotes} operation and chooses the solutions for the next generation. The crossover operator is analogous to biological mating, where children inherit a mixture of traits from their parents, and the mutation operator makes small random changes to the solutions.« less

  12. Optimization of Operations Resources via Discrete Event Simulation Modeling

    NASA Technical Reports Server (NTRS)

    Joshi, B.; Morris, D.; White, N.; Unal, R.

    1996-01-01

    The resource levels required for operation and support of reusable launch vehicles are typically defined through discrete event simulation modeling. Minimizing these resources constitutes an optimization problem involving discrete variables and simulation. Conventional approaches to solve such optimization problems involving integer valued decision variables are the pattern search and statistical methods. However, in a simulation environment that is characterized by search spaces of unknown topology and stochastic measures, these optimization approaches often prove inadequate. In this paper, we have explored the applicability of genetic algorithms to the simulation domain. Genetic algorithms provide a robust search strategy that does not require continuity and differentiability of the problem domain. The genetic algorithm successfully minimized the operation and support activities for a space vehicle, through a discrete event simulation model. The practical issues associated with simulation optimization, such as stochastic variables and constraints, were also taken into consideration.

  13. Real-time trajectory optimization on parallel processors

    NASA Technical Reports Server (NTRS)

    Psiaki, Mark L.

    1993-01-01

    A parallel algorithm has been developed for rapidly solving trajectory optimization problems. The goal of the work has been to develop an algorithm that is suitable to do real-time, on-line optimal guidance through repeated solution of a trajectory optimization problem. The algorithm has been developed on an INTEL iPSC/860 message passing parallel processor. It uses a zero-order-hold discretization of a continuous-time problem and solves the resulting nonlinear programming problem using a custom-designed augmented Lagrangian nonlinear programming algorithm. The algorithm achieves parallelism of function, derivative, and search direction calculations through the principle of domain decomposition applied along the time axis. It has been encoded and tested on 3 example problems, the Goddard problem, the acceleration-limited, planar minimum-time to the origin problem, and a National Aerospace Plane minimum-fuel ascent guidance problem. Execution times as fast as 118 sec of wall clock time have been achieved for a 128-stage Goddard problem solved on 32 processors. A 32-stage minimum-time problem has been solved in 151 sec on 32 processors. A 32-stage National Aerospace Plane problem required 2 hours when solved on 32 processors. A speed-up factor of 7.2 has been achieved by using 32-nodes instead of 1-node to solve a 64-stage Goddard problem.

  14. ORACLS- OPTIMAL REGULATOR ALGORITHMS FOR THE CONTROL OF LINEAR SYSTEMS (CDC VERSION)

    NASA Technical Reports Server (NTRS)

    Armstrong, E. S.

    1994-01-01

    This control theory design package, called Optimal Regulator Algorithms for the Control of Linear Systems (ORACLS), was developed to aid in the design of controllers and optimal filters for systems which can be modeled by linear, time-invariant differential and difference equations. Optimal linear quadratic regulator theory, currently referred to as the Linear-Quadratic-Gaussian (LQG) problem, has become the most widely accepted method of determining optimal control policy. Within this theory, the infinite duration time-invariant problems, which lead to constant gain feedback control laws and constant Kalman-Bucy filter gains for reconstruction of the system state, exhibit high tractability and potential ease of implementation. A variety of new and efficient methods in the field of numerical linear algebra have been combined into the ORACLS program, which provides for the solution to time-invariant continuous or discrete LQG problems. The ORACLS package is particularly attractive to the control system designer because it provides a rigorous tool for dealing with multi-input and multi-output dynamic systems in both continuous and discrete form. The ORACLS programming system is a collection of subroutines which can be used to formulate, manipulate, and solve various LQG design problems. The ORACLS program is constructed in a manner which permits the user to maintain considerable flexibility at each operational state. This flexibility is accomplished by providing primary operations, analysis of linear time-invariant systems, and control synthesis based on LQG methodology. The input-output routines handle the reading and writing of numerical matrices, printing heading information, and accumulating output information. The basic vector-matrix operations include addition, subtraction, multiplication, equation, norm construction, tracing, transposition, scaling, juxtaposition, and construction of null and identity matrices. The analysis routines provide for the following computations: the eigenvalues and eigenvectors of real matrices; the relative stability of a given matrix; matrix factorization; the solution of linear constant coefficient vector-matrix algebraic equations; the controllability properties of a linear time-invariant system; the steady-state covariance matrix of an open-loop stable system forced by white noise; and the transient response of continuous linear time-invariant systems. The control law design routines of ORACLS implement some of the more common techniques of time-invariant LQG methodology. For the finite-duration optimal linear regulator problem with noise-free measurements, continuous dynamics, and integral performance index, a routine is provided which implements the negative exponential method for finding both the transient and steady-state solutions to the matrix Riccati equation. For the discrete version of this problem, the method of backwards differencing is applied to find the solutions to the discrete Riccati equation. A routine is also included to solve the steady-state Riccati equation by the Newton algorithms described by Klein, for continuous problems, and by Hewer, for discrete problems. Another routine calculates the prefilter gain to eliminate control state cross-product terms in the quadratic performance index and the weighting matrices for the sampled data optimal linear regulator problem. For cases with measurement noise, duality theory and optimal regulator algorithms are used to calculate solutions to the continuous and discrete Kalman-Bucy filter problems. Finally, routines are included to implement the continuous and discrete forms of the explicit (model-in-the-system) and implicit (model-in-the-performance-index) model following theory. These routines generate linear control laws which cause the output of a dynamic time-invariant system to track the output of a prescribed model. In order to apply ORACLS, the user must write an executive (driver) program which inputs the problem coefficients, formulates and selects the routines to be used to solve the problem, and specifies the desired output. There are three versions of ORACLS source code available for implementation: CDC, IBM, and DEC. The CDC version has been implemented on a CDC 6000 series computer with a central memory of approximately 13K (octal) of 60 bit words. The CDC version is written in FORTRAN IV, was developed in 1978, and last updated in 1989. The IBM version has been implemented on an IBM 370 series computer with a central memory requirement of approximately 300K of 8 bit bytes. The IBM version is written in FORTRAN IV and was generated in 1981. The DEC version has been implemented on a VAX series computer operating under VMS. The VAX version is written in FORTRAN 77 and was generated in 1986.

  15. ORACLS- OPTIMAL REGULATOR ALGORITHMS FOR THE CONTROL OF LINEAR SYSTEMS (DEC VAX VERSION)

    NASA Technical Reports Server (NTRS)

    Frisch, H.

    1994-01-01

    This control theory design package, called Optimal Regulator Algorithms for the Control of Linear Systems (ORACLS), was developed to aid in the design of controllers and optimal filters for systems which can be modeled by linear, time-invariant differential and difference equations. Optimal linear quadratic regulator theory, currently referred to as the Linear-Quadratic-Gaussian (LQG) problem, has become the most widely accepted method of determining optimal control policy. Within this theory, the infinite duration time-invariant problems, which lead to constant gain feedback control laws and constant Kalman-Bucy filter gains for reconstruction of the system state, exhibit high tractability and potential ease of implementation. A variety of new and efficient methods in the field of numerical linear algebra have been combined into the ORACLS program, which provides for the solution to time-invariant continuous or discrete LQG problems. The ORACLS package is particularly attractive to the control system designer because it provides a rigorous tool for dealing with multi-input and multi-output dynamic systems in both continuous and discrete form. The ORACLS programming system is a collection of subroutines which can be used to formulate, manipulate, and solve various LQG design problems. The ORACLS program is constructed in a manner which permits the user to maintain considerable flexibility at each operational state. This flexibility is accomplished by providing primary operations, analysis of linear time-invariant systems, and control synthesis based on LQG methodology. The input-output routines handle the reading and writing of numerical matrices, printing heading information, and accumulating output information. The basic vector-matrix operations include addition, subtraction, multiplication, equation, norm construction, tracing, transposition, scaling, juxtaposition, and construction of null and identity matrices. The analysis routines provide for the following computations: the eigenvalues and eigenvectors of real matrices; the relative stability of a given matrix; matrix factorization; the solution of linear constant coefficient vector-matrix algebraic equations; the controllability properties of a linear time-invariant system; the steady-state covariance matrix of an open-loop stable system forced by white noise; and the transient response of continuous linear time-invariant systems. The control law design routines of ORACLS implement some of the more common techniques of time-invariant LQG methodology. For the finite-duration optimal linear regulator problem with noise-free measurements, continuous dynamics, and integral performance index, a routine is provided which implements the negative exponential method for finding both the transient and steady-state solutions to the matrix Riccati equation. For the discrete version of this problem, the method of backwards differencing is applied to find the solutions to the discrete Riccati equation. A routine is also included to solve the steady-state Riccati equation by the Newton algorithms described by Klein, for continuous problems, and by Hewer, for discrete problems. Another routine calculates the prefilter gain to eliminate control state cross-product terms in the quadratic performance index and the weighting matrices for the sampled data optimal linear regulator problem. For cases with measurement noise, duality theory and optimal regulator algorithms are used to calculate solutions to the continuous and discrete Kalman-Bucy filter problems. Finally, routines are included to implement the continuous and discrete forms of the explicit (model-in-the-system) and implicit (model-in-the-performance-index) model following theory. These routines generate linear control laws which cause the output of a dynamic time-invariant system to track the output of a prescribed model. In order to apply ORACLS, the user must write an executive (driver) program which inputs the problem coefficients, formulates and selects the routines to be used to solve the problem, and specifies the desired output. There are three versions of ORACLS source code available for implementation: CDC, IBM, and DEC. The CDC version has been implemented on a CDC 6000 series computer with a central memory of approximately 13K (octal) of 60 bit words. The CDC version is written in FORTRAN IV, was developed in 1978, and last updated in 1986. The IBM version has been implemented on an IBM 370 series computer with a central memory requirement of approximately 300K of 8 bit bytes. The IBM version is written in FORTRAN IV and was generated in 1981. The DEC version has been implemented on a VAX series computer operating under VMS. The VAX version is written in FORTRAN 77 and was generated in 1986.

  16. On Efficient Deployment of Wireless Sensors for Coverage and Connectivity in Constrained 3D Space.

    PubMed

    Wu, Chase Q; Wang, Li

    2017-10-10

    Sensor networks have been used in a rapidly increasing number of applications in many fields. This work generalizes a sensor deployment problem to place a minimum set of wireless sensors at candidate locations in constrained 3D space to k -cover a given set of target objects. By exhausting the combinations of discreteness/continuousness constraints on either sensor locations or target objects, we formulate four classes of sensor deployment problems in 3D space: deploy sensors at Discrete/Continuous Locations (D/CL) to cover Discrete/Continuous Targets (D/CT). We begin with the design of an approximate algorithm for DLDT and then reduce DLCT, CLDT, and CLCT to DLDT by discretizing continuous sensor locations or target objects into a set of divisions without sacrificing sensing precision. Furthermore, we consider a connected version of each problem where the deployed sensors must form a connected network, and design an approximation algorithm to minimize the number of deployed sensors with connectivity guarantee. For performance comparison, we design and implement an optimal solution and a genetic algorithm (GA)-based approach. Extensive simulation results show that the proposed deployment algorithms consistently outperform the GA-based heuristic and achieve a close-to-optimal performance in small-scale problem instances and a significantly superior overall performance than the theoretical upper bound.

  17. Discrete-continuous variable structural synthesis using dual methods

    NASA Technical Reports Server (NTRS)

    Schmit, L. A.; Fleury, C.

    1980-01-01

    Approximation concepts and dual methods are extended to solve structural synthesis problems involving a mix of discrete and continuous sizing type of design variables. Pure discrete and pure continuous variable problems can be handled as special cases. The basic mathematical programming statement of the structural synthesis problem is converted into a sequence of explicit approximate primal problems of separable form. These problems are solved by constructing continuous explicit dual functions, which are maximized subject to simple nonnegativity constraints on the dual variables. A newly devised gradient projection type of algorithm called DUAL 1, which includes special features for handling dual function gradient discontinuities that arise from the discrete primal variables, is used to find the solution of each dual problem. Computational implementation is accomplished by incorporating the DUAL 1 algorithm into the ACCESS 3 program as a new optimizer option. The power of the method set forth is demonstrated by presenting numerical results for several example problems, including a pure discrete variable treatment of a metallic swept wing and a mixed discrete-continuous variable solution for a thin delta wing with fiber composite skins.

  18. Comparison of a discrete steepest ascent method with the continuous steepest ascent method for optimal programing

    NASA Technical Reports Server (NTRS)

    Childs, A. G.

    1971-01-01

    A discrete steepest ascent method which allows controls which are not piecewise constant (for example, it allows all continuous piecewise linear controls) was derived for the solution of optimal programming problems. This method is based on the continuous steepest ascent method of Bryson and Denham and new concepts introduced by Kelley and Denham in their development of compatible adjoints for taking into account the effects of numerical integration. The method is a generalization of the algorithm suggested by Canon, Cullum, and Polak with the details of the gradient computation given. The discrete method was compared with the continuous method for an aerodynamics problem for which an analytic solution is given by Pontryagin's maximum principle, and numerical results are presented. The discrete method converges more rapidly than the continuous method at first, but then for some undetermined reason, loses its exponential convergence rate. A comparsion was also made for the algorithm of Canon, Cullum, and Polak using piecewise constant controls. This algorithm is very competitive with the continuous algorithm.

  19. Solving fuel-optimal low-thrust orbital transfers with bang-bang control using a novel continuation technique

    NASA Astrophysics Data System (ADS)

    Zhu, Zhengfan; Gan, Qingbo; Yang, Xin; Gao, Yang

    2017-08-01

    We have developed a novel continuation technique to solve optimal bang-bang control for low-thrust orbital transfers considering the first-order necessary optimality conditions derived from Lawden's primer vector theory. Continuation on the thrust amplitude is mainly described in this paper. Firstly, a finite-thrust transfer with an ;On-Off-On; thrusting sequence is modeled using a two-impulse transfer as initial solution, and then the thrust amplitude is decreased gradually to find an optimal solution with minimum thrust. Secondly, the thrust amplitude is continued from its minimum value to positive infinity to find the optimal bang-bang control, and a thrust switching principle is employed to determine the control structure by monitoring the variation of the switching function. In the continuation process, a bifurcation of bang-bang control is revealed and the concept of critical thrust is proposed to illustrate this phenomenon. The same thrust switching principle is also applicable to the continuation on other parameters, such as transfer time, orbital phase angle, etc. By this continuation technique, fuel-optimal orbital transfers with variable mission parameters can be found via an automated algorithm, and there is no need to provide an initial guess for the costate variables. Moreover, continuation is implemented in the solution space of bang-bang control that is either optimal or non-optimal, which shows that a desired solution of bang-bang control is obtained via continuation on a single parameter starting from an existing solution of bang-bang control. Finally, numerical examples are presented to demonstrate the effectiveness of the proposed continuation technique. Specifically, this continuation technique provides an approach to find multiple solutions satisfying the first-order necessary optimality conditions to the same orbital transfer problem, and a continuation strategy is presented as a preliminary approach for solving the bang-bang control of many-revolution orbital transfers.

  20. Dynamic programming methods for concurrent design and dynamic allocation of vehicles embedded in a system-of-systems

    NASA Astrophysics Data System (ADS)

    Nusawardhana

    2007-12-01

    Recent developments indicate a changing perspective on how systems or vehicles should be designed. Such transition comes from the way decision makers in defense related agencies address complex problems. Complex problems are now often posed in terms of the capabilities desired, rather than in terms of requirements for a single systems. As a result, the way to provide a set of capabilities is through a collection of several individual, independent systems. This collection of individual independent systems is often referred to as a "System of Systems'' (SoS). Because of the independent nature of the constituent systems in an SoS, approaches to design an SoS, and more specifically, approaches to design a new system as a member of an SoS, will likely be different than the traditional design approaches for complex, monolithic (meaning the constituent parts have no ability for independent operation) systems. Because a system of system evolves over time, this simultaneous system design and resource allocation problem should be investigated in a dynamic context. Such dynamic optimization problems are similar to conventional control problems. However, this research considers problems which not only seek optimizing policies but also seek the proper system or vehicle to operate under these policies. This thesis presents a framework and a set of analytical tools to solve a class of SoS problems that involves the simultaneous design of a new system and allocation of the new system along with existing systems. Such a class of problems belongs to the problems of concurrent design and control of a new systems with solutions consisting of both optimal system design and optimal control strategy. Rigorous mathematical arguments show that the proposed framework solves the concurrent design and control problems. Many results exist for dynamic optimization problems of linear systems. In contrary, results on optimal nonlinear dynamic optimization problems are rare. The proposed framework is equipped with the set of analytical tools to solve several cases of nonlinear optimal control problems: continuous- and discrete-time nonlinear problems with applications on both optimal regulation and tracking. These tools are useful when mathematical descriptions of dynamic systems are available. In the absence of such a mathematical model, it is often necessary to derive a solution based on computer simulation. For this case, a set of parameterized decision may constitute a solution. This thesis presents a method to adjust these parameters based on the principle of stochastic approximation simultaneous perturbation using continuous measurements. The set of tools developed here mostly employs the methods of exact dynamic programming. However, due to the complexity of SoS problems, this research also develops suboptimal solution approaches, collectively recognized as approximate dynamic programming solutions, for large scale problems. The thesis presents, explores, and solves problems from an airline industry, in which a new aircraft is to be designed and allocated along with an existing fleet of aircraft. Because the life cycle of an aircraft is on the order of 10 to 20 years, this problem is to be addressed dynamically so that the new aircraft design is the best design for the fleet over a given time horizon.

  1. Energy-modeled flight in a wind field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feldman, M.A.; Cliff, E.M.

    Optimal shaping of aerospace trajectories has provided the motivation for much modern study of optimization theory and algorithms. Current industrial practice favors approaches where the continuous-time optimal control problem is transcribed to a finite-dimensional nonlinear programming problem (NLP) by a discretization process. Two such formulations are implemented in the POST and the OTIS codes. In the present paper we use a discretization that is specially adapted to the flight problem of interest. Among the unique aspects of the present discretization are: a least-squares formulation for certain kinematic constraints; the use of an energy ideas to enforce Newton`s Laws; and, themore » inclusion of large magnitude horizontal winds. In the next section we shall provide a description of the flight problem and its NLP representation. Following this we provide some details of the constraint formulation. Finally, we present an overview of the NLP problem.« less

  2. Cascaded Optimization for a Persistent Data Ferrying Unmanned Aircraft

    NASA Astrophysics Data System (ADS)

    Carfang, Anthony

    This dissertation develops and assesses a cascaded method for designing optimal periodic trajectories and link schedules for an unmanned aircraft to ferry data between stationary ground nodes. This results in a fast solution method without the need to artificially constrain system dynamics. Focusing on a fundamental ferrying problem that involves one source and one destination, but includes complex vehicle and Radio-Frequency (RF) dynamics, a cascaded structure to the system dynamics is uncovered. This structure is exploited by reformulating the nonlinear optimization problem into one that reduces the independent control to the vehicle's motion, while the link scheduling control is folded into the objective function and implemented as an optimal policy that depends on candidate motion control. This formulation is proven to maintain optimality while reducing computation time in comparison to traditional ferry optimization methods. The discrete link scheduling problem takes the form of a combinatorial optimization problem that is known to be NP-Hard. A derived necessary condition for optimality guides the development of several heuristic algorithms, specifically the Most-Data-First Algorithm and the Knapsack Adaptation. These heuristics are extended to larger ferrying scenarios, and assessed analytically and through Monte Carlo simulation, showing better throughput performance in the same order of magnitude of computation time in comparison to other common link scheduling policies. The cascaded optimization method is implemented with a novel embedded software system on a small, unmanned aircraft to validate the simulation results with field experiments. To address the sensitivity of results on trajectory tracking performance, a system that combines motion and link control with waypoint-based navigation is developed and assessed through field experiments. The data ferrying algorithms are further extended by incorporating a Gaussian process to opportunistically learn the RF environment. By continuously improving RF models, the cascaded planner can continually improve the ferrying system's overall performance.

  3. Continuous performance measurement in flight systems. [sequential control model

    NASA Technical Reports Server (NTRS)

    Connelly, E. M.; Sloan, N. A.; Zeskind, R. M.

    1975-01-01

    The desired response of many man machine control systems can be formulated as a solution to an optimal control synthesis problem where the cost index is given and the resulting optimal trajectories correspond to the desired trajectories of the man machine system. Optimal control synthesis provides the reference criteria and the significance of error information required for performance measurement. The synthesis procedure described provides a continuous performance measure (CPM) which is independent of the mechanism generating the control action. Therefore, the technique provides a meaningful method for online evaluation of man's control capability in terms of total man machine performance.

  4. A Comparison Study of Stochastic- and Guaranteed- Service Approaches on Safety Stock Optimization for Multi Serial Systems

    NASA Astrophysics Data System (ADS)

    Li, Peng; Wu, Di

    2018-01-01

    Two competing approaches have been developed over the years for multi-echelon inventory system optimization, stochastic-service approach (SSA) and guaranteed-service approach (GSA). Although they solve the same inventory policy optimization problem in their core, they make different assumptions with regard to the role of safety stock. This paper provides a detailed comparison of the two approaches by considering operating flexibility costs in the optimization of (R, Q) policies for a continuous review serial inventory system. The results indicate the GSA model is more efficiency in solving the complicated inventory problem in terms of the computation time, and the cost difference of the two approaches is quite small.

  5. Particle Swarm Optimization

    NASA Technical Reports Server (NTRS)

    Venter, Gerhard; Sobieszczanski-Sobieski Jaroslaw

    2002-01-01

    The purpose of this paper is to show how the search algorithm known as particle swarm optimization performs. Here, particle swarm optimization is applied to structural design problems, but the method has a much wider range of possible applications. The paper's new contributions are improvements to the particle swarm optimization algorithm and conclusions and recommendations as to the utility of the algorithm, Results of numerical experiments for both continuous and discrete applications are presented in the paper. The results indicate that the particle swarm optimization algorithm does locate the constrained minimum design in continuous applications with very good precision, albeit at a much higher computational cost than that of a typical gradient based optimizer. However, the true potential of particle swarm optimization is primarily in applications with discrete and/or discontinuous functions and variables. Additionally, particle swarm optimization has the potential of efficient computation with very large numbers of concurrently operating processors.

  6. Efficient 3D multi-region prostate MRI segmentation using dual optimization.

    PubMed

    Qiu, Wu; Yuan, Jing; Ukwatta, Eranga; Sun, Yue; Rajchl, Martin; Fenster, Aaron

    2013-01-01

    Efficient and accurate extraction of the prostate, in particular its clinically meaningful sub-regions from 3D MR images, is of great interest in image-guided prostate interventions and diagnosis of prostate cancer. In this work, we propose a novel multi-region segmentation approach to simultaneously locating the boundaries of the prostate and its two major sub-regions: the central gland and the peripheral zone. The proposed method utilizes the prior knowledge of the spatial region consistency and employs a customized prostate appearance model to simultaneously segment multiple clinically meaningful regions. We solve the resulted challenging combinatorial optimization problem by means of convex relaxation, for which we introduce a novel spatially continuous flow-maximization model and demonstrate its duality to the investigated convex relaxed optimization problem with the region consistency constraint. Moreover, the proposed continuous max-flow model naturally leads to a new and efficient continuous max-flow based algorithm, which enjoys great advantages in numerics and can be readily implemented on GPUs. Experiments using 15 T2-weighted 3D prostate MR images, by inter- and intra-operator variability, demonstrate the promising performance of the proposed approach.

  7. Algorithms for Maneuvering Spacecraft Around Small Bodies

    NASA Technical Reports Server (NTRS)

    Acikmese, A. Bechet; Bayard, David

    2006-01-01

    A document describes mathematical derivations and applications of autonomous guidance algorithms for maneuvering spacecraft in the vicinities of small astronomical bodies like comets or asteroids. These algorithms compute fuel- or energy-optimal trajectories for typical maneuvers by solving the associated optimal-control problems with relevant control and state constraints. In the derivations, these problems are converted from their original continuous (infinite-dimensional) forms to finite-dimensional forms through (1) discretization of the time axis and (2) spectral discretization of control inputs via a finite number of Chebyshev basis functions. In these doubly discretized problems, the Chebyshev coefficients are the variables. These problems are, variously, either convex programming problems or programming problems that can be convexified. The resulting discrete problems are convex parameter-optimization problems; this is desirable because one can take advantage of very efficient and robust algorithms that have been developed previously and are well established for solving such problems. These algorithms are fast, do not require initial guesses, and always converge to global optima. Following the derivations, the algorithms are demonstrated by applying them to numerical examples of flyby, descent-to-hover, and ascent-from-hover maneuvers.

  8. Optimal Trajectories Generation in Robotic Fiber Placement Systems

    NASA Astrophysics Data System (ADS)

    Gao, Jiuchun; Pashkevich, Anatol; Caro, Stéphane

    2017-06-01

    The paper proposes a methodology for optimal trajectories generation in robotic fiber placement systems. A strategy to tune the parameters of the optimization algorithm at hand is also introduced. The presented technique transforms the original continuous problem into a discrete one where the time-optimal motions are generated by using dynamic programming. The developed strategy for the optimization algorithm tuning allows essentially reducing the computing time and obtaining trajectories satisfying industrial constraints. Feasibilities and advantages of the proposed methodology are confirmed by an application example.

  9. A Hybrid Ant Colony Optimization Algorithm for the Extended Capacitated Arc Routing Problem.

    PubMed

    Li-Ning Xing; Rohlfshagen, P; Ying-Wu Chen; Xin Yao

    2011-08-01

    The capacitated arc routing problem (CARP) is representative of numerous practical applications, and in order to widen its scope, we consider an extended version of this problem that entails both total service time and fixed investment costs. We subsequently propose a hybrid ant colony optimization (ACO) algorithm (HACOA) to solve instances of the extended CARP. This approach is characterized by the exploitation of heuristic information, adaptive parameters, and local optimization techniques: Two kinds of heuristic information, arc cluster information and arc priority information, are obtained continuously from the solutions sampled to guide the subsequent optimization process. The adaptive parameters ease the burden of choosing initial values and facilitate improved and more robust results. Finally, local optimization, based on the two-opt heuristic, is employed to improve the overall performance of the proposed algorithm. The resulting HACOA is tested on four sets of benchmark problems containing a total of 87 instances with up to 140 nodes and 380 arcs. In order to evaluate the effectiveness of the proposed method, some existing capacitated arc routing heuristics are extended to cope with the extended version of this problem; the experimental results indicate that the proposed ACO method outperforms these heuristics.

  10. Fuel optimization for low-thrust Earth-Moon transfer via indirect optimal control

    NASA Astrophysics Data System (ADS)

    Pérez-Palau, Daniel; Epenoy, Richard

    2018-02-01

    The problem of designing low-energy transfers between the Earth and the Moon has attracted recently a major interest from the scientific community. In this paper, an indirect optimal control approach is used to determine minimum-fuel low-thrust transfers between a low Earth orbit and a Lunar orbit in the Sun-Earth-Moon Bicircular Restricted Four-Body Problem. First, the optimal control problem is formulated and its necessary optimality conditions are derived from Pontryagin's Maximum Principle. Then, two different solution methods are proposed to overcome the numerical difficulties arising from the huge sensitivity of the problem's state and costate equations. The first one consists in the use of continuation techniques. The second one is based on a massive exploration of the set of unknown variables appearing in the optimality conditions. The dimension of the search space is reduced by considering adapted variables leading to a reduction of the computational time. The trajectories found are classified in several families according to their shape, transfer duration and fuel expenditure. Finally, an analysis based on the dynamical structure provided by the invariant manifolds of the two underlying Circular Restricted Three-Body Problems, Earth-Moon and Sun-Earth is presented leading to a physical interpretation of the different families of trajectories.

  11. CSOLNP: Numerical Optimization Engine for Solving Non-linearly Constrained Problems.

    PubMed

    Zahery, Mahsa; Maes, Hermine H; Neale, Michael C

    2017-08-01

    We introduce the optimizer CSOLNP, which is a C++ implementation of the R package RSOLNP (Ghalanos & Theussl, 2012, Rsolnp: General non-linear optimization using augmented Lagrange multiplier method. R package version, 1) alongside some improvements. CSOLNP solves non-linearly constrained optimization problems using a Sequential Quadratic Programming (SQP) algorithm. CSOLNP, NPSOL (a very popular implementation of SQP method in FORTRAN (Gill et al., 1986, User's guide for NPSOL (version 4.0): A Fortran package for nonlinear programming (No. SOL-86-2). Stanford, CA: Stanford University Systems Optimization Laboratory), and SLSQP (another SQP implementation available as part of the NLOPT collection (Johnson, 2014, The NLopt nonlinear-optimization package. Retrieved from http://ab-initio.mit.edu/nlopt)) are three optimizers available in OpenMx package. These optimizers are compared in terms of runtimes, final objective values, and memory consumption. A Monte Carlo analysis of the performance of the optimizers was performed on ordinal and continuous models with five variables and one or two factors. While the relative difference between the objective values is less than 0.5%, CSOLNP is in general faster than NPSOL and SLSQP for ordinal analysis. As for continuous data, none of the optimizers performs consistently faster than the others. In terms of memory usage, we used Valgrind's heap profiler tool, called Massif, on one-factor threshold models. CSOLNP and NPSOL consume the same amount of memory, while SLSQP uses 71 MB more memory than the other two optimizers.

  12. Pareto Tracer: a predictor-corrector method for multi-objective optimization problems

    NASA Astrophysics Data System (ADS)

    Martín, Adanay; Schütze, Oliver

    2018-03-01

    This article proposes a novel predictor-corrector (PC) method for the numerical treatment of multi-objective optimization problems (MOPs). The algorithm, Pareto Tracer (PT), is capable of performing a continuation along the set of (local) solutions of a given MOP with k objectives, and can cope with equality and box constraints. Additionally, the first steps towards a method that manages general inequality constraints are also introduced. The properties of PT are first discussed theoretically and later numerically on several examples.

  13. Minimal Time Problem with Impulsive Controls

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kunisch, Karl, E-mail: karl.kunisch@uni-graz.at; Rao, Zhiping, E-mail: zhiping.rao@ricam.oeaw.ac.at

    Time optimal control problems for systems with impulsive controls are investigated. Sufficient conditions for the existence of time optimal controls are given. A dynamical programming principle is derived and Lipschitz continuity of an appropriately defined value functional is established. The value functional satisfies a Hamilton–Jacobi–Bellman equation in the viscosity sense. A numerical example for a rider-swing system is presented and it is shown that the reachable set is enlargered by allowing for impulsive controls, when compared to nonimpulsive controls.

  14. A Measure Approximation for Distributionally Robust PDE-Constrained Optimization Problems

    DOE PAGES

    Kouri, Drew Philip

    2017-12-19

    In numerous applications, scientists and engineers acquire varied forms of data that partially characterize the inputs to an underlying physical system. This data is then used to inform decisions such as controls and designs. Consequently, it is critical that the resulting control or design is robust to the inherent uncertainties associated with the unknown probabilistic characterization of the model inputs. Here in this work, we consider optimal control and design problems constrained by partial differential equations with uncertain inputs. We do not assume a known probabilistic model for the inputs, but rather we formulate the problem as a distributionally robustmore » optimization problem where the outer minimization problem determines the control or design, while the inner maximization problem determines the worst-case probability measure that matches desired characteristics of the data. We analyze the inner maximization problem in the space of measures and introduce a novel measure approximation technique, based on the approximation of continuous functions, to discretize the unknown probability measure. Finally, we prove consistency of our approximated min-max problem and conclude with numerical results.« less

  15. On the analytic and numeric optimisation of airplane trajectories under real atmospheric conditions

    NASA Astrophysics Data System (ADS)

    Gonzalo, J.; Domínguez, D.; López, D.

    2014-12-01

    From the beginning of aviation era, economic constraints have forced operators to continuously improve the planning of the flights. The revenue is proportional to the cost per flight and the airspace occupancy. Many methods, the first started in the middle of last century, have explore analytical, numerical and artificial intelligence resources to reach the optimal flight planning. In parallel, advances in meteorology and communications allow an almost real-time knowledge of the atmospheric conditions and a reliable, error-bounded forecast for the near future. Thus, apart from weather risks to be avoided, airplanes can dynamically adapt their trajectories to minimise their costs. International regulators are aware about these capabilities, so it is reasonable to envisage some changes to allow this dynamic planning negotiation to soon become operational. Moreover, current unmanned airplanes, very popular and often small, suffer the impact of winds and other weather conditions in form of dramatic changes in their performance. The present paper reviews analytic and numeric solutions for typical trajectory planning problems. Analytic methods are those trying to solve the problem using the Pontryagin principle, where influence parameters are added to state variables to form a split condition differential equation problem. The system can be solved numerically -indirect optimisation- or using parameterised functions -direct optimisation-. On the other hand, numerical methods are based on Bellman's dynamic programming (or Dijkstra algorithms), where the fact that two optimal trajectories can be concatenated to form a new optimal one if the joint point is demonstrated to belong to the final optimal solution. There is no a-priori conditions for the best method. Traditionally, analytic has been more employed for continuous problems whereas numeric for discrete ones. In the current problem, airplane behaviour is defined by continuous equations, while wind fields are given in a discrete grid at certain time intervals. The research demonstrates advantages and disadvantages of each method as well as performance figures of the solutions found for typical flight conditions under static and dynamic atmospheres. This provides significant parameters to be used in the selection of solvers for optimal trajectories.

  16. Mixed Integer Programming and Heuristic Scheduling for Space Communication Networks

    NASA Technical Reports Server (NTRS)

    Cheung, Kar-Ming; Lee, Charles H.

    2012-01-01

    We developed framework and the mathematical formulation for optimizing communication network using mixed integer programming. The design yields a system that is much smaller, in search space size, when compared to the earlier approach. Our constrained network optimization takes into account the dynamics of link performance within the network along with mission and operation requirements. A unique penalty function is introduced to transform the mixed integer programming into the more manageable problem of searching in a continuous space. The constrained optimization problem was proposed to solve in two stages: first using the heuristic Particle Swarming Optimization algorithm to get a good initial starting point, and then feeding the result into the Sequential Quadratic Programming algorithm to achieve the final optimal schedule. We demonstrate the above planning and scheduling methodology with a scenario of 20 spacecraft and 3 ground stations of a Deep Space Network site. Our approach and framework have been simple and flexible so that problems with larger number of constraints and network can be easily adapted and solved.

  17. Near-optimal, asymptotic tracking in control problems involving state-variable inequality constraints

    NASA Technical Reports Server (NTRS)

    Markopoulos, N.; Calise, A. J.

    1993-01-01

    The class of all piecewise time-continuous controllers tracking a given hypersurface in the state space of a dynamical system can be split by the present transformation technique into two disjoint classes; while the first of these contains all controllers which track the hypersurface in finite time, the second contains all controllers that track the hypersurface asymptotically. On this basis, a reformulation is presented for optimal control problems involving state-variable inequality constraints. If the state constraint is regarded as 'soft', there may exist controllers which are asymptotic, two-sided, and able to yield the optimal value of the performance index.

  18. Fleet Assignment Using Collective Intelligence

    NASA Technical Reports Server (NTRS)

    Antoine, Nicolas E.; Bieniawski, Stefan R.; Kroo, Ilan M.; Wolpert, David H.

    2004-01-01

    Airline fleet assignment involves the allocation of aircraft to a set of flights legs in order to meet passenger demand, while satisfying a variety of constraints. Over the course of the day, the routing of each aircraft is determined in order to minimize the number of required flights for a given fleet. The associated flow continuity and aircraft count constraints have led researchers to focus on obtaining quasi-optimal solutions, especially at larger scales. In this paper, the authors propose the application of an agent-based integer optimization algorithm to a "cold start" fleet assignment problem. Results show that the optimizer can successfully solve such highly- constrained problems (129 variables, 184 constraints).

  19. Influence maximization in complex networks through optimal percolation

    NASA Astrophysics Data System (ADS)

    Morone, Flaviano; Makse, Hernán A.

    2015-08-01

    The whole frame of interconnections in complex networks hinges on a specific set of structural nodes, much smaller than the total size, which, if activated, would cause the spread of information to the whole network, or, if immunized, would prevent the diffusion of a large scale epidemic. Localizing this optimal, that is, minimal, set of structural nodes, called influencers, is one of the most important problems in network science. Despite the vast use of heuristic strategies to identify influential spreaders, the problem remains unsolved. Here we map the problem onto optimal percolation in random networks to identify the minimal set of influencers, which arises by minimizing the energy of a many-body system, where the form of the interactions is fixed by the non-backtracking matrix of the network. Big data analyses reveal that the set of optimal influencers is much smaller than the one predicted by previous heuristic centralities. Remarkably, a large number of previously neglected weakly connected nodes emerges among the optimal influencers. These are topologically tagged as low-degree nodes surrounded by hierarchical coronas of hubs, and are uncovered only through the optimal collective interplay of all the influencers in the network. The present theoretical framework may hold a larger degree of universality, being applicable to other hard optimization problems exhibiting a continuous transition from a known phase.

  20. Influence maximization in complex networks through optimal percolation.

    PubMed

    Morone, Flaviano; Makse, Hernán A

    2015-08-06

    The whole frame of interconnections in complex networks hinges on a specific set of structural nodes, much smaller than the total size, which, if activated, would cause the spread of information to the whole network, or, if immunized, would prevent the diffusion of a large scale epidemic. Localizing this optimal, that is, minimal, set of structural nodes, called influencers, is one of the most important problems in network science. Despite the vast use of heuristic strategies to identify influential spreaders, the problem remains unsolved. Here we map the problem onto optimal percolation in random networks to identify the minimal set of influencers, which arises by minimizing the energy of a many-body system, where the form of the interactions is fixed by the non-backtracking matrix of the network. Big data analyses reveal that the set of optimal influencers is much smaller than the one predicted by previous heuristic centralities. Remarkably, a large number of previously neglected weakly connected nodes emerges among the optimal influencers. These are topologically tagged as low-degree nodes surrounded by hierarchical coronas of hubs, and are uncovered only through the optimal collective interplay of all the influencers in the network. The present theoretical framework may hold a larger degree of universality, being applicable to other hard optimization problems exhibiting a continuous transition from a known phase.

  1. Improving the Flexibility of Optimization-Based Decision Aiding Frameworks for Integrated Water Resource Management

    NASA Astrophysics Data System (ADS)

    Guillaume, J. H.; Kasprzyk, J. R.

    2013-12-01

    Deep uncertainty refers to situations in which stakeholders cannot agree on the full suite of risks for their system or their probabilities. Additionally, systems are often managed for multiple, conflicting objectives such as minimizing cost, maximizing environmental quality, and maximizing hydropower revenues. Many objective analysis (MOA) uses a quantitative model combined with evolutionary optimization to provide a tradeoff set of potential solutions to a planning problem. However, MOA is often performed using a single, fixed problem conceptualization. Focus on development of a single formulation can introduce an "inertia" into the problem solution, such that issues outside the initial formulation are less likely to ever be addressed. This study uses the Iterative Closed Question Methodology (ICQM) to continuously reframe the optimization problem, providing iterative definition and reflection for stakeholders. By using a series of directed questions to look beyond a problem's existing modeling representation, ICQM seeks to provide a working environment within which it is easy to modify the motivating question, assumptions, and model identification in optimization problems. The new approach helps identify and reduce bottle-necks introduced by properties of both the simulation model and optimization approach that reduce flexibility in generation and evaluation of alternatives. It can therefore help introduce new perspectives on the resolution of conflicts between objectives. The Lower Rio Grande Valley portfolio planning problem is used as a case study.

  2. Crown management and stand density

    Treesearch

    Thomas J. Dean; V. Clark Baldwin

    1996-01-01

    Determination of optimal stand-density continues to be a difficult problem. A trial cannot be established on every combination of soils, topography, and climate possible across the range of a widely distributed species such as loblolly pine, and continual advancements in nutrition and vegetation management, breeding, and utilization make established trials obsolete....

  3. Computation of non-monotonic Lyapunov functions for continuous-time systems

    NASA Astrophysics Data System (ADS)

    Li, Huijuan; Liu, AnPing

    2017-09-01

    In this paper, we propose two methods to compute non-monotonic Lyapunov functions for continuous-time systems which are asymptotically stable. The first method is to solve a linear optimization problem on a compact and bounded set. The proposed linear programming based algorithm delivers a CPA1

  4. Plate/shell structure topology optimization of orthotropic material for buckling problem based on independent continuous topological variables

    NASA Astrophysics Data System (ADS)

    Ye, Hong-Ling; Wang, Wei-Wei; Chen, Ning; Sui, Yun-Kang

    2017-10-01

    The purpose of the present work is to study the buckling problem with plate/shell topology optimization of orthotropic material. A model of buckling topology optimization is established based on the independent, continuous, and mapping method, which considers structural mass as objective and buckling critical loads as constraints. Firstly, composite exponential function (CEF) and power function (PF) as filter functions are introduced to recognize the element mass, the element stiffness matrix, and the element geometric stiffness matrix. The filter functions of the orthotropic material stiffness are deduced. Then these filter functions are put into buckling topology optimization of a differential equation to analyze the design sensitivity. Furthermore, the buckling constraints are approximately expressed as explicit functions with respect to the design variables based on the first-order Taylor expansion. The objective function is standardized based on the second-order Taylor expansion. Therefore, the optimization model is translated into a quadratic program. Finally, the dual sequence quadratic programming (DSQP) algorithm and the global convergence method of moving asymptotes algorithm with two different filter functions (CEF and PF) are applied to solve the optimal model. Three numerical results show that DSQP&CEF has the best performance in the view of structural mass and discretion.

  5. Optimal orbit transfer suitable for large flexible structures

    NASA Technical Reports Server (NTRS)

    Chatterjee, Alok K.

    1989-01-01

    The problem of continuous low-thrust planar orbit transfer of large flexible structures is formulated as an optimal control problem with terminal state constraints. The dynamics of the spacecraft motion are treated as a point-mass central force field problem; the thrust-acceleration magnitude is treated as an additional state variable; and the rate of change of thrust-acceleration is treated as a control variable. To ensure smooth transfer, essential for flexible structures, an additional quadratic term is appended to the time cost functional. This term penalizes any abrupt change in acceleration. Numerical results are presented for the special case of a planar transfer.

  6. A comparison of two closely-related approaches to aerodynamic design optimization

    NASA Technical Reports Server (NTRS)

    Shubin, G. R.; Frank, P. D.

    1991-01-01

    Two related methods for aerodynamic design optimization are compared. The methods, called the implicit gradient approach and the variational (or optimal control) approach, both attempt to obtain gradients necessary for numerical optimization at a cost significantly less than that of the usual black-box approach that employs finite difference gradients. While the two methods are seemingly quite different, they are shown to differ (essentially) in that the order of discretizing the continuous problem, and of applying calculus, is interchanged. Under certain circumstances, the two methods turn out to be identical. We explore the relationship between these methods by applying them to a model problem for duct flow that has many features in common with transonic flow over an airfoil. We find that the gradients computed by the variational method can sometimes be sufficiently inaccurate to cause the optimization to fail.

  7. Direct SQP-methods for solving optimal control problems with delays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goellmann, L.; Bueskens, C.; Maurer, H.

    The maximum principle for optimal control problems with delays leads to a boundary value problem (BVP) which is retarded in the state and advanced in the costate function. Based on shooting techniques, solution methods for this type of BVP have been proposed. In recent years, direct optimization methods have been favored for solving control problems without delays. Direct methods approximate the control and the state over a fixed mesh and solve the resulting NLP-problem with SQP-methods. These methods dispense with the costate function and have shown to be robust and efficient. In this paper, we propose a direct SQP-method formore » retarded control problems. In contrast to conventional direct methods, only the control variable is approximated by e.g. spline-functions. The state is computed via a high order Runge-Kutta type algorithm and does not enter explicitly the NLP-problem through an equation. This approach reduces the number of optimization variables considerably and is implementable even on a PC. Our method is illustrated by the numerical solution of retarded control problems with constraints. In particular, we consider the control of a continuous stirred tank reactor which has been solved by dynamic programming. This example illustrates the robustness and efficiency of the proposed method. Open questions concerning sufficient conditions and convergence of discretized NLP-problems are discussed.« less

  8. A Stochastic Inversion Method for Potential Field Data: Ant Colony Optimization

    NASA Astrophysics Data System (ADS)

    Liu, Shuang; Hu, Xiangyun; Liu, Tianyou

    2014-07-01

    Simulating natural ants' foraging behavior, the ant colony optimization (ACO) algorithm performs excellently in combinational optimization problems, for example the traveling salesman problem and the quadratic assignment problem. However, the ACO is seldom used to inverted for gravitational and magnetic data. On the basis of the continuous and multi-dimensional objective function for potential field data optimization inversion, we present the node partition strategy ACO (NP-ACO) algorithm for inversion of model variables of fixed shape and recovery of physical property distributions of complicated shape models. We divide the continuous variables into discrete nodes and ants directionally tour the nodes by use of transition probabilities. We update the pheromone trails by use of Gaussian mapping between the objective function value and the quantity of pheromone. It can analyze the search results in real time and promote the rate of convergence and precision of inversion. Traditional mapping, including the ant-cycle system, weaken the differences between ant individuals and lead to premature convergence. We tested our method by use of synthetic data and real data from scenarios involving gravity and magnetic anomalies. The inverted model variables and recovered physical property distributions were in good agreement with the true values. The ACO algorithm for binary representation imaging and full imaging can recover sharper physical property distributions than traditional linear inversion methods. The ACO has good optimization capability and some excellent characteristics, for example robustness, parallel implementation, and portability, compared with other stochastic metaheuristics.

  9. Adapting an Ant Colony Metaphor for Multi-Robot Chemical Plume Tracing

    PubMed Central

    Meng, Qing-Hao; Yang, Wei-Xing; Wang, Yang; Li, Fei; Zeng, Ming

    2012-01-01

    We consider chemical plume tracing (CPT) in time-varying airflow environments using multiple mobile robots. The purpose of CPT is to approach a gas source with a previously unknown location in a given area. Therefore, the CPT could be considered as a dynamic optimization problem in continuous domains. The traditional ant colony optimization (ACO) algorithm has been successfully used for combinatorial optimization problems in discrete domains. To adapt the ant colony metaphor to the multi-robot CPT problem, the two-dimension continuous search area is discretized into grids and the virtual pheromone is updated according to both the gas concentration and wind information. To prevent the adapted ACO algorithm from being prematurely trapped in a local optimum, the upwind surge behavior is adopted by the robots with relatively higher gas concentration in order to explore more areas. The spiral surge (SS) algorithm is also examined for comparison. Experimental results using multiple real robots in two indoor natural ventilated airflow environments show that the proposed CPT method performs better than the SS algorithm. The simulation results for large-scale advection-diffusion plume environments show that the proposed method could also work in outdoor meandering plume environments. PMID:22666056

  10. Adapting an ant colony metaphor for multi-robot chemical plume tracing.

    PubMed

    Meng, Qing-Hao; Yang, Wei-Xing; Wang, Yang; Li, Fei; Zeng, Ming

    2012-01-01

    We consider chemical plume tracing (CPT) in time-varying airflow environments using multiple mobile robots. The purpose of CPT is to approach a gas source with a previously unknown location in a given area. Therefore, the CPT could be considered as a dynamic optimization problem in continuous domains. The traditional ant colony optimization (ACO) algorithm has been successfully used for combinatorial optimization problems in discrete domains. To adapt the ant colony metaphor to the multi-robot CPT problem, the two-dimension continuous search area is discretized into grids and the virtual pheromone is updated according to both the gas concentration and wind information. To prevent the adapted ACO algorithm from being prematurely trapped in a local optimum, the upwind surge behavior is adopted by the robots with relatively higher gas concentration in order to explore more areas. The spiral surge (SS) algorithm is also examined for comparison. Experimental results using multiple real robots in two indoor natural ventilated airflow environments show that the proposed CPT method performs better than the SS algorithm. The simulation results for large-scale advection-diffusion plume environments show that the proposed method could also work in outdoor meandering plume environments.

  11. Real-Time Control of an Ensemble of Heterogeneous Resources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bernstein, Andrey; Bouman, Niek J.; Le Boudec, Jean-Yves

    This paper focuses on the problem of controlling an ensemble of heterogeneous resources connected to an electrical grid at the same point of common coupling (PCC). The controller receives an aggregate power setpoint for the ensemble in real time and tracks this setpoint by issuing individual optimal setpoints to the resources. The resources can have continuous or discrete nature (e.g., heating systems consisting of a finite number of heaters that each can be either switched on or off) and/or can be highly uncertain (e.g., photovoltaic (PV) systems or residential loads). A naive approach would lead to a stochastic mixed-integer optimizationmore » problem to be solved at the controller at each time step, which might be infeasible in real time. Instead, we allow the controller to solve a continuous convex optimization problem and compensate for the errors at the resource level by using a variant of the well-known error diffusion algorithm. We give conditions guaranteeing that our algorithm tracks the power setpoint at the PCC on average while issuing optimal setpoints to individual resources. We illustrate the approach numerically by controlling a collection of batteries, PV systems, and discrete loads.« less

  12. a New Hybrid Yin-Yang Swarm Optimization Algorithm for Uncapacitated Warehouse Location Problems

    NASA Astrophysics Data System (ADS)

    Heidari, A. A.; Kazemizade, O.; Hakimpour, F.

    2017-09-01

    Yin-Yang-pair optimization (YYPO) is one of the latest metaheuristic algorithms (MA) proposed in 2015 that tries to inspire the philosophy of balance between conflicting concepts. Particle swarm optimizer (PSO) is one of the first population-based MA inspired by social behaviors of birds. In spite of PSO, the YYPO is not a nature inspired optimizer. It has a low complexity and starts with only two initial positions and can produce more points with regard to the dimension of target problem. Due to unique advantages of these methodologies and to mitigate the immature convergence and local optima (LO) stagnation problems in PSO, in this work, a continuous hybrid strategy based on the behaviors of PSO and YYPO is proposed to attain the suboptimal solutions of uncapacitated warehouse location (UWL) problems. This efficient hierarchical PSO-based optimizer (PSOYPO) can improve the effectiveness of PSO on spatial optimization tasks such as the family of UWL problems. The performance of the proposed PSOYPO is verified according to some UWL benchmark cases. These test cases have been used in several works to evaluate the efficacy of different MA. Then, the PSOYPO is compared to the standard PSO, genetic algorithm (GA), harmony search (HS), modified HS (OBCHS), and evolutionary simulated annealing (ESA). The experimental results demonstrate that the PSOYPO can reveal a better or competitive efficacy compared to the PSO and other MA.

  13. A Comparison of Techniques for Optimal Infrastructure Restoration

    DTIC Science & Technology

    2014-12-01

    to solve incremental network design problems. Álvarez et al. (2014) use a continuous MILP to solve the supply chain network infras- tructure problem...S. Long, T. Shoberg, S. Corns. 2014. A mathe- matical model for supply chain network infrastructure restoration. Y. Guan, H. Liao, eds., Proceedings...Links . . . . . . . . . . . . . . . . . 36 A.5 Use Supply from a Particular Node . . . . . . . . . . . . . . . . . 37 A.6 High Demand with High Building

  14. On the multiple depots vehicle routing problem with heterogeneous fleet capacity and velocity

    NASA Astrophysics Data System (ADS)

    Hanum, F.; Hartono, A. P.; Bakhtiar, T.

    2018-03-01

    This current manuscript concerns with the optimization problem arising in a route determination of products distribution. The problem is formulated in the form of multiple depots and time windowed vehicle routing problem with heterogeneous capacity and velocity of fleet. Model includes a number of constraints such as route continuity, multiple depots availability and serving time in addition to generic constraints. In dealing with the unique feature of heterogeneous velocity, we generate a number of velocity profiles along the road segments, which then converted into traveling-time tables. An illustrative example of rice distribution among villages by bureau of logistics is provided. Exact approach is utilized to determine the optimal solution in term of vehicle routes and starting time of service.

  15. Pattern formations and optimal packing.

    PubMed

    Mityushev, Vladimir

    2016-04-01

    Patterns of different symmetries may arise after solution to reaction-diffusion equations. Hexagonal arrays, layers and their perturbations are observed in different models after numerical solution to the corresponding initial-boundary value problems. We demonstrate an intimate connection between pattern formations and optimal random packing on the plane. The main study is based on the following two points. First, the diffusive flux in reaction-diffusion systems is approximated by piecewise linear functions in the framework of structural approximations. This leads to a discrete network approximation of the considered continuous problem. Second, the discrete energy minimization yields optimal random packing of the domains (disks) in the representative cell. Therefore, the general problem of pattern formations based on the reaction-diffusion equations is reduced to the geometric problem of random packing. It is demonstrated that all random packings can be divided onto classes associated with classes of isomorphic graphs obtained from the Delaunay triangulation. The unique optimal solution is constructed in each class of the random packings. If the number of disks per representative cell is finite, the number of classes of isomorphic graphs, hence, the number of optimal packings is also finite. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Shifting the closed-loop spectrum in the optimal linear quadratic regulator problem for hereditary systems

    NASA Technical Reports Server (NTRS)

    Gibson, J. S.; Rosen, I. G.

    1985-01-01

    In the optimal linear quadratic regulator problem for finite dimensional systems, the method known as an alpha-shift can be used to produce a closed-loop system whose spectrum lies to the left of some specified vertical line; that is, a closed-loop system with a prescribed degree of stability. This paper treats the extension of the alpha-shift to hereditary systems. As infinite dimensions, the shift can be accomplished by adding alpha times the identity to the open-loop semigroup generator and then solving an optimal regulator problem. However, this approach does not work with a new approximation scheme for hereditary control problems recently developed by Kappel and Salamon. Since this scheme is among the best to date for the numerical solution of the linear regulator problem for hereditary systems, an alternative method for shifting the closed-loop spectrum is needed. An alpha-shift technique that can be used with the Kappel-Salamon approximation scheme is developed. Both the continuous-time and discrete-time problems are considered. A numerical example which demonstrates the feasibility of the method is included.

  17. Shifting the closed-loop spectrum in the optimal linear quadratic regulator problem for hereditary systems

    NASA Technical Reports Server (NTRS)

    Gibson, J. S.; Rosen, I. G.

    1987-01-01

    In the optimal linear quadratic regulator problem for finite dimensional systems, the method known as an alpha-shift can be used to produce a closed-loop system whose spectrum lies to the left of some specified vertical line; that is, a closed-loop system with a prescribed degree of stability. This paper treats the extension of the alpha-shift to hereditary systems. As infinite dimensions, the shift can be accomplished by adding alpha times the identity to the open-loop semigroup generator and then solving an optimal regulator problem. However, this approach does not work with a new approximation scheme for hereditary control problems recently developed by Kappel and Salamon. Since this scheme is among the best to date for the numerical solution of the linear regulator problem for hereditary systems, an alternative method for shifting the closed-loop spectrum is needed. An alpha-shift technique that can be used with the Kappel-Salamon approximation scheme is developed. Both the continuous-time and discrete-time problems are considered. A numerical example which demonstrates the feasibility of the method is included.

  18. L^1 -optimality conditions for the circular restricted three-body problem

    NASA Astrophysics Data System (ADS)

    Chen, Zheng

    2016-11-01

    In this paper, the L^1 -minimization for the translational motion of a spacecraft in the circular restricted three-body problem (CRTBP) is considered. Necessary conditions are derived by using the Pontryagin Maximum Principle (PMP), revealing the existence of bang-bang and singular controls. Singular extremals are analyzed, recalling the existence of the Fuller phenomenon according to the theories developed in (Marchal in J Optim Theory Appl 11(5):441-486, 1973; Zelikin and Borisov in Theory of Chattering Control with Applications to Astronautics, Robotics, Economics, and Engineering. Birkhäuser, Basal 1994; in J Math Sci 114(3):1227-1344, 2003). The sufficient optimality conditions for the L^1 -minimization problem with fixed endpoints have been developed in (Chen et al. in SIAM J Control Optim 54(3):1245-1265, 2016). In the current paper, we establish second-order conditions for optimal control problems with more general final conditions defined by a smooth submanifold target. In addition, the numerical implementation to check these optimality conditions is given. Finally, approximating the Earth-Moon-Spacecraft system by the CRTBP, an L^1 -minimization trajectory for the translational motion of a spacecraft is computed by combining a shooting method with a continuation method in (Caillau et al. in Celest Mech Dyn Astron 114:137-150, 2012; Caillau and Daoud in SIAM J Control Optim 50(6):3178-3202, 2012). The local optimality of the computed trajectory is asserted thanks to the second-order optimality conditions developed.

  19. Finding long chains in kidney exchange using the traveling salesman problem.

    PubMed

    Anderson, Ross; Ashlagi, Itai; Gamarnik, David; Roth, Alvin E

    2015-01-20

    As of May 2014 there were more than 100,000 patients on the waiting list for a kidney transplant from a deceased donor. Although the preferred treatment is a kidney transplant, every year there are fewer donors than new patients, so the wait for a transplant continues to grow. To address this shortage, kidney paired donation (KPD) programs allow patients with living but biologically incompatible donors to exchange donors through cycles or chains initiated by altruistic (nondirected) donors, thereby increasing the supply of kidneys in the system. In many KPD programs a centralized algorithm determines which exchanges will take place to maximize the total number of transplants performed. This optimization problem has proven challenging both in theory, because it is NP-hard, and in practice, because the algorithms previously used were unable to optimally search over all long chains. We give two new algorithms that use integer programming to optimally solve this problem, one of which is inspired by the techniques used to solve the traveling salesman problem. These algorithms provide the tools needed to find optimal solutions in practice.

  20. Finding long chains in kidney exchange using the traveling salesman problem

    PubMed Central

    Anderson, Ross; Ashlagi, Itai; Gamarnik, David; Roth, Alvin E.

    2015-01-01

    As of May 2014 there were more than 100,000 patients on the waiting list for a kidney transplant from a deceased donor. Although the preferred treatment is a kidney transplant, every year there are fewer donors than new patients, so the wait for a transplant continues to grow. To address this shortage, kidney paired donation (KPD) programs allow patients with living but biologically incompatible donors to exchange donors through cycles or chains initiated by altruistic (nondirected) donors, thereby increasing the supply of kidneys in the system. In many KPD programs a centralized algorithm determines which exchanges will take place to maximize the total number of transplants performed. This optimization problem has proven challenging both in theory, because it is NP-hard, and in practice, because the algorithms previously used were unable to optimally search over all long chains. We give two new algorithms that use integer programming to optimally solve this problem, one of which is inspired by the techniques used to solve the traveling salesman problem. These algorithms provide the tools needed to find optimal solutions in practice. PMID:25561535

  1. An Optimization-Based Method for Feature Ranking in Nonlinear Regression Problems.

    PubMed

    Bravi, Luca; Piccialli, Veronica; Sciandrone, Marco

    2017-04-01

    In this paper, we consider the feature ranking problem, where, given a set of training instances, the task is to associate a score with the features in order to assess their relevance. Feature ranking is a very important tool for decision support systems, and may be used as an auxiliary step of feature selection to reduce the high dimensionality of real-world data. We focus on regression problems by assuming that the process underlying the generated data can be approximated by a continuous function (for instance, a feedforward neural network). We formally state the notion of relevance of a feature by introducing a minimum zero-norm inversion problem of a neural network, which is a nonsmooth, constrained optimization problem. We employ a concave approximation of the zero-norm function, and we define a smooth, global optimization problem to be solved in order to assess the relevance of the features. We present the new feature ranking method based on the solution of instances of the global optimization problem depending on the available training data. Computational experiments on both artificial and real data sets are performed, and point out that the proposed feature ranking method is a valid alternative to existing methods in terms of effectiveness. The obtained results also show that the method is costly in terms of CPU time, and this may be a limitation in the solution of large-dimensional problems.

  2. Optimal control on hybrid ode systems with application to a tick disease model.

    PubMed

    Ding, Wandi

    2007-10-01

    We are considering an optimal control problem for a type of hybrid system involving ordinary differential equations and a discrete time feature. One state variable has dynamics in only one season of the year and has a jump condition to obtain the initial condition for that corresponding season in the next year. The other state variable has continuous dynamics. Given a general objective functional, existence, necessary conditions and uniqueness for an optimal control are established. We apply our approach to a tick-transmitted disease model with age structure in which the tick dynamics changes seasonally while hosts have continuous dynamics. The goal is to maximize disease-free ticks and minimize infected ticks through an optimal control strategy of treatment with acaricide. Numerical examples are given to illustrate the results.

  3. Trajectory optimization for the National Aerospace Plane

    NASA Technical Reports Server (NTRS)

    Lu, Ping

    1993-01-01

    The objective of this second phase research is to investigate the optimal ascent trajectory for the National Aerospace Plane (NASP) from runway take-off to orbital insertion and address the unique problems associated with the hypersonic flight trajectory optimization. The trajectory optimization problem for an aerospace plane is a highly challenging problem because of the complexity involved. Previous work has been successful in obtaining sub-optimal trajectories by using energy-state approximation and time-scale decomposition techniques. But it is known that the energy-state approximation is not valid in certain portions of the trajectory. This research aims at employing full dynamics of the aerospace plane and emphasizing direct trajectory optimization methods. The major accomplishments of this research include the first-time development of an inverse dynamics approach in trajectory optimization which enables us to generate optimal trajectories for the aerospace plane efficiently and reliably, and general analytical solutions to constrained hypersonic trajectories that has wide application in trajectory optimization as well as in guidance and flight dynamics. Optimal trajectories in abort landing and ascent augmented with rocket propulsion and thrust vectoring control were also investigated. Motivated by this study, a new global trajectory optimization tool using continuous simulated annealing and a nonlinear predictive feedback guidance law have been under investigation and some promising results have been obtained, which may well lead to more significant development and application in the near future.

  4. Stochastic search, optimization and regression with energy applications

    NASA Astrophysics Data System (ADS)

    Hannah, Lauren A.

    Designing clean energy systems will be an important task over the next few decades. One of the major roadblocks is a lack of mathematical tools to economically evaluate those energy systems. However, solutions to these mathematical problems are also of interest to the operations research and statistical communities in general. This thesis studies three problems that are of interest to the energy community itself or provide support for solution methods: R&D portfolio optimization, nonparametric regression and stochastic search with an observable state variable. First, we consider the one stage R&D portfolio optimization problem to avoid the sequential decision process associated with the multi-stage. The one stage problem is still difficult because of a non-convex, combinatorial decision space and a non-convex objective function. We propose a heuristic solution method that uses marginal project values---which depend on the selected portfolio---to create a linear objective function. In conjunction with the 0-1 decision space, this new problem can be solved as a knapsack linear program. This method scales well to large decision spaces. We also propose an alternate, provably convergent algorithm that does not exploit problem structure. These methods are compared on a solid oxide fuel cell R&D portfolio problem. Next, we propose Dirichlet Process mixtures of Generalized Linear Models (DPGLM), a new method of nonparametric regression that accommodates continuous and categorical inputs, and responses that can be modeled by a generalized linear model. We prove conditions for the asymptotic unbiasedness of the DP-GLM regression mean function estimate. We also give examples for when those conditions hold, including models for compactly supported continuous distributions and a model with continuous covariates and categorical response. We empirically analyze the properties of the DP-GLM and why it provides better results than existing Dirichlet process mixture regression models. We evaluate DP-GLM on several data sets, comparing it to modern methods of nonparametric regression like CART, Bayesian trees and Gaussian processes. Compared to existing techniques, the DP-GLM provides a single model (and corresponding inference algorithms) that performs well in many regression settings. Finally, we study convex stochastic search problems where a noisy objective function value is observed after a decision is made. There are many stochastic search problems whose behavior depends on an exogenous state variable which affects the shape of the objective function. Currently, there is no general purpose algorithm to solve this class of problems. We use nonparametric density estimation to take observations from the joint state-outcome distribution and use them to infer the optimal decision for a given query state. We propose two solution methods that depend on the problem characteristics: function-based and gradient-based optimization. We examine two weighting schemes, kernel-based weights and Dirichlet process-based weights, for use with the solution methods. The weights and solution methods are tested on a synthetic multi-product newsvendor problem and the hour-ahead wind commitment problem. Our results show that in some cases Dirichlet process weights offer substantial benefits over kernel based weights and more generally that nonparametric estimation methods provide good solutions to otherwise intractable problems.

  5. A parallel metaheuristic for large mixed-integer dynamic optimization problems, with applications in computational biology

    PubMed Central

    Henriques, David; González, Patricia; Doallo, Ramón; Saez-Rodriguez, Julio; Banga, Julio R.

    2017-01-01

    Background We consider a general class of global optimization problems dealing with nonlinear dynamic models. Although this class is relevant to many areas of science and engineering, here we are interested in applying this framework to the reverse engineering problem in computational systems biology, which yields very large mixed-integer dynamic optimization (MIDO) problems. In particular, we consider the framework of logic-based ordinary differential equations (ODEs). Methods We present saCeSS2, a parallel method for the solution of this class of problems. This method is based on an parallel cooperative scatter search metaheuristic, with new mechanisms of self-adaptation and specific extensions to handle large mixed-integer problems. We have paid special attention to the avoidance of convergence stagnation using adaptive cooperation strategies tailored to this class of problems. Results We illustrate its performance with a set of three very challenging case studies from the domain of dynamic modelling of cell signaling. The simpler case study considers a synthetic signaling pathway and has 84 continuous and 34 binary decision variables. A second case study considers the dynamic modeling of signaling in liver cancer using high-throughput data, and has 135 continuous and 109 binaries decision variables. The third case study is an extremely difficult problem related with breast cancer, involving 690 continuous and 138 binary decision variables. We report computational results obtained in different infrastructures, including a local cluster, a large supercomputer and a public cloud platform. Interestingly, the results show how the cooperation of individual parallel searches modifies the systemic properties of the sequential algorithm, achieving superlinear speedups compared to an individual search (e.g. speedups of 15 with 10 cores), and significantly improving (above a 60%) the performance with respect to a non-cooperative parallel scheme. The scalability of the method is also good (tests were performed using up to 300 cores). Conclusions These results demonstrate that saCeSS2 can be used to successfully reverse engineer large dynamic models of complex biological pathways. Further, these results open up new possibilities for other MIDO-based large-scale applications in the life sciences such as metabolic engineering, synthetic biology, drug scheduling. PMID:28813442

  6. A parallel metaheuristic for large mixed-integer dynamic optimization problems, with applications in computational biology.

    PubMed

    Penas, David R; Henriques, David; González, Patricia; Doallo, Ramón; Saez-Rodriguez, Julio; Banga, Julio R

    2017-01-01

    We consider a general class of global optimization problems dealing with nonlinear dynamic models. Although this class is relevant to many areas of science and engineering, here we are interested in applying this framework to the reverse engineering problem in computational systems biology, which yields very large mixed-integer dynamic optimization (MIDO) problems. In particular, we consider the framework of logic-based ordinary differential equations (ODEs). We present saCeSS2, a parallel method for the solution of this class of problems. This method is based on an parallel cooperative scatter search metaheuristic, with new mechanisms of self-adaptation and specific extensions to handle large mixed-integer problems. We have paid special attention to the avoidance of convergence stagnation using adaptive cooperation strategies tailored to this class of problems. We illustrate its performance with a set of three very challenging case studies from the domain of dynamic modelling of cell signaling. The simpler case study considers a synthetic signaling pathway and has 84 continuous and 34 binary decision variables. A second case study considers the dynamic modeling of signaling in liver cancer using high-throughput data, and has 135 continuous and 109 binaries decision variables. The third case study is an extremely difficult problem related with breast cancer, involving 690 continuous and 138 binary decision variables. We report computational results obtained in different infrastructures, including a local cluster, a large supercomputer and a public cloud platform. Interestingly, the results show how the cooperation of individual parallel searches modifies the systemic properties of the sequential algorithm, achieving superlinear speedups compared to an individual search (e.g. speedups of 15 with 10 cores), and significantly improving (above a 60%) the performance with respect to a non-cooperative parallel scheme. The scalability of the method is also good (tests were performed using up to 300 cores). These results demonstrate that saCeSS2 can be used to successfully reverse engineer large dynamic models of complex biological pathways. Further, these results open up new possibilities for other MIDO-based large-scale applications in the life sciences such as metabolic engineering, synthetic biology, drug scheduling.

  7. Analytical investigations in aircraft and spacecraft trajectory optimization and optimal guidance

    NASA Technical Reports Server (NTRS)

    Markopoulos, Nikos; Calise, Anthony J.

    1995-01-01

    A collection of analytical studies is presented related to unconstrained and constrained aircraft (a/c) energy-state modeling and to spacecraft (s/c) motion under continuous thrust. With regard to a/c unconstrained energy-state modeling, the physical origin of the singular perturbation parameter that accounts for the observed 2-time-scale behavior of a/c during energy climbs is identified and explained. With regard to the constrained energy-state modeling, optimal control problems are studied involving active state-variable inequality constraints. Departing from the practical deficiencies of the control programs for such problems that result from the traditional formulations, a complete reformulation is proposed for these problems which, in contrast to the old formulation, will presumably lead to practically useful controllers that can track an inequality constraint boundary asymptotically, and even in the presence of 2-sided perturbations about it. Finally, with regard to s/c motion under continuous thrust, a thrust program is proposed for which the equations of 2-dimensional motion of a space vehicle in orbit, viewed as a point mass, afford an exact analytic solution. The thrust program arises under the assumption of tangential thrust from the costate system corresponding to minimum-fuel, power-limited, coplanar transfers between two arbitrary conics. The thrust program can be used not only with power-limited propulsion systems, but also with any propulsion system capable of generating continuous thrust of controllable magnitude, and, for propulsion types and classes of transfers for which it is sufficiently optimal the results of this report suggest a method of maneuvering during planetocentric or heliocentric orbital operations, requiring a minimum amount of computation; thus uniquely suitable for real-time feedback guidance implementations.

  8. Bell-Curve Genetic Algorithm for Mixed Continuous and Discrete Optimization Problems

    NASA Technical Reports Server (NTRS)

    Kincaid, Rex K.; Griffith, Michelle; Sykes, Ruth; Sobieszczanski-Sobieski, Jaroslaw

    2002-01-01

    In this manuscript we have examined an extension of BCB that encompasses a mix of continuous and quasi-discrete, as well as truly-discrete applications. FVe began by testing two refinements to the discrete version of BCB. The testing of midpoint versus fitness (Tables 1 and 2) proved inconclusive. The testing of discrete normal tails versus standard mutation showed was conclusive and demonstrated that the discrete normal tails are better. Next, we implemented these refinements in a combined continuous and discrete BCB and compared the performance of two discrete distance on the hub problem. Here we found when "order does matter" it pays to take it into account.

  9. Discrete homotopy analysis for optimal trading execution with nonlinear transient market impact

    NASA Astrophysics Data System (ADS)

    Curato, Gianbiagio; Gatheral, Jim; Lillo, Fabrizio

    2016-10-01

    Optimal execution in financial markets is the problem of how to trade a large quantity of shares incrementally in time in order to minimize the expected cost. In this paper, we study the problem of the optimal execution in the presence of nonlinear transient market impact. Mathematically such problem is equivalent to solve a strongly nonlinear integral equation, which in our model is a weakly singular Urysohn equation of the first kind. We propose an approach based on Homotopy Analysis Method (HAM), whereby a well behaved initial trading strategy is continuously deformed to lower the expected execution cost. Specifically, we propose a discrete version of the HAM, i.e. the DHAM approach, in order to use the method when the integrals to compute have no closed form solution. We find that the optimal solution is front loaded for concave instantaneous impact even when the investor is risk neutral. More important we find that the expected cost of the DHAM strategy is significantly smaller than the cost of conventional strategies.

  10. Many-to-Many Multicast Routing Schemes under a Fixed Topology

    PubMed Central

    Ding, Wei; Wang, Hongfa; Wei, Xuerui

    2013-01-01

    Many-to-many multicast routing can be extensively applied in computer or communication networks supporting various continuous multimedia applications. The paper focuses on the case where all users share a common communication channel while each user is both a sender and a receiver of messages in multicasting as well as an end user. In this case, the multicast tree appears as a terminal Steiner tree (TeST). The problem of finding a TeST with a quality-of-service (QoS) optimization is frequently NP-hard. However, we discover that it is a good idea to find a many-to-many multicast tree with QoS optimization under a fixed topology. In this paper, we are concerned with three kinds of QoS optimization objectives of multicast tree, that is, the minimum cost, minimum diameter, and maximum reliability. All of three optimization problems are distributed into two types, the centralized and decentralized version. This paper uses the dynamic programming method to devise an exact algorithm, respectively, for the centralized and decentralized versions of each optimization problem. PMID:23589706

  11. Fast globally optimal segmentation of 3D prostate MRI with axial symmetry prior.

    PubMed

    Qiu, Wu; Yuan, Jing; Ukwatta, Eranga; Sun, Yue; Rajchl, Martin; Fenster, Aaron

    2013-01-01

    We propose a novel global optimization approach to segmenting a given 3D prostate T2w magnetic resonance (MR) image, which enforces the inherent axial symmetry of the prostate shape and simultaneously performs a sequence of 2D axial slice-wise segmentations with a global 3D coherence prior. We show that the proposed challenging combinatorial optimization problem can be solved globally and exactly by means of convex relaxation. With this regard, we introduce a novel coupled continuous max-flow model, which is dual to the studied convex relaxed optimization formulation and leads to an efficient multiplier augmented algorithm based on the modern convex optimization theory. Moreover, the new continuous max-flow based algorithm was implemented on GPUs to achieve a substantial improvement in computation. Experimental results using public and in-house datasets demonstrate great advantages of the proposed method in terms of both accuracy and efficiency.

  12. Galerkin v. discrete-optimal projection in nonlinear model reduction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carlberg, Kevin Thomas; Barone, Matthew Franklin; Antil, Harbir

    Discrete-optimal model-reduction techniques such as the Gauss{Newton with Approximated Tensors (GNAT) method have shown promise, as they have generated stable, accurate solutions for large-scale turbulent, compressible ow problems where standard Galerkin techniques have failed. However, there has been limited comparative analysis of the two approaches. This is due in part to difficulties arising from the fact that Galerkin techniques perform projection at the time-continuous level, while discrete-optimal techniques do so at the time-discrete level. This work provides a detailed theoretical and experimental comparison of the two techniques for two common classes of time integrators: linear multistep schemes and Runge{Kutta schemes.more » We present a number of new ndings, including conditions under which the discrete-optimal ROM has a time-continuous representation, conditions under which the two techniques are equivalent, and time-discrete error bounds for the two approaches. Perhaps most surprisingly, we demonstrate both theoretically and experimentally that decreasing the time step does not necessarily decrease the error for the discrete-optimal ROM; instead, the time step should be `matched' to the spectral content of the reduced basis. In numerical experiments carried out on a turbulent compressible- ow problem with over one million unknowns, we show that increasing the time step to an intermediate value decreases both the error and the simulation time of the discrete-optimal reduced-order model by an order of magnitude.« less

  13. Distributed Optimal Consensus Control for Multiagent Systems With Input Delay.

    PubMed

    Zhang, Huaipin; Yue, Dong; Zhao, Wei; Hu, Songlin; Dou, Chunxia; Huaipin Zhang; Dong Yue; Wei Zhao; Songlin Hu; Chunxia Dou; Hu, Songlin; Zhang, Huaipin; Dou, Chunxia; Yue, Dong; Zhao, Wei

    2018-06-01

    This paper addresses the problem of distributed optimal consensus control for a continuous-time heterogeneous linear multiagent system subject to time varying input delays. First, by discretization and model transformation, the continuous-time input-delayed system is converted into a discrete-time delay-free system. Two delicate performance index functions are defined for these two systems. It is shown that the performance index functions are equivalent and the optimal consensus control problem of the input-delayed system can be cast into that of the delay-free system. Second, by virtue of the Hamilton-Jacobi-Bellman (HJB) equations, an optimal control policy for each agent is designed based on the delay-free system and a novel value iteration algorithm is proposed to learn the solutions to the HJB equations online. The proposed adaptive dynamic programming algorithm is implemented on the basis of a critic-action neural network (NN) structure. Third, it is proved that local consensus errors of the two systems and weight estimation errors of the critic-action NNs are uniformly ultimately bounded while the approximated control policies converge to their target values. Finally, two simulation examples are presented to illustrate the effectiveness of the developed method.

  14. Solution of Algebraic Equations in the Analysis, Design, and Optimization of Continuous Ultrafiltration

    ERIC Educational Resources Information Center

    Foley, Greg

    2011-01-01

    Continuous feed and bleed ultrafiltration, modeled with the gel polarization model for the limiting flux, is shown to provide a rich source of non-linear algebraic equations that can be readily solved using numerical and graphical techniques familiar to undergraduate students. We present a variety of numerical problems in the design, analysis, and…

  15. Dynamic Programming for Structured Continuous Markov Decision Problems

    NASA Technical Reports Server (NTRS)

    Dearden, Richard; Meuleau, Nicholas; Washington, Richard; Feng, Zhengzhu

    2004-01-01

    We describe an approach for exploiting structure in Markov Decision Processes with continuous state variables. At each step of the dynamic programming, the state space is dynamically partitioned into regions where the value function is the same throughout the region. We first describe the algorithm for piecewise constant representations. We then extend it to piecewise linear representations, using techniques from POMDPs to represent and reason about linear surfaces efficiently. We show that for complex, structured problems, our approach exploits the natural structure so that optimal solutions can be computed efficiently.

  16. Distributed Optimal Consensus Over Resource Allocation Network and Its Application to Dynamical Economic Dispatch.

    PubMed

    Li, Chaojie; Yu, Xinghuo; Huang, Tingwen; He, Xing; Chaojie Li; Xinghuo Yu; Tingwen Huang; Xing He; Li, Chaojie; Huang, Tingwen; He, Xing; Yu, Xinghuo

    2018-06-01

    The resource allocation problem is studied and reformulated by a distributed interior point method via a -logarithmic barrier. By the facilitation of the graph Laplacian, a fully distributed continuous-time multiagent system is developed for solving the problem. Specifically, to avoid high singularity of the -logarithmic barrier at boundary, an adaptive parameter switching strategy is introduced into this dynamical multiagent system. The convergence rate of the distributed algorithm is obtained. Moreover, a novel distributed primal-dual dynamical multiagent system is designed in a smart grid scenario to seek the saddle point of dynamical economic dispatch, which coincides with the optimal solution. The dual decomposition technique is applied to transform the optimization problem into easily solvable resource allocation subproblems with local inequality constraints. The good performance of the new dynamical systems is, respectively, verified by a numerical example and the IEEE six-bus test system-based simulations.

  17. Improved Sensitivity Relations in State Constrained Optimal Control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bettiol, Piernicola, E-mail: piernicola.bettiol@univ-brest.fr; Frankowska, Hélène, E-mail: frankowska@math.jussieu.fr; Vinter, Richard B., E-mail: r.vinter@imperial.ac.uk

    2015-04-15

    Sensitivity relations in optimal control provide an interpretation of the costate trajectory and the Hamiltonian, evaluated along an optimal trajectory, in terms of gradients of the value function. While sensitivity relations are a straightforward consequence of standard transversality conditions for state constraint free optimal control problems formulated in terms of control-dependent differential equations with smooth data, their verification for problems with either pathwise state constraints, nonsmooth data, or for problems where the dynamic constraint takes the form of a differential inclusion, requires careful analysis. In this paper we establish validity of both ‘full’ and ‘partial’ sensitivity relations for an adjointmore » state of the maximum principle, for optimal control problems with pathwise state constraints, where the underlying control system is described by a differential inclusion. The partial sensitivity relation interprets the costate in terms of partial Clarke subgradients of the value function with respect to the state variable, while the full sensitivity relation interprets the couple, comprising the costate and Hamiltonian, as the Clarke subgradient of the value function with respect to both time and state variables. These relations are distinct because, for nonsmooth data, the partial Clarke subdifferential does not coincide with the projection of the (full) Clarke subdifferential on the relevant coordinate space. We show for the first time (even for problems without state constraints) that a costate trajectory can be chosen to satisfy the partial and full sensitivity relations simultaneously. The partial sensitivity relation in this paper is new for state constraint problems, while the full sensitivity relation improves on earlier results in the literature (for optimal control problems formulated in terms of Lipschitz continuous multifunctions), because a less restrictive inward pointing hypothesis is invoked in the proof, and because it is validated for a stronger set of necessary conditions.« less

  18. Generating moment matching scenarios using optimization techniques

    DOE PAGES

    Mehrotra, Sanjay; Papp, Dávid

    2013-05-16

    An optimization based method is proposed to generate moment matching scenarios for numerical integration and its use in stochastic programming. The main advantage of the method is its flexibility: it can generate scenarios matching any prescribed set of moments of the underlying distribution rather than matching all moments up to a certain order, and the distribution can be defined over an arbitrary set. This allows for a reduction in the number of scenarios and allows the scenarios to be better tailored to the problem at hand. The method is based on a semi-infinite linear programming formulation of the problem thatmore » is shown to be solvable with polynomial iteration complexity. A practical column generation method is implemented. The column generation subproblems are polynomial optimization problems; however, they need not be solved to optimality. It is found that the columns in the column generation approach can be efficiently generated by random sampling. The number of scenarios generated matches a lower bound of Tchakaloff's. The rate of convergence of the approximation error is established for continuous integrands, and an improved bound is given for smooth integrands. Extensive numerical experiments are presented in which variants of the proposed method are compared to Monte Carlo and quasi-Monte Carlo methods on both numerical integration problems and stochastic optimization problems. The benefits of being able to match any prescribed set of moments, rather than all moments up to a certain order, is also demonstrated using optimization problems with 100-dimensional random vectors. Here, empirical results show that the proposed approach outperforms Monte Carlo and quasi-Monte Carlo based approaches on the tested problems.« less

  19. Optimal Control and Smoothing Techniques for Computing Minimum Fuel Orbital Transfers and Rendezvous

    NASA Astrophysics Data System (ADS)

    Epenoy, R.; Bertrand, R.

    We investigate in this paper the computation of minimum fuel orbital transfers and rendezvous. Each problem is seen as an optimal control problem and is solved by means of shooting methods [1]. This approach corresponds to the use of Pontryagin's Maximum Principle (PMP) [2-4] and leads to the solution of a Two Point Boundary Value Problem (TPBVP). It is well known that this last one is very difficult to solve when the performance index is fuel consumption because in this case the optimal control law has a particular discontinuous structure called "bang-bang". We will show how to modify the performance index by a term depending on a small parameter in order to yield regular controls. Then, a continuation method on this parameter will lead us to the solution of the original problem. Convergence theorems will be given. Finally, numerical examples will illustrate the interest of our method. We will consider two particular problems: The GTO (Geostationary Transfer Orbit) to GEO (Geostationary Equatorial Orbit) transfer and the LEO (Low Earth Orbit) rendezvous.

  20. Utilization of the Discrete Differential Evolution for Optimization in Multidimensional Point Clouds.

    PubMed

    Uher, Vojtěch; Gajdoš, Petr; Radecký, Michal; Snášel, Václav

    2016-01-01

    The Differential Evolution (DE) is a widely used bioinspired optimization algorithm developed by Storn and Price. It is popular for its simplicity and robustness. This algorithm was primarily designed for real-valued problems and continuous functions, but several modified versions optimizing both integer and discrete-valued problems have been developed. The discrete-coded DE has been mostly used for combinatorial problems in a set of enumerative variants. However, the DE has a great potential in the spatial data analysis and pattern recognition. This paper formulates the problem as a search of a combination of distinct vertices which meet the specified conditions. It proposes a novel approach called the Multidimensional Discrete Differential Evolution (MDDE) applying the principle of the discrete-coded DE in discrete point clouds (PCs). The paper examines the local searching abilities of the MDDE and its convergence to the global optimum in the PCs. The multidimensional discrete vertices cannot be simply ordered to get a convenient course of the discrete data, which is crucial for good convergence of a population. A novel mutation operator utilizing linear ordering of spatial data based on the space filling curves is introduced. The algorithm is tested on several spatial datasets and optimization problems. The experiments show that the MDDE is an efficient and fast method for discrete optimizations in the multidimensional point clouds.

  1. Utilization of the Discrete Differential Evolution for Optimization in Multidimensional Point Clouds

    PubMed Central

    Radecký, Michal; Snášel, Václav

    2016-01-01

    The Differential Evolution (DE) is a widely used bioinspired optimization algorithm developed by Storn and Price. It is popular for its simplicity and robustness. This algorithm was primarily designed for real-valued problems and continuous functions, but several modified versions optimizing both integer and discrete-valued problems have been developed. The discrete-coded DE has been mostly used for combinatorial problems in a set of enumerative variants. However, the DE has a great potential in the spatial data analysis and pattern recognition. This paper formulates the problem as a search of a combination of distinct vertices which meet the specified conditions. It proposes a novel approach called the Multidimensional Discrete Differential Evolution (MDDE) applying the principle of the discrete-coded DE in discrete point clouds (PCs). The paper examines the local searching abilities of the MDDE and its convergence to the global optimum in the PCs. The multidimensional discrete vertices cannot be simply ordered to get a convenient course of the discrete data, which is crucial for good convergence of a population. A novel mutation operator utilizing linear ordering of spatial data based on the space filling curves is introduced. The algorithm is tested on several spatial datasets and optimization problems. The experiments show that the MDDE is an efficient and fast method for discrete optimizations in the multidimensional point clouds. PMID:27974884

  2. A firefly algorithm for solving competitive location-design problem: a case study

    NASA Astrophysics Data System (ADS)

    Sadjadi, Seyed Jafar; Ashtiani, Milad Gorji; Ramezanian, Reza; Makui, Ahmad

    2016-12-01

    This paper aims at determining the optimal number of new facilities besides specifying both the optimal location and design level of them under the budget constraint in a competitive environment by a novel hybrid continuous and discrete firefly algorithm. A real-world application of locating new chain stores in the city of Tehran, Iran, is used and the results are analyzed. In addition, several examples have been solved to evaluate the efficiency of the proposed model and algorithm. The results demonstrate that the performed method provides good-quality results for the test problems.

  3. Optimization of structures undergoing harmonic or stochastic excitation. Ph.D. Thesis; [atmospheric turbulence and white noise

    NASA Technical Reports Server (NTRS)

    Johnson, E. H.

    1975-01-01

    The optimal design was investigated of simple structures subjected to dynamic loads, with constraints on the structures' responses. Optimal designs were examined for one dimensional structures excited by harmonically oscillating loads, similar structures excited by white noise, and a wing in the presence of continuous atmospheric turbulence. The first has constraints on the maximum allowable stress while the last two place bounds on the probability of failure of the structure. Approximations were made to replace the time parameter with a frequency parameter. For the first problem, this involved the steady state response, and in the remaining cases, power spectral techniques were employed to find the root mean square values of the responses. Optimal solutions were found by using computer algorithms which combined finite elements methods with optimization techniques based on mathematical programming. It was found that the inertial loads for these dynamic problems result in optimal structures that are radically different from those obtained for structures loaded statically by forces of comparable magnitude.

  4. Comparing Evolutionary Programs and Evolutionary Pattern Search Algorithms: A Drug Docking Application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hart, W.E.

    1999-02-10

    Evolutionary programs (EPs) and evolutionary pattern search algorithms (EPSAS) are two general classes of evolutionary methods for optimizing on continuous domains. The relative performance of these methods has been evaluated on standard global optimization test functions, and these results suggest that EPSAs more robustly converge to near-optimal solutions than EPs. In this paper we evaluate the relative performance of EPSAs and EPs on a real-world application: flexible ligand binding in the Autodock docking software. We compare the performance of these methods on a suite of docking test problems. Our results confirm that EPSAs and EPs have comparable performance, and theymore » suggest that EPSAs may be more robust on larger, more complex problems.« less

  5. On the Convergence Analysis of the Optimized Gradient Method.

    PubMed

    Kim, Donghwan; Fessler, Jeffrey A

    2017-01-01

    This paper considers the problem of unconstrained minimization of smooth convex functions having Lipschitz continuous gradients with known Lipschitz constant. We recently proposed the optimized gradient method for this problem and showed that it has a worst-case convergence bound for the cost function decrease that is twice as small as that of Nesterov's fast gradient method, yet has a similarly efficient practical implementation. Drori showed recently that the optimized gradient method has optimal complexity for the cost function decrease over the general class of first-order methods. This optimality makes it important to study fully the convergence properties of the optimized gradient method. The previous worst-case convergence bound for the optimized gradient method was derived for only the last iterate of a secondary sequence. This paper provides an analytic convergence bound for the primary sequence generated by the optimized gradient method. We then discuss additional convergence properties of the optimized gradient method, including the interesting fact that the optimized gradient method has two types of worstcase functions: a piecewise affine-quadratic function and a quadratic function. These results help complete the theory of an optimal first-order method for smooth convex minimization.

  6. On the Convergence Analysis of the Optimized Gradient Method

    PubMed Central

    Kim, Donghwan; Fessler, Jeffrey A.

    2016-01-01

    This paper considers the problem of unconstrained minimization of smooth convex functions having Lipschitz continuous gradients with known Lipschitz constant. We recently proposed the optimized gradient method for this problem and showed that it has a worst-case convergence bound for the cost function decrease that is twice as small as that of Nesterov’s fast gradient method, yet has a similarly efficient practical implementation. Drori showed recently that the optimized gradient method has optimal complexity for the cost function decrease over the general class of first-order methods. This optimality makes it important to study fully the convergence properties of the optimized gradient method. The previous worst-case convergence bound for the optimized gradient method was derived for only the last iterate of a secondary sequence. This paper provides an analytic convergence bound for the primary sequence generated by the optimized gradient method. We then discuss additional convergence properties of the optimized gradient method, including the interesting fact that the optimized gradient method has two types of worstcase functions: a piecewise affine-quadratic function and a quadratic function. These results help complete the theory of an optimal first-order method for smooth convex minimization. PMID:28461707

  7. Investigating the enhanced Best Performance Algorithm for Annual Crop Planning problem based on economic factors.

    PubMed

    Adewumi, Aderemi Oluyinka; Chetty, Sivashan

    2017-01-01

    The Annual Crop Planning (ACP) problem was a recently introduced problem in the literature. This study further expounds on this problem by presenting a new mathematical formulation, which is based on market economic factors. To determine solutions, a new local search metaheuristic algorithm is investigated which is called the enhanced Best Performance Algorithm (eBPA). eBPA's results are compared against two well-known local search metaheuristic algorithms; these include Tabu Search and Simulated Annealing. The results show the potential of the eBPA for continuous optimization problems.

  8. Single- and Multiple-Objective Optimization with Differential Evolution and Neural Networks

    NASA Technical Reports Server (NTRS)

    Rai, Man Mohan

    2006-01-01

    Genetic and evolutionary algorithms have been applied to solve numerous problems in engineering design where they have been used primarily as optimization procedures. These methods have an advantage over conventional gradient-based search procedures became they are capable of finding global optima of multi-modal functions and searching design spaces with disjoint feasible regions. They are also robust in the presence of noisy data. Another desirable feature of these methods is that they can efficiently use distributed and parallel computing resources since multiple function evaluations (flow simulations in aerodynamics design) can be performed simultaneously and independently on ultiple processors. For these reasons genetic and evolutionary algorithms are being used more frequently in design optimization. Examples include airfoil and wing design and compressor and turbine airfoil design. They are also finding increasing use in multiple-objective and multidisciplinary optimization. This lecture will focus on an evolutionary method that is a relatively new member to the general class of evolutionary methods called differential evolution (DE). This method is easy to use and program and it requires relatively few user-specified constants. These constants are easily determined for a wide class of problems. Fine-tuning the constants will off course yield the solution to the optimization problem at hand more rapidly. DE can be efficiently implemented on parallel computers and can be used for continuous, discrete and mixed discrete/continuous optimization problems. It does not require the objective function to be continuous and is noise tolerant. DE and applications to single and multiple-objective optimization will be included in the presentation and lecture notes. A method for aerodynamic design optimization that is based on neural networks will also be included as a part of this lecture. The method offers advantages over traditional optimization methods. It is more flexible than other methods in dealing with design in the context of both steady and unsteady flows, partial and complete data sets, combined experimental and numerical data, inclusion of various constraints and rules of thumb, and other issues that characterize the aerodynamic design process. Neural networks provide a natural framework within which a succession of numerical solutions of increasing fidelity, incorporating more realistic flow physics, can be represented and utilized for optimization. Neural networks also offer an excellent framework for multiple-objective and multi-disciplinary design optimization. Simulation tools from various disciplines can be integrated within this framework and rapid trade-off studies involving one or many disciplines can be performed. The prospect of combining neural network based optimization methods and evolutionary algorithms to obtain a hybrid method with the best properties of both methods will be included in this presentation. Achieving solution diversity and accurate convergence to the exact Pareto front in multiple objective optimization usually requires a significant computational effort with evolutionary algorithms. In this lecture we will also explore the possibility of using neural networks to obtain estimates of the Pareto optimal front using non-dominated solutions generated by DE as training data. Neural network estimators have the potential advantage of reducing the number of function evaluations required to obtain solution accuracy and diversity, thus reducing cost to design.

  9. Non-adaptive and adaptive hybrid approaches for enhancing water quality management

    NASA Astrophysics Data System (ADS)

    Kalwij, Ineke M.; Peralta, Richard C.

    2008-09-01

    SummaryUsing optimization to help solve groundwater management problems cost-effectively is becoming increasingly important. Hybrid optimization approaches, that combine two or more optimization algorithms, will become valuable and common tools for addressing complex nonlinear hydrologic problems. Hybrid heuristic optimizers have capabilities far beyond those of a simple genetic algorithm (SGA), and are continuously improving. SGAs having only parent selection, crossover, and mutation are inefficient and rarely used for optimizing contaminant transport management. Even an advanced genetic algorithm (AGA) that includes elitism (to emphasize using the best strategies as parents) and healing (to help assure optimal strategy feasibility) is undesirably inefficient. Much more efficient than an AGA is the presented hybrid (AGCT), which adds comprehensive tabu search (TS) features to an AGA. TS mechanisms (TS probability, tabu list size, search coarseness and solution space size, and a TS threshold value) force the optimizer to search portions of the solution space that yield superior pumping strategies, and to avoid reproducing similar or inferior strategies. An AGCT characteristic is that TS control parameters are unchanging during optimization. However, TS parameter values that are ideal for optimization commencement can be undesirable when nearing assumed global optimality. The second presented hybrid, termed global converger (GC), is significantly better than the AGCT. GC includes AGCT plus feedback-driven auto-adaptive control that dynamically changes TS parameters during run-time. Before comparing AGCT and GC, we empirically derived scaled dimensionless TS control parameter guidelines by evaluating 50 sets of parameter values for a hypothetical optimization problem. For the hypothetical area, AGCT optimized both well locations and pumping rates. The parameters are useful starting values because using trial-and-error to identify an ideal combination of control parameter values for a new optimization problem can be time consuming. For comparison, AGA, AGCT, and GC are applied to optimize pumping rates for assumed well locations of a complex large-scale contaminant transport and remediation optimization problem at Blaine Naval Ammunition Depot (NAD). Both hybrid approaches converged more closely to the optimal solution than the non-hybrid AGA. GC averaged 18.79% better convergence than AGCT, and 31.9% than AGA, within the same computation time (12.5 days). AGCT averaged 13.1% better convergence than AGA. The GC can significantly reduce the burden of employing computationally intensive hydrologic simulation models within a limited time period and for real-world optimization problems. Although demonstrated for a groundwater quality problem, it is also applicable to other arenas, such as managing salt water intrusion and surface water contaminant loading.

  10. Optimal directed searches for continuous gravitational waves

    NASA Astrophysics Data System (ADS)

    Ming, Jing; Krishnan, Badri; Papa, Maria Alessandra; Aulbert, Carsten; Fehrmann, Henning

    2016-03-01

    Wide parameter space searches for long-lived continuous gravitational wave signals are computationally limited. It is therefore critically important that the available computational resources are used rationally. In this paper we consider directed searches, i.e., targets for which the sky position is known accurately but the frequency and spin-down parameters are completely unknown. Given a list of such potential astrophysical targets, we therefore need to prioritize. On which target(s) should we spend scarce computing resources? What parameter space region in frequency and spin-down should we search through? Finally, what is the optimal search setup that we should use? In this paper we present a general framework that allows us to solve all three of these problems. This framework is based on maximizing the probability of making a detection subject to a constraint on the maximum available computational cost. We illustrate the method for a simplified problem.

  11. Nonlinear model predictive control of a wave energy converter based on differential flatness parameterisation

    NASA Astrophysics Data System (ADS)

    Li, Guang

    2017-01-01

    This paper presents a fast constrained optimization approach, which is tailored for nonlinear model predictive control of wave energy converters (WEC). The advantage of this approach relies on its exploitation of the differential flatness of the WEC model. This can reduce the dimension of the resulting nonlinear programming problem (NLP) derived from the continuous constrained optimal control of WEC using pseudospectral method. The alleviation of computational burden using this approach helps to promote an economic implementation of nonlinear model predictive control strategy for WEC control problems. The method is applicable to nonlinear WEC models, nonconvex objective functions and nonlinear constraints, which are commonly encountered in WEC control problems. Numerical simulations demonstrate the efficacy of this approach.

  12. Optimal dynamic pricing for deteriorating items with reference-price effects

    NASA Astrophysics Data System (ADS)

    Xue, Musen; Tang, Wansheng; Zhang, Jianxiong

    2016-07-01

    In this paper, a dynamic pricing problem for deteriorating items with the consumers' reference-price effect is studied. An optimal control model is established to maximise the total profit, where the demand not only depends on the current price, but also is sensitive to the historical price. The continuous-time dynamic optimal pricing strategy with reference-price effect is obtained through solving the optimal control model on the basis of Pontryagin's maximum principle. In addition, numerical simulations and sensitivity analysis are carried out. Finally, some managerial suggestions that firm may adopt to formulate its pricing policy are proposed.

  13. Multimodel methods for optimal control of aeroacoustics.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Guoquan; Collis, Samuel Scott

    2005-01-01

    A new multidomain/multiphysics computational framework for optimal control of aeroacoustic noise has been developed based on a near-field compressible Navier-Stokes solver coupled with a far-field linearized Euler solver both based on a discontinuous Galerkin formulation. In this approach, the coupling of near- and far-field domains is achieved by weakly enforcing continuity of normal fluxes across a coupling surface that encloses all nonlinearities and noise sources. For optimal control, gradient information is obtained by the solution of an appropriate adjoint problem that involves the propagation of adjoint information from the far-field to the near-field. This computational framework has been successfully appliedmore » to study optimal boundary-control of blade-vortex interaction, which is a significant noise source for helicopters on approach to landing. In the model-problem presented here, the noise propagated toward the ground is reduced by 12dB.« less

  14. Adaptive nearly optimal control for a class of continuous-time nonaffine nonlinear systems with inequality constraints.

    PubMed

    Fan, Quan-Yong; Yang, Guang-Hong

    2017-01-01

    The state inequality constraints have been hardly considered in the literature on solving the nonlinear optimal control problem based the adaptive dynamic programming (ADP) method. In this paper, an actor-critic (AC) algorithm is developed to solve the optimal control problem with a discounted cost function for a class of state-constrained nonaffine nonlinear systems. To overcome the difficulties resulting from the inequality constraints and the nonaffine nonlinearities of the controlled systems, a novel transformation technique with redesigned slack functions and a pre-compensator method are introduced to convert the constrained optimal control problem into an unconstrained one for affine nonlinear systems. Then, based on the policy iteration (PI) algorithm, an online AC scheme is proposed to learn the nearly optimal control policy for the obtained affine nonlinear dynamics. Using the information of the nonlinear model, novel adaptive update laws are designed to guarantee the convergence of the neural network (NN) weights and the stability of the affine nonlinear dynamics without the requirement for the probing signal. Finally, the effectiveness of the proposed method is validated by simulation studies. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  15. Utility of coupling nonlinear optimization methods with numerical modeling software

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murphy, M.J.

    1996-08-05

    Results of using GLO (Global Local Optimizer), a general purpose nonlinear optimization software package for investigating multi-parameter problems in science and engineering is discussed. The package consists of the modular optimization control system (GLO), a graphical user interface (GLO-GUI), a pre-processor (GLO-PUT), a post-processor (GLO-GET), and nonlinear optimization software modules, GLOBAL & LOCAL. GLO is designed for controlling and easy coupling to any scientific software application. GLO runs the optimization module and scientific software application in an iterative loop. At each iteration, the optimization module defines new values for the set of parameters being optimized. GLO-PUT inserts the new parametermore » values into the input file of the scientific application. GLO runs the application with the new parameter values. GLO-GET determines the value of the objective function by extracting the results of the analysis and comparing to the desired result. GLO continues to run the scientific application over and over until it finds the ``best`` set of parameters by minimizing (or maximizing) the objective function. An example problem showing the optimization of material model is presented (Taylor cylinder impact test).« less

  16. Rapid indirect trajectory optimization on highly parallel computing architectures

    NASA Astrophysics Data System (ADS)

    Antony, Thomas

    Trajectory optimization is a field which can benefit greatly from the advantages offered by parallel computing. The current state-of-the-art in trajectory optimization focuses on the use of direct optimization methods, such as the pseudo-spectral method. These methods are favored due to their ease of implementation and large convergence regions while indirect methods have largely been ignored in the literature in the past decade except for specific applications in astrodynamics. It has been shown that the shortcomings conventionally associated with indirect methods can be overcome by the use of a continuation method in which complex trajectory solutions are obtained by solving a sequence of progressively difficult optimization problems. High performance computing hardware is trending towards more parallel architectures as opposed to powerful single-core processors. Graphics Processing Units (GPU), which were originally developed for 3D graphics rendering have gained popularity in the past decade as high-performance, programmable parallel processors. The Compute Unified Device Architecture (CUDA) framework, a parallel computing architecture and programming model developed by NVIDIA, is one of the most widely used platforms in GPU computing. GPUs have been applied to a wide range of fields that require the solution of complex, computationally demanding problems. A GPU-accelerated indirect trajectory optimization methodology which uses the multiple shooting method and continuation is developed using the CUDA platform. The various algorithmic optimizations used to exploit the parallelism inherent in the indirect shooting method are described. The resulting rapid optimal control framework enables the construction of high quality optimal trajectories that satisfy problem-specific constraints and fully satisfy the necessary conditions of optimality. The benefits of the framework are highlighted by construction of maximum terminal velocity trajectories for a hypothetical long range weapon system. The techniques used to construct an initial guess from an analytic near-ballistic trajectory and the methods used to formulate the necessary conditions of optimality in a manner that is transparent to the designer are discussed. Various hypothetical mission scenarios that enforce different combinations of initial, terminal, interior point and path constraints demonstrate the rapid construction of complex trajectories without requiring any a-priori insight into the structure of the solutions. Trajectory problems of this kind were previously considered impractical to solve using indirect methods. The performance of the GPU-accelerated solver is found to be 2x--4x faster than MATLAB's bvp4c, even while running on GPU hardware that is five years behind the state-of-the-art.

  17. An Analytical Framework for Runtime of a Class of Continuous Evolutionary Algorithms.

    PubMed

    Zhang, Yushan; Hu, Guiwu

    2015-01-01

    Although there have been many studies on the runtime of evolutionary algorithms in discrete optimization, relatively few theoretical results have been proposed on continuous optimization, such as evolutionary programming (EP). This paper proposes an analysis of the runtime of two EP algorithms based on Gaussian and Cauchy mutations, using an absorbing Markov chain. Given a constant variation, we calculate the runtime upper bound of special Gaussian mutation EP and Cauchy mutation EP. Our analysis reveals that the upper bounds are impacted by individual number, problem dimension number n, searching range, and the Lebesgue measure of the optimal neighborhood. Furthermore, we provide conditions whereby the average runtime of the considered EP can be no more than a polynomial of n. The condition is that the Lebesgue measure of the optimal neighborhood is larger than a combinatorial calculation of an exponential and the given polynomial of n.

  18. Reinforcement learning for adaptive optimal control of unknown continuous-time nonlinear systems with input constraints

    NASA Astrophysics Data System (ADS)

    Yang, Xiong; Liu, Derong; Wang, Ding

    2014-03-01

    In this paper, an adaptive reinforcement learning-based solution is developed for the infinite-horizon optimal control problem of constrained-input continuous-time nonlinear systems in the presence of nonlinearities with unknown structures. Two different types of neural networks (NNs) are employed to approximate the Hamilton-Jacobi-Bellman equation. That is, an recurrent NN is constructed to identify the unknown dynamical system, and two feedforward NNs are used as the actor and the critic to approximate the optimal control and the optimal cost, respectively. Based on this framework, the action NN and the critic NN are tuned simultaneously, without the requirement for the knowledge of system drift dynamics. Moreover, by using Lyapunov's direct method, the weights of the action NN and the critic NN are guaranteed to be uniformly ultimately bounded, while keeping the closed-loop system stable. To demonstrate the effectiveness of the present approach, simulation results are illustrated.

  19. Global optimization methods for engineering design

    NASA Technical Reports Server (NTRS)

    Arora, Jasbir S.

    1990-01-01

    The problem is to find a global minimum for the Problem P. Necessary and sufficient conditions are available for local optimality. However, global solution can be assured only under the assumption of convexity of the problem. If the constraint set S is compact and the cost function is continuous on it, existence of a global minimum is guaranteed. However, in view of the fact that no global optimality conditions are available, a global solution can be found only by an exhaustive search to satisfy Inequality. The exhaustive search can be organized in such a way that the entire design space need not be searched for the solution. This way the computational burden is reduced somewhat. It is concluded that zooming algorithm for global optimizations appears to be a good alternative to stochastic methods. More testing is needed; a general, robust, and efficient local minimizer is required. IDESIGN was used in all numerical calculations which is based on a sequential quadratic programming algorithm, and since feasible set keeps on shrinking, a good algorithm to find an initial feasible point is required. Such algorithms need to be developed and evaluated.

  20. Broad Search for Unstable Resonant Orbits in the Planar Circular Restricted Three-Body Problem

    NASA Technical Reports Server (NTRS)

    Anderson, Rodney L.; Campagnola, Stefano; Lantoine, Gregory

    2013-01-01

    Unstable resonant orbits in the circular restricted three-body problem have increasingly been used for trajectory design using optimization and invariant manifold techniques.In this study, several methods for computing these unstable resonant orbits are explored including flyby maps, continuation from two-body models, and grid searches. Families of orbits are computed focusing on the Jupiter-Europa system, and their characteristics are explored. Different parameters such as period and stability are examined for each set of resonantor bits, and the continuation of several specific orbits is explored in more detail.

  1. Level-Set Topology Optimization with Aeroelastic Constraints

    NASA Technical Reports Server (NTRS)

    Dunning, Peter D.; Stanford, Bret K.; Kim, H. Alicia

    2015-01-01

    Level-set topology optimization is used to design a wing considering skin buckling under static aeroelastic trim loading, as well as dynamic aeroelastic stability (flutter). The level-set function is defined over the entire 3D volume of a transport aircraft wing box. Therefore, the approach is not limited by any predefined structure and can explore novel configurations. The Sequential Linear Programming (SLP) level-set method is used to solve the constrained optimization problems. The proposed method is demonstrated using three problems with mass, linear buckling and flutter objective and/or constraints. A constraint aggregation method is used to handle multiple buckling constraints in the wing skins. A continuous flutter constraint formulation is used to handle difficulties arising from discontinuities in the design space caused by a switching of the critical flutter mode.

  2. Optimal placement of actuators and sensors in control augmented structural optimization

    NASA Technical Reports Server (NTRS)

    Sepulveda, A. E.; Schmit, L. A., Jr.

    1990-01-01

    A control-augmented structural synthesis methodology is presented in which actuator and sensor placement is treated in terms of (0,1) variables. Structural member sizes and control variables are treated simultaneously as design variables. A multiobjective utopian approach is used to obtain a compromise solution for inherently conflicting objective functions such as strucutal mass control effort and number of actuators. Constraints are imposed on transient displacements, natural frequencies, actuator forces and dynamic stability as well as controllability and observability of the system. The combinatorial aspects of the mixed - (0,1) continuous variable design optimization problem are made tractable by combining approximation concepts with branch and bound techniques. Some numerical results for example problems are presented to illustrate the efficacy of the design procedure set forth.

  3. An explicit solution to the exoatmospheric powered flight guidance and trajectory optimization problem for rocket propelled vehicles

    NASA Technical Reports Server (NTRS)

    Jaggers, R. F.

    1977-01-01

    A derivation of an explicit solution to the two point boundary-value problem of exoatmospheric guidance and trajectory optimization is presented. Fixed initial conditions and continuous burn, multistage thrusting are assumed. Any number of end conditions from one to six (throttling is required in the case of six) can be satisfied in an explicit and practically optimal manner. The explicit equations converge for off nominal conditions such as engine failure, abort, target switch, etc. The self starting, predictor/corrector solution involves no Newton-Rhapson iterations, numerical integration, or first guess values, and converges rapidly if physically possible. A form of this algorithm has been chosen for onboard guidance, as well as real time and preflight ground targeting and trajectory shaping for the NASA Space Shuttle Program.

  4. An Interpolation Approach to Optimal Trajectory Planning for Helicopter Unmanned Aerial Vehicles

    DTIC Science & Technology

    2012-06-01

    Armament Data Line DOF Degree of Freedom PS Pseudospectral LGL Legendre -Gauss-Lobatto quadrature nodes ODE Ordinary Differential Equation xiv...low order polynomials patched together in such away so that the resulting trajectory has several continuous derivatives at all points. In [7], Murray...claims that splines are ideal for optimal control problems because each segment of the spline’s piecewise polynomials approximate the trajectory

  5. Optimal Control of Stochastic Systems Driven by Fractional Brownian Motions

    DTIC Science & Technology

    2014-10-09

    problems for stochastic partial differential equations driven by fractional Brownian motions are explicitly solved. For the control of a continuous time...linear systems with Brownian motion or a discrete time linear system with a white Gaussian noise and costs 1. REPORT DATE (DD-MM-YYYY) 4. TITLE AND...Army Research Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 stochastic optimal control, fractional Brownian motion , stochastic

  6. Optimization of transfer trajectories to the Apophis asteroid for spacecraft with high and low thrust

    NASA Astrophysics Data System (ADS)

    Ivashkin, V. V.; Krylov, I. V.

    2014-03-01

    The problem of optimization of a spacecraft transfer to the Apophis asteroid is investigated. The scheme of transfer under analysis includes a geocentric stage of boosting the spacecraft with high thrust, a heliocentric stage of control by a low thrust engine, and a stage of deceleration with injection to an orbit of the asteroid's satellite. In doing this, the problem of optimal control is solved for cases of ideal and piecewise-constant low thrust, and the optimal magnitude and direction of spacecraft's hyperbolic velocity "at infinity" during departure from the Earth are determined. The spacecraft trajectories are found based on a specially developed comprehensive method of optimization. This method combines the method of dynamic programming at the first stage of analysis and the Pontryagin maximum principle at the concluding stage, together with the parameter continuation method. The estimates are obtained for the spacecraft's final mass and for the payload mass that can be delivered to the asteroid using the Soyuz-Fregat carrier launcher.

  7. Augmented Lagrange Hopfield network for solving economic dispatch problem in competitive environment

    NASA Astrophysics Data System (ADS)

    Vo, Dieu Ngoc; Ongsakul, Weerakorn; Nguyen, Khai Phuc

    2012-11-01

    This paper proposes an augmented Lagrange Hopfield network (ALHN) for solving economic dispatch (ED) problem in the competitive environment. The proposed ALHN is a continuous Hopfield network with its energy function based on augmented Lagrange function for efficiently dealing with constrained optimization problems. The ALHN method can overcome the drawbacks of the conventional Hopfield network such as local optimum, long computational time, and linear constraints. The proposed method is used for solving the ED problem with two revenue models of revenue based on payment for power delivered and payment for reserve allocated. The proposed ALHN has been tested on two systems of 3 units and 10 units for the two considered revenue models. The obtained results from the proposed methods are compared to those from differential evolution (DE) and particle swarm optimization (PSO) methods. The result comparison has indicated that the proposed method is very efficient for solving the problem. Therefore, the proposed ALHN could be a favorable tool for ED problem in the competitive environment.

  8. Discontinuous solutions of Hamilton-Jacobi equations on networks

    NASA Astrophysics Data System (ADS)

    Graber, P. J.; Hermosilla, C.; Zidani, H.

    2017-12-01

    This paper studies optimal control problems on networks without controllability assumptions at the junctions. The Value Function associated with the control problem is characterized as the solution to a system of Hamilton-Jacobi equations with appropriate junction conditions. The novel feature of the result lies in that the controllability conditions are not needed and the characterization remains valid even when the Value Function is not continuous.

  9. Stochastic Adaptive Estimation and Control.

    DTIC Science & Technology

    1994-10-26

    Marcus, "Language Stability and Stabilizability of Discrete Event Dynamical Systems ," SIAM Journal on Control and Optimization, 31, September 1993...in the hierarchical control of flexible manufacturing systems ; in this problem, the model involves a hybrid process in continuous time whose state is...of the average cost control problem for discrete- time Markov processes. Our exposition covers from finite to Borel state and action spaces and

  10. Optimal estimation of parameters and states in stochastic time-varying systems with time delay

    NASA Astrophysics Data System (ADS)

    Torkamani, Shahab; Butcher, Eric A.

    2013-08-01

    In this study estimation of parameters and states in stochastic linear and nonlinear delay differential systems with time-varying coefficients and constant delay is explored. The approach consists of first employing a continuous time approximation to approximate the stochastic delay differential equation with a set of stochastic ordinary differential equations. Then the problem of parameter estimation in the resulting stochastic differential system is represented as an optimal filtering problem using a state augmentation technique. By adapting the extended Kalman-Bucy filter to the resulting system, the unknown parameters of the time-delayed system are estimated from noise-corrupted, possibly incomplete measurements of the states.

  11. Decentralized stabilization for a class of continuous-time nonlinear interconnected systems using online learning optimal control approach.

    PubMed

    Liu, Derong; Wang, Ding; Li, Hongliang

    2014-02-01

    In this paper, using a neural-network-based online learning optimal control approach, a novel decentralized control strategy is developed to stabilize a class of continuous-time nonlinear interconnected large-scale systems. First, optimal controllers of the isolated subsystems are designed with cost functions reflecting the bounds of interconnections. Then, it is proven that the decentralized control strategy of the overall system can be established by adding appropriate feedback gains to the optimal control policies of the isolated subsystems. Next, an online policy iteration algorithm is presented to solve the Hamilton-Jacobi-Bellman equations related to the optimal control problem. Through constructing a set of critic neural networks, the cost functions can be obtained approximately, followed by the control policies. Furthermore, the dynamics of the estimation errors of the critic networks are verified to be uniformly and ultimately bounded. Finally, a simulation example is provided to illustrate the effectiveness of the present decentralized control scheme.

  12. A bounding-based solution approach for the continuous arc covering problem

    NASA Astrophysics Data System (ADS)

    Wei, Ran; Murray, Alan T.; Batta, Rajan

    2014-04-01

    Road segments, telecommunication wiring, water and sewer pipelines, canals and the like are important features of the urban environment. They are often conceived of and represented as network-based arcs. As a result of the usefulness and significance of arc-based features, there is a need to site facilities along arcs to serve demand. Examples of such facilities include surveillance equipment, cellular towers, refueling centers and emergency response stations, with the intent of being economically efficient as well as providing good service along the arcs. While this amounts to a continuous location problem by nature, various discretizations are generally relied upon to solve such problems. The result is potential for representation errors that negatively impact analysis and decision making. This paper develops a solution approach for the continuous arc covering problem that theoretically eliminates representation errors. The developed approach is applied to optimally place acoustic sensors and cellular base stations along a road network. The results demonstrate the effectiveness of this approach for ameliorating any error and uncertainty in the modeling process.

  13. MONSS: A multi-objective nonlinear simplex search approach

    NASA Astrophysics Data System (ADS)

    Zapotecas-Martínez, Saúl; Coello Coello, Carlos A.

    2016-01-01

    This article presents a novel methodology for dealing with continuous box-constrained multi-objective optimization problems (MOPs). The proposed algorithm adopts a nonlinear simplex search scheme in order to obtain multiple elements of the Pareto optimal set. The search is directed by a well-distributed set of weight vectors, each of which defines a scalarization problem that is solved by deforming a simplex according to the movements described by Nelder and Mead's method. Considering an MOP with n decision variables, the simplex is constructed using n+1 solutions which minimize different scalarization problems defined by n+1 neighbor weight vectors. All solutions found in the search are used to update a set of solutions considered to be the minima for each separate problem. In this way, the proposed algorithm collectively obtains multiple trade-offs among the different conflicting objectives, while maintaining a proper representation of the Pareto optimal front. In this article, it is shown that a well-designed strategy using just mathematical programming techniques can be competitive with respect to the state-of-the-art multi-objective evolutionary algorithms against which it was compared.

  14. Multi-Objective Trajectory Optimization of a Hypersonic Reconnaissance Vehicle with Temperature Constraints

    NASA Astrophysics Data System (ADS)

    Masternak, Tadeusz J.

    This research determines temperature-constrained optimal trajectories for a scramjet-based hypersonic reconnaissance vehicle by developing an optimal control formulation and solving it using a variable order Gauss-Radau quadrature collocation method with a Non-Linear Programming (NLP) solver. The vehicle is assumed to be an air-breathing reconnaissance aircraft that has specified takeoff/landing locations, airborne refueling constraints, specified no-fly zones, and specified targets for sensor data collections. A three degree of freedom scramjet aircraft model is adapted from previous work and includes flight dynamics, aerodynamics, and thermal constraints. Vehicle control is accomplished by controlling angle of attack, roll angle, and propellant mass flow rate. This model is incorporated into an optimal control formulation that includes constraints on both the vehicle and mission parameters, such as avoidance of no-fly zones and coverage of high-value targets. To solve the optimal control formulation, a MATLAB-based package called General Pseudospectral Optimal Control Software (GPOPS-II) is used, which transcribes continuous time optimal control problems into an NLP problem. In addition, since a mission profile can have varying vehicle dynamics and en-route imposed constraints, the optimal control problem formulation can be broken up into several "phases" with differing dynamics and/or varying initial/final constraints. Optimal trajectories are developed using several different performance costs in the optimal control formulation: minimum time, minimum time with control penalties, and maximum range. The resulting analysis demonstrates that optimal trajectories that meet specified mission parameters and constraints can be quickly determined and used for larger-scale operational and campaign planning and execution.

  15. Investigating the enhanced Best Performance Algorithm for Annual Crop Planning problem based on economic factors

    PubMed Central

    2017-01-01

    The Annual Crop Planning (ACP) problem was a recently introduced problem in the literature. This study further expounds on this problem by presenting a new mathematical formulation, which is based on market economic factors. To determine solutions, a new local search metaheuristic algorithm is investigated which is called the enhanced Best Performance Algorithm (eBPA). eBPA’s results are compared against two well-known local search metaheuristic algorithms; these include Tabu Search and Simulated Annealing. The results show the potential of the eBPA for continuous optimization problems. PMID:28792495

  16. Kolkata Paise Restaurant Problem: An Introduction

    NASA Astrophysics Data System (ADS)

    Ghosh, Asim; Biswas, Soumyajyoti; Chatterjee, Arnab; Chakrabarti, Anindya Sundar; Naskar, Tapan; Mitra, Manipushpak; Chakrabarti, Bikas K.

    We discuss several stochastic optimization strategies in games with many players having large number of choices (Kolkata Paise Restaurant Problem) and two choices (minority game problem). It is seen that a stochastic crowd avoiding strategy gives very efficient utilization in KPR problem. A slightly modified strategy in the minority game problem gives full utilization but the dynamics stops after reaching full efficiency, thereby making the utilization helpful for only about half of the population (those in minority). We further discuss the ways in which the dynamics may be continued and the utilization becomes effective for all the agents keeping fluctuation arbitrarily small.

  17. Multicast Routing and Wavelength Assignment with Shared Protection in Multi-Fiber WDM Mesh Networks: Optimal and Heuristic Solutions

    NASA Astrophysics Data System (ADS)

    Woradit, Kampol; Guyot, Matthieu; Vanichchanunt, Pisit; Saengudomlert, Poompat; Wuttisittikulkij, Lunchakorn

    While the problem of multicast routing and wavelength assignment (MC-RWA) in optical wavelength division multiplexing (WDM) networks has been investigated, relatively few researchers have considered network survivability for multicasting. This paper provides an optimization framework to solve the MC-RWA problem in a multi-fiber WDM network that can recover from a single-link failure with shared protection. Using the light-tree (LT) concept to support multicast sessions, we consider two protection strategies that try to reduce service disruptions after a link failure. The first strategy, called light-tree reconfiguration (LTR) protection, computes a new multicast LT for each session affected by the failure. The second strategy, called optical branch reconfiguration (OBR) protection, tries to restore a logical connection between two adjacent multicast members disconnected by the failure. To solve the MC-RWA problem optimally, we propose an integer linear programming (ILP) formulation that minimizes the total number of fibers required for both working and backup traffic. The ILP formulation takes into account joint routing of working and backup traffic, the wavelength continuity constraint, and the limited splitting degree of multicast-capable optical cross-connects (MC-OXCs). After showing some numerical results for optimal solutions, we propose heuristic algorithms that reduce the computational complexity and make the problem solvable for large networks. Numerical results suggest that the proposed heuristic yields efficient solutions compared to optimal solutions obtained from exact optimization.

  18. Robust resolution enhancement optimization methods to process variations based on vector imaging model

    NASA Astrophysics Data System (ADS)

    Ma, Xu; Li, Yanqiu; Guo, Xuejia; Dong, Lisong

    2012-03-01

    Optical proximity correction (OPC) and phase shifting mask (PSM) are the most widely used resolution enhancement techniques (RET) in the semiconductor industry. Recently, a set of OPC and PSM optimization algorithms have been developed to solve for the inverse lithography problem, which are only designed for the nominal imaging parameters without giving sufficient attention to the process variations due to the aberrations, defocus and dose variation. However, the effects of process variations existing in the practical optical lithography systems become more pronounced as the critical dimension (CD) continuously shrinks. On the other hand, the lithography systems with larger NA (NA>0.6) are now extensively used, rendering the scalar imaging models inadequate to describe the vector nature of the electromagnetic field in the current optical lithography systems. In order to tackle the above problems, this paper focuses on developing robust gradient-based OPC and PSM optimization algorithms to the process variations under a vector imaging model. To achieve this goal, an integrative and analytic vector imaging model is applied to formulate the optimization problem, where the effects of process variations are explicitly incorporated in the optimization framework. The steepest descent algorithm is used to optimize the mask iteratively. In order to improve the efficiency of the proposed algorithms, a set of algorithm acceleration techniques (AAT) are exploited during the optimization procedure.

  19. Rational positive real approximations for LQG optimal compensators arising in active stabilization of flexible structures

    NASA Technical Reports Server (NTRS)

    Desantis, A.

    1994-01-01

    In this paper the approximation problem for a class of optimal compensators for flexible structures is considered. The particular case of a simply supported truss with an offset antenna is dealt with. The nonrational positive real optimal compensator transfer function is determined, and it is proposed that an approximation scheme based on a continued fraction expansion method be used. Comparison with the more popular modal expansion technique is performed in terms of stability margin and parameters sensitivity of the relative approximated closed loop transfer functions.

  20. Optimizing sensor cover energy for directional sensors

    NASA Astrophysics Data System (ADS)

    Astorino, Annabella; Gaudioso, Manlio; Miglionico, Giovanna

    2016-10-01

    The Directional Sensors Continuous Coverage Problem (DSCCP) aims at covering a given set of targets in a plane by means of a set of directional sensors. The location of these sensors is known in advance and they are characterized by a discrete set of possible radii and aperture angles. Decisions to be made are about orientation (which in our approach can vary continuously), radius and aperture angle of each sensor. The objective is to get a minimum cost coverage of all targets, if any. We introduce a MINLP formulation of the problem and define a Lagrangian heuristics based on a dual ascent procedure operating on one multiplier at a time. Finally we report the results of the implementation of the method on a set of test problems.

  1. Computing the Feasible Spaces of Optimal Power Flow Problems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Molzahn, Daniel K.

    The solution to an optimal power flow (OPF) problem provides a minimum cost operating point for an electric power system. The performance of OPF solution techniques strongly depends on the problem’s feasible space. This paper presents an algorithm that is guaranteed to compute the entire feasible spaces of small OPF problems to within a specified discretization tolerance. Specifically, the feasible space is computed by discretizing certain of the OPF problem’s inequality constraints to obtain a set of power flow equations. All solutions to the power flow equations at each discretization point are obtained using the Numerical Polynomial Homotopy Continuation (NPHC)more » algorithm. To improve computational tractability, “bound tightening” and “grid pruning” algorithms use convex relaxations to preclude consideration of many discretization points that are infeasible for the OPF problem. Here, the proposed algorithm is used to generate the feasible spaces of two small test cases.« less

  2. Computing the Feasible Spaces of Optimal Power Flow Problems

    DOE PAGES

    Molzahn, Daniel K.

    2017-03-15

    The solution to an optimal power flow (OPF) problem provides a minimum cost operating point for an electric power system. The performance of OPF solution techniques strongly depends on the problem’s feasible space. This paper presents an algorithm that is guaranteed to compute the entire feasible spaces of small OPF problems to within a specified discretization tolerance. Specifically, the feasible space is computed by discretizing certain of the OPF problem’s inequality constraints to obtain a set of power flow equations. All solutions to the power flow equations at each discretization point are obtained using the Numerical Polynomial Homotopy Continuation (NPHC)more » algorithm. To improve computational tractability, “bound tightening” and “grid pruning” algorithms use convex relaxations to preclude consideration of many discretization points that are infeasible for the OPF problem. Here, the proposed algorithm is used to generate the feasible spaces of two small test cases.« less

  3. Optimization of transonic wind tunnel data acquisition and control systems for providing continuous mode tests

    NASA Astrophysics Data System (ADS)

    Petronevich, V. V.

    2016-10-01

    The paper observes the issues related to the increase of efficiency and information content of experimental research in transonic wind tunnels (WT). In particular, questions of optimizing the WT Data Acquisition and Control Systems (DACS) to provide the continuous mode test method are discussed. The problem of Mach number (M number) stabilization in the test section of the large transonic compressor-type wind tunnels at subsonic flow conditions with continuous change of the aircraft model angle of attack is observed on the example of T-128 wind tunnel. To minimize the signals distortion in T-128 DACS measurement channels the optimal MGCplus filter settings of the data acquisition system used in T-128 wind tunnel to measure loads were experimentally determined. As a result of the tests performed a good agreement of the results of balance measurements for pitch/pause and continuous test modes was obtained. Carrying out balance tests for pitch/pause and continuous test methods was provided by the regular data acquisition and control system of T-128 wind tunnel with unified software package POTOK. The architecture and functional abilities of POTOK software package are observed.

  4. Stochastic optimization model for order acceptance with multiple demand classes and uncertain demand/supply

    NASA Astrophysics Data System (ADS)

    Yang, Wen; Fung, Richard Y. K.

    2014-06-01

    This article considers an order acceptance problem in a make-to-stock manufacturing system with multiple demand classes in a finite time horizon. Demands in different periods are random variables and are independent of one another, and replenishments of inventory deviate from the scheduled quantities. The objective of this work is to maximize the expected net profit over the planning horizon by deciding the fraction of the demand that is going to be fulfilled. This article presents a stochastic order acceptance optimization model and analyses the existence of the optimal promising policies. An example of a discrete problem is used to illustrate the policies by applying the dynamic programming method. In order to solve the continuous problems, a heuristic algorithm based on stochastic approximation (HASA) is developed. Finally, the computational results of a case example illustrate the effectiveness and efficiency of the HASA approach, and make the application of the proposed model readily acceptable.

  5. Application of Differential Evolutionary Optimization Methodology for Parameter Structure Identification in Groundwater Modeling

    NASA Astrophysics Data System (ADS)

    Chiu, Y.; Nishikawa, T.

    2013-12-01

    With the increasing complexity of parameter-structure identification (PSI) in groundwater modeling, there is a need for robust, fast, and accurate optimizers in the groundwater-hydrology field. For this work, PSI is defined as identifying parameter dimension, structure, and value. In this study, Voronoi tessellation and differential evolution (DE) are used to solve the optimal PSI problem. Voronoi tessellation is used for automatic parameterization, whereby stepwise regression and the error covariance matrix are used to determine the optimal parameter dimension. DE is a novel global optimizer that can be used to solve nonlinear, nondifferentiable, and multimodal optimization problems. It can be viewed as an improved version of genetic algorithms and employs a simple cycle of mutation, crossover, and selection operations. DE is used to estimate the optimal parameter structure and its associated values. A synthetic numerical experiment of continuous hydraulic conductivity distribution was conducted to demonstrate the proposed methodology. The results indicate that DE can identify the global optimum effectively and efficiently. A sensitivity analysis of the control parameters (i.e., the population size, mutation scaling factor, crossover rate, and mutation schemes) was performed to examine their influence on the objective function. The proposed DE was then applied to solve a complex parameter-estimation problem for a small desert groundwater basin in Southern California. Hydraulic conductivity, specific yield, specific storage, fault conductance, and recharge components were estimated simultaneously. Comparison of DE and a traditional gradient-based approach (PEST) shows DE to be more robust and efficient. The results of this work not only provide an alternative for PSI in groundwater models, but also extend DE applications towards solving complex, regional-scale water management optimization problems.

  6. Tailoring vibration mode shapes using topology optimization and functionally graded material concepts

    NASA Astrophysics Data System (ADS)

    Montealegre Rubio, Wilfredo; Paulino, Glaucio H.; Nelli Silva, Emilio Carlos

    2011-02-01

    Tailoring specified vibration modes is a requirement for designing piezoelectric devices aimed at dynamic-type applications. A technique for designing the shape of specified vibration modes is the topology optimization method (TOM) which finds an optimum material distribution inside a design domain to obtain a structure that vibrates according to specified eigenfrequencies and eigenmodes. Nevertheless, when the TOM is applied to dynamic problems, the well-known grayscale or intermediate material problem arises which can invalidate the post-processing of the optimal result. Thus, a more natural way for solving dynamic problems using TOM is to allow intermediate material values. This idea leads to the functionally graded material (FGM) concept. In fact, FGMs are materials whose properties and microstructure continuously change along a specific direction. Therefore, in this paper, an approach is presented for tailoring user-defined vibration modes, by applying the TOM and FGM concepts to design functionally graded piezoelectric transducers (FGPT) and non-piezoelectric structures (functionally graded structures—FGS) in order to achieve maximum and/or minimum vibration amplitudes at certain points of the structure, by simultaneously finding the topology and material gradation function. The optimization problem is solved by using sequential linear programming. Two-dimensional results are presented to illustrate the method.

  7. Optimal solution and optimality condition of the Hunter-Saxton equation

    NASA Astrophysics Data System (ADS)

    Shen, Chunyu

    2018-02-01

    This paper is devoted to the optimal distributed control problem governed by the Hunter-Saxton equation with constraints on the control. We first investigate the existence and uniqueness of weak solution for the controlled system with appropriate initial value and boundary conditions. In contrast with our previous research, the proof of solution mapping is local Lipschitz continuous, which is one big improvement. Second, based on the well-posedness result, we find a unique optimal control and optimal solution for the controlled system with the quadratic cost functional. Moreover, we establish the sufficient and necessary optimality condition of an optimal control by means of the optimal control theory, not limited to the necessary condition, which is another major novelty of this paper. We also discuss the optimality conditions corresponding to two physical meaningful distributed observation cases.

  8. A Discrete Fruit Fly Optimization Algorithm for the Traveling Salesman Problem.

    PubMed

    Jiang, Zi-Bin; Yang, Qiong

    2016-01-01

    The fruit fly optimization algorithm (FOA) is a newly developed bio-inspired algorithm. The continuous variant version of FOA has been proven to be a powerful evolutionary approach to determining the optima of a numerical function on a continuous definition domain. In this study, a discrete FOA (DFOA) is developed and applied to the traveling salesman problem (TSP), a common combinatorial problem. In the DFOA, the TSP tour is represented by an ordering of city indices, and the bio-inspired meta-heuristic search processes are executed with two elaborately designed main procedures: the smelling and tasting processes. In the smelling process, an effective crossover operator is used by the fruit fly group to search for the neighbors of the best-known swarm location. During the tasting process, an edge intersection elimination (EXE) operator is designed to improve the neighbors of the non-optimum food location in order to enhance the exploration performance of the DFOA. In addition, benchmark instances from the TSPLIB are classified in order to test the searching ability of the proposed algorithm. Furthermore, the effectiveness of the proposed DFOA is compared to that of other meta-heuristic algorithms. The results indicate that the proposed DFOA can be effectively used to solve TSPs, especially large-scale problems.

  9. A Discrete Fruit Fly Optimization Algorithm for the Traveling Salesman Problem

    PubMed Central

    Jiang, Zi-bin; Yang, Qiong

    2016-01-01

    The fruit fly optimization algorithm (FOA) is a newly developed bio-inspired algorithm. The continuous variant version of FOA has been proven to be a powerful evolutionary approach to determining the optima of a numerical function on a continuous definition domain. In this study, a discrete FOA (DFOA) is developed and applied to the traveling salesman problem (TSP), a common combinatorial problem. In the DFOA, the TSP tour is represented by an ordering of city indices, and the bio-inspired meta-heuristic search processes are executed with two elaborately designed main procedures: the smelling and tasting processes. In the smelling process, an effective crossover operator is used by the fruit fly group to search for the neighbors of the best-known swarm location. During the tasting process, an edge intersection elimination (EXE) operator is designed to improve the neighbors of the non-optimum food location in order to enhance the exploration performance of the DFOA. In addition, benchmark instances from the TSPLIB are classified in order to test the searching ability of the proposed algorithm. Furthermore, the effectiveness of the proposed DFOA is compared to that of other meta-heuristic algorithms. The results indicate that the proposed DFOA can be effectively used to solve TSPs, especially large-scale problems. PMID:27812175

  10. Image Edge Tracking via Ant Colony Optimization

    NASA Astrophysics Data System (ADS)

    Li, Ruowei; Wu, Hongkun; Liu, Shilong; Rahman, M. A.; Liu, Sanchi; Kwok, Ngai Ming

    2018-04-01

    A good edge plot should use continuous thin lines to describe the complete contour of the captured object. However, the detection of weak edges is a challenging task because of the associated low pixel intensities. Ant Colony Optimization (ACO) has been employed by many researchers to address this problem. The algorithm is a meta-heuristic method developed by mimicking the natural behaviour of ants. It uses iterative searches to find the optimal solution that cannot be found via traditional optimization approaches. In this work, ACO is employed to track and repair broken edges obtained via conventional Sobel edge detector to produced a result with more connected edges.

  11. Receding horizon online optimization for torque control of gasoline engines.

    PubMed

    Kang, Mingxin; Shen, Tielong

    2016-11-01

    This paper proposes a model-based nonlinear receding horizon optimal control scheme for the engine torque tracking problem. The controller design directly employs the nonlinear model exploited based on mean-value modeling principle of engine systems without any linearizing reformation, and the online optimization is achieved by applying the Continuation/GMRES (generalized minimum residual) approach. Several receding horizon control schemes are designed to investigate the effects of the integral action and integral gain selection. Simulation analyses and experimental validations are implemented to demonstrate the real-time optimization performance and control effects of the proposed torque tracking controllers. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  12. An Extended EPQ-Based Problem with a Discontinuous Delivery Policy, Scrap Rate, and Random Breakdown

    PubMed Central

    Song, Ming-Syuan; Chen, Hsin-Mei; Chiu, Yuan-Shyi P.

    2015-01-01

    In real supply chain environments, the discontinuous multidelivery policy is often used when finished products need to be transported to retailers or customers outside the production units. To address this real-life production-shipment situation, this study extends recent work using an economic production quantity- (EPQ-) based inventory model with a continuous inventory issuing policy, defective items, and machine breakdown by incorporating a multiple delivery policy into the model to replace the continuous policy and investigates the effect on the optimal run time decision for this specific EPQ model. Next, we further expand the scope of the problem to combine the retailer's stock holding cost into our study. This enhanced EPQ-based model can be used to reflect the situation found in contemporary manufacturing firms in which finished products are delivered to the producer's own retail stores and stocked there for sale. A second model is developed and studied. With the help of mathematical modeling and optimization techniques, the optimal run times that minimize the expected total system costs comprising costs incurred in production units, transportation, and retail stores are derived, for both models. Numerical examples are provided to demonstrate the applicability of our research results. PMID:25821853

  13. An extended EPQ-based problem with a discontinuous delivery policy, scrap rate, and random breakdown.

    PubMed

    Chiu, Singa Wang; Lin, Hong-Dar; Song, Ming-Syuan; Chen, Hsin-Mei; Chiu, Yuan-Shyi P

    2015-01-01

    In real supply chain environments, the discontinuous multidelivery policy is often used when finished products need to be transported to retailers or customers outside the production units. To address this real-life production-shipment situation, this study extends recent work using an economic production quantity- (EPQ-) based inventory model with a continuous inventory issuing policy, defective items, and machine breakdown by incorporating a multiple delivery policy into the model to replace the continuous policy and investigates the effect on the optimal run time decision for this specific EPQ model. Next, we further expand the scope of the problem to combine the retailer's stock holding cost into our study. This enhanced EPQ-based model can be used to reflect the situation found in contemporary manufacturing firms in which finished products are delivered to the producer's own retail stores and stocked there for sale. A second model is developed and studied. With the help of mathematical modeling and optimization techniques, the optimal run times that minimize the expected total system costs comprising costs incurred in production units, transportation, and retail stores are derived, for both models. Numerical examples are provided to demonstrate the applicability of our research results.

  14. Mean-variance portfolio selection for defined-contribution pension funds with stochastic salary.

    PubMed

    Zhang, Chubing

    2014-01-01

    This paper focuses on a continuous-time dynamic mean-variance portfolio selection problem of defined-contribution pension funds with stochastic salary, whose risk comes from both financial market and nonfinancial market. By constructing a special Riccati equation as a continuous (actually a viscosity) solution to the HJB equation, we obtain an explicit closed form solution for the optimal investment portfolio as well as the efficient frontier.

  15. Maximizing the productivity of the microalgae Scenedesmus AMDD cultivated in a continuous photobioreactor using an online flow rate control.

    PubMed

    McGinn, Patrick J; MacQuarrie, Scott P; Choi, Jerome; Tartakovsky, Boris

    2017-01-01

    In this study, production of the microalga Scenedesmus AMDD in a 300 L continuous flow photobioreactor was maximized using an online flow (dilution rate) control algorithm. To enable online control, biomass concentration was estimated in real time by measuring chlorophyll-related culture fluorescence. A simple microalgae growth model was developed and used to solve the optimization problem aimed at maximizing the photobioreactor productivity. When optimally controlled, Scenedesmus AMDD culture demonstrated an average volumetric biomass productivity of 0.11 g L -1  d -1 over a 25 day cultivation period, equivalent to a 70 % performance improvement compared to the same photobioreactor operated as a turbidostat. The proposed approach for optimizing photobioreactor flow can be adapted to a broad range of microalgae cultivation systems.

  16. Graph Laplacian Regularization for Image Denoising: Analysis in the Continuous Domain.

    PubMed

    Pang, Jiahao; Cheung, Gene

    2017-04-01

    Inverse imaging problems are inherently underdetermined, and hence, it is important to employ appropriate image priors for regularization. One recent popular prior-the graph Laplacian regularizer-assumes that the target pixel patch is smooth with respect to an appropriately chosen graph. However, the mechanisms and implications of imposing the graph Laplacian regularizer on the original inverse problem are not well understood. To address this problem, in this paper, we interpret neighborhood graphs of pixel patches as discrete counterparts of Riemannian manifolds and perform analysis in the continuous domain, providing insights into several fundamental aspects of graph Laplacian regularization for image denoising. Specifically, we first show the convergence of the graph Laplacian regularizer to a continuous-domain functional, integrating a norm measured in a locally adaptive metric space. Focusing on image denoising, we derive an optimal metric space assuming non-local self-similarity of pixel patches, leading to an optimal graph Laplacian regularizer for denoising in the discrete domain. We then interpret graph Laplacian regularization as an anisotropic diffusion scheme to explain its behavior during iterations, e.g., its tendency to promote piecewise smooth signals under certain settings. To verify our analysis, an iterative image denoising algorithm is developed. Experimental results show that our algorithm performs competitively with state-of-the-art denoising methods, such as BM3D for natural images, and outperforms them significantly for piecewise smooth images.

  17. Energy-Aware Multipath Routing Scheme Based on Particle Swarm Optimization in Mobile Ad Hoc Networks

    PubMed Central

    Robinson, Y. Harold; Rajaram, M.

    2015-01-01

    Mobile ad hoc network (MANET) is a collection of autonomous mobile nodes forming an ad hoc network without fixed infrastructure. Dynamic topology property of MANET may degrade the performance of the network. However, multipath selection is a great challenging task to improve the network lifetime. We proposed an energy-aware multipath routing scheme based on particle swarm optimization (EMPSO) that uses continuous time recurrent neural network (CTRNN) to solve optimization problems. CTRNN finds the optimal loop-free paths to solve link disjoint paths in a MANET. The CTRNN is used as an optimum path selection technique that produces a set of optimal paths between source and destination. In CTRNN, particle swarm optimization (PSO) method is primly used for training the RNN. The proposed scheme uses the reliability measures such as transmission cost, energy factor, and the optimal traffic ratio between source and destination to increase routing performance. In this scheme, optimal loop-free paths can be found using PSO to seek better link quality nodes in route discovery phase. PSO optimizes a problem by iteratively trying to get a better solution with regard to a measure of quality. The proposed scheme discovers multiple loop-free paths by using PSO technique. PMID:26819966

  18. Teaching Simulation and Modelling at Royal Military College.

    ERIC Educational Resources Information Center

    Bonin, Hugues W.; Weir, Ronald D.

    1984-01-01

    Describes a course designed to assist students in writing differential equations to represent chemical processes and to solve these problems on digital computers. Course outline and discussion of computer projects and the simulation and optimization of a continuously stirred tank reactor process are included. (JN)

  19. New numerical methods for open-loop and feedback solutions to dynamic optimization problems

    NASA Astrophysics Data System (ADS)

    Ghosh, Pradipto

    The topic of the first part of this research is trajectory optimization of dynamical systems via computational swarm intelligence. Particle swarm optimization is a nature-inspired heuristic search method that relies on a group of potential solutions to explore the fitness landscape. Conceptually, each particle in the swarm uses its own memory as well as the knowledge accumulated by the entire swarm to iteratively converge on an optimal or near-optimal solution. It is relatively straightforward to implement and unlike gradient-based solvers, does not require an initial guess or continuity in the problem definition. Although particle swarm optimization has been successfully employed in solving static optimization problems, its application in dynamic optimization, as posed in optimal control theory, is still relatively new. In the first half of this thesis particle swarm optimization is used to generate near-optimal solutions to several nontrivial trajectory optimization problems including thrust programming for minimum fuel, multi-burn spacecraft orbit transfer, and computing minimum-time rest-to-rest trajectories for a robotic manipulator. A distinct feature of the particle swarm optimization implementation in this work is the runtime selection of the optimal solution structure. Optimal trajectories are generated by solving instances of constrained nonlinear mixed-integer programming problems with the swarming technique. For each solved optimal programming problem, the particle swarm optimization result is compared with a nearly exact solution found via a direct method using nonlinear programming. Numerical experiments indicate that swarm search can locate solutions to very great accuracy. The second half of this research develops a new extremal-field approach for synthesizing nearly optimal feedback controllers for optimal control and two-player pursuit-evasion games described by general nonlinear differential equations. A notable revelation from this development is that the resulting control law has an algebraic closed-form structure. The proposed method uses an optimal spatial statistical predictor called universal kriging to construct the surrogate model of a feedback controller, which is capable of quickly predicting an optimal control estimate based on current state (and time) information. With universal kriging, an approximation to the optimal feedback map is computed by conceptualizing a set of state-control samples from pre-computed extremals to be a particular realization of a jointly Gaussian spatial process. Feedback policies are computed for a variety of example dynamic optimization problems in order to evaluate the effectiveness of this methodology. This feedback synthesis approach is found to combine good numerical accuracy with low computational overhead, making it a suitable candidate for real-time applications. Particle swarm and universal kriging are combined for a capstone example, a near optimal, near-admissible, full-state feedback control law is computed and tested for the heat-load-limited atmospheric-turn guidance of an aeroassisted transfer vehicle. The performance of this explicit guidance scheme is found to be very promising; initial errors in atmospheric entry due to simulated thruster misfirings are found to be accurately corrected while closely respecting the algebraic state-inequality constraint.

  20. Optimal plant nitrogen use improves model representation of vegetation response to elevated CO2

    NASA Astrophysics Data System (ADS)

    Caldararu, Silvia; Kern, Melanie; Engel, Jan; Zaehle, Sönke

    2017-04-01

    Existing global vegetation models often cannot accurately represent observed ecosystem behaviour under transient conditions such as elevated atmospheric CO2, a problem that can be attributed to an inflexibility in model representation of plant responses. Plant optimality concepts have been proposed as a solution to this problem as they offer a way to represent plastic plant responses in complex models. Here we present a novel, next generation vegetation model which includes optimal nitrogen allocation to and within the canopy as well as optimal biomass allocation between above- and belowground components in response to nutrient and water availability. The underlying hypothesis is that plants adjust their use of nitrogen in response to environmental conditions and nutrient availability in order to maximise biomass growth. We show that for two FACE (Free Air CO2 enrichment) experiments, the Duke forest and Oak Ridge forest sites, the model can better predict vegetation responses over the duration of the experiment when optimal processes are included. Specifically, under elevated CO2 conditions, the model predicts a lower optimal leaf N concentration as well as increased biomass allocation to fine roots, which, combined with a redistribution of leaf N between the Rubisco and chlorophyll components, leads to a continued NPP response under high CO2, where models with a fixed canopy stoichiometry predict a quick onset of N limitation.Existing global vegetation models often cannot accurately represent observed ecosystem behaviour under transient conditions such as elevated atmospheric CO2, a problem that can be attributed to an inflexibility in model representation of plant responses. Plant optimality concepts have been proposed as a solution to this problem as they offer a way to represent plastic plant responses in complex models. Here we present a novel, next generation vegetation model which includes optimal nitrogen allocation to and within the canopy as well as optimal biomass allocation between above- and belowground components in response to nutrient and water availability. The underlying hypothesis is that plants adjust their use of nitrogen in response to environmental conditions and nutrient availability in order to maximise biomass growth. We show that for two FACE (Free Air CO2 enrichment) experiments, the Duke forest and Oak Ridge forest sites, the model can better predict vegetation responses over the duration of the experiment when optimal processes are included. Specifically, under elevated CO2 conditions, the model predicts a lower optimal leaf N concentration as well as increased biomass allocation to fine roots, which, combined with a redistribution of leaf N between the Rubisco and chlorophyll components, leads to a continued NPP response under high CO2, where models with a fixed canopy stoichiometry predict a quick onset of N limitation.

  1. Wavenumber-extended high-order oscillation control finite volume schemes for multi-dimensional aeroacoustic computations

    NASA Astrophysics Data System (ADS)

    Kim, Sungtae; Lee, Soogab; Kim, Kyu Hong

    2008-04-01

    A new numerical method toward accurate and efficient aeroacoustic computations of multi-dimensional compressible flows has been developed. The core idea of the developed scheme is to unite the advantages of the wavenumber-extended optimized scheme and M-AUSMPW+/MLP schemes by predicting a physical distribution of flow variables more accurately in multi-space dimensions. The wavenumber-extended optimization procedure for the finite volume approach based on the conservative requirement is newly proposed for accuracy enhancement, which is required to capture the acoustic portion of the solution in the smooth region. Furthermore, the new distinguishing mechanism which is based on the Gibbs phenomenon in discontinuity, between continuous and discontinuous regions is introduced to eliminate the excessive numerical dissipation in the continuous region by the restricted application of MLP according to the decision of the distinguishing function. To investigate the effectiveness of the developed method, a sequence of benchmark simulations such as spherical wave propagation, nonlinear wave propagation, shock tube problem and vortex preservation test problem are executed. Also, throughout more realistic shock-vortex interaction and muzzle blast flow problems, the utility of the new method for aeroacoustic applications is verified by comparing with the previous numerical or experimental results.

  2. Hybrid Optimization Parallel Search PACKage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2009-11-10

    HOPSPACK is open source software for solving optimization problems without derivatives. Application problems may have a fully nonlinear objective function, bound constraints, and linear and nonlinear constraints. Problem variables may be continuous, integer-valued, or a mixture of both. The software provides a framework that supports any derivative-free type of solver algorithm. Through the framework, solvers request parallel function evaluation, which may use MPI (multiple machines) or multithreading (multiple processors/cores on one machine). The framework provides a Cache and Pending Cache of saved evaluations that reduces execution time and facilitates restarts. Solvers can dynamically create other algorithms to solve subproblems, amore » useful technique for handling multiple start points and integer-valued variables. HOPSPACK ships with the Generating Set Search (GSS) algorithm, developed at Sandia as part of the APPSPACK open source software project.« less

  3. UCAV path planning in the presence of radar-guided surface-to-air missile threats

    NASA Astrophysics Data System (ADS)

    Zeitz, Frederick H., III

    This dissertation addresses the problem of path planning for unmanned combat aerial vehicles (UCAVs) in the presence of radar-guided surface-to-air missiles (SAMs). The radars, collocated with SAM launch sites, operate within the structure of an Integrated Air Defense System (IADS) that permits communication and cooperation between individual radars. The problem is formulated in the framework of the interaction between three sub-systems: the aircraft, the IADS, and the missile. The main features of this integrated model are: The aircraft radar cross section (RCS) depends explicitly on both the aspect and bank angles; hence, the RCS and aircraft dynamics are coupled. The probabilistic nature of IADS tracking is accounted for; namely, the probability that the aircraft has been continuously tracked by the IADS depends on the aircraft RCS and range from the perspective of each radar within the IADS. Finally, the requirement to maintain tracking prior to missile launch and during missile flyout are also modeled. Based on this model, the problem of UCAV path planning is formulated as a minimax optimal control problem, with the aircraft bank angle serving as control. Necessary conditions of optimality for this minimax problem are derived. Based on these necessary conditions, properties of the optimal paths are derived. These properties are used to discretize the dynamic optimization problem into a finite-dimensional, nonlinear programming problem that can be solved numerically. Properties of the optimal paths are also used to initialize the numerical procedure. A homotopy method is proposed to solve the finite-dimensional, nonlinear programming problem, and a heuristic method is proposed to improve the discretization during the homotopy process. Based upon the properties of numerical solutions, a method is proposed for parameterizing and storing information for later recall in flight to permit rapid replanning in response to changing threats. Illustrative examples are presented that confirm the standard flying tactics of "denying range, aspect, and aim," by yielding flight paths that "weave" to avoid long exposures of aspects with large RCS.

  4. MEIGO: an open-source software suite based on metaheuristics for global optimization in systems biology and bioinformatics.

    PubMed

    Egea, Jose A; Henriques, David; Cokelaer, Thomas; Villaverde, Alejandro F; MacNamara, Aidan; Danciu, Diana-Patricia; Banga, Julio R; Saez-Rodriguez, Julio

    2014-05-10

    Optimization is the key to solving many problems in computational biology. Global optimization methods, which provide a robust methodology, and metaheuristics in particular have proven to be the most efficient methods for many applications. Despite their utility, there is a limited availability of metaheuristic tools. We present MEIGO, an R and Matlab optimization toolbox (also available in Python via a wrapper of the R version), that implements metaheuristics capable of solving diverse problems arising in systems biology and bioinformatics. The toolbox includes the enhanced scatter search method (eSS) for continuous nonlinear programming (cNLP) and mixed-integer programming (MINLP) problems, and variable neighborhood search (VNS) for Integer Programming (IP) problems. Additionally, the R version includes BayesFit for parameter estimation by Bayesian inference. The eSS and VNS methods can be run on a single-thread or in parallel using a cooperative strategy. The code is supplied under GPLv3 and is available at http://www.iim.csic.es/~gingproc/meigo.html. Documentation and examples are included. The R package has been submitted to BioConductor. We evaluate MEIGO against optimization benchmarks, and illustrate its applicability to a series of case studies in bioinformatics and systems biology where it outperforms other state-of-the-art methods. MEIGO provides a free, open-source platform for optimization that can be applied to multiple domains of systems biology and bioinformatics. It includes efficient state of the art metaheuristics, and its open and modular structure allows the addition of further methods.

  5. MEIGO: an open-source software suite based on metaheuristics for global optimization in systems biology and bioinformatics

    PubMed Central

    2014-01-01

    Background Optimization is the key to solving many problems in computational biology. Global optimization methods, which provide a robust methodology, and metaheuristics in particular have proven to be the most efficient methods for many applications. Despite their utility, there is a limited availability of metaheuristic tools. Results We present MEIGO, an R and Matlab optimization toolbox (also available in Python via a wrapper of the R version), that implements metaheuristics capable of solving diverse problems arising in systems biology and bioinformatics. The toolbox includes the enhanced scatter search method (eSS) for continuous nonlinear programming (cNLP) and mixed-integer programming (MINLP) problems, and variable neighborhood search (VNS) for Integer Programming (IP) problems. Additionally, the R version includes BayesFit for parameter estimation by Bayesian inference. The eSS and VNS methods can be run on a single-thread or in parallel using a cooperative strategy. The code is supplied under GPLv3 and is available at http://www.iim.csic.es/~gingproc/meigo.html. Documentation and examples are included. The R package has been submitted to BioConductor. We evaluate MEIGO against optimization benchmarks, and illustrate its applicability to a series of case studies in bioinformatics and systems biology where it outperforms other state-of-the-art methods. Conclusions MEIGO provides a free, open-source platform for optimization that can be applied to multiple domains of systems biology and bioinformatics. It includes efficient state of the art metaheuristics, and its open and modular structure allows the addition of further methods. PMID:24885957

  6. Stochastic search in structural optimization - Genetic algorithms and simulated annealing

    NASA Technical Reports Server (NTRS)

    Hajela, Prabhat

    1993-01-01

    An account is given of illustrative applications of genetic algorithms and simulated annealing methods in structural optimization. The advantages of such stochastic search methods over traditional mathematical programming strategies are emphasized; it is noted that these methods offer a significantly higher probability of locating the global optimum in a multimodal design space. Both genetic-search and simulated annealing can be effectively used in problems with a mix of continuous, discrete, and integer design variables.

  7. Firefly Mating Algorithm for Continuous Optimization Problems

    PubMed Central

    Ritthipakdee, Amarita; Premasathian, Nol; Jitkongchuen, Duangjai

    2017-01-01

    This paper proposes a swarm intelligence algorithm, called firefly mating algorithm (FMA), for solving continuous optimization problems. FMA uses genetic algorithm as the core of the algorithm. The main feature of the algorithm is a novel mating pair selection method which is inspired by the following 2 mating behaviors of fireflies in nature: (i) the mutual attraction between males and females causes them to mate and (ii) fireflies of both sexes are of the multiple-mating type, mating with multiple opposite sex partners. A female continues mating until her spermatheca becomes full, and, in the same vein, a male can provide sperms for several females until his sperm reservoir is depleted. This new feature enhances the global convergence capability of the algorithm. The performance of FMA was tested with 20 benchmark functions (sixteen 30-dimensional functions and four 2-dimensional ones) against FA, ALC-PSO, COA, MCPSO, LWGSODE, MPSODDS, DFOA, SHPSOS, LSA, MPDPGA, DE, and GABC algorithms. The experimental results showed that the success rates of our proposed algorithm with these functions were higher than those of other algorithms and the proposed algorithm also required fewer numbers of iterations to reach the global optima. PMID:28808442

  8. Firefly Mating Algorithm for Continuous Optimization Problems.

    PubMed

    Ritthipakdee, Amarita; Thammano, Arit; Premasathian, Nol; Jitkongchuen, Duangjai

    2017-01-01

    This paper proposes a swarm intelligence algorithm, called firefly mating algorithm (FMA), for solving continuous optimization problems. FMA uses genetic algorithm as the core of the algorithm. The main feature of the algorithm is a novel mating pair selection method which is inspired by the following 2 mating behaviors of fireflies in nature: (i) the mutual attraction between males and females causes them to mate and (ii) fireflies of both sexes are of the multiple-mating type, mating with multiple opposite sex partners. A female continues mating until her spermatheca becomes full, and, in the same vein, a male can provide sperms for several females until his sperm reservoir is depleted. This new feature enhances the global convergence capability of the algorithm. The performance of FMA was tested with 20 benchmark functions (sixteen 30-dimensional functions and four 2-dimensional ones) against FA, ALC-PSO, COA, MCPSO, LWGSODE, MPSODDS, DFOA, SHPSOS, LSA, MPDPGA, DE, and GABC algorithms. The experimental results showed that the success rates of our proposed algorithm with these functions were higher than those of other algorithms and the proposed algorithm also required fewer numbers of iterations to reach the global optima.

  9. Dynamical analysis of continuous higher-order hopfield networks for combinatorial optimization.

    PubMed

    Atencia, Miguel; Joya, Gonzalo; Sandoval, Francisco

    2005-08-01

    In this letter, the ability of higher-order Hopfield networks to solve combinatorial optimization problems is assessed by means of a rigorous analysis of their properties. The stability of the continuous network is almost completely clarified: (1) hyperbolic interior equilibria, which are unfeasible, are unstable; (2) the state cannot escape from the unitary hypercube; and (3) a Lyapunov function exists. Numerical methods used to implement the continuous equation on a computer should be designed with the aim of preserving these favorable properties. The case of nonhyperbolic fixed points, which occur when the Hessian of the target function is the null matrix, requires further study. We prove that these nonhyperbolic interior fixed points are unstable in networks with three neurons and order two. The conjecture that interior equilibria are unstable in the general case is left open.

  10. Modified Cheeger and Ratio Cut Methods Using the Ginzburg-Landau Functional for Classification of High-Dimensional Data

    DTIC Science & Technology

    2016-02-01

    Modified Cheeger and Ratio Cut Methods Using the Ginzburg-Landau Functional for Classification of High-Dimensional Data Ekaterina Merkurjev*, Andrea...bertozzi@math.ucla.edu, xiaoran@isi.edu, lerman@isi.edu. Abstract Recent advances in clustering have included continuous relaxations of the Cheeger cut ...fully nonlinear Cheeger cut problem, as well as the ratio cut optimization task. Both problems are connected to total variation minimization, and the

  11. Approximate Solutions for Certain Optimal Stopping Problems

    DTIC Science & Technology

    1978-01-05

    one-armed bandit problem) has arisen in a number of statistical applications (Chernoff and Ray (1965);, Chernoff (±9&]), Mallik (1971)): Let X(t... Mallik (1971) and Chernoff (1972). These previous approximations were determined without the benefit of the "correction for continuity" given in (5.1...Vol. 1, 3rd edition, John Wiley and Sons, Inc., New York» 7. Mallik , A.K» (1971), "Sequential estimation of the common mean of two normal

  12. The continuous adjoint approach to the k-ε turbulence model for shape optimization and optimal active control of turbulent flows

    NASA Astrophysics Data System (ADS)

    Papoutsis-Kiachagias, E. M.; Zymaris, A. S.; Kavvadias, I. S.; Papadimitriou, D. I.; Giannakoglou, K. C.

    2015-03-01

    The continuous adjoint to the incompressible Reynolds-averaged Navier-Stokes equations coupled with the low Reynolds number Launder-Sharma k-ε turbulence model is presented. Both shape and active flow control optimization problems in fluid mechanics are considered, aiming at minimum viscous losses. In contrast to the frequently used assumption of frozen turbulence, the adjoint to the turbulence model equations together with appropriate boundary conditions are derived, discretized and solved. This is the first time that the adjoint equations to the Launder-Sharma k-ε model have been derived. Compared to the formulation that neglects turbulence variations, the impact of additional terms and equations is evaluated. Sensitivities computed using direct differentiation and/or finite differences are used for comparative purposes. To demonstrate the need for formulating and solving the adjoint to the turbulence model equations, instead of merely relying upon the 'frozen turbulence assumption', the gain in the optimization turnaround time offered by the proposed method is quantified.

  13. Acoustic design by topology optimization

    NASA Astrophysics Data System (ADS)

    Dühring, Maria B.; Jensen, Jakob S.; Sigmund, Ole

    2008-11-01

    To bring down noise levels in human surroundings is an important issue and a method to reduce noise by means of topology optimization is presented here. The acoustic field is modeled by Helmholtz equation and the topology optimization method is based on continuous material interpolation functions in the density and bulk modulus. The objective function is the squared sound pressure amplitude. First, room acoustic problems are considered and it is shown that the sound level can be reduced in a certain part of the room by an optimized distribution of reflecting material in a design domain along the ceiling or by distribution of absorbing and reflecting material along the walls. We obtain well defined optimized designs for a single frequency or a frequency interval for both 2D and 3D problems when considering low frequencies. Second, it is shown that the method can be applied to design outdoor sound barriers in order to reduce the sound level in the shadow zone behind the barrier. A reduction of up to 10 dB for a single barrier and almost 30 dB when using two barriers are achieved compared to utilizing conventional sound barriers.

  14. Optimal placement of water-lubricated rubber bearings for vibration reduction of flexible multistage rotor systems

    NASA Astrophysics Data System (ADS)

    Liu, Shibing; Yang, Bingen

    2017-10-01

    Flexible multistage rotor systems with water-lubricated rubber bearings (WLRBs) have a variety of engineering applications. Filling a technical gap in the literature, this effort proposes a method of optimal bearing placement that minimizes the vibration amplitude of a WLRB-supported flexible rotor system with a minimum number of bearings. In the development, a new model of WLRBs and a distributed transfer function formulation are used to define a mixed continuous-and-discrete optimization problem. To deal with the case of uncertain number of WLRBs in rotor design, a virtual bearing method is devised. Solution of the optimization problem by a real-coded genetic algorithm yields the locations and lengths of water-lubricated rubber bearings, by which the prescribed operational requirements for the rotor system are satisfied. The proposed method is applicable either to preliminary design of a new rotor system with the number of bearings unforeknown or to redesign of an existing rotor system with a given number of bearings. Numerical examples show that the proposed optimal bearing placement is efficient, accurate and versatile in different design cases.

  15. An improved parent-centric mutation with normalized neighborhoods for inducing niching behavior in differential evolution.

    PubMed

    Biswas, Subhodip; Kundu, Souvik; Das, Swagatam

    2014-10-01

    In real life, we often need to find multiple optimally sustainable solutions of an optimization problem. Evolutionary multimodal optimization algorithms can be very helpful in such cases. They detect and maintain multiple optimal solutions during the run by incorporating specialized niching operations in their actual framework. Differential evolution (DE) is a powerful evolutionary algorithm (EA) well-known for its ability and efficiency as a single peak global optimizer for continuous spaces. This article suggests a niching scheme integrated with DE for achieving a stable and efficient niching behavior by combining the newly proposed parent-centric mutation operator with synchronous crowding replacement rule. The proposed approach is designed by considering the difficulties associated with the problem dependent niching parameters (like niche radius) and does not make use of such control parameter. The mutation operator helps to maintain the population diversity at an optimum level by using well-defined local neighborhoods. Based on a comparative study involving 13 well-known state-of-the-art niching EAs tested on an extensive collection of benchmarks, we observe a consistent statistical superiority enjoyed by our proposed niching algorithm.

  16. Optimal portfolio selection in a Lévy market with uncontrolled cash flow and only risky assets

    NASA Astrophysics Data System (ADS)

    Zeng, Yan; Li, Zhongfei; Wu, Huiling

    2013-03-01

    This article considers an investor who has an exogenous cash flow evolving according to a Lévy process and invests in a financial market consisting of only risky assets, whose prices are governed by exponential Lévy processes. Two continuous-time portfolio selection problems are studied for the investor. One is a benchmark problem, and the other is a mean-variance problem. The first problem is solved by adopting the stochastic dynamic programming approach, and the obtained results are extended to the second problem by employing the duality theory. Closed-form solutions of these two problems are derived. Some existing results are found to be special cases of our results.

  17. Mean-Variance Portfolio Selection for Defined-Contribution Pension Funds with Stochastic Salary

    PubMed Central

    Zhang, Chubing

    2014-01-01

    This paper focuses on a continuous-time dynamic mean-variance portfolio selection problem of defined-contribution pension funds with stochastic salary, whose risk comes from both financial market and nonfinancial market. By constructing a special Riccati equation as a continuous (actually a viscosity) solution to the HJB equation, we obtain an explicit closed form solution for the optimal investment portfolio as well as the efficient frontier. PMID:24782667

  18. Planning with Continuous Resources in Stochastic Domains

    NASA Technical Reports Server (NTRS)

    Mausam, Mausau; Benazera, Emmanuel; Brafman, Roneu; Hansen, Eric

    2005-01-01

    We consider the problem of optimal planning in stochastic domains with metric resource constraints. Our goal is to generate a policy whose expected sum of rewards is maximized for a given initial state. We consider a general formulation motivated by our application domain--planetary exploration--in which the choice of an action at each step may depend on the current resource levels. We adapt the forward search algorithm AO* to handle our continuous state space efficiently.

  19. Event-Based Robust Control for Uncertain Nonlinear Systems Using Adaptive Dynamic Programming.

    PubMed

    Zhang, Qichao; Zhao, Dongbin; Wang, Ding

    2018-01-01

    In this paper, the robust control problem for a class of continuous-time nonlinear system with unmatched uncertainties is investigated using an event-based control method. First, the robust control problem is transformed into a corresponding optimal control problem with an augmented control and an appropriate cost function. Under the event-based mechanism, we prove that the solution of the optimal control problem can asymptotically stabilize the uncertain system with an adaptive triggering condition. That is, the designed event-based controller is robust to the original uncertain system. Note that the event-based controller is updated only when the triggering condition is satisfied, which can save the communication resources between the plant and the controller. Then, a single network adaptive dynamic programming structure with experience replay technique is constructed to approach the optimal control policies. The stability of the closed-loop system with the event-based control policy and the augmented control policy is analyzed using the Lyapunov approach. Furthermore, we prove that the minimal intersample time is bounded by a nonzero positive constant, which excludes Zeno behavior during the learning process. Finally, two simulation examples are provided to demonstrate the effectiveness of the proposed control scheme.

  20. ReacKnock: Identifying Reaction Deletion Strategies for Microbial Strain Optimization Based on Genome-Scale Metabolic Network

    PubMed Central

    Xu, Zixiang; Zheng, Ping; Sun, Jibin; Ma, Yanhe

    2013-01-01

    Gene knockout has been used as a common strategy to improve microbial strains for producing chemicals. Several algorithms are available to predict the target reactions to be deleted. Most of them apply mixed integer bi-level linear programming (MIBLP) based on metabolic networks, and use duality theory to transform bi-level optimization problem of large-scale MIBLP to single-level programming. However, the validity of the transformation was not proved. Solution of MIBLP depends on the structure of inner problem. If the inner problem is continuous, Karush-Kuhn-Tucker (KKT) method can be used to reformulate the MIBLP to a single-level one. We adopt KKT technique in our algorithm ReacKnock to attack the intractable problem of the solution of MIBLP, demonstrated with the genome-scale metabolic network model of E. coli for producing various chemicals such as succinate, ethanol, threonine and etc. Compared to the previous methods, our algorithm is fast, stable and reliable to find the optimal solutions for all the chemical products tested, and able to provide all the alternative deletion strategies which lead to the same industrial objective. PMID:24348984

  1. Enabling the extended compact genetic algorithm for real-parameter optimization by using adaptive discretization.

    PubMed

    Chen, Ying-ping; Chen, Chao-Hong

    2010-01-01

    An adaptive discretization method, called split-on-demand (SoD), enables estimation of distribution algorithms (EDAs) for discrete variables to solve continuous optimization problems. SoD randomly splits a continuous interval if the number of search points within the interval exceeds a threshold, which is decreased at every iteration. After the split operation, the nonempty intervals are assigned integer codes, and the search points are discretized accordingly. As an example of using SoD with EDAs, the integration of SoD and the extended compact genetic algorithm (ECGA) is presented and numerically examined. In this integration, we adopt a local search mechanism as an optional component of our back end optimization engine. As a result, the proposed framework can be considered as a memetic algorithm, and SoD can potentially be applied to other memetic algorithms. The numerical experiments consist of two parts: (1) a set of benchmark functions on which ECGA with SoD and ECGA with two well-known discretization methods: the fixed-height histogram (FHH) and the fixed-width histogram (FWH) are compared; (2) a real-world application, the economic dispatch problem, on which ECGA with SoD is compared to other methods. The experimental results indicate that SoD is a better discretization method to work with ECGA. Moreover, ECGA with SoD works quite well on the economic dispatch problem and delivers solutions better than the best known results obtained by other methods in existence.

  2. Stacking-sequence optimization for buckling of laminated plates by integer programming

    NASA Technical Reports Server (NTRS)

    Haftka, Raphael T.; Walsh, Joanne L.

    1991-01-01

    Integer-programming formulations for the design of symmetric and balanced laminated plates under biaxial compression are presented. Both maximization of buckling load for a given total thickness and the minimization of total thickness subject to a buckling constraint are formulated. The design variables that define the stacking sequence of the laminate are zero-one integers. It is shown that the formulation results in a linear optimization problem that can be solved on readily available software. This is in contrast to the continuous case, where the design variables are the thicknesses of layers with specified ply orientations, and the optimization problem is nonlinear. Constraints on the stacking sequence such as a limit on the number of contiguous plies of the same orientation and limits on in-plane stiffnesses are easily accommodated. Examples are presented for graphite-epoxy plates under uniaxial and biaxial compression using a commercial software package based on the branch-and-bound algorithm.

  3. A new strategy of glucose supply in a microbial fermentation model

    NASA Astrophysics Data System (ADS)

    Kasbawati, Gunawan, A. Y.; Sidarto, K. A.; Hertadi, R.

    2015-09-01

    Strategy of glucose supply to achieve an optimal productivity of ethanol production of a yeast cell is one of the main features in a microbial fermentation process. Beside a known continuous glucose supply, in this study we consider a new supply strategy so called the on-off supply. An optimal control theory is applied to the fermentation system to find the optimal rate of glucose supply and time of supply. The optimization problem is solved numerically using Differential Evolutionary algorithm. We find two alternative solutions that we can choose to get the similar result: either long period process with low supply or short period process with high glucose supply.

  4. Stochastic reduced order models for inverse problems under uncertainty

    PubMed Central

    Warner, James E.; Aquino, Wilkins; Grigoriu, Mircea D.

    2014-01-01

    This work presents a novel methodology for solving inverse problems under uncertainty using stochastic reduced order models (SROMs). Given statistical information about an observed state variable in a system, unknown parameters are estimated probabilistically through the solution of a model-constrained, stochastic optimization problem. The point of departure and crux of the proposed framework is the representation of a random quantity using a SROM - a low dimensional, discrete approximation to a continuous random element that permits e cient and non-intrusive stochastic computations. Characterizing the uncertainties with SROMs transforms the stochastic optimization problem into a deterministic one. The non-intrusive nature of SROMs facilitates e cient gradient computations for random vector unknowns and relies entirely on calls to existing deterministic solvers. Furthermore, the method is naturally extended to handle multiple sources of uncertainty in cases where state variable data, system parameters, and boundary conditions are all considered random. The new and widely-applicable SROM framework is formulated for a general stochastic optimization problem in terms of an abstract objective function and constraining model. For demonstration purposes, however, we study its performance in the specific case of inverse identification of random material parameters in elastodynamics. We demonstrate the ability to efficiently recover random shear moduli given material displacement statistics as input data. We also show that the approach remains effective for the case where the loading in the problem is random as well. PMID:25558115

  5. Big Data Challenges of High-Dimensional Continuous-Time Mean-Variance Portfolio Selection and a Remedy.

    PubMed

    Chiu, Mei Choi; Pun, Chi Seng; Wong, Hoi Ying

    2017-08-01

    Investors interested in the global financial market must analyze financial securities internationally. Making an optimal global investment decision involves processing a huge amount of data for a high-dimensional portfolio. This article investigates the big data challenges of two mean-variance optimal portfolios: continuous-time precommitment and constant-rebalancing strategies. We show that both optimized portfolios implemented with the traditional sample estimates converge to the worst performing portfolio when the portfolio size becomes large. The crux of the problem is the estimation error accumulated from the huge dimension of stock data. We then propose a linear programming optimal (LPO) portfolio framework, which applies a constrained ℓ 1 minimization to the theoretical optimal control to mitigate the risk associated with the dimensionality issue. The resulting portfolio becomes a sparse portfolio that selects stocks with a data-driven procedure and hence offers a stable mean-variance portfolio in practice. When the number of observations becomes large, the LPO portfolio converges to the oracle optimal portfolio, which is free of estimation error, even though the number of stocks grows faster than the number of observations. Our numerical and empirical studies demonstrate the superiority of the proposed approach. © 2017 Society for Risk Analysis.

  6. Least-mean-square spatial filter for IR sensors.

    PubMed

    Takken, E H; Friedman, D; Milton, A F; Nitzberg, R

    1979-12-15

    A new least-mean-square filter is defined for signal-detection problems. The technique is proposed for scanning IR surveillance systems operating in poorly characterized but primarily low-frequency clutter interference. Near-optimal detection of point-source targets is predicted both for continuous-time and sampled-data systems.

  7. Putting Man in the Machine: Exploiting Expertise to Enhance Multiobjective Design of Water Supply Monitoring Network

    NASA Astrophysics Data System (ADS)

    Bode, F.; Nowak, W.; Reed, P. M.; Reuschen, S.

    2016-12-01

    Drinking-water well catchments need effective early-warning monitoring networks. Groundwater water supply wells in complex urban environments are in close proximity to a myriad of potential industrial pollutant sources that could irreversibly damage their source aquifers. These urban environments pose fiscal and physical challenges to designing monitoring networks. Ideal early-warning monitoring networks would satisfy three objectives: to detect (1) all potential contaminations within the catchment (2) as early as possible before they reach the pumping wells, (3) while minimizing costs. Obviously, the ideal case is nonexistent, so we search for tradeoffs using multiobjective optimization. The challenge of this optimization problem is the high number of potential monitoring-well positions (the search space) and the non-linearity of the underlying groundwater flow-and-transport problem. This study evaluates (1) different ways to effectively restrict the search space in an efficient way, with and without expert knowledge, (2) different methods to represent the search space during the optimization and (3) the influence of incremental increases in uncertainty in the system. Conductivity, regional flow direction and potential source locations are explored as key uncertainties. We show the need and the benefit of our methods by comparing optimized monitoring networks for different uncertainty levels with networks that seek to effectively exploit expert knowledge. The study's main contributions are the different approaches restricting and representing the search space. The restriction algorithms are based on a point-wise comparison of decision elements of the search space. The representation of the search space can be either binary or continuous. For both cases, the search space must be adjusted properly. Our results show the benefits and drawbacks of binary versus continuous search space representations and the high potential of automated search space restriction algorithms for high-dimensional, highly non-linear optimization problems.

  8. Development of Quadratic Programming Algorithm Based on Interior Point Method with Estimation Mechanism of Active Constraints

    NASA Astrophysics Data System (ADS)

    Hashimoto, Hiroyuki; Takaguchi, Yusuke; Nakamura, Shizuka

    Instability of calculation process and increase of calculation time caused by increasing size of continuous optimization problem remain the major issues to be solved to apply the technique to practical industrial systems. This paper proposes an enhanced quadratic programming algorithm based on interior point method mainly for improvement of calculation stability. The proposed method has dynamic estimation mechanism of active constraints on variables, which fixes the variables getting closer to the upper/lower limit on them and afterwards releases the fixed ones as needed during the optimization process. It is considered as algorithm-level integration of the solution strategy of active-set method into the interior point method framework. We describe some numerical results on commonly-used bench-mark problems called “CUTEr” to show the effectiveness of the proposed method. Furthermore, the test results on large-sized ELD problem (Economic Load Dispatching problems in electric power supply scheduling) are also described as a practical industrial application.

  9. Separation-Compliant, Optimal Routing and Control of Scheduled Arrivals in a Terminal Airspace

    NASA Technical Reports Server (NTRS)

    Sadovsky, Alexander V.; Davis, Damek; Isaacson, Douglas R.

    2013-01-01

    We address the problem of navigating a set (fleet) of aircraft in an aerial route network so as to bring each aircraft to its destination at a specified time and with minimal distance separation assured between all aircraft at all times. The speed range, initial position, required destination, and required time of arrival at destination for each aircraft are assumed provided. Each aircraft's movement is governed by a controlled differential equation (state equation). The problem consists in choosing for each aircraft a path in the route network and a control strategy so as to meet the constraints and reach the destination at the required time. The main contribution of the paper is a model that allows to recast this problem as a decoupled collection of problems in classical optimal control and is easily generalized to the case when inertia cannot be neglected. Some qualitative insight into solution behavior is obtained using the Pontryagin Maximum Principle. Sample numerical solutions are computed using a numerical optimal control solver. The proposed model is first step toward increasing the fidelity of continuous time control models of air traffic in a terminal airspace. The Pontryagin Maximum Principle implies the polygonal shape of those portions of the state trajectories away from those states in which one or more aircraft pair are at minimal separation. The model also confirms the intuition that, the narrower the allowed speed ranges of the aircraft, the smaller the space of optimal solutions, and that an instance of the optimal control problem may not have a solution at all (i.e., no control strategy that meets the separation requirement and other constraints).

  10. Robust optimization with transiently chaotic dynamical systems

    NASA Astrophysics Data System (ADS)

    Sumi, R.; Molnár, B.; Ercsey-Ravasz, M.

    2014-05-01

    Efficiently solving hard optimization problems has been a strong motivation for progress in analog computing. In a recent study we presented a continuous-time dynamical system for solving the NP-complete Boolean satisfiability (SAT) problem, with a one-to-one correspondence between its stable attractors and the SAT solutions. While physical implementations could offer great efficiency, the transiently chaotic dynamics raises the question of operability in the presence of noise, unavoidable on analog devices. Here we show that the probability of finding solutions is robust to noise intensities well above those present on real hardware. We also developed a cellular neural network model realizable with analog circuits, which tolerates even larger noise intensities. These methods represent an opportunity for robust and efficient physical implementations.

  11. Inventory Control System for a Healthcare Apparel Service Centre with Stockout Risk: A Case Analysis

    PubMed Central

    Hui, Chi-Leung

    2017-01-01

    Based on the real-world inventory control problem of a capacitated healthcare apparel service centre in Hong Kong which provides tailor-made apparel-making services for the elderly and disabled people, this paper studies a partial backordered continuous review inventory control problem in which the product demand follows a Poisson process with a constant lead time. The system is controlled by an (Q,r) inventory policy which incorporate the stockout risk, storage capacity, and partial backlog. The healthcare apparel service centre, under the capacity constraint, aims to minimize the inventory cost and achieving a low stockout risk. To address this challenge, an optimization problem is constructed. A real case-based data analysis is conducted, and the result shows that the expected total cost on an order cycle is reduced substantially at around 20% with our proposed optimal inventory control policy. An extensive sensitivity analysis is conducted to generate additional insights. PMID:29527283

  12. Solving Assembly Sequence Planning using Angle Modulated Simulated Kalman Filter

    NASA Astrophysics Data System (ADS)

    Mustapa, Ainizar; Yusof, Zulkifli Md.; Adam, Asrul; Muhammad, Badaruddin; Ibrahim, Zuwairie

    2018-03-01

    This paper presents an implementation of Simulated Kalman Filter (SKF) algorithm for optimizing an Assembly Sequence Planning (ASP) problem. The SKF search strategy contains three simple steps; predict-measure-estimate. The main objective of the ASP is to determine the sequence of component installation to shorten assembly time or save assembly costs. Initially, permutation sequence is generated to represent each agent. Each agent is then subjected to a precedence matrix constraint to produce feasible assembly sequence. Next, the Angle Modulated SKF (AMSKF) is proposed for solving ASP problem. The main idea of the angle modulated approach in solving combinatorial optimization problem is to use a function, g(x), to create a continuous signal. The performance of the proposed AMSKF is compared against previous works in solving ASP by applying BGSA, BPSO, and MSPSO. Using a case study of ASP, the results show that AMSKF outperformed all the algorithms in obtaining the best solution.

  13. Noniterative computation of infimum in H(infinity) optimisation for plants with invariant zeros on the j(omega)-axis

    NASA Technical Reports Server (NTRS)

    Chen, B. M.; Saber, A.

    1993-01-01

    A simple and noniterative procedure for the computation of the exact value of the infimum in the singular H(infinity)-optimization problem is presented, as a continuation of our earlier work. Our problem formulation is general and we do not place any restrictions in the finite and infinite zero structures of the system, and the direct feedthrough terms between the control input and the controlled output variables and between the disturbance input and the measurement output variables. Our method is applicable to a class of singular H(infinity)-optimization problems for which the transfer functions from the control input to the controlled output and from the disturbance input to the measurement output satisfy certain geometric conditions. In particular, the paper extends the result of earlier work by allowing these two transfer functions to have invariant zeros on the j(omega) axis.

  14. Inventory Control System for a Healthcare Apparel Service Centre with Stockout Risk: A Case Analysis.

    PubMed

    Pan, An; Hui, Chi-Leung

    2017-01-01

    Based on the real-world inventory control problem of a capacitated healthcare apparel service centre in Hong Kong which provides tailor-made apparel-making services for the elderly and disabled people, this paper studies a partial backordered continuous review inventory control problem in which the product demand follows a Poisson process with a constant lead time. The system is controlled by an ( Q , r ) inventory policy which incorporate the stockout risk, storage capacity, and partial backlog. The healthcare apparel service centre, under the capacity constraint, aims to minimize the inventory cost and achieving a low stockout risk. To address this challenge, an optimization problem is constructed. A real case-based data analysis is conducted, and the result shows that the expected total cost on an order cycle is reduced substantially at around 20% with our proposed optimal inventory control policy. An extensive sensitivity analysis is conducted to generate additional insights.

  15. Intrinsic optimization using stochastic nanomagnets

    PubMed Central

    Sutton, Brian; Camsari, Kerem Yunus; Behin-Aein, Behtash; Datta, Supriyo

    2017-01-01

    This paper draws attention to a hardware system which can be engineered so that its intrinsic physics is described by the generalized Ising model and can encode the solution to many important NP-hard problems as its ground state. The basic constituents are stochastic nanomagnets which switch randomly between the ±1 Ising states and can be monitored continuously with standard electronics. Their mutual interactions can be short or long range, and their strengths can be reconfigured as needed to solve specific problems and to anneal the system at room temperature. The natural laws of statistical mechanics guide the network of stochastic nanomagnets at GHz speeds through the collective states with an emphasis on the low energy states that represent optimal solutions. As proof-of-concept, we present simulation results for standard NP-complete examples including a 16-city traveling salesman problem using experimentally benchmarked models for spin-transfer torque driven stochastic nanomagnets. PMID:28295053

  16. Intrinsic optimization using stochastic nanomagnets

    NASA Astrophysics Data System (ADS)

    Sutton, Brian; Camsari, Kerem Yunus; Behin-Aein, Behtash; Datta, Supriyo

    2017-03-01

    This paper draws attention to a hardware system which can be engineered so that its intrinsic physics is described by the generalized Ising model and can encode the solution to many important NP-hard problems as its ground state. The basic constituents are stochastic nanomagnets which switch randomly between the ±1 Ising states and can be monitored continuously with standard electronics. Their mutual interactions can be short or long range, and their strengths can be reconfigured as needed to solve specific problems and to anneal the system at room temperature. The natural laws of statistical mechanics guide the network of stochastic nanomagnets at GHz speeds through the collective states with an emphasis on the low energy states that represent optimal solutions. As proof-of-concept, we present simulation results for standard NP-complete examples including a 16-city traveling salesman problem using experimentally benchmarked models for spin-transfer torque driven stochastic nanomagnets.

  17. Continuous/Batch Mg/MgH2/H2O-Based Hydrogen Generator

    NASA Technical Reports Server (NTRS)

    Kindler, Andrew; Huang, Yuhong

    2010-01-01

    A proposed apparatus for generating hydrogen by means of chemical reactions of magnesium and magnesium hydride with steam would exploit the same basic principles as those discussed in the immediately preceding article, but would be designed to implement a hybrid continuous/batch mode of operation. The design concept would simplify the problem of optimizing thermal management and would help to minimize the size and weight necessary for generating a given amount of hydrogen.

  18. [Further studies of continuous human and animal cell lines for the manufacture of viral vaccines and diagnostic kits].

    PubMed

    Mironova, L L; Koniushko, O I; Popova, V D

    2005-01-01

    Long-term experiments have provided conditions for the optimal conditions for reproduction of vaccine strains of poliomyelitis, measles, tick-borne and Japan encephalitis on the continuous cell lines. This makes it possible to solve one of the most urgent problems of modern biotechnology, namely to refuse to use primary cell cultures in vaccinology and to apply a more accessible, safe, and reference biological substrate that are stable cell lines.

  19. Graph cuts via l1 norm minimization.

    PubMed

    Bhusnurmath, Arvind; Taylor, Camillo J

    2008-10-01

    Graph cuts have become an increasingly important tool for solving a number of energy minimization problems in computer vision and other fields. In this paper, the graph cut problem is reformulated as an unconstrained l1 norm minimization that can be solved effectively using interior point methods. This reformulation exposes connections between the graph cuts and other related continuous optimization problems. Eventually the problem is reduced to solving a sequence of sparse linear systems involving the Laplacian of the underlying graph. The proposed procedure exploits the structure of these linear systems in a manner that is easily amenable to parallel implementations. Experimental results obtained by applying the procedure to graphs derived from image processing problems are provided.

  20. Solving optimization problems on computational grids.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wright, S. J.; Mathematics and Computer Science

    2001-05-01

    Multiprocessor computing platforms, which have become more and more widely available since the mid-1980s, are now heavily used by organizations that need to solve very demanding computational problems. Parallel computing is now central to the culture of many research communities. Novel parallel approaches were developed for global optimization, network optimization, and direct-search methods for nonlinear optimization. Activity was particularly widespread in parallel branch-and-bound approaches for various problems in combinatorial and network optimization. As the cost of personal computers and low-end workstations has continued to fall, while the speed and capacity of processors and networks have increased dramatically, 'cluster' platforms havemore » become popular in many settings. A somewhat different type of parallel computing platform know as a computational grid (alternatively, metacomputer) has arisen in comparatively recent times. Broadly speaking, this term refers not to a multiprocessor with identical processing nodes but rather to a heterogeneous collection of devices that are widely distributed, possibly around the globe. The advantage of such platforms is obvious: they have the potential to deliver enormous computing power. Just as obviously, however, the complexity of grids makes them very difficult to use. The Condor team, headed by Miron Livny at the University of Wisconsin, were among the pioneers in providing infrastructure for grid computations. More recently, the Globus project has developed technologies to support computations on geographically distributed platforms consisting of high-end computers, storage and visualization devices, and other scientific instruments. In 1997, we started the metaneos project as a collaborative effort between optimization specialists and the Condor and Globus groups. Our aim was to address complex, difficult optimization problems in several areas, designing and implementing the algorithms and the software infrastructure need to solve these problems on computational grids. This article describes some of the results we have obtained during the first three years of the metaneos project. Our efforts have led to development of the runtime support library MW for implementing algorithms with master-worker control structure on Condor platforms. This work is discussed here, along with work on algorithms and codes for integer linear programming, the quadratic assignment problem, and stochastic linear programmming. Our experiences in the metaneos project have shown that cheap, powerful computational grids can be used to tackle large optimization problems of various types. In an industrial or commercial setting, the results demonstrate that one may not have to buy powerful computational servers to solve many of the large problems arising in areas such as scheduling, portfolio optimization, or logistics; the idle time on employee workstations (or, at worst, an investment in a modest cluster of PCs) may do the job. For the optimization research community, our results motivate further work on parallel, grid-enabled algorithms for solving very large problems of other types. The fact that very large problems can be solved cheaply allows researchers to better understand issues of 'practical' complexity and of the role of heuristics.« less

  1. Recursive Branching Simulated Annealing Algorithm

    NASA Technical Reports Server (NTRS)

    Bolcar, Matthew; Smith, J. Scott; Aronstein, David

    2012-01-01

    This innovation is a variation of a simulated-annealing optimization algorithm that uses a recursive-branching structure to parallelize the search of a parameter space for the globally optimal solution to an objective. The algorithm has been demonstrated to be more effective at searching a parameter space than traditional simulated-annealing methods for a particular problem of interest, and it can readily be applied to a wide variety of optimization problems, including those with a parameter space having both discrete-value parameters (combinatorial) and continuous-variable parameters. It can take the place of a conventional simulated- annealing, Monte-Carlo, or random- walk algorithm. In a conventional simulated-annealing (SA) algorithm, a starting configuration is randomly selected within the parameter space. The algorithm randomly selects another configuration from the parameter space and evaluates the objective function for that configuration. If the objective function value is better than the previous value, the new configuration is adopted as the new point of interest in the parameter space. If the objective function value is worse than the previous value, the new configuration may be adopted, with a probability determined by a temperature parameter, used in analogy to annealing in metals. As the optimization continues, the region of the parameter space from which new configurations can be selected shrinks, and in conjunction with lowering the annealing temperature (and thus lowering the probability for adopting configurations in parameter space with worse objective functions), the algorithm can converge on the globally optimal configuration. The Recursive Branching Simulated Annealing (RBSA) algorithm shares some features with the SA algorithm, notably including the basic principles that a starting configuration is randomly selected from within the parameter space, the algorithm tests other configurations with the goal of finding the globally optimal solution, and the region from which new configurations can be selected shrinks as the search continues. The key difference between these algorithms is that in the SA algorithm, a single path, or trajectory, is taken in parameter space, from the starting point to the globally optimal solution, while in the RBSA algorithm, many trajectories are taken; by exploring multiple regions of the parameter space simultaneously, the algorithm has been shown to converge on the globally optimal solution about an order of magnitude faster than when using conventional algorithms. Novel features of the RBSA algorithm include: 1. More efficient searching of the parameter space due to the branching structure, in which multiple random configurations are generated and multiple promising regions of the parameter space are explored; 2. The implementation of a trust region for each parameter in the parameter space, which provides a natural way of enforcing upper- and lower-bound constraints on the parameters; and 3. The optional use of a constrained gradient- search optimization, performed on the continuous variables around each branch s configuration in parameter space to improve search efficiency by allowing for fast fine-tuning of the continuous variables within the trust region at that configuration point.

  2. Electric Propulsion System Selection Process for Interplanetary Missions

    NASA Technical Reports Server (NTRS)

    Landau, Damon; Chase, James; Kowalkowski, Theresa; Oh, David; Randolph, Thomas; Sims, Jon; Timmerman, Paul

    2008-01-01

    The disparate design problems of selecting an electric propulsion system, launch vehicle, and flight time all have a significant impact on the cost and robustness of a mission. The effects of these system choices combine into a single optimization of the total mission cost, where the design constraint is a required spacecraft neutral (non-electric propulsion) mass. Cost-optimal systems are designed for a range of mass margins to examine how the optimal design varies with mass growth. The resulting cost-optimal designs are compared with results generated via mass optimization methods. Additional optimizations with continuous system parameters address the impact on mission cost due to discrete sets of launch vehicle, power, and specific impulse. The examined mission set comprises a near-Earth asteroid sample return, multiple main belt asteroid rendezvous, comet rendezvous, comet sample return, and a mission to Saturn.

  3. JuPOETs: a constrained multiobjective optimization approach to estimate biochemical model ensembles in the Julia programming language.

    PubMed

    Bassen, David M; Vilkhovoy, Michael; Minot, Mason; Butcher, Jonathan T; Varner, Jeffrey D

    2017-01-25

    Ensemble modeling is a promising approach for obtaining robust predictions and coarse grained population behavior in deterministic mathematical models. Ensemble approaches address model uncertainty by using parameter or model families instead of single best-fit parameters or fixed model structures. Parameter ensembles can be selected based upon simulation error, along with other criteria such as diversity or steady-state performance. Simulations using parameter ensembles can estimate confidence intervals on model variables, and robustly constrain model predictions, despite having many poorly constrained parameters. In this software note, we present a multiobjective based technique to estimate parameter or models ensembles, the Pareto Optimal Ensemble Technique in the Julia programming language (JuPOETs). JuPOETs integrates simulated annealing with Pareto optimality to estimate ensembles on or near the optimal tradeoff surface between competing training objectives. We demonstrate JuPOETs on a suite of multiobjective problems, including test functions with parameter bounds and system constraints as well as for the identification of a proof-of-concept biochemical model with four conflicting training objectives. JuPOETs identified optimal or near optimal solutions approximately six-fold faster than a corresponding implementation in Octave for the suite of test functions. For the proof-of-concept biochemical model, JuPOETs produced an ensemble of parameters that gave both the mean of the training data for conflicting data sets, while simultaneously estimating parameter sets that performed well on each of the individual objective functions. JuPOETs is a promising approach for the estimation of parameter and model ensembles using multiobjective optimization. JuPOETs can be adapted to solve many problem types, including mixed binary and continuous variable types, bilevel optimization problems and constrained problems without altering the base algorithm. JuPOETs is open source, available under an MIT license, and can be installed using the Julia package manager from the JuPOETs GitHub repository.

  4. A LAGRANGIAN GAUSS-NEWTON-KRYLOV SOLVER FOR MASS- AND INTENSITY-PRESERVING DIFFEOMORPHIC IMAGE REGISTRATION.

    PubMed

    Mang, Andreas; Ruthotto, Lars

    2017-01-01

    We present an efficient solver for diffeomorphic image registration problems in the framework of Large Deformations Diffeomorphic Metric Mappings (LDDMM). We use an optimal control formulation, in which the velocity field of a hyperbolic PDE needs to be found such that the distance between the final state of the system (the transformed/transported template image) and the observation (the reference image) is minimized. Our solver supports both stationary and non-stationary (i.e., transient or time-dependent) velocity fields. As transformation models, we consider both the transport equation (assuming intensities are preserved during the deformation) and the continuity equation (assuming mass-preservation). We consider the reduced form of the optimal control problem and solve the resulting unconstrained optimization problem using a discretize-then-optimize approach. A key contribution is the elimination of the PDE constraint using a Lagrangian hyperbolic PDE solver. Lagrangian methods rely on the concept of characteristic curves. We approximate these curves using a fourth-order Runge-Kutta method. We also present an efficient algorithm for computing the derivatives of the final state of the system with respect to the velocity field. This allows us to use fast Gauss-Newton based methods. We present quickly converging iterative linear solvers using spectral preconditioners that render the overall optimization efficient and scalable. Our method is embedded into the image registration framework FAIR and, thus, supports the most commonly used similarity measures and regularization functionals. We demonstrate the potential of our new approach using several synthetic and real world test problems with up to 14.7 million degrees of freedom.

  5. Transfers between libration-point orbits in the elliptic restricted problem

    NASA Astrophysics Data System (ADS)

    Hiday, L. A.; Howell, K. C.

    The present time-fixed impulsive transfers between 3D libration point orbits in the vicinity of the interior L(1) libration point of the sun-earth-moon barycenter system are 'optimal' in that the total characteristic velocity required for implementation of the transfer exhibits a local minimum. The conditions necessary for a time-fixed, two-impulse transfer trajectory to be optimal are stated in terms of the primer vector, and the conditions necessary for satisfying the local optimality of a transfer trajectory containing additional impulses are addressed by requiring continuity of the Hamiltonian and the derivative of the primer vector at all interior impulses.

  6. Robust optimization for nonlinear time-delay dynamical system of dha regulon with cost sensitivity constraint in batch culture

    NASA Astrophysics Data System (ADS)

    Yuan, Jinlong; Zhang, Xu; Liu, Chongyang; Chang, Liang; Xie, Jun; Feng, Enmin; Yin, Hongchao; Xiu, Zhilong

    2016-09-01

    Time-delay dynamical systems, which depend on both the current state of the system and the state at delayed times, have been an active area of research in many real-world applications. In this paper, we consider a nonlinear time-delay dynamical system of dha-regulonwith unknown time-delays in batch culture of glycerol bioconversion to 1,3-propanediol induced by Klebsiella pneumonia. Some important properties and strong positive invariance are discussed. Because of the difficulty in accurately measuring the concentrations of intracellular substances and the absence of equilibrium points for the time-delay system, a quantitative biological robustness for the concentrations of intracellular substances is defined by penalizing a weighted sum of the expectation and variance of the relative deviation between system outputs before and after the time-delays are perturbed. Our goal is to determine optimal values of the time-delays. To this end, we formulate an optimization problem in which the time delays are decision variables and the cost function is to minimize the biological robustness. This optimization problem is subject to the time-delay system, parameter constraints, continuous state inequality constraints for ensuring that the concentrations of extracellular and intracellular substances lie within specified limits, a quality constraint to reflect operational requirements and a cost sensitivity constraint for ensuring that an acceptable level of the system performance is achieved. It is approximated as a sequence of nonlinear programming sub-problems through the application of constraint transcription and local smoothing approximation techniques. Due to the highly complex nature of this optimization problem, the computational cost is high. Thus, a parallel algorithm is proposed to solve these nonlinear programming sub-problems based on the filled function method. Finally, it is observed that the obtained optimal estimates for the time-delays are highly satisfactory via numerical simulations.

  7. Application of a COTS Resource Optimization Framework to the SSN Sensor Tasking Domain - Part I: Problem Definition

    NASA Astrophysics Data System (ADS)

    Tran, T.

    With the onset of the SmallSat era, the RSO catalog is expected to see continuing growth in the near future. This presents a significant challenge to the current sensor tasking of the SSN. The Air Force is in need of a sensor tasking system that is robust, efficient, scalable, and able to respond in real-time to interruptive events that can change the tracking requirements of the RSOs. Furthermore, the system must be capable of using processed data from heterogeneous sensors to improve tasking efficiency. The SSN sensor tasking can be regarded as an economic problem of supply and demand: the amount of tracking data needed by each RSO represents the demand side while the SSN sensor tasking represents the supply side. As the number of RSOs to be tracked grows, demand exceeds supply. The decision-maker is faced with the problem of how to allocate resources in the most efficient manner. Braxton recently developed a framework called Multi-Objective Resource Optimization using Genetic Algorithm (MOROUGA) as one of its modern COTS software products. This optimization framework took advantage of the maturing technology of evolutionary computation in the last 15 years. This framework was applied successfully to address the resource allocation of an AFSCN-like problem. In any resource allocation problem, there are five key elements: (1) the resource pool, (2) the tasks using the resources, (3) a set of constraints on the tasks and the resources, (4) the objective functions to be optimized, and (5) the demand levied on the resources. In this paper we explain in detail how the design features of this optimization framework are directly applicable to address the SSN sensor tasking domain. We also discuss our validation effort as well as present the result of the AFSCN resource allocation domain using a prototype based on this optimization framework.

  8. Scenario generation for stochastic optimization problems via the sparse grid method

    DOE PAGES

    Chen, Michael; Mehrotra, Sanjay; Papp, David

    2015-04-19

    We study the use of sparse grids in the scenario generation (or discretization) problem in stochastic programming problems where the uncertainty is modeled using a continuous multivariate distribution. We show that, under a regularity assumption on the random function involved, the sequence of optimal objective function values of the sparse grid approximations converges to the true optimal objective function values as the number of scenarios increases. The rate of convergence is also established. We treat separately the special case when the underlying distribution is an affine transform of a product of univariate distributions, and show how the sparse grid methodmore » can be adapted to the distribution by the use of quadrature formulas tailored to the distribution. We numerically compare the performance of the sparse grid method using different quadrature rules with classic quasi-Monte Carlo (QMC) methods, optimal rank-one lattice rules, and Monte Carlo (MC) scenario generation, using a series of utility maximization problems with up to 160 random variables. The results show that the sparse grid method is very efficient, especially if the integrand is sufficiently smooth. In such problems the sparse grid scenario generation method is found to need several orders of magnitude fewer scenarios than MC and QMC scenario generation to achieve the same accuracy. As a result, it is indicated that the method scales well with the dimension of the distribution--especially when the underlying distribution is an affine transform of a product of univariate distributions, in which case the method appears scalable to thousands of random variables.« less

  9. Application of resist-profile-aware source optimization in 28 nm full chip optical proximity correction

    NASA Astrophysics Data System (ADS)

    Zhu, Jun; Zhang, David Wei; Kuo, Chinte; Wang, Qing; Wei, Fang; Zhang, Chenming; Chen, Han; He, Daquan; Hsu, Stephen D.

    2017-07-01

    As technology node shrinks, aggressive design rules for contact and other back end of line (BEOL) layers continue to drive the need for more effective full chip patterning optimization. Resist top loss is one of the major challenges for 28 nm and below technology nodes, which can lead to post-etch hotspots that are difficult to predict and eventually degrade the process window significantly. To tackle this problem, we used an advanced programmable illuminator (FlexRay) and Tachyon SMO (Source Mask Optimization) platform to make resistaware source optimization possible, and it is proved to greatly improve the imaging contrast, enhance focus and exposure latitude, and minimize resist top loss thus improving the yield.

  10. Robust control of systems with real parameter uncertainty and unmodelled dynamics

    NASA Technical Reports Server (NTRS)

    Chang, Bor-Chin; Fischl, Robert

    1991-01-01

    During this research period we have made significant progress in the four proposed areas: (1) design of robust controllers via H infinity optimization; (2) design of robust controllers via mixed H2/H infinity optimization; (3) M-delta structure and robust stability analysis for structured uncertainties; and (4) a study on controllability and observability of perturbed plant. It is well known now that the two-Riccati-equation solution to the H infinity control problem can be used to characterize all possible stabilizing optimal or suboptimal H infinity controllers if the optimal H infinity norm or gamma, an upper bound of a suboptimal H infinity norm, is given. In this research, we discovered some useful properties of these H infinity Riccati solutions. Among them, the most prominent one is that the spectral radius of the product of these two Riccati solutions is a continuous, nonincreasing, convex function of gamma in the domain of interest. Based on these properties, quadratically convergent algorithms are developed to compute the optimal H infinity norm. We also set up a detailed procedure for applying the H infinity theory to robust control systems design. The desire to design controllers with H infinity robustness but H(exp 2) performance has recently resulted in mixed H(exp 2) and H infinity control problem formulation. The mixed H(exp 2)/H infinity problem have drawn the attention of many investigators. However, solution is only available for special cases of this problem. We formulated a relatively realistic control problem with H(exp 2) performance index and H infinity robustness constraint into a more general mixed H(exp 2)/H infinity problem. No optimal solution yet is available for this more general mixed H(exp 2)/H infinity problem. Although the optimal solution for this mixed H(exp 2)/H infinity control has not yet been found, we proposed a design approach which can be used through proper choice of the available design parameters to influence both robustness and performance. For a large class of linear time-invariant systems with real parametric perturbations, the coefficient vector of the characteristic polynomial is a multilinear function of the real parameter vector. Based on this multilinear mapping relationship together with the recent developments for polytopic polynomials and parameter domain partition technique, we proposed an iterative algorithm for coupling the real structured singular value.

  11. Maneuver simulations of flexible spacecraft by solving TPBVP

    NASA Technical Reports Server (NTRS)

    Bainum, Peter M.; Li, Feiyue

    1991-01-01

    The optimal control of large angle rapid maneuvers and vibrations of a Shuttle mast reflector system is considered. The nonlinear equations of motion are formulated by using Lagrange's formula, with the mast modeled as a continuous beam. The nonlinear terms in the equations come from the coupling between the angular velocities, the modal coordinates, and the modal rates. Pontryagin's Maximum Principle is applied to the slewing problem, to derive the necessary conditions for the optimal controls, which are bounded by given saturation levels. The resulting two point boundary value problem (TPBVP) is then solved by using the quasilinearization algorithm and the method of particular solutions. In the numerical simulations, the structural parameters and the control limits from the Spacecraft Control Lab Experiment (SCOLE) are used. In the 2-D case, only the motion in the plane of an Earth orbit or the single axis slewing motion is discussed. In the 3-D slewing, the mast is modeled as a continuous beam subjected to 3-D deformations. The numerical results for both the linearized system and the nonlinear system are presented to compare the differences in their time response.

  12. Training trajectories by continuous recurrent multilayer networks.

    PubMed

    Leistritz, L; Galicki, M; Witte, H; Kochs, E

    2002-01-01

    This paper addresses the problem of training trajectories by means of continuous recurrent neural networks whose feedforward parts are multilayer perceptrons. Such networks can approximate a general nonlinear dynamic system with arbitrary accuracy. The learning process is transformed into an optimal control framework where the weights are the controls to be determined. A training algorithm based upon a variational formulation of Pontryagin's maximum principle is proposed for such networks. Computer examples demonstrating the efficiency of the given approach are also presented.

  13. Parallel algorithms for simulating continuous time Markov chains

    NASA Technical Reports Server (NTRS)

    Nicol, David M.; Heidelberger, Philip

    1992-01-01

    We have previously shown that the mathematical technique of uniformization can serve as the basis of synchronization for the parallel simulation of continuous-time Markov chains. This paper reviews the basic method and compares five different methods based on uniformization, evaluating their strengths and weaknesses as a function of problem characteristics. The methods vary in their use of optimism, logical aggregation, communication management, and adaptivity. Performance evaluation is conducted on the Intel Touchstone Delta multiprocessor, using up to 256 processors.

  14. Dikin-type algorithms for dextrous grasping force optimization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buss, M.; Faybusovich, L.; Moore, J.B.

    1998-08-01

    One of the central issues in dextrous robotic hand grasping is to balance external forces acting on the object and at the same time achieve grasp stability and minimum grasping effort. A companion paper shows that the nonlinear friction-force limit constraints on grasping forces are equivalent to the positive definiteness of a certain matrix subject to linear constraints. Further, compensation of the external object force is also a linear constraint on this matrix. Consequently, the task of grasping force optimization can be formulated as a problem with semidefinite constraints. In this paper, two versions of strictly convex cost functions, onemore » of them self-concordant, are considered. These are twice-continuously differentiable functions that tend to infinity at the boundary of possible definiteness. For the general class of such cost functions, Dikin-type algorithms are presented. It is shown that the proposed algorithms guarantee convergence to the unique solution of the semidefinite programming problem associated with dextrous grasping force optimization. Numerical examples demonstrate the simplicity of implementation, the good numerical properties, and the optimality of the approach.« less

  15. Low-Thrust Trajectory Optimization with Simplified SQP Algorithm

    NASA Technical Reports Server (NTRS)

    Parrish, Nathan L.; Scheeres, Daniel J.

    2017-01-01

    The problem of low-thrust trajectory optimization in highly perturbed dynamics is a stressing case for many optimization tools. Highly nonlinear dynamics and continuous thrust are each, separately, non-trivial problems in the field of optimal control, and when combined, the problem is even more difficult. This paper de-scribes a fast, robust method to design a trajectory in the CRTBP (circular restricted three body problem), beginning with no or very little knowledge of the system. The approach is inspired by the SQP (sequential quadratic programming) algorithm, in which a general nonlinear programming problem is solved via a sequence of quadratic problems. A few key simplifications make the algorithm presented fast and robust to initial guess: a quadratic cost function, neglecting the line search step when the solution is known to be far away, judicious use of end-point constraints, and mesh refinement on multiple shooting with fixed-step integration.In comparison to the traditional approach of plugging the problem into a “black-box” NLP solver, the methods shown converge even when given no knowledge of the solution at all. It was found that the only piece of information that the user needs to provide is a rough guess for the time of flight, as the transfer time guess will dictate which set of local solutions the algorithm could converge on. This robustness to initial guess is a compelling feature, as three-body orbit transfers are challenging to design with intuition alone. Of course, if a high-quality initial guess is available, the methods shown are still valid.We have shown that endpoints can be efficiently constrained to lie on 3-body repeating orbits, and that time of flight can be optimized as well. When optimizing the endpoints, we must make a trade between converging quickly on sub-optimal endpoints or converging more slowly on end-points that are arbitrarily close to optimal. It is easy for the mission design engineer to adjust this trade based on the problem at hand.The biggest limitation to the algorithm at this point is that multi-revolution transfers (greater than 2 revolutions) do not work nearly as well. This restriction comes in because the relationship between node 1 and node N becomes increasingly nonlinear as the angular distance grows. Trans-fers with more than about 1.5 complete revolutions generally require the line search to improve convergence. Future work includes: Comparison of this algorithm with other established tools; improvements to how multiple-revolution transfers are handled; parallelization of the Jacobian computation; in-creased efficiency for the line search; and optimization of many more trajectories between a variety of 3-body orbits.

  16. The generalized quadratic knapsack problem. A neuronal network approach.

    PubMed

    Talaván, Pedro M; Yáñez, Javier

    2006-05-01

    The solution of an optimization problem through the continuous Hopfield network (CHN) is based on some energy or Lyapunov function, which decreases as the system evolves until a local minimum value is attained. A new energy function is proposed in this paper so that any 0-1 linear constrains programming with quadratic objective function can be solved. This problem, denoted as the generalized quadratic knapsack problem (GQKP), includes as particular cases well-known problems such as the traveling salesman problem (TSP) and the quadratic assignment problem (QAP). This new energy function generalizes those proposed by other authors. Through this energy function, any GQKP can be solved with an appropriate parameter setting procedure, which is detailed in this paper. As a particular case, and in order to test this generalized energy function, some computational experiments solving the traveling salesman problem are also included.

  17. Numerical algebraic geometry for model selection and its application to the life sciences

    PubMed Central

    Gross, Elizabeth; Davis, Brent; Ho, Kenneth L.; Bates, Daniel J.

    2016-01-01

    Researchers working with mathematical models are often confronted by the related problems of parameter estimation, model validation and model selection. These are all optimization problems, well known to be challenging due to nonlinearity, non-convexity and multiple local optima. Furthermore, the challenges are compounded when only partial data are available. Here, we consider polynomial models (e.g. mass-action chemical reaction networks at steady state) and describe a framework for their analysis based on optimization using numerical algebraic geometry. Specifically, we use probability-one polynomial homotopy continuation methods to compute all critical points of the objective function, then filter to recover the global optima. Our approach exploits the geometrical structures relating models and data, and we demonstrate its utility on examples from cell signalling, synthetic biology and epidemiology. PMID:27733697

  18. Discrete-to-continuous transition in quantum phase estimation

    NASA Astrophysics Data System (ADS)

    Rządkowski, Wojciech; Demkowicz-Dobrzański, Rafał

    2017-09-01

    We analyze the problem of quantum phase estimation in which the set of allowed phases forms a discrete N -element subset of the whole [0 ,2 π ] interval, φn=2 π n /N , n =0 ,⋯,N -1 , and study the discrete-to-continuous transition N →∞ for various cost functions as well as the mutual information. We also analyze the relation between the problems of phase discrimination and estimation by considering a step cost function of a given width σ around the true estimated value. We show that in general a direct application of the theory of covariant measurements for a discrete subgroup of the U(1 ) group leads to suboptimal strategies due to an implicit requirement of estimating only the phases that appear in the prior distribution. We develop the theory of subcovariant measurements to remedy this situation and demonstrate truly optimal estimation strategies when performing a transition from discrete to continuous phase estimation.

  19. 2D Inviscid and Viscous Inverse Design Using Continuous Adjoint and Lax-Wendroff Formulation

    NASA Astrophysics Data System (ADS)

    Proctor, Camron Lisle

    The continuous adjoint (CA) technique for optimization and/or inverse-design of aerodynamic components has seen nearly 30 years of documented success in academia. The benefits of using CA versus a direct sensitivity analysis are shown repeatedly in the literature. However, the use of CA in industry is relatively unheard-of. The sparseness of industry contributions to the field may be attributed to the tediousness of the derivation and/or to the difficulties in implementation due to the lack of well-documented adjoint numerical methods. The focus of this work has been to thoroughly document the techniques required to build a two-dimensional CA inverse-design tool. To this end, this work begins with a short background on computational fluid dynamics (CFD) and the use of optimization tools in conjunction with CFD tools to solve aerodynamic optimization problems. A thorough derivation of the continuous adjoint equations and the accompanying gradient calculations for inviscid and viscous constraining equations follows the introduction. Next, the numerical techniques used for solving the partial differential equations (PDEs) governing the flow equations and the adjoint equations are described. Numerical techniques for the supplementary equations are discussed briefly. Subsequently, a verification of the efficacy of the inverse design tool, for the inviscid adjoint equations as well as possible numerical implementation pitfalls are discussed. The NACA0012 airfoil is used as an initial airfoil and surface pressure distribution and the NACA16009 is used as the desired pressure and vice versa. Using a Savitsky-Golay gradient filter, convergence (defined as a cost function<1E-5) is reached in approximately 220 design iteration using 121 design variables. The inverse-design using inviscid adjoint equations results are followed by the discussion of the viscous inverse design results and techniques used to further the convergence of the optimizer. The relationship between limiting step-size and convergence in a line-search optimization is shown to slightly decrease the final cost function at significant computational cost. A gradient damping technique is presented and shown to increase the convergence rate for the optimization in viscous problems, at a negligible increase in computational cost, but is insufficient to converge the solution. Systematically including adjacent surface vertices in the perturbation of a design variable, also a surface vertex, is shown to affect the convergence capability of the viscous optimizer. Finally, a comparison of using inviscid adjoint equations, as opposed to viscous adjoint equations, on viscous flow is presented, and the inviscid adjoint paired with viscous flow is found to reduce the cost function further than the viscous adjoint for the presented problem.

  20. Evolutionary algorithms for the optimal management of coastal groundwater: A comparative study toward future challenges

    NASA Astrophysics Data System (ADS)

    Ketabchi, Hamed; Ataie-Ashtiani, Behzad

    2015-01-01

    This paper surveys the literature associated with the application of evolutionary algorithms (EAs) in coastal groundwater management problems (CGMPs). This review demonstrates that previous studies were mostly relied on the application of limited and particular EAs, mainly genetic algorithm (GA) and its variants, to a number of specific problems. The exclusive investigation of these problems is often not the representation of the variety of feasible processes may be occurred in coastal aquifers. In this study, eight EAs are evaluated for CGMPs. The considered EAs are: GA, continuous ant colony optimization (CACO), particle swarm optimization (PSO), differential evolution (DE), artificial bee colony optimization (ABC), harmony search (HS), shuffled complex evolution (SCE), and simplex simulated annealing (SIMPSA). The first application of PSO, ABC, HS, and SCE in CGMPs is reported here. Moreover, the four benchmark problems with different degree of difficulty and variety are considered to address the important issues of groundwater resources in coastal regions. Hence, the wide ranges of popular objective functions and constraints with the number of decision variables ranging from 4 to 15 are included. These benchmark problems are applied in the combined simulation-optimization model to examine the optimization scenarios. Some preliminary experiments are performed to select the most efficient parameters values for EAs to set a fair comparison. The specific capabilities of each EA toward CGMPs in terms of results quality and required computational time are compared. The evaluation of the results highlights EA's applicability in CGMPs, besides the remarkable strengths and weaknesses of them. The comparisons show that SCE, CACO, and PSO yield superior solutions among the EAs according to the quality of solutions whereas ABC presents the poor performance. CACO provides the better solutions (up to 17%) than the worst EA (ABC) for the problem with the highest decision variables and more complexity. In terms of computational time, PSO and SIMPSA are the fastest. SCE needs the highest computational time, even up to four times in comparison to the fastest EAs. CACO and PSO can be recommended for application in CGMPs, in terms of both abovementioned criteria.

  1. On the Motion of Agents across Terrain with Obstacles

    NASA Astrophysics Data System (ADS)

    Kuznetsov, A. V.

    2018-01-01

    The paper is devoted to finding the time optimal route of an agent travelling across a region from a given source point to a given target point. At each point of this region, a maximum allowed speed is specified. This speed limit may vary in time. The continuous statement of this problem and the case when the agent travels on a grid with square cells are considered. In the latter case, the time is also discrete, and the number of admissible directions of motion at each point in time is eight. The existence of an optimal solution of this problem is proved, and estimates of the approximate solution obtained on the grid are obtained. It is found that decreasing the size of cells below a certain limit does not further improve the approximation. These results can be used to estimate the quasi-optimal trajectory of the agent motion across the rugged terrain produced by an algorithm based on a cellular automaton that was earlier developed by the author.

  2. Development of a multiple-parameter nonlinear perturbation procedure for transonic turbomachinery flows: Preliminary application to design/optimization problems

    NASA Technical Reports Server (NTRS)

    Stahara, S. S.; Elliott, J. P.; Spreiter, J. R.

    1983-01-01

    An investigation was conducted to continue the development of perturbation procedures and associated computational codes for rapidly determining approximations to nonlinear flow solutions, with the purpose of establishing a method for minimizing computational requirements associated with parametric design studies of transonic flows in turbomachines. The results reported here concern the extension of the previously developed successful method for single parameter perturbations to simultaneous multiple-parameter perturbations, and the preliminary application of the multiple-parameter procedure in combination with an optimization method to blade design/optimization problem. In order to provide as severe a test as possible of the method, attention is focused in particular on transonic flows which are highly supercritical. Flows past both isolated blades and compressor cascades, involving simultaneous changes in both flow and geometric parameters, are considered. Comparisons with the corresponding exact nonlinear solutions display remarkable accuracy and range of validity, in direct correspondence with previous results for single-parameter perturbations.

  3. [Survival strategy of photosynthetic organisms. 1. Variability of the extent of light-harvesting pigment aggregation as a structural factor optimizing the function of oligomeric photosynthetic antenna. Model calculations].

    PubMed

    Fetisova, Z G

    2004-01-01

    In accordance with our concept of rigorous optimization of photosynthetic machinery by a functional criterion, this series of papers continues purposeful search in natural photosynthetic units (PSU) for the basic principles of their organization that we predicted theoretically for optimal model light-harvesting systems. This approach allowed us to determine the basic principles for the organization of a PSU of any fixed size. This series of papers deals with the problem of structural optimization of light-harvesting antenna of variable size controlled in vivo by the light intensity during the growth of organisms, which accentuates the problem of antenna structure optimization because optimization requirements become more stringent as the PSU increases in size. In this work, using mathematical modeling for the functioning of natural PSUs, we have shown that the aggregation of pigments of model light-harvesting antenna, being one of universal optimizing factors, furthermore allows controlling the antenna efficiency if the extent of pigment aggregation is a variable parameter. In this case, the efficiency of antenna increases with the size of the elementary antenna aggregate, thus ensuring the high efficiency of the PSU irrespective of its size; i.e., variation in the extent of pigment aggregation controlled by the size of light-harvesting antenna is biologically expedient.

  4. Transfers between libration-point orbits in the elliptic restricted problem

    NASA Astrophysics Data System (ADS)

    Hiday-Johnston, L. A.; Howell, K. C.

    1994-04-01

    A strategy is formulated to design optimal time-fixed impulsive transfers between three-dimensional libration-point orbits in the vicinity of the interior L1 libration point of the Sun-Earth/Moon barycenter system. The adjoint equation in terms of rotating coordinates in the elliptic restricted three-body problem is shown to be of a distinctly different form from that obtained in the analysis of trajectories in the two-body problem. Also, the necessary conditions for a time-fixed two-impulse transfer to be optimal are stated in terms of the primer vector. Primer vector theory is then extended to nonoptimal impulsive trajectories in order to establish a criterion whereby the addition of an interior impulse reduces total fuel expenditure. The necessary conditions for the local optimality of a transfer containing additional impulses are satisfied by requiring continuity of the Hamiltonian and the derivative of the primer vector at all interior impulses. Determination of location, orientation, and magnitude of each additional impulse is accomplished by the unconstrained minimization of the cost function using a multivariable search method. Results indicate that substantial savings in fuel can be achieved by the addition of interior impulsive maneuvers on transfers between libration-point orbits.

  5. Systematic Dimensionality Reduction for Quantum Walks: Optimal Spatial Search and Transport on Non-Regular Graphs

    PubMed Central

    Novo, Leonardo; Chakraborty, Shantanav; Mohseni, Masoud; Neven, Hartmut; Omar, Yasser

    2015-01-01

    Continuous time quantum walks provide an important framework for designing new algorithms and modelling quantum transport and state transfer problems. Often, the graph representing the structure of a problem contains certain symmetries that confine the dynamics to a smaller subspace of the full Hilbert space. In this work, we use invariant subspace methods, that can be computed systematically using the Lanczos algorithm, to obtain the reduced set of states that encompass the dynamics of the problem at hand without the specific knowledge of underlying symmetries. First, we apply this method to obtain new instances of graphs where the spatial quantum search algorithm is optimal: complete graphs with broken links and complete bipartite graphs, in particular, the star graph. These examples show that regularity and high-connectivity are not needed to achieve optimal spatial search. We also show that this method considerably simplifies the calculation of quantum transport efficiencies. Furthermore, we observe improved efficiencies by removing a few links from highly symmetric graphs. Finally, we show that this reduction method also allows us to obtain an upper bound for the fidelity of a single qubit transfer on an XY spin network. PMID:26330082

  6. A Multiuser Manufacturing Resource Service Composition Method Based on the Bees Algorithm

    PubMed Central

    Xie, Yongquan; Zhou, Zude; Pham, Duc Truong; Xu, Wenjun; Ji, Chunqian

    2015-01-01

    In order to realize an optimal resource service allocation in current open and service-oriented manufacturing model, multiuser resource service composition (RSC) is modeled as a combinational and constrained multiobjective problem. The model takes into account both subjective and objective quality of service (QoS) properties as representatives to evaluate a solution. The QoS properties aggregation and evaluation techniques are based on existing researches. The basic Bees Algorithm is tailored for finding a near optimal solution to the model, since the basic version is only proposed to find a desired solution in continuous domain and thus not suitable for solving the problem modeled in our study. Particular rules are designed for handling the constraints and finding Pareto optimality. In addition, the established model introduces a trusted service set to each user so that the algorithm could start by searching in the neighbor of more reliable service chains (known as seeds) than those randomly generated. The advantages of these techniques are validated by experiments in terms of success rate, searching speed, ability of avoiding ingenuity, and so forth. The results demonstrate the effectiveness of the proposed method in handling multiuser RSC problems. PMID:26339232

  7. The application of mean field theory to image motion estimation.

    PubMed

    Zhang, J; Hanauer, G G

    1995-01-01

    Previously, Markov random field (MRF) model-based techniques have been proposed for image motion estimation. Since motion estimation is usually an ill-posed problem, various constraints are needed to obtain a unique and stable solution. The main advantage of the MRF approach is its capacity to incorporate such constraints, for instance, motion continuity within an object and motion discontinuity at the boundaries between objects. In the MRF approach, motion estimation is often formulated as an optimization problem, and two frequently used optimization methods are simulated annealing (SA) and iterative-conditional mode (ICM). Although the SA is theoretically optimal in the sense of finding the global optimum, it usually takes many iterations to converge. The ICM, on the other hand, converges quickly, but its results are often unsatisfactory due to its "hard decision" nature. Previously, the authors have applied the mean field theory to image segmentation and image restoration problems. It provides results nearly as good as SA but with much faster convergence. The present paper shows how the mean field theory can be applied to MRF model-based motion estimation. This approach is demonstrated on both synthetic and real-world images, where it produced good motion estimates.

  8. Robust ADP Design for Continuous-Time Nonlinear Systems With Output Constraints.

    PubMed

    Fan, Bo; Yang, Qinmin; Tang, Xiaoyu; Sun, Youxian

    2018-06-01

    In this paper, a novel robust adaptive dynamic programming (RADP)-based control strategy is presented for the optimal control of a class of output-constrained continuous-time unknown nonlinear systems. Our contribution includes a step forward beyond the usual optimal control result to show that the output of the plant is always within user-defined bounds. To achieve the new results, an error transformation technique is first established to generate an equivalent nonlinear system, whose asymptotic stability guarantees both the asymptotic stability and the satisfaction of the output restriction of the original system. Furthermore, RADP algorithms are developed to solve the transformed nonlinear optimal control problem with completely unknown dynamics as well as a robust design to guarantee the stability of the closed-loop systems in the presence of unavailable internal dynamic state. Via small-gain theorem, asymptotic stability of the original and transformed nonlinear system is theoretically guaranteed. Finally, comparison results demonstrate the merits of the proposed control policy.

  9. Teaching as Regulation and Dealing with Complexity

    ERIC Educational Resources Information Center

    Boshuizen, H. P. A.

    2016-01-01

    At an abstract level, teaching a class can be perceived as one big regulation problem. For an optimal result, teachers must continuously (re)align their goals and sub-goals, and need to get timely and valid information on how they are doing in reaching these goals. This discussion describes the specific difficulties due to the time characteristics…

  10. Optimal guidance law development for an advanced launch system

    NASA Technical Reports Server (NTRS)

    Calise, Anthony J.; Hodges, Dewey H.; Leung, Martin S.; Bless, Robert R.

    1991-01-01

    The proposed investigation on a Matched Asymptotic Expansion (MAE) method was carried out. It was concluded that the method of MAE is not applicable to launch vehicle ascent trajectory optimization due to a lack of a suitable stretched variable. More work was done on the earlier regular perturbation approach using a piecewise analytic zeroth order solution to generate a more accurate approximation. In the meantime, a singular perturbation approach using manifold theory is also under current investigation. Work on a general computational environment based on the use of MACSYMA and the weak Hamiltonian finite element method continued during this period. This methodology is capable of the solution of a large class of optimal control problems.

  11. Combining Simulation Tools for End-to-End Trajectory Optimization

    NASA Technical Reports Server (NTRS)

    Whitley, Ryan; Gutkowski, Jeffrey; Craig, Scott; Dawn, Tim; Williams, Jacobs; Stein, William B.; Litton, Daniel; Lugo, Rafael; Qu, Min

    2015-01-01

    Trajectory simulations with advanced optimization algorithms are invaluable tools in the process of designing spacecraft. Due to the need for complex models, simulations are often highly tailored to the needs of the particular program or mission. NASA's Orion and SLS programs are no exception. While independent analyses are valuable to assess individual spacecraft capabilities, a complete end-to-end trajectory from launch to splashdown maximizes potential performance and ensures a continuous solution. In order to obtain end-to-end capability, Orion's in-space tool (Copernicus) was made to interface directly with the SLS's ascent tool (POST2) and a new tool to optimize the full problem by operating both simulations simultaneously was born.

  12. Adaptive building skin structures

    NASA Astrophysics Data System (ADS)

    Del Grosso, A. E.; Basso, P.

    2010-12-01

    The concept of adaptive and morphing structures has gained considerable attention in the recent years in many fields of engineering. In civil engineering very few practical applications are reported to date however. Non-conventional structural concepts like deployable, inflatable and morphing structures may indeed provide innovative solutions to some of the problems that the construction industry is being called to face. To give some examples, searches for low-energy consumption or even energy-harvesting green buildings are amongst such problems. This paper first presents a review of the above problems and technologies, which shows how the solution to these problems requires a multidisciplinary approach, involving the integration of architectural and engineering disciplines. The discussion continues with the presentation of a possible application of two adaptive and dynamically morphing structures which are proposed for the realization of an acoustic envelope. The core of the two applications is the use of a novel optimization process which leads the search for optimal solutions by means of an evolutionary technique while the compatibility of the resulting configurations of the adaptive envelope is ensured by the virtual force density method.

  13. Joint Geophysical Inversion With Multi-Objective Global Optimization Methods

    NASA Astrophysics Data System (ADS)

    Lelievre, P. G.; Bijani, R.; Farquharson, C. G.

    2015-12-01

    Pareto multi-objective global optimization (PMOGO) methods generate a suite of solutions that minimize multiple objectives (e.g. data misfits and regularization terms) in a Pareto-optimal sense. Providing a suite of models, as opposed to a single model that minimizes a weighted sum of objectives, allows a more complete assessment of the possibilities and avoids the often difficult choice of how to weight each objective. We are applying PMOGO methods to three classes of inverse problems. The first class are standard mesh-based problems where the physical property values in each cell are treated as continuous variables. The second class of problems are also mesh-based but cells can only take discrete physical property values corresponding to known or assumed rock units. In the third class we consider a fundamentally different type of inversion in which a model comprises wireframe surfaces representing contacts between rock units; the physical properties of each rock unit remain fixed while the inversion controls the position of the contact surfaces via control nodes. This third class of problem is essentially a geometry inversion, which can be used to recover the unknown geometry of a target body or to investigate the viability of a proposed Earth model. Joint inversion is greatly simplified for the latter two problem classes because no additional mathematical coupling measure is required in the objective function. PMOGO methods can solve numerically complicated problems that could not be solved with standard descent-based local minimization methods. This includes the latter two classes of problems mentioned above. There are significant increases in the computational requirements when PMOGO methods are used but these can be ameliorated using parallelization and problem dimension reduction strategies.

  14. Design space pruning heuristics and global optimization method for conceptual design of low-thrust asteroid tour missions

    NASA Astrophysics Data System (ADS)

    Alemany, Kristina

    Electric propulsion has recently become a viable technology for spacecraft, enabling shorter flight times, fewer required planetary gravity assists, larger payloads, and/or smaller launch vehicles. With the maturation of this technology, however, comes a new set of challenges in the area of trajectory design. Because low-thrust trajectory optimization has historically required long run-times and significant user-manipulation, mission design has relied on expert-based knowledge for selecting departure and arrival dates, times of flight, and/or target bodies and gravitational swing-bys. These choices are generally based on known configurations that have worked well in previous analyses or simply on trial and error. At the conceptual design level, however, the ability to explore the full extent of the design space is imperative to locating the best solutions in terms of mass and/or flight times. Beginning in 2005, the Global Trajectory Optimization Competition posed a series of difficult mission design problems, all requiring low-thrust propulsion and visiting one or more asteroids. These problems all had large ranges on the continuous variables---launch date, time of flight, and asteroid stay times (when applicable)---as well as being characterized by millions or even billions of possible asteroid sequences. Even with recent advances in low-thrust trajectory optimization, full enumeration of these problems was not possible within the stringent time limits of the competition. This investigation develops a systematic methodology for determining a broad suite of good solutions to the combinatorial, low-thrust, asteroid tour problem. The target application is for conceptual design, where broad exploration of the design space is critical, with the goal being to rapidly identify a reasonable number of promising solutions for future analysis. The proposed methodology has two steps. The first step applies a three-level heuristic sequence developed from the physics of the problem, which allows for efficient pruning of the design space. The second phase applies a global optimization scheme to locate a broad suite of good solutions to the reduced problem. The global optimization scheme developed combines a novel branch-and-bound algorithm with a genetic algorithm and an industry-standard low-thrust trajectory optimization program to solve for the following design variables: asteroid sequence, launch date, times of flight, and asteroid stay times. The methodology is developed based on a small sample problem, which is enumerated and solved so that all possible discretized solutions are known. The methodology is then validated by applying it to a larger intermediate sample problem, which also has a known solution. Next, the methodology is applied to several larger combinatorial asteroid rendezvous problems, using previously identified good solutions as validation benchmarks. These problems include the 2nd and 3rd Global Trajectory Optimization Competition problems. The methodology is shown to be capable of achieving a reduction in the number of asteroid sequences of 6-7 orders of magnitude, in terms of the number of sequences that require low-thrust optimization as compared to the number of sequences in the original problem. More than 70% of the previously known good solutions are identified, along with several new solutions that were not previously reported by any of the competitors. Overall, the methodology developed in this investigation provides an organized search technique for the low-thrust mission design of asteroid rendezvous problems.

  15. Management of a stage-structured insect pest: an application of approximate optimization.

    PubMed

    Hackett, Sean C; Bonsall, Michael B

    2018-06-01

    Ecological decision problems frequently require the optimization of a sequence of actions over time where actions may have both immediate and downstream effects. Dynamic programming can solve such problems only if the dimensionality is sufficiently low. Approximate dynamic programming (ADP) provides a suite of methods applicable to problems of arbitrary complexity at the expense of guaranteed optimality. The most easily generalized method is the look-ahead policy: a brute-force algorithm that identifies reasonable actions by constructing and solving a series of temporally truncated approximations of the full problem over a defined planning horizon. We develop and apply this approach to a pest management problem inspired by the Mediterranean fruit fly, Ceratitis capitata. The model aims to minimize the cumulative costs of management actions and medfly-induced losses over a single 16-week season. The medfly population is stage-structured and grows continuously while management decisions are made at discrete, weekly intervals. For each week, the model chooses between inaction, insecticide application, or one of six sterile insect release ratios. Look-ahead policy performance is evaluated over a range of planning horizons, two levels of crop susceptibility to medfly and three levels of pesticide persistence. In all cases, the actions proposed by the look-ahead policy are contrasted to those of a myopic policy that minimizes costs over only the current week. We find that look-ahead policies always out-performed a myopic policy and decision quality is sensitive to the temporal distribution of costs relative to the planning horizon: it is beneficial to extend the planning horizon when it excludes pertinent costs. However, longer planning horizons may reduce decision quality when major costs are resolved imminently. ADP methods such as the look-ahead-policy-based approach developed here render questions intractable to dynamic programming amenable to inference but should be applied carefully as their flexibility comes at the expense of guaranteed optimality. However, given the complexity of many ecological management problems, the capacity to propose a strategy that is "good enough" using a more representative problem formulation may be preferable to an optimal strategy derived from a simplified model. © 2018 by the Ecological Society of America.

  16. Block clustering based on difference of convex functions (DC) programming and DC algorithms.

    PubMed

    Le, Hoai Minh; Le Thi, Hoai An; Dinh, Tao Pham; Huynh, Van Ngai

    2013-10-01

    We investigate difference of convex functions (DC) programming and the DC algorithm (DCA) to solve the block clustering problem in the continuous framework, which traditionally requires solving a hard combinatorial optimization problem. DC reformulation techniques and exact penalty in DC programming are developed to build an appropriate equivalent DC program of the block clustering problem. They lead to an elegant and explicit DCA scheme for the resulting DC program. Computational experiments show the robustness and efficiency of the proposed algorithm and its superiority over standard algorithms such as two-mode K-means, two-mode fuzzy clustering, and block classification EM.

  17. Graph Matching: Relax at Your Own Risk.

    PubMed

    Lyzinski, Vince; Fishkind, Donniell E; Fiori, Marcelo; Vogelstein, Joshua T; Priebe, Carey E; Sapiro, Guillermo

    2016-01-01

    Graph matching-aligning a pair of graphs to minimize their edge disagreements-has received wide-spread attention from both theoretical and applied communities over the past several decades, including combinatorics, computer vision, and connectomics. Its attention can be partially attributed to its computational difficulty. Although many heuristics have previously been proposed in the literature to approximately solve graph matching, very few have any theoretical support for their performance. A common technique is to relax the discrete problem to a continuous problem, therefore enabling practitioners to bring gradient-descent-type algorithms to bear. We prove that an indefinite relaxation (when solved exactly) almost always discovers the optimal permutation, while a common convex relaxation almost always fails to discover the optimal permutation. These theoretical results suggest that initializing the indefinite algorithm with the convex optimum might yield improved practical performance. Indeed, experimental results illuminate and corroborate these theoretical findings, demonstrating that excellent results are achieved in both benchmark and real data problems by amalgamating the two approaches.

  18. Scout: high-performance heterogeneous computing made simple

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jablin, James; Mc Cormick, Patrick; Herlihy, Maurice

    2011-01-26

    Researchers must often write their own simulation and analysis software. During this process they simultaneously confront both computational and scientific problems. Current strategies for aiding the generation of performance-oriented programs do not abstract the software development from the science. Furthermore, the problem is becoming increasingly complex and pressing with the continued development of many-core and heterogeneous (CPU-GPU) architectures. To acbieve high performance, scientists must expertly navigate both software and hardware. Co-design between computer scientists and research scientists can alleviate but not solve this problem. The science community requires better tools for developing, optimizing, and future-proofing codes, allowing scientists to focusmore » on their research while still achieving high computational performance. Scout is a parallel programming language and extensible compiler framework targeting heterogeneous architectures. It provides the abstraction required to buffer scientists from the constantly-shifting details of hardware while still realizing higb-performance by encapsulating software and hardware optimization within a compiler framework.« less

  19. Control of linear uncertain systems utilizing mismatched state observers

    NASA Technical Reports Server (NTRS)

    Goldstein, B.

    1972-01-01

    The control of linear continuous dynamical systems is investigated as a problem of limited state feedback control. The equations which describe the structure of an observer are developed constrained to time-invarient systems. The optimal control problem is formulated, accounting for the uncertainty in the design parameters. Expressions for bounds on closed loop stability are also developed. The results indicate that very little uncertainty may be tolerated before divergence occurs in the recursive computation algorithms, and the derived stability bound yields extremely conservative estimates of regions of allowable parameter variations.

  20. Committee-Based Active Learning for Surrogate-Assisted Particle Swarm Optimization of Expensive Problems.

    PubMed

    Wang, Handing; Jin, Yaochu; Doherty, John

    2017-09-01

    Function evaluations (FEs) of many real-world optimization problems are time or resource consuming, posing a serious challenge to the application of evolutionary algorithms (EAs) to solve these problems. To address this challenge, the research on surrogate-assisted EAs has attracted increasing attention from both academia and industry over the past decades. However, most existing surrogate-assisted EAs (SAEAs) either still require thousands of expensive FEs to obtain acceptable solutions, or are only applied to very low-dimensional problems. In this paper, a novel surrogate-assisted particle swarm optimization (PSO) inspired from committee-based active learning (CAL) is proposed. In the proposed algorithm, a global model management strategy inspired from CAL is developed, which searches for the best and most uncertain solutions according to a surrogate ensemble using a PSO algorithm and evaluates these solutions using the expensive objective function. In addition, a local surrogate model is built around the best solution obtained so far. Then, a PSO algorithm searches on the local surrogate to find its optimum and evaluates it. The evolutionary search using the global model management strategy switches to the local search once no further improvement can be observed, and vice versa. This iterative search process continues until the computational budget is exhausted. Experimental results comparing the proposed algorithm with a few state-of-the-art SAEAs on both benchmark problems up to 30 decision variables as well as an airfoil design problem demonstrate that the proposed algorithm is able to achieve better or competitive solutions with a limited budget of hundreds of exact FEs.

  1. Dual methods and approximation concepts in structural synthesis

    NASA Technical Reports Server (NTRS)

    Fleury, C.; Schmit, L. A., Jr.

    1980-01-01

    Approximation concepts and dual method algorithms are combined to create a method for minimum weight design of structural systems. Approximation concepts convert the basic mathematical programming statement of the structural synthesis problem into a sequence of explicit primal problems of separable form. These problems are solved by constructing explicit dual functions, which are maximized subject to nonnegativity constraints on the dual variables. It is shown that the joining together of approximation concepts and dual methods can be viewed as a generalized optimality criteria approach. The dual method is successfully extended to deal with pure discrete and mixed continuous-discrete design variable problems. The power of the method presented is illustrated with numerical results for example problems, including a metallic swept wing and a thin delta wing with fiber composite skins.

  2. Learning the dynamics of objects by optimal functional interpolation.

    PubMed

    Ahn, Jong-Hoon; Kim, In Young

    2012-09-01

    Many areas of science and engineering rely on functional data and their numerical analysis. The need to analyze time-varying functional data raises the general problem of interpolation, that is, how to learn a smooth time evolution from a finite number of observations. Here, we introduce optimal functional interpolation (OFI), a numerical algorithm that interpolates functional data over time. Unlike the usual interpolation or learning algorithms, the OFI algorithm obeys the continuity equation, which describes the transport of some types of conserved quantities, and its implementation shows smooth, continuous flows of quantities. Without the need to take into account equations of motion such as the Navier-Stokes equation or the diffusion equation, OFI is capable of learning the dynamics of objects such as those represented by mass, image intensity, particle concentration, heat, spectral density, and probability density.

  3. Recourse-based facility-location problems in hybrid uncertain environment.

    PubMed

    Wang, Shuming; Watada, Junzo; Pedrycz, Witold

    2010-08-01

    The objective of this paper is to study facility-location problems in the presence of a hybrid uncertain environment involving both randomness and fuzziness. A two-stage fuzzy-random facility-location model with recourse (FR-FLMR) is developed in which both the demands and costs are assumed to be fuzzy-random variables. The bounds of the optimal objective value of the two-stage FR-FLMR are derived. As, in general, the fuzzy-random parameters of the FR-FLMR can be regarded as continuous fuzzy-random variables with an infinite number of realizations, the computation of the recourse requires solving infinite second-stage programming problems. Owing to this requirement, the recourse function cannot be determined analytically, and, hence, the model cannot benefit from the use of techniques of classical mathematical programming. In order to solve the location problems of this nature, we first develop a technique of fuzzy-random simulation to compute the recourse function. The convergence of such simulation scenarios is discussed. In the sequel, we propose a hybrid mutation-based binary ant-colony optimization (MBACO) approach to the two-stage FR-FLMR, which comprises the fuzzy-random simulation and the simplex algorithm. A numerical experiment illustrates the application of the hybrid MBACO algorithm. The comparison shows that the hybrid MBACO finds better solutions than the one using other discrete metaheuristic algorithms, such as binary particle-swarm optimization, genetic algorithm, and tabu search.

  4. Actuator Placement Via Genetic Algorithm for Aircraft Morphing

    NASA Technical Reports Server (NTRS)

    Crossley, William A.; Cook, Andrea M.

    2001-01-01

    This research continued work that began under the support of NASA Grant NAG1-2119. The focus of this effort was to continue investigations of Genetic Algorithm (GA) approaches that could be used to solve an actuator placement problem by treating this as a discrete optimization problem. In these efforts, the actuators are assumed to be "smart" devices that change the aerodynamic shape of an aircraft wing to alter the flow past the wing, and, as a result, provide aerodynamic moments that could provide flight control. The earlier work investigated issued for the problem statement, developed the appropriate actuator modeling, recognized the importance of symmetry for this problem, modified the aerodynamic analysis routine for more efficient use with the genetic algorithm, and began a problem size study to measure the impact of increasing problem complexity. The research discussed in this final summary further investigated the problem statement to provide a "combined moment" problem statement to simultaneously address roll, pitch and yaw. Investigations of problem size using this new problem statement provided insight into performance of the GA as the number of possible actuator locations increased. Where previous investigations utilized a simple wing model to develop the GA approach for actuator placement, this research culminated with application of the GA approach to a high-altitude unmanned aerial vehicle concept to demonstrate that the approach is valid for an aircraft configuration.

  5. Second-order optimality conditions for problems with C1 data

    NASA Astrophysics Data System (ADS)

    Ginchev, Ivan; Ivanov, Vsevolod I.

    2008-04-01

    In this paper we obtain second-order optimality conditions of Karush-Kuhn-Tucker type and Fritz John one for a problem with inequality constraints and a set constraint in nonsmooth settings using second-order directional derivatives. In the necessary conditions we suppose that the objective function and the active constraints are continuously differentiable, but their gradients are not necessarily locally Lipschitz. In the sufficient conditions for a global minimum we assume that the objective function is differentiable at and second-order pseudoconvex at , a notion introduced by the authors [I. Ginchev, V.I. Ivanov, Higher-order pseudoconvex functions, in: I.V. Konnov, D.T. Luc, A.M. Rubinov (Eds.), Generalized Convexity and Related Topics, in: Lecture Notes in Econom. and Math. Systems, vol. 583, Springer, 2007, pp. 247-264], the constraints are both differentiable and quasiconvex at . In the sufficient conditions for an isolated local minimum of order two we suppose that the problem belongs to the class C1,1. We show that they do not hold for C1 problems, which are not C1,1 ones. At last a new notion parabolic local minimum is defined and it is applied to extend the sufficient conditions for an isolated local minimum from problems with C1,1 data to problems with C1 one.

  6. An optimization-based framework for anisotropic simplex mesh adaptation

    NASA Astrophysics Data System (ADS)

    Yano, Masayuki; Darmofal, David L.

    2012-09-01

    We present a general framework for anisotropic h-adaptation of simplex meshes. Given a discretization and any element-wise, localizable error estimate, our adaptive method iterates toward a mesh that minimizes error for a given degrees of freedom. Utilizing mesh-metric duality, we consider a continuous optimization problem of the Riemannian metric tensor field that provides an anisotropic description of element sizes. First, our method performs a series of local solves to survey the behavior of the local error function. This information is then synthesized using an affine-invariant tensor manipulation framework to reconstruct an approximate gradient of the error function with respect to the metric tensor field. Finally, we perform gradient descent in the metric space to drive the mesh toward optimality. The method is first demonstrated to produce optimal anisotropic meshes minimizing the L2 projection error for a pair of canonical problems containing a singularity and a singular perturbation. The effectiveness of the framework is then demonstrated in the context of output-based adaptation for the advection-diffusion equation using a high-order discontinuous Galerkin discretization and the dual-weighted residual (DWR) error estimate. The method presented provides a unified framework for optimizing both the element size and anisotropy distribution using an a posteriori error estimate and enables efficient adaptation of anisotropic simplex meshes for high-order discretizations.

  7. WE-AB-209-10: Optimizing the Delivery of Sequential Fluence Maps for Efficient VMAT Delivery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Craft, D; Balvert, M

    2016-06-15

    Purpose: To develop an optimization model and solution approach for computing MLC leaf trajectories and dose rates for high quality matching of a set of optimized fluence maps to be delivered sequentially around a patient in a VMAT treatment. Methods: We formulate the fluence map matching problem as a nonlinear optimization problem where time is discretized but dose rates and leaf positions are continuous variables. For a given allotted time, which is allocated across the fluence maps based on the complexity of each fluence map, the optimization problem searches for the best leaf trajectories and dose rates such that themore » original fluence maps are closely recreated. Constraints include maximum leaf speed, maximum dose rate, and leaf collision avoidance, as well as the constraint that the ending leaf positions for one map are the starting leaf positions for the next map. The resulting model is non-convex but smooth, and therefore we solve it by local searches from a variety of starting positions. We improve solution time by a custom decomposition approach which allows us to decouple the rows of the fluence maps and solve each leaf pair individually. This decomposition also makes the problem easily parallelized. Results: We demonstrate method on a prostate case and a head-and-neck case and show that one can recreate fluence maps to high degree of fidelity in modest total delivery time (minutes). Conclusion: We present a VMAT sequencing method that reproduces optimal fluence maps by searching over a vast number of possible leaf trajectories. By varying the total allotted time given, this approach is the first of its kind to allow users to produce VMAT solutions that span the range of wide-field coarse VMAT deliveries to narrow-field high-MU sliding window-like approaches.« less

  8. IESIP - AN IMPROVED EXPLORATORY SEARCH TECHNIQUE FOR PURE INTEGER LINEAR PROGRAMMING PROBLEMS

    NASA Technical Reports Server (NTRS)

    Fogle, F. R.

    1994-01-01

    IESIP, an Improved Exploratory Search Technique for Pure Integer Linear Programming Problems, addresses the problem of optimizing an objective function of one or more variables subject to a set of confining functions or constraints by a method called discrete optimization or integer programming. Integer programming is based on a specific form of the general linear programming problem in which all variables in the objective function and all variables in the constraints are integers. While more difficult, integer programming is required for accuracy when modeling systems with small numbers of components such as the distribution of goods, machine scheduling, and production scheduling. IESIP establishes a new methodology for solving pure integer programming problems by utilizing a modified version of the univariate exploratory move developed by Robert Hooke and T.A. Jeeves. IESIP also takes some of its technique from the greedy procedure and the idea of unit neighborhoods. A rounding scheme uses the continuous solution found by traditional methods (simplex or other suitable technique) and creates a feasible integer starting point. The Hook and Jeeves exploratory search is modified to accommodate integers and constraints and is then employed to determine an optimal integer solution from the feasible starting solution. The user-friendly IESIP allows for rapid solution of problems up to 10 variables in size (limited by DOS allocation). Sample problems compare IESIP solutions with the traditional branch-and-bound approach. IESIP is written in Borland's TURBO Pascal for IBM PC series computers and compatibles running DOS. Source code and an executable are provided. The main memory requirement for execution is 25K. This program is available on a 5.25 inch 360K MS DOS format diskette. IESIP was developed in 1990. IBM is a trademark of International Business Machines. TURBO Pascal is registered by Borland International.

  9. Optimization in the systems engineering process

    NASA Technical Reports Server (NTRS)

    Lemmerman, L. A.

    1984-01-01

    The objective is to look at optimization as it applies to the design process at a large aircraft company. The design process at Lockheed-Georgia is described. Some examples of the impact that optimization has had on that process are given, and then some areas that must be considered if optimization is to be successful and supportive in the total design process are indicated. Optimization must continue to be sold and this selling is best done by consistent good performance. For this good performance to occur, the future approaches must be clearly thought out so that the optimization methods solve the problems that actually occur during design. The visibility of the design process must be maintained as further developments are proposed. Careful attention must be given to the management of data in the optimization process, both for technical reasons and for administrative purposes. Finally, to satisfy program needs, provisions must be included to supply data to support program decisions, and to communicate with design processes outside of the optimization process. If designers fail to adequately consider all of these needs, the future acceptance of optimization will be impeded.

  10. Automated divertor target design by adjoint shape sensitivity analysis and a one-shot method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dekeyser, W., E-mail: Wouter.Dekeyser@kuleuven.be; Reiter, D.; Baelmans, M.

    As magnetic confinement fusion progresses towards the development of first reactor-scale devices, computational tokamak divertor design is a topic of high priority. Presently, edge plasma codes are used in a forward approach, where magnetic field and divertor geometry are manually adjusted to meet design requirements. Due to the complex edge plasma flows and large number of design variables, this method is computationally very demanding. On the other hand, efficient optimization-based design strategies have been developed in computational aerodynamics and fluid mechanics. Such an optimization approach to divertor target shape design is elaborated in the present paper. A general formulation ofmore » the design problems is given, and conditions characterizing the optimal designs are formulated. Using a continuous adjoint framework, design sensitivities can be computed at a cost of only two edge plasma simulations, independent of the number of design variables. Furthermore, by using a one-shot method the entire optimization problem can be solved at an equivalent cost of only a few forward simulations. The methodology is applied to target shape design for uniform power load, in simplified edge plasma geometry.« less

  11. An integrated optimum design approach for high speed prop rotors

    NASA Technical Reports Server (NTRS)

    Chattopadhyay, Aditi; Mccarthy, Thomas R.

    1995-01-01

    The objective is to develop an optimization procedure for high-speed and civil tilt-rotors by coupling all of the necessary disciplines within a closed-loop optimization procedure. Both simplified and comprehensive analysis codes are used for the aerodynamic analyses. The structural properties are calculated using in-house developed algorithms for both isotropic and composite box beam sections. There are four major objectives of this study. (1) Aerodynamic optimization: The effects of blade aerodynamic characteristics on cruise and hover performance of prop-rotor aircraft are investigated using the classical blade element momentum approach with corrections for the high lift capability of rotors/propellers. (2) Coupled aerodynamic/structures optimization: A multilevel hybrid optimization technique is developed for the design of prop-rotor aircraft. The design problem is decomposed into a level for improved aerodynamics with continuous design variables and a level with discrete variables to investigate composite tailoring. The aerodynamic analysis is based on that developed in objective 1 and the structural analysis is performed using an in-house code which models a composite box beam. The results are compared to both a reference rotor and the optimum rotor found in the purely aerodynamic formulation. (3) Multipoint optimization: The multilevel optimization procedure of objective 2 is extended to a multipoint design problem. Hover, cruise, and take-off are the three flight conditions simultaneously maximized. (4) Coupled rotor/wing optimization: Using the comprehensive rotary wing code CAMRAD, an optimization procedure is developed for the coupled rotor/wing performance in high speed tilt-rotor aircraft. The developed procedure contains design variables which define the rotor and wing planforms.

  12. Engineering calculations for communications systems planning

    NASA Technical Reports Server (NTRS)

    Levis, C. A.; Martin, C. H.; Wang, C. W.; Gonsalvez, D.

    1982-01-01

    The single entry interference problem is treated for frequency sharing between the broadcasting satellite and intersatellite services near 23 GHz. It is recommended that very long (more than 120 longitude difference) intersatellite hops be relegated to the unshared portion of the band. When this is done, it is found that suitable orbit assignments can be determined easily with the aid of a set of universal curves. An attempt to develop synthesis procedures for optimally assigning frequencies and orbital slots for the broadcasting satellite service in region 2 was initiated. Several discrete programming and continuous optimization techniques are discussed.

  13. Beam angle optimization for intensity-modulated radiation therapy using a guided pattern search method

    NASA Astrophysics Data System (ADS)

    Rocha, Humberto; Dias, Joana M.; Ferreira, Brígida C.; Lopes, Maria C.

    2013-05-01

    Generally, the inverse planning of radiation therapy consists mainly of the fluence optimization. The beam angle optimization (BAO) in intensity-modulated radiation therapy (IMRT) consists of selecting appropriate radiation incidence directions and may influence the quality of the IMRT plans, both to enhance better organ sparing and to improve tumor coverage. However, in clinical practice, most of the time, beam directions continue to be manually selected by the treatment planner without objective and rigorous criteria. The goal of this paper is to introduce a novel approach that uses beam’s-eye-view dose ray tracing metrics within a pattern search method framework in the optimization of the highly non-convex BAO problem. Pattern search methods are derivative-free optimization methods that require a few function evaluations to progress and converge and have the ability to better avoid local entrapment. The pattern search method framework is composed of a search step and a poll step at each iteration. The poll step performs a local search in a mesh neighborhood and ensures the convergence to a local minimizer or stationary point. The search step provides the flexibility for a global search since it allows searches away from the neighborhood of the current iterate. Beam’s-eye-view dose metrics assign a score to each radiation beam direction and can be used within the pattern search framework furnishing a priori knowledge of the problem so that directions with larger dosimetric scores are tested first. A set of clinical cases of head-and-neck tumors treated at the Portuguese Institute of Oncology of Coimbra is used to discuss the potential of this approach in the optimization of the BAO problem.

  14. A continuous optimization approach for inferring parameters in mathematical models of regulatory networks.

    PubMed

    Deng, Zhimin; Tian, Tianhai

    2014-07-29

    The advances of systems biology have raised a large number of sophisticated mathematical models for describing the dynamic property of complex biological systems. One of the major steps in developing mathematical models is to estimate unknown parameters of the model based on experimentally measured quantities. However, experimental conditions limit the amount of data that is available for mathematical modelling. The number of unknown parameters in mathematical models may be larger than the number of observation data. The imbalance between the number of experimental data and number of unknown parameters makes reverse-engineering problems particularly challenging. To address the issue of inadequate experimental data, we propose a continuous optimization approach for making reliable inference of model parameters. This approach first uses a spline interpolation to generate continuous functions of system dynamics as well as the first and second order derivatives of continuous functions. The expanded dataset is the basis to infer unknown model parameters using various continuous optimization criteria, including the error of simulation only, error of both simulation and the first derivative, or error of simulation as well as the first and second derivatives. We use three case studies to demonstrate the accuracy and reliability of the proposed new approach. Compared with the corresponding discrete criteria using experimental data at the measurement time points only, numerical results of the ERK kinase activation module show that the continuous absolute-error criteria using both function and high order derivatives generate estimates with better accuracy. This result is also supported by the second and third case studies for the G1/S transition network and the MAP kinase pathway, respectively. This suggests that the continuous absolute-error criteria lead to more accurate estimates than the corresponding discrete criteria. We also study the robustness property of these three models to examine the reliability of estimates. Simulation results show that the models with estimated parameters using continuous fitness functions have better robustness properties than those using the corresponding discrete fitness functions. The inference studies and robustness analysis suggest that the proposed continuous optimization criteria are effective and robust for estimating unknown parameters in mathematical models.

  15. Enhanced nonlinearity interval mapping scheme for high-performance simulation-optimization of watershed-scale BMP placement

    NASA Astrophysics Data System (ADS)

    Zou, Rui; Riverson, John; Liu, Yong; Murphy, Ryan; Sim, Youn

    2015-03-01

    Integrated continuous simulation-optimization models can be effective predictors of a process-based responses for cost-benefit optimization of best management practices (BMPs) selection and placement. However, practical application of simulation-optimization model is computationally prohibitive for large-scale systems. This study proposes an enhanced Nonlinearity Interval Mapping Scheme (NIMS) to solve large-scale watershed simulation-optimization problems several orders of magnitude faster than other commonly used algorithms. An efficient interval response coefficient (IRC) derivation method was incorporated into the NIMS framework to overcome a computational bottleneck. The proposed algorithm was evaluated using a case study watershed in the Los Angeles County Flood Control District. Using a continuous simulation watershed/stream-transport model, Loading Simulation Program in C++ (LSPC), three nested in-stream compliance points (CP)—each with multiple Total Maximum Daily Loads (TMDL) targets—were selected to derive optimal treatment levels for each of the 28 subwatersheds, so that the TMDL targets at all the CP were met with the lowest possible BMP implementation cost. Genetic Algorithm (GA) and NIMS were both applied and compared. The results showed that the NIMS took 11 iterations (about 11 min) to complete with the resulting optimal solution having a total cost of 67.2 million, while each of the multiple GA executions took 21-38 days to reach near optimal solutions. The best solution obtained among all the GA executions compared had a minimized cost of 67.7 million—marginally higher, but approximately equal to that of the NIMS solution. The results highlight the utility for decision making in large-scale watershed simulation-optimization formulations.

  16. Evaluation and design of a rain gauge network using a statistical optimization method in a severe hydro-geological hazard prone area

    NASA Astrophysics Data System (ADS)

    Fattoruso, Grazia; Longobardi, Antonia; Pizzuti, Alfredo; Molinara, Mario; Marocco, Claudio; De Vito, Saverio; Tortorella, Francesco; Di Francia, Girolamo

    2017-06-01

    Rainfall data collection gathered in continuous by a distributed rain gauge network is instrumental to more effective hydro-geological risk forecasting and management services though the input estimated rainfall fields suffer from prediction uncertainty. Optimal rain gauge networks can generate accurate estimated rainfall fields. In this research work, a methodology has been investigated for evaluating an optimal rain gauges network aimed at robust hydrogeological hazard investigations. The rain gauges of the Sarno River basin (Southern Italy) has been evaluated by optimizing a two-objective function that maximizes the estimated accuracy and minimizes the total metering cost through the variance reduction algorithm along with the climatological variogram (time-invariant). This problem has been solved by using an enumerative search algorithm, evaluating the exact Pareto-front by an efficient computational time.

  17. Optimal Power Flow Pursuit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dall'Anese, Emiliano; Simonetto, Andrea

    This paper considers distribution networks featuring inverter-interfaced distributed energy resources, and develops distributed feedback controllers that continuously drive the inverter output powers to solutions of AC optimal power flow (OPF) problems. Particularly, the controllers update the power setpoints based on voltage measurements as well as given (time-varying) OPF targets, and entail elementary operations implementable onto low-cost microcontrollers that accompany power-electronics interfaces of gateways and inverters. The design of the control framework is based on suitable linear approximations of the AC power-flow equations as well as Lagrangian regularization methods. Convergence and OPF-target tracking capabilities of the controllers are analytically established. Overall,more » the proposed method allows to bypass traditional hierarchical setups where feedback control and optimization operate at distinct time scales, and to enable real-time optimization of distribution systems.« less

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chiribella, G.; D'Ariano, G. M.; Perinotti, P.

    We investigate the problem of cloning a set of states that is invariant under the action of an irreducible group representation. We then characterize the cloners that are extremal in the convex set of group covariant cloning machines, among which one can restrict the search for optimal cloners. For a set of states that is invariant under the discrete Weyl-Heisenberg group, we show that all extremal cloners can be unitarily realized using the so-called double-Bell states, whence providing a general proof of the popular ansatz used in the literature for finding optimal cloners in a variety of settings. Our resultmore » can also be generalized to continuous-variable optimal cloning in infinite dimensions, where the covariance group is the customary Weyl-Heisenberg group of displacement000.« less

  19. Bell-Curve Based Evolutionary Strategies for Structural Optimization

    NASA Technical Reports Server (NTRS)

    Kincaid, Rex K.

    2001-01-01

    Evolutionary methods are exceedingly popular with practitioners of many fields; more so than perhaps any optimization tool in existence. Historically Genetic Algorithms (GAs) led the way in practitioner popularity. However, in the last ten years Evolutionary Strategies (ESs) and Evolutionary Programs (EPS) have gained a significant foothold. One partial explanation for this shift is the interest in using GAs to solve continuous optimization problems. The typical GA relies upon a cumbersome binary representation of the design variables. An ES or EP, however, works directly with the real-valued design variables. For detailed references on evolutionary methods in general and ES or EP in specific see Back and Dasgupta and Michalesicz. We call our evolutionary algorithm BCB (bell curve based) since it is based upon two normal distributions.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buckdahn, Rainer, E-mail: Rainer.Buckdahn@univ-brest.fr; Li, Juan, E-mail: juanli@sdu.edu.cn; Ma, Jin, E-mail: jinma@usc.edu

    In this paper we study the optimal control problem for a class of general mean-field stochastic differential equations, in which the coefficients depend, nonlinearly, on both the state process as well as of its law. In particular, we assume that the control set is a general open set that is not necessary convex, and the coefficients are only continuous on the control variable without any further regularity or convexity. We validate the approach of Peng (SIAM J Control Optim 2(4):966–979, 1990) by considering the second order variational equations and the corresponding second order adjoint process in this setting, and wemore » extend the Stochastic Maximum Principle of Buckdahn et al. (Appl Math Optim 64(2):197–216, 2011) to this general case.« less

  1. Competitive Swarm Optimizer Based Gateway Deployment Algorithm in Cyber-Physical Systems.

    PubMed

    Huang, Shuqiang; Tao, Ming

    2017-01-22

    Wireless sensor network topology optimization is a highly important issue, and topology control through node selection can improve the efficiency of data forwarding, while saving energy and prolonging lifetime of the network. To address the problem of connecting a wireless sensor network to the Internet in cyber-physical systems, here we propose a geometric gateway deployment based on a competitive swarm optimizer algorithm. The particle swarm optimization (PSO) algorithm has a continuous search feature in the solution space, which makes it suitable for finding the geometric center of gateway deployment; however, its search mechanism is limited to the individual optimum (pbest) and the population optimum (gbest); thus, it easily falls into local optima. In order to improve the particle search mechanism and enhance the search efficiency of the algorithm, we introduce a new competitive swarm optimizer (CSO) algorithm. The CSO search algorithm is based on an inter-particle competition mechanism and can effectively avoid trapping of the population falling into a local optimum. With the improvement of an adaptive opposition-based search and its ability to dynamically parameter adjustments, this algorithm can maintain the diversity of the entire swarm to solve geometric K -center gateway deployment problems. The simulation results show that this CSO algorithm has a good global explorative ability as well as convergence speed and can improve the network quality of service (QoS) level of cyber-physical systems by obtaining a minimum network coverage radius. We also find that the CSO algorithm is more stable, robust and effective in solving the problem of geometric gateway deployment as compared to the PSO or Kmedoids algorithms.

  2. Genetic learning in rule-based and neural systems

    NASA Technical Reports Server (NTRS)

    Smith, Robert E.

    1993-01-01

    The design of neural networks and fuzzy systems can involve complex, nonlinear, and ill-conditioned optimization problems. Often, traditional optimization schemes are inadequate or inapplicable for such tasks. Genetic Algorithms (GA's) are a class of optimization procedures whose mechanics are based on those of natural genetics. Mathematical arguments show how GAs bring substantial computational leverage to search problems, without requiring the mathematical characteristics often necessary for traditional optimization schemes (e.g., modality, continuity, availability of derivative information, etc.). GA's have proven effective in a variety of search tasks that arise in neural networks and fuzzy systems. This presentation begins by introducing the mechanism and theoretical underpinnings of GA's. GA's are then related to a class of rule-based machine learning systems called learning classifier systems (LCS's). An LCS implements a low-level production-system that uses a GA as its primary rule discovery mechanism. This presentation illustrates how, despite its rule-based framework, an LCS can be thought of as a competitive neural network. Neural network simulator code for an LCS is presented. In this context, the GA is doing more than optimizing and objective function. It is searching for an ecology of hidden nodes with limited connectivity. The GA attempts to evolve this ecology such that effective neural network performance results. The GA is particularly well adapted to this task, given its naturally-inspired basis. The LCS/neural network analogy extends itself to other, more traditional neural networks. Conclusions to the presentation discuss the implications of using GA's in ecological search problems that arise in neural and fuzzy systems.

  3. Discrete bacteria foraging optimization algorithm for graph based problems - a transition from continuous to discrete

    NASA Astrophysics Data System (ADS)

    Sur, Chiranjib; Shukla, Anupam

    2018-03-01

    Bacteria Foraging Optimisation Algorithm is a collective behaviour-based meta-heuristics searching depending on the social influence of the bacteria co-agents in the search space of the problem. The algorithm faces tremendous hindrance in terms of its application for discrete problems and graph-based problems due to biased mathematical modelling and dynamic structure of the algorithm. This had been the key factor to revive and introduce the discrete form called Discrete Bacteria Foraging Optimisation (DBFO) Algorithm for discrete problems which exceeds the number of continuous domain problems represented by mathematical and numerical equations in real life. In this work, we have mainly simulated a graph-based road multi-objective optimisation problem and have discussed the prospect of its utilisation in other similar optimisation problems and graph-based problems. The various solution representations that can be handled by this DBFO has also been discussed. The implications and dynamics of the various parameters used in the DBFO are illustrated from the point view of the problems and has been a combination of both exploration and exploitation. The result of DBFO has been compared with Ant Colony Optimisation and Intelligent Water Drops Algorithms. Important features of DBFO are that the bacteria agents do not depend on the local heuristic information but estimates new exploration schemes depending upon the previous experience and covered path analysis. This makes the algorithm better in combination generation for graph-based problems and combination generation for NP hard problems.

  4. Recovery of sparse translation-invariant signals with continuous basis pursuit

    PubMed Central

    Ekanadham, Chaitanya; Tranchina, Daniel; Simoncelli, Eero

    2013-01-01

    We consider the problem of decomposing a signal into a linear combination of features, each a continuously translated version of one of a small set of elementary features. Although these constituents are drawn from a continuous family, most current signal decomposition methods rely on a finite dictionary of discrete examples selected from this family (e.g., shifted copies of a set of basic waveforms), and apply sparse optimization methods to select and solve for the relevant coefficients. Here, we generate a dictionary that includes auxiliary interpolation functions that approximate translates of features via adjustment of their coefficients. We formulate a constrained convex optimization problem, in which the full set of dictionary coefficients represents a linear approximation of the signal, the auxiliary coefficients are constrained so as to only represent translated features, and sparsity is imposed on the primary coefficients using an L1 penalty. The basis pursuit denoising (BP) method may be seen as a special case, in which the auxiliary interpolation functions are omitted, and we thus refer to our methodology as continuous basis pursuit (CBP). We develop two implementations of CBP for a one-dimensional translation-invariant source, one using a first-order Taylor approximation, and another using a form of trigonometric spline. We examine the tradeoff between sparsity and signal reconstruction accuracy in these methods, demonstrating empirically that trigonometric CBP substantially outperforms Taylor CBP, which in turn offers substantial gains over ordinary BP. In addition, the CBP bases can generally achieve equally good or better approximations with much coarser sampling than BP, leading to a reduction in dictionary dimensionality. PMID:24352562

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gaitsgory, Vladimir, E-mail: vladimir.gaitsgory@mq.edu.au; Rossomakhine, Sergey, E-mail: serguei.rossomakhine@flinders.edu.au

    The paper aims at the development of an apparatus for analysis and construction of near optimal solutions of singularly perturbed (SP) optimal controls problems (that is, problems of optimal control of SP systems) considered on the infinite time horizon. We mostly focus on problems with time discounting criteria but a possibility of the extension of results to periodic optimization problems is discussed as well. Our consideration is based on earlier results on averaging of SP control systems and on linear programming formulations of optimal control problems. The idea that we exploit is to first asymptotically approximate a given problem ofmore » optimal control of the SP system by a certain averaged optimal control problem, then reformulate this averaged problem as an infinite-dimensional linear programming (LP) problem, and then approximate the latter by semi-infinite LP problems. We show that the optimal solution of these semi-infinite LP problems and their duals (that can be found with the help of a modification of an available LP software) allow one to construct near optimal controls of the SP system. We demonstrate the construction with two numerical examples.« less

  6. Possible Solutions as a Concept in Behavior Change Interventions.

    PubMed

    Mahoney, Diane E

    2018-04-24

    Nurses are uniquely positioned to implement behavior change interventions. Yet, nursing interventions have traditionally resulted from nurses problem-solving rather than allowing the patient to self-generate possible solutions for attaining specific health outcomes. The purpose of this review is to clarify the meaning of possible solutions in behavior change interventions. Walker and Avant's method on concept analysis serves as the framework for examination of the possible solutions. Possible solutions can be defined as continuous strategies initiated by patients and families to overcome existing health problems. As nurses engage in behavior change interventions, supporting patients and families in problem-solving will optimize health outcomes and transform clinical practice. © 2018 NANDA International, Inc.

  7. A centre-free approach for resource allocation with lower bounds

    NASA Astrophysics Data System (ADS)

    Obando, Germán; Quijano, Nicanor; Rakoto-Ravalontsalama, Naly

    2017-09-01

    Since complexity and scale of systems are continuously increasing, there is a growing interest in developing distributed algorithms that are capable to address information constraints, specially for solving optimisation and decision-making problems. In this paper, we propose a novel method to solve distributed resource allocation problems that include lower bound constraints. The optimisation process is carried out by a set of agents that use a communication network to coordinate their decisions. Convergence and optimality of the method are guaranteed under some mild assumptions related to the convexity of the problem and the connectivity of the underlying graph. Finally, we compare our approach with other techniques reported in the literature, and we present some engineering applications.

  8. The mechanisms and boundary conditions of the Einstellung effect in chess: evidence from eye movements.

    PubMed

    Sheridan, Heather; Reingold, Eyal M

    2013-01-01

    In a wide range of problem-solving settings, the presence of a familiar solution can block the discovery of better solutions (i.e., the Einstellung effect). To investigate this effect, we monitored the eye movements of expert and novice chess players while they solved chess problems that contained a familiar move (i.e., the Einstellung move), as well as an optimal move that was located in a different region of the board. When the Einstellung move was an advantageous (but suboptimal) move, both the expert and novice chess players who chose the Einstellung move continued to look at this move throughout the trial, whereas the subset of expert players who chose the optimal move were able to gradually disengage their attention from the Einstellung move. However, when the Einstellung move was a blunder, all of the experts and the majority of the novices were able to avoid selecting the Einstellung move, and both the experts and novices gradually disengaged their attention from the Einstellung move. These findings shed light on the boundary conditions of the Einstellung effect, and provide convergent evidence for Bilalić, McLeod, & Gobet (2008)'s conclusion that the Einstellung effect operates by biasing attention towards problem features that are associated with the familiar solution rather than the optimal solution.

  9. A Discontinuous Petrov-Galerkin Methodology for Adaptive Solutions to the Incompressible Navier-Stokes Equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roberts, Nathan V.; Demkowiz, Leszek; Moser, Robert

    2015-11-15

    The discontinuous Petrov-Galerkin methodology with optimal test functions (DPG) of Demkowicz and Gopalakrishnan [18, 20] guarantees the optimality of the solution in an energy norm, and provides several features facilitating adaptive schemes. Whereas Bubnov-Galerkin methods use identical trial and test spaces, Petrov-Galerkin methods allow these function spaces to differ. In DPG, test functions are computed on the fly and are chosen to realize the supremum in the inf-sup condition; the method is equivalent to a minimum residual method. For well-posed problems with sufficiently regular solutions, DPG can be shown to converge at optimal rates—the inf-sup constants governing the convergence aremore » mesh-independent, and of the same order as those governing the continuous problem [48]. DPG also provides an accurate mechanism for measuring the error, and this can be used to drive adaptive mesh refinements. We employ DPG to solve the steady incompressible Navier-Stokes equations in two dimensions, building on previous work on the Stokes equations, and focusing particularly on the usefulness of the approach for automatic adaptivity starting from a coarse mesh. We apply our approach to a manufactured solution due to Kovasznay as well as the lid-driven cavity flow, backward-facing step, and flow past a cylinder problems.« less

  10. TU-G-BRB-01: Continuous Path Optimization for Non-Coplanar Variant SAD IMRT Delivery Using C-Arm Machines.

    PubMed

    Ruan, D; Dong, P; Low, D; Sheng, K

    2012-06-01

    To develop and investigate a continuous path optimization methodology to traverse prescribed non-coplanar IMRT beams with variant SADs, by orchestrating the couch and gantry movement with zero-collision, minimal patient motion consequence and machine travel time. We convert the given collision zone definition and the prescribed beam location/angles to a tumor-centric coordinate, and represent the traversing path as a continuous open curve. We proceed to optimize a composite objective function consisting of (1) a strong attraction energy to ensure all prescribed beams are en-route, (2) a penalty for patient-motion inducing couch motion, and (3) a penalty for travel-time inducing overall path-length. Feasibility manifold is defined as complement to collision zone and the optimization is performed with a level set representation evolved with variational flows. The proposed method has been implemented and tested on clinically derived data. In the absence of any existing solutions for the same problem, we validate by: (1) visual inspecting the generated path rendered in the 3D tumor-centric coordinates, and (2) comparing with a traveling-salesman (TSP) solution obtained from relaxing the variant SADs and continuous collision-avoidance requirement. The proposed method has generated delivery paths that are smooth and intuitively appealing. Under relaxed settings, our results outperform the generic TSP solutions and agree with specially tuned versions. We have proposed a novel systematic approach that automatically determines the continuous path to cover non-coplanar, varying SAD IMRT beams. The proposed approach accommodates patient-specific collision zone definition and ensures its avoidance continuously. The differential penalty to couch and gantry motions allows customizable tradeoff between patient geometry stability and delivery efficiency. This development paves the path to achieve safe, accurate and efficient non-coplanar IMRT delivery with the advanced robotic controls in new-generation C-arm systems, enabling practical harvesting of the dose benefit offered by non-coplanar, variant SAD IMRT treatment. © 2012 American Association of Physicists in Medicine.

  11. Continuous beer fermentation using immobilized yeast cell bioreactor systems.

    PubMed

    Brányik, Tomás; Vicente, António A; Dostálek, Pavel; Teixeira, José A

    2005-01-01

    Traditional beer fermentation and maturation processes use open fermentation and lager tanks. Although these vessels had previously been considered indispensable, during the past decades they were in many breweries replaced by large production units (cylindroconical tanks). These have proved to be successful, both providing operating advantages and ensuring the quality of the final beer. Another promising contemporary technology, namely, continuous beer fermentation using immobilized brewing yeast, by contrast, has found only a limited number of industrial applications. Continuous fermentation systems based on immobilized cell technology, albeit initially successful, were condemned to failure for several reasons. These include engineering problems (excess biomass and problems with CO(2) removal, optimization of operating conditions, clogging and channeling of the reactor), unbalanced beer flavor (altered cell physiology, cell aging), and unrealized cost advantages (carrier price, complex and unstable operation). However, recent development in reactor design and understanding of immobilized cell physiology, together with application of novel carrier materials, could provide a new stimulus to both research and application of this promising technology.

  12. Feed Forward Neural Network and Optimal Control Problem with Control and State Constraints

    NASA Astrophysics Data System (ADS)

    Kmet', Tibor; Kmet'ová, Mária

    2009-09-01

    A feed forward neural network based optimal control synthesis is presented for solving optimal control problems with control and state constraints. The paper extends adaptive critic neural network architecture proposed by [5] to the optimal control problems with control and state constraints. The optimal control problem is transcribed into a nonlinear programming problem which is implemented with adaptive critic neural network. The proposed simulation method is illustrated by the optimal control problem of nitrogen transformation cycle model. Results show that adaptive critic based systematic approach holds promise for obtaining the optimal control with control and state constraints.

  13. Evolutionary engineering for industrial microbiology.

    PubMed

    Vanee, Niti; Fisher, Adam B; Fong, Stephen S

    2012-01-01

    Superficially, evolutionary engineering is a paradoxical field that balances competing interests. In natural settings, evolution iteratively selects and enriches subpopulations that are best adapted to a particular ecological niche using random processes such as genetic mutation. In engineering desired approaches utilize rational prospective design to address targeted problems. When considering details of evolutionary and engineering processes, more commonality can be found. Engineering relies on detailed knowledge of the problem parameters and design properties in order to predict design outcomes that would be an optimized solution. When detailed knowledge of a system is lacking, engineers often employ algorithmic search strategies to identify empirical solutions. Evolution epitomizes this iterative optimization by continuously diversifying design options from a parental design, and then selecting the progeny designs that represent satisfactory solutions. In this chapter, the technique of applying the natural principles of evolution to engineer microbes for industrial applications is discussed to highlight the challenges and principles of evolutionary engineering.

  14. Studies in Software Cost Model Behavior: Do We Really Understand Cost Model Performance?

    NASA Technical Reports Server (NTRS)

    Lum, Karen; Hihn, Jairus; Menzies, Tim

    2006-01-01

    While there exists extensive literature on software cost estimation techniques, industry practice continues to rely upon standard regression-based algorithms. These software effort models are typically calibrated or tuned to local conditions using local data. This paper cautions that current approaches to model calibration often produce sub-optimal models because of the large variance problem inherent in cost data and by including far more effort multipliers than the data supports. Building optimal models requires that a wider range of models be considered while correctly calibrating these models requires rejection rules that prune variables and records and use multiple criteria for evaluating model performance. The main contribution of this paper is to document a standard method that integrates formal model identification, estimation, and validation. It also documents what we call the large variance problem that is a leading cause of cost model brittleness or instability.

  15. Pareto-front shape in multiobservable quantum control

    NASA Astrophysics Data System (ADS)

    Sun, Qiuyang; Wu, Re-Bing; Rabitz, Herschel

    2017-03-01

    Many scenarios in the sciences and engineering require simultaneous optimization of multiple objective functions, which are usually conflicting or competing. In such problems the Pareto front, where none of the individual objectives can be further improved without degrading some others, shows the tradeoff relations between the competing objectives. This paper analyzes the Pareto-front shape for the problem of quantum multiobservable control, i.e., optimizing the expectation values of multiple observables in the same quantum system. Analytic and numerical results demonstrate that with two commuting observables the Pareto front is a convex polygon consisting of flat segments only, while with noncommuting observables the Pareto front includes convexly curved segments. We also assess the capability of a weighted-sum method to continuously capture the points along the Pareto front. Illustrative examples with realistic physical conditions are presented, including NMR control experiments on a 1H-13C two-spin system with two commuting or noncommuting observables.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duchaineau, M.; Wolinsky, M.; Sigeti, D.E.

    Terrain visualization is a difficult problem for applications requiring accurate images of large datasets at high frame rates, such as flight simulation and ground-based aircraft testing using synthetic sensor stimulation. On current graphics hardware, the problem is to maintain dynamic, view-dependent triangle meshes and texture maps that produce good images at the required frame rate. We present an algorithm for constructing triangle meshes that optimizes flexible view-dependent error metrics, produces guaranteed error bounds, achieves specified triangle counts directly, and uses frame-to-frame coherence to operate at high frame rates for thousands of triangles per frame. Our method, dubbed Real-time Optimally Adaptingmore » Meshes (ROAM), uses two priority queues to drive split and merge operations that maintain continuous triangulations built from pre-processed bintree triangles. We introduce two additional performance optimizations: incremental triangle stripping and priority-computation deferral lists. ROAM execution time is proportionate to the number of triangle changes per frame, which is typically a few percent of the output mesh size, hence ROAM performance is insensitive to the resolution and extent of the input terrain. Dynamic terrain and simple vertex morphing are supported.« less

  17. Cell transmission model of dynamic assignment for urban rail transit networks.

    PubMed

    Xu, Guangming; Zhao, Shuo; Shi, Feng; Zhang, Feilian

    2017-01-01

    For urban rail transit network, the space-time flow distribution can play an important role in evaluating and optimizing the space-time resource allocation. For obtaining the space-time flow distribution without the restriction of schedules, a dynamic assignment problem is proposed based on the concept of continuous transmission. To solve the dynamic assignment problem, the cell transmission model is built for urban rail transit networks. The priority principle, queuing process, capacity constraints and congestion effects are considered in the cell transmission mechanism. Then an efficient method is designed to solve the shortest path for an urban rail network, which decreases the computing cost for solving the cell transmission model. The instantaneous dynamic user optimal state can be reached with the method of successive average. Many evaluation indexes of passenger flow can be generated, to provide effective support for the optimization of train schedules and the capacity evaluation for urban rail transit network. Finally, the model and its potential application are demonstrated via two numerical experiments using a small-scale network and the Beijing Metro network.

  18. Massive problem reports mining and analysis based parallelism for similar search

    NASA Astrophysics Data System (ADS)

    Zhou, Ya; Hu, Cailin; Xiong, Han; Wei, Xiafei; Li, Ling

    2017-05-01

    Massive problem reports and solutions accumulated over time and continuously collected in XML Spreadsheet (XMLSS) format from enterprises and organizations, which record a series of comprehensive description about problems that can help technicians to trace problems and their solutions. It's a significant and challenging issue to effectively manage and analyze these massive semi-structured data to provide similar problem solutions, decisions of immediate problem and assisting product optimization for users during hardware and software maintenance. For this purpose, we build a data management system to manage, mine and analyze these data search results that can be categorized and organized into several categories for users to quickly find out where their interesting results locate. Experiment results demonstrate that this system is better than traditional centralized management system on the performance and the adaptive capability of heterogeneous data greatly. Besides, because of re-extracting topics, it enables each cluster to be described more precise and reasonable.

  19. A genetic technique for planning a control sequence to navigate the state space with a quasi-minimum-cost output trajectory for a non-linear multi-dimnensional system

    NASA Technical Reports Server (NTRS)

    Hein, C.; Meystel, A.

    1994-01-01

    There are many multi-stage optimization problems that are not easily solved through any known direct method when the stages are coupled. For instance, we have investigated the problem of planning a vehicle's control sequence to negotiate obstacles and reach a goal in minimum time. The vehicle has a known mass, and the controlling forces have finite limits. We have developed a technique that finds admissible control trajectories which tend to minimize the vehicle's transit time through the obstacle field. The immediate applications is that of a space robot which must rapidly traverse around 2-or-3 dimensional structures via application of a rotating thruster or non-rotating on-off for such vehicles is located at the Marshall Space Flight Center in Huntsville Alabama. However, it appears that the development method is applicable to a general set of optimization problems in which the cost function and the multi-dimensional multi-state system can be any nonlinear functions, which are continuous in the operating regions. Other applications included the planning of optimal navigation pathways through a transversability graph; the planning of control input for under-water maneuvering vehicles which have complex control state-space relationships; the planning of control sequences for milling and manufacturing robots; the planning of control and trajectories for automated delivery vehicles; and the optimization and athletic training in slalom sports.

  20. An improved exploratory search technique for pure integer linear programming problems

    NASA Technical Reports Server (NTRS)

    Fogle, F. R.

    1990-01-01

    The development is documented of a heuristic method for the solution of pure integer linear programming problems. The procedure draws its methodology from the ideas of Hooke and Jeeves type 1 and 2 exploratory searches, greedy procedures, and neighborhood searches. It uses an efficient rounding method to obtain its first feasible integer point from the optimal continuous solution obtained via the simplex method. Since this method is based entirely on simple addition or subtraction of one to each variable of a point in n-space and the subsequent comparison of candidate solutions to a given set of constraints, it facilitates significant complexity improvements over existing techniques. It also obtains the same optimal solution found by the branch-and-bound technique in 44 of 45 small to moderate size test problems. Two example problems are worked in detail to show the inner workings of the method. Furthermore, using an established weighted scheme for comparing computational effort involved in an algorithm, a comparison of this algorithm is made to the more established and rigorous branch-and-bound method. A computer implementation of the procedure, in PC compatible Pascal, is also presented and discussed.

  1. A Singular Differential Equation Stemming from an Optimal Control Problem in Financial Economics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brunovsky, Pavol, E-mail: brunovsky@fmph.uniba.sk; Cerny, Ales, E-mail: ales.cerny.1@city.ac.uk; Winkler, Michael, E-mail: michael.winkler@uni-due.de

    2013-10-15

    We consider the ordinary differential equation x{sup 2} u'' = axu'+bu-c(u'-1){sup 2}, x Element-Of (0,x{sub 0}), with a Element-Of R, b Element-Of R , c>0 and the singular initial condition u(0)=0, which in financial economics describes optimal disposal of an asset in a market with liquidity effects. It is shown in the paper that if a+b<0 then no continuous solutions exist, whereas if a+b>0 then there are infinitely many continuous solutions with indistinguishable asymptotics near 0. Moreover, it is proved that in the latter case there is precisely one solution u corresponding to the choice x{sub 0}={infinity} which is suchmore » that 0{<=}u(x){<=}x for all x>0, and that this solution is strictly increasing and concave.« less

  2. Guaranteed convergence of the Hough transform

    NASA Astrophysics Data System (ADS)

    Soffer, Menashe; Kiryati, Nahum

    1995-01-01

    The straight-line Hough Transform using normal parameterization with a continuous voting kernel is considered. It transforms the colinearity detection problem to a problem of finding the global maximum of a two dimensional function above a domain in the parameter space. The principle is similar to robust regression using fixed scale M-estimation. Unlike standard M-estimation procedures the Hough Transform does not rely on a good initial estimate of the line parameters: The global optimization problem is approached by exhaustive search on a grid that is usually as fine as computationally feasible. The global maximum of a general function above a bounded domain cannot be found by a finite number of function evaluations. Only if sufficient a-priori knowledge about the smoothness of the objective function is available, convergence to the global maximum can be guaranteed. The extraction of a-priori information and its efficient use are the main challenges in real global optimization problems. The global optimization problem in the Hough Transform is essentially how fine should the parameter space quantization be in order not to miss the true maximum. More than thirty years after Hough patented the basic algorithm, the problem is still essentially open. In this paper an attempt is made to identify a-priori information on the smoothness of the objective (Hough) function and to introduce sufficient conditions for the convergence of the Hough Transform to the global maximum. An image model with several application dependent parameters is defined. Edge point location errors as well as background noise are accounted for. Minimal parameter space quantization intervals that guarantee convergence are obtained. Focusing policies for multi-resolution Hough algorithms are developed. Theoretical support for bottom- up processing is provided. Due to the randomness of errors and noise, convergence guarantees are probabilistic.

  3. COPS: Large-scale nonlinearly constrained optimization problems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bondarenko, A.S.; Bortz, D.M.; More, J.J.

    2000-02-10

    The authors have started the development of COPS, a collection of large-scale nonlinearly Constrained Optimization Problems. The primary purpose of this collection is to provide difficult test cases for optimization software. Problems in the current version of the collection come from fluid dynamics, population dynamics, optimal design, and optimal control. For each problem they provide a short description of the problem, notes on the formulation of the problem, and results of computational experiments with general optimization solvers. They currently have results for DONLP2, LANCELOT, MINOS, SNOPT, and LOQO.

  4. Multi-Level Adaptive Techniques (MLAT) for singular-perturbation problems

    NASA Technical Reports Server (NTRS)

    Brandt, A.

    1978-01-01

    The multilevel (multigrid) adaptive technique, a general strategy of solving continuous problems by cycling between coarser and finer levels of discretization is described. It provides very fast general solvers, together with adaptive, nearly optimal discretization schemes. In the process, boundary layers are automatically either resolved or skipped, depending on a control function which expresses the computational goal. The global error decreases exponentially as a function of the overall computational work, in a uniform rate independent of the magnitude of the singular-perturbation terms. The key is high-order uniformly stable difference equations, and uniformly smoothing relaxation schemes.

  5. Optimal starting conditions for the rendezvous maneuver: Analytical and computational approach

    NASA Astrophysics Data System (ADS)

    Ciarcia, Marco

    The three-dimensional rendezvous between two spacecraft is considered: a target spacecraft on a circular orbit around the Earth and a chaser spacecraft initially on some elliptical orbit yet to be determined. The chaser spacecraft has variable mass, limited thrust, and its trajectory is governed by three controls, one determining the thrust magnitude and two determining the thrust direction. We seek the time history of the controls in such a way that the propellant mass required to execute the rendezvous maneuver is minimized. Two cases are considered: (i) time-to-rendezvous free and (ii) time-to-rendezvous given, respectively equivalent to (i) free angular travel and (ii) fixed angular travel for the target spacecraft. The above problem has been studied by several authors under the assumption that the initial separation coordinates and the initial separation velocities are given, hence known initial conditions for the chaser spacecraft. In this paper, it is assumed that both the initial separation coordinates and initial separation velocities are free except for the requirement that the initial chaser-to-target distance is given so as to prevent the occurrence of trivial solutions. Two approaches are employed: optimal control formulation (Part A) and mathematical programming formulation (Part B). In Part A, analyses are performed with the multiple-subarc sequential gradient-restoration algorithm for optimal control problems. They show that the fuel-optimal trajectory is zero-bang, namely it is characterized by two subarcs: a long coasting zero-thrust subarc followed by a short powered max-thrust braking subarc. While the thrust direction of the powered subarc is continuously variable for the optimal trajectory, its replacement with a constant (yet optimized) thrust direction produces a very efficient guidance trajectory. Indeed, for all values of the initial distance, the fuel required by the guidance trajectory is within less than one percent of the fuel required by the optimal trajectory. For the guidance trajectory, because of the replacement of the variable thrust direction of the powered subarc with a constant thrust direction, the optimal control problem degenerates into a mathematical programming problem with a relatively small number of degrees of freedom, more precisely: three for case (i) time-to-rendezvous free and two for case (ii) time-to-rendezvous given. In particular, we consider the rendezvous between the Space Shuttle (chaser) and the International Space Station (target). Once a given initial distance SS-to-ISS is preselected, the present work supplies not only the best initial conditions for the rendezvous trajectory, but simultaneously the corresponding final conditions for the ascent trajectory. In Part B, an analytical solution of the Clohessy-Wiltshire equations is presented (i) neglecting the change of the spacecraft mass due to the fuel consumption and (ii) and assuming that the thrust is finite, that is, the trajectory includes powered subarcs flown with max thrust and coasting subarc flown with zero thrust. Then, employing the found analytical solution, we study the rendezvous problem under the assumption that the initial separation coordinates and initial separation velocities are free except for the requirement that the initial chaser-to-target distance is given. The main contribution of Part B is the development of analytical solutions for the powered subarcs, an important extension of the analytical solutions already available for the coasting subarcs. One consequence is that the entire optimal trajectory can be described analytically. Another consequence is that the optimal control problems degenerate into mathematical programming problems. A further consequence is that, vis-a-vis the optimal control formulation, the mathematical programming formulation reduces the CPU time by a factor of order 1000. Key words. Space trajectories, rendezvous, optimization, guidance, optimal control, calculus of variations, Mayer problems, Bolza problems, transformation techniques, multiple-subarc sequential gradient-restoration algorithm.

  6. A recurrent neural network for nonlinear optimization with a continuously differentiable objective function and bound constraints.

    PubMed

    Liang, X B; Wang, J

    2000-01-01

    This paper presents a continuous-time recurrent neural-network model for nonlinear optimization with any continuously differentiable objective function and bound constraints. Quadratic optimization with bound constraints is a special problem which can be solved by the recurrent neural network. The proposed recurrent neural network has the following characteristics. 1) It is regular in the sense that any optimum of the objective function with bound constraints is also an equilibrium point of the neural network. If the objective function to be minimized is convex, then the recurrent neural network is complete in the sense that the set of optima of the function with bound constraints coincides with the set of equilibria of the neural network. 2) The recurrent neural network is primal and quasiconvergent in the sense that its trajectory cannot escape from the feasible region and will converge to the set of equilibria of the neural network for any initial point in the feasible bound region. 3) The recurrent neural network has an attractivity property in the sense that its trajectory will eventually converge to the feasible region for any initial states even at outside of the bounded feasible region. 4) For minimizing any strictly convex quadratic objective function subject to bound constraints, the recurrent neural network is globally exponentially stable for almost any positive network parameters. Simulation results are given to demonstrate the convergence and performance of the proposed recurrent neural network for nonlinear optimization with bound constraints.

  7. Modelling of a Solar Thermal Power Plant for Benchmarking Blackbox Optimization Solvers

    NASA Astrophysics Data System (ADS)

    Lemyre Garneau, Mathieu

    A new family of problems is provided to serve as a benchmark for blackbox optimization solvers. The problems are single or bi-objective and vary in complexity in terms of the number of variables used (from 5 to 29), the type of variables (integer, real, category), the number of constraints (from 5 to 17) and their types (binary or continuous). In order to provide problems exhibiting dynamics that reflect real engineering challenges, they are extracted from an original numerical model of a concentrated solar power (CSP) power plant with molten salt thermal storage. The model simulates the performance of the power plant by using a high level modeling of each of its main components, namely, an heliostats field, a central cavity receiver, a molten salt heat storage, a steam generator and an idealized powerblock. The heliostats field layout is determined through a simple automatic strategy that finds the best individual positions on the field by considering their respective cosine efficiency, atmospheric scattering and spillage losses as a function of the design parameters. A Monte-Carlo integral method is used to evaluate the heliostats field's optical performance throughout the day so that shadowing effects between heliostats are considered, and the results of this evaluation provide the inputs to simulate the levels and temperatures of the thermal storage. The molten salt storage inventory is used to transfer thermal energy to the powerblock, which simulates a simple Rankine cycle with a single steam turbine. Auxiliary models are used to provide additional optimization constraints on the investment cost, parasitic losses or components failure. The results of preliminary optimizations performed with the NOMAD software using default settings are provided to show the validity of the problems.

  8. Design optimization of continuous partially prestressed concrete beams

    NASA Astrophysics Data System (ADS)

    Al-Gahtani, A. S.; Al-Saadoun, S. S.; Abul-Feilat, E. A.

    1995-04-01

    An effective formulation for optimum design of two-span continuous partially prestressed concrete beams is described in this paper. Variable prestressing forces along the tendon profile, which may be jacked from one end or both ends with flexibility in the overlapping range and location, and the induced secondary effects are considered. The imposed constraints are on flexural stresses, ultimate flexural strength, cracking moment, ultimate shear strength, reinforcement limits cross-section dimensions, and cable profile geometries. These constraints are formulated in accordance with ACI (American Concrete Institute) code provisions. The capabilities of the program to solve several engineering problems are presented.

  9. Curvature Continuous and Bounded Path Planning for Fixed-Wing UAVs

    PubMed Central

    Jiang, Peng; Li, Deshi; Sun, Tao

    2017-01-01

    Unmanned Aerial Vehicles (UAVs) play an important role in applications such as data collection and target reconnaissance. An accurate and optimal path can effectively increase the mission success rate in the case of small UAVs. Although path planning for UAVs is similar to that for traditional mobile robots, the special kinematic characteristics of UAVs (such as their minimum turning radius) have not been taken into account in previous studies. In this paper, we propose a locally-adjustable, continuous-curvature, bounded path-planning algorithm for fixed-wing UAVs. To deal with the curvature discontinuity problem, an optimal interpolation algorithm and a key-point shift algorithm are proposed based on the derivation of a curvature continuity condition. To meet the upper bound for curvature and to render the curvature extrema controllable, a local replanning scheme is designed by combining arcs and Bezier curves with monotonic curvature. In particular, a path transition mechanism is built for the replanning phase using minimum curvature circles for a planning philosophy. Numerical results demonstrate that the analytical planning algorithm can effectively generate continuous-curvature paths, while satisfying the curvature upper bound constraint and allowing UAVs to pass through all predefined waypoints in the desired mission region. PMID:28925960

  10. Curvature Continuous and Bounded Path Planning for Fixed-Wing UAVs.

    PubMed

    Wang, Xiaoliang; Jiang, Peng; Li, Deshi; Sun, Tao

    2017-09-19

    Unmanned Aerial Vehicles (UAVs) play an important role in applications such as data collection and target reconnaissance. An accurate and optimal path can effectively increase the mission success rate in the case of small UAVs. Although path planning for UAVs is similar to that for traditional mobile robots, the special kinematic characteristics of UAVs (such as their minimum turning radius) have not been taken into account in previous studies. In this paper, we propose a locally-adjustable, continuous-curvature, bounded path-planning algorithm for fixed-wing UAVs. To deal with the curvature discontinuity problem, an optimal interpolation algorithm and a key-point shift algorithm are proposed based on the derivation of a curvature continuity condition. To meet the upper bound for curvature and to render the curvature extrema controllable, a local replanning scheme is designed by combining arcs and Bezier curves with monotonic curvature. In particular, a path transition mechanism is built for the replanning phase using minimum curvature circles for a planning philosophy. Numerical results demonstrate that the analytical planning algorithm can effectively generate continuous-curvature paths, while satisfying the curvature upper bound constraint and allowing UAVs to pass through all predefined waypoints in the desired mission region.

  11. Generalized bipartite quantum state discrimination problems with sequential measurements

    NASA Astrophysics Data System (ADS)

    Nakahira, Kenji; Kato, Kentaro; Usuda, Tsuyoshi Sasaki

    2018-02-01

    We investigate an optimization problem of finding quantum sequential measurements, which forms a wide class of state discrimination problems with the restriction that only local operations and one-way classical communication are allowed. Sequential measurements from Alice to Bob on a bipartite system are considered. Using the fact that the optimization problem can be formulated as a problem with only Alice's measurement and is convex programming, we derive its dual problem and necessary and sufficient conditions for an optimal solution. Our results are applicable to various practical optimization criteria, including the Bayes criterion, the Neyman-Pearson criterion, and the minimax criterion. In the setting of the problem of finding an optimal global measurement, its dual problem and necessary and sufficient conditions for an optimal solution have been widely used to obtain analytical and numerical expressions for optimal solutions. Similarly, our results are useful to obtain analytical and numerical expressions for optimal sequential measurements. Examples in which our results can be used to obtain an analytical expression for an optimal sequential measurement are provided.

  12. Shape Optimization by Bayesian-Validated Computer-Simulation Surrogates

    NASA Technical Reports Server (NTRS)

    Patera, Anthony T.

    1997-01-01

    A nonparametric-validated, surrogate approach to optimization has been applied to the computational optimization of eddy-promoter heat exchangers and to the experimental optimization of a multielement airfoil. In addition to the baseline surrogate framework, a surrogate-Pareto framework has been applied to the two-criteria, eddy-promoter design problem. The Pareto analysis improves the predictability of the surrogate results, preserves generality, and provides a means to rapidly determine design trade-offs. Significant contributions have been made in the geometric description used for the eddy-promoter inclusions as well as to the surrogate framework itself. A level-set based, geometric description has been developed to define the shape of the eddy-promoter inclusions. The level-set technique allows for topology changes (from single-body,eddy-promoter configurations to two-body configurations) without requiring any additional logic. The continuity of the output responses for input variations that cross the boundary between topologies has been demonstrated. Input-output continuity is required for the straightforward application of surrogate techniques in which simplified, interpolative models are fitted through a construction set of data. The surrogate framework developed previously has been extended in a number of ways. First, the formulation for a general, two-output, two-performance metric problem is presented. Surrogates are constructed and validated for the outputs. The performance metrics can be functions of both outputs, as well as explicitly of the inputs, and serve to characterize the design preferences. By segregating the outputs and the performance metrics, an additional level of flexibility is provided to the designer. The validated outputs can be used in future design studies and the error estimates provided by the output validation step still apply, and require no additional appeals to the expensive analysis. Second, a candidate-based a posteriori error analysis capability has been developed which provides probabilistic error estimates on the true performance for a design randomly selected near the surrogate-predicted optimal design.

  13. Toward a new spacecraft optimal design lifetime? Impact of marginal cost of durability and reduced launch price

    NASA Astrophysics Data System (ADS)

    Snelgrove, Kailah B.; Saleh, Joseph Homer

    2016-10-01

    The average design lifetime of satellites continues to increase, in part due to the expectation that the satellite cost per operational day decreases monotonically with increased design lifetime. In this work, we challenge this expectation by revisiting the durability choice problem for spacecraft in the face of reduced launch price and under various cost of durability models. We first provide a brief overview of the economic thought on durability and highlight its limitations as they pertain to our problem (e.g., the assumption of zero marginal cost of durability). We then investigate the merging influence of spacecraft cost of durability and launch price, and we identify conditions that give rise cost-optimal design lifetimes that are shorter than the longest lifetime technically achievable. For example, we find that high costs of durability favor short design lifetimes, and that under these conditions the optimal choice is relatively robust to reduction in launch prices. By contrast, lower costs of durability favor longer design lifetimes, and the optimal choice is highly sensitive to reduction in launch price. In both cases, reduction in launch prices translates into reduction of the optimal design lifetime. Our results identify a number of situations for which satellite operators would be better served by spacecraft with shorter design lifetimes. Beyond cost issues and repeat purchases, other implications of long design lifetime include the increased risk of technological slowdown given the lower frequency of purchases and technology refresh, and the increased risk for satellite operators that the spacecraft will be technologically obsolete before the end of its life (with the corollary of loss of value and competitive advantage). We conclude with the recommendation that, should pressure to extend spacecraft design lifetime continue, satellite manufacturers should explore opportunities to lease their spacecraft to operators, or to take a stake in the ownership of the asset on orbit.

  14. Scheduling and calibration strategy for continuous radio monitoring of 1700 sources every three days

    NASA Astrophysics Data System (ADS)

    Max-Moerbeck, Walter

    2014-08-01

    The Owens Valley Radio Observatory 40 meter telescope is currently monitoring a sample of about 1700 blazars every three days at 15 GHz, with the main scientific goal of determining the relation between the variability of blazars at radio and gamma-rays as observed with the Fermi Gamma-ray Space Telescope. The time domain relation between radio and gamma-ray emission, in particular its correlation and time lag, can help us determine the location of the high-energy emission site in blazars, a current open question in blazar research. To achieve this goal, continuous observation of a large sample of blazars in a time scale of less than a week is indispensable. Since we only look at bright targets, the time available for target observations is mostly limited by source observability, calibration requirements and slewing of the telescope. Here I describe the implementation of a practical solution to this scheduling, calibration, and slewing time minimization problem. This solution combines ideas from optimization, in particular the traveling salesman problem, with astronomical and instrumental constraints. A heuristic solution using well established optimization techniques and astronomical insights particular to this situation, allow us to observe all the sources in the required three days cadence while obtaining reliable calibration of the radio flux densities. Problems of this nature will only be more common in the future and the ideas presented here can be relevant for other observing programs.

  15. A Cascade Optimization Strategy for Solution of Difficult Multidisciplinary Design Problems

    NASA Technical Reports Server (NTRS)

    Patnaik, Surya N.; Coroneos, Rula M.; Hopkins, Dale A.; Berke, Laszlo

    1996-01-01

    A research project to comparatively evaluate 10 nonlinear optimization algorithms was recently completed. A conclusion was that no single optimizer could successfully solve all 40 problems in the test bed, even though most optimizers successfully solved at least one-third of the problems. We realized that improved search directions and step lengths, available in the 10 optimizers compared, were not likely to alleviate the convergence difficulties. For the solution of those difficult problems we have devised an alternative approach called cascade optimization strategy. The cascade strategy uses several optimizers, one followed by another in a specified sequence, to solve a problem. A pseudorandom scheme perturbs design variables between the optimizers. The cascade strategy has been tested successfully in the design of supersonic and subsonic aircraft configurations and air-breathing engines for high-speed civil transport applications. These problems could not be successfully solved by an individual optimizer. The cascade optimization strategy, however, generated feasible optimum solutions for both aircraft and engine problems. This paper presents the cascade strategy and solutions to a number of these problems.

  16. Optimal Trajectories and Control Strategies for the Helicopter in One-Engine-Inoperative Terminal-Area Operations

    NASA Technical Reports Server (NTRS)

    Chen, Robert T. N.; Zhao, Yi-Yuan; Aiken, Edwin W. (Technical Monitor)

    1995-01-01

    Engine failure represents a major safety concern to helicopter operations, especially in the critical flight phases of takeoff and landing from/to small, confined areas. As a result, the JAA and FAA both certificate a transport helicopter as either Category-A or Category-B according to the ability to continue its operations following engine failures. A Category-B helicopter must be able to land safely in the event of one or all engine failures. There is no requirement, however, for continued flight capability. In contrast, Category-A certification, which applies to multi-engine transport helicopters with independent engine systems, requires that they continue the flight with one engine inoperative (OEI). These stringent requirements, while permitting its operations from rooftops and oil rigs and flight to areas where no emergency landing sites are available, restrict the payload of a Category-A transport helicopter to a value safe for continued flight as well as for landing with one engine inoperative. The current certification process involves extensive flight tests, which are potentially dangerous, costly, and time consuming. These tests require the pilot to simulate engine failures at increasingly critical conditions, Flight manuals based on these tests tend to provide very conservative recommendations with regard to maximum takeoff weight or required runway length. There are very few theoretical studies on this subject to identify the fundamental parameters and tradeoff factors involved. Furthermore, a capability for real-time generation of OEI optimal trajectories is very desirable for providing timely cockpit display guidance to assist the pilot in reducing his workload and to increase safety in a consistent and reliable manner. A joint research program involving NASA Ames Research Center, the FAA, and the University of Minnesota is being conducted to determine OEI optimal control strategies and the associated optimal,trajectories for continued takeoff (CTO), rejected takeoff (RTO), balked landing (BL), and continued landing (CL) for a twin engine helicopter in both VTOL and STOL terminal-area operations. This proposed paper will present the problem formulation, the optimal control solution methods, and the key results of the trajectory optimization studies for both STOL and VTOL OEI operations. In addition, new results concerning the recently developed methodology, which enable a real-time generation of optimal OEI trajectories, will be presented in the paper. This new real-time capability was developed to support the second piloted simulator investigation on cockpit displays for Category-A operations being scheduled for the NASA Ames Vertical Motion Simulator in June-August of 1995. The first VMS simulation was conducted in 1994 and reported.

  17. Optimal harvesting of a stochastic delay tri-trophic food-chain model with Lévy jumps

    NASA Astrophysics Data System (ADS)

    Qiu, Hong; Deng, Wenmin

    2018-02-01

    In this paper, the optimal harvesting of a stochastic delay tri-trophic food-chain model with Lévy jumps is considered. We introduce two kinds of environmental perturbations in this model. One is called white noise which is continuous and is described by a stochastic integral with respect to the standard Brownian motion. And the other one is jumping noise which is modeled by a Lévy process. Under some mild assumptions, the critical values between extinction and persistent in the mean of each species are established. The sufficient and necessary criteria for the existence of optimal harvesting policy are established and the optimal harvesting effort and the maximum of sustainable yield are also obtained. We utilize the ergodic method to discuss the optimal harvesting problem. The results show that white noises and Lévy noises significantly affect the optimal harvesting policy while time delays is harmless for the optimal harvesting strategy in some cases. At last, some numerical examples are introduced to show the validity of our results.

  18. Supersonic Aerodynamic Design Improvements of an Arrow-Wing HSCT Configuration Using Nonlinear Point Design Methods

    NASA Technical Reports Server (NTRS)

    Unger, Eric R.; Hager, James O.; Agrawal, Shreekant

    1999-01-01

    This paper is a discussion of the supersonic nonlinear point design optimization efforts at McDonnell Douglas Aerospace under the High-Speed Research (HSR) program. The baseline for these optimization efforts has been the M2.4-7A configuration which represents an arrow-wing technology for the High-Speed Civil Transport (HSCT). Optimization work on this configuration began in early 1994 and continued into 1996. Initial work focused on optimization of the wing camber and twist on a wing/body configuration and reductions of 3.5 drag counts (Euler) were realized. The next phase of the optimization effort included fuselage camber along with the wing and a drag reduction of 5.0 counts was achieved. Including the effects of the nacelles and diverters into the optimization problem became the next focus where a reduction of 6.6 counts (Euler W/B/N/D) was eventually realized. The final two phases of the effort included a large set of constraints designed to make the final optimized configuration more realistic and they were successful albeit with a loss of performance.

  19. Smart-Grid Backbone Network Real-Time Delay Reduction via Integer Programming.

    PubMed

    Pagadrai, Sasikanth; Yilmaz, Muhittin; Valluri, Pratyush

    2016-08-01

    This research investigates an optimal delay-based virtual topology design using integer linear programming (ILP), which is applied to the current backbone networks such as smart-grid real-time communication systems. A network traffic matrix is applied and the corresponding virtual topology problem is solved using the ILP formulations that include a network delay-dependent objective function and lightpath routing, wavelength assignment, wavelength continuity, flow routing, and traffic loss constraints. The proposed optimization approach provides an efficient deterministic integration of intelligent sensing and decision making, and network learning features for superior smart grid operations by adaptively responding the time-varying network traffic data as well as operational constraints to maintain optimal virtual topologies. A representative optical backbone network has been utilized to demonstrate the proposed optimization framework whose simulation results indicate that superior smart-grid network performance can be achieved using commercial networks and integer programming.

  20. Robust Face Recognition via Multi-Scale Patch-Based Matrix Regression.

    PubMed

    Gao, Guangwei; Yang, Jian; Jing, Xiaoyuan; Huang, Pu; Hua, Juliang; Yue, Dong

    2016-01-01

    In many real-world applications such as smart card solutions, law enforcement, surveillance and access control, the limited training sample size is the most fundamental problem. By making use of the low-rank structural information of the reconstructed error image, the so-called nuclear norm-based matrix regression has been demonstrated to be effective for robust face recognition with continuous occlusions. However, the recognition performance of nuclear norm-based matrix regression degrades greatly in the face of the small sample size problem. An alternative solution to tackle this problem is performing matrix regression on each patch and then integrating the outputs from all patches. However, it is difficult to set an optimal patch size across different databases. To fully utilize the complementary information from different patch scales for the final decision, we propose a multi-scale patch-based matrix regression scheme based on which the ensemble of multi-scale outputs can be achieved optimally. Extensive experiments on benchmark face databases validate the effectiveness and robustness of our method, which outperforms several state-of-the-art patch-based face recognition algorithms.

  1. An Improved Hybrid Encoding Cuckoo Search Algorithm for 0-1 Knapsack Problems

    PubMed Central

    Feng, Yanhong; Jia, Ke; He, Yichao

    2014-01-01

    Cuckoo search (CS) is a new robust swarm intelligence method that is based on the brood parasitism of some cuckoo species. In this paper, an improved hybrid encoding cuckoo search algorithm (ICS) with greedy strategy is put forward for solving 0-1 knapsack problems. First of all, for solving binary optimization problem with ICS, based on the idea of individual hybrid encoding, the cuckoo search over a continuous space is transformed into the synchronous evolution search over discrete space. Subsequently, the concept of confidence interval (CI) is introduced; hence, the new position updating is designed and genetic mutation with a small probability is introduced. The former enables the population to move towards the global best solution rapidly in every generation, and the latter can effectively prevent the ICS from trapping into the local optimum. Furthermore, the greedy transform method is used to repair the infeasible solution and optimize the feasible solution. Experiments with a large number of KP instances show the effectiveness of the proposed algorithm and its ability to achieve good quality solutions. PMID:24527026

  2. Superpixel-based graph cuts for accurate stereo matching

    NASA Astrophysics Data System (ADS)

    Feng, Liting; Qin, Kaihuai

    2017-06-01

    Estimating the surface normal vector and disparity of a pixel simultaneously, also known as three-dimensional label method, has been widely used in recent continuous stereo matching problem to achieve sub-pixel accuracy. However, due to the infinite label space, it’s extremely hard to assign each pixel an appropriate label. In this paper, we present an accurate and efficient algorithm, integrating patchmatch with graph cuts, to approach this critical computational problem. Besides, to get robust and precise matching cost, we use a convolutional neural network to learn a similarity measure on small image patches. Compared with other MRF related methods, our method has several advantages: its sub-modular property ensures a sub-problem optimality which is easy to perform in parallel; graph cuts can simultaneously update multiple pixels, avoiding local minima caused by sequential optimizers like belief propagation; it uses segmentation results for better local expansion move; local propagation and randomization can easily generate the initial solution without using external methods. Middlebury experiments show that our method can get higher accuracy than other MRF-based algorithms.

  3. Clairvoyant fusion: a new methodology for designing robust detection algorithms

    NASA Astrophysics Data System (ADS)

    Schaum, Alan

    2016-10-01

    Many realistic detection problems cannot be solved with simple statistical tests for known alternative probability models. Uncontrollable environmental conditions, imperfect sensors, and other uncertainties transform simple detection problems with likelihood ratio solutions into composite hypothesis (CH) testing problems. Recently many multi- and hyperspectral sensing CH problems have been addressed with a new approach. Clairvoyant fusion (CF) integrates the optimal detectors ("clairvoyants") associated with every unspecified value of the parameters appearing in a detection model. For problems with discrete parameter values, logical rules emerge for combining the decisions of the associated clairvoyants. For many problems with continuous parameters, analytic methods of CF have been found that produce closed-form solutions-or approximations for intractable problems. Here the principals of CF are reviewed and mathematical insights are described that have proven useful in the derivation of solutions. It is also shown how a second-stage fusion procedure can be used to create theoretically superior detection algorithms for ALL discrete parameter problems.

  4. Efficiency optimization of wireless power transmission systems for active capsule endoscopes.

    PubMed

    Zhiwei, Jia; Guozheng, Yan; Jiangpingping; Zhiwu, Wang; Hua, Liu

    2011-10-01

    Multipurpose active capsule endoscopes have drawn considerable attention in recent years, but these devices continue to suffer from energy limitations. A wireless power supply system is regarded as a practical way to overcome the power shortage problem in such devices. This paper focuses on the efficiency optimization of a wireless energy supply system with size and safety constraints. A mathematical programming model in which these constraints are considered is proposed for transmission efficiency, optimal frequency and current, and overall system effectiveness. To verify the feasibility of the proposed method, we use a wireless active capsule endoscope as an illustrative example. The achieved efficiency can be regarded as an index for evaluating the system, and the proposed approach can be used to direct the design of transmitting and receiving coils.

  5. Bell-Curve Based Evolutionary Strategies for Structural Optimization

    NASA Technical Reports Server (NTRS)

    Kincaid, Rex K.

    2000-01-01

    Evolutionary methods are exceedingly popular with practitioners of many fields; more so than perhaps any optimization tool in existence. Historically Genetic Algorithms (GAs) led the way in practitioner popularity (Reeves 1997). However, in the last ten years Evolutionary Strategies (ESs) and Evolutionary Programs (EPS) have gained a significant foothold (Glover 1998). One partial explanation for this shift is the interest in using GAs to solve continuous optimization problems. The typical GA relies upon a cumber-some binary representation of the design variables. An ES or EP, however, works directly with the real-valued design variables. For detailed references on evolutionary methods in general and ES or EP in specific see Back (1996) and Dasgupta and Michalesicz (1997). We call our evolutionary algorithm BCB (bell curve based) since it is based upon two normal distributions.

  6. Competitive Swarm Optimizer Based Gateway Deployment Algorithm in Cyber-Physical Systems

    PubMed Central

    Huang, Shuqiang; Tao, Ming

    2017-01-01

    Wireless sensor network topology optimization is a highly important issue, and topology control through node selection can improve the efficiency of data forwarding, while saving energy and prolonging lifetime of the network. To address the problem of connecting a wireless sensor network to the Internet in cyber-physical systems, here we propose a geometric gateway deployment based on a competitive swarm optimizer algorithm. The particle swarm optimization (PSO) algorithm has a continuous search feature in the solution space, which makes it suitable for finding the geometric center of gateway deployment; however, its search mechanism is limited to the individual optimum (pbest) and the population optimum (gbest); thus, it easily falls into local optima. In order to improve the particle search mechanism and enhance the search efficiency of the algorithm, we introduce a new competitive swarm optimizer (CSO) algorithm. The CSO search algorithm is based on an inter-particle competition mechanism and can effectively avoid trapping of the population falling into a local optimum. With the improvement of an adaptive opposition-based search and its ability to dynamically parameter adjustments, this algorithm can maintain the diversity of the entire swarm to solve geometric K-center gateway deployment problems. The simulation results show that this CSO algorithm has a good global explorative ability as well as convergence speed and can improve the network quality of service (QoS) level of cyber-physical systems by obtaining a minimum network coverage radius. We also find that the CSO algorithm is more stable, robust and effective in solving the problem of geometric gateway deployment as compared to the PSO or Kmedoids algorithms. PMID:28117735

  7. A Comparative Study of Probability Collectives Based Multi-agent Systems and Genetic Algorithms

    NASA Technical Reports Server (NTRS)

    Huang, Chien-Feng; Wolpert, David H.; Bieniawski, Stefan; Strauss, Charles E. M.

    2005-01-01

    We compare Genetic Algorithms (GA's) with Probability Collectives (PC), a new framework for distributed optimization and control. In contrast to GA's, PC-based methods do not update populations of solutions. Instead they update an explicitly parameterized probability distribution p over the space of solutions. That updating of p arises as the optimization of a functional of p. The functional is chosen so that any p that optimizes it should be p peaked about good solutions. The PC approach works in both continuous and discrete problems. It does not suffer from the resolution limitation of the finite bit length encoding of parameters into GA alleles. It also has deep connections with both game theory and statistical physics. We review the PC approach using its motivation as the information theoretic formulation of bounded rationality for multi-agent systems. It is then compared with GA's on a diverse set of problems. To handle high dimensional surfaces, in the PC method investigated here p is restricted to a product distribution. Each distribution in that product is controlled by a separate agent. The test functions were selected for their difficulty using either traditional gradient descent or genetic algorithms. On those functions the PC-based approach significantly outperforms traditional GA's in both rate of descent, trapping in false minima, and long term optimization.

  8. Fast and Efficient Stochastic Optimization for Analytic Continuation

    DOE PAGES

    Bao, Feng; Zhang, Guannan; Webster, Clayton G; ...

    2016-09-28

    In this analytic continuation of imaginary-time quantum Monte Carlo data to extract real-frequency spectra remains a key problem in connecting theory with experiment. Here we present a fast and efficient stochastic optimization method (FESOM) as a more accessible variant of the stochastic optimization method introduced by Mishchenko et al. [Phys. Rev. B 62, 6317 (2000)], and we benchmark the resulting spectra with those obtained by the standard maximum entropy method for three representative test cases, including data taken from studies of the two-dimensional Hubbard model. Genearally, we find that our FESOM approach yields spectra similar to the maximum entropy results.more » In particular, while the maximum entropy method yields superior results when the quality of the data is strong, we find that FESOM is able to resolve fine structure with more detail when the quality of the data is poor. In addition, because of its stochastic nature, the method provides detailed information on the frequency-dependent uncertainty of the resulting spectra, while the maximum entropy method does so only for the spectral weight integrated over a finite frequency region. Therefore, we believe that this variant of the stochastic optimization approach provides a viable alternative to the routinely used maximum entropy method, especially for data of poor quality.« less

  9. Risk-Sensitive Control of Pure Jump Process on Countable Space with Near Monotone Cost

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suresh Kumar, K., E-mail: suresh@math.iitb.ac.in; Pal, Chandan, E-mail: cpal@math.iitb.ac.in

    2013-12-15

    In this article, we study risk-sensitive control problem with controlled continuous time pure jump process on a countable space as state dynamics. We prove multiplicative dynamic programming principle, elliptic and parabolic Harnack’s inequalities. Using the multiplicative dynamic programing principle and the Harnack’s inequalities, we prove the existence and a characterization of optimal risk-sensitive control under the near monotone condition.

  10. Obchs: AN Effective Harmony Search Algorithm with Oppositionbased Chaos-Enhanced Initialization for Solving Uncapacitated Facility Location Problems

    NASA Astrophysics Data System (ADS)

    Heidari, A. A.; Kazemizade, O.; Abbaspour, R. A.

    2015-12-01

    In this paper, a continuous harmony search (HS) approach is investigated for tackling the Uncapacitated Facility Location (UFL) task. This article proposes an efficient modified HS-based optimizer to improve the performance of HS on complex spatial tasks like UFL problems. For this aim, opposition-based learning (OBL) and chaotic patterns are utilized. The proposed technique is examined against several UFL benchmark challenges in specialized literature. Then, the modified HS is substantiated in detail and compared to the basic HS and some other methods. The results showed that new opposition-based chaotic HS (OBCHS) algorithm not only can exploit better solutions competently but it is able to outperform HS in solving UFL problems.

  11. Basics of breastfeeding. Part I: Infant feeding patterns past and present.

    PubMed

    Riordan, J; Countryman, B A

    1980-01-01

    One of the great medical advances of the past decade has been the scientific validation of the importance of species-specific milk. This "discovery" has led to a growing general awareness of the value, during the first year of life, of the milk of the baby's own mother for optimal physical and emotional development. These benefits of breastfeeding may last a lifetime. The need to understand and assist the mother in maintaining this relationship presents a major challenge to the nurse. Beginning with this issue of JOGN and continuing in two subsequent issues a series of six articles is being presented that gives an overview of breastfeeding, from historical perspectives to specific problems nursing mothers may encounter. The initial installment consists of "Infant Feeding Patterns Past and Present" and "The Anatomy and Psychophysiology of Lactation." Following in September/October and November/December will be "The Biologic Specificity of Breast Milk," "Preparation for Breastfeeding and Early Optimal Functioning," "Self-Care for Continued Breastfeeding," and "Some Breastfeeding Problems and Solutions." The cultural pattern of breastfeeding in ancient and contemporary cultures are compared, and changes during the Industrial Revolution that led to the decline in breastfeeding are outlined. Also described are the consequences of the trend away from breastfeeding in Third World countries and current breastfeeding patterns in the United States.

  12. Algorithms for bilevel optimization

    NASA Technical Reports Server (NTRS)

    Alexandrov, Natalia; Dennis, J. E., Jr.

    1994-01-01

    General multilevel nonlinear optimization problems arise in design of complex systems and can be used as a means of regularization for multi-criteria optimization problems. Here, for clarity in displaying our ideas, we restrict ourselves to general bi-level optimization problems, and we present two solution approaches. Both approaches use a trust-region globalization strategy, and they can be easily extended to handle the general multilevel problem. We make no convexity assumptions, but we do assume that the problem has a nondegenerate feasible set. We consider necessary optimality conditions for the bi-level problem formulations and discuss results that can be extended to obtain multilevel optimization formulations with constraints at each level.

  13. Near-Optimal Guidance Method for Maximizing the Reachable Domain of Gliding Aircraft

    NASA Astrophysics Data System (ADS)

    Tsuchiya, Takeshi

    This paper proposes a guidance method for gliding aircraft by using onboard computers to calculate a near-optimal trajectory in real-time, and thereby expanding the reachable domain. The results are applicable to advanced aircraft and future space transportation systems that require high safety. The calculation load of the optimal control problem that is used to maximize the reachable domain is too large for current computers to calculate in real-time. Thus the optimal control problem is divided into two problems: a gliding distance maximization problem in which the aircraft motion is limited to a vertical plane, and an optimal turning flight problem in a horizontal direction. First, the former problem is solved using a shooting method. It can be solved easily because its scale is smaller than that of the original problem, and because some of the features of the optimal solution are obtained in the first part of this paper. Next, in the latter problem, the optimal bank angle is computed from the solution of the former; this is an analytical computation, rather than an iterative computation. Finally, the reachable domain obtained from the proposed near-optimal guidance method is compared with that obtained from the original optimal control problem.

  14. Direct Method Transcription for a Human-Class Translunar Injection Trajectory Optimization

    NASA Technical Reports Server (NTRS)

    Witzberger, Kevin E.; Zeiler, Tom

    2012-01-01

    This paper presents a new trajectory optimization software package developed in the framework of a low-to-high fidelity 3 degrees-of-freedom (DOF)/6-DOF vehicle simulation program named Mission Analysis Simulation Tool in Fortran (MASTIF) and its application to a translunar trajectory optimization problem. The functionality of the developed optimization package is implemented as a new "mode" in generalized settings to make it applicable for a general trajectory optimization problem. In doing so, a direct optimization method using collocation is employed for solving the problem. Trajectory optimization problems in MASTIF are transcribed to a constrained nonlinear programming (NLP) problem and solved with SNOPT, a commercially available NLP solver. A detailed description of the optimization software developed is provided as well as the transcription specifics for the translunar injection (TLI) problem. The analysis includes a 3-DOF trajectory TLI optimization and a 3-DOF vehicle TLI simulation using closed-loop guidance.

  15. Optimal maintenance of a multi-unit system under dependencies

    NASA Astrophysics Data System (ADS)

    Sung, Ho-Joon

    The availability, or reliability, of an engineering component greatly influences the operational cost and safety characteristics of a modern system over its life-cycle. Until recently, the reliance on past empirical data has been the industry-standard practice to develop maintenance policies that provide the minimum level of system reliability. Because such empirically-derived policies are vulnerable to unforeseen or fast-changing external factors, recent advancements in the study of topic on maintenance, which is known as optimal maintenance problem, has gained considerable interest as a legitimate area of research. An extensive body of applicable work is available, ranging from those concerned with identifying maintenance policies aimed at providing required system availability at minimum possible cost, to topics on imperfect maintenance of multi-unit system under dependencies. Nonetheless, these existing mathematical approaches to solve for optimal maintenance policies must be treated with caution when considered for broader applications, as they are accompanied by specialized treatments to ease the mathematical derivation of unknown functions in both objective function and constraint for a given optimal maintenance problem. These unknown functions are defined as reliability measures in this thesis, and theses measures (e.g., expected number of failures, system renewal cycle, expected system up time, etc.) do not often lend themselves to possess closed-form formulas. It is thus quite common to impose simplifying assumptions on input probability distributions of components' lifetime or repair policies. Simplifying the complex structure of a multi-unit system to a k-out-of-n system by neglecting any sources of dependencies is another commonly practiced technique intended to increase the mathematical tractability of a particular model. This dissertation presents a proposal for an alternative methodology to solve optimal maintenance problems by aiming to achieve the same end-goals as Reliability Centered Maintenance (RCM). RCM was first introduced to the aircraft industry in an attempt to bridge the gap between the empirically-driven and theory-driven approaches to establishing optimal maintenance policies. Under RCM, qualitative processes that enable the prioritizing of functions based on the criticality and influence would be combined with mathematical modeling to obtain the optimal maintenance policies. Where this thesis work deviates from RCM is its proposal to directly apply quantitative processes to model the reliability measures in optimal maintenance problem. First, Monte Carlo (MC) simulation, in conjunction with a pre-determined Design of Experiments (DOE) table, can be used as a numerical means of obtaining the corresponding discrete simulated outcomes of the reliability measures based on the combination of decision variables (e.g., periodic preventive maintenance interval, trigger age for opportunistic maintenance, etc.). These discrete simulation results can then be regressed as Response Surface Equations (RSEs) with respect to the decision variables. Such an approach to represent the reliability measures with continuous surrogate functions (i.e., the RSEs) not only enables the application of the numerical optimization technique to solve for optimal maintenance policies, but also obviates the need to make mathematical assumptions or impose over-simplifications on the structure of a multi-unit system for the sake of mathematical tractability. The applicability of the proposed methodology to a real-world optimal maintenance problem is showcased through its application to a Time Limited Dispatch (TLD) of Full Authority Digital Engine Control (FADEC) system. In broader terms, this proof-of-concept exercise can be described as a constrained optimization problem, whose objective is to identify the optimal system inspection interval that guarantees a certain level of availability for a multi-unit system. A variety of reputable numerical techniques were used to model the problem as accurately as possible, including algorithms for the MC simulation, imperfect maintenance model from quasi renewal processes, repair time simulation, and state transition rules. Variance Reduction Techniques (VRTs) were also used in an effort to enhance MC simulation efficiency. After accurate MC simulation results are obtained, the RSEs are generated based on the goodness-of-fit measure to yield as parsimonious model as possible to construct the optimization problem. Under the assumption of constant failure rate for lifetime distributions, the inspection interval from the proposed methodology was found to be consistent with the one from the common approach used in industry that leverages Continuous Time Markov Chain (CTMC). While the latter does not consider maintenance cost settings, the proposed methodology enables an operator to consider different types of maintenance cost settings, e.g., inspection cost, system corrective maintenance cost, etc., to result in more flexible maintenance policies. When the proposed methodology was applied to the same TLD of FADEC example, but under the more generalized assumption of strictly Increasing Failure Rate (IFR) for lifetime distribution, it was shown to successfully capture component wear-out, as well as the economic dependencies among the system components.

  16. Optimal inverse functions created via population-based optimization.

    PubMed

    Jennings, Alan L; Ordóñez, Raúl

    2014-06-01

    Finding optimal inputs for a multiple-input, single-output system is taxing for a system operator. Population-based optimization is used to create sets of functions that produce a locally optimal input based on a desired output. An operator or higher level planner could use one of the functions in real time. For the optimization, each agent in the population uses the cost and output gradients to take steps lowering the cost while maintaining their current output. When an agent reaches an optimal input for its current output, additional agents are generated in the output gradient directions. The new agents then settle to the local optima for the new output values. The set of associated optimal points forms an inverse function, via spline interpolation, from a desired output to an optimal input. In this manner, multiple locally optimal functions can be created. These functions are naturally clustered in input and output spaces allowing for a continuous inverse function. The operator selects the best cluster over the anticipated range of desired outputs and adjusts the set point (desired output) while maintaining optimality. This reduces the demand from controlling multiple inputs, to controlling a single set point with no loss in performance. Results are demonstrated on a sample set of functions and on a robot control problem.

  17. Continuous-Time Public Good Contribution Under Uncertainty: A Stochastic Control Approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferrari, Giorgio, E-mail: giorgio.ferrari@uni-bielefeld.de; Riedel, Frank, E-mail: frank.riedel@uni-bielefeld.de; Steg, Jan-Henrik, E-mail: jsteg@uni-bielefeld.de

    In this paper we study continuous-time stochastic control problems with both monotone and classical controls motivated by the so-called public good contribution problem. That is the problem of n economic agents aiming to maximize their expected utility allocating initial wealth over a given time period between private consumption and irreversible contributions to increase the level of some public good. We investigate the corresponding social planner problem and the case of strategic interaction between the agents, i.e. the public good contribution game. We show existence and uniqueness of the social planner’s optimal policy, we characterize it by necessary and sufficient stochasticmore » Kuhn–Tucker conditions and we provide its expression in terms of the unique optional solution of a stochastic backward equation. Similar stochastic first order conditions prove to be very useful for studying any Nash equilibria of the public good contribution game. In the symmetric case they allow us to prove (qualitative) uniqueness of the Nash equilibrium, which we again construct as the unique optional solution of a stochastic backward equation. We finally also provide a detailed analysis of the so-called free rider effect.« less

  18. Optimal recombination in genetic algorithms for flowshop scheduling problems

    NASA Astrophysics Data System (ADS)

    Kovalenko, Julia

    2016-10-01

    The optimal recombination problem consists in finding the best possible offspring as a result of a recombination operator in a genetic algorithm, given two parent solutions. We prove NP-hardness of the optimal recombination for various variants of the flowshop scheduling problem with makespan criterion and criterion of maximum lateness. An algorithm for solving the optimal recombination problem for permutation flowshop problems is built, using enumeration of prefect matchings in a special bipartite graph. The algorithm is adopted for the classical flowshop scheduling problem and for the no-wait flowshop problem. It is shown that the optimal recombination problem for the permutation flowshop scheduling problem is solvable in polynomial time for almost all pairs of parent solutions as the number of jobs tends to infinity.

  19. Inexact trajectory planning and inverse problems in the Hamilton–Pontryagin framework

    PubMed Central

    Burnett, Christopher L.; Holm, Darryl D.; Meier, David M.

    2013-01-01

    We study a trajectory-planning problem whose solution path evolves by means of a Lie group action and passes near a designated set of target positions at particular times. This is a higher-order variational problem in optimal control, motivated by potential applications in computational anatomy and quantum control. Reduction by symmetry in such problems naturally summons methods from Lie group theory and Riemannian geometry. A geometrically illuminating form of the Euler–Lagrange equations is obtained from a higher-order Hamilton–Pontryagin variational formulation. In this context, the previously known node equations are recovered with a new interpretation as Legendre–Ostrogradsky momenta possessing certain conservation properties. Three example applications are discussed as well as a numerical integration scheme that follows naturally from the Hamilton–Pontryagin principle and preserves the geometric properties of the continuous-time solution. PMID:24353467

  20. Distance majorization and its applications.

    PubMed

    Chi, Eric C; Zhou, Hua; Lange, Kenneth

    2014-08-01

    The problem of minimizing a continuously differentiable convex function over an intersection of closed convex sets is ubiquitous in applied mathematics. It is particularly interesting when it is easy to project onto each separate set, but nontrivial to project onto their intersection. Algorithms based on Newton's method such as the interior point method are viable for small to medium-scale problems. However, modern applications in statistics, engineering, and machine learning are posing problems with potentially tens of thousands of parameters or more. We revisit this convex programming problem and propose an algorithm that scales well with dimensionality. Our proposal is an instance of a sequential unconstrained minimization technique and revolves around three ideas: the majorization-minimization principle, the classical penalty method for constrained optimization, and quasi-Newton acceleration of fixed-point algorithms. The performance of our distance majorization algorithms is illustrated in several applications.

  1. On the matrix Fourier filtering problem for a class of models of nonlinear optical systems with a feedback

    NASA Astrophysics Data System (ADS)

    Razgulin, A. V.; Sazonova, S. V.

    2017-09-01

    A novel statement of the Fourier filtering problem based on the use of matrix Fourier filters instead of conventional multiplier filters is considered. The basic properties of the matrix Fourier filtering for the filters in the Hilbert-Schmidt class are established. It is proved that the solutions with a finite energy to the periodic initial boundary value problem for the quasi-linear functional differential diffusion equation with the matrix Fourier filtering Lipschitz continuously depend on the filter. The problem of optimal matrix Fourier filtering is formulated, and its solvability for various classes of matrix Fourier filters is proved. It is proved that the objective functional is differentiable with respect to the matrix Fourier filter, and the convergence of a version of the gradient projection method is also proved.

  2. Constrained Multi-Level Algorithm for Trajectory Optimization

    NASA Astrophysics Data System (ADS)

    Adimurthy, V.; Tandon, S. R.; Jessy, Antony; Kumar, C. Ravi

    The emphasis on low cost access to space inspired many recent developments in the methodology of trajectory optimization. Ref.1 uses a spectral patching method for optimization, where global orthogonal polynomials are used to describe the dynamical constraints. A two-tier approach of optimization is used in Ref.2 for a missile mid-course trajectory optimization. A hybrid analytical/numerical approach is described in Ref.3, where an initial analytical vacuum solution is taken and gradually atmospheric effects are introduced. Ref.4 emphasizes the fact that the nonlinear constraints which occur in the initial and middle portions of the trajectory behave very nonlinearly with respect the variables making the optimization very difficult to solve in the direct and indirect shooting methods. The problem is further made complex when different phases of the trajectory have different objectives of optimization and also have different path constraints. Such problems can be effectively addressed by multi-level optimization. In the multi-level methods reported so far, optimization is first done in identified sub-level problems, where some coordination variables are kept fixed for global iteration. After all the sub optimizations are completed, higher-level optimization iteration with all the coordination and main variables is done. This is followed by further sub system optimizations with new coordination variables. This process is continued until convergence. In this paper we use a multi-level constrained optimization algorithm which avoids the repeated local sub system optimizations and which also removes the problem of non-linear sensitivity inherent in the single step approaches. Fall-zone constraints, structural load constraints and thermal constraints are considered. In this algorithm, there is only a single multi-level sequence of state and multiplier updates in a framework of an augmented Lagrangian. Han Tapia multiplier updates are used in view of their special role in diagonalised methods, being the only single update with quadratic convergence. For a single level, the diagonalised multiplier method (DMM) is described in Ref.5. The main advantage of the two-level analogue of the DMM approach is that it avoids the inner loop optimizations required in the other methods. The scheme also introduces a gradient change measure to reduce the computational time needed to calculate the gradients. It is demonstrated that the new multi-level scheme leads to a robust procedure to handle the sensitivity of the constraints, and the multiple objectives of different trajectory phases. Ref. 1. Fahroo, F and Ross, M., " A Spectral Patching Method for Direct Trajectory Optimization" The Journal of the Astronautical Sciences, Vol.48, 2000, pp.269-286 Ref. 2. Phililps, C.A. and Drake, J.C., "Trajectory Optimization for a Missile using a Multitier Approach" Journal of Spacecraft and Rockets, Vol.37, 2000, pp.663-669 Ref. 3. Gath, P.F., and Calise, A.J., " Optimization of Launch Vehicle Ascent Trajectories with Path Constraints and Coast Arcs", Journal of Guidance, Control, and Dynamics, Vol. 24, 2001, pp.296-304 Ref. 4. Betts, J.T., " Survey of Numerical Methods for Trajectory Optimization", Journal of Guidance, Control, and Dynamics, Vol.21, 1998, pp. 193-207 Ref. 5. Adimurthy, V., " Launch Vehicle Trajectory Optimization", Acta Astronautica, Vol.15, 1987, pp.845-850.

  3. An efficient and accurate solution methodology for bilevel multi-objective programming problems using a hybrid evolutionary-local-search algorithm.

    PubMed

    Deb, Kalyanmoy; Sinha, Ankur

    2010-01-01

    Bilevel optimization problems involve two optimization tasks (upper and lower level), in which every feasible upper level solution must correspond to an optimal solution to a lower level optimization problem. These problems commonly appear in many practical problem solving tasks including optimal control, process optimization, game-playing strategy developments, transportation problems, and others. However, they are commonly converted into a single level optimization problem by using an approximate solution procedure to replace the lower level optimization task. Although there exist a number of theoretical, numerical, and evolutionary optimization studies involving single-objective bilevel programming problems, not many studies look at the context of multiple conflicting objectives in each level of a bilevel programming problem. In this paper, we address certain intricate issues related to solving multi-objective bilevel programming problems, present challenging test problems, and propose a viable and hybrid evolutionary-cum-local-search based algorithm as a solution methodology. The hybrid approach performs better than a number of existing methodologies and scales well up to 40-variable difficult test problems used in this study. The population sizing and termination criteria are made self-adaptive, so that no additional parameters need to be supplied by the user. The study indicates a clear niche of evolutionary algorithms in solving such difficult problems of practical importance compared to their usual solution by a computationally expensive nested procedure. The study opens up many issues related to multi-objective bilevel programming and hopefully this study will motivate EMO and other researchers to pay more attention to this important and difficult problem solving activity.

  4. Fourth-order convergence of a compact scheme for the one-dimensional biharmonic equation

    NASA Astrophysics Data System (ADS)

    Fishelov, D.; Ben-Artzi, M.; Croisille, J.-P.

    2012-09-01

    The convergence of a fourth-order compact scheme to the one-dimensional biharmonic problem is established in the case of general Dirichlet boundary conditions. The compact scheme invokes value of the unknown function as well as Pade approximations of its first-order derivative. Using the Pade approximation allows us to approximate the first-order derivative within fourth-order accuracy. However, although the truncation error of the discrete biharmonic scheme is of fourth-order at interior point, the truncation error drops to first-order at near-boundary points. Nonetheless, we prove that the scheme retains its fourth-order (optimal) accuracy. This is done by a careful inspection of the matrix elements of the discrete biharmonic operator. A number of numerical examples corroborate this effect. We also present a study of the eigenvalue problem uxxxx = νu. We compute and display the eigenvalues and the eigenfunctions related to the continuous and the discrete problems. By the positivity of the eigenvalues, one can deduce the stability of of the related time-dependent problem ut = -uxxxx. In addition, we study the eigenvalue problem uxxxx = νuxx. This is related to the stability of the linear time-dependent equation uxxt = νuxxxx. Its continuous and discrete eigenvalues and eigenfunction (or eigenvectors) are computed and displayed graphically.

  5. Is there a trade-off between longevity and quality of life in Grossman's pure investment model?

    PubMed

    Eisenring, C

    2000-12-01

    The question is posed whether an individual maximizes lifetime or trades off longevity for quality of life in Grossman's pure investment (PI)-model. It is shown that the answer critically hinges on the assumed production function for healthy time. If the production function for healthy time produces a trade-off between life-span and quality of life, one has to solve a sequence of fixed time problems. The one offering maximal intertemporal utility determines optimal longevity. Comparative static results of optimal longevity for a simplified version of the PI-model are derived. The obtained results predict that higher initial endowments of wealth and health, a rise in the wage rate, or improvements in the technology of producing healthy time, all increase the optimal length of life. On the other hand, optimal longevity is decreasing in the depreciation and interest rate. From a technical point of view, the paper illustrates that a discrete time equivalent to the transversality condition for optimal longevity employed in continuous optimal control models does not exist. Copyright 2000 John Wiley & Sons, Ltd.

  6. Finite dimensional approximation of a class of constrained nonlinear optimal control problems

    NASA Technical Reports Server (NTRS)

    Gunzburger, Max D.; Hou, L. S.

    1994-01-01

    An abstract framework for the analysis and approximation of a class of nonlinear optimal control and optimization problems is constructed. Nonlinearities occur in both the objective functional and in the constraints. The framework includes an abstract nonlinear optimization problem posed on infinite dimensional spaces, and approximate problem posed on finite dimensional spaces, together with a number of hypotheses concerning the two problems. The framework is used to show that optimal solutions exist, to show that Lagrange multipliers may be used to enforce the constraints, to derive an optimality system from which optimal states and controls may be deduced, and to derive existence results and error estimates for solutions of the approximate problem. The abstract framework and the results derived from that framework are then applied to three concrete control or optimization problems and their approximation by finite element methods. The first involves the von Karman plate equations of nonlinear elasticity, the second, the Ginzburg-Landau equations of superconductivity, and the third, the Navier-Stokes equations for incompressible, viscous flows.

  7. LDRD Final Report: Global Optimization for Engineering Science Problems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    HART,WILLIAM E.

    1999-12-01

    For a wide variety of scientific and engineering problems the desired solution corresponds to an optimal set of objective function parameters, where the objective function measures a solution's quality. The main goal of the LDRD ''Global Optimization for Engineering Science Problems'' was the development of new robust and efficient optimization algorithms that can be used to find globally optimal solutions to complex optimization problems. This SAND report summarizes the technical accomplishments of this LDRD, discusses lessons learned and describes open research issues.

  8. Proton-beam writing channel based on an electrostatic accelerator

    NASA Astrophysics Data System (ADS)

    Lapin, A. S.; Rebrov, V. A.; Kolin'ko, S. V.; Salivon, V. F.; Ponomarev, A. G.

    2016-09-01

    We have described the structure of the proton-beam writing channel as a continuation of a nuclear scanning microprobe channel. The problem of the accuracy of positioning a probe by constructing a new high-frequency electrostatic scanning system has been solved. Special attention has been paid to designing the probe-forming system and its various configurations have been considered. The probe-forming system that best corresponds to the conditions of the lithographic process has been found based on solving the problem of optimizing proton beam formation. A system for controlling beam scanning using multifunctional module of integrated programmable logic systems has been developed.

  9. Batch Mode Reinforcement Learning based on the Synthesis of Artificial Trajectories

    PubMed Central

    Fonteneau, Raphael; Murphy, Susan A.; Wehenkel, Louis; Ernst, Damien

    2013-01-01

    In this paper, we consider the batch mode reinforcement learning setting, where the central problem is to learn from a sample of trajectories a policy that satisfies or optimizes a performance criterion. We focus on the continuous state space case for which usual resolution schemes rely on function approximators either to represent the underlying control problem or to represent its value function. As an alternative to the use of function approximators, we rely on the synthesis of “artificial trajectories” from the given sample of trajectories, and show that this idea opens new avenues for designing and analyzing algorithms for batch mode reinforcement learning. PMID:24049244

  10. Optimal transfers between libration-point orbits in the elliptic restricted three-body problem

    NASA Astrophysics Data System (ADS)

    Hiday, Lisa Ann

    1992-09-01

    A strategy is formulated to design optimal impulsive transfers between three-dimensional libration-point orbits in the vicinity of the interior L(1) libration point of the Sun-Earth/Moon barycenter system. Two methods of constructing nominal transfers, for which the fuel cost is to be minimized, are developed; both inferior and superior transfers between two halo orbits are considered. The necessary conditions for an optimal transfer trajectory are stated in terms of the primer vector. The adjoint equation relating reference and perturbed trajectories in this formulation of the elliptic restricted three-body problem is shown to be distinctly different from that obtained in the analysis of trajectories in the two-body problem. Criteria are established whereby the cost on a nominal transfer can be improved by the addition of an interior impulse or by the implementation of coastal arcs in the initial and final orbits. The necessary conditions for the local optimality of a time-fixed transfer trajectory possessing additional impulses are satisfied by requiring continuity of the Hamiltonian and the derivative of the primer vector at all interior impulses. The optimality of a time-free transfer containing coastal arcs is surmised by examination of the slopes at the endpoints of a plot of the magnitude of the primer vector over the duration of the transfer path. If the initial and final slopes of the primer magnitude are zero, the transfer trajectory is optimal; otherwise, the execution of coasts is warranted. The position and timing of each interior impulse applied to a time-fixed transfer as well as the direction and length of coastal periods implemented on a time-free transfer are specified by the unconstrained minimization of the appropriate variation in cost utilizing a multivariable search technique. Although optimal solutions in some instances are elusive, the time-fixed and time-free optimization algorithms prove to be very successful in diminishing costs on nominal transfer trajectories. The inclusion of coastal arcs on time-free superior and inferior transfers results in significant modification of the transfer time of flight caused by shifts in departure and arrival locations on the halo orbits.

  11. Evolutionary algorithms for the optimization of advective control of contaminated aquifer zones

    NASA Astrophysics Data System (ADS)

    Bayer, Peter; Finkel, Michael

    2004-06-01

    Simple genetic algorithms (SGAs) and derandomized evolution strategies (DESs) are employed to adapt well capture zones for the hydraulic optimization of pump-and-treat systems. A hypothetical contaminant site in a heterogeneous aquifer serves as an application template. On the basis of the results from numerical flow modeling, particle tracking is applied to delineate the pathways of the contaminants. The objective is to find the minimum pumping rate of up to eight recharge wells within a downgradient well placement area. Both the well coordinates and the pumping rates are subject to optimization, leading to a mixed discrete-continuous problem. This article discusses the ideal formulation of the objective function for which the number of particles and the total pumping rate are used as decision criteria. Boundary updating is introduced, which enables the reorganization of the decision space limits by the incorporation of experience from previous optimization runs. Throughout the study the algorithms' capabilities are evaluated in terms of the number of model runs which are needed to identify optimal and suboptimal solutions. Despite the complexity of the problem both evolutionary algorithm variants prove to be suitable for finding suboptimal solutions. The DES with weighted recombination reveals to be the ideal algorithm to find optimal solutions. Though it works with real-coded decision parameters, it proves to be suitable for adjusting discrete well positions. Principally, the representation of well positions as binary strings in the SGA is ideal. However, even if the SGA takes advantage of bookkeeping, the vital high discretization of pumping rates results in long binary strings, which escalates the model runs that are needed to find an optimal solution. Since the SGA string lengths increase with the number of wells, the DES gains superiority, particularly for an increasing number of wells. As the DES is a self-adaptive algorithm, it proves to be the more robust optimization method for the selected advective control problem than the SGA variants of this study, exhibiting a less stochastic search which is reflected in the minor variability of the found solutions.

  12. Autonomous interplanetary constellation design

    NASA Astrophysics Data System (ADS)

    Chow, Cornelius Channing, II

    According to NASA's integrated space technology roadmaps, space-based infrastructures are envisioned as necessary ingredients to a sustained effort in continuing space exploration. Whether it be for extra-terrestrial habitats, roving/cargo vehicles, or space tourism, autonomous space networks will provide a vital communications lifeline for both future robotic and human missions alike. Projecting that the Moon will be a bustling hub of activity within a few decades, a near-term opportunity for in-situ infrastructure development is within reach. This dissertation addresses the anticipated need for in-space infrastructure by investigating a general design methodology for autonomous interplanetary constellations; to illustrate the theory, this manuscript presents results from an application to the Earth-Moon neighborhood. The constellation design methodology is formulated as an optimization problem, involving a trajectory design step followed by a spacecraft placement sequence. Modeling the dynamics as a restricted 3-body problem, the investigated design space consists of families of periodic orbits which play host to the constellations, punctuated by arrangements of spacecraft autonomously guided by a navigation strategy called LiAISON (Linked Autonomous Interplanetary Satellite Orbit Navigation). Instead of more traditional exhaustive search methods, a numerical continuation approach is implemented to map the admissible configuration space. In particular, Keller's pseudo-arclength technique is used to follow folding/bifurcating solution manifolds, which are otherwise inaccessible with other parameter continuation schemes. A succinct characterization of the underlying structure of the local, as well as global, extrema is thus achievable with little a priori intuition of the solution space. Furthermore, the proposed design methodology offers benefits in computation speed plus the ability to handle mildly stochastic systems. An application of the constellation design methodology to the restricted Earth-Moon system, reveals optimal pairwise configurations for various L1, L2, and L5 (halo, axial, and vertical) periodic orbit families. Navigation accuracies, ranging from O (10+/-1) meters in position space, are obtained for the optimal Earth-Moon constellations, given measurement noise on the order of 1 meter.

  13. MGA trajectory planning with an ACO-inspired algorithm

    NASA Astrophysics Data System (ADS)

    Ceriotti, Matteo; Vasile, Massimiliano

    2010-11-01

    Given a set of celestial bodies, the problem of finding an optimal sequence of swing-bys, deep space manoeuvres (DSM) and transfer arcs connecting the elements of the set is combinatorial in nature. The number of possible paths grows exponentially with the number of celestial bodies. Therefore, the design of an optimal multiple gravity assist (MGA) trajectory is a NP-hard mixed combinatorial-continuous problem. Its automated solution would greatly improve the design of future space missions, allowing the assessment of a large number of alternative mission options in a short time. This work proposes to formulate the complete automated design of a multiple gravity assist trajectory as an autonomous planning and scheduling problem. The resulting scheduled plan will provide the optimal planetary sequence and a good estimation of the set of associated optimal trajectories. The trajectory model consists of a sequence of celestial bodies connected by two-dimensional transfer arcs containing one DSM. For each transfer arc, the position of the planet and the spacecraft, at the time of arrival, are matched by varying the pericentre of the preceding swing-by, or the magnitude of the launch excess velocity, for the first arc. For each departure date, this model generates a full tree of possible transfers from the departure to the destination planet. Each leaf of the tree represents a planetary encounter and a possible way to reach that planet. An algorithm inspired by ant colony optimization (ACO) is devised to explore the space of possible plans. The ants explore the tree from departure to destination adding one node at the time: every time an ant is at a node, a probability function is used to select a feasible direction. This approach to automatic trajectory planning is applied to the design of optimal transfers to Saturn and among the Galilean moons of Jupiter. Solutions are compared to those found through more traditional genetic-algorithm techniques.

  14. Efficient Computation of Separation-Compliant Speed Advisories for Air Traffic Arriving in Terminal Airspace

    NASA Technical Reports Server (NTRS)

    Sadovsky, Alexander V.; Davis, Damek; Isaacson, Douglas R.

    2012-01-01

    A class of problems in air traffic management asks for a scheduling algorithm that supplies the air traffic services authority not only with a schedule of arrivals and departures, but also with speed advisories. Since advisories must be finite, a scheduling algorithm must ultimately produce a finite data set, hence must either start with a purely discrete model or involve a discretization of a continuous one. The former choice, often preferred for intuitive clarity, naturally leads to mixed-integer programs, hindering proofs of correctness and computational cost bounds (crucial for real-time operations). In this paper, a hybrid control system is used to model air traffic scheduling, capturing both the discrete and continuous aspects. This framework is applied to a class of problems, called the Fully Routed Nominal Problem. We prove a number of geometric results on feasible schedules and use these results to formulate an algorithm that attempts to compute a collective speed advisory, effectively finite, and has computational cost polynomial in the number of aircraft. This work is a first step toward optimization and models refined with more realistic detail.

  15. Research on NC laser combined cutting optimization model of sheet metal parts

    NASA Astrophysics Data System (ADS)

    Wu, Z. Y.; Zhang, Y. L.; Li, L.; Wu, L. H.; Liu, N. B.

    2017-09-01

    The optimization problem for NC laser combined cutting of sheet metal parts was taken as the research object in this paper. The problem included two contents: combined packing optimization and combined cutting path optimization. In the problem of combined packing optimization, the method of “genetic algorithm + gravity center NFP + geometric transformation” was used to optimize the packing of sheet metal parts. In the problem of combined cutting path optimization, the mathematical model of cutting path optimization was established based on the parts cutting constraint rules of internal contour priority and cross cutting. The model played an important role in the optimization calculation of NC laser combined cutting.

  16. An Enhanced Memetic Algorithm for Single-Objective Bilevel Optimization Problems.

    PubMed

    Islam, Md Monjurul; Singh, Hemant Kumar; Ray, Tapabrata; Sinha, Ankur

    2017-01-01

    Bilevel optimization, as the name reflects, deals with optimization at two interconnected hierarchical levels. The aim is to identify the optimum of an upper-level  leader problem, subject to the optimality of a lower-level follower problem. Several problems from the domain of engineering, logistics, economics, and transportation have an inherent nested structure which requires them to be modeled as bilevel optimization problems. Increasing size and complexity of such problems has prompted active theoretical and practical interest in the design of efficient algorithms for bilevel optimization. Given the nested nature of bilevel problems, the computational effort (number of function evaluations) required to solve them is often quite high. In this article, we explore the use of a Memetic Algorithm (MA) to solve bilevel optimization problems. While MAs have been quite successful in solving single-level optimization problems, there have been relatively few studies exploring their potential for solving bilevel optimization problems. MAs essentially attempt to combine advantages of global and local search strategies to identify optimum solutions with low computational cost (function evaluations). The approach introduced in this article is a nested Bilevel Memetic Algorithm (BLMA). At both upper and lower levels, either a global or a local search method is used during different phases of the search. The performance of BLMA is presented on twenty-five standard test problems and two real-life applications. The results are compared with other established algorithms to demonstrate the efficacy of the proposed approach.

  17. Adjoint Method and Predictive Control for 1-D Flow in NASA Ames 11-Foot Transonic Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan; Ardema, Mark

    2006-01-01

    This paper describes a modeling method and a new optimal control approach to investigate a Mach number control problem for the NASA Ames 11-Foot Transonic Wind Tunnel. The flow in the wind tunnel is modeled by the 1-D unsteady Euler equations whose boundary conditions prescribe a controlling action by a compressor. The boundary control inputs to the compressor are in turn controlled by a drive motor system and an inlet guide vane system whose dynamics are modeled by ordinary differential equations. The resulting Euler equations are thus coupled to the ordinary differential equations via the boundary conditions. Optimality conditions are established by an adjoint method and are used to develop a model predictive linear-quadratic optimal control for regulating the Mach number due to a test model disturbance during a continuous pitch

  18. Techniques for shuttle trajectory optimization

    NASA Technical Reports Server (NTRS)

    Edge, E. R.; Shieh, C. J.; Powers, W. F.

    1973-01-01

    The application of recently developed function-space Davidon-type techniques to the shuttle ascent trajectory optimization problem is discussed along with an investigation of the recently developed PRAXIS algorithm for parameter optimization. At the outset of this analysis, the major deficiency of the function-space algorithms was their potential storage problems. Since most previous analyses of the methods were with relatively low-dimension problems, no storage problems were encountered. However, in shuttle trajectory optimization, storage is a problem, and this problem was handled efficiently. Topics discussed include: the shuttle ascent model and the development of the particular optimization equations; the function-space algorithms; the operation of the algorithm and typical simulations; variable final-time problem considerations; and a modification of Powell's algorithm.

  19. Laplace Inversion of Low-Resolution NMR Relaxometry Data Using Sparse Representation Methods

    PubMed Central

    Berman, Paula; Levi, Ofer; Parmet, Yisrael; Saunders, Michael; Wiesman, Zeev

    2013-01-01

    Low-resolution nuclear magnetic resonance (LR-NMR) relaxometry is a powerful tool that can be harnessed for characterizing constituents in complex materials. Conversion of the relaxation signal into a continuous distribution of relaxation components is an ill-posed inverse Laplace transform problem. The most common numerical method implemented today for dealing with this kind of problem is based on L2-norm regularization. However, sparse representation methods via L1 regularization and convex optimization are a relatively new approach for effective analysis and processing of digital images and signals. In this article, a numerical optimization method for analyzing LR-NMR data by including non-negativity constraints and L1 regularization and by applying a convex optimization solver PDCO, a primal-dual interior method for convex objectives, that allows general linear constraints to be treated as linear operators is presented. The integrated approach includes validation of analyses by simulations, testing repeatability of experiments, and validation of the model and its statistical assumptions. The proposed method provides better resolved and more accurate solutions when compared with those suggested by existing tools. © 2013 Wiley Periodicals, Inc. Concepts Magn Reson Part A 42A: 72–88, 2013. PMID:23847452

  20. Laplace Inversion of Low-Resolution NMR Relaxometry Data Using Sparse Representation Methods.

    PubMed

    Berman, Paula; Levi, Ofer; Parmet, Yisrael; Saunders, Michael; Wiesman, Zeev

    2013-05-01

    Low-resolution nuclear magnetic resonance (LR-NMR) relaxometry is a powerful tool that can be harnessed for characterizing constituents in complex materials. Conversion of the relaxation signal into a continuous distribution of relaxation components is an ill-posed inverse Laplace transform problem. The most common numerical method implemented today for dealing with this kind of problem is based on L 2 -norm regularization. However, sparse representation methods via L 1 regularization and convex optimization are a relatively new approach for effective analysis and processing of digital images and signals. In this article, a numerical optimization method for analyzing LR-NMR data by including non-negativity constraints and L 1 regularization and by applying a convex optimization solver PDCO, a primal-dual interior method for convex objectives, that allows general linear constraints to be treated as linear operators is presented. The integrated approach includes validation of analyses by simulations, testing repeatability of experiments, and validation of the model and its statistical assumptions. The proposed method provides better resolved and more accurate solutions when compared with those suggested by existing tools. © 2013 Wiley Periodicals, Inc. Concepts Magn Reson Part A 42A: 72-88, 2013.

  1. Processor tradeoffs in distributed real-time systems

    NASA Technical Reports Server (NTRS)

    Krishna, C. M.; Shin, Kang G.; Bhandari, Inderpal S.

    1987-01-01

    The problem of the optimization of the design of real-time distributed systems is examined with reference to a class of computer architectures similar to the continuously reconfigurable multiprocessor flight control system structure, CM2FCS. Particular attention is given to the impact of processor replacement and the burn-in time on the probability of dynamic failure and mean cost. The solution is obtained numerically and interpreted in the context of real-time applications.

  2. A Comparative Study Teaching Chemistry Using the 5E Learning Cycle and Traditional Teaching with a Large English Language Population in a Middle-School Setting

    ERIC Educational Resources Information Center

    McWright, Cynthia Nicole Pendleton

    2017-01-01

    For decades science educators and educational institutions have been concerned with the status of science content being taught in K-12 schools and the delivery of the content. Thus, educational reformers in the United States continue to strive to solve the problem on how to best teach science for optimal success in learning. The constructivist…

  3. Mixed-Integer Conic Linear Programming: Challenges and Perspectives

    DTIC Science & Technology

    2013-10-01

    The novel DCCs for MISOCO may be used in branch- and-cut algorithms when solving MISOCO problems. The experimental software CICLO was developed to...perform limited, but rigorous computational experiments. The CICLO solver utilizes continuous SOCO solvers, MOSEK, CPLES or SeDuMi, builds on the open...submitted Fall 2013. Software: 1. CICLO : Integer conic linear optimization package. Authors: J.C. Góez, T.K. Ralphs, Y. Fu, and T. Terlaky

  4. Performance Characterization, Development, and Application of Artificial Potential Function Guidance Methods

    DTIC Science & Technology

    2014-03-01

    to determine if a system is stabilizable with feedback. 12 that asymptotic stability is guaranteed by Lyapunov theory. The advantage of this method are...discretized dynamics are a sufficient representation of the continuous system . Given these assumptions, the optimal control problem for minimum transit time is...tion (APF) guidance performance when applied to systems with limited control au- thority in a dynamic environment and then to use the findings to

  5. On l(1): Optimal decentralized performance

    NASA Technical Reports Server (NTRS)

    Sourlas, Dennis; Manousiouthakis, Vasilios

    1993-01-01

    In this paper, the Manousiouthakis parametrization of all decentralized stabilizing controllers is employed in mathematically formulating the l(sup 1) optimal decentralized controller synthesis problem. The resulting optimization problem is infinite dimensional and therefore not directly amenable to computations. It is shown that finite dimensional optimization problems that have value arbitrarily close to the infinite dimensional one can be constructed. Based on this result, an algorithm that solves the l(sup 1) decentralized performance problems is presented. A global optimization approach to the solution of the infinite dimensional approximating problems is also discussed.

  6. Execution of Multidisciplinary Design Optimization Approaches on Common Test Problems

    NASA Technical Reports Server (NTRS)

    Balling, R. J.; Wilkinson, C. A.

    1997-01-01

    A class of synthetic problems for testing multidisciplinary design optimization (MDO) approaches is presented. These test problems are easy to reproduce because all functions are given as closed-form mathematical expressions. They are constructed in such a way that the optimal value of all variables and the objective is unity. The test problems involve three disciplines and allow the user to specify the number of design variables, state variables, coupling functions, design constraints, controlling design constraints, and the strength of coupling. Several MDO approaches were executed on two sample synthetic test problems. These approaches included single-level optimization approaches, collaborative optimization approaches, and concurrent subspace optimization approaches. Execution results are presented, and the robustness and efficiency of these approaches an evaluated for these sample problems.

  7. Continuous-variable phase estimation with unitary and random linear disturbance

    NASA Astrophysics Data System (ADS)

    Delgado de Souza, Douglas; Genoni, Marco G.; Kim, M. S.

    2014-10-01

    We address the problem of continuous-variable quantum phase estimation in the presence of linear disturbance at the Hamiltonian level by means of Gaussian probe states. In particular we discuss both unitary and random disturbance by considering the parameter which characterizes the unwanted linear term present in the Hamiltonian as fixed (unitary disturbance) or random with a given probability distribution (random disturbance). We derive the optimal input Gaussian states at fixed energy, maximizing the quantum Fisher information over the squeezing angle and the squeezing energy fraction, and we discuss the scaling of the quantum Fisher information in terms of the output number of photons, nout. We observe that, in the case of unitary disturbance, the optimal state is a squeezed vacuum state and the quadratic scaling is conserved. As regards the random disturbance, we observe that the optimal squeezing fraction may not be equal to one and, for any nonzero value of the noise parameter, the quantum Fisher information scales linearly with the average number of photons. Finally, we discuss the performance of homodyne measurement by comparing the achievable precision with the ultimate limit imposed by the quantum Cramér-Rao bound.

  8. Optimization of temperature field of tobacco heat shrink machine

    NASA Astrophysics Data System (ADS)

    Yang, Xudong; Yang, Hai; Sun, Dong; Xu, Mingyang

    2018-06-01

    A company currently shrinking machine in the course of the film shrinkage is not compact, uneven temperature, resulting in poor quality of the shrinkage of the surface film. To solve this problem, the simulation and optimization of the temperature field are performed by using the k-epsilon turbulence model and the MRF model in fluent. The simulation results show that after the mesh screen structure is installed at the suction inlet of the centrifugal fan, the suction resistance of the fan can be increased and the eddy current intensity caused by the high-speed rotation of the fan can be improved, so that the internal temperature continuity of the heat shrinkable machine is Stronger.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yue J.; Malikopoulos, Andreas; Cassandras, Christos G.

    We address the problem of coordinating online a continuous flow of connected and automated vehicles (CAVs) crossing two adjacent intersections in an urban area. We present a decentralized optimal control framework whose solution yields for each vehicle the optimal acceleration/deceleration at any time in the sense of minimizing fuel consumption. The solu- tion, when it exists, allows the vehicles to cross the intersections without the use of traffic lights, without creating congestion on the connecting road, and under the hard safety constraint of collision avoidance. The effectiveness of the proposed solution is validated through simulation considering two intersections located inmore » downtown Boston, and it is shown that coordination of CAVs can reduce significantly both fuel consumption and travel time.« less

  10. An Empirical Comparison of Seven Iterative and Evolutionary Function Optimization Heuristics

    NASA Technical Reports Server (NTRS)

    Baluja, Shumeet

    1995-01-01

    This report is a repository of the results obtained from a large scale empirical comparison of seven iterative and evolution-based optimization heuristics. Twenty-seven static optimization problems, spanning six sets of problem classes which are commonly explored in genetic algorithm literature, are examined. The problem sets include job-shop scheduling, traveling salesman, knapsack, binpacking, neural network weight optimization, and standard numerical optimization. The search spaces in these problems range from 2368 to 22040. The results indicate that using genetic algorithms for the optimization of static functions does not yield a benefit, in terms of the final answer obtained, over simpler optimization heuristics. Descriptions of the algorithms tested and the encodings of the problems are described in detail for reproducibility.

  11. Deployment-based lifetime optimization for linear wireless sensor networks considering both retransmission and discrete power control.

    PubMed

    Li, Ruiying; Ma, Wenting; Huang, Ning; Kang, Rui

    2017-01-01

    A sophisticated method for node deployment can efficiently reduce the energy consumption of a Wireless Sensor Network (WSN) and prolong the corresponding network lifetime. Pioneers have proposed many node deployment based lifetime optimization methods for WSNs, however, the retransmission mechanism and the discrete power control strategy, which are widely used in practice and have large effect on the network energy consumption, are often neglected and assumed as a continuous one, respectively, in the previous studies. In this paper, both retransmission and discrete power control are considered together, and a more realistic energy-consumption-based network lifetime model for linear WSNs is provided. Using this model, we then propose a generic deployment-based optimization model that maximizes network lifetime under coverage, connectivity and transmission rate success constraints. The more accurate lifetime evaluation conduces to a longer optimal network lifetime in the realistic situation. To illustrate the effectiveness of our method, both one-tiered and two-tiered uniformly and non-uniformly distributed linear WSNs are optimized in our case studies, and the comparisons between our optimal results and those based on relatively inaccurate lifetime evaluation show the advantage of our method when investigating WSN lifetime optimization problems.

  12. Aerodynamic design applying automatic differentiation and using robust variable fidelity optimization

    NASA Astrophysics Data System (ADS)

    Takemiya, Tetsushi

    In modern aerospace engineering, the physics-based computational design method is becoming more important, as it is more efficient than experiments and because it is more suitable in designing new types of aircraft (e.g., unmanned aerial vehicles or supersonic business jets) than the conventional design method, which heavily relies on historical data. To enhance the reliability of the physics-based computational design method, researchers have made tremendous efforts to improve the fidelity of models. However, high-fidelity models require longer computational time, so the advantage of efficiency is partially lost. This problem has been overcome with the development of variable fidelity optimization (VFO). In VFO, different fidelity models are simultaneously employed in order to improve the speed and the accuracy of convergence in an optimization process. Among the various types of VFO methods, one of the most promising methods is the approximation management framework (AMF). In the AMF, objective and constraint functions of a low-fidelity model are scaled at a design point so that the scaled functions, which are referred to as "surrogate functions," match those of a high-fidelity model. Since scaling functions and the low-fidelity model constitutes surrogate functions, evaluating the surrogate functions is faster than evaluating the high-fidelity model. Therefore, in the optimization process, in which gradient-based optimization is implemented and thus many function calls are required, the surrogate functions are used instead of the high-fidelity model to obtain a new design point. The best feature of the AMF is that it may converge to a local optimum of the high-fidelity model in much less computational time than the high-fidelity model. However, through literature surveys and implementations of the AMF, the author xx found that (1) the AMF is very vulnerable when the computational analysis models have numerical noise, which is very common in high-fidelity models, and that (2) the AMF terminates optimization erroneously when the optimization problems have constraints. The first problem is due to inaccuracy in computing derivatives in the AMF, and the second problem is due to erroneous treatment of the trust region ratio, which sets the size of the domain for an optimization in the AMF. In order to solve the first problem of the AMF, automatic differentiation (AD) technique, which reads the codes of analysis models and automatically generates new derivative codes based on some mathematical rules, is applied. If derivatives are computed with the generated derivative code, they are analytical, and the required computational time is independent of the number of design variables, which is very advantageous for realistic aerospace engineering problems. However, if analysis models implement iterative computations such as computational fluid dynamics (CFD), which solves system partial differential equations iteratively, computing derivatives through the AD requires a massive memory size. The author solved this deficiency by modifying the AD approach and developing a more efficient implementation with CFD, and successfully applied the AD to general CFD software. In order to solve the second problem of the AMF, the governing equation of the trust region ratio, which is very strict against the violation of constraints, is modified so that it can accept the violation of constraints within some tolerance. By accepting violations of constraints during the optimization process, the AMF can continue optimization without terminating immaturely and eventually find the true optimum design point. With these modifications, the AMF is referred to as "Robust AMF," and it is applied to airfoil and wing aerodynamic design problems using Euler CFD software. The former problem has 21 design variables, and the latter 64. In both problems, derivatives computed with the proposed AD method are first compared with those computed with the finite differentiation (FD) method, and then, the Robust AMF is implemented along with the sequential quadratic programming (SQP) optimization method with only high-fidelity models. The proposed AD method computes derivatives more accurately and faster than the FD method, and the Robust AMF successfully optimizes shapes of the airfoil and the wing in a much shorter time than SQP with only high-fidelity models. These results clearly show the effectiveness of the Robust AMF. Finally, the feasibility of reducing computational time for calculating derivatives and the necessity of AMF with an optimum design point always in the feasible region are discussed as future work.

  13. Light-efficient photography.

    PubMed

    Hasinoff, Samuel W; Kutulakos, Kiriakos N

    2011-11-01

    In this paper, we consider the problem of imaging a scene with a given depth of field at a given exposure level in the shortest amount of time possible. We show that by 1) collecting a sequence of photos and 2) controlling the aperture, focus, and exposure time of each photo individually, we can span the given depth of field in less total time than it takes to expose a single narrower-aperture photo. Using this as a starting point, we obtain two key results. First, for lenses with continuously variable apertures, we derive a closed-form solution for the globally optimal capture sequence, i.e., that collects light from the specified depth of field in the most efficient way possible. Second, for lenses with discrete apertures, we derive an integer programming problem whose solution is the optimal sequence. Our results are applicable to off-the-shelf cameras and typical photography conditions, and advocate the use of dense, wide-aperture photo sequences as a light-efficient alternative to single-shot, narrow-aperture photography.

  14. The dynamics and control of large flexible space structures - 13

    NASA Technical Reports Server (NTRS)

    Bainum, Peter M.; Li, Feiyue; Xu, Jianke

    1990-01-01

    The optimal control of three-dimensional large angle maneuvers and vibrations of a Shuttle-mast-reflector system is considered. The nonlinear equations of motion are formulated by using Lagrange's formula, with the mast modeled as a continuous beam subject to three-dimensional deformations. Pontryagin's Maximum Principle is applied to the slewing problem, to derive the necessary conditions for the optimal controls, which are bounded by given saturation levels. The resulting two point boundary value problem is then solved by using the quasilinearization algorithm and the method of particular solutions. The study of the large angle maneuvering of the Shuttle-beam-reflector spacecraft in the plane of a circular earth orbit is extended to consider the effects of the structural offset connection, the axial shortening, and the gravitational torque on the slewing motion. Finally the effect of additional design parameters (such as related to additional payload requirement) on the linear quadratic regulator based design of an orbiting control/structural system is examined.

  15. A dynamical regularization algorithm for solving inverse source problems of elliptic partial differential equations

    NASA Astrophysics Data System (ADS)

    Zhang, Ye; Gong, Rongfang; Cheng, Xiaoliang; Gulliksson, Mårten

    2018-06-01

    This study considers the inverse source problem for elliptic partial differential equations with both Dirichlet and Neumann boundary data. The unknown source term is to be determined by additional boundary conditions. Unlike the existing methods found in the literature, which usually employ the first-order in time gradient-like system (such as the steepest descent methods) for numerically solving the regularized optimization problem with a fixed regularization parameter, we propose a novel method with a second-order in time dissipative gradient-like system and a dynamical selected regularization parameter. A damped symplectic scheme is proposed for the numerical solution. Theoretical analysis is given for both the continuous model and the numerical algorithm. Several numerical examples are provided to show the robustness of the proposed algorithm.

  16. Multiobjective optimization of temporal processes.

    PubMed

    Song, Zhe; Kusiak, Andrew

    2010-06-01

    This paper presents a dynamic predictive-optimization framework of a nonlinear temporal process. Data-mining (DM) and evolutionary strategy algorithms are integrated in the framework for solving the optimization model. DM algorithms learn dynamic equations from the process data. An evolutionary strategy algorithm is then applied to solve the optimization problem guided by the knowledge extracted by the DM algorithm. The concept presented in this paper is illustrated with the data from a power plant, where the goal is to maximize the boiler efficiency and minimize the limestone consumption. This multiobjective optimization problem can be either transformed into a single-objective optimization problem through preference aggregation approaches or into a Pareto-optimal optimization problem. The computational results have shown the effectiveness of the proposed optimization framework.

  17. Long-term bio-H2 and bio-CH4 production from food waste in a continuous two-stage system: Energy efficiency and conversion pathways.

    PubMed

    Algapani, Dalal E; Qiao, Wei; di Pumpo, Francesca; Bianchi, David; Wandera, Simon M; Adani, Fabrizio; Dong, Renjie

    2018-01-01

    Anaerobic digestion is a well-established technology for treating organic waste, but it is still under challenge for food waste due to process stability problems. In this work, continuous H 2 and CH 4 production from canteen food waste (FW) in a two-stage system were successfully established by optimizing process parameters. The optimal hydraulic retention time was 5d for H 2 and 15d for CH 4 . Overall, around 59% of the total COD in FW was converted into H 2 (4%) and into CH 4 (55%). The fluctuations of FW characteristics did not significantly affect process performance. From the energy point view, the H 2 reactor contributed much less than the methane reactor to total energy balance, but it played a key role in maintaining the stability of anaerobic treatment of food waste. Microbial characterization indicated that methane formation was through syntrophic acetate oxidation combined with hydrogenotrophic methanogenesis pathway. Copyright © 2017. Published by Elsevier Ltd.

  18. Social Emotional Optimization Algorithm for Nonlinear Constrained Optimization Problems

    NASA Astrophysics Data System (ADS)

    Xu, Yuechun; Cui, Zhihua; Zeng, Jianchao

    Nonlinear programming problem is one important branch in operational research, and has been successfully applied to various real-life problems. In this paper, a new approach called Social emotional optimization algorithm (SEOA) is used to solve this problem which is a new swarm intelligent technique by simulating the human behavior guided by emotion. Simulation results show that the social emotional optimization algorithm proposed in this paper is effective and efficiency for the nonlinear constrained programming problems.

  19. Evolutionary optimization methods for accelerator design

    NASA Astrophysics Data System (ADS)

    Poklonskiy, Alexey A.

    Many problems from the fields of accelerator physics and beam theory can be formulated as optimization problems and, as such, solved using optimization methods. Despite growing efficiency of the optimization methods, the adoption of modern optimization techniques in these fields is rather limited. Evolutionary Algorithms (EAs) form a relatively new and actively developed optimization methods family. They possess many attractive features such as: ease of the implementation, modest requirements on the objective function, a good tolerance to noise, robustness, and the ability to perform a global search efficiently. In this work we study the application of EAs to problems from accelerator physics and beam theory. We review the most commonly used methods of unconstrained optimization and describe the GATool, evolutionary algorithm and the software package, used in this work, in detail. Then we use a set of test problems to assess its performance in terms of computational resources, quality of the obtained result, and the tradeoff between them. We justify the choice of GATool as a heuristic method to generate cutoff values for the COSY-GO rigorous global optimization package for the COSY Infinity scientific computing package. We design the model of their mutual interaction and demonstrate that the quality of the result obtained by GATool increases as the information about the search domain is refined, which supports the usefulness of this model. We Giscuss GATool's performance on the problems suffering from static and dynamic noise and study useful strategies of GATool parameter tuning for these and other difficult problems. We review the challenges of constrained optimization with EAs and methods commonly used to overcome them. We describe REPA, a new constrained optimization method based on repairing, in exquisite detail, including the properties of its two repairing techniques: REFIND and REPROPT. We assess REPROPT's performance on the standard constrained optimization test problems for EA with a variety of different configurations and suggest optimal default parameter values based on the results. Then we study the performance of the REPA method on the same set of test problems and compare the obtained results with those of several commonly used constrained optimization methods with EA. Based on the obtained results, particularly on the outstanding performance of REPA on test problem that presents significant difficulty for other reviewed EAs, we conclude that the proposed method is useful and competitive. We discuss REPA parameter tuning for difficult problems and critically review some of the problems from the de-facto standard test problem set for the constrained optimization with EA. In order to demonstrate the practical usefulness of the developed method, we study several problems of accelerator design and demonstrate how they can be solved with EAs. These problems include a simple accelerator design problem (design a quadrupole triplet to be stigmatically imaging, find all possible solutions), a complex real-life accelerator design problem (an optimization of the front end section for the future neutrino factory), and a problem of the normal form defect function optimization which is used to rigorously estimate the stability of the beam dynamics in circular accelerators. The positive results we obtained suggest that the application of EAs to problems from accelerator theory can be very beneficial and has large potential. The developed optimization scenarios and tools can be used to approach similar problems.

  20. A weak Hamiltonian finite element method for optimal control problems

    NASA Technical Reports Server (NTRS)

    Hodges, Dewey H.; Bless, Robert R.

    1989-01-01

    A temporal finite element method based on a mixed form of the Hamiltonian weak principle is developed for dynamics and optimal control problems. The mixed form of Hamilton's weak principle contains both displacements and momenta as primary variables that are expanded in terms of nodal values and simple polynomial shape functions. Unlike other forms of Hamilton's principle, however, time derivatives of the momenta and displacements do not appear therein; instead, only the virtual momenta and virtual displacements are differentiated with respect to time. Based on the duality that is observed to exist between the mixed form of Hamilton's weak principle and variational principles governing classical optimal control problems, a temporal finite element formulation of the latter can be developed in a rather straightforward manner. Several well-known problems in dynamics and optimal control are illustrated. The example dynamics problem involves a time-marching problem. As optimal control examples, elementary trajectory optimization problems are treated.

  1. A weak Hamiltonian finite element method for optimal control problems

    NASA Technical Reports Server (NTRS)

    Hodges, Dewey H.; Bless, Robert R.

    1990-01-01

    A temporal finite element method based on a mixed form of the Hamiltonian weak principle is developed for dynamics and optimal control problems. The mixed form of Hamilton's weak principle contains both displacements and momenta as primary variables that are expanded in terms of nodal values and simple polynomial shape functions. Unlike other forms of Hamilton's principle, however, time derivatives of the momenta and displacements do not appear therein; instead, only the virtual momenta and virtual displacements are differentiated with respect to time. Based on the duality that is observed to exist between the mixed form of Hamilton's weak principle and variational principles governing classical optimal control problems, a temporal finite element formulation of the latter can be developed in a rather straightforward manner. Several well-known problems in dynamics and optimal control are illustrated. The example dynamics problem involves a time-marching problem. As optimal control examples, elementary trajectory optimization problems are treated.

  2. Weak Hamiltonian finite element method for optimal control problems

    NASA Technical Reports Server (NTRS)

    Hodges, Dewey H.; Bless, Robert R.

    1991-01-01

    A temporal finite element method based on a mixed form of the Hamiltonian weak principle is developed for dynamics and optimal control problems. The mixed form of Hamilton's weak principle contains both displacements and momenta as primary variables that are expanded in terms of nodal values and simple polynomial shape functions. Unlike other forms of Hamilton's principle, however, time derivatives of the momenta and displacements do not appear therein; instead, only the virtual momenta and virtual displacements are differentiated with respect to time. Based on the duality that is observed to exist between the mixed form of Hamilton's weak principle and variational principles governing classical optimal control problems, a temporal finite element formulation of the latter can be developed in a rather straightforward manner. Several well-known problems in dynamics and optimal control are illustrated. The example dynamics problem involves a time-marching problem. As optimal control examples, elementary trajectory optimization problems are treated.

  3. Distance majorization and its applications

    PubMed Central

    Chi, Eric C.; Zhou, Hua; Lange, Kenneth

    2014-01-01

    The problem of minimizing a continuously differentiable convex function over an intersection of closed convex sets is ubiquitous in applied mathematics. It is particularly interesting when it is easy to project onto each separate set, but nontrivial to project onto their intersection. Algorithms based on Newton’s method such as the interior point method are viable for small to medium-scale problems. However, modern applications in statistics, engineering, and machine learning are posing problems with potentially tens of thousands of parameters or more. We revisit this convex programming problem and propose an algorithm that scales well with dimensionality. Our proposal is an instance of a sequential unconstrained minimization technique and revolves around three ideas: the majorization-minimization principle, the classical penalty method for constrained optimization, and quasi-Newton acceleration of fixed-point algorithms. The performance of our distance majorization algorithms is illustrated in several applications. PMID:25392563

  4. Identification of the heat transfer coefficient in the two-dimensional model of binary alloy solidification

    NASA Astrophysics Data System (ADS)

    Hetmaniok, Edyta; Hristov, Jordan; Słota, Damian; Zielonka, Adam

    2017-05-01

    The paper presents the procedure for solving the inverse problem for the binary alloy solidification in a two-dimensional space. This is a continuation of some previous works of the authors investigating a similar problem but in the one-dimensional domain. Goal of the problem consists in identification of the heat transfer coefficient on boundary of the region and in reconstruction of the temperature distribution inside the considered region in case when the temperature measurements in selected points of the alloy are known. Mathematical model of the problem is based on the heat conduction equation with the substitute thermal capacity and with the liquidus and solidus temperatures varying in dependance on the concentration of the alloy component. For describing this concentration the Scheil model is used. Investigated procedure involves also the parallelized Ant Colony Optimization algorithm applied for minimizing a functional expressing the error of approximate solution.

  5. Fault tolerance of artificial neural networks with applications in critical systems

    NASA Technical Reports Server (NTRS)

    Protzel, Peter W.; Palumbo, Daniel L.; Arras, Michael K.

    1992-01-01

    This paper investigates the fault tolerance characteristics of time continuous recurrent artificial neural networks (ANN) that can be used to solve optimization problems. The principle of operations and performance of these networks are first illustrated by using well-known model problems like the traveling salesman problem and the assignment problem. The ANNs are then subjected to 13 simultaneous 'stuck at 1' or 'stuck at 0' faults for network sizes of up to 900 'neurons'. The effects of these faults is demonstrated and the cause for the observed fault tolerance is discussed. An application is presented in which a network performs a critical task for a real-time distributed processing system by generating new task allocations during the reconfiguration of the system. The performance degradation of the ANN under the presence of faults is investigated by large-scale simulations, and the potential benefits of delegating a critical task to a fault tolerant network are discussed.

  6. Iterative Adaptive Dynamic Programming for Solving Unknown Nonlinear Zero-Sum Game Based on Online Data.

    PubMed

    Zhu, Yuanheng; Zhao, Dongbin; Li, Xiangjun

    2017-03-01

    H ∞ control is a powerful method to solve the disturbance attenuation problems that occur in some control systems. The design of such controllers relies on solving the zero-sum game (ZSG). But in practical applications, the exact dynamics is mostly unknown. Identification of dynamics also produces errors that are detrimental to the control performance. To overcome this problem, an iterative adaptive dynamic programming algorithm is proposed in this paper to solve the continuous-time, unknown nonlinear ZSG with only online data. A model-free approach to the Hamilton-Jacobi-Isaacs equation is developed based on the policy iteration method. Control and disturbance policies and value are approximated by neural networks (NNs) under the critic-actor-disturber structure. The NN weights are solved by the least-squares method. According to the theoretical analysis, our algorithm is equivalent to a Gauss-Newton method solving an optimization problem, and it converges uniformly to the optimal solution. The online data can also be used repeatedly, which is highly efficient. Simulation results demonstrate its feasibility to solve the unknown nonlinear ZSG. When compared with other algorithms, it saves a significant amount of online measurement time.

  7. Taking side effects into account for HIV medication.

    PubMed

    Costanza, Vicente; Rivadeneira, Pablo S; Biafore, Federico L; D'Attellis, Carlos E

    2010-09-01

    A control-theoretic approach to the problem of designing "low-side-effects" therapies for HIV patients based on highly active drugs is substantiated here. The evolution of side effects during treatment is modeled by an extra differential equation coupled to the dynamics of virions, healthy T-cells, and infected ones. The new equation reflects the dependence of collateral damages on the amount of each dose administered to the patient and on the evolution of the viral load detected by periodical blood analysis. The cost objective accounts for recommended bounds on healthy cells and virions, and also penalizes the appearance of collateral morbidities caused by the medication. The optimization problem is solved by a hybrid dynamic programming scheme that adhere to discrete-time observation and control actions, but by maintaining the continuous-time setup for predicting states and side effects. The resulting optimal strategies employ less drugs than those prescribed by previous optimization studies, but maintaining high doses at the beginning and the end of each period of six months. If an inverse discount rate is applied to favor early actions, and under a mild penalization of the final viral load, then the optimal doses are found to be high at the beginning and decrease afterward, thus causing an apparent stabilization of the main variables. But in this case, the final viral load turns higher than acceptable.

  8. Optimality conditions for the numerical solution of optimization problems with PDE constraints :

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aguilo Valentin, Miguel Alejandro; Ridzal, Denis

    2014-03-01

    A theoretical framework for the numerical solution of partial di erential equation (PDE) constrained optimization problems is presented in this report. This theoretical framework embodies the fundamental infrastructure required to e ciently implement and solve this class of problems. Detail derivations of the optimality conditions required to accurately solve several parameter identi cation and optimal control problems are also provided in this report. This will allow the reader to further understand how the theoretical abstraction presented in this report translates to the application.

  9. FRANOPP: Framework for analysis and optimization problems user's guide

    NASA Technical Reports Server (NTRS)

    Riley, K. M.

    1981-01-01

    Framework for analysis and optimization problems (FRANOPP) is a software aid for the study and solution of design (optimization) problems which provides the driving program and plotting capability for a user generated programming system. In addition to FRANOPP, the programming system also contains the optimization code CONMIN, and two user supplied codes, one for analysis and one for output. With FRANOPP the user is provided with five options for studying a design problem. Three of the options utilize the plot capability and present an indepth study of the design problem. The study can be focused on a history of the optimization process or on the interaction of variables within the design problem.

  10. Time-optimal thermalization of single-mode Gaussian states

    NASA Astrophysics Data System (ADS)

    Carlini, Alberto; Mari, Andrea; Giovannetti, Vittorio

    2014-11-01

    We consider the problem of time-optimal control of a continuous bosonic quantum system subject to the action of a Markovian dissipation. In particular, we consider the case of a one-mode Gaussian quantum system prepared in an arbitrary initial state and which relaxes to the steady state due to the action of the dissipative channel. We assume that the unitary part of the dynamics is represented by Gaussian operations which preserve the Gaussian nature of the quantum state, i.e., arbitrary phase rotations, bounded squeezing, and unlimited displacements. In the ideal ansatz of unconstrained quantum control (i.e., when the unitary phase rotations, squeezing, and displacement of the mode can be performed instantaneously), we study how control can be optimized for speeding up the relaxation towards the fixed point of the dynamics and we analytically derive the optimal relaxation time. Our model has potential and interesting applications to the control of modes of electromagnetic radiation and of trapped levitated nanospheres.

  11. Evaluation of Genetic Algorithm Concepts Using Model Problems. Part 2; Multi-Objective Optimization

    NASA Technical Reports Server (NTRS)

    Holst, Terry L.; Pulliam, Thomas H.

    2003-01-01

    A genetic algorithm approach suitable for solving multi-objective optimization problems is described and evaluated using a series of simple model problems. Several new features including a binning selection algorithm and a gene-space transformation procedure are included. The genetic algorithm is suitable for finding pareto optimal solutions in search spaces that are defined by any number of genes and that contain any number of local extrema. Results indicate that the genetic algorithm optimization approach is flexible in application and extremely reliable, providing optimal results for all optimization problems attempted. The binning algorithm generally provides pareto front quality enhancements and moderate convergence efficiency improvements for most of the model problems. The gene-space transformation procedure provides a large convergence efficiency enhancement for problems with non-convoluted pareto fronts and a degradation in efficiency for problems with convoluted pareto fronts. The most difficult problems --multi-mode search spaces with a large number of genes and convoluted pareto fronts-- require a large number of function evaluations for GA convergence, but always converge.

  12. Combinatorial Multiobjective Optimization Using Genetic Algorithms

    NASA Technical Reports Server (NTRS)

    Crossley, William A.; Martin. Eric T.

    2002-01-01

    The research proposed in this document investigated multiobjective optimization approaches based upon the Genetic Algorithm (GA). Several versions of the GA have been adopted for multiobjective design, but, prior to this research, there had not been significant comparisons of the most popular strategies. The research effort first generalized the two-branch tournament genetic algorithm in to an N-branch genetic algorithm, then the N-branch GA was compared with a version of the popular Multi-Objective Genetic Algorithm (MOGA). Because the genetic algorithm is well suited to combinatorial (mixed discrete / continuous) optimization problems, the GA can be used in the conceptual phase of design to combine selection (discrete variable) and sizing (continuous variable) tasks. Using a multiobjective formulation for the design of a 50-passenger aircraft to meet the competing objectives of minimizing takeoff gross weight and minimizing trip time, the GA generated a range of tradeoff designs that illustrate which aircraft features change from a low-weight, slow trip-time aircraft design to a heavy-weight, short trip-time aircraft design. Given the objective formulation and analysis methods used, the results of this study identify where turboprop-powered aircraft and turbofan-powered aircraft become more desirable for the 50 seat passenger application. This aircraft design application also begins to suggest how a combinatorial multiobjective optimization technique could be used to assist in the design of morphing aircraft.

  13. Wireless Sensor Network Optimization: Multi-Objective Paradigm.

    PubMed

    Iqbal, Muhammad; Naeem, Muhammad; Anpalagan, Alagan; Ahmed, Ashfaq; Azam, Muhammad

    2015-07-20

    Optimization problems relating to wireless sensor network planning, design, deployment and operation often give rise to multi-objective optimization formulations where multiple desirable objectives compete with each other and the decision maker has to select one of the tradeoff solutions. These multiple objectives may or may not conflict with each other. Keeping in view the nature of the application, the sensing scenario and input/output of the problem, the type of optimization problem changes. To address different nature of optimization problems relating to wireless sensor network design, deployment, operation, planing and placement, there exist a plethora of optimization solution types. We review and analyze different desirable objectives to show whether they conflict with each other, support each other or they are design dependent. We also present a generic multi-objective optimization problem relating to wireless sensor network which consists of input variables, required output, objectives and constraints. A list of constraints is also presented to give an overview of different constraints which are considered while formulating the optimization problems in wireless sensor networks. Keeping in view the multi facet coverage of this article relating to multi-objective optimization, this will open up new avenues of research in the area of multi-objective optimization relating to wireless sensor networks.

  14. Uncertainty Aware Structural Topology Optimization Via a Stochastic Reduced Order Model Approach

    NASA Technical Reports Server (NTRS)

    Aguilo, Miguel A.; Warner, James E.

    2017-01-01

    This work presents a stochastic reduced order modeling strategy for the quantification and propagation of uncertainties in topology optimization. Uncertainty aware optimization problems can be computationally complex due to the substantial number of model evaluations that are necessary to accurately quantify and propagate uncertainties. This computational complexity is greatly magnified if a high-fidelity, physics-based numerical model is used for the topology optimization calculations. Stochastic reduced order model (SROM) methods are applied here to effectively 1) alleviate the prohibitive computational cost associated with an uncertainty aware topology optimization problem; and 2) quantify and propagate the inherent uncertainties due to design imperfections. A generic SROM framework that transforms the uncertainty aware, stochastic topology optimization problem into a deterministic optimization problem that relies only on independent calls to a deterministic numerical model is presented. This approach facilitates the use of existing optimization and modeling tools to accurately solve the uncertainty aware topology optimization problems in a fraction of the computational demand required by Monte Carlo methods. Finally, an example in structural topology optimization is presented to demonstrate the effectiveness of the proposed uncertainty aware structural topology optimization approach.

  15. A Kind of Nonlinear Programming Problem Based on Mixed Fuzzy Relation Equations Constraints

    NASA Astrophysics Data System (ADS)

    Li, Jinquan; Feng, Shuang; Mi, Honghai

    In this work, a kind of nonlinear programming problem with non-differential objective function and under the constraints expressed by a system of mixed fuzzy relation equations is investigated. First, some properties of this kind of optimization problem are obtained. Then, a polynomial-time algorithm for this kind of optimization problem is proposed based on these properties. Furthermore, we show that this algorithm is optimal for the considered optimization problem in this paper. Finally, numerical examples are provided to illustrate our algorithms.

  16. Two Topics in Data Analysis: Sample-based Optimal Transport and Analysis of Turbulent Spectra from Ship Track Data

    NASA Astrophysics Data System (ADS)

    Kuang, Simeng Max

    This thesis contains two topics in data analysis. The first topic consists of the introduction of algorithms for sample-based optimal transport and barycenter problems. In chapter 1, a family of algorithms is introduced to solve both the L2 optimal transport problem and the Wasserstein barycenter problem. Starting from a theoretical perspective, the new algorithms are motivated from a key characterization of the barycenter measure, which suggests an update that reduces the total transportation cost and stops only when the barycenter is reached. A series of general theorems is given to prove the convergence of all the algorithms. We then extend the algorithms to solve sample-based optimal transport and barycenter problems, in which only finite sample sets are available instead of underlying probability distributions. A unique feature of the new approach is that it compares sample sets in terms of the expected values of a set of feature functions, which at the same time induce the function space of optimal maps and can be chosen by users to incorporate their prior knowledge of the data. All the algorithms are implemented and applied to various synthetic example and practical applications. On synthetic examples it is found that both the SOT algorithm and the SCB algorithm are able to find the true solution and often converge in a handful of iterations. On more challenging applications including Gaussian mixture models, color transfer and shape transform problems, the algorithms give very good results throughout despite the very different nature of the corresponding datasets. In chapter 2, a preconditioning procedure is developed for the L2 and more general optimal transport problems. The procedure is based on a family of affine map pairs, which transforms the original measures into two new measures that are closer to each other, while preserving the optimality of solutions. It is proved that the preconditioning procedure minimizes the remaining transportation cost among all admissible affine maps. The procedure can be used on both continuous measures and finite sample sets from distributions. In numerical examples, the procedure is applied to multivariate normal distributions, to a two-dimensional shape transform problem and to color transfer problems. For the second topic, we present an extension to anisotropic flows of the recently developed Helmholtz and wave-vortex decomposition method for one-dimensional spectra measured along ship or aircraft tracks in Buhler et al. (J. Fluid Mech., vol. 756, 2014, pp. 1007-1026). While in the original method the flow was assumed to be homogeneous and isotropic in the horizontal plane, we allow the flow to have a simple kind of horizontal anisotropy that is chosen in a self-consistent manner and can be deduced from the one-dimensional power spectra of the horizontal velocity fields and their cross-correlation. The key result is that an exact and robust Helmholtz decomposition of the horizontal kinetic energy spectrum can be achieved in this anisotropic flow setting, which then also allows the subsequent wave-vortex decomposition step. The new method is developed theoretically and tested with encouraging results on challenging synthetic data as well as on ocean data from the Gulf Stream.

  17. Hybrid Artificial Root Foraging Optimizer Based Multilevel Threshold for Image Segmentation

    PubMed Central

    Liu, Yang; Liu, Junfei

    2016-01-01

    This paper proposes a new plant-inspired optimization algorithm for multilevel threshold image segmentation, namely, hybrid artificial root foraging optimizer (HARFO), which essentially mimics the iterative root foraging behaviors. In this algorithm the new growth operators of branching, regrowing, and shrinkage are initially designed to optimize continuous space search by combining root-to-root communication and coevolution mechanism. With the auxin-regulated scheme, various root growth operators are guided systematically. With root-to-root communication, individuals exchange information in different efficient topologies, which essentially improve the exploration ability. With coevolution mechanism, the hierarchical spatial population driven by evolutionary pressure of multiple subpopulations is structured, which ensure that the diversity of root population is well maintained. The comparative results on a suit of benchmarks show the superiority of the proposed algorithm. Finally, the proposed HARFO algorithm is applied to handle the complex image segmentation problem based on multilevel threshold. Computational results of this approach on a set of tested images show the outperformance of the proposed algorithm in terms of optimization accuracy computation efficiency. PMID:27725826

  18. Hybrid Artificial Root Foraging Optimizer Based Multilevel Threshold for Image Segmentation.

    PubMed

    Liu, Yang; Liu, Junfei; Tian, Liwei; Ma, Lianbo

    2016-01-01

    This paper proposes a new plant-inspired optimization algorithm for multilevel threshold image segmentation, namely, hybrid artificial root foraging optimizer (HARFO), which essentially mimics the iterative root foraging behaviors. In this algorithm the new growth operators of branching, regrowing, and shrinkage are initially designed to optimize continuous space search by combining root-to-root communication and coevolution mechanism. With the auxin-regulated scheme, various root growth operators are guided systematically. With root-to-root communication, individuals exchange information in different efficient topologies, which essentially improve the exploration ability. With coevolution mechanism, the hierarchical spatial population driven by evolutionary pressure of multiple subpopulations is structured, which ensure that the diversity of root population is well maintained. The comparative results on a suit of benchmarks show the superiority of the proposed algorithm. Finally, the proposed HARFO algorithm is applied to handle the complex image segmentation problem based on multilevel threshold. Computational results of this approach on a set of tested images show the outperformance of the proposed algorithm in terms of optimization accuracy computation efficiency.

  19. Design optimization of large-size format edge-lit light guide units

    NASA Astrophysics Data System (ADS)

    Hastanin, J.; Lenaerts, C.; Fleury-Frenette, K.

    2016-04-01

    In this paper, we present an original method of dot pattern generation dedicated to large-size format light guide plate (LGP) design optimization, such as photo-bioreactors, the number of dots greatly exceeds the maximum allowable number of optical objects supported by most common ray-tracing software. In the proposed method, in order to simplify the computational problem, the original optical system is replaced by an equivalent one. Accordingly, an original dot pattern is splitted into multiple small sections, inside which the dot size variation is less than the ink dots printing typical resolution. Then, these sections are replaced by equivalent cells with continuous diffusing film. After that, we adjust the TIS (Total Integrated Scatter) two-dimensional distribution over the grid of equivalent cells, using an iterative optimization procedure. Finally, the obtained optimal TIS distribution is converted into the dot size distribution by applying an appropriate conversion rule. An original semi-empirical equation dedicated to rectangular large-size LGPs is proposed for the initial guess of TIS distribution. It allows significantly reduce the total time needed to dot pattern optimization.

  20. A Survey of Mathematical Programming in the Soviet Union (Bibliography),

    DTIC Science & Technology

    1982-01-01

    ASTAFYEV, N. N., "METHOD OF LINEARIZATION IN CONVEX PROGRAMMING", TR4- Y ZIMN SHKOLY PO MAT PROGRAMMIR I XMEZHN VOPR DROGOBYCH, 72, VOL. 3, 54-73 2...AKADEMIYA KOMMUNLN’NOGO KHOZYAYSTVA (MOSCOW), 72, NO. 93, 70-77 19. GIMELFARB , G, V. MARCHENKO, V. RYBAK, "AUTOMATIC IDENTIFICATION OF IDENTICAL POINTS...DYNAMIC PROGRAMMING (CONTINUED) 25. KOLOSOV, G. Y , "ON ANALYTICAL SOLUTION OF DESIGN PROBLEMS FOR DISTRIBUTED OPTIMAL CONTROL SYSTEMS SUBJECTED TO RANDOM

  1. Fault tolerant filtering and fault detection for quantum systems driven by fields in single photon states

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Qing, E-mail: qing.gao.chance@gmail.com; Dong, Daoyi, E-mail: daoyidong@gmail.com; Petersen, Ian R., E-mail: i.r.petersen@gmai.com

    The purpose of this paper is to solve the fault tolerant filtering and fault detection problem for a class of open quantum systems driven by a continuous-mode bosonic input field in single photon states when the systems are subject to stochastic faults. Optimal estimates of both the system observables and the fault process are simultaneously calculated and characterized by a set of coupled recursive quantum stochastic differential equations.

  2. Multiphysics numerical modeling of the continuous flow microwave-assisted transesterification process.

    PubMed

    Muley, Pranjali D; Boldor, Dorin

    2012-01-01

    Use of advanced microwave technology for biodiesel production from vegetable oil is a relatively new technology. Microwave dielectric heating increases the process efficiency and reduces reaction time. Microwave heating depends on various factors such as material properties (dielectric and thermo-physical), frequency of operation and system design. Although lab scale results are promising, it is important to study these parameters and optimize the process before scaling up. Numerical modeling approach can be applied for predicting heating and temperature profiles including at larger scale. The process can be studied for optimization without actually performing the experiments, reducing the amount of experimental work required. A basic numerical model of continuous electromagnetic heating of biodiesel precursors was developed. A finite element model was built using COMSOL Multiphysics 4.2 software by coupling the electromagnetic problem with the fluid flow and heat transfer problem. Chemical reaction was not taken into account. Material dielectric properties were obtained experimentally, while the thermal properties were obtained from the literature (all the properties were temperature dependent). The model was tested for the two different power levels 4000 W and 4700 W at a constant flow rate of 840ml/min. The electric field, electromagnetic power density flow and temperature profiles were studied. Resulting temperature profiles were validated by comparing to the temperatures obtained at specific locations from the experiment. The results obtained were in good agreement with the experimental data.

  3. Fast Optimization for Aircraft Descent and Approach Trajectory

    NASA Technical Reports Server (NTRS)

    Luchinsky, Dmitry G.; Schuet, Stefan; Brenton, J.; Timucin, Dogan; Smith, David; Kaneshige, John

    2017-01-01

    We address problem of on-line scheduling of the aircraft descent and approach trajectory. We formulate a general multiphase optimal control problem for optimization of the descent trajectory and review available methods of its solution. We develop a fast algorithm for solution of this problem using two key components: (i) fast inference of the dynamical and control variables of the descending trajectory from the low dimensional flight profile data and (ii) efficient local search for the resulting reduced dimensionality non-linear optimization problem. We compare the performance of the proposed algorithm with numerical solution obtained using optimal control toolbox General Pseudospectral Optimal Control Software. We present results of the solution of the scheduling problem for aircraft descent using novel fast algorithm and discuss its future applications.

  4. Research on cutting path optimization of sheet metal parts based on ant colony algorithm

    NASA Astrophysics Data System (ADS)

    Wu, Z. Y.; Ling, H.; Li, L.; Wu, L. H.; Liu, N. B.

    2017-09-01

    In view of the disadvantages of the current cutting path optimization methods of sheet metal parts, a new method based on ant colony algorithm was proposed in this paper. The cutting path optimization problem of sheet metal parts was taken as the research object. The essence and optimization goal of the optimization problem were presented. The traditional serial cutting constraint rule was improved. The cutting constraint rule with cross cutting was proposed. The contour lines of parts were discretized and the mathematical model of cutting path optimization was established. Thus the problem was converted into the selection problem of contour lines of parts. Ant colony algorithm was used to solve the problem. The principle and steps of the algorithm were analyzed.

  5. Large-scale structural optimization

    NASA Technical Reports Server (NTRS)

    Sobieszczanski-Sobieski, J.

    1983-01-01

    Problems encountered by aerospace designers in attempting to optimize whole aircraft are discussed, along with possible solutions. Large scale optimization, as opposed to component-by-component optimization, is hindered by computational costs, software inflexibility, concentration on a single, rather than trade-off, design methodology and the incompatibility of large-scale optimization with single program, single computer methods. The software problem can be approached by placing the full analysis outside of the optimization loop. Full analysis is then performed only periodically. Problem-dependent software can be removed from the generic code using a systems programming technique, and then embody the definitions of design variables, objective function and design constraints. Trade-off algorithms can be used at the design points to obtain quantitative answers. Finally, decomposing the large-scale problem into independent subproblems allows systematic optimization of the problems by an organization of people and machines.

  6. Application of the gravity search algorithm to multi-reservoir operation optimization

    NASA Astrophysics Data System (ADS)

    Bozorg-Haddad, Omid; Janbaz, Mahdieh; Loáiciga, Hugo A.

    2016-12-01

    Complexities in river discharge, variable rainfall regime, and drought severity merit the use of advanced optimization tools in multi-reservoir operation. The gravity search algorithm (GSA) is an evolutionary optimization algorithm based on the law of gravity and mass interactions. This paper explores the GSA's efficacy for solving benchmark functions, single reservoir, and four-reservoir operation optimization problems. The GSA's solutions are compared with those of the well-known genetic algorithm (GA) in three optimization problems. The results show that the GSA's results are closer to the optimal solutions than the GA's results in minimizing the benchmark functions. The average values of the objective function equal 1.218 and 1.746 with the GSA and GA, respectively, in solving the single-reservoir hydropower operation problem. The global solution equals 1.213 for this same problem. The GSA converged to 99.97% of the global solution in its average-performing history, while the GA converged to 97% of the global solution of the four-reservoir problem. Requiring fewer parameters for algorithmic implementation and reaching the optimal solution in fewer number of functional evaluations are additional advantages of the GSA over the GA. The results of the three optimization problems demonstrate a superior performance of the GSA for optimizing general mathematical problems and the operation of reservoir systems.

  7. Algorithms for optimized maximum entropy and diagnostic tools for analytic continuation.

    PubMed

    Bergeron, Dominic; Tremblay, A-M S

    2016-08-01

    Analytic continuation of numerical data obtained in imaginary time or frequency has become an essential part of many branches of quantum computational physics. It is, however, an ill-conditioned procedure and thus a hard numerical problem. The maximum-entropy approach, based on Bayesian inference, is the most widely used method to tackle that problem. Although the approach is well established and among the most reliable and efficient ones, useful developments of the method and of its implementation are still possible. In addition, while a few free software implementations are available, a well-documented, optimized, general purpose, and user-friendly software dedicated to that specific task is still lacking. Here we analyze all aspects of the implementation that are critical for accuracy and speed and present a highly optimized approach to maximum entropy. Original algorithmic and conceptual contributions include (1) numerical approximations that yield a computational complexity that is almost independent of temperature and spectrum shape (including sharp Drude peaks in broad background, for example) while ensuring quantitative accuracy of the result whenever precision of the data is sufficient, (2) a robust method of choosing the entropy weight α that follows from a simple consistency condition of the approach and the observation that information- and noise-fitting regimes can be identified clearly from the behavior of χ^{2} with respect to α, and (3) several diagnostics to assess the reliability of the result. Benchmarks with test spectral functions of different complexity and an example with an actual physical simulation are presented. Our implementation, which covers most typical cases for fermions, bosons, and response functions, is available as an open source, user-friendly software.

  8. Algorithms for optimized maximum entropy and diagnostic tools for analytic continuation

    NASA Astrophysics Data System (ADS)

    Bergeron, Dominic; Tremblay, A.-M. S.

    2016-08-01

    Analytic continuation of numerical data obtained in imaginary time or frequency has become an essential part of many branches of quantum computational physics. It is, however, an ill-conditioned procedure and thus a hard numerical problem. The maximum-entropy approach, based on Bayesian inference, is the most widely used method to tackle that problem. Although the approach is well established and among the most reliable and efficient ones, useful developments of the method and of its implementation are still possible. In addition, while a few free software implementations are available, a well-documented, optimized, general purpose, and user-friendly software dedicated to that specific task is still lacking. Here we analyze all aspects of the implementation that are critical for accuracy and speed and present a highly optimized approach to maximum entropy. Original algorithmic and conceptual contributions include (1) numerical approximations that yield a computational complexity that is almost independent of temperature and spectrum shape (including sharp Drude peaks in broad background, for example) while ensuring quantitative accuracy of the result whenever precision of the data is sufficient, (2) a robust method of choosing the entropy weight α that follows from a simple consistency condition of the approach and the observation that information- and noise-fitting regimes can be identified clearly from the behavior of χ2 with respect to α , and (3) several diagnostics to assess the reliability of the result. Benchmarks with test spectral functions of different complexity and an example with an actual physical simulation are presented. Our implementation, which covers most typical cases for fermions, bosons, and response functions, is available as an open source, user-friendly software.

  9. Optimization of Insertion Cost for Transfer Trajectories to Libration Point Orbits

    NASA Technical Reports Server (NTRS)

    Howell, K. C.; Wilson, R. S.; Lo, M. W.

    1999-01-01

    The objective of this work is the development of efficient techniques to optimize the cost associated with transfer trajectories to libration point orbits in the Sun-Earth-Moon four body problem, that may include lunar gravity assists. Initially, dynamical systems theory is used to determine invariant manifolds associated with the desired libration point orbit. These manifolds are employed to produce an initial approximation to the transfer trajectory. Specific trajectory requirements such as, transfer injection constraints, inclusion of phasing loops, and targeting of a specified state on the manifold are then incorporated into the design of the transfer trajectory. A two level differential corrections process is used to produce a fully continuous trajectory that satisfies the design constraints, and includes appropriate lunar and solar gravitational models. Based on this methodology, and using the manifold structure from dynamical systems theory, a technique is presented to optimize the cost associated with insertion onto a specified libration point orbit.

  10. Constraint Optimization Literature Review

    DTIC Science & Technology

    2015-11-01

    COPs. 15. SUBJECT TERMS high-performance computing, mobile ad hoc network, optimization, constraint, satisfaction 16. SECURITY CLASSIFICATION OF: 17...Optimization Problems 1 2.1 Constraint Satisfaction Problems 1 2.2 Constraint Optimization Problems 3 3. Constraint Optimization Algorithms 9 3.1...Constraint Satisfaction Algorithms 9 3.1.1 Brute-Force search 9 3.1.2 Constraint Propagation 10 3.1.3 Depth-First Search 13 3.1.4 Local Search 18

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malikopoulos, Andreas; Djouadi, Seddik M; Kuruganti, Teja

    We consider the optimal stochastic control problem for home energy systems with solar and energy storage devices when the demand is realized from the grid. The demand is subject to Brownian motions with both drift and variance parameters modulated by a continuous-time Markov chain that represents the regime of electricity price. We model the systems as pure stochastic differential equation models, and then we follow the completing square technique to solve the stochastic home energy management problem. The effectiveness of the efficiency of the proposed approach is validated through a simulation example. For practical situations with constraints consistent to thosemore » studied here, our results imply the proposed framework could reduce the electricity cost from short-term purchase in peak hour market.« less

  12. Comparison of Optimal Design Methods in Inverse Problems

    PubMed Central

    Banks, H. T.; Holm, Kathleen; Kappel, Franz

    2011-01-01

    Typical optimal design methods for inverse or parameter estimation problems are designed to choose optimal sampling distributions through minimization of a specific cost function related to the resulting error in parameter estimates. It is hoped that the inverse problem will produce parameter estimates with increased accuracy using data collected according to the optimal sampling distribution. Here we formulate the classical optimal design problem in the context of general optimization problems over distributions of sampling times. We present a new Prohorov metric based theoretical framework that permits one to treat succinctly and rigorously any optimal design criteria based on the Fisher Information Matrix (FIM). A fundamental approximation theory is also included in this framework. A new optimal design, SE-optimal design (standard error optimal design), is then introduced in the context of this framework. We compare this new design criteria with the more traditional D-optimal and E-optimal designs. The optimal sampling distributions from each design are used to compute and compare standard errors; the standard errors for parameters are computed using asymptotic theory or bootstrapping and the optimal mesh. We use three examples to illustrate ideas: the Verhulst-Pearl logistic population model [13], the standard harmonic oscillator model [13] and a popular glucose regulation model [16, 19, 29]. PMID:21857762

  13. Single product lot-sizing on unrelated parallel machines with non-decreasing processing times

    NASA Astrophysics Data System (ADS)

    Eremeev, A.; Kovalyov, M.; Kuznetsov, P.

    2018-01-01

    We consider a problem in which at least a given quantity of a single product has to be partitioned into lots, and lots have to be assigned to unrelated parallel machines for processing. In one version of the problem, the maximum machine completion time should be minimized, in another version of the problem, the sum of machine completion times is to be minimized. Machine-dependent lower and upper bounds on the lot size are given. The product is either assumed to be continuously divisible or discrete. The processing time of each machine is defined by an increasing function of the lot volume, given as an oracle. Setup times and costs are assumed to be negligibly small, and therefore, they are not considered. We derive optimal polynomial time algorithms for several special cases of the problem. An NP-hard case is shown to admit a fully polynomial time approximation scheme. An application of the problem in energy efficient processors scheduling is considered.

  14. Fast marching methods for the continuous traveling salesman problem.

    PubMed

    Andrews, June; Sethian, J A

    2007-01-23

    We consider a problem in which we are given a domain, a cost function which depends on position at each point in the domain, and a subset of points ("cities") in the domain. The goal is to determine the cheapest closed path that visits each city in the domain once. This can be thought of as a version of the traveling salesman problem, in which an underlying known metric determines the cost of moving through each point of the domain, but in which the actual shortest path between cities is unknown at the outset. We describe algorithms for both a heuristic and an optimal solution to this problem. The complexity of the heuristic algorithm is at worst case M.N log N, where M is the number of cities, and N the size of the computational mesh used to approximate the solutions to the shortest paths problems. The average runtime of the heuristic algorithm is linear in the number of cities and O(N log N) in the size N of the mesh.

  15. Multiobjective optimization approach: thermal food processing.

    PubMed

    Abakarov, A; Sushkov, Y; Almonacid, S; Simpson, R

    2009-01-01

    The objective of this study was to utilize a multiobjective optimization technique for the thermal sterilization of packaged foods. The multiobjective optimization approach used in this study is based on the optimization of well-known aggregating functions by an adaptive random search algorithm. The applicability of the proposed approach was illustrated by solving widely used multiobjective test problems taken from the literature. The numerical results obtained for the multiobjective test problems and for the thermal processing problem show that the proposed approach can be effectively used for solving multiobjective optimization problems arising in the food engineering field.

  16. Pumping strategies for management of a shallow water table: The value of the simulation-optimization approach

    USGS Publications Warehouse

    Barlow, P.M.; Wagner, B.J.; Belitz, K.

    1996-01-01

    The simulation-optimization approach is used to identify ground-water pumping strategies for control of the shallow water table in the western San Joaquin Valley, California, where shallow ground water threatens continued agricultural productivity. The approach combines the use of ground-water flow simulation with optimization techniques to build on and refine pumping strategies identified in previous research that used flow simulation alone. Use of the combined simulation-optimization model resulted in a 20 percent reduction in the area subject to a shallow water table over that identified by use of the simulation model alone. The simulation-optimization model identifies increasingly more effective pumping strategies for control of the water table as the complexity of the problem increases; that is, as the number of subareas in which pumping is to be managed increases, the simulation-optimization model is better able to discriminate areally among subareas to determine optimal pumping locations. The simulation-optimization approach provides an improved understanding of controls on the ground-water flow system and management alternatives that can be implemented in the valley. In particular, results of the simulation-optimization model indicate that optimal pumping strategies are constrained by the existing distribution of wells between the semiconfined and confined zones of the aquifer, by the distribution of sediment types (and associated hydraulic conductivities) in the western valley, and by the historical distribution of pumping throughout the western valley.

  17. Replica analysis for the duality of the portfolio optimization problem

    NASA Astrophysics Data System (ADS)

    Shinzato, Takashi

    2016-11-01

    In the present paper, the primal-dual problem consisting of the investment risk minimization problem and the expected return maximization problem in the mean-variance model is discussed using replica analysis. As a natural extension of the investment risk minimization problem under only a budget constraint that we analyzed in a previous study, we herein consider a primal-dual problem in which the investment risk minimization problem with budget and expected return constraints is regarded as the primal problem, and the expected return maximization problem with budget and investment risk constraints is regarded as the dual problem. With respect to these optimal problems, we analyze a quenched disordered system involving both of these optimization problems using the approach developed in statistical mechanical informatics and confirm that both optimal portfolios can possess the primal-dual structure. Finally, the results of numerical simulations are shown to validate the effectiveness of the proposed method.

  18. Replica analysis for the duality of the portfolio optimization problem.

    PubMed

    Shinzato, Takashi

    2016-11-01

    In the present paper, the primal-dual problem consisting of the investment risk minimization problem and the expected return maximization problem in the mean-variance model is discussed using replica analysis. As a natural extension of the investment risk minimization problem under only a budget constraint that we analyzed in a previous study, we herein consider a primal-dual problem in which the investment risk minimization problem with budget and expected return constraints is regarded as the primal problem, and the expected return maximization problem with budget and investment risk constraints is regarded as the dual problem. With respect to these optimal problems, we analyze a quenched disordered system involving both of these optimization problems using the approach developed in statistical mechanical informatics and confirm that both optimal portfolios can possess the primal-dual structure. Finally, the results of numerical simulations are shown to validate the effectiveness of the proposed method.

  19. When to stop managing or surveying cryptic threatened species

    PubMed Central

    Chadès, Iadine; McDonald-Madden, Eve; McCarthy, Michael A.; Wintle, Brendan; Linkie, Matthew; Possingham, Hugh P.

    2008-01-01

    Threatened species become increasingly difficult to detect as their populations decline. Managers of such cryptic threatened species face several dilemmas: if they are not sure the species is present, should they continue to manage for that species or invest the limited resources in surveying? We find optimal solutions to this problem using a Partially Observable Markov Decision Process and rules of thumb derived from an analytical approximation. We discover that managing a protected area for a cryptic threatened species can be optimal even if we are not sure the species is present. The more threatened and valuable the species is, relative to the costs of management, the more likely we are to manage this species without determining its continued persistence by using surveys. If a species remains unseen, our belief in the persistence of the species declines to a point where the optimal strategy is to shift resources from saving the species to surveying for it. Finally, when surveys lead to a sufficiently low belief that the species is extant, we surrender resources to other conservation actions. We illustrate our findings with a case study using parameters based on the critically endangered Sumatran tiger (Panthera tigris sumatrae), and we generate rules of thumb on how to allocate conservation effort for any cryptic species. Using Partially Observable Markov Decision Processes in conservation science, we determine the conditions under which it is better to abandon management for that species because our belief that it continues to exist is too low. PMID:18779594

  20. When to stop managing or surveying cryptic threatened species.

    PubMed

    Chadès, Iadine; McDonald-Madden, Eve; McCarthy, Michael A; Wintle, Brendan; Linkie, Matthew; Possingham, Hugh P

    2008-09-16

    Threatened species become increasingly difficult to detect as their populations decline. Managers of such cryptic threatened species face several dilemmas: if they are not sure the species is present, should they continue to manage for that species or invest the limited resources in surveying? We find optimal solutions to this problem using a Partially Observable Markov Decision Process and rules of thumb derived from an analytical approximation. We discover that managing a protected area for a cryptic threatened species can be optimal even if we are not sure the species is present. The more threatened and valuable the species is, relative to the costs of management, the more likely we are to manage this species without determining its continued persistence by using surveys. If a species remains unseen, our belief in the persistence of the species declines to a point where the optimal strategy is to shift resources from saving the species to surveying for it. Finally, when surveys lead to a sufficiently low belief that the species is extant, we surrender resources to other conservation actions. We illustrate our findings with a case study using parameters based on the critically endangered Sumatran tiger (Panthera tigris sumatrae), and we generate rules of thumb on how to allocate conservation effort for any cryptic species. Using Partially Observable Markov Decision Processes in conservation science, we determine the conditions under which it is better to abandon management for that species because our belief that it continues to exist is too low.

  1. Optimization of the resources management in fighting wildfires.

    PubMed

    Martin-Fernández, Susana; Martínez-Falero, Eugenio; Pérez-González, J Manuel

    2002-09-01

    Wildfires lead to important economic, social, and environmental losses, especially in areas of Mediterranean climate where they are of a high intensity and frequency. Over the past 30 years there has been a dramatic surge in the development and use of fire spread models. However, given the chaotic nature of environmental systems, it is very difficult to develop real-time fire-extinguishing models. This article proposes a method of optimizing the performance of wildfire fighting resources such that losses are kept to a minimum. The optimization procedure includes discrete simulation algorithms and Bayesian optimization methods for discrete and continuous problems (simulated annealing and Bayesian global optimization). Fast calculus algorithms are applied to provide optimization outcomes in short periods of time such that the predictions of the model and the real behavior of the fire, combat resources, and meteorological conditions are similar. In addition, adaptive algorithms take into account the chaotic behavior of wildfire so that the system can be updated with data corresponding to the real situation to obtain a new optimum solution. The application of this method to the Northwest Forest of Madrid (Spain) is also described. This application allowed us to check that it is a helpful tool in the decision-making process.

  2. Optimization of the Resources Management in Fighting Wildfires

    NASA Astrophysics Data System (ADS)

    Martin-Fernández, Susana; Martínez-Falero, Eugenio; Pérez-González, J. Manuel

    2002-09-01

    Wildfires lead to important economic, social, and environmental losses, especially in areas of Mediterranean climate where they are of a high intensity and frequency. Over the past 30 years there has been a dramatic surge in the development and use of fire spread models. However, given the chaotic nature of environmental systems, it is very difficult to develop real-time fire-extinguishing models. This article proposes a method of optimizing the performance of wildfire fighting resources such that losses are kept to a minimum. The optimization procedure includes discrete simulation algorithms and Bayesian optimization methods for discrete and continuous problems (simulated annealing and Bayesian global optimization). Fast calculus algorithms are applied to provide optimization outcomes in short periods of time such that the predictions of the model and the real behavior of the fire, combat resources, and meteorological conditions are similar. In addition, adaptive algorithms take into account the chaotic behavior of wildfire so that the system can be updated with data corresponding to the real situation to obtain a new optimum solution. The application of this method to the Northwest Forest of Madrid (Spain) is also described. This application allowed us to check that it is a helpful tool in the decision-making process.

  3. Quantum Heterogeneous Computing for Satellite Positioning Optimization

    NASA Astrophysics Data System (ADS)

    Bass, G.; Kumar, V.; Dulny, J., III

    2016-12-01

    Hard optimization problems occur in many fields of academic study and practical situations. We present results in which quantum heterogeneous computing is used to solve a real-world optimization problem: satellite positioning. Optimization problems like this can scale very rapidly with problem size, and become unsolvable with traditional brute-force methods. Typically, such problems have been approximately solved with heuristic approaches; however, these methods can take a long time to calculate and are not guaranteed to find optimal solutions. Quantum computing offers the possibility of producing significant speed-up and improved solution quality. There are now commercially available quantum annealing (QA) devices that are designed to solve difficult optimization problems. These devices have 1000+ quantum bits, but they have significant hardware size and connectivity limitations. We present a novel heterogeneous computing stack that combines QA and classical machine learning and allows the use of QA on problems larger than the quantum hardware could solve in isolation. We begin by analyzing the satellite positioning problem with a heuristic solver, the genetic algorithm. The classical computer's comparatively large available memory can explore the full problem space and converge to a solution relatively close to the true optimum. The QA device can then evolve directly to the optimal solution within this more limited space. Preliminary experiments, using the Quantum Monte Carlo (QMC) algorithm to simulate QA hardware, have produced promising results. Working with problem instances with known global minima, we find a solution within 8% in a matter of seconds, and within 5% in a few minutes. Future studies include replacing QMC with commercially available quantum hardware and exploring more problem sets and model parameters. Our results have important implications for how heterogeneous quantum computing can be used to solve difficult optimization problems in any field.

  4. Accurate interlaminar stress recovery from finite element analysis

    NASA Technical Reports Server (NTRS)

    Tessler, Alexander; Riggs, H. Ronald

    1994-01-01

    The accuracy and robustness of a two-dimensional smoothing methodology is examined for the problem of recovering accurate interlaminar shear stress distributions in laminated composite and sandwich plates. The smoothing methodology is based on a variational formulation which combines discrete least-squares and penalty-constraint functionals in a single variational form. The smoothing analysis utilizes optimal strains computed at discrete locations in a finite element analysis. These discrete strain data are smoothed with a smoothing element discretization, producing superior accuracy strains and their first gradients. The approach enables the resulting smooth strain field to be practically C1-continuous throughout the domain of smoothing, exhibiting superconvergent properties of the smoothed quantity. The continuous strain gradients are also obtained directly from the solution. The recovered strain gradients are subsequently employed in the integration o equilibrium equations to obtain accurate interlaminar shear stresses. The problem is a simply-supported rectangular plate under a doubly sinusoidal load. The problem has an exact analytic solution which serves as a measure of goodness of the recovered interlaminar shear stresses. The method has the versatility of being applicable to the analysis of rather general and complex structures built of distinct components and materials, such as found in aircraft design. For these types of structures, the smoothing is achieved with 'patches', each patch covering the domain in which the smoothed quantity is physically continuous.

  5. Wireless Sensor Network Optimization: Multi-Objective Paradigm

    PubMed Central

    Iqbal, Muhammad; Naeem, Muhammad; Anpalagan, Alagan; Ahmed, Ashfaq; Azam, Muhammad

    2015-01-01

    Optimization problems relating to wireless sensor network planning, design, deployment and operation often give rise to multi-objective optimization formulations where multiple desirable objectives compete with each other and the decision maker has to select one of the tradeoff solutions. These multiple objectives may or may not conflict with each other. Keeping in view the nature of the application, the sensing scenario and input/output of the problem, the type of optimization problem changes. To address different nature of optimization problems relating to wireless sensor network design, deployment, operation, planing and placement, there exist a plethora of optimization solution types. We review and analyze different desirable objectives to show whether they conflict with each other, support each other or they are design dependent. We also present a generic multi-objective optimization problem relating to wireless sensor network which consists of input variables, required output, objectives and constraints. A list of constraints is also presented to give an overview of different constraints which are considered while formulating the optimization problems in wireless sensor networks. Keeping in view the multi facet coverage of this article relating to multi-objective optimization, this will open up new avenues of research in the area of multi-objective optimization relating to wireless sensor networks. PMID:26205271

  6. Cost component analysis.

    PubMed

    Lörincz, András; Póczos, Barnabás

    2003-06-01

    In optimizations the dimension of the problem may severely, sometimes exponentially increase optimization time. Parametric function approximatiors (FAPPs) have been suggested to overcome this problem. Here, a novel FAPP, cost component analysis (CCA) is described. In CCA, the search space is resampled according to the Boltzmann distribution generated by the energy landscape. That is, CCA converts the optimization problem to density estimation. Structure of the induced density is searched by independent component analysis (ICA). The advantage of CCA is that each independent ICA component can be optimized separately. In turn, (i) CCA intends to partition the original problem into subproblems and (ii) separating (partitioning) the original optimization problem into subproblems may serve interpretation. Most importantly, (iii) CCA may give rise to high gains in optimization time. Numerical simulations illustrate the working of the algorithm.

  7. The design of multirate digital control systems

    NASA Technical Reports Server (NTRS)

    Berg, M. C.

    1986-01-01

    The successive loop closures synthesis method is the only method for multirate (MR) synthesis in common use. A new method for MR synthesis is introduced which requires a gradient-search solution to a constrained optimization problem. Some advantages of this method are that the control laws for all control loops are synthesized simultaneously, taking full advantage of all cross-coupling effects, and that simple, low-order compensator structures are easily accomodated. The algorithm and associated computer program for solving the constrained optimization problem are described. The successive loop closures , optimal control, and constrained optimization synthesis methods are applied to two example design problems. A series of compensator pairs are synthesized for each example problem. The succesive loop closure, optimal control, and constrained optimization synthesis methods are compared, in the context of the two design problems.

  8. Approximation of discrete-time LQG compensators for distributed systems with boundary input and unbounded measurement

    NASA Technical Reports Server (NTRS)

    Gibson, J. S.; Rosen, I. G.

    1987-01-01

    The approximation of optimal discrete-time linear quadratic Gaussian (LQG) compensators for distributed parameter control systems with boundary input and unbounded measurement is considered. The approach applies to a wide range of problems that can be formulated in a state space on which both the discrete-time input and output operators are continuous. Approximating compensators are obtained via application of the LQG theory and associated approximation results for infinite dimensional discrete-time control systems with bounded input and output. Numerical results for spline and modal based approximation schemes used to compute optimal compensators for a one dimensional heat equation with either Neumann or Dirichlet boundary control and pointwise measurement of temperature are presented and discussed.

  9. Kernel-based least squares policy iteration for reinforcement learning.

    PubMed

    Xu, Xin; Hu, Dewen; Lu, Xicheng

    2007-07-01

    In this paper, we present a kernel-based least squares policy iteration (KLSPI) algorithm for reinforcement learning (RL) in large or continuous state spaces, which can be used to realize adaptive feedback control of uncertain dynamic systems. By using KLSPI, near-optimal control policies can be obtained without much a priori knowledge on dynamic models of control plants. In KLSPI, Mercer kernels are used in the policy evaluation of a policy iteration process, where a new kernel-based least squares temporal-difference algorithm called KLSTD-Q is proposed for efficient policy evaluation. To keep the sparsity and improve the generalization ability of KLSTD-Q solutions, a kernel sparsification procedure based on approximate linear dependency (ALD) is performed. Compared to the previous works on approximate RL methods, KLSPI makes two progresses to eliminate the main difficulties of existing results. One is the better convergence and (near) optimality guarantee by using the KLSTD-Q algorithm for policy evaluation with high precision. The other is the automatic feature selection using the ALD-based kernel sparsification. Therefore, the KLSPI algorithm provides a general RL method with generalization performance and convergence guarantee for large-scale Markov decision problems (MDPs). Experimental results on a typical RL task for a stochastic chain problem demonstrate that KLSPI can consistently achieve better learning efficiency and policy quality than the previous least squares policy iteration (LSPI) algorithm. Furthermore, the KLSPI method was also evaluated on two nonlinear feedback control problems, including a ship heading control problem and the swing up control of a double-link underactuated pendulum called acrobot. Simulation results illustrate that the proposed method can optimize controller performance using little a priori information of uncertain dynamic systems. It is also demonstrated that KLSPI can be applied to online learning control by incorporating an initial controller to ensure online performance.

  10. A novel constructive-optimizer neural network for the traveling salesman problem.

    PubMed

    Saadatmand-Tarzjan, Mahdi; Khademi, Morteza; Akbarzadeh-T, Mohammad-R; Moghaddam, Hamid Abrishami

    2007-08-01

    In this paper, a novel constructive-optimizer neural network (CONN) is proposed for the traveling salesman problem (TSP). CONN uses a feedback structure similar to Hopfield-type neural networks and a competitive training algorithm similar to the Kohonen-type self-organizing maps (K-SOMs). Consequently, CONN is composed of a constructive part, which grows the tour and an optimizer part to optimize it. In the training algorithm, an initial tour is created first and introduced to CONN. Then, it is trained in the constructive phase for adding a number of cities to the tour. Next, the training algorithm switches to the optimizer phase for optimizing the current tour by displacing the tour cities. After convergence in this phase, the training algorithm switches to the constructive phase anew and is continued until all cities are added to the tour. Furthermore, we investigate a relationship between the number of TSP cities and the number of cities to be added in each constructive phase. CONN was tested on nine sets of benchmark TSPs from TSPLIB to demonstrate its performance and efficiency. It performed better than several typical Neural networks (NNs), including KNIES_TSP_Local, KNIES_TSP_Global, Budinich's SOM, Co-Adaptive Net, and multivalued Hopfield network as wall as computationally comparable variants of the simulated annealing algorithm, in terms of both CPU time and accuracy. Furthermore, CONN converged considerably faster than expanding SOM and evolved integrated SOM and generated shorter tours compared to KNIES_DECOMPOSE. Although CONN is not yet comparable in terms of accuracy with some sophisticated computationally intensive algorithms, it converges significantly faster than they do. Generally speaking, CONN provides the best compromise between CPU time and accuracy among currently reported NNs for TSP.

  11. The optimal location of piezoelectric actuators and sensors for vibration control of plates

    NASA Astrophysics Data System (ADS)

    Kumar, K. Ramesh; Narayanan, S.

    2007-12-01

    This paper considers the optimal placement of collocated piezoelectric actuator-sensor pairs on a thin plate using a model-based linear quadratic regulator (LQR) controller. LQR performance is taken as objective for finding the optimal location of sensor-actuator pairs. The problem is formulated using the finite element method (FEM) as multi-input-multi-output (MIMO) model control. The discrete optimal sensor and actuator location problem is formulated in the framework of a zero-one optimization problem. A genetic algorithm (GA) is used to solve the zero-one optimization problem. Different classical control strategies like direct proportional feedback, constant-gain negative velocity feedback and the LQR optimal control scheme are applied to study the control effectiveness.

  12. Asymptomatic bacteriuria.

    PubMed

    Nicolle, Lindsay E

    2014-02-01

    Asymptomatic bacteriuria is a common finding. Inappropriate antimicrobial treatment of asymptomatic bacteriuria has been identified as a major issue for antimicrobial stewardship programs. This review summarizes and evaluates recent studies which extend our knowledge of the occurrence, management, and outcomes of bacteriuria. The reported prevalence of bacteriuria is higher in some developing countries than generally reported for developed countries, but reasons for this remain unclear. Clinical studies of young women, renal transplant patients, and patients undergoing minor nontraumatic urologic procedures confirm that treatment of asymptomatic bacteriuria for these populations is not beneficial, and may be harmful. There is also no benefit for treatment of asymptomatic bacteriuria prior to orthopedic surgery to decrease postoperative surgical site infection. Studies continue to report substantial inappropriate antimicrobial use for treatment of asymptomatic bacteriuria. Recent publications confirm that asymptomatic bacteriuria is benign in most patients. Management strategies for pregnant women with recurrent bacteriuria require further clarification. There is a continuing problem with inappropriate treatment of asymptomatic bacteriuria, and sustainable strategies to optimize antimicrobial use for this problem are needed.

  13. Switching Reinforcement Learning for Continuous Action Space

    NASA Astrophysics Data System (ADS)

    Nagayoshi, Masato; Murao, Hajime; Tamaki, Hisashi

    Reinforcement Learning (RL) attracts much attention as a technique of realizing computational intelligence such as adaptive and autonomous decentralized systems. In general, however, it is not easy to put RL into practical use. This difficulty includes a problem of designing a suitable action space of an agent, i.e., satisfying two requirements in trade-off: (i) to keep the characteristics (or structure) of an original search space as much as possible in order to seek strategies that lie close to the optimal, and (ii) to reduce the search space as much as possible in order to expedite the learning process. In order to design a suitable action space adaptively, we propose switching RL model to mimic a process of an infant's motor development in which gross motor skills develop before fine motor skills. Then, a method for switching controllers is constructed by introducing and referring to the “entropy”. Further, through computational experiments by using robot navigation problems with one and two-dimensional continuous action space, the validity of the proposed method has been confirmed.

  14. Exploring the quantum speed limit with computer games

    NASA Astrophysics Data System (ADS)

    Sørensen, Jens Jakob W. H.; Pedersen, Mads Kock; Munch, Michael; Haikka, Pinja; Jensen, Jesper Halkjær; Planke, Tilo; Andreasen, Morten Ginnerup; Gajdacz, Miroslav; Mølmer, Klaus; Lieberoth, Andreas; Sherson, Jacob F.

    2016-04-01

    Humans routinely solve problems of immense computational complexity by intuitively forming simple, low-dimensional heuristic strategies. Citizen science (or crowd sourcing) is a way of exploiting this ability by presenting scientific research problems to non-experts. ‘Gamification’—the application of game elements in a non-game context—is an effective tool with which to enable citizen scientists to provide solutions to research problems. The citizen science games Foldit, EteRNA and EyeWire have been used successfully to study protein and RNA folding and neuron mapping, but so far gamification has not been applied to problems in quantum physics. Here we report on Quantum Moves, an online platform gamifying optimization problems in quantum physics. We show that human players are able to find solutions to difficult problems associated with the task of quantum computing. Players succeed where purely numerical optimization fails, and analyses of their solutions provide insights into the problem of optimization of a more profound and general nature. Using player strategies, we have thus developed a few-parameter heuristic optimization method that efficiently outperforms the most prominent established numerical methods. The numerical complexity associated with time-optimal solutions increases for shorter process durations. To understand this better, we produced a low-dimensional rendering of the optimization landscape. This rendering reveals why traditional optimization methods fail near the quantum speed limit (that is, the shortest process duration with perfect fidelity). Combined analyses of optimization landscapes and heuristic solution strategies may benefit wider classes of optimization problems in quantum physics and beyond.

  15. Exploring the quantum speed limit with computer games.

    PubMed

    Sørensen, Jens Jakob W H; Pedersen, Mads Kock; Munch, Michael; Haikka, Pinja; Jensen, Jesper Halkjær; Planke, Tilo; Andreasen, Morten Ginnerup; Gajdacz, Miroslav; Mølmer, Klaus; Lieberoth, Andreas; Sherson, Jacob F

    2016-04-14

    Humans routinely solve problems of immense computational complexity by intuitively forming simple, low-dimensional heuristic strategies. Citizen science (or crowd sourcing) is a way of exploiting this ability by presenting scientific research problems to non-experts. 'Gamification'--the application of game elements in a non-game context--is an effective tool with which to enable citizen scientists to provide solutions to research problems. The citizen science games Foldit, EteRNA and EyeWire have been used successfully to study protein and RNA folding and neuron mapping, but so far gamification has not been applied to problems in quantum physics. Here we report on Quantum Moves, an online platform gamifying optimization problems in quantum physics. We show that human players are able to find solutions to difficult problems associated with the task of quantum computing. Players succeed where purely numerical optimization fails, and analyses of their solutions provide insights into the problem of optimization of a more profound and general nature. Using player strategies, we have thus developed a few-parameter heuristic optimization method that efficiently outperforms the most prominent established numerical methods. The numerical complexity associated with time-optimal solutions increases for shorter process durations. To understand this better, we produced a low-dimensional rendering of the optimization landscape. This rendering reveals why traditional optimization methods fail near the quantum speed limit (that is, the shortest process duration with perfect fidelity). Combined analyses of optimization landscapes and heuristic solution strategies may benefit wider classes of optimization problems in quantum physics and beyond.

  16. Continuous-time mean-variance portfolio selection with value-at-risk and no-shorting constraints

    NASA Astrophysics Data System (ADS)

    Yan, Wei

    2012-01-01

    An investment problem is considered with dynamic mean-variance(M-V) portfolio criterion under discontinuous prices which follow jump-diffusion processes according to the actual prices of stocks and the normality and stability of the financial market. The short-selling of stocks is prohibited in this mathematical model. Then, the corresponding stochastic Hamilton-Jacobi-Bellman(HJB) equation of the problem is presented and the solution of the stochastic HJB equation based on the theory of stochastic LQ control and viscosity solution is obtained. The efficient frontier and optimal strategies of the original dynamic M-V portfolio selection problem are also provided. And then, the effects on efficient frontier under the value-at-risk constraint are illustrated. Finally, an example illustrating the discontinuous prices based on M-V portfolio selection is presented.

  17. Numerical optimization methods for controlled systems with parameters

    NASA Astrophysics Data System (ADS)

    Tyatyushkin, A. I.

    2017-10-01

    First- and second-order numerical methods for optimizing controlled dynamical systems with parameters are discussed. In unconstrained-parameter problems, the control parameters are optimized by applying the conjugate gradient method. A more accurate numerical solution in these problems is produced by Newton's method based on a second-order functional increment formula. Next, a general optimal control problem with state constraints and parameters involved on the righthand sides of the controlled system and in the initial conditions is considered. This complicated problem is reduced to a mathematical programming one, followed by the search for optimal parameter values and control functions by applying a multimethod algorithm. The performance of the proposed technique is demonstrated by solving application problems.

  18. Data Understanding Applied to Optimization

    NASA Technical Reports Server (NTRS)

    Buntine, Wray; Shilman, Michael

    1998-01-01

    The goal of this research is to explore and develop software for supporting visualization and data analysis of search and optimization. Optimization is an ever-present problem in science. The theory of NP-completeness implies that the problems can only be resolved by increasingly smarter problem specific knowledge, possibly for use in some general purpose algorithms. Visualization and data analysis offers an opportunity to accelerate our understanding of key computational bottlenecks in optimization and to automatically tune aspects of the computation for specific problems. We will prototype systems to demonstrate how data understanding can be successfully applied to problems characteristic of NASA's key science optimization tasks, such as central tasks for parallel processing, spacecraft scheduling, and data transmission from a remote satellite.

  19. Multiobjective Optimization Using a Pareto Differential Evolution Approach

    NASA Technical Reports Server (NTRS)

    Madavan, Nateri K.; Biegel, Bryan A. (Technical Monitor)

    2002-01-01

    Differential Evolution is a simple, fast, and robust evolutionary algorithm that has proven effective in determining the global optimum for several difficult single-objective optimization problems. In this paper, the Differential Evolution algorithm is extended to multiobjective optimization problems by using a Pareto-based approach. The algorithm performs well when applied to several test optimization problems from the literature.

  20. On a distinctive feature of problems of calculating time-average characteristics of nuclear reactor optimal control sets

    NASA Astrophysics Data System (ADS)

    Trifonenkov, A. V.; Trifonenkov, V. P.

    2017-01-01

    This article deals with a feature of problems of calculating time-average characteristics of nuclear reactor optimal control sets. The operation of a nuclear reactor during threatened period is considered. The optimal control search problem is analysed. The xenon poisoning causes limitations on the variety of statements of the problem of calculating time-average characteristics of a set of optimal reactor power off controls. The level of xenon poisoning is limited. There is a problem of choosing an appropriate segment of the time axis to ensure that optimal control problem is consistent. Two procedures of estimation of the duration of this segment are considered. Two estimations as functions of the xenon limitation were plot. Boundaries of the interval of averaging are defined more precisely.

  1. Robust optimization modelling with applications to industry and environmental problems

    NASA Astrophysics Data System (ADS)

    Chaerani, Diah; Dewanto, Stanley P.; Lesmana, Eman

    2017-10-01

    Robust Optimization (RO) modeling is one of the existing methodology for handling data uncertainty in optimization problem. The main challenge in this RO methodology is how and when we can reformulate the robust counterpart of uncertain problems as a computationally tractable optimization problem or at least approximate the robust counterpart by a tractable problem. Due to its definition the robust counterpart highly depends on how we choose the uncertainty set. As a consequence we can meet this challenge only if this set is chosen in a suitable way. The development on RO grows fast, since 2004, a new approach of RO called Adjustable Robust Optimization (ARO) is introduced to handle uncertain problems when the decision variables must be decided as a ”wait and see” decision variables. Different than the classic Robust Optimization (RO) that models decision variables as ”here and now”. In ARO, the uncertain problems can be considered as a multistage decision problem, thus decision variables involved are now become the wait and see decision variables. In this paper we present the applications of both RO and ARO. We present briefly all results to strengthen the importance of RO and ARO in many real life problems.

  2. A Matrix-Free Algorithm for Multidisciplinary Design Optimization

    NASA Astrophysics Data System (ADS)

    Lambe, Andrew Borean

    Multidisciplinary design optimization (MDO) is an approach to engineering design that exploits the coupling between components or knowledge disciplines in a complex system to improve the final product. In aircraft design, MDO methods can be used to simultaneously design the outer shape of the aircraft and the internal structure, taking into account the complex interaction between the aerodynamic forces and the structural flexibility. Efficient strategies are needed to solve such design optimization problems and guarantee convergence to an optimal design. This work begins with a comprehensive review of MDO problem formulations and solution algorithms. First, a fundamental MDO problem formulation is defined from which other formulations may be obtained through simple transformations. Using these fundamental problem formulations, decomposition methods from the literature are reviewed and classified. All MDO methods are presented in a unified mathematical notation to facilitate greater understanding. In addition, a novel set of diagrams, called extended design structure matrices, are used to simultaneously visualize both data communication and process flow between the many software components of each method. For aerostructural design optimization, modern decomposition-based MDO methods cannot efficiently handle the tight coupling between the aerodynamic and structural states. This fact motivates the exploration of methods that can reduce the computational cost. A particular structure in the direct and adjoint methods for gradient computation motivates the idea of a matrix-free optimization method. A simple matrix-free optimizer is developed based on the augmented Lagrangian algorithm. This new matrix-free optimizer is tested on two structural optimization problems and one aerostructural optimization problem. The results indicate that the matrix-free optimizer is able to efficiently solve structural and multidisciplinary design problems with thousands of variables and constraints. On the aerostructural test problem formulated with thousands of constraints, the matrix-free optimizer is estimated to reduce the total computational time by up to 90% compared to conventional optimizers.

  3. A Matrix-Free Algorithm for Multidisciplinary Design Optimization

    NASA Astrophysics Data System (ADS)

    Lambe, Andrew Borean

    Multidisciplinary design optimization (MDO) is an approach to engineering design that exploits the coupling between components or knowledge disciplines in a complex system to improve the final product. In aircraft design, MDO methods can be used to simultaneously design the outer shape of the aircraft and the internal structure, taking into account the complex interaction between the aerodynamic forces and the structural flexibility. Efficient strategies are needed to solve such design optimization problems and guarantee convergence to an optimal design. This work begins with a comprehensive review of MDO problem formulations and solution algorithms. First, a fundamental MDO problem formulation is defined from which other formulations may be obtained through simple transformations. Using these fundamental problem formulations, decomposition methods from the literature are reviewed and classified. All MDO methods are presented in a unified mathematical notation to facilitate greater understanding. In addition, a novel set of diagrams, called extended design structure matrices, are used to simultaneously visualize both data communication and process flow between the many software components of each method. For aerostructural design optimization, modern decomposition-based MDO methods cannot efficiently handle the tight coupling between the aerodynamic and structural states. This fact motivates the exploration of methods that can reduce the computational cost. A particular structure in the direct and adjoint methods for gradient computation. motivates the idea of a matrix-free optimization method. A simple matrix-free optimizer is developed based on the augmented Lagrangian algorithm. This new matrix-free optimizer is tested on two structural optimization problems and one aerostructural optimization problem. The results indicate that the matrix-free optimizer is able to efficiently solve structural and multidisciplinary design problems with thousands of variables and constraints. On the aerostructural test problem formulated with thousands of constraints, the matrix-free optimizer is estimated to reduce the total computational time by up to 90% compared to conventional optimizers.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rehman, Nasir, E-mail: nasirzainy1@hotmail.com; Shashiashvili, Malkhaz

    The classical Garman-Kohlhagen model for the currency exchange assumes that the domestic and foreign currency risk-free interest rates are constant and the exchange rate follows a log-normal diffusion process.In this paper we consider the general case, when exchange rate evolves according to arbitrary one-dimensional diffusion process with local volatility that is the function of time and the current exchange rate and where the domestic and foreign currency risk-free interest rates may be arbitrary continuous functions of time. First non-trivial problem we encounter in time-dependent case is the continuity in time argument of the value function of the American put optionmore » and the regularity properties of the optimal exercise boundary. We establish these properties based on systematic use of the monotonicity in volatility for the value functions of the American as well as European options with convex payoffs together with the Dynamic Programming Principle and we obtain certain type of comparison result for the value functions and corresponding exercise boundaries for the American puts with different strikes, maturities and volatilities.Starting from the latter fact that the optimal exercise boundary curve is left continuous with right-hand limits we give a mathematically rigorous and transparent derivation of the significant early exercise premium representation for the value function of the American foreign exchange put option as the sum of the European put option value function and the early exercise premium.The proof essentially relies on the particular property of the stochastic integral with respect to arbitrary continuous semimartingale over the predictable subsets of its zeros. We derive from the latter the nonlinear integral equation for the optimal exercise boundary which can be studied by numerical methods.« less

  5. Design and multi-physics optimization of rotary MRF brakes

    NASA Astrophysics Data System (ADS)

    Topcu, Okan; Taşcıoğlu, Yiğit; Konukseven, Erhan İlhan

    2018-03-01

    Particle swarm optimization (PSO) is a popular method to solve the optimization problems. However, calculations for each particle will be excessive when the number of particles and complexity of the problem increases. As a result, the execution speed will be too slow to achieve the optimized solution. Thus, this paper proposes an automated design and optimization method for rotary MRF brakes and similar multi-physics problems. A modified PSO algorithm is developed for solving multi-physics engineering optimization problems. The difference between the proposed method and the conventional PSO is to split up the original single population into several subpopulations according to the division of labor. The distribution of tasks and the transfer of information to the next party have been inspired by behaviors of a hunting party. Simulation results show that the proposed modified PSO algorithm can overcome the problem of heavy computational burden of multi-physics problems while improving the accuracy. Wire type, MR fluid type, magnetic core material, and ideal current inputs have been determined by the optimization process. To the best of the authors' knowledge, this multi-physics approach is novel for optimizing rotary MRF brakes and the developed PSO algorithm is capable of solving other multi-physics engineering optimization problems. The proposed method has showed both better performance compared to the conventional PSO and also has provided small, lightweight, high impedance rotary MRF brake designs.

  6. Asteroid retrieval missions enabled by invariant manifold dynamics

    NASA Astrophysics Data System (ADS)

    Sánchez, Joan Pau; García Yárnoz, Daniel

    2016-10-01

    Near Earth Asteroids are attractive targets for new space missions; firstly, because of their scientific importance, but also because of their impact threat and prospective resources. The asteroid retrieval mission concept has thus arisen as a synergistic approach to tackle these three facets of interest in one single mission. This paper reviews the methodology used by the authors (2013) in a previous search for objects that could be transported from accessible heliocentric orbits into the Earth's neighbourhood at affordable costs (or Easily Retrievable Objects, a.k.a. EROs). This methodology consisted of a heuristic pruning and an impulsive manoeuvre trajectory optimisation. Low thrust propulsion on the other hand clearly enables the transportation of much larger objects due to its higher specific impulse. Hence, in this paper, low thrust retrieval transfers are sought using impulsive trajectories as first guesses to solve the optimal control problem. GPOPS-II is used to transcribe the continuous-time optimal control problem to a nonlinear programming problem (NLP). The latter is solved by IPOPT, an open source software package for large-scale NLPs. Finally, a natural continuation procedure that increases the asteroid mass allows to find out the largest objects that could be retrieved from a given asteroid orbit. If this retrievable mass is larger than the actual mass of the asteroid, the asteroid retrieval mission for this particular object is said to be feasible. The paper concludes with an updated list of 17 EROs, as of April 2016, with their maximum retrievable masses by means of low thrust propulsion. This ranges from 2000 tons for the easiest object to be retrieved to 300 tons for the least accessible of them.

  7. Algorithmic Perspectives on Problem Formulations in MDO

    NASA Technical Reports Server (NTRS)

    Alexandrov, Natalia M.; Lewis, Robert Michael

    2000-01-01

    This work is concerned with an approach to formulating the multidisciplinary optimization (MDO) problem that reflects an algorithmic perspective on MDO problem solution. The algorithmic perspective focuses on formulating the problem in light of the abilities and inabilities of optimization algorithms, so that the resulting nonlinear programming problem can be solved reliably and efficiently by conventional optimization techniques. We propose a modular approach to formulating MDO problems that takes advantage of the problem structure, maximizes the autonomy of implementation, and allows for multiple easily interchangeable problem statements to be used depending on the available resources and the characteristics of the application problem.

  8. A general optimality criteria algorithm for a class of engineering optimization problems

    NASA Astrophysics Data System (ADS)

    Belegundu, Ashok D.

    2015-05-01

    An optimality criteria (OC)-based algorithm for optimization of a general class of nonlinear programming (NLP) problems is presented. The algorithm is only applicable to problems where the objective and constraint functions satisfy certain monotonicity properties. For multiply constrained problems which satisfy these assumptions, the algorithm is attractive compared with existing NLP methods as well as prevalent OC methods, as the latter involve computationally expensive active set and step-size control strategies. The fixed point algorithm presented here is applicable not only to structural optimization problems but also to certain problems as occur in resource allocation and inventory models. Convergence aspects are discussed. The fixed point update or resizing formula is given physical significance, which brings out a strength and trim feature. The number of function evaluations remains independent of the number of variables, allowing the efficient solution of problems with large number of variables.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dufour, F., E-mail: dufour@math.u-bordeaux1.fr; Prieto-Rumeau, T., E-mail: tprieto@ccia.uned.es

    We consider a discrete-time constrained discounted Markov decision process (MDP) with Borel state and action spaces, compact action sets, and lower semi-continuous cost functions. We introduce a set of hypotheses related to a positive weight function which allow us to consider cost functions that might not be bounded below by a constant, and which imply the solvability of the linear programming formulation of the constrained MDP. In particular, we establish the existence of a constrained optimal stationary policy. Our results are illustrated with an application to a fishery management problem.

  10. Determination of an Optimal Control Strategy for a Generic Surface Vehicle

    DTIC Science & Technology

    2014-06-18

    paragraphs uses the numerical procedure in MATLAB’s BVP (bvp4c) algorithm using the continuation method. The goal is to find a solution to the set of...solution. Solving the BVP problem using bvp4c requires an initial guess for the solution. Note that the algorithm is very sensitive to the particular...form of the initial guess. The quality of the initial guess is paramount in convergence speed of the BVP algorithm and often determines if the

  11. Hip Arthroscopy: Common Problems and Solutions.

    PubMed

    Casp, Aaron; Gwathmey, Frank Winston

    2018-04-01

    The use of hip arthroscopy continues to expand. Understanding potential pitfalls and complications associated with hip arthroscopy is paramount to optimizing clinical outcomes and minimizing unfavorable results. Potential pitfalls and complications are associated with preoperative factors such as patient selection, intraoperative factors such as iatrogenic damage, traction-related complications, inadequate correction of deformity, and nerve injury, or postoperative factors such as poor rehabilitation. This article outlines common factors that contribute to less-than-favorable outcomes. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Nursing role innovations: improved outcomes in a trauma center.

    PubMed

    Holmquist, P J; Yamamoto, L; DiDonna, D; Sise, M J

    1996-01-01

    Trauma systems operate on the principle that people with severe injuries require special medical capabilities if they are to have their best chance of recovery. However, optimal trauma care is threatened by the problems of inadequate financial reimbursement. This threatens the ability to deliver trauma patient care. A variety of strategies is necessary to continue to provide care. Two specific nursing role innovations provide the opportunity to improve the ability to provide coordinated, efficient, and cost-effective quality care.

  13. Analytical approximation and numerical simulations for periodic travelling water waves

    NASA Astrophysics Data System (ADS)

    Kalimeris, Konstantinos

    2017-12-01

    We present recent analytical and numerical results for two-dimensional periodic travelling water waves with constant vorticity. The analytical approach is based on novel asymptotic expansions. We obtain numerical results in two different ways: the first is based on the solution of a constrained optimization problem, and the second is realized as a numerical continuation algorithm. Both methods are applied on some examples of non-constant vorticity. This article is part of the theme issue 'Nonlinear water waves'.

  14. Design of a wearable bio-patch for monitoring patient's temperature.

    PubMed

    Vicente, Jose M; Avila-Navarro, Ernesto; Juan, Carlos G; Garcia, Nicolas; Sabater-Navarro, Jose M

    2016-08-01

    New communication technologies allow us developing useful and more practical medical applications, in particular for ambulatory monitoring. NFC communication has the advantages of low powering and low influence range area, what makes this technology suitable for health applications. This work presents an explanation of the design process of planar NFC antennas in a wearable biopatch. The problem of optimizing the communication distance is addressed. Design of a biopatch for continuous temperature monitoring and experimental results obtained wearing this biopatch during daily activities are presented.

  15. Using Neural Networks in the Mapping of Mixed Discrete/Continuous Design Spaces With Application to Structural Design

    DTIC Science & Technology

    1994-02-01

    desired that the problem to which the design space mapping techniques were applied be easily analyzed, yet provide a design space with realistic complexity...consistent fully stressed solution. 3 DESIGN SPACE MAPPING In order to reduce the computational expense required to optimize design spaces, neural networks...employed in this study. Some of the issues involved in using neural networks to do design space mapping are how to configure the neural network, how much

  16. Closed loop models for analyzing engineering requirements for simulators

    NASA Technical Reports Server (NTRS)

    Baron, S.; Muralidharan, R.; Kleinman, D.

    1980-01-01

    A closed loop analytic model, incorporating a model for the human pilot, (namely, the optimal control model) that would allow certain simulation design tradeoffs to be evaluated quantitatively was developed. This model was applied to a realistic flight control problem. The resulting model is used to analyze both overall simulation effects and the effects of individual elements. The results show that, as compared to an ideal continuous simulation, the discrete simulation can result in significant performance and/or workload penalties.

  17. Head of the bed elevation angle recorder for intensive care unit

    NASA Astrophysics Data System (ADS)

    Krefft, Maciej; Zamaro-Michalska, Aleksandra; Zabołotny, Wojciech M.; Zaworski, Wojciech; Grzanka, Antoni; Łazowski, Tomasz; Tavola, Mario; Siewiera, Jacek; Mikaszewska-Sokolewicz, Małgorzata

    2013-10-01

    This paper presents a recording system optimized for long term measurement of bed headrest elevation angle in the Intensive Care Unit. The continuous monitoring of this parameter allows to find the correlation between the patient's position in bed and the risk of the Ventilator Associated Pneumonia (VAP), a very serious problem in therapy of critically ill patients. Recorder might be be an important tool to evaluate the "care bundles" - sets of preventive procedures recommended for treatment of patients in the ICU.

  18. An optimization formulation for characterization of pulsatile cortisol secretion.

    PubMed

    Faghih, Rose T; Dahleh, Munther A; Brown, Emery N

    2015-01-01

    Cortisol is released to relay information to cells to regulate metabolism and reaction to stress and inflammation. In particular, cortisol is released in the form of pulsatile signals. This low-energy method of signaling seems to be more efficient than continuous signaling. We hypothesize that there is a controller in the anterior pituitary that leads to pulsatile release of cortisol, and propose a mathematical formulation for such controller, which leads to impulse control as opposed to continuous control. We postulate that this controller is minimizing the number of secretory events that result in cortisol secretion, which is a way of minimizing the energy required for cortisol secretion; this controller maintains the blood cortisol levels within a specific circadian range while complying with the first order dynamics underlying cortisol secretion. We use an ℓ0-norm cost function for this controller, and solve a reweighed ℓ1-norm minimization algorithm for obtaining the solution to this optimization problem. We use four examples to illustrate the performance of this approach: (i) a toy problem that achieves impulse control, (ii) two examples that achieve physiologically plausible pulsatile cortisol release, (iii) an example where the number of pulses is not within the physiologically plausible range for healthy subjects while the cortisol levels are within the desired range. This novel approach results in impulse control where the impulses and the obtained blood cortisol levels have a circadian rhythm and an ultradian rhythm that are in agreement with the known physiology of cortisol secretion. The proposed formulation is a first step in developing intermittent controllers for curing cortisol deficiency. This type of bio-inspired pulse controllers can be employed for designing non-continuous controllers in brain-machine interface design for neuroscience applications.

  19. A policy iteration approach to online optimal control of continuous-time constrained-input systems.

    PubMed

    Modares, Hamidreza; Naghibi Sistani, Mohammad-Bagher; Lewis, Frank L

    2013-09-01

    This paper is an effort towards developing an online learning algorithm to find the optimal control solution for continuous-time (CT) systems subject to input constraints. The proposed method is based on the policy iteration (PI) technique which has recently evolved as a major technique for solving optimal control problems. Although a number of online PI algorithms have been developed for CT systems, none of them take into account the input constraints caused by actuator saturation. In practice, however, ignoring these constraints leads to performance degradation or even system instability. In this paper, to deal with the input constraints, a suitable nonquadratic functional is employed to encode the constraints into the optimization formulation. Then, the proposed PI algorithm is implemented on an actor-critic structure to solve the Hamilton-Jacobi-Bellman (HJB) equation associated with this nonquadratic cost functional in an online fashion. That is, two coupled neural network (NN) approximators, namely an actor and a critic are tuned online and simultaneously for approximating the associated HJB solution and computing the optimal control policy. The critic is used to evaluate the cost associated with the current policy, while the actor is used to find an improved policy based on information provided by the critic. Convergence to a close approximation of the HJB solution as well as stability of the proposed feedback control law are shown. Simulation results of the proposed method on a nonlinear CT system illustrate the effectiveness of the proposed approach. Copyright © 2013 ISA. All rights reserved.

  20. Convex optimization problem prototyping for image reconstruction in computed tomography with the Chambolle-Pock algorithm

    PubMed Central

    Sidky, Emil Y.; Jørgensen, Jakob H.; Pan, Xiaochuan

    2012-01-01

    The primal-dual optimization algorithm developed in Chambolle and Pock (CP), 2011 is applied to various convex optimization problems of interest in computed tomography (CT) image reconstruction. This algorithm allows for rapid prototyping of optimization problems for the purpose of designing iterative image reconstruction algorithms for CT. The primal-dual algorithm is briefly summarized in the article, and its potential for prototyping is demonstrated by explicitly deriving CP algorithm instances for many optimization problems relevant to CT. An example application modeling breast CT with low-intensity X-ray illumination is presented. PMID:22538474

Top